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The Atmosphere Special Issue, entitled “Emerging Hydro-Climatic Patterns, Teleconnec-
tions and Extreme Events in Changing World at Different Timescales”, comprises thirteen
original papers.

Climate is a complex system regulated by interactions among components of Earth at
different spatial and temporal scales. Unravelling spatiotemporal patterns and interactions
among climate variables, especially those related to hydroclimate, has always been an
important task for geoscientists in general and climatologists in particular, mostly because
it contributes significantly to better prediction and forecasting. Teleconnection is a funda-
mental component of the climate system that refers to the climate variability links between
geographically separated regions. Teleconnections, such as El Niño Southern Oscillation
(ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and the Madden
Julian Oscillation (MJO), are often analyzed in their mature phase of variability with the
recognition that the teleconnections have an evolving spatiotemporal scale. However, com-
plexities are intrinsic to natural systems, and for this reason, the task of identifying patterns
and interactions has always been challenging. Coupled with the existing challenges of
global-warming-induced climate change, these patterns and interactions become further
unusual, unexpected, and unpredictable. With these challenging realities, climate science
studies globally recognize that climatic and other geophysical processes are intrinsically
nonlinear and carry multiscale features and influences that are generally time-varying.
This Special Issue is primarily prompted by these realizations and an implied aspiration to
develop a collection of advanced studies addressing the abovementioned issues.

Teleconnections serve as an essential tool for regional hydrometeorological predictions
and highlight the potential explanatory role in understanding the spatiotemporal variability
of hydrological variables. There are six papers in this Special Issue related to this topic.
Harry West et al. [1] focused on the spatio-temporal understanding of the rainfall signatures
in Great Britain based on the North Atlantic Oscillation (NAO) rainfall response variability.
They showed a stronger and more consistent NAO rainfall response, with a greater probabil-
ity of more extreme wet/dry conditions. However, greater NAO rainfall variability during
winter was found in the SE. A more spatially consistent rainfall response marks the summer
months and finds variability in wet/dry magnitude and directionality. Wayne Yuan-Huai
Tsai [2] reported the cause for the Northern Queensland Floods during February 2019 as
a record-breaking sub-seasonal peak rainfall event. The event was induced by an anoma-
lously strong monsoon depression moderated by the convective phases of an MJO and an
equatorial Rossby wave. This study reported that the equatorial Rossby wave is the leading
cause for the lower forecast skill. Chao Wang [3] focused on the evolution characteristics of
the daily-scale Silk Road pattern and its effect on heatwaves in the Yangtze River Valley
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based on multi-reanalysis daily datasets and station data. The study reported that sinking
adiabatic warming and clear-sky radiation warming can be considered the possible causes
of the YRV heat waves. Xiaoduo Pan [4] described the refined characteristics of moisture
recycling over the Heihe River Basin (HRB) using the Weather Research and Forecasting
model. The study concluded that the wind dominantly transported water vapor of the HRB
from the west and north directions, and the west one was much larger than the north one.
In addition, precipitation over the HRB was triggered mainly by the vapor transport from
the west to the east. Nachiketa Acharya [5] explored the onset of the rainy season for seven
agroclimatic zones over Vietnam. The spatiotemporal characteristics of zonal onset date
are analyzed using the teleconnection with Niño 3.4 anomalies. The interannual variation
in the rainy season onset date is approximately two weeks across all agroclimatic zones.
Central Highlands and South zones were found to have a potential for onset prediction, as
both regions were linked with Nino 3.4 anomalies. Md Wahiduzzaman [6] investigated the
spatiotemporal variabilities and trends of thunderstorms days over Bangladesh and their
teleconnections with El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD).
The Mann–Kendall test reveals an increasing trend in thunderstorms for May and June,
particularly in north and northeastern regions. The connection between thunderstorms
and ENSO/IOD indicates a decrease in thunderstorm activities in Bangladesh during the
El Niño and positive IOD years.

The emerging spatiotemporal characteristics of extreme events due to climate variabil-
ity and change helps to understand the propagation of the extreme events. There are three
papers related to this topic. Kevin K. W. Cheung [7] analyzed the spatial distribution of
the daily precipitation concentration index inside the Greater Sydney Metropolitan Area
using Moran’s spatial autocorrelation. The spatial distribution has revealed the nature
and mechanisms underlying the distribution of torrential rains over space within the
metropolis of Sydney under the warming climate. AVS Kalyan [8] conducted a multiscale
spatiotemporal analysis of extreme events in India’s Gomati River Basin. Using Sen’s slope
estimator and Hurst exponent analysis, the authors computed the present and future spatial
variation of sixteen extreme climate indices. The study has shown that the number of dry
days increased, highlighting that the basin is getting drier. Next, the periodicities and
non-stationary features were estimated using the continuous wavelet transform and find a
dominant two-year period in D95P has changed to the four years after 1984 and remains
in the past two decades. Furthermore, the joint probability estimation using the copula
theory highlights the underestimation of the return period due to the ignorance of mutual
dependence. Changjun Wan [9] explored the spatiotemporal aggregation characteristics of
extreme precipitation over China using the local spatial autocorrelation and spatiotempo-
ral scanning models. Integrating both models can effectively detect the accumulation of
extreme events.

Several precipitation products are available to model the hydrological behavior of
watersheds, primarily derived from gauge-based observations, remote sensing, and re-
analysis. This Focus Issue touches on this exciting research; for instance, Setti et al. [10]
evaluate the influence of different precipitation products on model parameters and stream-
flow predictive uncertainty using a soil water assessment tool (SWAT) model. They showed
that bias-corrected TRMM data could be a good alternative to ground observations for
driving the hydrological model of forest dominated catchment over India.

Jianfeng Wang [11] presented the impacts of harsh weather conditions on the trans-
portation system using a stratified Cox model and a heterogeneous Markov chain model,
and showed that weather variables, including temperature, humidity, snow depth, and
ice/snow precipitation, have a significant impact on train performance.

To improve the simulation of tropical cyclones over the North Indian Ocean (NIO),
Gundapuneni Venkata Rao [12] investigated the impact of seven microphysical parame-
terization schemes using the ARW model. From sensitivity analysis, the WSM3 scheme
simulated the cyclones Nilofar, Kyant, Daye, and Phethai well, whereas the cyclones Hud-
hud, Titli, and Ockhi are best simulated by WSM6. The study suggests that the WSM3
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scheme can be used as the first best scheme to predict post-monsoon tropical cyclones over
the NIO.

To disentangle the devastating landslides and widespread flooding over Central Chile,
Piero Mardones [13] explored the freezing level distribution along the western slope of the
subtropical Andes (30◦–38◦ S) for the present climate. They estimated the changes from
the 21st century using the free tropospheric height of the 0 ◦C isotherm (H0) as a proxy.
The mean value under wet conditions toward the end of the century (under RCP8.5) is
close to, or higher than, the upper quartile of the H0 distribution in the current climate.
Under RCP8.5, even moderate daily precipitation can increase river flow to levels that are
considered hazardous for central Chile.

Findings reported in the SI highlight and support the urgent need to consider the
remote teleconnections, extreme events, multiscale variability, and dynamics of the geo-
physical process in general and climate process in particular. All published 13 studies
contributed significantly to our existing knowledge and will appeal to the broader society
of Earth scientists and modellers given the problems they face in understanding the spatio-
temporal variability of the climate variables, coupled between the teleconnections and
extreme events. This Special Issue advanced our understanding of these emerging patterns,
teleconnections, and extreme events in a changing world for more accurate prediction or
projection of their changes, especially on different spatial–time scales.

Author Contributions: A.A. conceptualized the theme of the SI and prepared the original draft. N.Y.,
K.K.W.C. and R.S. supported the idea, reviewed and edited the SI extensively. All editor would like to
thank the authors for their contributions to this Special Issue, and the reviewers for their constructive
and helpful comments to improve the manuscripts. The editor is grateful to Alicia Wang for her kind
support in processing and publishing this Special Issue. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The North Atlantic Oscillation (NAO) is the primary atmospheric-oceanic circulation/
teleconnection influencing regional climate in Great Britain. As our ability to predict the NAO several
months in advance increases, it is important that we improve our spatio-temporal understanding of
the rainfall signatures that the circulation produces. We undertake a high resolution spatio-temporal
analysis quantifying variability in rainfall response to the NAO across Great Britain. We analyse
and map monthly NAO-rainfall response variability, revealing the spatial influence of the NAO on
rainfall distributions, and particularly the probability of wet and dry conditions/extremes. During
the winter months, we identify spatial differences in the rainfall response to the NAO between the NW
and SE areas of Britain. The NW area shows a strong and more consistent NAO-rainfall response,
with greater probability of more extreme wet/dry conditions. However, greater NAO-rainfall
variability during winter was found in the SE. The summer months are marked by a more spatially
consistent rainfall response; however, we find that there is variability in both wet/dry magnitude
and directionality. We note the implications of these spatially and temporally variable NAO-rainfall
responses for regional hydrometeorological predictions and highlight the potential explanatory role
of other atmospheric-oceanic circulations.

Keywords: North Atlantic Oscillation; NAO; rainfall signatures; spatio-temporal analysis

1. Introduction

Weather in Great Britain can be highly variable, fluctuating between wet and dry
extremes. The North Atlantic Oscillation (NAO) atmospheric-oceanic circulation has long
been cited as the leading mode of climate variability in the North Atlantic region [1–3]
due to its influence on the location and amplitude of the North Atlantic Jet Stream [4].
The NAO teleconnection is commonly defined by the sea level pressure (SLP) variation
between two meridional dipoles: the Icelandic low-pressure action point and the Azores
anticyclone. Fluctuations in the difference in SLP between Iceland and the Azores leads
to the occurrence of NAO positive (NAO+) phases, representing a greater than normal
difference in SLP between the two dipoles, or NAO negative (NAO−) phases representing a
weaker than normal difference in SLP. The strength and phase of the NAO can be quantified
by the North Atlantic Oscillation Index (NAOI) [3].

Previous work has explored the influence of sub-annual variability and phase of
the NAO on weather and climate in Great Britain. Strong positive correlations are of-
ten reported between the NAOI and winter rainfall in the north-western areas of the
country [5–7], whilst weaker negative winter correlations have been found in the south-
east and central areas [8,9]. Previous work has quantified these opposing regional rainfall
responses to NAO+ and NAO− phases relative to when the NAO is in a weak neutral
state, finding that in winter, average monthly rainfall increases under NAO+ and decreases
under NAO− conditions can be as much as 200–300 mm in the north-west [10]. Negative
correlations between the winter NAOI and modelled snow cover have also been found in
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the north-west of Scotland [11], suggesting that winter NAO− phases are associated with
higher snowfall in these regions.

Whilst the magnitude of the NAOI is weaker in the summer months [12], significant
NAOI-rainfall correlations have been reported [13]. However, the correlation coefficients
are generally weaker in summer than during the winter months [10]. In winter, the
NAO-rainfall response is characterised by a north-west/south-east spatial divide as de-
scribed above, whilst in summer the spatial signature is more homogenous across the
country [12,13]. In summer months, average monthly rainfall increases under NAO− con-
ditions and decreases under NAO+ conditions are approximately 50–100 mm, compared to
NAO neutral conditions [10].

These NAO rainfall signatures propagate through the hydrological cycle, with NAO
responses observed across Great Britain in catchment runoff [14–16], groundwater [17,18]
and fluvial water temperatures [19], although this propagation can be moderated by
catchment characteristics such as topography, landcover and geology [15,16]. Ongoing
research is exploring whether this understanding of NAO-rainfall-flow propagation can be
incorporated into seasonal streamflow modelling and forecasting [20,21].

As discussed above, the NAO has been found to influence hydrometeorology across
the country, and its spatial signature is evident in monthly average rainfall datasets [10].
However, several studies have reported inconsistency in seasonal NAO-rainfall responses
across Great Britain. Hall and Hanna [13] present three winter rainfall anomaly maps
produced by the UK Met Office for 2013/2014, 2014/2015 and 2015/2016 (see their Figure 1).
The reported NAOI values all indicate an NAO+ phase of varying magnitudes. However,
only in the winter of 2014/2015 was the typical north-west/south-east winter NAO-rainfall
response (as described above) observed. This study concluded by foregrounding the role of
other North Atlantic teleconnections as secondary modes of climate variability, such as the
East Atlantic Pattern (EA) and Scandinavian Pattern, in influencing regional rainfall (and
temperatures) in Britain [13]. Variability in winter NAO-rainfall signatures, both in terms
of strength and spatiality, has also been attributed to other atmospheric teleconnections, in
particular positive and negative phases of the EA, in other work [22,23].

 

−

−
− −

−

Figure 1. Flow chart of the analytical stages of this study.
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Our ability to predict the NAO, especially during its stronger phases during the
winter months [24,25], has improved. In particular, recent research from the National
Center for Atmospheric Research (NCAR) and the UK Met Office suggests that winter
NAO prediction several months in advance may be increasingly possible [26,27]. As NAO
forecasting skill improves, it is important that we continue to develop our spatial and
temporal understanding of the rainfall signatures associated with the circulation, especially
as evidence of the propagation of NAO rainfall deviations to other hydrometeorological
variables, such as runoff and groundwater, continues to emerge.

Whilst previous studies have explored average monthly and seasonal NAO-rainfall
responses across Great Britain [1,10,13], as far as we are aware, no study has quantified the
spatial influence of the NAO on rainfall distributions, and particularly the probability of
wet and dry conditions/extremes. Understanding NAO-rainfall variability is important
as it underpins the potential application of NAO forecasts in water management decision
making. This study responds to this need through the novel application of spatio-temporal
statistics and high spatial and temporal resolution Standardised Precipitation Index (SPI)
data. Specifically, we aim to:

1. Assess the statistical significance and consistency of NAO-rainfall spatial signatures.
2. Establish the spatial distribution of consistent or variable monthly NAO-rainfall responses.

2. Materials and Methods

Figure 1 summarises the key stages of this analysis to explore space-time variability in
monthly NAO-rainfall response across Great Britain, which are explained in full below.

2.1. Data

A range of indices have been used in previous work to quantify the phase and
strength of the NAO [1,10,12,18], and the choice of NAOI can have a notable influence
on subsequent analyses [28]. As this study focuses on quantifying monthly NAO-rainfall
response variability across a full year, an NAOI calculated using a principal components
(PC) analysis of the leading empirical orthogonal function of sea level pressure anomalies
in the North Atlantic region was used [3]. These NAO indices avoid the limitation of
indices directly derived using station-measured data in the summer months when the
NAO dipoles can move away from the monitoring stations [28]. As a result, the use of
station-based NAO indices in summer months can produce weaker and non-significant
NAOI-rainfall correlation analyses [10]. Monthly PC-based NAOI data were downloaded
for the period January 1900–December 2015 from NCAR [29].

Previous studies have used different approaches to defining NAO+ and NAO− phases
using the NAOI. In this study, the NAO phase was defined as half the standard deviation
plus/minus the long-term mean of the NAOI dataset [30]. By identifying NAO phases in
this way, we could remove months where the NAO signal is weak, allowing only clear
NAO+ and NAO− rainfall responses to be considered. NAO+ phases were defined as
having a NAOI > 0.502 and NAO− < −0.503 (data between this range were classified as
NAO neutral and removed). Table 1 shows the distribution of NAO phase and months for
the period January 1900–December 2015.

We used the 5 km gridded Standardised Precipitation Index (SPI) dataset from the
UK Centre for Ecology and Hydrology (CEH) [31] to represent precipitation. Standardised
indices have been widely used in research exploring the hydrometeorological response to
atmospheric-oceanic teleconnections [10,32,33]. The SPI dataset from CEH was calculated
by fitting a gamma distribution to modelled historical rainfall using a standard period of
1961–2010 [31]. For this study, the SPI calculated with a one-month accumulation period
(SPI-1) was used to give a relative indication of wetness/dryness compared to the standard
period at a monthly scale. The SPI-1 data for the same period as the monthly NAOI from
NCAR (January 1900–December 2015) were downloaded from CEH.

7
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Table 1. Frequency Distribution of NAO Phases per Month (January 1900–December 2015).

Period NAO+ Frequency NAO− Frequency NAO Neutral Frequency

Dec 47 40 29
Jan 52 36 28
Feb 47 40 29

WINTER 146 116 86
Mar 45 38 33
Apr 29 32 55
May 28 24 64

SPRING 102 94 152
Jun 26 24 66
Jul 16 16 84

Aug 16 19 81
SUMMER 58 59 231

Sep 19 21 76
Oct 31 33 52
Nov 29 31 56

AUTUMN 79 85 184

The SPI-1 values are normally distributed and can range from −5 to 5, although
approximately 95% of values occur within the range of −2 (extremely dry) to 2 (extremely
wet), and 68% within the range of −1 to 1 [31]. We use a qualitative classification of SPI-1
thresholds to indicate the relative degree of wetness/dryness (Table 2) in the interpretation
of our results.

Table 2. Qualitative Descriptors for SPI-1 Values adapted from [34].

Qualitative Descriptor SPI-1 Value Range

Extremely Wet 2.0–5.0
Very Wet 1.5–1.99

Moderately Wet 1.0–1.49
Near Normal −0.99–0.99

Moderately Dry −1.49–−1.0
Severely Dry −1.99–−1.5

Extremely Dry −5.0–−2.0

2.2. Calculation of Monthly Average SPI-1 Values

To provide a point of comparison, before undertaking the NAO-rainfall space-time
variability analysis described below, we mapped the average monthly SPI-1 values under
NAO+ and NAO− phases over the period January 1900–December 2015. The average
monthly SPI-1 value under each phase was calculated for each 5 km pixel. This analysis
provided a dataset of average rainfall conditions (represented by the SPI-1) for each calendar
month under NAO+ and NAO− conditions.

2.3. Space-Time Data Array

To undertake the spatio-temporal analyses, the monthly SPI-1 data were structured
into a series of data arrays (a space-time cube). Each array contained the monthly 5 km
gridded SPI-1 data stacked in time ascending order for each NAO phase. The number of
time steps in each space-time cube equalled the monthly-phase frequency values in Table 1.
A space-time cube was created for each month under NAO+ and NAO− conditions using
Esri ArcGIS Pro software (Version 2.6).

2.4. Space-Time Hot Spot Analysis (Getis Ord Gi* Statistic)

The Getis-Ord Gi* statistic [35] identifies clusters of significantly high and low values
within a spatial dataset—identified as hot or cold spots with varying significance levels
(90, 95 or 99%). The statistic indicates whether the spatial clustering of high/low values is
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more pronounced than would be expected in a random spatial distribution of those same
values [36]. The Getis-Ord Gi* statistic is commonly used in spatial statistical analyses
in health and crime applications [37,38]. This study’s application of it in the field of
hydrometeorology/climatology is novel.

As the Getis-Ord Gi* statistic has a spatial component, its calculation requires consid-
eration of how pixels are spatially related, so that high/low value clusters can be identified
(i.e., a conceptualisation of spatial relationships between the 5 km SPI-1 pixels). Because of
the spatially continuous gridded SPI-1 data, we used the ‘edges and corners’ or ‘queens’
contiguity rule, where each pixel’s statistical neighbourhood included the eight pixels
which share a boundary or point of contact in the four cardinal and diagonal directions.
Hot spots in this context represent clusters of pixels where the SPI-1 values are significantly
high, whilst cold spots represent the inverse (low SPI-1 values). The Getis-Ord Gi* statistic
therefore allows for the identification of statistically significant wet or dry (high SPI-1/low
SPI-1) spatial patterns.

The Getis-Ord Gi* statistic was calculated for each time step (SPI-1 dataset) in the
space–time cubes for NAO+ and NAO− conditions. The output is a multi-variate dataset,
indicating the percentage time each pixel is in either a significant hot (high SPI-1 value—
wet) or cold spot (low SPI-1 value—dry). This enables an evaluation of the statistical
significance and consistency of the spatial rainfall (wet/dry) response to the NAO across
Great Britain and provides an assessment as to the spatial probability of significant wet/dry
conditions under NAO+ and NAO− phases.

2.5. Space-Time Clustering Analysis

The second spatio-temporal analysis was a space-time clustering process [39], which
grouped 5 km pixels with similar SPI-1 values across space, time, and NAO phase for
each month. The clustering used a k-means algorithm with spatially random starting
seeds. During the cluster calculation, SPI-1 time series similarity was assessed using the
Euclidean distance between the SPI-1 time series values (the square root of the sum of
squared differences in SPI-1 values across time) [39]. The algorithm produced 90 space-
time clustering solutions, with potential results between two and ten output clusters. The
optimal clustering solution was identified as that which had the highest pseudo-F statistic.
This statistic describes the within-cluster SPI-1 time series similarity and between-cluster
SPI-1 time series difference—the larger the pseudo-F statistic of the clustering solution, the
greater the distinctiveness of each individual cluster in space and time [39].

The range of the average SPI-1 values within each space-time cluster was investigated
using box plots, frequency histograms and descriptive statistics, quantifying the distribu-
tion of SPI-1 within clusters and providing a measure of the consistency/variability in
space-time rainfall response to the phase of the NAO.

3. Results

3.1. Average Monthly SPI-1 Values

Figures 2 and 3 present the average monthly SPI-1 values under NAO+ and NAO−
conditions. Whilst these are average monthly SPI-1 values and mask extreme values, clear
spatial and temporal signatures of the NAO can be detected. In the winter months, the NAO
rainfall response described in the introduction can be observed [1,7,12,13]. Under NAO+
conditions, the north-west areas have higher/positive average SPI-1 values, indicating
wet conditions, and under NAO− conditions, the region is typically dry (negative SPI-1
values). The inverse average wet/dry response, albeit weaker, is seen in the southern and
eastern areas.
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−

Figure 2. Average monthly SPI-1 values under NAO+ conditions (January 1900–December 2015).

 

−Figure 3. Average monthly SPI-1 values under NAO− conditions (January 1900–December 2015).
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Moving through to the summer months, the average NAO-rainfall response becomes
more spatially homogeneous (i.e., there is less difference between the different areas of
the country), and the wet/dry response in the north-west during winter is inverted; a
spatio-temporal pattern also noted in other studies [10,12,13].

3.2. Space-Time Hot Spot Results

Figures 4 and 5 show the results of the space-time hot spot analysis. This analysis in-
volved calculating the Getis-Ord Gi* for each time step (SPI-1 dataset) of the month/phase
space–time cubes as described in Section 2.3, allowing us to examine the statistical signifi-
cance and consistency of the patterns discussed in Section 3.1 above. The mapped results
in Figures 4 and 5 below show the percentage of time each 5 km pixel was in a statistically
significant hot spot (i.e., a cluster of pixels with high/wet SPI-1 values) or cold spot (i.e.,
a cluster of pixels low/dry SPI-1 values). These maps indicate the spatial probability of
significant wet/dry conditions under NAO+ and NAO− phases. Averages of these results
for the nine Met Office Climate Districts for Great Britain are shown in Figure 6.

−

Figure 4. Space-time hot spot results under NAO+ conditions. Pinks indicate where the percentage of time in a significant
hot spot is high (indicating wetter conditions), and light blues where the percentage of time in a significant cold spot is high
(indicating drier conditions). Light grey indicates low occurrence of both hot and cold spots, whilst mixed shades indicate
occurrence of both hot and cold spots. Disaggregated versions of these maps can be found in Appendix A.
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−Figure 5. As per Figure 4 but under NAO− conditions.

The space-time hot spot analysis reveals statistically significant spatio-temporal pat-
terns in the NAO-rainfall response across Great Britain. The winter months are marked by
the previously noted north-west/south-east spatial divide of opposing wet/dry responses
to the NAO, as identified in other studies [1,10,18]. In our analysis (Figures 4 and 5), this
pattern is shown by the location of widespread hot and cold spots in the NW and SE
areas, indicating significant clusters of pixels with high/low (wet/dry) SPI-1 values. This
suggests that the wet/dry spatial pattern we detect in winter rainfall associated with the
phase of the NAO is statistically significant.

Looking across the record, this NW/SE opposing response appears to have a relatively
high degree of consistency in some areas, for example, Scotland North and West, and to
a slightly lesser extent England South West and Central South and East Anglia are in a
statistically significant wet/dry cluster (hot/cold spot) for a relatively high proportion
of the analysis period (Figure 6). This suggests that there is a higher probability that the
NAO+ and NAO− phases will result in this statistically significant winter NW/SE spatial
pattern. However, it should be noted that in winter, some areas, for example Scotland
East and England North West and Wales North, show little or no difference between the
occurrence of significant clusters of wet/dry SPI-1 values (hot/cold spots). Therefore,
the effect of the NAO in producing significant wet/dry spatial patterns in these Climate
Districts is more limited.

Figures 2 and 3 show that the spatial rainfall response to the NAO is on average
more homogeneous in the summer months [10,12,13]. As a result, less discernible patterns
are found in the hot spot analysis, and the occurrence of statistically significant hot/cold
spots (i.e., significant clusters of high/low SPI-1 values) is more variable in space and
time (Figures 4 and 5). Most Climate Districts show minor differences in the occurrence
of significant clusters of wet/dry SPI-1 values in summer, except for Scotland North and
West (Figure 6).
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−

Figure 6. Regional average percentage of time in a significant hot/cold spot (based on the mapped results in Figures 4 and 5).
Regions based on the Met Office Climate Districts for Great Britain.

3.3. Space-Time Clustering Results

Figures 7 and 8 present the space-time clustering results. This analysis explored the
variability around the average NAO responses identified in Figures 2 and 3 (discussed in
Section 3.1 above). Each cluster represents spatial groupings of 5 km pixels which have
a similar response to the NAO phase during that month across the temporal record. The
optimal number of clusters based on the pseudo-F statistic was consistently three. In
Figures 7 and 8, the more saturated the blue/red colour, the more distinctive the space-time
cluster wet/dry response to the NAO (i.e., the space-time median value is wetter/drier).
Less saturated clusters indicate a space-time median SPI-1 value closer to 0, suggesting a
less distinctive wet/dry average rainfall response to the NAO across the temporal record.
The distributions of cluster median SPI-1 values per time step are plotted in Figure 9,
and the associated descriptive statistics are shown in Figure 10. Figures 11 and 12 show
frequency histograms of the cluster median SPI-1 values and the percentage of time each
cluster experiences wet/dry conditions.
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−

Figure 7. Monthly space-time clusters of SPI-1 values under NAO+ conditions. The clusters are coloured based on the
median SPI-1 value of the cluster in space and time. Blue indicates a wetter median, whereas red indicates a drier median.
Less saturated clusters indicate median SPI-1 values closer to 0.

−Figure 8. As per Figure 7 but showing the monthly space-time clusters of SPI-1 values under NAO− conditions.
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Figure 9. Box plots representing the distribution of cluster median SPI-1 values for the space-time clusters mapped in
Figures 7 and 8. As with Figures 7 and 8 the box plots are coloured based on the median SPI-1 value of the cluster in space
and time. Individual points represent outlier values.
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Figure 10. Descriptive statistics for the space-time cluster median SPI-1 box plots in Figure 9 (IQR = interquartile range;
STD = standard deviation). Formatting of colours is applied per statistical measure. Blue indicates wetter mean/median
SPI-1 values, red indicates drier mean/median SPI-1 values. Green graduated shading indicates greater range/IQR values.
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Figure 11. Frequency histograms of median SPI-1 values for the space–time clusters mapped in Figures 7 and 8.
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−
−

Figure 12. Percentage of time the cluster median SPI-1 value is wet (positive SPI-1 values) and dry (negative SPI-1 values)
based on the frequency histograms in Figure 11. The difference value represents the difference between the percentage of
time under dry conditions and wet conditions.

3.4. Examples of Consistent Monthly NAO-Rainfall Responses

In the space-time clustering analysis, the NAO-rainfall response observed in the
average monthly SPI-1 analysis (Figures 2 and 3) comes through clearly. For example,
the north-west/south-east spatial divide in winter rainfall response [10] can be seen in
Figures 4 and 5. During the winter months (DJF), the north-western areas experience the
greatest change in rainfall under NAO+ and NAO− phases. In December, for example, the
extremes of this response can be seen in NAO+ Cluster 2, which has a maximum cluster
median SPI-1 value of 2 (extremely wet), and NAO− Cluster 2 which has a minimum
cluster median SPI-1 value of −2.5 (extremely dry) (Figures 9 and 10).

Clusters covering these north-western areas in winter also show a relatively more
consistent NAO-rainfall response compared to other parts of the country. For example, Dec
NAO+ Cluster 2 has a 65% chance of being relatively wetter than drier, whilst the similarly
located Dec NAO− Cluster 2 has a 45% probability of experiencing drier rather than
wetter conditions (Figures 11 and 12). The interquartile range (IQR) of these two clusters
also only include wet/dry cluster median SPI-1 values (Figure 9). Similar results for the
north-western areas can be seen in January, for example the IQR for NAO− Cluster 1 only
includes negative SPI-1 (dry) values (Figure 9).

In spring (MAM), similar spatial patterns to those described above can be seen,
but with a north/south gradient in the clustering. As in winter, the median responses
(Figures 7 and 8) match with the average monthly values mapped in Figures 2 and 3. For
example, March NAO− Cluster 3 in north-western Scotland typically experiences notably
dry conditions (Figure 8), with a 57% probability of experiencing drier rather than wetter
conditions (Figures 11 and 12). This cluster also has a notably low minimum cluster median
value of −2.5 representing extremely dry conditions.

In summer (JJA), the more spatially homogeneous wet/dry NAO−/NAO+ responses
in Figures 2 and 3 can be seen in the cluster median values. Notably, the wet/dry di-

18



Atmosphere 2021, 12, 763

rectionality is the opposite to the NAO-rainfall response seen in the north-western areas
during winter. For example, in June, NAO+ Clusters 1 and 2 which cover most of Great
Britain (except for a cluster in the far north-west-Figure 7) show a relatively consistent dry
response, with interquartile ranges (IQR) covering negative/dry SPI-1 values (Figure 9)
and a 53% and 46% probability of drier rather than wetter conditions (Figures 11 and 12).

3.5. Examples of Variable Monthly NAO-Rainfall Responses

The space-time clustering analysis also reveals that whilst typical and relatively
consistent NAO response signals can be observed, there is also significant NAO-rainfall
response variability within some of the space-time clusters.

Even in areas that show relative consistency, variability in the cluster median SPI-1
values can still be observed (Figure 9). For example, in December, NAO− Cluster 2 in the
north-western region (Figure 8), the minimum cluster median SPI-1 value is −2.5 which
represents extremely dry conditions; however, the maximum is an SPI-1 value representing
near-normal conditions (0.8). Whilst drier conditions are more likely in this cluster (72.5%),
wet conditions were present for 27.5% of the time period analysed (Figures 11 and 12).
In February, NAO+ Cluster 2, similarly covering the north-western area, the maximum
cluster median SPI-1 value is 1.9 (severely wet) and the IQR covers positive values only.
Whilst wetter than average conditions were found in this cluster for the majority of the
time period (80%), the cluster did experience relatively dry conditions for 20% of the time
period (Figures 11 and 12). These findings suggest that whilst the typical winter NAO
responses can be observed in the north-western area, there is also some variability in both
the magnitude of the NAO-rainfall response and the directionality (i.e., positive/wet, or
negative/dry SPI-1 values).

The rainfall response in clusters covering the central, southern and eastern areas of
Great Britain support the average winter NAO-rainfall response mapped in Figures 2 and 3.
However, in comparison to the north-west, the winter rainfall response to NAO+ and
NAO− phases is much more variable in clusters spanning these areas (Figures 7 and 8).
For example, NAO+ Cluster 1 in December, has a notably large value range, with cluster
median SPI-1 values ranging from a maximum of 2 (extremely wet) to −1.8 (severely
dry) (Figures 9 and 10). The cluster median SPI-1 histograms also show a more normal
distribution with more equal probability of relatively wet and dry conditions in this cluster
(Figure 11). Similar variability in these areas can also be seen in January and February.
Clusters spanning the central and southern areas of Britain (Figures 7 and 8) also show
more variability in comparison to the north-west in spring.

In summer, some of the clusters covering the north-west exhibit more variability than
similarly located clusters during the winter months. For example, June NAO+ Cluster 3 has
a large cluster SPI-1 value range of −1.2 (moderately dry) to 1.7 (severely wet). Compared
to the winter months in clusters covering the north-western area, the difference between
the probability of wet and dry conditions associated with the phase of the NAO is reduced.
In the example of June NAO+ Cluster 3, there is a 23% likelihood of experiencing wetter
rather than drier conditions (Figures 11 and 12). Some clusters during the summer months
have large SPI-1 value ranges (Figure 9), and the likelihood of relative wet/dry conditions
is equally likely (Figure 12), for example July NAO+ Cluster 2 and August NAO+ Cluster 1,
which span the central, southern and eastern areas of Great Britain.

In late summer, the average NAO-rainfall response across Great Britain can be no-
tably strong in comparison to June and July [10]. Whilst this can be observed in the
clustering analysis, there is variability in the magnitude of the NAO-rainfall response. For
example, August NAO− Cluster 3 shows a 45% likelihood of wetter rather than drier
conditions (Figure 12). However, the magnitude of these wet events can vary—the cluster
average SPI-1 range varies from −0.7 (slightly dry, but near-normal) to 2.3 (extremely
wet) (Figure 10), and the frequency histograms show a wider spread across positive SPI-1
values (Figure 11). This demonstrates that even when there are clear average signals,
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as mapped in Figures 2 and 3, there can be significant spatio-temporal variability in the
NAO-rainfall response.

4. Discussion

This study sought to evaluate the variability in NAO-rainfall response across Great
Britain at high spatial and temporal scales. Average 5 km gridded SPI-1 values were
mapped under NAO+ and NAO− conditions for the period January 1900–December
2015 (Figures 2 and 3). This revealed distinctive spatial signatures of the NAO in av-
erage monthly rainfall, such as the winter north-west/south-east spatial divide and
more spatially homogeneous summer rainfall responses also observed in other stud-
ies [1,7,10,12,13]. The key spatio-temporal differences in NAO-rainfall response and relative
consistency/variability between winter and summer revealed by our space-time analyses
are summarised in Figure 13.

−

 

−

−

−

−

Figure 13. Schematic representation of the key spatio-temporal differences observed in NAO-rainfall
response during the winter and summer months.

In the winter months, the results of the Getis-Ord Gi* space-time hot spot analysis
confirm that the NW/SE spatial pattern (i.e., the spatial distribution of SPI-1 values) is
statistically significant and consistent over the temporal record analysed (Figures 4 and 5).
The space-time clustering analysis (Figures 7 and 8) also show these clear spatial patterns in
the mean and median cluster average values, with clear differences as well in the frequency
distribution of SPI-1 values related to NAO phase and region (Figures 11 and 12). This
indicates a more spatially reliable estimate of monthly rainfall volume under NAO+ and
NAO− phases may be possible during the winter months.

In the north-western areas of Great Britain, the space-time clustering and hot spot
analyses reveal rainfall is very responsive to the phase of the NAO. There are clear differ-
ences in rainfall response between the two NAO phases, with values markedly fluctuating
between wet (positive SPI- values) and dry (negative SPI-1 values) (Figure 9). Significant
wet conditions occur under NAO+ conditions and dry conditions under NAO−, which
supports the significant NAOI-rainfall correlations found in other studies [1,6,7,10]. Our
space-time analyses show that the NAO-rainfall response in the north-western area during
winter also shows greater consistency in these significant NAO+/NAO− wet/dry rainfall
deviations. In some space-time clusters, the frequency histograms show that the probabil-
ity of relative wetness/dryness differs significantly in the north-west during winter, for
example Jan NAO− Cluster 1 has an 83% likelihood of experiencing dry conditions, whilst
the similarly located NAO+ Clusters 1 and 2 have a 69% and 78% likelihood of wetter than
average conditions (Figures 11 and 12). This indicates that we can have greater confidence
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in how the monthly rainfall volume in the north-western area will change with the phase
of the NAO during the winter months. Improved winter NAO forecasting skill [25–27]
may therefore allow for effective water management decisions to be taken if we are able
utilise this forecasting skill to predict an upcoming period of rainfall surplus (NAO+) or
deficit (NAO−). However, it is important to note that even with these more consistent
NAO-rainfall responses, our analysis shows the wet/dry response magnitude can still vary
in the north-west (Figures 9 and 11).

The southern, eastern and central areas of Great Britain have a consistent opposing
(wet/dry) NAO-rainfall response to the north-west during the winter months (Figures 4 and 5).
However, the relative change in monthly average rainfall under NAO+ and NAO− condi-
tions is notably less (Figures 2 and 3), with median space-time cluster values in these areas
being closer to 0 (Figures 9 and 10). There is also greater variability in the NAO-rainfall
response—the median SPI-1 histograms for clusters in these areas are typically more dis-
tributed across wet/dry values (Figure 11). The differences in the likelihood of relative
wet/dry conditions associated with the phase of the NAO are notably reduced, being
within approximately 20–30% (Figure 12). These findings suggest clear variability in both
wet/dry event magnitude and directionality. As a result, it can be concluded that the NAO
has a weaker and more variable influence on rainfall in the southern, eastern, and central
areas, and as such, NAO forecasts might be of less practical use in water management
decision making in comparison to the north-western area.

Differences in average monthly SPI-1 values during the summer months were found
between the two NAO phases (Figures 2 and 3), and less distinctive spatial differences
between the north-western and southern/central areas of the country were found [10,12,13]
(Figures 4 and 5). The more spatially consistent rainfall patterns during summer may be
associated with greater convective rainfall generation [10], compared to orographic rainfall
during winter [16]. However, an area of future research would be to explore the physical
processes resulting in the difference between NAO winter and summer rainfall patterns.
On average, NAO+ conditions result in drier summer months, and NAO− wetter summer
months (Figures 2 and 3) aligning with negative NAOI-rainfall correlations observed in
other studies [10,12,13]. The median space-time cluster values corroborate this (Figure 10),
and in some cases clusters show more distinctive wet/dry summer responses, with the
differences in the likelihood of relative wetness/dryness being approximately 50% for
some clusters over the time period analysed (Figure 12). However, other clusters across
the country also show notable variability in terms of magnitude and directionality in the
NAO-rainfall response (Figure 9), with the relative probability of relative wetness/dryness
being equal in some clusters (Figure 12). These findings demonstrate that even with clear
average monthly signals (Figures 2 and 3), there can be significant variability in the NAO-
rainfall (wet/dry) response, which may limit the practicality of NAO forecasts for water
management decision making during summer.

In summary, our space-time analyses reveal that whilst typical NAO-rainfall signatures
can be observed across the year, there is also significant NAO-rainfall response variability in
space and time. This variability in both rainfall magnitude and wet/dry directionality may
be a limiting factor in the utility of incorporating NAO forecasts into water management
decision making [40], even though the accuracy of these NAO forecasts has improved in
recent years [25–27]. The exception being in the north-western area during winter, where
significant and more consistent changes in rainfall [10,18], and subsequently catchment
hydrology [16], can be found relatable to the phase and strength of the NAO.

Variability in NAO-rainfall response in space and time across Britain might be ex-
plained by other North Atlantic and European atmospheric-oceanic circulations (telecon-
nections) moderating or enhancing the rainfall effect of the NAO and/or being potentially
more dominant in driving regional rainfall in areas where the NAO’s effect is weaker or
when the NAO is in a neutral phase. As discussed above, in our analysis, the central, south-
ern and eastern regions of Great Britain frequently had relatively variable NAO-rainfall
responses under NAO+ and NAO− phases. The East Atlantic pattern in particular has
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been found to be positively correlated with rainfall these regions [13,41] and depending
on its phase and strength may moderate or enhance the effect of the NAO on rainfall
distribution and magnitude [22,23].

Our research supports the findings of Hall and Hanna [13], who suggest that even
highly accurate NAOI forecasts might not provide enough information on their own to
predict regional rainfall in Britain, and potentially subsequently catchment hydrology,
several months in advance, without also considering the phase and magnitude of other
atmospheric-oceanic circulations and climatic variables. As far as we are aware, no study
has yet mapped at a high spatial and temporal (monthly) resolution the signature of these
other North Atlantic/European circulations in regional rainfall across Great Britain.

In this study, the NAO was quantified using a PC-based NAOI, with phases defined
using an approach adopted in previous work [10,30]. However, it is important to note that
there is no universal approach to defining the NAO [42], and there is an opportunity for
future work to explore the sensitivity of these results to the chosen NAOI and phase defini-
tion method. We have demonstrated the effectiveness of high resolution spatio-temporal
analytical methods in exploring the meteorological impact of atmospheric circulations
and revealing spatio-temporal climatic patterns. For example, the Getis-Ord Gi* statistic
allowed for the identification of statistically significant spatial wet/dry patterns in the SPI-1
data in the winter months, although we acknowledge its limitation in detecting significant
high/low value clusters in summer due to the more spatially consistent rainfall response.
The space-time clustering analysis allowed us to look beyond average conditions and
explore spatial and temporal consistency of the average and well-established NAO rainfall
signatures in Great Britain. However, it is important to note that due to the random nature
of the initial seed locations for the space-time clusters, modestly different results may be
produced with a re-running of the analysis. This may be the case for locations (5 km pixels)
where the spatial differences in the SPI-1 time series values are smaller and so may switch
cluster membership between model runs, for example in the Midlands area between the
more distinctive NW/SE zones during winter.

5. Conclusions

This study presents a novel application of space-time analyses to understand the
variability in NAO-rainfall signatures at a high spatial (5 km) and temporal (monthly)
resolution in Great Britain. Our analyses confirm that statistically significant NAO-rainfall
signatures can be observed, and some regions show relatively high consistency in rainfall
response to the phase of the NAO over time. However, our analyses also reveal that there is
significant spatio-temporal variability in the rainfall response to the NAO, especially in the
central, southern, and eastern areas of Great Britain. This has implications for the practical
application of the NAOI in regional hydrometeorological forecasting as it is important to
consider the variability in regional NAO-rainfall response under positive and negative
phases of the NAO across Great Britain.

We suggest that such spatio-temporal variability might be explained by also con-
sidering the phase and magnitude of other atmospheric-oceanic teleconnections such
as the East Atlantic Pattern. There is a need for high spatial and temporal resolution
exploration of the hydrometeorological impact of these secondary modes of climate vari-
ability/teleconnections on rainfall in Great Britain, and in particular, the extent to which
they might moderate or enhance the regional rainfall response to the NAO.
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Appendix A

 

Figure A1. Disaggregated space-time hot spot results (DJFM). Values indicate percentage of time in a
statistically significant hot/cold spot.
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Figure A2. Disaggregated space-time hot spot results (AMJJ). Values indicate percentage of time in a statistically significant
hot/cold spot.

24



Atmosphere 2021, 12, 763

 

 

 

 

 

Figure A3. Disaggregated space-time hot spot results (ASON). Values indicate percentage of time in a statistically significant
hot/cold spot.
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Abstract: During the austral summer 2018/19, devastating floods occurred over northeast Australia
that killed approximately 625,000 head of cattle and inundated over 3000 homes in Townsville.
In this paper, the disastrous event was identified as a record-breaking subseasonal peak rainfall
event (SPRE). The SPRE was mainly induced by an anomalously strong monsoon depression that
was modulated by the convective phases of an MJO and an equatorial Rossby (ER) wave. The ER
wave originated from an active equatorial deep convection associated with the El Niño warm sea
surface temperatures near the dateline over the central Pacific. Based on the S2S Project Database, we
analyzed the extended-range forecast skill of the SPRE from two different perspectives, the monsoon
depression represented by an 850-hPa wind shear index and the 15-day accumulated precipitation
characterized by the percentile rank (PR) and the ratio to the three-month seasonal (DJF) totals.
The results of four S2S models of this study suggest that the monsoon depression can maintain the
same level of skill as the short-range (3 days) forecast up to 8–10 days. For precipitation parameters,
the conclusions are similar to the monsoon depression. For the 2019 northern Queensland SPRE,
the model forecast was, in general, worse than the expectation derived from the hindcast analysis.
The clear modulation of the ER wave that enhanced the SPRE monsoon depression circulation and
precipitation is suspected as the main cause for the lower forecast skill. The analysis procedure
proposed in this study can be applied to analyze the SPREs and their associated large-scale drivers in
other regions.

Keywords: S2S prediction; Australian summer monsoon; MJO; subseasonal peak rainfall event;
extreme rainfall

1. Introduction

In late January and early February 2019, Queensland was hit by a disastrous rainfall
event that caused 18,000 residents to lose power and hundreds of others to evacuate.
The floods led to huge losses for farmers, and estimates of 625,000 head of cattle and
48,000 sheep were killed [1–3].

The annual rainfall in Australia shows a relatively high rainfall amount along the
northern and eastern coastline. The northern part of Australia receives more than 50% of
the rainfall amount of the annual totals in summer, where the water vapor is primarily
brought by the Australian summer monsoon [4]. The Australian summer monsoonal region
is generally regarded as 115◦~150◦ E, 5◦~20◦ S in many studies [5–7]. The subseasonal
variability of monsoonal flow and rainfall are affected by multiple-scale phenomena,
such as Madden–Julian oscillation (MJO) [8–10], convectively coupled equatorial waves
(CCEWs) [11,12], tropical cyclones (TCs) [13,14], and/or extratropical surges [6]. King
et al. [15] pointed out that the extreme rainfall variability is closely related to the mean
rainfall variability during austral summer, especially the TCs and east coast low (monsoon
depression). They defined the extreme rainfall as the monthly maximum consecutive 5-day
precipitation totals. On the other hand, in order to evaluate the usefulness of subseasonal
to seasonal (S2S) prediction [16], Tsai et al. [17] defined a subseasonal peak rainfall event
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(SPRE) as the maximum successive three-pentad (15-day) precipitation within a three-
month time window. The SPRE is an ideal target for assessing the baseline prediction
skill of a S2S prediction model before applying model products to local usages [18]. The
SPRE by definition is the most significant 2-week rainfall episode in the monthly time scale.
Therefore, it is deemed to be the most important S2S precipitation prediction target.

Cowan et al. [1] gave a thorough analysis of the large-scale climate conditions of
the 2019 Queensland flood. They found this event was a good example to promote the
awareness of the benefit of S2S prediction that showed good skill in forecasting the broad-
scale atmospheric conditions north of Australia a week ahead. Motivated by Cowan
et al. [1], the purpose of the present paper is twofold. First, it provides additional evidence
showing that the 2019 Queensland floods are associated with an SPRE influenced by
multiple large-scale factors. Secondly, it designs some informative targets that reflect
some essential characteristics of the SPRE and can be used in model prediction verification
and comparison. To leverage the dynamic model prediction data from the S2S Project
Database [19], the forecast targets will include the influential circulation patterns and
subseasonal scale accumulated precipitation.

The paper is organized as follows: Section 2 describes the observational and S2S
datasets we use. Section 3 documents the 2019 northern Queensland event and its rela-
tionship with monsoon depression, MJO, and CCEWs. Section 4 discusses the prediction
performance of S2S models for the 2019 event. The prediction skill is also accessed based
on the hindcast data from 1998 to 2018. Section 5 is a summary of findings and discussions.

2. Data and Methods

2.1. Data

The wind field is based on the European Centre for Medium-Range Weather Forecasts
Reanalysis Interim (ERA-Interim) [20], which is utilized with a horizontal resolution of
0.75◦ × 0.75◦ in longitude and latitude during the period from November 1998 to February
2019. Rainfall data are based on the CPC MORPHing technique (CMORPH) precipitation
data with a spatial resolution of 0.25◦ × 0.25◦. It includes the raw, satellite only precipitation
estimates, corrected, and gauge-satellite blended precipitation products, with calibration
against surface gauge observations [21]. Outgoing longwave radiation (OLR) is used as an
appropriate proxy for the deep convection, which is based on the interpolated daily OLR
version 1.2 from National Oceanic and Atmospheric Administration (NOAA) Climate Data
Record (CDR) with the spatial resolution of 1◦ × 1◦ [22].

The forecast data are downloaded from the S2S Project Database [19]. Both hindcast
and forecast data contributed by 11 forecast centers around the world (Table 1) are available
in the database. Total precipitation and wind field are used in this study. In this study, we
need to collect the model output with initialization frequency at least once every 5 days.
However, at the time when the research was carried out in 2020, only four out of the
eleven models, namely the BoM, CMA, ECMWF, and NCEP, provided both hindcast and
forecast datasets that satisfy this criterion. Therefore, these four models are presented in
this paper for model prediction, verification, and comparison. We have also checked the
forecasts produced by JMA, KMA, and UKMO, but the results were not presented due to
the sampling limitation.
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Table 1. The detailed information about the three S2S models (updated from Vitart et al. [19] according to ECMWF website),
where “Time Range” is the forecast lead time, “Ensemble Size” is the number of members in the real-time forecast ensemble,
and “Frequency” is the frequency the model is run. “Hindcast” or (reforecast, abbreviated as “Rfc.”) are run using the actual
forecast model but for the past several years on the same (or nearby) calendar day as the forecast. The “Rfc. Period” is the
number of years the reforecasts are run, “Rfc. Frequency” is the frequency the reforecasts are run, and the “Rfc Size” is the
number of ensemble members for reforecasts. “Resolution” is longitude and latitude based on the data accessed from the
ECMWF website.

Model
Time Range

(Days)
Resolution

Ensemble
Size

Frequency
Hindcast

(Rfc.)
Rfc.

Period
Rfc.

Frequency
Rfc. Size

BoM 0 to 62 2.5◦ × 2.5◦ 33 2/Week Fixed 1981~2013 6/Month 33
CMA 0 to 60 1.5◦ × 1.5◦ 4 Daily Fixed 1994~2014 Daily 4
ECCC 0 to 32 1.5◦ × 1.5◦ 21 Weekly On the fly 1998~2017 Weekly 4

ECMWF 0 to 46 1.5◦ × 1.5◦ 51 2/Week On the fly Past 20 yrs. 2/Week 11
HMCR 0 to 62 1.5◦ × 1.5◦ 20 Weekly On the fly 1995~2010 Weekly 10

CNR-ISAC 0 to 32 1.5◦ × 1.5◦ 41 Weekly Fixed 1981~2010 1/Pentad 5
JMA 0.5 to 33.5 1.5◦ × 1.5◦ 50 2/Week Fixed 1981~2012 3/Month 5
KMA 0 to 60 1.5◦ × 1.5◦ 4 Daily On the fly 1991~2010 4/Month 3

CNRM 0 to 61 1.5◦ × 1.5◦ 51 Weekly Fixed 1993~2014 4/Month 15
NCEP 0 to 44 1.5◦ × 1.5◦ 16 Daily Fixed 1999~2010 Daily 4
UKMO 0 to 60 1.5◦ × 1.5◦ 4 Daily On the fly 1993~2016 4/Month 7

2.2. Identifying MJO and CCEWs

We utilize the space-time filtering technique developed by Wheeler and Kiladis [23]
to identify MJO and CCEWs. The first step is to remove the seasonal cycle by subtracting
the long-term mean and the first three harmonics of the daily climatology based on the
1979–2018 period for each grid. To retain the full signal of the waves [24], the anomalies of
the symmetric and antisymmetric components of the waves are not decomposed. Then,
the Fourier transform in longitude is performed, followed by another transform in time.
Fourier coefficients outside the range of the filter are then set to zero, and the filtered
data are obtained by performing the inverse transform. The spectral bands used in the
space-time filter technique for CCEWs are based on the dispersion relation

ω2 − k2 − k

ω
= 2m + 1 m = 1, 2, . . . (1)

The wavenumber (k), frequency bands (ω), and equivalent depths (h) for equatorial
Rossby wave and MJO are presented in Table 2. The influences of other tropical modes are
less significant (figure not shown). Note that the wavenumber of MJO is positive, which
means that the wave propagates eastward, and the other is negative. This calculation is pro-
vided by Carl Schreck, III (SUNY at Albany, see https://ncics.org/portfolio/monitor/mjo/,
last accessed, 9 June 2021), and the function can be applied to the NCAR Command Lan-
guage (NCL) (see https://www.ncl.ucar.edu/Document/Functions/User_contributed/
kf_filter.shtml, last accessed, 9 June 2021).

Table 2. The range of planetary zonal wavenumber, period (days), and equivalent depth (m) chosen
for filtering MJO and n = 1 equatorial Rossby (ER) wave. “N/A” means the region of filtering does
not follow the dispersion curve. The wavenumber-frequency ranges are based on Wheeler and
Kiladis [23].

Tropical Modes
Planetary Zonal
Wavenumber (k)

Period (ω)
Equivalent
Depth (h)

MJO 1 to 5 30 to 96 N/A

Equatorial Rossby (ER) wave −10 to −1 9.7 to 48 8 to 90
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The convection modulation of MJO and individual CCEWs is identified based on the
same procedure described in Tsai et al. [17]. We use the rank order of the wave-filtered
OLR to flag the dates of the study period as a day of the “convective”, “no signal”, and
“suppressed” phases. The convective status of each wave is determined according to the
threshold values of the wave-filtered OLR. The threshold values are defined by the first
(Q25) and third (Q75) quartiles of the filtered daily OLR anomalies collected during the
boreal winter half year (November-April) from 1998 to 2015 of all grid points in a large
domain bounded by the longitudes of 105◦ E and 135◦ E and latitudes of 15◦ S and 15◦ N.
The thresholds for each type of wave are summarized in Table 1 of Tsai et al. [17]. When the
filtered OLR anomaly is lower than Q25 and the raw OLR value is less than 250 W m−2, the
day is flagged as the convective phase, while if it is higher than Q75, the day is flagged as
the suppressed phase, otherwise the day is flagged as no signal. For MJO (ER), the Q25 and
Q75 values are −8.84 W m−2 (−7.48 W m−2) and 8.69 W m−2 (7.33 W m−2), respectively.

3. The 2018/19 Northern Queensland SPRE

3.1. Australia Monsoon Trough

In this subsection, we will discuss the northern Queensland SPRE during the 2018/19
austral summer (December to February) represented by two box areas marked in Figure 1a.
The SPRE is identified based on the CMORPH dataset. The time series of the area mean
15-day accumulative precipitation running by pentad from November 2018 to February
2019 is presented in Figure 1b,c. In both areas, the maximum 15-day accumulated rainfall
occurred during the successive pentads from P5 to P8 (21 January–9 February). The
beginning time of the Box-A SPRE is one pentad earlier than that of the Box-B SPRE. In
order to see how extreme the 2018/19 case is compared with the climatological rains, the
twenty years (1998–2017) of minimum and maximum 15-day accumulative precipitation
are plotted together with the 2018/19 rainfall amount in Figure 1b,c. The gray shaded
area in Figure 1b,c marks the range between maximum and minimum 15-day rainfall
amount running by pentad. It is evident that the precipitation over the east coast (Box-B) is
more abundant than the inland region (Box-A). For Box-A the transition time from dry to
wet is around mid-December (P70). For Box-B the transition time appears in two stages
with the first in mid-December, which is the same as that of Box-A, and the second in
mid-January (P3), where the Box-A shows a similar level of rainfall as in late December
without showing any sharp increase. Compared with the historical data, it is clear that
the 2018/19 SPRE at Box-B broke the twenty-year pentad rainfall record. It is interesting
to see the oscillations on the subseasonal time scale in both areas. In the following, we
will discuss the relationship between the subseasonal variations of precipitation and the
monsoon trough, MJO, and CCEWs.

The relationship between the monsoon trough and major precipitation areas can be
illustrated using the 20-year climatological mean seasonal (DJF) precipitation, sea level
pressure (SLP) and 850-hPa wind (Figure 2a). Figure 2a sees Australia covered by a large
and elongated low-pressure center characterized by a cyclonic circulation in a clockwise
direction. It extends northeastward to the east of New Guinea. The precipitation regions in
general correspond to the region with cyclonic flow (negative relative vorticity in southern
hemisphere), but the rainfall amount is stronger along the coast, and it decreases southward.
The monsoon trough over northern Australia is formed with a strong zonal wind shear
that has the westerlies in the north and the easterlies in the south. The westerlies flow from
the Indian Ocean through the Timor Sea and the Arafura Sea to the Pacific Ocean, and the
easterlies flow from the Pacific Ocean through northern Australia to the Indian Ocean. On
the other hand, on the equatorial Pacific side, the monsoon trough straddles the equator
with the easterlies to the north of the equator and westerlies blowing from Indonesia and
the New Genia islands. The 2018/19 austral summer monsoon trough anomalies presented
in Figure 2b clearly show a deepened trough especially in northwestern Australia, with
an anomalous low-pressure system and cyclonic flow extended to the Coral Sea and the
Western Pacific. The enhanced monsoon low also brings strong westerlies in the north and
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easterlies in the south. However, the positive rainfall anomaly is confined only along the
northern coast of Australia and the Coral Sea; over land area, the rainfall is mainly less
than the climatological means.

 

Figure 1. (a) The 15-day accumulative rainfall calculated using CMORPH precipitation data from 26
January to 9 February 2019, the northern Queensland flood. The black boxes, Box-A (140◦~145◦ E,
15◦~20◦ S) and Box-B (145◦~150◦ E, 15◦~20◦ S), represent northern Queensland and the marginal
sea. (b,c) The area-mean 15-day accumulative rainfall time series running by pentad is calculated
using CMORPH precipitation data over Box-A and Box-B, respectively. The date (the corresponding
Julian pentad) marks the first day (pentad) of the 15-day period. The dashed lines represent the
maximum and minimum rainfall derived by 1998 to 2017 climatology; the black solid line represents
the climatological median. The blue line is the time series in summer 2018/19.
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Figure 2. (a) Climatological seasonal mean precipitation (shaded, unit: mm day−1), sea level pressure (SLP, contours, level
by 2 hPa), and 850-hPa wind (vectors, unit: m s−1), and (b) their anomaly fields (SLP contours level by 0.5 hPa) during
austral summer (December to February). (c) The time series of monsoon indices during austral summer 2018/19 over the
Australian summer monsoon region (115◦~145◦ E, 5◦~20◦ S), where the blue, green, orange, and red curves indicate the
area-mean SLP, 850-hPa zonal wind, 850-hPa relative vorticity over the monsoon region, and zonal wind shear (U850[5◦–15◦

S, 115◦–145◦ E]–U850[20◦–30◦ S, 115◦–145◦ E]), respectively. (d) is the same as (c), but for the Coral Sea (145◦~165◦ E, 5◦~20◦

S) and the wind shear is obtained by (U850[5◦–15◦ S, 145◦–165◦ E]–U850[20◦–30◦ S, 145◦–165◦ E]).

The summer monsoon and monsoon depression can be described using the indices
such as the area mean SLP, 850-hPa zonal wind and vorticity over the monsoon region
(115◦~145◦ E, 5◦~20◦ S) and the Coral Sea (145◦~165◦ E, 5◦~20◦ S), and 850-hPa zonal
wind shear (U850[5◦–15◦ S, 115◦–145◦ E]–U850[20◦–30◦ S, 115◦–145◦ E] and U850[5◦–15◦ S,
145◦–165◦ E]–U850[20◦–30◦ S, 145◦–165◦ E], respectively) to quantify the summer monsoon
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and monsoon depression intensity and variability. This index is a modification of the
AUSSM index proposed in Yim et al. [25] based on the climatological monsoon depression
in Figure 2a, where the westerlies appear in the north and easterlies in the south. After
comparing the difference between the wind shear and the westerly [6,7,26] monsoon
indices, we found that the wind shear index has the merit of showing clear seasonal
contrast separated by the onset date and the cyclonic structure of the clockwise (cyclonic)
monsoon depression over the interior of northern Australia [27]. The subseasonal variations
of these indices in summer 2018/19 can be easily identified in Figure 2c,d. A strong
westerly surge occurred in late January and lasted until mid-February. Associated with
this westerly surge we see strong westerly wind shear. The westerly wind shear sharply
dropped during the second week of February, together with a sharp increase in SLP and
the anticyclonic vorticity. Comparing Figures 1c and 2c, it is evident that the large-scale
monsoonal environment of the SPRE can be characterized by rapid intensification of the
low-level westerly flow, the enhanced westerly wind shear and cyclonic circulation, and
low surface pressure. The subseasonal enhancement of the monsoon trough over northern
Australia created a favorable condition for the precipitation to persist. This is consistent
with the findings in Cowan et al. [1].

The subseasonal relationship between the large-scale environment and northern
Queensland rains can be clearly seen in the pentad maps from mid-January to mid-February.
Figure 3 shows the pentad-mean 850-hPa wind field and precipitation maps from 16
January to 14 February. In two pentads before the SPRE (Figure 3a,b), Queensland received
easterlies, implying that the monsoon trough was weak during this period. From 26
January, the monsoonal westerly started to intensify (Figure 3c), and a cyclone formed over
the Arafura Sea and northeastern Queensland. The monsoon depression subsequently
moved southward and strengthened, which brought abundant rainfall into the continental
part of northeastern Queensland. During the peak pentad of the SPRE episode, the center
of the monsoon depression was right over northeastern Queensland (Figure 3d), which
enhanced the moist westerlies along the north coast and the moist northeasterlies over the
Coral Sea that brought the moist air to the east coast of Queensland. This slow-moving
monsoon depression appears to be the culprit for the disastrous rainfall event.

3.2. MJO and Equatorial Rossby Wave

Convection activity over northern Australia is frequently influenced by MJO and
CCEWs [28]. The MJO circulation pattern reveals a Kelvin–Rossby couplet structure [29],
which usually enhances the monsoon depression and leads to rainfall perturbations, espe-
cially in phases 5 to 7 [30]. During the occurrence period (26 January–9 February) of the
2018/19 Box-B SPRE, Figure 4a shows that a strong MJO convective phase passed through
northern Australia. The MJO phase diagram (Figure 4b) indicates that the MJO remained
strong during January and February. At the same time, a westward-propagating ER wave
arrived from the South Pacific. Figure 4a shows when the ER moved into the convective
zone of MJO in late January, it clearly enhanced the precipitation. Heavy precipitation
persisted for more than two weeks before the rain band moved eastward to the South
Pacific with the MJO. Note that the westward-propagating ER waves from the Pacific
to the Indian Ocean originated from the active deep convection over the tropical central
Pacific. The enhanced convection can be identified in Figure 2 as the large area of positive
precipitation anomalies over the tropical Pacific to the east of Papua New Guinea. The
tropical Pacific during the 2018/19 austral summer was characterized by a transition from
a diminishing La Niña in 2018 to the development of a weak El Niño by early 2019 [31].
The central Pacific in the tropics over both northern and southern hemispheres was warmer
than normal during January 2019, which enhanced the convection and precipitation near
the dateline (160◦–180◦ E).
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Figure 3. The pentad-mean CMORPH precipitation map (shading, unit: mm day−1), 850-hPa wind field (vectors, unit:
m s−1), (a–f) for the pentads from 16–20 January (Pentad 4) to 10–14 February (Pentad 9) in 2019, which covers the period of
2018/19 SPRE over northeastern Queensland.

The general relationship between the northern Queensland SPREs and the MJOs and
ERs is checked based on the frequency that the SPREs and the convective phases of MJO
and ER occurred concurrently. The results listed in Table 3 show that for the SPREs in
21 austral summers (DJF) from 1998/99–2018/19, all Box-B SPREs occurred when either the
MJO or the ER convective phase passed through, with 57% of the SPREs that occurred when
both MJO and ER were in convective phases The years with the largest three SPRE rainfall
amounts (2018, 2008, 2006) all occurred concurrently with the convective phases of MJO
and ER. Box-A has a higher percentage (76%) of the SPREs that occurred concurrently with
the convective phases of MJO and ER than Box-B. However, the Box-B SPRE contributed
a higher percentage of the rainfall to the seasonal (DJF) totals compared with the Box-A
SPREs. Table 3 shows that for Box-A, the medium of the ratio of an SPRE event to the
DJF totals is 31.8%, while for Box-B, the medium is 44.4%. For Box-A, only one year
(2018) shows a ratio higher than 50%, while for Box-B seven years show higher than 50%
ratios. This suggests that the North Queensland east coast is more sensitive to subseasonal
variability. Nevertheless, it is evident in Table 3 that the 2018/19 SPRE is remarkable
because for Box-A, the event contributed the largest (50.9%) portion to the seasonal rainfall
totals, and for Box-B, the event’s total accumulated rainfall amount (477.4 mm) was the
largest in 21 years.
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−

−Figure 4. (a) The precipitation averaged over 15◦~20◦ S (shading, unit: mm day−1). The solid
contours mark out the convective phase of MJO determined by the filtered OLR and the dashed
contours mark out the convective phase of the ER waves. The location and period of the 2018/19
SPRE are marked out by the dotted box. Identification procedure of the MJO and ER convective
phases is described in Section 2.2. (b) The real-time multivariate MJO (RMM) index downloaded from
the BoM website (http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt) from 27
December 2018 to 14 February 2019. The period of 2018/19 SPRE is in red.

Table 3. The occurrence pentad (the first pentad), 15-day accumulative rainfall (unit: mm), and the ratio to DJF totals of
each SPRE for two box areas over northern Queensland. Checkmarks (Y) are made when convective phase MJO or ER wave
occurred during the SPREs.

Year

Box-A (140◦~145◦ E, 15◦~20◦ S) Box-B (145◦~150◦ E, 15◦~20◦ S)

Occurrence
Pentad

Rainfall
Amount (mm)

Ratio
(%)

MJO
ER

Wave
Occurrence

Pentad
Rainfall

Amount (mm)
Ratio
(%)

MJO
ER

Wave

1998 1 164.5 22.3 Y Y 2 243.5 32.4 Y
1999 10 241.1 34.0 Y 10 367.8 40.6 Y
2000 69 252.7 29.8 Y 9 246.5 33.0 Y Y
2001 9 222.0 32.9 Y Y 8 161.0 49.3 Y Y
2002 10 144.4 29.5 Y Y 10 114.0 44.0 Y Y
2003 3 180.9 27.2 7 247.8 48.3 Y Y
2004 71 129.5 24.8 Y Y 3 197.9 44.4 Y
2005 5 207.7 39.4 Y Y 4 202.9 51.0 Y Y
2006 6 296.7 45.1 Y Y 6 387.9 51.5 Y Y
2007 8 292.9 30.1 Y Y 10 315.7 33.5 Y
2008 5 327.8 30.2 Y 6 434.3 39.8 Y Y
2009 4 262.8 31.8 Y Y 4 327.4 47.3 Y Y
2010 10 285.3 26.4 Y Y 3 254.2 25.6 Y
2011 5 222.2 32.3 Y Y 5 223.8 36.1 Y
2012 3 250.6 48.0 Y Y 3 261.3 57.7 Y
2013 6 262.7 32.7 Y 6 223.8 56.0 Y
2014 73 141.4 27.3 Y Y 8 172.6 39.3 Y
2015 71 173.1 44.5 Y Y 71 122.8 53.4 Y Y
2016 1 192.8 35.2 Y Y 1 191.5 52.0 Y Y
2017 4 126.2 29.9 Y Y 10 209.0 43.1 Y Y
2018 5 294.0 50.9 Y Y 6 477.4 52.3 Y Y

To further quantify the MJO and ER modulation on the SPRE rainfall, we calculated the
percentage of the time during the 15 days of SPREs that the waves are in convective phases.
We use this time percentage as a measure of the temporal modulation of MJO and ER on the
SPRE rainfall. We also calculated the ratio of mean rainfall intensity during the convective
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phase against the mean rainfall intensity during the nonconvective condition (no-signal and
suppressed phases) and used the ratio as a measure of intensity modulation of the waves.
The results shown in Figure 5 suggest an abnormally strong modulation of MJO and ER on
the 2018/19 SPREs over both Box-A and Box-B areas. During the 2018/19 Box-A SPRE,
almost all of the 15 days of OLR were in the MJO convective phase, of which the percentage
is much higher than the SPRE during other years. The convective phase of ER waves is
about 35% which is also above the medium percentage of the 20 years from 1998–2017.
On the other hand, Figure 5b shows that during all of the 15 days of the Box-B SPRE the
OLR was in convective phase, which is the highest compared with the past 20 years. The
percentage of the convective phase of ER also reaches the upper quartile in 20 years, which
is clearly above the medium. Therefore, we can conclude that in the 2018/19 case, the
temporal modulation of both MJO and ER on the northeastern Queensland SPREs was the
strongest since 1998. Regarding the rainfall intensity modulation, we can see in Figure 5c,d
that climatologically the rainfall intensity in Box-A is almost two times stronger during
the ER convective phase compared with the nonconvective phase, while the difference is
smaller in Box-B. On average, the rainfall intensity in two box areas is similar during the
ER convective phases, but the variability in Box-A is larger. During the ER nonconvective
days, the rainfall intensity in Box-B is slightly larger than that in Box-A. The SPREs in the
2018/19 summer are unusual. Note that the rainfall intensity in Box-B is much larger than
in Box-A, although in both areas the intensity is strongest since 1998. The ER modulation is
particularly strong. The average rainfall intensity during the ER convective days is almost
twice the intensity of the nonconvective ER days.

 

ሾܳଵ − 1.5IQR, ܳଷ + 1.5IQRሿ

Figure 5. (a,b) Temporal modulation measured by a percentage in the entire period (15 days) of an
SPRE that is associated with the convective phases of MJO or ER wave in (a) Box-A and (b) Box-B
areas. (c,d) are the intensity modulation measured by a comparison of the mean rainfall intensity
during the convective phases of MJO or ER passing through the box areas and the mean rainfall
intensity during the nonconvective (suppressed or no-wave days in (c) Box-A and (d) Box-B. The
convectively active CCEWs days are identified when over 50% of the grids achieve the convective
threshold for each wave. Boxplots are the statistics using climatological SPREs from 1998 to 2017, and
the solid circles are the condition in 2018/19 SPRE. Outliers are estimated using Tukey [32] fences
([Q1 − 1.5IQR, Q3 + 1.5IQR]) represented in hollow circles.
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4. S2S Prediction Evaluation

After seeing the close relationship between monsoon depression and the SPREs, in
this section, we will present the assessment of the extended-range forecast quality of the
SPREs based on the S2S database. The analysis strategy is, first, to evaluate whether the
forecast data can capture the monsoon depression index variability within a 45-day window
measured by the zonal wind shear index. Second, we evaluate the rainfall forecast skill
with a calibration concept so that all model products can be compared and understood.
Two approaches are exercised in this study. One is the percentile rank (PR) of the SPRE
rainfall amount based on the percentage distribution of the running 15-day accumulated
total rainfall during a season (DJF) obtained from the hindcast database of each model.
Another is the percentage contribution of the SPRE rainfall amount to the three-month
seasonal (DJF) totals. For the forecast ratio (percentage contribution), the calculation is
based on the hindcast database of each model. As the accumulated rain and variability
in Box-B is larger than that in Box-A (Figure 1), and the 2018/19 flood is more extreme
in Box-B, particularly in Townsville, we will focus on the Box-B SPREs. In the rest of the
paper, Box-B is used interchangeably for northern Queensland.

4.1. Monsoon Depression Index Variability

Figure 6a shows a composite 45-day time series with the three SPRE pentads from
Day(0) to Day(14), the three pentads before the SPREs from Day(-15) to Day(-1), and the
three pentads after the SPREs from Day(15) to Day(29). The black curve is the average of the
20-year (1998–2017) 15-day accumulative rainfall running by pentad, and the gray shade
shows the range of the 15-day rainfall for each pentad during the period of analysis. The
composited monsoon depression index defined by the 850-hPa zonal wind shear (Figure 2c)
during the same 45-day time window aligned with the SPREs is presented in Figure 6b.
The 45-day mean value is subtracted from the 45-day mean in order to compare the index
generated by different models with a specific focus on the relative intensity of the monsoon
depression during the SPREs. Figure 6b shows a clear variation pattern associated with
SPREs. Monsoon depression shows an intensifying tendency before Day(0) of the SPRE
and reaches its peak at the second pentad of the SPRE, then weakens after the SPRE. The
coherent relationship between SPRE precipitation and the wind shear monsoon depression
index is evident. Therefore, evaluating the relative intensity of the 850-hPa wind shear
index during the occurrence period of the SPREs can provide some insight into model
forecast performance.

− ° ° ° ° ° ° ° ° Figure 6. Composited (a) 15-day accumulative precipitation (unit: mm) running by pentad averaged over Box-B and
(b) wind shear anomaly (unit: m s−1) over Australian monsoon region (U850[5◦–15◦ S, 115◦–145◦ E]–U850[20◦–30◦ S,
115◦–145◦ E]), where the anomaly is obtained by subtracting the 45-day-mean in the extended SPRE period (Days 0 to 14
mark the SPRE period). The time range of CMORPH precipitation data ERA-Interim wind is from 1998 to 2017. The solid
curves and gray areas indicate the median and the range of the 20-year SPRE cases, respectively.
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The 20 years of the daily index anomalies of the SPREs are sorted and grouped into
10 bins, as is shown in the x-axis of Figure 7a–d. Note that here, the index anomalies are
defined as the deviation from the 45-day mean value. The forecast data of each model are
grouped separately according to the forecast lead times. Then, the cumulative distribution
function (CDF) is calculated as the cumulative percentage contributed by each bin during
the 15 days of the SPREs (Figure 7a–d). The forecast error presented in Figure 7e is
estimated by the integrated difference between the model forecast and ERA-Interim CDF
curves. It is clear that the four S2S models of this study can capture the monsoon depression
peak tendency reasonably well. The BoM model has the smallest CDF differences in a
short-range (1~3 days) forecast, and the ECMWF model has the smallest CDF differences
in a medium-range (4~8 days) forecast, and in an extended-range (8~16 days) forecast, the
CDF differences of the CMA model are larger than other three models. If the short-range
forecast performance is used as a baseline to measure how forecast skill changes with the
forecast lead times, Figure 7e shows that ECMWF is the only model that maintains a skill
comparable to the short-range up to 10 days. It is worth noting that although the assessment
here is measured by the monsoon depression index variability during the SPRE-centered
45 days, the same method can be applied to other studies in different regions.

 

Figure 7. The cumulative distribution function (CDF) of the monsoon depression index anomalies
(obtained by subtracting the averages of Days -15 to 29 for each year) represented by 850-hPa zonal
wind shear (Figure 2c) in observation (black curves) and (a) BoM, (b) CMA, (c) ECMWF, and (d)
NCEP S2S models for lead times 1, 4, 7, 10, 13, and 16 day(s) during the 15-day SPREs period in the
available years in hindcast datasets. (e) illustrates the sum of CDF difference between S2S models
and observation varying with lead time. The hindcast years of BoM hindcast model are from 1998 to
2013, CMA from 1998 to 2012, ECMWF from 1998 to 2017, and NCEP from 1998 to 2009.

40



Atmosphere 2021, 12, 758

The verification results for the 2018/19 SPRE are presented in Figure 8. The obser-
vational (ERA-Interim) CDF curve suggests that for this case, the monsoon depression
index anomalies during almost the entire 15 days are positive. In fact, this feature can
be clearly identified in Figure 2c (the bottom figure), where we see within the 45-day
period from January 11–February 24, the zonal wind shear monsoon index is particularly
strong during the 15 days (January 26~February 9) of the SPRE. The forecast errors or CDF
differences in Figure 8e suggest that the CMA model forecast captured the tendency of
strong monsoon depression up to the lead time of 16 days. The BoM and ECMWF models
also can capture this tendency relatively well, while the NCEP model shows more rapidly
growing differences after the 8th day forecast compared with the other model.
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Figure 8. The sane as Figure 7, but for 2018/19 Box-B SPRE.

4.2. SPRE Ranked Rainfall Amount

The rainfall forecast performance is evaluated based on the 15-day accumulated
rainfall amount percentile ranks (PRs). The analysis procedure is as follows. First, the
15-day accumulated rainfall amount over Box-B during the three months of from December
to February in the 20 years of from 1998 to 2017 is sorted and converted to percentile ranks.
The hindcast precipitation data obtained from the S2S Project Database is also converted to
PRs. As the ensemble size and forecast frequency vary with models (Table 1), the sample
sizes of different models are different. The PR ranges of the SPREs based on CMORPH
data are presented in the hollow boxes in Figure 9a–d. As the hindcast years of different
models are different, the observational PR ranges formed by the hindcast years are slightly
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different between models. The blue boxes in Figure 9a–d are the PR distribution based on
model hindcast data with different lead times; the red boxes are the PR distribution of the
ensemble forecast for the 2018/19 SPRE. The narrow distribution range of the CMA model
is due to the small ensemble size (4). When the short-range forecast performance is used as
a reference to measure the performance of longer leads, we can see that the NCEP model
(Figure 9d) shows the smallest decreasing slope of the difference between the medians of
the long-lead members and the short-lead members. The BoM model (Figure 9a) shows
that for the 2018/19 SPRE, the forecast up to the lead time of 8 days is better than the
historical performance. The CMA model (Figure 9b) shows that the 2018/19 SPRE forecast
is exceptionally good. Up to the lead time of 15 days, the PR remains near the top as the
observational data shows (Figure 1c). The ECMWF model (Figure 9c) shows that up to
9 days, and the NCEP model (Figure 9d) shows up to 8 days, of the 2018/19 SPRE forecast,
the performance is better than the historical statistics. The forecast performance can be
summarized using the root mean squared sum of the difference between the forecast and
observed PR, which can be interpreted as a kind of root-mean-squared error (RMSE) termed
as PR-RMSE. Figure 10 shows that historically, the PR of SPRE-accumulated rainfall is best
predicted by the NCEP model, while for the 2018/19 SPRE prediction, CMA prediction is
the best.
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Figure 9. The percentile rank (PR) values of the SPRE rainfall amount of the hindcast SPREs (blue boxes) and 2018/19 SPRE
(red boxes) with different lead times. The boxes are formed by multiyear and multimember data. The PR is ranked with all
15-day accumulated rainfall from December to February for 20 years (1998/99~2017/18). The hollow box in the far left for
each plot is the PR ranges of historical SPREs based on CMORPH. Note that the observed PR value for the 2018/19 SPRE
is 99, which is difficult to see in the plot. The results are simulated by (a) BoM, (b) CMA, (c) ECMWF, and (d) NCEP S2S
forecast models. Outliers are estimated using Tukey [32] fences represented in circles.

Another parameter used for measuring model capability in forecasting SPRE is the
ratio of SPRE 15-day accumulated rainfall amount against the seasonal accumulated rainfall
amount. The ratios over Box-A and Box-B are presented in the third and eighth column
in Table 3. The square root of the average sum of the differences between the forecast
and observation ratios with the forecast lead times from 1 to 15 days, termed as ratio
root-mean-squared-errors (ratio-RMSE), for Box-B SPRE is presented in Figure 10. Note
that the forecast part of the ratio-RMSE is the multimember forecasts, and the observation
part is the CMORPH precipitation. The boxplots are the distribution of the multiyear
hindcast database that reflects the expected ratio-RMSE for different models. In order to
discern the possible influences of ER and MJO, we selected one year (1999) with ER but
without MJO influence and another year (2007) with MJO but without ER influence to
compare their ratio-RMSE with the 2019 case, which is a case with strong influences of
both ER and MJO. Figure 10 shows that the ratio-RMSE of 1999 is evidently much smaller
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than the other two years, while the ratio-RMSE of 2019 is the largest. The results suggest
the possibility that although MJO is helpful for extended-range rainfall category forecast,
the ER influence can overwhelm the predictability associated with MJO influence if the
model fails to capture the ER waves. Note that 1999 is a La Niña year, and 2007 is a weak El
Niño year. We have compared the ER and MJO modulation on the SPRE intensity during
different phases of the ENSO years by plotting the figures similar to Figure 5 and found
that the ER modulation is strongest during the La Niña year. The ER wave convection
frequently originates at the active SPCZ region. In summary, the ER modulation on average
is clearer than MJO, regardless of ENSO. Therefore, the strong ER influence in 2019 seems
to be unusual. The strong enhancement by other factors, such as the Warm Air Advection
(WAA) described in Callaghan [27], can be important. Further research in this direction is
desperately needed to find enough evidence to support the hypothesis.
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Figure 10. The root-mean-squared error (RMSE) calculated as the difference between the model forecast PR and the observed
PR (as in Figure 9), termed as PR-RMSE. The boxes are formed by multiyear and multimember hindcast RMSE, and the black
points represent the RMSE of the 2018/19 SPRE. Outliers estimated using Tukey fences [32] are illustrated in white circles.

5. Summary and Discussion

The extreme rainfall event that caused devastating floods in northeastern Queensland
in 2019 has been analyzed to understand the relationship between a regional sub-seasonal
peak rainfall event (SPRE) and major influential large-scale drivers. Based on the findings
of analyzing observational data, we further analyzed the extended-range (8~16 days)
forecast skill for northern Queensland SPREs using the S2S database. We found that the
2019 Queensland floods were caused by a strong SPRE that broke the 20-year (1998–2017)
record of the SPRE rainfall amount. The strong SPRE was associated with a strong monsoon
depression reflected by the 850-hPa wind shear index (Figure 2c) that shows prolonged
positive anomalies within a 45-day time window centered at the SPRE (Figure 8). The
enhanced monsoon depression anomaly was modulated by the convective phase of the
MJO and the convective ER wave originating from the strong convection associated with
El Niño over the equatorial Pacific near the dateline. Results of the 20-year climate data
analysis show strong modulation of the ER waves on the rainfall intensity of the northern
Queensland SPREs, while the MJO modulation is stronger on the number of convective
days of the SPRE (Figure 5).

The skill of S2S forecast models on forecasting the northern Queensland SPREs are
assessed based on the analysis from two perspectives. The first one is to assess the forecast
skill of the monsoon depression anomaly represented by the 850-hPa wind shear. The
second is to assess the forecast skill of the precipitation with a calibration concept, which
includes calculating the RMSE of the percentile rank (PR) of the SPRE rainfall amount and
the RMSE of the ratio (percentage contribution) of the SPRE to the three-month season (DJF).
The assessment results of the four S2S models suggest that for the monsoon depression
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anomaly, the models can maintain a similar skill as the short-range (3 day) forecast up to
8–10 days (Figure 7). On average, the model prediction performance for the 2018 SPRE
case was worse than expected, except for the CMA model (Figure 8). The conclusions of
the precipitation prediction performance assessment are similar to the ones obtained for
the monsoon depression index. In addition, we selected two SPREs in 1999 and 2007 to
compare their ratio-RMSEs with the 2019 SPRE. The 1999 SPRE was modulated by ER
wave only, the 2007 SPRE was modulated by MJO only, and the 2018 SPRE was modulated
by both ER and MJO. It turned out that except for CMA, the other three models show the
smallest ratio-RMSE in 1999 and the largest ratio-RMSE in 2018. We suspect that the reason
why the CMA model is different from the other three models in a single-year comparison
may be due to the small size of its ensemble members, which limits the statistical robustness
of the assessment. The model resolution is an important factor to consider when comparing
model performance [33]. It is beyond the scope of our current study to carry out detailed
analysis of the model physics associated with the predictability of SPREs. More research
is needed in this direction for improving our understanding on S2S prediction model
capability and predictability.

This study demonstrated a useful analysis procedure that can be used to analyze SPREs
and their associated large-scale drivers in other regions. When focusing on the SPREs, the
ensemble size and forecast frequency of a model become critical. The modulation of MJO,
ER, and ENSO on the SPREs is an extremely important subject for S2S prediction. It is our
ongoing work, and the results will be presented in a separate paper.
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Abstract: By employing multi-reanalysis daily datasets and station data, this study focuses on
the evolution characteristics of the daily-scale Silk Road pattern (SRP) and its effect on summer
temperatures in the Yangtze River Valley (YRV). The results manifest that the evolution characteristics
of positive- and negative-phase SRP (referred to SRP+ and SRP−) exhibit marked distinctions. The
anomaly centers of SRP+ over West Central Asia (WCA) and Mongolia emerge firstly, vanishing
simultaneously one week after peak date; however, the Far East (FE) anomaly centers can persist for
a longer period. The SRP− starts with the WCA and FE centers, with a rapid decline in the strength
of the WCA center and preservation of other anomaly centers after its peak. In the vertical direction,
daily-scale SRP mainly concentrates in the mid-to-upper troposphere. Baroclinicity accounts for its
early development and barotropic instability process favors the maintenance. Moreover, the SRP+
(SRP−) is inextricably linked to heat wave (cool summer) processes in the YRV. Concretely, before
the onset of SRP+ events, an anomalous anticyclone and significant negative vorticities over East
Asia related to SRP+ favor the zonal advance between the South Asia high (SAH) and western Pacific
subtropical high (WPSH), inducing local descents over YRV area. The sinking adiabatic warming
and clear-sky radiation warming can be considered as the possible causes for the YRV heat waves.
The adiabatic cooling with the local ascents leads to more total cloud cover (positive precipitation
anomalies) and less solar radiation incident to surface of the YRV, inducing the cool summer process
during SRP−.

Keywords: Silk Road pattern; evolution characteristics; summer temperature; Yangtze River Valley

1. Introduction

For a long time, meteorologists generally point out that summer weather and climate
over East Asia are inextricably linked to the East Asian summer monsoon, Qinghai-Tibet
Plateau, and other external forcing factors (i.e., sea surface temperature in the tropical
Pacific, Arctic sea ice, solar activity, and soil moisture) [1–3]. Variations of East Asian
summer monsoon circulation are particularly complicated owing to the existence and
persistence of summer atmospheric teleconnection patterns [4,5]. The well-known Silk
Road pattern (SRP) is recognized as one of the dominant modes and most influential
patterns during boreal summer over the Eurasian continent [6–9] and is considered as an
effective predictor of East Asian summer climate anomalies.

In literature, the SRP features a stationary Rossby wave train pattern trapped along
the upper-level westerly jet, geographically fixed over the Eurasian continent along ap-
proximately 40◦ N, which resembles the Eurasian part of a circumglobal teleconnection
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pattern in mid-latitude circulation of the Northern Hemisphere [10–13]. Previous studies
indicated that it can regulate the interaction between the members of the Eurasian circula-
tion systems and markedly affect the summer weather and climate anomalies over East
Asia [5,14]. For instance, SRP exerts substantial influence on East Asian summer monsoon
circulation [7,15,16]. It is closely linked to the Asian summer monsoon in both subtropical
East Asia and India, and it could impact the withdrawal of the South China Sea (SCS)
summer monsoon via modulating atmospheric circulation anomalies over the SCS [17].
The SRP contributes to formation of the Bonin high, the western Pacific subtropical high
(WPSH), and the Mei-Yu front, affecting the precipitation and temperature around the
Asian jet regions [14]. The positive (negative) phases SRP maybe triggers upper-level
cyclonic (anticyclonic) anomalies and strong divergence (convergence) in the mid-latitudes
over East Asia, with more (less) rainfall in southern China [5]. Moreover, the SRP has
a profound effect on the temperature anomalies over the Japan, Europe, and Southeast
Asia [18–20]. The combination of SRP and the Pacific–Japan pattern could cause stronger
convergence (divergence) and significant anomalies of sea level pressure over Japan, lead-
ing to larger surface temperature decrease in the northern part of Japan [18]. Many studies
pointed out that the SRP can significantly affect the temperature variation over many parts
of Eurasia [11,19,20]. In addition, subsequent studies have indicated that SRP also has a
significant effect on climate and weather over the northern China, southern China, and
Indian Monsoon regions [7,21–24].

Plenty of works have been devoted to study its evolution characteristics, formation
mechanism, and influence on East Asian summer monsoon climate by analyzing monthly
fields [13,14]. Recently, various studies have shown that the atmospheric teleconnections
can also be identified on daily timescales by analyzing daily fields, revealing their for-
mation mechanism and evolution characteristics [25–28]. Besides, previous studies on
the relationship between the SRP and summer temperature mainly focus on the Europe
and Japan [18,19]. The middle and lower reaches of Yangtze River Valley in China is
significantly affected by East Asian summer monsoon, which is prone to high temperature
weather [29]. Moreover, the YRV is one of the most densely populated and economically
developed region in China. The heat waves in the YRV have a more important impact on
people’s production and life. However, the impact of SRP on the summer temperature in
the YRV and the role of SRP in temperature anomalies need to be further explored [30].
Therefore, the current work attempts to explore the following issues: (1) what are the
evolution characteristics of daily-scale SRP? (2) What are the influence of SRP on summer
temperature in the Yangtze River Valley and underlying mechanisms? Addressing these
issues will be beneficial to developing a better understanding of the SRP’s variation and
its effect on the summer climate in China. As we will show, daily analysis unfolds more
details of SRP climate effects.

2. Data and Methods

2.1. Data

This primary dataset used in this study is the European Centre for Medium-Range
Weather Forecast (ECMWF) Reanalysis data (ERA5), on a horizontal resolution of 0.25◦ × 0.25◦

in longitude and latitude, with 37 regular vertical pressure levels. The variables include
geopotential height (gpm), wind field (m s−1), vertical p-velocity (Pa s−1), air temperature
(K), 2 metre temperature (K), surface solar radiation downwards (kJ m−2), total cloud
cover (0–1), and relative vorticity (s−1) [31]. This reanalysis dataset is available online
https://cds.climate.copernicus.eu/ (accessed on 7 May 2021). The analyzed time span is
selected from 1979 to 2020 for the warm season (June–August).

We also employed the daily precipitation data obtained from China’s Ground Pre-
cipitation 0.5◦ × 0.5◦ Gridded Dataset (version 2.0) [32,33]. This observational dataset is
available online http://data.cma.cn (accessed on 1 April 2020).
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2.2. Methods

The present study mainly utilizes the methods of empirical orthogonal function (EOF)
analysis, composite analysis, and the Student’s t-test. Only the results satisfying the criteria
at the 0.05 confidence level are deemed statistically significant. According to the suggestion
of Grumm and Hart [34], a 21-day binomial filter (10 days either side of a specific day)
was firstly applied, which can effectively highlight the daily variability of each variable.
Then, based on the period of 1979–2020, the daily climatological mean value and standard
deviation (σ) of each variable were calculated based on the above smoothed daily fields.
Compared with using unsmoothed single-day values, the climatological mean value and
standard deviation appear more stable. Such 21-day sliding windows can also highlight
the daily variability, which is an effective method for identifying typical synoptic to sub-
monthly scale circulation patterns [26,27]. Finally, the normalized anomaly of a variable on
a specific day was calculated as follows: the corresponding climatological daily mean was
first subtracted to retain the majority of the synoptic signal, and the value was divided by
the corresponding climatological daily standard deviation.

In addition, the phase-independent wave-activity flux (WAF) was calculated to de-
scribe the wave energy propagation characteristics of the quasi-stationary waves and
transient fluctuations, which refers to the two-dimensional formula in the previous stud-
ies [35]. The climatological daily mean flow during summer (June–August) from 1979 to
2020 was used as the basic flow of this WAF formula, including zonal and meridional wind
fields with zonal nonuniformity. The expression of two-dimensional WAF is:
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where
→
U = (U, V) denotes the horizontal zonally varying basic flow, U and V represent

the zonal and meridional wind component respectively, p signifies the pressure (hPa). Ψ′ is
the stream function for quasi-geostrophic flow.

3. Identification of Daily-Scale SRP

Teleconnection patterns are usually identified in the summer mean circulation by
analyzing monthly-mean fields in most of the previous studies [36,37]. This paper attempts
to define the daily-scale SRP by using daily data. To identify the SRP, EOF analysis is
performed on 200 hPa daily normalized height anomalies along the Asian jet region of
30–150◦ E, 30–60◦ N during the summertime (June–August) of 1979 to 2020. The first
EOF mode is the so-called Silk Road pattern, which is wavelike and zonally organized. It
explains 21.99% of the total variance (Figure 1). This pattern is very similar to the Silk Road
pattern obtained by previous studies based on the monthly-mean fields [7,12,38].

Then, a daily SRP index (SRPI) was defined. Firstly, the three basic points selected to
represent three anomaly centers of the SR pattern are (65◦ E, 40◦ N) over the West Central
Asia (WCA), (100◦ E, 40◦ N) over Mongolian (MO) region, and (130◦ E, 40◦ N) over the
Far East (FE), based on the first mode of EOF analysis (Figure 1). The same basic points
were selected in previous studies to analyze the Silk Road pattern by use of monthly-mean
data [17,18]. Secondly, SRPI was calculated by use of daily normalized 200 hPa geopotential
height anomalies at the three basic points (Equation (1)).

SRPI =
(HWCA − HMO + HFE)

3
, (1)

where the HWcA, HMO, and HFE represent the normalized 200 hPa geopotential height
anomalies at the three basic points in the EOF1 mode (the triangles in Figure 1), respectively.
The positive phase appears as the SRPI exceeds zero, while the negative phase appears
when SRPI is below zero. The peak phase of SRP is defined as the day when the daily
SRPI is a local maximum and exceeds +1.0 standard deviation (σ), representing that
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the geopotential height anomalies of action centers attain maximal value over the Asian
jet region.
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Figure 1. The preceding three EOF modes of daily 200 hPa normalized height anomalies along the
Asian jet region (30–150◦ E, 30–60◦ N) during the summertime (June–August) of 1979 to 2020. Solid
and dashed contours in EOF1 mode denote the positive and negative values, respectively (with
interval of 0.002). The triangles represent the three basic points in Equation (1).

4. Evolution Characteristics of Daily-Scale SRP

Composite analysis will be used in this section to investigate the evolution charac-
teristics of the SRP on daily timescales. To ensure that the composite results satisfy the
statistical significance, the adequate sample sizes of the positive and negative phases of SR
pattern need to be picked out firstly (for convenience, referred to SRP+ and SRP− events
respectively in current study).

Based on the daily fields processed by the method in Section 2.2, the more details
and some fresh features of evolution characteristics and vertical structure of SRP will be
investigated in the following analysis.

Daily-scale SRP+ (SRP−) events were identified, after the SRPI being defined. A
typical SRP+ (SRP−) event must meet the following three criteria simultaneously. (1) SRPI
is greater than (less than) +1.0 (−1.0) standard deviation (σ) for at least three consecutive
days. (2) Height anomalies at 200 hPa show the tripole structure as ‘+ − +’ (‘− + −’)
corresponding to the three basic anomaly centers. (3) Time interval between two SRP
events must be more than 10 days. If two or more peak phases occur in less than 10 days,
only the first peak is counted to ensure the independence of each peak phase [21].

In total, 40 SRP+ and 40 SRP− events were identified, according to the criteria. The
year, start date, peak date, end date, duration, averaged SRPI, HWCA, HMO, and HFE of
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the identified typical SRP+ and SRP− events are displayed in Tables 1 and 2, respectively.
Particularly, on average there is less than one SRP event per summer identified according
to the SRPI during 1979–2020 (42 summers). It is possible that though the daily-scale
SRP also appears in some summers, its intensity and duration fail to meet the criteria of
‘a typical SRP event’, which features a daily SRPI value of +1.0 σ or greater persisting
for less than three consecutive days. Further considering the complexity of East Asian
summer circulation, these identified 40 SRP+ and 40 SRP− events can basically be viewed
as the typical cases to investigate the evolution features and the relationship to summer
temperature in the Yangtze River Valley.

Table 1. The year, start date, peak date, end date, duration (unit: day), average SRPI, and HWCA, HMO, HFE of the 40
SRP+ events.

Year Start Date Peak Date End Date Duration SRPI HWCA HMO HFE

1979 10 Jul 11 Jul 14 Jul 5 1.628 1.797 −1.260 1.828
1980 14 Jul 15 Jul 16 Jul 3 1.180 1.046 −1.353 1.141
1982 3 Aug 7 Aug 11 Aug 9 1.946 1.738 −2.193 1.907
1983 29 Jul 31 Jul 6 Aug 9 2.225 2.440 −1.706 2.475
1983 18 Aug 18 Aug 21 Aug 4 1.685 1.667 −1.811 1.577
1984 24 Jul 28 Jul 30 Jul 7 1.631 1.844 −1.598 1.452
1984 16 Aug 20 Aug 30 Aug 15 2.189 1.902 −2.179 2.486
1985 7 Jul 7 Jul 13 Jul 7 1.292 1.467 −1.378 1.031
1985 24 Jul 28 Jul 31 Jul 8 1.550 1.169 −1.750 1.731
1986 15 Jul 17 Jul 19 Jul 5 1.570 1.461 −1.713 1.536
1986 1 Aug 1 Aug 3 Aug 3 1.852 1.859 −1.694 2.003
1986 16 Aug 17 Aug 19 Aug 4 1.147 0.907 −1.225 1.309
1987 11 Aug 17 Aug 29 Aug 19 1.276 1.202 −0.950 1.676
1988 2 Jul 4 Jul 6 Jul 5 1.529 1.616 −1.817 1.154
1990 19 Jun 22 Jun 26 Jun 8 1.659 1.137 −1.859 1.981
1990 8 Aug 12 Aug 14 Aug 7 1.385 1.404 −1.600 1.151
1991 28 Aug 28 Aug 30 Aug 3 1.683 1.822 −1.746 1.482
1992 20 Jul 22 Jul 23 Jul 4 1.334 1.008 −1.499 1.495
1992 23 Aug 25 Aug 27 Aug 5 1.231 1.216 −1.425 1.052
1994 24 Jun 2 Jul 11 Jul 18 1.539 1.547 −1.174 1.896
1994 4 Aug 5 Aug 7 Aug 4 2.080 2.125 −2.117 1.998
1995 12 Aug 13 Aug 20 Aug 9 1.711 1.245 −1.886 2.002
1997 15 Jul 19 Jul 19 Jul 5 1.392 1.644 −1.379 1.153
1997 17 Aug 19 Aug 20 Aug 4 2.137 2.229 −2.004 2.178
1998 1 Aug 11 Aug 13 Aug 13 1.180 1.462 −0.855 1.223
2001 29 Jun 1 Jul 2 Jul 4 1.451 1.511 −1.333 1.509
2002 9 Aug 10 Aug 11 Aug 3 1.346 1.831 −1.186 1.102
2003 18 Jul 24 Jul 27 Jul 10 1.468 0.977 −1.566 1.861
2003 15 Aug 17 Aug 18 Aug 4 1.407 1.125 −1.359 1.737
2005 25 Jun 27 Jun 28 Jun 4 1.194 1.274 −1.388 0.920
2008 12 Jul 14 Jul 17 Jul 6 1.087 1.295 −1.049 0.917
2008 10 Aug 11 Aug 12 Aug 3 1.268 1.194 −1.066 1.544
2009 14 Aug 14 Aug 17 Aug 4 1.223 1.225 −1.013 1.431
2011 7 Jul 8 Jul 12 Jul 6 1.186 1.309 −1.117 1.132
2012 20 Aug 20 Aug 24 Aug 5 1.606 1.111 −1.656 2.051
2013 29 Jul 1 Aug 9 Aug 12 1.925 1.944 −1.942 1.889
2015 13 Jul 17 Jul 20 Jul 8 1.739 1.363 −1.915 1.939
2017 8 Aug 9 Aug 10 Aug 3 1.201 1.603 −1.008 0.992
2019 22 Jul 23 Jul 24 Jul 3 2.014 2.155 −1.737 2.150
2020 12 Aug 16 Aug 20 Aug 9 1.841 1.797 −1.924 1.758
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Table 2. The year, start date, peak date, end date, duration (unit: day), average SRPI, and HWCA, HMO, HFE of the 40 SRP−
events.

Year Start Date Peak Date End Date Duration SRPI HWCA HMO HFE

1979 6 Jun 12 Jun 16 Jun 11 −1.476 −1.255 1.461 −1.712
1981 12 Jun 13 Jun 19 Jun 8 −1.947 −2.201 1.791 −1.849
1982 22 Jun 24 Jun 24 Jun 3 −1.091 −1.417 1.052 −0.804
1982 5 Jul 8 Jul 9 Jul 5 −1.074 −1.083 1.126 −1.013
1983 6 Jul 7 Jul 11 Jul 6 −1.406 −1.455 1.418 −1.345
1985 10 Jun 12 Jun 18 Jun 9 −1.332 −1.377 1.611 −1.008
1987 9 Jun 21 Jun 25 Jun 17 −1.667 −1.629 1.366 −2.006
1988 15 Jun 15 Jun 19 Jun 5 −1.151 −1.136 1.149 −1.168
1989 11 Jun 20 Jun 22 Jun 12 −1.694 −1.960 1.592 −1.530
1989 3 Jul 4 Jul 6 Jul 4 −1.813 −1.765 1.766 −1.908
1991 19 Jun 22 Jun 28 Jun 10 −1.696 −1.570 1.514 −2.004
1992 6 Jun 10 Jun 20 Jun 15 −2.171 −2.153 2.377 −1.983
1992 10 Aug 11 Aug 13 Aug 4 −1.287 −1.188 0.954 −1.719
1993 2 Jun 7 Jun 9 Jun 8 −1.474 −1.143 1.621 −1.658
1995 22 Jun 26 Jun 28 Jun 7 −1.581 −1.174 1.625 −1.944
1996 15 Jun 17 Jun 19 Jun 5 −1.391 −1.026 1.433 −1.714
1996 5 Jul 7 Jul 8 Jul 4 −1.305 −0.966 1.479 −1.470
1997 11 Jun 12 Jun 15 Jun 5 −1.434 −1.809 1.188 −1.375
1998 7 Jun 15 Jun 18 Jun 12 −1.655 −1.351 2.002 −1.612
1999 10 Jun 10 Jun 13 Jun 4 −1.991 −1.733 2.219 −2.021
2000 3 Jun 10 Jun 14 Jun 12 −2.031 −1.795 1.938 −2.360
2000 18 Jul 24 Jul 26 Jul 9 −1.494 −1.107 1.456 −1.919
2002 12 Jun 16 Jun 20 Jun 9 −1.841 −1.628 1.780 −2.115
2002 7 Jul 9 Jul 16 Jul 10 −1.389 −1.799 1.006 −1.362
2005 10 Jun 12 Jun 20 Jun 11 −1.321 −1.424 1.300 −1.239
2006 5 Jun 6 Jun 11 Jun 7 −2.080 −1.955 1.811 −2.474
2009 18 Jun 23 Jun 27 Jun 10 −2.015 −1.863 2.038 −2.144
2009 23 Aug 24 Aug 25 Aug 3 −1.013 −1.035 0.814 −1.190
2010 21 Jun 23 Jun 24 Jun 4 −1.158 −1.240 1.056 −1.178
2010 5 Jul 6 Jul 7 Jul 3 −1.104 −1.266 0.995 −1.051
2012 8 Jun 11 Jun 14 Jun 7 −1.502 −1.778 1.634 −1.094
2013 17 Jun 17 Jun 20 Jun 4 −1.267 −1.093 1.557 −1.151
2014 7 Jun 11 Jun 13 Jun 7 −1.619 −1.409 1.477 −1.971
2015 25 Jun 27 Jun 28 Jun 4 −1.159 −1.013 0.946 −1.518
2016 23 Jun 25 Jun 26 Jun 4 −1.316 −0.908 1.469 −1.571
2016 16 Aug 17 Aug 18 Aug 3 −1.163 −1.404 1.033 −1.052
2017 10 Jun 12 Jun 17 Jun 8 −1.790 −2.032 1.588 −1.570
2018 19 Jun 22 Jun 29 Jun 11 −1.525 −1.341 1.896 −1.338
2019 20 Jun 23 Jun 25 Jun 6 −1.514 −1.937 1.772 −0.833
2020 28 Jun 29 Jun 1 Jul 4 −1.194 −1.026 1.308 −1.248

As shown in the tables, the typical SRP+ events prevail most frequently during mid-
to-late summer (July to August), but SRP− events tend to be more significant during early
to mid-summer (June to July). The duration of SRP+ (SRP−) events can be up to 19 (17)
days. The following composite analyses are generally based on the identified typical SRP+
and SRP− cases. For convenience, day 0 represents the peak date of SRP events; day (n)
denotes the day prior to (negative) and after (positive) the peak date of SRP events.

4.1. The Life Cycle of SRP

To analyze the life cycle of SRP, the composite SRPI indices are displayed in Figure 2.
The peak date (day 0) represents the day when the SRPI reaches its maximal value and
exceeds +1.0 σ. Positive and negative values of SRPI represent positive and negative phases
of SRP respectively, and their absolute values represents the intensity of SRP.
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As shown in Figure 2, the amplitude of SRP+ begins to rise rapidly from day −5 on-
ward, experiencing considerable growth in the following 5 days. The SRP+ index exceeds 
the normal value by +1.0 σ approximately at day −3. By day 0, the SRP+ index attains 
maximal value, reaching its peak state, with a gradual decline of its intensity after that. 
The composites of SRP+ and SRP− indices show opposite structure. The SRPI index ex-
ceeds the normal value by −1.0 σ approximately at day −10, which is much earlier than 
that of SRP+. From day −5 onward, the SRI decreases rapidly, and reaches its minimal 
value on the peak date, and then increases gradually. Moreover, it is also found that the 
life cycles of both daily-scale SRP+ and SRP− can persist for more than 15 days. 

Figure 3 shows the evolutions of the composite geopotential height anomalies field 
and wave-activity flux (WAF) at 200 hPa during the SRP+ events (day −8 to day 8). Prior 
to the peak date of SRP+ events, the positive height anomaly center over the West Central 
Asia and the negative height anomaly center over the Mongolia develop firstly and sim-
ultaneously form day −8 onward (Figure 3a), further strengthening in the following 4 
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Figure 2. Composite indices of SRP+ (red line) and SRP− (blue line) events from day −15 to day 15.
The numbers on the abscissa represent the days leading (negative) and lagging (positive) the peak
date of SRP events.

As shown in Figure 2, the amplitude of SRP+ begins to rise rapidly from day −5
onward, experiencing considerable growth in the following 5 days. The SRP+ index
exceeds the normal value by +1.0 σ approximately at day −3. By day 0, the SRP+ index
attains maximal value, reaching its peak state, with a gradual decline of its intensity after
that. The composites of SRP+ and SRP− indices show opposite structure. The SRPI index
exceeds the normal value by −1.0 σ approximately at day −10, which is much earlier than
that of SRP+. From day −5 onward, the SRI decreases rapidly, and reaches its minimal
value on the peak date, and then increases gradually. Moreover, it is also found that the life
cycles of both daily-scale SRP+ and SRP− can persist for more than 15 days.

Figure 3 shows the evolutions of the composite geopotential height anomalies field
and wave-activity flux (WAF) at 200 hPa during the SRP+ events (day −8 to day 8).
Prior to the peak date of SRP+ events, the positive height anomaly center over the West
Central Asia and the negative height anomaly center over the Mongolia develop firstly and
simultaneously form day −8 onward (Figure 3a), further strengthening in the following
4 days, with pronounced WAF emanating from the West Central Asia center. Meanwhile,
the WAF disperses eastward along the Asian jet, stimulating the gradual emergence of the
positive height anomaly center over the Far East. These three anomaly centers of SRP+
are consistent with the three basic points of the Silk Road pattern in the first EOF mode
(Figure 1). By approximately day 2, the well-organized zonal tripole structure of daily-scale
SRP+ completely forms at 200 hPa (Figure 3d). On the peak date, the SRPI index attains
its maximal value, the intensity of the positive West Central Asia center and the negative
Mongolia center significantly increases, indicating the formation of well-established SRP+,
with three significant action centers over the West Central Asia, Mongolia, and Far East
(Figure 3e) [7]. During the developing stage, an anomalous strong negative height anomaly
center tended to be anchored to the west of the Ural Mountains at high latitudes for several
days, and its intensity variation characteristics are similar to that of the negative height
anomaly center around the Balkhash Lake, which is consistent with the conclusion of
that the SRP is a pronounced circumglobal teleconnection pattern along the summertime
Asian jet stream [22,39]. During the decaying period (approximately after day 2), with the
dissipation of the upstream WAF, the intensities of West Central Asia and Mongolia centers
decrease gradually and disappear one after another, which represents the vanishing of the
zonal wave train structure of SRP+ (Figure 3i). In the meanwhile, the positive anomaly
center over the Far East maintains its strength for a longer period without decline, even
until the SRP turns to its negative phase, which is under the influence of the sustaining
eastward wave energy propagation from the Mongolia to the East Asian coast.
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from day −8 onward, experiencing considerable growth during the subsequent 4 days 
(Figure 4a). In the meanwhile, the negative height anomaly center over the West Central 
Asia emerges, with a rapid growth in the strength from day −6 to day −4. The positive 
height anomaly center over Mongolia begins to develop from day −2 onward and then 
intensifies significantly, indicating the onset of SRP− events. During the peak stage, the 
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Figure 3. Composite 200 hPa geopotential height anomalies (contours are from −80 to 80 gpm with interval of 40 gpm,
red for positive and blue for negative), the zonal wind speed (shading; units: m s−1), and wave-activity flux (vector; units:
m2 s–2) of SRP+ events from day –8 to day 8 (a–i) in Table 1. The slash shadings denote that the height anomalies are
statistically significant at the 0.05 confidence level. The numbers at the top-left corner above each panel represent the days
leading (negative) and lagging (positive) the peak date of the SRP+ events. Wave fluxes smaller than 4 m2 s–2 are not
plotted.

This study also examines the composite 200 hPa geopotential height anomalies and
WAF of SRP− events. It is evident that both positive and negative phases of SRP have
similar and fixed positions of the three anomaly centers; however, the temporal evolution
characteristics are different from those of the SRP+. As illustrated in Figure 4, the SRP−
events start with a negative geopotential height anomaly center located over the Far East
from day −8 onward, experiencing considerable growth during the subsequent 4 days
(Figure 4a). In the meanwhile, the negative height anomaly center over the West Central
Asia emerges, with a rapid growth in the strength from day −6 to day −4. The positive
height anomaly center over Mongolia begins to develop from day −2 onward and then
intensifies significantly, indicating the onset of SRP− events. During the peak stage, the
well-organized SRP− is characterized by a zonal ‘− + −’ wave train structure, with a
maximal amplitude at day 0, with more pronounced WAF emanating from the Caspian
Sea regions along this zonal wave train. In the decaying period, the SRP− weakens firstly
over the West Central Asia, where the negative anomaly center weaken substantially from
day 2 and almost disappeared at day 6, showing a rapid decline compared to other centers.
Nevertheless, both the positive anomaly center over Mongolia and the negative anomaly
center over the Far East persist for several days with their intensity weakening slightly. In
addition, it can be observed that the negative anomaly center over the Far East appears
earlier and persists longer than other centers, and the positive anomaly center in Mongolia
appears the last but maintain a certain strength for a longer period until the SRP− vanishes.

During the whole life cycle of daily-scale SRP+ and SRP−, the three significant action
centers prevail in their fixed positions, with less movement during the development, main-
tenance, and decaying periods. Thus, the analyses of daily-mean fields show that the Silk
Road pattern shows a nature of the quasi-stationary wave train on daily timescales, which
is consistent with the previous research conclusions by using monthly-mean data [7,39,40].
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4.2. Vertical Structure of Daily-Scale SRP

To shed light on the evolution of the SRP, their vertical structures of SRP+ and SRP−
are also explored in this section.

As mentioned above, the three anomaly centers of the SRP are all located near 40◦ N,
remaining stable during the life cycle. Therefore, Figures 5 and 6 present the longitude-
pressure cross-section of geopotential height anomalies along 42.5◦ N during the life cycle
of SRP+ and SRP− events, respectively. It shows that all the maximum anomaly centers of
SR pattern appeared in the mid-to-upper troposphere approximately at 200 hPa. About
8 days prior to the peak date of SRP+ events, the upstream West Central Asia positive
anomaly center and the Mongolia negative anomaly center emerged firstly, strengthening
remarkably during the subsequent 4 days. In particular, the vertical structure of the West
Central Asia center can extend from the 600 hPa to the tropopause (Figure 5a–c). Meanwhile,
the downstream Far East positive anomaly center develops rapidly (Figure 5c). By day −4,
these three anomaly centers generate the well-established zonal tripole structure before
SRP+ gets maximal amplitude. The intensities of the West Central Asia and Mongolia
anomaly centers reach the highest at day 0 (Figure 5e), weakening rapidly after the peak
date. The positive Far East anomaly center exhibit a tendency of continuous enhancement,
which is consistent with the variation characteristics of the SRP+ described in Figure 3.

The variation characteristics of the vertical structure during SRP− events are similar
to that of SRP+ events (Figure 6). The maximums of three anomaly centers emerge at
the height of 200 hPa, with an equivalent barotropic structure in vertical direction, which
were obtained by comparing lower and upper troposphere circulation anomaly fields. The
most significant distinction of evolution features between the SRP+ and SRP− lies in the
variation characteristics of the Mongolia and Far East anomaly centers. Concretely, prior to
the onset of SRP− events, the Mongolia positive anomaly center begins to emerge gradually
from day −4, with a vertical structure extending to the height of 400 hPa (Figure 6c). The
vertical structure of the Far East negative anomaly center can occupy the whole troposphere,
with a stronger strength and longer duration than that of the West Central Asia negative
anomaly center, which is consistent with the results obtained in Figure 4.
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Additionally, in the vertical direction, the three anomaly centers of SRP almost exhibit
barotropic structures. However, during the development stage, the nascent Mongolia
negative anomaly center of SRP+ and the West Central Asia negative anomaly center
of SRP− tilt a little westward with height, which shows a baroclinic vertical structure
(Figure 5d). As documented in [40,41] that the barotropic instability and baroclinicity could
extract the kinetic energy (KE) and available potential energy (APE), respectively, from the
basic state, maintaining the development of the Rossby wave train pattern. Thus, the early
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development of SRP may be attributed to the baroclinicity, and the barotropic instability
processes play a significant role in the maintenance of these three anomaly centers.

5. Temperature Anomalies in the YRV Related to SRP

5.1. Influence of SRP on Summer Temperature in China

In this section, the possible influence of the SRP on the summer temperature over
China are explored. Based on the samples in Tables 1 and 2, Figure 7 presents the spatial
distribution of composite averaged temperature anomalies during the SRP+ and SRP−
events.
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Corresponding to the SRP+ events, positive temperature anomalies dominated most
of China, which has three significant positive centers over the middle and lower Yangtze
River Valley (YRV), Xinjiang province, and part of Northeast China respectively, with the
temperature anomalies having values of 1–3 degrees higher than the climatology mean. In
addition, there is a significant center of negative temperature anomaly in Qinghai province
and adjacent regions. As for the SRP− events, the distribution of the temperature anomalies
has an opposite sign, characterized by negative temperature anomalies over mainland
China. Three significant negative centers are located over the YRV, southern region of
Xinjiang province, and most of Northeast China, respectively.

It is well known that the Yangtze River Valley, located in central-eastern China, is
one of the most densely populated and economically developed regions in China. Thus,
high temperatures or extreme heat waves in the YRV have a more important impact on
people’s production and life. Some studies have shown that the YRV witnessed increased
numbers of heat waves in the summer since 1951 [42,43]. Therefore, the following analysis
will focus on the SRP-related temperature anomalies in the YRV (114–122◦ E, 27–32◦ N)
and its possible causes.

Through further analyses, we find that the SRP+ (SRP−) is closely linked to the
persistent heat waves and cool summer processes in the YRV. To prove that, the SRP-related
heat waves and cool summer process should be defined firstly. The specific criterion
and associated anomalies of the temperature and related circulations are provided in
the following analysis. According to the previous studies, +1.0 standard deviation (σ) is
selected as the threshold to identify the typical extreme weather and climate events [44,45].
In this study, the heat waves (cool summer processes) in the YRV must meet the following
criterion: daily normalized domain-averaged temperature anomalies must be greater than
(less than) +1.0 σ (−1.0 σ).

As mentioned above, the temperature anomalies in the YRV during the SRP+ and
SRP− events exactly show an opposite distribution. Concretely, the SRP+ (SRP−) is closely
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related to the positive (negative) temperature anomalies signals in the middle and lower
reaches of YRV. Therefore, a key region (114–122◦ E, 27–32◦ N) is selected to calculate the
regional averaged temperature anomalies. As shown in Figure 8, the temperature anomalies
increase substantially prior to the peak date of the SRP+ events. Daily normalized domain-
averaged temperature anomalies of more than 1 σ can persist from day −1 to day 5, which
can keep a certain strength for approximately 7 days, indicating the consecutive summer
heat wave cases of YRV. After day 5, the temperature anomalies in the YRV descend
significantly. As for the SRP− events, the daily normalized domain-averaged temperature
anomalies rapidly descend from day −2, with minimal anomalies less than −1.5 σ at day 3,
suggesting a continuous process of cool summer in the Yangtze River Valley (from day 2 to
day 5). These results may imply that the daily-scale SRP+ (SRP−) has a profound effect on
the summer persistent heat waves (cool summer process) in the YRV.
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In order to better explain the important contribution of SRP to the temperature
anomaly in the Yangtze River Valley, Figure 9 presents the days of heat wave events
and cool summer processes within the YRV in each summer during 1979–2020. Particularly,
it has to be stated that the SRP indeed represents only one of the favorable factors respon-
sible for such prolonged extreme temperature anomaly events in the YRV. Accordingly,
171 summer heat wave days can be extracted from the 267 days accumulated by all the
identified SRP+ events (Table 1), which account for about 29.03% of the total 589 summer
heat wave days in the YRV during 1979–2020. Similarity, during the summers with the
SRP− events, 193 cool summer cases can be extracted from the 290 days accumulated by
all the identified SRP− events (Table 2), which account for about 30.1% of the total 641 cool
summer days in the YRV during 1979–2020. It is also proved that the SRP may play an
important role in the summer temperature anomaly of the Yangtze River Valley.
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Figure 9. Days of heat wave cases ((a), light blue rectangle; red rectangles represent the days of heat
wave cases related to SRP+) and cool summer processes ((b), blue rectangle; red rectangles represent
the days of cool summer cases related to SRP−) within the YRV (114–122◦ E, 27–32◦ N) in each
summer (June–August) during 1979–2020.

5.2. Possible Causes of SRP-Related Temperature Anomalies in the YRV

The occurrence and maintenance of regional extreme weather and climate events
is closely linked to the anomalous regional circulation, and some of the extreme events
are the result of the combined anomalies formed by a variety of climatic factors [46,47].
The generation of surface temperature anomalies is usually associated with the specific
atmospheric circulation patterns [46]. In the following analysis, this study will further
explore the possible causes of temperature anomalies in the middle and lower reaches
of YRV from the perspective of Silk Road pattern, revealing the anomalous circulation
patterns related to SRP responsible for the YRV temperature anomalies.

As shown in Figure 10, prior to the peak date of typical SRP+ events, an anomalous
anticyclone/cyclone/anticyclone wave train (‘A/C/A’ in Figure 10) aligned in a near-
zonal direction along the Asian jet can be identified in the upper troposphere at 200 hPa
from day −6 onward, which can also be considered as the embodiment of SRP [14]. It
is interesting to note that the anomalous ‘A/C/A’ wave train is similar to the Silk Road
pattern which is mentioned in previous studies [5]. Throughout the maintenance stage of
SRP+ events, an anomalous anticyclone dominated over the East Asia to the Northwest
Pacific, with significant negative vorticities over the anomalous anticyclone area. Positive
(negative) vorticity advection corresponds to the anomalous ascent (descent) motions.
To ensure the conservation of potential vorticity, positive (negative) vorticity advection
must be accompanied by adiabatic cooling (heating) [48]. Furthermore, another most
distinct characteristic of large-scale circulation is the gradual westward extension of the
western Pacific subtropical high (WPSH) at 500 hPa and the eastward shift of the South
Asia high (SAH) at 200 hPa. The negative vorticities related to the anomalous anticyclonic
circulation over East Asia accelerate the zonal advance between the SAH and WPSH,
which is consistent with the previous studies [49]. From day −6 onward, they overlap with
each other, with the negative vorticities in the overlapping area of the SAH and WPSH.
Particularly, the similar zonal approach between the SAH and WPSH has been widely used
in different studies, which can be viewed as an effective predictor for the temperature and
precipitation anomalies over East Asia [5,26].
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Figure 10. Composite average horizontal wind anomalies at 200 hPa (vector; units: m s−1) and the relative vorticity
(shadings; units: s−1) during the SRP+ events from day −8 to day 8 (a–i). The thick black contours (588 dagpm-contour) and
the blue dashed contours (1250 dagpm-contour) denote the activities of WPSH at 500 hPa and SAH at 200 hPa, respectively.
The letters ‘C’ and ‘A’ represent an anomalous cyclone and anticyclone, respectively.

Figure 11 presents the latitude-pressure cross-section (114–122◦ E) of vertical p-velocity
during the SRP+ events (day −8 to day 8). It is shown that both the anomalous anticyclone
and overlapping of the SAH and WPSH may favor the anomalous descents above the
YRV regions. After their zonal approach, the significant positive vertical p-velocity rapidly
dominates the YRV areas from day −4, indicating the strong local descents, which can
persist throughput the following 8 days. Thus, the persistent sinking adiabatic warming
can be regarded as one of the important factors involved in surface warming or heat waves
over the YRV area. On the other hand, anomalous descents can reduce the total cloud
cover (negative anomalies of total cloud cover in Figure 12c) and increase solar radiation
incident to surface of the YRV area (positive anomalies of solar radiation in Figure 12a).
Therefore, the summer heat waves in the YRV regions during the SRP+ events may be also
determined by the clear-sky warming.
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Figure 11. Latitude-pressure cross-section (114–122◦ E) of vertical p-velocity (shading; units: hPa s−1) during the SR+ events
from day −8 to day 8 (a–i). The slash shadings indicate that the anomalies are statistically significant at the 0.05 confidence
level. Black rectangles denote the YRV regions (114–122◦ E, 27–32◦ N).

Next, we will explore the possible causes of cool summer processes in the Yangtze
River Valley during the typical SRP− events. Two days prior to its onset, a similar anoma-
lous cyclone/anticyclone/cyclone wave train (‘C/A/C’ in Figure 13) can also be observed
along the Asian jet. East Asia to the Northwest Pacific is under the influence of the anoma-
lous cyclonic circulation and positive vorticities. Concurrently, the SAH and WPSH tend to
diverge from each other towards the reverse directions and retreat to their normal positions.
As illustrated in Figure 13, the positive vorticities between the SAH and WPSH enhanced
remarkably around the peak dates, further accelerating the divergence of the SAH and
WPSH from day −4 to day −2. By day 0, the eastern boundary of the SAH retreat to the
east of 120◦ E, and the WPSH retreat westward to the western Pacific, which favors the
development of the local ascent motions over the YRV area (Figure 14). It is well known the
ascent motions may provide the favorable conditions for the YRV summer precipitation,
leading to cool summers during the SRP− events. Moreover, the local ascents can also
increase the total cloud cover (positive anomalies of total cloud cover in Figure 12d), with
less solar radiation incident to the surface of the YRV areas (negative anomalies of solar
radiation in Figure 12b), contributing to the development of the negative temperature
anomalies in the middle and lower reaches of YRV. Thus, the cool summer processes in the
YRV are mainly determined by the adiabatic cooling with the local ascent motions caused
by the anomalous cyclonic circulation over the YRV related to the SRP−.
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Figure 12. Composite average anomalies of surface solar radiation downwards ((a,b); unit: kJ m−2;
shadings), total cloud cover ((c,d); unit: 0–1; shadings) and averaged precipitation anomalies ((c,d);
contours are from −20 mm to 20 mm with interval of 5 mm) during the SR+ (a,c) and SRP− (b,d)
events. The slash shadings indicate that the anomalies of surface solar radiation downwards (a,b)
and total cloud cover (c,d) are statistically significant at the 0.05 confidence level. Red rectangles
denote the YRV (114–122◦ E, 27–32◦ N) regions. Only negative and positive precipitation anomalies
are plotted in Figure 14c,d, respectively.
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6. Conclusions and Discussion

In this study, the evolution characteristics of Silk Road pattern (SRP) and its association
with summer precipitation in China are investigated using ERA5 reanalysis daily data. The
main conclusions are summarized as follows.

The evolution characteristics of SRP+ and SRP− show marked distinctions, especially
on the occurrence, maintenance, and disappearance of their three action centers. Prior to
the peak date of SRP+ events, the anomaly centers over West Central Asia and Mongolia
firstly emerge, experiencing considerable growth during the subsequent 4 days, with the
eastward wave-activity flux (WAF) emanating from the Black Sea regions along the Asian
jet. Although the anomaly center over the Far East appears later than other centers (almost
from day −4), it can maintain its intensity for a longer period, owing to the convergence of
sustaining eastward WAF over the Far East. During the decaying period, the intensities
of the West Central Asia and Mongolia centers decrease gradually and vanish one after
another. The SRP− events start with a negative anomaly center located over the Far East
from day −8 onward, significantly strengthening after that. Meanwhile, the negative
height anomaly center over the West Central Asia emerges, with a rapid growth in the
strength from day −6 to day −4, and it is under the influence of eastward WAF emanating
from the Caspian Sea regions. The positive height anomaly center over Mongolia begins
to develop from day −2 onward and then intensifies significantly. During the decaying
stage, the intensity of the West Central Asia negative center weakens substantially from
day 2 earlier than other centers. Although the positive anomaly center in Mongolia appears
last, it can maintain a certain strength for a longer period until the SRP− vanishes. In the
vertical direction, SR pattern mainly concentrates in the upper-to-mid troposphere. The
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baroclinicity contributes to the development of daily-scale SRP, and its maintenance is
inextricably linked to the barotropic instability processes.

In addition, as illustrated in the schematic diagram (Figure 15), the SR pattern has a
significant effect on the summer temperature anomalies in the Yangtze River Valley (YRV).
Concretely, during the SRP+ (SRP−) events, significant positive (negative) temperature
anomalies can be observed in the YRV, indicating the heat waves (cool summer) processes.
Prior to the peak date of SRP+ (SRP−), an anomalous anticyclone/cyclone/anticyclone
(cyclone/anticyclone/cyclone) wave train can be clearly identified along the Asian jet.
During SRP+, the anomalous anticyclonic circulation and negative vorticities over East
Asia, favor the zonal advance between the SAH and WPSH. The overlapping of these two
key systems remains in a favorable position for the violent sinking motions over YRV area.
The sinking adiabatic warming can be regarded as one of the important factors involved
in surface warming over the YRV area. Furthermore, the anomalous descents can reduce
the total cloud cover, providing a favorable condition for the solar radiation incident to
surface of the YRV area. Therefore, the summer heat waves in the YRV during the SRP+
events may be also related to clear-sky warming. With respect to SRP− events, owing to
the anomalous cyclonic circulation and positive vorticities over East Asia, the SAH and
WPSH depart from each other towards the reverse directions, retreating to their normal
positions. As a result, the local ascent motions dominate gradually over the YRV, which
increase the total cloud cover, with more precipitation signals and less solar radiation
incident to surface of the YRV areas, then inducing the negative temperature anomalies (or
cool summer processes) in the middle and lower reaches of YRV.
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Figure 15. Schematic diagrams for possible causes of the heat waves and cool summer processes in the YRV during the
SRP+ (a) and SRP− (b) events. The letters ‘C’ (blue shadings) and ‘A’ (red shadings) represent the anomalous cyclone and
anticyclone, respectively. The black solid lines at 200-hPa and 500-hPa denote the boundary of the SAH and WPSH, whose
propagation directions are indicated by the dashed blank arrows. The thick and thin purple arrows denote the more and
less solar radiation incident to surface of the YRV, respectively. The more total cover is represented by the gray cloud shape.
The ascent and descent motions are presented as blue and red dashed lines. The green shadings denote the positive and
negative vorticities over the YRV area.

In general, sinking adiabatic warming and clear-sky radiation warming may be the
possible causes for the significant heat waves events in the Yangtze River Valley during
SRP+. Adiabatic cooling with the local ascents over the YRV area leads to more total cloud
cover (precipitation) and less solar radiation incident to surface of the YRV, which are the
possible causes of the cool summer process in the YRV during SRP−.
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Besides, the SRP seems to exert great influence on the summer temperature anomalies
in part of Southeast China, in Qinghai and Xinjiang province (Figure 7); however, the
anomalous circulation fields related to the SRP, which can affect the temperature anomalies,
need to be further explored. The SRP− is closely associated with the cool summer processes
in the YRV. Furthermore, the variation of SRP− leads the variation of cool summer processes
for several days. It is possible that the daily SRP index can be considered as a precursor for
the persistent temperature anomalies over the YRV.
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Abstract: The Heihe River Basin (HRB), located on the northeastern edge of the Tibetan Plateau, is the
second-largest inland river basin in China, with an area of 140,000 km2. The HRB is a coupling area
of the westerlies, the Qinghai–Tibet Plateau monsoon and the Southeast monsoon circulation system,
and is a relatively independent land-surface water-circulating system. The refined characteristics of
moisture recycling over the HRB was described by using the Weather Research and Forecasting (WRF)
model for a long-term simulation, and the “finer box model” for calculating the net water-vapor flux.
The following conclusions were drawn from the results of this study: (1) The water vapor of the HRB
was dominantly transported by the wind from the west and from the north, and the west one was
much larger than the north one. The net vapor transported by the west wind was positive, and by
the north wind was negative. (2) The precipitation over the HRB was triggered mainly by the vapor
from the west, which arose from the lower vertical layer to higher one during transporting from west
to east. The vapor from the north sank from a higher layer to a lower one, and crossed the south edge
of the HRB. (3) The moisture-recycling ratio of evapotranspiration to precipitation over the HRB was
much higher than the other regions, which may be due to the strong land–atmosphere interaction in
the arid inland river basin.

Keywords: land–atmosphere interaction; water vapor; weather research and forecasting model;
precipitation; evapotranspiration; tuning layer

1. Introduction

Moisture recycling is the contribution of regional moisture to precipitation in a
region [1–4]. It has the ability to inhibit extreme precipitation-induced hydrological
events [5,6], and reflects the memory of soil moisture and the continuous abnormality of
dry and wet conditions [7]. A comprehensive understanding of the regional moisture-
recycling process not only is the key to understanding the regional water cycle and surface
land–atmosphere interaction [8,9], but also plays the main role in improving future climate-
change projections.

Generally, the rate of moisture recycling depends heavily on the spatial scale of the
study area and its regional atmospheric circulation. The smaller the spatial scale is, the
lower the moisture-recycling rate [1]. The moisture-recycling rate is nearly 1 at the global
scale, approximately 40% at the continent scale, and generally less than 20% at a scale of
1000 km2 [10–12]. However, the contribution of regional evaporation to precipitation is
high [13], and far greater than 20% in the inland river basin, which is at the regional scale of
106 km2, due to the strong land–atmosphere interaction. Zhao et al. [14] reported that the
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contributions of recycled moisture to precipitation in the upper, middle, and lower reaches
of the Heihe River Basin (HRB) are approximately 52.4%, 56.5%, and 21.4%, respectively,
and that recycled moisture (especially transpiration) plays an important role in regional
precipitation redistribution. The inland river basin is located in the hinterland of the
continent and far away from the ocean. No sufficient source of water vapor exists, and
the runoff generated by rainfall or alpine snow melting in the inland mountainous area
cannot flow into the sea, and finally is infiltrated in the local basin. The inland river basin
is an ideal hydrometeorological research region that exchanges water and energy with the
external world within a clear boundary [15].

However, compared to the relatively simple process of marine inner water cycling,
the moisture recycling of the inland river basin is much more complicated because of
the spatial heterogeneity and diversity of its complex underlying surface. Generally, the
inland river basin originates from a mountainous area and extends to a desert [16]. In the
high mountainous upper reaches of the inland river basin, diverse underlying surfaces of
glaciers, snow, frozen soil, and alpine forest meadow can be found, and a mountainous
“water tower” can be observed overhead, a result of water vapor being intercepted from
the outside. In the middle reaches, the Gobi Desert, an oasis, a unique artificial water
channel, and farmland can be seen on the surface, with runoff flowing through formed
by precipitation from upstream. In the downstream of the inland river basin, the river is
injected into the terminal lake or is infiltrated in the desert. These complex underlying
surfaces make it difficult to describe the process of precipitation and evapotranspiration in
the inland river basin; therefore, the moisture recycling of the basin is much more complex.

Meanwhile, with global climate change, the uncertainty of moisture recycling in the
inland river basin has increased. The fifth assessment report of the Intergovernmental
Panel on Climate Change (IPCC) noted the lack of doubt regarding the warming of the
climate system. Since 1850, the global average temperature increases by 0.85 degrees from
1880 to 2012 [17]. According to the National Oceanic and Atmospheric Administration,
the increase in temperatures over the first 15-year period of the 21st century were almost
equal to the increases that occurred over the entire last half of the 20th century [18].
The increase in temperature means that increasingly more precipitation reaching the
ground will evaporate into the atmosphere. Due to the insufficient precipitation and
the fragile ecological environment, the arid inland river basin is vulnerable to global
climate change; therefore, moisture recycling and changes mechanism in the arid inland
river basin must be carried out to against the background of climate change and to propose
regional vulnerability response methods.

Long-term, high-resolution, atmospheric numerical simulation helps to precisely
refine the characterization of the moisture-recycling process in the inland river basin.
Long-term data help to reduce the bias and to reveal the trend of moisture recycling.
Higher resolution improves not only the land-surface representation, but also the ability
of regional climate models to simulate important small-scale precipitation processes [19],
such as convective phenomena that are generally considered to be sufficiently resolved at a
less than approximately 5 km spatial resolution [20].

Generally, the box model is widely used to calculate the regional water and energy
mass balance as the mass difference between the input and the output in a certain region at
a specific time [21–24]. However, most researchers take the entire research region as a box,
which obliterates the jagged complex edge of the natural topography.

In this paper, moisture recycling over the inland Heihe River Basin is calculated based
on the Weather Research and Forecasting (WRF) model at a 5 km spatial resolution and an
hourly temporal resolution from 2000 to 2015 using the finer box model. This study aims to
describe the specific characteristics of water-vapor transport over the inland river basin and
calculate the contribution of local evapotranspiration to precipitation over the HRB with a
relatively independent land-surface water-circulation system. The WRF model is proved
to be credible over the inland river basin [25,26]. The HRB, located on the northeastern
edge of the Tibetan Plateau, is the second-largest inland river basin in China, with an area
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of 140,000 km2, and is an area coupling the Tibetan Plateau, Mongolia Plateau, and Loess
Plateau. This region is mainly dominated by westerly winds, though polar north winds
also function as a relatively independent land water-circulating system; hence, it as an
ideal research region for examining the atmosphere, hydrology, ecology, and multispheres.

The next section introduces the research region, WRF model configuration, moisture-
recycling method, and finer box model. The results are shown in Section 3 and discussed
in Section 4, and conclusions are drawn in Section 5.

2. Research Region, WRF Model Configuration, and Methods

2.1. Research Region

The HRB is regarded as an ideal test bed and field laboratory for land-surface or
hydrological experiments [27,28], located at the junction of the Qinghai Tibet Plateau, Loess
Plateau, and Mongolia Plateau (Figure 1). The HRB originates from glacial meltwater and
precipitation in the Qilian Mountains and flows through the provinces of Qinghai, Gansu,
and Inner Mongolia. It can be divided into three parts: the upper reaches, with elevations
ranging from 2000–5500 m and precipitation ranging from 250~500 mm; the middle reaches,
being defined as the reach between Yingluo Gorge and Zhengyi Gorge, with elevations
ranging from 1000–2000 m and precipitation ranging from 100~250 mm; and the lower
reaches, with elevations of less than 1000 m and precipitation of less than 100 mm. The
basin climate is mainly controlled by the westerlies throughout the year [29,30]. From the
upper reaches to the lower reaches, glacier, permafrost, oasis, bare, and Gobi Desert areas
are distributed. The diverse landscape makes the HRB an ideal watershed for scientific
research. Comprehensive experiments, including the Heihe Basin Field Experiment [31],
Watershed Allied Telemetry Experimental Research [32], and Heihe Watershed Allied
Telemetry Experimental Research [28], have been conducted in the HRB.

Figure 1. The study region: (a) the location of the HRB; (b) the research domain.

As shown in Figure 1, the water-vapor transport in the HRB can be controlled by
westerly wind, polar north wind, the Tibetan Plateau monsoon and the Southeast monsoon.
However, water-vapor transport by the Tibetan Plateau and Southeast monsoons is ob-
structed by the Qilian Mountains because of their high elevation, so part of it is converted
into precipitation in the region south of the HRB, and another part turns eastward [33–35].
Therefore, the water-vapor transport by the Tibetan Plateau and Southeast monsoons is
negligible in the HRB.
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2.2. WRF Model Configuration

The Advanced Research WRF [36] version 3.5 modeling system was used in this study.
The model includes Arakawa C-grid staggering for a horizontal grid, a fully compressible
system of equations, terrain-following hydrostatic pressure with vertical grid stretching,
and a third-order Runge–Kutta scheme for time-split integration. The WRF physical
configuration (Table 1) used in this study consisted of the WRF single-moment 5-class
scheme [37] as the microphysics option, the Kain–Fritsch scheme [38] as the cumulus
convection parameterization option, the Yonsei University scheme [39] as the planetary
boundary layer (PBL) option, a 5-layer thermal diffusion scheme as the land-surface model
option, and the Dudhia scheme [40] and the rapid radiative transfer model scheme [41] as
the shortwave and longwave radiation options, respectively.

Table 1. Physical configuration of the WRF model used in this experiment.

Physics Processes
Domain 1
(25 km)

Domain 2
(5 km)

Horizontal 60 × 60 130 × 130
Time step 150 s 30 s

Microphysics single-moment 5-class scheme single-moment 5-class scheme
Cumulus Kain–Fritsch scheme Kain–Fritsch scheme

PBL YSU scheme YSU scheme
Shortwave radiation Dudhia scheme Dudhia scheme
Longwave radiation Rapid radiative transfer model Rapid radiative transfer model

Surface–land 5-layer thermal diffusion 5-layer thermal diffusion
Initial and boundary NCEP/FNL analysis Domain 1

This study used two-way nested computational domains with 60 × 60 × 40 and
130 × 130 × 40 grid points and horizontal resolutions of 25 km and 5 km, respectively.
Two-way nesting was used to perform the model simulations (Figure 1) in a scheme in
which domains at different grid resolutions were run simultaneously and communicated
with each other. The coarser domain was forced with the reanalysis data sets of the
Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP), and
provided initial and boundary conditions for the finer nested domain, which feeds its
calculations back to the coarser domain.

2.3. Moisture Recycling Estimation Method

As described in Global Energy and Water Cycle Experiment (GEWEX) [42], the fol-
lowing components of the water cycle exist for a river basin: (1) net inflow of water vapor
through the lateral atmospheric boundaries of the basin; (2) net transfer of water from the
atmosphere to the surface by excess precipitation over evapotranspiration; and (3) river
discharge from the basin to the ocean. Because the HRB is an inland river basin, the water
cycle includes only (1) and (2). The water-balance equations for the atmosphere and land
are shown as below:

d(qa + ql)/dt = Cq − Nl − Nq (1)

dqa/dt = Cq − (P − E) =
1
g

∫ ps

0
qdp (2)

dql/dt = (P − E)− Nl (3)

Cq =
1
g

∫ ps

0
∇·

(

⇀

Wq

)

dp − Nq (4)

Nq = βqa (5)

γ =
P − Cq − Nq

P
(6)
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where qa and ql are the total atmospheric and land water masses per unit horizontal area;
Cq is the net inflow of atmospheric water to the basin; Nl is the net land runoff, which is the
outflow from the area of interest; Nq is the net change in condensed water in the air; P and
E are the precipitation and evapotranspiration fluxes at the ground level, respectively; q is
the specific humidity; p is the pressure; and ps is the pressure at the top of the atmosphere.
Because the inland river basin is a relatively independent water-circulating system, here,
Nl is equal to 0. Generally, Nq is assumed to be negligible; however, warmer temperatures
increase the rate of evaporation of water into the atmosphere, in effect increasing the
atmosphere’s capacity to hold water. With global warming, the water-holding capability
improves, which means that the atmospheric water storage increases, and its change Nq

cannot be ignored.
⇀

W = (u, v, w) is the wind component at x, y, z directions; g is the
gravitational constant; β is the rate of annual change in the total atmospheric water mass;
and γ is the regional moisture-recycling ratio.

2.4. Finer Box Model for Calculating the Net Water Vapor Flux

Generally, the water vapor flux is calculated by considering the entire research region
as a box; this is known as the box model. This method is quite rough, obliterating the
boundary complexity of the research region and making the high-resolution atmospheric
simulation data essentially useless. Therefore, in this research, the water vapor of every
grid along the boundary was calculated, referred to as the “finer box model”, which was
designed to improve the accuracy of the net inflow of water vapor through the boundary
of the research region based on the high-resolution atmospheric simulation data. These
grids are indicated by the red crosses in Figure 1b.

The water vapor flux for each grid is calculated according to Equation (7):

q(i,j) =
1
g

∫ ps

0

(→
W(p,i,j)q(p,i,j)·

→
n (i,j)

)

dp (7)

where i and j are the location identification of the boundary grid in the whole research

domain,
→
n (i,j) is the unit normal vector at the boundary, p is pressure, and

⇀

W is the wind
component at x, y, z directions.

The regional net water-vapor flux (∆q) is calculated by Equation (8):

∆q = ∑
0 ≤ i ≤ M
0 ≤ j ≤ N

q(i,j) (8)

where M and N are the sizes of the used grids in the adopted unit of space.

3. Results

3.1. Atmospheric Water Storage

As mentioned in Section 2, with global warming, the water-holding capability im-
proves, and the atmospheric water-storage change Nq cannot be ignored. The annual
mean atmospheric water mass (Figure 2) was calculated based on the mixing ratios of the
water vapor, cloud water, rain water, ice water, and snow water. According to the annual
mean atmospheric water mass from 2000 to 2015, though there were minor variations
from year to year, the pattern is shown well in the mean that the maximum and mini-
mum of the atmospheric water mass were located in the southeastern and northeastern
regions, respectively.

Figure 3 shows that a strong relationship exists between atmospheric water storage,
temperature, and precipitation over the HRB. From 2000 to 2015, the change trends of
water vapor and temperature were positive and almost synchronous, the change trend
of precipitation was also positive, but not so obvious. The reason may be that the higher
temperature increased the capacity to contain atmospheric water mass, which is necessary
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for the occurrence of precipitation [43]. The water vapor atmosphere increased by approxi-
mately 0.13 kg/m2 per year, an important indicator of the net change in condensed water
in the air (Nq).

Figure 2. The mean atmospheric water storage over the HRB from 2000 to 2015 (kg/m2).

Figure 3. The change trend of the atmospheric water storage, temperature, and precipitation from 2000 to 2015. The trendline
in dark blue is for water vapor, the trendline in dark red is for temperature, and the trendline in purple is for precipitation.
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3.2. Net Water-Vapor Transport in the X and Y Directions

As analyzed from the NCEP/NCAR reanalysis data set by Wang et al. [33] and Lu
et al. [35], the water vapor in the HRB comes mainly from the westerly wind transport via
the Black Sea and the Caspian Sea in summer, which is a net income for the water-vapor
balance and different from most parts of northwest China; a small part of water vapor in
the HRB comes from the polar north wind transport via Mongolia in winter. Meanwhile,
according to the net water-vapor transport along the meridional and zonal determined by
WRF simulation in this study, it was found that the dominant winds over the HRB were
the west wind and the north wind.

The layer-by-layer cumulative analysis shows that the 9th vertical layer (600 ± 100 hPa)
is the tuning layer, the altitude of which can be found in Figure 4. Along the meridional,
under the tuning layer, the accumulated water vapor from the west crossing the western
boundary as input was much bigger than that crossing the eastern boundary as output;
above the tuning layer, the accumulated water vapor from the west crossing the western
boundary as input was less than that crossing the boundary as output. However, along the
zonal, under the tuning layer, the accumulated water vapor from the north crossing the
northern boundary as input was much less than that crossing the southern boundary as
output; above the tuning layer, the accumulated water vapor from the north crossing the
northern boundary as input was larger than that crossing the southern boundary as output.

Figure 4. The net water vapor transport in the X and Y directions (kg/year). The blue arrow
represents the water vapor transported by west wind, and the pink arrow represents the water vapor
transported by north wind.
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As shown in Figure 4 and Table 2, the annual cumulative input volumes of water-vapor
transport in the upper layers (from the 10th layer to the top) and the lower layers (from the
surface to the 9th layer) when crossing the west boundary were 6.2 × 1013 kg/year and
6.5 × 1013 kg/year, respectively, while the output transport rates when crossing the east
boundary were 7.1 × 1013 kg/year and 4.6 × 1013 kg/year, respectively.

Table 2. The input and output of water vapor by the west wind and north wind over the HRB.

Wind Layer Input (kg/year) Output (kg/year) Net (kg/year)

West wind
Surface—9th layer 6.5 × 1013 4.6 × 1013 1.9 × 1013

10th layer—Top 6.2 × 1013 7.1 × 1013 −0.9 × 1013

North wind
Surface—9th layer 1.3 × 1013 2.4 × 1013 −1.1 × 1013

10th layer—Top 1.7 × 1013 1.1 × 1013 0.6 × 1013

The annual cumulative input volumes of water-vapor transport in the upper layers
and lower layers while crossing the north boundary were 1.7 × 1013 kg/year and 1.3 ×
1013 kg/year, respectively, and the output ones while crossing the south boundary were 1.1
× 1013 kg/year and 2.4 × 1013 kg/year, respectively.

3.3. Precipitation, Evapotranspiration, and Runoff

Figure 5 shows the mean annual spatial distribution of the precipitation, evapotran-
spiration, runoff, and ratios of evapotranspiration and runoff to precipitation. Much of the
precipitation was consumed in evapotranspiration, while some participated in runoff. The
figure also indicates that the evapotranspiration was larger than the precipitation in the
downstream of the HRB. Parts of the ratios of the evapotranspiration to precipitation in
the downstream exceeded 2.0, especially in Juyan Lake, although the runoff over this area
was larger than that in other areas of the downstream HRB. The large difference between
evapotranspiration and precipitation over this region caused the lake to remain dry for
more than 200 days per year. The ratio of runoff to precipitation was much lower than that
of evapotranspiration to precipitation.

Figure 5. The spatial distribution of the precipitation, evapotranspiration, runoff, and their ratios.
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3.4. Moisture Recycling

Based on the WRF simulation and finer box model, the average annual net water
vapor was 0.5 × 1013 kg, the annual water vapor storage change was approximately
0.13 kg/m2, the average annual precipitation of the HRB was 103.4 mm, and the area of

the HRB was approximately 100,000 km2. According to Equation (6), i.e., γ =
P−Cq−Nq

P , the
moisture-recycling rate of the HRB was approximately 0.52.

4. Discussion

4.1. Water-Vapor Transport in the HRB

Based on different methods and data, scientists have consistently concluded that the
water-vapor transmission in the HRB is dominated by both westerly transport from the
west to the east and the polar (Siberia) cold-air mass from the north to the south, with
the intensity of the westerly wind in summer being greater than that of the northerly
wind in winter, and that the water-vapor input mainly occurs in the period from June to
September [14,34,35,44,45].

However, different opinions exist on the following issues: (1) whether the net water-
vapor transport over the entire HRB is positive or negative; (2) which direction of water-
vapor transport is positive, westerly or northerly; and (3) the actual volume of water-vapor
transport over the HRB.

Lu et al. [36] not only showed that the net water-vapor transport over the entire
HRB was negative (approximately −48.8 km3), but also indicated that the water vapor
transported by the westerlies over the entire HRB was negative in summer, and that
transported by northerlies was positive in winter. Wang et al. [44], Jiang et al. [34], and
Xu [45], however, reached a completely opposite conclusion, i.e., the net water-vapor
transport was positive, while the net water-vapor transport by the westerlies was positive,
and that by the northerlies was negative.

The total input volume of water-vapor transport by the westerlies was larger than that
output, which means that the net water-vapor transport by the westerlies was positive. In
addition, the net water-vapor transport of the lower layers by the westerlies was positive,
and that of the upper layers by the westerlies was negative, which may be due to the
water transported by the westerlies being forced to uplift by the gradually strengthening
monsoon from south, which is conducive to the formation of precipitation in east, and
part of uplifting water vapor is exported from the east boundary in the upper layers, as
explained in Xu et al. [46]. However, the phenomenon for the polar north wind was the
opposite. The total input volume of water-vapor transport by polar north wind was less
than that output, which means that the net water-vapor transport by the polar north wind
was negative. Meanwhile, the net water-vapor transport of the lower layers by the polar
north wind was negative, and that of the upper layers by the polar north wind was positive,
which means that the water transported by the polar north wind underwent a divergence
process, which is not conductive to the formation of precipitation, and made the HRB
winters drier. The water vapor transported across the southern HRB boundary reaches the
Qilian Mountains and then falls as snow, which makes the Qilian Mountains abundant in
precipitation [47].

Compared to the question of which water-vapor-transport process is positive, dis-
putes on the volume of water vapor transported over the HRB are much greater. In
comparison to this study, Wang et al. [44], Jiang et al. [34], and Xu [45] obtained the
same results: the net water-vapor transport over the entire HRB was positive, that by
westerlies was positive, and that by polar north winds was negative. However, the
total volumes of the net transport, that by westerlies and that by polar north winds
in these studies were different from those of our study and were different from each
other. The volumes of net water-vapor transport were 17.6 billion m3, 28.8 billion m3,
22.573 billion m3, and 4.0 billion m3 in Wang et al. [44], Jiang et al. [34], Xu [45] and
this study, respectively. The net input water vapor was 667.8 billion m3, 248.4 billion m3,
and 157.0 billion m3 in Wang et al. [44], Jiang et al. [34], and this study, respectively. The
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net output water vapor was 650.2 billion m3, 219.6 billion m3, and 153.0 billion m3 in
Wang et al. [44], Jiang et al. [34], and this study, respectively. The possible reason for the
discrepancies is that the other studies used the box model to calculate the water-vapor
transport, which tends to obliterate the jagged complex edge of the natural topography.

4.2. Accuracy of the Moisture Recycling Estimation

In this study, moisture recycling was defined as the contribution of local moisture
to precipitation. The accuracy of moisture recycling estimation depends on the following
estimation: (1) the accuracy of the water-vapor-transport calculation, (2) the accuracy of
the precipitation simulation in the WRF model, and (3) the accuracy of the net change in
condensed water in the air. Here, the high resolution of the WRF model in this study was
crucial to the moisture-recycling estimation. In addition, compared to the traditional coarse
box model, a finer box model was adopted to calculate the net water-vapor flux in detail.

The WRF model is strongly sensitive to the model resolution and underlying surface
terrain features in the HRB [48,49]. High spatial resolution not only yields more precise
amounts and more reasonable patterns of precipitation (including snow) in complex
mountainous regions, but also contributes to more apparent wind-speed patterns [50,51].
Wind speed plays an important role in calculating the water-vapor transport. Additionally,
the net change in condensed water in the air (Nq), which was zero in most studies but
plays an increasingly important role in the air water cycle, was considered in this study
using long-term atmospheric water storage based on a high-resolution simulation in the
WRF model.

Currently, the flux volume of water-vapor transport varies from one researcher to
another. This study, based on long-term high-resolution simulations in regional climate
models and finer box models, was helpful in resolving this issue, and obtained an accurate
moisture-recycling rate over the HRB.

4.3. Higher Moisture Recycling over the Inland River Basin

There was a higher moisture recycling and a much stronger land–atmosphere inter-
action over the inland river basin than the other regions with same spatial scale, which
may be due to the inland river basin being located far from the sea. Wu et al. [52] in-
dicated that the Tarim River Basin, the biggest inland river basin in China, had a high
local moisture recycling because it is located far away from ocean and next to the Tibetan
Plateau, which is similar to the HRB. Keys et al. [53] indicated that the land surface plays
a dominant role in mediating variability in moisture-recycling processes in the inland
river basins. Keys et al. [54] and Li et al. [55] indicated that the intermountain basin near
the Qilian Mountains, as a relatively closed terrain of the region, is beneficial to local
moisture recycling.

Meanwhile, the water from the cryosphere belt, which is generally considered as a
belt in addition to the vegetation belt, oases belt, and desert belt over the inland river basin,
accounts for a large portion of moisture recycling [55,56]. The cryosphere belt saves water
for cold seasons and releases in the flood season when the temperature is highest and the
evapotranspiration is most strong in a year, which makes the moisture-recycling ratio of
the inland river basin higher than that of the other regions at the same spatial scale.

4.4. Tuning Layer and Other Issues

The tuning layer, i.e., the 9th layer in our research, was approximately 600 ± 100 hPa
over the entire HRB. Most atmospheric convergent and divergent activities occur at or near
this layer [57]. In this study, the annual cumulative net volume of water-vapor transport
in the upper layers (from the 10th layer to the top) was negative, and was positive in the
lower layers (from the surface to the 9th layer) while water vapor crossed from west to east.
The annual cumulative net volume of water-vapor transport was positive in the upper
layers and was negative in the lower layers while water vapor crossed from the north to
south. The net volume of vapor transport in the upper layers being positive means that the
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water-vapor convergence uplifted, and was likely to form precipitation during transport;
however, the net volume of vapor transport in the lower layers being positive means that
the water-vapor divergence sunk, and was not conductive to forming precipitation.

5. Conclusions

The Heihe River Basin (HRB) is a coupling area of the westerlies and the polar north
wind circulation system, with a relatively independent land water-circulating system. The
aim of this study was to describe the refined characteristics of the water-vapor transport
over the inland river basin, and calculate the contribution of local evapotranspiration to
precipitation over the HRB. Based on the long-term WRF simulation and finer box model,
the net water-vapor flux as calculated grid by grid, the quantitative change trend of the
atmospheric water storage, and the refined characteristics of moisture cycling over the
inland Heihe River, the following conclusions were drawn:

(1) The water vapor of the HRB was dominantly transported by the wind from west and
from the north, and the west wind was much larger than the north wind. The net
vapor transported by the west wind was positive, and by north wind was negative;

(2) The precipitation over the HRB was triggered mainly by the vapor from the west,
which arose from the lower vertical layer to the higher one during transport from
west to east. The vapor from the north sank from a higher layer to a lower one, and
crossed the south edge of the HRB;

(3) The moisture-recycling ratio of evapotranspiration to precipitation over the HRB
was much higher than in the other regions, which may be due to the strong land–
atmosphere interaction in the arid inland river basin.

Although the climatological pattern of water-vapor transport was the main issue in
this study, an issue arose regarding how to calculate the water-vapor budget delicately
for the HRB, so it was insufficient that the diurnal/seasonal/yearly variability of water-
vapor transport was not analyzed in detail as well; this will be our next step in the future.
Furthermore, an extended study of the physical processes based on the combination of
models and observations also will be undertaken in the future.
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Abstract: Owing to its unique position within multiple monsoon regimes, latitudinal extent, and
complex topography, Vietnam is divided into seven agroclimatic zones, each with distinct rainy
season characteristics. Variation in the dominant rainfall system across zones affects the rainfall
climatology, the primary water resource for regional crops. This study explores the creation of an
agronomic rainy season onset based on high-resolution rainfall data for each agroclimatic zone for
applications in an agricultural context. Onset information has huge practical importance for both
agriculture and the economy. The spatiotemporal characteristics of zonal onset date are analyzed
using integrated approaches of spatial and interannual variability, temporal changes, and estimation
of predictability using teleconnection with Niño 3.4 sea surface temperature anomalies (SSTA) for
1980 to 2010. Results suggest that northern and southern zones experience regional onset dates in
May, while the central zones experience rainy season onset in late August. The regional variability
of rainy season onset is lower in the northern and southern zones and higher in the central zones
which are latitudinally extended. The interannual variation in rainy season onset date is found to
be approximately two weeks across all agroclimatic zones. The significant negative trend in rainy
season onset date is found for Central Coast and South Central Coast zones, suggesting that the
onset date shifted earlier for the entire period. In the decadal scale, the zonal mean onset date shifted
later in the Northwest zone and earlier in the Central Highlands. Out of the seven climate zones, a
significant positive correlation is only noticed in the Central Highlands and South zones between
zonal mean onset date and Niño 3.4 SSTA for Dec–Jan–Feb, suggesting the potential of seasonal
scale predictability of rainy season onset date with respect to preceding El Niño-Southern Oscillation
(ENSO) events.

Keywords: zonal rainy season; agronomic onset definition; trend detection; ENSO-teleconnection

1. Introduction

In countries where rainy season rainfall is the main water resource to meet the re-
quirements for agricultural production, reliable determination of the rainy season onset is
crucial for agricultural planning. The onset date influences the time of land preparation,
sowing and transplanting dates of major crops, mobilization of seed/crop, manpower, and
equipment [1]. Accurate knowledge of the onset date reduces the risk of planting and
sowing too late or too early [1]. Any irregularity in rainfall during this period affects the
prospect of yield production because of delayed transplanting and immature growth of
crop owing to water scarcity, heavy infestation by weeds, and outbreaks of diseases and
insect pests [2]. Although farmers use a range of non-scientific traditional strategies and
criteria (e.g., the observation of the behavior of some birds or insects and flowering of
certain trees) to predict onset, these methods are unreliable, especially as global climate
change alters long-term climatic patterns. Therefore, a scientific definition of the rainy
season onset can aid yield increases among local farmers [3].

Defining the onset of the rainy season is an extremely complex problem and, thus,
various definitions have been proposed. These definitions can be broadly classified into two
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groups: regional to large-scale methods where parameters measure large-scale atmospheric
dynamics and local-scale methods using fixed precipitation thresholds selected based on
the climatology of rainfall over the region of interest [4]. The local scale definition has direct
application for agricultural production which depends on rainfall requirements of specific
crops. Therefore, this local scale definition is often referred to as agronomic as it is based
on crop-relevant local-scale daily rainfall features rather than regional-scale atmospheric
circulation changes [5]. An agronomic definition can be estimated by finding the first
rainy day which exceeds a particular rainfall threshold without a potential occurrence of
crop-threatening dry spells thereafter to account for false onsets [5].

With spurring growth in agricultural productivity in the 1990s, the sector became
a key part of Vietnam’s economy, now contributing 18.4% of Vietnam’s Gross Domestic
Product, and employing 54% of the working population [6]. In recent times, Vietnam
became a leading global exporter of several important crops such as rice, coffee, cashew
nuts, vegetables, and rubber [7]. Agricultural practices in Vietnam are crucially dependent
on rainfall. The annual rainfall over Vietnam is distributed asymmetrically throughout the
year, where a major proportion (~70% of annual) of the rainfall occurs during the period
from May to September/October [6]. Although most of the gross cultivated area is irrigated,
irrigation itself is crucially dependent on monsoon rainfall as it largely depends on the use
of surface water. Therefore, the date of onset of the rainy season is of particular importance
to the agriculture sector in Vietnam. However, despite the fact that the investigation of
rainy season onset dates has a huge practical importance for both agriculture and economy,
targeted studies evaluating the timing of the rainy season in Vietnam have been very
limited [8–10].

There are previous studies that investigate the climatology, trends, and the predictabil-
ity of rainy season onset dates in southern Vietnam [8] and the Central Highlands region [9]
of Vietnam. Both studies also explored prediction of rainy season onset dates based on
statistical modeling using the relationship between local rainy season onset dates and
large-scale atmospheric variables (pressure and moist static energy gradients, outgoing
long-wave radiation, wind fields and mean sea level pressures) over certain regions. Only
one study [10] discussed the climatological pattern of onset dates for all regions of Vietnam
but it is limited only to the summer monsoon season while the rainy season of the Central
Highlands region is mainly influenced by local rain-producing weather systems [11].

Existing studies are limited either for a particular region of the country or for only the
summer monsoon season, while the climate of Vietnam substantially varies from north to
south with seven climatic sub-regions which are strongly affected by multiple monsoon
systems and local factors (more discussions can be found in the following sections). Thus, a
more in-depth study was required to reveal an explicit understanding of the spatiotemporal
characteristics of the rainy season onset of Vietnam. For the applications in an agricultural
context, this study mainly focuses on the agronomic definition of onset for the primary rainy
season during the period from May to September/October which has huge importance
for agricultural activities, at different the agroclimatic zones of Vietnam. Nevertheless,
this study is motivated to raise the following questions: How is the agronomic rainy
season onset distributed over agroclimatic zones of Vietnam? How does rainy season onset
vary over the spatiotemporal scale for each zone? Since the El Niño-Southern Oscillation
(ENSO) has impact on the rainfall in Vietnam, is there any predictability based on the
teleconnection between the onset days for each zone and with ENSO? Therefore, this paper
aims to answer these issues by exploring the creation of an agronomic rainy season onset
definition for all agroclimatic zones over Vietnam using recently developed high resolution
Vietnam-gridded precipitation (VnGP) dataset [12] for the period 1980 to 2010. The novelty
of this research lies in the fact that it is the first time that the agronomic rainy season onset
for each agroclimatic zone across Vietnam is analyzed by using integrated approaches of
inter-annual variability, trend analysis, and estimation of predictability teleconnection. The
findings of this study offer a potential understanding of agronomic definition for the local
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stakeholders and decision-makers for agriculture as well as for the Vietnamese National
Hydro-Meteorological Service (VNHMS).

The remainder of this paper is organized as follows: After a short description of the
agroclimatic setting of Vietnam in Section 2, the description of the dataset is presented
in Section 3. Agronomic rainy season onset definition calculation is shown in Section 4.
Spatiotemporal characteristics of onset dates of each zone including interannual variability,
temporal changes, together with estimation of teleconnections with El Niño-Southern
Oscillation (ENSO) are presented in Section 5. The conclusions of this study follow in
Section 6.

2. The Agroclimatic Setting of Vietnam

Vietnam, the easternmost country on the Indochina Peninsula in Southeast Asia, is
bordered by China to the north, Laos and Cambodia to the west, the Gulf of Thailand to
the south, and the Gulf of Tonkin and the South China Sea to the east. From the Tropic
of Cancer (approximately 23.26◦ N) to the deep tropics (approximately 8.58◦ N), Vietnam
extends 1650-km north to south and has an extensive coastline of 3260 km stretching
from the Gulf of Tonkin in the north to the Gulf of Thailand in the south. This long, thin,
S-shaped country has a very complex topography with the mountainous North, except
for the Red River valley and the coastal plain; the central highlands and coast; and the
low-lying South, home to the Mekong River Delta (Figure 1a).

Figure 1. (a) The seven agroclimatic zones of Vietnam. (b) Monthly mean rainfall for the agroclimatic zones along with
country average for 1982–2010.

The total annual rainfall is distributed unevenly throughout the year, where ap-
proximately 70 percent of the rainfall occurs during the main rainy season from May
to September/October [6]. The northern region (+20◦ N) rainy season is from May to
September with the highest monthly rainfall in August. The central region (11◦–20◦ N)
rainy season has an extended bimodal rainy season from May to November with rainfall
peaks in July and October. The rainy season tends to be shorter and occur later in the
northern part of this elongated region. The central region has varied and unusual monsoon
characteristics because of the proximity of the central highlands, eastern coast, and the
effects of the adjacent mountains in Cambodia and Laos to the west. The southern region
(8–11◦ N) has a similarly extended rainy season from May to November with near constant
high magnitude rainfall from June to October. Therefore, climate regimes in Vietnam
are strongly affected by both monsoon systems and local factors [13]. Due to complex
topography, an elongated latitudinal extent, and the influence of multiple monsoon sys-
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tems, like South Asian summer monsoon, East Asian winter monsoon, and western North
Pacific monsoon, Vietnam’s climate varies significantly from north to south with several
sub-climate regions [13]. Vietnam is divided into seven terrestrial sub-regions with distinct
climate characteristics based on the duration of the rainy season, the timing of peak rainfall,
and the assessment of rainfall station data by VNHMS [10]. These zones are referred to
as Northwest (denoted as Z1), Northeast (denoted as Z2), North Central (denoted as Z3),
Central Coast (denoted as Z4), South Central Coast (denoted as Z5), Central Highlands
(denoted as Z6), and South (denoted as Z7) (Figure 1a).

Almost 35% of the total national land area, including arable land, permanent crop
land, and permanent meadow land, is used for agricultural production. Nationally, rice,
coffee, tea, and pepper are the predominant crops, but the choice of the crops is specialized
by agroecological zone [7]. The Northwest and Northeast zones are mountainous areas
with often deficient transportation facilities, poor market access, and limited irrigation
systems. The agricultural production in the northern part of Vietnam is mostly consists of
industrial crops (tea and rubber) and food subsistence purposes considering that these areas
are mountainous with limited irrigation systems. Cash crops (mostly coffee) are mainly
produced in the Central Highlands and the South zones. Rice production is concentrated
mostly in the two delta regions (Red River Delta in the North Central zone and Mekong
River Delta in the South zone). Agricultural production accounts for up to 95% of total
water withdrawals in Vietnam while 49% of the total agricultural land is serviced by an
irrigation scheme which is primarily designed for rice in the two deltas [7]. Irrigation is
crucially dependent on monsoon rainfall because it largely depends on the use of surface
water. Any aberration in rainfall during the onset time affects the prospects of a good yield
as farmers make many agricultural decisions based on the local monsoon onset, including
sowing dates and fertilizer timing. Therefore, it is very important to investigate the rainy
season onset characteristic focusing on each sub-climate region.

3. Dataset

The gridded data product named Vietnam-gridded precipitation data (VnGP) is used
for all the rainy season onset calculations. The dataset was built from Vietnamese National
Hydro-Meteorological Service’s 481 rain gauge stations. The Spheremap interpolation
method, a modified Shepard’s interpolation for spherical coordinates, was used to construct
the gridded products from rain gauge stations. These gridded products are generated
and archived by the Department of Meteorology and Climate Change, VNU University of
Science, Vietnam at daily time scale with spatial resolutions of 0.1◦ and 0.25◦, covering the
period from 1980 to 2010. In the present study, the 0.25◦ version for the entire 31 years (1980
to 2010) is used. The detailed procedure of the generation of VnGP has been discussed
in detail by [12] and data are available at http://danida.vnu.edu.vn/cpis/en/content/
gridded-precipitation-data-of-vietnam.html.

To investigate the influence of El Niño-Southern Oscillation (ENSO) over zonal rainy
season onset, the sea surface temperature anomalies (SSTA) from the second version of
the optimum interpolation (OI) analysis (OIv2) produced by the National Oceanic and
Atmospheric Administration (NOAA) [14] is used in this study. The OIv2 has a spatial
resolution of 1◦ and a daily timescale, with monthly means from December 1981 to January
2020. The monthly mean SST anomalies from 1981 to 2010 averaged over the Niño 3.4
region of the Pacific Ocean (120◦ W–170◦ W, 5◦ S–5◦ N), referred to as Nino 3.4 SSTA,
are obtained from the Data Library of the International Research Institute for Climate
and society at: (https://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.NCEP_OIv2/.
NINO34/index.html#info).

4. Methodology

4.1. Defining Agronomic Rainy Season Onset Based on Local-Scale Climatic Conditions

In this work, the local rainy season onset for each agroclimatic zone is calculated using
the agronomic definition proposed by [5]. As described in Section 1, a local definition
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like the one used here is of great relevance and can have numerous applications in the
development of operational products in agriculture. This agronomic definition is advanta-
geous in regions where dry and rainy seasons are well defined [4], as it is in Vietnam. This
agronomic definition, originally developed using historical precipitation patterns from
India, allows for the calculation of monsoon timing for any location [5]. According to
this definition, rainfall onset date is defined as the first wet day within the first wet spell
that is not followed by a dry spell, to avoid the false onset. A wet (dry) day is defined as
being greater than (lesser or equal than) to a particular rainfall threshold depending on the
local rainfall climatology. Moreover, this definition is based on five basic parameters: the
amount of rainfall during the first wet spell, its duration, the duration and intensity of the
post-onset dry spells, and the length of the period in which these dry spells are searched.
The step by step description of this agronomic definition can be found in [5]. In the present
study, the original parameters were adjusted to satisfy agronomic definition parameters
based on the climatic features of Vietnam. All parameters for the initial wet spell are based
on discussions with local experts at Vietnam National University (VNU) and Vietnamese
National Hydro-Meteorological Service (VNHMS). In short, this method defines onset as
the first wet day of the first 5-day period with an average daily rainfall equal or larger than
the climatological 5-day wet spell for the season and without a 7-day dry spell (no wet
days) during the following 20 days to account for false onsets.

As the focus of this paper is the rainy season, which is not limited by monsoon for the
central highlands, a wet day is considered any day with at least 1 mm/day to account for
sufficient rainfall to penetrate the soil and reach planted seeds. A requirement for five days
of 5 mm/day rainfall is translated to 25 mm of rainfall in five days with at least four wet
days. The reason behind choosing a higher rainfall threshold to define a wet day rather
than the commonly used wet day definition (>0.1 mm/day) is that a low rainfall threshold
makes agronomic definition less suitable for agricultural decisions [5].

4.2. Search Window for Onset Definition

Finding the first wet day of the period which meets the subsequent onset date con-
ditions (defined in Section 4.1) is necessary for the calculation of agronomic onset date
in a given year; thus, determining the date of the beginning of the search the window in
which to look for a day which satisfies the onset definition is a crucial step. In this study,
the climatological mean monthly rainfall pattern is used to determine the beginning of the
rainy season for each agroclimatic zone. As mentioned in Section 2, the predominant and
intersecting monsoon systems over the different regions of Vietnam influence the onset of
the rainy season across the agroclimatic zones. The East Asian Monsoon is the primary
monsoonal influence on the Northern zones of Vietnam, while the South Asian monsoon
dominates the southern zones. The central coastal zones and the central highlands are
located between these two systems and, thus, are dominated by local rainfall patterns.
The variation in the dominant rainfall system across zones affects the monthly rainfall
climatology and contributes to the regional primary crop; for example, coffee in the central
highlands is suited to more dispersed rainfall throughout the year with a later onset of the
rainy season.

The monthly mean rainfall for each agroclimatic zone along with country average
is shown in Figure 1b. It is seen that the main rainy season for northern and southern
zones is during May to September, while the peak in rainfall is from July to August. For
central zones it shows a decrease in rain relative to the rest of the country in the summer
months and a later rainy season from August to December with a peak in rainfall in October.
Further, the figure shows that the mean monthly rainfall for the whole country of Vietnam
has an extended rainy season of moderate rainfall which slowly increases from May to
October, and a period of low rainfall from December to April. For the 1980–2010 time
period, the majority of agroclimatic zones, excluding the northwestern mountains and the
central coast, experience rainy season onset after mid-April, and thus the search period
begins around this time for these zones (Z2, Z3, Z6, and Z7). The Northwest (Z1) has a
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consistently earlier rainy season onset, while the Central Coast and South Central Coast
zones (Z4 and Z5) are found to have a significantly delayed rainy season onset, and thus the
search window shifts forward and backward, respectively, for these zones. Additionally,
Summer monsoon rainfall in Vietnam has a wet-dry phase shift of 2–10 days [10] and,
thus, the dry spell period for the false start parameter is seven consecutive days within the
twenty-day period following the first wet day. This requirement is used to avoid false-start
onsets. The search window for the rainy season onset date for each zone is 60-days to
capture interannual rainy season onset date variation.

The onset date coverage is determined by the percentage of years that satisfy the
agronomic onset definition criteria within the search period for each grid point for the
entire 31-year study period (Figure 2). Years that do not satisfy the agronomic definition
and, thus, are not included, may have had an anomalously early or late onset or unusual
rainfall patterns. High onset date coverage suggests the suitability of the agronomic
definition to each of the agroclimatic zones. The initial date for the search window was
determined using this method of testing possible dates and assessing suitability based on
coverage. The earliest date which had high coverage was deemed suitable to capture the
onset of the rainy season while representing its variability of the 31-year time period. The
Northwest zone (Z1) is found to have the earliest zonal rainy season onset date and the
beginning day of the search window for the rainy season is set to April 15th (Figure 2a) to
fully capture the interannual variability of the rainy season onset. Other beginning days
of the search window were tested and found that the April 25th date (Figure 2b) captures
the largest spread of onset date for the majority of zones (Z2, Z3, Z6, and Z7). Lastly, due
to latitudinal extent and unique topography, the Central Coast and South Central Coast
zones (Z4 and Z5) are found to have a much more variable rainy season and a later onset
date. The beginning day of the search window for these zones is determined to be August
5th (Figure 2c).

Figure 2. Onset date data coverage for search window for the rainy season set to (a) April 15th, (b) April 25th, and (c)
August 5th. Coverage is shown as a percentage, where 100% is a grid point which satisfies the agronomic definition for all
years of the 1980–2010 period.

5. Results and Discussion

5.1. Spatiotemporal Characteristics of Regional Onset Date

Following the above-mentioned procedure, for each agroclimatic zone, the onset dates
are estimated for each grid point independently for each year during the time period
(1980–2010). The zonal mean of the onset dates for each agroclimatic zone are estimated
by taking the mean of the onset dates across the time period (31 years) for each grid point
within that agroclimatic zone, and, then, averaging the mean onset date across all grid
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points. It is found that the zonal mean of rainy season onset for the Northeast (Z2), North
Central (Z3), and South (Z7) zones is in mid to late May (May 20th, May 21st, and May
14th, respectively). However, for the Northwest (Z1) and Central Highlands (Z6), the mean
onset days are in early May (May 9th and May 11th, respectively). These onset dates are
closely related to the summer monsoon system (as described in Section 5.1). Although
these results are in agreement with earlier studies [8,10], they are not exactly the same as
a different definition is used to determine the onset dates. Lastly, the Central Coast and
South Central Coast zones (Z4, Z5) have a noticeably late rainy season onset in late August
(August 24th and August 29th, respectively). This is likely due to their unique topography,
between the Cambodian mountain range to the west and the sea to the east, and position
on the border of interacting monsoon systems.

The zonal spatial variability of the onset dates, or the variation of the mean onset date
between grid points across each agroclimatic zone, is calculated to assess how coherent
the onset dates are across each agroclimatic zone. The spatial variability is calculated by
taking the standard deviation of all mean onset dates (mean of the onset dates across the
time period for each grid point) across all grid points in a given agroclimatic zone. It is
expected that the mean onset dates occur at a similar time scale across the agroclimatic
zone (i.e., low zonal spatial variability of onset dates); however, it is found that the mean
onset dates vary from 4 to 8 days within each zone. Moreover, spatial variability is lower
in more compact zones with a single dominant monsoon regime (Z1, Z2, Z3, Z6, and Z7) at
around 4–6 days and higher for latitudinally extended zones on the border of monsoon
regimes (Z4 and Z5) at 7–8 days.

The zonal interannual variability of onset date, or temporal variability, is also esti-
mated to illustrate the year-to-year variation of onset dates in a given agroclimatic zone.
This is calculated by taking the standard deviation of the onset dates across the time pe-
riod for each grid point in a given zone, and, finally, averaging the standard deviation of
onset date across all grid points. Interannual temporal variability of rainy season onset
was found to be approximately two weeks across all agroclimatic zones. Specifically, the
majority of zones (Z1, Z2, Z3, Z6, and Z7) have an interannual variability between 11 to
13 days, while the Central Coast and South Central Coast zones (Z4 and Z5) have a slightly
higher interannual variability of more than 14 days. This is notable because an interannual
variation of approximately two weeks presents a challenge to the prediction of rainy season
at a seasonal timescale. Table 1 summarizes the mean rainy season onset day, interannual
temporal variability, and spatial variability for each climatic zone.

Table 1. Mean and variability (spatial and interannual) of zonal onset date for each agroclimatic zone.

Zone Mean Onset Date Spatial Variability (Days) Interannual Variability (Days)

1 May 9 4.5 13.5
2 May 20 6.4 13.4
3 May 21 5.4 13.2
4 Aug 24 8.1 14.1
5 Aug 29 7.1 14.5
6 May 11 5.4 11.5
7 May 14 5.2 13.3

5.2. Temporal Changes of Regional Onset Date

To study the temporal changes in the onset dates for each agroclimatic zone across
the time period, the Mann–Kendall (MK) test [15], a rank-based non-parametric test, is
performed on the regionally averaged onset dates across all grid points (average onset
dates over all grid points for each year) at the 90% statistical significance level. The MK test
is widely used for trend analysis because of its robustness for non-normally distributed
data and low sensitivity to an abrupt change. However, the Mann–Kendall test gives the
direction (a positive or negative value of MK’s test statistic indicates that the rainy season
onset date is trending later or earlier respectively) but not the magnitude of the significant
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trends. Therefore, in addition, the Sen’s slope estimator [16], a non-parametric test to
identify the slope of the trend, is calculated to estimate the magnitude of change. The
MK’s test statistic and magnitude of Sen’s slope for the entire study period (1980–2010) and
each decade (1980s, 1990s, and 2000s, respectively) for each agroclimatic zone is shown
in Figure 3. It is found that for the entire 31 years, a significant negative trend in rainy
season onset date is only observed for the Central Coast and South Central Coast zones
(Z4 and Z5) out of all seven zones. The negative trend for both the zones represent that the
onset dates shifted earlier across the entire period. The Sen’s slope for the South Central
Coast (Z5) has a greater magnitude than that of the Central Coast (Z4), 0.44 compared to
0.34, which shows that the annual zonal mean rainy season onset date in the South Central
Coast (Z5) shifted earlier more rapidly than in the Central Coast (Z4). Mostly there is
no significant trend found for individual decades for each zone except for the Northwest
and Central Highlands (Z1 and Z6) in the 1990s. For the second decade (1991–2000), a
significant positive and negative trend with Sen’s slope 1.647 and −2.011 are observed
for the Northwest and Central Highlands (Z1 and Z6), respectively. This means that the
zonal mean onset date shifted later in the northwest and earlier in the Central Highlands
in this decade.

Figure 3. (a) Mann–Kendall’s test statistic and (b) Sen’s slope of the trend of rainy season onset for
the for the entire period (1980–2010) and each decade (1980s, 1990s, and 2000s) for Northwest (Z1),
Northeast (Z2), North Central (Z3), Central Coast (Z4), South Central Coast (Z5), Central Highlands
(Z6), and South (Z7) agroclimatic zones. Asterisk indicates that the Mann–Kendall’s test statistic
values is statistically significant at 90% level.

For a visual representation, the yearly zonal mean onset dates with a linear trend line
for the entire period (1980–2010) and each decade is presented for each agroclimatic zone
in Figure 4.
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Figure 4. Yearly zonal mean onset dates (blue line) with linear trend line for the entire period (1980–2010) (dashed red
line) and each decade (red line) for (a) Northwest (Z1), (b) Northeast (Z2), (c) North Central (Z3), (d) Central Coast (Z4),
(e) South Central Coast (Z5), (f) Central Highlands (Z6), and (g) South (Z7) agroclimatic zones.

5.3. Teleconnection between El Niño-Southern Oscillation (ENSO) and Regional Onset Date

The influence of the Pacific Ocean climate drivers, namely El Niño-Southern Oscil-
lation (ENSO), on the rainfall in Vietnam has been studied extensively [17,18]. Since the
ENSO has an impact on rainfall in Vietnam, it may also impact the timing of the rainy
season. In this section, we explore the teleconnections between the tropical Pacific SST
(as represented by the Niño 3.4 SSTA) anomalies and the rainy season onset for each
agroclimatic zone to investigate potential sources of seasonal predictability. The Pearson’s
correlation coefficient (r), a measure of linear relationship, is calculated between zonal
onset date for each zone and Niño 3.4 SSTA for the seasonal mean of December to February
(DJF) period considering the fact that ENSO amplitude is nearing its peak around this time
of the year [19]. The student’s t test is performed to determine statistical significance of
the correlation coefficient at the 95% level. The scatter plot between zonal onset dates and
Niño 3.4 SSTA along with the Pearson’s correlation coefficient is shown in Figure 5. Out of
the seven agroclimatic zones, a statistically significant positive correlation is only noticed
in the Central Highlands and the Southern zones (Z6, Z7) between zonal mean onset date
and Niño 3.4 SSTA for DJF, while there is no correlation with ENSO found for the rest of
the region. This suggests that the El Niño (La Niña) events result in a delayed (early) rainy
season onset date in these two agroclimatic zones. This finding suggests the potential of
seasonal prediction of rainy season onset date in these zones with respect to preceding
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ENSO events. As both the zones are significantly important for agricultural production in
Vietnam (the South zone is the location of the Mekong River Delta) in terms of coffee and
rice cultivation, seasonal prediction of rainy season onset would be very useful to many
Vietnamese farmers in these agroclimatic zones.

 

 

Figure 5. Scatter diagram between Niño 3.4 seas surface temperature anomaly (SSTA) (x-axis) and zonal mean onset dates
(y-axis) for (a) Northwest (Z1), (b) Northeast (Z2), (c) North Central (Z3), (d) Central Coast (Z4), (e) South Central Coast (Z5),
(f) Central Highlands (Z6), and (g) South (Z7) agroclimatic zones during 1980–2010. The Pearson’s correlation coefficient (r)
is also displayed for each zone. Asterisk indicates that the r values are statistically significant at 95% level.

6. Concluding Remarks

The primary goal of this study is to define a rainy season onset tailored to an agri-
cultural application over the seven primary agroclimatic zones of Vietnam and assess its
spatiotemporal characteristics by using integrated approaches of spatial and interannual
variability, temporal changes, and estimation of predictability using teleconnection with El
Niño-Southern Oscillation (ENSO) for 1980 to 2010. The novelty of this research is that a
tailored agronomic definition based on high-resolution rainfall data is used for the first time
over Vietnam at a regional climate scale. The results of this study would be highly relevant
to local farmers and decision-makers in Vietnam where the productivity and profitability
of the agricultural sector is highly dependent on rainfall and the timing of the rainy season.

In summary, the major findings of the present study are:

- Rainy season onset date varies across the agroclimatic zone. For the Northern and
Southern zones, the zonal mean of rainy season onset dates is primarily in May
which associated with summer monsoon system. Due to their unique topography
and position on the border of interacting monsoon systems, Central Coast and South
Central coast have rainy season onset in late August.

- The zonal spatial variability of onset dates, defined as the standard deviation zonal
mean onset dates across all grid points in a given agroclimatic zone, varies from
4 to 8 days within each agroclimatic zone. However, the variability is lower in
a single dominant monsoon regime (northern and southern zones) and higher in
latitudinally extended zones on the border of monsoon regimes (Central Coast and
South Central Coast).
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- The interannual variation in rainy season onset date is approximately two weeks
(11 to 14 days) across all agroclimatic zones of Vietnam. This is result suggest that
the prediction of rainy season onset is highly challenging work due to such high
temporal variation.

- The trend analysis for the zonal onset dates of each agroclimatic zone has been ana-
lyzed by using the Mann–Kendall (MK) Test to gather with Sen’s Slope Estimator for
the entire 31-year period and each decade. The rainy season onset date is significantly
trended earlier in the Central Coast and South Central Coast zones. For 1990s (second
decade) the zonal mean onset date shifted later in the northwest and earlier in the
central highlands at 90% significance level.

- The teleconnections between Niño 3.4 SSTA for Dec–Jan–Feb season and onset date
in the Central Highlands and South zones are found (positive) to be statistically
significant at 95% level. This finding suggests the potential of seasonal prediction of
rainy season onset date in these zones with respect to preceding ENSO events.

Considering the fact that the seasonal prediction of rainy season onset at each climate
zones would be very beneficial to the agriculture sector; the future scope of the present
work includes the development of an operational forecast system using state-of-art general
circulation models outputs.
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Abstract: Thunderstorms (TS) are one of the most devastating atmospheric phenomena, which causes
massive damage and adverse losses in various sectors, including agriculture and infrastructure.
This study investigates the spatiotemporal variabilities of TS days over Bangladesh and their
connection with El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). The TS, ENSO
and IOD years’ data for 42 years (1975–2016) are used. The trend in TS days at the spatiotemporal
scale is calculated using Mann Kendall and Spearman’s rho test. Results suggest that the trend in TS
days is positive for all months except December and January. The significant trends are found for
May and June, particularly in the northern and northeastern regions of Bangladesh. In the decadal
scale, most of the regions show a significant upward trend in TS days. Results from the Weibull
probability distribution model show the highest TS days in the northeastern region. The connection
between TS days and ENSO/IOD indicates a decrease in TS activities in Bangladesh during the El
Niño and positive IOD years.

Keywords: thunderstorm; variability; trend; ENSO; IOD; Bangladesh

1. Introduction

Thunderstorms (TS) are a severe hazard in Bangladesh that cause immense death and adverse
loss in agriculture, infrastructure and livestock during pre–monsoon and monsoon months. In the
most severe situation, it can also create very destructive tornadoes [1], due to hot and humid air
in the lower atmosphere from the southeastern direction and the opposite cold and dry air from
the northwestern direction. TS predominantly occur in Bangladesh during the premonsoon and
monsoon seasons, with the maximum frequency in May. The country experienced TS strikes an
average of nine days in May before 1981, but later, it increased to 12 days. According to the Bangladesh
Meteorological Department (BMD), a total number of 1476 people have died in Bangladesh by TS
since 2010. The Comprehensive Disaster Management Programme under the Ministry of Disaster
Management and Relief reported 180 deaths by TS only in 2016. The Government of Bangladesh
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declared TS as natural disasters on 17 May 2016 by considering their significant impacts on human life
and economy [2].

El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are associated with monthly
or seasonal climate anomalies at many places around the globe [3,4]. They might have an effect on TS
activity over Bangladesh due to its tropical climate. Therefore, further understanding the effects of ENSO
on TS variations over Bangladesh is necessary for disaster prevention and mitigation. Some studies
have performed globally to investigate the effects of ENSO on TS activity [5–10]. Manohar et al. [5]
found the influences of El Niño on thunderstorm occurrences during the Indian monsoon season. Allen
and Karoly [7] showed a significant influence of ENSO on the spatial distribution of thunderstorms
in Australia. Yuan and Di [11] found a decrease in thunderstorms in Eastern China during ENSO
episodes. Pinto [10] found an increasing tendency in thunderstorm activity in Southern Brazil during
the ENSO warm phase.

A substantial number of studies have been conducted on thunderstorms worldwide in recent
years, e.g., Kunkel et al. [12] in the USA, Mir et al. [13] in Pakistan, Kunz et al. [14] in Germany,
Pinto et al. [9,10] in Brazil, Enno et al. [15] in Europe, Allen and Karoly [7] in Australia, Zheng et al. [16]
in China, Singh and Bhardwaj [17] in India, Saha and Quadir [2] in Bangladesh and Araghi et al. [18] in
Iran. Most of the earlier studies focused on the synoptic, dynamic and physical aspects of TS events,
as well as modelling or predicting TS occurrence. However, the spatiotemporal variabilities of TS days
linked to ENSO and IOD have been less investigated in the prevailing literature.

A few studies have also been conducted to explore the TS events in Bangladesh [2,19,20].
These prior studies mostly investigated time and space variations and the origin and frequency of TS
over Bangladesh. However, these earlier works in Bangladesh were very limited to a specific site or a
short period like the premonsoon season only.The spatial variabilities in the occurrence of TS days for
different timescales and the relation of TS days with ENSO and IOD are not clear yet for Bangladesh.
The present study would contribute to filling this knowledge gap by investigating the spatiotemporal
variabilities in monthly, seasonal, annual and decadal TS days and exploring the link between TS days
and ENSO/IOD over Bangladesh.

2. Data and Methods

2.1. Study Area

Bangladesh is a South Asian country located between 20.57º N to 26.63º N and 88.02º E to
92.68º E with a tropical and subtropical monsoon climate [21]. Bangladesh often faces severe natural
disasters during the premonsoon, monsoon and postmonsoon seasons. Geographically, the Indian
States of West Bengal, Assam, Meghalaya and Tripura border Bangladesh in the west, north and east,
respectively. Myanmar forms the southern part of the eastern frontier. The Bay of Bengal is on the
southern side. The topography of Bangladesh is extreme lowlands, with most of the land below
10 m above the mean sea level. The Brahmaputra, Ganges (Padma) and the Meghna influence the
main river system of Bangladesh. There are four seasons in Bangladesh: pre–monsoon (March–May),
monsoon (June–September), post–monsoon (October and November) and winter (December–February).
Southwest and northeast monsoons have a major influence on the country’s climate, resulting in
marked seasonal rainfalls and temperatures. In this study, we selected 29 weather stations (Figure 1).
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Figure 1. Meteorological stations over Bangladesh used in this study.

2.2. Data Source and Quality Control

Daily thunderstorm data are collected from the BMD for the period of 42 years (1975–2016).
A storm with thunder and lightning formed by the rapid upward movement of warm moist air is
considered as a thunderstorm. The mechanism of thunderstorm formation is different for different
seasons in Bangladesh. Therefore, thunderstorm data are analyzed separately for each season in this
paper. ENSO and IOD data are collected from the National Oceanic and Atmospheric Administration
(NOAA) for the same period, which are represented in Table 1. These years are selected based on the
definition of the NOAA. Meteorological data often contain inhomogeneity, which results in erroneous
and false analysis and prediction. Data collection techniques, data processing methods, relocation of the
stations, lack of proper equipment and the drift of equipment are the causes of data inhomogeneity [22].
In this study, the Standard Normal Homogeneity Test (SNHT) was used to assess the homogeneity in
the collected TS data. Data for all the stations found homogeneity at a significance level of 95% or more.

Table 1. Identified years under various climate modes during 1975–2016.

Climate Modes Years

El Niño 1976, 1977, 1986, 1987, 1988, 1997, 1998, 2006, 2007, 2014
La Niña 1975, 1983, 1984, 1985, 1989, 1996, 1999, 2000, 2001, 2005, 2008, 2010, 2012, 2013
Normal 1978, 1991, 1992, 1994, 1995, 2002, 2003, 2004, 2005, 2009, 2015, 2016

IOD–positive 1982, 1983, 1994, 1997, 2006, 2012,2015
IOD–negative 1975, 1981, 1989, 1992, 1996, 1998, 2010, 2014, 2016

2.3. Methods

2.3.1. Mann–Kendall (MK) Trend Test

The trend in a data series is most popularly detected using the Mann–Kendall (MK) test [23].
Wilks et al. [24] identified the following equations from the original version of the MK test:

st =
n−1∑

c=1

n∑

d

sign(xd − xc ) (1)
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where

sign(xd − xc) =



+1 if (xd − xc) > 0
0 if (xd − xc) = 0
−1 if (xd − xc) < 0

(2)

The trend significance is estimated using Z statistics,

Z =



S−1√
Var (S)

if S > 0

0 if S = 0
S−1√
Var(S)

if S < 0
(3)

where

Var(S) =
n(n− 1)(2n + 5) −

∑m
i=1 ti(ti − 1)(2ti + 5)

18
(4)

where n represents the data size, m represents the tied groups with repeated values that are indicated
by j and tj, is the number of repeated values in and ti represents the number of data in the tied group, i.

The existence of serial correlation and a seasonality pattern in a time series data can have a
major effect on the results of the MK test. Autocorrelation estimation is one of the simplest methods
to check for the existence of seasonality patterns or serial correlations in any time series. Plotting
autocorrelation coefficients versus lags are called a correlogram, which is usually used for detecting
seasonality patterns and serial correlations in a time series. The autocorrelation coefficient for lag can
be calculated as:

rk =

∑n−k
i=1 [(xi − x−)(xi+k − x+)]√[∑n−k

i=1 (xi − x+)
2
]√[∑n

i=k+1 (xi − x+)
2
] (5)

The subscripts “−“ and “+” in Equation (6) indicate the sample averages over the first and last n−k
values in the time series, respectively. To judge, if the time series is serially correlated, the significance
of the lag–1 autocorrelation coefficient at a significance level of α= 0.10 of the two–tailed t–test is
assessed using Equation (6).

−1− 1.645
√

n− 2
n− 1

≤ rk ≤
−1 + 1.645

√
n− 2

n− 1
(6)

If the time series has a positive (negative) lag–1 autocorrelation coefficient, then the variance
estimation will be less (more) than the actual value and based on Equation (7); this will increase
or decrease the MK Z–value erroneously. When the lag–1 autocorrelation coefficient is significant,
or, in other words, when there is serial correlation in a time series, then the modified version of the MK
test should be used as follows:

var(S′) =
1

18
[n(n− 1)(2n + 5) ]

[ n
ne

]
(7)

n
ne

= 1 +
( 2

n3 − 3n2 + 2n

) ∑n−1

f=1
(n− f)(n− f− 1)(n− f− 2) ρe(f) (8)

ρ(f) = 2 sin
[
π

6
ρe (f)

]
(9)

2.3.2. Weibull Probability Distribution Model

Wallodi Weibull invented the Weibull distribution for parameter estimation of the frequency
distribution of data. Weibull distribution is commonly used in the probability density function.
The detailed information regarding Weibull probability distribution can be found in Islam et al. [20].
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2.3.3. Spearman’s Rho Test

The Spearman’s rho (SR) test is a technique with uniform power for linear and nonlinear trends [20].
It is commonly used to verify the absence of trends. The null hypothesis (H0) of the test is that all the
data in the time series are independent and identically distributed, while the alternative hypothesis
(H1) is that increasing or decreasing trends exist. Positive values of the standardized test statistic, SRZ,
indicate upward trends, while the negative values of SRZ indicate downward trends in the time series.
The SR is calculated by the following Equation (10),

R = 1− 6
∑

d2

n3 − n
(10)

where R denotes the spearman’s rank correlation, d denotes the difference in the rank and n is the total
number of data.

3. Results

3.1. Monthly and Seasonal Variation of TS Days

The monthly and seasonal variabilities of TS days over Bangladesh are presented in Figures 2
and 3, respectively. The highest average TS days are observed in May, while the lowest in December
(Figure 2). The least TS activity is found during the postmonsoon and winter seasons because of low
temperatures and lower moisture. The premonsoon and the monsoon seasons have comparatively
higher TS days than that of the winter season (Figure 3). The average monthly value of TS days in the
monsoon and pre–monsoon seasons is 7.96 and 7.95, respectively, while the average TS days in the
postmonsoon and cold winter are four and one, respectively. The seasonal variation of TS days during
1975–2016 shows a sharp increasing trend in TS days during the monsoon, with R2 = 0.41, and almost
no change during the premonsoon season.

Figure 2. Average monthly thunderstorm (TS) days in Bangladesh during 1975–2016.

Figure 3. Seasonal variation days (a) premonsoon (March–May (MAM)); (b) monsoon (June–September
(JJAS)); (c) postmonsoon (October–November (ON)); (d) winter (December–February(DJF)) of TS days
in Bangladesh during 1975–2016.
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3.2. Annual Variation of TS Days

More than 60% of stations revealed an upward trend of TS days in most parts of Bangladesh,
except in the southwest and the northeast. Atmospheric disturbance, unstable temperature and uneven
rainfall variability may be the possible reasons for TS day variability in Bangladesh. The annual
average TS days in Bangladesh over the study period are shown in Figure 4. The total number of
annual TS days in Bangladesh is 65. The descriptive statistics for the total number of annual TS days
are given in Table A1. The TS days in the country vary from zero in Taknaf to 7.5 days per decade in
Sylhet (Table A1).

Figure 4. Same as Figure 3, but for annual variation.

3.3. Spatial Distribution of TS Days

Monthly Spatial Distribution of TS Days

Spatial distributions of average TS days in Bangladesh for different months are shown in Figure 5.
It can be observed that TS mainly happen in the eastern and south–central regions of the country.
However, it dominates in the eastern, central and southeastern parts during the premonsoon and
monsoon months (March–August). Faridpur experiences the highest number of TS days, with 2.95 and
six in January and February, respectively. The maximum TS days during March and April are found in
the northeast, north and south–central parts. Sylhet located in the northeastern part of Bangladesh
experiences the highest TS days (average 9.85 days) during these months. The maximum amount of TS
days, 22.7, 19.7 and 15.8, are noticed at Sylhet, Mymensingh and Rangpur stations, respectively, in May.
The highest number of TS days in June are noticed at Sylhet (21.5) and Jessore (15.3), while the highest
TS days are observed at Sylhet, Srimangal and Mymensingh (17.6, 14 and 13.4, respectively, in July
and 19.8, 16.5 and 13.2, respectively, in August). The TS days are found more in the south and east of
Bangladesh during October. The number of TS days was nearly zero in most of the country during
November and December. Only a few TS days (less than two days on average) are found in the coastal
region during these two months. Figure 6 shows the spatial distributions of the average TS days in
Bangladesh for the ENSO (and Figure 7, the IOD) years for different seasons. It can be observed that
the highest TS mainly happen in the eastern regions of the country for all seasons, except winter for
both the ENSO and IOD years. Among all four seasons, the monsoon season contributes the highest.
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Figure 5. The average number of TS days (a) premonsoon (March–May (MAM));
(b) monsoon (June–September (JJAS)); (c) postmonsoon (October–November (ON)); (d) winter
(December–February(DJF)); (e) annual during 1975–2016 in Bangladesh.

Figure 6. Spatial distribution of TS days (a) premonsoon (March–May (MAM));
(b) monsoon (June–September (JJAS)); (c) postmonsoon (October–November (ON)); (d) winter
(December–February(DJF)); (e) annual in the ENSO years.

Figure 7. Same as Figure 6, but for IOD.
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3.4. Spatiotemporal Pattern of TS Days

Spatial Patterns in the Monthly Trends of TS Days

Most parts of the country, except the central part, show a negative insignificant trend in TS days
in December, November, January and February (Figure 8). A positive insignificant trend, indicating a
slight ascension in TS days, is noticed in the northern part (Rangpur and Dinajpur). The TS days in
March are noticed to increase significantly at the Faridpur, Rangamati and Hatiya Stations, while a mix
of insignificant trends (p > 0.05) are noticed in the northeast and northwest parts. The TS days in April
and May in most parts of the country are observed to increase significantly. It is also found to increase
significantly in June over a large area in the northeastern and some eastern regions. A similar trend is
observed in July and August in the northern region and some parts of southern stations, including
Patuakhali, Khepupara and M. Court. In October, a significant positive trend is detected only in M.
Court Station and a negative trend in Faridpur Station.

Figure 8. Distributions of the trends in monthly TS days (a) premonsoon (March–May (MAM));
(b) monsoon (June–September (JJAS)); (c) postmonsoon (October–November (ON)); (d) winter
(December–February(DJF)); (e) annual in Bangladesh during 1975–2016. Positive significant
(insignificant) is shown as yellow (blue) color and negative significant (insignificant) is shown as red
(green) color.

3.5. Probability of TS Days over Bangladesh

The Weibull distribution model with a plotting position method was applied to estimate the
probable maximum number of TS days for 5, 10, 15 and 20 years in Bangladesh. The results are shown
in Table A2 and Figure 9. The results showed the maximum number of TS days in the northeastern
region, whereas the lowest was in the southwestern parts of the country close to the coastal area.
The results indicate that northeast Bangladesh as most prone to TS.
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Figure 9. Probability of maximum annual TS days for different periods (a) 5 years; (b) 10 years;
(c) 15 years; (d) 20 years in Bangladesh estimated using the data from 1975 to2016.

3.6. The Relationship between ENSO/IOD and TS Days

The annual averages and anomalies of TS days in the El Niño, La Niña and neutral years are
shown in Figures 10 and 11, respectively. A smaller number of average premonsoon TS days compared
to neutral years is observed for the La Niña years, while a higher number of average premonsoon TS
days compared to neutral years is noticed in the El Niño years. The anomalies of TS days (Figure 11)
revealed a large positive anomaly in the pre–monsoon season in the La Niña years and a large negative
anomaly in the monsoon season in the El Niño years.

Figure 10. Seasonal (premonsoon, monsoon, postmonsoon and winter) variation of annual average TS
days during the El Niño (indicated as red), neutral (yellow) and La Niña (blue) years.
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Figure 11. Same as Figure 10, but for composite anomalies of the average TS days during the El Niño
(indicated as red color) and La Niña (blue) years.

The annual averages and anomalies of TS days in the positive, negative and neutral IOD years
are shown in Figures 12 and 13, respectively. The average premonsoon TS days are found less in the
IOD–negative years compared to the IOD–neutral years, while they were not found to vary for the
IOD–positive and IOD–neutral years. The influence of IOD on the average monsoon TS days is found
much less. Almost no variation in the average monsoon TS days was noticed for IOD–positive and
negative years. The anomalies of the average TS days in IOD–positive and negative years (Figure 13)
show a large increase in premonsoon TS days in negative IOD years, while a decrease in monsoon TS
days during IOD–positive years.

Figure 12. Same as Figure 10, but for IOD.

Figure 13. Same as Figure 11, but for IOD.

4. Discussion and Conclusions

The mean annual TS days at the studied 29 stations in Bangladesh vary between 2.8 and 11.8.
The annual monthly mean value for TS days for the studied stations is approximately 7.1. The heating
of the lower atmosphere moist air during the summer makes the air lighter and move upward
through convection and form clouds. A thunderstorm occurs when any atmospheric activity causes a
rapid upward movement of air. Generally, moist air from the Bay of Bengal acts as the trigger of a
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thunderstorm. An interaction of moist air from the Bay of Bengal with the hills in the north causes
a rapid uplifting of air and triggering of thunderstorms [25]. The topography and wind regimes
made Bangladesh and Northeast India bordering Bangladesh highly favorable for the occurrence of
thunderstorms [26]. Therefore, the region experiences the maximum thunderstorm activities compared
to other parts of South Asia. A higher number of thunderstorms in Bangladesh are noticed in the
northeast region due to the proximity to uplifted land.

Our study shows that the annual average TS days in Bangladesh are increasing by about
1.9 days/decade, which is consistent with an earlier study by Saha et al. [2] and Islam et al. [20].
These outcomes support the findings of the MK test of this study. However, it contradicts the findings
in most of India, where a declination of both premonsoon and monsoon thunderstorms was reported
by Bhardwaj and Shingh [27]. However, Singh et al. [25] also reported increasing TS days in some
parts of West Bengal on the western border of Bangladesh. Bhardwaj and Shingh [27] also reported an
increasing trend in thunderstorm–related rainfall activity in Northeast India, despite a decrease in the
rest of India. The present study reports an increase in the annual number of TS days mainly due to
an increase in TS days in monsoon season. The higher surface temperature caused an increase in the
convective available potential energy (CAPE) in the region [28,29]. However, an increasing number
of TS days in Bangladesh may be due to an increased number of thunderstorms triggering moist air
circulation from the Bay of Bengal. Stronger and more continuous winds from the Bay of Bengal
in recent years due to the increase of sea surface temperature have been reported. Glazer et al. [29]
evaluated the changes in thunderstorms in Bangladesh due to climate change and reported an increase
in severe TS days in most parts of the country.

The monthly spatial distribution of TS shows that TS days are high in the south–central region and
very little in the northeastern and northern regions during November−February. This is due to the low
sea surface temperature and northeast wind direction from the Bay of Bengal and vapor flux availability
in the regions. In March to October, most TS occur in the northeast part of Bangladesh. Besides,
high TS days are detected in the north, central, southwest and south of Bangladesh. The higher number
of TS days in May and June is noticed in the northeast region, near to Cherapunji, where the cloud
formation is the maximum and the mountain ranges produce a large amount of vapor flux and rainfall.
Most TS occurs in May, when the average TS days are more than 11 days. The spatial distribution
of the annual TS days obtained in this study was found to be consistent with earlier studies [2,20].
For instance, Bangladesh showed an increase in the monthly, seasonal annual and decadal TS days
during the last four decades. It has been shown that the increment of TS days is strongly correlated
with the strengthening of the sunspot and East Asian summer monsoon, which is the key source of
moisture and dynamic force conducive for the premonsoon season climate across the Bay of Bengal.

The monthly, seasonal, decadal and annual trend patterns of TS days show an insignificant
decreasing trend at most of the stations in November to February due to the little amount of TS days.
By contrast, in May, a positive trend is detected in the southern, northeastern and northern regions.
A high positive trend is also found in June. The seasonal and annual trend patterns are similar to
the previous observations of Saha et al. [2]. The southeastern air masses when it passes the equator
and turns into a southwestern monsoon due to Ferrell’s law, which carries a huge amount of water
vapor from the Bay of Bengal. This warm and cold monsoon air produces a higher number of TS in
Bangladesh in this period [2,19]. The results of the TS days are validated with the earlier literature
observed around the world in the last four decades. Most of the stations show an increasing trend in
TS days over Bangladesh. This is probably due to the rising CAPE and moisture contents in the Bay of
Bengal [15].

The trend of TS days was mostly positive in all months except December and January. The trends
were significant in May and June. The linear regression and Weibull distribution model showed a higher
number of annual total TS days at almost all stations, except Teknaf and Sawndip. The highest number
of TS occurred in May, whereas the lowest in December. This was expected, as the higher surface
temperatures and soil moistures in May make the period favorable for the formation of thunderstorms,
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while the low surface temperatures and less soil moistures make December the least favorable for the
formation of thunderstorms.

The magnitude of the average TS days anomaly for the monsoon and premonsoon seasons are
found positive for the La Niña years and negative for the El Niño years. This indicates a decrease in
TS activities in Bangladesh in the El Niño years. Similar results are found in India and the nearby
regions. Kulkarni et al. [6] evaluated the association of TS days over India with the ENSO and showed a
reduction of TS days during the El Niño episodes. Yuan and Di [11] found a decrease in thunderstorms
in Eastern China during the ENSO episodes. Kulkarni et al. [6] explored the teleconnections between
TS days and ENSO for the period 1998–2013 and reported a decrease in TS days during the ENSO
years. The anomalies of the average TS days in IOD–positive and negative years also show a large
increase in premonsoon TS days in negative IOD years, while a decrease in monsoon TS days during
IOD–positive years. This indicates a negative influence of the IOD on TS activities in Bangladesh.
A decrease in moist air supply from the Bay of Bengal due to a reduction of monsoon depression during
the ENSO and IOD warm phases has been reported in several studies by Bhardwaj and Singh [27],
Krishnamurthy and Krishnamurthy [30] and Dash et al. [31]. A decrease in thunderstorms triggering
moist air circulation of the Bay of Bengal in ENSO and IOD–positive years may be the cause of a
decrease in TS activities in Bangladesh.
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Appendix A

Table A1. Descriptive statistics of the annual average TS days over Bangladesh during 1975–2016.

Station Mean Median Standard Deviation Maximum Minimum 1st Quartile 3rd Quartile Variation per Decade

Dhaka 6.1 6.1 1.0 8.8 4.4 5.3 6.6 3.3
Madaripur 6.0 6.3 1.8 10.0 1.8 4.9 7.1 4.6
Faridpur 7.1 7.4 2.0 11.2 2.2 5.6 8.5 5.8
Mymensingh 8.2 8.3 1.6 11.8 4.1 7.3 8.9 5.5
Srimangal 9.8 9.9 1.6 13.1 6.0 8.7 11.1 6.5

Sylhet 11.8 11.9 1.6 16.2 9.1 10.5 12.8 7.5
Bogura 5.7 5.6 1.3 8.5 2.9 4.9 6.8 2.3

Rajshahi 6.3 6.4 1.2 9.0 4.4 5.2 7.2 3.5
Ishwardi 5.5 5.6 1.4 8.4 2.8 4.7 6.3 2.2
Dinajpur 4.6 4.7 1.7 7.6 1.0 3.3 6.0 3.2
Rangpur 6.3 6.3 1.6 9.0 2.7 5.3 7.3 4.2
Jassore 7.9 8.1 1.5 10.3 2.6 7.0 9.0 2.1
Khulna 5.2 5.2 1.4 8.2 1.8 4.3 6.1 2.5
Satkhira 5.1 5.5 1.6 8.5 1.8 4.1 6.0 2.3
Barishal 4.9 5.3 1.6 7.3 1.7 3.8 6.3 3.3

Bhola 4.3 4.2 1.0 6.4 2.5 3.6 5.1 1.1
Khepupara 4.4 4.6 1.8 8.5 1.3 3.1 5.5 1.2
Patuakhali 5.2 5.3 1.3 7.8 2.1 4.2 6.1 0.5
Chandpur 4.3 4.0 1.3 7.5 2.5 3.3 5.1 3.1
Chattogram 4.3 4.4 1.1 6.7 1.3 3.6 5.0 2.5
Comilla 3.9 4.0 1.3 6.8 1.4 3.0 4.6 3.5
Cox′s
Bazar

4.2 4.0 1.0 6.7 2.4 3.4 4.9 2.5

Feni 3.2 3.0 1.2 6.5 0.7 2.3 4.2 2.3
Hatiya 4.8 4.4 1.7 8.8 2.0 3.6 5.7 1.4

Kutubdia 3.1 3.2 1.2 5.5 0.7 2.1 3.8 1.9
M.court 3.2 3.5 1.4 6.3 0.3 2.1 4.2 3.3

Rangamati 4.5 4.8 1.5 7.1 0.6 3.6 5.5 1.2
Sandwip 3.3 3.1 1.4 6.9 0.6 2.4 4.3 1.0
Teknaf 2.4 2.5 1.2 5.2 0.3 1.4 3.2 0
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Table A2. Probability of maximum number of TS days for different periods at different locations
of Bangladesh.

Year 5 5 10 10 15 15 20 20

Station Name Maximum 3rd Quartile Maximum 3rd Quartile Maximum 3rd Quartile Maximum 3rd Quartile

Dhaka >7 3 >19 10 >18 6 >42 4
Madaripur >5 4 >5 3 >5 4 >5 4
Faridpur >10 8 >12 9 >15 9 >17 8

Mymensingh >22 16 >26 12 >28 12 >26 20
Srimangal >9 8 >28 13 >20 12 >23 12

Sylhet >4 3 >33 4 >46 15 >100 10
Bogra >13 12 >14 12 >16 14 >18 13

Rajshahi >8 2 >26 7 >13 6 >15 6
Ishurdi >14 8 >14 10 >16 10 >18 12

Dinajpur >7 5 >9 5 >8 5 >8 6
Rangpur >9 5 >7 5 >7 5 >7 5
Jessore >3 2 >3 2 >3 1 >4 2
Khulna >12 8 >16 10 >17 17 >19 19
Satkhira >2 2 >2 2 >2 2 >2 2
Barisal >3 3 >4 2 >5 3 >4 2
Bhola >13 7 >15 10 >18 14 >18 13

Khepupa >13 5 >11 8 >16 7 >12 9
Patuakhali >24 18 >28 25 >30 23 >28 24
Chandpur >3 2 >6 5 >8 5 .>10 4
Chittagon >11 7 >17 6 >15 6 >8 5
Comilla >25 23 >27 25 >28 25 >26 24

Cox′s Bazar >8 6 >10 8 >16 8 >12 4
Feni >24 17 >23 20 >24 22 >21 19

Hatiya >7 6 >17 7 >12 8 >14 7
Kutubdia >3 2 >3 2 >3 2 >3 2
M.court >17 13 >20 12 >14 11 >18 12

Rangamat >8 6 >18 8 >11 8 >16 7
Sandwip >6 4 >14 5 >6 3 >12 5
Teknaf >12 4 >13 2 >16 5 >12 5
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Abstract: In this study; the spatial distribution of the Daily Precipitation Concentration Index (DPCI)
has been analyzed inside the Greater Sydney Metropolitan Area (GSMA). Accordingly, the rainfall
database from the Australian Bureau of Meteorology archive was utilized after comprehensive quality
control. The compiled data contains a set of 41 rainfall stations indicating consistent daily precipita-
tion series from 1950 to 2015. In the analysis of the DPCI across GSMA the techniques of Moran’s
Spatial Autocorrelation has been applied. In addition, a cross-covariance method was applied to
assess the spatial interdependency between vector-based datasets after performing an Ordinary
Kriging interpolation. The results identify four well-recognized intense rainfall development zones:
the south coast and topographic areas of the Illawarra district characterized by Tasman Sea coastal
regions with DPCI values ranging from 0.61 to 0.63, the western highlands of the Blue Mountains,
with values between 0.60 and 0.62, the inland regions, with lowest rainfall concentrations between
0.55 and 0.59, and lastly the districts located inside the GSMA with DPCI ranging 0.60 to 0.61. Such
spatial distribution has revealed the rainstorm and severe thunderstorm activity in the area. This
study applies the present models to identify the nature and mechanisms underlying the distribution
of torrential rains over space within the metropolis of Sydney, and to monitor any changes in the
spatial pattern under the warming climate.

Keywords: precipitation concentration index; extreme rainfall; spatial inter-dependency

1. Introduction

The awareness of the importance of the spatial and temporal distribution of precipi-
tation is important not only from a meteorological viewpoint, but also for its importance
in different fields such as agriculture, hydrology, water resources and flood control. Esti-
mation of the spatial and temporal distribution of precipitation is a complex undertaking,
particularly in cases where detailed information concerning the impact of topography and
land−use impacts on the prevailing atmospheric circulation is not quite available, such as
the situation over southeastern Australia [1].

The concentration index (CI) is one of the indices that can be applied to characterize
the temporal concentration of precipitation followed by spatial analysis [2]. A CI analysis
makes it possible to characterize different spatial scales, which is of interest due to its effects
on geo−hydrological processes and the analysis of erosion and soil loss [3]. Applying
this type of analysis, interest is not only focused on climate but also on the effect of heavy
rainfall on other areas of the environment and society [4,5]. The CI method was already
applied in many different parts of the world [6–18]. While we focus on the most commonly
applied index here, there are other indices that indicate different aspects of precipitation
concentration, such as the relative cumulative precipitation, inequality concentration
indices and the ordered version of the n index [2].
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Many of the previous studies analyzed the CI based on monthly precipitation and
examined the annual and seasonal CI values, which are mostly determined by the cli-
matological and synoptic characteristics of a particular region. On a shorter timescale,
daily analysis and prediction of the intensity of precipitation would help in in water
resource planning and also identifying areas of high and low flash flooding potential.
Likewise, it would facilitate the regulation of the flows from high−intensity areas towards
low−intensity ones [19]. For example, a high precipitation concentration, represented
by large percentages of the yearly total precipitation in a few very rainy days, has the
potential to cause floods and also drought phenomena. This is exactly the scenario of
precipitation extremes inside the Sydney region, such as rainstorms, ex-tropical cyclone
remnants, east coast lows and severe thunderstorm events occurring over a few days that
account for high percentages of the annual total. These events may potentially bring more
frequent disasters for human society of the Greater Sydney metropolitan area (GSMA). In
the past, specific attention has been paid to patterns of such uneven spatial variation of
intense rainfalls using different statistics and mathematical methods (e.g., [20]). Never-
theless, a long time-span daily precipitation series has not been analyzed by applying a
CI approach. Thus, this study examines the precipitation concentration in the area based
on data with daily resolution. The DPCI is also good supplementary information to other
extreme precipitation indices on similar timescale, such as the highest amount of daily
precipitation (RX), the maximum consecutive 5-day precipitation (RX5D), number of days
with precipitation ≥ 20 mm or above 50 mm (R20/D50MM) and days with precipitation >
95 percentile (D95P) recommended by the World Climate Research Programme’s Expert
Team on Climate Change Detection and Indices (ETCCDI, [21,22]).

The organization of the paper is as follows. Section 2 first introduces the climatological
characteristics of the GSMA. Section 3 then depicts the methodology applied, including
the daily CI and spatial correlation analysis. Results are discussed in Section 4. Finally an
overall summary is given in Section 5 together with further discussion on implications and
future work.

2. Climatology of the Study Area

The GSMA, which is located on the southeast coast of Australia in New South Wales
and lies in the western part of the Tasman Sea (Figure 1), includes a highly populated
area of approximately 3.8 million in population. The study area is bounded in the north
by 33◦30′ S latitude, extending to 150◦30′ E longitude in the west, and to the southeast
at 34◦30′ latitude and 151◦30′ longitude. The region is bowl-shaped with a low plain in
the middle which is effectively walled in on three sides by hills. In general, the Sydney
region enjoys a temperate climate and commonly the broad-scale wind pattern is westerly
in the winter, and easterly in the summer. The climate of this region arises from a complex
interaction of broad-scale, regional and local controls [23].

Rainfall over the GSMA may occur throughout the year but is highest between March
and June. Also, precipitation is slightly higher during the first half of the year when
easterly winds dominate (February–June), and lower in the second half; mainly from July
to September. Rainfall can occur throughout the year with variation concerning altitude
and distance from the coast, with wetter areas being closer to the coast or in higher altitudes.
Due to the low predictability of rain as well as the well-known impacts from climate drivers
to the region [24], the wettest and driest months change annually. Within the study area and
surrounds, annual rainfall varies from around 700 mm to 1400 mm. More climatological
information of the study area can be found in [25] and [26].

On the regional scale, rainfall in the GSMA is influenced by the synoptic weather
systems in the region, such as fronts originated from the Southern Ocean, east coast lows,
subtropical cyclones and ex-tropical cyclone remnants migrating to the higher latitudes.
More locally, the GMSA is also known as one of the hotspots for severe thunderstorms
in Australia [26]. As can be seen in the following analysis, the torrential rain from severe
thunderstorms contribute significantly to the spatial characteristics of CI in the area.
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Figure 1. The location map of the GSMA within New South Wales of Australia (upper). The lower
panel shows the boundaries of the local government areas within the GSMA, with the names of some
major local cities (dots).

3. Data and Method

3.1. Data

Daily rainfall data for forty−one (41) weather stations have been extracted from the
Australian Bureau of Meteorology (BoM) online archives. Recording periods varied in
duration for each station, but many data are available from 1950 to 2015. Rainfall data from
the BoM has already been quality controlled with confirmation of the extremes with local
reports and that observations from nearby stations do not disagree with each other. We
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have further verified such agreement among the stations after we downloaded the data.
Most of the stations have complete data series in the study period—even the station with
the least recorded data over the whole period has over 90% of coverage. The provided
daily rainfall data, presenting relatively uniform coverage throughout the study area, have
been carefully entered in a particular GIS database. Rainfall station characteristics are
shown in Table A1 (Appendix A) and their spatial distribution is mapped in Figure 2. The
only series with less than 10% missing data on an annual scale were used to calculate the
DPCI indexes.

−

Figure 2. Spatial distribution of the rainfall stations with abbreviated codes as in Table A1 (Ap-
pendix A). Topography in the area can refer to the DEM in Figure 4.

To reach the main aims of the study, four interconnected techniques of Concentra-
tion Index, Moran’s Spatial Autocorrelation, Ordinary Kriging interpolation, and a cross-
covariance method were applied to assess the spatial dependence (covariance) between
vector-based datasets. The last method was applied to reveal several of the inherent spatial
inter-dependencies among dissimilar variables.

3.2. The Daily Precipitation Concentration Index (DPCI)

The DPCI, proposed by [27], is examined in this study. An example is illustrated for
the Albion Park station data; this station recorded the highest rain during the 67 years from
1950 to 2015 (see Table A2 in Appendix A). In computing the DPCI, only observed daily
precipitation values more than 1 mm were considered. The DPCI method was applied to
the data based on the fact that the contribution of daily rainfall events to the total amount
is generally well described by a negative exponential distribution [28].

The DPCI in this study consists of aggregating daily precipitation into increasing
10−mm categories and determining the relative impact of the different classes by analyzing
the relative contribution (as a percentage) of the accumulated precipitation, Y, as a function
of the accumulated percentage of occurrence frequency (X). Previous work such as [11]
showed that such function can be based on Equation (1).

Y = aX.ebX (1)
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where a and b are constants that can be determined through the least−squares method.

In a =
∑ x2

i ∑ ln Yi + ∑ xi ∑ xiln xi − ∑ x2
i ∑ lnxi − ∑ xi ∑ xi ln Yi

N ∑ x2
i − N (∑ xi )

2 (2)

b =
N ∑ xilnYi + ∑ xi ∑ lnxi − N ∑ xilnxi − ∑ xi ∑ xiinYi

N ∑ x2
i − N (∑ xi)

2 (3)

where N is the number of classes. After determining the two constants a and b, the integral
of the exponential curve (so−called Lorenz curve) between 0 and 100 shows the area S
(Figure 3), which is given by:

S =
∫ 100

0

[

a

b
ebx

(

x − 1
b

)]

dx (4)

Based on S, the area S′ compressed by the exponential curve, the equidistribution line
and X = 100 is apparently the difference between 5000 (half of the total area) and the value
of S:

S′ = 5000 − S (5)

Applying Equation (5) the DPCI value for each rainfall station is then a fraction of S′

to the lower surface of the triangle bounded by the equidistribution line.

DPCI =
S′

5000
(6)

Examples of the empirical curves or “concentration curves” of Y versus X for Albion
Parks and Wombeyan stations are presented in Figure 3. The annual DPCI values for these
two stations are 0.62 and 0.54, respectively (see Table 1). By definition, the value of the
DPCI is always a number between 0 and 1, and geometrically it represents the percentage
of the triangle area between the line Y = X and the exponential curve. The DPCI is virtually
equal to 0 when the contribution of each category of precipitation to the total is the same,
and equal to 1 when precipitation falls into one category only and the exponential curve
becomes the straight line Y = 0. Exponential curves of this type were calculated for all
meteorological stations across the GSMA. As an example, different stages of calculating
the above−mentioned parameters are given in Tables A1 and A2 (Appendix A).

Table 1. Values of the constants “a”, “b”, DPCI, 90% percentile of rain and maximum daily rainfall
(mm) at each of the 41 stations (with full names given in Table A1).

Station “a” “b” DPCI 90% Rain Max Daily Rain

AP 0.033 0.032 0.619 52 536.4

BA 0.053 0.029 0.609 58 243

BE 0.056 0.028 0.583 57.5 248

BI 0.055 0.028 0.590 58 237.6

BL 0.053 0.029 0.582 58 245

BO 0.053 0.029 0.568 58.5 214.2

BR 0.062 0.027 0.572 59 203.2

BU 0.040 0.031 0.618 54 399.6

CA 0.058 0.028 0.564 58.5 231.1

CH 0.056 0.028 0.567 58 229
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Table 1. Cont.

Station “a” “b” DPCI 90% Rain Max Daily Rain

DA 0.038 0.032 0.612 52 336.8

DF 0.037 0.032 0.612 53 415

FA 0.049 0.030 0.580 57 280.4

FF 0.048 0.030 0.583 56.5 248.4

GL 0.048 0.030 0.577 56 220

KA 0.047 0.030 0.621 57 285

KI 0.047 0.030 0.618 56 304.4

KH 0.049 0.030 0.579 56 283.7

LH 0.047 0.030 0.584 56 254.5

MA 0.059 0.028 0.565 58 325

MV 0.047 0.030 0.585 57 422

MK 0.055 0.028 0.574 58 243.2

OU 0.047 0.030 0.584 55 320

PN 0.047 0.030 0.590 57 293

PI 0.054 0.029 0.603 58 245.9

PK 0.039 0.032 0.622 54 322.5

PR 0.051 0.029 0.581 57 321

RI 0.052 0.029 0.570 58 210

RO 0.045 0.030 0.601 56 196.6

SS 0.045 0.030 0.602 57 239

SW 0.048 0.030 0.606 56 274.4

SA 0.051 0.029 0.583 57 216.2

SO 0.048 0.030 0.616 57 327.6

EN 0.054 0.029 0.598 59 246

WA 0.054 0.029 0.603 58 215.9

WP 0.041 0.031 0.597 54 409.8

WO 0.072 0.026 0.587 62 165

WC 0.071 0.026 0.544 61 230.6

WN 0.039 0.032 0.626 54 436.8

WY 0.050 0.029 0.595 57 256.2
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Figure 3. The empirical concentration curves for Albion Park and Wombeyan rain stations with the
dash straight line the reference equidistribution line. The area S′ is that bounded by the diagonal
equidistribution line and the concentration curve, while area S is the remaining area underneath the
equidistribution line.

3.3. Spatial Correlation

In the second stage of data analysis, a Moran’s spatial autocorrelation technique
was used to measure spatial autocorrelation based on rainfall station locations and DPCI
values [29]. Given the set of 41 rainfall stations and associated DPCIs, it evaluates whether
the pattern expressed is clustered, dispersed or random (Figure A1 in Appendix B). The
tool calculates the Moran’s I Index value and both a z-score and p-value to evaluate the
significance of that Index. The Moran’s I statistic for spatial autocorrelation is given by

I =
N

S0

∑
n
i=1 ∑

n
j=1 wi,jzizj

∑
n
i=1 z2

i

(7)

where Zi is the deviation of an attribute for feature (i.e., a particular rainfall station’s
DPCI) from its mean, Wi,j is the spatial weight between stations i and j (designated as the
significance, i.e., the p-value, of the correlation of rain between the two stations), N is the
total number of stations and S0 is the aggregate of the spatial weights by:

S0=

n

∑
i=1

n

∑
j=1

wi,j (8)

For the current study, the ZI score for the statistic is computed by applying the
following equations.

ZI =
I−E [I]√

V [I]

V[I] = E
[

I2]− E[I]2
(9)

In which E is the expectation value and V the variance. Under the case of no spatial
autocorrelation, E[I] = −1/(N − 1).

Subsequently, a spatial interpolation method, known as the Kriging technique, was
applied to yield better results than other techniques ([30,31]). The Kriging technique
assumes that the statistical surface to be interpolated has a certain degree of continuity ([32]).
The technique applies moving averages and has the advantage of producing the standard
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error for the estimated values. Among all the Kriging methods, the ordinary mode was
applied, as an advanced geostatistical procedure. This method was well fitted to all data
layers to generate estimated DPCI surfaces from a re−projected set of point values [33]. The
Kriging model is based on a statistical technique that includes autocorrelation; that is, the
statistical relationships among the measured points. Potentially, geostatistical techniques
not only have the capability to produce a prediction surface but also provide some measure
of the certainty or accuracy of the predictions. Kriging tools weight the surrounding
measured values to derive a prediction for each DPCI unmeasured location. There are
variations of the techniques, such as the Ordinary Cokirging and those that consider
topographical information, that can further improve the performance ([34,35]). The general
formula for both interpolators is formed as a weighted sum of the data:

Ẑ(S0) =
N

∑
i=1

λi Z (Si) (10)

where Z (Si) is regarded as the measured DPCI values at the ith location, λi shows an
unknown weight for the measured value at the ith rainfall station location, S0 specifies the
prediction location and N indicates the number of stations. With the Kriging method, the
weights are based not only on the distance between the measured points and the prediction
location but also on the overall spatial arrangement of the measured points. To use the
spatial arrangement in the weights, the spatial autocorrelation must be quantified. Thus, in
ordinary Kriging, the weight, λi, depends on a fitted model to the measured points, the
distance to the prediction location and the spatial relationships among the measured DPCI
values around the prediction location. In the current study, an Ordinary Kriging formula
is used to create maps of the prediction DPCI and “b” constant surfaces and associated
accuracy models. Ordinary Kriging assumes the second−order trend removal model with
no transformation type:

Z(S) = µ+ ε(s) (11)

In the above equation, µ is an unknown constant whereas one of the main issues
concerning ordinary Kriging is whether the assumption of a constant mean is reasonable.
Sometimes there are good scientific reasons to reject this assumption. However, in this
study, it was found that applying a second−order trend removal following an exponential
Kernal Function (as a simple prediction method) gives remarkable flexibility in final
interpolation method accuracy. Once again, the Kriging method was also applied to
illustrate the variation and spatial distribution of the constant “b” values in the study area.
This arbitrary way allows direct interstation comparison of the distribution of “b” value at
each rainfall station across all districts.

To calculate the Pearson Overall Correlation Coefficient, a band collection statistic
tool was furthermore computed among the DPCI and one of the other rainfall related
parameters [36]. These parameters include the mean annual precipitation (AP), coefficient
of variation (CV) of rainfall, the total number of rainfall days (TN), maximum rainfall
observed (MxR) and the “a” and “b” constants taken from Equation (1). This tool was
applied to provide statistics for the bivariate analysis of a set of raster bands by computing
covariance and correlation for every event. The following equation was accordingly used
to determine the covariance between layers i and j.

Covij =
∑

N
k=1(Zik − ui)

(

Zjk − uj

)

N − 1
(12)
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In the above equation, Z indicates for example DPCIs observed of a cell, i, j are layers
of a stack, u is the mean of cells and N is the number of cells. The overall correlation
between the rainfall datasets was then computed as:

Corrij =
Covij

σiσj
(13)

where the σ’s are standard deviations. As usual, the correlation coefficient is between −1
and 1.

4. Results

4.1. Spatial Distribution of DPCI

By calculating the annual DPCI values it was found that they range greatly, between
0.54 and 0.63, and are spread across the study area represented by the 41 rainfall stations.
This range is consistent with the global results in [2] that showed high values (>0.5) of the
Gini Index (which has the same concept of the DPCI but without the assumed mathematical
form of the Lorenz curve as in Equation (1), thus the Gini index is highly correlated with the
DPCI) over eastern Australia. Table 1 indicates the DPCI values and the rainfall percentage
contributed by 90% of the rainiest days for the 41 weather stations across GSMA from
1950 to 2015. Also values of the constants “a” and “b” (as the exponential curves are
given by Equation (1)) and observed maximum daily rainfall are represented in the table.
DPCI values present strongly different daily precipitation regimes, as Woonona station
(0.63) is located in the southeast of the study area and precipitation there has a higher
concentration and is more irregular than in Wombeyan station (0.54) which is located on
the Tableland somewhere in the outlying southwest of the study area. The concentration
can be considered a function of the relative separation of the equidistribution line, which
is greater in Albion Park (with the highest maximum daily rainfall observed) than others
(Figure 3).

Applying the Global Moran’s I statistic it is possible to test an existing spatial autocor-
relation based on rainfall station locations and DPCI values. The Spatial Autocorrelation
tool returns five values: the Moran’s I index, expected index, variance, z-score and p-value.
Given the z-score of 3.55, there is a less than 1% likelihood that this clustered pattern could
be the result of random chance, expressing the fact that there are spatially significant clus-
ters of DPCI values among the existing dataset based on the spatial autocorrelation report.

The result of the Ordinary Kriging interpolator model is shown in Figure 4 after
smoothing small errors depending on the measurement parameters overlaid with a Digital
Elevation Model (DEM) of the study area. The maximum values of DPCI are crossing over
the Kiama, Shellharbour and Wollongong districts located in the southeast of the study area.
For example, Woonona station (34.34◦ S; 150.90◦ E) represents the highest value of 0.63,
while the lowest values of DPCI could be seen in Wombeyan station (34.31◦ S; 140.97◦ E)
with 0.54. The highest DPCIs were detected primarily in the Illawarra (along with the
south coast) and Blue Mountains districts (Katoomba station with 0.62). Furthermore, the
secondary maximum annual values of DPCI were found around the Sydney Metropolitan,
mainly around the Central Business District (CBD). On the other hand, districts with the
lowest values are located in the southwest Tablelands of the Wingecarribee and Hawkes-
bury districts. Meanwhile, the strongest gradient occurs between the west and east and
between the northwest and southeast of GSMA, as coastlines meet the highest DPCI values.
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Figure 4. Spatial distribution of DPCI (contours) overlaid on a DEM inside the GSMA.

To find more about the nature of the spatial distribution of intense rains inside of
the GSMA, the geographical distribution of the “b” constant, which from Equation (1) is
the parameter to control the shape of the rainfall concentration curve and thus carries
important information on the rainfall distribution, has been converted to classes of intensity
level of rainfall occurrence (Figure 5). Very high intense amounts can be seen near the
topography southeast of the study area, just over the Illawarra Escarpment. Besides, in
some parts of the Sydney Metropolitan district, for example in the west of the City, and
areas located in the northwestern corner of the Parramatta River, very intense “b” values
can be observed. In comparison with the lowlands of the GSMA, over the Blue Mountains
(Katoomba station), intense rain events are also relatively high. In contrast, non−intense
classes of “b” values can be seen over the inland parts of the GSMA.

For comparison, the geographic position of the flash flood events (observed during
1989−2015 with a thundery−rain more than 50 mm) is overlaid on the distribution of the
“b” constant map. In the GSMA, flash flood events are mostly induced by several weather
systems, such as the local thunderstorms and east coast lows over the ocean. It can be seen
that most of these flash flood events occurred in the areas with the high “b” values, which
determine the shape of the concentration curve. The spatial pattern of “b” also highly
resembles that of the severe thunderstorms, especially those with hail occurrence [26].
These facts indicate that the storm activity in the GSMA largely determine the CI pattern
on the daily timescale.
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Figure 5. Spatial distribution of the constant “b” (shaded) with classification into four groups of
intensity and occurrence locations of the thundery flash flooding days during 1989–2015 (lightning
symbol) based on the BoM storm archive.

4.2. Spatial Correspondences

A cross−covariance model was presented to assess the spatial dependence (covari-
ance) between two vector-based datasets. Here the first dataset is the DPCI, while the
second is one of the important rainfall-related parameters such as mean annual rainfalls
(AP), coefficient of variation (CV), the total number of rainfall days (TN), maximum rain-
falls observed (MxR) and the “a” and “b” constants taken from Equation (1) that control the
concentration curve. In the analysis, the attribute of one point (i.e., the DPCI) is correlated
with the second attribute (i.e., one of the rain−related parameters) at another point, and
this is repeated for all pairs of geographic points. The spatial distribution of the correla-
tion (termed cross-covariance surface or cloud) can then be applied to examine the local
characteristics of spatial correlation between the two attributes (datasets). The details of
this cross-covariance model has been documented in Appendix C. This technique was
applied to look for spatial shifts in existing correspondences between the DPCI and the
other datasets throughout the GSMA.

A covariance surface with directional search capabilities was also involved in the
modeling. For this reason, the values in the cross−covariance cloud were put into six
bins based on the direction and distance separating a pair of locations [37]. These binned
values were then averaged and smoothed to produce a cross−covariance surface (and
associated correlations) for each pair of dataset throughout the study area (Figure 6). It
can be seen that the DPCI possesses regions of high covariance with most of the rain
parameters and also the “a” and “b” constants in the concentration curve, however, there is
variability in the locations with the highest covariance. For example, the DPCI has high
covariance with the climatological parameters AP and TN over the northwest. The highest
covariance with the ‘magnitude’ of the concentration curve (“a”) is also on the western
side. This may be due to the topographic variation. However, the pattern of covariance
with the two parameters directly related to the DPCI, namely the MxR and “b”, has a
southwest−northeast orientation. This is aligned with the distribution of the DPCI in
Figure 4.
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−Figure 6. The result of cross−covariance surfaces for all pairs of variables: (CI,AP); (CI,CV); (CI,TN);
(CI,MxR); (CI,a); (CI,b). CI is the same as the DPCI. Six bins have been set for the categories of
covariance values. The arrows (with the blue and red lines) are examples of directional searches of
high covariance values over the surfaces. See Appendix C for details.

In Table 2, the values of Pearson’s correlation coefficient for the five pairs of variables
are indicated. The Pearson overall correlations (r) for all rainfall related parameters, except
the total number of rainy days (TN), are statistically significant at 0.95 and 0.99 levels,
respectively. Correlation between TN and annual DPCI is nearly +0.24 (p < 0.5) and not
significant; in other words high number of rain days is not a good indicator of high DPCI.
The reason is that similar annual values could be achieved with different daily distributions.

Table 2. Values of the Pearson’s correlation coefficient, significance level and category of
cross−covariance spatial shifting for five pairs of variables: (CI,AP); (CI,CV); (CI,TN); (CI,MxR);
(CI,a); (CI,b).

Parameter to Correlate with
DPCI

Correlation
Coefficient (r)

Significance Level
(p)

Cross−Covariance
Spatial Shifting

Mean annual precipitation
(AP)

0.472 0.01 High

CV of annual rainfall 0.314 0.05 Medium

Total number of rainy days
(TN)

0.239 Non−significant Very low

Maximum daily rainfall
(MxR)

0.508 0.01 High

“a” −0.701 0.01 Very high

“b” 0.703 0.01 Very high

5. Conclusions and Discussion

5.1. Summary

In the current study, daily rainfall observations (1950–2015) from 41 rainfall stations
inside the GSMA have been analyzed. According to the applied criteria and techniques
used, the outcomes are summarized as follow:
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• Within the GSMA, the essential features of climate in different districts are charac-
terized by narrow rainfall zones close to the coast, under the combined influence of
the Tasman Sea and the topography and land use patterns, leading to very different
rainfall spatial distributions.

• The DPCI values in the Illawarra coastal elevated areas, parts of the Sydney Metropoli-
tan area and the Blue Mountains are high, with concentration index values close to
0.60–0.63. This reflects the fact that very few rainy days could bring a high percentage
of annual precipitation.

• The DPCI values obtained and distribution pattern of constant “b” are largely subject
to influences from the topography and land use of the region. Generally, western and
central regions inside GSMA are areas where rainfall is regular compared to eastern
regions, while the southeastern districts and small parts of Metropolitan areas show
the most aggressive DPCI values.

• Despite the significant variations in spatial cross−correlating models between the
DPCI and 6 other rain−related parameters (AP, CV, TN, MxR, “a” and “b”), there are
considerable positive relationships among data layers at 0.95 significance levels for
most parts of the study area.

• The spatial patterns of the DPCI and “b” constant highlight the importance of catas-
trophic effects of such intense rainfall events, predominantly originating with severe
thunderstorm and flash flood events.

5.2. Discussion

Inside of the Sydney Metropolitan area, daily precipitation is one of the factors in the
processes of creating flash floods, and accordingly, differences in the spatial distribution
of precipitation can lead to dissimilar precipitation regimes and various climatic condi-
tions [38]. As was indicated in Table A1 (Appendix A), even if the annual total amounts are
similar in many of the rainfall stations, precipitation processes may be different due to a dif-
ferent degree of concentrated rainfall in the time and space of the study area. Accordingly,
the spatial distribution of precipitation can produce noticeably different impacts on natural
and social processes across the GSMA—of particular interest for water management—flood
control programs, and water availability for natural ecosystems. As the results show, the
daily concentration of precipitation on an annual scale (expressed by the DPCI values
in Table 1) is characterized by two different spatial gradients. One lies from the east to
the west and the second is detectable from south to north, the latter characterized by the
Tasman Sea coastal areas.

Overall, the spatial distribution of DPCIs follows a gradient between inland and the
coastal areas, which may indicate approaching intense rainfall from different geographic
directions. The results in this study have indicated that most parts inside GSMA are
subject to severe rain, but with different likelihood of high DPCI (Figure 4). For example,
the gigantic water resources of the Tasman Sea may influence the distribution of intense
rainfall. On the other hand, a large proportion of rainfall comes from severe thunderstorms
that occur over the northeast GSMA, the CBD and over the inner metropolitan area [26].
Also, the increased roughness associated with variation in topography and heat island
phenomena may affect the spatial distribution of concentrated precipitation [39].

However, the pronounced dissimilar DPCI values and the subsequent cross−covariance
surfaces (Figures 4 and 6) support the overall picture of multi−subjected developing areas
and approaching weather systems from various directions in the region, which are under
dissimilar synoptic patterns causing atmospheric instability [40,41]. It was found by pre-
vious studies that at least four types of weather patterns account for most of the rainfall
in the region [42,43], and logically the amount, frequency, and intensity of precipitation
events vary substantially in the region, as shown in the records during a long period from
1950–2015 [44,45]. Another weather pattern occurs in summer and involves the location
of the Tropical Convergence Zone bringing torrential rainfalls [46]. Occasionally, weather
systems from the southeast generate storms striking the region with torrential precipitation.
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During the warm months (October to March) the prevailing easterly moist winds provide
much of the moisture needed in the intensification of widespread and severe thunderstorm
activity in the region [26]. Given the short duration of typical thunderstorm activity in
terms of hours, likely it would contribute substantially to the DPCI.

Not all variations in the total precipitation and associated differences in the DPCI can
be explained simply in terms of differences between dissimilar weather systems and the
nature of the prevailing air masses [47]. The geographical distribution of DPCI and the “b”
values illustrate that the coastal areas are subject to a high probability of intense rainfall
(Figure 5). In the southwest extension of the coastal area, over the Illawarra Escarpment,
topography has clear influences on the rainfall amounts. The high “b” distribution in
the vicinity of elevated topography of the Illawarra Escarpment suggests an orographic
enhancement of instability, particularly for sites facing the east (as indicated by Figure
4). Similarly, in the highland area west of Sydney, there appears at least two different
patterns of intense rainfall events. The Blue Mountain ranges, located at the northwest of
the study area, have some of the highest DPCI values, particularly in the summer months.
Thus, the issue arises whether the limited number of rain stations, especially over the high
mountains, can capture such topographic effect to extreme precipitation adequately. One
way to improve is to extend the data sources representing rainfall distribution, which may
include a radar−based estimate and gridded reanalysis dataset, the latter able to reduce
the uncertainty during the spatial interpolation process. The other method is to incorporate
theoretical topographic rainfall models (e.g., [48,49]) to improve the representation of
extreme precipitation over high elevations.

Internationally, the values of CIs found across Europe are similar to those described in
Iran by [6] and are lower than those offered by [7] in China. It has been proposed by [7]
as a general explanation for differences between results from [27] in the Iberian Peninsula
and China, that different climate systems and precipitation mechanisms were responsible
for rainfall (such as a typhoon). Generally, it has been suggested that precipitation trends
based on annual maximum daily events observed in most parts of the world have nearly
the same signs. However, the trend of heavy precipitation is disproportionately larger
than the trend of the total [50]. Some of the previous investigations and the more recent
work of [5] demonstrated the prominence and precision of CI applications in different parts
of the world. It was suggested that even without any change in total precipitation, there
may be changes in the frequency of intense daily precipitation in a climate change context;
a fact that would have led to meaningful variations in the precipitation concentration
patterns [51–53].
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Appendix A

The tables in this appendix document basic information of the rain stations and rainfall
statistics in this study (Table A1), and parameters for computing the DPCI using Albion
Park station as an example (Table A2).

Table A1. The geographic coordinates, study period, average annual rainfall (AP), coefficient of variation (CV) and total
number of rainy days (TN) for the 41 rain stations across the GSMA.

Station Name
(With Abbreviated Map Codes)

Latitude Longitude
Altitude

(m)
Study Period

(year)
AP

(mm)
CV
(%)

TN

Albion Park (AP) −4.57 150.78 8 1950–2015 1186.9 35.1 4811
Bankston Airport (BA) −33.92 150.99 6.5 1969–2015 874.6 25.1 3910
Berambing (BE) −33.54 150.44 792 1950–2015 1452.1 27.7 6774
Bilpin (BI) −33.52 150.49 610 1950–2015 1363.2 26.2 7224
Blackheath (BL) −33.63 150.29 1060 1950–2015 1240.6 28.3 6395
Bowral (BO) −34.49 150.40 690 1962–2015 931.7 26.6 5041
Bringelly (BR) −33.97 150.73 122 1950–2015 803.3 32.9 4496
Bundanoon (BU) −34.65 150.31 688 1950–2015 1249.6 30.7 5894
Camden (CA) −34.03 150.65 61 1950–2015 805.6 32.7 4964
Colo Heights (CH) −33.36 150.71 320 1963–2015 1034.4 26.7 4991
Dapto (DA) −34.50 150.79 10 1950–2015 1232.0 35.4 4822
Darkes Forest (DF) −34.23 150.91 370 1950–2015 1558.4 31.1 6994
Faulconbridge (FA) −33.69 150.53 460 1950–2015 1225.3 34.7 3351
Frenchs Forest (FF) −33.75 151.23 158 1957–2015 1374.9 25.5 6012
Glenorie (GL) −33.59 151.01 170 1950–2015 1002.7 27.7 5249
Katoomba (KA) −33.71 150.31 1015 1950–2015 1449.9 27.8 7479
Kiama (KI) −34.68 150.85 10 1950–2011 1332.9 31.1 5689
Kurrajong Heights (KH) −33.53 150.63 460 1950–2015 1278.8 28.9 6347
Lucas Heights (LH) −34.05 150.98 140 1958–2015 1021.9 26.6 5090
Maroota (MA) −33.46 151.00 203 1950-2015 952.9 31.7 4062
Moss Vale (MV) −34.54 150.38 675 1950–2015 961.6 30.1 6106
Mount Kuring-Gai (MK) −33.64 151.14 215 1965–2015 1171.1 28.7 4560
Ourimbah (OU) −33.36 151.33 195 1954–2015 1406.5 25.3 6183
Parramatta North (PN) −33.79 151.02 55 1966–2015 970.6 26.9 4554
Picton (PI) −34.17 150.61 165 1950–2015 886.5 32.8 4224
Port Kembla (PK) −34.47 150.88 9 1964–2015 1119.9 30.4 4440
Prospect Reservoir (PR) −33.82 150.91 61 1950–2015 936.4 28.6 5692
Richmond (RI) −33.62 150.75 20 1950–2015 868.8 29.5 5287
Riverview Observatory (RO) −33.83 151.16 40 1950–2015 1204.2 26.6 4946
Sans Souci (SS) −33.99 151.13 9 1950–2015 1153.5 28.3 6728
Springwood (SW) −33.71 150.58 320 1950–2015 1166.5 30.0 5727
Sydney Airport (SA) −33.95 151.17 6 1950–2015 1123.0 27.5 6384
Sydney Observatory Hill (SO) −33.86 151.21 39 1950–2015 1264.7 26.8 6607
The Entrance (EN) −33.35 151.50 22 1950–2015 1176.8 25.6 5889
Wallacia (WA) −33.86 150.64 50 1950–2015 890.9 33.0 5027
West Pennant Hills (WP) −33.75 151.04 120 1950–2014 1115.2 30.8 4858
Wollondilly (WO) −34.34 150.08 270 1974–2015 692.1 25.8 2781
Wombeyan Caves (WC) −34.31 149.97 580 1952–2015 847.8 22.7 4466
Woonona (WN) −34.34 150.90 45 1950–2015 1328.3 32.5 5679
Wyee (WY) −33.20 151.44 40 1950–2015 1250.9 24.8 6293
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Table A2. Frequency distribution (Ni, for rain >1 mm), total precipitation (Pi), relative cumulative frequencies (X) and percentage of
total precipitation (Y) for the Albion Park station.

Classes Midpoint Ni ΣNi Pi Σpi ΣN (%) = X Σpi (%) = Y

1–10 5 3037 3037 15,185 15,185 63.13 19.43
10.1–20 15 796 3833 11,940 27,125 79.67 34.70
20.1–30 25 367 4200 9175 36,300 87.30 46.44
30.1–40 35 187 4387 6545 42,845 91.19 54.81
40.1–50 45 109 4496 4905 47,750 93.45 61.09
50.1–60 55 71 4567 3905 51,655 94.93 66.08
60.1–70 65 52 4619 3380 55,035 96.01 70.41
70.1–80 75 38 4657 2850 57,885 96.80 74.05
80.1–90 85 22 4679 1870 59,755 97.26 76.45
90.1–100 95 30 4709 2850 62,605 97.88 80.09
100.1–110 105 20 4729 2100 64,705 98.30 82.78
110.1–120 115 12 4741 1380 66,085 98.55 84.55
120.1–130 125 8 4749 1000 67,085 98.71 85.82
130.1–140 135 12 4761 1620 68,705 98.96 87.90
140.1–150 145 13 4774 1885 70,590 99.23 90.31
150.1–200 175 25 4799 4375 74,965 99.75 95.91
200.1–250 225 8 4807 1800 76,765 99.92 98.21
250.1–300 275 2 4809 550 77,315 99.96 98.91
300.1–350 325 1 4810 325 77,640 99.98 99.33
500.1–550 525 1 4811 525 78,165 100.00 100.00
Sum 4811 78,165 1890.96 1507.27

Appendix B

Figure A1 in this appendix illustrates the physical interpretation of the Global Moran’s
I Statistic. Depending on the z-score value, the rainfall distribution changes from a dis-
persed pattern (negative extreme), random pattern (most of the z-score around the mean)
to a clustered pattern (positive extreme). The values of the Moran’s Index (−0.001755),
z-score (3.553463) and the p-value (0.000380) based on the dataset in this study are given in
the upper left corner of the figure.

 

 

 

Figure A1. Illustration of the Global Moran’s statistic and association with the dispersed, random
and clustered precipitation patterns.
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Appendix C

In this appendix the details in the procedure of performing spatial cross-covariance
analysis between two attributes (datasets) are documented. An example of the DPCI (first
attribute) and the constant “b” (second attribute) is illustrated in Figure A2. There are
several steps in the analysis:

• The empirical cross-covariance for a pair of locations (NSW rainfall stations) between
two datasets (DPCI and “b”) is first plotted as a function of the distance between
the two locations (Figure A2 upper panel). In this illustration, each red dot shows
the empirical cross-covariance between the pair of stations, with the attribute of one
station taken from the first dataset and the attribute of the second station taken from
the second dataset. The Cross-covariance cloud can be used to examine the local
characteristics of spatial correlation between two datasets, and it can be used to look
for spatial shifts in the correlation between two datasets. A cross-covariance cloud
looks something like the NSW example.

• The values in the cross-covariance cloud are put into bins based on the direction and
distance separating a pair of locations. These binned values are then averaged and
smoothed to produce a cross-covariance surface. The legend (Figure A2 lower panel

left) shows the colors and values separating classes of covariance values.
• A covariance surface with search direction capabilities is also provided in the ArcGIS

tool. The extent of the cross-covariance surface is controlled by the lag size and number
of lags that are specified (Figure A2 lower panel right). The search direction and width
are indicated by the blue and red lines over the cross-covariance surface. One example
has been shown in the figure and these options can be modified.

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Figure A2. Cross-covariance surface or cloud between the DPCI and the constant “b” in the con-
centration curve. The upper panel has all the covariance values according to the distance between
the two points for computing the covariance. The lower panel has the cross-covariance map and an
example of the directional search arrow. The search arrow is set based on the parameters on the right
hand side (such as the direction, lag size and number of lags).
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Abstract: Accelerating climate change is causing considerable changes in extreme events, leading
to immense socioeconomic loss of life and property. In this study, we investigate the characteristics
of extreme climate events at a regional scale to -understand these events’ propagation in the near
future. We have considered sixteen extreme climate indices defined by the World Meteorological
Organization’s Expert Team on Climate Change Detection and Indices from a long-term dataset
(1951–2018) of 53 locations in Gomati River Basin, North India. We computed the present and
future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent anal-
ysis. The periodicities and non-stationary features were estimated using the continuous wavelet
transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for
certain combinations of indices. The study results show different variation in the patterns of the
extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over
the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of
those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at
all stations, indicating a reduction in precipitation in the future. DD exhibits a sustainable decreasing
trend at almost all the stations over the basin barring a few exceptions highlight that the basin is
turning drier. The wavelet power spectrum for D95P showed significant power distributed across
the 2–16-year bands, and the two-year period was dominant in the global power spectrum around
1970–1990. One interesting finding is that a dominant two-year period in D95P has changed to the
four years after 1984 and remains in the past two decades. The joint return period’s resulting values
are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of
1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an
underestimation of extremes.

Keywords: extreme climate indicators; bi-variate copula; Hurst exponent; wavelet transform

1. Introduction

The adverse effects of climate change associated with global warming have been
disrupting various natural processes with a visible impact on ecological, economic, and
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social aspects. Particularly, the extreme climate events have become sensitive to the climate
change and have become more hazardous in the recent decades. Several studies have shown
that there is a significant increase in the frequency and intensity of the extreme climate
events [1–4]. Numerous studies [5–12] have concluded that there is a considerable increase
in the hot days, warm nights at several places across the globe. Similarly, there has been
considerable evidence [13–20] wherein spatio-temporal changes in extreme precipitation
are observed in addition to the increasing temperature which have led to extreme droughts,
flood conditions and heat waves.

In this context, observation, detection, and detailed analysis of extreme climate events
have become imperative. The detection of extreme climate changes requires the use of
specific indices [16]. Different extreme indices have evolved and are now focused on
relative thresholds related to the tails of distributions of meteorological variables [17]. Out
of the several indices, the Expert Team on Climate Change Detection and Indices (ETCCDI)
have selected around 27 indices as prominent ones [5].

Studies on extreme climate events/change using these indices proposed by ETCCDI
are highly relevant and increasing. Garcia-Cueto et al., [18] observed 4–5 ◦C and 2–3 ◦C
rise of summer temperature increases in Northwestern Mexico under RCP 4.5 and RCP8.5,
respectively. Wang et al., [19] examined the spatiotemporal trends of temperature and
precipitation indices proposed by ETCCDI in the Loess Plateau region of China and
observed significant warming and drying trends at all temperature and precipitation
extremes, respectively. The application of ETCCDI indices in India’s upper Tapi river basin
has exhibited increasing trends in hottest and coldest days and decreasing trends in coldest
nights in most portions of the basin [20]. In contrast, mixed trends were observed in 1-day,
five-day precipitation totals. Sharma et al., [20] analyzed the spatiotemporal variation in
extreme precipitation and temperature at daily scale across India using the ETCCDI indices.
They observed that the number of ‘warm days’ per year increased significantly, while the
number of ‘cold days’, ‘warm nights’ and ‘cold nights’ per year decreased significantly at
several locations.

Even though previous studies have dealt with extreme events, there have been only
very few studies based on joint probability characteristics of extreme events. It is imperative
to investigate the joint occurrence of these extreme events in the context of global warming.

The Gomati River Basin has a monsoonal climate with a high variation in precipitation.
Abeysingha et al. [21] showed a significant decrease in precipitation and an increase in
temperature during the last century, making it one of India’s hotspots region. Even though
they investigated the spatiotemporal trends in the total precipitation and temperature,
there is no investigation on extreme events. Therefore, in this study, we have analyzed the
joint distribution of bivariate climate extreme events which is of great significance for water
resources management. Further, in this study, selected extreme indices’ spatiotemporal
characteristics were investigated using Sen’s slope, the Hurst exponent, and the wavelet
transform. The results will provide a scientific basis for future prediction of extreme events
and help in disaster mitigation and prevention.

2. Study Area and Data

2.1. Gomati Basin

The Gomati river basin is bounded between longitude 80◦0′10′ ′ E-83◦11′4′ ′ E and
latitude 25◦31′16′ ′ N-28◦53′17′ ′ N in the Doab region of the Ganga and Ghaghara river
basin covering a total area of 30,437 km2 [21]. It is one of the main tributaries of River
Ganga originating from Fulhaar Jheel lake near Mainkot of about 30 km east of the Pilibhit
town of the Uttar Pradesh (see Figure 1). The river basin is mainly comprised of the alluvial
stratum. The river is the primary source of supply for the cities of Lucknow and Jaunpur
in Uttar Pradesh. The entire basin’s climate varies from semi-arid to sub-humid tropical
with an average annual precipitation of 850–1100 mm. The basin receives about 75% of
the total annual precipitation between June and September due to the southwest monsoon.
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The basin has a gentle southeasterly slope of maximum and minimum elevations varying
between 58 m and 238 m [22].

Figure 1. Indian map showing the Uttar Pradesh state and the Gomati river basin boundary in the green and orange color,
respectively. Dots in the Gomati river basin show selected precipitation grid points.

2.2. Data

Daily data for the period 1951–2018 is extracted from the gridded datasets of tempera-
ture and precipitation developed by Pai et al., [23] and Srivastava et al., [24] for a spatial
domain of 80◦ E to 84◦ E and 25◦ N to 29◦ N covering the Gomati basin. The spatial resolu-
tion of the precipitation and temperature data is 0.25◦ × 0.25◦ and 1◦ × 1◦, respectively.
Both datasets have been extensively used in earlier studies [25–27]. It shows that the data
is highly accurate and capable of capturing the spatial distribution of precipitation and
temperature over the country. For more information on the gridded products, see [23,24] for
precipitation and temperature, respectively. The most commonly used ETCCDI indices are
estimated for each grid location within the study region from the gridded dataset. Table 1
provides a brief description of the selected indices used in the present study (see [17,28]).
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Table 1. Brief description of the Expert Team on Climate Change Detection and Indices (ETCCDI) used in the present study.

S.NO. INDICATOR DESCRIPTIVE NAME DEFINITION UNIT

1 R50MM Very heavy precipitation days Number of days with precipitation above 50 mm. Days
2 D95P Very wet days Days with precipitation > 95p. Days
3 DD Dry days Days with precipitation less than 1 mm. Days
4 R20MM Heavy precipitation days Days with daily precipitation amount ≥ 20 mm. Days

5 R95TOT
Percentage precipitation of

very wet days

Precipitation at days exceeding the 95th
percentile divided by total precipitation

expressed in percentage.
Percent

6 R99TOT
Precipitation fraction
extremely wet days

Precipitation at days exceeding the 99th
percentile divided by total precipitation

expressed in percentage.
Percent

7 RTWD Total precipitation wet days Precipitation amount on days with RR ≥ 1 mm. mm
8 RX Maximum precipitation The highest amount of daily precipitation. mm
9 RX5D Maximum 5 days R Maximum consecutive five-days precipitation. mm

10 CD Percentage of cold days
Percentage of days with TX lower than the 10th

percentile.
Days

11 VCD Very cold days Days with TN < 1st percentile. Days

12 WN Warm nights
Percentages of days with TN higher than the 90th

percentile.
Days

13 CSD
Maximum consecutive

summer days
Maximum number of consecutive summer days

(TX > 25 Celsius).
Days

14 VWD Very warm days Days with TX > 99th percentile per year. Days

15 WD Warm days
Total no. of days with TX higher than the 90th

percentile.
Days

16 SUD Summer days Number of days with TX > 25 Celsius. Days

Precise definitions are given at http://etccdi.pacificclimate.org/list_27_indices.shtml accessed on 11 December 2020.

3. Methods

3.1. Sen’s Slope Estimator Test

Sen’s slope estimator test, developed by [29], adopts a basic non-parametric method
for estimating the magnitude of a trend, if any, in a time series. It is widely used for
determining the magnitude of a trend in hydro-meteorological time-series datasets [30–32].
The Sen’s slope value indicates the degree of a slope and its trend in the time series, where a
positive value shows an increasing trend, while a negative one indicates a decreasing trend.

In this method, the slopes (Xij) of all data pairs (i, j) are first calculated by:

Xij =
(Yj − Yi)

tj − ti
(i = 1, 2, .., N) (1)

where X′
ijs are the slopes of the lines connecting each pair of points (ti, Yi) and

(

tj, Yj

)

, Yj

and Yi are data values at times j and i (j > i), respectively. The median of these N values of
X′

ijs is Sen’s slope, which is calculated as follows:

β =







X N+1
2

, N is odd

1
2

(

X N
2
+ X N+2

2

)

, N is even
(2)

A positive value of β indicates an upward (increasing) trend and a negative one refers
to a downward (decreasing) trend in the time series.

3.2. Rescaled Range Analysis

The rescaled range (R/S) analysis is a method to determine the variability of a time
series introduced by Harold Edwin Hurst in the mid-20th century while investigating
the Nile River’s discharge time series. Hydrological time series exhibit some structure,
unlike a common random series. For instance, consecutive values of hydrological time
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series are dependent on each other [33]. Future climate trends can be predicted using the
R/S analysis method. Many improvements were done on the R/S analysis since then
and applied to many fields, such as climate change, hydrology, population and economic
analysis. The R/S for a time series {ξ(t) = 1, 2 . . .} for any positive integer τ ≥ 1 consists
of the following steps

(i). To define a mean sequence:

〈ξ〉τ =
1
τ

τ

∑
t=1

ξ(t) (t = 1, 2 . . . .τ) (3)

(ii). To create a cumulative deviation series:

X(t, τ) =
t

∑
µ=1

(ξ(µ)− 〈ξ〉τ) (1 ≤ t ≥ τ) (4)

(iii). To create a range series:

R(τ) = maxX(t, τ)− minX(t, τ) (5)

(iv). To create a standard deviation series:

S(τ) =

√

1
t

τ

∑
t=1

(ξ(t)− 〈ξ〉τ)
2 (6)

For R(τ)/S(τ) , R/S,
If a power-law relationship is given in Equation (7), it indicates that the time series

exhibits the Hurst phenomena and H is called the Hurst exponent.

R

S
ατH (7)

The nature of the trend can be determined based on the value of the Hurst exponent,
with 0 < H < 0.5 indicating that the future change is opposite to that of the past, 0.5 < H <1
that the change is sustainable and H = 0.5 indicating that the change is random [34]

3.3. Wavelet Transform

The Wavelet transform decomposes the original signal into proxies representing the
original time series’ inherent features in the time-frequency domain [35]. In general, a
Wavelet transform can be classified into a continuous wavelet transform (CWT) and a
discrete wavelet transform. CWT has been used for analyzing the time-frequency charac-
teristics of climate and hydrological parameters [36–39]. In this study, we have used the
Morlet wavelet as the mother wavelet for analysis, which is defined as:

ψ(t) = π− 1
4 eiw0te−t 2

2 (8)

where w0 is the dimensionless frequency, t is a non-dimensional time parameter; i is the
unit of an imaginary number [40,41].

The CWT of a discrete signal ξ(t) with a Morlet wavelet ψ(t) is given as:

W f (a, b) =
1
a

∫

R

ξ(t)ψ ∗
(

t − b

a

)

dt (9)

where W f (a, b) is the transform; a and b are the scale parameter and translation parameter,
respectively; ψ∗ is the complex conjugate and t is the time scale [42].
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The CWT has edge artefacts that result on account of the finite-length of the time series
used and, understandably, errors are expected at the beginning and end of the wavelet
power spectrum. This may be avoided by padding up the end of the time series with
zeroes prior to its transformation and later removing them. However, padding with zeroes
introduces discontinuities at the endpoints and, as one goes to larger scales, decreases the
amplitude near the edges as more zeroes enter the analysis. The cone of influence is the
region of the wavelet spectrum in which edge effects become important and is defined here
as the e-folding time for the autocorrelation of the wavelet power at each scale, and the
peaks within these regions are reduced in magnitude presumably due to zero padding.
To test the significance of any statistic of a given wavelet power spectrum, a background
reference spectrum is used as a basis for comparison. Based on a Monte Carlo simulation
study by [41], the latter authors have recommended the use of a white or a red noise
background spectrum based on an AR (1) (lag – 1) autoregressive process.

3.4. Bivariate Copula Functions

A copula is a joint distribution function derived from two or more marginal distributions
of random variables. The Sklar theorem is the foundation of the mathematical framework
of copulas [43]. Copulas are very useful in unravelling random variables’ behavior, thereby
deriving the joint distribution of two or more random variables [44]. Bi-variate copulas are
used to derive the return periods of climate indices to describe climate indices’ characteristics.
Over the years, several families of copulas have been derived. Out of these Archimedean
copulas (Frank, Clayton, and Gumbel) are widely used for hydrological applications (climate
extreme analysis) due to their simple implementation, construction and flexibility in applying
for both positively or negatively correlated variables [16,45]. The mathematical description
of Frank, Clayton, and Gumbel copulas’ distribution functions and their parameters are
provided in Table 2. For details on the mathematical description, see [46,47].

Table 2. Mathematical description of copula functions and their parameters.

Copula Function C(u,v) Parameter Range

Frank − 1
Θ

ln

[

1 + (e−θu−1)(e−θv−1)
(e−θ−1)

]

θ ∈ (−∞, ∞)\{0}

Clayton max
[

(

u−θ + v−θ − 1
)− 1

θ , 0
]

θ ∈ [−1, ∞]\{0}

Gumbel exp

{

−
[

(− ln u)θ + (− ln v)θ
] 1

θ

}

θ ∈ [1, ∞]

The estimation of return periods using copulas goes as follows:

1. Fit a marginal distribution for the climate indices (for example, RTWD and R95TOT)
and develop their cumulative distribution functions (CDF). We used 15 marginal
distributions (1) Weibull distributions, (2) gamma, (3) extreme value, (4) exponential,
(5) Birnbaum–Saunders, (6) generalized extreme value, (7) inverse Gaussian, (8) log-
normal, (9) Nakagami, (10) logistic, (11) log-logistic, (12) t location-scale, (13) Rayleigh,
(14) normal, and (15) Rician,

2. The Bayesian Information Criterion (BIC) is applied to identify each climate indices’ best
marginal distribution. The marginal distributions parameters are calculated using a maxi-
mum likelihood algorithm, and the X2 goodness-of-fit is used for statistical significance.

3. The correlation was calculated between different climate indices to evaluate the mutual
dependence between the two climate indices using Kendall’s Tau Correlation coefficient.

4. Obtain the joint CDF of two variables by estimating the copula parameters (see Table 2)
5. Finally, a summary report is generated containing copulas from best fitted to the

lowest one. The best copula function was selected based on the minimum principle
of Akaike Information criterion (AIC) and RMSE following [48].
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4. Results and Discussion

Here, we first present the spatiotemporal trend of precipitation at different timescales
followed by spatiotemporal variability of extreme climate indices for the period from
1951–2018. Rescaled range analysis is employed to predict the future trends of the extreme
climate indices in the basin. Regularity of climate indices and its response to climate change
are unraveled using wavelet analysis. Furthermore, investigates the joint occurrence of
extreme events in the context of global warming.

4.1. Spatio-Temporal Variability of Precipitation

The spatio-temporal trend analysis of precipitation for the entire period is carried out
at monthly, seasonal and annual time scale (Figure 2). The additional supporting analysis
is shown in the Supplementary Materials for brevity purposes (Figures S1–S9). It is evident
that there has been a significant reduction in the precipitation amount over the basin,
especially during the months of June-September (Figure 2). Mixed positive and negative
trends are observed in June with negative trends concentrated toward the basin’s southern
region. Slightly positive and significant negative trends are seen in July towards the basin’s
northern and southern regions with maximum slopes at 0.4821 and −0.9073. August
showed negative trends at all the stations over the basin with southern region exhibiting
significant negative trends with a maximum slope of −1.2952. Significant negative trends
with a maximum slope of −0.7229 are observed at almost all the stations over the basin
except for a few stations in the northern region for September. Seasonal precipitation
also showed negative trends with the summer season being statistically significant with a
maximum slope of −2.1514. A similar pattern of significant negative trends at all stations
is observed for annual precipitation in the basin’s central and southern regions with a
maximum slope of −3.2934. It can be inferred from the monthly, seasonal and annual
precipitation trends that there has been a significant reduction in precipitation during the
period (1951–2018), especially in the basin’s central and southern region. The decreasing in
precipitation agree with the previous studies concerning precipitation trends across India at
various spatial (regional, sub-basin, basin and meteorological sub-divisions, homogeneous
regions) and temporal scales (monthly, seasonal, and annual) [48,49].

Figure 2. Cont.
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Figure 2. Spatio Temporal trends in the total precipitation at different time scales, (a–d) monthly, (e) seasonal, and (f) annual. The
figure provides the Sen slope of the trend in each grid, which has significant trends.

4.2. Spatio-Temporal Variability of Extreme Climate Indices

The spatio-temporal trends in 16 selected extreme climate indices for the entire period
is presented in Figure 3. Figure 4 provides a summary of the number of stations showing
significant trends of extreme climate indices. The results show a substantial reduction in
the precipitation amount over the entire basin, barring few exceptions. This significant
negative trend is visible in RTWD, highlighting a considerable decrease during the period
with a maximum slope of −3.3002 at the basin’s central region. Although the trends of
all the stations are decreasing, 19 stations were statistically significant. R50MM for all
stations showed decreasing trends, 12 of which were statistically significant, with higher

136



Atmosphere 2021, 12, 480

trend slopes of −0.6613 in the basin’s southern region. D95P showed negative trends for all
stations over the basin, out of which 20 were significant and the maximum slope was found
to be equal to −1.5150 in the southern region. Further, 17 stations displayed statistically
significant negative trends for the index R20MM with maximum slope (−1.6938) being
observed at the southern region. A similar pattern of negative trends can be observed with
the other precipitation indices such as R95TOT, RX5D, and RX for almost all the stations.
The number of dry days (DD) showed positive trends during the period over the basin
at 36 stations out of which 17 stations are statistically significant with a maximum slope
of 2 at the southern region of the basin. It is evident from the negative trends of various
precipitation indices that there is a significant reduction of precipitation over the basin. The
index DD exhibiting positive trends over the basin during the same period indicates that
the basin has moved towards drier weather.

Figure 3. Cont.
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Figure 3. Grid locations having significant trends in the selected extreme climate indices expressed along with the trend line’s slope for
(a) R50MM, (b) D95P, (c) DD, (d) R20MM, (e) R95TOT, (f) RX5D, (g) RTWD, and (h) RX.

4.3. Hurst Analysis of Extreme Climate Indices

From the Hurst component the behavior and predictability will be revealed. The
nature of the changing pattern can be determined based on the value of the Hurst exponent,
with H < 0.5 indicating that the mean is reverting, H = 0.5 indicating that the change
is random walk process and H > 0.5 illustrates that the changing pattern is sustainable.
Therefore, by knowing the value of H, the intrinsic nature (mean reverting or trending) of
the time series can be described and it plays a significant role with implications for forecast
skill, low frequency variations [34]. The spatial distribution map of H values for each of
the extreme climate indices is presented in Figure 5. The future trends can be determined
based on the value of the Hurst exponent obtained for the index. R50MM shows mixed
increasing and decreasing future trends all over the basin with the Hurst exponent value
around 0.43 and 0.67.

A sustainable decreasing trend is observed for D95P at all stations over the basin,
indicating a reduction in precipitation in the future. The number of dry days (DD) exhibits
a sustainable decreasing trend at almost all the stations over the basin barring a few
exceptions indicating that the basin is turning drier. For R95TOT, a sustainable decreasing
trend is displayed at almost all the stations except for five stations that interestingly
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exhibited the opposite trend of the present pattern. All the stations showed a sustainable
decreasing trend for the index RTWD in the basin, indicating that the number of wet
days in the basin will reduce in the future. The indices RX, RX5D, and R20MM displayed
sustainable decreasing trends over most of the basin stations except for 2–3 stations whose
Hurst exponents too are closer to 0.50 indicating that the future trend over the entire basin
can be considered as sustainable. Generally, processes with H > 0.5 indicate a persistent
long memory effect and the trend is sustainable [16]. Since in the present study, most of the
stations show H > 0.5, it shows that this region would be having a persisting phenomenon
in terms of decreasing trend in precipitation and increasing trend in temperature in future.
After observing the spatial distribution map of extreme climate indices (Figure 5), we can
summarize that almost all the extreme precipitation indices exhibit a sustainable decreasing
trend except a few stations. Our analysis reveals that precipitation will continue to decrease
in the future meaning that the basin is inching towards a drier climate.

Figure 4. Number of stations where extreme climate indices have shown specific trends in the Gomati river basin during
1901–2018.

4.4. Periodic Oscillation Analysis

The variability of the climate indices is multifaceted, and often conveyed as multi-
frequency and quasi-periodic in the time and frequency domain. Therefore, it is helpful
to use wavelet methods for analyzing the variations in the frequency of climate indices at
multiple scales averaged over 38 grid points in the Gomati river basin during 1951–2018.
In doing so, the regularity of any climate index and its response to climate change can be
better understood. Figure 6 shows the wavelet power spectrum for the climate indices, in
which contours enclosing light yellow regions have larger power. The cone of influence is
represented by a V shape with a black line to distinguish between non-significant periodic
characteristics (edge effect artefacts) and significant periodic characteristics (within the cone
of influence) at 95% confidence level [42]. Additionally, the global power spectrum and its
statistical significance are depicted beside each climate index. The results show that the
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two-year period was dominant in the global wavelet spectrum of R50MM, with significant
wavelet power found during 1975–1980 (Figure 6a). The wavelet power spectrum for
D95P showed a significant power distributed across the 2–16-year bands, and the two-year
period was dominant in the global power spectrum around 1970–1990 (Figure 6b). One
exciting finding unraveled in Figure 6b is that the dominant two-year period of D95P has
changed to the four-year after 1984 and remains there in the past two decades. The wavelet
power spectrum of R20MM is following a similar pattern of D95P (Figure 6c). Figure 6c
indicates that frequency of R20MM is 1 in two years until 1984, and later the frequency
has changed to 1 in four years. Figure 6d shows the wavelet power in the 2–4-year band
around 1955–1965, 1975–1983, 1990–2002, and 2007–2012 and in the 4–6-year band during
1955–1995, and in the 8–16-year band around 196–2000 of R99TOT. The 8-year period was
found in the global wavelet of WD and a 2–4-year band in 1965–1975, 1995–2000 (Figure 6e).
The global wavelet power spectrum of CD (Figure 6f) showed that the 4–6-year period was
significant at the 95% confidence level during 1970–1980. WN was dominated by four- and
eight-year periods, with a 4–8-year band, found in 1994–2014 (Figure 6g).

Figure 5. Cont.
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Figure 5. Spatial distribution map of extreme climate indices (a) R50MM, (b) D95P, (c) DD, (d) R95TOT, (e) RTWD, (f) R20MM, (g) RX,
and (h) RX5D in Gomati Basin based on the Hurst Exponent.

Overall, the wavelet spectra of most of the extreme climate indices showed variability
within the 4–8 years and for some, the inter-decadal variability is prominent. Earlier study
by Rathinasamy et al. [50] have shown there is a linkage between extreme precipitation in
the Indian subcontinent and the global climate teleconnections such as ENSO and PDO.
Following that study, the reason for the presence of dominant variability observed in
the extreme climate indices could be linked to global teleconnection patterns. However,
in-depth analysis is required to understand the dynamics of this linkage which can be
considered in the further analysis.
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Figure 6. Continuous wavelet transformation for climate indices (a) R50MM, (b) D95P, (c) R20MM, (d) R95TOT, (e) WD, (f) CD, and
(g) WN averaged over 38 grid points in the Gomati river basin during 1951–2018. The V shape represents the cone of influence and
regions enclosed with light yellow are periods with significant power. The red color dashed line distinguishes between significant and
non-significant periods. If the global wavelet spectrum curve is higher than the dashed line at a particular scale, then the period is
statistically significant at the 95% confidence level.

4.5. Bivariate Joint Probability and Return Period Analysis

The mutual dependence between the hydro-climatic variables helps to understand
extreme climate characteristics over time that individual indices are limited to cover [39].
Therefore, to detect and analyze the mutual dependence among the extreme climate in the
Gomati river basin bi-variate copula functions are used. Bi-variate copula is efficient to
compute the bi-variate joint probabilities and return periods of climate indices. First, the
probability distributions of climate indices in the Gomati river basin were calculated using
15 marginal distribution functions (listed in Section 3.4), and then Bayesian Information
criterion was used to find the optimal fitting function. The thumb rule is that a smaller BIC
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value point to better-fitting, with the marginal distribution function to the lowest value
considered the best fitted distribution function. Table 3 shows the results of the calculation
of BIC values for each distribution for every climate index. Our results show that R50MM,
RTWD and RX are inverse Gaussian distributed, D95P is gamma, R20MM is Birnbaum-
Saunders, RX5D is log-logistic, DD and WN is Rician, R95TOT is Log-normal, R99TOT
is Rayleigh, CSD is Weibull, WD is normal, CD and SUD is Nakagami distributed. As
presented in Figure 7, the optimal distribution function revealed above was more effective.

Table 3. BIC values and selection of distribution function of the Expert Team on Climate Change Detection and Indices
(ETCCDI).

Climate
Index

Type of Distribution Function

Weibull Gamma
Birbaum-
Saunders

Inverse
Gaussian

Log
Normal

Nakagami
Log-

Logistic
Rayleigh Normal Rician

R50MM 241.5 230.6 226.9 226.8 227.0 237.0 228.9 242.8 247.7 243.8

D95P 399.3 393.8 394.0 394.0 394.2 394.5 397.0 446.7 396.6 396.4

R20MM 379.4 373.0 372.8 372.8 373.0 374.2 375.7 416.9 377.1 376.8

RTWD 940.1 928.6 927.2 927.2 927.3 931.0 929.1 985.7 934.8 934.5

RX 628.4 614.7 612.1 612.0 612.2 617.9 615.4 679.0 622.1 621.9

RX5D 725.1 709.2 706.7 706.6 706.6 713.0 706.1 769.1 717.9 717.6

DD 512.3 505.8 505.9 505.9 505.9 505.7 506.7 822.2 505.6 505.6

R95TOT 470.9 462.2 462.0 462.0 462.0 463.7 462.8 514.0 466.6 466.4

R99TOT 410.5 410.1 413.5 414.8 413.9 410.5 416.7 406.3 421.0 410.5

CSD 576.6 581.5 582.3 582.3 582.4 580.8 583.8 811.5 580.1 580.1

WD 371.8 385.9 433.2 437.5 409.7 376.1 385.9 385.7 368.0 368.9

CD 342.9 343.0 347.5 347.7 347.0 341.4 344.3 375.0 341.8 341.6

WN 378.2 383.5 397.5 398.7 393.6 379.2 385.8 387.7 378.6 377.9

SUD 512.6 505.0 505.1 505.1 505.1 505.0 507.7 823.0 505.1 505.0

Italic bold font indicates the selected distribution function.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Observed data (blue dots) and fitted marginal distribution (red line) of the climate indices (a) R50MM, (b) D95P,
(c) R20MM, (d) RTWD, (e) RX, (f) RX5D, (g) DD, (h) R95TOT, (i) R99TOT, (j) CSD, (k) WD, (l) CD, (m) WN, and (n) SUD
averaged over 36 grid points in the Gomati river basin during 1951–2018.

The selected 16 climate indices could be combined into 120 combinations; however, a
few combinations lack physical meaning. We attempt two combinations for the Gomati
river basin to understand the combination of precipitation amount and intensity (modelling
the flood drivers). Firstly, the R95TOT and RTWD combination is selected to calculate
the joint probability and return period of extremes contribution to total precipitation and
precipitation amount from wet days. Next, the R95TOT and D95P combination is selected
to calculate the joint probability and return period of extreme precipitation contribution and
number of days. The best copula function was selected based on the minimum principle of
AIC and RMSE following [51]. The results are given in Table 4 and the joint probability
and return period for two combinations averaged over 53 grid points during 1951–2018 are
shown in Figures 8 and 9.

Table 4. Ranking of copula families based on RMSE and AIC values.

Climate Index Combination Copula Family RMSE AIC Rank

RTWD&R95TOT
Clayton 0.4175 −403.707 3
Frank 0.2214 −490.013 2

Gumbell 0.1956 −506.819 1

D95P&R95TOT
Clayton 0.3863 −414.272 3
Frank 0.2253 −487.603 2

Gumbell 0.1995 −504.131 1

We first calculated the mutual dependence of these climate indices (R95TOT and
RTWD) in the 68-year record (68 pairs) using three approaches, i.e., Kendal’s Tau rank
(r = 0.4934), Spearman’s rank correlation (r = 0.6613), and Pearson correlation coefficient
(r = 0.7428), of which three methods illustrate a statistically significant dependence between
R95TOT and RTWD. Hence, the bi-variate copula analysis is applied to describe the
interdependence among them.

We first select the optimal marginal distribution functions, to the R95TOT and RTWD
based on the BIC goodness-of-fit measure. Figure 7d,h show the fitted distributions
(red line) compared to the observed (blue dots) for R95TOT and RTWD. We chose an
inverse Gaussian and lognormal distributions to fit both variables (refer to Table 3). Then
we evaluated three Archimedean copula families (Clayton, Frank, and Gumbel) using
the MvCAT toolbox in MATLAB [51]. The parameters of the copula and their posterior
distribution are inferred using a Bayesian analysis and Monte-Carlo simulations. For
both combinations, Gumbel is selected as best copula family to describe the dependence
structure (see Table 4). Figure 8 shows the isolines of the joint probability (Figure 8c)
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and return period (Figure 8f) based on the Gumbel copula. We then use the Gumbel
copula model to derive non-exceedance probabilities and return periods and analyze the
compound event. For the most likely design scenario, the values of R95TOT and RTWD
are 48% and 1500 mm, respectively. The joint return period’s resulting values are greater
than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm).
The difference in values highlights that ignoring the mutual dependence can lead to a
substantial underestimation of extremes. Similarly, for another combination (R95TOT and
D95P), the same procedure is followed to derive the joint return periods and displayed in
Figure 9. Intuitively, consideration of mutual dependence improves the accuracy of the
return period of climate extremes.

Figure 8. Cumulative distributive functions of (A) R95TOT and (B) RTWD, and their (D) and (E) are associated univariate
periods (y-axis indicated in log scale). Joint probability iso lines derived from the Gumbell copula are displayed in Figure
(C), and the associated return period isolines are illustrated in Figure (F). The colorbar [0 1] represents the joint density
levels of joint probability and return periods, where 0 represents lower and one represents higher density level. Blue dots
represent the observed pairs of R95TOT and RTWD. The figure is plotted using the MvCAT toolbox [51] in MATLAB
(Version 9.4 R 2020b).

Overall, from the entire analysis, spatio-temporal variability and changing pattern of
extreme climate indices indicate that the basin will experience a reduction in precipitation
and an increase in the number of dry days pushing the basin towards drier weather. This
finding is in line with prior studies dealt globally [17,52,53] as well as regionally [54–58].
In particular, Abeysingha et al. [56], after analyzing rainfall and temperature trends in
the Gomati River basin, concluded that there had been a significant reduction in rainfall,
consequently leading to decline in the streamflow coupled with increasing temperature
results in dryness in the basin. Sachidanand et al. [58] concluded that the number of ‘warm
days’ per year increased significantly, whereas the number of ‘cold days’, ‘warm nights’,
and ‘cold nights’ per year decreased significantly at several locations in India. On the
other side, a decreasing trend in precipitation is observed at some Uttar Pradesh locations,
including the Gomati basin, highlighting the possibility of dryness in Northern India.
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Figure 9. Same as Figure 8 but for a combination of climate indices R95TOT and D95P.

Numerous climate models have observed that there has been an increase in surface
temperatures over the 20th century [52]. This increase in temperatures will lead to increased
evaporation and surface drying, which increases the intensity and duration of drought
events. On the other hand, for every 1 ◦C warming, the moisture-holding capacity of air is
increased by about 7%, thereby leading to an increase in water vapor in the atmosphere,
which in turn leads to intensifying the water cycle [59]. Therefore, a warmer climate will
increase the risk of drought due to surface dryness and floods due to intensified water
cycle but at different times and/or places. A similar pattern is observed in the present
study. There has been a significant reduction in precipitation along with an increase in the
number of dry days. The future trends based on the Hurst exponent indicate that this trend
is likely to continue in the near future. Further copula modelling is applied to analyze
compound extremes. Intuitively, the multivariate framework can better represent the risk
due to the consideration of mutual dependence.

5. Conclusions

We investigated the long-term spatiotemporal variation of precipitation and the ex-
treme climate indices in the Gomati River Basin in India. The extreme climate indices were
characterized through a trend analysis, dominant periodicities and joint probability. The
main conclusions from the study are as follows.

(a) Different extreme precipitation indices (D95P, R95TOT) show significant decreasing
trends whereas the extreme temperature indices show an increasing trend indicating
that the basin is experiencing a warm and dry climate compared to the past. Further,
the positive persistence present in these variables show that the trend would continue
in the future resulting in warmer and drier climate. The results presented in the study
is in congruence with the other studies wherein the climate has become warmer

(b) The presence of the significant periodicities (4–8 years and decadal timescale) in
the precipitation extreme indicate a possibility of connection with some of the well-
known global atmospheric patterns such as ENSO and PDO. However, interestingly,
the extreme temperature indices did not exhibit significant periodicities.
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(c) Further, the analysis from the CWT of the extreme precipitation indices indicate that
there is a significant non-stationarity indicating that the changes in the precipitation
patterns after the 1980s.

(d) Further copula modelling is applied to analyze compound extremes. The multivariate
framework better represented the risk due to the consideration of mutual dependence.
Interestingly, the copula modelling shows that the joint probabilities for higher annual
precipitation and precipitation receiving from very wet days are smaller than the
marginal exceedance probabilities. Intuitively, consideration of mutual dependence
improves the compound risk of climate extremes.
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Abstract: Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change
would have a serious impact on the social economy, ecological development and life safety. In recent
decades, many studies about extreme precipitation have been performed on spatio-temporal variation
patterns under global changes; little research has been conducted on the regionality and persistence,
which tend to be more destructive. This study defines extreme precipitation events by percentile
method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation
model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation,
taking China in July as a case. The study result showed that the STSM with the LSAM can effectively
detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July
2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective,
China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern
China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and
Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are
mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in
Xinjiang, where extreme precipitation events often take place earlier and persist longer.

Keywords: spatio-temporal patterns; spatio-temporal scanning; local spatial autocorrelation; extreme
precipitation; climate change

1. Introduction

Precipitation is a climatic variable with high spatio-temporal variability, playing an
important role in the eco-hydrological cycle [1]. An abnormal increase or decrease of precip-
itation will lead to an imbalance in surface runoff and soil moisture content, causing severe
catastrophic effects on socioeconomic development, ecological environmental system and
life safety [2,3]. Due to global climate change, the frequency and intensity of extreme
precipitation events has increased in most regions [4–7]. Many studies have performed
extreme precipitation trends analysis (extreme precipitation, precipitation intensity, precip-
itation distribution patterns, etc.) under global warming [8–10], while little research has
been conducted on the regionality and the persistence of extreme precipitation events [11].
Extreme precipitation events are often more destructive if the intensity and frequency are
relatively high within a certain spatial scope and temporal range [12,13].

Identifying regional persistence and aggregation characteristics of extreme precip-
itation events has mainly gone through three stages. Early studies were mostly based
on extreme precipitation indicators, such as the widely used ETCCDMI (Expert Team on
Climate Change Detection Monitoring and Indices) [14–16]. Those studies can reflect mod-
erate disasters but cannot effectively characterize the disaster’s severity [17,18]. Whereas,
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extreme precipitation events with long durations, which are often more destructive, have
been overlooked.

In the second stage, related researches began to introduce time series to precipitation,
the extreme precipitation events were artificially divided into N days (1 day, 3 days or
5 days). Biondi et al. defined days with precipitation values above a certain threshold
as a complete and continuous extreme precipitation process, achieving good results [19].
Min et al. used the percentile threshold method to define extreme precipitation events and
strong precipitation events by the area index method, then used a single or several uninter-
rupted extreme precipitation events to discover the persistent extreme precipitation events
(1-day, 2-day, 3-day, etc.) [18]. A regional formulation of Intensity–Duration–Frequency
curves of point rainfall maxima in a scale-invariant generalized extreme value (GEV)
framework was proposed by Blanchet, under the assumptions that extreme daily rain-
fall is GEV-distributed, and extremes of aggregated daily rainfall follow simple-scaling
relationships [20]. Gentilucci et al. [21], using GEV, successfully forecast extreme precipita-
tion events.

In the third stage, space-time interaction becomes an essential feature for identifying
extreme precipitation events. Extreme precipitation events are not only related to the
duration of extreme precipitation but are also affected by the scope of coverage. Events
possessing both persistent and regional characteristics often cause the most serious damage.
Jing proposed an intensity–area–duration (IAD) analysis method [22], which was improved
from the severity–area–duration (SAD) method created by Andreadis et al. [23], to define an
extreme precipitation event when considering both time period and spatial continuity. The
temporal range is established when the effective precipitation exceeds the corresponding
extreme precipitation threshold on a certain time scale (1 day, 3 days, 5 days, or 7 days).
The continuous spatial extent is established when adjacent grid points exceed the threshold
during the same temporal range. Although the IAD method can accurately identify the
spatial extent and temporal range of regional extreme precipitation events, the values of time
scale are determined subjectively, separating the continuity of the rainfall process [14,24].
Meanwhile, these extreme precipitation events are mainly concerned with short-term multi-
day extreme precipitation events, but relatively stable continuous extreme precipitation
events are likely to cause greater destructive power [25]. Chen et al. redefined regional
persistent extreme precipitation events (PEPE) with severe disasters by time intervals and
spatial adjacency based on multi-day and single-station PEPEs [25].

Coupling temporal processes and spatial patterns, we can better identify extreme
precipitation events [26–28]. However, the above syntheses just superimpose different time
segments onto spatial pattern, separating space and time. The spatio-temporal scanning
model (STSM) was developed by introducing time dimension into the spatial dynamic
scanning window [29–31], and has been broadly applied in infectious diseases, criminology,
economics, and geography [32–34]. It considered both spatial extent and temporal range
through a scanning window, thus can be used to determine the boundary of extreme
precipitation accumulation areas with significant spatial aggregation characteristics.

The definition of extreme precipitation thresholds also plays an important role in
understanding the spatial and temporal aggregation characteristics of extreme precipitation
events. Early definitions of extreme precipitation thresholds mainly adopted the absolute
critical value method, giving one extreme precipitation threshold, which cannot reflect the
actual distribution of precipitation extremes [35,36]. The catastrophic extreme precipitation
events are related not only to the physical properties, but also to the ecological carrying
capacity, which are highly regional. Regions with small spatial scales and similar climate
characteristics can use absolute thresholds; regions with large spatial scales should use
the percentile method. To better reflect the spatio-temporal characteristics of extreme
precipitation events in China, the percentile method is more suitable to be adopted to
define extreme precipitation [37,38].

In this paper, we combine the spatio-temporal scanning model (STSM) and the lo-
cal spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation
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characteristics of extreme precipitation. First, we used daily precipitation data from the
China Meteorological Forcing Data during 1979 to 2018 as input data; then integrated the
31 × 40 time sliding window and the 95% percentile threshold to extract the extreme precip-
itation threshold in July 2016. Second, the STSM was applied to detect the spatio-temporal
extreme precipitation events in China. The spatio-temporal aggregation characteristics
were evaluated by log likelihood ratio (LLR) and the relative risk (RR). Last, the local
spatial autocorrelation model (LSAM) was integrated to discover the internal distribution
of extreme precipitation in the spatio-temporal accumulation area.

2. Materials and Methods

2.1. Data

Ground-based rain gauge records are stable and have the longest historical precipita-
tion observation data, widely used in hydrology and climate research [39–41]. However,
ground-based rain gauge records are sparse at point scale, and there are not enough to
develop a reliable high-resolution global dataset and capture the spatio-temporal vari-
ation characteristics of precipitation [42]. The China Meteorological Forcing Data [43]
has provided long-standing, globally covered precipitation data through the fusion of re-
mote sensing products, reanalysis dataset and in-situ observation data at weather stations,
improving the extraction accuracy of extreme precipitation events [43–47]. The forcing
dataset is expected to be better with more stations as the input observation dataset. A
large number of stations were used to generate the China Meteorological Forcing Data,
which allowed it to show superior quality. Two ground-based observation data sources are
used in the China Meteorological Forcing Data: China Meteorological Administration’s
China Meteorological Data Service Center, approximately 700 stations; and the National
Oceanic and Atmospheric Administration (NOAA)’s National Centers for Environmental
Information (NCEI), approximately 300–400 weather stations in China [45]. This paper
uses these daily datasets at 0.1◦ × 0.1◦ (longitude, latitude), covering China from 1979 to
2018. The effective precipitation value of each grid point is defined as greater than 1 mm.

2.2. Extreme Precipitation Threshold Extraction Method

The percentile method calculates a percentile as the extreme value for each grid. The
detailed calculation is as followed: for each grid, we obtain a 31-day monthly time series of
effective precipitation using a forward sliding window of 15 days and a backward sliding
window of 15 days; then, we apply the 31-day monthly time range of each grid point from
1979 to 2018 to obtain a 31 × 40 yearly precipitation sequence. Finally, the 95th percentile
of the yearly precipitation sequence is extracted as the extreme precipitation threshold for
the grid. For example, to calculate the extreme precipitation threshold of a certain grid
point on 16 July, the effective precipitation sequence from 1–31 July from 1979 to 2018, and
the 95th percentile of the effective sequence is the extreme precipitation threshold for the
grid point.

2.3. Spatio-Temporal Scanning Model

STSM selects an event in the scanning area as the center of the bottom surface of
the dynamic cylinder scanning window, continuously enlarging the radius of the bottom
surface (the upper limit of the radius is generally set less than or equal to 50% of the total
number of points in the research area) and the height of the cylinder (the upper limit of
the time is generally set greater than or equal to 50% of the maximum time sequence)
until reaching the upper limit. This scanning process will repeat for each event in study
area (Figure 1). Then, the LLR and RR are calculated based on the actual number of
events and expected number of events inside and outside the scanning window. Finally,
the sample data of the scanning area are simulated multiple times using the Monte Carlo
randomization method to obtain a confidence value of the aggregated regions. The window
of the spatio-temporal clustering area needs to satisfy both the LLR greater than 0 (LLR > 0)
and the ratio of extreme precipitation events in the window greater than outside (RR > 1).

155



Atmosphere 2021, 12, 218

Among all the clustering areas, the clustering area with the maximum LLR is the first-level
accumulation area, indicating that the clustering area has the highest occurrence probability
of extreme precipitation.

m( ) ( )mୱ



P = ൫ − ൯ ( )− − ൫ − ൯ ( )− ( ) − −

ቆ ( )ቇ ቆ − ( )ቇ ( )− ቆ −( )− ( )ቇ − ቆ −
−( )− ( )ቇ ( )− ( ) − −    

Figure 1. Schematic diagram of the spatio-temporal scanning model (STSM).

There are only two states for the daily precipitation extreme precipitation event data
(either extreme or not extreme precipitation events), which are suitable for the Bernoulli
distribution model, also known as a typical 0–1 distribution. Both the shape and size of the
scanning windows should be considered: based on the structure of the scanning regions
and the spatial characteristics of China, we adopted a circular scanning window. The
principle of the STSM is as followed:

The probability of extreme precipitation events (P) for the entire study area G can
be calculated by Equation (1), where mz is the actual number of extreme precipitation
events in the scanning window Z, µ(Z) is the total number of events, µ(G) is the total
number of extreme precipitation events in all regions G, ms is the actual number of extreme
precipitation events, p ∈ [0, 1] is the probability of extreme precipitation events in the
scanning window, and q ∈ [0, 1] is the probability of extreme precipitation events outside
the scanning window.

P = pmz(1 − p)µ(Z)−mzqmg−mz(1 − q)((µ(G)−µ(Z))−(mg−mz) (1)

Assuming L(Z) is the likelihood function value of the spatio-temporal scanning win-
dow Z, then Equation (1) can be expressed as Equation (2):

L(Z) =
(

mz

µ(Z)

)mz
(

1− mz

µ(Z)

)

µ(Z)−mz
(

mg−mz

µ(G)−µ(Z)

)mg−mz
(

1− mg−mz

µ(G)−µ(Z)

)((µ(G)−µ(Z))−(mg−mz)

(2)

Based on the null assumption, the likelihood function L0 is given as Equation (3):

L0 =

(

mg

µ(G)

)mg
(

µ(G)−mG

µ(G)

)

µ(G)−mg

(3)

K is an indication function. If the probability of an extreme precipitation event in
the spatio-temporal scanning window is greater than the outside of the window, K = 1;
otherwise, it is 0. The maximum LLR in Z has the expression in Equation (4):
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max LLR = maxlog
[

L(Z)
L0

]

K
(

mz

µz
>

mg−mz

µ(G)−µ(Z)

)

(4)

LLR is mainly used to characterize the probability of the spatio-temporal accumulation
area; RR is mainly used to characterize the spatio-temporal persistence through measuring
the number of extreme precipitation grids inside and outside the spatio-temporal clusters.
RR is defined as Equation (5), where ni and Ei represent the number of extreme precipitation
events and the number of expected extreme precipitation events, observed in the spatio-
temporal scanning window i, respectively; N represents the total number of extreme
precipitation grids in the study area; E represents the total expected number of extreme
precipitation grids in the study area. N is equal to E to meet the data requirements of the
spatio-temporal scanning.

RRi =
ni/Ei

(N − n i)/(E − E i)
(5)

To ensure the results are statistically significant (p <= 0.001), this experiment randomly
generates M data sets according to the Monte Carlo test.

2.4. Local Spatial Autocorrelation Model

Spatial autocorrelation is one of the most commonly used models for spatial ag-
gregation [48,49]. It can measure the correlation of the same object in different spatial
locations. Spatial autocorrelation is divided into global spatial autocorrelation and local
spatial autocorrelation. The global spatial autocorrelation assumes that the space is ho-
mogeneous and one trend exists in the entire region. Its value is between −1.0 and 1.0
through normalization. Moran’s I > 0 indicates a positive spatial correlation in the spatial
unit; the larger the value, the more aggregative the units. Moran’s I < 0 indicates a negative
spatial correlation in the spatial unit; the smaller the value, the sparser the units. Moran’s
I = 0 indicates that the spatial unit does not have spatial autocorrelation and is randomly
distributed. However, it can only detect the global spatial aggregation, and cannot locate
the specific accumulation area [50–52]. Therefore, it is necessary to introduce local spatial
autocorrelation to analyse the local aggregation characteristics aggregation, such as LISA
(local indicators of spatial association) and Moran’s I scatter plot.

LISA applies the Moran index to each regional unit, describing the similarities be-
tween the spatial units and its neighborhood. Moran scatter plots use a two-dimensional
coordinate system to visually describe observed variables and spatial lag vectors. The
x-axis represents the normalized observations, and the y-axis represents the spatial lag
vector (the weighted average of the observations around the observation). The coordinate
system is divided into four quadrants (HH, HL, LL, and LH) according to the order of the
combination of high and low, which represent the spatial relationship between a certain
research area and the adjacent area. Among them, the first quadrant indicates a high-value
aggregation (HH), that the Moran index is positive, the z score is positive, and the LISA
value is positive (aggregate). We chose Queen’s case as the spatial weight matrix with eight
neighborhoods. At the same time, the LISA value is calculated according to Equation (6),
where S is the cumulative precipitation difference, ti and tj are the precipitation at i and j,
respectively, t is the mean precipitation, and Z(I i) obeys the standard normal distribution.
Z(I i) is calculated by normalizing the local autocorrelation index Ii to obtain the signifi-
cance p of each grid point. This paper considers p-values that do not exceed 0.001 to be
statistically significant.

S =

{ 1
n ∑

n
i=1(ti − t), ti ≧ t

0, ti < t
;

Ii =
(ti − t)

S ∑
n
j=1 wi, j

∑
n
j=1 wi, j(tj − t);

Z(I i) =
I − E[Ii]
√

V[Ii]
;

(6)

157



Atmosphere 2021, 12, 218

2.5. Experimental Process

The main experimental steps in this paper are shown in Figure 2: first, the extreme
precipitation threshold based on the daily precipitation grid data from 1979 to 2018 by
percentile threshold method was extracted using the 31 × 40 time sliding window. Then, the
extreme precipitation threshold and daily precipitation value were compared to select the
extreme precipitation grid. Second, the spatio-temporal clusters of extreme precipitation
in July 2016 were extracted using the Bernoulli distribution’s STSM. Third, the LSAM
was used to detect the hot spots with accumulated precipitation differences to achieve
fine positioning. Finally, the extracted spatio-temporal clusters of extreme precipitation
were compared with the historical extreme precipitation events to evaluate the extraction
accuracy of the STSM.

ቊଵ୬ ∑ (t୧ − t), t୧ ≧ t୬୧ୀଵ0,  t୧ < t
− ̅ ௌ ∑ ∑ − ̅

− ሾ ሿඥ ሾ ሿ

 

Figure 2. Spatio-temporal aggregation detection flow chart for extreme precipitation. LLR: log
likelihood ratio; RR: relative risk; LISA: local indicators of spatial association.

3. Results

3.1. Spatio-Temporal Aggregation Characteristics of Extreme Precipitation Events

When using STSM, the parameters have a great influence on the results. In this paper,
we set the spatial scanning window threshold parameter to 5%, 10%, 15%, and 20%, then
applied them to extract the spatio-temporal clusters of extreme precipitation events in
China July 2016.

As Figure 3 shows, when the spatial scanning window parameter is set to 5%, the
scanning result is too fragmented. Almost the whole of China has accumulation areas,
and many accumulation areas are small and dense, which cannot effectively represent the
spatio-temporal aggregation of extreme precipitation events. When the parameter is set to
10%, the accumulation area starts to have a good degree of discrimination, but the number
of accumulation areas is still too high. When the spatial scanning window is set to 15% and
20%, the positions and sizes of the extreme precipitation accumulation areas tend to be
similar. Although the accumulation areas of 20% coincides with the accumulation areas
of 15%, and both show obvious spatio-temporal aggregation characteristics; the number
of accumulation areas are reduced when the parameter is set to 20%, which are relatively
rough, overlooking small areas with extreme precipitation, and may include spurious
accumulation areas where extreme precipitation events did not exist. The spatial scan
window parameter is better set to 15% (an appropriate level of detail and better consistency)
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with the advantage of a stable calculation result. The time scan window parameter is set
to an empirical value of 50% [53]. The results of the 15% scanning window are shown in
Table 1 and Figure 4.

 

Figure 3. The results for scanning window thresholds set to 5%, 10%, 15%, and 20%.

Table 1. Spatio–temporal scan results of China from 1 to 31 July 2016 (15%).

Cluster Date
Cluster
Region

Number of
Events

Expected
Events

Log Likelihood
Ratio

Relative Risk p-Value

2016/07/19–2016/07/20 1 6000 707.01 9763.16 8.69 0.001
2016/07/28–2016/07/28 2 3598 287.49 8634.29 12.70 0.001
2016/07/08–2016/07/08 3 6703 1079.89 8130.93 6.36 0.001
2016/07/01–2016/07/04 4 5819 931.85 7091.63 6.38 0.001
2016/07/20–2016/07/25 5 8874 2201.44 6724.74 4.15 0.001
2016/07/21–2016/07/25 6 6505 1903.84 3937.85 3.49 0.001
2016/07/10–2016/07/10 7 2474 390.88 3041.10 6.39 0.001
2016/07/26–2016/07/26 8 677 57.90 1493.53 11.73 0.001
2016/07/05–2016/07/05 9 879 122.00 1221.12 7.23 0.001
2016/07/13–2016/07/13 10 1047 232.35 895.07 4.52 0.001

The STSM detected ten statistically significant (through confidence tests) spatio-
temporal clusters, which better reflected the distribution of extreme precipitation events
in time and space (Figure 4). Cluster 1 is centered on 37.95 N, 115.65 E with a radius
of 393.84 km. From the provincial perspective, it is mainly centered on Hebei, Shanxi,
Shandong and Henan. The accumulation lasted two days from 19 July to 20 July. Its
corresponding LLR is 9763.16, which is 1.13 times the aggregation degree of cluster 2. It’s
RR also reaches the third highest value (8.69). Cluster 2 centered on 33.95 N, 83.95 E with a
radius of 350.26 km, covering the northern Xizang and southern Xinjiang, with the highest
RR (12.52). Cluster 8 reaches the second highest value (11.69). Other statistically significant
clusters (p < 0.001) have relatively small RR values that gradually reduce with a more stable
gradient. Cluster 6, 7, 8, 9, and 10′s LLR are relatively smaller than cluster 1, 2, 3, 4, 5.
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Cluster 5′s LLR is 1.7 times than cluster 6. The extreme precipitation duration is short, and
the detected clusters over three days only include cluster 4, cluster 5, and cluster 6.

 

′
′

Figure 4. Spatio-temporal aggregation pattern of extreme precipitation events in July 2016, China.

3.2. Internal Spatio-Temporal Aggregation Characteristics with the Local Spatial
Autocorrelation Model

Combined with the LSAM to further explore the internal aggregation characteristics
of the spatio-temporal accumulation area of extreme precipitation, we selected the largest
LLR (cluster 1) and largest RR (cluster 8) as examples. The difference between the daily
maximum precipitation value and the extreme precipitation threshold was accumulated,
then hot spots in the extreme precipitation areas were extracted by GeoDa. Cluster 1 starts
from 19 July 2016 to 20 July 2016, lasting for two days. The Moran’s I scatter plot (left) and
p-values (right) in space are shown in Figure 5.

China’s cumulative precipitation difference from 19 to 20 July 2016 has a significant
correlation. Moran’s I correlation index reaches 0.984636. The high-high value regions
(extreme precipitation events surrounded by extreme precipitation events) are mainly
distributed in Hebei, Shanxi, Henan, Hubei.

By overlapping the high-high value regions (p > 0.001) and the spatio-temporal clusters
in Figure 4, we found that cluster 1 had obvious hotspots; cluster 4, cluster 5, and cluster
10 also had some hotspots (Figure 6). They decreased outwards from one of the internal
regions, surrounded by low-value regions. The possible reason for this distribution is that
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the cumulative precipitation difference is selected from 19 July 2016, to 20 July 2016, where
extreme precipitation events occurred in these regions; other regions of China are more
stable. These results suggest that the combined use of LSAM is helpful for the exploration
of the internal aggregation characteristics of these clusters.

 

Figure 5. Moran’s I scatter plot (left) and p-values (right) in China from 19 to 20 July 2016.

 

h–Figure 6. Overlap between the high–high value areas and the clusters of the STSM from 19 to 20 July 2016.

China’s cumulative precipitation difference on 28 July 2016 also has a significant
correlation (Figure 7). Moran’s I correlation index reaches 0.91667, slightly smaller than the
highest LLRs Moran’s I, perhaps because of sparser precipitation. The high-high values are
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mainly distributed in cluster 2, cluster 5 and cluster 1, which occurred near 28 July 2016
(Figure 8). In addition, the LISA value on 28 July 2016, which reached 423.97, is larger than
the LISA value on 19 to 20 July 2016, which reached 173.96. This indicates that RR is more
suitable for characterizing the actual spatio-temporal persistence of the accumulation areas,
which is also more catastrophic; LLR is more suitable for characterizing the most likely
spatio-temporal accumulation areas. Although the region with a larger RR has a higher
probability of occurrence (LLR) of extreme precipitation events, there is no clear positive
correlation; that is, the region most likely to have extreme precipitation events does not
necessarily have the strongest RR, and the assessment of catastrophic ability must consider
the local natural environment.h–

 

Figure 7. Moran’s I scatter plot (left) and p-values (right) in China on 28 July 2016.

 

Figure 8. Overlap between the high–high value areas and the clusters of the STSM on 28 July 2016.
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Taken together, these results suggest that extreme precipitation events are more likely
to occur in eastern and northern China with a significant aggregation, e.g., North China
Plain centered on Hebei, north-western China centered on Gansu, and the Tianshan Moun-
tains.

4. Discussion

Our research, coupled the spatial and temporal properties of extreme precipitation
events using STSM, successfully discovered the spatio-temporal clusters of extreme pre-
cipitation events. To optimize the spatial positions of the extreme precipitation events,
LSAM was used to further detect the internal distribution of extreme precipitation clusters.
According to the meteorological reports provided by the National Information Centre,
extreme precipitation in 2016 was mainly concentrated in East China and North China,
and the North China Plain is the rainstorm center far beyond the same period of national
precipitation from 18 to 20 July 2016 [54,55]. Zhou et al. used 2016 rainwater and typhoon
information collected by the Water Resources and Hydrology Bureau of China to analyze
the extreme precipitation events, finding that the extreme precipitation process began early,
was long lasting, and widely covered China in 2016 [56]. Twenty-eight provinces and cities
were influenced by these extreme precipitation events: the first echelon affected by extreme
precipitation events were along the Yangtze river: Jiangxi, Hunan, Zhejiang, Guangdong,
and Fujian; the second echelon (Guangxi, Shanghai, Anhui, Chongqing, Hubei, Jiangsu,
and Guizhou) was basically located on the outskirts of the first echelon [56]. They are
highly coincident with economically developed regions, causing a major impact on China’s
economic development. Extreme precipitation events have also occurred in the inland
areas, e.g., Xinjiang and Gansu corresponded to cluster 2 and cluster 3. These studies
are highly consistent with our findings, which showed that STSM combined with LSAM
is useful in recognizing the aggregation characteristics of extreme precipitation events.
Particularly, this method contributes to a decrease in subjective and an increase in objec-
tive information when determining the location and range of extreme precipitation areas
through coupling the spatial and temporal scale, and enables the quantitative evaluation of
these areas with LLR and RR.

There are also some limitations in this study. First, although the percentile threshold
method can reduce the influence of spatio-temporal heterogeneity and climate multi-
deformation, it cannot eliminate the influence of the threshold divided subjectivity by
human. Second, the spatial resolution (0.1◦ × 0.1◦) and time scale (d) of the China Mete-
orological Forcing Data are still rough. The extraction accuracy of extreme precipitation
events is insufficient. Third, the fixed window shape of the STSM limits the fine-grained
extraction of spatio-temporal clusters; thus, it is easy to obtain false spatio-temporal clus-
ters. Finally, the RR can reflect the spatio-temporal persistence of the clusters of extreme
precipitation, but it cannot indicate the concentration degrees of different intensities or
frequencies. It is necessary to improve the quantitative description index. If more refined
data and more accurate models can be used, the detection of spatio-temporal clusters of
extreme precipitation events will have more practical significance.

5. Conclusions

In this study, we coupled the spatial extent and the temporal range of extreme pre-
cipitation events to analyze the spatio-temporal aggregation characteristics by using the
STSM (spatio-temporal scanning model) and LSAM (local spatial autocorrelation model),
then applied this method to China. Through the STSM’s dynamic scanning window, the
spatio-temporal clusters break the limitation of subjective divisions, better synthesizing the
temporal and spatial properties of extreme precipitation with an unbiased result. Combined
with LSAM, we can detect the precise location of extreme precipitation in spatio-temporal
clusters. The result showed that China’s summer extreme precipitation events in 2016
are significantly aggregated. The clusters of extreme precipitation events are mainly dis-
tributed in eastern and northern China, such as cluster 1 located on Hebei, cluster 2 and
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cluster 3 located around Xinjiang, cluster 4 located on the middle basin of the Yangtze River
and Xinjiang.

The LLR and RR in STSM are important quantitative evaluation indicators, which are
not only helpful detect the location of extreme precipitation, but also for the quantitative
evaluation of the aggregation degree. Although the clusters of extreme precipitation events
with a larger RR also have a larger LLR, there is no obvious positive correlation among
them. RR is more representable to catastrophic extreme precipitation.
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Abstract: Precipitation is essential for modeling the hydrologic behavior of watersheds. There exist
multiple precipitation products of different sources and precision. We evaluate the influence of
different precipitation product on model parameters and streamflow predictive uncertainty using
a soil water assessment tool (SWAT) model for a forest dominated catchment in India. We used
IMD (gridded rainfall dataset), TRMM (satellite product), bias-corrected TRMM (corrected satellite
product) and NCEP-CFSR (reanalysis dataset) over a period from 1998–2012 for simulating streamflow.
The precipitation analysis using statistical measures revealed that the TRMM and CFSR data slightly
overestimate rainfall compared to the ground-based IMD data. However, the TRMM estimates
improved, applying a bias correction. The Nash–Sutcliffe (and R2) values for TRMM, TRMMbias
and CFSR, are 0.58 (0.62), 0.62 (0.63) and 0.52 (0.54), respectively at model calibrated with IMD
data (Scenario A). The models of each precipitation product (Scenario B) yielded Nash–Sutcliffe
(and R2) values 0.71 (0.76), 0.74 (0.78) and 0.76 (0.77) for TRMM, TRMMbias and CFSR datasets,
respectively. Thus, the hydrological model-based evaluation revealed that the model calibration with
individual rainfall data as input showed increased accuracy in the streamflow simulation. IMD and
TRMM forced models to perform better in capturing the streamflow simulations than the CFSR
reanalysis-driven model. Overall, our results showed that TRMM data after proper correction could
be a good alternative for ground observations for driving hydrological models.

Keywords: parameter and prediction uncertainty; IMD; TRMM; CFSR; Nagavali River Basin
Region (NRB)

1. Introduction

Precipitation data are crucial to many applications related to human life and water management.
Examples include estimating the hydrological water balance [1], improving management practices,
hydropower planning, development projects and flood controls. Conventionally, rain gauges provide
the direct measurement of precipitation. However, rain gauges are often not enough to correctly
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resolve precipitation and precipitation-related processes. Moreover, the spatial coverage of the rain
gauge over a large area is low, and they require huge investments [2].

With the advancements in remote sensing and high computation facilities, several precipitation
products from various sources are available. For instance, the National Center for Environmental
Prediction Climate Forecast System Reanalysis (NCEP-CFSR) [3], Modern-Era Retrospective analysis
for Research and Applications (MERRA) [4] and Global Land Data Assimilation System (GLDAS) [5] are
different reanalysis data. Similarly, the Tropical Rainfall Measuring Mission (TRMM) [6], Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [7],
Climate Prediction Center MORPHing (CMORPH) [8], Climate Hazards Group Infrared Precipitation
with Station data (CHIRPS) [9], Global Precipitation Measurement (GPM), Integrated Multi-Satellite
Retrievals GPM (IMERG) [10,11] are satellite dataset commonly available. A few gauge-gridded
datasets are the Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation
(APHRODITE) [12,13], Indian Meteorological Department (IMD) gridded datasets [14]. All these
different precipitation products have been shown to be accurate and comparable with the ground
observations in various circumstances. Moreover, remote sensing-based products [15] and reanalysis
data [16] could be a viable alternative for ground-based observation [17] in complex terrain where
observed gauge data are of low quality, sparse or non-existent for flood forecasting, drought
monitoring [15,18–20] and water balance studies [21].

Among different reanalysis products, NCEP-CFSR is one of the commonly used for precipitation
application [3,22], and various studies investigated the evaluation and intercomparison of the reanalysis
data sets. Wang et al. [23] reported that CFSR has better precipitation distribution in comparison with
the NCEP- NCAR data and ERA data sets. Similarly, Rienecker et al. [4] reported that the performance
of CFSR and MERRA was similar in capturing the quantity of precipitation. Dile and Srinivasan [3]
tested the applicability of CFSR data for hydrological modeling of the Nile River Basin and concluded
that the CFSR could be a valuable alternative for data-scarce regions. Roth and Lehmann [24] compared
the conventional weather data and CFSR data for simulating discharge and sediment volume for
three catchments in Ethiopia and found that the CFSR simulation is not satisfactory. On similar lines,
Tolera et al. [25] showed that the CFSR data set could be reliably used for the streamflow simulation
with a caution that CFSR estimates are higher than the observed rainfall.

Moreover, high-resolution satellite remote-sensing products are vital in driving hydrological
models, especially in flood-prone complex terrain [26–28]. Satellite data were heavily used for driving
different hydrological models, including the SWAT model [15,21,29–32] and variable infiltration
capacity (VIC) [33–35]. Furthermore, satellite data are useful in understanding the anthropogenic
impacts on hydrology, evaluating the utility of watershed management practices, and predicting the
future status of water quality and quantity. A multitude number of studies showed that the ability
and reliability of the satellite-based precipitation products in driving the hydrological model fluctuate
mainly due to variability in the catchment area, seasonality, topography, climatic characteristics,
geographical location, satellite product type [15,36–42]. Studies mentioned above reported satisfactory
model performance by using different TRMM precipitation products. Specifically, Zhu et al. [32]
reported that performances were achieved on daily and monthly scales, respectively, for TRMM (3B42)
data. Similarly, Li et al. [15] investigated the adequacy of TRMM satellite rainfall data in driving a
hydrological model for Tiaoxi catchment, Taihu lake basin, China. Yuan et al. [43] used two TRMM
products for statistical and hydrological assessment of these products at a sub-daily time scale in
Myanmar using the SWAT model; they found all satellite data products showed acceptable results
during the simulation of streamflow at the sub-daily scale. Apart from these studies, various other
researchers also reported that the direct input of satellite-based precipitation products in hydrological
models underperform in comparison with the observed ground-based measurements [29,44]. However,
it is to be noted that, by applying a suitable correction, the performance of these datasets is drastically
improved. Zhang et al. [41] found that the corrected TRMM multi-satellite precipitation analysis
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(TMPA 3B42V7) showed a better understanding than the original 3b42v7 data. Similar inferences were
reported by Bitew et al. [29] and Tuo et al. [2] in their respective analysis.

All the studies mentioned above strengthened the need for thorough validation of these
precipitation products and bias correction before using them as an input for the hydrological
model. In addition, errors and uncertainties associated with inputs (precipitation products) have
a high probability of inducing it in hydrologic simulations [45]. A multitude of studies showed
that the model recalibration using the precipitation product considerably increases the model
performance [2,17,41,46–52]. However, the model parameter ranges obtained through the recalibration
with the precipitation data may be improbable, thereby questioning the model’s applicability for
real-world applications. Further, in such recalibration of the models, it is essential to estimate the
parameter uncertainty due to the precipitation input. Thus, validations and evaluations of these
precipitation products are critical for any hydrologic modeling study [53,54]. Further, the calibration
and output of the hydrological model is a function of the input precipitation characteristics. Therefore,
it is imperative to evaluate the effect of the different precipitation products on the parameter estimation
(calibration) and the streamflow simulations. It can also be stated that there is enough scope for
advancement in understanding the effect of the different precipitation products on the hydrologic
model- based streamflow simulations, parameter estimation (Calibration), predictive uncertainty and
its applicability in Indian subcontinents.

Even though there has been a plethora of work done in terms of comparison of the reanalysis
and satellite dataset individually, there has been a limited number of studies on intercomparison of
different classes of precipitation data sets. Therefore, in this study, we compared three different types of
precipitation products that are commonly used, (i) gauge-based rainfall product (IMD), (ii) reanalysis
data (NCEP-CFSR) and (iii) satellite precipitation (TRMM and TRMM corrected). This study aimed to
(1) compare the statistical characteristics of four different precipitation data sets, (2) investigate the
adequacy of these precipitation products in driving the semi-distributed SWAT hydrological model
and (3) evaluate the parameter uncertainty involved. These precipitation inputs are used to develop a
semi-distributed SWAT model for a semi-arid, forest dominated coastal basin, “Nagavali River Basin
in India”.

2. Material and Methods

2.1. Study Area

We selected the Nagavali River Basin (NRB) since the literature on semi-arid and semi-humid
climatic regions is limited. NRB lies between the Godavari and Mahanadi river basins in the eastern
part of India, with a catchment area of about 9510 km2 (Figure 1). The river begins from the Eastern
Ghats at an elevation of 1600 m. It traverses about 160 km through Odisha and enters Andhra Pradesh
near Kuneru village of Vizianagaram district at an elevation of about 152 m [55]. The extent of the
basin is 18◦17′ to 19◦44′ north latitudes and 82◦53′ to 83◦54′ east longitudes. The stream length ranges
around 255 km, out of which the main 62% lies in Odisha and the rest in Andhra Pradesh.

In this study, we considered the catchment area of 9056 km2 up to the gauging and discharge
measurement station at Srikakulam. NRB gets typical yearly precipitation of around 1140 mm, and the
annual average temperature of the river basin is 28.2 ◦C in post-monsoon and 34.2 ◦C in pre-monsoon.
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Figure 1. Index map showing the geographical location of Nagavali River Basin (NRB) along with the
stream network, gauge location in red and precipitation grid points in blue. Total 19 grid points of the
Indian Meteorological Department (IMD) were located within the NRB river basin.

2.2. Datasets

Four precipitation products from different sources and of different resolutions that are the most
frequently used in the hydrological application are used. This include gridded IMD (0.25◦ × 0.25◦),
TRMM 3B42 (0.25◦ × 0.25◦), bias-corrected TRMM (0.25◦ × 0.25◦) and reanalysis NCEP-CFSR (0.31◦ ×
0.31◦). All the datasets are selected for the common observation period from 1998–2012. Table 1 and
Supplementary Information Section S1 present detailed information about the precipitation data.

170



Atmosphere 2020, 11, 1252

Table 1. Detailed information and sources of different rainfall datasets used in this study. IMD—Indian Meteorological Department; TRMM—Tropical Rainfall
Measurement Mission; NCEP-CFSR National Center for Environmental Prediction Climate Forecast System Reanalysis.

Name and Type
Spatial

Resolution/Coverage
Temporal

Resolution/Period
Remarks, References and Data Sources

IMD
(gridded rainfall dataset)

0.25◦/Pan India Daily/1901–2013

The gridded data were generated from the observed data of 6995 gauging stations
across India using spatial interpolation for the period 1901–2013 [14]

Details about these data can be obtained from http://imd.gov.in
(homepage/rainfall information).

TRMM 3B42V7
(satellite product)

0.25◦/Global (50 N-S) Daily/1998–2014

Joint mission between the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) to monitor tropical

precipitation [6]
one type of the TRMM multi-satellite precipitation analysis (TMPA) products)

https://giovanni.gsfc.nasa.gov

Bias-corrected TRMM
(satellite product)

0.25◦/Global (50 N-S) Daily/1998–2014)

The bias of TRMM rainfall was corrected by applying monthly multiplicative
correction coefficients (MCC) of IMD rainfall [56]

MCCdaily = IMDtotal/TRMMtotal

https://giovanni.gsfc.nasa.gov

CFSR
(reanalysis dataset)

0.31◦/Global (50 N-S) Daily/1979–2014
Global, high resolution, coupled atmosphere–ocean–land surface-sea ice system

started in 1979 by the National Centers for Environmental Prediction [22]
https://globalweather.tamu.edu/
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2.3. Verification Strategy

Various statistical metrics used to evaluate the satellite precipitation products with reference
to gauge-based IMD gridded data both qualitatively and quantitatively. IMD dataset is a popular
validated dataset used in several other works [57–61]. Pai et al. [14] and Yeggina et al. [62] evaluated
the performance of the IMD gridded dataset against the gauge rainfall estimates and showed that the
IMD gridded dataset could be used as a reliable alternative for gauge rainfall. Various qualitative
methods were used to measure the correspondence between estimates by precipitation product and
IMD data. Here, we use the false alarm ratio (FAR), probability of detection (POD) and critical success
index (CSI)—to evaluate the TRMM, bias-corrected TRMM and CFSR data with the reference rainfall
data (IMD). Detailed information on these statistical metrics is presented in Table 2 and Supplementary
Information Section S2. Instead of point-to-point analysis, we analyzed the spatial average rainfall
over the entire catchment considering the size and homogeneity of the catchment [63]. Based on the
average rainfall for a given day, these statistical measures were computed by comparing rainfall and
non-rainfall events for satellite (TRMM and CFSR) and reference (IMD) rainfall data.

Table 2. Definition of statistical metrics used to evaluate the TRMM, bias-corrected TRMM and CFSR
data with the reference rainfall data (IMD). These statistical measures were computed by comparing
rainfall and non-rainfall events for satellite (TRMM and CFSR) and reference (IMD) rainfall data.
In general, when the values of probability of detection (POD) < 0.65, FAR > 0.35 and CSI < 0.45, it is
assumed that the product performance is low in terms of detecting rainfall. The calculation of these
three metrics is explained in [64].

S. No Statistical Metrics Equation Description

1
Probability of

detection (POD)
POD = H/(H +M)

It represents the detected rainfall events correctly by
satellite out of rainfall events by reference data. Its

ranges from 0 to 1 (1 is the best value)

2
False alarm ratio

(FAR)
FAR = F/(F + H)

It represents the false, detected as rainfall event by
satellite when reference data showed no rainfall. Its

ranges from 0 to 1 (0 is the best value)

3
Critical success

index (CSI)
CSI = H/(H +M + F)

It is more accurate when correct negative values are
not considered. Its ranges from 0 to 1 (1 is the perfect

value)

For the verification of the discharge simulation from the hydrological model, we adopted the
popular performance evaluation measures such as Nash–Sutcliffe coefficient (NS) [65], percentage of
bias (PBIAS) and the coefficient of determination (R2) in this study.

NS = 1−
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are the ith time step simulated and observed values, respectively. Y is the mean of
‘n’ observed values.
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The values of NS ranges from −∞ to 1, with NS = 1 indicating the best model. PBIAS (Equation (2))
measures the average tendency of the simulated data (Gupta et al. [66], and the optimal value of
PBIAS is zero. If PBIAS is a positive value, the model is underestimating the streamflow, and if
PBIAS is negative, the model overestimates the streamflow. The model is unsatisfactory if NSE ≤ 0.5,
satisfactory performance (0.5<NS≤ 0.65), good performance (0.65<NS≤ 0.75), very good performance
(0.75 < NS ≤ 1.00) and PBIAS >± 25% for the streamflow [67]. The R2 pattern similarity between
observed and simulated data and its value ranges between 0 and 1. Higher the value of R2, the higher
the similarity.

2.4. Hydrological Model

The precipitation products mentioned above were used to drive a semi-distributed Soil and
Water Assessment Tool (SWAT) model. Here, we briefly describe the SWAT model and its governing
equations, procedures to set up the model, and finally, the way to calibrate and evaluate the model.

SWAT is a comprehensive, physically based, continuous in time, semi-distributed hydrological
model [68,69]. It was developed by the Agriculture Research Service of the United States Department
of Agriculture and used widely to study large scale hydrological conditions in different regions [70–73].
It mimics various hydrological components of watersheds by solving process-based equations.
The various processes in the SWAT model are simulated at daily time steps based on the water
balance equation (Equation (1), [74])

SWt = SWO +
t∑

i=1

(Rday −Qsur f − Ea −Wseep −Qgw) (4)

where SWo and SWt represent initial and water content at any time ‘t’ days (in mm), respectively.
Ea, Rday and Qsur f represent the amount of evapotranspiration, precipitation and surface runoff (in mm)
on any day. The amount of percolation and return flow on a day i (in mm) is denoted by Wseep&Qgw,
respectively. The Soil Conservation Service (SCS)-curve number (CN) method (Equations (5) and (6))
is used for estimating the surface runoff.

Qsur f =

(
Rday − Ia

)2
(
Rday − Ia + S

) (5)

S = 254
(

CN

100

)
− 1 (6)

Qsurf and Rday represent the accumulated runoff or rainfall excess (in mm) and rainfall received
on that particular day (in mm), respectively [74]. Ia denotes an initial loss that includes detention,
interception and percolation before the runoff. The retention factor is denoted by S marks retention
parameter. The retention factor is subjected to spatial variation owing to land-use change, soil type,
various management options, slope and temporal variation because of the changes in soil water.

The storage routing technique is used for calculating the percolation (Arnold et al. [75], assuming
that the percolation occurs whenever water content exceeds the field capacity, and the layer below is
unsaturated (Mosbahi et al. 2020 [76], Sridhar, 2013 [53]). In this study, the Penman–Monteith method
is adopted for estimating potential evapotranspiration. Using DEM, SWAT divides the entire basin into
different subbasins and subsequently into hydrological response units (HRUs) based on the unique
land use, soil classification, slope and various management combinations.

Primary meteorological variables such as temperature, precipitation, solar radiation, relative
humidity and wind speed are required in addition to land use, soil characteristics and land cover to
set up a hydrological model using SWAT. A brief description of the input data and data sources are
presented in Table 3. Moreover, the land use land cover and soil map of the study area are shown in
Figure 2. The daily river discharge data were obtained from the water resources information system of
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India (Central Water Commission, [77] for the period from 1985–2012 at Srikakulam station, as shown
in Table 3. The reservoir details, inflow and outflow data were obtained from the Andhra Pradesh
Water Resources Department and were incorporated in the model for implementing regulations.

Table 3. Detailed information on primary meteorological variables required to set up a hydrological
model using the soil water assessment tool (SWAT).

Data Type Scale Source

Digital elevation model (DEM) 30 m × 30 m
Shuttle radar topography mission (SRTM) of

USGS (https://earthexplorer.usgs.gov/)

Land use/land cover (LULC) 500 m GIAM-IWMI (http://www.iwmi.cgiar.org)

Soil 1:1,500,000

http://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/faounesco-soil-map-of-the-

world/en/
Food and Agriculture Organization (FAO)

Rainfall, temperature
0.25◦

(~32 km)

http://imdpune.gov.in/Clim_Pred_LRF_New/
Grided_Data_Download.html

Indian Metrological Department (IMD), PUNE

Solar radiation, relative humidity,
wind speed

0.31◦ (~38 km)
https://rda.ucar.edu/datasets/ds093.1/

Climate Forecast System Reanalysis (CFSR)

Hydrological data Daily
https://indiawris.gov.in/wris, (Central Water

Commission (CWC)_

Figure 2. Land use land cover classification (a) and soil map (b) with subbasins for Nagavali River
Basin (NRB). QSWAT interfaced with a quantum geographical information system (QGIS) was used for
developing the hydrological model.

QSWAT interfaced with a quantum geographical information system (QGIS) was used for
developing the model. Preliminary analysis was done to re-project all the information to a common
projection and was resampled to 30 m spatial resolution. TauDEM tool in QSWAT was used for stream
network generation and watershed delineation. The entire basin was divided into 43 sub-basins using
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a threshold of 150 km2. A total of 200 HRUs were formed by fixing a threshold of 200 HRUs with
distinct land use, soil and slope. Here, the analysis was carried out at the hydrologic response unit
(HRU) level on a monthly time step. Further, SWAT calibration and uncertainty procedures (CUP)
2012 with sequential uncertainty fitting (SUFI-2) was used for auto-calibration, sensitivity analysis and
validation purposes (for more detail, please refer to Setti et al. [55].

3. Model Development and Evaluation

For simulating streamflow from different precipitation inputs, two different scenarios were
considered, which are as follows:

Scenario A: calibrating the model with IMD gridded data and rerunning the model with other
considered precipitation products; and

Scenario B: calibrating the model with each of the rainfall products.
Scenario A would allow investigating the impact of differences in rainfall products on streamflow

simulation accuracy, whereas Scenario B (with each of rainfall products) will help in investigating the
impact of input rainfall data on calibrated parameters, sensitivity analysis and streamflow simulation
accuracy and in verifying whether these rainfall products can be used as an alternative source of input
rainfall data for model calibration.

For both the scenarios, the sensitive parameters selection, automatic calibration and validation
were performed by SUFI-2 optimization algorithms in the SWAT-CUP tool package. Sensitive
parameters were identified using Latin-Hypercube One-factor-At-a-Time method with 2000 simulations.
This procedure tests the model sensitivity by modifying only one parameter at a time and keeping
the rest unchanged. In total, 18 parameters were identified from past literature (Setti et al. [63],
and sensitivity analysis was performed.

In this study, we considered the first two years, i.e., 1998–2000, as the warm-up period to reduce
the effect of initial conditions. The monthly simulated streamflow of the Nagavali River Basin
was calibrated over a time period of 2001–2008 and then validated in the period of 2009–2012 with
observation streamflow at Srikakulam station (as shown in Figure 1) using SWAT. For each iteration,
2000 simulations were run for the calibration period. Following each iteration, parameter ranges were
modified (nearest to fitted value) with reference to the values suggested by the program and also by
their reasonable physical limitations. Interested readers refer [78,79] for more details about the protocol
to calibrate the SWAT model.

4. Results and Discussion

We present the results in three categories, first comparing satellite data and reanalysis data with
ground-based IMD data, second, evaluating hydrological model based on the precipitation products
for two different scenarios, and finally, comparison of the annual water balance components.

4.1. Comparison of Satellite Data and Reanalysis Data with Ground-Based IMD Data

First, we computed statistical parameters such as minimum rainfall, maximum rainfall, standard
deviation, average and skewness coefficient of all precipitation products (Table 4) only for rainy days
(rainfall magnitude ≥2.5 mm/day).

We observed that the maximum precipitation values were slightly overestimated by TRMM and
CFSR datasets in comparison with the IMD product. Similarly, the CFSR is more positively skewed
than the IMD, showing the general tendency for overestimation. The empirical cumulative density
function (CDF) of the daily precipitation distribution during 1998–2012 was computed for the four
datasets (Figure 3). There is a slight difference in the CDF obtained for IMD, TRMM and CFSR data
at low values of rainfall. However, the deviation is significant in the precipitation range from 30 to
60 mm/day for TRMM and CFSR data. The CDF of the bias-corrected TRMM is closely matching with
that of IMD.

175



Atmosphere 2020, 11, 1252

Table 4. Statistical measures of four considered rainfall data sets estimated using only rainy days (rainfall
magnitude ≥2.5 mm/day) for the period from 1998–2013. TRMM—Tropical Rainfall Measurement
Mission; IMD—Indian Meteorological Department; NCEP-CFSR National Center for Environmental
Prediction Climate Forecast System Reanalysis.

Statistical Measures IMD TRMM Bias Corrected TRMM CFSR

Minimum rainfall (mm) 2.5 2.5 2.5 2.5
Maximum rainfall (mm) 140.2 157.7 119.4 176.4

Mean rainfall (mm) 11.9 13.3 11.9 12.6
Standard deviation(mm) 12.7 13.7 11.9 13.1

Skewness 3.8 3.4 3.2 4.3

Figure 3. Cumulative probability of four daily precipitation datasets (IMD, TRMM, bias-corrected
TRMM, CFSR) for NRB. Distribution of all precipitation values (a); distribution of precipitation below
30 mm (b); distribution of precipitation values between 30 mm to 60 mm (c).

IMD dataset for the time period from 1998–2013 revealed a total of 1591 rainy days and 4252
non-rainy days. On the other hand, the total rainy days estimated by the TRMM, bias-corrected TRMM
and CFSR are 978, 932 and 1161, respectively (Table 5).

Table 5. Contingency table for category estimation of rainy days and non-rainy days between observed
rainfall and satellite rainfall (TRMM and CFSR) with 2.5 mm/day threshold value during the period
of 1998–2013.

Event IMD Observed Event TRMM Bias Corrected TRMM CFSR

Rainy days 1591
Hit (H) 978 932 1161

Miss (M) 613 659 430

Non-rainy days 4253
False alarm (F) 718 658 712

Correct negative 3535 3595 3541

Using the threshold of 2.5 mm/day, the values of POD, FAR and CSI were estimated. The value
of POD was found to be around 0.61, 0.69 and 0.73 (Table 6) for TRMM, bias-corrected TRMM and
CFSR, respectively, indicating the CFSR product is close to the IMD dataset in terms of hits. Similarly,
in terms of FAR and CSI, the CFSR data seems to perform better than the TRMM-based datasets.
For example, the CFSR data have the lowest value of FAR (0.38) and the highest value of CSI (0.50).
These analyses showed that the CFSR product has better performance than the other products like
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TRMM and bias-corrected TRMM. However, it to be noted that this analysis does not consider the
quantity of the rainfall; instead, it only finds hits and misses into consideration.

Table 6. Statistical metrics are calculated for daily data of Nagavali River Basin based on an average of
19 rainfall grids for the time series of 1998–2013.

Statistical Metrics TRMM Bias Corrected TRMM CFSR

Probability of detection POD 0.61 0.69 0.73
False alarm ratio FAR 0.42 0.39 0.38

Critical success index CSI 0.42 0.45 0.50

In order to compare the data products based on the rainfall amount, we choose the rainfall intensity
classification of the World Meteorological Organization (WMO) standard Geneva, Switzerland, 2012 [80]
(1) rain< 2.5 mm (no/tiny rain), (2) 2.5 mm≤ rain< 5 mm (low moderate rain), (3) 5 mm ≤ rain < 10 mm
(high moderate rain), (4) 10 mm ≤ rain < 20 mm (low heavy rain),(5) 20 mm ≤ rain < 50 mm (high heavy
rain),and (6) rain ≥ 50 mm (violent rain). The four considered precipitation datasets display a similar
probability of occurrence of dry days (rain < 2.5 mm/d), which are 49%, 44%, 44% and 37% for IMD,
TRMM, bias-corrected TRMM and CFSR, respectively. However, within the wet days, the probability
of occurrence of high, moderate rain (low heavy rain) was found to be 30% (22%), 26% (25%), 28% (24%)
and 31% (27%) for IMD, TRMM, bias-corrected TRMM and CFSR, respectively. It is observed that the
CFSR data have more probability of occurrence in the low heavy rain range than what is observed in
IMD data.

To evaluate the overall pattern and rainfall quantity, rainfall datasets on three different time
scales—daily, monthly and annual—were considered. On a daily scale, the linear Pearson correlation
between the IMD and other data sets such as TRMM, bias-corrected TRMM and CFSR datasets was
found to be 0.44, 0.83 and 0.82, respectively. The daily and average monthly time series of the rainfall
events of four datasets are shown in Figure 4a,b. It is evident that there is a significant difference
between precipitation products. The monthly variation of the precipitation values shows there is no
systematic over or under prediction by CFSR or TRMM data. For example, during the 2003 monsoon,
CFSR and TRMM overestimated the rainfall, whereas during the years 2004 and 2005, the rainfall was
underestimated. On the annual time scale (Figure 4c), different products show that there is a strong
similarity in terms of rainfall totals for the most part of the study period. However, in the latter part
of the study period (2009–2013), TRMM and CFSR data overestimate the rainfall compared to the
IMD-based values. The standard deviation of the four precipitation datasets computed at the annual
time scale over the 16 years considered is 270 mm, 222 mm, 193 mm and 415 mm for the IMD, TRMM,
bias-corrected TRMM and CFSR, respectively and the results of two-sample Kolmogorov–Smirnov
(Setti et al. [63] tests at the 5% significance level indicate that the four precipitation datasets have
different statistical distributions in the study area.

4.2. Hydrological Model-Based Evaluation of the Precipitation Products

As mentioned, two different scenarios were considered-calibrating the SWAT model with IMD
gridded data and rerunning the model with other considered precipitation products.

4.2.1. Scenario A: SWAT Model Calibrated with IMD Data

This scenario attempts to unravel the effects of the precipitation products on streamflow simulation,
specifically when the precipitation products driving the model is calibrated with IMD data.
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Figure 4. Comparison between observed rainfall product (IMD), satellite precipitation products
(TRMM, bias-corrected) and reanalysis data (CFSR) at daily (a), monthly (b) and (c) annual scale.

4.2.2. Calibration of the SWAT Model with IMD Data

Initially, model calibration was done using the IMD rainfall data as input to the model after
finding the sensitive parameters (using the method mentioned in Section 3). The calibration was done
using the SWAT-CUP with the objective function of maximizing the NS between the observed and
simulated flows. The performance statistics of the models’ simulation showed that the calibration is
good with reference to NS and correlation coefficient on the order of 0.85 and 0.79 and 0.91 and 0.88,
respectively, during the calibration and validation periods.

In the second step, the other precipitation products are used for driving the calibrated model.
Figure 5 shows the streamflow simulation results from each of the precipitation products, and the
corresponding performance statistics are shown in Table 7. It is observed that even though the TRMM
dataset-based model is performing satisfactorily in driving the model, according to Moriasi et al. [67].
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However, streamflow estimates show systematic overestimation with PBIAS = −15.3%. Interestingly,
the systematic difference has significantly reduced in the bias-corrected TRMM-based model with
PBIAS = −7.4%. The streamflow simulation using the CFSR data seems to be overestimated with PBIAS

= −16.2%. However, it is to be noted that in the case of the CFSR, the streamflow overestimations
are not systematic; rather, the pattern streamflow closely follows the precipitation pattern. There is
considerable streamflow overestimation in the year 2003, during which the rainfall estimates were
higher than the IMD data. On the other hand, the streamflow simulation was underestimated during
the years 2000, 2004 and 2005, where the rainfall estimates from CFSR were lower than IMD. Thus,
there is no systematic under or overestimation in the streamflow simulation.

Figure 5. Comparison of streamflow simulation obtained from model calibrated with IMD data when
driven using different precipitation datasets during the period (2000–2008).

Table 7. Comparison of the satellite streamflow simulation performance statistics for Scenario A (model
calibrated with IMD data).

Statistical Metrics

Performance of Different Datasets under Scenario A

IMD TRMM
Bias Corrected

TRMM
CFSR

R2 0.87 0.60 0.68 0.54
NS 0.85 0.55 0.62 0.52

PBIAS −5.5 −15.3 −7.4 −16.2
P-factor 0.83 0.65 0.8 0.65
r-factor 0.67 0.48 0.63 0.91

These aforementioned results demonstrated that the bias-corrected TRMM data are a potential
alternative to IMD data.

4.2.3. Scenario B: SWAT Model Calibrated Individually with Precipitation Products

This scenario evaluates the applicability of the precipitation products for calibrating the model
and investigates the differences in model calibration, sensitive parameters and the ability to simulate
streamflow accurately.

4.2.4. Sensitive Parameters

To evaluate the difference introduced at the stage of sensitivity analysis by using different
precipitation products, we compared the ranking of the sensitive parameters obtained. Out of several
parameters, we selected 18 commonly used parameters (Table 8) for streamflow simulation using four
precipitation products.
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Table 8. Description of parameters and their range values used for sensitivity analysis.

S. No Parameter Description Min Max

1 CN2.mgt *
SCS runoff curve number for moisture condition II, which

controls the surface runoff
−0.1 0.1

2 ALPHA_BF.gw
Baseflow alpha factor for groundwater flow response to changes

in recharge
0 1

3 GW_DELAY.gw
Groundwater delay represents the time taken by water move
from the bottom soil layer to the upper shallow aquifer (days)

30 450

4 GWQMN.gw
Threshold depth of water in the shallow aquifer required for

return flow to occur. If it is decreased, baseflow will be decreased
(in mm)

0 5000

5 GW_REVAP.gw

Groundwater “revap” coefficient (Water movement from shallow
aquifer to vegetation roots). If it is close to zero, the movement of
water is restricted; if it approaches 1, the rate of water approaches

the rate of evapotranspiration

0.02 0.2

6 RCHRG_DP.gw
Deep aquifer percolation fraction from the root zone which

recharges in a deep aquifer
0 1

7 REVAPMN.gw
Threshold depth of water in the shallow aquifer for “revap” to

occur (mm). Controls the water movement from a shallow aquifer
to a deep aquifer

0 1000

8 SLSUBBSN.hru Average slope length 10 150

9 HRU_SLP.hru Average slope steepness (m/m) 0 1

10 OV_N.hru Manning’s “n” value for overland flow 0.01 30

11 LAT_TTIME.hru Lateral flow travel time (days) 0 180

12 ESCO.hru
Soil evaporation compensation factor (represents the process of

evapotranspiration from soil moisture to atmosphere, if the ESCO
is reduced, the evaporation is increased)

0 1

13 EPCO.hru
Plant uptake compensation factor (The amount of water uptake

by a plant for transpiration, If EPCO value is 1, the model allows
more of the water uptake demand)

0 1

14 SURLAG.bsn
Surface runoff lags time (days). It controls the fraction of water to

allow to the reach on the day
0.05 24

15 SOL_AWC().sol Available water capacity of the soil layer 0 1

16 SOL_K().sol
Saturated hydraulic conductivity (mm/h). This relates to soil

water flow rate to the hydraulic gradient.
0 2000

17 CH_K2.rte
Effective hydraulic conductivity in main channel alluvium

(mm/h). If streams have continuous groundwater contribution,
the effective conductivity will be zero.

0.1 500

18 ALPHA_BNK.rte
Baseflow alpha factor for bank storage (Contributes flow to the

reach within the subbasin)
0 1

* Indicates that the CN2 values are reported as percentages of variation of the original value.

To identify the sensitivity parameters of each precipitation dataset, the model was run with 2000
simulations of eighteen selected parameters. Interestingly, the most sensitive parameters obtained for
the four datasets were significantly different (Table 9) except for the deep percolation factor and curve
number (CN2) that comes out to be significant for all products. The second most significant factor
was ESCO using IMD and TRMM, whereas it was ALPHA_BF and GWQMN using bias-corrected
TRMM and CFSR data. The most sensitive parameters from all the data sets include RCHRG_DP,
ESCO and GWQMN, which show that the crucial processes governing the hydrology of the system are
evapotranspiration and groundwater recharge, which is in line with the general understanding of the
dominant processes in forest and agricultural catchment.
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Table 9. Sensitivity parameter ranking for each dataset with default parameter values using sequential
uncertainty fitting (SUFI)-2 algorithm. Interestingly, the most sensitive parameters obtained for the
four datasets were significantly different except for the deep percolation factor and curve number
(CN2) that comes out to be significant for all products. The second most significant factor was soil
evaporation compensation factor (ESCO) using IMD and TRMM, whereas it was baseflow alpha factor
(ALPHA_BF) and threshold depth of water in the shallow aquifer (GWQMN) using bias-corrected
TRMM and CFSR data.

S. No Parameter IMD TRMM
Bias Corrected

TRMM
CFSR

1 r__CN2.mgt 6 1 2 1
2 v__ALPHA_BF.gw 18 18 17 14
3 v__GW_DELAY.gw 12 13 15 10
4 v__GWQMN.gw 3 6 8 3
5 v__GW_REVAP.gw 5 8 14 5
6 v__RCHRG_DP.gw 1 2 3 2
7 v__REVAPMN.gw 13 10 10 15
8 v__SLSUBBSN.hru 7 4 4 6
9 v__HRU_SLP.hru 8 5 6 7

10 v__OV_N.hru 16 11 12 11
11 v__LAT_TTIME.hru 17 7 7 9
12 v__ESCO.hru 2 3 1 4
13 v__EPCO.hru 11 12 11 17
14 v__SURLAG.bsn 15 16 18 18
15 r__SOL_AWC().sol 9 9 5 8
16 r__SOL_K().sol 14 14 9 13
17 v__CH_K2.rte 10 17 16 12
18 v__ALPHA_BNK.rte 4 15 13 16

4.2.5. Model Calibration

Here, out of the eighteen parameters, the ten most sensitive parameters for each dataset were
further considered for calibration of the corresponding models.

The individual models were developed based on four different data sets and were calibrated at a
monthly scale using the SUFI-2 algorithm. The results from the model calibration are enumerated
for all the models in Table 10. Following the model performance classification of Moriasi et al. [67],
the model based on IMD precipitation data performs well with NS (R2) values on the range 0.85(0.87)
and 0.79(0.82) during the calibration and validation period, respectively. On the other hand, the CFSR
data-based model performance is satisfactory with the NS values 0.76 and 0.73 during calibration and
validation, respectively. The models based on TRMM and bias-corrected TRMM dataset produced
better results with NS equal to 0.71 and 0.74, respectively, as shown in Table 10. A similar pattern was
observed in the PBIAS values during the calibration and validation period.

Figure 6 shows the streamflow simulation results during calibration and validation. Based on the
simulation results obtained during calibration and validation, it can be seen that the IMD data produces
the best results in comparison with the other datasets. However, closer simulation was obtained using
the TRMM bias-corrected dataset. It is also to be noted that the bias-corrected TRMM datasets are
yielding better results when compared to the TRMM data. Further, the results based on CFSR are also
satisfactory when compared to its performance in Scenario A. However, there is an overestimation
of streamflow for most of the simulations except for the years 2000, 2004 and 2005. This implies that
the recalibration of the model with the individual dataset has increased the model performance to a
greater extent. A similar observation was also reported by Tuo et al. [2] and Zhang et al. [41].
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Table 10. Comparison of NS and R2 values during the calibration (2000–2008) and validation (2009–2012)
periods obtained when models were recalibrated with individual precipitation product as input.

Statistical Results during the Calibration and Validation Period

Statistical Metrics

Calibration Validation

IMD TRMM TRMM-Bias CFSR IMD TRMM
Bias Corrected

TRMM
CFSR

R2 0.87 0.76 0.78 0.77 0.82 0.77 0.74 0.74
NS 0.85 0.71 0.74 0.76 0.79 0.72 0.72 0.73

PBIAS −5.5 −13.4 −7.2 −14.3 −6.2 −15.2 −8.1 −17.2
P-factor 0.83 0.68 0.72 0.64 0.85 0.67 0.69 0.61
r-factor 0.67 0.46 0.59 0.40 0.79 0.44 0.61 0.41
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Figure 6. Simulated and observed hydrograph of the best simulation during the calibration (2000–2008)
and validation periods (2009–2012) of four dataset products when the models were individually
calibrated with the corresponding precipitation datasets.
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Besides the evaluation of the results from the best simulation from each precipitation data set,
as explained above, we also investigated the ensemble of all available simulations. We calculated the
distribution of the NSC values obtained for the total of 2000 simulations. Figure 7 shows the empirical
CDF of the NSC values obtained from the four models. All four models reached a satisfactory level
of performance. However, interesting results were obtained using the bias-corrected TRMM data
set, where most of the simulations (around 80% of the model simulations) were above NSC = 0.5,
while IMD, TRMM, CFSR data sets had a lower fraction on the order of 70%, 20% and 65%, respectively.
IMD data-based model displays a larger fraction (50%) of model simulations having NSC > 0.65,
which represents excellent model performance. On comparing the bias-corrected TRMM dataset
and TRMM-based models, there is a significant improvement in the bias-corrected TRMM-based
results. This analysis indicates the uncertainty in terms of model performance when using different
precipitation data sets.

Figure 7. Distribution of Nash simulation values during calibration obtained using different
precipitation datasets for the Nagavali River Basin.

4.2.6. Parameter Uncertainty

The parameter uncertainty when using different precipitation data sets was estimated by
investigating the variations in the best-fit parameters, and the range of parameters obtained during
the calibration. Table 11 and Figure 8 show the values and range of the best-fit parameters of the
calibrated parameters of nine global sensitive hydrological parameters, respectively. Among the critical
parameters shown in Figure 8, ESCO, an important parameter related to soil evaporation, have different
ranges for the different datasets. It is also to be noted that the range of the parameters for ESCO
obtained using IMD is different from the ones obtained from other precipitation data sets. TRMM and
CFSR dataset-based models have a high ESCO value >0.5 when compared to IMD, and TRMM
bias-corrected-based models indicate lower evapotranspiration compared to other datasets, which are
also reflected in overestimation of streamflow.

Deep aquifer percolation fraction (RCHRG_DP) (the most dominant parameter in four precipitation
datasets) displays variation in both best values and the ranges considering all the precipitation inputs.
This indicates that the IMD-based model allows more water for deep percolation when compared to
the CFSR-driven model. Similarly, the best parameter ranges for GWQMN (a parameter controlling
the depth of water in the shallow aquifer) were higher for the IMD-based model when compared to
the other models, which indicates the model-based in TRMM and CFSR data resulted in less shallow
aquifer storage.
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Interestingly, there is no significant difference in the CN2 parameter, which reflects the surface
runoff in terms of both the best parameter and the ranges. However, for other parameters, such as SOL
_AWC, HRU_SLP, CH_K2, the ranges and the best fit values are different.

Table 11. Values for best-fit parameters obtained using the four different datasets. Among the important
parameters, ESCO, an important parameter related to soil evaporation, have different ranges for the
different datasets. The range of the parameters for ESCO obtained using IMD is different from the ones
obtained from other precipitation data sets.

S. No Parameter IMD TRMM
Bias Corrected

TRMM
CFSR

1 v__ESCO.hru 0.11 0.56 0.06 0.67
2 v__SLSUBBSN.hru 42.59 145.7 36.7 145.6
3 v__HRU_SLP.hru 0.28 0.06 1.0 0.11
4 r__SOL_AWC().sol −0.03 0.037 0.054 0.03
5 r__CH_K2.rte 367.1 X X X
6 r__CN2.mgt −0.152 −0.09 -0.15 −0.19
7 V__ALPHA_BNK.rte 0.33 X X X
8 V__RCHRG_DP.gw 0.073 0.047 0.06 0.011
9 V__GW_REVAP.gw 0.13 0.079 X 0.115

10 V__GWQMN.gw 4577 3196 3234 3942
11 V__OV_N.hru X 13.47 X 21.1
12 V__LAT_TTIME.hru X 85 47 28.8
13 V__GW_DELAY.gw X X X 72

Figure 8. Calibrated parameter ranges (y-axis) of global sensitive hydrological parameters for the four
precipitation datasets within the initial parameter range.

Overall, the analysis shows that different precipitation inputs affect both the best estimate of a
parameter as well as its ranges. It is to be noted that the SWAT-CUP adjusts parameters in such a
way that the observed streamflow values are matched. Even though the models capture the observed
flow, the parameter values, and hence the distribution of water in the catchment, are entirely different.
For example, the average water balances of the various components in the study area using different
precipitation data set lead to different values of evapotranspiration, base flow, percolation, but more
or less similar surface runoff values. It can be observed that the calibrated bias-corrected TRMM
forced the model to have low ESCO when compared to the other models resulting in higher values
of evapotranspiration.
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4.2.7. Uncertainty in Streamflow Simulation

Even though the parameter uncertainties contribute to uncertainty in all outputs, variables were
obtained from the model. In this section, we limit our discussion only to the uncertainty in the
streamflow, as shown in Figure 9. We evaluated the uncertainty using the p-factor, and R-factor
obtained during the calibration. The p-factor represents the fraction of observed streamflow falling
within the 95PPU band and varies from 0 to 1, where p = 1 indicates that 100% of the observed flow
falls within the 95% confidence band (i.e., a perfect model simulation considering the uncertainty).
The R-factor is estimated as the ratio of the average width of the 95% confidence band and the standard
deviation of the observed streamflow. A value of R < 1.5, again depending on the situation, would be
desirable for this index. According to Abbaspour et al. [81], R-value less than 1.5 would be desirable
for satisfactory model simulation.
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Figure 9. 95PPU plots along with the observed and simulated flows using best parameter values for
the four datasets during the calibration period (2000–2008) at the monthly time scale.
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In this study, the percentage of observed data bracketed by 95PPU uncertainty for IMD, TRMM,
bias-corrected TRMM and CFSR is 83%, 68%, 72% and 64%, respectively during the calibration and
85%, 67%, 69% and 61%, respectively during the validation period as shown in Figure 9 and Table 10.
However, comparing the r-factors (which measures the width of the 95PPU), it can be observed that
the CFSR and bias-corrected TRMM-based models have low values indicating the higher levels of
uncertainty. Further, the observed peak values do not fall within the 95PPU obtained from these data
sets. Thus, it is clear from these results different precipitation inputs generate discrete prediction
uncertainties for estimation of streamflow.

4.3. Comparison of the Annual Water Balance

Figure 10 represents the annual average of the water balance components based on the different
rainfall inputs. For comparison, the observed streamflow and evapotraspiration (ET) are provided from
the literature. Figure 10a presents the results of the models calibrated with IMD data (Scenario A),
and Figure 10b shows the results of the model obtained when calibrated with individual data rainfall type.

Figure 10. The annual average of hydrologic components such as precipitation, streamflow and
evapotranspiration obtained using different rainfall inputs for a model calibrated with (a) IMD data
and (b) individual rainfall data.

4.3.1. Precipitation

The catchment averaged rainfall estimates from the TRMM and CFSR indicate that these data sets
have a general tendency for overestimating the rainfall when compared to the IMD datasets. This is
consistent with the results reported in [41].
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4.3.2. Streamflow

On comparing the observed and the simulated streamflow volume, we noted that the model
based on IMD data produced annual streamflow accurately; nevertheless, the performance of other
data sets depends on how the model was calibrated.

When the model was calibrated with IMD data (Scenario A), the CFSR-based model overestimated
the average annual streamflow. In particular, it can be seen from Figure 5 that the non-monsoon
streamflow was higher. However, TRMM and bias-corrected TRMM models result in slight over and
underestimation, respectively. The results closely follow the pattern in the rainfall estimates showing
that rainfall is the primary driving factor in streamflow simulation. Under Scenario B, all the models
show comparatively better ability in capturing the streamflow volume; however, bias-corrected TRMM
showed the ability to reproduce the streamflow accurately. Moreover, significant improvement in the
CFSR data-based model was reported.

4.3.3. Evapotranspiration

The IMD-based model simulation of ET (641.5 mm) was well within the range of 600–700 mm
in the study area [53]. Under Scenario A, TRMM, CFSR, and bias-corrected TRMM resulted in an
overestimation of the ET, but the amount of overestimation is different. Even though TRMM and CFSR
have similar precipitation amounts, but the distribution of the water balance components is different.
This difference may be attributed to the difference in the rainfall pattern and intensity, as discussed in
Section 4.1. On calibrating the model with the satellite data sets (the objective function used here is the
performance of streamflow volume), TRMM and bias-corrected TRMM significantly overestimated the
ET, whereas the CFSR data resulted in lesser value and close to IMD-based model estimation. Overall,
we notice a considerable increase in both ET and streamflow estimates for all the data sets due to the
overestimation of the rainfall.

It was observed that the precipitation dataset is primary data in driving hydrological model and
also the main source of uncertainty as different precipitation dataset leads to different best parameter
ranges. Further, uncertainty in the input precipitation propagates to the uncertainty to the model
estimates of the water balance components and, therefore, on the water resources management and
policy decisions made based on the model results.

5. Conclusions

We compared four different precipitation datasets of different categories, source and resolution,
namely IMD, TRMM, bias-corrected TRMM and CFSR using a hydrological model. We investigated
the impact of precipitation products on hydrological model calibration, model predictions for a
forest-dominated river basin in India. The following are salient features obtained from the study.

All the considered precipitation products showed a good correlation with each other as well as the
IMD gridded data on a daily scale. The CC of CFSR and bias-corrected TRMM with the IMD data were
approximately 0.8. However, a quantitative comparison of the precipitation showed that CFSR and
TRMM data have a slight tendency to overestimate precipitation. We also observed that bias-corrected
TRMM data are comparable with the IMD data. The deviation is significant in the precipitation range
from 30 mm/day to 60 mm/day.

We created two scenarios were for evaluating the precipitation using the SWAT model. In Scenario
A, the model was calibrated using IMD precipitation data as input, and later this model was run with
other data sets. In Scenario B, individual models were developed with each of the rainfall products as
input. From these scenarios, we observed that the performance of streamflow modeling increased
when the model was calibrated individually for each of the rainfall products.

The results from Scenario B showed that the different precipitation datasets resulted in multiple
sets of sensitive parameters, parameter ranges and water balance components. The IMD data-based
model yielded the best results in terms of streamflow simulation. The model based on the bias-corrected
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TRMM dataset produced closer results and thus can be used as an alternate for gauge precipitation.
In summary, the choice of precipitation products has a vital role in model performance, prediction
uncertainties and parameter uncertainties in streamflow simulations. Water balance estimation based
on different precipitation datasets can lead to different conclusions, and therefore uncertainty generated
by the use of different precipitation inputs must be taken into consideration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/11/1252/s1,
Section S1: Detailed Information on Precipitation Products; Section S2: Statistical Metrics.
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Abstract: This study investigated the effect of a harsh winter climate on the performance of high-
speed passenger trains in northern Sweden. Novel approaches based on heterogeneous statistical
models were introduced to analyse the train performance to take time-varying risks of train delays
into consideration. Specifically, the stratified Cox model and heterogeneous Markov chain model
were used to model primary delays and arrival delays, respectively. Our results showed that weather
variables including temperature, humidity, snow depth, and ice/snow precipitation have a significant
impact on train performance.

Keywords: stratified Cox model; heterogeneous Markov chain model; likelihood ratio test; primary
delay; arrival delay

1. Introduction

Coldness, heavy snow and ice/snow precipitation are well-known winter phenomena
in the northern region of Sweden. Such a climate can cause severe problems to railway
transportation as well as the people who rely on it, which leads to ineluctable impacts
on the normal operation of the whole society. It has become an especially prominent
problem recently, as the railway network has become more complicated, the trains run
faster, and more people choose rail as their travel mode. The aim of this study is thus
to analyse the harsh winter effects on railway operation in northern Sweden. Regarding
railway operation, punctuality is one key criteria to minimise societal costs and increase
the reliability of railway operation. Therefore, the aim of the study is to investigate and
figure out how train delays are affected by the winter climate.

Primary delay and arrival delay are two commonly used measurements in train oper-
ation. Primary delay measures the increment in delay within two consecutive measuring
spots in terms of running time, and arrival delay is the delay in terms of arrival time at
a measuring spot. The time limits to define primary delays and arrival delays vary from
country to country [1]. According to the Swedish Transport Administration (STA), a train
arriving at one measuring spot within five minutes is not considered to be arrival delay,
and a delay of three minutes or more in terms of running time within two consecutive
measuring spots is considered to be primary delay. One of the main interests from the
STA is to investigate how the two kinds of train delays are affected by winter weather.
Therefore, we apply the STA criteria throughout the study.

Several studies of train performance analysis have been conducted. Yuan [1] used
probability models based on blocking time theory to estimate the knock-on delays of
trains caused by route conflicts and late transfer connections in stations. In Murali et al. [2],
the authors modelled travel-time delay as a function of the train mix and the network
topology. Lessan et al. [3] proposed a hybrid Bayesian network model to predict arrival and
departure delays in China. Huang et al. [4] pointed out in their paper that arrival delay was
highly correlated with capacity use of the train line. In a more recent study, Huang et al. [5]
applied a Bayesian network to predict disruptions and disturbances during train operations
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in China. In addition to those, a few earlier studies of the relationships between train
performance and weather have also been investigated. Thornes and Davis [6] investigated
the effects of temperature, snow, ice, humidity and other weather variables on railway
delays in the UK. Four case studies in Ludvigsen and Klæboe [7] showed that harsh winter
weather in 2010, for example low temperatures, heavy snowfall and strong winds, affected
freight train delays in Norway, Sweden, Switzerland and Poland. Xia et al. [8] fitted a linear
model and showed that weather variables such as snow, temperature, precipitation and
wind had significant effects on the punctuality of trains in the Netherlands. The effect of
snowfall and rainfall in winter on delays of passenger trains in Hungary was identified
in Nagy and Csiszár [9]. Brazil et al. [10] used a simple multiple linear regression model
and demonstrated that weather variables, such as wind speed and rainfall, can have a
significantly negative impact on arrival delays in the Dublin-area rapid-transit rail system.
A machine-learning approach was used to create a predictive model to predict the arrival
delay at each station for a train line in China with the help of weather observations in
Wang and Zhang [11]. Ottosson [12] used negative binomial regression and a zero-inflated
model and showed that weather variables, such as snow depth, temperature and wind
direction, had significant effects on the train performance. A recent study by Wang et al.
[13] applied a non-stratified Cox model and homogeneous Markov chain model to analyse
the weather effects on primary delay and arrival delay, respectively. The authors treated
primary delay as recurrent time-to-event data, and the transitions between states (arrival)
delay and punctuality in a train trip as a Markov chain. One limitation was that the hazard
function in the Cox model was assumed to be constant over events, and the transition
intensity in the Markov chain model cannot change at any specified time. However, these
assumptions are often not realistic.

In this study, we relax the restrictions in Wang et al. [13] by assuming heterogeneity
in the models, i.e., hazard functions vary among events, and transition intensity may
change at any specified time point. The main contribution is that we prove that the
heterogeneous models outperform the homogeneous counterparts. In addition, to the best
of our knowledge, this is the first study to apply heterogeneous models to investigate the
weather impacts on the train-delay issues, i.e., a stratified Cox model is used to investigate
how winter climate affects the occurrence of primary delays, and a heterogeneous Markov
chain model is applied to study the effect of winter climate on the transitions between
delayed and punctual states.

The paper is organized as follows. In Section 2, we introduce the statistical models
in detail. Data processing and analysis methods are described in Section 3. Section 4 is
reserved for results. Section 5 is devoted to the conclusion and discussion.

2. Statistical Modelling

In this section, the two statistical models, i.e., stratified Cox model and heterogeneous
Markov chain model, are introduced in detail.

2.1. Stratified Cox Model with Time-Dependent Covariates for Recurrent Event

As an extension of original Cox models in Cox [14], Andersen and Gill [15], Prentice
et al. [16] proposed a stratified Cox model, which is commonly used for modelling recurrent
events in survival analysis. It will be used in this study to analyse the relationship between
hazards of trains with recurrent events (primary delay) and weather covariates by assuming
that the hazard function of a train is correlated with its preceding events through an event-
specific baseline hazard function. Formally, the stratified Cox model with time-dependent
covariates for recurrent events is an expression of the hazard function and covariates

hij(t) = h0j(t) exp (βTxij(t)), (1)

where

• hij(t) represents the hazard function for the jth event of the ith train at time t.
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• h0j(t) is an event-specific baseline hazard and the order number j is the stratification
variable, e.g., h01(t) is a common baseline hazard of the first event for each train.

• xij(t) represents the weather covariate vector for the ith train and the jth event at time
t.

• β is an unknown coefficient vector to be estimated, the exponential of which indicates
how the hazard ratios are affected by the covariate vector.

The coefficients can be estimated by maximising the partial likelihood, given by

L(β) =
n

∏
i=1

ki

∏
j=1





exp (βTxi(tij)))

∑l∈R(tij)
exp (βTxl(tij))





δij

, (2)

where j is the event index with ki being the train-specific maximum number of events,
xi(tij) denotes the covariate vector for the ith train at the jth event time tij, δij is an event
indicator that equals 1 for the jth event of the ith train and 0 for censoring, R(tij) = {l, l =
1, · · · , n : tl(j−1) < tij ≤ tl j} is a group of trains that is at risk of the jth event at time tij.
Please note that the partial likelihood takes into account the conditional probabilities for
the events that occur for trains.

The fitted model can then be used to predict the hazard function, ĥij(t), for the jth
event of train i of interest given the values of covariates, as well as corresponding survival
function, Ŝij(t), which gives the probability that the train i does not suffer the jth event
up to time t. The survival function is an exponential function of the hazards function,

i.e., Ŝij(t) = exp
(

−
∫ t

0 ĥij(x)dx
)

.

2.2. Heterogeneous Markov Chain Model with Time-Dependent Covariates

Let {Y(t), t ≥ 0} denote a continuous time Markov chain. At each time point t, Y(t)
takes a value over a countable state space. The probability of chain Y(t) being in state s at
time t is P(Y(t) = s). The conditional probability prs(t, t + u) = P(Y(t + u) = s|Y(t) = r)
represents the transition probability of moving from the state r at time t to the state s at
time t + u. The instantaneous movement from state r to state s at time t is governed by
transition intensity, qrs(t), through the transition probabilities

qrs(t) = lim
∆t→0

P(Y(t + ∆t) = s|Y(t) = r)/∆t. (3)

With these definitions, a Markov chain can be used to describe train running states
(delay/punctuality) on a train line, where the time t refers to running distance of a train
from the starting point throughout the study instead of time, since the running distance
is more meaningful in practice. The qrs(t) of a q states process forms a q × q transition
intensity matrix Q(t), whose rows sum to zero, so that the diagonal entries are defined by
qrr(t) = −∑s 6=r qrs(t). An example of transition intensity matrix Q(t) with two states can
be seen below

Q(t) =

[

q11(t) q12(t)
q21(t) q22(t)

]

, (4)

where q11(t) = −q12(t) and q22(t) = −q21(t) at time t.
A homogeneous Markov chain in time means that the transition intensity Q(t) is

independent of t, and the transition probability from one state to another depends solely
on the time difference between two time points, i.e.,

P(Y(t + u) = s|Y(t) = r) = P(Y(u) = s|Y(0) = r). (5)

Corresponding to the transition intensity matrix Q, the entry in a transition probability
matrix P(t, t + u) is the transition probability prs(t, t + u). The relationship between transi-
tion intensity matrix and transition probability matrix is specified through the Kolmogorov
differential equations [17]. In particular, when a process is homogeneous, the transition
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probability matrix can be calculated by taking the matrix exponential of the transition
intensity matrix

P(t, t + u) = P(u) = Exp(uQ). (6)

In a homogeneous Markov chain model, to take account of the effect of covariates,
a Cox-like model was proposed by Marshall and Jones [18]

qrs = q
(0)
rs exp (βT

rsxrs), (7)

where q
(0)
rs is a baseline transition intensity from state r to state s when all covariates are

zero and xrs is a covariate vector under the corresponding transition. The value exp (βrs),
where βrs is one element of the vector βrs, reflects how the corresponding covariate af-
fects the hazard ratio given that all other covariates are held constant. More specifically,
exp (βrs) > 1 indicates the transition intensity from r to s increases as the value of the
covariate increases, exp (βrs) < 1 indicates the transition intensity decreases as the value
of the covariate increases, while exp (βrs) = 1 implies the covariate has no effect on the
transition intensity.

The coefficient vectors βrs as well as the transition intensity matrix Q and the transition
probability matrix P(t) can be estimated by maximising the likelihood

L(Q) =
n

∏
i=1

ci

∏
j=1

pY(ti,j),Y(ti,j+1)
(ti,j+1 − ti,j), (8)

where j is a sequence index of observed states with ci being number of measuring spots for
train i on the train line, Y(ti,j) represents the jth observed state of the ith train at time ti,j
and the transition probability is evaluated at the time difference ti,j+1 − ti,j.

Contrary to the homogeneous Markov chain model, a heterogeneous Markov chain
model assumes that the transition intensity may change continuously at any time. However,
the transition probability matrix as well as the likelihood (8) are analytically intractable
under this situation [19]. An exception is that the transition intensity changes at countable
time points. For example, the transition intensity is assumed to change at time point t0 for
each train. To achieve it, one can introduce an indicator covariate in the model to represent
the two time periods

qrs(t) = q
(0)
rs exp (βT

rsx
(✶{t≥t0})
rs + zrs✶{t≥t0}), (9)

where ✶ is an indicator function taking value 1 if t ≥ t0, otherwise, 0, and zrs is the
coefficient. Please note that the covariate vector under the same transition is separated into
two at t0 through the indicator function, since (9) can be formulated as two homogeneous

models and each model has its own covariate vector, i.e., x
(0)
rs for the first model when

t < t0 and x
(1)
rs for the second model when t ≥ t0. Similar to exp (βrs), the value exp (zrs)

is the hazard ratio of intensities between t ≥ t0 and t < t0 for the transition from r to s.
After fitting the heterogeneous Markov chain model, one can calculate the predicted

transition probability matrix for any operational interval of interest on the train line using (6)
provided that values of covariates for the interval are given.

3. Data and Method

This section describes the train data and weather variables used for the analysis as
well as an imputation method for the missing train records. Moreover, a model comparison
method, likelihood ratio test, is presented which is used to compare the performance
between the heterogeneous models and homogeneous models.
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3.1. Train Data

Our investigation focuses on high-speed passenger trains, which is a type of train
with a top speed of between 200 and 250 km/h, between Umeå and Stockholm in the
northern region. The high-speed passenger train is chosen because this type of train has
higher priority on the train line and often travels longer distances, which can minimise
non-natural effects on the train line so that it is easier to detect the pure weather impacts.
The data window chosen is December 2016–February 2017, which is typical wintertime
in Sweden.

A train line comprises of several measuring spots where the operational times are
recorded such as departure and arrival times. The train line between Umeå and Stockholm
includes 116 measuring spots in total. The total length of the train line is 711 km and the
planned drive time for a high-speed passenger train is approximately 6.5 h. The lengths of
any two consecutive measuring spots vary from 0.3 km to 15 km. The key variables are
listed in Table 1.

Table 1. List of variables in the train operation data.

Variables Description

Train Number An identification number for train used in the trip

Arrival location Name of arrival measuring spot

Departure location Name of departure measuring spot

Departure date The departure date (yyyy-mm-dd) for a train at a location

Arrival date The arrival date (yyyy-mm-dd) for a train at a location

Train type
Type of train, for example: high-speed, commuter train and
regional

Section Length Length (km) between two consecutive measuring spots

Planned departure
time

The planned departure time (hh:mm) at a measuring spot

Planned arrival
time

The planned arrival time (hh:mm) at a measuring spot

Actual departure
time

The Actual departure time (hh:mm) at a measuring spot

Actual arrival time The Actual arrival time (hh:mm) at a measuring spot

To fit the two statistical models to the train data, the data should be organized to
include the following variables, e.g., each record has one departure spot of the train run (it
is not necessary in the Markov chain model), its subsequent arrival spot, distances of these
two measuring spots from starting station, and indicators of primary delay and arrival
delay, 0/1, for this running section, as well as corresponding weather covariates and train
identification number. To obtain the indicator variables for primary delay and arrival delay,
one needs to calculate the running time difference and arrival time difference compared
to the schedule, which are (actual arrival time—actual departure time)—(planned arrival
time—planned departure time) and (actual arrival time—planned arrival time), respectively.
Afterwards, the values for the two indicator variables can be assigned, i.e., 1 stands for a
primary/arrival delay, 0 otherwise. An example of how to derive the indicator variables
along a train line is illustrated in Figure 1.
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Figure 1. Illustration of a train run with derived indicators for primary and arrival delays.

3.2. Weather Data

The weather data from December 2016 to February 2017 is simulated from the Weather
Research and Forecasting (WRF) model instead of using real meteorological observations,
since the distances between the nearest meteorological station and measuring spot along
the train line range from 17 to 24 km [12]. Thus, using meteorological data is not an ideal
choice in the analysis. However, a WRF model is a numerical weather prediction system
that is used for research and operational purposes. Its reliable performance has been
assessed in several studies [20–23]. The WRF model simulates the desired weather variable
estimations over grids. Higher spatial resolution implies smaller grids over a region of
interest. Temporal resolution decides the time interval between each simulation. Therefore,
a WRF with high spatio-temporal resolution is a good alternative under this situation.
In this study, the spatial resolution is set as 3 × 3 km and the temporal resolution is set as 1
h. The simulation region as well as the train line of interest are shown in Figure 2.

The weather variables of interest are shown in Table 2. These variables are chosen
because they are believed to have impacts on the train operation in winter and have been
used in Ottosson [12], Wang et al. [13].

Table 2. The weather variables of interest.

Variables Description

Temperature The temperature (◦C) at 2 m above the ground

Humidity Relative Humidity (%) at 2-m

Snow depth The snow depth in centimetres (cm)

Ice/snow precipitation Hourly accumulated ice/snow in millimetre (mm)

The measuring time in train operation data must be rounded to the closest hour, so
that every measuring spot on the train line can be matched with the closest grid point by
date and time.

The average of the weather variables within any two consecutive spots are calculated
and used in the analysis. Since a large number of the ice/snow precipitation values are
zero along the train line, a categorical variable is used instead of a continuous variable,
i.e., 0 if ice/snow precipitation is zero, 1 otherwise.

198



Atmosphere 2021, 12, 1115

Figure 2. Train line in the region with simulated WRF data.

3.3. Missing Values in the Train Operation Data

A section between two consecutive measuring spots for a train trip often has missing
departure/arrival times that can be classified into three different classes, which are defined
in Table 3.

Table 3. Classes of missing times.

Class Departure Time Missing Arrival Time Missing

1 True False
2 False True
3 True True

A common method to impute missing values in such longitudinal data is called last
observation carried forward (LOCF), i.e., the latest recorded value is used to impute the
missing value. The advantages of using LOCF are that the number of observations removed
from the study decreases and makes it possible to study all subjects over the whole time
period. A disadvantage of the method is the introduction of bias of the estimates if the
values change considerably with time, or the time period between the most recent value
and the missing value is long. Because the intervals with missing values are short in the
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dataset, which decreases the risk of bias, it is reasonable to apply this approach. Based on
the LOCF, the imputation procedure is explained further below.

1. Start from the beginning of the trip and save the latest arrival and departure time
until a missing time is occurring.

2. If the missing time is arrival time, then (a); if departure time is missing then (b):

(a) Replace the missing arrival time with the latest departure time + the planned
driving time for the previous section

(b) Replace the missing departure time with the latest arrival time + the planned
dwell time.

3. Save the imputed time as the new latest time.
4. If the section is not the last section of the trip, go back to step 1.

3.4. Likelihood Ratio Test

The likelihood ratio test is a hypothesis test that helps to determine whether adding
complexity to a simple model makes the complex model significantly better compared to
the simple model. Under the study context, comparisons occur between the two (com-
plex) heterogeneous models against the two (simple) homogeneous models, respectively.
The likelihood ratio test statistic is given by

λ = −2 ln
(Lhomo(θ̂)

Lheter(θ̂)

)

, (10)

where the numerator in the bracket is the likelihood value for a homogeneous model
with estimated parameter vector θ̂, while the denominator represents the likelihood for
the corresponding heterogeneous model. The null hypothesis in the simple model is
better and a low p value leads to the rejection of the null hypothesis and favouring of the
complex model.

For the purposes of clarity, Figure 3 summarises the related statistical methodolo-
gies used for the analysis of the two types of delays as well as the model comparison
method, respectively.

Figure 3. Statistical methodologies in the analysis.

3.5. Analysis Tool

R is the software used for data processing and modelling. Specifically, the pack-
age survival is used for the stratified Cox model and the package msm is used for the
heterogeneous Markov chain model.
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4. Results

4.1. Stratified Cox Model

The estimates from the fitted stratified Cox model with 95% confidence intervals (CIs)
and p-values can be found in Table 4. Temperature and humidity are two variables that have
significant effects on the occurrence of the primary delay. To be specific, as temperature
increases with 1 ◦C, the hazard decreases 3.6%, and as humidity increases 1%, the hazard
increases 1.7%. Comparison between the stratified Cox model and the non-stratified Cox
model in Wang et al. [13] using a likelihood ratio test shows that the stratified model is
significantly better than the non-stratified model (p < 0.0001).

Table 4. Estimates from the fitted stratified Cox model.

Predictor Hazard Ratio CI: Lower CI: Upper p-Value

Temperature 0.964 0.933 0.997 0.0338

Humidity 1.017 1.003 1.030 0.0107

Snow depth 1.017 0.990 1.044 0.2197

Ice/snow precipitation 1.055 0.841 1.323 0.6465

Besides hazard ratios, a survival plot is also produced to show how survival probabili-
ties vary between the first and second occurrence of primary delays in Figure 4. The survival
curves for the higher orders of primary delays are not shown due to the data deficiency.
The curves are plotted under the condition with the average of temperature, humidity and
snow depth among the whole data together with ice/snow precipitation, i.e., temperature
is −1.2 ◦C, humidity is 85%, snow depth is 3 cm and ice/snow precipitation is 1.
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Figure 4. Survival probabilities for the first two primary delays.

The figure clearly indicates that slightly less than 50% of trains do not experience any
primary delay during the trip, and 50% of trains that have experienced the first primary
delay suffer second primary delays after running 330 km from the starting point. It is
interesting to note that there is a substantial reduction in survival probability right before
running 500 km from the starting point for the first primary delay. The reason for this
might be related to some mechanical problems of trains in winter.

4.2. Heterogeneous Markov Chain Model

As indicated in Figure 4, under the average weather conditions, half of the number of
the first two primary delays occur in the second part of the trip partitioned at 330 km, thus
it is reasonable to assume the transition intensities are different before and after running
330 km. Therefore, t0 = 330 is chosen when modelling heterogeneous Markov chain (9).
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Tables 5 and 6 present the hazard ratios from the heterogeneous Markov chain model with
95% CIs and p-values. The ice/snow precipitation has a significant impact on the transition
from punctual to delayed states in Table 5, which means that the transition intensity from
punctuality to delay increases 23% with ice/snow precipitation. In contrast, temperature,
humidity and snow depth have significant impacts on the transition from delayed to
punctual states. It indicates in Table 6 that as the temperature increases 1 ◦C, the transition
intensity from delayed to punctual states increases 4.4%, as the humidity increases 1%,
the transition intensity decreases 1.6%, and as the snow depth increases 1 cm, the transition
intensity decreases 4.8%. Likelihood ratio test between the heterogeneous Markov chain
model (9) and the homogeneous Markov chain model in Wang et al. [13] is also performed,
which shows that our new model (9) fits significantly better with p < 0.0001 than the
homogeneous one.

Table 5. Hazard ratios from punctual to delayed states.

Predictor Hazard Ratio CI: Lower CI: Upper p-Value

Temperature 0.988 0.962 1.015 0.3881

Humidity 0.990 0.980 1.001 0.0683

Snow depth 1.000 0.977 1.026 0.9442

Ice/snow precipitation 1.230 1.001 1.512 0.0489

Table 6. Hazard ratios from delayed to punctual states.

Predictor Hazard Ratio CI: Lower CI: Upper p-Value

Temperature 1.044 1.016 1.073 0.0022

Humidity 0.984 0.973 0.995 0.0036

Snow depth 0.952 0.924 0.980 0.0012

Ice/snow precipitation 0.890 0.719 1.103 0.2921

Using the average of temperature, humidity and snow depth together with ice/snow
precipitation, Table 7 and Figure 5 show the estimated transition intensities and probabili-
ties of evolution of delayed status for the two segments divided at 330 km, respectively.
In Table 7, the transition intensity of the second segment of the trip from punctual to
delayed states is 58.6% higher than the first; however, transition intensity of the second
segment of the trip from delayed to punctual states is 31.9% lower than the first segment.
In other words, the second segment is much more likely to suffer delay and more difficult
to recover from a delay. It is also verified in Figure 5 that the first segment has a higher
probability of being punctual. Since the arrival delay analysis is conducted over all the
measuring spots after the starting point, and the state of the train at the initial station is
not considered, and for the purpose of illustration of the difference of transition intensities
between the two segments shown in Table 7, Figure 5 only presents the trip that begins
with a punctual state. Under such an assumption, the probability of a train arriving at the
final station on time is about 81% (0.91 × 0.81 + 0.09 × 0.80 = 0.809).

Table 7. Estimated hazard ratios between segments [330, end) and [0, 330).

Predictor Hazard Ratio CI: Lower CI: Upper p-Value

Punctuality—delay 1.586 1.337 1.883 <0.0001

Delay—punctuality 0.681 0.564 0.822 <0.0001
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Figure 5. Probabilities of evolution of delayed status in the trip.

5. Discussion

In the study, we considered the heterogeneity within each train in both statistical
models; however, the heterogeneity among trains is not touched on yet and could be
considered for further investigation, for example a frailty Cox model and/or fitting the two
models from a Bayesian perspective with random effects among trains [24]. In addition,
choosing the changing point and the number of changing points in a heterogeneous Markov
chain process become critical problems, since the estimated transition intensity matrix may
be sensitive to the choices, which are very subjective. In this study, only one changing
point at 330 km was used, which was decided by the fact that half of the number of the
first two primary delays occurred in the second part of the trip partitioned at 330 km under
the average weather condition in Figure 4. Continuously changing transition intensities,
which are a smooth function of time, e.g., a Weibull-distributed time function, may be more
plausible with the help of numerical approximation methods [19]. Moreover, more could
be done in terms of statistical modelling. For instance, (1) a more-than-two-states Markov
chain model can be used to acquire a deeper understanding of the climate effects; (2) more
than one changing point of the transition intensity can be investigated in the model; and (3)
interactions between weather variables and the indicator variable could be considered to
account for the weather effects in each segment in the heterogeneous Markov chain model.
Moreover, train operation data from more than one winter could to be included in the
model-fitting procedure to acquire more robust inference.

6. Conclusions

This study investigated the effects of a harsh winter climate on the performance
of high-speed passenger trains in northern Sweden, with respect to the occurrence of
primary delays and the transition intensities between delayed and punctual states. Novel
approaches based on heterogeneous statistical models were introduced to analyse the train
performance to take the time-varying risks of train delays into consideration. Specifically, a
stratified Cox model and a heterogeneous Markov chain model were used to modelling
primary delays and arrival delays, respectively. We conclude that (1) the two heterogeneous
models outperform the homogeneous counterparts; (2) the weather variables, including
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temperature, humidity, snow depth, and ice/snow precipitation, have significant impacts
on train delays.
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Abstract: Tropical Cyclones (TCs) are the most disastrous natural weather phenomenon, that have
a significant impact on the socioeconomic development of the country. In the past two decades,
Numerical Weather Prediction (NWP) models (e.g., Advanced Research WRF (ARW)) have been used
for the prediction of TCs. Extensive studies were carried out on the prediction of TCs using the ARW
model. However, these studies are limited to a single cyclone with varying physics schemes, or single
physics schemes to more than one cyclone. Hence, there is a need to compare different physics
schemes on multiple TCs to understand their effectiveness. In the present study, a total of 56 sensitivity
experiments are conducted to investigate the impact of seven microphysical parameterization schemes
on eight post-monsoon TCs formed over the North Indian Ocean (NIO) using the ARW model.
The performance of the Ferrier, Lin, Morrison, Thompson, WSM3, WSM5, and WSM6 are evaluated
using error metrics, namely Mean Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS),
and average track error. The results are compared with Indian Meteorological Department (IMD)
observations. From the sensitivity experiments, it is observed that the WSM3 scheme simulated
the cyclones Nilofar, Kyant, Daye, and Phethai well, whereas the cyclones Hudhud, Titli, and Ockhi
are best simulated by WSM6. The present study suggests that the WSM3 scheme can be used as
the first best scheme for the prediction of post-monsoon tropical cyclones over the NIO.

Keywords: ARW model; microphysical schemes; North Indian Ocean; tropical cyclones;
average track error; skill score; WSM3

1. Introduction

Among the world’s oceans, the North Indian Ocean (NIO) is a highly active region for the formation
of tropical cyclones (TCs). The NIO accounts for 7% of the TCs that are formed over the globe [1].
TCs are one of the most dangerous natural weather calamities, which have a significant impact on
the socio-economic aspects of the countries along the rim of the NIO [2]. TCs will cause substantial
loss to humans, physical property, ecology and the environment at different levels when they
make landfall [3]. The damage caused by TCs along the rim of the NIO may be attributed to its
shallow bathymetry, low-lying flood prone areas, dense population along the coastlines, and poor
socio-economic conditions [4].

The TCs over the NIO are highly seasonal and occur during the pre- and post-monsoon seasons
with very few in the rest of the year. The seasonal occurrence of the TCs over the NIO may be attributed
to the presence of nearby equatorial troughs over the open ocean in the pre- and post-monsoon
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seasons [5,6]. The post-monsoon season is a highly active period for the formation of TCs over the NIO.
The TCs that are formed in the post-monsoon season are approximately twice the TCs that are formed
in the pre-monsoon season [3]. As per the annual and primary reports of the Regional Specialized
Meteorological Centre, Indian Meteorological Department (RSMC-IMD) for the TCs over the NIO,
a total of 20 cyclones were formed in the last five years (i.e., from 2014 to 2018). Of these, 60% of
the TCs were formed in the post-monsoon season and the rest in the pre-monsoon [7–11]. By using
the data from atlas maps published by Indian Meteorological Department (IMD) and their records
for a period of 122 years (1877–1998), Singh et al. (2000) [12] evaluated the trends in post-monsoon
TCs over the NIO and found an increasing trend of 20% in both the intensity and frequency of
TCs. Mohanty et al. (2012) [13] found a large increase in the number of severe cyclonic storms
(SCS) in the Bay of Bengal (BoB) by evaluating the trends in cyclone data for a period of 120 years
(1891–2010). The increasing number of tropical cyclones in the post-monsoon season may be attributed
to the rise in sea surface temperature, weak vertical wind shear, El Nĩno Southern Oscillation (ENSO)
and the Indian Ocean Dipole (IOD) [13–16]. ENSO is an ocean-atmospheric coupled phenomenon
which affects the intensity of the TCs [17]. The track of the TC is influenced by large-scale wind
dynamics which include vertical wind shear, low-level rotational wind, low-level relative vorticity,
and mid-troposphere [18,19].

With the advancements in computational power, significant improvements are seen in the field
of TC prediction over the NIO using the Numerical Weather Prediction (NWP) models. Due to
inconsistencies (initial and boundary conditions, grid resolution, representation of physics schemes,
and geographical location) in the NWP models, there is need for further improvement in the prediction
of TCs. Accurate representation of cloud processes in NWP models is crucial for the track and intensity
prediction of TCs. Representation of cloud processes plays an important role in the production
and distribution of heat, mass, and momentum in the atmosphere in both the horizontal and vertical
directions with the help of precipitation, winds, and turbulence. The representation of physics schemes
in the NWP model are important when the cloud processes and their effects are unresolved by
the model [20,21]. In the last two decades, based on various assumptions, researchers have developed a
number of parameterization schemes for track and intensity prediction and they are being used for both
operational and research purposes [22]. Among all the physics schemes, Cloud Microphysics (CMP),
Cumulus Parameterization Scheme (CPS), Planetary Boundary Layer (PBL), radiation (longwave
and shortwave), and land-surface schemes are being used for weather predictions [23]. The cloud
process in the model can be implicitly treated by CPS and explicitly treated by CMP schemes.
CPS reduces the convective instability in a model through the redistribution of temperature and moisture
in a grid column [24]. CMP schemes represent cloud and precipitation processes (condensation,
nucleation, coalescence, phase changes, etc.) according to the atmospheric conditions in terms of
temperature, wind, and moisture. Both CPS and CMP schemes control the spatio-temporal variations
in precipitation and yield different profiles of moistening and heating in the atmosphere. Without
double counting the thermo-dynamical impacts, both types of schemes represent the convective
activity [20,21].

Numerous studies have been conducted to assess the impact of physics schemes on the prediction
of track and intensity of the TCs using the Advanced Research Weather Research and Forecasting
(ARW) model. Among all the schemes in the ARW model, convective processes play an important
role in the development of TCs and boundary layer dynamics in their intensification [4,20,25,26],
whereas microphysical schemes have significant impacts on the track prediction of TCs [25]. Pattanayak
et al. (2012) [4] found that the track and intensity of the TC Nargis is well simulated by the Ferrier
CMP scheme along with Yonsei University (YSU) PBL, Simplified Arakawa Schubert (SAS) CPS
schemes. With the same CPS and PBL schemes, the Kessler CMP scheme provided better results for
the TC Vardah [21]. Kanase and Salvekar (2015) [27] showed that the WSM6 scheme, in combination
with Bettes-Miller-Janjic (BMJ) CPS and YSU PBL schemes, simulated better results for the TC Laila.
Based on the sensitivity experiments conducted by Srinivas et al. (2013) and Lakshmi and Annapurnaiah
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(2016) [28,29], the Lin scheme improved the results for the TCs Sidr, Nisha, Tane, Jal, Nargis,
and Hudhud along with the combination of Kain–Fritsch (KF) CPS and YSU PBL schemes. With the same
combination of CMP and PBL schemes, Choudhury and Das (2017) [30] suggested the Goddard scheme,
and the Ferrier scheme was suggested by Raju et al. (2011) [26] and Reddy et al. (2014) [31] for
the prediction of TCs. Osuri et al. (2012) [32] and Mahala et al. (2015) [33] reported that the TCs over
the NIO, were better simulated by the WRF Single-Moment-3 (WSM3) scheme with the same CPS
and PBL schemes.

Based on previous studies, it was found that Kain–Fritsch (KF) and Yonsei University schemes can
be used as convective and boundary layer schemes [26,28,30,32], and various microphysical schemes
such as Ferrier [26,31] WSM3 [32], Lin [28] and Goddard [30] can be used in the prediction of the track
and intensity of the TCs over NIO.

From these studies, it may be difficult to identify a suitable microphysical scheme for the prediction
of the TCs over the NIO region. In this study, numerical experiments were conducted to revalidate
the suggested microphysical schemes for the simulation of TCs. This study mainly concentrated on
the prediction of post-monsoon TCs, because 71% of the TCs that are formed in the post-monsoon
season make landfall over the Indian coast, whereas, in the pre-monsoon season, the majority of
the TCs over the BoB make landfall near Myanmar, and the TCs that are formed over the Arabian Sea
(AS) make landfall near the Gulf countries [3,12].

Tropical Cyclone Case Studies

In the recent years, RSMC-IMD has adopted various techniques in the analysis and forecasting of
the TCs over the NIO. RSMC-IMD uses a blending technique based on conceptual models, dynamical
and statistical models, meteorological datasets, technology and expertise for TC analysis, prediction
and decision-making process. For the purpose of TCs analysis and prediction, RSMC-IMD uses data
from conventional observational networks, automatic weather stations, buoy and ship observations,
cyclone detection radars and satellite imagery. RSMC-IMD provides a bulletin on tropical weather
look, tropical cyclone advisories, storm surge guidance, maritime forecast bulletins, tropical cyclone
advisories for aviation, national bulletins, cone of uncertainty forecasts, and wind forecasts for different
quadrants. RSMC-IMD issues a national bulletin to the public on the formation of cyclones from
the stage of depression (D) onwards. During the stages of depression or deep depression, RSMC issues
the bulletins based on 00, 03, 06, 12, and 18 UTC observations. When the system intensifies into a cyclonic
storm over the NIO, these bulletins are issued at 3-hour intervals based on previous observations,
which gives the information on present status of the system, expected damage and action suggested.
These bulletins are completely made for national users and disseminated through the various modes
of communication (i.e., All India Radio, National TV, Telephone, SMS, print electronic media) and are
made available at the RSMC-IMD website [11].

The eight TCs formed over NIO from 2014 to 2018 were considered in the present study in order to
assess the impact of CMP on their track and intensity predictions. Among these TCs, two had formed
over AS and the remaining were in BoB. The best tracks provided by the study cyclones are presented
in Figure 1. The details about these cyclones are given in Table 1 and a brief summary is given below.

1. Hudhud On the morning of 6 October 2014, cyclone Hudhud formed as a low-pressure area (LPA)
over BoB. It gradually intensified into a Very Severe Cyclonic Storm (VSCS) in the afternoon
of 10 October 2014. It made landfall near Visakhapatnam with a northwestward movement in
the morning of 12 October 2014 as VSCS and moved in the same direction. It then gradually
weakened into a Well-Marked Low-Pressure Area (WMLA) on the evening of 14th October 2014
over eastern Uttar Pradesh [7];

2. Nilofar A VSCS Nilofar formed as an LPA over the southeast AS on the morning of 21 October
2014. The cyclone initially moved northwestward on the day of formation and then recurved
northeastwards. It exhibited rapid intensification as well as rapid weakening and weakened into
a WMLA near the North Gujarat coast on the morning of 31 October 2014 [7];
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3. Kyant Cyclone Kyant formed as a depression (D) over east central BoB on 21 October 2016.
The track followed by this system is rare in nature as it experienced two re-curvatures during its
life period. The rate of intensification was very slow and steady, taking about 4 days to become a
cyclonic storm (CS) from the stage of D, and the rate of weakening was rapid as it reduced to a
WMLA from the CS stage within 30 hours on the morning of 28 October 2016 [9];

4. Ockhi Cyclone Ockhi formed as an LPA over Andaman Sea on 22 November 2017. There was
a rapid intensification during its genesis stage, as it intensified into a CS within 6 hours
from the stage of deep depression (DD). While moving west–northwestwards, Ockhi further
intensified into a Severe Cyclonic Storm (SCS) over Lakshadweep area in the early morning of
1 December 2017 and VSCS over the southeast AS in the afternoon of the same day. It then moved
northwestwards and reached its peak intensity in the afternoon of 2 December 2017. It moved
north–northwestwards and then northeastwards, and crossed the south coast of Gujarat between
Surat and Dahanu as a WMLA in the early morning of 06 December 2017 [10];

5. Daye Daye is the first cyclonic storm formed over the NIO in the month of September after 2005.
It formed as a D over the east central of BoB in the afternoon of 19 September 2018. Moving nearly
west–northwestwards, it intensified into a DD on the morning of 20 September 2018 and further
into a CS in the same day. It made landfall close to Gopalpur as a CS from 1900–2000 h UTC of
20 September 2018. It continued to move west–northwestwards, and weakened into an LPA over
south Haryana on the morning of 24 September 2018 [11];

6. Titli Titli cyclone formed as an LPA over the southeast BoB on the morning of 7 October 2018.
Moving nearly west–northwestwards, it intensified into a DD on the morning of 8 October
2018, and further into a CS around noon on 9 October 2018. It then moved northwestwards,
and in the early morning of 10 October 2018, it intensified into an SCS. It then moved
north–northwestwards and further intensified into a VSCS around noon of 10 October 2018
and crossed the northern Andhra Pradesh and south Odisha coasts near Palasa from 2300 to
0000 h UTC as a VSCS. Moving further west–northwestwards, it weakened into an SCS around
the noon of 11 October 2018 and a CS in the same evening. Under the influence of southwesterly
winds, the system recurved northeastwards from 11 p.m., and gradually weakened into an LPA
over Gangetic West Bengal and adjoined Bangladesh in the morning of 13 October 2018 [11];

7. Gaja VSCS Gaja originated from an LPA which formed over the Gulf of Thailand and adjoining
Malay Peninsula on the morning of 8 November 2018. Under the favorable conditions,
it concentrated into a D over southeast BoB in the morning of 10 November. Moving west–
northwestwards, it intensified into a DD in the same evening and further intensified into a CS in
the early morning of 11 November 2018. It then moved nearly westwards till early morning of
12 November 2018. Thereafter, it recurved south–southwestwards and followed an anticlockwise
looping track till the morning of 13 November 2018. It then moved west–southwestwards
and intensified into an SCS southwest BoB on the morning of 15 November 2018 and into a VSCS
in the same night. Moving further west–southwestwards, it crossed Tamil Nadu and Puducherry
coast between Nagapattinam and Vedaranniyam from 1900 to 2100 h UTC of 16 Nov 2018.
Thereafter, it moved nearly westwards, and weakened rapidly into an SCS, CS, and DD over
interior Tamil Nadu on 16 November 2018. It then moved west–southwestwards and weakened
into a D in the same evening over central Kerala. Moving nearly westwards, it intensified into a
DD over southeast AS in the early morning of 17 November 2018. Thereafter, it moved nearly
west–northwestwards and crossed Lakshadweep Islands on the afternoon of 17 November 2018,
as a DD. It continued to move west-northwestwards and weakened into a D over the same region
around noon of 19 November 2018, WMLA in the same night, and an LPA on 21 November
2018 [11];

8. Phethai A SCS Phethai formed as an LPA over the Equatorial Indian Ocean and adjoinined
the central parts of south BoB on the evening of 9 December 2018. It was laid as a WMLA over
the same area on the morning of 11 December 2018. It continued to be WMLA till the morning
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of 13 December 2018, and, under favourable conditions, it concentrated into a D over southeast
BOB. Moving north–northwestwards, it intensified into a DD over the same area on the same
midnight. Continuing to move in the same direction, it intensified into a CS in the evening
of the 15th and into an SCS in the afternoon of the 16th. It maintained its intensity of SCS till
the early morning of the 17th and weakened into a CS in the same morning. Continuing to move
north–northwestwards and then northwards, it crossed the Andhra Pradesh (south of and close
to Yanam and 40 km south of Kakinada) coast during the 17th afternoon as a CS. After landfall,
the cyclone moved north–northeastwards and weakened rapidly into a DD near the Kakinada
coast in the same evening. Continuing to move in the same direction, it again crossed Andhra
Pradesh coast near Tuni and weakened into a D over the coastal Andhra Pradesh during the same
midnight. It further weakened into a WMLA over the northwest and adjoining west–central BoB
and coastal Odisha in the early morning of the 18th, and into an LPA northwest BoB and adjoining
Odisha in the same morning [11].

 

 

Figure 1. Best tracks of tropical cyclones (TCs) considered in the present study.

Table 1. Details of the study of tropical cyclones (TCs).

S.No Period Cyclone Name Landfall Category

1 7–17 October 2014 Hudhud Visakhapatnam Very Severe Cyclonic Storm

2 25–31 October 2014 Nilofar No Landfall Very Severe Cyclonic Storm

3 21–28 October 2016 Kyant No Landfall Cyclonic Storm

4
29 November–

05 December 2017
Ockhi

South Gujarat
Coast

Very Severe Cyclonic Storm

5 19–22 September 2018 Daye Gopalpur Cyclonic Storm

6 8–13 October 2018 Titli Palasa Very Severe Cyclonic Storm

7 10–19 November 2018 Gaja Puducherry Very Severe Cyclonic Storm

8 13–18 December 2018 Phethai Yanam Severe Cyclonic Storm

2. ARW Model and Sensitivity Experiments

Advanced Research Weather Research and Forecasting (ARW version 4.0) model is an open-source
atmospheric modelling system designed for broad use in research and operational studies at the National
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Centre for Atmospheric Research (NCAR) in collaboration with various universities [34]. The model
supports atmospheric simulations across scales from large-eddy to globe, with a wide range of
applications. The model integrates the compressible non-hydrostatic Eulerian equations using a
terrain following vertical coordinates. The model uses the 3rd-order Runge–Kutta time integration
scheme for low-frequency modes, whereas smaller time steps are used to integrate the high-frequency
acoustic waves to maintain numerical stability. The horizontal propagating acoustic models and gravity
waves are integrated using a forward–backward time integration scheme, and vertically propagating
acoustic models and buoyancy oscillations are integrated using a vertical implicit scheme. This model
and its earlier versions have the versatility to choose the region of interest, grid spacing in horizontal
and vertical directions, interactive nested domains with various physics parameterization schemes for
convection, boundary layer, microphysics, radiation, soil, and surface processes [35,36].

In this study, ARW v4.0 was used to conduct sensitivity experiments to predict the track
and intensity of TCs. The initial and boundary conditions for the prediction of TCs were considered
from the 0.5◦ × 0.5◦ resolutions of NCEP-GFS model forecasts with 6-hour intervals. The model
was designed with two two-way nested domains with 27 and 9 km grid spacing. The terrain data
of 10m resolution from the United States Geological Survey (USGS) were used for both domains.
The model utilized a total of seven microphysical schemes, namely Lin, Thompson, Ferrier, Morrison,
WSM3, WSM5 and WSM6, for both the domains. Yonsei University (YSU) PBL scheme, Rapid Radiative
Transfer Model (RRTM) for long-wave radiation and Dudhia scheme for short-wave radiation were
used for both the inner and outer domains, whereas the Kain–Fritsch (KF) convective scheme was
used for the outer domain.

The various microphysics schemes deal with the mixing ratios of the prognostic variables with
different approaches under different assumptions. The mixing ratios of the prognostic variables in all
the microphysical schemes considered in the study are presented in Table 2. The Lin scheme includes
all the prognostic variables. It is the most sophisticated scheme of the ARW model and suitable for
research studies [37]. The new Eta Ferrier scheme has the ability to predict the changes in water
vapor and estimates the precipitation ice density along with the mixing ratios [38]. The Thompson
scheme used in the present study is a double-moment scheme which includes the prediction of ice
concentration [39]. The scheme assumes that the snow size distribution depends on both the water
and ice content and temperature [40]. Morrison scheme is also a double-moment scheme which
predicts the mixing ratios and concentrations of all the prognostic variables. The scheme uses Kohler’s
theory to calculate the homogeneity and heterogeneity in the nucleation process and quasi-stationary
saturation adjustment algorithm for droplet concentration [41]. WSM3 is a simple ice scheme, which
predicts only the liquid hydrometers (i.e., Qv, Qc, and Qr). The expressions considered by WSM3 to
predict liquid hydrometers are assumed to be above the freezing point. Further, the scheme considers
Qc as Qi and Qr as Qs when the temperature is less than or equal to the freezing point. The WSM5
scheme predicts the mixing ratios of all the prognostic variables except graupel [42]. The WSM6 scheme
is similar to that of WSM3, but includes more complex processes for predicting the mixing ratios of all
the prognostic variables [43]. Compared to the double-moment schemes, single-moment schemes have
the capability of simulating TCs with a smaller eye, stronger tangential wind, high positive temperature
and closer latent heating area to the cyclone center, and smaller radius of maximum wind [44].

For the sensitivity experiments, a total of eight TCs were selected to study the sensitivity of
microphysical schemes to the prediction of track and intensity of TCs over the NIO region that occurred
from 2014 to 2018. The model initiation time and simulation period for the TCs are presented in Table 3.
The simulated results of the TCs are validated against the best track given by IMD.
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Table 2. The mixing ratios of the prognostic variables in the Microphysical Schemes.

Microphysical Schemes Mixed Phase Variable Processes

Ferrier Water Vapor (Qv), Cloud Water (Qc), Rain (Qr), Ice (Qi)

Lin
Water Vapor, Cloud Water, Rain, Ice, Snow (Qs),

and Graupel (Qg)

Morrison Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel

Thompson Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel

WSM3 Water Vapor, Cloud Water/Ice and rain/snow

WSM5 Water Vapor, Cloud Water, Rain, Ice, and Snow

WSM6 Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel

Table 3. Model initiation dates and simulation times considered for the study.

Tropical
Cyclone

Initial Date: Time
(DD-MM-Year: hh)

End Date: Time
(DD-MM-Year: hh)

Simulation
Period (h)

Maximum
Sustained

Wind
(MSW) (Kt)

Mean Sea
Level

Pressure
(MSLP)(hPa)

Intensity Stages of
TCs for Model
Initialization

Hudhud 09-10-2014: 00 13-10-2014: 00 Z 96 45 990
Severe Cyclonic

Storm (SCS)

Nilofar 27-10-2014: 00 31-10-2014: 00 Z 96 55 990
Severe Cyclonic

Storm (SCS)

Kyant 23-10-2016: 00 27-10-2016: 00 Z 96 20 996 Depression (D)

Ockhi 01-12-2017: 00 05-12-2017: 00 Z 96 50 992
Severe Cyclonic

Storm (SCS)

Daye 20-09-2018: 00 22-09-2018: 00 Z 48 25 996 Depression (D)

Titli 09-10-2018: 00 13-10-2018: 00 Z 96 30 1000
Deep Depression

(DD)

Gaja 12-11-2018: 00 16-11-2018: 00Z 96 40 998 Cyclonic Storm (CS)

Phethai 14-12-2018: 00 18-12-2018: 00 Z 96 30 1002
Deep Depression

(DD)

3. Evaluation Method

Statistical analysis is the most common method used to find the uncertainty in the model
forecasts with respect to the observations. The Direct Positional Error (DPE) was calculated by using
the Haversine formula, which gives the geographical distance between the two points on a sphere.
Mean Sea Level Pressure (MSLP) and Maximum Sustained Wind (MSW) were measured at each time
step and evaluated against the IMD observations. The Mean Absolute Error (MAE), and Mean Square
Error (MSE) were calculated with respect to IMD observations. MAE is an average prediction error
and used to measure the forecast accuracy. MSE is a measure to determine the quality of a forecast
with a positive value. If the value of MAE and MSE are close to zero, the quality of the forecast is better.
The skill score (SS) of DPE, MSLP and MSW were calculated with respect to the reference forecast.
SS is the relative accuracy score of a forecast over a reference forecast. The reference forecast was
chosen based on the numerical experiments conducted by Srinivas et al. (2013) [29]. By conducting
65 numerical experiments, Srinivas et al. (2013) suggested that the Lin scheme provided better results
for the prediction of the track and intensity of 21 TCs over the BoB. Hence, the sensitivity experiments
with the Lin scheme considered as a reference forecast and the skill score for all the other microphysical
schemes were calculated. Positive (negative) values of SS indicate that the model is more (less) skilled
than the configuration using the Lin scheme.

The SS of MSLP and MSW was calculated by using Equation (3).

Mean Absolute Error (MAE) =
1
n

∑n

i=1
|Ps − Po| (1)
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Mean Square Error (MSE) =
1
n

∑n

i=1
(Ps − Po)

2 (2)

Skill Score (SSi) = 1− MSESimulation

MSEReference
(3)

In the above equations, Ps = Simulated Value of the Parameter, Po = Observed Value of
the Parameter, and n = Number of Observations. The SS for DPE is calculated using Equation (4).

Skill Score (SSDPE) = 1− DPESimulation

DPEReference
(4)

4. Results

The sensitivity of seven CMP schemes was analyzed to find the optimum combination physics
schemes for the prediction of post-monsoon TC over the NIO using the ARW model. Except for
the Daye cyclone, the simulation period for the selected TCs is 96 h. For the Daye cyclone, the simulation
period is 48 h, as the lifespan of the cyclone itself is 48 h. The model errors for MSW, MSLP, and track
position are calculated with respect to the observed value.

4.1. Track and Intensity Errors

The predicted tracks of the selected cyclones for all the combinations of CMP schemes and the best
track provided by IMD are depicted in Figures 2–5 along with their respective direct positional
errors (DPE). From the results, it is observed that the intensity stages (Depression, Deep Depression,
Cyclonic Storm, Severe Cyclonic Storm, and Very Severe Cyclonic Storm) of TCs during the model
initialization have a significant impact on its track prediction. The cyclones initiated at deep depression
or higher stages showed an increasing trend in average track error from the model initiation to
the end of the simulation, whereas the cyclones initiated at the depression stage showed a decreasing
trend in their average track error until 48 h of model simulation, and then gradually increased to
the end of the simulation. Except for the cyclones Daye and Kyant, the predicted track was near to
the observed track during the initial stages of the model simulation, with an average error of 64 km
for all the schemes. The results are in good agreement with previous studies [27,32]. Subsequently,
as the time of simulation increased, the predicted track also started moving away from the best track.
At the end of the simulation period, the average track error was found to be 247 km. For cyclone
Kyant, an average track error of 88 km was found during the initial stages and gradually reduced to
67 km up to 48 h of the model simulation, and then gradually increased to 347 km at the end. Similarly,
for cyclone Daye, the average track error was gradually reduced from 162 to 78 km from the model
initiation to the end of the simulation.

The model performance was evaluated by calculating the MAE, MSE, and average track errors at
every 24 h interval (i.e., 4, 48, 72 h, and 96 h). The 24-hourly average track error for the TCs is presented
in Figure 6. The WSM3 scheme simulated the cyclones Nilofar, Kyant, Ockhi, Daye, and Phethai with
an average track error ranging from 83 to 190 km, 45 to 195 km, 42 to 75 km, 102 to 47 km, and 113 to 115
km at 24h to end of the simulation time, respectively. Hudhud cyclone is well simulated by all the CMP
schemes, with a maximum average track error of 63 km at a 24 h simulation time. From then, the average
track error gradually increased to 555 km at the end of the simulation with a least error of 219 km by
the WSM6 scheme. Cyclone Gaja is well simulated by Ferrier, with least average track errors of 110, 264,
231, and 139 km at 24, 48, 72, and 96h of the model simulation time. In the case of Titli, the average track
was considered for the overall simulation period because the Morrison scheme gave the lowest average
track error of 64 and 39 km during the initial stages of model simulation, whereas the WSM6 scheme
produced the least error of 111 and 37 km at the end of the simulation. Hence, the WSM6 scheme
was considered to provide superior results for Titli cyclone. The single-moment or double-moment
schemes did not shown any significant variations in the TCs track prediction. The deviations in
the predicted tracks may be attributed to the variations in the intensification process during the model
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simulation. The schemes which showed rapid intensification process during the model simulation
showed minimum deviation from the observed track, whereas the schemes which showed a slower
intensification process during the model simulation showed maximum deviation from the observed
track [45].

 

Figure 2. Observed and predicted tracks of tropical cyclones initiated at depression stage along with
DPE (a) tracks of Daye Cyclone, (b) DEP of Daye Cyclone, (c) track of Kyant Cyclone, (d) DEP of
Kyant Cyclone.

 

 

Figure 3. Observed and predicted tracks of tropical cyclones initiated at deep depression stage along
with DPE (a) track of Phethai Cyclone, (b) DPE of Phethai Cyclone, (c) track of Titli Cyclone, (d) DPE of
Titli Cyclone.
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Figure 4. Observed and predicted tracks of tropical cyclones initiated at cyclonic stage (Gaja) and severe
cyclonic stage (Hudhud) along with DPE (a) track of Gaja Cyclone, (b) DPE of Gaja Cyclone, (c) track
of Hudhud Cyclone, (d) DPE of Hudhud Cyclone.

 

Figure 5. Observed and predicted tracks of tropical cyclones initiated at severe cyclonic stage along
with DPE (a) track of Nilofar Cyclone, (b) DPE of Nilofar Cyclone, (c) track of Ockhi Cyclone, (d) DPE
of Ockhi Cyclone.

216



Atmosphere 2020, 11, 1297

 

Figure 6. Average track error at every 24-hour interval of the tropical cyclones considered.

The Mean Absolute Error (MAE) and Mean Square Error (MSE) of MSW for all CMPs were
calculated and the results of the TC Hudhud are presented in Figure 7. In the case of Nilofar, Kyant,
Daye, and Phethai cyclones, WSM3 indicates the lowest MAE and MSE. The lowest MAE for the TCs
ranged from 4.73 to 17.08 m/s, 6.84 to 4.63 m/s, 8.60 to 1.45 m/s, and 7.16 to 3.66 m/s for MSW from 24 h
to the end of the simulation. The lowest MSE for the TCs ranged from 10.14 to 11.31 m2/s2, 2.89 to
4.97 m2/s2, 6.56 to 0.88 m2/s2, and 2.29 to 6.29 m2/s2. The lowest MAE and MSE for the Gaja cyclone
were obtained from the Ferrier scheme and are ranged from 4.19 to 9.94 m/s and 5.77 to 13.46 m2/s2,
respectively. However, for the Hudhud, Titli and Ockhi cyclones, the WSM6 and Lin scheme provided
the lowest MAE, ranging from 2.44 to 9.49 m/s, 5.08 to 3.91 m/s and 4.85 to 3.85 m/s, and the MSE
ranged from 1.60 to 1.48 m2/s2, 5.39 to 8.63 m2/s2 and 6.44 to 12.45 m2/s2. The schemes which predicted
the MSW well also predicted MSLP for the respective TCs.
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Figure 7. Mean Absolute Error (MAE), Mean Square Error (MSE) of Mean Sea Level Pressure (MSLP)
and Maximum Sustained Wind (MSW) of the tropical cyclone Hudhud.

The intensity of the TC cyclone is influenced by the auto conversion process between
the hydrometers and the amount of latent heat released during the conversion process [46,47].
To assess the impact of various microphysical schemes on the intensity of TCs, the vertical profile
of the area averaged mixing ratios was calculated at every 3-hour interval over the entire numerical
domain. An average value of the prognostic variables over all the time steps was taken for the analysis.
The averaged values of the prognostic variables for the cyclone Hudhud are presented in Figure 8
and other cyclones are presented in Supplementary Figures S1–S7. From the results, it can be observed
that the WSM3 scheme only predicted the liquid hydrometers for all the cyclones. This indicates
that the WSM3 scheme assumed that the temperature of the clouds was above the freezing point.
Compared to the other microphysical schemes, the WSM3 scheme produced significant amounts of
cloud water and rain in the lower troposphere for the cyclones Nilofar, Kyant, Daye, and Phethai.
For the cyclones Kyant, Daye, and Phethai, all the microphysical schemes showed a significant decrease
in the frozen hydrometers in the middle troposphere results in slowing down the vertical acceleration
of the intense updrafts in the eye wall of the storm, which might be reason for inhibiting the storm
intensification [48]. For the cyclone Nilofar, the frozen hydrometers predicted by all the microphysical
schemes in the middle troposphere are negligible in quantity and the liquid hydrometers predicted
by Lin, WSM5 and WSM6 in the lower troposphere are also negligible in quantity. Compared to
the Ferrier, Morrison, and Thompson schemes, which produced cloud water and rain in the lower
troposphere, the WSM3 scheme produced a higher amount. The presence of cloud water and rain in
the lower troposphere helps in its intensification. Therefore, the WSM3 scheme produced a higher
intensity for the cyclones Nilofar, Daye, Kyant, and Phethai.

The WSM6 scheme produced a significantly large amount of cloud water and rain in the lower
troposphere compared to WSM3 for the cyclones Hudhud, Ockhi, and Titli. Due to the presence
of cloud water and rain in the lower troposphere helping in the release of latent heat and cyclone
intensification, the WSM6 scheme has given a higher intensity for the cyclones Hudhud, Ockhi and Titli,
whereas the other microphysical schemes showed a significant decrease in the frozen hydrometers in
the middle troposphere, which prevents the intensification of cyclones. In the case of Gaja cyclone,
the Ferrier, Lin, Thompson, and WSM6 schemes produced cloud water in the lower troposphere, and all
the schemes produced negligible quantities of all the other prognostic variables. Compared to other
schemes, due to the presence of a large amount of cloud water in the lower troposphere, the Ferrier
scheme predicted the Gaja cyclone with greater intensity. The uncertainties in the predictions by
various microphysical schemes can be attributed to the presence of a graupel hydrometer [49].
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Figure 8. Time evolution of area averaged mixing ratios (g/kg) for the cyclone Hudhud (Qv-Water
Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).

4.2. Skill Score

Skill Score (SS) was calculated to obtain information about the improvement in the model forecast
over the reference forecast. It is easy to identify the improvement in the model performance as the SS
provides a single value. In the present study, sensitivity experiments with the Lin scheme were
considered as a reference forecast and the skill score for all the other microphysical schemes was
calculated. The skill scores for the DPE, MSW and MSLP at the end of the simulation are provided in
Tables 4–6.
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Table 4. Skill score for Direct Positional Error (DPE).

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 WSM6

Hudhud −0.52 −0.07 0.07 −0.16 0.04 0.17

Nilofar 0.13 0.08 0.08 0.18 0.17 0.14

Kyant −0.44 −0.31 0.06 0.17 0.08 −0.39

Ockhi −0.54 −0.12 0.07 −0.04 −0.04 0.35

Daye −0.09 −0.16 0.04 0.19 0.08 0.01

Titli 0.49 0.28 0.37 0.21 0.01 0.58

Gaja 0.35 0.20 0.21 0.26 0.19 0.08

Phethai −0.11 −0.17 0.10 0.41 0.03 0.01

Table 5. Skill score for maximum sustained wind (MSW).

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 WSM6

Hudhud 0.33 0.18 0.10 −1.33 0.00 0.43

Nilofar 0.22 0.01 0.23 0.47 0.21 0.11

Kyant 0.15 0.26 0.66 0.70 0.61 0.53

Ockhi −0.24 −0.56 −0.38 −0.90 −0.33 0.01

Daye 0.01 −0.08 −0.02 0.17 −0.10 −0.07

Titli 0.13 0.15 0.05 0.09 −0.17 0.26

Gaja 0.62 0.61 0.33 −0.16 0.18 0.14

Phethai 0.27 0.12 0.20 0.47 0.33 0.26

Table 6. Skill score for mean sea level pressure (MSLP).

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 WSM6

Hudhud 0.45 −0.30 0.50 −0.16 0.51 0.74

Nilofar 0.41 0.05 0.30 0.70 0.44 0.25

Kyant 0.24 0.37 0.38 0.68 0.62 0.07

Ockhi −0.85 −0.25 −0.94 −1.68 −0.92 0.15

Daye −0.02 0.21 0.18 0.29 0.11 0.10

Titli 0.11 0.22 0.03 0.35 −0.15 0.35

Gaja 0.47 0.41 0.43 −0.23 0.03 0.33

Phethai 0.23 0.10 0.31 0.40 0.28 0.20

The WSM3 scheme showed an improvement of 18%, 17%, 19%, and 41% in direct positional error
(DPE) for the cyclones Nilofar, Kyant, Daye, and Phethai, respectively, whereas the WSM6 scheme
showed an improvement of 17%, 35% and 58% in DPE for the cyclones Hudhud, Ockhi, and Titli.
For the Gaja cyclone, the Ferrier scheme showed an improvement of 35% over the reference forecast.
Similar results were obtained for MSW and MLSP.

5. Conclusions

In the present study, a total of 56 sensitivity experiments were conducted to assess the impact
of seven microphysical schemes on the track and intensity of eight tropical cyclones over the NIO
region that occurred from 2014 to 2018. To assess the model performance, DPE, MAE and MSE
errors were calculated based on the observations provided by IMD and skill score was calculated over
the reference forecast. The WSM3 microphysical scheme showed the lowest DPE, MAE and MSE
for the tropical cyclones Nilofar, Kyant, Daye and Phethai, and WSM6 scheme showed the lowest
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values for the tropical cyclones Hudhud, Ockhi and Titli. Due to the presence of liquid hydrometers
(i.e., cloud water and rain) in the lower atmosphere, the WSM3 has predicted more intensity for
Nilofar, Kyant, Daye and Phethai cyclones, and WSM6 for Hudhud, Ockhi and Phethai. Compared to
the model performance with the Lin scheme, the WSM3 scheme provided a significant improvement
in the prediction of track and intensity for the tropical cyclones Nilofar, Kyant, Daye and Phethai
and WSM6 for the tropical cyclones Hudhud, Ockhi and Titli. From the results, the WSM3 scheme can
be suggested as a first best scheme for the prediction of the track and intensity of tropical cyclones
over the NIO region. WSM3 appears to have better skills than other, more complex parameterizations,
maybe due to the presence of fewer prognostic variables. The presence of more prognostic variables in
other schemes may add uncertainty to the model simulations.

A study by Choudhary and Das (2017) on the impact of grid resolution on the track and intensity
indicated that the domains with less than 5 km resolution have produced accurate results. When the size
of the domain increases, the model results will be more dependent on the parameterization schemes.
However, for operational purposes, the disaster management agencies need real-time forecasts within
a short time with reasonable accuracy. Therefore, the methodology and the information about
the microphysical applied in the study can be used in real-time forecasting of TCs over the NIO region.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/12/1297/s1,
Figure S1. Time evolution of area averaged mixing ratios (g/kg) for the cyclone Daye (Qv-Water Vapor, Qc-Cloud
Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel). Figure S2. Time evolution of area averaged mixing ratios
(g/kg) for the cyclone Gaja (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).
Figure S3. Time evolution of area averaged mixing ratios (g/kg) for the cyclone Kyant (Qv-Water Vapor, Qc-Cloud
Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel). Figure S4. Time evolution of area averaged mixing ratios
(g/kg) for the cyclone Nilofar (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).
Figure S5. Time evolution of area averaged mixing ratios (g/kg) for the cyclone Ockhi (Qv-Water Vapor, Qc-Cloud
Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel). Figure S6. Time evolution of area averaged mixing ratios
(g/kg) for the cyclone Phethai (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).
Figure S7. Time evolution of area averaged mixing ratios (g/kg) for the cyclone Titli (Qv-Water Vapor, Qc-Cloud
Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).
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Abstract: The freezing level in the free troposphere often intercepts the terrain of the world’s major
mountain ranges, creating a rain–snow limit. In this work, we use the free tropospheric height
of the 0 ◦C isotherm (H0) as a proxy of both levels and study its distribution along the western
slope of the subtropical Andes (30◦–38◦ S) in present climate and during the rest of the 21st century.
This portion of the Andes corresponds to central Chile, a highly populated region where warm
winter storms have produced devastating landslides and widespread flooding in the recent past.
Our analysis is based on the frequency distribution of H0 derived from radiosonde and surface
observations, atmospheric reanalysis and climate simulations. The future projections primarily
employ a scenario of heavy greenhouse gasses emissions (RCP8.5), but we also examine the more
benign RCP4.5 scenario. The current H0 distribution along the central Chile coast shows a gradual
decrease southward, with mean heights close to 2600 m ASL (above sea level) at 30 ◦C S to 2000 m ASL
at 38◦ S for days with precipitation, about 800 m lower than during dry days. The mean value under
wet conditions toward the end of the century (under RCP8.5) is close to, or higher than, the upper
quartile of the H0 distribution in the current climate. More worrisome, H0 values that currently occur
only 5% of the time will be exceeded in about a quarter of the rainy days by the end of the century.
Under RCP8.5, even moderate daily precipitation can increase river flow to levels that are considered
hazardous for central Chile.

Keywords: freezing level; climate change; central Chile; CMIP5; CFSR; flooding

1. Introduction

Most of the precipitation falling on the ground can be traced back to ice crystal formation in the
subfreezing environment of the middle and upper troposphere when enough moisture is provided by
tropical or extratropical weather systems [1]. As the ice crystals grow, they descend and eventually cross
the 0 ◦C isotherm at a height H0 above sea level (ASL) and begin to melt. The melting layer depth is
highly variable, depending on the air temperature profile and the hydrometeors population (size, type,
density), but it generally ranges between 100 and 300 m [2,3]. Over the terrain, the delimitation of
sectors receiving rain or snow during a storm is also related to the position of the near surface 0 ◦C
isotherm, although rain can occur with temperatures as cold as −1.5 ◦C and snow can occur with
temperatures as high as +1.5 ◦C (e.g., [4,5]). The height of the 0 ◦C level over the terrain is closely tied
to the nearby free tropospheric 0 ◦C isotherm height (H0) during precipitation events, but the surface
level tends to be several hundred meters below its free tropospheric counterpart [6,7]. This offset is
driven by the forced ascent of moisture-laden air parcels over the mountainous terrain that caused
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both adiabatic and diabatic cooling (the latter is due to the greater precipitation rates) as described
in [6–8].

Although cloud microphysics and airflow-induced localized cooling can depress the elevation of
the rain–snow limit over the terrain relative to the free tropospheric H0 during a precipitation event,
both heights are closely tied between storms (e.g., [4,5,9,10]). Furthermore, because the processes
behind such offset are only weakly dependent on air temperature [7], the free tropospheric H0 suffices
to track the variability and change of the rain–snow limit over terrain in the large-scale climate change
context addressed in this work.

Significant changes in the rain–snow limit elevation may occur in those regions where H0 is close
to the terrain at height HG (relative to sea level). Figure 1a shows the long-term mean distribution of
the freezing level (H0) when precipitation occurs, based on 32 years of reanalysis data (see details in
Section 3). Despite the underlying continental distribution, the mean field is mostly symmetric in the
zonal direction, with values above 4500 m ASL in the tropics and a gradual decrease down to <500 m
ASL poleward of ∼60◦ in both hemispheres. The condition H0 < HG, leading to snow as the dominant
precipitation type, occurs at high latitudes but also over the world’s major mountain ranges: the
Tibetan Plateau, the Rocky Mountains, the Alps and the extratropical Andes. There, variations of the
freezing level within precipitation events and between storms can produce substantial differences in
the pluvial area—the expanse of terrain receiving rainfall—and runoff generation. Lundquist et al. [4]
found that the coastal basins in the western United States of America are highly sensitive to H0 because
their pluvial area can change from 25% to 100% of the total area within the range of observed freezing
level, thus modulating river flow during winter storms [11]. The freezing level control on surface
runoff has also been noted in the Swiss Alps ([12] and reference therein). A similar condition occurs in
the Andes cordillera, both in the Peruvian sector [13] and in central Chile [9] where high H0 events can
lead to destructive flash floods [14]. Liu et al. [15] described a catastrophic flooding event in Alberta
(Canada) in which, among several factors, the high freezing level played a role not only by increasing
the pluvial area but also because of the occurrence of rain-over-snow (ROS). ROS events are a serious
hydrological threat most common at high latitudes in the Northern Hemisphere continents [16] but
also in midlatitudes mountain areas (e.g., [4,17]).

Given the prospect of global warming during the rest of the 21st century, one may expect a
widespread increase in the mean freezing level. Quantifying the impacts of climate change upon
the distribution of H0 thus informs us on potential shifts in the aforementioned hydrometeorological
risks in mountainous regions (e.g., [18]) as well as changes in the water stored in the seasonal
snowpack [19,20]. Changes in freezing level during precipitation events act in concert with those
of precipitation intensity to alter the frequency distribution of runoff and river discharge, but, in a first
approximation, they can be treated independently.

In this contribution, we use the tropospheric H0 distribution to analyze projected changes of the
freezing level and rain–snow limit changes over the western side of the subtropical Andes (central
Chile). Occurrence of high-impact hydrometeorological events in this region is already high [21,22];
it is derived, at least partially, from high freezing level events [14]. To determine how specific our
regional results are, we provide some large-scale context using global maps of selected variables.
A brief climate context of the subtropical Andes is provided next in Section 2. The various datasets
and methodology are presented in Section 3. Our main results are described in Sections 4.1 (H0 in
the present climate) and Section 4.2 (projected changes under RCP8.5 and RCP4.5). Changes in the
H0 distribution have effects ranging from ecology (e.g., plant distribution) and hydrology (flooding
and water availability) to tourism (e.g., snow-related activities) and mining (e.g., open-pit operations).
Assessing those impacts is beyond the scope of this paper, requiring hydrological or earth-system
modeling, but in Section 4.3, we include a brief discussion on, with simple estimates of, the projected
changes in the occurrence of flooding and snowpack water storage, two of the most direct effects of
the changing freezing level. Section 5 summarizes the key findings of this work.
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Figure 1. (a) Global distribution of mean H0 (m above sea level (ASL)) calculated at any given grid
box for days with precipitation (>5 mm/day in the grid box) during winter months (October–March
for the Northern Hemisphere and April–September for the Southern Hemisphere). Data from the
Climate Forecast System Reanalysis (CFSR) (see details in Section 3). (b) Difference of the mean H0

between days with and without precipitation. Light gray areas represent those regions where mean H0

intersects the topography. Dark gray areas indicate arid regions where the low number of rainy days
precludes a robust calculation of H0 under wet conditions.

2. Study Region

The Andes cordillera runs close to the western side of South America from north of the equator
(10◦ N) down to Tierra del Fuego (53◦ S). Along its subtropical portion (30◦–38◦ S), its crest level
reaches more than 5000 m ASL, well above the mean freezing level during winter storms (∼2400 m
ASL; see Figure 1a). Central Chile, the narrow strip of land to the west of the subtropical Andes,
is home to more than 12 million inhabitants with a large concentration (>7 million) in the metropolitan
area of Santiago that sits right at the Andean foothills. Annual mean precipitation in this region varies
between 200–2000 mm (Figure 2), depending on latitude and height [23].

Precipitation is largely concentrated in the austral winter (May–September) and is mostly caused
by cold fronts [24]. The Andes cordillera enhances precipitation by a factor of 2–3 between the upstream
lowlands and the upper part of the mountains [23]. Between 10 to 20 precipitation events occur every
winter lasting 1–3 days, with storm accumulations that are highly correlated with the amount of water
vapor impinging against the Andes [24]. Indeed, extreme events (>50 mm per day) occur when intense
atmospheric rivers ahead of cold fronts make landfall in this region [25,26]. Major storms generally
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result in marked, sudden increases in the flow of the rivers descending from the Andes [27], leading to
flooding in central Chile. These events are a significant threat in central Chile, damaging infrastructure
and causing loss of lives with a recurrence of 5–10 years [28]. Although the magnitude of the flooding
is primarily controlled by the amount of the precipitation falling over the region, the elevation of
the freezing level during the storms modulates the hydrological response [9]. During winter storms,
H0 ∼2200 m ASL over the upper Maipo river basin (area: 5500 km2) east of Santiago, but some
precipitation events feature an H0 in excess of 3500 m ASL, tripling the pluvial area relative to mean
conditions, and thus increasing the risk of hydrometeorological hazards [9]. This was the case in
3 May 1993 when a moderate precipitation event occurred under warm conditions (H0 ∼4000 m ASL),
resulting in multiple landslides and downstream flooding on the city of Santiago that caused more
than 80 fatalities and major damage in public and private infrastructure [14,29,30].

Figure 2. Station-based annual mean precipitation over Central Chile for the period 1981–2010, colored
according to the scale to the right. Gray shading indicates topography levels from 0 to 5000 m ASL
(every 1000 m). The black star shows the location of the Santo Domingo upper air station and red
circles show selected stations with concurrent air temperature and precipitation records used to infer
the freezing level during rainy conditions.

3. Data and Models

3.1. Observations

Quality-controlled daily rainfall and average temperature is available from 1999 to 2017 for
eight surface stations across central Chile (30◦–38◦ S, Figure 2) operated by the National Weather
Service (DMC). In each station, we define a wet day as one with more than 5 mm accumulation and
dry days as those with no precipitation. In this work, we only consider the winter semester (May to
September) for central Chile and the rest of the Southern Hemisphere (SH). Santo Domingo, a coastal
site at 33.65◦ S, 71.61◦ W (75 m ASL), is the only radiosonde station operated by DMC in this region
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(black start in Figure 2), with launches twice daily at 12:00 and 00:00 UTC. In all cases, there is only
one level in which the air temperature profile crosses the 0 ◦C, even if there is an inversion in dry
days because they are warm and low [10], so the free tropospheric H0 was obtained unambiguously
from direct interpolation using the temperature and geopotential height of the levels just above and
below 0 ◦C. On a given day, a mean value of H0 was calculated using the 00:00 UTC (8:00 PM of the
previous day), 12:00 UTC (8:00 AM of the current day) and 00:00 UTC (8:00 PM of the current day)
values, and then pooled into the wet or dry groups according to the concurrent rainfall data at Santo
Domingo. In stations with surface data only (surface air temperature, SAT), we estimated the freezing
level during rainy days using a moist adiabatic lapse rate (Γmoist ≈ 6.5◦C/km) as H0s f c = SAT/Γmoist +
HG, which proved to be a good approximation in this region [10,31]. In Section 4.3, the ETOPO2v2
elevation data [32] was used to determine hypsometric curves (basin area below a given height) of
Andean selected basins in central Chile. Catchment boundaries are obtained from the CAMELS-CL
dataset [33], where basin outlets are defined according to the location of available streamflow gauges
and following topographic-driven limits.

3.2. Reanalysis

To supplement the reduced number of stations from where we can derive H0 in central Chile
and obtain a global perspective, we also employed the Climate Forecast System Reanalysis (CFSR,
version 1) described in detail by Saha et al. [34]. Atmospheric variables from this state-of-the-art
reanalysis system are available from 1979 to 2010 for every 6 hr on a global 0.5◦ × 0.5◦ lat-lon grid.
As with the Santo Domingo sounding, the vertical profiles of air temperature and geopotential height
were used to obtain H0 in each grid point and time step. We then calculate the daily mean H0 from the
five values centered at 12:00 UTC (00:00, 06:00, 12:00, 18:00, 00:00 UTC) for every day. A comparison
between observed H0 at Santo Domingo and those obtained from CFSR is shown on Figure 3. There is
a notable correspondence between daily averages of H0 for both wet and dry days, with correlation
coefficients exceeding 0.9. However, the relative error in the percentiles of the distribution does not
exceed 3% in both cases. In Section 4.1, we provide further evidence that H0 derived from CFSR is a
good approximation of the actual H0 distribution all along central Chile.
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Figure 3. Scatter plot between daily mean values of H0 observed in Santo Domingo (33.65◦ S–71.61◦ W,
sounding station) and H0 from the closest grid point in the CFSR reanalysis (33.50 ◦ S–71.50◦ W)
for days with (blue dots) and without (brown dots) precipitation at Santo Domingo. Stars and squares
represent the mean and percentiles (5th, 25th, 75th and 95th) for each distribution. The dashed red line
is the 1:1 line. Data from 1999 to 2010.
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3.3. Models

To project the freezing level in the future, we use results from five models included in the Coupled
Model Intercomparison Project Phase 5 (CMIP5, [35]) listed in Table 1. The variables used were daily
averages of geopotential height, temperature (both at standard isobaric levels) and total precipitation
at the surface. This allows us to obtain the daily freezing level grouped into wet and dry days at any
given location for their respective winter season (May–September in the Southern Hemisphere and
October–April in the Northern Hemisphere). Although the CMIP5 database includes results from
more than 50 GCM, differing in their subgrid schemes (parameterizations) and spatial resolution,
our analysis is restricted to those models with available surface and upper-air daily data and a
grid spacing of ∼2◦ × 2◦ (or finer) to obtain at least three grid points in latitude and a minimum
representation of the Andes cordillera. The five selected models (from independent research centers)
in the group conform to a good representation of the central Chile climate [36] and have resolution
ranging from 0.75◦ to 1.86◦. Even so, the position of the coastline and Andes ridge of each model
can differ substantially from their actual locations, so particular caution was taken in considering the
topographic features of each model.

Table 1. Set of Coupled Model Intercomparison Project Phase 5 (CMIP5) models [35] used to
characterize the future condition of the H0 distribution. The variables T and Z correspond to
temperature and geopotential height at isobaric levels. The variables pr and sftlf represent precipitation
rate and fraction of land area, respectively.

Model Institution Variables
Spatial Resolution
(lat × lon)

Isobaric Levels
(hPa)

Periods

MPI-ESM-LR
Max Planck Institute
for Meteorology,
Germany

T, Z, pr, sftlf 1.865◦ × 1.875◦

1000, 850, 700,
500, 250, 150,
100, 70, 50,
30, 10, 3,
1, 0.3, 0.1 (15)

MIROC5

Atmosphere and
Ocean Research
Institute (University
of Tokyo)

T, Z, pr, sftlf 1.400◦ × 1.406◦
1000, 850, 700,
500, 250, 100,
50, 10 (8)

CNRM-CM5
National Center
of Meteorological
Research, France

T, Z, pr, sftlf 1.400◦ × 1.406◦
1000, 850, 700,
500, 250, 100,
50, 10 (8)

1976–2005 (HIS)
2011–2040 (RCPs)
2041–2070 (RCPs)
2071–2100 (RCPs)

MRI-CGCM3
Meteorological
Research
Institute, Japan

T, Z, pr, sftlf 1.121◦ × 1.125◦
1000, 850, 700,
500, 250, 100,
50, 10 (8)

CMCC-CM
Centro
Euro-Mediterraneo
sui Cambiamenti
Climatici, Italy

T, Z, pr, sftlf 0.748◦ × 0.750◦
1000, 850, 700,
500, 250, 100,
50, 10 (8)

The present climate distribution of H0 considers the period between 1976 and 2005 from the
historical runs. Based on the previous works [37], the CMCC-CM model has the least errors
representing H0 in central Chile in the present climate, being used as our reference model. For the rest
of the 21st century, we use primarily the simulations under the RCP8.5 scenario [38], representing a
negative prospect in terms of greenhouse gases emission and atmospheric concentrations [39] in which
CO2-equivalent reaches about 1000 ppm by the end of the century. In this sense, our work illustrates
that changes that could occur in a worst-case scenario. Some key analysis, however, were repeated
with climate simulations under the more benign RCP4.5 scenario (CO2-equivalent ∼500 ppm by
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the end of the century) to illustrate the sensitivity of the predicted changes in H0 to the greenhouse
gases concentrations.

4. Results and Discussion

4.1. The Freezing Level in Present Climate

Given the nearly two-dimensional nature of the Andes cordillera, extending almost straight
north–south along its subtropical portion, and its proximity to the Pacific shoreline (Figure 2),
most of the subsequent analyses are performed using the along-coast (latitudinal) profile of H0.
We acknowledge that the coastal, free tropospheric value of H0 during a particular storm can differ
from the actual snow line over the western slope of the Andes [7,10] but any coast-to-Andes difference
is likely to exist both in present and future climates, so it will not preclude exploring the climate change
impact upon the freezing level.

Figure 4 shows the latitudinal variation of the mean freezing level (H0) along the coast of central
Chile using the CFSR values for wet and dry days during the winter semester (May–September). In the
case of the wet days, we also included the surface-based H0 and the Santo Domingo H0 distribution.
There is a good agreement between the mean values derived from CSFR and the observations along
the full transect, except for a ∼100 m offset in the mean value that was subsequently removed from
the whole latitudinal profile. The mean freezing level during wet days (H0wet) gradually decreases
southward, from about 2600 m ASL at 30◦ S to 2000 m ASL at 38◦ S. Except in the southernmost part of
our study region, the mean freezing level is below the Andean crest, and at the latitude of Santiago and
Santo Domingo (33◦ S), H0wet ∼2400 m ASL, about half of the altitude of the mountain peaks that reach
∼6000 m ASL. The interquartile range of H0 during wet days is close to 800 m all along central Chile,
and extreme high values (95% percentile) can reach up to 3500 m ASL, showing a high variability of
the freezing level among winter storms, consistent with previous findings in Garreaud [9].

Figure 4. Latitudinal variation of the mean H0 along the coast of Central Chile during days with
(blue line) and without (brown line) precipitation, based on CFSR data. Blue shading indicates the
interquartile range of H0 during wet days. Gray line indicates the 97.5th percentile of terrain elevation,
signaling the Andes crest level. Red dots are mean H0 estimations based on surface data at selected
National Weather Service (DMC) stations and the red whiskers indicate the interquartile range of H0

using the observed values from the Santo Domingo soundings.

The mean freezing level for dry days during winter months (about 90% of the total) also decreases
from north to south along the Chilean coast, and it is 800–1000 m higher than H0wet. The standard
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deviation of H0 under dry conditions is about 700 m, so the freezing level distribution during rainy and
dry days have little overlap (see Figure 3). Since both samples are obtained from the winter semester,
the lower H0 values during wet days reflect an actual drop of the air temperature in the lower and
middle troposphere in connection with the postfrontal nature of precipitation in central Chile. There,
the bulk of the precipitation falls in the first 12–24 h after the front passage cold front in the majority
of the winter storms [9,24,37]. The H0 depression during wet days—relative to dry conditions—also
occurs near the west coast of other continents as evidenced in the reanalysis maps (Figure 1b) and
documented over the Sierra Nevada in the United States of America [11] and the Iberian Peninsula [40].
Notably, H0 tends to rise during winter storms over the east side of the continents (most markedly in
North America and East Asia) and the midlatitude oceans.

4.2. Future Changes

Let us begin our description of the future change in the freezing level by considering the frequency
distribution of H0 during winter wet days over Santo Domingo (33◦ S) from the CMCC-CM model
(Figure 5a). For present climate, the simulated H0 distribution fits well with the observations in terms
of the central value and spread. By the end of the century (2071–2100), under the RCP8.5 scenario, the
shape of the distribution is preserved, but there is a substantial shift toward higher values (∼600 m
in the mean), consistent with the expected tropospheric warming. The shift in the H0 distribution
under the RCP4.5 scenario is similar to that in RCP8.5, but the increase in the mean value is about
∼400 m. Figure 5b synthesizes the north–south distribution of H0 (mean value and interquartile range)
during wet days for different decades in the 21st century, showing a progressive rise as time progresses.
Note that toward the end of the century, H0wet is close to, or higher than, the upper quartile of the
H0 distribution in the current period, and the increase in H0 seems to be slightly greater in the north.
Near the southern limit of our domain (37◦–38◦ S), H0wet in the current climate nearly coincides with
the Andean ridge level, so the upper part of the mountains receive snow in about half of the winter
storms, allowing the formation of a seasonal snowpack. By the end of the century, however, the mean
freezing level during wet days is expected to be several hundred meters above the top of the southern
Andes, so snowfall might be quite uncommon even over the highest terrain with a detrimental impact
on water availability during the summer months [41]. The projected rise of H0 toward the end of the
century under the RCP4.5 scenario is about 70% of its RCP8.5 counterpart across the whole region.

To place changes throughout central Chile in a global context, Figure 6 shows the change in the
mean freezing level (∆H0) for wet days between the end of century (2071–2010, under RCP8.5) and
the historical period (1976–2005) using the CMCC-CM model. There is an increase in H0 worldwide,
most marked over the subtropical and tropical oceans (∆H0 close to 1000 m) but rather small at
higher latitudes in both hemispheres. The pattern and magnitude of ∆H0 is similar during dry days,
but the projected rise tends to be ∼100-200 m higher across much of the subtropics and midlatitudes
(not shown). In central Chile, for instance, ∆H0 is close to 600 m ASL and 750 m ASL for wet and dry
days, respectively.

Next, we examine the changes in freezing level in central Chile using results from the 5 GCM
with high spatial resolution and daily data (Section 3.3). Except for CMCC-CM, the simulated
H0 distribution in current climate exhibits biases as large as ±10% [37]; therefore, we use the
so-called delta approach here to analyze future changes [42,43]. For each model, we calculate the
future (end-of-the-century under RCP8.5) minus present difference in H0 (mean value and selected
percentiles), and then we average the five results. The multimodel mean ∆H0 is then added to the
observed (CFSR) profile of H0 in the current climate as shown in Figure 7a for the wet and dry winter
day groups, along with an indication of the model spread. For the wet days, ∆H0 is about 400 m
(250–600 m range among the models), while for days without precipitation the mean change is close to
600 m (400–800 m range). The values of ∆H0 have little variation along the profile. Similar increases
were found when considering the median and the lower and upper quartiles, suggesting an overall
shift of the H0 frequency distribution while preserving its shape, as we showed for the specific case of
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CMCC-CM (Figure 5a). The latitudinal profiles of ∆H0 for wet and dry days under the RCP4.5 scenario
are also included in Figure 7a. When considering the multimodel mean, the rise in mean freezing level
is about half of that obtained under RCP8.5, suggesting a linear behavior of the projected changes
of the free tropospheric temperature in central Chile, in line with results from Zazulie et al. [44] for
surface temperatures over the subtropical Andes.

Figure 5. (a) The gray bars show the histogram of the observed H0 at Santo Domingo during wet
days and the gray line is the fitted normal distribution. The blue, red and purple lines are the fitted
normal distribution of H0 (during wet days) for present and future climate (2071–2100 under RCP8.5
and RCP4.5), respectively, simulated by the CMCC-CM model and interpolated to Santo Domingo.
(b) Evolution of the CMCC-CM simulated H0 distribution for days with precipitation, during different
decades in the 21st century along the coast of central Chile. Circles indicate the mean of distribution
and whiskers the upper and lower quartiles. The blue line and light blue shading are the present
climate mean and interquartile range of H0 (wet days) based on CFSR data. The gray line indicates the
97.5th percentile of terrain elevation.

Figure 6. Global distribution of the difference in mean H0 between the end of century (2071–2100
under scenario RCP8.5) and the historical period (1976–2005) simulated by the model CMCC-CM for
winter days with precipitation. The winter months are October–March in the Northern Hemisphere
and April–September in the Southern Hemisphere. Light gray areas represent those regions where
mean H0 intersects the topography. Dark gray areas indicate arid regions where the low number of
rainy days precludes a robust calculation of H0 under wet conditions.
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As noted in the introduction, winter storms with higher than average H0 greatly increase the risk
of flooding and landslides along central Chile, so particular attention must be placed in the change
of extreme events. To gauge those changes, here we consider the variation in the 95% percentile
value under wet conditions (H095wet). At the latitude of Santiago, H095wet ∼3300 m ASL in the present
climate, nearly 1 km above the mean value. For each model, we obtained H095wet in the present-climate
simulation, as a function of latitude, and then we calculated the frequency of the time in which this
value will be surpassed in the last decades of the 21st century. The multimodel mean change in
frequency is shown in Figure 7b. The mean frequency in which future freezing levels (during wet
days) will equal or exceed the present climate H095wet is about 20% between 38◦–34◦ S and up to 30%
in the northern part of the domain. Thus, what is now labeled as an extreme event will be a condition
4–6 times more frequent by the end of the century (under RCP8.5 scenario), a worrisome projection
whose hydrological consequences will be discussed in the next section. Even in the case of the more
benign RCP4.5 climate scenario, the frequency of extreme events (5% of the time in the current climate)
could double (Figure 7b).

Figure 7. (a) Dashed lines indicate the profile of the mean H0 along the coast of central Chile in present
climate based on CFSR data for wet days (blue) and dry days (brown). The solid lines with circles are
the multimodel mean H0 for the end of 21st century under RCP8.5/RCP4.5 and the shading indicates
the projection range (maximum-minimum). Gray shaded area indicate the 97.5th percentile of terrain
elevation. (b) End of the century (2071–2100) multimodel mean frequency of the 95th percentile H0

value in the present climate. The line with circles and the shaded area represent the average and range
(minimum and maximum) projected by the models.
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4.3. Hydrological Impact

Here, we provide a rough estimate of the hydrological impact of the H0 changes during wet days
over central Chile contingent of the occurrence of the RCP8.5 heavy emission scenario. Such impact
varies with latitude since both H0wet and the terrain elevation decrease toward the south. Indeed,
one may expect less acute impacts in the southern part of the domain because even in the current
climate, the Andean basin mostly receives rainfall (H0wet ∼ HG). Figure 8a shows the area of the terrain
above 1000 m ASL and below the present climate mean freezing level (during wet days) for selected
Andean basins of central Chile (Ap). The baseline was chosen close to the base of the Andes foothills.
We then recalculated the Ap, keeping the baseline but changing the upper limit to H0wet in the future
(2071–2100; RCP8.5) and H095wet in the present and future climates. For selected basins, Figure 8b
shows the areal increment factors, defined as the ratio of Ap obtained with the new upper limits to
the area defined with the present H0wet. Considering the rise of the mean freezing level during winter
storms, the most affected basins would those between 33◦ S and 35◦ S. Particularly, the pluvial area
in the upper Maipo River (that drains into the central valley just south of Santiago) almost doubles
because of the projected rise in H0wet from present to future. Further south Ap would be almost
unaffected since most of the increase in H0 occurs over the maximum height of the terrain. However,
the basins north of 33◦ S would be less affected since their average slope is gentler. In present climate,
the pluvial area also increases markedly when considering the 95% percentile H0 relative to the mean
value. Continuing our focus on the Maipo basin, we found that the pluvial area increases by a factor of
3 when considering the 95% percentile of H0 in the present and by a factor of 4.5 when considering the
95% percentile events in the future. The increment factor in other basins is lower, but future warm
storms might have a pluvial area 2–3 times larger than average storms in the present climate.

Figure 8. (a) Area between 1000 m ASL and below the mean of H0 in current climate for selected basins
in central Chile basins. (b) Increment factor of the area considering future H0 values (mean and 95th
percentile). See Section 4.3 for details. Lines in panel (b) indicate the range of models for each basin.

The large increase in the projected pluvial area for the Maipo basin, along with its closeness to
the large city of Santiago, calls for further analysis. In Figure 9, we present contours of H0 for mean
and extreme cases under wet conditions, superimposed on a topographic map. Note, for instance,
that nearly the entire basin would receive rainfall in the 5% of warmer winter storms of the future,
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a conditions that in the present climate has a probability of approximately less than 0.5%. Of course,
the river flow on a given storm is also dependent on the amount of precipitation and soil moisture
(which dictate the infiltration rate), but an upper bound of the river flow can be easily obtained as
Qmax = PB × Ap, where PB is the basin averaged rainfall and Ap depends directly from H0 [24].
The right panel of Figure 9 shows Qmax as a function of the precipitation for selected values of H0.
We have marked the value Qmax = 500 m3/s, which is considered dangerous to this area based on the
work of Bustos [45], and also include the frequency distribution of the daily precipitation for this basin.

Figure 9. (a) Central Chile topography with present and future H0 contours (mean and 95th percentile
value). The upper Maipo river basin is delimited by the cyan line. (b) Estimated stream flow at the
outlet of the upper Maipo river basin as a function of precipitation for different values of H0 (mean and
95th percentile value) in present and end-of-the-century climate conditions (2071–2100 under RCP8.5).
The histogram in the background shows the distribution of daily accumulated precipitation over
5 mm/day for station Quinta Normal in Santiago close to the outlet of the upper Maipo river basin.

For the mean freezing level in the present, at least 50 mm/day is required for the Maipo River to
reach a dangerous level, a daily accumulation that happens in about 5% of the time (Figure 9b). In the
future, however, flooding might be caused by a 25 mm/day storm, considering the mean freezing
level, and by just 10 mm/day if the storm happens under warm conditions (95th percentile of H0).
This last value is even lower than the average daily accumulation, so such a hazardous combination of
precipitation and freezing level leading to flooding may occur rather frequently despite the annual
mean precipitation decrease over central Chile predicted for the rest of the 21st century by numerical
models [46]. Indeed, projections based on the CMCC-CM model show that daily precipitation rate
would change to lower values (Figure 10) and the number of wet days (≥5 mm/day) nearly halves
from the current condition to the end of the century. Nonetheless, the number of days in which
the combination of H0 and precipitation results in a upper Maipo river flow ≥500 m3/s decreases
marginally (from 107 to 92 days per 30 years), thus doubling the frequency in which hazardous
condition occurs if precipitation is taking place. The increase in such conditional frequency is even
more striking considering higher river flow values. For Qmax ≥ 2000 m3/s, not only does the
conditional frequency triple but the total number of days increases toward the end of the century
under the RCP8.5 scenario, considering the CMCC-CM model results and the simple hydrological
model described before.
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Figure 10. Scatter plot between CMCC-CM simulated daily precipitation and H0 for wet days in
Santiago (model closest point) considering the historical period (1976–2005, gray circles) and the end
of century (2071–2100 under RCP8.5, red circles). The light blue line represents the combination of
precipitation and H0 values resulting in a discharge of 500 m3/s (2000 m3/s) in at the outlet of the
upper Maipo river basin using the simplest hydrological model (Section 4.3). The number of total rainy
days (Ntotal) and those resulting in more than 500 m3/s (N500) are shown.

The projected increase in H0 during wet days also implies a reduced amount of water stored
in the Andean snowpack that forms every winter and releases fresh water during spring/summer
when this resource is most needed for agriculture and other uses in central Chile [41]. As before,
we provide a rough estimate of these changes here by considering the partition between liquid and
solid precipitation during winter in the Maipo river basin. For each storm, the liquid and solid
volumes were calculated by multiplying the basin mean daily precipitation for the pluvial and snow
areas, defined by the part of the basin below or above the freezing level, respectively. We then added
all those volumes during the present (1979–2005) and future (2070–2100, under RCP8.5) periods.
Solid precipitation (forming the snow pack) accounts for about 75% of the total in current climate but
such contribution decrease to 57% in the far future. The total precipitation over the Maipo River basin
also decreases by about 35% (relative to present day), considering the CMCC-CM model results [37];
that figure that is in line with multimodel estimates [46]. The combined effects of warmer storms and
less precipitation thus result in future (end of the century, RCP8.5) winter snow accumulation halving
present climate values, ensuing a dramatic decrease in summer–fall river flow, an effect documented
in other basins in central Chile by Vicuña et al. [47].

5. Conclusions

The distribution of H0 along central Chile (30◦–38◦ S) was obtained from the CFSR reanalysis
for the present climate and five climate models for the rest of the 21st century under the RCP8.5 and
RCP4.5 scenarios. In this highly populated region, variations of the freezing level within precipitation
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events and between storms can produce substantial differences in the pluvial area, affecting runoff
generation and the discharge of rivers draining the Andes cordillera.

Relative to present day conditions, the mean H0 in the future (RCP8.5) would be approximately
400 m higher for days with precipitation and 600 m for days without precipitation. In general, we found
a progressive increase of the H0 distribution while preserving its shape. Toward the end of the century,
the mean value under wet conditions is close to or higher than the upper quartile of the H0 distribution
in the current climate, and the increase in H0 seems to be slightly greater in the north. By the end of
the century, however, the mean freezing level during wet days could be several hundred meters above
the top of the southern Andes, so snowfall will likely become quite uncommon even over the highest
terrain with detrimental impact for the water availability during the summer months. The more
benign RCP4.5 scenario also results in a shift of the H0 distribution toward higher values but with an
amplitude about half of its RCP8.5 counterpart.

Regarding the occurrence of particularly warm storms, H0 values that currently occur in only 5%
of the days with precipitation (H0 > 3300 m ASL) might be concurrent with nearly 25% (10%) of the
future winter storms throughout central Chile under RCP8.5 (RCP4.5). The projected changes in H0

translate into an increase in the pluvial area and, therefore, in the volume of water available for all the
basins of central Chile during storms, except in the southernmost basins where the current freezing
level is generally above the Andes ridge, at the expense of the water stored in the seasonal snowpack.
The basins most affected would be those around 34◦ S. The upper Maipo River, draining just to the
south of the city of Santiago, might experience an increase in its pluvial area by a factor 4 to 5 times the
pluvial area during future warm storms relative to mean current conditions. Keep in mind that our
inferences are rough estimates of the hydrological response to changing freezing level and contingent
to the negative RCP8.5 climate scenario. In this condition, even moderate daily precipitation could
increase the river flow to levels that are considered hazardous for central Chile. Thus, even under
the prospect of drying along central Chile, warmer winter storms in the future possess a substantial
risk of landslides, flashfloods and widespread flooding along the foothills of the subtropical Andes,
calling for more comprehensive studies in this subject.
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