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Abstract: Blood rheology is a challenging subject owing to the fact that blood is a mixture of a fluid
(plasma) and of cells, among which red blood cells make about 50% of the total volume. It is precisely
this circumstance that originates the peculiar behavior of blood flow in small vessels (i.e., roughly
speaking, vessel with a diameter less than half a millimeter). In this class we find arterioles, venules,
and capillaries. The phenomena taking place in microcirculation are very important in supporting
life. Everybody knows the importance of blood filtration in kidneys, but other phenomena, of not
less importance, are known only to a small class of physicians. Overviewing such subjects reveals
the fascinating complexity of microcirculation.

Keywords: blood microcirculation; ultrafiltration process; vasomotion; Fårhæus–Lindquist effect

1. Introduction

It is well known that blood is a mixture of plasma (a liquid slightly denser than water
carrying a large number of molecular species performing a huge amount of tasks) and of
a variety of cell populations: red blood cells (RBCS), white blood cells (WBCS), platelets.
In particular, RBCs make 40–50% of total blood volume. Their density is practically the
same as that of plasma. The RBCs volume fraction in blood is called the hematocrit. Cells
of the other families, though extremely important, contribute only 1% to blood volume, so
they do not play any significant role in blood rheology. Such a composite nature is a source
of considerable difficulties in modeling blood rheology. Nevertheless, in sufficiently large
vessels, blood can be safely considered a homogeneous fluid, for which several different
rheological models have been proposed (see, e.g., the book [1] and the review papers [2,3]).
The situation changes in small vessels (arterioles, venules, capillaries) where the fact that
almost half of the volume is occupied by RBCs comes significantly into play. Geometrical
symmetries play an important role, since all flows considered are axisymmetric, and this
is largely exploited throughout the paper in connection with the smallness of the vessel’s
aspect ratio.

In the present paper, we review some recent results in modeling blood flow in such
small vessels, considering three areas:

(i) Flow in capillaries, i.e., vessels whose size is even smaller than RBCs diameter, taking
into account that capillaries allow some plasma to seep through the walls, owing to
the presence of fenestration. An interesting aspect is that when blood enters a capillary
the typical symmetry of the flow in larger vessels breaks down and the classical fluid
dynamic approach has to be abandoned. The main application of this study is to
model the ultra-filtration process taking place in the kidneys.

Symmetry 2021, 13, 1020. https://doi.org/10.3390/sym13061020 https://www.mdpi.com/journal/symmetry
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(ii) The peristaltic action occurring in arterioles and venules due to the periodic contrac-
tion of their walls (vasomotion). The presence of valves in venules turns vasomotion
into a propulsive action, thus enhancing the flow under the modest venous hydraulic
pressure gradient. The action of valves deeply modifies the classical symmetry of the
normal flow with their alternating openings and closures.

(iii) The amazing phenomenon of the progressive reduction of blood apparent viscosity
when the vessel diameter is reduced (roughly in the range 30 μm to 300 μm). This
phenomenon, discovered about ninety years ago, known as the Fårhæus–Lindquist
effect, has received a satisfactory explanation and a correct interpretation only very
recently. The phenomenon originated from an entrance effect, creating a motion of the
red blood cells toward the vessel axis. Preservation of symmetry is a crucial feature
making the formulation of a model possible.

The focus of our exposition will be on modeling, but we will also try to elucidate the
role of such phenomena in supporting life. We will also take this opportunity to present
further elaborations of the various models.

2. Modeling the Flow through Fenestrated Capillaries

Capillaries are responsible for delivering to body cells the oxygen and the nutrients
carried by blood. Transfer of such substances takes place by diffusion. Due to cells uptake,
they can travel only a short distance, say 0.1 mm. Therefore, capillaries may feed only
a region around them having that radius. That explains why as much as one billion
capillaries are needed to fulfil their task in a body of average size. Capillaries connect the
circulatory system carrying oxygenated blood to the one carrying oxygen deprived blood.

Capillaries are generally fenestrated, meaning that they allow some plasma cross their
walls. Clearly, this is a further complication in the description of circulation at that level.

Blood flow in vessels whose size is comparable to the RBCs dimensions has very
little to do with traditional fluid dynamics. Healthy RBCs have the shape of a disc with a
diameter up to 8 μm and a thickness of 2–3 μm at the edge, slightly less in the middle. They
are not rigid, but flexible and they exploit such a property to enter capillaries where they
proceed in a single file. Occasionally they may stick to each other, forming the so-called
ruleaux, but normally they form a travelling sequence [4], in which it is very reasonable to
suppose (referring to an average situation) that cells are evenly spaced. This is the starting
point of the flow model presented in [5]. This situation is depicted in Figure 1.

h∗RBC

u∗
2R∗

a∗
b∗

Figure 1. Sketch of the RBC/plasma element translating along the capillary (starred symbols refer to
dimensional quantities, see the list of the main symbols below).

RBCs, represented in red (with a simplified geometry), take a shape letting them
exploit the hydraulic pressure gradient. A portion of the RBCs surface slides on the
capillary wall, separated by a thin plasma layer. The no-slip condition at the plasma/cell
and the plasma/wall surface induces a strain rate in the layer. The same is true for the
plasma element between two RBCs, since its translation is accompanied by the presence of
a stressed layer at the wall. This is the origin of energy dissipation and drag. In our model
we are going to neglect the influence of the capillary tortuosity.

2
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Let us list the main symbols, warning that starred symbols refer to dimensional
quantities (all of them positive):

φ, hematocrit.
φin, inlet hematocrit (typically 0.45).
x∗, longitudinal space coordinate.
t∗, time.
G∗, typical pressure gradient (calculated for a capillary in a renal glomerulus as the
difference between the pressures in the afferent and efferent arterioles (5 mmHg ≈
6.7× 102 Pa) [6] divided by the glomerulus length (0.16 mm)). (∼4.1× 106 Pa/m).
u∗, translation speed.
u∗0, characteristic translation speed (∼1.7 mm/s).
R∗, vessel radius (∼3 μm).
L∗, vessel length (0.16 mm).
t∗0 = L∗/u∗0, characteristic transit time (∼9.4× 10−2 s).
R∗RBC, RBC radius (∼4 μm).
h∗RBC, avg. RBC thickness (∼1.8 μm)
V∗

RBC, RBC volume (typically ∼90 fl, where 1 fl = 1 μm3).
ρ∗, blood density (1.06× 103 Kg/m3, same as RBCs density).
η∗pl, plasma viscosity (∼3.5× 10−3 Pa s).

a∗, distance between two consecutive cells in the sequence.
b∗, length of the RBC portion sliding over the vessel wall.
ε∗RBC, thickness of the plasma layer between the wall and the RBC.
ε∗pl, thickness of the plasma layer between the wall and the plasma element.

ε =
ε∗RBC
ε∗pl

.

V∗
el, volume of a translating element.

L∗el, element length.
Δp∗el, pressure difference across the element length.
p∗, blood pressure.
p∗e , pressure of external fluid.
F∗drag, drag force originated by the friction in the strained layers.

t∗0 = L∗/u∗0, characteristic transit time (∼9.4× 10−2 s).
c∗, protein concentration in blood.
c∗in, inlet protein concentration in blood (∼7 gr/dl).
K∗, permeability of the capillary wall.

In the sequel any length divided by R∗ will be denoted by the corresponding symbol
without the “∗” (e.g., a = a∗/R∗, etc.). Note that both εpl and εRBC are � 1.

From the geometry represented in Figure 1 we deduce

V∗
el = πR∗2a∗ + V∗

RBC + πb∗
(

R∗2 − h∗2
RBC

)
(1)

V∗
RBC = πh∗RBCR∗

2

RBC = V∗
1 + V∗

2 , (2)

where

V∗
1 = πb∗

[
R∗2 − (R∗ − h∗RBC)

2
]
, (3)

is the volume of the RBC portion in contact with the wall. Concerning V∗
2 , we take a slightly

better approximation than the one assumed in [5], as illustrated in Figure 2.

3
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V∗
1

V∗
2

Figure 2. Splitting the RBC volume into V∗
1 and V∗

2 .

The total volume V∗
2 can be calculated as π

∫ h∗RBC

0
f 2(x∗)d x∗, where f (x∗) = R∗ −

h∗RBC +
√

h∗2
RBC − x∗2 , hence (in [5] V∗

2 is simply estimated as πh∗RBCR∗2).

V∗
2 = πh∗RBCR∗2 Ξ, with Ξ = 1−

(
2− π

2

)
hRBC +

(
5
3
− π

2

)
h2

RBC . (4)

Considering h ≈ 1.8 μm, we obtain Ξ ≈ 0.78 if R∗ = 3 μm. Actually R∗ is not allowed
to approach h∗, otherwise the flow becomes impossible (see [4] for a discussion).

Equations (2)–(4) provide an expression for b∗, which we write directly in dimension-
less form

b =
R2

RBC − Ξ
2− hRBC

. (5)

For instance, when R∗ = 3 μm, we get (in [5] b =
R2

RBC−1
2−hRBC

, thus giving b∗ = 1.6 μm, if
R∗ = 3 μm). b∗ = 2.1 μm. The approximation is valid as long as b∗ > h∗, since on one side
we have written V∗ = πh∗R∗2

RBC, (RBC of cylindrical shape) but when b∗ = 0 the domain
left V∗

2 is slightly smaller. Actually, since the RBC boundary is round there is some interval
of values of R, before it reaches R∗RBC, in which b∗ ≈ 0, and we should simply replace V∗

2
with V∗.

The length a∗ is a function of the hematocrit φ and is found by imposing the condition

φ =
V∗

RBC
V∗

el
. (6)

Hence, from (1),

a(φ) = H
1− φ

φ
− b
(

1− h2
RBC

)
, (7)

where b is given by (5) and

H =
V∗

RBC
πR∗3 =

(2)
hRBCR

2

RBC, (8)

is a dimensionless constant (if, e.g., R∗ = 3 μm, then H ≈ 1). Note that b does not depend
on φ. Moreover, the total length of a single element is

L∗el = a∗ + b∗ + h∗RBC. (9)

Now recalling (7), we introduce the O(1) dimensionless quantity

λ(φ) =
R∗

L∗el
=

[
H

1− φ

φ
+ hRBC(1 + bhRBC)

]−1
. (10)

Figure 3 shows the behaviour of λ and L∗el versus φ.
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L
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Figure 3. Plots of λ(φ) (left panel) and of L∗el(φ) (right panel) for R∗ = 3 μm, h∗RBC = 1.8 μm,
R∗RBC = 4 μm, b given by (5), Ξ by (4), and H by (8). We remark that about twenty elements are
simultaneously present in the capillary.

If plasma filtrates through the vessel wall, the distance a∗ and the volume element V∗
el

will decrease in time. Thus, the element motion equation takes the following form

ρ∗ d
d t∗ (u

∗V∗
el) = πR∗2Δp∗el − F∗drag . (11)

The expression for F∗drag can be obtained as follows: compute the power dissipation
in each stressed plasma layer for some translational velocity u∗, imposing the no-slip
condition at both layer boundaries, then write that the overall power dissipation equals
the product F∗dragu∗. Omitting standard calculations (for more details we refer the readers
to [5]), the result is

F∗drag = 2πη∗plu
∗R∗

⎡⎣ a(φ)∣∣∣ln(1− εpl

)∣∣∣ + b
|ln(1− εRBC)|

⎤⎦ ≈ 2πη∗plu
∗R∗

[
a(φ)
εpl

+
b

εRBC

]
. (12)

Hence, recalling (6), we rewrite (11) as

ρ∗V∗
RBC

d
d t∗

(
u∗

φ

)
= πR∗2L∗el

∣∣∣∣∂p∗

∂x∗

∣∣∣∣− F∗drag , (13)

where we set Δp∗el = L∗el

∣∣∣∣∂p∗

∂x∗

∣∣∣∣, to put the equation in a form applicable to a continuum.

This is justified by the fact that the number of elements in the capillary is sufficiently
large (≈ 40).

Let us now recall that
d

d t∗ =
∂

∂t∗ + u∗ ∂

∂x∗ and (10). So, (13) takes the form

ρ∗V∗
RBCλ(φ)

(
∂

∂t∗ + u∗ ∂

∂x∗

)(
u∗

φ

)
= πR∗3

∣∣∣∣∂p∗

∂x∗

∣∣∣∣− λ(φ)F∗drag . (14)

At this point it is convenient to recall the ratio ε = ε∗RBC/ε∗pl that we are going to use
as a fitting parameter (the only one in the model). With the help of it and recalling (12), we
rewrite the expression of F∗drag

F∗drag =
2πη∗plu

∗R∗

εRBC
[εa(φ) + b], (15)

which, being proportional to u∗, has the character of a viscous force.
Concerning εRBC, we estimate it by considering a steady flow in typical conditions,

imposing that the l.h.s. of (14) vanishes and taking the guess ε = 0.5, to be verified a
posteriori. This has been done in [5] obtaining

εRBC ≈ 6× 10−2 .

5
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Let us now derive the dimensionless form of (14) recalling the characteristic transit
time t∗0 = L∗/u∗0 ≈ 9.4× 10−2 s, and introducing the dimensionless variables u = u∗/u∗0,
x = x∗/L∗, t = t∗/t∗0, and

p =
p∗ − p∗e
L∗G∗ . (16)

Dividing (14) by πR∗3G∗, we obtain

λ(φ)Γ
(

∂

∂t
+ u

∂

∂x

)(
u
φ

)
= −∂p

∂x
− λ(φ)Λu[εa(φ) + b], (17)

where a(φ) and λ(φ) are given by (7) and (10), respectively, and

Γ =
ρ∗V∗

RBCu∗0
πR∗3G∗t∗0

, Λ =
2η∗plu

∗
0

R∗2G∗εRBC
.

We recall that λ is O(1) and (if, e.g., R∗ = 3 μm) we find Γ ≈ 10−6. Thus, inertia
has no role in (17). With the same value of R∗ we get Λ ≈ 5.4, which confirms that the
performed rescaling is suitable. Eventually, (17) reduces to

1
Λ

∂p
∂x

= −λ(φ)u[εa(φ) + b]. (18)

Now we shift our attention to the dynamics of plasma filtration through the capillary
wall, in other words to the evolution of φ. On one side we have that no RBCs are loss
during the flow, thus their concentration φ obeys the continuity equation

∂φ

∂t∗ +
∂(u∗φ)

∂x∗ = 0. (19)

The plasma loss rate through the capillary wall is driven by the difference p∗ − p∗e ,
p∗e being the external fluid pressure, and is opposed by the so called oncotic pressure
resulting from the presence of proteins in plasma (mainly albumin), responsible for osmosis.
Since the plasma volume fraction is 1− φ, the plasma balance can be written as follows
(Starling’s law)

∂(1− φ)

∂t∗ +
∂(u∗(1− φ))

∂x∗ = −K∗[p∗ − p∗e −Π∗(c∗)], (20)

where K∗ in the permeability of the capillary wall and Π∗(c∗) is the oncotic pressure, a
function of the total proteins concentration in blood c∗, usually given in g/dL,

Π∗(c∗) =
3

∑
j=1

A∗
j c∗ j, (21)

given by the Landis–Pappenhaimer formula (see [7], vol. 2, Chapt. 29). The three coeffi-
cients A∗

j , j = 1, 2, 3, have the values reported in Table 1.

Table 1. Values of the three coefficients A∗
j , j = 1, 2, 3 in (21).

A∗
1 [Pa/(g/dL)] A∗

2 [Pa/(g/dL)2] A∗
2 [Pa/(g/dL)3]

280 21.3 1.2

As plasma flows out, proteins keep concentrating, since the product a∗c∗ remains constant

a∗c∗ = a∗inc∗in , (22)

6
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where the quantities on the r.h.s. are the ones in circulating blood, hence the values at the
capillary inlet. Note that a∗in is deducible from (7) putting φ = φin. Hence, considering
c∗in as reference protein concentration, and introducing c = c∗/c∗in, (22) rewrites as (in [5],
where the term b is neglected, c(φ) = (1− φo)φ[(1− φ)φo]−1)

c(φ) =
a∗in
a

=

H
1− φin

φin
− b
(
1− h2

RBC
)

H
1− φ

φ
− b
(
1− h2

RBC

) . (23)

Combining (19) and (20) yields

∂u∗

∂x∗ = −K∗[p∗ − p∗e −Π∗(c∗)]. (24)

Equation (19) is readily written in dimensionless form

∂φ

∂t
+

∂(uφ)

∂x
= 0. (25)

In order to reduce (24) to a dimensionless form too, we define the dimensionless constants

K = K∗G∗L∗t∗0, Aj =
A∗

j c∗j
in

G∗L∗ , j = 1, 2, 3. (26)

Recalling (16) and (21), Equation (24) can be rewritten as

− 1
K

∂u
∂x

= p−
3

∑
j=1

Aj(c(φ))
j, (27)

with c(φ) given by (23). Thus, the model consists of solving the differential system (18),
(25) and (27), for the determination of the unknowns φ, u and p.

The main physiological application refers to the steady flows. Eliminating time depen-
dence is a great simplification. First, Equation (25) implies

uφ = uinφin , (28)

where uin = u∗/u∗0, is the dimensionless blood velocity at the capillary inlet. Assuming
uin = 1, then u can be seen as a function of φ

u(x) =
φin

φ(x)
, (29)

and so (27) rewrites as (here, and in the sequel, we have set (•)′ = d(•)/ d x).

1
φinK

φ′= φ2

[
p−

3

∑
j=1

Aj(c(φ))
j

]
.

Next, plugging (18) in (29) we obtain

1
Λφin

p′ = −λ(φ)

φ
[εa(φ) + b].

7
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Hence, φ(x) and p(x) are obtained solving this Cauchy for x ∈ (0, 1)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ′= φinK φ2
[

p−∑3
j=1 Aj(c(φ))

j
]
,

p′ = −Λφin
λ(φ)

φ
[εa(φ) + b],

φ(0) = φin, p(0) = pin,

(30)

where c(φ), λ(φ) and a(φ) are given by (7), (10) and (23), respectively, and where, recalling (16),

pin =
p∗in − p∗e

L∗G∗ , (31)

p∗in − p∗e , being the characteristic transmembrane pressure. In particular, following [8,9],
we introduce the osmotic number

Os =
A∗

1c∗in
p∗in − p∗e

, (32)

and, recalling (26), we rewrite (31) as

pin =
A1

Os
. (33)

Figure 4 shows φ(x), when Os = 0.1, and φin = 0.45. In Figure 5 we report the
corresponding u(x), given by (29).

0.0 0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

0.60

x

Figure 4. Behaviour of φ(x) for ε = 0.5 and K = 0.15, when Os = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.4

1.5

1.6

1.7

x

u [mm/s]

Figure 5. Behaviour of u(x) given by (29) for ε = 0.5 and K = 0.15, Os = 0.1.
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In [5], the steady-flow model (30) has been applied to the capillaries in the renal
glomerulus obtaining the physiological value of the renal filtration rate. For more references
and details, also on historical aspects, see [1].

Modeling the Flow through Fenestrated Capillaries: Conclusions

We have reviewed a model for blood flow in fenestrated capillaries based on an
approach outside the standard fluid dynamical context. Indeed, the model considers the
motion of plasma-RBC elements imposing the balance between the driving force produced
by the hydraulic pressure gradient and the drag caused by friction at the vessel wall.
The latter takes place in the thin plasma layer confined by the RBC portion facing the
capillary wall (see Figure 1) and in a layer of the plasma segment between two consecutive
RBCs in the flowing sequence. Plasma loss through fenestrations, altering the system
configuration, is particularly intense in the highly fenestrated capillaries making the renal
glomeruli, and is driven by the pressure across the vessel wall, which includes the effect of
osmosis. Osmosis plays a fundamental role, since proteins (mainly albumin) in blood are
not allowed to leave the capillary, whose wall behaves as a semi-permeable membrane. The
progressive plasma loss increases the albumin concentration thus enhancing osmosis. The
model has been applied in [5] to compute the glomerural filtration rate (i.e., the amount
of the plasma filtrated by kidneys in one minute). The physiological value has been
successfully retrieved.

3. Modeling Vasomotion

Rhythmic contractions of blood vessels equipped with smooth muscle are normally in-
dependent on heart pulsation or respiratory rhythm. This phenomenon, called vasomotion,
is easily observed in the veins in the bat’s wing and was first noticed by T.W. Jones [10]
in 1852. The biological mechanisms driving the onset of persisting oscillations have been
studied in a number of papers, [11–20]. Vasomotion ordinary values for frequency and
amplitude are 10 cpm and 25% of mean diameter, though values of 25 cpm and 100% are
possible [21].

Literature on vasomotion physiology is rather numerous since one of the main concern
is about its benefit to microcirculation. Indeed, vasomotion is particularly active at the level
of microcirculation where vessels resistance becomes large. Jones, in their paper [10], con-
jectured that vasomotion reduces the vessel resistance thus favoring blood flow. However,
vasomotion appears reduced during pregnancy [22]. On the other hand, unexpectedly, it is
upregulated in hypertensive states like preeclampsia (pregnancy induced severe hyper-
tension), while a decrease in vessels resistance is believed to be advantageous in pregnant
mammals. Clearly, this does not help to clarify the role of this phenomenon.

The paper [23] takes a shortcut to show that vasomotion enhances flow in arteries,
but their argument was pointed out to be incorrect in [24]. Experiments with bat wings
(see [25]) suggest that venules vasomotion acts as a reciprocating pump, increasing blood
flow rate, due to to valves preventing backflow. Indeed the phenomenon presents very
different features in arterioles and in venules. The interaction flow-vasomotion is much
more complicated in venules, because of the action of valves. The experiments illustrated
in [25] show that pressure exhibits large peaks during the vessel contraction, which is
compatible with the presence of an inlet and an outlet valve.

The whole matter of blood dynamics in the presence of vasomotion has been recently
reconsidered in [24,26,27] (see [1] for a review). In [24] the authors make a clear distinction
between the flow in the venules and in arterioles, while in [26,27] the effect of the presence
of valves was investigated on the basis of a mathematical model with the aim of clarifying
their real influence on blood flow. Comparing the model results with the experimental data
by Dongaonkar et al. [25], it was concluded that in valves equipped venules, oscillations
are converted in blood propulsion. On the contrary, in the valveless vessels (i.e., arterioles),
vasomotion has little effect, and actually increases the hydraulic resistance thus reducing
the flow rate, contrary to what was stated in [23].
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In the paper [28] the case of vessels with distributed valves was considered, resulting
in a model with a free boundary (the moving location of the engaged valve). The existence
of distributed microvalves in venules has been reported in [29], where a condition of
pressure continuity forces that value to remain between the imposed inlet and outlet
values.

In this paper, we review the mathematical models for incompressible Newtonian
flows in oscillating arterioles and venules. In our derivation we exploit the smallness of
the ratio (we recall that the symbol “ ∗ ” denotes dimensional quantities).

ε =
R∗o
L∗ � 1. (34)

where R∗o is the maximum vessel radius and L∗ is the vessel length.
Concerning arterioles, which are characterized by the absence of valves, in Section 3.1

we investigate the influence of vasomotion on the flow. Concerning venules, Section 3.2,
the model requires to impose very peculiar boundary conditions (unilateral, or Signorini,
boundary conditions), that take the valves action into account. We thus formulate a mathe-
matical model for a peristaltic wave travelling along the vessel. In particular, denoting by
λ∗ the wavelength of the peristaltic oscillation, we investigate the flow analyzing two cases:

• λ∗ � L∗, referred to as synchronous oscillation.
• λ∗ ≈ L∗, referred to as non synchronous oscillation.

The former consists of a uniform oscillation of the vessel walls, while in the second
case a wave profile travels along the vessel.

The first case (synchronous oscillation) can, indeed, be recovered from the second
one in the limit of “long” wavelengths, which guarantees the physical consistency of the
model. In Section 3.8 we show numerical solutions that match the experimentally detected
pressure behavior displayed in [25]. Since we are interested in the average flow, in the
following we will systematically ignore pressure pulses by heartbeats, just considering the
average hydraulic pressure gradient present in the studied vessels.

3.1. Vasomotion in Arterioles

We start considering vasomotion in arterioles, where usually ε ranges around 10−2,
and model these vessels as cylindrical tubes. We denote by x∗, and r∗ the longitudinal and
radial coordinates and assume azimuthal symmetry so that the angular coordinate never
appears and the velocity field is

v∗ = v∗1ex + v∗2er.

We note that the muscle fibers surrounding the vessel can only contract and not dilate,
so that the vessel radius is maximal in the rest configuration. Consequently the oscillation
of the vessel wall causes a lumen narrowing. Hence we model the vessel oscillations as

R(t∗) = R∗o [1− δ(1− cos(ω∗t∗))],

where R∗o is the radius of the rest (undeformed) state, δ ∈ (0, 1/2), and ω∗ is the oscillations
pulsation. Denoting by 〈 · 〉 the time average over the period T∗, we find 〈R∗〉 = R∗o (1− δ).
The periodic oscillations thus cause an average a reduction of the vessel lumen by δR∗o .

Dealing with arterioles, where the flow is dominated by hydraulic pressure imposed
by the heart, a natural scale for the longitudinal flow is

v∗1,ref =
R∗ 2

o
μ∗

Δp∗c
L∗ , (35)

where Δp∗c , denotes the typical pressure drop and μ∗ is the blood viscosity (typically
μ∗ ≈ 3 mPa s). If we take as approximate values Δp∗ ≈ 18 mmHg = 2.4× 103 Pa, and

10
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L∗ ≈ 3 mm, R∗o ≈ 20 μm, it turns out that the formula above captures the correct magnitude
order v∗1,ref ≈ 10 cm/s. In particular, exploiting (35) we can estimate the transit time as

t∗tr = L∗/v∗1,ref = ε−2
(

μ∗

Δp∗c

)
,

getting t∗tr ≈ 2.5× 10−2s. Hence, if the period of the walls oscillations is T∗ = 6s (which
roughly corresponds to ≈ 10 cpm, i.e., ω∗ ≈ 1 s−1), we have

T∗

t∗tr
≈ ε−1.

Concerning the characteristic radial velocity, we set

v∗2,ref = δR∗o ω∗ = 2πδ
R∗o
T∗ , (36)

Taking δ = 0.25, and a frequency of ≈ 10 cpm, we have v∗2,ref ≈ 5× 10−4 cm/s, so that

v∗1,ref

v∗2,ref
=

L∗

R∗
T∗

t∗tr
≈ ε−2. (37)

Defining

x =
x∗

L∗ , r =
r∗

R∗o
, t =

t∗

T∗ , (38)

v1 =
v∗1

v∗1,ref
, v2 =

v∗2
v∗2,ref

, p =
p∗

Δp∗c
and recalling (35) and (36), the dimensionless version of the Navier–Stokes and continuity
equations is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1

∂x
+ ε3 1

r
∂(rv2)

∂r
= 0,

ρ∗R∗ 2
o

T∗μ∗

[
∂v1

∂t
+ 2πδ

(
ε−1v1

∂v1

∂x
+ v2

∂v1

∂r

)]
= −∂p

∂x
+

1
r

∂

∂r

(
r

∂v1

∂r

)
+ ε2 ∂2v1

∂x2 ,

ρ∗R∗ 2
o

T∗μ∗ ε−3
[

∂v2

∂t
+ ε−1

(
v1

∂v2

∂x
+ v2

∂v2

∂r

)]
= −ε−5 ∂p

∂r
+ ε−2 1

r
∂

∂r

(
r

∂v2

∂r

)
+

∂2v2

∂x2 ,

(39)

(40)

(41)

where

ρ∗R∗ 2
o

T∗μ∗ ≈ ε3.

We remark that the Reynolds number of the flow is rather small (less than 10), so that
chaotic turbulence never occurs. At the leading order (40) reduces, as expected, to the
classical Hagen–Poiseuille equation

−∂p
∂x

+
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0.

11
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Equation (41) implies that p is independent of r. while the continuity Equation (39)
shows that v1 is independent of x, so that p is linear in x. This fact fully justifies the shortcut
adopted in [23] where the quasi steady Poiseuille discharge through the vessel is averaged
over a period.

Denoting by Q∗ the discharge

Q∗ = 2π
∫ R∗

0
v∗1r∗ d r∗,

we find, after a little algebra, that the average discharge is

〈Q ∗〉 = 1
T∗
∫ T∗

0
Q∗ d t∗ = Q∗

0(1 + f (δ)), (42)

where

Q∗
0 =

πR∗ 4
o

8μ∗
Δp∗

L∗ ,

is the discharge corresponding to the radius at the rest state (in [23] the authors obtained
a similar formula, but they compared the average flow rate with the one corresponding
to the average vessel radius, which is not the rest state radius. Hence they erroneously
concluded that vasomotion is advantageous for any amplitude), i.e., the undeformed
configuration, and

f (δ) =
35
8

δ4 − 10δ3 + 9δ2 − 4δ. (43)

In particular, since −1 < f (δ) < 0 for δ ∈ (0, 1), and f (δ) = 0 when δ = 0, we remark
that 〈Q ∗〉 is maximum for when δ = 0. For any δ ∈ (0, 1] we have 〈Q ∗〉 < Q∗

0, so that
vascular contractions due to vasomotor activity are disadvantageous for flow, at least in
this simple framework. Indeed, the arteriole smooth muscle cells contract from a rest state
corresponding to the maximum vessel size R∗o , and the lumen reduction can only hinder
the flow. Thus, the question of the possible benefit of vasomotion in arterioles is left open
and should be investigated in a scenario different from the one of a simple Newtonian flow
in a vessel with synchronous oscillations.

The above analysis is correct within the O(ε) order. Higher order approximations
provide corrections not exceeding 1% and are neglected.

3.2. Vasomotion in Venules

Because of the presence of valves which prevent backflow, vasomotion in venules
produces a completely different effect. Indeed the pumping action generated by vasomotion
on the flow is definitely comparable to the one due to the available pressure gradient.

Valves in the major veins had been observed since the early times of anatomy (see [1]
at p. 60). On the contrary, the presence of valves in small veins has been underestimated or
even ignored. An historical review on this subject is due to Caggiati et al. [29]. In particular,
microscopic valves has been observed in venules as small as 25 μm diameter, where they
may be arranged in series (see [30,31]).

3.3. The Mathematical Model

We illustrate a model for venules equipped with just two valves placed at the inlet
and outlet, corresponding to x∗ = 0 and x∗ = L∗. We attack the problem from a more
general point of view, supposing that the vessel radius R∗ evolves as a travelling wave
with wavelength λ∗, i.e.,

R∗(x∗, t∗) = R∗o R(x∗, t∗) R(x∗, t∗) = 1 + δΦ
(

x∗

λ∗ −
t∗

T∗

)
, (44)

where:

12
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A.1 Φ(η) is a periodic function (with period 1) such that max Φ = 0, min Φ = −1.
Moreover we suppose that Φ is decreasing in a fraction of the period (contraction
phase) and increasing in the remaining fraction (expansion phase). Therefore, as
in Section 3.1, the vessel radius in the natural undeformed state is R∗o (maximum
cylinder lumen).

A.2 0 < δ < 1, is a dimensionless parameter, so that R∗o δ, gives the oscillation amplitude
(producing a lumen reduction with respect to the rest state).

A.3 λ∗ is the wavelength and T∗ is the wave period, which are linked to the wave velocity
c∗ by

c∗ = λ∗

T∗ . (45)

We denote by u ∗ the radial surface velocity. From (44)

u ∗ = ∂R∗

∂t∗ er = −Ṙ∗refΦ
′
(

x∗

λ∗ −
t∗

T∗

)
er, (46)

where Φ′(η) = dΦ/dη and where

Ṙ∗ref =
R∗o δ

T∗ , (47)

represents the average contraction velocity, so that we replace (36) with v∗2,ref = Ṙ∗ref. In
vasomotion Ṙ∗ref is available from experiments. Recalling the scaling (38), we introduce
λ = λ∗/L∗. We will focus on the following cases:

1. λ∗ much larger than L∗ (more precisely λ−1 ≤ ε), meaning that at the leading order
the vessel undergoes spatially synchronous oscillations.

2. λ∗ comparable with L∗, i.e., λ = O(1).

We do not consider the case λ∗ � L∗, since in [32] we proved that in this case the
peristalsis has basically no effect on the flow.

Considering (38) and setting λ = λ∗/L∗, Equation (44) becomes

R(x, t) = 1 + δΦ
( x

λ
− t
)

, (48)

so that
λ

∂R
∂x

+
∂R
∂t

= 0.

Differently from the case of arterioles, the pressure gradient in venules is low (few
mmHg/mm) and we may assume that the flow is dominated by peristalsis. Therefore we
choose the longitudinal reference velocity v∗ref as follows

v∗ref =
1
ε

Ṙ∗ref =
1
ε

R∗o δ

T∗ , (49)

and set

v1 =
v∗1
v∗ref

, v2 =
v∗2

Ṙ∗ref
=

v∗2
εv∗ref

,

so that v = v1ex + εv2 er. The reference pressure gradient is defined as

Δp∗ref
L∗ =

μ∗

R∗ 2
o

v∗ref .

The quantity Δp∗ref represents the order of magnitude of the “effective pressure drop”
caused by the oscillations of the vessel (inspired to Poiseuille’s formula). The known
imposed pressure difference is Δp∗ = p∗(0, t∗)− p∗(L∗, t∗), and we consider
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Δp =
Δp∗

Δp∗ref
= O(1).

When Δp � 1, the flow is essentially dominated by the externally imposed pressure
gradient and the effects due to the wall oscillations are hardly observable (which is exactly
the case occurring in arterioles). We also introduce the dimensionless pressure

p =
p∗(x∗, t∗)− p∗(L∗, t∗)

Δp∗ref
, (50)

so that
p|inlet = Δp, p|outlet = 0. (51)

We finally rescale the radial velocity of the vessel walls u∗ by Ṙ∗ref, namely, by
using (48),

u∗ = Ṙ∗ref u er, with u = −Φ′
( x

λ
− t
)
= −λ

δ

∂R
∂x

=
1
δ

∂R
∂t

. (52)

3.4. Flow Equations

On the tube surface we set v∗|r∗=R∗ = u∗ so that, from (46) and (52),

v1|r=R = 0, (53)

v2|r=R = u = −Φ′
( x

λ
− t
)
=

∂Φ
∂t

= − 1
λ

∂Φ
∂x

. (54)

The line r = 0 is a symmetry axis so that

v2|r=0 = 0, and
∂v1

∂r

∣∣∣∣
r=0

= 0. (55)

The fluid mechanical incompressibility yields

∂v1

∂x
+

1
r

∂(rv2)

∂r
= 0, (56)

and the motion equation reduces to Stokes equation

−∇∗p∗ + μ∗Δ∗v∗ = 0, (57)

since the Reynolds number characterizing the flow is small (referring, for instance, to the
data of [25] we have Re ≈ 10−2). So (57) yields

− ∂p
∂x

+ ε2 ∂2v1

∂x2 +
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0, (58)

− 1
ε2

∂p
∂r

+ ε2 ∂2v2

∂x2 +
1
r

∂

∂r

(
r

∂v2

∂r

)
− v2

r2 = 0, (59)

which, at the leading order imply p = p(x, t), and

− ∂p
∂x

+
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0. (60)

Recalling boundary conditions (53) and (55), we find

v1(x, r, t) = −1
4

∂p
∂x

(
R2 − r2

)
, (61)
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with R(x, t) given by (48). We now insert (56) in (61), getting

4
∂

∂r
(r v2) =

∂2 p
∂x2 r

(
R2 − r2

)
+ 2r

∂p
∂x

R
∂R
∂x

.

Integrating between 0 and R and exploiting (54) we obtain

∂

∂x

(
R4

4
∂p
∂x

)
= 4Ru, (62)

with u given by (52). The average longitudinal velocity is

〈v1〉 = 2
R2

∫ R

0

(
−1

4
∂p
∂x

)(
R2 − r2

)
r d r = −1

8
∂p
∂x

R2.

The local dimensionless discharge at time t (within an O(ε) approximation) is

Q(x, t) = πR2〈v1〉 = −π
R4

8
∂p
∂x

, (63)

corresponding to the physical quantity

Q∗(x∗, t∗) =
(

L∗δ

T∗ R∗
2

o

)
πR2〈v1〉. (64)

3.5. Boundary Conditions at the Vessel Ends

The valves are placed at the vessels ends, and act to prevent backflow. Valves are
considered as massless devices with a simple dynamics: when pressure exceeds the inlet
one, the inlet valve closes; when pressure falls below the outlet one, the outlet valve
closes. Let us express the corresponding boundary conditions. At x = 0, inlet valve, two
conditions have to be fulfilled

Q(0, t) ≥ 0, ⇔ ∂p
∂x

∣∣∣∣
x=0

≤ 0, (65)

p(0, t) ≥ Δp. (66)

The first condition simply states that backflow cannot occur (pressure is allowed to
grow beyond Δp when the valve is closed), while the second one guarantees that p(0, t)
can never drop below the imposed pressure. Evidently, at least one of such conditions must
be verified as an equality. As a consequence, the inlet boundary conditions summarize
as follows ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂x

∣∣∣∣
x=0

(p(0, t)− Δp) = 0

∂p
∂x

∣∣∣∣
x=0

≤ 0,

p(0, t) ≥ Δp.

(67)

This is a typical unilateral boundary condition (also known as Signorini type condition)
which is frequently encountered in continuum mechanics (see, for instance, [33]). Similarly,
the boundary conditions at x = 1 are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂x

∣∣∣∣
x=1

p(1, t) = 0,

∂p
∂x

∣∣∣∣
x=1

≤ 0,

p(1, t) ≤ 0.

(68)

These conditions (graphically represented by the step functions, i.e., solid lines, in
Figure 6) allow, as we shall see, to find an explicit formula for pressure and discharge. In
this way the valves are modeled as massless devices which open/close instantaneously as
the pressure in the vessel becomes larger/smaller than the one outside. Such an approach,
though providing a significant agreement with the experiments reported in [25], have
been improved in [27] where the valves inertia, which induces a delay in their action, has
been considered.

Boundary condition at x = 0

Δp
p|x=0

∂p
∂x

∣∣∣∣
x=0

∂p
∂x

∣∣∣∣
x=1

p|x=1

Boundary condition at x = 1

Figure 6. Signorini type boundary conditions at x = 0 and x = 1 (pressure gradient vs. pressure).

3.6. Synchronous Oscillation: λ−1 ≤ ε

This case essentially corresponds to a spatially uniform contraction/expansion of the
vessel, i.e., R = R(t). In particular, using the same notation of Formula (44), we take

R = R(t) = 1 + δΦ(t), (69)

with Φ periodic function of period 1, and, recalling A.1 of Section 3.3, Φ ≤ 0. Next, because
of (52)

u =
1
δ

·
R(t) = Φ̇(t). (70)

Formula (62) can be rewritten as

∂2 p
∂x2 =

16
δ

·
R
R3 ,

yielding ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p(x, t) =

8
δ

·
R(t)
R3(t)

x2 + A(t)x + B(t),

∂p(x, t)
∂x

=
16
δ

·
R(t)
R3(t)

x + A(t).

(71)
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Functions A(t), and B(t) are unknown and have to be determined. Condition (67)
rewrites as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(t)(B(t)− Δp) = 0,

A(t) ≤ 0,

B(t)− Δp ≥ 0,

(72)

while (68) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝8
δ

·
R(t)
R3(t)

+ A(t) + B(t)

⎞⎠⎛⎝16
δ

·
R(t)
R3(t)

+ A(t)

⎞⎠ = 0,

16
δ

·
R(t)
R3(t)

+ A(t) ≤ 0,

8
δ

·
R(t)
R3(t)

+ A(t) + B(t) ≤ 0.

(73)

We now assume the entrance valve engaged, that is A = 0, and consider the compres-

sion phase
·
R < 0. From the first of (73)

B(t) = −8
δ

·
R
R3 ,

which, exploiting (71), gives p(1, t) = 0. Of course the third condition of (72) has to be
fulfilled so that

8
δ

∣∣Ṙ∣∣
R3 ≥ Δp. (74)

On the other hand if
8
δ

∣∣Ṙ∣∣
R3 < Δp, (75)

the entrance valve is open and the solution is

B(t) = Δp and A(t) = −
⎛⎝8

δ

·
R(t)
R3(t)

+ Δp

⎞⎠.

Hence, during the compression phase, i.e.,
·
R < 0, we have

p(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8
δ

·
R
R3

(
x2 − 1

)
, if

8
δ

∣∣Ṙ∣∣
R3 ≥ Δp,

8
δ

·
R
R3

(
x2 − x

)− Δp(x− 1), if
8
δ

∣∣Ṙ∣∣
R3 < Δp.

(76)

In the expansion phase
·
R > 0, we first consider

A = −16
δ

·
R
R3 ,

i.e., the exit valve is closed. The conclusion is that B(t) = Δp (the inlet dimensionless
pressure). Then, recalling the third condition in (73), we notice that the compatibility
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condition (74) must once again be fulfilled. On the contrary, when condition (75) is fulfilled
the exit valve is open and the condition p(1, t) = 0 yields

A(t) = −
⎛⎝8

δ

·
R(t)
R3(t)

+ Δp

⎞⎠ and B(t) = Δp.

Summarizing, during the expansion phase, i.e.,
·
R > 0, the pressure is

p(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δp +

8
δ

·
R
R3

(
x2 − 2x

)
, if

8
δ

·
R
R3 ≥ Δp,

8
δ

·
R
R3

(
x2 − x

)− Δp(x− 1), if
8
δ

·
R
R3 < Δp,

(77)

We remark that when
·
R = 0 Equations (76) and (77) provide the classical linear profile

p(x, t) = Δp (1− x).

We also observe that the flux has no interruption. Indeed, when a valve at one
end is closed the one at the opposite end is open. Formula (63) allows to estimate the
dimensionless discharge, which depends on the abscissa x along the vessel. In particular,
when Δp = 0, we have (the case Δp �= 0, has been extensively analyzed in [26]).

Q(x, t) = 2π
R
δ

⎧⎪⎪⎨⎪⎪⎩
∣∣Ṙ∣∣x, when

·
R < 0,

·
R(1− x), when

·
R > 0.

(78)

Therefore, during compression phase, i.e., when
·
R < 0, the inlet discharge vanishes,

while in the expansion phase we have Q(1, t) = 0, and the inlet flow rate becomes maxi-
mum. It is trivial to verify that the total inlet discharge equals the total output discharge.
Moreover, the average flow in a period is not zero (as it would occur in absence of valves).
Indeed, if a single oscillation over the period is considered, namely

Ṙ < 0, for 0 ≤ t < α,

Ṙ = 0, for t = α,

Ṙ > 0, for α < t < 1,

the total volume (dimensionless) coming out of the vessel in a period (and which therefore
enters the tube during the subsequent expansion phase) is

Vout =
∫ 1

0
Q(1, t)d t = −π

δ

∫ α

0

d R2

d t
d t =

π

δ

[
R2(0)− R2(α)

]
= π(2− δ),

since, R(0) = 1 and R(α) = min R(t) = 1− δ. Hence, recalling (64), we have

V∗
out = πR∗2

o

(
2δ− δ2

)
L∗ = πL∗

(
R∗2

o −min R∗ 2
)

,

that is the volume by which the cylinder is reduced during an oscillation.
The typical behavior of the outflux and influx, i.e., Q(1, t) and Q(0, t), is displayed in

Figure 7. The top panel shows the radius oscillation during a period (in this case δ = 0.3),
while in the bottom panel Q(1, t) and Q(0, t), given by (78). We remark that, during the
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compression phase, Q(0, t) vanishes and Q(1, t) �= 0 since the outlet valve is open. During
the expansion phase, Ṙ > 0, exactly the opposite occurs since the inlet valve is open.
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Figure 7. Typical behaviour of R(t), Q(0, t) and Q(1, t).

3.7. Non-Synchronous Oscillation: λ = O(1)

The case in which λ = O(1), i.e., non-synchronous oscillations, has been analyzed in
detail in [26]. Here we recall briefly the main steps, considering, for the sake of simplicity,
Δp = 0. Recalling (52) and (62), we write

∂

∂x

(
R4

8
∂p
∂x

)
= −λ

δ

∂R2

∂x
, (79)

which gives

p(x, t) = B(t)− 8λ

δ

∫ x

0

d x′

R2 +A(t)
∫ x

0

d x′

R4 ,

where A(t) and B(t) are unknown at this stage.
We introduce

Rin(t) = R(0, t), Rout(t) = R(1, t), Sin(t) = πR2
in(t), Sout(t) = πR2

out(t),

and define

I2(t) =
∫ 1

0

d x
R2(x, t)

, I4(t) =
∫ 1

0

d x
R4(x, t)

.

Proceeding as in Section 3.6, we consider two cases:

(a) Sin(t) < Sout(t) ⇔ Rin(t) < Rout(t),

(b) Sin(t) ≥ Sout(t) ⇔ Rin(t) ≥ Rout(t).

Case (a). The boundary conditions (67)and (68) yield

A(t) =
8λ

δ
R2

in(t),

19



Symmetry 2021, 13, 1020

and
B(t) = 8λ

δ

[
I2(t)− R2

in(t)I4(t)
]
,

provided [
I2(t)− R2

in(t)I4(t)
]
≥ 0 (80)

If (80) is violated, i.e., [
I2(t)− R2

in(t)I4(t)
]
< 0, (81)

we take

B(t) = 0, and A(t) =
8λ

δ

I2(t)
I4(t)

, (82)

Since conditions the third of both (67) and (68) are fulfilled, we need to prove only
the second of (67) from which the second of (68) automatically follows because R2

in < R2
out.

Rewriting the second of (67) as

A ≤ 8λ

δ
R2

in

and using (82), we immediately obtain (81).
Case (b). We now have

B = 0,

and

A(t) =
8λ

δ
R2

out(t), if
[
I2(t)− R2

out(t)I4(t)
]
≥ 0,

or A given by (82) in case
[I2(t)− R2

out(t)I4(t)
]
< 0. Hence, recalling (63) and introducing

Tin(t) = I2(t)− R2
in(t)I4(t), Tout(t) = I2(t)− R2

out(t)I4(t),

we have

if Sin(t) < Sout(t), Q(x, t) = −π
λ

δ

⎧⎪⎪⎨⎪⎪⎩
R2

in(t)−R2(x, t), if Tin(t) ≥ 0,

I2(t)
I4(t)

− R2(x, t), if Tin(t) < 0,

if Sin(t) ≥ Sout(t), Q(x, t) = −π
λ

δ

⎧⎪⎪⎨⎪⎪⎩
R2

out(t)− R2(x, t), if Tout(t) ≥ 0,

I2(t)
I4(t)

− R2(x, t), if Tout(t) < 0.

In order to highlight the difference between the two cases, we consider Φ(η) =
−[1− cos2(πη)

]
, which fulfils A.1, so that

R(x, t) = 1− δ
[
1− cos2

(
π
( x

λ
− t
))]

. (83)

Figure 8 displays the in influx, Qin = Q(0, t) and the outflux Qout = Q(0, t), when
R(x, t) is given by (83) with δ = 0.3, and λ = 3/4. In Figure 9 we still report Qin and
Qout but in case of synchronous oscillations, i.e., when R(t) = 1− δ

[
1− cos2(πt)

]
, with

the same δ. The differences between the profiles reported in Figures 8 and 9 are evident
even if the flow rates peaks are the same. In case of synchronous oscillations, Figure 9,
the two valves are never open at the same time and the inlet and outlet flow rates are
symmetrical (because of to the peculiar behavior of R(t)). In case of non-synchronous
oscillations, i.e., Figure 8, there exists a time interval in which both valves are open. This is
evidently attributable to the fact that the vessel contraction occurs as a traveling wave.
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Figure 8. Inlet and outlet discharge when R(x, t) is given by (83), with δ = 0.3 and λ = 3/4.
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Figure 9. Inlet and outlet discharge when R(t) = 1− δ
[
1− cos2(πt)

]
with δ = 0.3.

3.8. Model Validation

The comparison between the model and the experimental data by Dongaonkar et al. [25]
has been discussed in details in [26,27].

We consider the experimental data reported in Figure 3 of [25], which represents the
diameter oscillations of a bat wing venule. In particular, we select (recall that δ denotes the
oscillation amplitude)

R(t) = at3(1− t3)3 + (1− δ). (84)

where we set R∗o ≈ 70 μm, T∗ ≈ 6 s, δ = 0.25, and a ≈ 2.37.
The comparison between the experimental data of [25] (Figure 5, luminal pressure)

and the pressure profile predicted by the model is shown in Figure 10. Considering
the simplicity of the model (only two valves, inertia neglected, Newtonian context), the
agreement appears rather satisfactory.

In the left panel of Figure 11 we show P(x, t) when R(t) is given by (84), and Δp = 1.
The right panel shows P(x, t) when R(t) is given by (84), and Δp = 50. We remark that in
the latter case the effect on the pressure caused by the vessel contraction is comparable
with the driving pressure difference.

21



Symmetry 2021, 13, 1020

Figure 10. Pressure pulse at x = 0 when R(t) is given by (84) and the experimental data extracted
from Figure 5 of [25].

Figure 11. The pressure P(x, t) given by (76) and (77), and R(t) given by (84). In the left panel
Δp = 1; in right one , the two surfaces correspond to Δp = 1 and Δp = 50, respectively.

3.9. Modeling Vasomotion: Conclusions

Periodic contraction-expansion of blood vessels have been recorded since 1852. Such
phenomenon, usually referred to as vasomotion, concerns small (but not too small) ves-
sels (arterioles and venules). The basic laws of fluid dynamics and the smallness of the
radius/length ratio have been exploited to formulate a mathematical model which appears
to be rather accurate.

First we have focused on arterioles, where the blood flow is essentially driven by
hydraulic pressure gradient imposed by heart, concluding that the vessel resistance is in-
creased by vasomotion. This is due to the lumen reduction caused by the vessel contraction
(generated by the smooth muscle cells surrounding the arterioles) which actually hinders
the flow. Actually such a result agrees with [22]: the resistance in a vessel with vasomotion
is larger than the one of a static vessel with relaxed radius.

We then analyzed vasomotion in venules provided with just two compliant valves
(one at the inlet and one at the outlet). We considered first the case of synchronous vessel
oscillation. This can be seen as the limit of the peristaltic motion when the wavelength is
much larger than the vessel length. The model has been tested versus the experimental mea-
sures by Dongaonkar et al. [25] performed on bat wing venules, which are characterized by
periodic pressure pulses. Regardless of the simplicity of the model, the agreement obtained
is remarkable. In particular, the model discussed in [27] which accounts effectively for
valve inertia, reproduces the recorded pressure pulse almost perfectly. This suggests that
the scheme with two valves provides a quite reasonable description of the phenomenon.
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On the contrary, the many valves model discussed in [28] produces a different qualitative
behavior which is not compatible with the experimental measures of [25].

We have confined our analysis to the propulsive effect. In larger veins, valves exert a
modulation effect that enhances the centripetal blood flow [34]. We finally emphasize that
the two-valve model may be applicable to lymphagiones, the valves equipped elements
making a lymphatic vessel.

4. The Fåhræus–Lindqvist Effect

The Fåhræus–Lindqvist (FL) effect is a phenomenon that occurs in blood vessels with
diameter in the range ≈ 30–300 μm and is named after the two Swedish scientists Robin
Fåhræus and Johann Torsten Lindqvist [35]. It consists in a progressive reduction of the
apparent blood viscosity as the blood vessel radius decreases. The FL effect is clearly related
to the rheological properties of blood. Indeed, despite the blood composite nature, in tubes
like veins and arteries above the size specified above and at relatively high shear rate
(≥100 s−1), this fluid shows the characteristic Newtonian behaviour of an incompressible
liquid. At a smaller scale this is no longer true since inhomogeneity effects become highly
significant and must be considered. Notwithstanding the great importance of this topic
in physiology, until the fifties papers on blood rheology were scarce and not properly
connected in textbooks or manuals dealing with blood or the blood circulation. Quoting
Copley [36]

reviews on the viscosity of blood deal largely with data on apparent viscosities. The
relative paucity of rheological treatments of blood is contrasted by the large number of
observations of rheological phenomena of this humor.

Despite all the efforts and hundreds of studies devoted to the FL effect in the last
ninety years, an explanation based on the principles of fluid dynamics has been achieved
only very recently [37].

The physiologist and physicist Jean Poiseuille [38], in 1836, was the first to investigate
the flow of human blood in narrow tubes. Experiments lead them to formulate their famous
law that relates the fluid dynamic viscosity (as previously stated, starred quantities are
dimensional) η∗ to the in-out pressure difference ΔP∗ in the tube, the volumetric flux Q∗,
and the tube length L∗ and radius R∗, namely

η∗ = πR∗4

8L∗Q∗ΔP∗ (85)

Poiseuille experiments found their theoretical justification some years later, thanks to
Navier and Stokes. Indeed, (85) can be proved to be a direct consequence of the Navier–
Stokes equations of fluid mechanics. If blood is considered a homogeneous Newtonian fluid,
then the stress and shear rate are directly proportional through a constant viscosity η∗,
which depends on temperature. In case of flow in a tube, Navier–Stokes equations can be
solved explicitly for the velocity which shows a parabolic profile along a tube cross-section.
Thus, being

Q∗ = 2π
∫ R∗

0
r∗v∗(r∗)d r∗, (86)

the flow rate can be calculated by integrating v∗(r∗), and (85) is theoretically justified.
What has all this to do with the FL effect? If blood were really Newtonian, its viscosity

should not depend, in particular, on the tube radius. On the contrary Figure 12 shows that
this is not true.

Moreover, viscosity is measured at a given shear rate, an so, in principle, it could
also depend on the latter. For a Newtonian fluid this ratio is a material constant which
shows dependence only on temperature. Otherwise, viscosity is referred to with the name
of “apparent” viscosity and denoted by η∗app. Figure 12 shows that blood turns from a
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Newtonian to a non-Newtonian behaviour as soon as the vessel diameter reduces below a
threshold value.

The FL effect has an important physiological implication: the heart can drive a given
volume of blood through the arterioles at a much lower pressure than would be the case if the blood
were a Newtonian fluid.

The non-Newtonian behaviour of blood in small tubes has received several qualitative
explanations, the most important one being related to the fact that blood is not a simple a
liquid, but rather a non-homogeneous suspension of various particles. Among all these
particles, RBCs contribute by far the highest percentage. In the next section we outline the
Haynes’ conjecture, which was the first tentative to interpret the FL effect as a consequence
of a “smart” response of the RBCs to the narrowing of the vessel diameter.
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Figure 12. Original data of the Fåhræus–Lindqvist experiment. The measured viscosity is relative to
that of plasma. It should be emphasized that one of the blood samples (series 4) shows higher relative
viscosity values than that the others, since was partially depleted of plasma by centrifugation.

4.1. The Haynes’ Conjecture and Its Physiological Implications

According to Haynes [39], in vessels with diameter smaller than 300 μm, RBCs tend
to migrate towards the central part of the vessel, while a less viscous layer of plasma,
named “marginal zone” or “cell-free layer” (CFL), forms close to the walls. The viscosity
in the marginal zone is basically the one of the suspending liquid (plasma), denoted by
η∗p. The viscosity of the RBCs suspension in the central core of the tube is assumed to be
uniform and is denoted by η∗c . Haynes’ leading idea is that the presence of the marginal
zone reduces the apparent viscosity in tubes of small diameter. This reminds Jeffery [40]
who heuristically hypothesized that

the particles will tend to adopt that motion which, of all motions possible under the
approximate equations, corresponds to the least dissipation of energy.

Indeed, since the viscosity of the marginal layer is from 4 to 5 times less than that of the core,
the wall stress is drastically reduced. In the Haynes’ view, the physiological motivation of
the migration of the RBCs toward the center of the tube is to reduce the pumping effort of
the heart. Recently, Ascolese et al. [41] showed that this heuristic explanation is misleading.

Following their approach, we first recall that blood is treated as an inhomogeneous
incompressible linear viscous fluid, whose viscosity depends on the hematocrit φ. If u is
the velocity, the model equations are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂∗φ

∂t∗ + u∗ · ∇∗φ = 0,

∇∗ · u∗ = 0,

�

(
∂∗u∗

∂t∗ + (∇∗u∗)u∗
)
= −∇∗p∗ +∇∗ ·T∗,

(87)
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where the differential operators are referred to dimensional variables, �∗ is the blood
density, p∗ the pressure, and T

∗ = 2η∗(φ)D∗, with η∗(φ) the hematocrit-dependent blood
viscosity, and D

∗ = (1/2)
(
∇∗u∗ +∇∗u∗T

)
. Concerning η∗(φ), the current literature offers

a variety of empirical laws (see, for example, [42–47]).
Although blood generally shows shear thinning and stress relaxation proprieties [1,48]

these non-Newtonian effects can be neglected for the flow regimes and vessel sizes consid-
ered in [41].

Let us now specialize model (87) to the steady flow in a cylindrical tube whose
diameter is D∗ = 2R∗ and whose length is L∗. If we denote by r∗ the radial coordinate, and
suppose that the flow attains a steady laminar state

u∗ = u∗(r∗) ex, φ = φ(r∗), (88)

where ex is the unit vector parallel to the cylinder axis, the first two equations in (87) are
identically satisfied, and the third reduces to

0 = −∂∗p∗

∂x∗ +
1
r∗

∂

∂r∗

(
r∗η∗(φ)∂u∗

∂r∗

)
. (89)

Equation (89) can solved for (u∗(r∗), φ(r∗)) under standard (no-slip) boundary conditions:

u∗(r∗) = ΔP∗

2L∗
∫ R∗

r∗
ζ∗

η∗(φ(ζ∗)) d ζ∗, (90)

and

φB

∫ R∗

0

r∗3

η∗(φ(r∗)) d r∗ =
∫ R∗

0

2r∗

η∗(φ(r∗))

(∫ r∗

0
φ(ζ∗)ζ∗ d ζ∗

)
d r∗, (91)

where φB is the inlet hematocrit (usually between 0.35 and 0.5) and ΔP∗ = P∗(0)− P∗(L∗)
the in-out pressure difference.

According to Haynes’ conjecture, in vessels with diameter D∗ less than 0.3 mm, the
RBCs migrate towards the center so that the flow region consists of an outer layer in which
φ = 0 (also referred to as cell-free layer, CFL) and the complementary axisymmetric region
to which all RBCs are segregated, where the hematocrit φc is constant and uniform. The
two regions are separated by an interface with constant but unknown radius s. Therefore,
φ(r∗) is a stepwise function

φ(r∗) =

⎧⎪⎨⎪⎩
φc, 0 ≤ r∗ ≤ s∗,

0, s∗ < r∗ ≤ R∗,

(92)

and the flow has the so-called core-annulus structure (CAS). Since Equation (91) has to be
fulfilled, s is not arbitrary. Although other choices of φ(r∗) are possible (see, for example,
Phillips et al. [49]), the advantage of (92) is that it allows to solve the flow problem explicitly.

The continuity of velocity and shear stress at the unknown interface s leads, after
standard calculations, to obtain the velocity profile in the tube and to evaluate, consequently,
the discharge: indeed

u∗(r∗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ΔP∗

4L∗

(
s∗2 − r∗2

η∗(φc)
+

R∗2 − s∗2

η∗p

)
, 0 ≤ r∗ ≤ s∗

ΔP∗

4L∗
R∗2 − r∗2

η∗p
, s∗ ≤ r∗ ≤ R∗,

(93)
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and

Q∗
c = 2π

∫ s∗

0
r∗u∗(r∗)d r∗ = πΔP∗

8L∗

(
s∗4

η∗(φc)
+

2(R∗2 − s∗2)

η∗p

)
(core), (94)

Q∗
a = 2π

∫ R∗

s∗
r∗u∗(r∗)d r∗ = πΔP∗

8L∗η∗p

(
R∗2 − s∗2

)2
(outer layer), (95)

so that the total discharge is

Q∗ = πΔP∗

8L∗

(
s∗4

η∗(φc)
+

R∗4 − s∗4

η∗p

)
. (96)

Recalling (85), we get

η∗app =
η∗p

1 + σ4
(

η∗p
η∗(φc)

− 1
) , (97)

where σ = s∗/R∗ ∈ (0, 1]. The derivation of sigma will be discussed in Section 4.2.
The total power dissipation by the viscous friction along the tube is

P∗ = 2π
∫ L∗

0
η∗(φ(r∗))

(
d∗

d r∗ u∗(r∗)
)2

r∗ d r∗ d x∗, (98)

while the total flow discharge for a given pressure drop ΔP is

Q∗ = π
ΔP∗

L∗
∫ R∗

0
r∗
∫ R∗

r∗
ζ∗

η∗(φ(ζ∗)) d ζ∗ d r∗. (99)

Thus, by using (93), it follows

P∗ = ΔP∗ Q∗. (100)

The key point is that P∗ can be expressed in the form P∗BΨ(σ), where

P∗B =
π

8
(ΔP∗)2

L∗
R∗4

η∗B
,

η∗B is the blood viscosity before entering the vessel, and Ψ is a dimensionless strictly
decreasing function of σ whose explicit form depends on the way one chooses to evaluate
η∗B as a function of the hematocrit. Ascolese et al. [41] evaluated Ψ for six different choices
of η∗B(φ) and for four different values of φ (see Figure 6 in the cited paper). In all cases
considered, Ψ′ < 0 for σ ∈ (0, 1) and Ψ → 1 as σ → 1. Thus, (100) implies that P increases
as σ decreases, meaning greater dissipation when a CFL is present. At the same time Q
increases above its value before entering the vessel, which in physiological terms means an
increase of the perfusion effect towards the peripheral tissues. This conclusion elucidates,
more than others, the crucial role of the FL effect in physiology.

Formula (97) follows almost directly from the Haynes’ conjecture and from the calculus
of the total (core and plasma layer) discharge. Far from giving a justification of the CFL,
its utility is confined to provide an estimate of σ (difficult to measure) as a function of the
other, experimentally measurable, parameters, provided a reliable η∗(φ) is given. However,
two questions remain still unanswered: is a boundary layer already present also in “large”
vessels? In the affirmative case, why the layer thickness increases when blood flows from a
given vessel to a smaller one? The first question is usually explained in terms of the so-
called size exclusion effect (see, for example [50–52]): RBCs cannot get close to the vessel wall
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for less than half of their minimal thickness (≈ 2–3 μm). Thus, the CFL thickness cannot be
lower than ≈ 1–1.5 μm. The second question has been fully answered by Guadagni and
Farina in [53] by applying the Prandtl boundary layer theory (see, for example, [54]). They
show that the marginal layer, after an “entrance effect”, quickly reaches a steady value. The
main contribution of that paper is to provide an exact relation which links the asymptotic
thickness of the CFL to its initial (minimum) value dictated by the size exclusion effect.
This is the key step towards a rigorous justification of the FL effect. In particular, in [37]
we compared the marginal layer thickness, as predicted by the mathematical model, and
some measured values taken from “in vivo” experiments by Maeda et al. [55] and by
Kim et al. [56]. In all cases we obtained results that, considering the uncertainty due to the
experimental errors, are quite satisfactory.

4.2. The CAF Evolution Explained as an Entrance Effect

In [53] the Authors, working in planar geometry, study the entrance effect. They show
that the velocity has a transverse component which shifts streamlines towards the channel
center and it is bound to vanish just beyond the entrance region. So the flow reaches very
soon a stratified structure where the particle volume fraction close to the wall significantly
lower than the one in the core. The proof is quite technical and cannot be reported here.

Here we partially extend the argument of [53] to cylindrical geometry. Furthermore,
in this case, as expected, it turns out that flow soon reaches a CAF structure as the one
hypothesised by Haynes [39].

Let us denote by a∗ the minimum size of the outer layer, i.e., a∗ = R∗ − s∗0, with
s∗o = s∗|x=0. It is reasonable to guess that a∗ is going to depend on the geometrical
properties of the RBCs in the considered sample, thus a quantity whose value cannot be
given a priori with great accuracy, though its range is limited around the RBC average
thickness. We now rewrite system (87) in dimensionless form by introducing the following
new variables

x =
x∗

L∗ , r =
r∗

R∗ , u =
u∗

U∗ , v =
v∗

V∗ , p =
p∗

ρ∗U∗2 , η(φ) = η∗pη∗(φ)

where L∗(< L∗) is the longitudinal length scale, ρ∗ is the constant and uniform suspension
density, U∗ the characteristic inlet velocity, η∗p the plasma viscosity (taken as the reference
one), and V∗/U∗ = R∗/L∗. Then, if Re = ρ∗ U∗R∗/η∗ref is the Reynolds number, we
define R∗/L∗ = 1/

√
Re(< 1), meaning that the choice of Re defines the aspect ratio of the

entrance region. We also denote by ηC and ηA the (dimensionless) core and marginal layer
viscosities, respectively. Clearly, if the marginal layer is just pure plasma, then ηA = 1, but
in Section 4.3 we will allow ηA to deviate slightly away from unity.

Because of symmetry, ∂u/∂r|r=0 = 0, while v|r=0 = 0, and all unknowns are indepen-
dent of the angular coordinate. Next, we assume that ε = 1/

√
Re can be used as a small

parameter. Then, neglecting all terms O(εn), n ≥ 2, system (87) in dimensionless form
rewrites (in both layers)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
∂φ

∂x
+ v

∂φ

∂r
= 0,

∂(ru)
∂x

+
∂(rv)

∂r
= 0,

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε

r
∂

∂r

(
rη(φ)

∂u
∂r

)
,

∂p
∂r

= 0, (⇒ p = p(x)).

(101)

27



Symmetry 2021, 13, 1020

where, of course, η is the viscosity of the layer considered. The following inlet conditions
are assumed:

u(0, r) = 1, v(0, r) = 0, φin =

⎧⎪⎨⎪⎩
ΦC, 0 ≤ r ≤ 1− δ,

ΦA, 1− δ < r ≤ 1

, (102)

with ΦC, ΦA constant and δ = a/R, where a is the inlet thickness of the marginal layer
(according to the size exclusion effect). The interface between the core and the marginal
layer is denoted by Σ and given by

r = σ(x), with σ(0) ≡ σo = 1− δ.

Since Σ is a (steady) material surface, we have

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0,

and, consequently,

φ(x, r) =

⎧⎪⎨⎪⎩
ΦC, 0 ≤ r ≤ σ(x),

ΦA, σ(x) < r ≤ 1

, η(x, r) =

⎧⎪⎨⎪⎩
η(ΦC) ≡ ηC, 0 ≤ r ≤ σ(x),

η(ΦA) ≡ ηA, σ(x) < r ≤ 1.

The whole problem consists in solving the following coupled systems of Prandtl equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ru)
∂x

+
∂(rv)

∂r
= 0, x ≥ 0, 0 ≤ r < σ(x),

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε ηC

r
∂

∂r

(
r

∂u
∂r

)
, x ≥ 0, 0 ≤ r < σ(x),

p = p(x), x ≥ 0,

∂u
∂r

= 0, v = 0, x ≥ 0 r = 0,

u = 1, v = 0, x = 0, 0 ≤ r ≤ 1− δ,

(103)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ru)
∂x

+
∂(rv)

∂r
= 0, x ≥ 0, σ(x) < r ≤ 1,

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε ηA

r
∂

∂r

(
r

∂u
∂r

)
, x ≥ 0, σ(x) < r ≤ 1,

p = p(x), x ≥ 0,

u = 0, v = 0, x ≥ 0 r = 1

u = 1, v = 0, x = 0, 1− δ < r ≤ 1,

(104)

to which the following free boundary conditions need to be added⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0,

�u� = �vs.� = �p� = 0,

ηC
∂u
∂r

∣∣∣∣
r=σ−

= ηA
∂u
∂r

∣∣∣∣
r=σ+

,

(105)
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where �•� denotes the jump through Σ. System (103)–(105) allows an asymptotic solution
of Poiseuille type for x → ∞, namely v∞(r) = 0 and

u∞(r) =
2

(1− σ4
∞)

1
ηA

+
σ4

∞
ηC

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ2

∞ − r2

ηC
+

1− σ2
∞

ηA
, 0 ≤ r ≤ σ∞

1− r2

ηA
, σ∞ ≤ r ≤ 1,

(106)

where σ∞ = lim
x→∞

σ(x). Since Σ is a material curve

∫ σo

0
u(0, r) r d r =

∫ σ∞

0
u∞(r) r d r.

Thus, the initial core radius and its asymptotic value are related through

σ2
o =

1

σ4
∞

(
1

ηC
− 1

ηA

)
+

1
ηA

[
σ4

∞

(
1

ηC
− 2

ηA

)
+

2σ2
∞

ηA

]
. (107)

We notice that (107) is a fourth order algebraic equation in the unknown σ∞, with only
one physically significant solution i.e., σ∞ ∈ (0, 1),

σ∞ =
σo√√√√1 +

√
(1− σ2

o )

[
1− σ2

o

(
1− ηA

ηC

)] . (108)

We notice that (108) is independent of Re. The behaviour of σ∞ as a function of σo is
shown in Figure 13. If we can solve system (103)–(105) in the whole region x ≥ 0 and t ≥ 0
and prove that σ(x) decays rapidly to σ∞, then (108) can be used to verify the FL effect
versus the experimental data.

C = 2 A

C = 4 A

C = 6 A

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

0.70

0.75

0.80

0.85

0.90

o

Figure 13. Function (108) for some values of the ratio ηC/ηA.

4.3. The Fåhræus–Lindqvist Effect Justified through Fluid Mechanics

In [53] Guadagni and Farina use the Langhaar’s approach [57] to solve the bound-
ary layer equation in plane geometry. In the tube geometry a similar argument can be
developed (see, for example, Sparrow et al. [58], Avula [59], Gupta [60] and Campbell and
Slattery [61]).

We confine ourselves to summarize the guidelines of the procedure and report the
evolution of σ(x) for various choices of the relevant parameters.

It is well-known that it is not possible to solve Prandtl’s equations explicitly, so that
special approximating techniques are needed. Here, the method consists in linearizing
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the inertia terms in the second of (103) and (104), in order to transform the momentum
equation in the form

ε ηA
r

∂

∂r

(
r

∂u
∂r

)
= εβ2u− κouter(x). (109)

where β(x) and κouter(x) are auxiliary functions still to be specified. Imposing the boundary
condition u(1, x) = 0, the solution to (109) can be expressed as

uouter(r, x) = C(x)

⎡⎢⎢⎣I0

(
rβ√
ηA

)
− I0

(
β√
ηA

)Y0

(
− irβ√

ηA

)
Y0

(
− iβ√

ηA

)
⎤⎥⎥⎦

− κouter

εβ2

⎡⎢⎢⎣1−
Y0

(
− irβ√

ηA

)
Y0

(
− iβ√

ηA

)
⎤⎥⎥⎦,

(110)

where Io(r) and Yo(r) are Bessel functions of the first modified and second type, respectively,
and C(x) has to be determined. The same argument applies to the inner layer and, by
imposing the boundary condition u′(0, x) = 0, one obtains

uin(r, x) = D(x)J0

(
irβ√

ηC

)
− κinner

εβ2 , (111)

where D(x), as well as κinner(x), have to be determined. If we insert (111) and (110) into
the second of (105) and the third of (105), we get an algebraic system that allows to express
κinner and κouter in terms of C and D. Substituting again into (111) and (110), entails

u(r, x) =

⎧⎨⎩C F1,out(r, β) + D F2,out(r, β), σ < r ≤ 1,

C F1,in(r, β) + D F2,in(r, β), 0 ≤ r ≤ σ,
(112)

where

F1,out(σ, β) =

Y1

(
− iσβ√

ηA

)(
I0

(
σβ√
ηA

)
− I0

(
β√
ηA

))
Y1

(
− iσβ√

ηA

)

− i

(
Y0

(
− iβ√

ηA

)
−Y0

(
− iσβ√

ηA

))
I1

(
σβ√
ηA

)
Y1

(
− iσβ√

ηA

)
(113)

F2,out(r, β) =

√
ηC

(
Y0

(
− iβ√

ηA

)
−Y0

(
− iσβ√

ηA

))
J1

(
iσβ√

ηC

)
√

ηAY1

(
− iσβ√

ηA

) (114)
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F1,in(r, β) = I0

(
βσ√
ηA

)
− I0

(
β√
ηA

)

−
iβσ

(
Y0

(
− iβ√

ηA

)
−Y0

(
− iβσ√

ηA

))
F
(

2;
σ2β2

4ηA

)
2
√

ηAY1

(
− iσβ√

ηA

)
(115)

F2,in(r, β) = I0

(
σβ√
ηC

)
− I0

(
βσ√
ηC

)

+

iβσ

(
Y0

(
− iβ√

ηA

)
−Y0

(
− iβσ√

ηA

))
F
(

2;
σ2β2

4ηC

)
2
√

ηAY1

(
− iσβ√

ηA

) ,

(116)

and

F(b; z) =
∞

∑
k=0

zk

Γ(b + k)k!

is the regularized hyper-geometric function (from now on, we do not report the explicit
expressions of the involved functions (which are, indeed, exceedingly long to be shown)
and focus on the procedure).

To make the solution physically consistent we need to impose both the momentum
balance and mass conservation (which, otherwise, may not be satisfied by the approximate
solution), i.e.,

2
d

d x

∫ 1

0
ru2 d r = −p′ + 2ε ηA

∂u
∂r

∣∣∣∣
r=1

,
d

d x

∫ 1

0
ru(r, x)d r = 0 (117)

Now, by inserting (112) into the second of (117), we determine C(β, σ) and D(β, σ). For
u(x, r) to be consistent with the asymptotic solution (106), β(x) must vanish as x → ∞.
This can be achieved by expanding (112) for x → ∞ (that is for β → 0) and verifying that
at the zeroth order in β, u(x, r) identifies with u∞(r) given by (106). At this point, the final
step is to obtain two equations for β and σ. The former follows by applying the second
of (117) once again, in which p′ is computed through the second of (103), evaluated at r = 0.
The latter follows by the kinematic condition (105). Finally we have to solve a system of
two ODEs of type ⎧⎨⎩

β′ = B(β, σ),

σ′ = S(β, σ),
(118)

to be coupled with “suitable” initial conditions (in the sense specified in [53]), one of
them being σ(0) = σo. Figures 14–16 show, each for a given Re, the solution σ(x) for
σ(0) = 0.9, 0.8 and for five values of the ratio μ = ηC/ηA.

The longitudinal interval Δx needed by σ(x) to decrease from σo to its asymptotic
value σ∞ is usually referred to as the “entrance length”. The most evident effect outlined
by Figures 14–16 is that, for fixed μ, the entrance length increases by increasing Re, while
for any given Re, it decreases significantly by increasing μ. It must also be emphasized that
simulations confirm that the asymptotic value σ∞ depends only on μ, not on Re, as it must
be, according to (108). In the next section, we compare the model with the experiments: in
all cases we considered, the entrance length is rather small.
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Figure 14. The evolution of σ(x) for Re = 100, σ(0) = 0.8 (left panel), and 0.9 (right panel), and for
some values of the ratio μ = ηC/ηA.

Figure 15. The evolution of σ(x) for Re = 500, σ(0) = 0.8 (left panel), and 0.9 (right panel), and for
some values of the ratio μ = ηC/ηA.

Figure 16. The evolution of σ(x) for Re = 1000, σ(0) = 0.8 (left panel), and 0.9 (right panel), and
some values of the ratio μ = ηC/ηA.

4.4. The Mathematical Model versus the Experimental Data

Now, as in [37], we use formula (108), where

ηA = 1 + α(ηC − 1), (119)

and α = O(10−1) is a fitting parameter. Physically, this means that we consider the
marginal layer not completely free of RBCs. A reasonable explanation may be that the
“marginal exclusion effect” cannot be precisely stated (as it would be if the RBCs were rigid
spheres) and it should be more understood as a statistical concept (see, for example, Ethier
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and Simmons, 2007). Thus, it is acceptable to think that a small percentage of hematocrit
is present in the marginal layer and that this value may have some variability (Kim et al.,
2007 refer to the outer layer also as a “cell–poor” region).

Now we can combine Formulas (108) and (119) with σo = 1− 2a/D, where D = 2R
and a (the minimum outer thickness) is a fitting parameter related to the half thickness
of the RBCs, so with a limited range of variability, i.e., 1–1.5 μm, since the average RBCs
thickness is about 2–3 μm (see [62]). The result is a dimensional formula for the core radius
s as a function of the tube diameter D, namely

s = S(D, ηC; a, α),

where, however, a, α are “tuning” parameters with very little variability.
Figure 17 shows how the mathematical model fits the original data. The fits by means

of two popular empirical formulas are also shown for comparison.
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Figure 17. Comparison between the experimental series 1, 2, 3 and 4 reported in Tables at page
565 of Fåhræus and Lindqvist [35] (dots) and the theoretical model (solid curve). The fitting via the
empirical formulas by Pries [63] and by Secomb [64] are also shown (dashed curves). On the top
of each plot the values of a∗, α, ηC and the hematocrit φ used in the empirical formulas to fit the
Fåhræus and Lindqvist data.

The model has been tested versus other classical experiments like those by Kümin [65]
and by Zilow and Linderkamp [66]. Figures 18 and 19 show that the agreement is at least
as good as the empirical formulas also in these cases.
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Figure 18. Comparison between our model and the experimental data by Kümin [65] (dots). Data
are extracted from Figure 2, at p. 1195 of [39]. The empirical fitting via the empirical formulas by
Pries and by Secomb are also shown (dashed curves).
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Figure 19. Comparison between our mathematical model (solid curve) and data by Zilow and
Linderkamp [66] (dots). These authors considered both adult and infant blood samples at different
values of the hematocrit. The empirical fitting via the empirical formulas by Pries and by Secomb are
also shown (dashed curves).

4.5. The Fåhræus–Lindqvist Effect: Conclusions

Starting form the seminal work of Fåhræus and Lindqvist [35], we recalled the rel-
evance of the Haynes’ conjecture [39] in suggesting the right path to follow for a rig-
orous justification of the FL effect based on fundamental principles of fluid dynamics.
Then we showed that this goal is achieved by relating the two recent contributions by
Ascolese et al. [41] and Guadagni and Farina [53], thus solving a problem remained open
for more than ninety years. To this end, the theory developed in [53] for flows in a plane
symmetry has been here updated to the the case of axisymmetric flows. This relation
contains, as a parameter, only the ratio between the viscosity of outer and inner layers.
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Finally, following [37], we showed how this formula can be used to fit, quite reasonably, not
only the original data by Fåhræus–Lindqvist, but also those of other classical experiments
Zilow and Linderkamp [66], by Kümin [65], and even two well-known empirical formulas
proposed by Pries [63] and Secomb [64].
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Abstract: In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–
MacArthur predator–prey model. The model is derived by assuming that the prey may be infected
by a disease. In order to take the memory effect into account, we apply two fractional differen-
tial operators, namely the Caputo fractional derivative (operator with power-law kernel) and the
Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler
kernel). We take the same order of the fractional derivative in all equations for both senses to maintain
the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e.,
in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium
points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator
point, the infected prey free point, the predator-free point and the co-existence point. For a model
in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the
local and global stability analysis and establish the conditions for the existence of Hopf bifurcation.
It is found that the trivial equilibrium point is a saddle point while other equilibrium points are
conditionally asymptotically stable. The numerical simulations show that the solutions of the model
in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically
that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The
essential difference between the two models is the convergence rate to reach the stable equilibrium
point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of
both models are different. Moreover, we also observe a bistability phenomenon which disappears via
Hopf bifurcation.

Keywords: Atangana–Baleanu; Caputo; eco-epidemiology; Rosenzweig–MacArthur

1. Introduction

The long history of mathematical biology reveals that predator–prey modeling plays
an imperative role in scientific research. Since the classical Lotka–Volterra, as the funda-
mental predator–prey model, have been proposed [1–3], the theoretical ecology has been
constantly developed. The Lotka–Volterra model has been modified by a lot of researchers
to contrive the relevant model which corresponds to the actual phenomena, such as the
functional response [4–9], the Allee effect [10–14], the impact of competition [15–17] and so
forth. All of these modifications affect the density of populations as the result of interac-
tions between two or more populations. From the biological point of view, the population
density also depends on the epidemiological frameworks, which leads to the increment
of the death rate caused by the disease in the population. Eco-epidemiology describes
the occurrence of ecological and epidemiological circumstances simultaneously [18–23].
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For instance, in a biotope that involves pests and its natural enemies, we observe that the
eco-epidemiological problem occurs and described by the interaction between pest and its
predator. One or both populations may be infected by a disease caused by microbiologi-
cal pathogens such as parasites, viruses, fungi and bacteria, for further see refs. [24–28]
and some references therein. For the real-world example, to suppress the growth rate of
rats (Rattus sp.) in agricultural landscape, the farmers use barn owls (tyto alba) and some
pathogens such as viruses (paramyxoviridae and pneumovirus family), bacterias (klebsiella
pneumoniae, mycoplasma pulmonis, citrobacter rodentium and streptococcus pneumoniae), and
parasites (giardia muris, spironucleus muris, oxyuriasis and acariasis) [29–33].

Regarding to the description above, some researchers have successfully constructed
and studied the eco-epidemiological problem in a deterministic model. Mondal et al. [21],
Wang et al. [34] and Suryanto et al. [35] study the dynamics of the interaction between
two populations in a predator–prey relationship where the prey is infected by a disease
and the predator is hunting the infected prey. In facts, many natural phenomena in the
ecological system show that predation still occurs although the infected prey does not
exist. This means both susceptible and infected prey are regarded to be predated. Based on
this assumption, Sahoo [19], Saifuddin et al. [20], Panigoro et al. [23], Upadhyay et al. [36]
and Nugraheni et al. [37] study the eco-epidemic model with the predation existing on
both susceptible and infected prey. The fundamental differences of their models lie on the
infectious transmission behavior, the predator functional response, the existence of the
Allee effect and the operator of the derivative. Here, we study the eco-epidemic model
formulated under the following assumptions.

(a) In the presence of disease, the prey is divided into two compartments, namely
susceptible prey S(t) and infected prey I(t). The susceptible prey becomes infected
when the individuals have contact with the infected prey. Since the density of prey
and predator are assumed large enough, the infection rate due to this contact is
bilinear which is symbolized by b.

(b) In the presence of the predator–prey relationship, the interaction between suscepti-
ble prey, infected prey and predator is following the Rosenzweig–MacArthur model
[38] with a few adjustments. The susceptible prey growth logistically with intrinsic
growth rate r and environmental carrying capacity K. The infected prey competes
for food with the susceptible prey but has no contribution to the growth rate of
susceptible prey. Both susceptible prey and infected prey are predated following
Holling type-II with the attack rate of predator on susceptible prey ms, the attack
rate of predator on infected prey mi, the half-saturation constant of predator for
susceptible prey ks and the half-saturation constant of predator for infected prey
ki. Since both predations contribute to the predator birth, the conversion efficiency
consists of two parts, i.e., the conversion efficiency of predator on susceptible prey bs
and the conversion efficiency of predator on infected prey bi. It is also assumed that
both infected prey and predator are reduced due to mortality following exponential
decay where d is the death rate of infected prey, and a is the death rate of predator.

Based on above assumptions, we have the following eco-pidemic model.

dS
dt

= rS
(

1− S + I
K

)
− bSI − msSP

ks + S
,

dI
dt

= bSI − dI − mi IP
ki + I

,

dP
dt

=

(
bsS

ks + S
+

bi I
ki + I

− a
)

P,

(1)

For simplicity, model (1) is transformed into a non-dimensional system by intro-
ducing transformation of variables (S, I, P, t) →

(
S
K , I

K , msP
rK , rt

)
to obtain the following

eco-epidemic model.
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dS
dt

=

[
1− S− (1 + η̂)I − P

κ + S

]
S,

dI
dt

=

[
η̂S− δ̂− m̂P

ω + I

]
I,

dP
dt

=

[
μ̂S

κ + S
+

β̂I
ω + I

− q̂

]
P,

(2)

where η̂ = bK
r , δ̂ = d

r , m̂ = mi
ms

, μ̂ = bs
r , β̂ = bi

r , κ = ks
K , ω = ki

K and q̂ = a
r .

To approach the superlative shape of the eco-epidemiological model, the ordinary
calculus is considered less effective in describing the complex ecological phenomena that
involves the system memory and hereditary biological properties of complex multiple
timescale dynamics, see refs. [39–41]. To overcome such problem, many researchers
apply fractional calculus because it is considered to have the ability to represent biological
conditions related to the memory effects more powerfully and accurately than the classical
calculus [42–48]. Particularly, the fractional-order derivatives, as part of the fundamental
theory of fractional calculus, have nonlocal properties which are naturally connected to
the biological systems. It means that the current state of population density depends
on all earlier states [49–51]. If we revisited the evolution of fractional-order derivative,
the Riemann–Liouville [52] and Caputo [53] operators have been widely applied to the
biological modeling. To investigate the behavior of the fractional-order dynamical system,
the theoretical aspect of the Caputo operator is the most complete tool compared to others,
see refs. [52,54,55]. However, the kernels of the first two definitions of fractional operators
are single and local [56–59]. Therefore, Caputo operator is not sufficient enough to express
better nonlocal dynamics. To cover the limitation of Caputo operator, in 2015, Caputo
and Fabrizio proposed a new fractional operator, which is called the Caputo–Fabrizio
derivative [60]. The non-singular and exponential kernel of this fractional derivative is the
novelty of their result and has been successfully applied in several fields [40,61–63]. One
year later, Atangana and Baleanu introduced a new fractional operator with a nonlocal and
non-singular kernel. Such an operator is well-known as the Atangana–Baleanu operator,
which has all the advantages of the Caputo–Fabrizio operator but it uses the Mittag–Leffler
function as its kernel [64]. Most researchers reveal that the Atangana–Baleanu operator
gives better results and claim that the effect of memory is represented efficiently, see
refs. [9,40,51,65].

For a better approach in epidemiological modeling, the fractional-order derivative
is utilized in a similar way with [48,66] which replace the first-order derivative d

dt at the
left-hand side of model (2) with the fractional-order derivative Dα

t . Therefore, we obtain

Dα
t S =

[
1− S− (1 + η̂)I − P

κ + S

]
S,

Dα
t I =

[
η̂S− δ̂− m̂P

ω + I

]
I,

Dα
t P =

[
μ̂S

κ + S
+

β̂I
ω + I

− q̂

]
P.

(3)

Pay close attention to the dimension of the equations in model (3), where the fractional-
order derivatives have the dimensions of (time)−α while the parameters η̂, δ̂, m̂, μ̂, β̂ and
q̂ have the dimensions of (time)−1. This circumstance means the inconsistency of physical
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dimensions in the model (3) and can be surmounted by rescaling the parameters as in the
following model.

Dα
t S =

[
1− S− (1 + η̂α)I − P

κ + S

]
S,

Dα
t I =

[
η̂αS− δ̂α − m̂αP

ω + I

]
I,

Dα
t P =

[
μ̂αS

κ + S
+

β̂α I
ω + I

− q̂α

]
P.

(4)

By applying new parameters η̂ = η, δ̂ = δ, m̂ = m, μ̂ = μ, β̂ = β and q̂ = q, we achieve

Dα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S,

Dα
t I =

[
ηS− δ− mP

ω + I

]
I,

Dα
t P =

[
μS

κ + S
+

βI
ω + I

− q
]

P.

(5)

We note that model (5) consists of three fractional differential equations. The order of the
fractional derivative in all equations is set to be the same to maintain their symmetrical aspect.

Notice that we have to assume in model (5) that the disease transmission follows a
bilinear incidence rate. Previously, Nugraheni et al. [37] have studied the same model but
with saturated incidence rate. However, Nugraheni et al. [37] have only presented some
numerical simulations of model (5) with Caputo sense without any analytical studies. In
this article, we start our work by constructing the fractional-order eco-epidemic model
consisting of the model assumptions, the first-order modeling, its non-dimensional form
and the fractional-order modeling including the replacement of the first-order derivative
with fractional-order derivative and the time dimension adjustment for some parameters
to prevent the inconsistency of physical dimensions. Furthermore, we present the complete
dynamics of model (5) with Caputo operator including the local and global stability, the
existence of Hopf bifurcation and their appropriated numerical simulations. We also
use the Atangana–Baleanu in Caputo sense as the fractional-order operator of model (5)
numerically by previously showing the existence and uniqueness of solution of the model.
We compare numerically the difference between model (5) with Caputo and Atangana–
Baleanu operators, especially the difference of the dynamical behaviors when the Hopf
bifurcation occurs. All of these analytical results and numerical simulations have never
been done in [37], which is the novelty of our work.

This paper is organized as follows. In Section 2, we present some fundamental
concepts which consist of definitions, theorems and lemmas that are associated with
Caputo and Atangana–Baleanu derivatives and dynamical systems. Further, in Section 3,
we investigate the dynamics of model (5) with Caputo derivative. The investigation
includes the existence, uniqueness, non-negativity, boundedness of the solutions, the
existence of equilibrium points, their local and global stability, as well as the occurrence of
Hopf bifurcation. The existence and uniqueness of solutions of model (5) with Atangana–
Baleanu derivative in Caputo sense are discussed in Section 4. To support our theoretical
findings, we demonstrate some numerical simulations in Section 5. Finally, we present
some conclusions in Section 6.

2. Fundamental Concepts

In this section, we present the important results from previous research such as
definitions, theorems and lemmas associated with the fractional-order differential equation.
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Definition 1 ([55]). Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined by

CDα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f ′(s)ds, (6)

where t ≥ 0, f ∈ Cn([0,+∞),R), and Γ is the Gamma function.

Definition 2 ([64]). Suppose 0 < α ≤ 1. The Atangana–Baleanu fractional integral and derivative
in Caputo sense of order−α (ABC sense) are respectively defined by

ABCIα
t f (t) =

1− α

B(α)
f (t) +

α

Γ(α)B(α)

∫ t

0
(t− s)α−1 f (s) ds,

ABCDα
t f (t) =

B(α)
1− α

∫ t

0
Eα

[
− α

1− α
(t− s)α

]
f ′(s) ds,

where t ≥ 0, f ∈ Cn([0,+∞),R), Eα is the Mittag–Leffler function defined by Eα(t) =

∑∞
k=0

tk

Γ(αk+1) , and B(α) is a normalization function with B(0) = B(1) = 1. In this paper,
we define B(α) = 1− α + α

Γ(α) .

Theorem 1 ([64]). By using the inverse Laplace transform and convolution theorem, the unique
solution of the time fractional differential equation

ABCDα
t f (t) = ϕ(t) (7)

can be written as

f (t) =
1− α

B(α)
ϕ(t) +

α

Γ(α)B(α)

∫ t

0
ϕ(s)(t− s)α−1 ds. (8)

Lemma 1 ([67]). Let 0 < α ≤ 1. Suppose that f (t) ∈ C[a, b] and CDα
t f (t) ∈ C[a, b]. If

CDα
t f (t) ≥ 0, ∀t ∈ (a, b), then f (t) is a non-decreasing function for each t ∈ [a, b]. If CDα

t f (t) ≤
0, ∀t ∈ (a, b), then f (t) is a non-increasing function for each t ∈ [a, b].

Theorem 2 (Matignon condition [55,68]). Consider a Caputo fractional-order system

CDα
t �x = �f (�x); �x(0) = �x0; α ∈ (0, 1]. (9)

A point �x∗ is called an equilibrium point of Equation (9) if it satisfies �f (�x∗) = 0. This equilibrium

point is locally asymptotically stable if all eigenvalues λj of the Jacobian matrix J = ∂�f
∂�x evaluated

at �x∗ satisfy | arg(λj)| > απ
2 . If there exists at least one eigenvalue that satisfies | arg(λk)| > απ

2
while | arg(λl)| < απ

2 , k �= l, then �x∗ is a saddle-point.

Lemma 2 ([69]). Consider a Caputo fractional-order system

CDα
t x(t) = f (t, x(t)), t > 0, x(0) ≥ 0, α ∈ (0, 1], (10)

where f : (0, ∞)×Ω → R
n, Ω ⊆ R

n. A unique solution of Equation (10) on (0, ∞)×Ω exists if
f (t, x(t)) satisfies the locally Lipschitz condition with respect to x.

Lemma 3 (Standard comparison theorem for Caputo fractional-order derivative [42]). Let
x(t) ∈ C([0,+∞)). If x(t) satisfies

CDα
t x(t) + λx(t) ≤ μ, x(0) = x0,
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where α ∈ (0, 1], (λ, μ) ∈ R
2 and λ �= 0, then

x(t) ≤
(

x0 − μ

λ

)
Eα[−λtα] +

μ

λ
.

Lemma 4 ([70]). Let x(t) ∈ C(R+), x∗ ∈ R+, and its Caputo fractional derivatives of order α
exist for any α ∈ (0, 1]. Then, for any t > 0, we have

CDα
t

[
x(t)− x∗ − x∗ ln

x(t)
x∗

]
≤
(

1− x∗

x(t)

)
CDα

t x(t).

Lemma 5 (Generalized Lasalle Invariance Principle [71]). Suppose Ω is a bounded closed set
and every solution of system

CDα
t x(t) = f (x(t)), (11)

which starts from a point in Ω remains in Ω for all time. If ∃V(x) : Ω → R with continuous first
order partial derivatives satisfies following condition:

CDα
t V|Eq.(11) ≤ 0,

then every solution x(t) originating in Ω tends to M as t → ∞, where M is the largest invariant
set of E and E :=

{
x|CDα

t V|Eq.(11) = 0
}

.

3. Eco-Epidemic Model in the Caputo Sense

In this section, we consider a fractional-order eco-epidemic model (5) with the frac-
tional derivative in the Caputo sense as defined in Definition 1:

CDα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S = F1(X),

CDα
t I =

[
ηS− δ− mP

ω + I

]
I = F2(X),

CDα
t P =

[
μS

κ + S
+

βI
ω + I

− q
]

P = F3(X),

(12)

where X = (S, I, P). In the following sub-sections, we investigate the dynamics of model (12).

3.1. Existence and Uniqueness

In this section, we investigate the sufficient condition for the existence and uniqueness
of solution of model (12).

Theorem 3. Consider model (12) with positive initial condition S0 ≥ 0, I0 ≥ 0, P0 ≥ 0 and
α ∈ (0, 1], F : [0, ∞) → R

3, where F(X) = (F1(X), F2(X), F3(X)), X ≡ X(t) and Ψ ={
(S, I, P) ∈ R

3
+ : max{|S|, |I|, |P|} ≤ γ

}
for sufficiently large γ. The model (12) with positive

initial condition has a unique solution.

Proof. We use a similar approach as in [8]. For any X = (S, I, P), X̄ = (S̄, Ī, P̄), X, X̄ ∈ Ψ,
it follows from model (12) that

‖F(X)− F(X̄)‖ = |F1(X)− F1(X̄)|+ |F2(X)− F2(X̄)|+ |F3(X)− F3(X̄)|

=

∣∣∣∣(S− S̄)− (S2 − S̄2)− (1 + η)(SI − S̄ Ī)−
(

SP
κ + S

− S̄P̄
κ + S̄

)∣∣∣∣+∣∣∣∣η(SI − S̄ Ī)− δ(I − Ī)−m
(

IP
ω + I

− Ī P̄
ω + Ī

)∣∣∣∣+∣∣∣∣μ( SP
κ + S

− S̄P̄
κ + S̄

)
+ β

(
IP

ω + I
− Ī P̄

ω + Ī

)
− q(P− P̄)

∣∣∣∣
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≤ ∣∣S− S̄
∣∣+ ∣∣∣S2 − S̄2

∣∣∣+ (1 + η)
∣∣SI − S̄ Ī

∣∣+ ∣∣∣∣ SP
κ + S

− S̄P̄
κ + S̄

∣∣∣∣+
η
∣∣SI − S̄ Ī

∣∣+ δ|I − Ī|+ m
∣∣∣∣ IP
ω + I

− Ī P̄
ω + Ī

∣∣∣∣+ μ

∣∣∣∣ SP
κ + S

− S̄P̄
κ + S̄

∣∣∣∣+
β

∣∣∣∣ IP
ω + I

− Ī P̄
ω + Ī

∣∣∣∣+ q|P− P̄|
≤ L1

∣∣S− S̄
∣∣+ L2|I − Ī|+ L3|P− P̄|

≤ L‖X − X̄‖

where

L1 = 1 +
(

3 + 2η +
1 + μ

κ

)
γ,

L2 = δ +

(
1 + 2η +

m + β

ω

)
γ,

L3 = q +
(

1 + μ

κ
+

m + β

ω

)
γ +

(
1 + μ

κ2 +
m + β

ω2

)
γ2,

L = max{L1, L2, L3}.

Hence, F(X) satisfies the Lipschitz condition. According to Lemma 2, the existence
and uniqueness of model (12) with initial value S0 ≥ 0, I0 ≥ 0 and P0 ≥ 0 is established,
and the theorem is well proven.

3.2. Non-Negativity and Boundedness

Model (12) describes an eco-epidemiological model in fractional-order differential
equations. Therefore, the solution of model (12) must be bounded and non-negative, as it
is performed in the following theorem.

Theorem 4. All solutions of model (12) with non-negative initial values are non-negative and
uniformly bounded.

Proof. We start by proving that for non-negative initial condition, S(t) ≥ 0 for t → ∞.
Suppose that is not true, then there exists t1 > 0 such that⎧⎨⎩

S(t) > 0, 0 ≤ t < t1,
S(t1) = 0,
S(t+1 ) < 0.

(13)

Employing (13) and the first equation of model (12), we obtain

CDα
t S(t1)

∣∣∣
S(t1)=0

= 0. (14)

Based on Lemma 1, we have S(t+1 ) = 0, which contradicts to the fact S(t+1 ) < 0. Thus,
S(t) ≥ 0 for all t ≥ 0. Using the similar procedure, we conclude I(t) ≥ 0 and P(t) ≥ 0 for
all t > 0.

Now, we show the boundedness of solutions by adopting similar manner as in [8]. We
first define a function

V(t) = S + I + ζP.

Then, for each ξ > 0, we obtain

CDα
t V(t) + ξV(t) =

(
S− S2 − (1 + η)SI − SP

κ + S

)
+

(
ηSI − δI − mIP

ω + I

)
+
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ζ

(
μSP

κ + S
+

βIP
ω + I

− qP
)
+ ξ(S + I + ζP)

= (1 + ξ)S− S2 − SI + β

(
ζ − m

β

)
IP

ω + I
+ μ

(
ζ − 1

μ

)
SP

κ + S
+

(ξ − δ)I + ζ(ξ − q)P.

By choosing ξ < min{δ, q} and ζ < min
{

m
β , 1

μ

}
, we have

CDα
t V(t) + ξV(t) ≤ (1 + ξ)S− S2

= (1 + ξ)S− S2 −
(

1 + ξ

2

)2
+

(
1 + ξ

2

)2

= −
(

S2 − (1 + ξ)S +

(
1 + ξ

2

)2
)
+

(
1 + ξ

2

)2

≤ (1 + ξ)2

4
.

The standard comparison theorem for fractional-order derivative (see Lemma 3) gives

V(t) ≤
(

V(0)− (1 + ξ)2

4ξ

)
Eα[−ξtα] +

(1 + ξ)2

4ξ
,

from which we have that V(t) is convergent to (1+ξ)2

4ξ for t → ∞. Therefore, all solutions of
model (12) with non-negative initial conditions are confined to the region Φ, where

Φ :=
{
(S, I, P) ∈ R

3
+ : V(t) ≤ (1 + ξ)2

4ξ
+ ε, ε > 0

}
. (15)

Therefore, the proof of non-negativity and boundedness of solutions are completely
presented.

3.3. The Existence of Equilibrium Point

From model (12), we can determine the nullclines of the susceptible prey, infected
prey and predator, which are respectively denoted by NS, NI and NP and are defined by
the following sets

NS :=
{
(S, I, P) : S = 0∨ S + (1 + η)I +

P
κ + S

= 1
}

,

NI :=
{
(S, I, P) : I = 0∨ S =

δ

η
+

mP
η(ω + I)

}
,

NP :=
{
(S, I, P) : P = 0∨ μS

κ + S
+

βI
ω + I

= q
}

.

Since we are only interested in solutions that satisfy biological conditions, we only
consider equilibrium points that satisfy NS ∩ NI ∩ NP ⊂ R

3
+. We can obviously identify

that the infected prey and predator are extinct if the susceptible prey is zero. Therefore,
the following lemma shows that the origin is the only equilibrium point when NS =
{(S, I, P) : S = 0}.

Lemma 6. If NS := {(S, I, P) : S = 0} then the origin E0 = (0, 0, 0) is the only equilibrium
point of model (12).
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Proof. For NS := {(S, I, P) : S = 0}, the equilibrium point is defined by NI ∩ NP ∩ R
3
+,

where

NI :=
{
(S, I, P) : I = 0∨ δ

η
+

mP
η(ω + I)

= 0
}

,

NP :=
{
(S, I, P) : P = 0∨ βI

ω + I
= q

}
.

Since δ
η + mP

η(ω+I) �= 0, then I = 0 is the only nullcline of I. By substituting I = 0 to NP,
we have NP = {(S, I, P) : P = 0∨ q = 0}. P = 0 is the only nullcline of P because q �= 0.
Thus, E0 = (0, 0, 0) is the only equilibrium point.

Now, we will investigate the equilibrium point when S �= 0. Notice that if NI :=
{(S, I, P) : I = 0}, then NS ∩ NP ∩R

3
+ is the equilibrium point of model (12) where

NS :=
{
(S, I, P) : S +

P
κ + S

= 1
}

, and NP :=
{
(S, I, P) : P = 0∨ μS

κ + S
= q

}
.

Immediately we recognize two equilibrium points as follows:

1. The extinction of infected prey and predator point: E1 = (1, 0, 0), which always exists.
2. The infected prey free point E2 =

(
Ŝ, 0, P̂

)
where Ŝ = qκ

μ−q and P̂ = (1− Ŝ)(κ + Ŝ)
which exists if μ > (1 + κ)q. The condition μ > (1 + κ)q is equivalent to condition
that the conversion rate of susceptible prey predation into the birth rate of predator
is larger than the sum of the death rate of predator and its multiplication with half-
saturation constant of predation.

Furthermore, if NP = {(S, I, P) : P = 0}, we obtain equilibrium points that satisfy
NS ∩ NI ∩R

3
+ where

NS := {(S, I, P) : S + (1 + η)I = 1}, and NI :=
{
(S, I, P) : I = 0∨ S =

δ

η

}
.

Thus, we have the extinction of infected prey and predator point E1 = (1, 0, 0) and
the predator-free point E3 =

(
S̃, 1−S̃

1+η , 0
)

, where S̃ = δ
η . The point E3 exists if S̃ ∈ (0, 1) or

η > δ, i.e., when the prey infection rate is greater than the infected prey death rate.
By considering the following nullclines

NS :=
{
(S, I, P) : S + (1 + η)I +

P
κ + S

= 1
}

,

NI :=
{
(S, I, P) : S =

δ

η
+

mP
η(ω + I)

}
, NP :=

{
(S, I, P) :

μS
κ + S

+
βI

ω + I
= q

}
,

we obtain the co-existence equilibrium point E∗ = (S∗, I∗, P∗) that satisfies NS ∩ NI ∩ NP ∩
R

3
+, i.e.,

S∗ = −a2 ±
√

D
2a1

, I∗ = (1− S∗)(κ + S∗)m−ω(ηS∗ − δ)

(κ + S∗)(η + 1)m + (ηS∗ − δ)
, P∗ = (ηS∗ − δ)(ω + I∗)

m
,

where

a1 = (β + μ)m−mq, a3 = ((η + 1)ω + 1)mqκ − (mκ + δω)β

a2 = ((η + 1)ω + 1)mq + (ηω + mκ)β D = a2
2 − 4a1a3

− (((η + 1)ω + 1)μ + qκ + β)m

The existence of E∗ is described by the following lemma.
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Lemma 7. Suppose that

S∗1 = − a2 −
√

D
2a1

, S∗2 = − a2 +
√

D
2a1

, S∗3 = − a2

2a1
,

S∗1,2 ∈
(

δ

η
, 1
)

, m >
ω(ηS∗j − δ)

(1− S∗j )(κ + S∗j )
, j = 1, 2, a1a2 < 0.

(i) If D < 0, then the co-existence point does not exist.
(ii) if D > 0 and

(a) a1a3 > 0 then there are two co-existence points, i.e., E∗1 = (S∗1, I∗1 , P∗1 ) and E∗2 =
(S∗2 , I∗2 , P∗2 ).

(b) a1a3 ≤ 0 then E∗1 = (S∗1 , I∗1 , P∗1 ) is the unique co-existence point.

(iii) If D = 0, then there is a unique co-existence point E∗3 = (S∗3 , I∗3 , P∗3 ).

Proof. Notice if S∗j ∈
(

δ
η , 1
)

and m >
ω(ηS∗j −δ)

(1−S∗j )(κ+S∗j )
then I∗j > 0 and P∗j > 0, j = 1, 2.

(i) It is clear that if D < 0 then S∗j /∈ R, and thus the co-existence point does not exist.
(ii) if D > 0 then S∗j ∈ R. As a result that a1a2 < 0, we have S∗1 + S∗2 > 0. Furthermore, if

(a) a1a3 > 0 then S∗1S∗2 > 0. Therefore, we have S∗1 > 0 and S∗2 > 0 and E∗1,2 ∈ R
3
+.

(b) a1a3 ≤ 0 then S∗1S∗2 ≤ 0 so that S∗1 > 0 and S∗2 ≤ 0.

(iii) If D = 0 then S∗3 is the only solution for S∗j . Furthermore, if a1a2 < 0 then S∗3 > 0.

Thus, we have the lemma.

To illustrate the existence of equilibrium point by utilizing the nullclines, we take
η = 0.95, κ = 0.3, δ = 0.2, m = 0.6, ω = 0.6 μ = 0.4, β = 0.4 and q = 0.1. We note that E0
always exists. Besides E0, there also exist E1 and E2 in R

3
+, see Figure 1a,b. If we decrease η

so that η = 0.5, then model (12) has a predator-free point E3, see Figure 1c. Next, to show
the existence of co-existence point (E∗), we choose parameter values: η = 0.8, δ = 0.17,
m = 0.7, ω = 0.1, μ = 0.5, β = 0.3 and q = 0.4. It can be seen in Figure 1d that model (12)
with κ = 0.6 has two co-existence points. If we increase κ such that κ = 0.4, then we have a
unique co-existence point, see Figure 1e. However, if we take κ = 1, then model (12) does
not have co-existence point (see Figure 1f).

(a) E0 always exists (b) Both E1 and E2 exist

Figure 1. Cont.
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(c) Both E1 and E3 exist (d) There exist a pair of interior points (E∗1 and E∗2 )

(e) E∗ exists uniquely (f) E∗ does not exist

Figure 1. The existence of equilibrium point of model (12) by utilizing the intersection of nullclines.

3.4. Local Stability of Equilibrium Points

In this part, we investigate the local stability properties of each equilibrium point
of model (12). The local stability properties are studied by observing the eigenvalues
of the Jacobian matrix at each equilibrium points, and the results are described in the
following theorems.

Theorem 5. The equilibrium point E0 is always a saddle point.

Proof. The Jacobian matrix of model (12) evaluated at E0 is

J(E0) =

⎡⎣ 1 0 0
0 −δ 0
0 0 −q

⎤⎦.

The eigenvalues of this Jacobian matrix are λ1 = 1, λ2 = −δ and λ3 = −q. Thus,
| arg(λ1)| = 0 < απ

2 and | arg(λ2)| = | arg(λ3)| = π > απ
2 . Based on Matignon condition

in Theorem 2, we conclude that E0 is a saddle point.

Theorem 6. The equilibrium point E1 is:

(i) locally asymptotically stable if η < δ and μ < (1 + κ)q.
(ii) a saddle point if η > δ or μ > (1 + κ)q.

Proof. The Jacobian matrix at E1 is

J(E1) =

⎡⎣ −1 −(η + 1) − 1
κ+1

0 η − δ 0
0 0 μ

κ+1 − q

⎤⎦.
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J(E1) has eigenvalues: λ1 = −1, λ2 = η − δ and λ3 = μ
κ+1 − q. We have | arg(λ1)| = π >

απ
2 . Hence, the stability of E1 depends on λ2,3.

(i) If η < δ and μ < (1 + κ)q, then | arg(λ2)| = π > απ
2 and | arg(λ3)| = π > απ

2 . Due
to Matignon condition at Theorem 2, E1 is locally asymptotically stable.

(ii) If η > δ then | arg(λ2)| = 0 < απ
2 . In addition, if μ > (1 + κ)q then | arg(λ3)| = 0 <

απ
2 . Thus, Theorem 2 says that E1 is a saddle point.

Theorem 7. Suppose that:

η̂ =
δ

Ŝ
+

m(1− Ŝ)(κ + Ŝ)
ωŜ

, Δ̂ =
4(1− Ŝ)μκŜ
(κ + Ŝ)2

−
(

κ − 1 + 2Ŝ
κ + Ŝ

)2

Ŝ2,

α̂ =
2
π

tan−1

(
(κ + Ŝ)

√
Δ̂

(κ − 1 + 2Ŝ)Ŝ

)
.

The equilibrium point E2 is:

(i) locally asymptotically stable if η < η̂ and

(a) κ > 1− 2Ŝ, or;
(b) κ < 1− 2Ŝ, Δ̂ > 0 and α < α̂.

(ii) a saddle point if

(a) η > η̂ and κ > 1− 2Ŝ, or;
(b) η > η̂, κ < 1− 2Ŝ, Δ̂ > 0, and α < α̂, or;
(c) η < η̂, κ < 1− 2Ŝ, and α > α̂.

Proof. The Jacobian matrix of model (12) evaluated at E2 is

J(E2) =

⎡⎢⎢⎣ −Ŝ + (1−Ŝ)Ŝ
κ+Ŝ

−(1 + η)Ŝ − Ŝ
κ+Ŝ

0 (η − η̂)Ŝ 0
(1−Ŝ)μκ

κ+Ŝ
β(1−Ŝ)(κ+Ŝ)

ω 0

⎤⎥⎥⎦,

which has eigenvalues: λ1 = (η − η̂)Ŝ and λ2,3 = − Ŝ
2

(
κ−1+2Ŝ

κ+Ŝ

)
±

√
Δ̂

2 . Notice that if η < η̂

then |arg(λ1)| = π > απ
2 , else if η > η̂ then |arg(λ1)| = 0 < απ

2 . Furthermore, if κ > 1− 2Ŝ
then |arg(λ2,3)| > απ

2 for both Δ̂ ≥ 0 and Δ̂ < 0. If κ < 1− 2Ŝ and Δ̂ > 0, then λ2,3 is a
pair of complex eigenvalues. Thus, |arg(λ2,3)| > απ

2 is attained if α < α̂. When κ < 1− 2Ŝ,
and α > α̂, we have |arg(λ2,3)| < απ

2 for both Δ̂ ≤ 0 and Δ̂ > 0. Therefore, by Matignon
condition in Theorem 2, the theorem is completely proven.

Theorem 8. Suppose that: q̃ = μS̃
κ+S̃

+ (1−S̃)β

ω(1+η)+(1−S̃)
. The predator-free point E3 is locally

asymptotically stable if q > q̃ and it is a saddle point if q < q̃.

Proof. We compute the Jacobian matrix of model (12) evaluated at E3 and obtain

J(E3) =

⎡⎢⎢⎣
−S̃ −(1 + η)S̃ − S̃

κ+S̃
(1−S̃)η

1+η 0 − (1−S̃)m
ω(1+η)+(1−S̃)

0 0 q̃− q

⎤⎥⎥⎦.

The eigenvalues of J(E3) are λ1 = q̃− q and λ2,3 =
−S̃±

√
(S̃−4(1−S̃)η)S̃

2 . If η ≤ S̃
4(1−S̃)

, then

the eigenvalues λ2,3 are always real and negative. Moreover, if η > S̃
4(1−S̃)

, then λ2,3 are

a pair of complex conjugates where Re(λ2,3) < 0. Hence, the eigenvalues λ2,3 always
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satisfy |arg(λ2,3)| > απ
2 . Finally, | arg(λ1)| = π > απ

2 is achieved if q > q̃. Therefore, the
predator-free point E3 is locally asymptotically stable if q > q̃; otherwise it is a saddle
point.

Theorem 9. Suppose that:

d1 = S∗ −
(

S∗P∗

(κ + S∗)2 +
mI∗P∗

(ω + I∗)2

)
,

d2 =

[
mS∗ I∗(P∗)2

(κ + S∗)2(ω + I∗)2 +
βmI∗P∗

(ω + I∗)2 +
μS∗P∗

(κ + S∗)2 + (η + 1)ηS∗ I∗
]
−[

mS∗ I∗P∗

(ω + I∗)2 +
mβ(I∗)2P∗

(ω + I∗)3 +
μ(S∗)2P∗

(κ + S∗)3

]
,

d3 =

[
η

κ + S∗ +
ωm

(ω + I∗)2

]
βS∗ I∗P∗

ω + I∗ −
[

βη I∗

ω + I∗ +
(η + 1)μκm

κ + S∗

]
S∗ I∗P∗

(κ + S∗)(ω + I∗)−[
μκ

κ + S∗ +
βω

ω + I∗

]
mS∗ I∗(P∗)2

(κ + S∗)2(ω + I∗)2 ,

Δ∗ = 18d1d2d3 + (d1d2)
2 − 4d3d3

1 − 4d3
2 − 27d2

3.

The co-existence point E∗ = (S∗, I∗, P∗) is locally asymptotically stable if one of the following
statements is satisfied.

(i) Δ∗ > 0, d1 > 0, d3 > 0, and d1d2 > cd3.
(ii) Δ∗ < 0, d1 ≥ 0, d2 ≥ 0, d3 > 0, and 0 < α < (2/3).
(iii) Δ∗ < 0, d1 < 0, d2 < 0, and (2/3) < α < 1.
(iv) Δ∗ < 0, d1 > 0, d2 > 0, d1d2 = d3, and 0 < α < 1.

Proof. The Jacobian matrix of model (12) evaluated at E∗ is,

J(E∗) =

⎡⎢⎢⎣
S∗P∗

(κ+S∗)2 − S∗ −(η + 1)S∗ − S∗
κ+S∗

η I∗ mI∗P∗
(ω+I∗)2 − mI∗

ω+I∗[
1− S∗

κ+S∗
]

μP∗
κ+S∗

[
1− I∗

ω+I∗
]

βP∗
ω+I∗ 0

⎤⎥⎥⎦.

The characteristic equation of J(E∗) is λ3 + d1λ2 + d2λ + d3 = 0. Using the Routh–
Hurwitz condition for a fractional-order dynamical system (See Proposition 1 in [72]), the
locally stability conditions of co-existence point E∗ = (S∗, I∗, P∗) are proven.

3.5. Global Stability of Equilibrium Points

The global asymptotic stability of the equilibrium point of model (12) is studied. The
results are presented in the following theorems.

Theorem 10. E1 = (1, 0, 0) is globally asymptotically stable if max
{

η
δ , βκ+μ

κq

}
< 1.

Proof. Consider a Lyapunov function W1(S, I, P) = [S− 1− ln S] + 1+η
η I + 1

μ P. By using
Lemma 4, we get

CDα
t W1(S, I, P) ≤

(
S− 1

S

)
CDα

t S +
1 + η

η
CDα

t I +
1
μ

CDα
t P

= (S− 1)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
1
μ

[
μS

κ + S
+

βI
ω + I

− q
]

P

= − (S− 1)2 − (δ− η)(1 + η)I
η

+
P

κ + S
− (1 + η)mIP

(ω + I)η
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+
βIP

(ω + I)μ
− qP

μ

≤ − (S− 1)2 − (δ− η)(1 + η)I
η

+
P
κ
+

βP
μ
− qP

μ

= − (S− 1)2 − (δ− η)(1 + η)I
η

−
(

q−
(

β +
μ

κ

))P
μ

Thus, CDα
t W1(S, I, P) ≤ 0 when max

{
η
δ , βκ+μ

κq

}
< 1. According to Lemma 5, it follows that

E1 is globally asymptotically stable.

Theorem 11. If Ŝ < min
{

δ
η , ((1+η)mμ−βη)κ

βη

}
and P̂ < κ2 then the infected prey extinction point

E2 is globally asymptotically stable.

Proof. We define a Lyapunov function

W2(S, I, P) =
[

S− Ŝ− Ŝ ln
S
Ŝ

]
+

1 + η

η
I +

κ + Ŝ
μκ

[
P− P̂− P̂ ln

P
P̂

]
.

Based on Lemma 4, we have

CDα
t W2(S, I, P) ≤

(
S− Ŝ

S

)
CDα

t S +
1 + η

η
CDα

t I +
κ + Ŝ

μκ

(
P− P̂

P

)
CDα

t P

= (S− Ŝ)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
κ + Ŝ

μκ
(P− P̂)

[
μS

κ + S
+

βI
ω + I

− q
]

= (S− Ŝ)

[
−(S− Ŝ)− (1 + η)I − (κ + Ŝ)(P− P̂)− P̂(S− Ŝ)

(κ + S)(κ + Ŝ)

]

+
1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
κ + Ŝ

μκ
(P− P̂)

[
μκ(S− Ŝ)

(κ + S)(κ + Ŝ)
+

βI
ω + I

]

= − (S− Ŝ)2 +
P̂(S− Ŝ)2

(κ + S)(κ + Ŝ)
−
(

δ

η
− Ŝ

)
(1 + η)I

−
(
(1 + η)m

η
− (κ + Ŝ)β

μκ

)
IP

ω + I

≤ −
(

1− P̂
κ2

)
(S− Ŝ)2 −

(
δ

η
− Ŝ

)
(1 + η)I

−
(
(1 + η)m

η
− (κ + Ŝ)β

μκ

)
IP

ω + I

It is clear that CDα
t W2(E2) ≤ 0 if Ŝ < min

{
δ
η , ((1+η)mμ−βη)κ

βη

}
and P̂ < κ2. Conse-

quently, Lemma 5 says that E2 is globally asymptotically stable.

Theorem 12. If q > β + μS̃
κ + (1+η)μmĨ

ηω then the predator-free point E3 is globally asymptoti-
cally stable.
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Proof. We first write Ĩ = 1−S̃
1+η and define a Lyapunov function

W3(S, I, P) =
[

S− S̃− S̃ ln
S
S̃

]
+

1 + η

η

[
I − Ĩ − Ĩ ln

I
Ĩ

]
+

1
μ

P.

By using Lemma 4, we obtain

CDα
t W3(S, I, P) ≤

(
S− S̃

S

)
CDα

t S +
1 + η

η

(
I − Ĩ

I

)
CDα

t I +
1
μ

CDα
t P

= (S− S̃)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

(
I − Ĩ

)[
ηS− δ− mP

ω + I

]
+

1
μ

[
μS

κ + S
+

βI
ω + I

− q
]

P

= (S− S̃)
[

S̃ + (1 + η) Ĩ − S− (1 + η)I − P
κ + S

]
+

1 + η

η

(
I − Ĩ

)[
ηS− ηS̃− mP

ω + I

]
+

1
μ

[
μS

κ + S
+

βI
ω + I

− q
]

P

= − (S− S̃)2 +
S̃P

κ + S
−
(
(1 + η)m

η
− β

μ

)
IP

ω + I
+

(1 + η)mĨP
(ω + I)η

− qP
μ

≤ − (S− S̃)2 +
S̃P
κ

+
βP
μ

+
(1 + η)mĨP

ηω
− qP

μ

= − (S− S̃)2 −
(

q
μ
− β

μ
− S̃

κ
− (1 + η)mĨ

ηω

)
P

If q > β + μS̃
κ + (1+η)μmĨ

ηω , then we have CDα
t W3(S, I, P) ≤ 0. It follows from Lemma 5

that E3 is globally asymptotically stable.

Theorem 13. Suppose that

ϕ1 =
qP∗

μ
+

(1 + η)δI∗

η
,

ϕ2 = min
{

I∗ + η I∗ − 1,
δ

η
,

qηω − (1 + η)mκ I∗

ηω

}
.

The co-existence point E∗ is globally asymptotically stable if μ > β
m and ϕ1 < S∗ < ϕ2.

Proof. Consider a positive Lyapunov function

W4(E∗) =
[

S− S∗ − S∗ ln
S
S∗

]
+

1 + η

η

[
I − I∗ − I∗ ln

S
I∗

]
+

1
μ

[
P− P∗ − P∗ ln

P
P∗

]
.

By utilizing Lemma 4, one has

CDα
t W4(E∗) ≤

(
S− S∗

S

)
CDα

t S +
1 + η

η

(
I − I∗

I

)
CDα

t I +
1
μ

(
P− P∗

P

)
CDα

t P

= (S− S∗)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η
(I − I∗)

[
ηS− δ− mP

ω + I

]
+

1
μ
(P− P∗)

[
μS

κ + S
+

βI
ω + I

− q
]

= − S2 − ((1 + η)I∗ − (1 + S∗))S−
(

δ

η
− S∗

)
(1 + η)I +

S∗P
κ + S

+
(1 + η)δI∗

η
−
(
(1 + η)m

η
− β

μ

)
IP

ω + I
+

(1 + η)mI∗P
η(ω + I)

− qP
μ
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− P∗S
κ + S

− βP∗ I
μ(ω + I)

− S∗ + qP∗

μ

≤ − ((1 + η)I∗ − (1 + S∗))S−
(

δ

η
− S∗

)
(1 + η)I −

(
m− β

μ

)
IP

ω + I

−
(

q
μ
− S∗

κ
− (1 + η)mI∗

ηω

)
P−

(
S∗ − qP∗

μ
− (1 + η)δI∗

η

)
.

Obviously, CDα
t W4(E∗) ≤ 0 whenever μ > β

m and ϕ1 < S∗ < ϕ2. Thus, by applying
Lemma 5, we can conclude that E∗ is globally asymptotically stable.

3.6. The Existence of Hopf Bifurcation

One of the interesting phenomena in studying the predator–prey model is the occur-
rence of Hopf bifurcation. This circumstance arises when the stability of an equilibrium
point changes and a limit-cycle appears simultaneously as a parameter is varied [73,74]. In
a system of first order differential equations, the occurrence of Hopf bifurcation is indicated
by the appearance of purely imaginary eigenvalues of the Jacobian matrix. If we vary the bi-
furcation parameter, then the sign of the real part of the complex eigenvalues changes [75];
and therefore the stability properties of the equilibrium point also changes. In a fractional-
order system, this bifurcation also occurs when the order of fractional derivative (α) is
varied [76]. It is shown in [77,78] that a 3rd-dimensional fractional-order system undergoes
a Hopf bifurcation around an equilibrium point if eigenvalues λ1,2,3 of its Jacobian matrix
evaluated at the equilibrium point satisfy the following conditions:

1. λ1 < 0 and λ2,3 = θ ±ωi where θ > 0;
2. m(α∗) = α∗π/2−min1≤i≤3|arg(λi)| = 0;

3. dm(α)
dα

∣∣∣
α=α∗

�= 0.

When α crosses α∗ = (2/π) tan−1(ω/θ), the equilibrium point changes its stability
and is accompanied by the appearance of a stable limit-cycle. Since the fractional-order
system has no periodic orbits [79], the limit-cycle is not a periodic solution, but it is a
nearby solution that converges to periodic signals [76,80].

4. Eco-Epidemic Model in the Atangana–Baleanu Sense

If the fractional-order eco-epidemic model (5) is expressed in the Atangana–Baleanu
derivative in Caputo (ABC) sense, then we obtain

ABCDα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S,

ABCDα
t I =

[
ηS− δ− mP

ω + I

]
I,

ABCDα
t P =

[
μS

κ + S
+

βI
ω + I

− q
]

P.

(16)

By Theorem 1, the solution of model (16) can be expressed in the following Volterra-
type integral equation

S(t)− S(0) =
1− α

B(α)
G1(t, S) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, S) ds,

I(t)− I(0) =
1− α

B(α)
G2(t, I) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, I) ds,

P(t)− P(0) =
1− α

B(α)
G3(t, P) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G3(s, P) ds,

(17)
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where

G1(t, S) =
[

1− S(t)− (1 + η)I(t)− P(t)
κ + S(t)

]
S(t),

G2(t, S) =
[

ηS(t)− δ− mP(t)
ω + I(t)

]
I(t),

G3(t, S) =
[

μS(t)
κ + S(t)

+
βI(t)

ω + I(t)
− q
]

P(t).

The existence and uniqueness of the solutions of model (16) will be investigated in the
following sub-section.

Existence and Uniqueness

To prove the existence and uniqueness of solutions of model (16), we first show that
the kernels Gi(t, S), i = 1, 2, 3 satisfy the Lipschitz condition. Suppose that S, S̄, I, Ī, P
and P̄ are functions that satisfy ‖S‖ ≤ a1,

∥∥S̄
∥∥ ≤ a2, ‖I‖ ≤ b1, ‖ Ī‖ ≤ b2, ‖P‖ ≤ c1 and

‖P̄‖ ≤ c2. For the kernel G1(t, S) =
(

1− S− (1 + η)I − P
κ+S

)
S and two functions S and S̄,

we get∥∥G1(t, S)− G1(t, S̄)
∥∥

=

∥∥∥∥S− S2 − (1 + η)SI − SP
κ + S

−
(

S̄− S̄2 − (1 + η)S̄I − S̄P
κ + S

)∥∥∥∥
=

∥∥∥∥S− S2 − (1 + η)SI − SP
κ + S

− S̄ + S̄2 + (1 + η)S̄I +
S̄P

κ + S̄

∥∥∥∥
=

∥∥∥∥(S− S̄)−
(

S2 − S̄2
)
− ((1 + η)SI − (1 + η)S̄I)−

(
SP

κ + S
− S̄P

κ + S̄

)∥∥∥∥
=

∥∥∥∥(S− S̄)− (S + S̄)(S− S̄)− (1 + η)I(S− S̄)−
(

SP(κ + S̄)− S̄P(κ + S)
(κ + S)(κ + S̄)

)∥∥∥∥
≤ ∥∥S− S̄

∥∥+ (a1 + a2)
∥∥S− S̄

∥∥+ (1 + η)b1
∥∥S− S̄

∥∥+ c1

κ

∥∥S− S̄
∥∥

=
(

1 + a1 + a2 + (1 + η)b1 +
c1

κ

)∥∥S− S̄
∥∥

= g1
∥∥S− S̄

∥∥,

(18)

where g1 = 1 + a1 + a2 + (1 + η)b1 +
c1
κ . Hence, the Lipschitz condition holds for G1(t, S).

In a similar manner, we can show that

‖G2(t, I)− G2(t, Ī)‖ ≤ g2‖I − Ī‖,

‖G3(t, P)− G3(t, P̄)‖ ≤ g3‖P− P̄‖,
(19)

where g2 = a1η + δ + c1m
ω and g3 = a1μ

κ + b1β
ω + q. Hence, the Lipschitz condition also

holds for kernels G2(t, I) and G3(t, P). Furthermore, G2(t, I) and G3(t, P) are contracted if
0 ≤ g2 < 1 and 0 ≤ g3 < 1, respectively.

Now, we investigate the existence of solutions of model (16) by employing the fixed-
point theorem. For this purpose, we start by writing Equation (17) in the following
recursive formulae

Sn(t) =
1− α

B(α)
G1(t, Sn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, Sn−1) ds,

In(t) =
1− α

B(α)
G2(t, In−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, In−1) ds,

Pn(t) =
1− α

B(α)
G3(t, Pn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G3(s, Pn−1) ds.

(20)
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The associated initial conditions along with Equation (20) are S0(t) = S(0),
I0(t) = I(0), and P0(t) = P(0). Next, from Equation (20), we have the difference ex-
pression of successive terms as follows.

Φ1,n(t) = Sn(t)− Sn−1(t)

=
1− α

B(α)
(G1(t, Sn−1)− G1(t, Sn−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G1(s, Sn−1)− G1(s, Sn−2)) ds,

Φ2,n(t) = In(t)− In−1(t)

=
1− α

B(α)
(G2(t, In−1)− G2(t, In−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G2(s, In−1)− G2(s, In−2)) ds,

Φ3,n(t) = Pn(t)− Pn−1(t)

=
1− α

B(α)
(G3(t, Pn−1)− G3(t, Pn−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G3(s, Pn−1)− G3(s, Pn−2)) ds.

(21)

Based on Equation (21), we have that

Sn(t) =
n

∑
i=1

Φ1,i(t), In(t) =
n

∑
i=1

Φ2,i(t), and Pn(t) =
n

∑
i=1

Φ3,i(t). (22)

By using (18) and (19), we can show that the norm of both sides in (21) fulfill the
following relations

‖Φ1,n(t)‖ ≤ 1− α

B(α)
g1‖Φ1,n−1‖+ α

B(α)Γ(α)
g1

∫ t

0
‖Φ1,n−1(s)‖(t− s)α−1 ds,

‖Φ2,n(t)‖ ≤ 1− α

B(α)
g2‖Φ2,n−1‖+ α

B(α)Γ(α)
g2

∫ t

0
‖Φ2,n−1(s)‖(t− s)α−1 ds,

‖Φ3,n(t)‖ ≤ 1− α

B(α)
g3‖Φ3,n−1‖+ α

B(α)Γ(α)
g3

∫ t

0
‖Φ3,n−1(s)‖(t− s)α−1 ds.

(23)

Now, by applying (23), the existence and uniqueness of model (16) are shown by the
following theorem.

Theorem 14. Model (16) has a unique solution if we can find tmax such that

(1− α)gi
B(α)

+
tα
maxgi

B(α)Γ(α)
< 1, i = 1, 2, 3 (24)

Proof. We assume that S(t), I(t) and P(t) are bounded functions, and hence the Lipschitz
condition is satisfied. From Equation (23) we can get the following inequalities.

‖Φ1,n(t)‖ ≤ ‖S0‖
(
(1− α)g1

B(α)
+

tαg1

B(α)Γ(α)

)n
,

‖Φ2,n(t)‖ ≤ ‖I0‖
(
(1− α)g2

B(α)
+

tαg2

B(α)Γ(α)

)n
,

‖Φ3,n(t)‖ ≤ ‖P0‖
(
(1− α)g3

B(α)
+

tαg3

B(α)Γ(α)

)n
.

(25)
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Therefore, the existence and smoothness of the solution presented in Equation (22) are
proven since ‖Φ1,n(t)‖ → 0, ‖Φ2,n(t)‖ → 0 and ‖Φ3,n(t)‖ → 0 as n → ∞ and t = tmax. To
show that the functions which satisfy Equation (17) are the solutions of Equation (16), we
suppose that

S(t)− S(0) = Sn(t)− Υ1,n(t),

I(t)− I(0) = In(t)− Υ2,n(t),

P(t)− P(0) = Pn(t)− Υ3,n(t),

(26)

where Υi,n(t), i = 1, 2, 3 are the remainder terms of series solutions. The norm of Υ1,n(t) satisfies

‖Υ1,n(t)‖ ≤1− α

B(α)
‖G1(t, S)− G1(t, Sn−1)‖

+
α

B(α)Γ(α)

∫ t

0
‖G1(s, S)− G1(s, Sn−1)‖(t− s)α−1 ds,

≤‖S− Sn−1‖
(

1− α

B(α)
+

tα

B(α)Γ(α)

)
g1.

(27)

By applying this relation iteratively, we get at t = tmax

‖Υ1,n(t)‖ ≤ a1

(
1− α

B(α)
+

tα
max

B(α)Γ(α)

)n+1
gn+1

1 . (28)

For n → ∞, we obtain ‖Υ1,n(t)‖ → 0. Applying the similar manner, we have
‖Υ2,n(t)‖ → 0 and ‖Υ3,n(t)‖ → 0. Hence, the functions which satisfy Equation (17)
are the solutions of Equation (16).

Now, we show the uniqueness of solutions of Equation (16). For this aim, we suppose
that S∗(t), I∗(t) and P∗(t) are another solution of Equation (16). Then, we have

S(t)− S∗(t) = 1− α

B(α)
(G1(t, S)− G1(t, S∗))

+
α

B(α)Γ(α)

∫ t

0
(G1(s, S)− G1(s, S∗))(t− s)α−1 ds.

(29)

Taking the norm for both sides and using the same procedures as in (23) and (25),
we obtain

‖S(t)− S∗(t)‖
(

1− (1− α)g1

B(α)
− tαg1

B(α)Γ(α)

)
≤ 0. (30)

For t = tmax, we have (24). Hence, ‖S(t)− S∗(t)‖ = 0 and consequently S(t) = S∗(t).
In the same way, we can show that I(t) = I∗(t) and P(t) = P∗(t). Hence, the uniqueness
of the solution of Equation (16) is proven.

5. Numerical Simulations

In this section, we present some results of our numerical simulations for the fractional-
order eco-epidemic models in both Caputo sense (12) and ABC sense (16). For this aim,
we solve the model in Caputo sense (12) using the predictor–corrector scheme developed
by Diethelm et al. [81], while the model in ABC sense (16) is solved by applying the
predictor–corrector scheme proposed by Baleanu et al. [82]. Since the field data are not
available, the simulations are performed by using some hypothetical parameter values.

We first perform simulation by setting the parameter values as follows:

η = 0.25, κ = 0.5, δ = 0.3, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4, q = 0.3, α = 0.9. (31)

Using these parameter values, the eco-epidemic model with fractional-order derivative
in both Caputo sense (12) and ABC sense (16) have two equilibrium points, i.e., E0 and
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E1. Based on the analysis for the model in Caputo sense (12), it is shown that E0 is a
saddle point and E1 is asymptotically stable. This behavior is confirmed by our numerical
simulation shown in Figure 2. If we modify the parameter values in (31) such that η = 0.35
and q = 0.2, then, in addition to E0 and E1, the model also has equilibrium points E2 and
E3. All of these equilibrium points are unstable except E2. The stability of E2 is clearly
observed in Figure 3. Now, some parameter values in (31) are replaced by η = 0.95, δ = 0.2
and q = 0.4. Under these parameter values, the model has three equilibrium points, i.e., E0,
E1 and E3. The previous analysis for the model in Caputo sense shows that E0 and E1 are
unstable, while E3 is asymptotically stable. Such stability behavior can be seen in Figure 4.
Furthermore, in Figures 2–4, the numerical solutions of model in the Caputo sense are
compared to those of models in ABC sense. It is observed that the phase portraits and
time series of both models have similar dynamical behavior. To see the difference between
the solutions of the two models, we perform some simulations using the same parameter
values as in Figures 2–4, but with varying value of α. The time series of solutions obtained
from those simulations are plotted in Figures 5–7. In these simulations, although the value
of α does not affect the stability of the equilibrium point, Figures 5–7 show that the value
of α greatly affects the rate of convergence in reaching the equilibrium point. Indeed, when
α = 1, the eco-epidemic model with fractional derivative in the Caputo sense and model
with fractional derivative in the ABC sense have solutions that coincide with each other.
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Figure 2. Numerical simulation of the eco-epidemic model with parameter values: η = 0.25, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4, q = 0.3 and α = 0.9.
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Figure 3. Numerical simulation of the eco-epidemic model with parameter values: η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4, q = 0.2 and α = 0.9.
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Figure 4. Numerical simulation of the eco-epidemic model with parameter values: η = 0.95, κ = 0.5,
δ = 0.2, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4, q = 0.4 and α = 0.9.
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Figure 5. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4 and q = 0.2.
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Figure 6. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4 and q = 0.2.
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Figure 7. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.95, κ = 0.5,
δ = 0.2, m = 0.6, ω = 0.6, μ = 0.4, β = 0.4 and q = 0.4.

Next, we perform simulation using the following parameter values:

η = 0.8, κ = 0.01, δ = 0.17, m = 0.7, ω = 0.1, μ = 0.2, β = 0.27, q = 0.3. (32)

Here, the model has equilibrium points: E0, E1, E3 and E∗. By applying the stability
analysis for the model in the Caputo sense, it can be shown that E0, E1 and E3 are unstable;
while the stability of E∗ is determined by α. If α < α∗ ≈ 0.85662 then E∗ is asymptotically
stable. On the other hand, E∗ becomes unstable if α > α∗, where in this case, the solution
is convergent to a limit-cycle. In other words, there occurs a Hopf bifurcation controlled
by α where the bifurcation point is at α = α∗. The Hopf bifurcation is indeed verified by
our bifurcation diagram shown in Figure 8. We confirm numerically that both models with
Caputo sense and ABC sense undergo the Hopf bifurcation, but with different bifurcation
points. The bifurcation point of model with Caputo sense has smaller value of α than
that of the model with ABC sense. To describe their dynamics, we select three values of
α = 0.79, 0.86, 0.9, each of which is denoted by the labels [a], [b], [c] in Figure 8, respectively.
When α = 0.79, both models with Caputo sense and ABC sense are convergent to E∗ as
in Figure 9a. From the time series in Figure 10a, the solution of model with ABC sense
converges faster than model with Caputo sense. For α = 0.86, E∗ of model with Caputo
sense losses its stability and the solution goes to the limit-cycle while E∗ of model with
ABC sense still maintains its stability, see Figures 9b and 10b. This circumstance confirms
that the model with Caputo sense has undergone the Hopf bifurcation while model with
ABC sense has not. When α = 0.9, E∗ of model with ABC sense losses its stability via
Hopf bifurcation as in Figure 9c. The solution of both models converge to the limit-cycle
where the diameter of limit-cycles obtained by model in ABC sense is smaller than those
obtained by model in Caputo sense, see Figure 10c. To see the evolution of limit-cycle in
more detail, we perform simulations using parameter values in (32) and α ∈ (0.8, 0.94). In
Figure 11, we show the stable equilibrium point or limit-cycle in (I, P)−plane as function
of α. As mentioned before the stable limit-cycle appears if α > α∗. It can be seen that
the diameter of limit-cycle obtained by both models in Caputo sense and ABC sense are
getting bigger when α is increased. We notice from Figure 8 that the model with Caputo
sense has a smaller critical value of α. Therefore, there are situations where the model with
Caputo sense has an α that passes its critical value (α∗) while the model with ABC sense
does not. This situation shows that the model with the two fractional derivative operators
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have different biological interpretations in determining the density of prey and predators.
On one hand, the density of prey and predator obtained by the model with Caputo sense
fluctuates periodically, whereas those obtained by the model with ABC sense converge to a
constant value.
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Figure 8. Bifurcation diagram of the eco-epidemic model with parameter values η = 0.8, κ = 0.01,
δ = 0.17, m = 0.7, ω = 0.1, μ = 0.2, β = 0.27 and q = 0.3.
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δ = 0.17, m = 0.7, ω = 0.1, μ = 0.2, β = 0.27 and q = 0.3. The top figures are solutions of model with
Caputo sense while the bottom figures are ABC sense.

Finally, we take the following parameter values:

η = 0.8, κ = 0.6, δ = 0.17, m = 0.7, ω = 0.1, μ = 0.5, β = 0.3, q = 0.4. (33)

For this case, the model has five equilibrium points, namely E0, E1, E3, E∗1 and E∗2 .
Using the results of a previous stability analysis, it is shown that E0, E1 and E∗2 are unstable,
while E3 is asymptotically stable regardless of the value of α. We also check that there exists
Hopf bifurcation around E∗1 . In the latter case, E∗1 is stable for α < α∗1 ≈ 0.84730. If α > α∗1
then E∗1 loses its stability and there appears a limit-cycle. Hence, the model exhibits a
bistability phenomenon for α < α∗1, where, in this case, E3 and E∗1 are locally asymptotically
stable. To illustrate the dynamics of eco-epidemic model with parameter values in (33), we
plot numerical solutions with two slightly different initial values in Figure 12. When we
take α = 0.83 < α∗1 the solutions of both models are respectively convergent to different
equilibrium points, namely E3 and E∗1 , see Figure 12a,b. Furthermore, when we increase
the order of fractional derivative to α = 0.95 then E3 remains stable but the stability of E∗1
vanishes via Hopf bifurcation as in Figure 12c,d. Thus, a captivating circumstance has been
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shown, where the initial condition is very sensitive in determining the limiting behavior of
the system.
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Figure 12. Numerical simulation of the eco-epidemic model with parameter values: η = 0.8, κ = 0.6,
δ = 0.17, m = 0.7, ω = 0.1, μ = 0.5, β = 0.3 and q = 0.4.

6. Conclusions

We have presented the dynamics of fractional-order Rosenzweig–MacArthur eco-
epidemic model using fractional derivative in both Caputo sense and ABC-sense. We
have determined conditions for the existence and uniqueness of solutions for models in
both Caputo sense and ABC sense. It is also shown that all solutions are non-negative
and bounded in R

3
+. The model has at most five types of equilibrium points, i.e., the

origin, the extinction of infected prey and predator point, the infected prey free point, the
predator-free point and the co-existence point. Based on the stability analysis for the model
in the Caputo sense, it is found that the origin is a saddle point, meaning that the extinction
of all populations will never happen. We also found that the other equilibrium points
are conditionally asymptotically stable. Furthermore, the conditions for the existence of
Hopf bifurcation have been established, where the bifurcation is driven by the order of the
fractional derivative. Our theoretical results have been confirmed by numerical solutions of
the model in the Caputo sense. In this article, the eco-epidemic model in the ABC sense has
also been solved numerically. The comparison of our numerical results shows that model
with both Caputo sense and ABC sense have the same dynamical behavior except around
the interior equilibrium point. In other words, the dynamical behavior of the proposed
model with both senses are symmetric around axial equilibrium points, but it is asymmetric
around the interior point when a Hopf bifurcation occurs. We confirm numerically that the
interior point of both models has a different bifurcation point when Hopf bifurcation occurs.
For some values of the order−α, the interior point of model with ABC sense is stable while
the interior point of model with Caputo sense is unstable. Our numerical simulations also
show that the proposed models may exhibit a bistable phenomenon. We finally notice that
our simulations are based on some hypothetical parameter values. For further studies, it is
recommended to compare the performance of both models, namely with Caputo sense and
with ABC sense, by using real data of selected eco-epidemiological case.
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Abstract: We consider an ensemble of active particles, i.e., of agents endowed by internal variables
u(t). Namely, we assume that the nonlinear dynamics of u is perturbed by realistic bounded
symmetric stochastic perturbations acting nonlinearly or linearly. In the absence of birth, death and
interactions of the agents (BDIA) the system evolution is ruled by a multidimensional Hypo-Elliptical
Fokker–Plank Equation (HEFPE). In presence of nonlocal BDIA, the resulting family of models is
thus a Partial Integro-differential Equation with hypo-elliptical terms. In the numerical simulations
we focus on a simple case where the unperturbed dynamics of the agents is of logistic type and the
bounded perturbations are of the Doering–Cai–Lin noise or the Arctan bounded noise. We then
find the evolution and the steady state of the HEFPE. The steady state density is, in some cases,
multimodal due to noise-induced transitions. Then we assume the steady state density as the initial
condition for the full system evolution. Namely we modeled the vital dynamics of the agents as
logistic nonlocal, as it depends on the whole size of the population. Our simulations suggest that
both the steady states density and the total population size strongly depends on the type of bounded
noise. Phenomena as transitions to bimodality and to asymmetry also occur.

Keywords: bounded noises; kinetic theory; active particles; statistical mechanics; population dynam-
ics; Fokker–Planck equation; mathematical oncology; ecology; noise induced transitions

1. Introduction

Two of the more active fields of application of statistical physics to biology are theoret-
ical population dynamics, mathematical epidemiology (including behavioral aspects [1,2]),
sociophysics [3–5] and mathematical oncology [6,7]. In these fields, the importance of multi-
scale phenomena has been recognized in the last twenty years. Many important approaches
are based on individual based models [8–10]. Another very important approach is based
on classical and recent development of nonlinear statistical physics: the theory of active
particles [11–20]. This is a multiscale mean field theory that allows us to link the dynamics
of internal variables, named activity, to the macroscale of the interactions between large
sets of agents [12–17]. Bellomo and coworkers stressed in particular two concepts are of
the utmost relevance in applying theory of active particles to living matter: (i) new agents
that are generated can have an activity different than the one of their parent agent; (ii)
non destructive interactions between two agents of the same or of different species (e.g.,
tumor cells and immune system effectors) can induce a change of activity level in both
agents. Among the most recent developments of the Bellomo theories we cite: (i) the
theory of thermostatted active particles, which allows to impose physically backgrounded
constraints to the activity of individuals, developed by Bianca and Menale [21–23]; (ii) the
stochastic evolutionary theory of tumor adaptation developed by Clairambault, Delitala,
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Lorenzi and coworkers [24–29]. Finally, it is worth mentioning the mathematical modeling
of Darwinian species emergence by Volpert and colleagues that represent the evolution of
active particles uniquely subject to a Brownian force and logistic non-local growth [30–32].

In the framework of Bellomo’s theories, Firmani, Preziosi and Guerri (FPG) [33] (see
also [34]) first modeled in a detailed way how to pass from the deterministic dynamics
of the activity variable of single individual agent to the dynamics of the densities of
interacting populations. In the FPG model the dynamics of the agent’s activity was assumed
to be deterministic. This led the authors to define a generalization of the Liouville’s
equation to model the temporal evolution of the densities (w.r.t. the agents’ activities) of
the interacting populations.

However important this approach may be, it constitutes an approximation of the real
world behavior. Indeed, on the one hand it has been stressed that fundamental biological
phenomena arise from the microscale presence of internal additive noise, i.e., infinitesimal
spontaneous stochastic fluctuations of the activity [24–29]. In the case where the activity
represents phenotypic defining variables, this represents the spontaneous phenotypic
changes [24–29]. On the other hand, individual agent activities are perturbed by many
unknown internal and external interaction, which can only be statistically known.

Modeling such stochastic extrinsic perturbations is less straightforward than one
could think. Namely, one could be tempted to extend a deterministic model by including
multiplicative Gaussian white or colored perturbations. Although allowing nice analytical
or semi-analytical inferences, this approach can lead to artifacts, most often hidden. A
major example is the following [35,36] modeling in the above-mentioned way the perturba-
tions affecting an anti-tumor cytotoxic therapy implies that for a substantial part of time
therapy adds tumor cells instead of killing them. A second ‘hidden’ but equally important
artifact is also induced: an excessive instantaneous killing of tumor cells. Finally, Gaussian
White noise perturbations cannot be applied to parameters on which a system depends
nonlinearly, and often even Gaussian colored perturbation cannot.

These and other critical issues imply that bounded stochastic processes ought to be
used in most case in biophysics: an increasingly important approach [36]. In last twenty
years about, a large body of scientific work has been devoted to the application of bounded
stochastic processes in statistical physics and to biophysics. Some key application can be
listed: noise-induced transitions [37], stochastic and parametric resonance [38], bifurcation
theory [39], fractional and nonlinear mechanics [40–42], mathematical oncology [43,44],
cell biology [45], ecology and environment [46,47] and neurosciences [48].

As a consequence, the above mentioned interplays can be modeled by assuming that
the dynamics is affected by bounded stochastic perturbations. This is our key assumption
here, which will lead us to define a family of partial integro-differential models that extends
hypo-elliptic nonlinear Fokker–Planck equation. Similar but not identical since, duty to
the presence of nontrivial non–local birth and death terms, in our case the integral of the
population density is the time-varying population size, and not the unity, as in the nonlinear
FP equation. The above-mentioned hypoellipticity is a key point since it is implied from
the assumption that the perturbations are symmetric bounded stochastic processes.

This work is organized in three parts. In the first part, we summarize and slightly
extend the FPG model in Section 2 and we extend it to take into the account stochastic
white noise perturbations acting on the dynamic of all agents in Section 3. The second part
of the work starts in Section 4, where we stress pitfalls that can occur by an acritical use of
Gaussian white or colored noises. In the following Section 5 we derive the main family of
models of this work, which models the dynamics of ensembles of active particles perturbed
by realistic stochastic processes of bounded nature, and in Section 6 we briefly stress the
possible occurrence, in specific models, of phase transitions. Finally, in Section 7 we
formulate a specific model (belonging to the general family of models defined in Section 5)
where the dynamics of the population of agents are given by a nonlocal generalized logistic
model. The third part of this work is devoted to numerical simulations. First (Section 8)
we summarize two ‘recipes’ to define and simulate three types of bounded stochastic
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processes. Then in Section 9 we briefly model the perturbations at level of each single agent
as a logistic dynamics and in Section 10 we parameterize the various adopted functions.
In Section 11, we numerically infer the steady state probability distribution of the FPE
that described the collective dynamics of particles in absence of generation, death and
interplay: this allows us to stress some interesting noise induced transitions phenomena.
The steady state solution of the FPE is used in the following Section 12 as initial value of
the full logistic non–local dynamics.

At the best of our knowledge, this work has some novelties of potential interest in
statistical physics: it is the first kinetic model where the impact of bounded stochastic
processes is included (resulting in hypo-ellictic integro-differential equations) and it is
investigated its interplay with logistic non-local birth–death dynamics. Moreover, noise
induced transition to bimodality and asymmetry are also observed.

2. A Slight Generalization of the FPG Model

In this section, we briefly summarize and slightly extend the FPG model [33,34] in
case of a single population, and we frame it in the classical statistical mechanics. To start,
let us suppose that the activity of an idealized agent is of the type

u′ = f (u), (1)

where the state variable is called activity of the agent. In the general case u is vectorial
but here for the sake of the notation simplicity we will suppose it scalar. Just to give
some examples of activities we can mention: the level of proteins defining the degree
of immunogenicity and ‘abnormality’ of a tumor cell [49] , the level of activation for an
immune system effector [49], the ‘level of effectiveness in performing the job that a species
is expected to do’ in a multi species environment [50], the pair (opinion, connectivity) in
models of opinion formation in social networks [51], the viral load for a subject during an
epidemics [20]. Of course, a very important class of activities is the couple position–velocity
(x, v) [52].

We denote by
ρ(t, u)

the density of agents w.r.t. the time and to the activity variable u.
Let us now preliminary consider the very idealized case where the agents do not

interplay and do not reproduce and die. In such a case, the dynamics of the ensemble of
agent is nothing else than the dynamics of the distribution of an ensemble of particles in
their phase space [53]. Thus, given the initial distribution of agents w.r.t. the activity u

ρ(0, u) = ρ0(u),

the evolution for t > 0 of the ensemble of agents is given by the Liouville’s Equation [53]:

∂tρ + ∂u( f (u)ρ) = 0. (2)

The physical interpretation of the term f (u)ρ is straightforward: since f (u) is the
velocity in the activity state space, then J = f (u)ρ is the current of active particles in that
space, and Equation (2) is nothing else than the conservation law:

∂tρ + Div(J) = 0.

Note that at variance to [33,34], where the FPG model is derived by a conservation law
approach, here we focused on a probabilistic approach in view of the stochastic extension
of next sections. Indeed, the Liouville equation is a particular case of the Fokker–Planck
Equation [53].

71



Symmetry 2021, 13, 1604

The inclusion of the proliferation, death and inter-agents interaction gives the full model

∂tρ + ∂u( f (u)ρ) = H(ρ(.); N(.)), (3)

where H(ρ(.); N(.)) is an integro-differential nonlinear operator that models: (i) agents’
birth, interaction and death; (ii) how the generation and interaction of agents modify their
activity. For example, if the mother agent before asexual reproduction has an activity level
û then its m daughter agents, let us call them D1, D2, . . . , Dm, may have different activity
levels ûD1 �= û, . . . , ûDm �= û. We will later specify some noteworthy cases.

An important difference between the FPG model and the family of models (3) is that,
at variance with the FPG model, the generation and destruction of agents here can be
independent of agents interaction, as in the above example of asexual reproduction of
agents.

Finally, we mention that the total size of the cellular population is given by the
following integral:

N(t) =
∫

Du
ρ(t, u)du. (4)

As far as the domain of the activity we will consider (as in [33]) a finite interval,
for example

Du = [0, uM].

3. Impact of the Stochastic Fluctuations of the Activity

In this section, we introduce the study of the impact at the population scale of the
stochastic perturbations acting on the dynamics of the activity u of each single agents.
This is an important matter since in many complex systems composed by ensemble of
individuals there can be the onset of emergent phenomena [54–58].

Due to unavoidable interactions with the external world and with the myriad of other
internal processes (e.g., for cells: intra-cellular biomolecular networks) a far more realistic
model of the evolution of the activity of the single agent is apparently

u′ = f (u) + g(u)ξ(t), (5)

where ξ(t) is a white noise and the stochastic differential equation is in the Ito interpretation
(but one could consider the Stratonovich interpretation). A more realistic model will be
considered in the next section.

In the absence of generation, death and of inter–agents interplay yields the dynamics
of ρ(t, u) is given by the following linear Fokker–Planck equation:

∂tρ + ∂u( f (u)ρ) = ∂uu

(
g2(u)

2
ρ

)
. (6)

Note that at variance with the classical Fokker–Planck equation here it is∫
Du

ρ(t, u)du �= 1

since it holds that
N(t) =

∫
Du

ρ(t, u)du = N0,

where N0 = N(0) is the initial size of the population (unchanged due to a assumption of
no modification of the number of agents). Indeed, the total size of the population remains
constant because of the lack of birth and of death events.
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In presence of birth and death events and of inter–agents interactions, the Fokker–
Planck-like Equation (2) becomes as follows:

∂tρ + ∂u( f (u)ρ) = ∂uu

(
g2(u)

2
ρ

)
+H(ρ(.); N(.)), (7)

where H is an operator acting on the (present and past) agents’ distribution ρ(.) and that
can depend on the (present and past) population size N(t).

Note that specific models where it holds that

g(u) = Constant,

i.e., the activity u has spontaneous stochastic fluctuations; have been investigated by
Clairambault, Delitala, and Lorenzi and coworkers in a series of works (e.g., [24–29])
where the activity u represent phenotype variables and thus the additive noise represent
spontaneous infinitesimal changes of phenotype.

4. Realistic Bounded Stochastic Perturbations of Agent’s Activity

Let us more closely analyze from the biological viewpoint the microscopic model (5).
Namely, consider a model of the activity linearly depending on a positive parameter q:

u′ = a(u) + qb(u).

The stochastic fluctuations of the parameter q could be modeled as a white noise
perturbations

u′ = a(u) + (q + qξ(t))b(u), (8)

where ξ(t) is a white noise, characterized by E [ξ(t)] and E [ξ(t)ξ(t + τ)] = δ(τ).
Thus, according to our previous the notation, corresponds to f (u) = a(u) + qb(u) and

g(u) = qb(u). The fact is that writing in the Ito form [59]

du = a(u)dt + (qdt + qdB)b(u), (9)

where B(t) is a Brownian stochastic process [59], it immediately follow that in the realization

Prob(qdt + qdB < 0) > 0

(note that since dB scales as dt0.5 it follow that the occurrence of the event qdt + qdB < 0 is
quite frequent). In other words, the unbounded nature of the Gauss distribution renders
negative the perturbed parameter q. Moreover, there is a second more subtle problem: the
unbounded Gauss perturbation can also make the perturbed parameter q excessively large.

Both these two problems persists also if one uses a colored Gaussian perturbation
instead of a Gauss white noise, or other non Gaussian unbounded perturbations.

A third and equally important problem is that if one has a general model nonlinearly
depending on a parameter q

u′ = c(u; q),

then one cannot use white noise perturbations, and often one cannot use colored un-
bounded perturbations.

The solution is to use bounded stochastic perturbations [36]: z(t) such that

z(t)q + q > 0

and
z(t)q + q ≤ Qmax < ∞.
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In turn z(t) can depend on a (bounded or unbounded) noise y (which we will call
support noise) by means of the following link function:

z(t) = ζ(y(t)).

If y is unbounded, then ζ(y) is a bounded function, otherwise if y is itself bounded
we assume ζ(y) = y.

The problem of modeling the activity of a single agents becomes slightly more complex
than in the case of white noise perturbations since at level of the individual agent one has
two stochastic equations: the equation of the activity perturbed by the bounded noise y:

u′ = f (u, y), (10)

where no white noise appears, and a model for the noise

y′ = k(y) + n(y)η(t), (11)

which is independent of u, and where η(t) is a white noise.

5. Macro-Scale Implication of the Boundedness of the Perturbations

The use of more realistic white noise perturbations implies that the resulting population-
level model for the evolution of the density is quite more complex than in the case of
Gaussian perturbations.

Indeed, in absence of generation, death and interplay we obtain a bidimensional
Fokker–Planck equation because of the two stochastic state variables—(u, y)—which reads
as follows:

∂tρ + ∂u( f (u, y)ρ) + ∂y(k(y)ρ) = ∂yy

(
n2(y)

2
ρ

)
. (12)

Note that the above equation is a degenerate diffusion-transport PDE since the u
variable does not appear in the diffusion equation. The reason is that the microscopic
equation for u does not contain a white noise term.

Finally, taking into the account the vital dynamics of the agents and their interactions
yields the following model:

∂tρ + ∂u( f (u, y)ρ) + ∂y(k(y)ρ) = ∂yy

(
n2(y)

2
ρ

)
+H(ρ(.); N(.)). (13)

Remark 1. Although the full density ρ(t, u, y) is of interest, what in the practice really matters is
the density ρe f f (t, u) unconditional to y, which is given by the following integral:

ρe f f (t, u) =
∫ B

−B
ρ(t, u, y)dy. (14)

6. Possibility of First and Second-Order Phase Transitions

The presence of N(t) in the above-defined models has deep implications. Indeed, let
us consider the search for steady state concentrations �ss(u) (uniquely for the sake of the
notation simplicity here we consider Gaussian perturbations):

∂u( f (u)�ss(u)) = ∂uu

(
g2(u)

2
�ss(u)

)
+H(�ss(.); Nss). (15)

Let us treat Nss as it were a parameter, and suppose now that we can find an analytical
solution that will be denoted as follows:

�ss(u, Nss; p),

74



Symmetry 2021, 13, 1604

where p denotes other parameters of the system.
This solution will have to verify the following self-consistency equation

Nss =
∫

Du
�ss(u, Nss, p)du. (16)

The above equation could have one or more solution, depending also on the values
of the parameters p. The case of multiple solutions means that there are multiple steady
state solutions. Thus, the dynamics of the system depend on the initial conditions and
that by varying the parameter p first and second order phase transitions can be observed,
with the switch from a scenario where the system has two (or more) stochastic attractors
to a scenario with a unique stochastic attractors, which is the genuine landmark of phase
transitions, as stressed by Shiino [60]. This is not surprising since the exact self-consistency
Equation (16) is similar to the self-consistency equation of the approximated mean field
Curie–Weiss theory [61,62].

7. A Generalized Logistic Growth of Agents

Up to now, we kept unspecified the functional H, because we wanted to define a
general family of models. In view of the simulations, here we consider the death and
birth of agents in presence of competition for nutrients and space. As it happens in the
reality we assume that the competition is not direct, i.e., two agents do not start a deadly
battle for the last glass of water, but indirect. As such, in our specific example there are no
interaction terms. This leads to decompose the operator H in two components, namely a
birth component and a death component:

H(ρ(.); N(.)) = B0(ρ(.); N(t))−D0(ρ(.); N(t)), (17)

where we will call B0 the generation operator, and D0 the death operator

∂tρ + ∂u( f (u)ρ) = ∂uu

(
g2(u)

2
ρ

)
+ B0(ρ(.); N(t))−D0(ρ(.); N(t)); (18)

or in case of bounded perturbations:

∂tρ + ∂u( f (u, y)ρ) + ∂y(k(y)ρ) = ∂yy

(
n2(y)

2
ρ

)
+ B0(ρ(.); N(t))−D0(ρ(.); N(t)). (19)

As far as the death operator is concerned, a reasonable assumption is to set:

D0(ρ(.); N(t)) = μ(u, N(t))ρ(t, u, y), (20)

i.e., agents with activity u dies with a death rate μ that may depend on u and that, due to
competition effects, depend on N(t). since the dependence on N(t) is due to competition
effects, it yields that

∂Nμ(u, N) > 0.

For the sake of the simplicity, henceforward, we will only consider the following
simple form for the death rate :

μ(u, N(t)) = μ0(u) + μ1(u)Na(t), (21)

where a > 0.
The operator B0 is less straightforward. First we suppose that agents around a value

w of the activity have a reproduction rate α(w, N(t)) > 0 that depends on the activity w
and that, due to the competition with other agents (causing lack of nutrients and of space),
the rate is a decreasing function of the population size:

∂Nα(w, N) < 0.
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The generated agents will have an activity u with a given probability density ϑ(u, w).
More specifically, we will assume that ϑ(u, w) will has either mode or mean at w.
As far as the transition probability ϑ(u, w) is concerned, in case of a finite range of activities,
Du = [0, uM], one can employ a beta distribution

ϑ(u, w) =
1

uMB(p, q)

(
u

uM

)p−1(
1− u

uM

)q−1
. (22)

As far as the relationship between the value of the activities of mother and daughter
agents, a natural choice could be the following:

(i) The average of the activity u of a daughter agent is equal to the activity w of the
mother agent, which implies:

p =

(
w

uM − w

)
q; (23)

(ii) The mode of the activity u of a daughter agent is equal to the activity w of the
mother agent, which implies:

p− 1 =

(
w

uM − w

)
(q− 1). (24)

Finally, a particular but important case is the case where the daughter agents have the
same activity of the mother agent:

ϑ(u, w) = δDirac(u− w).

Based on the above premises, we define:

B0(ρ(.); N(t)) =
∫

Du
ϑ(u, w)α(w, N(t))ρ(t, w, y)dw. (25)

Formula (25) is particularly suited to the represent cell proliferation, which is charac-
terized by an unequal division of metabolic constituents to daughter cells [63–66]. As far
as the specific form of α(w, N(t)) are concerned, one can consider

α(w, N) =
(

α0(w)− α1(w)Nb(t)
)
+

, (26)

or

α(w, N) =
α0(w)

1 + α1(w)Nb(t)
. (27)

8. ‘Recipes’ to Model Bounded Noises

In this section, we shortly summarize two of the main methodologies used in the
literature to generate bounded stochastic processes [36,67].

The first and most easy recipe to model a bounded stochastic perturbation consists of
applying a bounded function, say β(y), to an colored unbounded noise, for example the
Orenstein–Uhlenbeck noise. This means

k(y) = − 1
τ

y;

n(y) =
√

2σ√
τ

;

f (u, y) = h(u, ζ(y)). (28)
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Namely here we use the arctan noise, introduced in [67,68], in which:

ζ(y) = B
2
π

Arctan
(

y
Q

)
. (29)

The rationale underlying the arctan noise defined by (29) is very simple: (i) the Arctan
function is bounded by the values M = ±π/2; (ii) thus (2/π)Arctan is bounded by ±1
and, as a consequence, (2/π)Arctan is bounded by ±B; (iii) the parameter Q ‘tunes’ the
bounded noise: if Q << σ then (roughly speaking) ζ(y(t)) assumes mostly the two values
±B, whereas if Q >> σ then ζ(y(t)) is mostly proportional to y: ζ(y(t)) ≈ 2By/(πQ).

Another and very general family of bounded stochastic processes, introduced in [69],
can be obtained by assuming that

k(y) = − 1
τ

y,

and imposing the condition
n(±1) = 0. (30)

Condition (30) implies that

y′|y=1 < 0 AND y′|y=−1 > 0,

which in turn yields that if y(0) ∈ [−1, 1] then it y(t) is bounded

y(t) ∈ [−1, 1].

In this case the link function ζ(y) is simply ζ(y) = By An instance of this class of
noises is the Doering–Cai–Lin noise, introduced in [69,70] and whose properties where
studied in [71] where

n(y) =

√
1

(1 + δ)τ
(1− y2), (31)

where
δ > −1,

whose stationary PDF is
ρ(y) = C(1− y2)δ.

Note that in in [71] it was shown that if δ = −1/2 then the DCL noise is equal in law
to the well-known and widely adopted sine-Wiener noise, introduced in [72], and defined
by setting k(y) = 0 and z(y) = Bsin(y).

9. Agents Activity Dynamics Perturbed by a Bounded Noise

Until now we left unspecified the dynamics of the activity of the agents. In view of the
numerical simulations, we give here a noteworthy example. Namely, we consider the case
where the unperturbed dynamics of the activity u is ruled by a simple logistic-like law:

u′ = λu− u2.

Considering a white noise perturbation of λ yields:

u′ = (λ + σξ(t))u− u2;

u ≥ 0.

The statistical behavior of the solutions of the white-noise perturbations of the logistic
models is well known from other fields of applications of statistical mechanics [55,73]: the
model shows a noise-induced transition that depends on the value assumed by the noise
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strength σ. Namely [55]: (i) for σ2 > 2λ then u(t)→ 0, i.e., ρss(u) = δ(u); (ii) For σ2 < 2λ
the stationary density is

ρss(u) =
C

u2(−1+λ/σ2)
e−2u/σ2

,

which for λ < σ2 < 2λ has a vertical asymptote at u = 0 and it is decreasing; (iii) Finally
for σ2 < λ the density ρss(u) is unimodal and its mode is at

uMax =
λ− σ

2
.

If instead we impose realistic bounded fluctuations of λ, this yields:

u′ = h(u, z) = (λ + z(t))u− u2;

u ≥ 0,

where z ∈ [−B, B] and
B ≤ λ.

This has the noteworthy consequence that if u(0) > 0 the dynamics of u(t) remains
bounded, and asymptotically:

u(t) ∈ (λ− B, λ + B).

As an example of nonlinear perturbation, we again refer to the logistic model, where
this time we consider stochastic fluctuations of the carrying capacity

u′ = h(u, z) = λu− u2

K(1 + z(t))
;

u ≥ 0,

where the bound of the noise z is smaller than one:

B < 1.

We will use the above single-agent model with bounded perturbations in the rest of
this work.

10. Parametrization

10.1. Initial Condition

We assume that at t = 0 all agents are close to equilibrium and the noise distribution
is such that y is close to zero

ρ(0, u, y) = A(u)Φ(y),

where
A(u) =

1
ε1
√

λ

(
H(u−

√
λ(1− ε1))− H(u−

√
λ(1 + ε1))

)
and

Φ(y) =
1√

2π σ1
Exp

(
−y2

2σ2
1

)
.

Values of the parameters used: ε1 = 0.05; σ1 = 0.0218; λ = 1.
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10.2. Logistic Activity Dynamics

We assume that, in absence of stochastic perturbations,the agents’ activity follows a
logistic dynamics. We consider the two bounded perturbations of such logistic dynamics
illustrated in the previous section, namely: (i) Stochastic fluctuation of the growth rate λ:

u′ = (λ + ζ)u− u2

K
,

which we will call linear perturbation, because the noise is in linear position w.r.t. the
differential equation for u (ii) Stochastic fluctuations of the carrying capacity K:

u′ = λu− u2

K(1 + ζ)
,

which we will call hyperbolic perturbation, because the noise z is in nonlinear hyperbolic
position w.r.t. the differential equation for u. We adopted the following values for the
parameters: λ = 1, K = 1.

10.3. Birth and Death Rate

As far as the birth and death rate we consider the functionals defined in (26) and in
(27) but but with parameters that are independent of w

α(N(t)) =
(

α0 − α1N(t)b
)
+

(where we set α0 = 2, α1 = 0.5, b = 0.5) and

α(N(t)) =
α0

1 + α1N(t)b

(where we set)
As far as the death rate is concerned, we employed the simple rate defined in (21) with

μ0(u) = 1− ξ H(u− 0.9)

and

μ1(u) = 0.5 μ0(u),

where we set a = 0.5, ξ ∈ {0, 0.3, 0.65, 0.8} (although, as illustrated in next sections, we
will mainly use the value ξ = 0). Although this work is mainly a mathematical physics
work inspired by biology and we do not have the pretension to be fully realistic, the choice
of the parameters values is not covered by the current literature. First, the ratio α0/μ0 = 2
represent a system that if the competition for resources was null then it would have a
Malthusian growth where the proliferation rate is the double of the death rate. This could be
the scenario of a population in rapid growth. As per the parameters b and a, which are both
set to 0.5: this reminds of a generalized logistic growth of an unstructured population of
size X(t) : X′ = R(X)X with convex specific growth rate R(X) = α(X)− μ(X) = 1−X1/2,
in agreement with the theoretical analysis of [74].

10.4. Transition Probability

As probability transition we used the beta PDF (Formula (22)), where we set uM = 2
and q ∈ {2, 3}. We considered the two cases where (i) the average activity u of the
daughter agents is equal to the activity w of the mother agent (Formula (23)); (ii) the mode
of the activity u of the daughter agents is equal to the activity w of the mother agent
(Formula (24)).

10.5. Parameterization of the Bounded Noises

In all cases we set B = 0.9 and τ = 1.
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We considered three cases:

• Arctan Noise : Q = 0.2, σ = 1. As far as the domain Dy is concerned, we approxi-
mately considered the bounded interval Dy = [−3.71σ, 3.71σ];

• DCL noise with δ = 0.5;
• DCL noise with δ = −0.5, where the noise is equal in law to the Sine-Wiener noise.

10.6. Boundary Conditions

We imposed zero flow boundary conditions since no agents can flow out.

10.7. Temporal Behaviour

Our simulations have two aims:

• N, i.e., numerically exploring the steady state behavior of the system in absence of
birth and death, i.e., assessing the steady state of the hypoelliptic Fokker–Planck
equation;

• Assessing the steady state of the full model, assuming in the phase where birth and
deaths occur that the system in absence of vital dynamics was at its equilibrium, i.e., at
the steady state of the above mentioned Fokker–Planck equation.

This was done splitting he simulation in two phases:

1. For t ∈ [0, t∗] the vital dynamics is null, where t∗ is sufficiently large to safely assume
that the solution of Fokker–Planck equation is at its steady state;

2. For t ∈ [t∗, tStop] is non null, where tStop is sufficiently marge to stop the simulation
because the system is at the steady state.

By a number of preliminary simulation we set

(t∗, tStop) = (20, 45),

but probably smaller values could be adequate as well.

10.8. Numerical Methods

The simulations were obtained by applying the finite element method. We used the
scientific software COMSOL ver.5.6, and in particular its Multifrontal Massively Parallel
Sparse direct solver (MUMPS) [75–77] with a Newton automatic termination method.

The discretization was performed using triangular elements and the quadratic order
Lagrange form function.

We solved the problem by imposing zero flow boundary condition.
In the case Arctan and Sine-Wiener, when the noise perturbs the carrying capacity term

of the logistic activity equation, it is necessary to apply 8 boundary layers near the edges
u = 0 and u = 2, with a thickness of 0.1 for the Arctan case, and 0.05 for Sine-Wiener case.

11. Numerical Solution for the Bidimensional Fokker–Planck Hypo-Elliptic Equation

In this section, we consider the numerical study of the time evolution and steady
state of the Fokker Planck equation describing the dynamics of the agents populations in
absence of birth and death effects. This problem is interesting in itself since at the best of our
knowledge there is no work on the numerical investigation of Bidimensional Hypo-elliptic
Fokker–Planck (BHFP) equations.

In our simulations we compared the impact of different type and parameters of the
bounded noises, showing that to different noises it correspond a very different steady
state behavior.

In all simulations the Steady State of the BHFP Equation (SSBHFPE) is reached rela-
tively soon, so that we stropped our simulation at time t = 20. For the sake of the simplicity,
in this section and in the following ones, we sill use the following acronyms: (i) case where
the noise is of the Arctan type with Q = 0.2 is denoted as ATAN case; (ii) case where the
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noise is DCL and δ = 0.5 is denoted as DCLpos case; (iii) case where the noise is DCL and
δ = −0.5 is denoted as DCLneg case

First, in Figure 1 we show the SSBHFPE and the associated marginal steady state
distribution in the case where the bounded noise acts on the linear term of the logistic
equation defining the activity of agents. In the left panels it is shown the ATAN case.
The SSBHFPE (Upper left panel) is in this case characterized by two modes that, are
asymmetric with respect to the noise-related variable y. This is surprisingly since the
adopted stochastic perturbation is symmetric. In the lower left panel, we can observe again
bimodality. Since the distribution of the model in absence of generation/destruction has a
unique deterministic equilibrium at u = 1 equal for all agents, this means that (adopting
the terminology introduced in [55]) the bounded stochastic symmetric perturbation has
induced a noise-induced-transition. In the central panel it is shown the impact of DCLpos
noise: the PDF is a curved surface apparently convex everywhere but again it is asymmetric
with respect to y despite the symmetric nature of the bounded stochastic perturbations.
Finally, the right panels shown the impact of DCLneg noise. The bidimensional PDF
is strongly asymmetric and it is characterized by a large number of peaks. The related
marginal PDF (see right lower panels) is also multimodal and, roughly speaking, its
envelope is reminiscent of the marginal distribution obtained in the case of arctan noise.
In other words, also in this case NIT occurred. None of PDFs is symmetric, neither w.r.t. u
nor w.r.t. y.

Figure 1. Bidimensional and marginal PDF in absence of births and deaths. Noise perturbing the
linear term of the logistic activity equation. (Upper panel): steady state PDF of the Bidimensional
Hypo-elliptic Fokker–Planck equation. (Lower panels): the corresponding marginal distribution.
Role of the type of noise. In all panels the noise amplitude is set to B = 0.9. (Left panels): arctan
noise with Q = 0.2; (Central panels): DCL noise with δ = 0.5; (Right panels): DCL noise with
δ = −0.5 (equivalent to the Sine-Wiener noise).

Instead, in Figure 2 we show the steady state of the BHFP equation in the case where
the bounded noise acts on the carrying capacity of the logistic equation defining the activity
of agents. In other words, we study the case where the action of the symmetric bounded
noise is nonlinear. In the left panels it is shown the ATAN case. The SSBHFPE is in this case
is unimodal with a portion fairly flat. The associated marginal PDF is unimodal and its
mode is remarkably smaller than one. In the central panel it is shown the impact of DCLpos
noise: the PDF is a curved surface. The associated marginal distribution is unimodal and
its mode is at about 0.8. Finally, the right panel shows the impact of DCLneg case: the
PDF is strongly asymmetric and characterized by a large number of peaks. The associated
marginal PDF has a large number of small peaks, but its envelope is reminiscent of a
unimodal PDF, where the mode is about at u = 0.2. None of PDFs is symmetric, neither
w.r.t. u and y. All the SSBHFPE are strongly asymmetric w.r.t of both u and y.
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Figure 2. Noise perturbing the carrying capacity of the logistic activity equation: steady state PDF
of the Bidimensional Hypoelliptic Fokker–Planck equation. Role of the type of noise. In all panels
the noise amplitude is set to B = 0.9. (Left panel): arctan noise with Q = 0.2; (Central panel): DCL
noise with δ = 0.5; (Right panel): DCL noise with δ = −0.5 (equivalent to the Sine-Wiener noise).

12. Numerical Solution of the Full Birth Death System

In this section, we investigate the dynamics of the full birth death kinetic system by
assuming as initial conditions the steady state solutions of the bidimensional hypoelliptic
Fokker–Planck equation described in the previous section.

12.1. Noise Acting Linearly

In this subsection we consider the impact of a bounded noise acting on the linear term
of the logistic equation.

In Figure 3, it is shown the case where the mean of the activity of daughter agents
is located at the activity of mother agent (w). As far as the bidimensional steady state
densities, a new mode at zero is observed for both the ATAN and the DCLpos cases. As far
as the marginal distributions is concerned, for all three types of noises that we considered
the density of the population has a mode at zero. This implies that in the DCLpos case
the birth and death terms implied the onset of a noise induced transition. Interestingly,
although the birth and death terms are the same for all the three series of simulations,
there is a remarkable quantitative difference in the steady state value of the population:
the arctan noise is associated to a two steady state population, equal to about 0.3. In the
DCLpos case the steady state population is about 0.87, whereas for DCLneg noise the
steady state population is about 0.67.
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Figure 3. Mean of the activity of daughter agents is located at the activity of mother agent (w).
Bidimensional density, marginal density and total population in presence of births and deaths. Noise
perturbing the linear term of the logistic activity equation. (Upper panel): steady state PDF of the
system. Central panels: the corresponding marginal distribution. (Lower panels): the corresponding
total population (normalized). Role of the type of noise. In all panels the noise amplitude is set to
B = 0.9. (Left panels): arctan noise with Q = 0.2; (Central panels): DCL noise with δ = 0.5; (Right

panels): DCL noise with δ = −0.5 (equivalent to the Sine-Wiener noise).

In Figure 4, it is shown the case where the mode of the activity of daughter agents is
located at the activity of mother agent (w). As far as the steady state bidimensional densities,
they are: (i) bimodal for the ATAN case but associated to a unimodal marginal density;
(ii) unimodal for the DCLpos case; (iii) multimodal characterized by a large number of
peaks for DCLneg noise. As far as the population dynamics we observe, quite interestingly,
that in the DCLpos case about a 10% increase of the population is observed.
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Figure 4. Mode of the activity of daughter agents located at the activity of mother agent (w).
Bidimensional density, marginal density and total population in presence of births and deaths. Noise
perturbing the linear term of the logistic activity equation. (Upper panel): steady state PDF of the
system. Central panels: the corresponding marginal distribution. (Lower panels): the corresponding
total population (normalized). Role of the type of noise. In all panels the noise amplitude is set to
B = 0.9. (Left panels): arctan noise with Q = 0.2; (Central panels): DCL noise with δ = 0.5; (Right

panels): DCL noise with δ = −0.5 (equivalent to the Sine-Wiener noise).

12.2. Noise Acting Nonlinearly

In this subsection we consider the impact of a bounded noise acting on the carrying
capacity term of the logistic equation, i.e., acting nonlinearly.

In Figure 5, (mean value of the daughter agents’ activities at the activity of the mother
agent) we note that: (i) the ATAN case is characterized by trimodality in both the bidimen-
sional and the marginal steady state densities, with one mode at zero; (ii) The DCLneg is
characterized by a multi peaks strongly asymmetric bidimensional steady state density to
which it is associated a trimodal like (plus manu local peaks) steady state density (iii) the
DCLpos case is characterized by a curve bidimensional steady state density associated to
a unimodal marginal density. As far as the dynamics of the total population , and in the
previous subsection, the DCLpos case shows a moderate increase of the steady state value.
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Figure 5. Mean of the activity of daughter agents located at the activity of mother agent (w). Noise
perturbing the (nonlinear) carrying capacity term of the logistic activity equation. Bidimensional
density, marginal density and total population in presence of births and deaths. (Upper panel):
steady state PDF of the system. Central panels: the corresponding marginal distribution. (Lower

panels): the corresponding total population (normalized). Role of the type of noise. In all panels the
noise amplitude is set to B = 0.9. (Left panels): arctan noise with Q = 0.2; (Central panels): DCL
noise with δ = 0.5; (Right panels): DCL noise with δ = −0.5 (equivalent to the Sine-Wiener noise).

In Figure 6 (mode of the daughters agents’ activities at the activity of the mother agent)
we note that (i) both in ATAN and in the DCLpos cases the bidimentional and the marginal
densities are unimodal; (ii) as usual the DCLneg case is characterized bu a large number of
peaks asymmetrically distributed. The most interesting phenomenon concerns the total
population: here not only it is observed the 10% of increase previously observed, but also
in the case ATAN a increase of the steady state population, and this increase is large: the
30%.
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Figure 6. Mode of the activity of daughter agents located at the activity of mother agent (w). Noise
perturbing the (nonlinear) carrying capacity term of the logistic activity equation. Bidimensional
density, marginal density and total population in presence of births and deaths. (Upper panel):
steady state PDF of the system. Central panels: the corresponding marginal distribution. (Lower

panels): the corresponding total population (normalized). Role of the type of noise. In all panels the
noise amplitude is set to B = 0.9. (Left panels): arctan noise with Q = 0.2; (Central panels): DCL
noise with δ = 0.5; (Right panels): DCL noise with δ = −0.5 (equivalent to the Sine-Wiener noise).

13. Impact of the Death and Birth Rates

Int their section we numerically show and example of the impact of both the birth and
the death rates. Namely we set:

α(N) =
α0

1 + α1Nb ; (32)

μ0(u) = 1− ξH(u− 0.9); (33)

μ1(u) = 0.5μ0(u). (34)

As shown in Figure 7, which for the sake of the simplicity refers only to the ATAN
case, the one system dynamics impact of the type of birth rate and of the parameter ξ is
remarkable, as it was expected.
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Figure 7. Impact of the birth and death rates. Influence of the death rate-related parameter ξ on the
dynamics of the total population. Upper panel: the dynamics of the total population. Lower panels:
the bidimensional steady state density for : ξ = 0.3 (left panel), ξ = 0.65 (central panel), ξ = 0.8
(right panel).

14. Concluding Remarks

In this work, we considered a system of active particles, i.e., of agents (such as cells,
animals in a flock, etc.) endowed by an internal variable u whose evolution is known and
stochastic. Namely we assume that the dynamics of u is ruled by a nonlinear dynamical
systems perturbed by realistic bounded symmetric stochastic perturbations: u′ = f (u, p(t))
where the dependence of the rhs on p can be nonlinear. In absence of birth and death of
the agents the system evolution is ruled by a multidimensional hypo-elliptical Fokker–
Plank equation.

However, we assume that each individual agent can reproduce by generating other
agents whose activity is a stochastic variable related to the activity of the mother , animals
in a flock. The agents can die. Both birth and death depend on the available resources,
i.e., on the whole population. The resulting model is thus an Partial Integro-differential
Equation with hypo-elliptical terms. If also a white noise perturbation act on agents,
u′ = f (u, p(t)) + g(u)ξ(t), then the resulting model is a FPE with fully elliptical terms.

In the numerical simulations we focus on a simple case where the unperturbed
dynamics of the agents is of logistic type and then we consider the presence of bounded
symmetric stochastic perturbations acting in a linear and non-linear way. As far as the
bounded perturbations are concerned, we consider the Doering–Cai–Lin noise and a new
bounded noise, obtained by applying and arctan function to the well known Orenstein–
Uhlenbeck Gaussian noise. We then numerically find the evolution and the steady state of
the above—mentioned hypo-elliptical bidimensional Fokker–Plank equation to be used as
initial state for the system in study.

We observed a number of phenomena that depends on the type of noise and on the
interplay between noise and birth and death of agents.

First, since the unperturbed model in absence of birth and death has a unique equilib-
rium at u = 1 (monostability), and since in both ATAN and DCLneg cases the bidimensional
and the marginal densities are multimodal, this means that the bounded symmetric pertur-
bations can induce noise induced transitions. However, this occurs (in our simulations)
only in the case where the noise perturbs the linear term of the logistic equation.

The presence of the birth and deaths may induce, in turn; transitions from unimodality
to bimodality even when the steady state of the FP equation is unimodal.

Moreover the total population can be in some cases quantitatively and qualitatively
(decreasing vs. increasing time patterns) influenced in a noise-depending manner.
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An important effect observed could be roughly described as a symmetry to asymmetry
effect since despite the symmetric nature of the stochastic perturbations in some cases the
distribution is asymmetric.

Finally, although in our simulations we did not find genuine phase transitions, notwith-
standing that we pointed out that the nonlocality could result in some specific models in
the onset of first or second order phase transitions.

Limitation and Specificity This study, eminently theoretical, has a number of limitations,
real and apparent. The first and most important limitation is that here we study a pro-
totypicalgeneric population of agents that is not directly derived by a specific biological
problem. However, this is not a so strong limitation because we apply general principles
common to many areas of cellular biology and ecology. Thus, this study could be classified
as statistical biophysics/biomathematics inspired by biology.

The key novelty here is the fact that our multiscale mean field model explicitly in-
cluded the presence of realistic bounded stochastic perturbations. This kind of stochastic
perturbations have two classes of advantages. The first, largely discussed in the literature
on bounded stochastic processes, is that bounded noises preserves the positivity of the
parameters and impeded their excessive expansion. The second is that, at variance with
white or colored Gaussian perturbations, even parameters that nonlinearly impact on the
system can be perturbed.

The second limitation is that the proposed model is a mean field model. Furthermore,
here two observations are useful to mitigate the nature of limitations. First, we qualitatively
describe a problem that easily could be implemented by means of an individual based
model. However populations of some types of agents such as cells rarely are of small
medium size, and most often are of very large huge sizes, for which a mean field description
are the one we propose here is well suited.

A third limitation is that we have chosen, for the sake of the simplicity, to focus on the
behavior of a single population. However, also in this case intra-population interactions
are biologically observed, leading to complex integro-differential terms in our model. the
inclusion of multiple interplaying population can be easily be integrated by following the
large body of research by Belomo and coworkers.

A final limitation is the use of bounded activities. The case of unbounded activities
is important for two reasons: (i) this allows in a straightforward way the inclusion of the
space is straightforward, since position and velocity it can be considered as a component of
a generalized vectorial activity u; (ii) this could allow the possibility of the onset of traveling
waves and solutions, a key topic in theoretical and applied mathematical physics [30,78–82]
that have extremely interesting synergies with possible noisy perturbations [83].
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1. Introduction

Information-theoretic concepts, such as negative entropy, and the related notion of
free energy have long been recognized as relevant to natural and living systems [1–4]. It
turns out that the approach to equilibrium in some classes of dynamical systems can be
usefully studied from an information-theoretic perspective. Baez and Pollard [5] give an
excellent overview of such an approach. Consider, for example, a system modeled as a
continuous-time Markov process on K distinct states, where the probability of the state of
the system at time t being i ∈ {1, 2, . . . , K} is denoted by pi(t). Such a system is ruled by
the so-called master equation:

d
dt

p(t) = H p(t) (1)

where p(t) = (p1(t), p2(t), . . . , pK(t)) and H is an appropriate K × K matrix. Draw-
ing from information theory, one can consider the relative entropy (informational di-
vergence) between the evolving distribution p(t) and another probability distribution
q = (q1, q2, . . . , qK) on the set of states; this is defined as

D(q, p(t)) :=
K

∑
i=1

qi log
qi

pi(t)
. (2)

If one chooses q as a steady state distribution (that is, Hq = 0), then one can show that

d
dt

D(q, p(t)) ≤ 0,

and if the steady state distribution is unique, this can in turn be used to argue that p(t) is
attracted to q over time. In other words, by proving monotonicity of the relative entropy (2)
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over time, one can conclude that the steady state distribution q is also a global attractor.
This approach is not limited to continuous-time Markov processes and the linear ordinary
differential equation system (1), but extends to other types of models such as discrete-time
Markov chains, chemical reaction networks, and several models of population dynamics,
such as the replicator dynamics [5–9].

This work discusses a different, nonlinear, class of systems for which the information-
theoretic approach is successful: a family of dynamical systems modeling the network
dynamics of the slime mold Physarum polycephalum [10,11].

The slime mold Physarum polycephalum is an acellular slime mold (myxogastrid) [12].
In its plasmodium stage, it forms a tubular network that reshapes and adapts to the
environmental stimuli. The reshaping is driven by the streaming of cytoplasm through
the network; tubes not sustained by cytoplasmic streaming eventually decay and dissolve.
This reshaping mechanism has been experimentally observed to be remarkably effective
at optimizing the use of resources [13,14]. In particular, in one laboratory experiment,
the slime mold network is distributed uniformly over a maze, and two food sources are
positioned in two points A and B of the maze. Over time, the slime mold retracts all tubes
except those corresponding to the shortest path between A and B.

A mathematical model of the network dynamics of P. polycephalum’s plasmodium
has been first proposed by Tero, Kobayashi and Nakagaki [10], who also showed how
the model implied, for certain values of the parameters and for very simple networks,
convergence to the optimal equilibrium point represented by the shortest path in the
network. Subsequently, variations of this model have been proved to converge to the
optimal network configuration for arbitrary network topologies for a wide range of model
parameters [15–18]. The goal of this paper is to give a gentle introduction to Physarum
polycephalum’s network modeling and to its analysis, and to explain how such analysis can
be seen as another example of the information-theoretic approach to dynamical systems.
Thus, the significance of the results is that they widen the scope and applicability of the
information-theoretic approach in dynamical systems.

Structure of this article. Section 2 introduces one possible mathematical model for
Physarum polycephalum’s network dynamics. This model is analyzed in Section 3. Section 4
discusses related works and extensions of the model. Some conclusions are drawn in
Section 5.

2. Flow Constraints and Network Dynamics

2.1. Some Notation

For a vector x ∈ R
m, diag(x) is used to denote the m×m diagonal matrix with the

coefficients of x along the diagonal. The standard inner product of two vectors x, y ∈ R
m is

denoted by 〈x, y〉 := x�y. For a vector x ∈ R
m, ‖x‖p denotes the �p-norm of x (1 ≤ p < ∞),

that is, ‖x‖p := (xp
1 + xp

2 + . . . + xp
m)

1/p.

2.2. Cytoplasmic Flow and Kirchhoff’s Laws

In the experiments of Nakagaki et al. [10,13], P. polycephalum’s plasmodium forms an
evolving tubular network, in which the transport capacity of the edges, that is, the tubular
channels routing the cytoplasm, changes over time (see [19] for a video illustration). This
network is modeled mathematically as a connected weighted undirected graph G, with
node set N = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. Edges represent the tubular
channels, and nodes represent junctions between the tubes. Two special nodes in s0, s1 ∈ N
are distinguished; they correspond to the location of the food sources in the experiments.
Node s0 is called the source of the cytoplasmic flow, node s1 the sink; the choice of which
node is the source and which the sink is purely conventional.

The weight of an edge of G encodes the capacity of the corresponding tubular channel,
which is directly related (as detailed below) to the radius and length of the tube. The
capacity is a dynamic quantity, since as food is absorbed by the slime mold, and cytoplasm
flows through the network, the radius of the tubular channels will respond to the flow; this
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is discussed in the next section. For now, let us focus on the situation at a specific instant
in time.

At any time, the cytoplasmic flow through the network will be entirely determined by
the capacity of the edges. Fix an arbitrary orientation of the edges, and let B ∈ R

N×E be
the incidence matrix of G under this orientation, that is,

Bve :=

⎧⎪⎨⎪⎩
+1 if node vs. is the tail of edge e
−1 if node vs. is the head of edge e
0 otherwise

(v ∈ N, e ∈ E).

Let N′ = N − {s1} and let A ∈ R
N′×E be obtained from B by removing the row

corresponding to the sink s1. Moreover, let b ∈ R
N′

be the vector defined by

bv :=

{
0 if vs. �= s0,
1 if v = s0,

(v ∈ N′).

A flow (flux) q is represented by a vector in R
E that expresses, for each oriented edge

e ∈ E, the amount of flow along the positive direction of that edge at a given time. Any
fluid flow from the source to the sink should obey flow conservation; this is expressed by the
linear system of equations

Aq = b. (3)

This is nothing but Kirchhoff’s current law which, in words, requires that the flow has
zero divergence everywhere except at nodes s0 and s1, where it has divergence, respectively,
+1 and −1 [20] (Chapter IX).

Example 1. Consider the network of Figure 1a. It holds N = {v1, v2, v3} with source s0 = v1,
sink s1 = v3, and E = {e1, e2, e3}. If the network is oriented as in Figure 1b, then B, A and b are,
respectively,

B =

⎛⎝ 1 0 1
−1 1 0
0 −1 −1

⎞⎠, A =

(
1 0 1
−1 1 0

)
, b =

(
1
0

)
.

Note that matrix A is simply matrix B with row 3 dropped (since the sink is v3). Kirch-
hoff’s current law for a flow q = (q1, q2, q3) ∈ R

3 through the edges (e1, e2, e3) corresponds to
the constraints: {

q1 + q3 = 1
−q1 + q2 = 0

Two examples of valid flows in this case are q = (1, 1, 0) (all the flow goes through the upper
path) and q′ = (1/2, 1/2, 1/2) (half of the flow goes through the upper path, and half goes through
the lower path). In general, any vector q ∈ R

m such that Aq = b encodes a valid flow.

s0 s1

v2e1

e3

e2

(a) An example network.

s0 s1

v2e1

e3

e2

(b) A corresponding oriented network.

Figure 1. Example network.
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An additional assumption is that the cytoplasmic flow q satisfies Kirchhoff’s potential law
(Section II.1) [20], which says that there exist real values {pv}v∈N (the pressure potentials
at the nodes) satisfying the hydrodynamic analogue of Ohm’s law (Poiseuille’s law). For an
edge e between nodes u and v, Poiseuille’s law states that

qe =
πR4

e (t)
8η

(pu − pv)

le
, for every e = (u, v) ∈ E (4)

where Re(t) is the radius of the tube at time t, and η is a viscosity constant. Thus, if the
capacity of edge e is defined as xe(t) := πR4

e (t)/8ηle and the resistance as re := 1/xe, these
are directly related to the length and radius of the tube at time t, and one can simply write

qe = (pu − pv)xe =
pu − pv

re
, for every e = (u, v) ∈ E. (5)

It is a standard fact from electrical network theory that, given a capacity vector x ∈ R
E
>0

(or equivalently, a resistance vector r ∈ R
E
>0), the flow q satisfying (3) and (5) is unique

(Chapter IX) [20]; this will be called the cytoplasmic flow, and is analogous to the electrical
flow in electrical networks. In fact, such a flow is also the unique valid flow from s0 to s1 of
least dissipation, that is, the unique optimal solution to the following optimization problem:

minimize q�X−1q (6)

subject to Aq = b.

Here, X ∈ R
E×E is the diagonal matrix with the capacities xe1 , . . . , xem along the main

diagonal. The quantity E := q�X−1q = ∑e∈E req2
e is called the energy of the flow q. The

energy of the flow equals the difference between the source and sink potentials, times the
value of the flow, which in the setting of this paper is unitary (Corollary IX.4) [20]:

E = b�p = (ps0 − ps1)bs0 = ps0 − ps1 . (7)

Hence, in this setting E is also the potential difference between source and sink.
An alternative, equivalent way to express the cytoplasmic flow arises from the Lapla-

cian operator of the network [21]. The (reduced) Laplacian of G is the symmetric and
positive semidefinite matrix L := AXA�. If one represents the potential vector of all nodes
except the sink by p ∈ R

N′
, assuming without loss of generality ps1 = 0, then (5) can be

written in matrix form as
q = XA�p. (8)

Multiplying both sides by A yields the discrete Poisson equation Lp = b, with solution
p = L−1b. Substituting this in (8), one gets a direct expression for the cytoplasmic flow in
terms of the network structure and edge capacities:

q = XA�L−1b. (9)

This also allows us to express each qe as a (nonlinear) function of the capacity vector
x ∈ R

E
>0. Using the Laplacian matrix, the energy of the cytoplasmic flow can also be

expressed as
E = b�p = b�L−1b. (10)

Example 2. Continuing the same example from above, for a given vector x = (x1, x2, x3) ∈ R
3
>0

of edge capacities, the capacity matrix X and the reduced Laplacian matrix L are, respectively,

X = diag(x) =

⎛⎝ x1 0 0
0 x2 0
0 0 x3

⎞⎠, L = AXA� =

(
x1 + x3 −x1
−x1 x1 + x2

)
,
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with the latter having determinant det(L) = x1x2 + x1x3 + x2x3. Hence,

L−1 =
1

det(L)

(
x1 + x2 x1

x1 x1 + x3

)
, p = L−1b =

1
det(L)

(
x1 + x2

x1

)
and the cytoplasmic flow is

q = XA�L−1b =
1

det(L)

⎛⎝ x1x2
x1x2

x1x3 + x2x3

⎞⎠ =
1

x1x2 + x1x3 + x2x3

⎛⎝ x1x2
x1x2

x1x3 + x2x3

⎞⎠. (11)

The energy of the cytoplasmic flow is E = ps0 − ps1 = ps0 = (x1 + x2)/ det(L).
Notice that q1 = q2 and q1 + q3 = 1, as one expects due to flow conservation. Equation (11)

also clearly shows that the cytoplasmic flow along an edge ej is a function of the capacities of the
entire network, not just of the capacity xj of the same edge.

2.3. Response Dynamics on an Edge

A dynamics on the edge capacities will now be introduced. This represents the slime
mold’s positive feedback mechanism, which relates the pressure gradient along a tubular
channel to the rate of increase or decrease of the capacity of the tube. The underlying idea
is simple: tubes along which there is a strong pressure tend to increase their capacity, while
tubes along which there is a weak pressure tend to decrease their capacity. Namely, the
following will be assumed:

ẋe = xe

(
ϕ

( |qe|
xe

)
− 1
)

for all e ∈ E. (12)

Here, qe is (as before) the cytoplasmic flow along edge e, and ϕ : R≥0 → R≥0 is some
strictly increasing, differentiable function such that ϕ(1) = 1. This function models the
physical response of the tube to the flow. Some observations:

1. By Poiseuille’s law (5), |qe|/xe = |pu − pv|, thus the larger the potential difference
along edge e, the larger ẋe will be.

2. For a given value of the potential difference, a tube tends to expand less if it is smaller,
due to the dependency on xe in (12).

3. Because of the absolute value in (12), the actual direction of the flow has no influence
on the dynamics. In particular, exchanging the role of the source and sink nodes
(thus reversing the flow) does not alter the tubes’ dynamics. This is the reason why
one can arbitrarily select any food source as the flow source and the other one as the
flow sink.

4. A tube e ∈ E is in equilibrium if and only if |qe| = xe, that is, qe = ±xe.

In the remaining sections, the response function ϕ(z) = z2 will be assumed, which is
the mathematically most convenient. However, the qualitative evolution of the dynamics
under other response functions appears to be (and in some cases, it provably is) similar;
see the discussion in Section 4.1.

2.4. The Dynamics as an Ode

The adaptation Equation (12) can be given a natural interpretation as a local feedback
mechanism: the flow qe and the capacity xe jointly determine the rate of change of the
capacity xe of the tube.

However, as seen in Section 2.2 the amount of flow on an edge is a function of the
capacities of the entire network, due to Equation (9). This means that each qe can be
expressed as a (nonlinear) function of all the capacities of the network, that is, one can—at
least in principle—rewrite Equation (12) as

ẋ1 = F1(x1, x2, . . . , xm)
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ẋ2 = F2(x1, x2, . . . , xm)

. . .

ẋm = Fm(x1, x2, . . . , xm)

for some appropriate nonlinear functions F1, . . . , Fm. In this way, one obtains an au-
tonomous system of coupled, nonlinear ordinary differential equations, describing the
evolution of the edge capacities.

In practice, writing down explicitly the functions F1, . . . , Fm is inconvenient but for
the smallest networks, and it turns out to be unnecessary for the stability analysis. In the
following, the algebraic-differential formulation of Equations (9) and (12) will be used:

ẋe = xe

(
ϕ

( |qe|
xe

)
− 1
)

for all e ∈ E, (13)

q = XA�(AXA�)−1b.

Note that the singularity of (13) when some xe = 0 can be removed: from the ex-
pression q = XA�(AXA�)−1b it can be seen that qe/xe = (A�(AXA�)−1b)e, a rational
function of x that is well-defined as long as the Kirchhoff polynomial det(AXA�) of the
network does not vanish (which it cannot when the edges corresponding to nonzero xe’s
form a connected graph [22]).

In particular, with the quadratic response function ϕ(z) = z2, one obtains

ẋe = xe

(
q2

e
x2

e
− 1
)

for all e ∈ E, (14)

q = XA�(AXA�)−1b.

The initial condition x(0) of the dynamics can be any point in the positive orthant Rm
>0.

System (14) will be called the quadratic-response Physarum system. The question of whether
this system has a solution x(t) defined over all t ≥ 0 is postponed until Section 3.3.

2.5. Equilibria

What are the equilibrium points of (14)? Any state x such that ẋ1 = ẋ2 = . . . = ẋm = 0
should satisfy, for each e ∈ E, either xe = 0 or qe = ±xe. It turns out that equilibrium points
are directly related to the paths connecting the source node to the sink node in the network.
Specifically, for a source-sink path P, let its characteristic vector χP ∈ R

E be defined as

χP
e :=

{
1 if e ∈ P,
0 if e /∈ P.

(15)

Then one can prove the following fact.

Lemma 1. If P is any source-sink path in the network, then χP is an equilibrium point of (14).
Conversely, any equilibrium point of (14) is a convex combination of characteristic vectors of
source-sink paths. Moreover, if each source-sink path has a distinct length, then any equilibrium
point is the characteristic vector χP of some source-sink path P, and the energy of the corresponding
cytoplasmic flow equals the length of the path.

Proof. Let P be a source-sink path, and χP its characteristic vector. Consider the state
x = χP and let q be the cytoplasmic flow with respect to x. By definition of the cytoplasmic
flow Aq = b, and qe can be nonzero only when xe is nonzero (due to q = XA�L−1b). In
fact, qe = ±1 for each e ∈ P, and qe = 0 for each e /∈ P, since a unit flow is sent from source
to sink and the only path with nonzero capacity (due to the choice of x) is P. This means
that qe = ±xe for all e ∈ E, and hence x = χP is an equilibrium point.
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Conversely, consider any equilibrium point x, satisfying either xe = 0 or qe = ±xe for
all e ∈ E. By orienting the edges of E as necessary, one can assume q ≥ 0 and thus q = x.
Since q = XA�L−1b, this implies that (A�L−1b)e = 1 whenever xe > 0. In other words,
along any edge e = (u, v) with positive capacity, the potential difference pu − pv is 1 (recall
that L−1b = p, hence (A�L−1b)e is the potential difference along edge e). However, the
potential difference along any path only depends on the difference between the potentials
of the endpoints of the path. Hence, all paths with positive capacity from source to sink
have the same length, ps0 − ps1 . Since the cytoplasmic flow can only be nonzero on paths
with positive capacity, this means that q is a convex combination of characteristic vectors
of source-sink paths, all of the same length. Moreover, when each source-sink path has a
distinct length, there can be only one nonzero-flow path in the convex combination, with
length ps0 − ps1 = E by (7).

In the following, for the sake of exposition it will be assumed that different source-sink
paths have distinct length in the network. This implies a finite set of isolated equilibrium
points for the autonomous system (14), one for each source-sink path. If the assumption is
not satisfied, convergence towards the convex set of minimum-energy equilibrium points
can still be argued, although one cannot argue convergence towards a specific point of
that set.

Example 3. Let us continue the example from above. The autonomous system (14) is

ẋj = xj

(
q2

j

x2
j
− 1

)
j = 1, 2, 3,

q =
1

x1x2 + x1x3 + x2x3

⎛⎝ x1x2
x1x2

x1x3 + x2x3

⎞⎠.

In this case there are only two source-sink paths: P1 = (e1, e2), and P2 = (e3). They have
distinct lengths, hence there is one isolated equilibrium for each of P1 and P2. The first corresponds
to the vector of capacities x(1) = χP1 = (1, 1, 0) and cytoplasmic flow q(1) = (1, 1, 0). The second
corresponds to the vector of capacities x(2) = χP2 = (0, 0, 1) and cytoplasmic flow q(2) = (0, 0, 1).
Note that the energy of the first cytoplasmic flow is 2, while the energy of the second cytoplasmic
flow is 1. A linear stability analysis around each equilibrium reveals that the first equilibrium point
is unstable, while the second equilibrium point is stable.

The situation in Example 3 is not accidental: in the following, a general result will
be shown implying that the equilibrium of minimum energy attracts the entire positive
orthant, and hence all equilibria of non-minimal energy must be unstable.

3. Stability Analysis: An Optimization Perspective

Both the experimental results of Nakagaki et al. [13] and the toy example considered
above suggest that, perhaps, the stability of equilibrium points of (14) is related to the
minimality of the corresponding paths in the network. Hence, in order to study the stability
of the system (14), it might be useful to adopt an optimization perspective. In this section,
it will be shown that this is indeed the case.

3.1. The Shortest Path Problem

In particular, let us consider the shortest path problem in the given network, where one
wants to construct a source-sink path that uses as few edges as possible. Formally, the
shortest path problem can be formulated as follows:

minimize ‖ f ‖1 (16)
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subject to A f = b, f ∈ R
E,

where ‖ f ‖1 := ∑e∈E | fe| = | f1|+ | f2|+ . . . + | fm|. In transportation terminology: find a
way to ship a unit of a commodity from the source to the sink, while minimizing the total
amount of commodity shipped along the edges of the network. The quantity fe encodes
the amount of commodity shipped along edge e; thus a vector f satisfying A f = b satisfies
flow conservation.

Note that at this point, the only obvious relation between shortest path flows f ,
which solve the shortest path problem (16), and cytoplasmic flows q, which solve the least
dissipation problem (6), is that they are both unit flows, that is, they satisfy Kirchhoff’s
current law (Aq = b, A f = b). Apart from this, in general they could be very different
vectors. For instance, in Example 3, the equilibrium flow (1, 1, 0) is a cytoplasmic flow,
but not a shortest path flow. Moreover, a cytoplasmic flow is defined only after a capacity
vector x has been specified, while in the shortest path problem (16) there are no capacities
to speak of.

3.2. A Variational Reformulation of the Shortest Path Objective

Interestingly, however, the shortest path problem can be related to a modified least
dissipation problem. To see this, first observe that for any real number a,

|a| = inf
x>0

1
2

(
a2

x
+ x
)

.

Hence, the �1-norm of any vector f ∈ R
m can be equivalently expressed as

‖ f ‖1 = inf
x∈Rm

>0

1
2

m

∑
j=1

(
f 2
j

xj
+ xj

)
. (17)

Therefore

min
f∈Rm
A f=b

‖ f ‖1 = min
f∈Rm
A f=b

inf
x∈Rm

>0

1
2

m

∑
j=1

(
f 2
j

xj
+ xj

)
(18)

= inf
x∈Rm

>0

⎛⎝1
2

⎛⎝min
f∈Rm
A f=b

f�X−1 f

⎞⎠+
1
2

1�x

⎞⎠
= inf

x∈Rm
>0

(
1
2

b�L(x)−1b +
1
2

1�x
)

,

with the last identity following from (10). Let us define, for any positive vector x,

F (x) := b�L(x)−1b + 1�x. (19)

If one interprets x as a vector of capacities, then the term b�L(x)−1b is the energy of
the cytoplasmic flow induced by x. Thus, the function F is built from two terms: the first
can be interpreted as the cost of transport, which is proportional to the dissipated energy,
and the second as the cost of maintaining the transport infrastructure. For shortness, F (x)
will be called the dissipation potential of the vector x. By (18), finding a flow f minimizing
‖ f ‖1 (a shortest path flow) is equivalent to finding an assignment x of capacities to the
edges of the network that minimizes the dissipation F (x). The following can be concluded.

Theorem 1 ([16,23]). The value of the optimization problem

minimize ‖ f ‖1

subject to A f = b, f ∈ R
m

100



Symmetry 2021, 13, 1385

equals the value of the optimization problem

minimize
1
2

1�x +
1
2

b�(AXA�)−1b (=
1
2
F (x))

subject to x ∈ R
m
>0

where X = diag(x).

The dissipation function F is defined on the positive orthant and, importantly,
is convex.

Lemma 2 ([23]). The dissipation function F is positive, convex and differentiable on R
m
>0.

Proof. Positivity follows from Equation (10). For convexity, it suffices to show that the
mapping x �→ b�L−1(x)b is convex on R

m
>0. This mapping can be seen as the composition

of two other mappings: the first is the matrix-valued map x �→ AXA�, which is linear
since each of the entries of AXA� is a linear function of x, and yields a positive definite
matrix Y = AXA� = (AX1/2)(AX1/2)�; the second is the matrix to scalar map Y �→
b�Y−1b, which is convex on the cone of positive definite matrices, for any b ∈ R

n (see for
example [24] Section 3.1.7). It follows that the composed mapping x �→ b�(AXA�)−1b is
convex, and hence so is F . Finally, since the entries of L(x) are linear functions of x, the
dissipation function F is a rational function with no poles in R

m
>0, hence differentiable.

The dissipation function can even be defined on the boundary of the positive orthant
by convex closure (that is, by posing F (x) = lim infx′→x F (x′) when x is on the boundary;
see [23] for details). The extension is convex on the nonnegative orthant and differentiable in
its interior, and attains its minimum, although the minimizer x∗ might lie on the boundary
of the positive orthant. Theorem 1 allows us to identify this minimizer.

Corollary 1. The minimizer of F over Rm≥0 is the characteristic vector χP∗ of the shortest path P∗
of the network. The corresponding cytoplasmic flow is an equilibrium flow.

Proof. Let us consider the characteristic vector χP∗ and interpret it as a vector of capacities
x∗ := χP∗ . Since the capacity x∗e is zero for any edge e /∈ P∗, by Poiseuille’s law the
resulting cytoplasmic flow q = X∗A�(AX∗A�)−1b will also satisfy qe = 0 = x∗e for
all e /∈ P∗. Thus, the support of flow q is contained in the path P∗, which by the flow
constraints Aq = b implies that along any edge of P∗ there is a unit amount of flow
|qe| = 1 = x∗e . This implies that |qe| = x∗e for all edges e ∈ E. The flow q is thus an
equilibrium cytoplasmic flow, since ϕ(|qe|/x∗e ) = ϕ(1) = 1. Moreover, its energy is, by (10),
b�L−1b = q�X∗−1q = ∑m

j=1 q2
j /x∗j = ‖x∗‖1. Therefore,

1
2
F (x∗) = 1

2
b�L−1b +

1
2

1�x∗ = 1
2
‖x∗‖1 +

1
2
‖x∗‖1 = ‖x∗‖1.

Since by construction x∗ was chosen to minimize ‖x∗‖1, by Theorem 1 it also mini-
mizes F (x∗).

3.3. Physarum Dynamics as a Hessian Gradient Flow

Let us set aside Physarum’s autonomous system (14) for a moment, and consider how
one could set up a dynamical system in R

m
>0, the solutions of which converge, over time, to

the characteristic vector of the shortest path. Given Corollary 1, one possibility is to aim at
minimizing the differentiable convex function F over the positive orthant. To minimize a
generic differentiable convex function F over the positive orthant, one might set up the
following set of ordinary differential equations:

101



Symmetry 2021, 13, 1385

ẋj = −xj
∂F (x)

∂xj
, j = 1, . . . , m, (20)

with initial condition x(0) = x0 for some x0 ∈ R
m
>0. This is an instance of the mirror descent

dynamics, a well-studied dynamics in convex optimization theory [25,26]. The intuition
behind (20) is simple: to approach a global minimum, one should follow the (negative)
gradient of F , but the rate of change of the j-th component should be reduced the smaller
xj is, in order not to violate the constraint xj ≥ 0.

When F is the dissipation potential (19), what does one get from (20)? Let us compute
the gradient of the dissipation potential.

Lemma 3 ([23]). Let x ∈ R
m
>0. For any j = 1, . . . , m,

∂F (x)
∂xj

= 1− (a�j L−1(x)b)2 = 1−
q2

j

x2
j

,

where aj stands for the jth column of matrix A.

Proof. Let us start by observing that, by definition, L(x) = AXA� = ∑m
j=1 xjaja�j and thus

∂L/∂xj = aja�j . Applying the following identity for the derivative of a matrix inverse
(Section 8.4) [27]:

∂L−1

∂xj
= −L−1 ∂L

∂xj
L−1, (21)

yielding

∂b�L−1b
∂xj

= −b�L−1 ∂L
∂xj

L−1b = −b�L−1aja�j L−1b = −(a�j L−1b)2.

By (9), a�j L−1b = qj/xj. The claim now follows by the definition of F , (19), since

∂(1�x)/∂xj = 1.

Plugging Lemma 3 into (20) yields the dynamics

ẋj = xj

(
q2

j

x2
j
− 1

)
, j = 1, . . . , m, (22)

which is nothing but the Physarum system (14)!
In other words, the quadratic-response Physarum system (14) can be reformulated as

a Hessian gradient flow [28]: it can be written in the form

ẋ = −H−1(x)∇F (x) (23)

where H(x) = ∇2h(x) is the Hessian of a convex function h; namely, here H(x) = X−1,
and h : Rm

>0 → R is the negative entropy function

h(x) :=
m

∑
j=1

xj log xj −
m

∑
j=1

xj. (24)

The Hessian gradient form immediately implies the existence of a solution to system (14)
for all t ≥ 0, using standard arguments [28].

System (23) can also be expressed as

d
dt

∂h(x)
∂xj

= −∂F (x)
∂xj

, j = 1, . . . , m,
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or more succinctly,
d
dt
∇h(x) = −∇F (x), (25)

another form of the mirror descent dynamics, also known as natural gradient flow [29].
The equivalent formulations (23) and (25) of the Physarum dynamics (14) show that

the dynamics follows the gradient of the dissipation function F , under the geometry
dictated by the negative entropy function h, defined by (24). It is thus reasonable to expect
convergence to the minimum of the dissipation function, i.e., to an equilibrium point where
the resulting cytoplasmic flow is the shortest path flow. To rigorously prove this, thanks to
Corollary 1 it is sufficient to show that the solutions of system (23) indeed converge to a
minimizer of the convex function F .

3.4. Basin of Attraction

The fact that any solution of the mirror descent dynamics (20) with initial condition in
R

m
>0 converges to a minimizer of a convex function F is, in fact, a result already established

in the optimization literature [28,30]. A self-contained proof is presented here. Let us start
with a straightforward lemma showing that F is monotonically nonincreasing along the
trajectories of the dynamical system.

Lemma 4. The values F (x(t)) with x(t) a solution of (20) are nonincreasing in t.

Proof. By the multivariable chain rule and (20),

d
dt
F (x(t)) =

m

∑
j=1

∂F
∂xj

(x) ẋj = −
m

∑
j=1

xj

(
∂F
∂xj

(x)

)2

≤ 0.

A key role in the analysis of the mirror descent dynamics is played by the notion of
Bregman divergence of a convex function h. This measures the distance between the value
of h at a point x, and the approximate value of h at x predicted by a linear model of the
function constructed at another point y; see Figure 2 for an illustration.

Figure 2. Illustration of the Bregman divergence Dh(x, y).

Definition 1. The Bregman divergence of a convex function h : Rm → (−∞,+∞] is defined
by Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉.

Convexity of h implies the nonnegativity of Dh(x, y). When h is the negative entropy,
Dh is the relative entropy:

Dh(x, y) =
m

∑
j=1

xj log
xj

yj
−

m

∑
j=1

(xj − yj),
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which boils down to (2) when x and y are probability distributions (since ∑j xj = ∑j yj = 1).
The relative entropy satisfies Dh(x, y) = 0 if and only if x = y [29].

Using the notion of Bregman divergence, let us prove that the solutions of the mirror
descent dynamics converge to the minimizer of the convex function F .

Theorem 2. Let x(0) ∈ R
m
>0 and let x∗ ∈ R

m≥0 be the minimizer of F (assumed unique). Then
any solution x(t) of (20) satisfies, for all t ≥ 0,

F (x(t))−F (x∗) ≤ 1
t

Dh(x∗, x(0)). (26)

In particular, as t → ∞, the values F (x(t)) converge to F (x∗) and hence x(t) converges to x∗.

Proof. A proof will be given that streamlines that in [30]. In the following, to shorten
notation let us write x in place of x(t). Since (d/dt)∇h(x) +∇F (x) = 0 by (25), for any y
one has 〈(d/dt)∇h(x) +∇F (x), x− y〉 = 0. This is equivalent to

〈 d
dt
∇h(x), x− y〉+ 〈∇F (x), x− y〉 = 0. (27)

On the other hand, since (d/dt)h(x) = 〈∇h(x), ẋ〉, Definition 1 yields

d
dt

Dh(y, x) = − d
dt

h(x) +
d
dt
〈∇h(x), x− y〉 (28)

= −〈∇h(x), ẋ〉+ 〈 d
dt
∇h(x), x− y〉+ 〈∇h(x), ẋ〉

= 〈 d
dt
∇h(x), x− y〉.

Combining (27) and (28), and plugging in y = x∗,

d
dt

Dh(x∗, x) = −〈∇F (x), x− x∗〉. (29)

The proof is concluded by a Lyapunov argument. Define Φ : [0, ∞)→ R by

Φ(t) := Dh(x∗, x) + t(F (x)−F (x∗)).

Its time derivative is, by (29),

d
dt

Φ(t) = −〈∇F (x), x− x∗〉+F (x)−F (x∗) + t
d
dt
F (x),

where the last summand is nonpositive by Lemma 4 and the other terms sum to, by
definition, −DF (x∗, x) ≤ 0 (by the convexity of F , Lemma 2. Hence, Φ(t) ≤ Φ(0) for all
t ≥ 0, which is equivalent to

Dh(x∗, x) + t(F (x)−F (x∗)) ≤ Dh(x∗, x(0)),

proving (26) since Dh(x∗, x) ≥ 0.
Because x(0) ∈ R

m
>0 by assumption, the divergence Dh(x∗, x(0)) is a finite constant

and (26) implies convergence of F (x(t)) to F (x∗). Convergence of x(t) to x∗ follows from
the uniqueness of the minimizer x∗.

Corollary 2. In the quadratic-response Physarum system (14), the basin of attraction of the shortest
path equilibrium x∗ = χP∗ contains Rm

>0.

Proof. It was already argued in Section 3.3 that the Physarum system (14) can be written
in the mirror descent form (20). The minimizer x∗ is unique because of the assumption
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that each source-sink path has a distinct length. Thus, for any x(0) ∈ R
m
>0, Theorem 2

guarantees attraction to x∗.

Note that, with essentially the same proof, Theorem 2 can be partially extended
to the case where there is more than one minimizer of F , in the following sense: as
t → ∞, the values F (x(t)) converge to the minimum of F over Rm≥0. However, when the
minimizer is no longer unique, one cannot directly conclude that x(t) converges against
any specific minimizer.

4. Related Work and Generalizations of the Model

4.1. Beyond the Quadratic Response Function

Going back to the general formulation of the Physarum system (13), it is natural to
ask whether the stability result of Corollary 2 can be extended to other response functions,
beyond the quadratic response ϕ(z) = z2.

Indeed, initial work on the Physarum dynamics considered the linear response
ϕ(z) = z. Tero et al. [10] were the first to introduce such a model, and proved an analogue
of Corollary 2 when the network is a simple cycle, with two nodes and two edges of different
lengths. The analysis of the linear-response Physarum system was later extended to certain
planar networks [31], and ultimately to all networks [15]. The latter stability proofs are
substantially more involved than in the case of the quadratic response, because the system
cannot in those cases be expressed as a Hessian gradient system, as it was done in (23).
Nevertheless, Lyapunov arguments are still the essential ingredients of the stability proofs.

Tero et al. [10] also considered nonlinear response functions, but in a formulation
that is somewhat different from (13); they assume that the tubular response of edge e is
controlled by the sheer amount of flow |qe|, as opposed to the pressure |qe|/xe:

ẋe = ϕ(|qe|)− xe. (30)

When the response is linear, that is, ϕ(z) = z, formulation (30) by Tero et al. is
equivalent to (13). However, when the response is not linear, the two models are qualita-
tively different. In particular, the model by Tero et al. has multiple stable equilibria when
ϕ(z) = zμ with μ > 1. In contrast, the model (13) has a unique stable equilibrium even in
those cases [11].

Formulation (13) was first proposed in [11], where it was shown that on a network
topology consisting of parallel links, the analogue of Corollary 2 holds for all strictly
increasing, differentiable functions ϕ : R≥0 → R≥0 such that ϕ(1) = 1. In fact, such a
result holds even when each edge e of the network has a distinct response function ϕe. This
result was later extended to all network topologies by Karrenbauer, Kolev and Mehlhorn
(Theorem 3) [17], under the following additional assumption for the response functions:

ϕe(z) ≥ 1 + αe(z− 1) for some αe > 0 and all z ≥ 0. (31)

Condition (31) is satisfied, in particular, by all convex increasing functions (to see this,
take αe = ϕ′e(1)). As mentioned in [17], it is an open problem whether condition (31) can
be relaxed.

4.2. Beyond the Network Setting

Although the Physarum dynamics (13) and (30) originated in the context of math-
ematical biology, as seen in Section 3 it can also be understood from an optimization
perspective. From such a more abstract view, the same dynamics can be shown to converge
to the solution of optimization problems that substantially generalize the shortest path
problem (16).

Namely, if instead of defining the constraint matrix A in terms of a network, one allows
any full-rank matrix A ∈ R

n′×m, then the dynamics (13) is still well-defined, and under
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mild technical conditions it converges to an optimal solution of the following �1-norm
minimization problem:

min ‖ f ‖1 (32)

s.t. A f = b, f ∈ R
m.

This looks formally the same as the shortest path formulation (16), but represents a
more general problem, since A is not restricted to be a network matrix and b can be an
arbitrary vector in R

n′ . Problem (32) is sometimes called basis pursuit and is an important
problem in signal processing and statistics: it can yield sparse signals ( f ) that explain the
observations (b) from a set of linear measurements (A) (see for example [32]). This abstract
viewpoint on the Physarum dynamics has been explored in several works of the networks
and optimization community [16,18,23,33].

4.3. Multiple Sources of Food

Finally, let us note that food-foraging experiments have been carried out in which the
slime mold is provided with more than two sources of food [14]. Instead of collapsing into
a path, the slime mold in this case eventually connects the sources of food into a complex
network structure. One can ask how such a scenario could be modeled effectively, and
what functional (if any) is optimized by the network adaptation process in this case.

In this context, a key modeling issue is to strike a balance between tractability and
plausibility of the proposed model. In particular, in order for the model to be biologically
plausible, it should preserve the symmetry between the sources of food. In the case of two
sources of food, this symmetry is guaranteed by the absolute value in Equation (12), which
makes the dynamics oblivious to the direction of the flow. In the case of more than two
sources, however, it is unclear how to guarantee the same property with a conceptually
simple model; the original proposal by Tero et al. [14], for example, involves a periodic
random selection of the flow sink node, which seems rather challenging to analyze formally.

The formal model (13) can certainly be extended by allowing the cytoplasmic flow to
have multiple sources s1, . . . , sk and sinks t1, . . . , tl , each with a different supply/demand
of flow; interestingly, in this case, the functional optimized is the so-called transshipment
cost [33,34], yielding a connection with optimal transport theory [35,36]. However, symme-
try with respect to the food locations is lost: exchanging the role of a source si with that of
a sink tj will generally result in a different set of dynamical equations, with incompatible
solutions. Therefore, such a model does not appear to be plausible from a biological point
of view, despite certainly being interesting from an optimization perspective. All in all,
development of a plausible, yet tractable, mathematical model of P. polycephalum’s network
dynamics with multiple sources of food remains a challenging problem for future research.

5. Conclusions

A mathematical model of the network dynamics of P. polycephalum was presented
that exhibits, from a qualitative standpoint, a behavior compatible with that observed in
the laboratory food foraging experiments. The analysis of the model reveals at least two
interesting aspects.

The first is the fact that the stable equilibrium point of the dynamics provably min-
imizes a combination of the infrastructural cost of the network—the term 1�x in (19),
which corresponds to the total capacity of the network—and of the transport cost–the
term b�L−1(x)b in (19), which corresponds to the energy of the cytoplasmic flow. The fact
that an organism like P. polycephalum achieves a convenient tradeoff between transport
efficiency and infrastructural cost of the network should not be surprising, since after
all it presumably yields an evolutive advantage. Nevertheless, it is somewhat remark-
able that this optimization objective emerges so clearly from the simple positive feedback
response (12) of the tubular channels to the flow.
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A second remarkable fact is the central role of information-theoretic concepts in the
stability analysis. It was shown that the quadratic-response dynamics can be interpreted
as a gradient descent in the non-Euclidean geometry dictated by the negative entropy
function h(x), and that the corresponding relative entropy Dh(x∗, x) plays a crucial role
in the stability proof, as it is able to track the symmetry breaking from (for example) an
initially uniform configuration towards the optimal network configuration. In fact, even for
response functions that are not quadratic, relative entropy makes an appearance, whether
implicitly or explicitly, in all known stability proofs. Thus, information-theoretic concepts
emerge as very relevant, and perhaps indispensable, mathematical tools in this context.
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Abstract: Predictive models may be considered a tool to ensure food quality as they provide insights
that support decision making on the design of processes, such as fermentation. Objective: To
formulate a mathematical model that describes the growth of lactic acid bacteria (LAB) in batch
fermentation. Methodology: Based on real-life experimental data from eight LAB strains, we
formulated a primary model in the form of a third-degree polynomial function that successfully
describes the four phases observed in LAB growth, i.e., lag, exponential, stationary, and death. Our
cubic mathematical model allows us to understand the fundamental nonlinear dynamics of LAB as
well as its time-variant dependencies. Parameters of the model are written in terms of initial biomass,
maximum biomass, maximum growth rate, and lag phase duration. Further, a statistical analysis was
performed to compare our cubic primary model with the ones proposed by Gompertz, Baranyi, and
Vázquez-Murado by computing the coefficient of determination

(
R2), the residual sum of squares

(RSS), and the Akaike Information Criterion (AIC). Results: The average statistical results from the
cubic model are as follows: R2 = 0.820 providing a better fit than the other three models, RSS = 0.658
and AIC = −6.499, where both values are lower than the other models considered in this study.
Conclusion: The cubic primary model formulated in this work describes the behavior of biomass as
it accurately represents the four phases of biomass growth in batch fermentation process.

Keywords: predictive microbiology; lactic acid bacteria; batch fermentation; primary mathematical
model; bacterial growth

1. Introduction

Lactic Acid Bacteria (LAB) refer to a group of microorganisms that share certain
morphological, physiological, and metabolic characteristics. They have the peculiarity of
producing lactic acid from several carbohydrates through a process known as microbial
fermentation. They are normally found in cultures such as milk, whey, and pickles [1,2].
The Danish microbiologist Orla-Jensen said that “True lactic acid bacteria are a large group of
cocci and Gram positive, immobile, spore free bacilli, which produce lactic acid in the fermentation
of sugar” [3]. Currently, LAB have a primary role in the food industry, as they are used
to acidify and preserve food. Further, they contribute to texture, taste, smell, and scent
development in all kinds of fermented foods [4,5].

In the industry, most fermentation is carried out through batch culture. This means
that only a culture medium with the necessary nutrients is added to the fermenter, and
this is incubated for the growth of bacteria and the production of its primary metabolite.
During the time of incubation, nothing other than oxygen is added [6]. Hence, the bacterial
growth follows an asymmetric cell division (ACD), which is a conserved mechanism
evolved to generate cellular diversity. A key principle of ACD is the establishment of
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distinct sibling cell fates by mechanisms linked to mitosis [7]. ACD also occurs in the
development and physiology of unicellular organisms ranging from bacterial species to
yeasts and flagellates [8,9]. In these organisms, ACD underlies replicative aging as a means
of maintaining the immortality of the mitotically proliferating population [10].

LAB are very demanding microorganisms and need a set of growing factors, including
sugars such as carbohydrates, as well as amino acids and vitamins. Therefore, LAB can
only grow in a medium that supplies these nutrients [3]. The interest in the physiology of
LAB has been studied by its industrial importance and potential use of genetic engineering
in strain optimization. For example, in the particular case of Lactococcus lactis spp. lactis,
a minimal growth medium should contain glucose, acetate, vitamins, and amino acids [11].
Milk is the medium that contains all these nutrients. For this reason, LAB are used as
starter cultures for the preparation and preservation of dairy products, such as acidified
milk, yogurt, butter, cream, and cheese [1]. In batch fermentation, bacteria cannot grow
exponentially indefinitely. The latter due to bacteria depleting nutrients as it grows,
changes in the chemical composition of the medium (pH), and toxic compounds that are
accumulated. The characteristic curve of bacterial growth is composed by four phases:
(i) lag, (ii) exponential, (iii) stationary, and (iv) death. Lactic acid production occurs during
the reproduction of LAB; the accumulation of this and other organic acids decrease the pH
of the medium, which made culture conditions become more selective; hence, the more
acid-tolerant bacterium will prevail.

The total number of cells in fermentation are usually represented by a logarithmic
scale, and normally, at the end of this process, one can see values from 108 up to 109

CFU/mL (Cell-Forming Units per milliliter) [2]. In addition to nutritional requirements,
temperature is one of the most important factors in LAB growth. Furthermore, there is an
optimal temperature and other environmental conditions for which these microorganisms
present a higher growth rate [4]. LAB are acid-tolerant and may grow either at pH values
as low as 3.2 or as high as 9.6. Usually, most of LAB strains grow at pH values between 4
and 4.5 [1].

In microbiology, several mathematical models have been developed to predict the
behavior of microorganisms on the influence of different factors in culture. This branch
is known as predictive microbiology, and it aims to study the response of bacteria to en-
vironmental factors that can be controlled, such as temperature, pH, and water volume,
among others. In this sense, a tool may be formulated to ensure both quality and safety
of products to estimate their useful lifetime and to make decisions regarding the compo-
sition and design of fermented products [12]. Mathematical models that relate biomass
production and time are called primary models, while those that describe the relation-
ship between primary models parameters and environmental conditions are known as
secondary models [13]. Some of these models are discussed below.

The Gompertz equation, formulated in 1825, is one of the most used in predictive
microbiology. It is based on an exponential relationship between the growth rate and
the density of a population. This equation was formulated to describe the law of human
mortality. However, years later, it was adapted and re-parametrized for its use in micro-
biology [14]. Giraud et al. [15] observed that pH variations resulted in a decrease in the
growth rate when measuring the fermentation performance of L. plantarum at a controlled
pH between 4.0 and 8.0. Baranyi et al. [16] applied a non-autonomous differential equation
to describe the dynamics of growing bacterial cultures. Based on more than 500 growth
curves, the statistical properties of this equation were compared to the Gompertz approach,
which is the most commonly used in food microbiology. After these results, Baranyi and
Roberts [17] proposed a growth model where a single variable represents the physiolog-
ical state of cells. The lag phase period is determined by the value of this variable at
inoculation and by the post-inoculation environment. The model was able to describe
bacterial growth in an environment where factors, such as temperature and pH, change
over time. Nicolai et al. [18] constructed a dynamical model for the growth of LAB in
vacuum-packed meat. The model was divided into two parts: one part describing the
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fermentation and the other describing the pH evolution in the liquid surface layer. These
models were given as two differential equations and two algebraic equations, respec-
tively. Passos et al. [19] developed an unstructured model to describe bacterial growth,
substrate utilization, and lactic acid production by L. plantarum in cucumber juice. They
also developed an equation that relates the specific mortality rate and the sodium chloride
(NaCl) concentration. Drosinos et al. [20] formulated an empirical model to describe the
growth and production of bacteriocin by Leuconostoc mesenteroides E131 under different
conditions of pH and temperature. Further, a De Man, Rogosa, and Sharpe (MRS) broth
was used as a growth medium in the fermenter. Vázquez and Murado [21] proposed a
model based on the re-parametrized logistic equation to describe fermentation kinetics
of lactic acid production by Lactococcus lactis and Pediococcus acidilactici in a batch system.
Da Silva et al. [22] studied the growth of L. plantarum, W. viridescens, and L. sakei under
different isothermal culture conditions at temperatures of 4, 8, 12, 16, 20, and 30 ◦C. They
determined that LAB growth was strongly influenced by the culture temperature and
created new models that allowed them to predict growth at temperatures ranging from 4
to 30 ◦C. Dalcanton et al. [23] built a response model of the growth rate of L. plantarum as a
function of temperature, pH, and concentrations of NaCl and sodium lactate (NaC3H5O3).

Despite the existence of several mathematical models in the literature that describe the
behavior of LAB during the fermentation process in its three phases, i.e., lag, exponential,
and stationary phases, they do not include the death phase in these models. In batch
fermentation, after the stationary state, the depletion of nutrients in the culture medium
occurs, and therefore, the death phase begins and should be considered in these models.
By not taking the death phase into account, a problem arises when trying to fit real-life
experimental data with the models usually used in predictive microbiology. Therefore, the
objective of this research is to formulate a time-variant mathematical model that describes
the growth of LAB, including its death phase in batch fermentation.

The remainder of this paper proceeds as follows. In Section 2, we present the real-life
experimental data concerning biomass growth for eight LAB strains; we formulate our
cubic mathematical and explain each parameter; and the most important kinetic models
identified in the literature are explored. In Section 3, a statistical analysis is performed to
establish which model better fits the experimental data, and these results are illustrated
by means of several numerical simulations. Finally, discussions are described in Section 4,
and conclusions are given in Section 5.

2. Materials and Methods

2.1. Experimental Data

Eight LAB strains were investigated in the present study; all of them isolated from
autochthonous fermented milk. This process was performed based on certain desirable
characteristics and against microbial spoilage [24]. LAB strains were incubated for 48 h at a
temperature of 37 ◦C in reconstituted 10% milk powder to produce acidification. Biomass
production was measured every 6 h by means of the Neubauer cell counting chamber. Two
repetitions were performed for each strain, and the average was calculated as the final con-
centration value at each corresponding hour. The total biomass concentration was written
on a logarithmic scale with units given in log10(CFU/mL). Furthermore, the experimental
data were conditioned by a moving mean filter to minimize noisy measurements in the
biomass concentration and to better illustrate LAB growth in each of its four phases, which
we mentioned before as lag, exponential, stationary, and death. The results are illustrated
in Figure 1, and the overall dynamics allow us to formulate a third-degree polynomial that
will be discussed in the following section.
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Figure 1. Time-evolution for the eight LAB strains, each × mark represents the average value of the two measurements
made with Neubauer cell counting chamber on each strain. The ◦ mark represents the results obtained when applying a
moving mean filter to smooth the experimental data.

112



Symmetry 2021, 13, 1468

2.2. Mathematical Modelling: Cubic Polynomial Model

In order to formulate a mathematical model to describe the time-evolution for the
eight different strains of LAB in the 48 h of the process (see Figure 1), we proposed the
following third-degree polynomial

xβ(t) = x0 + at2 − bt3, (1)

where xβ(t) describes biomass growth dynamics in log10(CFU/mL) as a function of time, x0
is the initial biomass in each experiment, and coefficients a, b > 0 represent the relationships
between maximum biomass, lag phase time, and maximum growth rate. Differential
calculus concepts were applied to write coefficients as functions of the desired set of
parameters. Now, let us compute the first derivative, as it represents growth rate as follows

ẋβ(t) = 2at− 3bt2, (2)

to find the maximum increase in biomass, which is denoted as xmax, we calculate the local
extremums as indicated below

t(2a− 3bt) = 0,

from the latter, it is evident that at t = 0, there is a minimum. Therefore, the time when the
maximum biomass increase occurs is given at

t =
2a
3b

. (3)

Then, by the substitution of Equation (3) into Equation (1), one can calculate xmax as follows

xmax = x0 +
4

27
a3

b2 . (4)

Now, by computing the second derivative of Equation (1), which is given below

ẍβ(t) = 2a− 6bt, (5)

and the time to the inflection point is computed as follows from Equation (5)

TIP =
1
3

a
b

, (6)

then, this value is evaluated in Equation (2) to calculate the maximum growth rate, which
is denoted as μmax. This parameter represents the slope of the tangent at the inflection
point, and its value is given by the next result

μmax =
1
3

a2

b
. (7)

The total amount of biomass at the inflection point, which is given as h, is obtained by
evaluating Equation (6) into Equation (1), and the corresponding result is given below

h = x0 +
2
27

a3

b2 =
x0 + xmax

2
, (8)

therefore, the inflection point is located at the following coordinate(
a

3b
,

x0 + xmax

2

)
.

Now, in order to find the lag time-period (L), the intersection of the tangent line on
the inflection point at the t-axis was calculated, as illustrated in Figure 2.
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Figure 2. A graphic representation to compute the lag time-period parameter L.

Hence, by applying the point-slope equation, we formulate the following

x0 − h = μmax(L− TIP), (9)

and by isolating L from Equation (9), the following result is obtained

L = TIP +
x0 − h
μmax

,

then, replace TPI and h with Equations (6) and (8), respectively. Thus, L is rewritten as
follows

L =
a

3b
− xmax − x0

2μmax
. (10)

Equations (4) and (10) relate parameters of interest with coefficients a and b of Equation (1).
Therefore, one can isolate a from Equation (10) as follows

a = 3b
(

L +
xmax − x0

2μmax

)
, (11)

and substitute it into Equation (4) to find the value of b as indicated below

b =
xmax − x0

4
(

L +
xmax − x0

2μmax

)3 , (12)

then, Equation (12) should be replaced by Equation (11) to determine the final value of
coefficient a; hence

a =
3
4

xmax − x0(
L +

xmax − x0

2μmax

)2 . (13)

Values of a and b, given by Equations (12) and (13), respectively, are replaced into
Equation (1) to formulate the model in terms of parameters xmax, μmax and L. Therefore,
our cubic polynomial model to describe the four phases of LAB growth is shown below

xβ(t) = x0 +
3
4

xmax − x0(
L +

xmax − x0

2μmax

)2 t2 − 1
4

xmax − x0(
L +

xmax − x0

2μmax

)3 t3. (14)
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2.3. Primary Models

Numerical simulations were made to illustrate and analyze the time-evolution of our
model and the other three chosen from the literature. These models are presented below.
First, let us introduce the Gompertz model [14]:

xG(t) = x0 + (xmax − x0) exp
(
− exp

(
1 +

μmaxe
xmax − x0

(L + t)
))

. (15)

Then, the Baranyi model [17], which is given as follows:

xB(t) = x0 + μmax A(t)− ln

(
1 +

eμmax A(t) − 1
e(xmax−x0)

)
, (16)

where A(t) and h0 may be written as indicated below [25]:

A(t) = t +
1

μmax
ln
(

e−μmaxt + e−h0 − e−μmaxt−h0
)

with h0 = μmaxL.

Now, the model from Vázquez-Murado [21]:

xV(t) = x0 +
xmax − x0

1 + exp
(

2 +
4μmax

xmax − x0
(L− t)

) . (17)

In each model, x0 represents the initial biomass, xmax the maximum biomass, μmax the
maximum growth rate, and L the lag phase time. Further, these three models were selected
because they are among the most cited in predictive microbiology, and their parameters
are the same as in our cubic primary model (14). Parameter values were calculated from
the smoothed data of the eight LAB strains (see in Figure 1). Parameters x0 and xmax are,
respectively, the initial and the maximum biomass values. The value of the parameter μmax
is computed as shown below

μmax = max
{

Si+1 − Si
Δt

}
,

where Si+1 and Si are taken from the smoothed experimental data, i.e., a given value and
its previous one. The latter is divided by the time interval of the measurements, which,
in this particular case, Δt = 6 h, and since we have nine measurements, then i = 0, . . . , 8.
Furthermore, it should be noted that Equation (10) was used to calculate the Lag time
period, L. The results concerning all necessary parameter values are shown in Table 1.

Table 1. The results concerning all parameter values for the four mathematical models under study
respecting each LAB strain illustrated in Figure 1.

Strains x0 xmax μmax L

S1(t) 6.442 8.279 0.073 5.374
S2(t) 7.602 8.638 0.062 9.696
S3(t) 7.163 8.125 0.055 9.371
S4(t) 7.651 9.412 0.093 8.571
S5(t) 7.612 9.337 0.089 8.323
S6(t) 7.942 9.614 0.071 6.262
S7(t) 6.646 8.547 0.086 7.005
S8(t) 7.779 9.364 0.075 7.461
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3. Results

In order to validate our model, a statistical analysis was performed to calculate and
compare the descriptive capacity of the cubic model (14) and models (15)–(17). The statistic
used was the coefficient of determination

(
R2), which measures the goodness of fit of a

non-linear model according to experimental data. Its calculation is made based on the sum
of squared residuals (RSS), and the explanatory capacity of a model is better the closer R2

is to 1, see Section 11-8.2 [26].
Figures 3–6 illustrate the dynamics of the cubic model and its comparison with

analyzed models from the literature concerning the experimental data of eight LAB strains,
Si(t), i = 1, . . . , 8. One can see in Figure 3 that the cubic model describes the four expected
growth phases in batch fermentation, while the Gompertz model, see Figure 4; the Baranyi
model, see Figure 5; and Vázquez-Murado model, see Figure 6; only describe up to the
stationary phase, which caused the RSS value to be higher for these models, and therefore,
the results concerning R2 and AIC indicate a poorer fit. The lag phase time was around
5 to 9 h. The maximum biomass growth was reached between 30 and 36 h for each of the
strains, and from that time, the death phase begins.

According to our numerical simulations, one can observe that the proposed cubic
model (14) and the other primary models (15)–(17) have a good adjustment in the lag phase,
as is shown by each solution and the corresponding experimental data. Concerning the
exponential phase, the Baranyi model is slightly above the others. However, this model
has a lower growth rate, which causes a delay when reaching the maximum concentration,
approximately at 48 h, while other models reach this value at around 30 or 36 h. Regarding
the maximum biomass growth, the three primary models remain in the stationary phase,
while the experimental data goes to the death phase. Therefore, the RSS of these models
is higher than the cubic model, as this one better fits the observed data in this last phase.
Table 2 shows the results of R2 and RSS for the cubic, Gompertz, Baranyi, and Vázquez-
Murado models with respect to the experimental data illustrated in Figure 1.

Table 2. The results of R2 and RSS for each mathematical model.

Cubic Model Gompertz Baranyi Vázquez-Murado
Strains R2 RSS R2 RSS R2 RSS R2 RSS

S1(t) 0.805 0.843 0.669 1.431 0.556 1.920 0.678 1.392
S2(t) 0.793 0.437 0.722 0.586 0.641 0.760 0.723 0.587
S3(t) 0.637 0.899 0.435 1.400 0.392 1.508 0.428 1.419
S4(t) 0.924 0.324 0.742 1.102 0.705 1.262 0.741 1.106
S5(t) 0.800 0.977 0.677 1.578 0.685 1.539 0.654 1.693
S6(t) 0.912 0.373 0.957 0.178 0.836 0.698 0.960 0.167
S7(t) 0.792 1.049 0.590 2.064 0.491 2.561 0.614 1.944
S8(t) 0.898 0.365 0.756 0.871 0.640 1.285 0.766 0.835

Now, concerning strain 1, the cubic model presented an RSS of 0.843 and, consequently,
a higher value of R2 given by 0.805 compared to Gompertz, Baranyi and Vázquez-Murado
models, which obtained an RSS equal to 1.431, 1.920, and 1.392 and an R2 equal to 0.669,
0.556, and 0.678, respectively. For strain 2, the highest R2 value was for the cubic model
with 0.793, followed closely by the Vázquez-Murado and Gompertz models with 0.723
and 0.722, respectively, while the Baranyi model had a result of 0.641. In the particular
case of strain 3, all models had a lower adjustment when comparing them with the other
seven strains. However, the best fit was for the cubic model with an R2 of 0.637, while the
Gompertz model obtained a value of 0.435, Baranyi obtained 0.392, and Vázquez-Murado
0.428. For strain 4, very similar R2 values were obtained for Gompertz, and Vázquez-
Murado models, 0.742 and 0.741, respectively, while the cubic model obtained a result of
0.924, and Baranyi got a value of 0.705. In strain 5, the cubic model had an R2 value of
0.800, which was higher than the Gompertz 0.677, Baranyi 0.685, and Vazquez-Murado
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0.654. Strain 6 had a better fit for all models. The Vázquez-Murado model had an R2 of
0.960, Gompertz 0.957, cubic model 0.912, and the lowest value was for Baranyi, with 0.836.
These higher R2 values are due to fact that the experimental data for this strain have fewer
outliers, as seen in Figure 1, and its death phase is lower compared to the other strains.
Strain 7 had a better fit for the cubic model, with an R2 of 0.792, than the Gompertz (0.590),
Baranyi (0.491), and Vázquez-Murado (0.614) models. Finally, as in most cases, the cubic
model had the best fit for strain 8 with an R2 value of 0.898, while Gompertz and Vázquez-
Murado obtained, respectively, 0.756 and 0.766. In general, the cubic model had higher
values of R2 than the rest of the models, except in strain 6, where the Vázquez-Murado
model had the better fit to the experimental data. The latter was due to the data not yet
presenting the death phase as the other strains in the 48 h of the experiment.

Furthermore, the Akaike Information Criterion (AIC) test was performed, which
allows us to determine which model better fits the observed data. To calculate this value,
the goodness of fit between predictions of models and experimental data is considered
through the RSS while penalizing models that have a greater number of parameters due
to these becoming more complex for its practice [27]. Table 3 shows results for every
mathematical model.

Table 3. AIC results for each mathematical model.

Strains Cubic Model Gompertz Baranyi Vázquez-Murado

S1(t) −3.310 +1.453 +4.097 +1.205
S2(t) −9.213 −6.570 −4.242 −6.573
S3(t) −2.735 +1.256 +1.921 +1.377
S4(t) −11.921 −0.898 +0.317 −0.868
S5(t) −1.980 +2.335 +2.098 +2.963
S6(t) −10.650 −17.293 −5.079 −17.845
S7(t) −1.342 +4.750 +6.688 +4.209
S8(t) −10.844 −3.019 +0.481 −3.398

By taking the latter into account, the model that better fits the experimental data is the
one with the lowest AIC value. For strain 1, the lowest AIC was for the cubic model with a
value of −3.310, while Gompertz, Baranyi, and Vázquez-Murado models obtained values
of 1.453, 4.097, and 1.205, respectively. In strain 2, the cubic model had the lowest AIC,
with a value of −9.213, and the Gompertz model and the Vázquez-Murado model had
similar results, −6.570 and −6.573 respectively, while the Baranyi had a value of −4.242.
The cubic model fitted better to the experimental data of strain 3 with an AIC of −2.735,
followed by Gompertz with 1.256, Vázquez-Murado with 1.377, and finally, Baranyi with
1.921. Again, for strain 4, according to the AIC values, the cubic model (−11.921) was
better than the Gompertz (−0.898), Baranyi (0.317), and Vázquez-Murado (−0.868) models.
In strain 5, the best AIC value was for the cubic model (−1.980), while Gompertz obtained
2.335, Baranyi 2.098, and Vázquez-Murado 2.963. In strain 6, very close AIC values were
obtained for Vazquez-Murado −17.845 and Gompertz −17.293, but the Vázquez-Murado
model was slightly better. The cubic model had a value of −10.650. On the other hand,
Baranyi model had a lower fit with an AIC of −5.079. For strain 7, the lowest AIC value
was obtained for the cubic model −1.342, while Gompertz had a value of 4.750, Baranyi
6.688, and Vázquez-Murado 4.209. Finally, regarding strain 8, the cubic model had the
better fit to the experimental data based on its AIC value (−10.844), and Baranyi had the
worst fit (0.481), while Gompertz and Vázquez-Murado obtained results of −3.019 and
−3.398, respectively.

After analyzing the statistical results, it is evident that our formulated cubic primary
model better fits the experimental data because it was the one that presented the lowest
RSS in general and therefore had higher values for the R2 in all LAB strains but number 6,
which had a higher value with the Vázquez-Murado model (0.960). However, the result
for the cubic model was of 0.912, which is still a good value concerning this parameter.
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Therefore, based on the results for the RSS, R2, and the AIC, we can establish that the cubic
primary model (14) better represents the overall dynamics of the experimental data for the
eight LAB strains under study in this research.

Figure 3. Predictions of the cubic model xβ(t) compared with the experimental data Si(t).
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Figure 4. Predictions of Gompertz model xG(t) compared with the experimental data Si(t).
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Figure 5. Predictions of the Baranyi model xB(t) compared with the experimental data Si(t).
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Figure 6. Predictions of the Vázquez-Murado xV(t) compared with the experimental data Si(t).
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4. Discussion

In predictive microbiology, primary models based on sigmoidal functions are usually
used. Among the most common models, we have the Gompertz [14], the Baranyi [17],
and the Vázquez-Murado [21] models. Nonetheless, the latter only describe the first three
growth phases, i.e., lag phase, exponential growth, and the stationary state. According to
Buchanan et al. [28] and Garre et al. [29], these phases are sufficient to fit experimental data
for growth models. However, according to Mandigan et al. [6], in batch fermentation, the
bacterial population presents a death phase due to nutrient depletion in the culture medium.
Therefore, when adjusting these models to observed data in this kind of fermentation,
values of greater discrepancy are found in the death phase between the experimental
data and approximated values. Chatterjee et al. [30] incorporated the death phase into
the Gompertz model to better describe the behavior of E. coli and S. aureus. Studies by
Bevilacqua et al. [31] were focused on demonstrating the importance of the death phase
of microorganisms and its impact on the shelf life of food. Solano et al. [32] evaluated
the capacity of five models, including the Gompertz, Baranyi, and Vázquez-Murado,
to predict acid production in lactic fermentation of fishing products, and they found that
models with the lowest residual variance were those of Gompertz and Baranyi. Further,
this study shows that the Vázquez-Murado model failed to give an adequate adjustment
for lactic fermentation. In the same way, Zwietering et al. [33] managed to describe the
behavior of L. plantarum in an MRS medium with the Gompertz model, while the Vázquez-
Murado logistic model was not suitable to accurately approximate the experimental data.
In contrast, Kedia et al. [34] obtained a good fit with the Vázquez-Murado model for
L. reuteri, L. plantarum, and L. acidophilus in oat fractions. Da Silva et al. [22] studied the
growth of L. plantarum, W. viridescens, and L. sakei in vacuum-packed meats, and, as well
as Baty and Delignette [35] who studied different growth models for various LAB, all
authors in these two works found that the Baranyi model has a slightly better fit than the
Gompertz model.

According to the R2 and AIC values, it can be established that the cubic model has a
better fit to the experimental data with average values of R2 = 0.820 and AIC = −6.499.
There was not enough difference between the average values for the Gompertz model
with R2 = 0.693 and AIC = −2.248, while the Vázquez-Murado had average results of
R2 = 0.695 and AIC = −2.366. Regarding the Baranyi model, the average results were as
follows R2 = 0.618 and AIC = 0.785. Further, the overall adjustment to the experimental
data for the four primary models under study is illustrated in Figures 3–6.

In this research, the four primary models presented a good adjustment in the lag
phase (L) and reached the maximum growth (xmax) registered in the experimental data.
However, the maximum growth rate value (μmax) had a greater impact on the adjustment
of the exponential growth phase, in which the cubic model was the one that had the better
fit. Nonetheless, in order to get a good fit with primary models, it is necessary to measure
the largest amount of experimental data with the greatest possible continuity, which will
ensure a better prediction by the models. In the batch fermentation process performed
for this work, the eight LAB strains showed outliers, which could be due to the method
applied for the measurements. Therefore, the experimental data had to be smoothed to
calculate all required parameters for each mathematical model. It is important to consider
that outliers are present in all real-life data measurements, such as biomass growth.

In the cubic model, the parameter μmax also influences the death phase of the biomass.
The latter because a higher growth rate implies that the maximum biomass concentration
will be reached, and due to the inherit dynamics of this kind of function, after reaching
this maximum point, the biomass begins to decline. It is important to consider that if
this mathematical model is simulated at time values further than 70 h, biomass will take
negative values, which is not biologically feasible in real-life scenarios. However, this can
be neglected because the fermentation process to produce acidified milk generally takes
around 48 h, and it is not necessary to predict the behavior of this variable beyond this
time, as this is the final desired product. Predictive models aim to ensure food quality and
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provide a tool that supports decision-making on fermentation design. Therefore, based
on the results and as it is illustrated in Figures 3–6, a decision can be made to perform
a fermentation process under the same culture conditions only up to 36 h, i.e., when the
maximum biomass growth is reached for this type of fermented milk.

5. Conclusions

A time-variant mathematical model given in the form of a third-order polynomial was
formulated to describe the growth dynamics over a period of 48 h for eight LAB strains. Our
so-called cubic primary model (Equation (14)) was constructed with the parameters that are
frequently used in other primary models, i.e, biomass initial concentration, (x0); lag phase
time, (L); maximum growth rate, (μmax); and maximum growth, (xmax). Furthermore,
both the numerical simulations and the statistical results concerning RSS, R2, and the AIC
support our statement that the cubic model xβ(t) accurately represents the four biomass
growth phases in the batch fermentation process when comparing it with three other
models that are among the most cited in predictive microbiology literature.
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Abstract: This paper addresses the problem of describing the spread of COVID-19 by a mathematical
model introducing all the possible control actions as prevention (informative campaign, use of masks,
social distancing, vaccination) and medication. The model adopted is similar to SEIQR, with the
infected patients split into groups of asymptomatic subjects and isolated ones. This distinction is
particularly important in the current pandemic, due to the fundamental the role of asymptomatic
subjects in the virus diffusion. The influence of the control actions is considered in analysing the
model, from the calculus of the equilibrium points to the determination of the reproduction number.
This choice is motivated by the fact that the available organised data have been collected since from
the end of February 2020, and almost simultaneously containment measures, increasing in typology
and effectiveness, have been applied. The characteristics of COVID-19, not fully understood yet,
suggest an asymmetric diffusion among countries and among categories of subjects. Referring to
the Italian situation, the containment measures, as applied by the population, have been identified,
showing their relation with the government’s decisions; this allows the study of possible scenarios,
comparing the impact of different possible choices.

Keywords: epidemic ODE model; COVID-19 spread in Italy; system control and identification

1. Introduction

In this paper, the spread of COVID-19 is discussed with a particular focus on the
application of the containment measures, referring to the Italian situation.

Officially defined as a pandemic in March 2020, the disease induced by the SARS-CoV-
2 virus, called COVID-19, has influenced and changed human life all over the world [1].
Some of its peculiarities represent a complication in the identification of the epidemic
outbreaks; one of them is the significant number of asymptomatic subjects, able to infect
other people. An additional interesting characteristic of COVID-19 is the asymmetric
increase in the number of hospitalised patients with age; in fact, while for young people
the virus is almost harmless, for the elderly population, especially in association with
pre-existing pathologies, it is extremely dangerous; the mean age of patients dead in
Italy for COVID-19 is 81, counting more than 105 deaths and over than 3 million infected
patients [2–4]. Moreover, the reasons for the asymmetric increase in cases and case fatality
rate among countries are still not evident [5]; after a deep analysis of various factors that
could justify the differences among countries, it seems that the density of the population
plays an important role, suggesting a fast implementation of active control measures (as
quarantine, the tracking of infections and testing) and a low case fatality rate.

The virus spreads through individuals’ movements and the most effective containment
measure is the reduction in contacts among people, from mild public recommendations to
strict lockdowns, with the use of masks everywhere; no specific medication is available
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and in severe cases, oxygen support is required [1]. For a fast recognition of the infection
(and therefore to prevent the spread of the virus), suitable swab tests are performed on
subjects who are suspected to have had a dangerous contact or before entering the hospital
or starting some activities. For example, a swab test campaign has been promoted by some
Italian universities for their students [6].

Despite all the containment measures applied, three epidemic waves can be recognised
after a year of pandemic and to date, the most dangerous has been the second one, in
November 2020.

In a few months, some vaccines have become available and countries are trying to
immunise their population as quickly as possible; in fact, after some initial problems with
the supply of doses, the vaccination campaign has the ambition of immunising more than
70% of the European population by the end of next summer.

Since the beginning of the pandemic, many researchers have focused their works
on studying the evolution of the virus spread, trying to predict future trends in the num-
ber of infected patients, in order to adequately set up suitable containment measures.
Nevertheless, the unknown diffusion of asymptomatic subjects makes the challenge very
difficult [7,8]; a possible estimation of the number of non-diagnosed subjects has been
obtained by testing entire (small) communities, such as the case of the Italian city of Vo’,
one of the first studies of this kind [7], or by means of serological test campaign, as the
one conducted in Italy during the period May–July 2020 [9], which evidenced a significant
number of subjects (a mean value of 2.5% of the population, not equally distributed in
the country) that were infected by SARS-CoV-2 during the first months of the pandemic
without knowing.

Some papers have been devoted to the analysis of real data trying to determine
the modalities of the spread among nations, as in the early work [10], or in a homo-
geneous population [11–14]. In the latter paper, a quite rich model composed by eight
different classes is proposed: in addition to the usual susceptible (S), exposed (E), infec-
tious with symptoms (I) and recovered (R) compartments, there are also the groups of
pre-symptomatic infectious (A), the hospitalised (H), the quarantined susceptible (Sq), the
isolated exposed (Eq) and the isolated infected (Iq) compartments.

Due to the specificity of the virus, interesting works have focused on age-compartmental
models, as in [15], where the role of quarantined subjects is emphasised, referring in par-
ticular to residential care homes, or as in [16], in which the initial contagion step was
distinguished among age-classes.

Sometimes, previously studied models for other epidemic emergencies are adapted
to the specificity of COVID-19, like in [17], where a short time forecast is provided, on
the basis of the few data initially available. On the other hand, the current COVID-19
emergency has been the inspiration for a more general analysis as in [18], in which the
problem of how to face the next wave of infectious disease is studied by analysing the
global symmetries of the system under suitable time rescaling. It shows the importance of
controlling the arrival of the next wave when the number of infections grows linearly, i.e.,
during the period between waves.

As already noted in the cited papers, the model structure that appears suitable to
describe the COVID-19 evolution inside a population is the SEIR one (referring to the
four classes of subjects in which the population is partitioned: Susceptible–Exposed–Infected–
Removed), enriched with the classes specific for this emergency, like the asymptomatic
individuals and the quarantined ones.

All the proposed models must consider the containment measures applied since the
beginning of the pandemic, including social distancing, the use of masks, medication, the
swab test, informative campaigns and the vaccination. In [19], the importance of using
masks is studied, even in the case of non-totally effective protection; it models both the
inward and outward efficiency of the mask, disaggregating the population variables into
those that do and do not use masks. The results show how the use of masks decreases the
effective transmission rate, especially with other interventions, such as social distancing
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and hygienic measures. In particular, social distancing and informative campaigns are
discussed in [20,21]. The social distancing measure is modelled by means of a nonlinear
function influencing the contact rate; numerical simulations show the impact of this specific
containment measure on the virus spread. The importance of general awareness in regard
to the dangers of COVID-19 infection was investigated in [21], in which the impact of the
media campaign is studied, along with the rapid testing; the class of susceptible individuals
is partitioned depending on the careful application of preventive behaviours, and the test
campaign was modelled by improving the transfer of subjects from the asymptomatic (and
dangerous) condition to the infected diagnosed one.

The identification of the model is therefore influenced by these actions, the conse-
quences of the governments’ choices and of personal behaviours; as previously mentioned,
the strict lockdown is the most effective action to contain the spread. Nevertheless, it cannot
be the solution for long periods, for both social and economic reasons; therefore, there
have been attempts to propose proper and balanced containment measures, depending
on the evolution of the pandemic [22]. It is worth noting that awareness of the impact of
the containment measures can also modify people’s behaviours and therefore the trend of
pandemic itself.

In this paper, starting from the model proposed in [23], the problem of identifying the
applied containment measures is faced, studying the model under the realistic condition
of the implementation of these actions since the very beginning of the health emergency.
The consequence is the possibility of identifying the restrictions as they were really applied
by the population and by the healthcare system, observing on one hand an increase in the
awareness of people in the application of social distancing (also depending on the specific
period under study) and, on the other hand, a general improvement in the capability of
the sanitary system to face the emergency. This identification, corresponding to a sort of
transducer of the government’s measures, is useful when one wants to predict what would
happen by applying the same kind of control measures already applied or a combination
of them.

The paper is organised as follows; in the second section, the mathematical model
was recalled and studied, determining the equilibrium points, the effective reproduction
number and discussing the identification of the containment measures by proposing a
suitable cost index. In the numerical results section, after showing the effectiveness of the
identification procedure as well as the fitting ability, interesting scenarios are studied.

2. Materials and Methods

In this section, the mathematical model proposed in [23] is enriched with the introduction
of the possible control actions, the test campaign, the quarantine, the medication and the
vaccination, as shown in Section 2.1. The model is studied in Sections 2.2 and 2.3, determining
the equilibrium points and proposing a stability analysis, calculating the expression of
the basic reproduction number and studying its relation with the equilibrium points. In
Section 2.4, the identification of the applied containment measures is proposed.

2.1. The Mathematical Model Proposed and Introduction of the Containment Measures

In the model adopted and briefly recalled in this subsection, all the typologies of
controls that can be put in place for containing the spread of COVID-19 and for the
reduction of its mortality are introduced. The state space dimension is kept as low as
possible to maintain the simplicity and immediacy of a SEIR model, but including those
classes specific to the main characteristics of COVID-19, thus allowing to determine the
effects of the controls introduced. The six-dimensional system proposed is:
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Ṡ = B− β(1− u2)SIu + bnQ + cnu5Q− au1S− dSS− vu6S (1)

Ė = β(1− u2)SIu − au1E− kE− dEE (2)

İu = kE− au1 Iu − h1 Iu − h2 Iu − dIu Iu (3)

İd = h1 Iu + h1(1− n)Q + c(1− n)u5Q− (γ + ηu3)Id

− dId(1− u4)Id (4)

Q̇ = au1(S + E + Iu)− bnQ− h1(1− n)Q− cu5Q− dQQ (5)

Ṙ = h2 Iu + (γ + ηu3)Id − dRR + vu6S (6)

where:

• S is the class of susceptible individuals;
• E is the class of infected patients in the incubation phase; they cannot infect other

subjects;
• Iu is the class of the infected patients without symptoms; they are infective and then

are responsible for the disease spread. They can remain asymptomatic for all the
illness course or can start to have some symptoms;

• Id is the class including the diagnosed infected patients which are isolated and then can-
not transmit the virus even if infective. Patients in this class are the ones that can receive
medical treatment both for the infection and for secondary diseases or complications;

• Q is the class of the suspected infected individuals which are temporarily isolated and
tested for positivity of the SARS-CoV-2, or simply quarantined for security reasons;

• R is the class of the recovered individuals, the ones which healed spontaneously or
after therapy, which are supposedly no longer infected.

The parameters introduced in (1)–(6) have been extensively described in [23]. The death
rates in each class are denoted by the d∗ terms. The constant rate B of new incoming individ-
uals was only added in the susceptible class, considering the negligible time of permanence
in the other classes with respect to the population growth. Parameter β is the contact rate.
The parameters k, h1, h2 and γ denote the natural transition rates between classes; b and
c are related to the results of the tests on the suspected cases in Q. More precisely, b is
the rate of return from quarantine of the supposedly healthy people, while c denotes the
rate of transition from Q to the class corresponding to the results of the test, healthy with
probability n = S(t)

S(t)+E(t)+Iu(t)
(test negative), or infected for the remaining 1− n, defined

according to the average time required for the tests.
As far as the control actions ui, i = 1, . . . , 6, are concerned with reducing the spread of the

virus and to take care of medical issues, respectively, the following functions are introduced:

• u1, with an efficacy coefficient a, which denotes the action aiming to stimulate or force
a test campaign on the population, even without any suspect of infection. The goal is
to recognise infected individuals as early as possible to reduce the contact rates;

• u2 models the isolation indications, aiming to reduce the interaction with other people.
This isolation acts on the factor β for the part responsible of the frequency of individual
contacts; it is bounded between zero and one, with u2 = 1 corresponding to an ideal
total individual isolation;

• u3 represents the therapy action devoted directly to counteract the virus by means of
antiviral drugs; the associated coefficient η denotes the effectiveness of the therapy;

• u4 is the therapy action aiming at reducing the side-effects, typically the induced
cardio–respiratory diseases. Its effect is introduced as a direct contribution to reduce
the mortality rate and it is bounded between zero and one, corresponding, respectively,
to no therapy and to the desirable condition of all individuals kept alive during the
course of the infection;
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• u5 models all the constraints (medical, political and economical) influencing the tests
policy and the consequent effects;

• u6 regards the vaccination strategy, possible since the end of 2020. The coefficient v
denotes the efficiency of the vaccination, depending on the individual response and
on the type of vaccine used.

2.2. Model Analysis

In this section, the qualitative analysis of the system behaviour is proposed, choosing
to include the control actions ui, i = 1, . . . , 6; the reason for this is that it can be assumed
that there is a lack of any containment measure only in the very first period of the epidemic,
until January 2020, when nobody, at least in Europe, was sufficiently aware of the danger
of the situation.

Aiming at the unified analysis in which all potentially active control actions are
naturally included in the system evolution, the following positions are assumed:

• ā(t) = au1(t)
• β̄(t) = β(1− u2(t))
• η̄(t) = ηu3(t)
• γ̄(t) = γ + ηu3(t)
• d̄Id(t) = dId(1− u4(t))
• c̄(t) = cu5(t)
• v̄(t) = vu6(t)

Moreover, for the sake of simplicity in the formulation, the following non-negative
functions are introduced:

• m1(t) = ā(t) + dS + v̄(t)
• m2(t) = ā(t) + k + dE
• m3(t) = ā(t) + h1 + h2 + dIu(t)
• m4(t) = bn + c̄(t)n
• m5(t) = bn + h1(1− n) + c̄(t) + d̄Q(t)
• m6(t) = dS + v̄(t)

The model analysis was performed, as usual, by assuming constant controls ui, which
correspond to constant values for mi; the equilibrium points are determined by equating the
second members of the Equations (1)–(6) to zero, that is, by using the notations introduced
above, by solving the system:

0 = B− β̄SIu + m4Q−m1S (7)

0 = β̄SIu −m2E (8)

0 = kE−m3 Iu (9)

0 = h1 Iu + (h1 + c̄)(1− n)Q− γ̄Id − d̄Id Id (10)

0 = ā(S + E + Iu)−m5Q (11)

0 = h2 Iu + γ̄Id − dRR + v̄S (12)

Observing that in absence of infection, n = 1 (being equal to 1 the probability of
having negative COVID-19 test), it is easily verified that the disease-free equilibrium (DFE),
always present, is given by

Pe
1 =

(
Se

1 Ee
1 Ie

u1 Ie
d1 Qe

1 Re
1
)T

=
(

Bm5
m4m6+d̄Qm1

0 0 0 Bā
m4m6+d̄Qm1

Bv̄m5
dR(m4m6+d̄Qm1)

)T
(13)

once the solution with E = Id = Iu = 0 is taken. Note that, as will be used later, when
n = 1, the following identity holds m4m6 + d̄Qm1 = m1m5 − ām4.
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A second equilibrium point:

Pe
2 =

(
Se

2 Ee
2 Ie

u2 Ie
d2 Qe

2 Re
2
)T (14)

the endemic one, can be found in (7)–(12). In particular, from (9) and (8), it can be obtained that:

Se
2 =

m2m3

kβ̄
(15)

Ee
2 =

m3

k
Ie
u2 (16)

By substituting in (11), it results:

Qe
2 =

ām2m3

kβ
+

ā
m5

(
m3

k
+ 1)Ie

u2 (17)

and Ie
d2 is obtained, as function of Qe

2, from (10):

Ie
d2 =

1
γ̄ + d̄Id

(h1 Ie
u2 + (1− n)(h1 + c̄)Qe

2) (18)

All these quantities, with the exception of Se
2, definitely depend on Ie

u2, and are well defined
once Ie

u2 is defined. Its expression is obtained from (7) by

Ie
u2 =

ām2m3m4 + kβ̄m5B−m1m2m3m5

β̄(β̄m2m3m5k− ām3m4 − ākm4)
(19)

This solution can be accepted only if positive; by substituting the definitions of mi,
i = 1, . . . , 5, it can be easily shown that the denominator is always positive, whereas the
sign of the numerator depends on the condition:

β̄kBm5

m2m3(m1m5 − ām4)
− 1 =

β̄kPe
1

m2m3
− 1 = R− 1 > 0 (20)

The meaning of the herein defined expression R will be discussed in the next subsection,
when determining the Effective Reproduction Number [24].

As far as the analysis of the stability property of Pe
1 is concerned, the following result

can be stated.

Proposition 1. The disease-free equilibrium point Pe
1 is asymptotically stable if and only if:

R− 1 =
β̄kBm5

m2m3(m1m5 − ām4)
− 1 < 0 (21)

In fact, by writing the Jacobian of the controlled system (1)–(6) and using the intro-
duced notations with the mi quantities, it is obtained that:

J =

⎛⎜⎜⎜⎜⎜⎜⎝

−m1 0 −β̄Se
1 0 m4 0

0 −m2 β̄Se
1 0 0 0

0 k −m3 0 0 0
0 0 h1 −(γ̄ + d̄Id) (1− n)(h1 + c̄) 0
ā ā ā 0 −m5 0
v̄ 0 h1 γ̄ 0 −dR

⎞⎟⎟⎟⎟⎟⎟⎠ (22)
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Due to the special structure of the Jacobian J, its characteristic equation evaluated in Pe
1

has two negative roots, −dR and −(γ̄ + d̄Id), found considering the sixth and the fourth
columns; the other roots are obtained from the four degrees polynomial:

P(λ) = λ4 + N3λ3 + N2λ2 + N1λ + N0 (23)

whose coefficients Ni, i = 0, . . . , 3 contain the defined quantity R previously introduced:

N3 = m1 + m2 + m3 + m5 (24)

N2 = m2m3(1−R) + (m2 + m3)(m1 + m5) + m1m5 − ām4 (25)

N1 = m2m3(1−R)(m1 + m5) + (m2 + m3)(m1m5 − ām4) (26)

N0 = m2m3(1−R)(m1m5 − ām4) (27)

To study the sign of the real part of the roots of the P(λ), Routh’s arguments are used [25];
first of all, it can be noted that, since mi > 0, i = 1, . . . , 6, it results that the sign of the Ni is
the same as 1−R, as it can be easily shown by substituting the definitions of mi, i = 1, 4, 5
in m1m5 − ām4, always positive. By applying Routh’s rule to P(λ), the sign of the two
quantities must be studied:

N3N2 − N1 N1(N2N3 − N1)− N2
3 N0 (28)

From the definitions (24)–(27), and substituting the expressions of mi, i = 1, . . . , 6, it can be
deduced that they are positive if 1−R > 0. Therefore, it is possible to conclude that in this
case, the disease-free equilibrium is stable. When the second equilibrium point exists, see
condition (20), the point Pe

1 becomes unstable.

2.3. The Effective Reproduction Number

As already stated, the model analysis is performed assuming constant controls, thus
obtaining the equilibrium points that depend on those values of the containment measures.
In the contest of coping with the pandemic, these actions are generally kept constant for a
period of at least two weeks, to be able to see their effects and provide suitable adjustments
of the containment measurements, if needed. In this sense, both Pe

1 and Pe
2 (when the latter

equilibrium point exists) depend on the applied controls, and therefore, on the period
during which the chosen actions are applied. The DFE, Pe

1, in particular, has a special
meaning; if a population is in that condition by means of the (constant) control actions
introduced during a specific period and for the model parameters, and if the quantity 1−R
is positive, then the evolution of the population will remain near Pe

1, without allowing
the spread of the epidemic. Referring to COVID-19 (and therefore assuming fixed model
parameters) and to the definition of R, a suitable application of social distancing (thus
acting on β̄), of swab tests and quarantine (thus acting on ā and c̄), medication (acting on
γ̄) and vaccination (control v̄) would lead the population to the DFE.

The quantity R introduced in (20) is related to the effective reproduction number, the
actual average number of secondary cases per primary case at calendar time t [26]. More
precisely, this indicator, when evaluated in absence of any control action (i.e., at the
beginning of the epidemic), is the well-known R0, the basic reproduction number that can be
estimated from data or by using the next-generation matrix approach [24,27].

The introduction of the containment measures aims to reduce the incidence of the
epidemic; in this case, the effective reproduction number is an indicator of the epidemic
evolution and of the effectiveness of the applied control actions. Generally, it is determined
from data, that by using a statistical approach [28], or by adapting the previously cited next-
generation matrix approach, as proposed in [24,29,30]. The difference between the methods
proposed in the above-cited papers relies on the points in which the next-generation matrix
is evaluated; according to the approach in [30], the reproduction number will be herein
evaluated by using the disease-free equilibrium (13), which includes the vaccination, when
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possible, and the tests campaign, with all controls assumed constant when theR evaluation
is performed.

The computation starts by considering in the dynamics (1)–(6) the classes directly
involved in the spread of infection, E, Iu, Id and Q, and therefore only the Equations (2)–(5).
By using the notations with the mi, i = 1, . . . , 6 quantities, the reduced system (2)–(5)
may be written and enhance the contributions due the infection, F , and the ones due to
changing the health condition, V :⎛⎜⎜⎝

Ė
İu
İd
Q̇

⎞⎟⎟⎠ =

⎛⎜⎜⎝
βSIu

0
0
0

⎞⎟⎟⎠−

⎛⎜⎜⎝
m2E

−kE + m3 Iu
−h1 Iu − [(h1 + c̄)(1− n)Q] + (γ̄ + d̄Id)Id

−ā(S + E + Iu) + m5Q

⎞⎟⎟⎠ = F − V (29)

The variations of these vectors with respect to the variables E, Iu, Id and Q, evaluated in
the disease-free equilibrium, yield the matrices F and V, respectively:

F =
∂F

∂(E, Iu, Id, Q)

∣∣∣∣
P1

e

=

⎛⎝0 β̄S1
e 0 0

0 0 0 0
0 0 0 0

⎞⎠ (30)

and:

V =
∂V

∂(E, Iu, Id, Q)

∣∣∣∣
P1

e

=

⎛⎜⎜⎝
m2 0 0 0
−k m3 0 0
0 −h1 γ̄ + dId 0
−ā −ā 0 m5

⎞⎟⎟⎠ (31)

Under these positions, the effective reproduction number is given by the dominant
eigenvalue of the matrix FV−1, given in this case by its {(1, 1)} element; its computation

easily yields the same expression defined in (20), R =
β̄kPe

1
m2m3

.
Therefore, also in the proposed approach that includes the control actions, it can be

deduced that if the effective the reproduction number R is smaller than 1, there exists a
unique equilibrium point, the disease-free equilibrium one that is stable; otherwise, the
equilibrium points are two and the disease-free one is no longer stable.

2.4. Containment Measures Identification

The approach adopted in this paper was to consider the model evolution influenced
by the application of the containment measures since the very beginning of the analysis;
this is reasonable as the data only started to be collected at the end of February 2020 with
the introduction of measures of increasing severity [1]. All the actions ui, i = 1, . . . , 6, are
assumed between 0 and 1. Note that for the controls, the value 0 corresponds to the absence
of any action, whereas 1 represents the maximum effort. The controls are multiplied by
factors representing the effectiveness of the control; therefore, the identification of the
containment measures is obtained once the evolutions of the quantities ā(t), β̄(t), γ̄(t),
d̄Id(t), c̄(t) and v̄(t) are determined. Note that the meaning of the evolution of β̄ is opposite
with respect to the corresponding one of u2: when the control u2(t) is maximum (ideally
equal to 1), the quantity β̄ has its minimum value (corresponding to the absence of contacts);
similar consideration holds for the control u4(t) and the quantity d̄Id(t).

The data that will be used for identification regard the Italian situation; they were
downloaded from the Civil Protection website [2]. More precisely, there are considered:

• The number of newly diagnosed infections IN
real(t) obtained considering the sum of

the variation of the number of infected patients, of the recovered and the deaths
between two consecutive days; IN

model(t) is the corresponding quantity evaluated from
the model;

• The number of positive patients Ireal corresponding to the Id ones of this model;
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• The number of subjects officially recovered Rreal from COVID-19, corresponding to:

RId(t) = (γ + ηu3(t))Id(t) (32)

• The number of patients deceased from direct effects of the virus—Dreal—corresponding
to the following function obtained from the model:

D(t) = dId(1− u4(t))Id(t) (33)

• The number of subjects vaccinated with the two doses Vreal(t) corresponding to the
quantity V(t) = v̄S(t) of the model.

The following cost index is proposed, aiming to fit the available real data, by minimiz-
ing the errors between measured quantities and the corresponding outputs of the model:

J (ā, β̄, γ̄, d̄Id , c̄, v̄) =
∫ t f

t0

[w1(IN
real(t)− IN

model(t))
2

+ w2(Ireal(t)− Id(t))2 + w3(Rreal(t)− RId(t))
2

+ w4(Dreal(t)− D(t))2 + w5(Vreal(t)−V(t))2]dt (34)

where the parameters wi, i = 1, . . . , 5, weight the relevance of each term in the optimisa-
tion procedure.

All the available information will be used to improve the numerical identification of
the quantities ā, β̄, γ̄, d̄Id , c̄, v̄. For example, it is well known that the vaccination campaign
only started in January 2021; therefore, in the first period, it could be assumed v̄ = 0.
Another possible simplification regards the relation between the two controls u3 and u4.
In Equation (4), the two contributions related to healing and to death are assumed to be
separated since they correspond to different therapy actions. Nevertheless, in some ways,
they refer to the same kind of resources, referring to the medication aspects; therefore,
for the sake of simplification, to better match the real data available, it can be reasonably
assumed that there is a relation among u3 and u4:

γ̄(t) = γ + ηu3(t) = h3u4(t) (35)

where parameter h3 is related to the rate of healing for infected patients. This implies that a
simplified choice for the cost index (34) can be assumed, leading to the identification of
ā, β̄, γ̄, c̄ up to the end of December 2020, with the addition of v̄ starting from January 2021.

3. Numerical Results

In the model introduced in Section 2, the parameters can be distinguished on the
basis of their dependence on the characteristics of the considered population or of those of
SARS-CoV-2. Difficulties in this system identification arise from different causes. One is
related to the real data collection; especially during the first period of the pandemic, when
the data were not collected as a consistent modality, not even in the same nation. Moreover,
the importance of retrieving some information was not evident since the beginning of the
emergency; also, the official communication of the updated numbers of infected patients
or of dead subjects was in some cases delayed, thus producing unexpected spikes, hardly
predictable, in the corresponding data evolution. Another difficulty in the identification is
related to the non-measurability of the important category on asymptomatic subjects (the
ones modelled in the Iu class) and consequently, of the total removed ones in R.

Moreover, it is worth stressing what inspired the approach of this work: that is, the
presence of control actions since the very beginning of data collection. During the period
considered, of March 2020–April 2021, different and complementary containment measures
were adopted by all governments all over the world, without coordination among nations,
at least at the very beginning.
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In the following, the main containment measures at the Italian national level are
summarised, indicating the period of application:

• From 23 February 2020 to 8 March 2020: introduction of increasing measures aimed at
containing the diffusion in the north of Italy;

• From 9 March 2020 to 25 April 2020: strict lockdown in the entire nation; all the
“non-essential” activities were suspended, distanced learning was introduced for both
schools and universities, and whenever possible, smart working was introduced.
It was possible to leave home only for emergencies. This period was called “Phase 1”;

• From 26 April 2020 to 10 June 2020: almost all activities started again, but it was not
possible to travel between regions. This period is “Phase 2”;

• From 11 June 2020 to 12 October 2020: it was the period with less restrictions, even
with the suggestion of preserving cautions; it was also allowed to travel, always
respecting social distancing; this was the “Phase 3”;

• From 13 October 2020 to 2 November 2020: introduction of increasing containment
measures common to all the nation with restaurants closed at 18:00 and a mandatory
use of masks also outside closed places;

• From 3 November 2020 to 21 December 2020: a curfew from 10 p.m. to 5 a.m. was
introduced; moreover, a classification mechanism was adopted, classifying each
region into three classes indicated by colours (yellow, orange, red) depending on
the diffusion of the virus and on the sanitary situation at territorial level. Briefly
speaking, in this phase of colours, the red condition corresponds to a strict lockdown,
with restriction in personal mobility also inside the cities; in the orange situation, it
was not possible to move among regions with bars and restaurant open only for take-
away. In the yellow regions, bars and restaurants were open until 18:00; teaching was
allowed at schools/universities with restrictions on the number of students allowed
in classrooms;

• From 22 December 2020 to 6 January 2021: the strategy based on the colours was
reinforced; all of Italy was at the orange level, but these became red on the day before
and after the 25 and 31 December and 6 January, respectively;

• From 7 January 2021 to 30 April 2021: the strategy with colours during the period 3
November–12 December was adopted with reinforced rules, making it more difficult
to pass from a higher danger level, red and orange, to the lower one, orange and
yellow, respectively.

This representation of the control actions applied by the Italian Government, as well
as their time scheduling, is of course simplified; the consistency of the evolutions of the
control actions identified will be discussed considering the real control actions.

As mentioned previously, some model parameters could be chosen on the basis of
medical information or related to the characteristics of the population, as can be seen in
Table 1 for the numerical values of the fixed model parameters and the corresponding
references. Note that the values referring to the medical characteristics of the disease must be
considered mean values, also depending on the generally healthy condition of the patient.

Table 1. Numerical values of the fixed model parameters.

Parameter Value Reference

k 1
4 [1,31]

h1
1
5 [31]

h2
1
21 [3]

h3
1
40 [32]

B 1.69× 103 [9]

dS = dE = dQ = dIu = dR 2.81× 10−5 [9]

b 1
14 [3]
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The other parameters of the model can be identified by minimising the cost
index (34) or a simplified version, if (35) is assumed, thus yielding the evolutions of
ā(t), β̄(t), γ̄(t) , c̄(t), v̄(t) and indirectly, of d̄Id(t). The corresponding non-controlled con-
stant values a, β, γ, c and dId(t) can be deduced, if needed, from the first values of the
quantities with the bar sign, recalling that the controls ui, i = 1, . . . , 6 are assumed between
0 and 1. By using the @Matlab software and the function fmincon, the fitting between real
data and the model output was performed. The minimisation of the cost index during
the period February–December 2020 was obtained, after a trial and error procedure, with
the following choice of the weights: w1 = 0.4, wi = 0.2, i = 2, 3, 4, with w5 = 0, being the
vaccination campaign not started at that time; from January 2021, the weights are chosen
as equal to w1 = 0.4, w2 = 0.2, w3 = w4 = 0.15, w5 = 0.1. In Figures 1–3, the evolutions
of the diagnosed infected patients, of the recovered individuals and of the dead subjects
are shown along with the corresponding real data; a good fit can be appreciated, in some
way overcoming the not completely satisfactory data collection of the first period of the
pandemic; in particular, in Figure 1, the three waves of pandemic can be noted, in April
2020, in November 2020 and March 2021. In Figures 4–8, the identified control actions are
shown; in each figures the dotted vertical lines correspond to the significant changes in the
adoption of the containment measures previously recalled. Particularly interesting is the
evolution of β̄(t) = β(1− u2(t)) in Figure 4: a general decrease in the evolution of β̄ can be
noted until July, due to the effects of the strict lockdown of Phase 1; then, an increase can
be noted until the middle of October, with the re-opening of schools and of many activities.
New increasing containment measures were then applied with the “phase of colours” start-
ing in November, thus obtaining a decrease in the values of β̄ until March. The evolutions
of ā and c̄ are quite similar, as shown in Figures 5 and 6, corresponding to an increase in
the capability of isolating subjects for a quarantine period and the improvements in the
swab testing, respectively, with two decreasing periods in June 2020 and December 2020.
As far as the γ̄ evolution is concerned as desirable, it has been increasing since the very
beginning of the pandemic, showing a general resilience capability in the sanitary system,
as shown in Figure 7. The vaccination action, represented by v̄, only started in January
2021; its evolution, to date over less than three months, shows an oscillatory increase until
the middle of February, and then an increasing trend, as shown in Figure 8. To evaluate
the goodness of the identification step, the evolutions of the percentage of the normalised
errors, in absolute values, indicated, respectively, with Error 1, Error 2 and Error 3, between
the real numbers of diagnosed infected patients, of recovered individuals and of deaths and
the corresponding quantities obtained from the model, are shown in Figures 9–11. Note
that, after the first few days of the identification period, the maximum error was always
less than 5% and in general, after July, less than 3%. The identification of the evolutions
β̄, ā, c̄, γ̄ is important since it allows to determine a connection between the decisions
about the containment measures and how they have been applied by the population; for
example, the strict lockdown of Phase 1 was not applied by the population as an on–off
control: it required some weeks to adapt to the new condition. Therefore, on the basis of
this consideration, it is possible to study some scenarios determining what could have
happened if different choices were made. Five scenarios are considered:

• Scenario 1: Instead of the applied containment measures (phase of colours), the
adoption of the strict lockdown was assumed, starting in November 6; the trends of
Id(t), RId(t) and D(t) were obtained using the evolution of the β̄ identified during the
lockdown period (Figure 4);

• Scenario 2: Instead of ending the strict lockdown at the beginning of May 2020, it is
hypothesised that there was an extension until 13 May;

• Scenario 3: Same as Scenario 2, but with the extension of the strict lockdown until
31 May;

• Scenario 4: Regards the vaccination campaign associated with different containment
measures from 14 March 2021; in this scenario, it is assumed that the strict lockdown
associated with the higher vaccination effort was already applied at the end of January;
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• Scenario 5: Same as Scenario 4, but the containment measures applied were those of
November 2020 (phase of colours).

Figure 1. Infected patients Id(t) estimated from the model versus the corresponding real data.

Figure 2. Recovered subjects RId (t) estimated from the model versus the corresponding real data.

Figure 3. Deceased patients D(t) estimated from the model versus the corresponding real data.
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Figure 4. Reconstructed evolution of β̄(t) = β(1− u2(t)).

Figure 5. Reconstructed evolution of ā related to the control action u1(t).

Figure 6. Reconstructed evolution of c̄(t) corresponding to the control action u5(t).
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Figure 7. Reconstructed evolution of γ̄ regarding the control action u3(t) and u4(t) according to the simplification in (35).

Figure 8. Reconstructed evolution of v̄ corresponding to the control action u6(t).

Figure 9. Error 1 = |Ireal(t)−Id(t)|
Ireal(t)

.

138



Symmetry 2021, 13, 890

Figure 10. Error 2 =
|Rreal(t)−RId (t)|

Rreal(t)
.

Figure 11. Error 3 = |Dreal(t)−D(t)|
Dreal(t)

.

In Scenario 1 (Figures 12–14), it is evident that there is fast decrease in the number of
infected patients in Figure 12, and deaths in Figure 14; obviously, the number of recovered
subjects also decreases, as shown in Figure 13, having less patients to heal. Therefore, the
adoption of a strict lockdown starting in 6 November 2020 implies a more efficient measure
in contrasting the virus spread with respect to milder actions, avoiding many victims, more
than 9000. In general, the choice of the containment strategy takes into account different
goals and constraints, including social and economic requirements, that in this paper are
not considered (Figures 12–14).
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Figure 12. Scenario 1: evolution of Id(t) versus the corresponding real data.

Figure 13. Scenario 1: evolution of the RId (t)) versus the corresponding real data.

Figure 14. Scenario 1: evolution of the D(t)) versus the corresponding real data.
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Scenarios 2 and 3 are studied together, as shown in Figures 15–17; they regard the
decision of ending the strict lockdown of Phase 1 not at the beginning of May 2020 (as
really happened) but in the middle and at the end of May, respectively. It can be noted that,
also with an extension of only two weeks of Phase 1 restrictions, the peak of the second
COVID-19 wave would have been sensibly lower also with respect to the peak of the first
wave. The number of deceased patients remains almost constant in these scenarios, sensibly
lower when compared with the real evolution. The results are evident especially in the
Scenario 3, if the Phase 1 would have been extended until the end of May. These scenarios
confirm the importance of stabilising the infection curves at low levels before re-opening;
for example, in Australia, the current approach is even to apply the strict lockdown also
with a few dozen cases. Due to the high contagiousness of SARS-CoV-2, it was observed
that the increase in the general trend of infected patients was faster than the decrease due
the containment measures and to lower the curve requires stronger effort as the number of
infected patients is higher.

Scenarios 4 and 5 regard the management of the vaccination phase, Figures 18–20; all
governments are trying to accelerate the vaccination campaign, in the meantime limiting
the spread of virus to avoid the development of new variants. In some cases, such as in
the UK, the vaccination campaign was associated with a strict lockdown obtaining a rapid
decrease in the number of infected patients and deaths. In Scenario 4, a fast decrease in the
number of infected patients can be noted, whereas the application of the phase of colour
containment measures, shown in Scenario 5, yields a less evident decrease in the infections,
Figure 18. In particular, the simulation results in Figures 18–20 were compared with the real
data representing what is currently happening; it can be observed that the currently applied
containment measures allowed a decrease in the number of new infections, slower than in the
simulated scenarios, probably also for the new unknown variants of the virus. Nevertheless,
it must be stressed that, as seen, any new action or behaviour influences the evolution of the
spread, and in particular, the number of infected patients. The increased number of infected
patients implies an increased number of deaths, as can be seen in Figure 20.

From the analysis of these scenarios, it can be confirmed that a severe reduction in
mobility strongly reduces the infection; the effects are even more evident when the contact
reduction is associated with a fast vaccination campaign; nevertheless, social and economic
considerations are influencing, as expected, the decisions about containment measures,
often in contrast with the suggestion of epidemiologists.

Figure 15. Scenarios 2 and 3: evolution of Id(t) in the two scenarios versus the corresponding real data.
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Figure 16. Scenarios 2 and 3: evolution of the RId (t)) in the two scenarios versus the corresponding real data.

Figure 17. Scenarios 2 and 3: evolution of the D(t)) in the two scenarios versus the corresponding real data.

Figure 18. Scenarios 4 and 5: evolution of Id(t) in the two scenarios versus the corresponding real data.
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Figure 19. Scenarios 4 and 5: evolution of the RId (t)) in the two scenarios versus the corresponding real data.

Figure 20. Scenarios 4 and 5: evolution of the D(t) in the two scenarios versus the corresponding real data.

4. Conclusions

The reduction in the impact of COVID-19 in terms of the number of infected patients
and deaths depends on the choice of containment measures, from the strict lockdown to
vaccination, possibly applied in a coordinated way. Mathematical modelling allows to
describe the epidemic spread, introducing all the controls available until now. In this paper,
referring to the Italian pandemic conditions, taking into account some of the peculiarities
of COVID-19, a suitably enriched SEIR model is proposed, including the effective control
actions available to date. Considering the real data regarding the number of infected
patients, deaths and vaccinated subjects, the main result of the paper consists in the
identification of the applied control actions, enabling a direct correlation between the
government’s decisions, as they were really applied by the population, and the numerical
evolution of the functions representing the control actions. By means of this identification,
the estimated effects of the containment measures, associated to the different periods
of the pandemic, could be used to study the possible scenarios, in order to understand
the effects of different choices, and their impact, also suggesting time scheduling and
severity. In particular, the advantages of strict measures have been evidenced, such as
those of the lockdown, that, while difficult for the population and the economy, could have
accelerated the reduction in the spread. The importance of studying the possible scenarios
depending on different control actions relies on the consideration that in a globalised world,

143



Symmetry 2021, 13, 890

a pandemic is not an exception and mutatis mutandis, the experience of facing COVID-
19 should be useful in similar situations. Future developments regard the possibility of
studying the effects of re-infection after vaccination and/or after being infected and healed;
the proposed model and approach could be useful to determine the best control actions,
also considering the new information about the available vaccines, the duration of the
immunity, and specific medication.
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Abstract: Background: The main purpose of this research is to describe the mathematical asymmetric
patterns of susceptible, infectious, or recovered (SIR) model equation application in the light of
coronavirus disease 2019 (COVID-19) skewness patterns worldwide. Methods: The research mod-
eled severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spreading and dissemination
patterns sensitivity by redesigning time series data extraction of daily new cases in terms of deviation
consistency concerning variables that sustain COVID-19 transmission. The approach opened a new
scenario where seasonality forcing behavior was introduced to understand SARS-COV-2 non-linear
dynamics due to heterogeneity and confounding epidemics scenarios. Results: The main research
results are the elucidation of three birth- and death-forced seasonality persistence phases that can
explain COVID-19 skew patterns worldwide. They are presented in the following order: (1) the
environmental variables (Earth seasons and atmospheric conditions); (2) health policies and adult
learning education (HPALE) interventions; (3) urban spaces (local indoor and outdoor spaces for
transit and social-cultural interactions, public or private, with natural physical features (river, lake,
terrain). Conclusions: Three forced seasonality phases (positive to negative skew) phases were
pointed out as a theoretical framework to explain uncertainty found in the predictive SIR model
equations that might diverge in outcomes expected to express the disease’s behaviour.

Keywords: COVID-19 seasonality; S.I.R. models; mathematical modeling; forced seasonality; con-
founding variables; uncertainty

1. Introduction

This research’s main focus is to point, as noted in Grassly and Fraser [1], to the
consequences of seasonality for endemic R0 stability in order to understand and obtain an
endemic equilibrium for coronavirus disease 2019 (COVID-19) involving mixing patterns
such as environmental driving factors, policy interventions, and urban spaces [2–8]. These
latter three variables might pose challenges for the outcomes of the SIR (susceptible,
infectious, or recovered) predictive analysis [9] of severe acute respiratory syndrome
coronavirus 2 (SARS-COV-2) spreading and dissemination patterns. This can be verified
in the time series data regarding daily new COVID-19 cases where the type of spreading
patterns in daily quantitative outcomes present a high degree of uncertainty (skewness
asymmetric patterns) expressed by fluctuations and mainly random distributions [8].

By observing time series data of daily new COVID-19 cases worldwide [10], the
epidemics birth and death persistence present different probabilistic distributions for each
sample (country) of observation, with many delays and fluctuations for the outbreak,
peak and control phases due to no initial predefined conditions within the overall samples
(countries). These data with distinct outcomes among countries originate false phenomenon
observations in terms of positive and negative skew to allow predictive analysis based on
SIR models and derivations [11]. This is due to these models relying upon a predefined
type of health policies interventions, pre-assumed human behavior and predefined spatial
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or temporal analysis towards outbreaks, peak and control phases. These pre-assumptions
were investigated theoretically although stability to instability patterns generated by the
variables that sustain the disease occurrence.

The research divided data of daily new COVID-19 cases into three phases of forced
seasonality, demonstrated by a mathematical model of skewness presented in the phe-
nomenon derived from a brief topological analysis and the confounding variables that
sustain the disease transmission. Consequently it suggests specific data extraction from
time series in order to make predictive analysis with SIR models. This approach aims to
provide a more robust understanding of the scientific results concerning these topics of
study and worldwide strategies to reduce SARS-COV-2 dissemination patterns of daily
new COVID-19 cases to control infection spreading and dissemination patterns. The three
main birth and death seasonality persistence (ε′) phases found in this research are in the
following order: (1) the environmental variables (Earth seasons and atmospheric condi-
tions); (2) health policies and adult learning education (HPALE) interventions; (3) urban
spaces (local indoor and outdoor spaces for transit and social-cultural interactions, public
or private, with natural physical features (river, lake, terrain).

2. Materials and Methods

2.1. Earth Seasons: From Stable Mean to Asymptotic Patterns of Susceptible, Infectious, or
Recovered (SIR) Modeling Equation

To better understand the terms used in this article, spreading patterns is considered as
the type of transmission that COVID-19 may assume, be it airborne or physical contact. In
contrast, dissemination patterns are understood as the cumulative daily new COVID-19
cases worldwide caused by the existent transmission forms.

To set COVID-19 dissemination patterns under the Earth seasonality aspect of analysis,
the endemic free-equilibrium of COVID-19 needs to be applied to Floquet Theory, currently
employed in many other infectious diseases with a defined time period (T) of Earth
seasonality (ε). To perform this task from a mathematical view of the problem, it is
necessary to meet an oscillation to predict endemic R0 under periodic and defined A(t)
criteria, even for time-varying environments with no heterogeneity forces, thus assuming a
linear force of infection with homogeneity as F(T) = B(t) I

N . This would allow stablishing
a reasonable Rτ

0 periodical stability for COVID-19 worldwide, as observed by Bacaër [12].
The stability point pre-assumed, if COVID-19 worldwide would be seasonal in win-

ter as flu, could be defined as p(t + 1) = (A(t) + B(t))p(t) [12], with p representing
the spectral matrix of periodicity A(t) and B(t) the environment of compartments S, I,
and R of the SIR model (ecological variables such as biotic and abiotic of each country).
Following this definition, the seasonality of COVID-19 at S, I, and R compartments are
assumed to be dependent on deterministic outcomes for immunity, forms of transmission,
healthcare interventions, and public policies under atmospheric triggering conditions
(Earth seasons ε) as found, for example, in common flu. Considering this condition,
the ODE (ordinary differential equations) could be easily observed in linear time series,
as pointed in Sietto [13] as y(t) = a + bt + ∑m

i=1 ci cos θ + ∑m
i=1 di sin θ + e(t), where the

proposition of periodicity θ as linear in time as B(t + T) = B(t) would be possible and
consistent in its fluctuations in terms of daily new infections with seasonal sinusoidal
patterns as θ(t) = θ0[1± ε sin(2πt)] [14]. This could also be considered for stochastic
expressions over time, considering seasonal fluctuations defined as hidden Markovian
chains as P(Y(t) = y(t)|Y(t− 1) = y(t− 1), Y(t− 2) =y(t− 2), . . . , Y(1) = y(1)) [13] and
its many derivations, found in many studies [15–17]. This deterministic approach for the
worldwide event would lead to the seasonal Fourier transform fluctuations of COVID-19
outbreaks, control, and over determined periodic cycles with no confounding scenarios.
Fourier analysis would then be possible to perform considering time-periodic fluctuations
as noted in Mari et al. [14]. Therefore, the use of Markovian chains to obtain the phase
shifts of regularities would be a true approach to predict how SARS-COV-2 dissemina-
tion patterns are formed, regardless of spreading patterns. The main issue is when the
stochastic process Y(t) assumes a lack of synchrony due to random worldwide delays and
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uncertainty [8,18,19] due to spreading patterns and characteristics of each country, region,
and place. This situation generates a stochastic form with unknown seasonality of infection,
defined as R′0 = D

∫ 1
0 B(t)dt [18], and thus not assuming seasonality dissemination for ε

and the outbreak of local epidemics. At this point, it was observed that there are several
discrepant (heterogeneous) time series of daily new infection cases in countries during
2019 and 2021 that were entering winter in the southern hemisphere and summer in the
northern hemisphere. No great difference was verified at Earth dissemination seasonality
influencing those localities [2,8,9,11].

The lack of dissemination pattern formation for COVID-19, as not found in common
flu [20,21], creates an undefined T over defined A(t), as well as, a mean μ over periodicity
θ criteria as a pre-assumption of analysis in Fourier’s perspective transform. This confirms
an unexpected seasonality forcing behavior ε′ in which each sample (countries, regions,
places) presents a different SARS-COV-2 dissemination pattern not only concerning the
Earth seasonality but other components included in ε′.

2.2. Skewness Validation and SIR Model Limitation

What can be observed in many results [2] is an asymptotic unstable behavior of SARS-
COV-2 dissemination patterns towards atmospheric conditions (temperature, humidity,
ultraviolet (UV), and wind speed), policies and urban spaces that for this latter feature,
differ greatly around the globe; and therefore not following only the Earth environmental
seasonal forces as found in common flu [22–24]. The asymptotic feature of the phenom-
ena relies on how virus transmission can be associated with a mixture of variables that
sustain an indeterminate pattern of growing or reduction among countries. Worldwide,
countries are facing daily new COVID-19 cases and the reason for countries to reduce
its dissemination patterns are caused mainly due to HPALE on population [2–8] than a
well-defined Earth seasonal period of COVID-19 transmission, as it is known that indi-
vidual behavior and government policies are a major determinant for the pandemic peak
reduction. This overall pandemic scenario could be observed in late March and starting in
April 2020 when China and South Korea were the unique countries with the lowest rates of
exponential growth of infection cases due to the type and strength of adopted HPALE [3,6],
while Europe was in its fully active growing pattern. However, this does not mean that
environmental variables such as atmosphere properties or Earth seasonality do not present
causation of the event. It implies that HPALE influences the phenomenon at its beginning
and end with a persistent pattern [2–8] rather than what was expected to be addressed
only by the environmental factors as the main driving force of seasonality during winter
periods. For this reason, constant COVID-19 dissemination is expected during all Earth
seasons and HPALE can be one of the main seasonality driven force observed worldwide.

To add to this scenario, it is possible to identify one more important feature of pan-
demics, the urban spaces found in every city which present specific potential to influence
local epidemics and mathematical simulations of SIR equations, namely the S and R com-
partments. This impact is due to the effects on each country/city/locality’s capability
to deal with the outcomes of susceptibility, immunity, spreading patterns, and public
health control measures, thus making COVID-19 predictive models assume data that do
not correspond to reality. For each predictive model that fails to address urban spaces
heterogeneity, HPALE interventions subjectivity, and environmental non-homology of
data, the uncertainty degree grows. This leads to SARS-COV-2 emerging under unknown
contagion patterns as observed in Billings et al. [19] and with a similar example of measles
in Grenfell et al. [25].

2.3. Mathematical Framework of Three Seasonality Forcing Behavior of Coronavirus Disease 2019
(COVID-19) Worldwide and SIR Model Variants Needed

The unexpected seasonality ε′ under heterogeneity forcing behavior explain the ex-
ponential behavior of infection spreading patterns among countries an unpredictable
sinusoidal expression such as β(t) = β0(1 + ε∅(t)), as modelled by Buonuomo et al. [26]
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with a possibility of using Fourier transforms use, considering finite time lengths of analysis
(seasons) equally distributed over the period T within samples (countries). This mathe-
matical framework of analysis applies to the data series of daily new cases when these
data present high-amplitude noise, often related to the lower spectral density and lower
frequency that makes the analysis imprecise as a sinusoidal stable behavior in the basis
form of Earth dissemination seasonality as

∫ +∞
−∞ | f (ε)|d(t). In this sense, the sinusoidal

behavior does not exist regarding how countries might present default oscillations within
seasonal periods of Earth, as represented schematically in Figure 1.

Figure 1. General framework of coronavirus disease 2019 (COVID-19) seasonality under the view of
Fourier transform use limitations.

Considering the aspects mentioned before, it is possible to observe that each sample
can be understood as the lack of spreading and dissemination patterns towards the confi-
dent interval and standard deviation under default periods T from 31 December 2019, to
3 March 2021, resulting in a stochastic maximum exponential form of daily new infections
as Y(t) changes over time, as already observed in the literature [2,8,27,28].

However, despite this scheme pointing to the weaker Earth seasonality forcing be-
havior of SARS-COV-2 dissemination patterns, it can still influence the overall hidden
transmission patterns due to HPALE interventions, environmentally driven seasonality,
and urban spaces. This point can be addressed as a pattern formation ε′, of each sample, of
confounding forced seasonality that dismantles S and R compartments of SIR predictive
model over time [1,27–34], caused by environmental driven factors, urban spaces [35–37],
and health HPALE intervention [2–8]. Then, it is possible to observe that each country
might respond differently to the same initial conditions [8], influenced by the three com-
ponents mentioned above, thus generating multiple patterns formation over time T for
SARS-CoV-2 forms of transmission and periodicity.

2.4. SIR Model Redefinition from the Original Equation to Skewness Patterns and
Global Sensitivity

Concerning a theoretical desired worldwide SIR model normal distribution that
most mathematical models imply for infection spreading and dissemination patterns
with shape behavior k = 1 or k > 1 (Weinbull parameterization) of the exponential
“regular” distributions of SARS-CoV-2 infection within time intervals t and with defined
periodicity T (possible seasonality forms among countries) [38], the original defined form
of I compartment of SIR modeling equation is given as dI

dt = β SI
N − gI. However, the high

asymptotic instability [27–34] of infected individuals (I) and the confounding scenario lead
to redefining the equation’s basic fundaments to make the skewness analysis. Following
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this sense, the I compartment of the SIR model was modeled to support confounding
data as

I =
(ω

λ

)k
(1)

where the infected I is influenced by the unpredictable scale of infection λ (N) for each
sample with inconsistent behavior of variables for S term of the equation, thus influencing
the transition rate (βSI) defined as ω dissemination patterns (no global solution). Also it is
not assumed for gI in the original form of R compartment, that there is a normal distribution
output for this virus spreading and dissemination patterns. This new dissemination pattern
formation of the epidemic behavior was also described by Duarte et al. [39] when the
contact rate does not encompass weather conditions and time-varying aspects of epidemics.
Therefore, an unpredictable shape k of probabilistic outcomes (close to reality shapes)
was used, mainly defining this shape caused λ and ω asymptotic instabilities generated
by S and R compartments over time [1,27–34], among the environmental- and urban
space-driven factors [35–37] and HPALE interventions [2–8]. This equation represents the
presence of confounding and heterogeneous environmental variables ω with an unknown
predictive scale of expλ or maximum likelihood estimator for λ due to non-linear inputs
for S and R compartments over time as a global proposition (urban spaces, HPALE, and
environmental conditions influence), thus generating nonlinear outputs k (asymptotic
instability) [40,41]. If it is considered that most models are searching for a normality
behavior among countries, hence, implying that the k distributions are non-complex and
not segmented by its partitions, thus resulting in linearity for the virus infection I over
Y and t, then the overall equation as described by Dietz β(t) = βm(1 + A cos(ωt)) [40]
would not be reachable for any given period of analysis considering the seasonality forcing
behavior of SARS-CoV-2.

The outputs with heteroscedasticity and non-homologous form for k and λ can be mod-
ified to reach stable points of analysis, as modelled by Dietz β(t) = βm(1 + A cos(ωt)) for
each of the three seasonality forces influencing SARS-CoV-2 spreading patterns. These three
stable points of the asymptotic structure mentioned before can be observed in Figure 2.

 
Figure 2. Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spreading and dissemina-
tion patterns filtered and stated as expressing within the three phases of the epidemic: environmental
spreading and dissemination patterns, health policies and adult learning education (HPALE), and
the urban spaces dissemination patterns.

To remove heteroscedasticity and non-homologous form for k and λ from occurring
in the three phases mentioned in Figure 2, as far as the κ < 1 Weibull parameterization
aspect [42] (Bell curve shape) of distribution is chosen as the most reliable region of analysis
(attractive orientation) for any given T periods within any sample (countries daily new
cases time series), it is necessary to modify the first Equation (1) to

I = I =
(

Y(t)
T

)k<1
−
(ω

λ

)k
(2)
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hence with the new SIR model proposition as I = I′ − (S + R), where I is asymptotic
stable to I′ and S and R considered in its original form θ(t) = θ0[1± ε sin(2πt)] [14]. This
is a mandatory redesign since many scientific breakthroughs point to health policies as
the best approach to reduce COVID-19 [2–8]. Starting with this redesign of the equation,
it is possible to find one of the first regions of analysis and stability that is health policy
intervention, found in the slope (peak) of daily cases over time.

2.5. Birth and Death Persistence of COVID-19 Dissemination Patterns: From Positive to
Negative Skew

Considering the new scope of analysis regarding time-series data mentioned before, it
is now necessary to uncover the graphic regions in which confounding scenarios can be
dismantled with a more robust relation of cause and effect according to Equation (2). It is
important to address this birth and death persistence homology for this research, in which
the desired mean function Y(t) of topological space X→ R over β(t) = βm(1 + A cos(ωt))
indicated at (2) can be found as a persistence diagram existence [43] by mapping each
adjacent pair to the point ( f (Y), f (t)) local minimum and maximum observations, due to
worldwide epidemic growth behaviour and subtle reduction due to HPALE measures. This
step results in critical points of Y function over time t, not in adjacent form globally but
regionally triangularly space as d(D(Yt), D(t)) ≤ ‖Yt − t‖∞ [44] with a given mean region,

thus expressing random critical values (dissemination patterns) defined by I′ =
(

Y(t)
T

)k<1

in the real-life form of the event. However, since it is necessary to filter f (Yn)− f (tn) = yn
unstable critical points (oscillatory instability of seasonality for S and R, HPALE, environ-
mental driven variables, and urban spaces) to an attractive minimum behavior with normal
distribution, these regions of analysis must be situated between π < yn < π

2 for every
A(t)→ T asymptote period. Following this path, and roughly modelling it, the mean
μ(A(t)) is obtainable as the size of birth and death persistence diagram and triangulable
diagonal (Δ) like D(Yt, t− Δ) = ∑π<yn<

π
2

μYt
t with multiplicity pairing regions (t, Yt) for

each desired triangulation as 0 ≤ t < Yt ≤ n + 1, resulting in the general equation for

any assumed region as μYt
t = β(t)

εYt
εt−1 − β(t)

εYt
εt + β(t)

εYt−1
εt − β(t)

εYt−1
εt−1 [44]. Note that each

mean function μYt
t will be given by regions defined as β(t) = βm(1 + A cos(ωt)), being β(t)

the covariance function of seasonality forcing behavior of dissemination patterns formed
by μ(A(t)) under each β(t) form with ε′ partitions, hence without a global mean value for
the event in terms of infection and time, or in other words, spreading and dissemination
patterns. Further derivations and formulations regarding this persistence diagram will
not be addressed for this research. However, it is recommended that future research keep
this formulation defined for predictive and monitoring analysis of epidemic seasonality
forcing behavior.

It is necessary to understand that this new design of seasonality regions can now be
adapted adequately to Fourier transform analysis under the amplitude of waves with the
equation e−iωt = cos(2πt) + i sin(2πt) where angular momentum was drawn in the limits
of β(t) = βm(1 + A cos(ωt)), giving ω = π < yn < π

2 and generally defining it with
sinusoidal reduced form as f (ε′) =

∫ +∞
−∞ Y(t)e−2πiωtdω to reach a sinusoidal approach of

time series data extraction and analysis over periods ε′ and given analysis regions.
Beyond the limitation of periods for predictive analysis and monitoring as a Gaussian

process in the overall data of the given epidemics, the design in this article introduces one
main point of analysis that is the lack of a global mean and covariance function μ(Y(t)) over
fluctuations as a global homomorphism and a decomposition form of wave signals similar
to Fourier transforms. This occurs since spreading patterns of infection find heterogeneity
within the type of HPALE interventions influenced by the confounding scenario created by
the environment and urban spaces where persistent homology and homotopy cannot be
found for t ∴ κ < 1 Weibull reliability to be situated globally for the overall times series
data of epidemics in the oscillation-pairing regions of sin (π) = 1 and cos (π) = 0 for T
desired coordinates of persistent fluctuations in ( f (Yn), f (tk<1)) = yn of stability can differ
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over an extended time of analysis. HPALE range of influence is no longer stable (weak
boundaries points of persistence), and therefore assuming t + 1 discrete form, defined as
yn = f ( f (Yn), f (tk<1))

∫ π
π
2

μ ∑(Y0, . . . , Yn)dt. However, by contrast, it can be found with

continuous form as δ = f (Yt, t)
∫ π

π
2

μ ∑(Y0, . . . , Yn)dμ [9], thus assuming the shape and

limit to κ < 1 as small partitions ε′ to the desired analysis or without a derivative form
for the overall analysis within the whole epidemics behavior observed. Considering the
new partitions ε′, for the discretized view of Yt, t as pointed out in the results of Roberts
et al. [9], it is now possible to obtain a sample mean as a mode like μ = 1

n ∑n
i Yt, t. Further

results of this approach can be visualized at [9] Roberts et al. reference.
By rejecting the persistence diagram’s unstable critical points generated globally, a

local minimum of the event as an average mean ε′ can be obtained by having Y(t) with
the higher number of samples Y (daily infections) that finds a condition roughly described
in the nonlinear oscillations within the exponential growth epidemic behavior of event
as limited between maximum local growth defined by π

2 by its half curvature oscillations
π as a local minimum being non-periodic as 2π in a global homomorphism sense due to
κ < 1. In this sense, the new sinusoidal approach offers a new mean function as an angular
momentum of = π < yn < π

2 , hence the wave-signal necessary to perform the Fourier
transforms in each ε′ of data. This scheme can be observed for HPALE intervention on
SARS-CoV-2 spreading and dissemination patterns [27] in Figure 3.

Figure 3. HPALE stable region ε′ of analysis on SARS-CoV-2 dissemination patterns. Image data
source: Worldometer—Italy on 8 July 2020.

Therefore, Y(t), t assumes the desired oscillations samples and region conditions
ε′ as π < yn < π

2 where birth and death persistent homology can be found for t ∴
κ < 1 to be situated in the oscillations pairing region of sin (π) = 0 and cos (π) =
Y(t) for Y(t), t desired coordinates ( f (Y(t)), f (t)) of stability with discrete form as t + 1
as Y(t) = f (Y(t))

∫ π
π
2

μ ∑(Y0, . . . , Yn)dt or vice-versa for t = f (t)
∫ π

π
2

μ ∑(t0, . . . , tn)dYt,
thus assuming the shape and limit to κ < 1. Considering samples’ time lengths, it is
designed as t(δ + 1) ≤ f (Y(t))μ ∑(Y0, . . . , Yn)dt starting from t0, . . . , tn ≤ sin

(
π
2
)

results
in the desired data distribution with a conditional shape of Weibull parameterization
κ < 1 for the analysis with a normal distribution, thus rejecting any critical value beyond
cos (π) = ε′p and under sin (π) = ε′p, being ε′p the seasonality forcing behavior of HPALE
intervention over SARS-CoV-2 among countries’ data sets. Concerning time lengths of
samples, designed as t(yn + 1) ≤ f (Yn)μ ∑(Y0, . . . , Yn)dt starting from t0, . . . , tn ≤ sin(π)
results in the desired data distribution, thus rejecting any critical value beyond cos (π) = 0
and under sin (π) = 1. The main reason to ignore S and R local solutions, or to not use
SIR models globally, is also the same reason to adopt a region of analysis in the time series
data for I′ and HPALE.This also remains for the other two important inputs of the system
derivatives (environmental factors that influence COVID-19 dissemination and urban
spaces) of which for each country the aforementioned confounding scenario of analysis is
shown in Figure 4.
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Figure 4. Considering the observation COVID-19 confounding scenario, it is presented the asymptotic
strong seasonality force of HPALE (ε′ p) intervention and the narrow and unstable region (outbreak
and control) of analysis for environmental and urban driving factors of seasonality (ε′e, ε′u ).

Noting that the S and R compartments of the SIR model are needed for predictive
analysis of infection dissemination patterns, these compartments might work properly
under the third region of time series data: urban spaces ε′u seasonality. To achieve results
with a high uncertainty reduction, it is necessary to conceive S and R as in its most
stable region of analysis, which should be influenced in a posterior scenario where ε′p
(HPALE) and ε′e (environmental seasonality) already took effect. This is mandatory since,
as far as policies are assumed in models or estimated with unreal quantitative parameters,
uncertainty growth is promoted along with limitations to track real patterns within an
urban space feature for S and R as a causation relation. For urban spaces seasonality forcing
behavior, it is considered that inside and outside urban spaces promote limitations to
HPALE due to the limiting action that it can face within these urban spaces (not all HPALE
can reach some urban spaces features properly as it was designed to be). Environmental
seasonality can also be present at this phase by influencing urban spaces limitations of
taken HPALE actions. Therefore, ε′e might find a growing point inside and outside urban
spaces beyond ε′p normalization (more explanation of this causation effect will be given
in the Results section), which can be the cause of worldwide second waves or posterior
waves.

Considering unexpected seasonal forcing ε′p roughly defined as ∂(t) = ∂0 [1± ε0
cos π < ε′ < sin π

2 ] [9] in a complex network model, where no periodic oscillation (si-
nusoidal) are to be found in a discrete form with f

(
ε′e,p,u

)
=
∫ +∞
−∞ Y(t), te−2πiωtdω, as-

sume now a rupture of the sin(2πt), leaving the region the pre-assumed linearity θ(t) =
θ0[1± ε sin(2πt)] for S and R in the overall metrics of time series data T within one sample
or among countries and understanding each iteration of the event as unconnected to the
previous and future data if considering multiple time-series comparisons (among coun-
tries) or even in the same time series if considering long-term analysis. Since the I′ is an
asymptote to ε′p, then ε′u is limited by ε′p on I′, but not necessarily fully stable in terms of
ε′p present total control over environmental seasonality due to urban space features.

It is possible to verify that most of these SIR models are constructed based on ε′p
seasonality behaviors [45–48]. Following this phase, urban spaces and HPALE interventions
might present a strong influence on the outcomes due to the unpredictability of S and R
patterns to design appropriate contact rates, which still represents a limitation for the SIR
model methods [27–34]. Nonetheless, it is still the most desirable region of analysis for
data extraction.

3. Results

The overall scenario of spreading and dissemination patterns skewness concerning
the environment, HPALE and urban spaces can be visualized in Figure 5, where season-
ality forcing behavior assumes the following topological metric space. Considering all
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the possible seasonality types, f
(
ε′e,p,u

)
=
∫ +∞
−∞ Y(t), te−2πiωtdω, in continuous form of

observation, with the need to discretize within causal roots of analysis due to hetero-
geneity and confounding scenario of analysis, HPALE seasonality can be understood as
f ε′p = g ◦ f (Yt, t) = g

(
f
(
ε′p
))

, hence it can also be written as, f ε′p = h ◦ (g ◦ f (Yt, t)) =
h
(

g
(

f
(
ε′p
)))

as a control phase of local epidemics. However, this phase might present
high instability (spreading patterns fluctuations) at a worldwide level due to heterogeneity
and confounding behavior of f ε′u and f ε′e. Since SIR models require stable points for
S and R, there is f ε′u = h ◦ g(Yt, t) = h(g(ε′u)), resulting in a stable asymptotic conver-
gence only if f ε′p = h ◦ (g ◦ f (Yt, t)) = h

(
g
(

f
(
ε′p
)))

. Since the outbreak might incur
in unknown spreading and dissemination patterns for f ε′p, f ε′e and f ε′u, this region
needs to be carefully considered. Therefore, environmental seasonality can be found as
f ε′e = (h ◦ g(Yt, t)) ◦ f = f (h(g(ε′e))) or it is also possible to assume f ε′e = (ε ◦ g(Yt, t), be-
ing ε the undefined patterns of environmentally driven new infections for Earth seasonality
or atmospheric factors, which was not fully resolvable in this research.

Figure 5. Schematically representation of the COVID-19 skewness properties: during epidemics
evolution, HPALE influences the environment and urban spaces seasonality until a limit defined by its
type and strategy of application; compartmental models during peak phase are influenced by HPALE,
environment and urban spaces and present high uncertainty; at control phase, policies/HPALE finds
its limitation by the environment and the type of urban spaces and finally, at outbreak, environmental
factors present outcomes caused by the existing HPALE and urban spaces.

4. Discussion

Concerning urban spaces’ spreading patterns, due to the vast diversity of public
health infrastructure buildings design, outdoor and indoor building designs within natural
physical features such as rivers, lakes, snow, culture, and urbanization developments,
they exert influence on the region of environmental driven pattern and not only policies.
Therefore, it is reasonable to understand that any assumption on S and R during the
epidemic phase in its initial curvature is much more closed to uncertainty measures than
ever due to several possible confluences. Countries may then diverge greatly in the urban
space and environmental scenarios, and thus S and R compartments face calculation
limitations during peak curvature, being uncertain how to predict virus spreading and
dissemination patterns since policies/HPALE are not even fully developed or had adequate
time to take effect while most of the models use policies as the basis of modeling the
dissemination patterns. For this reason, the most reliable region of analysis for these
compartments and where most of the models are currently situated/functioning remains
at the control phase of epidemics. However, fluctuations may still occur worldwide due to
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the type of HPALE and urban space features. Therefore, urban spaces and environmental
seasonality drivers are the main cause of aperiodic and unstable behavior for SARS-COV-2
spreading patterns worldwide. It is likely that environmental driven seasonality results
found in many studies are, in truth, HPALE and urban spaces results, representing a need
for further detailed research [48].

This was addressed in the research [49], where despite the vast review made, and
the observation of confounding scenarios for each sample of analysis and type of climate
conditions that influence COVID-19 spreading patterns, authors [49] have understood that
there are homogeneity and heterogeneity in the statistical results and conclusions about the
environmental influence on the virus dissemination patterns. This was addressed correctly
in a systematic review [49] and further developed in this present study through a careful
observation that environmental influence can be better understood in outbreaks and urban
spaces by using graph analysis. Also, despite the analysis made in [49] considering only
policies and climate conditions, further scenario need to be evaluated that is urban spaces,
where human lifestyles are directly connected with a risk behaviour over contamination of
infectious diseases, such as COVID-19, hence human behaviours also have great impact in
the preventive measures efficacy.

Also, concerning evolutionary and game of life algorithms [50,51], predefined param-
eters and initial inputs are crucial for the machine learning analysis. However, beyond
biological features as described in the last paragraph, unpredictable scale of infected indi-
viduals are found worldwide without vaccination or social isolation. The article aimed to
analyze the problem without these predefined parameters being the basis and sensitivity
of analysis. This can be mandatory since many countries are facing problems with vacci-
nation speed and availability as well as social isolation as well as a severe lack of citizen
compliance in many countries. Similarly, in Bateman SIZ analysis, this approach can be
observed [52] regarding the uncertainty of models without using predefined parameters
for sensitivity and robustness. These uncertain parameters lead the calculations to include
new panoramic idea of how to combat COVID-19 without proper pre assumptions, thus
giving for the real world skewness observed in predictive methods, a degree of uncertainty
worldwide. This can be useful due to the lack of correlation between the sensitivity of
models and real life complexity.

Concerning uncertainty and sensitivity, the article presents some references that
address this point [8,30,33,45]. This research’s main objective was to analyse the SIR model
equation without pre-defined data input in terms of formulating a specific SIR model to
perform predictive analysis with numerical results. For this reason, theoretical observations
were made, considering references findings and the global sensitivity model used (policies
and ALE, environment and urban spaces). Despite not considering numerical solutions of
the problem, due to complexity issues for data collection in real life and chaotic behaviour of
some events, the theoretical model proposed can be helpful to understand how pandemics
should be investigated for future SIR model equations and also for the basic interpretation
of epidemiological behaviour of SARS-COV-2. This is mandatory nowadays since many
countries present unfitted vaccination prediction, unfitted social isolation prediction and
unfitted SARS-COV-2 variants appearance. The validation of the data subject can be found
in Section 2.2. Skewness validation and SIR model limitation. Since the model proposed in
this article is not developed to numerical data or results, the theoretical basis of analysis
was retrieved from references that already performed these numerical solutions of the
problem. Therefore, compiling these findings, it was possible to observe how skewness
properties of the issue express how the virus behaves worldwide without predefined
spreading and dissemination patterns. This concept of an absence of predefined spreading
and dissemination patterns was supported in the results section, aiming to describe how
uncertainty and predictive constraints can be found based on the SIR model equation and
its variants developed worldwide.

In the research results section, it is possible to observe that the most reliable region
to investigate environmental seasonality remains at the outbreak and control phases. In
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contrast, best urban space seasonality observations remain at the control phase. This
feature can be very useful for HPALE approaches since the actual fluctuations/instability
in the region mentioned above are mainly caused by these two posterior forcing behaviors.
Therefore, new strategies and measurements need to be adopted to keep the economy and
prevention with similar power, which was already initially investigated by Sajadi et al. in
June 2020 [46].

Note that there is a great difference between environment-driven seasonality caused
by urban spaces influenced by HPALE limitations or otherwise caused by Earth and other
natural (atmospheric) seasonality forcing behavior at outbreaks. This characteristic should
be carefully considered when studying Earth seasonality among countries. The compart-
mental models are mostly in the control phase region and lose efficacy at outbreaks where
no specific parameters are given, and environmental seasonality is not yet discovered in
its true patterns. Another point regarding the control phase is that in which instabilities
can occur, as far as urban spaces create a scenario where HPALE faces limitations, envi-
ronmental seasonality finds a suitable place to grow its patterns [47]. Due to uncertainty
growth over time and the lack of mean for defined intervals of t over T normal distribution
shape for the whole data, Earth season ε gradually loses its effect with the possibility of
random delays observed for each country of analysis (sample) being attributed by different
patterns in which an outbreak occurs since existing HPALE are found within worldwide
cultures, science, and education.

5. Conclusions

This research modeled SARS-COV-2 spreading and dissemination patterns sensitivity
by defining and redesigning time series data extraction to SIR model equations. The
approach opened a new scenario where seasonality forcing behavior was introduced to
understand SARS-COV-2 skewness expressions due to heterogeneity and confounding
epidemics scenarios where actual SIR models might find a high degree of uncertainty
caused by oscillatory conditions found in the input of variables of the event.

The main research results are the elucidation of three birth and death forced seasonality
phases that can explain how COVID-19 spreading and dissemination patterns skewness
occurs worldwide. It can be understood in the following order: (1) the environmental
variables (Earth seasons and atmospheric conditions); (2) health policies and adult learning
education (HPALE) interventions; (3) urban spaces (local indoor and outdoor spaces for
transit and social-cultural interactions, public or private, with natural physical features
(river, lake, terrain).

These three forced seasonality phases were pointed to as the most effective explanation
concerning uncertainty found in the predictive SIR model equations that might diverge in
outcomes expected to express the disease’s behaviour. Therefore, many distinct models
were generated to cover COVID-19 confounded scenarios.

Regarding the forced seasonality model the following pattern was observed: HPALE
can be the strongest stable point of seasonality during the epidemic peak phase and com-
partmental models are influenced mainly by HPALE, while environmental and urban
spaces present a low or hidden influence on it. However, HPALE can still be limited at the
control phase, depending on urban spaces and existing environmental conditions demand-
ing SIR models to adapt to these new features. Finally, at outbreak and control phases,
environmental factors present outcomes caused by the existing HPALE and urban spaces
of a given sample, thus producing high uncertainty to predictive SIR model equations.

6. Limitations

ALE was considered in the view of effective practice mainly based on adequate
policies adopted by countries. Nonetheless, it should be carefully addressed in the view
of infodemics practices, in which ALE can assume one more seasonal force in epidemics,
disrupting the peak and control phase and promoting new spreading and dissemination
patterns during ε′p seasonality. It can also enforce posterior waves and confirm spreading
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pattern fluctuations at outbreaks and urban spaces’ stability and. therefore. demanding
new modifications in SIR models.
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Abstract: The double phosphorylation/dephosphorylation cycle consists of a symmetric network of
biochemical reactions of paramount importance in many intracellular mechanisms. From a network
perspective, they consist of four enzymatic reactions interconnected in a specular way. The general
approach to model enzymatic reactions in a deterministic fashion is by means of stiff Ordinary
Differential Equations (ODEs) that are usually hard to integrate according to biologically meaningful
parameter settings. Indeed, the quest for model simplification started more than one century ago
with the seminal works by Michaelis and Menten, and their Quasi Steady-State Approximation
methods are still matter of investigation nowadays. This work proposes an effective algorithm based
on Taylor series methods that manages to overcome the problems arising in the integration of stiff
ODEs, without settling for model approximations. The double phosphorylation/dephosphorylation
cycle is exploited as a benchmark to validate the methodology from a numerical viewpoint.

Keywords: systems biology; enzymatic reactions; quadratization; ODE integration

1. Introduction

Protein phosphorylation is a ubiquitous regulatory mechanism for cells, generally
working to activate or inactivate molecules [1]. From a biochemical viewpoint, to phospho-
rylate a molecule consists in the binding of a phosphoryl group PO−

4 [2]. The general model
to deal with phosphorylation is to exploit the framework of enzymatic reactions, where the
substrate M is supposed to be modified (phosphorylated, actually) into the product Mp by
means of the preliminary formation of a complex C provided by the binding of an enzyme
(called kinase, K) in charge to catalyze the phosphorylation, see the scheme in (1).

M + K
k1−→←−

k−1
CK

k2−→ Mp + K (1)

Phosphorylations usually introduce conformational changes that activate/inactivate
the enzymatic activity of a protein, or simply prime degradation processes, like the ones
involved in the yeast cell cycle (see, e.g., in [3,4] dealing with the degradation of Sic1
and Whi5, respectively) or those involving tyrosine kinase pathways, regulating diverse
cellular processes, and whose dysregulation is one of the leading causes of cancer progres-
sion [5]. In many important cases, multi-site phosphorylations are required to ensure the
correct timing of activation [6,7]. Besides, according to specific conditions and biological
frameworks, phosphoryl groups can be removed, making phosphorylation a reversible
activation/inactivation mechanism. Moreover, in this case the dephosphorylation may be
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treated as a generic enzymatic reaction, with the enzymes that catalyze the reaction called
phosphatases P:

Mp + P
h1−→←−

h−1
CP

h2−→ M + P (2)

Combinations of multiple phosphorylations/dephosphorylations have been selected
by nature as devices, providing specific useful biological functions. Within this framework,
the Double Phosphorylation/Dephosphorylation Cycle (DPDC) is a symmetric network
motif consisting of a double reversible phosphorylation step required to activate a given
substrate M:

M + K
k11−→←−

k−11
C1

k12−→ Mp + K Mp + K
k21−→←−

k−21
C2

k22−→ Mpp + K

(3)

Mpp + P
k31−→←−

k−31
C3

k32−→ Mp + P Mp + P
k41−→←−

k−41
C4

k42−→ M + P

where the final product is the doubly phosphorylated Mpp. Ordinary Differential Equa-
tion (ODE) models of DPDC use to combine in a symmetric fashion the four enzymatic
reactions [8], providing a bistability regime where the non-phosphorylated or the double-
phosphorylated versions of the substrate is predominant [9]. A primary motivation in
investigating the computation of the system solutions is that, in a recent paper [10], it has
been proven that symmetry breaking in the dynamical solutions of such a network may
lead to modify its emergent properties, including concentration robustness of different
stationary solutions.

In this context, numerical integration of enzymatic reactions in ODE form has been
a matter of investigation for more than a century [11,12], since the seminal works of
Michaelis and Menten [13] providing an approximation (the celebrated Quasi Steady-
State Approximation (QSSA) [14]) to cope with the double time scale arising whenever
biologically meaningful parameters are assigned. Multi-timescale phenomena are very
common in biology, see, e.g., the very recent cardiac cell model in [15].

Indeed, in enzymatic networks, the binding/unbinding reactions use to occur at a
faster rate, thus leading to stiff ODEs, thus characterized by numerical instability when
ordinary numerical schemes are employed for their integration. In particular, in the case
of stiff equations, ad hoc integration methods, like the one illustrated in [16] for linear
multistep methods, can be employed to approximate the solution efficiently. Like any
approximations, there are limitations that may render unfeasible its concrete applicability.
Indeed, in [17] we showed how the numerical integration of a basic enzymatic reaction
model may create serious problems even to well established procedures like the ones
implemented by Matlab in ode45 and ode15s functions. Besides, things become even
more crucial in the DPDC, as it has been shown in [18] how the QSSA may miss the
bistability property.

In order to deal with stiff ODEs, Taylor Series Methods (TSMs) can be used. These
methods build up a polynomial approximation (up to some fixed order k) of the ODE
solution around the initial point through Taylor series expansion, which amounts to the
recursive calculation of the partial derivatives of the ODE function at the initial point, up
to the order k. With respect to standard Runge–Kutta methods, TSMs do not exhibit worse
performance in terms of numerical stability, and guarantee a better accuracy in the solution
calculation for higher degrees of the approximating polynomial. We refer the interested
readers to the works in [19–23] for an in-depth description of TSMs and their numerical
properties.

The main issue with TSMs is that, as the approximation order k increases, the cal-
culation of all the required derivatives becomes too cumbersome, and some preliminary
transformations need to be applied to the original problem in order to simplify the deriva-
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tives calculation. To this end, in the present work, we employ some recent technical results
published in [24,25], according to which ODE systems can be embedded into higher-order
quadratic equations which, in spite of their dimensionality, allow for more efficient dif-
ferentiation, which in turn can be exploited for numerical integration via TSM. These
results have been already exploited in [17] for the class of simple enzymatic reactions (two
differential equations), and are here extended to the more challenging DPDC case (seven
differential equations). Simulations are promising as the numerical results show a higher
qualitative accuracy of the method with respect to standard off-the-shelf solvers for an
appropriate choice of the reaction parameters which make the equations stiff.

The paper is organized as follows. Section 2 reviews the methods involving quadrati-
zation and approximate integration of a class of differential equations. Section 3 adapts the
framework to the context of Double Phosphorylation/Dephosphorylation Cycle. Section 4
provides some numerical simulations of the DPDC system. Finally, Section 5 offers con-
cluding remarks and ideas for further developments.

2. Exact Quadratization and Approximate Integration of σπ Differential Equations

This section recollects and adapts some results mainly developed in [24,25] for more
general classes of dynamical systems than those developed in this work. Except where
differently specified, we adopt the following vector and indices convention: a vector v is
always a column vector, and v′ is its transpose. With respect to indices, given a vector
v, the scalar vj denotes its j-th entry; instead, in case of double subscripts, like in Zi,j,
when dealing with a vector we mean a nested notation, where Zi,j is the j-th scalar/vector
component of vector Zi, and vector Zi is the j-th vector component of vector Z; on the
other hand, when dealing with a matrix, Zi,j refers to the usual scalar entry in row i and
column j.

2.1. Exact Quadratization of σπ-ODEs into Driver-Type Differential Equations

We consider a first-order ODE system

ẋ = f (x), x ∈ R
n, (4)

where the function f is a formal polynomial of x, i.e., a polynomial writing where the
exponents are allowed to be any real number. More formally, the components of f are in
the form

fi(x) =
νi

∑
l=1

v̄i,lXi,l(x); Xi,l(x) =
n

∏
r=1

x
pl

i,r
r , (5)

where pl
i,r are real exponents, the νi quantities Xi,l in (5) are named monomials and v̄i,l are

real coefficients. We refer to this kind of functions as σπ-functions, and to the associated
system of differential equations as σπ-ODE.

For σπ-ODEs, the following theorem holds, by virtue of which the system (4) and (5)
can be densely embedded in a higher-dimensional quadratic system.

Theorem 1 (Exact Quadratization Theorem, adapted from the work in [24]). Any σπ-ODE in the
form (4) and (5), with domain V′ ⊂ IRn, is quadratizable on the non empty, open and dense subset
U′ = V′ \ S (with S denoting the set of all coordinate hyperplanes in R

n), and the quadratization
is given by the following homogeneous Riccati equation in the indeterminates xi and Zi,l :

ẋi = (v̄′iZi)xi (6)

Żi,l =
n

∑
r=1

πl
i,r(v̄

′
rZr)Zi,l (7)

where πl
i,r = pl

i,r − δi,r, and δi,r being the Kronecker symbol: δi,r = 1 (resp: δi,r = 0) if i = r (resp:
i �= r).
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It clearly appears that the specific Riccati equation constituting the quadratization (6)
and (7) includes the original state variables, so it is possible to define an augmented state
such that the original ODE system (4) is now embedded in the following extended system
evolving in R

m, with m ≥ n:

ẋi =
m

∑
i=1

vi,jxixj = (v′ix)xi, (8)

where, with a little abuse, we keep the notation of x for a vector now living in R
m, with the

first n components provided by the n components of vector x in (4), and the other m− n
components provided by vector Z in (7). The coefficients vi,j are suitable linear functions
of the coefficients v̄i,l in (5). Equation (8) is called ‘Driver-type’ ODE form, while the matrix
V ∈ R

m×m collecting the entries vi,j, i, j = 1, . . . , m, is called ‘frame’.
The interested reader is referred to the works in [24,25] for further notation (including

multi-indices), technical details and full proofs.

2.2. Approximate Taylor Series Integration Method

With a slight abuse of notation, let t �→ x(t) be the solution of (4) with initial condition
x(t0), and consider the Taylor expansion of a generic scalar component xi(·) with respect
to the initial time instant t0:

xi(t) =
∞

∑
k=0

ck(i)
(t− t0)

k

k!
, ck(i) = x(k)i (t0). (9)

Numerical integration techniques based on the application of the truncated series
in (9) to compute a solution of (4) are called Taylor Series Methods (TSMs). Unfortunately,
such a series expansion cannot be straightforwardly applied to compute the solution for
general systems as it requires the explicit computation of the derivatives of the solution
at the initial point, which usually reveals to be too cumbersome. Below is reported a
Theorem that allows to compute the coefficients of the Taylor expansion for a system in the
‘Driver-type’ ODE form (8).

Theorem 2 (from [25]). Consider a ‘Driver-type’ ODE in the form (8). Then, the coefficients
ck(i), k > 0, in the Taylor expansion (9) are given by

ck(i) = ∑
i1,...,ik∈S

vk+1
i,i1,...,ik

· xi(t0)xi1(t0) · · · xik (t0), (10)

where is ∈ S = {1, . . . , n}, for s = 0, 1, . . . , k (we set i0 = i), and the (constant) coefficients
vk+1

i,i1,...,ik
, are given by the following recursive equation

vk+1
i,i1,...,ik

= vk
i,i1,...,ik−1

(
k−1

∑
j=0

vij ,ik

)
, v1

i = 1, (11)

where the coefficients vi,j, i, j = 1, . . . , m, are defined in (8).

Approximate numerical integration based on Theorem 2 can be readily performed
by truncating the series (9) at a finite order k̄, provided that the integration formula is
reinitialized frequently enough to prevent numerical instability. This readily leads to the
following iteration. Let x̂i(jΔ), i = 1, . . . , n, for j = 0, 1, . . . , be the approximate value of xi
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at time jΔ provided by the algorithm, where t0 = 0 and a fixed sampling time Δ > 0 are
assumed for simplicity. Then, the approximate solution at all times t ≥ 0 is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̂i(t) =
k̄

∑
k=0

ck,j(i)
(t− jΔ)k

k!
, t ∈ [jΔ, (j + 1)Δ),

ck,j(i) = ∑
i1,...,ik∈S

vk+1
i,i1,...,ik

· x̂i(jΔ)x̂i1(jΔ) · · · x̂ik (jΔ).
(12)

Note that, for k̄ = 1, the proposed integration scheme coincides with the forward
Euler method.

3. The Double Phosphosphorylation–Dephosphorylation Cycle

According to the mass action law, the system of equations governing the dynamics of
substrates and complexes in the DPDC scheme in (3) is

dM
dt

= −k11MK + k−11C1 + k42C4

dMp

dt
= −k21MpK + k−21C2 + k−41C4 − k41MpP + k32C3 + k12C1

dMpp

dt
= −k31MppP + k−31C3 + k22C2

dC1

dt
= k11MK− (k−11 + k12)C1

dC2

dt
= k21MpK− (k−21 + k22)C2

dC3

dt
= k31MppP− (k−31 + k32)C3

dC4

dt
= k41MpP− (k−41 + k42)C4

(13)

where the following conservation laws hold:

M + Mp + Mpp + C1 + C2 + C3 + C4 = MT , (14)

K + C1 + C2 = KT , P + C3 + C4 = PT . (15)

Enzymes K and P can be replaced in (13) according to (15), so that the overall dynamics
is not redundant and the system reduces to the following 7-dimensional ODE with the
constraint (14):

dM
dt

= −k11M(KT − C1 − C2) + k−11C1 + k42C4

dMp

dt
= −k21Mp(KT − C1 − C2) + k−21C2 + k−41C4

−k41Mp(PT − C3 − C4) + k32C3 + k12C1

dMpp

dt
= −k31Mpp(PT − C3 − C4) + k−31C3 + k22C2

dC1

dt
= k11M(KT − C1 − C2)− (k−11 + k12)C1

dC2

dt
= k21Mp(KT − C1 − C2)− (k−21 + k22)C2

dC3

dt
= k31Mpp(PT − C3 − C4)− (k−31 + k32)C3

dC4

dt
= k41Mp(PT − C3 − C4)− (k−41 + k42)C4

(16)
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Summing up all left hand sides of the system (16) yields zero, which, on the other
hand, is entailed by (14), accounting that MT (the total mass) is constant over time. The
algebraic equation (14) defines a six-dimensional manifold in IR7, invariant with respect to
system (16), which means that, if one takes the initial value on this manifold, the evolution
of system (16) remains on the same manifold at all times.

Remark 1. Indeed, it can be readily proved the stronger result that the DPDC system is posi-
tive [26], as each non-positive term on the right-hand side of any equation in (16) multiplies the
variable differentiated on the left-hand side of the same equation; in short, removal terms are linear
in the variable of interest. This prevents the crossing of the coordinate hyperplane S already defined
in Theorem 1, on which the aforementioned terms are zeroed; this will make the DPDC ODEs
quadratizable (see the remainder of this section) on the same domain V′ ⊆ IR7≥0 of the original
variables, where the latter symbol denotes the non-negative orthant in IR7.

By setting

(x1, x2, x3, x4, x5, x6, x7) = (M, Mp, Mpp, C1, C2, C3, C4),

it is readily seen that Equation (16) defines a σπ-ODE (see Section 2.1), with state dimension
n = 7, where the exponents in (5) are integer. As a consequence, Theorem 1 can be applied
so that the system is exactly quadratized, with the quadratization that can be expressed in
the ’Driver-type’ ODE form (8), with augmented state dimension m = 24, by extending the
system with the following adjoint variables, whose dynamics is defined in (7):

x8 = x−1
1 x4; x9 = x−1

1 x7; x10 = x−1
2 x5; x11 = x−1

2 x7; x12 = x−1
2 x6;

x13 = x−1
2 x4; x14 = x−1

3 x6; x15 = x−1
3 x5, x16 = x−1

4 x1 x17 = x−1
4 x1x5

x18 = x−1
5 x2; x19 = x−1

5 x2x4 x20 = x−1
6 x3; x21 = x−1

6 x3x7

x22 = x−1
7 x2; x23 = x−1

7 x2x6 x24 = 1. (17)

Therefore, system (16) rewrites as follows:

ẋ1 = (k11x4 + k11x5 + k−11x8 + k42x9 − k11KTx24)x1

ẋ2 = (k21x4 + k21x5 + k41x6 + k41x7 + k−21x10 + k−41x11 + k32x12 + k12x13

− (k21KT + k41PT)x24)x2

ẋ3 = (k31x6 + k31x7 + k−31x14 + k22x15 − k31PTx24)x3

ẋ4 = (−k11x1 + k11KTx16 − k11x17 − (k−11 + k12)x24)x4

ẋ5 = (−k21x2 + k21KTx18 − k21x19 − (k−21 + k22)x24)x5

ẋ6 = (−k31x3 + k31PTx20 − k31x21 − (k−31 + k32)x24)x6

ẋ7 = (−k41x2 + k41PTx22 − k41x23 − (k−41 + k42)x24)x7

while we can use the chain rule to compute the dynamics of the adjoint variables, resulting,
after some substitutions, into the following additional quadratic differential equations:
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ẋ8 = (−k11x1 − k11x4 − k11x5 − k−11x8 − k42x9 + k11KTx16 − k11x17

+ (k11KT − k−11 − k12)x24)x8

ẋ9 = (−k41x2 − k11x4 − k11x5 − k−11x8 − k42x9 + k41PTx22 − k41x23

+ (k11KT − k−41 − k42)x24)x9

ẋ10 = (−k21x2 − k21x4 − k21x5 − k41x6 − k41x7 − k−21x10 − k−41x11 − k32x12 − k12x13

+ k21KTx18 − k21x19 + (k41PT + k21KT − k−21 − k22)x24)x10

ẋ11 = (−k41x2 − k21x4 − k21x5 − k41x6 − k41x7 − k−21x10 − k−41x11 − k32x12 − k12x13

+ k41PTx22 − k41x23 + (k41PT + k21KT − k−41 − k42)x24)x11

ẋ12 = (−k31x3 − k21x4 − k21x5 − k41x6 − k41x7 − k−21x10 − k−41x11 − k32x12 − k12x13

+ k31PTx20 − k31x21 + (k21KT + k41PT − k−31 − k32)x24)x12

ẋ13 = (−k11x1 − k21x4 − k21x5 − k41x6 − k41x7 − k−21x10 − k−41x11 − k32x12 − k12x13

+ k11KTx16 − k11x17 + (k21KT + k41PT − k−11 − k12)x24)x13

ẋ14 = (−k31x3 − k31x6 − k31x7 − k−31x14 − k22x15 + k31PTx20 − k31x21

+ (k31PT − k−31 − k32)x24)x14

ẋ15 = (−k21x2 − k31x6 − k31x7 − k−31x14 − k22x15 + k21KTx18 − k21x19

+ (k31PT − k−21 − k22)x24)x15

ẋ16 = (k11x1 + k11x4 + k11x5 + k−11x8 + k42x9 − k11KTx16 + k11x17

+ (k−11 + k12 − k11KT)x24)x16

ẋ17 = (k11x1 − k21x2 + k11x4 + k11x5 + k−11x8 + k42x9 − k11KTx16 + k11x17

+ k21KTx18 − k21x19 + (k−11 + k12 − k−21 − k22 − k11KT)x24)x17

ẋ18 = (k21x2 + k21x4 + k21x5 + k41x6 + k41x7 + k−21x10 + k−41x11 + k32x12 + k12x13

− k21KTx18 + k21x19 + (k−21 + k22 − k21KT − k41PT)x24)x18

ẋ19 = (−k11x1 + k21x2 + k21x4 + k21x5 + k41x6 + k41x7 + k−21x10 + k−41x11 + k32x12

+ k12x13 + k11KTx16 − k11x17 − k21KTx18 + k21x19

+ (k−21 + k22 − k−11 − k12 − k21KT − k41PT)x24)x19

ẋ20 = (k31x3 + k31x6 + k31x7 + k−31x14 + k22x15 − k31PTx20 + k31x21

+ (k−31 + k32 − k31PT)x24)x20

ẋ21 = (−k41x2 + k31x3 + k31x6 + k31x7 + k−31x14 + k22x15 − k31PTx20 + k31x21

+ k41PTx22 − k41x23 + (k−31 + k32 − k−41 − k42 − k31PT)x24)x21

ẋ22 = (k41x2 + k21x4 + k21x5 + k41x6 + k41x7 + k−21x10 + k−41x11 + k32x12 + k12x13

− k41PTx22 + k41x23 + (k−41 + k42 − k21KT − k41PT)x24)x22

ẋ23 = (k41x2 − k31x3 + k21x4 + k21x5 + k41x6 + k41x7 + k−21x10 + k−41x11 + k32x12

+ k12x13 + k31PTx20 − k31x21 − k41PTx22 + k41x23

+ (k−41 + k42 − k−31 − k32 − k21KT − k41PT)x24)x23

Finally, we obviously have
ẋ24 = 0

initialized to x24(0) = 1, implying x24(t) = 1 for all t ≥ 0, which allows to turn linear into
quadratic terms in the right-hand side of any σπ-ODEs.
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4. Simulation Results

Numerical simulations of the system (16), quadratized in the form (8) as developed in
the previous section, have been performed in the Matlab® suite. Inspired by the parameter
choices in [14,17], we consider the following parameters:

kj1 = 4 · 108M−1s−1, k−j1 = 25 s−1, kj2 = 15 s−1, j = 1, 2, 3, 4, (18)

with total amounts (14) and (15) equal to

MT =
k−11 + k12

k11
, KT = PT = 10−3 · MT . (19)

We start from the initial conditions (at time t0 = 0)

x1(0) = 0.70MT , x4(0) = 0.25MT , xi(0) = 0.01MT for i = 2, 3, 5, 6, 7, (20)

where the initial states of the adjoint variables xj(0), for j = 8, . . . , 24, are uniquely de-
termined from (17) and (20). The sampling interval has been set to Δ = 0.015 s and the
overall simulation time is 1 s. For the given choice of parameters and initial conditions,
simulations performed according to the standard ODE45 Matlab® solver, based on the
Dormand–Prince Runge–Kutta method [27] with default settings, are aborted by Matlab
for not being able to meet integration tolerances.

Figures 1–7 show the numerical solution obtained for variables x1, . . . , x7 by means of
the ODE15s Matlab® variable-order solver for stiff differential equations [28] compared
with the method of quadratization and truncated TSM integration proposed in this paper.
It is clearly observed that the substrate trajectories provided by ode15s oscillate, while our
approach provides a smoother behavior. Regards to the complexes, ode15s trajectories
become negative, which is qualitatively inconsistent by virtue of Remark 1, as we know that
the system (16) is positive. The same occurs with C1 for the TSM method with truncation
order k̄ = 1 (Euler), see Figure 4, and with C2 for the TSM method with k̄ = 2, see Figure 5.
Instead, the TSM method applied to the quadratized system with truncation order k̄ = 3
exhibits non-negative solutions for all the variables.
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Time (s)
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9

9.5
10-8 DPDC system - Species M

Figure 1. Trajectory of species M via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 2. Trajectory of species Mp via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 3. Trajectory of species Mpp via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 4. Trajectory of species C1 via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 5. Trajectory of species C2 via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 6. Trajectory of species C3 via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.
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Figure 7. Trajectory of species C4 via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k̄ = 3.

Figure 8 shows the trajectories of complexes C1 (top panel) and C2 (bottom panel),
obtained with sampling time Δ = 0.015 s, compared with the same trajectories computed
with a doubled sample interval Δ = 0.03 s, and the same truncation order k̄ = 3 of the TSM
method. It is apparent that the choice of a sufficiently small sampling interval, jointly with
a sufficiently high truncation order, is crucial for the numerical stability of the algorithm. In
particular, both C1 and C2 violate again the non-negativity constraint in the case Δ = 0.03 s,
as already observed for Δ = 0.015 s and low truncation orders in Figures 4 and 5, with
a notable oscillating behavior and an evident initial overshoot of species C2. Note that
the pattern of damped oscillations in Figures 4, 6, and 8 is not surprising in numerical
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simulation and identification in biochemical and biological contexts, for instance, a similar
behavior may indeed result from the optimization of the power of the error in multiple
linear regression under the assumption of generalized Gauss-Laplace distribution [29].

In summary, the method proposed in this paper seems to be able to return meaningful
solutions in the numerical simulation of particular biological conditions when standard
solvers may fail.
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Figure 8. Trajectories of species C1 (top panel) and C2 (bottom panel) via quadratization of
Equation (16) and approximate TSM method, with truncation order set to k̄ = 3, for two differ-
ent values of the sampling interval Δ.

5. Discussion

In this work, we proposed a novel approach to the problem of integrating the solution
of biological systems expressed by stiff differential equations (for example, those exhibiting
an apparent double time-scale separation). To overcome typical numerical issues related to
the numerical integration of this kind of system by means of existing solvers, we here rely
on recent work exploiting the so-called quadratization of ODEs, which allows embedding
the original dynamics in a higher-dimensional space where the system is quadratic and
differentiation formulae of any order are computable by means of simple recursions.
Such derivatives are exploited within a truncated Taylor Series expansion to build an
approximate simple integration scheme, which is proved to work accurately in the in silico
simulation of the Double Phoshphorylation/Dephoshphorylation Cycle (DPDC), which is
an important regulatory mechanism present in cells. Ongoing and future work is focusing
on the construction of a numerical scheme that might overcome the curse of dimensionality
due to the computation of coefficients of the high-order terms in the Taylor series expansion
for the augmented quadratized dynamics.
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Abstract: Type-1 diabetes mellitus is a chronic disease that is constantly monitored worldwide by
researchers who are strongly determined to establish mathematical and experimental strategies
that lead to a breakthrough toward an immunological treatment or a mathematical model that
would update the UVA/Padova algorithm. In this work, we aim at a nonlinear mathematical analysis
related to a fifth-order ordinary differential equations model that describes the asymmetric relation
between C-peptides, pancreatic cells, and the immunological response. The latter is based on both the
Localization of Compact Invariant Set (LCIS) appliance and Lyapunov’s stability theory to discuss
the viability of implementing a possible treatment that stabilizes a specific set of cell populations. Our
main result is to establish conditions for the existence of a localizing compact invariant domain that
contains all the dynamics of diabetes mellitus. These conditions become essential for the localizing
domain and stabilize the cell populations within desired levels, i.e., a state where a patient with
diabetes could consider a healthy stage. Moreover, these domains demonstrate the cell populations’
asymmetric behavior since both the dynamics and the localizing domain of each cell population are
defined into the positive orthant. Furthermore, closed-loop analysis is discussed by proposing two
regulatory inputs opening the possibility of nonlinear control. Additionally, numerical simulations
show that all trajectories converge inside the positive domain once given an initial condition. Finally,
there is a discussion about the biological implications derived from the analytical results.

Keywords: type-1 diabetes mellitus; global analysis; β cells; regulatory system

1. Introduction

Diabetes is a severe long-term condition ranking as one of the first ten causes of death
in adults; according to global estimations, around four million people worldwide died in
2017 from this disease. Since the year 2000, the International Diabetes Federation (IDF)
has reported the regional, national, and global occurrence of diabetes, indicating that the
worldwide population with diabetes may increase from 463 to 700 million in the next two
decades [1]. Diabetes mellitus (DM) is a long-term condition resulting from the inability of
the pancreas to produce enough insulin (type 1 diabetes, T1D) or from the incapability of
the pancreas to process the insulin that the body produces (type 2 diabetes, T2D) [2]. Thus,
an increase in blood glucose leads to a non-symmetric behavior in the body over time.

Some complications related with high glucose blood include hypertension, kidney
failure, lower limb amputation, nerve damage, stroke, and blindness [3]. Studies inves-
tigating the trends in diabetes prevalence have been conducted since 2000 [4], including
the diabetes prevalence forecast for 2030 [5], 2035 [6], 2040 [4], 2045 [7], and 2060 [8],
based on the national and regional data, where the results were overwhelming. Recently,
several mathematical models have been published describing the process of glucose-
insulin into the regulatory system, and the so-called Bergman’s Minimal Model is the most
highlighted [9,10].
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Recently, research applying mathematical algorithms to describe diabetes behavior
and its outcomes is gaining attention [11,12]. Some of these algorithms are focused on
both modeling insulin receptor or the body’s insulin-glucose dynamics, diabetes cost-
effectiveness, and glucose tolerance testing [13]. However, models used to describe the
glucose’s dynamic, insulin transport, and accuracy of glucose measurements, are challeng-
ing to assess in vivo.

Therefore, studying these non-symmetrical metabolic processes by mathematical
approaches can help to understand these dynamics [14]. On the other hand, models
based on Ordinary Differential Equations (ODEs) have been widely applied to describe
real-life systems in physics, engineering, economics, and biomedicine. In particular, ODE
models become a promising alternative to describe within-host dynamics, infectious or
viral diseases, and even complex biomedical behaviors of the human body [15].

Currently, clinical studies and in silico data have demonstrated that C-peptide adminis-
tration reduces renal disfunction, and combinations with insulin helps avoid microvascular
issues. Hence, patients with C-peptide persistence are less prone to long-term complica-
tions than those without it [16]. The study of β cell population dynamics in long-time
intervals becomes a key to understand the prevalence of C-peptide secretion in T1D [17].

Some studies demonstrate that C-peptide levels drop exponentially in the first seven
years after diagnosis and could continue dropping throughout the years at a slower rate.
Nonetheless, log-transformed C-peptide levels permit establishing differences, both patho-
physiological and immunological, between glucose and pancreatic cells, giving essential
knowledge to understand β cell survival. Therefore, broader attention should be paid to
the progression of C-peptide loss in a longer duration of T1D, even with special focusing
on the patient’s age [18].

The Localization of Compact Invariant Set (LCIS) method is a reliable method com-
monly used in nonlinear ODE models with mathematical-biological implications, see [19,20].
This method helps to provide sufficient or necessary conditions that lead to a broad under-
standing of the long-term behavior of a dynamical model, even to establish requirements
for possible treatments or reduce some undesired cell populations proliferation [19–21].

In the particular case of T1D, the LCIS method permits analysis of the β cell behavior
in the presence of glucose [22] or with the immunological response [23]. The ODE’s
mathematical model was initially presented in [24] describing the dynamics between
cytotoxic T cells, the β cell population, and the peptide level as a result of their interactions.

Our objective is to provide the conditions for a localizing domain, understand the
global behavior of T1D’s cell dynamics, and give viable cells stabilization conditions.
Hence, our hypothesis aims at how maximum population cells behave in time, based on
upper bounds computations.

The organized sections of this work are presented as follows. The first section describes
a general scheme for the fifth-order nonlinear mathematical model where upper bounds
for all variable states hold when the positive orthant domain is satisfied by the nonlinear
model’s positiveness. Some of the proposed localizing functions have no mathematical
restriction on how they are defined or in the quantity limitations associated with a particular
upper bound; however, the proposed function must not be the first integral, see [25,26].
Discussion resulting from applying local asymptotic stability by Lyapunov indirect method
given the equilibrium point led to analyzing the stability criteria by closed-loop Lyapunov
in which the input controls are analyzed. The second section shows some simulations
that validate our previous mathematical results, and the last section presents the main
conclusions of this research.

2. Preliminaries of Localization of Compact Invarian Sets Method

This section presents the necessary background to define the localizing domain that
contains all the compact invariant sets of a nonlinear system represented by first-order
ODEs. The general method of LCIS was proposed by Krishchenko and Starkov in [25,26] to
determine the domain where all compact invariant sets of a differential equations system
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are located. This method is helpful to understand the long-time behavior of first-order
ODE systems. This is considered an autonomous nonlinear system represented by:

ẋ = f (x), (1)

where x ∈ R
n, f (x) = ( f1(x), . . . , fn(x))T is a differentiable vector field. Let h(x) ∈ C∞(Rn)

be a function such that h is not the first integral of the system (1). The function h is
exploited in the solution of the localization problem of compact invariant sets and is
called a localizing function. By h|U we denote the restriction of h on a set U ⊂ R

n.
S(h) denotes the set {x ∈ R

n | L f h(x) = 0}, where L f h(x) is the Lie derivative in the
vector field of f (x). In order to determine the localizing set, it is necessary to define
hinf(U) := inf{h(x) | x ∈ U ∩ S(h)} and hsup(U) := sup{h(x) | x ∈ U ∩ S(h)}.

Therefore, for any h(x) ∈ C∞(Rn), all compact invariant sets of the system (1) located
in U are contained in the set K(U; h) defined as {x ∈ U | hinf(U) ≤ h(x) ≤ hsup(U)}, as
well as, if U ∩ S(h) = ∅, then there are no compact invariant sets located in U. Moreover,
the Iterative Theorem can be applied to refine the localizing domain K(h); this theorem is
defined as follows [19–21,23]:

Theorem 1 (Iterative Theorem). Let hm(x) be a sequence of C∞ differentiable functions where
m = 0, 1, 2.... Sets

K0 = K(h0), Km = Km−1 ∩ Km−1,m, m > 0,

with
Km−1,m =

{
x | hm,inf ≤ hm(x) ≤ hm,sup

}
,

hm,sup = sup
S(hm)∩Km−1

hm(x),

hm,inf = inf
S(hm)∩Km−1

hm(x),

contain any compact invariant set of the system (1) and

K0 ⊇ K1 ⊇ · · · ⊇ Km ⊇ . . . .

In summary, the general methodology to compute the LCIS of a nonlinear dynamical
system described by first-order ODEs is as follows [27]:

1. A localizing function denoted as h(x) must be proposed. h(x) is a function that can
represent a specific shape, such as a plane, hyperplane, cylinder, or sphere; in terms
of the system’s parameters and state variables.

2. Computing the Lie derivative of h(x), defined as L f h.
3. Calculate the infimum (hin f ) and supremum (hsup) by computing L f h = 0. From the

latter, two cases can result:

(a) S(h) is compact, the Lagrange multiplier method or the polytope approxima-
tion may be applied;

(b) the sign of S(h) cannot be defined, a mapping must be performed to determine
the sign of h(x)|S(h).

4. If it is not possible to define the sign of S(h), the localization problem is not yet solved;
therefore, a new localizing function must be proposed, and the process is restarted.

5. In the case of a satisfactory localizing domain, Theorem (1) could be applied to refine
the localizing domain K(h).

This methodology can be applied until a satisfactory solution is achieved.

3. Mathematical Model of Type-1 Diabetes Mellitus Related to C-Peptide

The mathematical model of Type-1 Diabetes Mellitus (T1DM) related to C-peptides
was proposed by Mahay and Edelstein-Keshet, in 2007 [24], involving the immune response
as the main factor that leads to a decrease in the β cell population in the body. It consists
of five first-order ODEs describing the dynamical interaction between activated T cells
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(A(t)), memory T cells (M(t)), effector T cells (E(t)), the C-peptide level (p(t)), and the β
cell (B(t)) populations at time t. Therefore, the T1DM model related to the C-peptide is
given as follows:

dA
dt

= (σ + αM)
pn

kn
1 + pn − (β + δA)A− εA2, (2)

dM
dt

= β2m1
akm

2
km

2 + pm A− pn

kn
1 + pn αM− δM M, (3)

dE
dt

= β2m2(1− akm
2

km
2 + pm )A− δEE, (4)

dp
dt

= REB− δp p, (5)

dB
dt

= −κEB; (6)

where Equations (2)–(4) correspond to the population level of activated, memory, and
effector T cells; Equation (5) represents the peptide level and the remaining population of β
cells by Equation (6). The parametrization and units of the model’s equations are presented
in Table 1.

Furthermore, to fulfill the positivity of the system (2)–(6), we evaluated each state
variable at the border, i.e., A = E = M = p = B = 0. Evaluating Equation (6), we obtained
that dB

dt = 0; Equation (5) gives that dp
dt = REB; Equation (4) gives that dE

dt = β2m2(1−
akm

2
km

2 +pm )A; whereas Equation (3) gives that dM
dt = β2m1

akm
2

km
2 +pm ; finally, from Equation (2), we

obtained that dA
dt = (σ + αM) pn

kn
1+pn ; allowing us to conclude that, given nonnegative initial

conditions, the system’s dynamics are located in the non-negative orthant, i.e., they are
located into the following domain:

R5
+,0 = {A(t) ≥ 0, M(t) ≥ 0, E(t) ≥ 0, p(t) ≥ 0, B(t) ≥ 0}. (7)

Table 1. Parameter description and units of T1DM related to C-peptides [24].

Parameter Description Value Units

σ Influence of naive T cells in the thymus 1–10 day−1

α Production rate of A per M 1–5 day−1

β Cell division rate 1–6 day−1

δA Mortality index, activated T cells ≈0.01 day−1

δM Mortality index, memory T cells ≈0.01 day−1

δE Mortality index, effector T cells 0.3 day−1

δp Peptide turnover rate 0–1 day−1

ε Competition parameter T cell 1–5 × 10−2 cells−1day−1

k1 Peptide level for 1/2 of maximum
activation 2 peptide units

k2 Peptide level for 1/2 of the maximum
memory cells 1 peptide units

m Hill’s coefficient, production of
memory cells 2 −

n Hill’s coefficient for activation of T cells 3 −
2m1 Maximum number of memory cells

produced by T cells proliferating 8 −
2m2 Number of effector cells produced by

proliferating T cells 60 −
a Maximum fraction of memory cells

produced <1 −
R Peptide accumulation rate 10−5 cells−1day−1

κ Death of β cells by effector T cells 0.14× 10−6 cells−1day−1
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4. Localization of Compact Invariant Sets-Peptide Variable Analysis

Localizing the compact invariant domain of a dynamical system depends on the
system’s complexity. Sometimes, it is possible to define the domain of attraction that
contains all compact invariant sets by employing only one localizing function, resulting in
symmetric shapes, such as ellipsoids, paraboloids, and cylinders [26]. These shapes are
frequently obtained in three-dimensional systems.

However, biological systems are often modeled by more than three dimensions, mak-
ing it impossible to define symmetric shapes by only one function and, at the same time,
ensure all the dynamics of a system are bounded. Biological systems usually need more
than one localizing function to describe the system’s variables’ maximum and minimum
bounds [19]; therefore, the compact localizing domain is characterized by an asymmetric
domain. Hence, the compact localizing domain and ultimate bounds for a T1DM related
to C-peptide are achieved by exploring three localizing functions. First, we compute the
maximum population of β cells with the following localizing function

h1 = B− ln B, (8)

whose Lie derivative is given by L f h1 = −κEB −
[
−κEB

B

]
, defining the set S(h1) ={

L f h1 = 0
}

as
S(h1) = {−κEB + κE = 0}, (9)

and, after solving for B, the set S(h1) is defined as

S(h1) = {B = 1}; (10)

further, expressing the constraint h1|S(h1)
= B− ln B, and substituting S(h1), the maximum

value of the function h1 is as follows

K(h1) =
{

h1 ≤ h1|S(h1)
:= 1

}
. (11)

Therefore, the location set of the β cell population is

KB = {B(t) ≤ Bmax := 1}. (12)

Now, to determine the upper bound for the C-peptide level, the following localizing
function is proposed

h2 = p− ln p + B, (13)

where its Lie derivative is defined by L f h2 = REB− δp p−
[

REB−δp p
p

]
− κEB. The set is

determined and analyzed by S(h2) =
{

L f h2 = 0
}

, giving

S(h2) =

{
REB− δp p− REB

p
+ δp − κEB = 0

}
, (14)

and it can be defined in terms of the interest variable of the localizing function as S(h2) ={
p = 1− REB

δp p − (κ − R) EB
δp

}
, where, after some algebraic manipulation gives

S(h2) = {p = 1}, (15)

as long as the following condition can be satisfied

R ≤ κ. (16)
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It is important that the constraint can be expressed by h2|S(h2)
= p− ln p + B. Substi-

tuting (15) into h2|S(h2)
and applying Theorem (1), the set K(h2) is defined as

K(h2) ∩ K(h1) =
{

h2 ≤ h2|S(h2)
:= 1 + Bmax

}
; (17)

allowing us to compute the set K(h2), which defines the maximum C-peptide level as

Kp = {p(t) ≤ pmax := 2}. (18)

Finally, an upper bound for T cells is computed through the following localizing function

h3 = A + M + E, (19)

whose Lie derivative is given by

L f h3 = {(σ + αM− αM)
pn

kn
1 + pn + (β2m2 − β− δA − εA)A (20)

+(2m1 − 2m2)
βakm

2
km

2 + pm A− δM M− δEE}; (21)

hence, after some algebraic rearrangement and mathematical analysis, the set S(h3) ={
L f h3 = 0

}
is defined as

S(h3) =

{
A =

σpn

δA(kn
1 + pn)

+
(β2m2 − β)

δA
A− ε

δA
A2 − δM

δA
M− δE

δA
E
}

, (22)

as long as the next condition holds
2m1 ≤ 2m2 . (23)

Now, substituting the previous results and some algebraic manipulation, the constrain
h3|S(h3)

= A + M + E is defined by

h3|S(h3)
=

σ

δA
+

(β2m2 − β)2

4εδA
,

as long as the following conditions must be satisfied at all time

δA ≤ δM, (24)

δA ≤ δE; (25)

then, it is possible to define the set K(h3) as

K(h3) =

{
h3 ≤ h3|S(h3)

:=
σ

δA
+

(β2m2 − β)2

4εδA

}
.

Summarizing the results shown through this section, the following statement is formulated
regarding the ultimate bounds for the T1DM related to the C-peptide system.

Theorem 2. If the conditions (16), (24), (25) are fulfilled, all the compact invariant sets of the
T1DM related to C-peptide system (2)–(6) lie within the following domain location

Kse = KB ∩ Kp ∩ KA ∩ KM ∩ KE, (26)
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where

KB = {B(t) ≤ Bmax := 1}; (27)

Kp = {p(t) ≤ pmax := 2}; (28)

KA =

{
A(t) ≤ Amax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
; (29)

KM =

{
M(t) ≤ Mmax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
; (30)

KE =

{
E(t) ≤ Emax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
. (31)

The skewness correlation between C-peptides and cells was also demonstrated in [24],
as the time scale of the peptide dynamics is faster (hours) than the time scale of the cell
dynamics (days), and thus an almost steady state is assumed in the peptide. The C-peptide
clinical test, which is widely applied to measure pancreatic β cell function [28].

Considering the mathematical function dp/dt = 0, leads to the variable C-peptide
as p = (REB/δp). In this case, the state variable is far from being defined as an invariant
plane in the mathematical scope; further, C-peptide represents a function that relays in the
β cell population with the immune response’s presence through effector cell populations.
A disadvantage of analyzing the C-peptide in terms of other variables implies that the
maximum carrying capacity of β cells can be estimated in a general scheme. This research
contributes by analyzing a whole model with the LCIS method to establish a scheme where
the clinical test interpretation can lead to a mathematical preamble approach.

4.1. Local Stability

In this subsection is presented the mathematical results applying the Lyapunov in-
direct method and considering the equilibrium point (A∗, M∗, E∗, p∗, B∗) = (0, 0, 0, 0, 0)
in the positive orthant. To determine if the equilibrium is locally stable, the system of
Equations (2)–(6) is linearized. First, the system’s Jacobian matrix (J) is defined as follows

J =

⎡⎢⎢⎢⎢⎢⎢⎣
−(β + δA)− 2εA α

pn

kn
1+pn

0 (σ + αM)φ2 0

β2m1 φ3 − pn

kn
1+pn

α− δM 0 φ12m1 − φ2αM 0
β2m2(1− φ3) 0 −δE −φ12m2 0

0 0 RB −δp RE
0 0 −kB 0 −kE

⎤⎥⎥⎥⎥⎥⎥⎦, (32)

where

φ1 = β
amkm

2 pm−1(
km

2 + pm
)2 A, (33)

φ2 =
nkn

1 pn−1(
kn

1 + pn
)2 , (34)

φ3 =
akm

2
km

2 + pm ; (35)

evaluating matrix J at the equilibrium point, we obtained the expression

J(A∗, M∗, E∗, p∗, B∗) =

⎡⎢⎢⎢⎢⎣
−(β + δA) 0 0 0 0

β2m1 a −δM 0 0 0
β2m2(1− a) 0 −δE 0 0

0 0 RB −δp 0
0 0 −kB 0 0

⎤⎥⎥⎥⎥⎦; (36)
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thus, the eigenvalues of (36) are λ1 = −(β + δA), λ2 = −δM, λ3 = −δE, λ4 = −δp, and
λ5 = 0.

Since λ5 = 0, it is impossible to conclude local stability for the equilibrium by applying
the Lyapunov indirect method theorem in Equation (36). In summary, the system of
Equations (2)–(6) has only one equilibrium point; therefore, local asymptotic stability is not
evident. Hence, the design criteria in which the authors initially based the system (2)–(6)
in [24] opens the possibility of considering control inputs to define a complementary model.

However, implementing the LCIS method provided a positive domain where all non-
linear system’s trajectories were held without a linear scheme or numerical approach;
thus, establishing a solution to the system by defining the upper bounds given the
conditions (16), (24), and (25). The domain defined by (26) contains the cell population;
however, it is considered asymmetric regarding each cell dynamic.

Closed-Loop Analysis via Lyapunov Stability Criteria

In the particular case of biological models, proposing control inputs are complex to
determine unless a real-world known variable can be measured or supplied in a laboratory,
such as insulin. In this work, insulin is not directly involved; instead, we assumed that a
more comprehensive understanding of blocking a direct targeting of the effector cells to
the pancreatic cells would lead to unnecessary antigen scheme behavior.

Recent research suggests that a more in-depth development of the insulin proliferation
due to the β cell behavior. In [29], the authors concluded that researchers worldwide must
continue monitoring T1D incidence trends. In contrast, research associated with prevention
areas, early detection, and improved TID treatment continues. Furthermore, in [30], the
authors tackled the use of protein biomarkers associated with risk factors in developing
cardiovascular diseases when diabetes family antecedents prevail and pass in offspring
from the gestational diabetes stage. They concluded that a deeper understanding of a
leading cause that diabetes develops could improve this research topic.

Therefore, considering the system dynamic and the obtained previous results, we
decided to analyze the system in a closed-loop scheme, proposing control inputs that
guarantee its overall stability. The model described by Equations (2)–(6) is expressed
as follows:

dA
dt

= (σ + αM)
pn

kn
1 + pn − (β + δA)A− εA2 + U1, (37)

dM
dt

= β2m1
akm

2
km

2 + pm A− pn

kn
1 + pn αM− δM M, (38)

dE
dt

= β2m2(1− akm
2

km
2 + pm )A− δEE + U2, (39)

dp
dt

= REB− δp p, (40)

dB
dt

= −κEB; (41)

where U1 and U2 represent the control inputs that could regulate the T cell population
increase rate. To determine the criteria for each input, we propose the following candidate
Lyapunov function

V = q1 A + q2M + q3E + q4 p + q5B, (42)
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where its derivative is given by V̇ = q1 Ȧ + q2Ṁ + q3Ė + q4 ṗ + q5Ḃ, with q1, q2, q3, q4, and
q5 as free parameters, after substituting Equations (37)–(41) into the derivative gives

V̇ = q1

[
σ

pn

kn
1 + pn

+ αM
pn

kn
1 + pn

− (β + δA)A− εA2 + U1

]
+q2

[
β2m1

akm
2

km
2 + pm A− pn

kn
1 + pn

αM− δM M
]

(43)

+q3

[
β2m2 A− akm

2
km

2 + pm β2m2 A− δEE + U2

]
+ q4

[
REB− δp p

]
+ q5[−κEB].

Now, analyzing the Equation (43), we concluded that U1 and U2 are able to establish
stability conditions; therefore, U1 and U2 are defined as

U1 = −σ
pn

kn
1 + pn

− αM
pn

kn
1 + pn

, (44)

U2 = −β2m2 A, (45)

as long as the condition (46) holds
2m1 < 2m2 , (46)

with

q1 = q2 = q3 = q4 = 1, (47)

q5 <
R
κ

, (48)

and, in order to guarantee asymptotically stability by the Lyapunov direct method, also the
following inequality must hold

ε

(
A +

(β + δA)

2ε

)
+ δM M + δEE + δp p >

(β + δA)
2

4ε
. (49)

In summary, the condition for q5, inequality (48), implies that, given the Equation (16),
when R = κ, then q5 < 1, in comparison with the positive free parameters (47) that are
equal to one. Meanwhile, condition (46) holds as condition (23). This implies that set K(h3)
in Equation (26) encompasses the system (37)–(41) only when R = κ; thus, Equation (49)
is also contained in the positive domain of K(h3); leading us to a mathematical preamble
that the system (2)–(6) is a baseline model that can guide a mathematical revaluation, i.e., a
model where cell populations could be modified, in view of a possible treatment.

5. Numerical Simulations

This section presents numerical simulations obtained with the LCIS method. Figure 1,
shows the behavior of the activated, effector, and memory T cells, as well as the behavior
of the population level of β cells and C-peptides. The parameters considered were those
corresponding to Table 1, and the initial conditions were A(0) = 0.5, M(0) = 0, E(0) = 1,
p(0) = 0, and B(0) = 1. Figure 1 shows the number of circulating cells (scaled) against
time (days); A(t) is expressed as ×103 cells. M(t)(×104), E(t)(×106), p(t) tends to be a
small population of cells, and B(t) is a fraction of the remaining β cell mass. The β cell
population decreased by 40% during the immune attack. Since the model does not address
the replenishment of the β cells by reproduction or stem cell differentiation, the β cell mass
remains constant after this isolated immune response, [31]. The proposed initial conditions
leading to the immune response was resolved without chronic disease or cyclic waves.

In Figure 2, we present a first approach of the upper bound for the variable A(t), only
if the conditions (24) and (25) are fulfilled; whereas, the immunological response in the
presence of β cell behavior is presented in Figure 3. Effector and memory cell dynamics are
under the upper bound set K(h3), implying that C-peptide has a direct impact on them;
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therefore, in mathematical sense, the model has a proximity approach to the biological
scheme. Clinical procedures need to be considered to ensure a reliable approach between
the mathematical and the physical dynamics.

Figure 3 and 4 show the maximum value of the set K(h3) for the two types of T cells.
The condition of δA, in (25), implies that the death rate of the memory T cells must be lower
than the death rate by effector cells. Figure 5 presents the dynamics under the upper bound
Kp, given by the localizing function h2 and satisfying the condition (16). The secretion of
the peptide is directly associated with the activation of T cells. When the C-peptide reaches
high levels, memory cell production stops, and, consequently, the C-peptide is gradually
cleared. High T cell levels are associated with an immune response to attack the β cell
population, while the C-peptide attempts to avoid their destruction.

Using the LCIS method, we determined the maximum β cell population; therefore,
when the β cells are at the maximum, then the C-peptide level is at the minimum as
long as the T cells remain inactivated, see Figure 1. However, the C-peptide secretion
stops when the β cells are gone; otherwise, its secretion remains active and waiting for
the following β cell-level change. An increased incidence of microvascular complications
are correlated with low C-peptide levels. It would be interesting to determine whether
C-peptide concentrations are associated with increased macrovascular morbidity and
mortality. Moreover, the maximum population of β cells is given by the set KB, see
Figure 6.

Figure 1. The dynamics of the circulating cell populations over time. A(t) [×103 cells]. M(t) [×104

cells], E(t) [×106 cells], p(t) [tends to be a small population o f cells], and B(t) [a f raction o f the β cell
mass remaining].
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Figure 2. The presence of the upper bound for activated T cells by the set K(h3).

Figure 3. The immunological response in the presence of β cell behavior.
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Figure 4. Effector cell dynamics under the upper bound set K(h3).

Figure 5. Upper bound for the C-peptide cell population by the set Kp.
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Figure 6. Upper bound for β cell population by the set KB.

6. Conclusions

The localizing compact invariant set method provides the mathematical preamble to
define the bounded positive invariant domain, i.e., the domain where all trajectories of the
cell populations involved in T1DM are contained. It was also possible to mathematically
describe the C-peptide level by proposing linear type localizing functions. The particularity
in which the mathematical model is presented in [24], and discussed in this research implies
that it represents a feasible scheme to analyze β cell targeting by the immune response.
Thus, the estimated numerical values in Table 1 hold a reliable approach that can lead to a
deeper pancreatic cell population understanding for experimental research in the future.

C-peptides are a useful indicator of β cell function, allowing discrimination between
insulin-sufficient and insulin-deficient individuals with diabetes. Potential future uses
of C-peptide are broad, including aiding appropriate diagnosis, guiding therapy choices,
and predicting morbidity in diabetes; hence, the set of Equations (2)–(4) is one of the first
nonlinear models involving a variable for C-peptide, and our results aim to contribute to
future research involving a mathematical preamble.

The local stability of the systems through linearization was not concluded, since, in
both cases, a matrix with a null eigenvalue was obtained, that is, one of the eigenvalues is
equal to zero. Thus, this indicates the possibility of needing control inputs to ensure that
the system regulates and breaks even.

The mathematical analysis of closed-loop systems suggests two control inputs directly
related to the population of activated T cells and effector T cells. The control input U1,
see condition (44), implies the existence of a counterpart that prevents an increase in the
population of activated T cells under the presence of β cells by suppressing the C-peptide
level and the number of memory T cells produced by the body. On the other hand, the
control input U2, see (45), is associated with the effector T cell population’s level, suggesting
a population reduction effect of activated T cells to proliferate.

Therefore, a mathematical analysis considering control inputs based on a closed-loop
system provides a theoretical basis to implement an immunotherapy treatment, if and
only if, the conditions (46), (47), and (48) hold and, as a consequence, the condition (49)
is also satisfied. In other words, these control inputs permit the conduction of all the cell
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populations to the desired state of equilibrium, i.e., being in symmetry with the desired
level of each cell population.

This work did not discuss the idea of a nonlinear controller design at the moment;
however, this is considered as future work given the conditions (44) and (45). We also intend
to carry out the design of observers. We assumed, that the mathematical purpose of the
observer is to identify or estimate those model’s variables for feedback and to implement it
as a possible or feasible treatment. Since the model deals with cell populations that do not
have an easy way to measure themselves, considering their development outside the body
is still a goal for the future.

Author Contributions: Conceptualization, D.G. and R.G.; Data curation, C.E.V.-L.; Formal analysis,
D.G. and P.J.C.; Funding acquisition, C.E.V.-L.; Methodology, R.G.; Validation, P.J.C., C.E.V.-L. and
R.G.; Writing—original draft, D.G.; Writing—review and editing, P.J.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by Tecnológico Nacional de México (TecNM), Grant project ID:
10872.21-P. Title project: Análisis matemático de modelos no lineales relacionados a células pancreáti-
cas y la respuesta inmunológica asociados a diabetes mellitus insulinodependiente.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: All authors declare no conflict of interest in this paper.

References

1. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.;
Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from
the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [CrossRef]

2. World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World
Health Organization: Geneva, Switzerland, 2019.

3. Ampofo, A.G.; Boateng, E.B. Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Res. Clin. Pract. 2020, 167, 108362.
[CrossRef]

4. Ogurtsova, K.; da Rocha Fernandes, J.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.; Makaroff, L.
IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50.
[CrossRef]

5. Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and
2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [CrossRef]

6. Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for
2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [CrossRef]

7. Cho, N.; Shaw, J.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.; Ohlrogge, A.; Malanda, B. IDF Diabetes Atlas: Global
estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [CrossRef]

8. Lin, J.; Thompson, T.J.; Cheng, Y.J.; Zhuo, X.; Zhang, P.; Gregg, E.; Rolka, D.B. Projection of the future diabetes burden in the
United States through 2060. Popul. Health Metrics 2018, 16, 9. [CrossRef] [PubMed]

9. Bergman, R.N.; Cobelli, C. Minimal modeling, partition analysis, and the estimation of insulin sensitivity. Fed. Proc. 1980, 39, 110.
[PubMed]

10. Bergman, R.N.; Ider, Y.Z.; Bowden, C.R.; Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. Endocrinol.
Metab. 1979, 236, E667. [CrossRef] [PubMed]

11. Fritzen, K.; Heinemann, L.; Schnell, O. Modeling of diabetes and its clinical impact. J. Diabetes Sci. Technol. 2018, 12, 976–984.
[CrossRef]

12. Viceconti, M.; Cobelli, C.; Haddad, T.; Himes, A.; Kovatchev, B.; Palmer, M. In silico assessment of biomedical products: the
conundrum of rare but not so rare events in two case studies. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 455–466.
[CrossRef]

13. Aluru, S. Handbook of Computational Molecular Biology; CRC Press: Boca Raton, FL, USA, 2005.
14. Castillo-Chavez, C.; Blower, S.; Van den Driessche, P.; Kirschner, D.; Yakubu, A.A. Mathematical Approaches for Emerging and

Reemerging Infectious Diseases: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; Volume 1.
15. Miao, H.; Xia, X.; Perelson, A.S.; Wu, H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM

Rev. 2011, 53, 3–39. [CrossRef] [PubMed]
16. Wahren, J.; Ekberg, K.; Jörnvall, H. C-peptide is a bioactive peptide. Diabetologia 2007, 50, 503–509. [CrossRef]

188



Symmetry 2021, 13, 1238

17. Hao, W.; Gitelman, S.; DiMeglio, L.A.; Boulware, D.; Greenbaum, C.J. Fall in C-peptide during first 4 years from diagnosis of type
1 diabetes: Variable relation to age, HbA1c, and insulin dose. Diabetes Care 2016, 39, 1664–1670. [CrossRef] [PubMed]

18. Shields, B.M.; McDonald, T.J.; Oram, R.; Hill, A.; Hudson, M.; Leete, P.; Pearson, E.R.; Richardson, S.J.; Morgan, N.G.; Hattersley,
A.T. C-peptide decline in type 1 diabetes has two phases: An initial exponential fall and a subsequent stable phase. Diabetes Care
2018, 41, 1486–1492. [CrossRef] [PubMed]

19. Valle, P.A.; Coria, L.N.; Salazar, Y. Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model. Bull.
Math. Biol. 2019, 81, 4144–4173. [CrossRef]

20. Starkov, K.E. A Cancer Model for the Angiogenic Switch and Immunotherapy: Tumor Eradication in Analysis of Ultimate
Dynamics. Int. J. Bifurc. Chaos 2020, 30, 2050150. [CrossRef]

21. Valle, P.A.; Coria, L.N.; Plata, C. Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic
Myelogenous Leukemia. Cancers 2021, 13, 2030. [CrossRef]

22. Gamboa, D.; Coria, L.N.; Cárdenas, J.R.; Ramírez, R.; Valle, P.A. Hardware Implementation of a Non-Linear Observer for a
Diabetes Mellitus Type 1 Mathematical Model. Comput. Sist. 2019, 23, 4. [CrossRef]

23. Gamboa, D.; Vázquez, C.E.; Campos, P.J. Nonlinear Analysis for a Type-1 Diabetes Model with Focus on T-Cells and Pancreatic
β-Cells Behavior. Math. Comput. Appl. 2020, 25, 23. [CrossRef]

24. Mahaffy, J.M.; Edelstein-Keshet, L. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J. Appl. Math.
2007, 67, 915–937. [CrossRef]

25. Krishchenko, A.P.; Starkov, K.E. Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 2006, 353, 383–388.
[CrossRef]

26. Krishchenko, A.P. Localization of invariant compact sets of dynamical systems. Differ. Equ. 2005, 41, 1669–1676. [CrossRef]
27. Campos, P.J.; Coria, L.N.; Trujillo, L. Nonlinear speed sensorless control of a surface-mounted PMSM based on a Thau observer.

Electr. Eng. 2018, 100, 177–193. [CrossRef]
28. Leighton, E.; Sainsbury, C.A.; Jones, G.C. A practical review of C-peptide testing in diabetes. Diabetes Ther. 2017, 8, 475–487.

[CrossRef] [PubMed]
29. Lawrence, J.M.; Mayer-Davis, E.J. What do we know about the trends in incidence of childhood-onset type 1 diabetes? Diabetologia

2019, 62, 370–372. [CrossRef]
30. Lorenzo-Almoros, A.; Hang, T.; Peiro, C.; Soriano-Guillén, L.; Egido, J.; Tuñón, J.; Lorenzo, O. Predictive and diagnostic

biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases. Cardiovasc. Diabetol. 2019, 18, 140.
[CrossRef] [PubMed]

31. Thompson, P.J.; Shah, A.; Ntranos, V.; Van Gool, F.; Atkinson, M.; Bhushan, A. Targeted elimination of senescent beta cells
prevents type 1 diabetes. Cell Metab. 2019, 29, 1045–1060. [CrossRef]

189





symmetryS S

Article

Symmetric and Asymmetric Diffusions through Age-Varying
Mixed-Species Stand Parameters

Petras Rupšys 1,2,* and Edmundas Petrauskas 2

Citation: Rupšys, P.; Petrauskas, E.

Symmetric and Asymmetric

Diffusions through Age-Varying

Mixed-Species Stand Parameters.

Symmetry 2021, 13, 1457.

https://doi.org/10.3390/sym13081457

Academic Editors: Federico Papa,

Sergei D. Odintsov and Carmela

Sinisgalli

Received: 5 July 2021

Accepted: 30 July 2021

Published: 9 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Informatics, Vytautas Magnus University, Studentų Str. 11, LT-53361 Kaunas, Lithuania
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Abstract: (1) Background: This paper deals with unevenly aged, whole-stand models from mixed-
effect parameters diffusion processes and Voronoi diagram points of view and concentrates on the
mixed-species stands in Lithuania. We focus on the Voronoi diagram of potentially available areas
to tree positions as the measure of the competition effect of individual trees and the tree diameter
at breast height to relate their evolution through time. (2) Methods: We consider a bivariate hybrid
mixed-effect parameters stochastic differential equation for the parameterization of the diameter and
available polygon area at age to ensure a proper description of the link between them during the
age (time) span of a forest stand. In this study, the Voronoi diagram was used as a mathematical tool
for the quantitative characterization of inter-tree competition. (3) Results: The newly derived model
considers bivariate correlated observations, tree diameter, and polygon area arising from a particular
stand and enables defining equations for calculating diameter, polygon-area, and stand-density
predictions and forecasts. (4) Conclusions: From a statistical point of view, the newly developed
models produced acceptable statistical measures of predictions and forecasts. All the results were
implemented in the Maple computer algebra system.

Keywords: Voronoi diagram; diffusion process; bivariate probability density function; diameter;
polygon area; stand density

1. Introduction

Forest statisticians often need to address complex issues in important whole-stand,
unevenly aged growth models with high levels of uncertainty that affect individual trees.
Providing scientific evidence for effective decision processes in forest areas is a key issue,
and stochastic calculus is an essential tool [1].

In the past few decades, mathematical models based on diffusion processes were
fruitfully applied to describe stochasticity phenomena belonging to even extremely dif-
ferent disciplinary fields that range in scale from human population in biology [2] to
cryptocurrency in finance [3] and from infectious disease in medicine [4] to networks in
neuroscience [5]. Mixed-effect parameters diffusion processes provide a convenient tool to
account for differences between several experiments or several subjects [6].

One of the important aims of modern forest regeneration is the investigation of the
mapped tree community distribution in a stand area and its evolution through time. The
distribution of individual trees depends both on the initial conditions present in a for-
est stand and the successive development of trees through changes in size components
and mortality events. At present, results are large datasets of observations and statistical
analysis acquired by using competition indices to both direct and indirect stand mea-
surements [7]. To operate with these data, it is necessary to investigate information in
a convenient form for the mathematical modeling of individual-based tree growth and
yield. Independently of the type of an individual tree or whole-stand stochastic modelling
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(having a random variable), the consideration of a diffusion process has particular chal-
lenges. Diffusion processes allow for us to compute both the solution of the corresponding
stochastic differential equation in a form of probability density function and their statistical
moments, mainly mean, quantiles, and variance. The mechanism of the evolution of the
competition among living trees in a forest stand can be successfully described by using a
relatively young mathematical tool—continuous stochastic differential equations (SDEs).
SDEs serve the purpose of analysis in a wide variety of generic growth models with dif-
ferent resolutions. The most advanced statistical models of this kind were formulated in
terms of multivariate diffusion processes [8].

The process by which tree seedlings start to grow successfully in a new place is
spatially multivariate, with numerous unknown variables. A potentially available area
for an individual seedling embodies a variable representing the competitive strength
of individual tree–tree interactions and varies through time. Several case studies were
conducted to study the relationships between the potentially available area of a tree and its
main biometrical attributes and competition indices [9]. The competition index is widely
applied in plant ecology, but it has a smaller number of applications in individual-tree or
whole-stand modeling. From a mathematical point of view, the Voronoi diagram [10] can
be regarded as the best solution for neighboring effects on tree-size growth. To illustrate
this study, we use the Voronoi diagram method, which is used by the individual-based
tree-growth model. The Voronoi diagram formalizes a detailed structure of the position,
size, and shape of a potentially available area of individual trees with respect to the number
of trees per unit area and nearness of their contiguous neighbors. Moreover, Voronoi
polygons reflect the local variation of the number of trees in a given location. A variable
outlined by the value of the area of the Voronoi polygon is used as a descriptive parameter
of spatial arrangement and as a predictor of stand density models.

Almost all the published research on natural mechanisms of maintaining tree-species
diversity focuses on the principles of spatial measures and competition-index construction
and their biological and mathematical reasoning [9]. Previous relationships on the key
competition index include only local neighbors and are static. Unfortunately, it is insuf-
ficient, as each competition index systematically changes through time, which is of great
importance and highly correlated with tree-size variables. Therefore, this paper focuses on
the Voronoi polygon area of a tree and its dynamics. The dynamics of the polygon area
is described by a diffusion process that accounts for the competition effect of contiguous
neighbors and its correlation with tree-size or -stand variables.

This paper deals with whole-stand models from a diffusion process of view and
concentrates on mixed-species stands in Lithuania. The innovation of this paper lies in
the following: (1) the Voronoi diagram of potentially available areas to tree positions
as the measure of the competition effect of individual trees, and its evolution through
time is described using a Gompertz-type diffusion process; (2) the link of stand density
with potentially available area and tree diameter is analyzed; (3) the mean and quantile
attribute equations of the potentially available area, tree diameter, and stand density are
described; and (4) the significance of differences in the distributions of different tree species
is assessed. This paper carries out further research from the following directions: the
first aspect analyzes the stochastic fixed-effect parameters process and then the stochastic
mixed-effect parameters process; the third aspect illustrates the computational properties
of the derived models.

The study was conducted in naturally and artificially regenerated areas by using data
collected from over 58,000 trees positioned in a network of 50 permanent, rectangular
sampling plots. As significant variables in the present study, we used such assessed
attributes as species, the location of the individuals (Cartesian coordinates x, y), tree
diameter at 1.3 m above ground level, and age. In order to determine the individual area of
the i-th (i = 1, . . . , n) tree, Voronoi polygon area Pi was calculated.

By utilizing the additive and multiplicative noise systems, we define the hybrid bi-
variate Vasicek–Gompertz-type SDE. The inclusion of random effects in the SDE produced
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a more accurate model to account for the error between model predictions and observed
dataset. Model building in forestry was traditionally formalized by empirical models
supporting the decisions of forest managers [11]. In addition, large published growth and
yield systems were described by regression analysis, developed on a statistical basis that
actually sought only to highlight the importance of a particular response variable in pre-
dicting the future, remaining static and deterministic. The stochastic differential equation
approach opened the way to a stochastic dynamical formulation of the individual-tree or
whole-stand growth process that appeared much later in statistical forestry [12–14].

2. Materials and Methods

2.1. Voronoi Diagram

Considering data in the form of a given set of n points (xi; yi), i = 1, . . . , n within a
planar region A, we can assign an area to (xi; yi) consisting of that part of A that is closer
to (xi; yi) than to any other point (xj; yj). A Voronoi diagram involves the partitioning of
a planar region A into regions or polygons Ai on the basis of the distance to a specified
discrete set of points [15]. The Voronoi diagram is a mathematical tool for the quantitative
characterization of natural phenomena, such as inter-tree competition. In these polygons,
trees with which the area neighbors are in direct competition for available light and
nutrients are shown [16]. Each area Ai is a convex polygonal region. Voronoi polygons Ai
vary with increasing time, and the number of trees decreases. Considering the dynamic of
the Voronoi diagram allowed for both the quantification of its temporal dynamics and the
characterization of the number of trees in a stand and its dynamics through time.

A generic definition of Voronoi diagrams was mathematically first introduced by Au-
renhammer [17]. Voronoi cell Ai, associated with point (xj; yi), is the set of all points in A, of
which distance to point (xj; yi) is not greater than their distance to other point (xj; yj), where
j is any index different from i. If we assume that d((x; y),B) = inf{d((x; y),(a1; a2))|(a1; a2)
∈B} denotes the distance between point (x; y) and subset B, then:

Ai =
{
(x; y) ∈ A

∣∣d((x; y), Ai) ≤ d
(
(x; y), Aj

)
f or all j �= i

}
. (1)

The Voronoi diagram is simply the corpus of polygons Ai, i = 1, . . . , n. In the past
decade, mathematical algorithms and the rapid development of computational capacities
provided a new chance to develop Voronoi diagram-based applications. In this study,
we discuss mathematical models and their analyses based on areas of generated Voronoi
polygons. To illustrate our work, we computed the Voronoi polygon of each individual
tree in a plot, which was remeasured four times and is visualized in Figure 1, which shows
that the areas of the Voronoi cells change through age (time).

2.2. Bivariate SDEs of Diameter and Polygon Area

In forestry studies, most tree attributes are considered to be functions of the tree
diameter at breast height D [18]. For explaining the dynamics of tree-size variables, the
incorporation of the distance of neighboring trees into a model improves predictions [19].
Moreover, appropriate evaluation of individual-tree size-variable is a fundamental require-
ment for the analysis of stand variables, such as the number of trees and volume per hectare.
This study considers a stochastic approach for the parameterization of diameter D and poly-
gon area P at age to ensure the proper descriptions of their link during the age (time) span of
a forest stand. In this section, we state the stochastic mixed-effect bivariate (diameter D and
polygon area P) model and derive the corresponding bivariate probability density function.
We also introduce the procedure for random-effect calibration. The Vasicek–Gompertz-
type bivariate hybrid stochastic mixed-effect parameters model was used to parameterize
diameter and polygon area at age-discrete data. The univariate Gompertz-type model was
applied to the analysis of stem volume and tree-stem taper from different tree species [20].
Below, stochastic vector Xi(t) =

(
Xi

1(t), Xi
2(t)

)T
=
(

Di(t), Pi(t)
)T , i = 1, . . . ,M, t ∈ [t0; T],
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M is the number of individuals (plots), and T is a finite horizon, T < ∞. Hybrid bivariate
Vasicek–Gompertz-type SDE is defined as:

dXi(t) = Ai
(

Xi(t)
)

dt + D
(

Xi(t)
)

B
1
2 · dWi(t)P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (2)

Ai(x) =
(

βd

(
αd + ϕi

d − x1

)
,
((

αp + ϕi
p

)
− βpln(x2)

)
x2

)T
B =

(
σdd σdp
σdp σpp

)
, (3)

(
D(x)B

1
2

)(
D(x)B

1
2

)T
=

(
1 0
0 x2

)(
σdd σdp
σdp σpp

)(
1 0
0 x2

)

Figure 1. Voronoi diagram of plot remeasured on four succeeding occasions: (a) 1983rd-year cycle of
measurement (mean age, 43.70 years); (b) 1988th-year cycle of measurement (mean age, 48.72 years);
(c) 1996th-year cycle of measurement (mean age, 57.13 years); (d) 2019th-year cycle of measurement
(mean age, 83.12 years); red, Scots pine trees; green, Norway spruce trees; yellow, birch trees; circles,
tree position.

This study focusses on initial distribution, defined by deterministic initial value(
Xi

1(t0), Xi
2(t0)

)
= (x10, x20) =

(
x10, δ+ ϕi

0
)
, and δ is an unknown fixed-effect parameter

to be estimated. SDE of form (2) consists of two parts. The deterministic part in the
model is drift function Ai(x). Random term D

(
Xi(t)

)
B

1
2 · dWi(t), which corresponds

to the uncertain part of the model, is referred to as the system noise. In Equation (2),
Wi(t) =

(
Wi

1(t), Wi
2(t)

)T represents the bivariate Brownian motion, of which the time
derivative is white noise. Moreover, Brownian motion increments dWi(t), i = 1, . . . ,M,
are considered to be independent across all plots. Random effects ϕi

d ϕi
p, and ϕi

0 are
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independent and normally distributed random variables with zero mean and constant
variances, respectively, ϕi

d ∼ N
(
0; σ2

d
)
, ϕi

p ∼ N
(

0; σ2
p

)
, and ϕi

0 ∼ N
(
0; σ2

0
)
. Fixed-effect

parameters vector θ to be estimated is defined as:

θ =
(

αd, αp, βd, βp, σdd, σpp, ρdp, δ, σd, σp, σ0

)
σdp =

√
σddσppρdp. (4)

The solution of the Vasicek–Gompertz-type SDE (2) has bivariate normal-lognormal dis-
tribution N1LN1

(
μi(t

∣∣t0, x0); Σ(t
∣∣t0)
)

with mean vector μi(t
∣∣t0, x0) and variance–covariance

matrix Σ(t|t0) , defined as:

μi(t|t0, x0) =

(
μi

d(t|t0, x10)

μi
p(t
∣∣∣t0, x20)

)
=

(
(αd + ϕi

d) +
(

x10 − (αd + ϕi
d)
)
e−βd(t−t0)

e−βp(t−t0)ln(δ + ϕi
0) +

1−e−βp(t−t0)

βp

(
αp + ϕi

p − σpp
2

) ) (5)

Σ(t|t0) =

⎛⎝ vdd(t|t0) vdp(t
∣∣∣t0)

vdp(t
∣∣∣t0) vpp(t

∣∣t0)

⎞⎠=

⎛⎝ 1−e−2βd(t−t0)

2βd
σdd

1−e−(βd+βp)(t−t0)

βd+βp

√
σddσppρdp

1−e−(βd+βp)(t−t0)

βd+βp

√
σddσppρdp

1−e−2βp(t−t0)

2βp
σpp

⎞⎠. (6)

We can separately calculate the probability distribution of each random variable if we wish
to restrict our attention to the value of just one, for example, diameter D or polygon area P. The
marginal distribution of Xi

1(t)
∣∣Xi

1(t0) = x10 is normal N1
(
μi

d(t
∣∣t0, x10) ; vdd(t|t0)

)
, and the

marginal distribution of Xi
2(t)

∣∣Xi
2(t0) = x20 is lognormal LN1

(
μi

p(t
∣∣∣t0, x20) ; vpp(t

∣∣∣t0)
)

with

means μi
d(t
∣∣t0, x10) and μi

p(t
∣∣∣t0, x20) and variances vdd(t|t0) and vpp(t|t0), respectively.

For the diameter dynamic, the mean, median, mode, qth quantile (0 < q < 1), and
variance trends can be listed as:

mi
d(t|t0, x10) = mei

d(t|t0, x10) = moi
d(t|t0, x10) = μi

d(t
∣∣∣t0, x10), (7)

mqi
d(t, q|t0, x10) = Φ−1

q

(
μi

d(t|t0, x10); vdd(t|t0)
)

, (8)

wi
d(t|t0, x10) = vdd(t|t0), (9)

where Φ−1
q (·; ·) is the inverse of the standard normal distribution function.

For the polygon area dynamic, the mean, median, mode, qth quantile (0 < q < 1), and
variance trends can be listed as:

mi
p(t|t0, x20) = exp

(
μi

p(t
∣∣∣∣t0, x20) +

1
2

vpp(t|t0)

)
, (10)

mei
p(t|t0, x20) = exp

(
μi

p(t
∣∣∣t0, x20)

)
, (11)

moi
p(t|t0, x20) = exp

(
μi

p(t|t0, x20)− vpp(t|t0)
)

, (12)

mqi
p(t, q|t0, x20) = LΦ−1

q (μi
p(t
∣∣∣t0, x20); vpp(t|t0)), (13)

wi
p(t|t0, x10) = exp

(
2μi

p(t
∣∣∣t0, x20) + vpp(t|t0)

)
· (exp

(
vpp(t|t0)

)− 1
)
, (14)

where LΦ−1
q (·; ·) is the inverse of the standard normal distribution function.

Conditional distribution of Xi
1(t)

∣∣Xi
1(t0) = x10 at a given

(
Xi

2(t) = x2
)

is univariate
normal N1

(
ηi

d(t, x2
∣∣t0, x0); λd( t|t0 )

)
, and conditional distribution of Xi

2(t)
∣∣Xi

2(t0) = x20 at

a given
(
Xi

1(t) = x1
)

is univariate lognormal LN1

(
ηi

p(t, x1

∣∣∣t0, x0); λp( t|t0 )
)

, with means
and variances given as:

ηi
d(t, x2|t0, x0) = μi

d(t
∣∣∣∣t0, x10) +

vdp(t|t0)

vpp(t|t0)

(
ln(x2)− μi

p(t
∣∣∣t0, x20)

)
(15)
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λd(t|t0) = vdd(t|t0)−
(

vdp(t|t0)
)2

vpp(t|t0)
, (16)

ηi
p(t, x1|t0, x0) = μi

p(t
∣∣∣∣t0, x20) +

vdp(t|t0)

vdd(t|t0)

(
x1 − μi

d(t
∣∣∣t0, x10)

)
, (17)

λp(t|t0) = vpp(t|t0)−
(

vdp(t|t0)
)2

vdd(t|t0)
. (18)

For the diameter growth model, the conditional mean, median, mode, qth quantile
(0 < q < 1), and variance trends can be listed as:

mci
d(t, x2|t0, x0) = meci

d(t, x2|t0, x0) = moci
d(t, x2|t0, x0) = ηi

d(t, x2|t0, x0), (19)

mqci
d(t, x2, q|t0, x0) = Φ−1

q (ηi
d(t, x2

∣∣∣t0, x0); λd(t|t0)), (20)

wci
d(t|t0) = λd(t|t0). (21)

For the polygon area growth model, the conditional mean, median, mode, qth quantile
(0 < q < 1), and variance trends can be listed as:

mci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0) +
1
2

λp(t|t0)

)
, (22)

meci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0)
)

, (23)

moci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0)− λp(t|t0)
)

, (24)

mqci
p(t, x1, q|t0, x0) = Φ−1

q (ηi
p(t, x1

∣∣∣t0, x0); λp(t|t0)), (25)

wci
p(t, x1|t0, x0) = exp

(
2ηi

p(t, x1|t0, x0) + λp(t|t0)
)
· (exp

(
λp(t|t0)

)− 1
)
. (26)

2.3. Data

The field-study area is located in the municipality of Kazlų Rūda in Lithuania. A major
part of the Kazlų Rūda municipality is located in the fertile Užnemunė lowland and is among
the most wooded areas in Lithuania, with about 59.4% of the territory covered by large forests.
The specific allocation comprises the area covered by stands of pine (Pinus sylvestris), 63.8%;
spruce (Picea abies), 30.2%; silver birch (Betula pendula Roth and Betula pubescens Ehrh.), 5.8%;
and others, 0.2%. All data were collected during fieldwork in 1983–2019 across the Kazlų
Rūda forests (latitude, 54◦44′54.222′′ N; longitude, 23◦29′27.7944′′ E; altitude, 68 m). Mean
temperatures vary from −16.4 ◦C in winter to 22 ◦C in summer. Precipitation is distributed
throughout the year, although predominantly in summer; the average is approximately
680 mm a year. During the 1983–1987 period, 50 permanent experimental plots were
established in the Kazlų Rūda forests in Lithuania. According to regeneration mode, the
50 field-sample plots vary between those naturally and artificially regenerated and spread
in pure or mixed-species stands. Each sample plot consisted of about 0.16–0.72 ha and was
remeasured several times, from 1 until 6 (see Figure 1, showing 4 cycles) at 2- to 36-year
intervals. The attributes recorded for each tree in the considered plots were the tree species,
age, location of the sample trees (planar coordinate position x and y), and diameter at
breast height. The age of the i-th tree (i varied from all the trees until the 10th) in the
first measurement was recorded by counting its growth rings on the increment core (for
even-aged stands, from entries in documents), and the ages of the remaining trees were
obtained from the arithmetic mean. The accuracy of planar coordinate position was 1 dcm,
and diameter measurements were performed with approximately 1 mm accuracy. The
50 field-sample plot dataset was randomly divided into estimation and validation datasets.
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The estimation dataset consisted of measurements from 40 plots, and the validation dataset
compounded the remaining measurements from 10 plots. Table 1 shows the summary
statistics of the field-sample data.

Table 1. Tree characteristics of sample plots (0.16–0.72 ha) selected for the study.

Species Data
Number of

Trees
Min Max Mean St. Dev.

Number of
Trees

Min Max Mean St. Dev.

Estimation Validation

Pine
t (year) 28,982 5.0 172.0 49.14 22.16 6997 7.0 197.0 67.90 19.06
d (cm) 28,982 0.5 61.0 17.87 9.17 6997 3.0 59.2 24.35 9.02
p (m2) 28,982 0.09 120.21 9.24 7.56 6997 0.44 84.84 13.02 8.54

Spruce
t (year) 11,493 12.0 207.0 59.63 21.57 7001 7.0 191.0 67.94 21.01
d (cm) 11,493 0.20 62.0 11.68 7.34 7001 3.0 61.8 13.24 8.51
p (m2) 11,493 0.11 160.24 9.17 8.32 7001 0.26 77.76 9.46 7.65

Birch
t (year) 2880 5.0 107.32 47.75 17.88 663 16.0 129.73 60.29 15.87
d (cm) 2880 0.90 45.40 14.46 8.13 663 3.0 50.0 19.91 9.30
p (m2) 2880 0.33 173.82 8.70 7.01 663 0.89 51.93 9.88 8.05

t (year) 43,410 5.0 207.0 51.84 22.27 14,711 7.0 197.0 67.55 19.94
All d (cm) 43,410 0.20 62.0 16.0 9.07 14,711 3.0 61.80 18.87 10.35

p (m2) 43,410 0.09 173.82 9.18 7.73 14,711 0.26 84.84 11.16 8.29

3. Results

3.1. Parameter-Estimating Results

The key research problem in this study is the latest developments of accurate and
computationally optimal parameter-estimation procedures based on the approximated
maximum-likelihood technique, which cannot be implemented in the presence of a closed-
form expression for the mixed-effect parameters SDE [21]. Our developed maximum-
likelihood estimation technique relies on the fact that the conditional bivariate probability
density function has an exact form. Therefore, the likelihood function maximization
technique with respect to parameter vector θ for a given set of discretely observed diameter
and polygon area data is defined by a two-step procedure.

To evaluate the proposed Vasicek–Gompertz-type mixed-effect parameters SDE (2), an
approximated log-likelihood technique for estimating the parameters was set up on the ba-
sis of the discrete observations from estimation dataset

{(
di

1, pi
1
)
,
(
di

2, pi
2
)
, . . . ,

(
di

ni
, pi

ni

)}
on a fixed time interval

{
ti
1, ti

2, . . . , ti
ni

}
, i = 1, . . . ,M. The randomly selected 40 samples

were used to fit the SDE model defined by Equation (2), and the results of the estimat-
ing parameters are summarized in Table 2. All parameters were statistically significant
(p < 0.05).

Table 2. Vasicek–Gompertz-type system for diameter and polygon area: parameter estimates.

Species αd βd αp βp σdd σpp ρdp δ σd σp σ0

All 48.3358 0.0086 0.0875 0.0273 1.3363 0.0199 0.2405 1.7344 11.5987 0.0121 1.5185
Pine 59.8450 0.0081 0.0860 0.0251 0.8308 0.0174 0.2056 1.3111 11.3134 0.0098 0.9627

Spruce 77.4686 0.0030 0.0836 0.0280 0.6393 0.0250 0.2851 1.7769 26.8149 0.0120 1.3815
Birch 23.6670 0.0234 0.0802 0.0258 1.7425 0.0200 0.1823 2.0643 8.6172 0.0131 0.3988

3.2. Bivariate and Marginal Distributions

After the fixed-effect parameters were obtained in Section 3.1, which are listed in Table 2,
they were used to evaluate the accuracy of the prediction and forecasting in subsequent
sections by using data from the validation dataset. The bivariate mixed-effect parameters
SDE model was developed by combining the two univariate models through a bivariate
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stochastic process. The model considered two correlated observations, tree diameter and
polygon area, reflecting the high variation of stand density among stands of Lithuania. The
main goal in an SDE modeling framework is to determine the probability density function
of the solution, formulated as a diffusion process since it capacitates for calculating any
univariate moment, which allows for calculating the mean, variance, and tolerance regions
for bivariate cases. In our setting, the newly developed bivariate density and marginal and
conditional densities were visually evaluated corresponding to the diameter and polygon
area observed data from the validation dataset at a given average stand age. Therefore,
the corresponding observed data from the validation dataset and its fitted distribution
were graphically visualized. The Voronoi tessellations presented in Figure 1 show dynamic
of polygon areas via stand age (time). These diagrams also demonstrate information
about variations in the polygon area, which grows with age. Figures 2–5 illustrate the fitted
marginal probability density functions and underlying frequency distributions (histograms)
for new plots from the validation dataset with two cycles of remeasurements at an average
stand age. All the fitted probability density functions take the values of the fixed-effect
parameters from Table 2. Random effects ϕd, ϕp, and ϕ0 for a new plot from the validation
dataset were calibrated as:

∧
ϕ = argmax

(ϕd ,ϕp ,ϕ0)

(
∑m

j=1 ln
(

f
(

x1j, x2j, tj

∣∣∣∣∧θ, ϕd, ϕp, ϕ0

))
+ ln

(
φ(ϕd

∣∣∣∧σd)
)
+ ln

(
φ
(

ϕp

∣∣∣∧σp

))
+ ln

(
φ
(

ϕ0

∣∣∣∧σ0

)))
(27)

where {(x11, x21), (x12, x22), . . . , (x1m, x2m)} is the newly observed dataset, t0 = 4,

(x10, x20) =
(
0.1, δ̂ + ϕ0

)
, f

(
x1, x2, t

∣∣∣∣∣ ∧θ1, ϕd, ϕp , ϕ0

)
is the bivariate normal-lognormal

density function with the mean and variance defined by Equations (5) and (6), φ(·|σ) is
the univariate normal density function with zero mean and standard deviation σ, and the
estimated values of fixed-effect parameters are denoted by “hat” (listed in Table 2).

Figure 2. Estimated marginal and conditional probability density functions and frequency distribution for all tree species
in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 71.9 years; and mean polygon area, 19.43 m2); (b) polygon area distributions (mean age, 71.9 years; and mean
diameter, 23.12 cm); (c) diameter distributions (mean age, 106.4 years; and mean polygon area, 24.11 m2); (d) polygon area
distributions (mean age, 106.4 years; and mean diameter, 31.06 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.
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Figure 3. Estimated marginal and conditional probability density functions and frequency distribution for Scots pine tree
species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 63.7 years; and mean polygon area, 13.85 m2); (b) polygon area distributions (mean age, 63.7 years; and mean
diameter, 23.62 cm); (c) diameter distributions (mean age, 98.4 years; and mean polygon area, 17.52 m2); (d) polygon area
distributions (mean age, 98.4 years; and mean diameter, 32.33 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.

Figure 4. Estimated marginal and conditional probability density functions and frequency distribution for Norway spruce
tree species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter
distributions (mean age, 57.6 years; and mean polygon area, 12.26 m2); (b) polygon area distributions (mean age, 57.6 years;
and mean diameter, 10.64 cm); (c) diameter distributions (mean age, 91.3 years; and mean polygon area, 15.47 m2);
(d) polygon area distributions (mean age, 91.3 years; and mean diameter, 20.30 cm); estimated marginal probability density
functions, solid lines; conditional (diameter-dependent) probability density functions, dotted lines.

Figures 2–5 show that univariate conditional probability density functions defined
by inserting additional explanatory variable polygon areas or diameters undergo indis-
tinguishable changes in comparison with corresponding univariate marginal densities.
The similarity of the marginal and conditional distributions suggests that the additional
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explanatory variable (polygon area or diameter) has a relatively small effect on the values
of the response variable (diameter or polygon area). Moreover, the figures superpose
frequency distribution and estimated normal or lognormal probability distributions that
correspond to the probability density function of the solutions of SDE (2). Frequency dis-
tributions are not exactly in agreement with the normal or lognormal distribution shapes
due to the variation in tree age or probably did not arise from our presented form. The tree
diameter histograms shown in Figures 2–5 confirm the assumption that the tree-diameter
distribution in a particular forest stand has an approximately symmetrical shape. The
lack of symmetry in Figure 4 for Norway spruce trees occurs probably due to the planned
thinning in the stand, as lightening works are usually carried out in stands of this age.
The symmetry and standard deviation of the diameter distribution increase with age. In
contrast, the polygon area histograms reveal asymmetry of the distribution, and the long
tail extends to the right. Histograms of the polygon area show a number of unusual ob-
served values. This scenario may be the result of a directional felling or soil properties.
Lastly, the newly derived bivariate probability density function was a good match for our
validation data.

Figure 5. Estimated marginal and conditional probability density functions and frequency distribution for silver birch tree
species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 44.7 years; and mean polygon area, 6.11 m2); (b) polygon area distributions (mean age, 44.7 years; and mean
diameter, 18.60 cm); (c) diameter distributions (mean age, 81.0 years; and mean polygon area, 10.44 m2); (d) polygon area
distributions (mean age, 81.0 years; and mean diameter, 25.94 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.

For the observed diameter and polygon area data fitted with the bivariate Vasicek–Gompertz-
type SDE (2), the tolerance region of mean vector μi(t

∣∣t0, x0) , defined by Equation (5), takes the
following well-known inequality [22]:((

x1
ln(x2)

)
− μi(t|t0, x0)

)T

[Σ(t|t0)]
−1
((

x1
ln(x2)

)
− μi(t|t0, x0)

)
≤ χ, (28)

where x is the tolerance coefficient [23]. For lognormally distributed polygon area data, we
plot a tolerance region using a logarithmic axis. Figures 6–9 show the tolerance regions
for β = 0.95 and confidence level γ = 0.95, which correspond to the randomly selected
stand from the validation dataset with two cycles of remeasurements. The random effects
were calibrated by Equation (27). For the tolerance region plots, the x value was chosen
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from Table 1 in [23]: the setting β = 0.95 and γ = 0.95 produces a x of 10.02. The bivariate
tolerance region for the Vasicek–Gompertz-type model (2) enables us to decide whether
the newly developed distribution function corresponds well with the observed data of
the diameter and polygon area. Figures 6–9 illustrate that the 95% tolerance regions had
reasonable coverage rates for different tree-species scenarios. Information concerning
tolerance regions is implicit in the hybrid bivariate distribution derived for the Vasicek–
Gompertz-type SDE (2).

Figure 6. Tolerance region for mean vector with the observed sample from the validation dataset of all tree species in
two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 71.9 years; mean
diameter, 23.12 cm; and mean polygon area, 19.43 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 106.4 years; mean diameter, 26.50 cm; and mean polygon area, 24.11 m2); tolerance region, solid line; observed
dataset, circles.

Figure 7. Tolerance region for mean vector with the observed sample from the validation dataset of Scots pine tree species
in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 63.7 years; mean
diameter, 23.62 cm; and mean polygon area, 13.85 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 98.4 years; mean diameter, 32.33 cm; and mean polygon area, 17.52 m2); tolerance region, solid line; observed
dataset, circles.

Figure 8. Tolerance region for mean vector with the observed sample from the validation dataset of Norway spruce tree
species in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 57.6 years;
mean diameter, 10.64 cm; and mean polygon area, 12.26 m2); (b) tolerance region of diameter and polygon area for fourth
cycle (mean age, 91.3 years; mean diameter, 20.30 cm; and mean polygon area, 15.47 m2); tolerance region, solid line;
observed dataset, circles.
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Figure 9. Tolerance region for mean vector with the observed sample from the validation dataset of silver birch tree species
in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 44.7 years; mean
diameter, 18.60 cm; and mean polygon area, 6.11 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 81.0 years; mean diameter, 25.94 cm; and mean polygon area, 10.44 m2); tolerance region, solid line; observed
dataset, circles.

4. Discussion

Figures 2–5 show that very high variation existed in the shape of the diameter and
polygon area frequency distributions among plots of a given stand age. In our models, this
variation was well accounted for by the used diffusion process defined by SDE (2). Since the
observed sample plots represent forest stands in the region, the plot effects were generally
included by using three random variables (effects). To properly test our mixed-effect model
of diameter, polygon area, and number of trees per hectare, we used observed sample
plots from the validation dataset to show its robustness in predicting (via current age) and
forecasting (future age).

4.1. Modeling Tree-Diameter Dynamics: Predicting and Forecasting

Traditionally, individual-tree-diameter-growth regression models describe growth
as a function of an age (tree or stand). Most individual-tree-diameter-growth models
were framed using an algebraic difference approach [24] and its mathematical generaliza-
tions [25]. The SDE (2) developed in this study enables us to describe a wide range of tree-
and stand-growth variables. To apply the mixed-effect SDE model defined by Equation (2),
we had two adaptation strategies—prediction and forecasting. First, the underlying ran-
dom effects of the model were precisely calibrated (using all remeasurement cycles from
the validation dataset). Hence, random effects were calibrated by Equation (27) using data
from the validation dataset in order to define the predictions (dynamic against the age) of
the mean, variance, and quantiles of the diameter or polygon area in a particular stand.
In this strategy, we could average the results of multiple realizations of tree diameters in
different plots and obtain important characteristics (mean and variance) that could not
be seen in one tree realization. Second, the underlying random effects of the model were
not precisely calibrated (using only the first measurement cycle in a plot). Hence, random
effects were calibrated by Equation (27) using measurements of diameter, polygon area,
and age at the initial measurement cycle from the validation dataset in order to define the
forecasts, at the 5-, 13-, and 35-year forecast periods, of the diameter or polygon area for
each individual tree. Most remeasured plots from the validation dataset were unevenly
aged and mixed-species. Figure and table illustrations are separately presented for all tree
species, Scots pine tree species, Norway spruce tree species, and silver birch tree species.
Figure 10 shows predictions of the mean diameter, 0.05 and 0.95 quantiles for all, Scots
pine, Norway spruce, and silver birch tree species for two randomly selected stands from
the validation dataset.
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Figure 10. Dynamic of mean, 5%, and 95% percentiles of diameter with observed datasets for two
randomly selected stands from the validation dataset: (a) all tree species; (b) Scots pine tree species;
(c) Norway spruce tree species; (d) silver birch tree species; observed dataset of diameters, circles;
mean trend, solid lines; percentiles, dashed lines; first stand, black; second stand, red.

The mean prediction error (percentage of prediction error, %) B, mean absolute pre-
diction error (percentage of absolute prediction error, %) AB, root-mean-square error
(percentage of root-mean-square error, %) RMSE, and coefficient of determination R2 were
used to evaluate the results of the mean diameter-marginal and conditional model fit de-
fined by Equations (7) and (19), respectively. The calculated results of statistical measures
using the validation dataset, the fixed-effect parameters from Table 2, and random effects
calibrated by Equation (27) are presented in Table 3. The prediction performance of both
models (marginal and conditional) showed that both models were highly capable of identi-
fying the mean value of the diameter in a stand. Subsequently, only a small improvement
in the statistical measures was found when we used the polygon area as an additional
explanatory variable (conditional model (19)). Table 3 illustrates the accuracy of mean
diameter predictions by using the observed validation dataset.

Table 3. Statistical measures for marginal and conditional models of mean (stand) diameter predictions.

Tree
Species

Marginal Mean (Equation (7)) Conditional Mean (Equation (19))

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All 0.019
(0.10)

0.798
(3.99)

1.133
(5.67) 0.949 −0.431

(−2.16)
0.782
(3.91)

0.989
(4.95) 0.961

Pine −0.131
(−0.50)

0.841
(3.19)

1.141
(4.33) 0.973 −0.410

(−1.56)
0.846
(3.21)

1.158
(4.39) 0.972

Spruce 0.130
(0.90)

0.977
(6.80)

1.258
(8.76) 0.928 −0.345

(−2.40)
0.906
(6.30)

1.167
(8.12) 0.938

Birch −1.038
(−5.94)

1.775
(10.15)

3.096
(17.71) 0.816 −1.354

(−7.74)
1.872

(10.71)
3.086

(17.65) 0.817

The marginal and conditional models defined by Equations (7) and (19) can also be
used successfully as individual-tree-based models in forecasting tree growth regardless of
species, age, and tree polygon area. In Equation (7), if initial point (x10, x20) =

(
0.1, δ̂ + ϕi

0
)

was changed by point (x10, x20) =
(

di
in,j, pi

in,j + 0.
)

, i = 1, . . . ,K (K is the number of the ob-
served sample plots from the validation dataset), we could calculate forecasts of individual-
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tree diameters and compare them with the observed dataset by determining the duration of
the forecast period (5, 13, and 35 years), where

(
di

in,j, pi
in,j

)
is the diameter and polygon area

of the j-th tree in the i-th plot at base age tin,j, and random effects ϕi
d ϕi

p and ϕi
0 are equated

to 0. Table 4 shows the forecast statistical measures of a tree-individual scenario model
calculated for the 5-, 13-, and 35-year forecast periods using the fixed-effect parameters
estimates in Table 2.

Table 4. Statistical measures of diameter forecasts for 5-, 13-, and 35-year forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All −0.054
(−0.31)

0.949
(5.52)

1.440
(8.37) 0.977 −0.185

(−094)
2.140

(10.82)
2.911

(14.72) 0.914 −0.359
(−1.43)

4.606
(18.45)

5.654
(22.65) 0.739

Pine −0.335
(−1.48)

0.982
(4.34)

1.447
(6.39) 0.968 −0.919

(−3.65)
2.178
(8.65)

2.816
(11.19) 0.886 −2.352

(−7.76)
4.469

(14.74)
5.674

(18.71) 0.615

Spruce 0.147
(1.24)

0.880
(7.42)

1.402
(11.82) 0.965 0.255

(1.83)
1.927

(13.85)
3.005

(21.60) 0.859 0.681
(3.62)

4.123
(21.89)

5.159
(27.39) 0.736

Birch 0.020
0.10)

1.286
(6.85)

1.757
(9.38) 0.960 −0.321

(−1.50)
2.697

(12.59)
3.563

(16.64) 0.832 1.289
(4.92)

4.196
(16.03)

5.405
(20.65) 0.679

In general, the relative success of the 35-year forecast period in forecasting individual
tree diameters showed that the values of statistical measures were considerably smaller
than statistical measures were for the 5- and 13-year forecast periods. Therefore, the shorter
(5 and 13 years) forecast periods provided us with reasonably accurate forecasts of tree
diameters but performed quite poorly farther into the future. Compared to different tree
species, Norway spruce species produced the lowest value of all statistical measures.

4.2. Modeling Tree Polygon Area: Predicting and Forecasting

The tree polygon areas show spatial tessellation based on closeness to trees in a
particular stand. It was suggested by mathematician Voronoi [10] and named after him:
Voronoi polygons (diagrams). A particular forest stand is driven with occasional events,
and the spatial tree arrangement in it is featured with complexity and variability. Most
studied Voronoi polygons are only static. A first approach for the dynamization of Voronoi
diagrams could be an investigation by a procedure for inserting and deleting single trees
(points), each in linear time. In modeling real dynamic scenes of a particular forest stand,
parallel continuous changes of trees with a fast update of the Voronoi diagram are desirable.
Four realizations at different times of a Voronoi polygon in a particular stand are presented
in Figure 1. The main result of the present work consists in the dynamization of the
underlying Voronoi polygon areas by the Gompertz-type diffusion process. Figure 11
shows predictions of the mean polygon area and 0.05 and 0.95 quantiles for two randomly
selected stands from the validation dataset. Random effects were calibrated by Equation (27)
using measurements of tree positions from the validation dataset, and the fixed-effect
parameters are from Table 2.

The results of statistical measures of polygon area predictions, calculated using tree
positions from the validation dataset, the fixed-effect parameters from Table 2, and random
effects calibrated by Equation (27), are presented in Table 5, which clarifies the importance
of the diameter employed in the modeling process. The prediction performance of both
models defined by Equations (10) and (22) showed that both models were highly capable
of identifying the mean value of the polygon area in a plot. On the other hand, only
small improvement in the statistical measures was found (up to 3% in the coefficient
of determination) when we used diameter as an additional explanatory variable in the
conditional model defined by Equation (22).
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Figure 11. Dynamic of mean, 5%, and 95% percentiles of polygon area with observed datasets for two randomly selected
stands from the validation dataset: (a) all tree species; (b) Scots pine tree species; (c) Norway spruce tree species; (d) silver
birch tree species; observed dataset, circles; mean trend, solid lines; percentiles, dashed lines; first stand, black; second
stand, red.

Table 5. Statistical measures for marginal and conditional models of mean polygon area predictions.

Tree
Species

Marginal Mean (Equation (10)) Conditional Mean (Equation (22))

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All −0.305
(−2.46)

1.062
(8.58)

1.410
(11.26) 0.929 −0.184

(−1.49)
0.914
(7.39)

1.184
(9.57) 0.949

Pine −0.392
(−3.17)

0.726
(5.87)

1.009
(8.16) 0.958 −0.276

(−2.23)
0.651
(5.27)

0.883
(7.14) 0.968

Spruce −0.441
(−3.78)

1.155
(9.89)

1.597
(13.68) 0.913 −0.283

(−2.42)
1.062
(9.10)

1.454
(12.46) 0.928

Birch 0.202
(1.84)

1.628
(14.84)

2.318
(21.13) 0.790 0.442

(4.03)
1.571

(14.32)
2.145

(19.56) 0.820

Statistical measures of forecasts of trees’ individual polygon areas using an observed
validation dataset, the fixed-effect parameters from Table 2, and at random effects equal to
zero, ϕi

d = 0., ϕi
p = 0., ϕi

0 = 0., i = 1, . . . , K, are presented in Table 6 for the forecast periods
of 5, 13, and 35 years. The conditional model defined by Equation (22) was evaluated using
a data subset of diameters drawn from the validation dataset at the projected (forecast
period) age and showed that the influence of diameters cannot greatly improve the forecast
ability of a mixed-effect polygon area model. Statistical measures in Table 6 show that the
accuracy of the model forecast decreases significantly with increasing the forecast period
to 35 years.
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Table 6. Statistical measures for the marginal model (Equation (10)) of polygon area forecasts for 5-, 13-, and 35-year
forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All −0.601
(−6.01)

1.126
(11.26)

1.539
(15.38) 0.959 −0.555

(−4.69)
2.756

(23.31)
3.963

(33.51) 0.786 −1.581
(−11.09)

5.107
(35.83)

6.746
(47.33) 0.463

Pine −0.762
(−6.34)

1.253
(10.43)

1.621
(13.49) 0.959 −1.194

(−8.72)
2.969

(21.70)
3.850

(28.13) 0.803 −3.655
(−23.78)

5.959
(38.66)

7.167
(46.50) 0.408

Spruce −0.384
(−4.65)

0.983
(11.90)

1.466
(17.74) 0.953 0.221

(2.19)
2.601

(25.81)
4.238

(42.04) 0.725 0.664
(5.12)

4.575
(35.25)

6.798
(52.38) 0.405

Birch −0.539
(−6.04)

1.004
(11.25)

1.198
(13.43) 0.971 −0.785

(−7.93)
2.504

(25.31)
3.373

(34.09) 0.827 0.201
(1.37)

5.788
(39.61)

7.458
(51.13) 0.491

4.3. Modeling Stand Density: Predicting and Forecasting

To manage the evolution of the number of trees per hectare from the early sapling stage
to any stage in mixed-species, unevenly aged forests, reliable predictive and forecast models
are needed. The complete size–density trajectory of a stand from an early development
stage follows the form framed by the maximal size–density relationship [26]. Recently,
diffusion processes were used to define maximal size–density equations [27]. Many various
stand-density measures were developed as relationships of mean area available to trees in
a particular stand [28,29]. The stand density expresses a stand occupancy in abstract form;
consequently, in this study, the stand density per hectare dynamic is related to the dynamic
of the polygon area, defined by Equations (10) and (22), in the following forms for all the
tree species:

Ni(t|t0, x20) =
10000

mi
2(t|t0, x20)

, (29)

Ni(t|t0, x20, x11) =
10000

ηi
2(t, x11|t0, x0)

, (30)

and for constituent tree species:

Ni(t|t0, x20) = ocin
10000

mi
2(t|t0, x20)

, (31)

Ni(t|t0, x20, x11) = ocin
10000

ηi
2(t, x11|t0, x0)

, (32)

where ocin is the occupation proportion of a specific tree species in a stand at an age of the
first measurement (0 < ocin < 1).

Sustainable forest management requires the comprehensive understanding of the long-
term dynamics of stand density. The stand-density models defined by Equations (29)–(32)
enable us to evaluate stand density in both prediction and forecasting scenarios. For calcu-
lating predictions of stand density, we used the fixed-effect parameters from Table 2 and
the random effects calibrated by Equation (27), using a full validation dataset. Figure 12
shows the mean stand-density dynamics for all tree species and constituent tree species
scenarios and compares with observed datasets for three randomly selected stands from
the validation dataset. The accuracy measures of the mean stand-density predictions are
presented in Table 7.
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Figure 12. Dynamic of mean stand density with observed datasets for three randomly selected stands from the validation
dataset: (a) all tree species; (b) Scots pine tree species; (c) Norway spruce tree species; (d) silver birch tree species; observed
dataset, circles; mean trend, solid lines; first stand, black; second stand, red; third stand, blue.

Table 7. Statistical measures for marginal and conditional models of mean stand-density predictions.

Tree
Species

Marginal Mean (Equation (29) or (31)) Conditional Mean (Equation (30) or (32))

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All 0.686
(0.07)

102.23
(10.50)

166.149
(17.07) 0.873 −8.253

(−0.84)
90.608
(9.31)

147.297
(15.13) 0.901

Pine 19.339
(4.30)

37.682
(8.39)

49.302
(10.97) 0.966 16.429

(3.65)
34.762
(7.74)

44.767
(9.96) 0.972

Spruce −3.720
(−0.62)

76.165
(12.74)

123.67
(20.67) 0.934 −14.901

(−2.49)
68.768
(11.50)

110.925
(18.56) 0.947

Birch 5.177
(7.89)

9.920
(15.12)

14.118
(21.52) 0.984 4.860

(7.41)
10.214
(15.57)

14.151
(21.57) 0.984

The Voronoi polygon of tree positions is a powerful tool for understanding the spatial
competition properties on the basis of closeness to trees in a particular stand. Relatively few
studies reported the construction of Voronoi polygons in forest-stand modeling [30] despite
a wide array of potential applications. Dynamic Voronoi polygons have applications among
stand-density models, as they can be used to accurately define the rate of natural mortality
among trees within a forest. Results of diameter importance for stand-density modeling
processes are shown in the conditional models defined by Equations (30) and (32), presented
in Table 7, which shows that employing the diameter in the modeling process provided
small improvement in statistical measures (up to 3% in the coefficient of determination).

In stand-density dynamic models, transition probability density functions only con-
sider natural mortality that is influenced by competition, whereas general response func-
tions account for the effects of the site index, basal area, and other factors [31]. The newly
developed stand-density dynamic functions defined by Equations (29)–(32) were developed
with the purpose of formalizing a whole-stand model for predicting and forecasting a given
mixed-species forest stand. As such, the observed dataset (40 plots) from long-term remea-
surements (from 1 until 6 cycles) of permanent plots was used to evaluate the fixed-effect
parameters for both predicting and forecasting scenarios. Concerning the stand-density
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forecast scenario, the random effects for a new stand were calibrated by Equation (27) using
the first measurement cycle observed sample from the validation dataset. Comparisons of
stand-density forecasts (projections) among the forecast periods of 5, 13, and 35 years are
presented in Table 8.

Table 8. Statistical measures of mean stand-density forecasts (Equations (29) and (31)) for 5-, 13-, and 35-year forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2 B
(%)

AB
(%)

RMSE
(%)

R2

All −59.492
(−5.36)

60.113
(55.41)

72.799
(6.56) 0.981 −24.644

(−2.73)
94.991
(10.54)

118.212
(13.11) 0.897 62.025

(8.53)
103.635
(14.67)

125.749
(17.30) 0.605

Pine −15.920
(−3.25)

40.292
(8.24)

53.640
(10.97) 0.966 31.761

(7.36)
46.707
(10.82)

56.766
(13.15) 0.938 74.438

(20.26)
87.838
(23.90)

105.201
(28.63) 0.751

Spruce −24.434
(−5.50)

37.735
(8.50)

56.291
(12.68) 0.982 −58.010

(−15.04)
60.760
(15.73)

104.466
(27.08) 0.914 −19.460

(−6.57)
29.808
(23.90)

51.048
(17.26) 0.925

Birch −68.224
(−9.68)

70.412
(9.99)

90.988
(12.91) 0.973 −82.303

(−15.26)
90.418
(16.76)

128.911
(23.90) 0.891 −36.060

(−8.68)
59.143
(14.25)

78.997
(19.03) 0.900

All the tested models for all the tree species provided good forecasts for data with
high statistical measures. All the models for Scots pine, Norway spruce, silver birch, and
all the tree species resulted in high coefficients of variation for the forecast periods of 5,
13, and 35 years in intervals of 96.6–98.2%, 89.1–93.8%, and 60.5–92.5%, respectively. Both
scenario models for Scots pine trees were comparably better. Similar results were obtained
in model ranking on the basis of B, B%, AB, AB%, RMSE, and RMSE%. Statistically, the
marginal models defined by Equations (29) and (30) and the conditional models defined by
Equations (30) and (32) provided similar forecasts for all forecast periods.

5. Conclusions

In this paper, we have studied the evolution of the mixed-species, unevenly aged forest
stands by using a bivariate hybrid diffusion process and Voronoi diagram. The growth
model considers two different system states (tree diameter and polygon area). In summary,
derived individual-tree and whole-stand models describe how trees grow in diameter and
how forest-stand structures are modified over time. On the other hand, one of the most
fundamental features of our developed models is that they are strongly symmetrical, as
they allow for forecasting trajectories in the future and the past. Numerical example by
using experimental sample plots in Lithuania with measurements of tree position, age, and
diameter at breast height showed high accuracy of the obtained results and the importance
of the work. From a statistical point of view, the newly developed growth models produced
acceptable predictions and forecasts. Our proposed bivariate hybrid diffusion process and
Voronoi diagram approach also outperformed other existing techniques [32,33]. The newly
developed hybrid bivariate distribution also provides a further in-depth understanding of
the behavior of the stand basal area and volume.

Future work should try to extend our work to describe hybrid 3-, 4-, and 5-variate
diffusion processes and copula approach for developing the link between state variables, as
an example, diameter, height, crown width, crown base height, and available polygon area.
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