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Preface to ”Remote Sensing of Atmospheric Pollution”

This book recompiles the most recent articles published in Remote Sensing as a special issue focus-

ing on the latest research development and applications in the field of remote sensing of air pollution.

In brief, these twenty articles cover a wide range of topics as follows.

Geospatial and statistical modeling to estimate hourly surface PM2.5 from Himawari-8, surface

NO2 from OMI and AIRS, southern hemispheric NO2 and SO2 trend from OMI, and surface NH3

from IASI.

Evaluation and error characterization of satellite products such as aerosol optical depth products

(AOD) retrieved from MODIS Dark-Target algorithm (at 3 km), MODIS Deep-Blue algorithm and

VIIRS over Asia during heavy aerosol loading conditions, and O3 profile from IASI with ground-

based lidar data.

Development of new algorithms for retrieving costal AOD from MODIS, AOD at high spatial res-

olution from GaoFen satellite, for estimating potential improvement in AOD from using polarization

on TanSat, and for deriving SO2 emission rate using ground-based UV cameras.

Process studies of aerosol impact on surface temperature trend using satellite and ground-based

aerosol data, and PBL vs. surface PM2.5 correlations.

To the best of our knowledge, there has not been a book like this one that collectively shows the

fast and exciting progresses in remote sensing of nearly all key air pollutants such as aerosols, NO2,

SO2, O3 and NH3, not only from mature satellite sensors (e.g., MODIS, AIRS, and IASI), but also from

newer sensors (such as VIIRS, GaoFen and TanSat) and ground-based lidar and cameras. We hope

this book serves as a frequent reference for graduate students, faculty, researchers, and professionals

in the field of remote sensing of aerosols and trace gases, especially those with a high interest in air

quality and applied sciences.

Yang Liu, Jun Wang , Omar Torres

Special Issue Editors
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Abstract: Satellite-retrieved aerosol optical depth (AOD) has become an important predictor of
ground-level particulate matter (PM) and greatly empowered air pollution research worldwide.
We evaluated the AOD parameters included in the Collection 6 aerosol product of the Moderate
Resolution Imaging Spectroradiometer (MODIS) for two key factors affecting their applications in air
quality research—coverage and accuracy—over the continental US. For the high confidence retrievals
(QAC 3), the 10 km DB-DT combined AOD has the best coverage nationwide (29.7% of the days
in a year in any given 12 km grid cell). While the Eastern US generally had more successful AOD
retrievals, the highest spatial coverage of AOD parameters were found in California (>55%) and other
vegetated parts of the Western US. If lower QAC retrievals were included, the coverage of the 10 km
DB AOD was dramatically increased to 49.6%. In the Eastern US, the QAC 3 retrievals of all four AOD
parameters are highly correlated with AERONET observations (correlation coefficients between 0.80
and 0.92). In the Western US, positive retrieval errors existed in all MODIS AOD parameters, resulting
in lower correlations with AERONET. AOD retrieval errors showed significant dependence on flight
geometry, land cover type, and weather conditions. To ensure appropriate use of these AOD values,
air quality researchers should carefully balance the needs for coverage and accuracy, and develop
additional data screening criteria based on their study design.

Keywords: MODIS; AOD; remote sensing; United States; retrieval accuracy; satellite coverage

1. Introduction

Aerosol optical depth (AOD) is ‘the single most comprehensive variable to remotely assess
the aerosol burden in the atmosphere’ [1]. It is used to characterize ambient aerosols, either for
land-based remote sensing applications where it is used to remove atmospheric influences, or directly,
to assess atmospheric pollution, primarily fine particulate matter, and its impacts on the climate,
ecosystems, and human populations. Exposure to fine particulate matter (PM2.5, airborne particles
with an aerodynamic diameter of 2.5 micrometers or less) was identified as a leading risk factor
for global disease burden with an estimated 2.9 million attributable deaths in the year 2013 [2].
Historically, the estimation of population exposure to PM2.5 depends on filter-based ground monitors.
However, because of its high operation and maintenance costs, these ground-based monitoring
networks do not achieve comprehensive spatial coverage. With its comprehensive spatial coverage,
spatial models driven by MODIS AOD are able to estimate the PM2.5 exposure levels in many parts of
the world where ground observations are sparse or nonexistent [3]. The MODerate Resolution Imaging
Spectroradiometer (MODIS) instruments on board the Aqua and Terra satellite platforms have been
providing daily, near-global satellite coverage since 2000 and 2002, respectively [4]. MODIS-retrieved
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aerosol optical depth (AOD) has been used extensively in estimating ground-level fine particulate
matter (PM2.5) concentrations [5]. Over the past decade, various MODIS-driven PM2.5 exposure
models have been developed, from relatively simple linear regressions [6] to complex multi-level
spatial models [7] and Bayesian hierarchical models [8]. Because PM2.5 is linked to adverse health
outcomes even at the low concentrations commonly observed in the cities of North America [9], PM2.5

models based on MODIS retrievals have been used to extend ground air quality monitoring networks
to cover the suburban and rural populations in the U.S. [10] and Canada [11].

Accuracy and coverage are the most important factors affecting the application of satellite AOD
in air quality research. The retrieval error in AOD has a major influence in the PM2.5 prediction error,
as AOD is often used as the primary predictor in various PM2.5 exposure models. If the AOD retrieval
error varies by season or with land use types, the PM2.5 prediction error will also display spatiotemporal
patterns. This is especially true at the low AOD levels, typically below 0.2, commonly observed in
developed countries [12]. On the one hand, availability of AOD data coverage determines whether
satellite-driven models are feasible for a given study region. On the other hand, it plays an important
role in determining the design of PM2.5 health effect studies [13]. For example, the health effect of
short-term PM2.5 exposure such as asthma exacerbation is often evaluated in a time series model
where temporal missingness of exposure estimates can substantially limit model performance [10].
Cohort studies designed for associating long-term PM2.5 exposure with cardiovascular morbidity and
mortality would benefit from complete spatial coverage [14].

The most recent MODIS collection 6 (C6) aerosol products include enhanced Dark-Target
(10 km DT) and Deep-Blue (10 km DB) AOD present in collection 5 (C5), a ‘merged’ DB-DT parameter
(10 km DB-DT) and a 3 km AOD based off of the 10 km DT retrieval algorithm (3 km DT) [15,16].
The MODIS science team has conducted a few global validation studies to document the collective
impact of these changes and differences between the various parameters [12,16–18]. These studies
mainly focused on estimating the AOD retrieval errors by comparing with collocated measurements
from the Aerosol Robotic Network (AERONET) at the global scale. Because of the large spatial
differences in aerosol loading, global performance metrics such as regression slopes and correlation
coefficients are often driven by regions of high AOD values. To date, only a handful of evaluation
studies were reported in North America, none of which had both accuracy and coverage as their
primary research objectives [19,20]. Therefore, there remains a need for detailed validation studies
in dominantly low-AOD regions to investigate issues related to surface reflectance treatment and
extreme events [12]. In addition, the accuracy and potential usability of lower quality retrievals needs
to be better characterized, and could have important implications on the coverage issue in air quality
applications of MODIS data.

In the current analysis, we focused on characterizing the accuracy and coverage of various MODIS
AOD parameters in the continental US, a dominantly low-AOD area. We focused on examining the
degree to which changes in surface properties and retrieval conditions, such as viewing angle and land
use, affect AOD retrieval error. In addition to the highest quality AOD data, we evaluate the impact
of including lower quality AOD values on the spatial and temporal coverage statistics. Additionally,
we use a case study to demonstrate the practical implications of including lower-quality retrievals
and accounting for major sources of bias on the ability of each AOD parameter to accurately estimate
ground-level PM2.5 concentrations. Finally, we summarize the strengths and weaknesses of these AOD
parameters in the context of air quality research.

2. Materials and Methods

2.1. Satellite and Ground Datasets

We collected Aqua MODIS level 2 AOD data [21] between 1 January 2004 and 31 December 2013 in
the Continental US. Level 2 cloud-screened and quality assured AOD retrievals from 120 permanent
AERONET stations and 73 temporary stations from the Distributed Regional Aerosol Gridded
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Observation Networks (DRAGON) were collected to validate MODIS retrievals. Out of the
120 permanent AERONET stations, 48% had been in operation for less than one year (Figure 1).
Total column precipitable water estimates were also collected from these stations to evaluate their
impact on MODIS AOD retrieval error. Since AERONET does not directly measure AOD at the 0.55
μm wavelength reported by MODIS, values were interpolated to this wavelength with a quadratic fit
in log-log space based on valid AOD values at a minimum of 4 of any of the 15 wavelengths potentially
reported by AERONET [22]. Ancillary datasets were collected for identifying surface properties and
retrieval conditions that could have affected MODIS retrieval accuracy. The MODIS 16-day gridded
NDVI parameter at 1 km spatial resolution [23] was used to calculate NDVI values at individual
MODIS level 2 AOD pixels. The National Land Cover Database (NLCD) with a 30 m spatial resolution
was used for land cover type calculation at individual MODIS level 2 AOD pixels [24]. The 2006
NLCD was used for collocations occurring prior to 2009 and the 2011 NLCD was used for collocations
occurring after 2009. Information on scattering, viewing, and solar angles for each AOD retrieval was
obtained for each MODIS pixel from the MODIS AQUA level 2 Aerosol product [21].

Figure 1. Spatial distribution of AERONET (hexagons) and DRAGON (diamonds) sites over the study
period from 1 January 2004 to 31 December 2013. The color of the symbols represents the number of
collocations at each site.

2.2. Coverage

Since MODIS pixels are created relative to each satellite view and the MODIS instrument exhibits
a fish-eye effect, the size and location of individual pixels is not constant from one day to the next.
To compensate for this, a 12 km grid commonly used in the Community Multi-scale Air Quality
(CMAQ) modeling system was created for our coverage calculation (a total of 55,031 cells). The grid
size roughly corresponds to the nadir resolution of the MODIS 10 km AOD parameters and represents
an important application of the MODIS data, where AOD observations are assimilated into air quality
models to improve model performance [25]. MODIS pixels were determined to be within a grid cell
if, for the 10 km DT, 10 km DB, and 10 km DB-DT AOD, the polygon representing the pixel area,
reconstructed from the pixel centroids using a Voronoi tessellation algorithm [26], lay at least partially
within the grid cell. Pixels from the 3 km DT parameter were determined to be within a grid cell if the
centroid of the 3 km pixel fell within the grid cell, allowing the increased resolution of the 3 km DT
parameter relative to the grid to compensate for the lack of smoothing between cells that the Voronoi
tessellation would have provided. The percentage of days with a valid, QAC 3 retrieval were calculated
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for each grid cell and parameter. Results were interpreted relative to averages over the continental U.S.
(CONUS) for each parameter. Coverage statistics were also calculated for QAC 1, 2, and 3 retrievals
together to provide an accounting of the gains in coverage by including lower confidence retrievals in
an analysis.

2.3. Accuracy

AERONET observations were collocated with each MODIS AOD parameter respectively, so that a
temporal average of AERONET observations within ±30 min of the MODIS pass was compared to
the spatial average of MODIS pixels within a ~25 km radius for the 10 km DT, DB and DB-DT AOD,
and a ~7.5 km radius for the 3 km DT AOD [17]. Following previous work, a collocation was only
considered valid if a minimum of three MODIS pixels, two AERONET measurements, and at least 20%
of the total number of MODIS pixels included in the 25/7.5 km radius had valid values with a QAC
code of 3 assigned to the pixel [27]. AERONET stations were categorized as either being in the East or
the West, using the 100◦ W longitude line [16]. The east/west division was necessary because previous
work had found large differences in MODIS performance between the two regions [25]. Retrieval
error, or the difference between MODIS and AERONET AOD at each collocation (τM − τA) and the
percentage of MODIS observations within the 10 km DT expected error envelope (EEDT)—defined as
±(0.05 + 0.15)τ—[16] were calculated and linear regression models were used to quantify retrieval
errors. In order to evaluate the QAC code assignments as indicators of retrieval errors, independent
collocations were created for QAC 1 and QAC 2 retrievals with AERONET, using the same criteria as
for the QAC 3 collocations. Finally, for each AOD parameter, retrieval error in MODIS AOD relative to
AERONET was examined within quintiles of the surface and retrieval parameters. These parameters
include median NDVI, total column precipitable water from AERONET, land-cover type mode, mean
solar zenith, sensor zenith, and scattering angles. Linear regression models were used to identify any
significant linear trends in retrieval error for each surface and retrieval parameter.

3. Results

During our study period, 193 ground stations reported a total of 286,055 observations that could
be interpolated to AOD at 550 nm. Of these, 262,491 originated from a permanent AERONET station
and 23,564 were recorded during a DRAGON campaign. In the Eastern US, the number of valid
collocations at the 127 stations with high confidence MODIS retrievals ranges from 5616 for 3 km DT
to 6617 for 10 km DB observations. AERONET AOD ranged from 0.0005 to 1.26, with mean values of
0.12, 0.12, 0.12, and 0.10 for collocations with the high confidence 3 km DT, 10 km DT, 10 km DB-DT
and 10 km DB parameters, respectively. MODIS AOD ranged from −0.05 to 2.77, with mean values of
0.13, 0.13, 0.13, and 0.11 for these four AOD parameters, respectively. In the Western US, the number
of valid collocations at 66 AERONET stations with high confidence MODIS retrievals ranges from
6251 for 3 km DT to 11,590 for 10 km DB-DT AOD. AERONET AOD values ranged from 0.0003
to 1.43, with mean values of 0.09, 0.09, 0.08, and 0.08 for collocations with the high confidence 3 km
DT, 10 km DT, 10 km DB-DT, and 10 km DB parameters, respectively. MODIS AOD values ranged
from −0.05 to 2.35, with mean values of 0.09, 0.12, 0.10, and 0.08 for these parameters, respectively.
In both regions, and for all four products, the majority of collocations occurred in the fall and summer,
while the fewest occurred in winter months.

3.1. Coverage of High-Confidence Retrievals

Table 1 shows that on average, a valid AOD retrieval was available on 25%–30% of days in
any given grid cell. However, there is considerable spatial heterogeneity in coverage rates for each
parameter (Figure 1). The highest rates of coverage are found on the western coast, near the large
cities of Los Angeles and San Francisco, and in California’s central valley. In these areas, all four
AOD parameters achieve coverage rates of over 55%, and in the area right around Los Angeles,
coverage rates are above 70%. Similarly high coverage rates, between 50% and 60%, are also observed
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over the national forests north of Phoenix in Arizona and rates of 40%–50% are observed over the
south-central plains covering the areas of central Texas, Oklahoma, and Kansas. A north-to-south and
elevation gradient in coverage rates can also be observed in Figure 2. The lowest coverage rates were
observed over the Great Salt Lake desert, where a few locations had no valid retrieval. Outside of
the Rockies, average coverage rates in the northern parts of the CONUS—an area that includes the
large cities of Chicago and New York—were typically only 10%–20%. Coverage rates further south
were 30%–40%, slightly higher than the CONUS-wide average. This north-south and elevation-based
gradient in coverage rates can be linked to seasonal snow-cover occurring primarily at higher latitudes
and elevations.

Table 1. Coverage statistics for both QAC 3 retrievals only, and for all AOD retrievals. Coverage is
calculated as the percentage of days with a valid Aqua retrieval for each AOD parameter.

AOD Parameter Coverage % (QAC 3 Only) Coverage % (QAC 1, 2, 3)

3 km DT 28.2 28.9
10 km DT 24.3 32.8

10 km DB-DT 29.7 31.1
10 km DB 28.9 49.6

Figure 2. Mean coverage statistics for high confidence AOD retrievals in the CONUS for 10 km DT (a);
3 km DT (b); 10 km DB-DT (c); and 10 km DB (d). Coverage is calculated as the percentage of days
between 1 January 2004 and 31 December 2013 with a valid MODIS retrieval from Aqua.

The 3 km DT AOD, with a CONUS-wide coverage rate of 28.2%, is comparable to the 10 km AOD
parameters in terms of coverage. In contrast to the 10 km products, the 3 km DT AOD excels over areas
where the surface is more complex but not arid, such as the Pacific Northwest, and over the Carolinas.
It achieves slightly higher coverage rates on the eastern coast than the 10 km parameters, and retrieves
at higher rates at high to moderate latitudes and elevations than the 10 km AOD parameters (Figure 2a).
The most likely explanation for these higher coverage rates at higher elevations and latitudes would
be an increased ability, on the part of the higher resolution parameter, to retrieve aerosols over patchy
snow-cover. However, while it has been previously noted that the higher resolution parameter is
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able to retrieve aerosol information at higher rates over complex landscapes, coastlines, and between
clouds, the extension of this ability to complex snow-cover has not been investigated [17,19]. The 10 km
merged AOD has the highest overall coverage, averaging 29.7% for the CONUS. This parameter aims
to maximize the number of high-confidence AOD retrievals by using AOD values from the 10 km DT
algorithm over locations where the NDVI is higher and to use 10 km DB AOD values over locations
where NDVI is lower and the 10 km DT algorithm is less likely to accurately retrieve AOD. The result is
that the spatial patterns of coverage for the merged AOD are similar to 10 km DT AOD, but without the
gaps in coverage over the arid southwest. The coverage of 10 km DB AOD along the east coast is lower
than the other three AOD parameters especially in the summer months (see Supplementary Figure S1)
and over Florida, and balances out the additional coverage gained in the west and south-central plains
(Figure 2). The reasons for this are currently unknown, but slight differences exist between the DT and
DB retrieval processes in the tests used to identify cloud-cover and distinguish it from aerosols and this
could explain summertime differences in coverage over the highly vegetated Eastern CONUS [15,16].

3.2. Coverage Gains with Lower-Quality Retrievals

When lower-quality retrievals were included, coverage rates increased for all AOD parameters.
However, there were large differences in relative increases between products, reflective of differences
in QAC code assignments among AOD parameters. On the one hand, coverage rates for the 3 km DT
AOD increased only slightly from 28.2% to 28.9%, similar to that observed for the 10 km DB-DT AOD.
Coverage rates for the 10 km DT parameter increased substantially from 24.3% to 32.8%. On the
other hand, coverage of the 10 km DB AOD increased dramatically from 28.9% to 49.6% when
lower-confidence retrievals were included. Of the four AOD parameters, the 10 km merged AOD
provides the highest overall coverage over the CONUS if only high-confidence retrievals are considered.
Coverage patterns are similar to those observed for high confidence observations (Supplementary
Figure S2). Previous studies have examined how AOD missingness impacts the representativeness of
the sample within the CONUS, with mixed results [28,29]. For some applications, the typical coverage
rates from high quality retrievals of ~30% may be too low to preserve study power, and investigators
may seek to boost coverage rates through the use of noisier, lower-confidence observations. In this
instance, the 10 km DB AOD offers the greatest potential gains in coverage.

3.3. Accuracy of High-Confidence Retrievals

Error statistics for all four AOD parameters, broken down by region, are presented in Table 2.
In the eastern region, 76% of QAC 3 3 km DT AOD retrievals were within pre-launch expectations
with a mean retrieval error of 0.01, and the correlation coefficient between AERONET and MODIS
values was 0.89. However, the slope of a regression line fit between the two was 1.24, indicating
over-prediction. In the western region, 49% of 3 km DT observations were within the EE and the
slope of a line relating AERONET AOD values to MODIS observations was 1.41. The QAC 3 10 km
DT AOD retrievals in the East had a slightly positive, but near 0 retrieval error, and its correlation
coefficient with AERONET observations (0.92) was the highest of the four parameters. Over-prediction
was a problem in the western region, but was more problematic at low AOD levels. The performance
of the 10 km DB-DT AOD across accuracy metrics was nearly identical to the 10 km DT AOD in
the Eastern US, but it had an additional 341 QAC 3 collocations. In the western region, it was the
most highly correlated with AERONET (0.73). The QAC 3 10 km DB AOD had somewhat uneven
performance across accuracy metrics relative to findings from global validations [12]. It had the highest
percentage of observations within EEDT (87% in the East, 83% in the West). Correlation coefficients,
however, were lower than the other three parameters (0.80 in the East, 0.63 in the West) and global
estimates [12]. Median retrieval error estimates in both regions were low (0.01 in the East, −0.00 in
the West), but intercepts from regression modeling were higher (0.03 in the East, 0.02 in the West) and
slopes were below 1 (0.79 in the East, 0.75 in the West). When assessed together, these metrics indicated
over-prediction at lower AOD values and under-prediction at higher AOD values. Previous global
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validations have found similar patterns for 10 km DB retrievals, but over-prediction was more severe
in the Western US than was noted in the global studies.

Table 2. Performance statistics for each AOD parameter.

Region QAC Parameter N Error Intercept Slope R % Above EE % Below EE % Inside EE

West

1

3 km DT 546 0.02 0.02 1.03 0.86 9.0 0.9 90.1
10 km DT 1487 0.04 0.05 1.46 0.58 43.4 1.6 55.0
10 km DB-DT 482 0.01 0.01 1.06 0.85 7.3 1.5 91.3
10 km DB 10603 0.04 0.07 1.01 0.52 42.0 2.0 55.9

2
10 km DT 2577 0.08 0.08 1.30 0.58 58.1 2.4 39.6
10 km DB-DT 1321 0.01 0.03 0.95 0.47 27.0 3.3 69.6
10 km DB 2316 0.01 0.04 0.90 0.62 27.8 3.4 68.9

3

3 km DT 6251 0.06 0.06 1.41 0.64 48.9 2.5 48.6
10 km DT 7814 0.02 0.03 0.98 0.71 25.3 5.6 69.1
10 km DB-DT 11590 0.01 0.01 1.01 0.73 17.3 5.1 77.6
10 km DB 10662 −0.00 0.02 0.75 0.63 11.2 5.9 82.9

East

1

3 km DT 883 0.02 0.04 0.80 0.79 12.6 4.6 82.8
10 km DT 1322 0.02 0.02 1.19 0.82 26.6 5.6 67.8
10 km DB-DT 440 0.00 0.04 0.50 0.71 3.9 8.4 87.7
10 km DB 7019 0.05 0.08 0.84 0.76 36.4 1.0 62.7

2
10 km DT 1538 0.04 0.02 1.26 0.88 37.1 6.1 56.8
10 km DB-DT 16 0.13 0.17 0.42 0.21 62.5 0.0 37.5
10 km DB 368 0.05 0.09 0.70 0.73 39.1 1.4 59.5

3

3 km DT 5616 0.01 −0.01 1.24 0.89 16.0 7.6 76.4
10 km DT 6409 0.00 −0.01 1.18 0.92 10.8 8.4 80.9
10 km DB-DT 6750 0.00 −0.01 1.17 0.91 11.7 7.5 80.8
10 km DB 6617 0.01 0.03 0.79 0.80 10.5 2.6 86.9

N: number of collocations. Error: τM − τA The intercept, slope, and correlation coefficient (r) are calculated
using a linear regression model relating MODIS to AERONET AOD values. The error envelope is defined
as ±(0.05 + 0.15)τA.

3.4. Accuracy Assessment of Lower-Confidence Retrievals

The more mature 10 km DB and 10 km DT AOD had 20,306 and 6924 valid lower-confidence
collocations, respectively. In contrast, the less mature 3 km DT and 10 km DB-DT products had
only 1429 and 2259 valid lower-confidence collocations, respectively. As expected, lower confidence
collocations for the 10 km DB and 10 km DT AOD were noisier and had larger retrieval errors when
compared to QAC 3 observations (Table 2). For both parameters, a lower proportion of low-confidence
observations were within EEDT, ranging from 40% to 68% of retrievals, median retrieval error estimates
were higher, ranging from 0.02 to 0.09, and correlation coefficients were lower, ranging from 0.52 to
0.88. There were a substantial number of valid QAC 1 10 km DB collocations with a positive retrieval
error at lower AOD values. This is typically attributable to cloud contamination, and so it may be
possible to use some of these observations in an analysis with caution and additional cloud screening
procedures [25]. Accuracy statistics for lower-confidence 3 km DT and 10 km merged AOD, on the
other hand, were comparable with high confidence retrievals (Table 2). The 3 km DT AOD had a high
percentage of observations within EEDT, 83 and 90% for the eastern and western regions, respectively,
and strong correlations (0.79 in the East, 0.85 in the West). All low-confidence 10 km DB-DT AOD
except QAC 2 retrievals in the eastern region (only 16 valid collocations) met pre-launch expectations,
having between 70% and 90% of retrievals within EEDT. The QAC code assignments for the two new
AOD parameters do not seem to accurately reflect retrieval errors in the same way as for the more
mature AOD parameters.

3.5. Dependence of Retrieval Errors on Flight Geometry and Land Cover Type

Figure 3 illustrates the dependence of AOD errors on the scattering, solar zenith, and viewing
angles for QAC 3 retrievals. Scattering angle was associated with a statistically significant, positive
trend in retrieval error in all four parameters in both regions. This trend is most pronounced for 3 km
DT AOD in the western region with a median retrieval error of 0.12 for the highest quintile, and 0.04
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for the lowest quintile of scattering angle. The median retrieval errors of 10 km DT, DB, and DB-DT
AOD in both regions, and 3 km DT observations in the eastern region increase slightly with scattering
angle (but remain below 0.04). This type of dependence could be related to issues with accounting
for anisotropy in the surface reflectance over the CONUS [30]. Our findings in the CONUS disagree
with those presented in global evaluations, which found tendencies of median retrieval error with
scattering angle to be small and negative [12]. Our findings on the association between retrieval errors
and solar zenith angles are only partially consistent with Sayer et al. [12] which found solar zenith
angles below 20 degrees to have positive retrieval errors for the 10 km DT parameter and negative
retrieval errors for the 10 km DB parameter, but retrievals at angles greater than 20 to be relatively
unbiased. In the Eastern US, our results show a similar pattern to those present in Sayer et al. [12]
for 10 km DB retrievals relative to 10 km DT retrievals, but with a slight positive retrieval error for
10 km DB. Additionally, we observed fairly substantial retrieval errors at solar zenith angles greater
than 20 degrees. In the Western US, we observed negative retrieval errors in 10 km DB observations
spanning solar zenith angles from 25 to 43 degrees, while the first quintile, containing observations
with solar zenith angles less than 25 degrees, was relatively unbiased. This finding runs contrary
to previous observations which have suggested that it is primarily low solar zenith angles that are
problematic [12,25]. AOD retrieval error shows a small negative trend with sensor zenith angle for
the 10 km DB AOD in both regions and for the 3 km DT in the West, and a small positive trend for
the 10 km DT, 10 km DB-DT, and 3 km DT AOD in the East. The largest change was for 10 km DB
observations in the East, where the median retrieval error estimate in AOD within the first quintile of
sensor zenith angle, near the nadir, was 0.024 and the median retrieval error in the highest quintile
was −0.005.

Figure 3. The dependence of AOD retrieval error and distributions of values for scattering angle (a);
solar zenith angle (b); and sensor zenith angle (c). Median error (points) and the IQR (vertical line
ranges from 25th to 75th percentile) is shown within quintiles. The distribution of values is shown in
the background in gray and represents proportional frequency, where 0.25 on the y-axis represents the
most frequent value in the category.

We assessed AOD retrieval errors by six land cover types, i.e., developed, forest, shrub, grass,
cultivated, and wetland (see Supplementary Figure S3). All AOD parameters showed positive retrieval
errors over developed areas, particularly in the Western US (0.03 for 10 km DB, and 0.21 for 3 km
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DT AOD). Small but consistent positive errors were also observed over wetlands in the Eastern US
(mean retrieval errors of 0.04 for 3 km DT, 0.03 for 10 km DT, 0.03 for 10 km DB-DT, and 0.02 for
10 km DB). The 3 km DT and, to a lesser degree, 10 km DT AOD also showed significant positive
errors over shrub lands in the Western US (mean retrieval errors were 0.10 and 0.06 for 3 km DT
and 10 km DT, respectively). The best agreement between MODIS and AERONET was over forests,
grasslands, and cultivated lands. Overall, the 10 DB AOD had the least retrieval errors across all land
cover types (<0.03), followed by the 10 km DB-DT AOD (greatest mean retrieval error of 0.10 over
developed areas in the Western US). Previous studies have identified high retrieval error in AOD
retrievals over developed areas, and the retrieval error in DT products over poorly vegetated surfaces
to which 10 km DB retrievals are more robust [16,20,31].

3.6. Dependence of Retrieval Errors on Season and Weather Conditions

Figure 4 summarizes monthly retrieval errors from each AOD parameter. Median retrieval
errors in the 10 km DT, 10 km DB-DT, and 3 km DT parameters were the highest in the summer
months. The 3 km DT AOD had the widest fluctuation of retrieval errors over the course of the year
(0.009 in December to 0.056 in May). The 10 km DB product had a more even distribution over time,
from −0.01 in August to 0.01 in February. The reasons for the increased positive retrieval error in the
DT-based AOD parameters in the summer months is unclear, and has not been well-characterized in
previous work on this collection. However, despite the fact that collocations in summer months are
associated with increased mean NDVI values, which typically result in better accuracy statistics for DT
products, collocations in these months also have higher scattering angles, lower solar zenith angles,
and higher values of total column precipitable water, all factors that result in positive retrieval errors
over the CONUS.

Figure 4. Boxplot showing the distribution of retrieval errors in MODIS AOD relative to AERONET,
for each month of the year, for 3 km DT (a); 10 km DT (b); 10 km DB-DT (c); and 10 km DB (d).
For each box, the midline represents the median, upper, and lower hinges represent the 25th and 75th
percentiles, whiskers extend out to 5th and 95th percentiles.

9



Remote Sens. 2016, 8, 815

As mentioned above, lower NDVI has been associated with increased retrieval error and noise
in MODIS AOD retrievals, particularly for DT-based products, in previous works [16]. In the West,
this is clearly shown in the 3 km DT AOD, and to a lesser degree in 10 km DT AOD (Figure 5).
The 10 km DB AOD in the Western US was unbiased in the lowest three quintiles of NDVI, but was
negatively biased in the upper two quintiles (up to −0.03 in the highest quintile). This pattern was
observed in the global validations as well [12] and it likely points to an overestimation of the surface
reflectance over vegetated areas in the eastern US. In the East, AOD retrieval errors are less dependent
on NDVI, and the negative retrieval error observed for DB at higher NDVI values was not observed.
Both humidity and potential cloud contamination have been shown to bias MODIS observations,
and total column precipitable water (TCPW) can be a marker for both factors [32]. Figure 5 shows a
complex relationship between AOD retrieval errors and TCPW. In the Western US, TCPW has little
impact on the retrieval errors of 10 km DB and DB-DT AOD, but both very high or very low TCPW
values are associated with positive retrieval errors in the 3 km and 10 km DT AOD. In the Eastern US,
the 10 km DB AOD is negatively associated with TCPW. However, the impact of TCPW is generally
small for all AOD parameters, except at very high levels where both the 3 km and 10 km DT AOD
showed a small positive retrieval error. At higher TCPW values, this bias is likely indicative of cloud
contamination, and the lack of retrieval error in 10 km DB product under these conditions fits with our
coverage results, which suggests more conservative cloud screening procedures for this product.

Figure 5. Dependence of AOD retrieval errors and distributions of values in QAC 3 MODIS AOD
for NDVI (a) and TCPW (b). Median AOD retrieval error (dots) and the IQR (vertical line ranges
from 25th percentile to 75th) is shown within quintiles of NDVI, and total column precipitable water.
The density distribution of values is shown in the background in gray and represents proportional
frequency, where 0.25 on the y-axis represents the most frequent value in the category.

4. Case Study

We conducted a case study over the Atlanta Metropolitan Area from 1 January 2004 to 31 December
2013. The study area stretched from 32◦N to 36◦N latitude and from 83◦W to 86◦W longitude,
and included 23 ground-level PM2.5 monitors in 19 distinct grid cells from the same ~12 km × 12 km
grid used in the coverage analysis. This case study compared the ability of each of the four MODIS
AOD products to predict ground-level PM2.5 in a widely used linear mixed effect (LME) model
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framework [33]. Three AOD datasets were generated for each of the four MODIS AOD products:
(1) AOD values with only QAC = 3; (2) AOD values with the highest available QAC (1, 2 or 3);
and (3) filtered and corrected AOD values using the relationships examined in Sections 3.5 and 3.6 prior
to inclusion in the model. To produce the filtered and corrected dataset, AOD values from dataset #2
with scattering angles over 165◦ or solar zenith angles less than 15◦ were first eliminated. This removed
~9% of observations while some were additionally lost in the matching process. This filtered dataset
was then corrected, using a linear regression model fit to the dataset of matched AERONET and
MODIS AOD observations in the Eastern CONUS, used in the accuracy analysis, for QAC value, land
use type, sensor zenith angle, total column precipitable water, and NDVI. All 12 combinations of AOD
were fit using the LME model, of the form: PM2.5,s,t = (b0 + b0,t) + (b1 + b1,t)AODs,t, where b0 is the
fixed intercept, b0,t the random intercept for each day, b1 the fixed slope, and b1,t the random slope for
each day [33]. These results are presented in Table 3.

Table 3. Performance statistics for each AOD parameter in the Atlanta case study.

Parameter
QAC 3 Only Best of QAC 1, 2, and 3 Filtered & Corrected AOD

N R2 Fixed Slope N R2 Fixed Slope N R2 Fixed Slope

3 km DT 10,438 0.76 14.4 10,438 0.76 14.4 9680 0.75 20.2
10 km DT 8994 0.72 20.4 11,511 0.77 16.1 10,593 0.75 23.4

10 km DB-DT 8994 0.72 20.4 8994 0.72 20.4 8457 0.71 25.7
10 km DB 8560 0.80 31.2 14,706 0.83 11.7 13,448 0.83 16.7

For the parameters where the number of observations increased with the addition of lower QAC
valued observations, 10 km DB and 10 km DT, R2 values for a model relating ground-level PM2.5

concentrations to AOD actually increased slightly. Increasing from 0.80 to 0.83 for 10 km DB and
from 0.72 to 0.75 for 10 km DT. When AOD values were filtered and corrected to remove potentially
biased observations, model fits for the 10 km DT product decreased slightly, from 0.77 to 0.75 and
remained the same for the 10 km DB product. For the parameters with relatively few lower quality
observations, 10 km DB-DT and 3 km DT, neither the number of observations included in the model
nor the resulting R2 values changed when lower confidence observations were included in the model.
When filtering and correction was applied, model fits, as measured by the R2 values, actually decreased
by 0.01 relative to the ‘best of’ models. These results run counter to what would be expected: that R2

values for all four parameters would decrease slightly with the inclusion of lower-confidence retrievals,
given the fact that the lower confidence observations for the 10 km DB and 10 km DT parameters are
noisier. However, in this case study, the additional number of observations appears to have offset
the additional noise introduced via these observations in the model and resulted in better prediction
of ground-level PM2.5 via this simple model. Despite the smaller sample sizes, the models using the
corrected and filtered AOD values achieved similar R2 values as the uncorrected AOD models.

These results illustrate some of the key points made in this paper, namely that coverage is an
often-overlooked but important factor, when considering AOD accuracy statistics, and that, because
of the role played by coverage, the inclusion of lower-quality AOD observations in a model can
provide some benefit. These results additionally highlight our observation that the lower confidence
designations for the newer products, 10 km DB-DT and 3 km DT, are very few in number. The utility
of correcting for major sources of bias or error in the AOD values was demonstrated in this limited
example by greater fixed effect regression slopes, indicating greater sensitivity of the corrected and
filtered AOD values to PM2.5 concentrations.

5. Conclusions

We conducted a detailed analysis on the coverage and accuracy of Collection 6 MODIS AOD
parameters in the CONUS. With their applications in air quality research in mind, we examined the
benefits and risks of including lower QAC retrievals in order to improve data coverage, as well as how
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AOD retrieval errors depend on various factors. Our recommendation is that, for inexperienced users
who are beginning to explore MODIS AOD data for air quality research, the QAC 3 10 km DB-DT AOD
is their best choice. For more experienced users, the ideal AOD parameter could depend on the purpose
as well as domain of their study. The coverage of QAC 3 retrievals is comparable among all four AOD
parameters, ranging from 25% to 30%. The Eastern US in general had higher and more consistent data
coverage. However, much higher coverage rates were found in highly developed Southern California
and over the south-central plains with limited ground-level air pollution monitoring, a surprising fact
since these areas are traditionally regarded as having too high of surface brightness for DT to retrieve
reliably. These findings are promising to researchers interested in conducting regional air quality
assessments in these regions. Including lower QAC retrievals marginally improved coverage for the
3 km DT and 10 km DB-DT AOD. However, since these QAC assignments do not appear to reflect
retrieval accuracy and are few in number, including lower QAC retrievals of these two parameters
is probably beneficial, and unlikely to be harmful. On the other hand, lower QAC retrievals could
increase the coverage of 10 km DT AOD by ~20% and that of 10 km DB AOD by ~70% on average.
Caution must be given when including them to enhance coverage as these retrievals are often noisier,
as shown in Table 2. However, as demonstrated in the case study, sufficient daily sample sizes can
sometimes be more important than retaining only the high quality AOD values for the purposes of
improving prediction errors with ground-level PM2.5. To take advantage of the dramatic coverage
gain offered by these lower QAC retrievals, retrieval error correction steps using local AERONET
observations could be valuable [7].

In terms of data accuracy, the 10 km DB-DT AOD had the best performance in terms of correlation
and linear model fit statistics, although QAC 3 retrievals for all but the 3 km DT AOD over the Western
US met pre-launch expectations for the percentage of collocations within EEDT. However, the 10 km
DB product performs well in the context of a prediction model and may be an understudied AOD
parameter in the US, where the 10 km DT product is currently used more frequently. The robustness of
this product to major sources of bias additionally makes it an attractive option in the Western United
States. The noisier 3-km DT AOD, however, can be valuable over dark targets in the Eastern US,
particularly over areas where it tends to retrieve at higher rates than the lower-resolution products,
such as in the Northeast and Northern Midwest, over the South Central plains in Texas, and over
Southern Florida. The errors in MODIS AOD parameters vary in time and space, and are dependent
on various retrieval conditions. Additional data screening and retrieval error correction steps should
be considered other than simply relying on the QAC values, particularly in the Western United
states, where these biases tend to have a larger impact. For example, AOD retrievals associated with
high scattering angles and lower solar zenith angles may be excluded to avoid data contamination.
Such parameters can be found in the operational MODIS aerosol product. In addition, categorical
variables of land cover types as well as time trends can be introduced in PM2.5 exposure models
to control for the systematic retrieval errors in DT-based AOD retrievals. NDVI and TCPW had
statistically significant, distinct impacts on all AOD parameters in the Western US, and therefore are
probably worth considering when analyzing AOD data. Since they must be extracted from separate
MODIS data products, users would need to consider the nontrivial time and computational demands
associated with dealing with these large datasets.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/815/s1,
Figure S1: Seasonal coverage for high confidence retrievals, Figure S2: Seasonal coverage for all-confidence
retrievals, Figure S3: AOD retrieval errors by land cover type.
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Abstract: The newly released MODIS Collection 6 aerosol products have been widely used to evaluate
fine particulate matter with a 10 km Dark Target aerosol optic depth (DT AOD) product, a new 3 km
DT AOD product and an enhanced Deep Blue (DB) AOD product. However, the representativeness
of MODIS AOD products under different air quality conditions remains unclear. In this study, we
obtained all three types of MODIS Terra AOD from 2001 to 2015 and Aqua AOD from 2003 to 2015
for the Beijing region to study the performance of the different AOD products (Collection 6) under
different air quality situations. The validation of three MODIS AOD products suggests that DB
AOD has the highest accuracy with an expected error (EE) envelope (containing at least 67% of the
matchups on a scatter plot) of 0.05 + 0.15τ, followed by 10 km DT AOD (0.08 + 0.2τ) and 3 km DT
AOD (0.35 + 0.15τ), specifically for Beijing. Near-surface PM2.5 concentrations during the passage
of MODIS from 2013 to 2015 were also obtained to categorize air quality as unpolluted, moderately,
and heavily polluted, as well as to analyze the performance of the different AOD products under
different air quality conditions. Very few MODIS 3 km DT retrievals appeared on heavily polluted
days, making it almost impossible to play an effective role in air quality applications in Beijing. While
the DB AOD allowed for considerable retrievals under all air quality conditions, it had a coarse
spatial resolution. These results demonstrate that the MODIS 3 km DT AOD product may not be the
appropriate proxy to be used in the satellite retrieval of surface PM2.5, especially for those areas with
frequent haze-fog events like Beijing.

Keywords: AOD; MODIS; dark target; deep blue; air quality

1. Introduction

Aerosols are important components of the atmosphere that can affect atmospheric environment [1],
weather [2], climate [3], and human health [4]. Aerosol particles in the atmosphere absorb and scatter
incident solar radiation, and affect the Earth’s radiation budget [5]. Aerosol particles can act as
condensation nuclei to form clouds and affect precipitation, while excessive aerosol loading can
change cloud properties (e.g., albedo, etc.) by means of the indirect radiative forcing effects of the
aerosol [6]. Therefore, the analysis of aerosol properties has been the focus of atmospheric research
via both ground-based sun-photometers and satellite-based observations [7]. Satellite observation
of aerosols utilizes the reflected signals of the atmosphere to retrieve the optical properties of the
aerosol (primarily the aerosol optical depth, AOD), and is very powerful for monitoring the global
distribution of aerosol loadings due to its instantaneous coverage of the Earth’s surface. Various
satellite sensors have been launched, such as the Moderate Resolution Imaging Spectroradiometer
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(MODIS), Multi-angle Imaging Spectroradiometer (MISR), and POLarization and Directionality of the
Earth’s Reflectances (POLDER) [8–10]. The MODIS aerosol products employ different aerosol retrieval
algorithms over land and ocean. Over land, AOD over vegetation and other dark objects is retrieved
with the Dark Target (DT) algorithm, which primarily utilizes the relationship between two visible
bands (red and blue) and a shortwave infrared band (2.1 μm). The Deep Blue (DB) algorithm was
developed to retrieve the AOD over bright surfaces [11], and was later extended to cover vegetated
surfaces. MISR utilizes multi-angular observation to retrieve aerosol properties with nine discrete
view angles in four bands [12]. POLDER is also able to retrieve aerosol properties with multi-angular
observations with additional polarization signals, but the land aerosol properties retrieved by POLDER
are currently limited to fine mode aerosols, as it assumes that the polarization signal is sensitive to fine
mode aerosols over land [13]. Among these satellite aerosol products, the MODIS products have been
the most widely used because of their high accuracy; global expected error envelope of ±(0.05 + 15%)
over land and +(0.04 + 10%) to −(0.2 + 10%) over ocean [14]; wide-coverage (a swath of 2330 km);
long-term dataset (beginning in 2000); and high temporal resolution (Terra and Aqua in the morning
and afternoon) [15]. However, satellite-based sensors retrieve aerosol properties by utilizing relatively
weak reflected signals from the atmosphere, and are easily contaminated by surface reflective signals
if the surface reflectance is too high [16]. Therefore, over a bright surface such as a desert or city,
surface-reflected signals dominate and the accuracy of the satellite-retrieved aerosol properties is
limited [17]. Although the accuracy of AOD retrieval is relatively high, other aerosol properties—such
as the single scattering albedo (SSA), size distribution, and refractive index—cannot be effectively
obtained via satellite remote sensing [18]. Furthermore, the retrieval of aerosol properties relies on the
radiative transfer calculation for reflected signals, involving both surface and atmospheric properties.
If the surface is “masked” by clouds or high concentrations of particulate matter, the radiative transfer
models may not be able to decouple surface and atmosphere contributions, making aerosol retrieval
inaccurate. For example, the Second Simulation of the Satellite Signal in the Solar Spectrum (6S)
suggests that visibility should be larger than 5 km; otherwise, the accuracy is doubtful [19]. This might
be acceptable for regions such as the United States and Western Europe that have good air quality
resulting from strict environmental policies; however, for areas such as northern China that have
frequent haze-fog events when the particulate matter concentration could be as high as 300 μg/m3 [20],
the retrieval of aerosol properties has a high fail rate, as the high concentration of particulate matter
acts as a particle “wall” that stops radiative transfer from the land surface to the satellite.

Ground-based sun-photometer observations retrieve AOD by aiming directly towards the
sun, thus avoiding surface reflectance contamination [21,22]. Considering the high accuracy of
ground-based sun-photometer observations and the limitations imposed by a fixed location, it is
necessary to construct a network to observe the aerosol with sun-photometers with comparable
accuracy and retrieval methods, such as Aerosol RObotic NETwork (AERONET). China has also
established its own ground-based sun-photometer networks, such as the China Aerosol Remote Sensing
Network (CARSNET) [23] and Chinese Sun Hazemeter Network (CSHNET) [24], to monitor the
properties of aerosols in several key regions. Due to the high accuracy of sun-photometer observations,
they have been regarded as benchmarks for the validation of satellite aerosol retrievals [25]. Although
many sun-photometer sites exist worldwide, they do not cover a wide spatial range, so their application
for local monitoring and satellite result validation is limited. Sun-photometer observations—especially
AERONET retrievals—provide a unique tool to investigate the comprehensive properties of aerosols
for local issues [26].

Beijing is the capital of China, is located in Northern China, and has a population greater
than 20 million [27]. During the rapid economic development that occurred during the past three
decades, air pollution in Beijing has become an issue of comprehensive public concern because
of the frequent haze-fog events in late autumn, winter, and early spring [28]. To investigate the
properties of aerosols in Beijing, four AERONET sites were deployed in and around Beijing (i.e., the
Beijing site, the Beijing-CAMS site, the PKU_PEK site, and the Yufa_PEK site), and these provide
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relatively long-term monitoring data of aerosol properties in Beijing. In addition to the AERONET
observations, 35 air quality monitoring stations have been deployed in Beijing since 2013 to obtain
real-time concentrations of six key atmospheric pollutants (PM2.5, PM10, SO2, NO2, O3, and CO).
Therefore, the properties of aerosols during different air quality situations can be obtained with the aid
of air quality monitoring data.

In previous studies, the performance of MODIS aerosol products has been validated globally by
means of AERONET observations [29,30]. However, these validations have been primarily focused on
successfully retrieving pairs of both effective MODIS and AERONET results. The results may be correct
for areas that have few occurrences of heavy particulate matter pollution, as aerosol retrieval is likely
to be successful. However, for areas such as Beijing that have frequent particulate matter pollution
episodes, MODIS retrieval is highly possible to fail, while AERONET—which is aimed directly at the
sun—could produce sufficiently accurate results [31,32]. As MODIS AOD products—including 3 km
DT, 10 km DT, and 10 km DB—have been widely used to estimate the surface PM2.5 concentrations
over various situations [33,34], it raises a question of what the representativeness of different MODIS
AOD products under different air quality conditions is. By failing to retrieve effective AOD under
heavily polluted days, retrieving PM2.5 from MODIS AOD may be biased due to the lack of sufficient
samples under heavy polluted areas such as Northern China, with frequent haze-fog events.

In this study, we documented AOD data in Beijing collected from two AERONET (Beijing station
and Beijing-CAMS station) and three MODIS AOD products from 2001 to 2015 to obtain successful
retrieval pairs to evaluate the performance and representativeness of MODIS aerosol retrievals over
Beijing. Furthermore, detailed PM2.5 concentrations measured by two air quality monitoring stations
close to the two AERONET stations were also collected to characterize the air quality. The major
objectives of this study are to: (1) investigate the performance of the MODIS AOD product under
different air quality situations; and (2) to figure out whether these AOD products are suitable for PM2.5

retrieval in frequent haze-fog areas such as Beijing.

2. Study Area and Data Sets

2.1. Study Area

Beijing (40◦N, 116◦E) is the capital city of the People’s Republic of China, and has over 20 million
inhabitants and an area of 16,800 km2. It lies on the northwest border of the Northern China Plain and
is surrounded by the Yansan Mountains in the north and west. The climate in Beijing is semi-humid
continental with an annual precipitation of 644 mm. Affected by the East Asia monsoon, approximately
80% of annual precipitation occurs in the summer months, causing wet, hot summers, and dry, cold
winters. As the political and cultural center of China, air quality in Beijing has raised both domestic
and foreign concerns. In the late 20th century and the beginning of the 21st century, frequent dust
storms in the winter and early spring caused major atmospheric pollution issues [35]. Since 2012,
serious haze events with high concentrations of PM2.5 have aroused public concern. To mitigate
serious atmospheric problems, the Beijing municipal government launched the “Defending Blue Sky”
campaign to report the “Blue Sky Index” to delineate the “Blue Sky Days” each year since 1998 [36].
The official data show that “Blue Sky Days” have increased from 100 per year in 1998 to 286 per year in
2012, but the public has remained confused by the deteriorating air quality conditions [37]. The reason
for the confusion is that the previous ambient air quality assessments only considered PM10, NO2,
and SO2, but PM2.5 has become an increasingly important issue regarding deteriorating air quality.
Partly due to public pressure, the new ambient air quality standards (National Ambient Air Quality
Standards, GB 3095-2012) have included PM2.5 as a key pollutant since 2013. Furthermore, air quality
control guidelines such as the “Air Pollution Prevention and Control Action Plan” released by the State
Council of China has requested a reduction of 25% in PM2.5 concentration in the Beijing-Tianjin-Hebei
region by 2017 compared with that in 2012. To achieve these goals, a number of air quality monitoring
stations were deployed to provide real-time data for the evaluation of air quality.
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2.2. AERONET Data

AERONET is a global aerosol property observation network that has more than 500 stations,
and some of the monitoring at AERONET began prior to 2000 [38]. AODs of several bands (typically,
340 nm, 380 nm, 440 nm, 500 nm, 670 nm, 870 nm, and 1020 nm) can be obtained through direct
observation aimed at the sun. Through sky radiance measurements in the almucantar plane at 440 nm,
670 nm, 870 nm, and 1020 nm combined with the directly-obtained direct sun measured AOD at these
four bands, the microphysical properties of the aerosol particles (i.e., the size distribution, the refractive
index, the single scattering albedo, etc.) are retrieved via radiative transfer calculations. Furthermore,
the radiative forcing and forcing efficiency are also integrated into the AERONET inversion scheme by
utilizing the AOD, surface albedo, size distribution, refractive indices, particle size parameters, and
so on [39]. Three levels of aerosol retrieval data are provided by AERONET: Level 1.0, Level 1.5, and
Level 2.0. The Level 1.0 product provides the direct inversion of the aerosol properties without a strict
quality check. The Level 1.5 product is the cloud screen product that provides a series of quality checks:
data quality checks, triplet stability criterion checks, a diurnal stability check, and three standard
deviation criteria checks to exclude the clouds [40]. The Level 2.0 product has more rigorous quality
checks: an instrument performance check, a temperature sensor check, a calibration check, an aerosol
optical depth spectral dependency check, a cloud contamination check, a consistency check, and a
historical data impact check [41]. Although the Level 2.0 product has the highest quality, the strict
quality checks screen out a large amount of data. Moreover, some AERONET stations do not have
enough Level 2.0 data, thus limiting the scientific applications of the Level 2.0 product. Therefore, the
Level 1.5 product was deemed to be of sufficient quality and quantity, and was selected and analyzed
in this study.

Four AERONET stations have been deployed in Beijing, and two stations’ data with nearby air
quality monitoring stations and with more than three years of data were included in this study: the
Beijing station (39◦58′37”N, 116◦22′51”E since March 2001) and the Beijing-CAMS station (39◦55′58”N,
116◦19′01”E since August 2012). Both AERONET stations both have a nearby air quality monitoring
station to obtain AOD–PM2.5 data pairs.

2.3. MODIS Data

Two MODIS sensors on the Terra and Aqua platforms have provided extensive aerosol data sets
since 2000 and 2002, respectively. The aerosol products provided by MODIS have been updated to
Collection 6 (C6) and primarily use three algorithms: (1) the Dark Target (DT) land algorithm (dark
vegetated/soil lands); (2) the Dark Target ocean algorithm; and (3) the enhanced Deep Blue (DB)
algorithm (originally over desert or arid lands in C5.1 and expanded to cover vegetated land surfaces
in C6). Over land, the main principle of the DT algorithm relies on a consistent relationship between
the 0.47, 0.66, and 2.1 μm bands in dense vegetated regions [42,43]. Therefore, the DT algorithm
only provides aerosol retrievals over vegetated land and other dark land surfaces, which restricts
its application. The DB algorithm was developed to obtain aerosol properties over desert and other
arid surfaces, and later extended to cover vegetated land surfaces [44]. The DB algorithm makes use
of the relatively low reflectance of the desert and other surfaces in the deep blue bands to retrieve
aerosol properties and then extrapolate them to the 0.55 μm band. Compared to the Collection 5.1
data, the accuracy and extension of the DB results have largely increased. In Collection 5.1, the
MODIS aerosol products have a spatial resolution of 10 km at the nadir, which has been retained in
Collection 6. In addition to the 10 km product, Collection 6 has provided a 3 km DT product for air
quality applications. In this study, both the 10 km and 3 km level 2 MODIS Collection 6 Terra and Aqua
aerosol products were obtained and analyzed to provide a comprehensive analysis of the performance
of MODIS aerosol products over Beijing with frequent haze-fog events.
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2.4. Air Quality Monitoring Data

AERONET and MODIS aerosol retrievals provide the column-integrated effects of aerosol
particles, but air quality monitoring data—including PM2.5 and PM10 measurements—are another
method to evaluate the dry aerosol concentrations near the surface. Before 2013, the daily air quality
for main cities only considered PM10, SO2, and NO2. Since 2013, the new national ambient air
quality standards required 74 key cities to monitor six key pollutants at one hour intervals. From
2015, 367 cities with more than 1400 air quality monitoring stations published real-time air pollutant
concentration data on the web platform of Ministry of Environmental Protection of China [45]. A total
of 12 state-controlled stations and 23 municipal stations were deployed in Beijing. In this study, two
air quality stations in Beijing (the West Park Officials station that matches the Beijing-CAMS station
and the Olympic Sports Center station that matches the Beijing station) were selected to match the
AERONET monitoring observations. The air quality monitoring data were used to characterize air
quality during the overpassing of MODIS and the AERONET retrieval as follows: unpolluted (PM2.5

concentration ≤ 75 μg/m3), moderately polluted (75 μg/m3 < PM2.5 concentration ≤ 150 μg/m3), and
heavily polluted (PM2.5 concentration > 150 μg/m3). The distribution of the two AERONET stations
and the two air quality monitoring stations are shown in Figure 1.

Figure 1. Distributions of the two Aerosol RObotic NETwork (AERONET) stations and two air quality
stations used in this study. The two AERONET stations are: Beijing-CAMS station (39.93◦N, 116.32◦E)
and Beijing station (39.97◦N, 116.38◦E). The two air quality stations are Olympic Sports Center station
(39.98◦N, 116.40◦E) and West Park Official station (39.93◦N, 116.34◦E).

3. Analytical Methods

AERONET observations during MODIS overpasses have been used as benchmarks in the
evaluation and application of MODIS aerosol products. However, such comparisons require both
effective AERONET and high quality MODIS retrievals. If the MODIS retrieval fails or is less reliable,
the comparison cannot be made; this may be due to a variety of sources, including cloud contamination,
bright surface contamination, haze-fog masking, and so on. As MODIS aerosol retrievals rely on the
separation of surface and atmospheric contributions, the retrieval scheme is highly likely to fail when
the particulate matter concentrations are too high (moderately polluted and heavily polluted). Urban
monitoring stations in Beijing indicate that the average annual PM2.5 concentration is approximately
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78 μg/m3 (5.5–475.0 μg/m3), and particulate matter pollution is present for one-third of a year.
Therefore, it is highly possible that MODIS aerosol products may only retrieve aerosol optical properties
when the atmosphere is not heavily polluted, causing errors in the estimates of the long-term aerosol
properties from MODIS. In this study, only those MODIS retrievals with sufficient quality (Quality
Assurance Confidence, QAC = 3) were included: SDS Optical_Depth_Land_And_Ocean in the 3 km
DT and 10 km DT products and SDS Deep_Blue_Aerosol_Optical_Depth_550_Land selected with
“QAC = 3” in the 10 km DB product.

In this study, we selected MODIS pixels within ±25 km of the two AERONET stations and
averaged the all the effective AOD retrievals as effective MODIS AOD retrievals for 10 km DT and DB
products [46]. The AERONET retrievals within a temporal interval of ±30 min of the MODIS overpass
time were averaged to obtain effective AERONET retrievals. Because 25 km is around the 2.5 pixel
resolution of MODIS 10 km DT and DB products, we restricted the spatial searching range of MODIS
3 km DT products to ±7.5 km proportionally. Both effective data pairs (with both effective MODIS
and AERONET data) and ineffective data pairs (with either the MODIS or AERONET data missing)
were collected and analyzed for different air quality conditions (unpolluted, moderately polluted, and
heavily polluted) to evaluate the performance of MODIS aerosol products.

4. Results

4.1. Performance of the MODIS 10 km DT, 10 km DB, and 3 km DT Products

AOD data retrieved from the MODIS 10 km DT, 10 km DB, and 3 km DT products are shown in
Figures 2–4. In this study, Terra AOD observations from 2001 to 2015 and Aqua AOD observations
from 2003 to 2015 were acquired from the MODIS Level-1 and Atmosphere Archive and Distribution
System (http://ladsweb.nascom.nasa.gov) for the Beijing station, as the AERONET retrievals for this
station began in 2001. For the Beijing-CAMS station (which began operation in 2012), both the MODIS
Terra and Aqua data that were used to match the AERONET data were from 2012. In this study, only
the highest-quality MODIS data over land (QAC = 3) were selected to match the AERONET data.

Figure 2. Validation of the Moderate Resolution Imaging Spectroradiometer (MODIS; both Terra and
Aqua) 10 km Dark Target aerosol optical depth (DT AOD) against AERONET measurements at the
Beijing station and Beijing-CAMS station. EE: expected error.
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Figure 3. Validation of the MODIS (both Terra and Aqua) 10 km Deep Blue (DB) AOD against
AERONET measurements at the Beijing station, and Beijing-CAMS station.

Figure 4. Validation of the MODIS (both Terra and Aqua) 3 km Dark Target AOD against AERONET
measurements at the Beijing station, and Beijing-CAMS station.

As shown in Figure 2, a total of 3729 pairs of MODIS 10 km DT AOD and AERONET retrievals
were obtained for the two stations. Most of the retrieval pairs ranged from 0 to 1.0. A linear relationship
between the MODIS 10 km DT AOD and AERONET AOD with a very high determination coefficient
(R2 = 0.8106) was found. The expected error (EE, with at least 67% of data falling within the EE)
envelope was approximately ±(0.08 + 0.2τ), which is slightly larger than the global average accuracy
of the MODIS AOD over land (±(0.05 + 0.15τ)). As shown in Figure 3, a total 5322 pairs of MODIS
10 km DB AOD and AERONET retrievals were collected, as the DB algorithm was developed to
overcome the restriction of the DT algorithm only covering densely vegetated areas or water bodies

21



Remote Sens. 2017, 9, 496

and failing for retrieval over bright surfaces. Although the DB algorithm is relatively less accurate
than DT globally; for the three stations in Beijing, the DB AOD in Beijing was relatively highly accurate
(±(0.05 + 0.15τ)) [47] and had more successful pairs (N = 5322). The accuracy of the DB AOD was
comparable to the global average accuracy of the DT AOD. The 3 km MODIS aerosol products (shown
in Figure 4) was designed to provide refined spatial resolution of aerosol retrieval for regional air
quality applications [48]. However, in our study, the accuracy of the 3 km MODIS aerosol product was
much lower (±(0.35 + 0.15τ)) at Beijing, suggesting that despite a higher spatial resolution, the MODIS
3 km products were less reliable, which is consistent with a previous validation of the Aqua 3 km
products over Asia [49]. However, our result was slightly different because we selected a 7.5 × 7.5 km
square rather than a 9 × 9 km square. The validation results of the 3 km MODIS AOD suggested that
in a heavily-polluted area such as Beijing, the MODIS 3 km AOD was neither highly accurate nor
had a wide coverage, and only had a high spatial resolution. Most previous studies have compared
AERONET AOD in a range of 0–2.0, and values larger than 2.0 seldom occurred. In this study, we
found many retrievals larger than 2.0, with some retrievals as high as approximately 3.5, suggesting
that the aerosol load in Beijing is very high.

Beijing station began monitoring aerosols in March 2001, and has continuously released data
since 2003, while the Beijing-CAMS station started in 2012. We have collected the monthly retrieval
counts for MODIS 10 km DT, 10 km DB, 3 km DT, and AERONET retrievals during the MODIS
overpass since 2005 at the Beijing stations (Figure 5). Very few successful retrievals were obtained in
winter (December, January, and February) from the two DT algorithms (10 km and 3 km), and more
retrievals were obtained in the middle of the year (April–October), in the shape of an “M”. However,
the successful DB algorithms and AERONET retrievals had an opposite pattern, with the largest values
occurring in winter and fewer values in summer. The successful DB and AERONET retrievals were
comparable. The fewer successful AERONET retrievals in summer may have been due to the rainy
season, while in autumn and winter, less precipitation and fewer clouds allowed more AOD retrievals.

Figure 5. Monthly successfully retrieval counts of the MODIS 10 km Dark Target AOD, 10 km Deep
Blue AOD, 3 km Dark Target AOD, and AERONET retrievals during the overpass of Terra and Aqua
for the Beijing station.

In Beijing, air quality is good in the middle of the year and poor in autumn and winter. Particulate
matter (PM2.5 and PM10) is the principal reason for the deterioration of air quality in Beijing. Although
the MODIS 3 km DT products were developed for the applications by the air quality community, the
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low number of successful retrievals in winter in a heavily polluted region such as Beijing, restricts
its effective application. Therefore, in this study we analyzed the retrievals of various MODIS
AOD products and AERONET AOD retrievals under different air quality conditions to estimate
the performance of different MODIS AOD products.

4.2. Retrieval Statistics under Different Air Quality Situations

Beijing began to publish real-time air quality data—including PM2.5—at one hour intervals
on its official website in January 2013, providing a powerful data source for atmospheric pollution
research. Two stations (West Park Official and Olympic Sports Center stations) out of the 35 air quality
monitoring stations are very close to two AERONET stations (the Beijing and Beijing-CAMS stations).
The successful retrieval counts of the MODIS 3 km DT, 10 km DT, 10 km DB, and AERONET during
different PM2.5 concentrations were obtained for the West Park Official–Beijing-CAMS and Olympic
Sports Center–Beijing station pairs. In total, 2028 and 1920 successful PM2.5 concentration data pairs
were collected during the overpass of the twin MODIS sensors for the Beijing-CAMS station and
the Beijing station, respectively. For the Beijing-CAMS station, 1203 PM2.5 data indicated less than
75 μg/m3 (unpolluted), 479 PM2.5 data indicated a range of 75–150 μg/m3 (moderately polluted), and
346 PM2.5 data were larger than 150 μg/m3 (heavily polluted). The average PM2.5 concentration was
82.1 μg/m3. For the Beijing station, the corresponding values were 1151 (unpolluted), 455 (moderately
polluted), and 314 (heavily polluted), with an average PM2.5 concentration of 78.9 μg/m3. It should be
mentioned that the average PM2.5 concentration only considered data collected during the MODIS
fly-over time, which was different from the actual annual average. Additionally, the West Park Official
station data started in January 2013, while the Olympic Sports Center station started in March 2013.
Histograms of the retrievals from the different MODIS products, AERONET retrievals, and total
PM2.5 data are shown in Figure 6. The PM2.5 data had the largest effective number of retrievals due
to the automatic PM2.5 monitoring and was affected by weather conditions, while AOD retrievals
were restricted to cloud-free conditions. For both stations, the MODIS 10 km DB products had the
largest number of successful retrievals, followed by the AERONET retrievals, retrievals of the MODIS
10 km DT products, and retrievals of the MODIS 3 km DT products. The number of successful
MODIS 10 km DB products was even greater than the AERONET retrievals. Furthermore, when
the PM2.5 concentration increased to more than 150 μg/m3 (heavily polluted), very few successful
retrievals resulted from the MODIS 3 km DT products, but a considerable number resulted from the
MODIS 10 km DB products and AERONET. In this study, we categorized air qualities into three levels:
unpolluted, moderately polluted, and heavily polluted, as described in Section 2 and summarized the
air quality situations regarding effective MODIS or AERONET retrievals as shown in Table 1. By simply
analyzing the PM2.5 monitoring data during the overpass of MODIS, approximately 17% of these data
were from heavily polluted times, 23% from moderately polluted times, and 60% from unpolluted
times, which suggests that the air quality in Beijing was polluted 40% of the time. When considering
rainy or cloudy conditions, the number of aerosol retrievals was less than the PM2.5 monitoring
data. The results in Table 1 showed that three MODIS AOD products and AERONET retrievals all
have comparable successful retrieval percentages on moderately polluted days (75 μg/m3 < PM2.5

concentration ≤ 150 μg/m3) of approximately 20%, which was slightly less than the 23% directly
derived from the PM2.5 monitoring data. All four AOD products had far lower successful retrieval
rates during heavily polluted days than the actual situation. For the MODIS 3 km DT AOD, only 3–4%
of the successful retrievals occurred during heavily polluted conditions, and for the MODIS 10 km DT
AOD, the rate was approximately 6.5%—far less than the 17% demonstrated by the monitoring data.
The successful retrieval rate on heavily polluted days for the MODIS 10 km DB AOD was slightly
less than 10%. The successful retrieval rates on heavily polluted days for the two AERONET stations
were very different: 11.9% from Beijing station, and 3.1% from the Beijing-CAMS station. These results
suggest that when considering air quality in Beijing, the MODIS 3 km DT products may not be able to
reflect the actual air quality when the air is moderately or heavily polluted. Although developed for
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air quality monitoring, the MODIS 3 km DT products may be unsuitable for air quality remote sensing
retrieval due their low success rate.

Figure 6. Retrieval number histograms of the MODIS 10 km Dark Target AOD, 10 km Deep Blue AOD,
3 km Dark Target AOD, AERONET retrievals, and total PM2.5 data during the overpass of Terra and
Aqua for (a) Beijing and (b) Beijing-CAMS station.

Table 1. Air qualities statistics of successful retrievals of different AOD products.

Station AOD Products/PM2.5 PM2.5 Concentrations Retrieval Counts (Percentage)

Beijing MODIS 3 km DT <75 μg/m3 396 (76.6%)

75–150 μg/m3 97 (18.6%)
>150 μg/m3 25 (4.8%)

MODIS 10 km DT <75 μg/m3 422 (72.5%)
75–150 μg/m3 123 (21.1%)
>150 μg/m3 37 (6.4%)

MODIS 10 km DB <75 μg/m3 716 (70.5%)
75–150 μg/m3 203 (20.0%)
>150 μg/m3 96 (9.5%)

AERONET <75 μg/m3 601 (68.6%)
75–150 μg/m3 171 (19.5%)
>150 μg/m3 104 (11.9%)

PM2.5 <75 μg/m3 1151 (60.0%)
75–150 μg/m3 455 (23.7%)
>150 μg/m3 314 (16.3%)

Beijing-CAMS MODIS 3 km DT <75 μg/m3 352 (82.2%)

75–150 μg/m3 61 (14.3%)
>150 μg/m3 15 (3.5%)

MODIS 10 km DT <75 μg/m3 400 (73.8%)
75–150 μg/m3 106 (19.6%)
>150 μg/m3 36 (6.6%)

MODIS 10 km DB <75 μg/m3 728 (70.7%)
75–150 μg/m3 203 (19.6%)
>150 μg/m3 100 (9.7%)

AERONET <75 μg/m3 556 (76.0%)
75–150 μg/m3 153 (20.9%)
>150 μg/m3 23 (3.1%)

PM2.5 <75 μg/m3 1203 (59.3%)
75–150 μg/m3 479 (23.6%)
>150 μg/m3 346 (17.1%)
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5. Discussion

Satellite-based remote sensing techniques are powerful tools for monitoring aerosol properties and
distribution, of which MODIS aerosol products have been widely used during the past decade due to
their ability to provide continuous monitoring with relatively high accuracy [50,51]. The major method
of validating MODIS data is through surface-deployed sun-photometers [52–54]. MODIS C5.1 aerosol
products (mainly the 10 km DT product) have already been validated over China. The inter-comparison
of MODIS, MISR, and GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport)
aerosol products over Beijing from 2001 to 2010 suggested that only 40.95% of MODIS C5.1 retrievals
fell within the EE envelope, while the corresponding values of MISR and GOCART were 70.90%
and 32.40%, respectively [55]. However, the validation results may vary from place to place. The
validation over Beijing and Xianghe (a small county near Beijing) show that MISR retrievals in
Beijing were higher, but lower in Xianghe than MODIS retrievals when considering the correlation
coefficients and root-mean-square errors [56]. The validations of MODIS C5.1 all demonstrated that
the accuracy of MODIS AOD in China was lower than the global average accuracy of MODIS products.
The validation of MODIS C5.1 also showed that MODIS had poor performance in extreme aerosol
conditions—especially under dust events or heavy haze [57]. Since the release of MODIS C6 aerosol
products, validation and evaluation of these products have been conducted. The validation of 3 km
DT MODIS/Aqua data in 18 Asia AERONET stations suggested that only 55% of MODIS retrievals
fell within the nominal EE (0.05 + 0.15τ) of the 3 km DT product. For Beijing, only 6.5% of MODIS
retrievals fell within the nominal EE, suggesting that the 3 km DT product was less reliable than the
10 km DT product [49]. Furthermore, another validation work in Northern China from 2013 to 2015
suggested that only 53% of the 3 km DT AODS and 66% of the 10 km DT AODS were within the
error range [51]. The overall evaluation of both MODIS DT and DB products showed that DT results
tended to overestimate the aerosol loading over Northern China, while the DB product exhibited
better performance [58]. The results given in Figures 2–4 showed that the 10 km DB AODs had the
highest accuracy (±(0.05 + 0.15τ)) of the three types of MODIS AOD products, while the 3 km DT
AOD had the lowest accuracy (±(0.35 + 0.15τ)) in Beijing. The result may be surprising, but it is
realistic and suggests that the DB AODs may be more accurate when the air quality is relatively poor,
or for urban situations. One suggestion to overcome this problem is to identify a “clearest” day in
a certain temporal window to obtain the surface reflectance and retrieve AOD during this temporal
window [59].

The update from C5.1 to C6 products brought many improvements to the MODIS aerosol products:
the DB algorithm was enhanced to cover more land regions with a higher accuracy, and a 3 km DT
product was developed for air quality applications. Validation of the 10 km C6 DB product suggested
the number within nominal EE (0.05 + 0.15τ) has increased from 56% to 76% in Beijing when compared
with the C5.1 DB product [60]. Two years of validation for the C5.1 and C6 products over Beijing
from 2012 to 2013 showed that the accuracy of the 10 km DB and 10 km DT have improved from 46%
to 80% and 10% to 18%, respectively [61]. Furthermore, the new C6 DB product was expanded to
cover regions like Northern China [62]. The validation of both C5.1 and C6 AOD in Pakistan over
AERONET suggested that MODIS C6 DT AOD had significantly improved, but the DB products
retained similar accuracies [63]. While the validation of MODIS data over a mountain sun–sky
radiometer site suggested that DT products had a high accuracy, with more than 70% of retrievals
falling within the nominal EE [52]. C6 AODs were systematically higher than C5.1 AODs over the
Mediterranean ocean regions [64]. Despite these improvements, the performance of the C6 products
over heavily polluted regions has yet to be deeply investigated. Three questions are germane: first,
which dataset is more accurate in a frequently polluted region such as Beijing; second, which data
can be more effectively retrieved at different particulate matter concentration conditions; and third,
which dataset is more useful for air quality applications. For air quality monitoring applications with
aerosol products on a large scale, sufficient successful retrievals must be made for different air quality
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situations. If one AOD algorithm cannot obtain enough successful retrievals on heavily polluted days,
the satellite-retrieved PM2.5 concentrations may be biased and underestimate the actual situation.

Most validations of MODIS AOD are primarily focused on relatively low aerosol loads (e.g., an
AOD of less than 2.0). These results may not be biased for an area such as Western Europe or
North America, where air qualities are good. For example, the number of successful retrievals of
3 km DT was far more than those of 10 km DT and 10 km DB over Atlanta, USA [65]. In China,
however—especially Northern China, which has frequent haze-fog events when PM2.5 concentrations
are very high—most satellite-based aerosol retrieval schemes have difficulties in separating the surface
and atmospheric contribution. Despite these shortcomings, the MODIS products have been widely
used for monitoring particulate matter in Northern China using various algorithms that take surface
particulate matter monitoring data, meteorological data, and satellite data into account [66]. To cover
more regions, the DB products are also included in some studies as supplementary data, as the DT
algorithm—despite its claims of high accuracy—has relatively low spatial coverage for urban areas
with a large population [67].

The results in Figure 6 and Table 1 show that the least number of MODIS 3 km DT AODs
was retrieved on heavily polluted days, while the largest number was retrieved with the MODIS
10 km DB AODs. For the Beijing station (Figure 6a), most PM2.5 monitoring values (1346 of a total
1920 monitoring values) during the overpass of MODIS were less than 100 μg/m3. The monitoring
counts gradually reduced as the PM2.5 concentrations increased. There were only 168 PM2.5 monitoring
values greater than 200 μg/m3. For the 3 km DT AODs, 444 effective values were obtained when PM2.5

concentrations were less than 100 μg/m3, only six retrievals were obtained when PM2.5 concentrations
were greater than 200 μg/m3, and no retrievals were obtained when PM2.5 concentrations were greater
than 300 μg/m3. This result suggested that the satellite retrieval of PM2.5 from MODIS 3 km DT
AOD may not be able to gain sufficiently high PM2.5 results [68]. Meanwhile, for the 10 km DB
(DT) products, the corresponding numbers were 804 (480), 46 (11), and 9 (1). In the Beijing-CAMS
station, only 37 PM2.5 values (in total 2028 effective PM2.5 monitoring data were obtained) greater than
300 μg/m3, and 1408 PM2.5 values less than 100 μg/m3 were observed. For the 3 km DT AODs, 393
effective values were obtained when PM2.5 concentrations were less than 100 μg/m3, and only eight
values were greater than 200 μg/m3. None of the effective 3 km DT AODs were retrieved when PM2.5

concentrations were larger than 300 μg/m3. Only the 10 km DB product in the Beijing-CAMS station
could obtain effective retrievals when PM2.5 concentrations were greater than 300 μg/m3. Therefore,
some studies have utilized the DB product to retrieve surface PM2.5 concentrations. Nevertheless,
these results demonstrate that all MODIS AOD products have a relatively low successful retrieval ratio
on heavily polluted days, suggesting that satellite retrieval of PM2.5 concentration may underestimate
the actual situation by failing to obtain sufficient successful retrievals when the air is heavily polluted.
The correlation between the AODs and PM2.5 concentrations must be considered along with the
number of retrievals and their accuracy against AERONET observations when deciding which dataset
is more useful for air quality applications. Figures 7 and 8 show the correlations between the PM2.5

concentrations during a MODIS fly-over and different AOD products for the Beijing-CAMS and Beijing
stations. The MODIS 10 km DB AODs had higher determination coefficients (R2) and number of
successful retrievals that correlated with the PM2.5 concentration in both stations. The correlation of
the MODIS 3 km DT AODs with the PM2.5 concentrations was in second place, but had the lowest
number of retrievals. Although the actual retrieval of the PM2.5 concentration requires more data than
the AOD (e.g., pressure and relative humidity), the planetary boundary layer, and so on, the original
correlation between the AOD and PM2.5 plays an important role in the final accuracy of the retrieval
scheme. Therefore, despite being originally designed for air quality applications, the MODIS 3 km DT
AOD did not seem to be accurate enough or have sufficient spatial coverage for air quality monitoring.
In contrast, the MODIS 10 km DB AOD had surprisingly high accuracy and spatial coverage for highly
polluted areas such as Beijing. The only limitation was that its spatial resolution is 10 km, which may
restrict its application for air quality monitoring on a citywide scale.
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Figure 7. Correlation of PM2.5 concentrations against the (a) MODIS 3 km DT AOD; (b) MODIS 10 km
DT AOD; (c) MODIS 10 km DB AOD; and (d) AERONET AOD for the Beijing-CAMS station.

Figure 8. Correlation of PM2.5 concentrations against the (a) MODIS 3 km DT AOD; (b) MODIS 10 km
DT AOD; (c) MODIS 10 km DB AOD; and (d) AERONET AOD for the Beijing station.

In addition to air quality monitoring, we calculated the monthly average AODs of the MODIS 3 km
DT, MODIS 10 km DT, and MODIS 10 km DB, and compared them with the AERONET AODs for the
Beijing and Beijing-CAMS stations from 2005. Figure 9 shows these monthly average AODs grouped
by seasons. The monthly MODIS 3 km DT AODs had the lowest correlation with the AERONET
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monthly AODs, while the monthly MODIS 10 km DB AODs had the highest correlation. For the two
DT products, the winter and spring seasons had the smallest number of successful retrievals and the
lowest correlation with the AERONET retrievals. For the DB product, the difference between different
seasons was as large as those of the two DT products. Furthermore, the correlation between the
AERONET and MODIS products was not high, suggesting that a large difference existed between the
satellite-retrieved AODs and the sun-photometer retrievals. Beijing is seriously affected by particulate
matter, especially during the autumn and winter months [69], meaning that the satellite retrieval of
PM2.5 concentrations in autumn and winter was more important than those in summer. However, the
newly released 3 km MODIS DT products did not have enough retrievals during the heavily polluted
seasons, making it unsuitable to efficiently evaluate the air quality in Beijing.

Figure 9. Comparisons of the monthly average AOD of (a) MODIS 3 km DT; (b) MODIS 10 km DT;
and (c) MODIS 10 km DB with the AERONET retrieved monthly average AOD for the Beijing and
Beijing-CAMS stations.

6. Conclusions

The air quality in Beijing varied greatly with PM2.5 concentrations ranging from 5.5 to 475.0 μg/m3,
and over 40% of days had PM2.5 concentrations larger than 75 μg/m3. As the capital of China,
station-based monitoring and satellite retrieval of PM2.5 concentrations have attracted much attention.
Among various other satellite aerosol products, the MODIS aerosol products have been widely used to
retrieve surface PM2.5 concentrations. The newly released MODIS C6 AOD products have improved
the algorithms for the 10 km DT and 10 km DB products, and included a new 3 km DT product
with a finer spatial resolution for the air quality community. One challenge in the satellite retrieval
of PM2.5 concentration is to get sufficient samples when the real atmospheric environment has high
PM2.5 concentrations. However, satellites often fail to obtain successful AOD retrievals when the
aerosol loading is too high, or when surface reflectance is too high. Therefore, it poses the question
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of how well the MODIS C6 AOD products perform under different air quality situations, given that
many studies focus on retrieving PM2.5 concentrations with satellite signals. The objective of this
study was to evaluate the performances of different MODIS C6 AOD products under different air
quality situations and understand whether these AOD products were suitable to retrieve surface PM2.5

concentrations in Beijing, given the frequent haze-fog events during winter and autumn. In this study,
three MODIS AOD products (3 km DT, 10 km DT, and 10 km DB) were collected at two AERONET
stations to validate these three types of AOD products. The results suggested that the 10 km DB AODs
had the largest number of effective retrievals as well as the highest retrieval accuracy, followed by the
10 km DT and 3 km DT products. Although it is designed to provide a high spatial resolution aerosol
product for air quality monitoring, the 3 km DT product did not perform well in the region of Beijing.

Due to the bright surface problem in urban Beijing and the high concentrations of particulate
matter, the DT algorithm often failed to obtain effective results in the winter and autumn when frequent
haze-fog events occur. Thus, the successful retrievals by the MODIS DT products mainly happened
in the middle of the year, which poses a large challenge for the application of MODIS DT AODs for
air quality monitoring, as they fail to obtain effective retrievals when the PM2.5 concentrations were
high during autumn and winter. Therefore, it is highly possible that the satellite retrieval of PM2.5

concentrations MODIS DT AODs would underestimate real situations, especially during autumn and
winter. The DB products—initially developed to provide a low accuracy AOD product for desert
areas—were further enhanced in the C6 release and contained both high accuracy (±(0.05 + 0.15τ))
and spatial-temporal coverage for Beijing. The 10 km DB product also provided sufficient retrievals at
high PM2.5 concentrations across all four seasons. These results suggest that the MODIS 10 km DB
AOD product has high accuracy and temporal coverage for heavily polluted areas such as Beijing, and
is a more suitable proxy for the estimation of aerosol loads in urban regions than the other two MODIS
aerosol products. For regions like Beijing with frequent haze-fog events in autumn and winter, the
MODIS 3 km DT and 10 km DT products may not be able to obtain effective and sufficient retrievals.
Therefore, the satellite-based retrieval of PM2.5 concentrations with DT products may not reflect the
real aerosol pollution situations in Beijing. Thus, for regions with frequent haze-fog events when
PM2.5 concentrations are high, the newly developed 3 km DT product is recommended as a proxy
for air quality monitoring. Furthermore, it is possible that a DB product with a finer space resolution
(e.g., 3 km or even 1 km) may be more suitable for air quality monitoring applications.
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Abstract: We present a new approach to retrieve Aerosol Optical Depth (AOD) using the Moderate
Resolution Imaging Spectroradiometer (MODIS) over the turbid coastal water. This approach
supplements the operational Dark Target (DT) aerosol retrieval algorithm that currently does not
conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters).
Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20%
unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that
water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm
reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode
AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar
to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow
waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET
stations in the coastal water regions. Furthermore, comparison of the new retrieval with these
AERONET observations show that the new AOD retrievals have equivalent or better accuracy than
those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water
product. Combining the new retrievals with the existing MODIS operational retrievals yields an
overall improvement of AOD over those coastal water regions. Most importantly, this refinement
extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where
60% of human population resides. This expanded coverage is crucial for better understanding of
impact of anthropogenic aerosol particles on coastal air quality and climate.

Keywords: AOD; coastal water; MODIS; retrieval

1. Introduction

Aerosols are a colloidal system of particles suspended in the atmosphere, and have significant
impacts on weather, climate, and human health [1–3]. Because of its global observational coverage,
satellite remote sensing has a critical role in quantifying these impacts. Such satellite remote sensing
is being used to retrieve aerosol properties such as the aerosol optical depth (AOD), along with a
well-characterized uncertainty envelope, at high spatial resolution across the globe. Indeed, since the
launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite
in 1999, AOD retrievals derived by Dark Target (DT) algorithm [4] or Deep Blue (DB) algorithm
(land only) [5,6] have been used widely in the research community [7].
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One persistent challenge to aerosol remote sensing is retrieval of environmental properties over
coastal (or littoral) waters. Variable ocean color, along with the presence of visible sediments and sea
floor along coastlines, has strong spectral and spatial variability leading to poorly constrained lower
boundary conditions for aerosol retrievals. Yet, retrieving AOD in coastal waters is a much-desired
part of new systems characterizing air quality and aerosol radiative effects. As ~60% of the human
population lives in coastal areas [8], it is crucial to expand the satellite-remote sensing datasets to
include these areas. This study aims to address this observational gap by refining the MODIS DT-ocean
algorithm to retrieve AOD over turbid coastal waters.

The MODIS DT-ocean algorithm uses top of atmosphere (TOA) reflectance in six wavelength
bands, ranging from 0.55 to 2.1 μm, to simultaneously retrieve AOD and Fine Mode Fraction (FMF)
based on a lookup table approach. The lookup table is constructed by assuming aerosol optical
properties of four fine aerosol modes and five coarse aerosol modes, coupled with the boundary
conditions of molecular scattering, and a rough ocean surface (glitter, whitecaps, foam). Additionally,
the lookup table assumes zero water-leaving radiance at all bands except 0.55 μm (at which a
fixed water-leaving reflectance of 0.005 is used) [4,9]. The retrieval process searches the lookup
table to find the best combination of fine mode and coarse mode aerosol type (out of possibly
20 combinations) such that the AOD and FMF retrievals render the best match between observed and
simulated (e.g., those from the lookup table) radiances. However, while the assumption of nearly-zero
water-leaving radiance may be suitable for open ocean, it is clearly not applicable to turbid coastal
waters. There, the water-leaving radiances can be contributed by reflection of shallow-water sea floor
(particularly in blue wavelengths) and either suspended or dissolved particulate matter in the water,
especially in green to red wavelengths such as 0.55, 0.66, and 0.86 μm [10]. Hence, as part of the
DT-ocean algorithm, the turbid water pixels are masked and not considered for retrieval. The method
used for such masking compares the TOA reflectance at 0.55 μm with the expected counterpart from
the power-law fitting using the TOA reflectance at 0.47, 1.2, 1.6, and 2.1 μm; if a significant difference
(larger than 0.01) is found, the corresponding pixel is masked out for AOD retrieval [8].

We analyze the MODIS AOD retrieval unavailability over the cloud-free conditions at both global
and regional scale to reveal how often the AOD is not retrieved only because of water turbidity
(and not other factors such as cloud cover). As shown in Figure 1, this data availability is near total
over all open ocean and decreases dramatically (by 90–100%) toward coastlines. In a global average,
the unavailability of AOD is ~20% over coastal water region which is labelled as shallow ocean
(within 5 km of coastline or with water depth less than 50 m) in the MODIS geolocation product [11].
In other words, in these 20% of cloud-free cases, the AOD should have been retrieved if the water was
not turbid.

Based on the principle that liquid water absorption increases in shortwave infrared (SWIR),
we present a new approach that uses MODIS-measured radiance at 2.1 μm to retrieve AOD over turbid
coastal water no matter whether the aerosol is fine or coarse mode dominated. In the spectral range
of 0.55 to 2.1 μm, the transparency of pure water to sunlight decreases rapidly with the increase of
wavelength; the penetration depth (at which light attenuation is 90%) is 41 m at 0.55 μm and drops
to 0.001 m at 2.1 μm [8]. Hence, unless the water is shallower than 1 mm, the water-leaving radiance
contributed from the sea floor, sediments, and other contaminants in the water at 2.1 μm is nearly
negligible; this vastly simplifies the lower boundary condition of the retrieval.

We present the data and the new approach in Sections 2 and 3, respectively, followed by
description of retrieval results and the validation against measurements from six Aerosol Robotic
Network (AERONET) coastal sites in Section 4. Discussions and conclusions are in Sections 5
and 6, respectively.
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Figure 1. Regional (a–e and g–i) and global (f) distribution of AOD unavailable ratio which is defined as
the ratio between number of non-retrieval pixels and all pixels in cloud-free conditions. MYD04 product
in 2016 are used to conduct the statistics. Zoom in on the red-box regions of (f) are shown in (a–e and
g–i). Lime points in (f) are AERONET sites used for validation and more information is in Table 1.
Numbers in the pink boxes are AOD unavailable ratio over coastal water in clear sky condition.

2. Data

2.1. MODIS Data

MODIS is an earth-viewing sensor on board the Terra and Aqua polar-orbiting satellites, launched
in December 1999 and May 2002, respectively. MODIS has 36 channels spanning the spectral range
from 0.41 to 15 μm with spatial resolutions of 250 m (2 channels), 500 m (5 channels), and 1 km
(29 channels). Its 2330-km swath width enables it to provide near-global converge daily. Terra and
Aqua cross the equator from north to south (descending node) at approximately 10:30 a.m. local time
and from south to north (ascending node) at approximately 1:30 p.m. local time, respectively.

Here, all MODIS data products are labeled as MxDNN, where x is substituted by O for Terra and
Y for Aqua, respectively, and NN is the serial number of a specific product. King et al. [12] presented a
general description of MODIS atmosphere data processing architecture and products. In this study,
the MODIS-calibrated TOA reflectance product (MxD02) (http://mcst.gsfc.nasa.gov/content/l1b-
documents), atmospheric profile product (MxD07), geolocation product (MxD03), and aerosol product
(MxD04) [4] are used for retrieving aerosol optical depth over turbid coastal water. TOA reflectance
of 2.1 μm with spatial resolution of 500 m from MxD02 is used to retrieve AOD through a lookup
table (LUT) method. Gas absorption by water vapor and ozone column are corrected from the TOA
reflectance with spatial resolution of 5 km from MxD07 product [4]. The MxD03 product has a spatial
resolution of 1 km and is used to distinguish between water and land pixels. All other ancillary
information from MxD04 aerosol product for each valid AOD retrieval (at spatial resolution of 10 km
at nadir) are also used as input to the retrieval algorithm in this study; the information includes aerosol
mode index, reflectance weighting parameter, and National Centers for Environmental Prediction
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(NCEP) analysis of wind speed (2 m above the surface). In addition, a cloud mask with a spatial
resolution of 500 m from MxD04 aerosol product is also used to ensure only AOD during cloud-free
conditions over the turbid coastal region is retrieved by this study.

2.2. AERONET Data

AOD measurements from the ground-based AERONET sun photometers are commonly used for
validating MODIS retrievals. Here we use data from six coastal water sites for this study (Table 1), and
their locations are marked with green dots in global map in Figure 1f. All AERONET sun photometers
(SP) measure direct solar radiation at 0.44 μm, 0.67 μm, 0.87 μm, 0.94 μm and 1.02 μm, and these
measurements are used to infer AOD through Beer-Lambert-Bouguer law with quality at Level 1.0
(unscreened), Level 1.5 (cloud screened), and Level 2.0 (cloud-screened and quality-assured) [13,14].
We evaluate MODIS AOD (both MxD04 product and retrieval of this study) at 0.55 μm against an
AERONET counterpart that is derived through linearly interpolating AERONET AOD at 0.44 and
0.67 μm in the logarithm domain.

Table 1. Information of AERONET sites used for validation.

Site Location * Period
Data
Level

Monthly Mean 0.44–0.87 μm
Ångström Exponent

MVCO, New England 41.3◦N 70.6◦W August 2015 2.0 1.842
Bhola, Bangladesh 22.2◦N 90.8◦E December 2015 1.5 1.206
Anmyon, S. Korea 36.5◦N 126.3◦E May 2016 1.5 1.076

Dalma, UAE 24.5◦N 52.3◦E August 2004 2.0 0.711
Karachi, Pakistan 24.9◦N 67.0◦E March 2014 2.0 0.701
MAARCO, UAE 24.7◦N 54.7◦E September 2004 2.0 0.597

* All the locations are shown as lime points in Figure 1f.

Dalma and MVCO are two sites over the ocean, with distance to coastline being 48 km and 29 km,
respectively, while the rest of the sites are over land within 6 km from the coastline. According to our
analysis, most AERONET sites are more than 10 km away from the coast lines, and lack dedicated
long-term continuous measurements of AOD over the turbid coastal water. Here, we use the SP AOD
data from August 2015, December 2015, May 2016, August 2004, March 2014, and September 2004 at
MVCO Bhola, Anmyon, Dalma, Karachi, and MAARCO sites, respectively, because these time periods
have the most measurements available at their corresponding sites. AERONET Level 2.0 data are used
for most sites except Bhola and Anmyon where only Level 1.5 data are available and utilized here.
The monthly mean AERONET 0.44–0.87 μm Ångström exponent ranges from 0.597 to 1.842 over these
six sites. Hence, these sites represent a wide range of atmospheric conditions, ranging from coarse
mode dominated to fine mode dominated cases [15].

2.3. Data Extraction Procedure

MxD04 [4] AOD and the AOD retrieval from the new algorithm are evaluated against AERONET
measurements. The spatio-temporal matching approach by Ichoku et al. [16] is applied to collocate
AERONET AOD measurements and MODIS retrievals (MxD04 and/or new algorithm) for comparison.
AERONET measurements within ±30 min of the MODIS overpass time are averaged and compared
against MODIS retrievals averaged within a 50-km diameter circular region centered over the
AERONET sites. MxD04 products include DT, DB, and DT/DB merged retrievals, corresponding to
0.55 μm AOD from Dark Target algorithms (DT-land and DT-ocean algorithms), Deep Blue algorithm,
and combination of the two retrievals, respectively [4]. DT retrievals cover both vegetated land and
ocean while DB is limited to land. As the DT-land algorithm is not designed to retrieve AOD over
bright desert, there are significant retrieval gaps over land. The DB algorithm was originally designed
to complement the gaps, based on the principal that desert pixels are relatively darker in deep-blue
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bands [5]. However, now DB has been extended to vegetated land surface as well. Thus, for this study,
we use the DB/DT merged product (Quality flag = 1, 2, 3 over ocean, and Quality flag = 3 over land)
from MxD04. Specifically, DB/DT merged product over ocean is indeed DT.

3. Retrieval Algorithm

3.1. Retrieval Principal and Sensitivity Analysis

Like the existing DT algorithm, our new algorithm is based on a lookup table (LUT) approach,
meaning that it is attempting to match simulated TOA reflectance to the observed TOA reflectance.
The best-match solution represents the AOD and other properties of the aerosol. Over the open ocean,
the atmospheric signal tends to dominate that of clear water. Near coastlines, however, sediments
and turbid waters can dominate the signal, making aerosol retrieval impossible. However, in longer
wavelengths, such as 2.1 μm (at which the imaginary part of refractive index for liquid water is several
of magnitude larger than that in the visible), the penetration depth is so small, that contribution from
the water should be nearly negligible.

To test this assumption, we compare the sensor sensitivity at 2.1 μm at which water-leaving
radiance is negligible regardless of water turbidity with that at shorter wavelength which has large
water-leaving radiance over turbid coastal water (taking 0.65 μm as an example). Figure 2 shows
2.1 μm TOA reflectance has better sensitivity to aerosol than 0.65 μm in both fine and coarse mode
aerosol situations when 0.65 μm surface reflectance is large (turbid coastal water). When AOD is small
(less than 0.15 at 0.55 μm, Figure 2b), the TOA reflectance (Figure 2c,d) is nearly the surface reflectance.
Surface reflectance of turbid coastal water is up to 0.4 at 0.65 μm (Figure 2c) while it is very small
(less than 0.0035) at 2.1 μm (Figure 2d). Figure 2e–h present a simulation of TOA reflectance through
UNL-VRTM model [17] with various surface reflectances in fine aerosol (average TOA reflectance of
the four fine aerosol modes defined in the DT-ocean LUT) and coarse aerosol (average TOA reflectance
of the coarse aerosol modes defined in the DT-ocean LUT) situations. In a fine aerosol situation, 0.65 μm
TOA reflectance is an increasing function of AOD when surface reflectance is small (0.03, clear water)
(Figure 2e). However, it first decreases and then increases slowly when surface reflectance is large
(0.3 or 0.4, turbid coastal water) (Figure 2e). The gradient of 2.1 μm MODIS digital signal (defined as
change of MODIS digital count, dn ∗ ∗, with respect to 0.55 μm AOD, or ∂(dn ∗ ∗)2.1/∂(AOD)0.55) is
~25 regardless of AOD values (Figure 2j) while ∂(dn ∗ ∗)0.65/∂(AOD)0.55 is smaller than 25 when AOD
is less than 0.5 (1.2) and surface reflectance is 0.3 (0.4). This means that it is better to use TOA reflectance
at 2.1 μm rather than 0.65 μm to retrieve fine AOD in turbid coastal water situation. Additionally,
while the sensitivity of digital signal at 2.1 μm to the AOD change is a factor of 3–8 smaller than the
counterpart at 0.65 μm (e.g., contrasts of blue lines between Figure 2i,j) in the clear water situation,
2.1 μm still has significant sensitivity to the change of fine-mode AOD, and its detection limit for
fine-mode AOD is ~0.04 (i.e., the inverse of ∂(dn ∗ ∗)2.1/∂(AOD)0.55). The reason that 2.1 μm still
has reasonably good sensitivity for fine-mode aerosols is because the ocean surface is nearly black at
2.1 μm, albeit fine aerosol extinction decrease significantly.

In a coarse aerosol situation, ∂(dn ∗ ∗)0.65/∂(AOD)0.55 is similar to that in a fine aerosol
situation and is a little smaller than ∂(dn ∗ ∗)2.1/∂(AOD)0.55 when 0.65 μm surface reflectance
is small (Figure 2k,l). However, ∂(dn ∗ ∗)0.65/∂(AOD)0.55 is a factor of 6–10 smaller than
∂(dn ∗ ∗)2.1/∂(AOD)0.55 when water is turbid (e.g., contrast of red/green curves between Figure 2k,l).
Overall, over turbid water, it is better to use TOA reflectance at 2.1 μm rather than 0.65 μm to retrieve
AOD, regardless of whether fine or coarse mode dominates. In other words, 2.1 μm should be used to
retrieve coarse-mode AOD regardless of water turbidity.
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Figure 2. (a–d) are MODIS Aqua true color image, 0.55 μm AOD, 0.65 μm TOA reflectance, and 2.1 μm
TOA reflectance at Bohai Sea, China on 23 February 2017, respectively. Red box is the region where
water is turbid and atmosphere is clean. (e,f) are simulation (solar zenith angle is 24◦, view zenith
angle 54◦, and relative azimuth angle 60◦) of 0.65 μm and 2.1 μm TOA reflectance with fine aerosol
model, respectively. (g,h) are similar to (e,f) but for coarse aerosol model. (i,j) are gradient of 0.65 μm
and 2.1 μm MODIS digital signal (dn**) with respect to 0.55 μm AOD with fine aerosol model. (k,l)
are similar to (i,j) but for coarse aerosol model. Values in the legends are surface reflectance used to
simulate TOA reflectance at corresponding wavelength.

3.2. Algorithm Implementation and Steps

The retrieval algorithm is designed to supplement the existing DT algorithm. Hence, the lookup
table (LUT) from the MODIS DT-ocean AOD retrieval algorithm is also used here [4,9]. That LUT is
created by using Ahmad and Fraser’s [18] radiative transfer code, assuming aerosol optical properties
from four “fine” (effective radius < 1 μm) and five “coarse” (effective radius > 1 μm) lognormal mode.
The fine modes include two water-insoluble and two soluble modes, whereas the coarse modes are
separated into three soluble sea-salt like, and two insoluble dust-like modes (http://darktarget.gsfc.
nasa.gov/algorithm/ocean/aerosol-models). This LUT is defined at various 0.55 μm AOD values in
the range of 0 to 3 and at different Sun-Earth-satellite geometries [4,9]. Furthermore, as water surface
reflectance depends on surface wind speed, the LUT is constructed at four wind speeds, specifically
2 m s−1, 6 m s−1, 10 m s−1, and 14 m s−1.

Like the DT algorithm, combination of a fine mode and a coarse mode is required for AOD
retrieval. In the retrieval procedure, MxD02 TOA reflectance at 2.1 μm is used to fit the corresponding
LUT value ρLUT

2.1
(
τtot

0.55
)

which is a weighted sum of pure fine mode LUT value ρf
2.1
(
τtot

0.55
)

and pure
coarse mode LUT ρc

2.1
(
τtot

0.55
)

at a given 0.55 μm AOD value τtot
0.55.

ρLUT
2.1

(
τtot

0.55
)
= ηρf

2.1
(
τtot

0.55
)
+ (1 − η)ρc

2.1
(
τtot

0.55
)

(1)

The value of reflectance weighting parameter η equals the fraction of total AOD at 0.55 μm
contributed by the fine mode [9]. In addition, the LUT is calculated under the assumption of “gas free”
(gas absorption is not included), thus correction [4] of MxD02 TOA reflectance is required to match the
LUT before retrieving AOD.
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Figure 3 shows the steps of our algorithm to retrieve AOD over coastal water, and hereafter,
we call this algorithm the Coastal Water (CW) algorithm. Each step of CW is described below with
a note that these steps essentially follow DT-Ocean algorithm except CW uses the 2.1 μm to retrieve
AOD for those cloud-free turbid coastal water scenes. Hence, for each valid cloud-free turbid coastal
water scene (i.e., a box of 20 × 20 pixels at 500 m resolution or at 10 km resolution at nadir, as available
in the standard MODIS aerosol product), the following steps are implemented.

Figure 3. Flowchart of retrieving AOD over coastal water.

1. Collect and organize 20 × 20 pixels at 500 m resolution, remove pixels that are defined by
land/sea mask as “land”, designated by ice/snow mask to be “ice”, designated by the cloud
mask to be “cloud”, or removed by other tests.

2. Discard the brightest 25% and darkest 25% pixels defined with 0.86 μm reflectance.
3. Conduct gas (H2O, CO2, and O3) correction [4] for the remaining pixels.
4. Calculate the mean 2.1 μm TOA reflectance if there are still no less than 10 pixels. Otherwise

retrieval is not conducted. Calculate the sun glint angle [9]. If the sun glint angle is less than 40◦,
the retrieval is not conducted.

5. Prescribe single scattering properties of the aerosol. By only using 2.1 μm reflectance to retrieve
AOD, there is no sensitivity to aerosol optical properties. Figure 4 shows that AOD can differ
up to 0.2 in 100 km from the coast, but FMF differs only by 0.08 in 100 km from the coast. Thus,
we assume the single scattering properties (including FMF) and surface wind speed for a turbid
coastal water pixel is the same as those used for the AOD retrieval by the standard MODIS
algorithm over its closest open-ocean pixel (within 100 km radius). The assumption that aerosol
type does not change over moderate spatial scale is reasonable and was used in the atmospheric
correction of SeaWiFS imagery over turbid coastal waters [19].

6. Use the mean 2.1 μm TOA reflectance and lookup table determined by Equation (1) to retrieve
AOD over the turbid coastal water where MxD04 product is unavailable. In application of
Equation (1), all ancillary information (aerosol mode selection and FMF) is obtained from step 5.
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Figure 4. (a) is monthly mean 0.55 μm AOD and fine mode fraction (FMF) from MOD04 (Terra) in
December, 2015. (b) is average absolute AOD difference as a function a distance with respect to
reference points (black solid circles in (a)). (c) is monthly mean 0.55 μm AOD and fine mode fraction
(FMF) from MOD04 (Terra) in December, 2015. (d) is similar to (b), but for FMF.

4. Results

Figure 5 shows the example of CW applied to an Aqua-observed scene (10 December 2015) over
the Bay of Bengal. According to the standard DT retrieval (MYD04), AOD reaches 1.6 in the center of
the granule and decreases gradually southward. MYD04 does not provide retrievals over the coastal
water at north part of the Bay of Bengal (Figure 5c). This non-retrieval region is in cloud-free conditions
(Figure 5a), so AOD was not retrieved due to turbid water or underlying sea-floor. Figure 5b shows
non-retrievals are in 36.4% of this cloud-free, coastal area (within 5 km of coastline or with water depth
less than 50 m).

Figure 5. (a) Aqua MODIS true color image on 10 December 2015. (b) Blue and red represents coastal
water where MYD AOD retrievals are available (blue) and unavailable (red), respectively in clear sky
condition. (c) MYD04 0.55 μm DT/DB merged AOD retrievals. (d) is similar to (c), but the coastal
water gaps where MYD04 AOD retrievals are not available in clear sky condition (red box) are filled by
AOD retrievals from CW algorithm. AERONET AOD measurement overlaps on (c,d).
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The CW algorithm enhances DT-ocean, by retrieving AOD over those turbid water conditions
(Figure 5d). These “new” retrievals are consistent, in that there appears to be smooth transition in
retrieved AOD (e.g., land → CW → ocean). In addition, the new CW AOD retrievals compare well
with corresponding values observed by AERONET (overlaid as filled circles in Figure 5c,d).

To validate, we follow the standard protocol, in that AERONET measurements within ±30 min
of the MODIS overpass time are averaged and compared against MODIS retrievals averaged within
a 25-km radius circular region centered over the AERONET site. This means that there are three
situations: MxD04 retrievals only, CW retrievals only, and cases where both are available within the
25-km of the AERONET site.

AOD (at 0.55 μm) retrievals from MxD04 product and CW algorithm are evaluated against
AERONET data (as shown in Figure 6). We use a Venn diagram in Figure 6 to represent how MODIS
AOD retrievals (MxD04 and/or CW) and AERONET observations are collocated. Figure 6a is a
scatter plot of MxD04 retrievals versus AERONET measurements in the cases that have retrievals
only from MxD04, and these cases can be divided into two categories: (a) all cloud-free pixels within
25-km radius proximity of AERONET site are retrieved through MODIS operational algorithm or
(b) only part of cloud-free pixels are retrieved through MODIS DT algorithm, but the AOD of the
rest of the cloud-free pixels cannot be retrieved with the CW algorithm because these pixels are over
turbid water and no open-ocean pixel is close enough (i.e., within 100 km) to provide aerosol single
scattering property for CW algorithm. Figure 6b is a scatter plot of CW retrievals versus AERONET
measurements in the cases where all cloud-free pixels within 25-km radius proximity of AERONET
site cannot be retrieved through MODIS DT algorithm but some or all of these cloud-free pixels can
be retrieved through CW algorithm. Comparison of Figure 6a,b shows that normalized mean bias
(NMB, NMB = ∑N

i=1 ((τ
MODIS
i − τAEROENT

i )/τAEROENT
i )/N) and root mean square error (RMSE) of

CW algorithm (12.0% and 0.141) are smaller than that of MxD04 (15.9% and 0.213). The percentage
of collocated pairs within expected error envelope (+(0.04 + 10%), −(0.02 + 10%), asymmetric) and
correlation coefficient increase from 35.5% and 0.72 in MxD04 only situation (Figure 6a) to 39.3% and
0.94 in CW only situation (Figure 6b), respectively.

In addition to the situations where only MxD04 or only CW retrievals are available within
the 25-km radius proximity of AERONET site, there is a third one where some of the cloud-free
pixels are retrieved through the operational MODIS algorithm while some are retrieved through
the CW algorithm. Figure 6c,d are similar to Figure 6a,b, respectively, but both include the AOD
retrievals from their respective counterparts of this third situation. Overall, for all possible retrievals by
each algorithm, CW retrievals are comparable to MxD04 in quality, although the MODIS operational
algorithm has slightly more samples.

The basis of MODIS-AERONET collocation is that air masses are always in motion and the
average of MODIS AOD retrievals in a certain area which encompass an AERONET site should be
comparable to the temporal statistics of the AERONET measurements [16]. In the situation that both
MxD04 and CW retrievals are available within the 25-km radius proximity of AERONET site, if only
MxD04 or CW retrievals are collocated with AERONET observation, it will be biased comparison.
Therefore, we further show the inter-comparison between either MxD04 or CW AOD with AERONET
AOD at this situation (Figure 6f–h). The percentage of collocated pairs in the EE for (MxD04 + CW)
combined vs. AERONET (53.1%, Figure 6h) is larger than that of MxD04-AERONET (49.2%, Figure 6f)
and CW-AERONET (40.6%, Figure 6g). The RMSE of (MxD04 + CW)-AERONET (0.110) is smaller
than that of MxD04-AERONET (0.114) and CW-AERONET (0.148).

Inter-comparison of MxD04 and CW merged AOD with AERONET AOD is shown in Figure 6e;
such merged AOD include all data points in Figure 6a,b,h. The number of collocated pairs increases
from 190 (62 in MxD04 only situation plus 128 in the situation that both MxD04 and CW retrievals
are available) to 218 (28 in CW only situation are added). In addition, the inter-comparison statistics
(Figure 6e) is still comparable to or better than those retrieved from MxD04 (Figure 6a,c) in quality.
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Overall, CW retrievals supplement MODIS DT, and improve the AOD retrievals both spatially and
temporally without degrading (and sometimes increasing) the DT-Ocean AOD retrieval quality.

Figure 6. Scatter plots of 0.55 μm AOD retrievals from MODIS (MxD04 and/or CW) versus AERONET
observations of 6 sites in one month. Venn diagram on the upper left represents number of collocated
data sets for MxD04-AERONET (blue), CW-AERONET (red), (MxD04 + CW)-AERONET (purple).
Color part of Venn diagram on the top of each scatter plot (a–h) represents which collocated data sets are
plotted; see details in the text for further description of the Venn diagram. (a) is MxD04-AERONET in
the situation that only MxD04 retrievals are available within the 25-km of AERONET site. (b) is
CW-AERONET in the situation that only CW retrievals are available. (c,d) are similar to (a,b),
respectively, but both additionally include AOD retrievals from their respective counterparts of the
situation that both MxD04 and CW retrievals are available. (e) is (MxD04 + CW)-AERONET in all the
three situations. (f–h) are MxD04-AERONET, CW-AERONET, (MxD04 + CW)-AERONET, respectively,
in the situation that both MxD04 and CW retrievals are available. 1:1 lines and expected error (EE)
envelopes (+(0.04 + 10%), −(0.02 + 10%), asymmetric) are plotted as dot and dashed lines. The number
of collocated pairs (N), root mean square error (RMSE), normalized mean bias (NMB), and linear
correlation coefficients are also shown.

In addition to evaluation of MODIS AOD diagnostic error in Figure 6, prognostic error is presented
in Figure 7. Two thirds of AERONET-MODIS collocations are within the expected error envelope
(y = ±(0.05 + 0.15x)) (Figure 7c), thus 0.05 + 0.15 (MODIS AOD) can be considered as its prognostic
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error. Figure 7d–f show RMSE as a function of MODIS; RMSE goes up as MODIS AOD increases and
combined retrievals (Figure 7f) are comparable to MxD04 (Figure 7d).

Figure 7. (a–c) are scatter plots of AERONET 0.55 μm AOD observations versus retrievals from MODIS
(MxD04 and/or CW) for the 6 monthly cases. Sampling method is same as in Figure 6. 1:1 lines and
expected error (EE) envelopes (+(0.05 + 15%), −(0.05 + 15%), symmetric) are plotted as dotted and
dashed lines. (d–f) are root mean square error (RMSE) as a function of MODIS AOD in the 0.2 interval.
Numbers above the averaged dot show how many AERONET-MODIS collocations are available to
calculate RMSE.

5. Discussion

The CW algorithm uses 2.1 μm to retrieve AOD over turbid coastal water as water-leaving
radiance is negligible at that band. As only one band is used in the algorithm, aerosol single scattering
properties need to be prescribed. We assume the single scattering properties for a turbid coastal water
pixel are the same as those used for the AOD retrieval by the standard MODIS algorithm over its
closest open-ocean pixel (within 100 km radius). When no pixel is within 100 km, we do not conduct
retrieval. Further evaluation can be targeted at the assumptions regarding the use of aerosol single
scattering properties from adjacent non-turbid water pixels within certain threshold distance.

The 6 AERONET sites used for this analysis were located in polluted regions. We expect to
evaluate how the algorithm performs in an unpolluted zone if there is a new AERONET site or other
field campaign that satisfies all the conditions: (1) it is close to coast line; (2) coastal water is turbid;
and (3) the region is unpolluted.

The CW algorithm potentially can also be used for the other aerosol retrieval algorithm over the
ocean such as the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm developed by Sayer et al. [20].
In SOAR, TOA reflectance measured by the SeaWiFS bands centered near 0.51 μm, 0.67 μm, and 0.86 μm
are used to retrieve AOD regardless of water turbidity. Hence, as pointed out by Sayer et al. [20],
the performance of SOAR retrieval is expected to be poorer in turbidity cases and a double of TOA
reflectance as a result of water turbidity causes a positive error in retrieved 0.55 μm AOD of 0.25 [20].
Indeed, in the evaluation of SOAR algorithm, AOD retrievals that are proximity to coast are not
included [20].

As MODIS sensors aboard on Terra and Aqua have been providing data for more than one decade
and will be decommissioned by the early 2020s, its aerosol record is expected to be continued by the
Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi-NPP (S-NPP) which was launched
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in late 2011. Thus, future investigation will also include the application of the approach in this study
to VIIRS. VIIRS has 2.26 μm band at which water leaving radiance is also negligible like 2.1 μm band
on MODIS and thus the method can be likewise applied.

6. Conclusions

The MODIS Dark Target (DT) algorithm has been applied to retrieve AOD over land and ocean
since early 2000. Although there have been significant improvements to the algorithm in the past
decade, it has not yet been able to retrieve AOD over turbid coastal water due to its high water-leaving
radiance from the ocean bottom or water color. We designed the Coastal Water AOD retrieval algorithm
(CW algorithm) for these regions to supplement the current DT algorithm. The AOD retrieval algorithm
for turbid coastal water takes advantage of the fact that water-leaving radiance is negligible at 2.1 μm,
hence this band is only used to retrieve while other auxiliary information such as aerosol single
scattering properties are obtained from DT retrievals over the nearby non-turbid water surfaces.
In other words, the aerosol modes and reflectance weighting parameter of the pixel to be retrieved is
substituted by the closest counterpart from the MxD04 ocean AOD product.

The CW algorithm not only fills the gaps of MxD04 AOD retrievals over turbid coastal water but
also improves their comparison with AERONET measurements. CW AOD retrievals are validated
against measurements of six AERONET sites that are located at coastal regions. The new algorithm
yields ~18% more of MODIS-AERONET collocated pairs, and CW AOD retrievals are comparable or
better than MxD04 in quality; the RMSE of MxD04 and CW product is 0.154 and 0.147, respectively.
In the situation that both AOD retrievals from MxD04 and CW are available within a 50 km diameter
circular regions centered at AERONET sites, the merged AOD retrievals show better agreement with
AERONET AOD either of them alone, in terms of the percentage of collocated pairs in the EE (49.2%,
40.6%, and 53.1% for MxD04, CW, and merged product, respectively) and RMSE (0.114, 0.148, 0.110
for MxD04, CW, and merged product, respectively). In addition, 0.05 + 0.15(MODIS AOD) can be
considered as prognostic error of the merged product.
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Abstract: The rapid changes of aerosol sources in eastern China during recent decades could
bring considerable uncertainties for satellite retrieval algorithms that assume little spatiotemporal
variation in aerosol single scattering properties (such as single scattering albedo (SSA) and the
size distribution for fine-mode and coarse mode aerosols) in East Asia. Here, using ground-based
observations in six AERONET sites, we characterize typical aerosol optical properties (including
their spatiotemporal variation) in eastern China, and evaluate their impacts on Moderate Resolution
Imaging Spectroradiometer (MODIS) Collection 6 aerosol retrieval bias. Both the SSA and fine-mode
particle sizes increase from northern to southern China in winter, reflecting the effect of relative
humidity on particle size. The SSA is ~0.95 in summer regardless of the AEROENT stations in eastern
China, but decreases to 0.85 in polluted winter in northern China. The dominance of larger and
highly scattering fine-mode particles in summer also leads to the weakest phase function in the
backscattering direction. By focusing on the analysis of high aerosol optical depth (AOD) (>0.4)
conditions, we find that the overestimation of the AOD in Dark Target (DT) retrieval is prevalent
throughout the whole year, with the bias decreasing from northern China, characterized by a mixture
of fine and coarse (dust) particles, to southern China, which is dominated by fine particles. In contrast,
Deep Blue (DB) retrieval tends to overestimate the AOD only in fall and winter, and underestimates
it in spring and summer. While the retrievals from both the DT and DB algorithms show a reasonable
estimation of the fine-mode fraction of AOD, the retrieval bias cannot be attributed to the bias in
the prescribed SSA alone, and is more due to the bias in the prescribed scattering phase function
(or aerosol size distribution) in both algorithms. In addition, a large yearly change in aerosol single
scattering properties leads to correspondingly obvious variations in the time series of MODIS AOD
bias. Our results reveal that the aerosol single scattering properties in the MODIS algorithm are
insufficient to describe a large variation of aerosol properties in eastern China (especially change of
particle size), and can be further improved by using newer AERONET data.

Keywords: aerosol; MODIS; retrieval bias; eastern China; AERONET

1. Introduction

Atmospheric aerosols play a vital role in regional climate by redistributing solar radiation
in the Earth-atmosphere system and modifying cloud properties [1]. Furthermore, fine particles
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near the surface can cause air pollution, which has robust relation with epidemic diseases affecting
human health [2]. Unlike long-lived greenhouse gases such as CO2, the amount and properties of
aerosol particles vary largely over space and time due to diverse emission sources and short lifetime,
which make it a challenge to quantify the magnitude of aerosols and their climate effects [3]. Since
the 1990s, a ground-based remote sensing network has been established to explore aerosol optical
and microphysical properties [4]. Meanwhile, a variety of sophisticated sensors, such as Moderate
Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR),
Ozone Monitoring Instrument (OMI), CALIPSO, and other sensors have been launched to obtain
aerosol information with global coverage [5–8].

Aerosol optical properties, including aerosol optical depth (AOD) and aerosol single scattering
properties (single scattering albedo (SSA) and phase function) regulate the role of aerosols in radiative
transfer calculations; these properties in turn change with mass, size, shape, and the composition of
the particles [9]. Since satellite spectral radiances at the top of the atmosphere (TOA) are affected by
the radiative interactions between surface reflectance and aerosol scattering, not all aerosol properties
can be fully constrained and retrieved reliably from satellite measurements at the TOA. Hence,
aerosol single scattering properties (such as SSA and size distribution for fine or coarse particles
that affect phase function) are often derived from a cluster analysis of ground observations, and are
subsequently used in the algorithms for the satellite remote sensing of aerosols. For example, the
MODIS aerosol algorithm only retrieves the AOD and the fraction between fine-mode and coarse
mode AODs [10,11], while aerosol single scattering properties are fixed with only consideration of
seasonal and continental-scale variation.

The aerosol properties in eastern China are characterized by large spatiotemporal variations [12,13],
which are not considered in the MODIS retrieval algorithm, and hence the impact of such variations
on MODIS AOD biases deserve a dedicated investigation. Widespread haze pollution usually
occurs over eastern China, with the mixing of anthropogenic emissions, natural dust, and biomass
burning smoke [14,15]. Ground observations show a distinct temporal variation and area-dependent
change of optical and microphysical properties of aerosol particles [16–19], which resonates with
our recent evaluation of MODIS Collection (C) 6 aerosol retrievals in China that show considerable
bias with obvious geographic difference and temporal trend [20]. However, previous ground-based
validations of satellite retrievals usually focus on an evaluation of the AOD, with less attention
paid to understanding error sources from the variation of aerosol single scattering properties in real
atmosphere [21,22]. It was found that the temporal variations of aerosol scattering properties in regions
such as southern Africa caused a seasonal shift of MODIS AOD biases [23]. To date, how the change
of aerosol properties in China influences MODIS AOD bias at different spatial and temporal scales
remains unclear, and is the focus of this study.

We conduct a comprehensive analysis of aerosol single scattering properties in eastern China,
and examine their impacts on biases in MODIS aerosol retrievals. Section 2 introduces the Aerosol
Robotic Network (AERONET) and MODIS aerosol data sets used. Monthly variations of typical aerosol
properties in six sites of eastern China are described in Section 3.1. Section 3.2 investigates the monthly
bias of MODIS AOD and its connection with aerosol properties. The influence of decadal variations in
aerosol properties on satellite retrievals is discussed specially in Section 3.3. The main purpose of this
work is to present a reference for aerosol model assumptions in satellite retrievals over China.

2. Data and Methods

2.1. AERONET Aerosol Data Sets

The AERONET is a worldwide network of sun photometers that provides continuous observations
and inversions of aerosol optical and microphysical properties [4]. By measuring the direct solar
irradiance, AOD can be acquired with a high accuracy of 0.01–0.02, which is usually taken as the “true”
value in ground validation. With skylight observations, microphysical and single scattering parameters
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such as volume size distribution, SSA, and phase function can be retrieved [9]. The retrieval error of
the size distribution is within 10% of the maximum value in the median particle size range (0.1–7 μm).
To obtain sufficient information, the SSA has to be retrieved in high aerosol loading (AOD 440 nm >0.4)
and solar zenith angle (>50◦) with an accuracy of ~0.03.

Aerosol data from six AERONET sites in typical regions were selected to investigate variations
in aerosol optical properties in eastern China (Figure 1). There are nearly 15 years of continuous
observations from the Beijing site since 2001, and 10 years of observations from the Xianghe, Taihu, and
Hongkong sites from 2005 at Level 2.0 (cloud-screened and quality-assured), respectively. Observation
over 4 years is available in Xuzhou from 2013 at Level 1.5 (cloud-screened). More than one year’s
observation exists in Qiandaohu at Level 1.5 from 2007 to 2009, but the inversions are much fewer,
which is mainly used for reference here. The monthly mean values of aerosol microphysical and optical
parameters are analyzed to show the temporal variations of the aerosol scattering properties. Outliers
caused by few available inversions during the cloudy season are examined and removed. To match
with the satellite data, the spatial average of MODIS AOD in 5 × 5 pixel around the ground site is
compared with the temporal mean values of AERONET inversions within ±30 min of the satellite’s
passing time [24]. Since there is no 550 nm band in the sun photometers, we interpolate the AOD from
the nearest bands on the two sides of 550 nm with their Ångström exponent.

Figure 1. Geographic location of the six typical Aerosol Robotic Network (AERONET) sites in eastern
China. Beijing: megacity site, Xianghe: background site among megacities, Xuzhou: industrial city
site in hinterland of northern China, Taihu: background site of the Yangtze River Delta, Qiandaohu:
background site of southern China, Hongkong: coastal megacity site in southern China.

2.2. MODIS Aerosol Data Sets

The MODIS sensor onboard the Terra satellite from 2000 and the Aqua satellite from 2002 provides
daily global detection of reflected and emitted radiance from the Earth-atmospheric system with
a broad spectrum range of 0.4–14.4 μm, fine spatial resolution at 250–1000 m, and swath width of
~2330 km. MODIS aerosol retrieval over land employs the Dark Target (DT) and Deep Blue (DB)
algorithms over dense vegetation and bright surfaces, such as urban and deserts, respectively. In recent
MODIS C6 aerosol products, DB retrieval has been expanded to all cloud-free and snow/ice-free
regions, and a merged AOD data product combining DT and DB retrievals developed over dense
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vegetation regions [25]. To raise the signal-to-noise ratio and minimize cloud contamination, DT
retrieval is performed over an area of 20 × 20 500 m pixels or at a nominal spatial resolution of AOD
at 10 × 10 km. By contrast, DB aerosol properties are retrieved at 1 km resolution and then averaged
to 10 × 10 km scale. Since the sensor degradation of the MODIS aboard Terra is much larger than that
of Aqua, only aerosol data from the Aqua MODIS is used here [26].

The DT algorithm retrieves aerosol properties over dense vegetation utilizing a linear relationship
in surface reflectance between visible and shortwave infrared bands [11]. With weighted fine and
coarse aerosol models (that describe aerosol single scattering properties), the AOD and fine-mode
AOD fraction are retrieved by matching the calculated apparent reflectance with satellite TOA spectral
reflectance in 0.47, 0.67, and 2.1 μm. The surface reflectance relationship between 0.67 and 2.1 μm
varies with view geometry and surface type. One coarse aerosol model and one of three fine aerosol
models are employed in DT retrieval (Table 1), and the fine aerosol model is prescribed by location and
season [27]. As a by-product, surface reflectance in 2.12 μm is also retrieved. Global validation shows
that more than 66% of the DT retrievals are within the error envelope of ±(0.05 + 15% AOD) [25].

To retrieve the AOD over a bright surface, the DB algorithm utilizes a pre-calculated surface
reflectance database in blue channels, where the surface reflectance is much lower than in longer
channels [10]. The surface reflectance database in the C6 DB algorithm has been improved as a function
of season, normalized difference vegetation index (NDVI), and scattering angle [28]. Similarly to DT,
the DB algorithm divides the globe into several regions, and assumes fixed aerosol types in certain
areas such as dust and smoke models in early retrievals over East Asia (Table 1). In cases of mixed
aerosol types, two unknowns, the AOD and the Ångström exponent (and hence, the AOD fraction of
aerosol types) are retrieved from TOA radiance in 0.41 and 0.47 μm. For heavy dust loading conditions,
the radiance in the red band at 0.67 μm is added to further retrieve the SSA in the blue bands. The
global bias of DB AOD is approximately within ±(0.03 + 0.2 AODMODIS) [29].

Table 1. List of typical optical parameters in aerosol models used in MODIS Dark Target (DT) and
Deep Blue (DB) algorithms [10,25]. The DT aerosol model varies with aerosol loading and the case of
AOD550 = 0.5 is presented here; R denotes the effective radius in the DT model, and for DB it is the
mean radius; since information of Collection 6 DB aerosol model is not available, the original version is
used for reference. SSA, single scattering albedo.

Aerosol Model Algorithm SSA, 412 nm SSA, 470 nm SSA, 660 nm R, μm Standard Deviation, μm

Dust/Spheroid DT - 0.94 0.96 0.68 -
Absorbing/Smoke DT - 0.88 0.85 0.256 -

Moderately Absorbing DT - 0.93 0.91 0.261 -
Nonabsorbing/Urban-Industrial DT - 0.95 0.94 0.207 -

Dust/Spheroid DB 0.91 0.96 - 1.0 1.45
Smoke DB 0.90 0.89 - 0.14 1.45

“whiter” Dust/Spheroid DB 0.98 0.99 ≈1.0 - -
“redder” Dust/Spheroid DB 0.91 0.94 ≈1.0 - -

3. Results and Analysis

3.1. Aerosol Optical Properties in Eastern China

The angular distribution of scattered light largely depends on particle size, which associates
closely with emission sources [9]. Figure 2 shows the variations of monthly volume size distribution
in typical regions of eastern China. There is a notable bimodal distribution in all the sites, with
a large spatial and temporal difference. Coarse particles are dominant in northern China (Beijing,
Xianghe, and Xuzhou) and the Yangtze River Delta (YRD, Taihu) during spring. Although there
are few dust storm events in eastern China every year, floating dust transported from the deserts of
East Asia is prevalent over northern China [14]. The vertical distribution of the floating dust particles
is very inhomogeneous [30]. Hence, the fraction of coarse particles may not be considerable in ground
sampling, but can be significant in column observations. The contribution of coarse particles also
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shows large monthly variations even in Qiandaohu in the north part of southern China, and in some
months, fine and coarse particles have a nearly equivalent volume. By contrast, fine particles play
a major role in July and August, modulated mainly by anthropogenic emissions and photochemical
processes. It should be noted that the volume of coarse particles is similar to that of fine aerosols during
fall and winter in northern China, which indicates the common mixing of dust and anthropogenic
pollutants. While Hongkong is dominated by fine aerosol all year round, the fraction of coarse aerosols
is still significant (~30%), and has much less monthly or seasonal variation, suggesting the influence
of sea salt. Indeed, the fraction of coarse particles in Hongkong is higher than its counterpart in the
continental background site of Qiandaohu during September. Similar observations also exist in other
coastal sites, such as Zhoushan in the YRD [17].

Figure 2. Monthly mean value of volume size distribution in AERONET sites of Beijing, Xianghe,
Xuzhou, Taihu, Qiandaohu, and Hongkong, respectively.

Aerosol SSA exhibits large temporal variations in eastern China (Figure 3). The SSA values at
440 nm in northern China range from ~0.85 in the winter season (that uses coal-burning for heating) to
~0.95 in humid summer. The SSA increases gradually from January, reaches its maximum value in July,
and then begins to decrease. In southern China (Qiandaohu and Hongkong), where no coal-burning
is needed for heating in winter, the temporal change of the SSA is smaller (~0.90–0.95), but there is
also an obvious increase in the SSA during summer associated with enhanced hygroscopic growth in
humid conditions. It is worth noting that the SSA in Qiandaohu may be not typical due to only few
available inversion data from AERONET in most months. Overall, for most sites, the variations of
the SSA show a larger dependence on wavelength in winter and spring but a smaller dependence in
summer and fall, which can caused by a mixture of anthropogenic aerosols and coarse dust in winter
and spring [31]. Large daily variations in the SSA also exist in Beijing and Hongkong, where regional
transport usually superposes on local pollution.
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Figure 3. Monthly mean values of single scattering albedos in eastern China. The monthly values with
available daily values of no more than 3 days every year were deleted.

Corresponding to the temporal variation of size distribution and SSA, and relevant to the satellite
retrieval algorithm that uses backscattered solar radiation, Figure 4 shows the variation of phase
function at backward direction over different AEROENT sites. In northern China, the monthly phase
function exhibits approximately 20–30% of its variation at around 90–150◦ in the back-scattering
directions. It can be seen that the phase function is lowest in summer (red lines) with fine particles
dominant and highest in spring (blue lines) with prevalent dust, reflecting the change of particle size.
Indeed, the composite phase function for fine-mode and coarse-mode aerosols in an atmospheric
column depends not only on the size distributions for both modes, but also on the scattering optical
depth of both modes and the relative weighting. Fine-mode particles have a relatively larger size
(due to efficient hygroscopic growth, Figure 2) in summer than in winter, and hence a relatively
smaller phase function in the backscattering direction. This size effect, together with more efficient
scattering (again due to hygroscopic growth) and a more dominant contribution of fine mode aerosol
to the total aerosol optical depth, makes the columnar phase function as whole smaller in summer.
Indeed, with a reduction in the fraction of coarse mode particles, the phase function in summer gets
lower than 0.1 at Xuzhou and other sites in the south to Xuzhou. Notably, the phase function is
much lower at the Qiandaohu site in most scattering angles during October and December, when fine
particles are absolutely dominant with very low volume in coarse mode (Figure 2). However, temporal
variations of the phase function in Hongkong are much smaller, which is consistent with the particle
size distribution. Thus, it is important to make a proper assumption of particle size in aerosol models
for satellite retrievals.

To synthesize, the aerosol properties in eastern China exhibit considerable variability over space
and time. Spatially, and for the same season, the fraction of the coarse mode deceases from north
to south, which leads to weaker backscattering; the SSA in northern China is much lower than that
in southern China during winter (0.85 vs. 0.90), but is nearly the same in summer (~0.95). Hence,
the aerosol optical properties in northern China are weaker in scattering during winter with more
absorption, but the backscattering ability is stronger than in southern China due to the higher phase
function associated with the smaller size of fine-mode aerosols (because of less hygroscopic growth,
as seen in Figure 2). Temporally, the volume of coarse particles accounts for the higher fraction in
northern China and the YRD during winter and spring, and fine particles are dominant in summer and
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fall. There is a notable increase and decease in oscillation for the SSA in eastern China in the transition
of dry winter (~0.85–0.90) to humid summer (~0.95). Corresponding with variations of the particle
size, the scattering phase function of the columnar aerosols is high in winter and spring, and more
than 20–30% lower in summer and fall in the backscattering direction.

Figure 4. Monthly mean values of scattering phase function at 440 nm in eastern China.

3.2. Temporal Characteristics of MODIS Aerosol Retrieval Bias

Figure 5 shows the daily variations of MODIS DB and DT AOD biases compared with AERONET
AOD in northern China (Bejing, Xianghe, and Xuzhou). To reduce the influence from uncertainties of
surface reflectance estimation, the bias of satellite retrievals was considered to be robust and analyzed
only when the AERONET AOD550 is >0.4. With only a few exceptions, MODIS DB retrieval of the
AOD overall has a distinct positive bias in winter (in the range of 0.13–0.24) and slight overestimation
in fall, but small negative bias in other seasons (except in Xianghe, Table 2). In particular, a clear switch
between positive and negative bias can be found at all of the three sites (Bejing, Xianghe, and Xuzhou)
with the same time nodes. In contrast, the AOD in MODIS DT retrievals exhibit obvious overestimation
during the whole year, with few values in winter due mostly to the bright surface that is not suitable
for retrieval from the DT algorithm (red line Figure 5). Considering that the aforementioned biases
are systematic and periodic, it is likely that the difference between the actual and assumed aerosol
properties by season can play a dominant role.

Table 2. List of seasonal mean aerosol optical depth (AOD) biases for MODIS DT and DB retrievals
when AERONET AOD550 >0.4 of eastern China. Samples with available values of no more than five
were removed to be representative.

Site Winter DT Spring DT Summer DT Fall DT Winter DB Spring DB Summer DB Fall DB

Beijing - 0.3 0.38 0.04 0.24 −0.11 −0.095 −0.003
Xianghe - 0.353 0.42 0.201 0.153 −0.04 0.1 0.064
Xuzhou 0.299 0.31 0.26 0.273 0.137 0.006 −0.176 0.088

Taihu 0.219 0.483 0.366 0.266 0.08 −0.021 −0.229 0.021
Qiandaohu −0.192 0.108 0.082 −0.027 −0.293 −0.21 −0.347 −0.251
Hongkong 0.09 0.179 - 0.137 −0.113 −0.274 −0.5 −0.218
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Figure 5. Daily mean values of AERONET AOD (black curve) and bias of MODIS DB and DT AOD
(red and blue curves, respectively) when AERONET AOD550 > 0.4 in northern China.

As shown in Figure 6, the temporal variations of MODIS AOD bias by season in the YRD (Taihu)
is similar to their counterparts in northern China. However, there is a notable change in MODIS
DB bias in southern China. Differently from the overestimation in northern China and YRD during
winter, DB retrievals exhibit a slight negative bias during the whole year in Qiandaohu and Hongkong
(Table 2). If the aerosol model was the same as that in northern China, the increase of SSA in southern
China would lead to more overestimation in DB retrievals, but the decrease in backscattering can offset
the overestimation. Thus, the negative switch in DB AOD bias indicates that the weak backscattering
in a phase function can make a more important contribution in southern China. It should be noted the
assumed aerosol model can be different in southern China. Therefore, the systematic switch of MODIS
DB AOD biases from positive to negative can be caused by changes of aerosol properties or aerosol
models in southern China. Correspondingly, when the same aerosol model is used in DT retrieval, the
DT bias becomes much smaller with the increase in SSA but decrease in phase function in southern
China, and underestimation even appears in Qiandaohu during winter. In addition, significant errors
in surface reflectance estimation can also influence the bias in DT retrieval [20].

Since both of the MODIS DB and DT algorithms employ mixed coarse and fine models in aerosol
retrieval, the systematic bias of satellite AOD is determined by the combined uncertainties of the
mixed models and their respective fractions. Figure 7 shows that MODIS retrieval can generally
make a reasonable discrimination of the contribution between fine and coarse aerosol particles except
some obvious deviation. The fraction of fine AOD500 in Beijing is around 0.7, with lower values in
spring and a higher contribution in summer. The fine aerosol model used for DT and DB retrieval
can be inferred from “Aerosol_Type_Land” and “Quality_Assurance_Land”, respectively. It is found
that a moderately absorbing fine model is assumed in winter and spring in northern China and a
non-absorbing one during summer and fall in DT algorithm. While the moderately absorbing model is
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replaced by a non-absorbing one in DT retrieval during winter in Taihu and Qiandaohu, the moderately
absorbing model is changed back in Hongkong. A dust and smoke model is employed in DB retrieval
in eastern China with aerosol phase function and SSA selected by season and location [28], but detailed
information is not available in the current literature.

Figure 6. Daily mean values of AERONET AOD (black curve) and bias of MODIS DB and DT AOD (red
and blue curves, respectively) when AERONET AOD550 > 0.4 in Taihu, Qiandaohu, and Hongkong.

Figure 7. (Left) Comparison of AERONET fine AOD fraction at 500 nm (black), collocated AERONET
(red) and MODIS DT fine mode aerosol fraction at 550 nm (green), (right) and DB Ångström exponent
at 412 and 470 nm (blue) in Beijing.

Differently from the high spatial dependence in uncertainties induced by surface reflectance
estimation in low-AOD conditions [20], MODIS retrieval bias in moderate and high loading exhibits
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clear periodic variations in regional scale, which is associated with the large temporal variations
of aerosol properties. Compared with the assumed moderately absorbing fine aerosol model
(SSA = 0.90 at 670 nm) in DT retrieval during winter and spring, the SSA values in northern China
vary from 0.88 to 0.94, indicating that a large deviation exists in calculating scattering contribution.
However, overestimation remains prevalent in DT retrievals when a non-absorbing aerosol model with
SSA = 0.95 is used (Figure 8a), demonstrating that the aerosol scattering is generally underestimated.
Since the magnitude of aerosol scattering is determined by SSA and phase function besides aerosol
loading, improper assumptions of aerosol phase function play a major role in this systematic positive
AOD bias. The effective radius in the DT algorithm is around 0.25 μm for fine mode and 0.68 μm for
coarse particles (Table 1), which is larger than the fine mode (~0.13 μm) in AERONET inversion but
much smaller than the coarse mode (~2.0 μm) (Figure 8b). As shown in Figure 4, the backscattering
ability is much weaker due to the dominance of fine-mode aerosols with larger size particles in humid
summer. The large variations in particle size distribution in eastern China were not well-considered
in current MODIS retrievals. Furthermore, at 2.12 μm, where the fine-mode aerosol effect is much
less, the phase function used in the DT algorithm is likely to have a large low bias because the DT
algorithm assumes a much smaller coarse-mode particle size (than that which AERONET retrieves).
Hence, the underestimation of the phase function at 2.12 μm can lead to the spectral slope of retrieved
AOD skewing upward, thereby causing an overestimation of AOD in the visible. According to the
connections between aerosol properties and the MODIS AOD bias, a preliminary suggestion for the
modification of the aerosol models in MODIS retrievals is presented in Table 3.

Figure 8. (a) Comparison of monthly mean SSA (black) and MODIS DT SSA from fine (blue for
non-absorbing and red for moderately absorbing) and coarse aerosol models at 0.55 μm; (b) Monthly
mean AERONET effective radius (μm) for total column (black), fine mode (red), and coarse mode
aerosols (blue) in Beijing.

Table 3. Proposed modification for aerosol models of MODIS DT and DB retrievals in eastern China.
S and P denote SSA and Particle size of fine aerosol models of DT; T signifies the total scattering
properties of DB aerosol models (SSA and particle size used unknown); symbols of ‘+’, ‘−’, and ‘*’
mean the parameter should be increased, deceased, or unchanged, respectively.

Site Winter DT Spring DT Summer DT Fall DT Winter DB Spring DB Summer DB Fall DB

Beijing S−P− S*P− S*P− S−P− T− T+ T* T−
Xianghe S−P− S*P− S*P− S−P− T− T* T− T*
Xuzhou S*P− S+P− S*P− S−P− T− T* T+ T*

Taihu S-P− S*P− S*P− S−P− T* T* T+ T*
Qiandaohu S−P* S*P* S+P* S−P* T+ T* T+ T+
Hongkong S*P* S*P* S−P* S−P* T+ T− T+ T+
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3.3. Decadal Variations of the Aerosol Optical Properties and MODIS AOD Bias

Besides the large seasonal variations caused by dust transport, winter coal-burning heating, and
meteorological conditions, the concurrent economic development and government regulation for
improving air quality have brought dramatic changes in anthropogenic emissions in eastern China
during the last decades [19,32]. Figure 9 shows an obvious decreasing trend (−0.11 per decade) of
AOD in Beijing, where great efforts has been made to reduce local and surrounding emissions. Another
prominent feature is that the total effective radius in Beijing becomes smaller with control measures on
primary emissions. Moreover, there is a large increase (~0.05) in the SSA of the aerosol particles, which
is consistent with the considerable reduction (~38%) of black carbon [33]. These striking changes in
aerosol scattering ability and angular distribution can to lead to serious deviations from those of the
fixed fine aerosol model for satellite retrievals.

Figure 9. Variations of monthly AOD at 550 nm, total effective radius, and single scattering albedo in
Beijing from 2001 to 2016.

Figure 10 displays the trends of MODIS retrieval bias in moderate and high AOD conditions
from 2003 to 2016. It is surprising that the overestimation of DT retrievals becomes larger with time.
The SSA values in Beijing become higher than both of these in the moderately absorbing and weakly
absorbing fine models used in the DT algorithm (Figure 9), leading to more overestimation of aerosol
loading by underestimating the aerosol scattering contribution. By comparison, variations of DB
retrieval bias are relatively complicated, with negative bias getting much smaller and positive bias
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becoming slightly larger. While the obvious decrease in the underestimation of the DB retrievals
during spring and summer can be associated with the increasing SSA in Beijing, the overestimation in
fall and winter can be enlarged due to further difference with the underestimated scattering ability in
the DB aerosol model. Such variations of aerosol optical properties can cause a difference of >0.1–0.2
in annual mean AOD, which exerts non-negligible uncertainties in analyzing the trends of aerosol
loading with satellite retrievals.

Figure 10. Daily bias of Aqua MODIS C6 DB and DT AOD (AOD550 > 0.4) in Beijing from 2003 to 2016.

4. Discussions

As shown above, the complicated aerosol properties in eastern China, with both striking seasonal
and yearly changes, have caused a large bias in MODIS aerosol retrievals. The several aerosol models
in the MODIS DT and DB algorithms can represent most situations in the world [25,28], but obviously
miss some unique properties of the aerosol particles, such as the prevalent coarse dust in eastern China.
Different assumptions of the aerosol properties lead to distinct deviations between the DB and DT
retrievals. Although detailed information of MODIS aerosol models, especially for the DB algorithm,
is not available, their overall performance from the combined contribution of the assumed SSA and the
scattering phase function can be inferred from the AOD bias of the satellite retrievals. A clear switch
in MODIS DB retrieval bias from spring can be caused by the seasonal change of assumed aerosol
models (Figure 5). However, to identify the specific error sources, detailed information, including
both the SSA and phase function (or refractive index and particle size), is necessary to compare with
ground observations.

The lookup table of aerosol properties is significant for the efficiency of MODIS operational
global daily retrieval. Despite the large spatial and temporal variations of aerosol properties in eastern
China, reasonable assumptions can constrain the typical properties with mixed and fixed aerosol
models. In the other hand, the yearly variations of aerosol properties have to be considered by time
or a more flexible combination of aerosol models. More available information, such as multi-angle
and polarization observations, can enable investigators to better capture the aerosol properties in
satellite retrievals. Ground observations in a sufficient number of sites are needed to characterize the
geographic difference of aerosol properties. Luckily, there have been many observations, such as the
China Aerosol Remote Sensing Network (CARSNET) [16,18], which can substantially improve MODIS
retrieval bias in China.
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5. Conclusions

MODIS aerosol products have been widely used in climate and air pollution research due to their
near daily global observations and coverage since 2000, and at the same time have received much
concern about their uncertainties. Despite reasonable accuracy at the global scale, the performance of
MODIS retrievals in China has suffered deeply from the complicated and dramatic aerosol properties.
Differently from previous validations for general evaluation, here we present a special study on aerosol
scattering properties in typical regions of eastern China and the dependence of MODIS C6 aerosol
retrieval bias on ground-based observations over six AERONET sites. Striking systematic deviation is
found in both the MODIS DT and DB retrievals, with distinct biases caused by their respective aerosol
models. However, the fraction of the weighted fine and coarse models can be roughly estimated with
the MODIS retrievals.

The scattering ability of the aerosol models is constrained by both SSA and scattering phase
function. Despite the high SSA (~0.95) assumed in summer and fall, DT retrievals in eastern China
exhibit obvious overestimation rather than underestimation during the whole year. The effective
radius of fine aerosol models used in DT retrievals (~0.26 μm when AOD = 0.5) is much larger than
the actual size (~0.13 μm) in ground observations, which leads to a serious overestimation of aerosol
loading due to the assumed low scattering ability. Meanwhile, the smaller particle size (~0.68 μm
when AOD = 0.5) assumed in the DT coarse model is much smaller than that (~2.0 μm) used in ground
inversions. Considering the negligible scattering contribution of fine aerosols in shortwave infrared
bands, the underestimation of the phase function at 2.1 μm can further aggravate the overestimation of
aerosol loading. Correspondingly, DT bias gets much smaller in southern China, which is dominated
by fine particles with larger size in humid conditions. By comparison, positive bias is dominant in DB
retrieval during fall and winter with smaller negative bias in spring and summer, indicating the clear
difference caused by the seasonal aerosol models. On the other hand, the yearly variations of aerosol
properties lead to considerable changes in the magnitude of MODIS AOD bias. While the DT bias gets
larger with increasing SSA from 2003 to 2016, the negative bias in DB retrieval becomes much smaller
in spring and summer.

Our results demonstrate that the unique aerosol properties in eastern China should be included
in satellite retrievals. Since MODIS DT aerosol models were fixed within half a year in eastern China,
the notable variations of monthly aerosol scattering properties have caused considerable retrieval
bias, since even deviations of SSA can partly cancel out the errors from an assumed phase function.
On the other hand, the distinct spatial difference in particle size and SSA demonstrates that the
assumed aerosol models should constrain such geographic variations rather than employ one fixed
fine aerosol model in the whole of eastern China. In addition, the obvious changes in yearly aerosol
scattering properties have to be taken into account. The DT algorithm utilizes a combination of one fine
and one coarse aerosol model to characterize real situations. Despite the substantial variations, aerosol
properties in eastern China exhibit clear change patterns in spatial and temporal scales. To establish
proper and flexible aerosol models, the division of geographic sectors (e.g., northern and southern
China), time range (e.g., seasonal), and typicality of the combined aerosol models should be considered
based on the aerosol scattering properties and radiative transfer simulations.
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Abstract: Visible Infrared Imaging Radiometer Suite (VIIRS) is a next-generation polar-orbiting
operational environmental sensor with a capability for global aerosol observations. A comprehensive
validation of VIIRS products is significant for improving product quality, assessing environment
quality for human life, and studying regional climate change. In this study, three-year (from 1 January
2014 to 31 December 2016) records of VIIRS Intermediate Product (IP) data and Moderate Resolution
Imaging Spectroradiometer (MODIS) retrievals on aerosol optical depth (AOD) at 550 nm were
evaluated by comparing them to ground sun photometer measurements over Wuhan. Results
indicated that VIIRS IP retrievals were underestimated by 5% for the city. A comparison of VIIRS IP
retrievals and ground sun photometer measurements showed a lower R2 of 0.55 (0.79 for Terra-MODIS
and 0.76 for Aqua-MODIS), with only 52% of retrievals falling within the expected error range
established by MODIS over land (i.e., ±(0.05 + 0.15AOD)). Bias analyses with different Ångström
exponents (AE) demonstrated that land aerosol model selection of the VIIRS retrieval over Wuhan
was appropriate. However, the larger standard deviations (i.e., uncertainty) of VIIRS AODs than
MODIS AODs could be attributed to the less robust retrieval algorithm. Monthly variations displayed
largely underestimated AODs of VIIRS in winter, which could be caused by a large positive bias in
surface reflectance estimation due to the sparse vegetation and greater surface brightness of Wuhan in
this season. The spatial distribution of VIIRS and MODIS AOD observations revealed that the VIIRS
IP AODs over high-pollution areas (AOD > 0.8) with sparse vegetation were underestimated by more
than 20% in Wuhan, and 40% in several regions. Analysis of several clear rural areas (AOD < 0.2)
with native vegetation indicated an overestimation of about 20% in the northeastern region of the
city. These findings showed that the VIIRS IP AOD at 550 nm can provide a solid dataset with a
high resolution (750 m) for quantitative scientific investigations and environmental monitoring over
Wuhan. However, the performance of dark target algorithms in VIIRS was associated with aerosol
types and ground vegetation conditions.

Keywords: aerosol; VIIRS; MODIS; sun photometer; AERONET

1. Introduction

Atmospheric aerosols such as those from biomass burning, dust minerals, volcanic ash, smoke,
sea salt, and particulate pollution, are emitted from various natural and anthropogenic activities [1,2].
Atmospheric aerosols significantly influence the radiation budget of the Earth by affecting the
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lifetime and microphysical properties of clouds, as well as precipitation rates and tropospheric
photochemistry; therefore, they are significant in climate change studies [3–5]. However, aerosol
sources, transport, and sinks possess a relatively short lifetime of one to two weeks in the atmosphere,
and this characteristic restricts the understanding of their chemical and physical properties, as well as their
spatiotemporal distribution characteristics [6,7]. A global network of ground-based sun photometers,
such as the aerosol robotic network (AERONET) [8], provides regular measurements of aerosol
optical properties, such as aerosol optical depth (AOD), at high temporal and spectral resolutions
to better understand aerosol distributions in the atmosphere. However, these measurements are
limited over space. This spatial limitation is addressed by satellite remote sensing, which provides
systematic near-real-time AOD observations at low to high spatial resolutions [2,9,10]. Satellite remote
sensing is recognized as an ideal method for monitoring the spatiotemporal distribution of AOD
at regional and global scales. Aerosol retrieval algorithms are developed for global distributions
of AOD by using different satellite sensors, such as the advanced very-high-resolution radiometer
(AVHRR) [11], sea-viewing wide field of view sensor [12], total ozone-mapping spectroradiometer [13],
ozone-monitoring instrument [14], multi-angle imaging spectroradiometer [15], moderate-resolution
imaging spectroradiometer (MODIS) [2,9,10], and Visible Infrared Imaging Radiometer Suite
(VIIRS) [16,17].

In October 2011, VIIRS was launched aboard the Suomi National Polar-orbiting Partnership
(S-NPP) satellite; VIIRS is a new generation of operational satellite sensors for the characterization
aerosol [16]. The VIIRS instrument is designed using many of the features of the National Aeronautics
and Space Administration’s Earth-Observing System MODIS, which has produced near-real-time
aerosol data products for over a dozen years [18,19]. Given the similarity in the design of the two
instruments, VIIRS is expected to produce aerosol products that are similar in scope and capability
as those of MODIS [16]. The VIIRS aerosol calibration/validation team continuously monitors,
evaluates, and improves the performance of VIIRS aerosol retrievals [16,17]. However, the accuracy
and consistency of retrieving aerosol products via VIIRS remain worse than that of MODIS [16], due to
uncertainties from cloud screening, radiance calibration, and aerosol optical property modeling. Thus,
further studies that find uncertainty sources or reduce uncertainties are significant for the successful
accomplishment of the VIIRS mission.

With the rapid growth of the Chinese economy in recent years, air pollution has reached a critical
level, resulting in the uncertain aerosol climate on Earth due to rapid urbanization and increased
industrial activity [20]. However, spatial and temporal variations in aerosols in China are poorly
understood because of the sparse network of observations, or limited satellite observations with high
precision and resolution [21]. VIIRS is expected to serve as a powerful tool for large-scale aerosol
observations with a high spatial resolution (750 m). Therefore, the performance of VIIRS should
be compared and validated against that of ground- and space-based sensors before VIIRS aerosol
products are applied in scientific research in China. The VIIRS AOD Intermediate Product (IP) was
evaluated with ground-measured AOD from over 12 selected AERONET sites and compared with
MODIS aerosol data over China in 2013 [22]. The spatiotemporal variations in AOD retrieved from
VIIRS in eastern China was also investigated [23]. Emerging aerosol products from VIIRS, MODIS
(Collection 6), and Geostationary Ocean Color Imager in East Asia were evaluated in 2012 and 2013
by using ground AOD observations from AERONET and handheld sun photometers [24]. However,
these upfront validation studies were conducted in the coastal areas of China. VIIRS AOD validation
with AERONET is limited spatially, because most regions in Asia are empty, especially in central
China [16]. Furthermore, the VIIRS data of urban areas exhibit more discrepancy than the ground
measurements [23]. Therefore, additional validation study in urban region in central China is necessary
to determine the performance of VIIRS.

The objective of this study is to investigate the performances of VIIRS and MODIS in the AOD
retrievals over Wuhan, China by comparing data recorder in three years (from 1 January 2014 to
31 December 2016) with those from a ground-based sun photometer. The qualities of VIIRS IP and
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MODIS Terra/Aqua AODs are evaluated in Section 4.1. The monthly AOD characteristics are studied
with VIIRS IP, MODIS, and sun photometer data in Section 4.2. The spatial distribution of VIIRS and
MODIS AOD observations is shown in Section 4.3. The reasons for the AOD difference between the
three tools over Wuhan are also discussed.

2. Study Area and Datasets

2.1. Study Area

The rapid economic growth and population expansion in China in the past three decades has
resulted in drastic increases in energy consumption, which has significantly increased AOD over a
large part of China [22]. Wuhan is the largest city in central China, with a dense population and
heavy industrialization on the Yangtze River Basin (indicated by the white point in Figure 1). Wuhan
experiences a typical north subtropical humid monsoon climate, with an annual average temperature
of 15.8 ◦C to 17.5 ◦C and an annual average rainfall of 1050 mm to 2000 mm [25,26]. Most areas in
Wuhan are 50 m above sea level. Figure 1 shows the location and terrain of Wuhan.

Figure 1. (a) Location of Wuhan in China and (b) location of the sun photometers at Wuhan University
(white point).

2.2. Datasets

2.2.1. Sun Photometer Data

A Cimel sun photometer, CE-318, was placed and operated on top of the LIESMARS building
(30◦32′N, 114◦21′E, and 30 m above sea level) at Wuhan University (WHU), Wuhan, Hubei Province,
China, in July 2007 (Figure 1b). The CE-318 sun photometer manufactured by Cimel Electronique
Company (France), is a multi-channel, automatic, sun-and-sky-scanning radiometer that measures
direct solar irradiance and sky radiance. The instrument performs direct spectral solar radiation
measurements within a 1.2 full field of view every 15 min at eight normal bands of 340, 380, 440,
500, 675, 870, 940, and 1020 nm [27]. The total uncertainty of AOD is approximately 0.01 to 0.02 [28].
The observations from August 2007 can be used to investigate the aerosol optical properties in central
China. Several problems occurred in the equipment from April to November 2013. CE-318 is annually
calibrated with China Meteorological Administration Aerosol Remote Sensing Network (CARSNET)
reference instruments to ensure data accuracy and reliability; the detailed calibration procedures are
described in [29]. The AOD data were calculated using ASTPwin software (Cimel Co., Ltd., Paris,
Phalsbourg, France) for level 1.5 AOD. The retrieval method is found in [30].
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2.2.2. VIIRS Data

VIIRS is one of the key environmental remote-sensing instruments onboard the Suomi NPP
satellite. This instrument is a scanning radiometer that can extend and improve upon the heritage of
AVHRR and MODIS [16]. VIIRS aerosol retrieval is performed at the pixel level and produces aerosol
products with a spatial resolution of 0.75 km [31]. The product of this process, known as IP, is then
aggregated and designated as an Environmental Data Record (EDR) reported at 6 km (8 × 8 pixels)
resolution at nadir [16]. In this work, we evaluated VIIRS AOD550s at IP level. AOD550s are the
most important aerosol parameters used by models and other community-wide applications. Quality
assurance is applied at IP levels, with the resulting flags indicating the confidence of the retrievals as
described in detail in [16]. For the current study, a three-year (from 1 January 2014 to 31 December 2016)
dataset of AOD from VIIRS IP with quality flag = 0 (good), was analyzed to evaluate the performance
of VIIRS in Wuhan.

2.2.3. MODIS Data

The detailed retrieval principle of the MODIS dark target (DT) algorithm over land can be
found in [9,18,32]. The DT AOD product at 3 km is developed from spectral reflectance using a
similar look-up-table and inversion based on the ratio of visible and shortwave infrared as the 10-km
product [19,33]. MODIS AOD products with high resolutions (3 km) are expected to address aerosol
gradients and pollution sources missed at 10 km. The quality of MODIS aerosol retrievals generally
depends on the accuracy of the surface reflectance and the aerosol model, and over- or underestimation
under clear and polluted conditions are normally caused by an error in these two factors [34,35].
The MODIS C6 DT AOD product significantly and systematically overestimates the AOD of Asian
cities [35,36]. In this study, MOD04 and MYD04 C006 DT aerosol products were obtained over
Wuhan, and only the highest-quality-flag (QF = 3) AOD observations were considered for analysis.
To distinguish the different MODIS DT C006 datasets in this study, we marked them as “MOD04_3K”
and “MYD04_3K” for Terra-MODIS and Aqua-MODIS AOD at 3 km, respectively.

3. Comparison and Verification of Methods

According to suggestions from other research groups [16,22,24], data matching was performed
with the following rules. First, the mean AOD was averaged when at least 20% of the pixels fell
within the sampling box. Second, observed AODs with a standard deviation greater than 0.5 were
excluded, whereas satellite data (covering an area of 20 km × 20 km) near each WHU site were
selected to reduce validation uncertainty due to the atmospheric variability imposed by atmospheric
motion. Sun photometer data acquired within 30 min of the satellite overpass times were collected
from 2014 to 2016. The data provided by a sun photometer did not have the 550 nm channel,
and AODs at 550 nm were calculated by linear interpolation at a log scale from two measurements
with adjacent wavelengths [16]. To show how accurately the satellite AOD matched the evaluation
datasets, the following metrics were applied. A regression technique was used to estimate the slope
and intercept of the datasets, and the uncertainty in the aerosol algorithms was evaluated using the
expected error (EE, Equation (1)) over land, the relative mean bias (RMB, Equation (2)) that indicates
the average overestimation (RMB > 1.0) or underestimation (RMB < 1.0) for the retrieval AODs,
the root-mean-square error (RMSE, Equation (3)), the mean absolute error (MAE, Equation (4)), and the
Pearson correlation coefficient (R).

EE = ±(0.05 + 0.15AODground) (1)

The MODIS AOD expected errors (EE) were ±(0.05 + 0.15AOD) over land [16,19,33].

RMB = (AOD(satellite)/AOD(ground)) (2)
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4. Results and Analysis

4.1. Validation of VIIRS IP and MODIS C006 AOD

Figure 2a–c show the comparisons of satellite AOD retrievals with ground observations over the
Wuhan region. The total times that the satellite passed over the WHU site within 20 km and 30 min for
VIIRS, Terra, and Aqua were about 1092, 1084, and 1097, respectively; by contrast, the numbers of valid
matchups with the ground sun photometer were 284, 242, and 202, respectively. The relatively few valid
matchups over the three-year period were caused by cloud cover and sun photometer maintenance.

VIIRS IP indicated a linear regression slope of 0.69 and a positive intercept of 0.18 on average
against ground observations. The comparison of VIIRS IP retrievals with the ground sun photometer
measurements showed a low R2 of 0.55, with RMB being equal to 0.95, and only 52% of retrievals
falling within EE (Figure 2a). RMB = 0.95 suggested that VIIRS IP underestimated (5%) the retrieval
AODs. The scatter plot illustrates that the IP retrievals varied substantially, especially given high AOD
values. A global study from 23 January 2013 to 31 December 2014 revealed similarly underestimated
results with sample numbers (20269), accuracy (0.0415), precision (0.155), uncertainty (0.160), slope
(0.730), intercept (0.089), and R2 (0.549) in the land AOD IP versus AERONET [17]. However, this result
was inconsistent with a previous validation study, in which 32% of VIIRS IP retrievals fell into the EE,
with a slightly low R2 of 0.63, and a relatively large positive bias (0.25) in Beijing within 3 km around
AERONET [24]. The different aerosol types may have caused this difference between Beijing and
Wuhan. Beijing is easily affected by downwind dust (weakly absorbing and coarse mode aerosol) from
large northern deserts, but the aerosol model over this region in VIIRS has too much absorption [2].
Therefore, weakly absorbing aerosol model may be considered when dust is prominent [19].

MODIS C006 3 km products showed a large RMB at 1.13 for Terra-MODIS and 1.07 for
Aqua-MODIS, which suggests a mean overestimation of 13% for MOD04_3K and 7% for MYD04_3K.
Of the Terra-MODIS C6 3 km retrievals and the Aqua-MODIS C6 3 km retrievals, 66% and 71% fell
within EE, respectively. MODIS with high spatial retrievals (3 km) was highly correlated with the
ground AOD with R2 of 0.79 and 0.76, for MOD04_3K and MYD04_3K, respectively. The linear
regressions of MODIS retrievals and ground AOD were close to the 1:1 line. MODIS valid matchups
were smaller than those of VIIRS over the same sun photometer sites, but the MODIS retrievals were
better correlated with ground measurements than the VIIRS data (Figure 2 and Table 1). A previous
global validation study of the 3 km MODIS AOD data reported similar retrieval errors (R2 for Aqua
and Terra were 0.68 and 0.85 respectively, and the intercepts for Aqua and Terra were 0.22 and 0.30
respectively) in urban areas [33]. Moreover, a recent study reported that MODIS C6 3 km product
produced a higher bias (0.21 for Aqua and 0.29 for Terra) in a comparison with AERONET in Beijing,
as well as the lowest within EE (44% for Aqua and 25% for Terra) [24]. The higher bias may be
attributed to the lower average area (within 9 × 9 km2) around AERONET. Similar results were
reported by other evaluation studies on MODIS C6 3 km aerosol retrieval algorithms over bright
urban surfaces of Beijing during low and high aerosol loadings [32]. Similarly, a recent evaluation
study for the MYD04_3K over Asian countries with severe pollution showed that a large, significant
overestimation was observed at urban sites dominated by coarse aerosols, including Beijing, Karachi,
and Osaka, at 93.20%, 94.55%, and 75.76% of observations above the EE, respectively [2]. These results
are similar to the C6 DT algorithm at 10 km, which was also found to be overestimated over cities in
China and Pakistan against AERONET [1,37]. These overestimations in MODIS C006 3 km products
may be attributed to a large underestimation in surface reflectance, because these study regions are
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highly urbanized with bright surfaces, which posed a challenge to the DT algorithm [2,24]. In addition,
mixing aerosols with non-absorbing and absorbing fine mode aerosols over urban regions causes
over-prediction for absorption, which results in AOD overestimation.

Comparisons over the Wuhan region showed more MODIS retrievals falling within EE and larger
R2 than VIIRS in the WHU site. From preliminary global verification over land from 23 January 2013 to
1 September 2013 by the VIIRS aerosol validation team, compared with AERONET, VIIRS retrievals
showed comparable accuracy (−0.009 versus −0.005), larger uncertainty (0.130 versus 0.106), and lower
correlation (R: 0.773 versus 0.886) than MODIS [16]. The fine-resolution aerosol products showed
greater noise than the low-resolution products, which may explain the better performance of MODIS.
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Figure 2. Validation of Visible Infrared Imaging Radiometer Suite (VIIRS) (a), and Moderate Resolution
Imaging Spectroradiometer (MODIS) C006 aerosol optical depth (AOD) (b,c) observations (QF = high)
against the Wuhan sun photometer AOD at 550 nm measurements from 2014 to 2016. The red line is
the regression line, the gray solid line is the 1:1 line, and the gray dashed lines are the expected errors
(EE) envelopes.

Figure 3 shows the box plots indicating the difference between satellite AOD retrievals and ground
observations. The box plot in Figure 3a presents the VIIRS IP retrievals underestimated (overestimated)
AOD under AOD > 1.0 (AOD < 0.3). The AOD, ranging between 0.3 and 1.0, agreed well with the
ground sun photometer observations. This finding was inconsistent with a previous validation study,
wherein the VIIRS product tended to overestimate AOD at low (AOD < 0.3) and high (AOD > 1.0)
AOD values in East Asia [24]. Figure 3b,c present box plots showing the difference between MODIS
AOD retrievals and ground observations. The bias between MODIS and sun photometer AODs was
small across the entire AOD range, and was within EE when the AOD was above 0.3. However, several
overestimations in AOD retrievals were also observed when AOD was low (AOD < 0.3) (Figure 3b).
This finding was consistent with a previous global evaluation study, in which MODIS C6 3 km products
tended to overestimate AOD [33]. The results indicated that MODIS has better accuracy than VIIRS
in terms of AOD retrievals over Wuhan. The statistical results of the temporal comparisons between
satellite retrievals and ground AOD measurements at 550 nm over Wuhan from 2014 to 2016 are shown
in Table 1.

Figure 3d–f plot the differences between VIIRS (MODIS) and sun photometer AOD against the
AE measured by sun photometer from 440 nm to 870 nm, which depicts the relationship between AOD
biases and aerosol particle sizes [16,17]. AE can reflect aerosol particle sizes and their corresponding
aerosol model selections. The present study found that average positive biases (the middle circle in
each figure) of MODIS AOD in Figure 3e,f are larger than VIIRS IP retrievals (Figure 3d) when AE is
less than 0.6. The aerosol types in Wuhan may be influenced by downwind dust (low AE) transported
by prevailing north winds from the large northern deserts at winter monsoon period [26]. The smaller
biases of VIIRS IP AODs confirmed the use of a proper aerosol model in VIIRS. However, the larger
standard deviations (i.e., uncertainty in AODs) of VIIRS AODs could be attributed to the less robust
retrieval algorithm. The biases of VIIRS IP AODs arose with increases in AE (Figure 3d), indicating
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more negative biases for fine particles, especially where AE > 1.3, whereas MODIS AOD showed less
biases against sun photometer AODs. The negative bias at AE > 1.3 influenced most of the systematic
underestimation of VIIRS IP AODs (Figure 2a), and the underestimation is explained in the next
subsection analyses about monthly variations. The fine mode aerosols with strong absorption and
large AE over Wuhan often have a dominant function due to automobile exhaust and the use of coal
for domestic cooking, heating, and industrial processes [25]. Moreover, most matchups over a broad
range of particle sizes (0.6–1.3 of AE), show smaller retrieval bias but larger uncertainty than MODIS.
The results demonstrate that the aerosol model selection of the VIIRS retrieval is appropriate in this
evaluation region, but the robustness of the retrieval algorithm needs improvement.

Figure 3. Box plots of AOD550 differences (satellite—sun photometer) versus sun photometer AOD at
550 nm (a–c) and Ångström Exponent (d–f) over the Wuhan region. The number above each box refers
to the corresponding statistical collocations. The y = 0 line (zero error) is shown as a fine dashed line,
and the boundary lines of the expected error are depicted as gray coarse dashed lines. The properties
and statistics representing each box whisker include the following: the solid lines in each box indicate
the 25th and 75th percentiles of the AOD error, the whiskers are the maximum and minimum of the
AOD error, the middle line is the median value of the AOD error, and the middle circle is the mean
value of the AOD error.

Table 1. Statistics of the comparisons between satellite retrievals and ground AOD measurements at
550 nm over Wuhan from 2014 to 2016.

N R2 Slope Intercept % Above/Within/Below EE

VIIRS IP 0.75 km 284 0.55 0.69 0.18 21/52/26
Terra MODIS C6 3 km 242 0.79 0.95 0.12 33/63/4
Aqua MODIS C6 3 km 202 0.76 0.90 0.10 20/72/8

4.2. Monthly Variations in VIIRS, MODIS, and Sun Photometer AOD Observations

The monthly AOD observations derived from VIIRS, MODIS, and the sun photometer over
the WHU sites during the study period were analyzed (Figure 4). The annual average AODs were
0.66 ± 0.33 for 10:30 local time (LT) (Figure 4a) and 0.63 ± 0.33 for 13:30 LT (Figure 4b). Compared to
the previous study, the result was smaller than the multi-year average of AOD at 550 nm measured by
the sun photometer at 1.05 ± 0.66 in urban Wuhan [38]. The bias attributes to the average AOD of the
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latter were from a whole day. Moreover, the result was similar to those of suburban and background
stations in the literature; for example, yearly mean AODs are equal to 0.82 at 500 nm at Xianghe [39],
about 0.6 at Shenyang [40] and about 0.50 ± 0.06 in the Bohai Rim economic zone [41].

The monthly AODs varied with a bimodal curve. The peak values at 10:30 LT appeared in April
and August (Figure 4a), and two peak values at 13:30 LT appeared in spring and autumn. The seasonal
cycles of both the VIIRS IP, MODIS derived and sun photometer-measured AODs showed the same
trends, which are consistent with previous studies, such as the work of [23,42]. The monthly mean
AODs were related to the Asian dust and anthropogenic emission patterns in March–May, but they
were modified by precipitation in June–July. A large amount of straw is burned in farmlands from
nearby provinces during the harvest seasons (summer and autumn), thereby leading to the frequent
haze conditions in recent years [43]. Moreover, increasing industrial and human activities, such as
cement processing, smelting, coal combustion, and automobile emissions, generally lead to severe air
pollution [25]. Climatologically, Wuhan is located in the East Asian monsoon area. The Meiyu period
in the Yangtze River Delta during mid-June and late July [44] corresponds to the low AODs during the
rainy period from June to July.

Overall, the VIIRS and MODIS AODs presented the same trend, but were over- or underestimated
in different months against the ground-measured results in the WHU site. The comparison of
monthly Terra-MODIS and sun photometer AODs measured at about 10:30 LT indicated a significant
overestimation by MOD04_3k, especially from March to June (Figure 4a). Although the Aqua-MODIS
product tended to overestimate AOD from February to June, the data agreed well with ground
observations from June to November (Figure 4b). The MODIS overestimation may have been related
to the difference in surface reflection caused by surface vegetation in various months. The VIIRS
IP products and ground sun photometer measurements indicated similar monthly mean AOD
observations over the Wuhan sites from June to November, and larger underestimations in winter
(January, February, and December). Liu et al. pointed out that the seasonal variability in the biases
relatively depended on the seasonally variation of vegetation growth and senescence [16]. Therefore,
the larger underestimated AODs in winter could be attributed to the large positive bias in surface
reflectance estimation, due to sparse vegetation with larger surface brightness in Wuhan during
this season.
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Figure 4. Monthly variations using different collocated satellite remote-sensing AODs and ground sun
photometer measurements (AOD at 550 nm) over Wuhan from 1 January 2014 to 31 December 2016:
(a) 10:30 local time (LT) and (b) 13:30 LT.
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4.3. Spatial Distribution of VIIRS and MODIS AOD Observations

Figure 5 shows the three-year mean spatial distribution of VIIRS IP, MOD04 3 km, and MYD04
3 km (QF = high) over the Wuhan region and its surroundings used for comparisons with VIIRS
and MODIS AOD products. Similar aerosol load distributions are found in Figure 5a–c. The aerosol
loads around the Yangtze River and at the city center of Wuhan were significantly higher than
nearby northeast rural areas, possibly because of intense anthropogenic activity and industrialized
pollution. The comparison results showed that VIIRS and MODIS could realize AOD retrievals over
Wuhan, but VIIRS was able to describe aerosol distribution and variability in greater detail at a higher
spatial resolution (750 m) than the current MOD04 AOD products, which could produce 3 km spatial
resolution can under both low and high aerosol loads (Figure 5a). Although the three collections
showed a similar spatial distribution pattern, the underestimated AOD retrieved by VIIRS over the
city center of Wuhan was significant compared to MODIS AOD.
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Figure 5. Mean AOD spatial distribution of (a) VIIRS IP 0.75 km, (b) MOD04 3 km, and (c) MYD04
3 km from 2014 to 2016. The white point denotes the Wuhan University (WHU) site; the white circle
represents the city center of Wuhan and the average area for satellite data.

As stated in Section 4.1, the MODIS AOD retrievals had higher accuracy than VIIRS (Figure 2 and
Table 1); therefore, the spatial distribution of VIIRS IP AOD could be evaluated by MODIS AOD retrievals.
VIIRS IP AODs at 0.75 km resolution were resampled to 3 km spatial resolution, similar to the MODIS AOD
retrievals. The AOD difference (%) in Figure 6 is defined as “100 × (VIIRS−MODIS)/MODIS”, which
describes the average difference between VIIRS IP and MODIS retrievals. The greater differences
between VIIRS IP and Terra-MODIS (Figure 6a) than those between VIIRS IP and Aqua-MODIS
(Figure 6b) may contribute to Terra-MODIS overpassing Wuhan at approximately 10:30 LT, and VIIRS
IP at approximately 13:30 LT. Unlike Terra-MODIS, Aqua-MODIS is quasi-synchronous with VIIRS.

The VIIRS IP AODs over the high-pollution areas (AOD > 0.8) with sparse vegetation were
underestimated by more than 20% and 40% in Wuhan and several regions, respectively. By contrast,
several clear areas (AOD < 0.2) presented an overestimation of about 20% in the northeastern region,
as depicted in Figure 6. The smallest AOD differences (−10% to 10%) were observed in the transition
regions (0.2 < AOD < 0.8). These conclusions are similar to those of the VIIRS and ground measurement
comparisons in Section 4.1. As discussed in [16], the biases between the VIIRS and MODIS AODs are
potentially related to surface conditions such as surface brightness and vegetation coverage, because
the aerosol retrieval algorithm does not work well in urban areas with bright reflective regions [19,23].
The biases are due to the limitations of the DT algorithm over sparse vegetated surfaces, because
Wuhan is dominated by built-up and bare land surfaces (Figure 1), and the retrieval quality depends
on the surface reflectance and aerosol model schemes used in the look-up table. These results suggest
that the aerosol model and surface reflectance applied in the DT algorithm should be treated separately
according to different aerosol types and land cover characteristics. These analyses could help reduce
the uncertainty in AOD products using the DT retrieval algorithm of VIIRS and MODIS. Overall,
the DT algorithm in VIIRS still needs improvement and modifications to achieve good accuracy, similar
to that of MODIS AOD retrievals.
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Figure 6. Mean spatial distribution of the AOD difference from 2014 to 2016: (a) VIIRS IP vs. MOD04
3 km and (b) VIIRS IP vs. MYD04 3 km. The negative and positive signs indicate under- and
overestimations, respectively.

5. Conclusions

The VIIRS sensor, which is a next-generation polar-orbiting operational environmental sensor
with a capability for global aerosol observations, provided the multi-year global aerosol data used in
this study. In this work, VIIRS and MODIS high-quality AODs at 550 nm over Wuhan were validated
against ground sun photometer measurements. The comparison spanned from 1 January 2014 to
31 December 2016. Compared with the ground sun photometer measurements over Wuhan, the VIIRS
AOD IP exhibited an underestimation by 5% for cities. On the contrary, the MODIS C006 AOD retrievals
were significantly overestimated over the Wuhan sites, with mean overestimations of 13% and 7% for
Terra and Aqua, respectively. The evaluation and comparison of the results showed that the VIIRS IP
retrievals and ground sun photometer measurements had a low R2 of 0.55, with only 52% of retrievals
falling within the expected error range established by MODIS over land. The MODIS AODs indicated
higher correlations (0.79 for Terra and 0.76 for Aqua) with the ground sun photometer measurements
and lower RMSEs (0.18 for Terra and 0.17 for Aqua) and MAE values (0.09 for Terra and 0.04 for Aqua)
than the VIIRS IP AOD products. Bias analyses demonstrated an appropriate aerosol model selection
of the VIIRS retrieval over Wuhan, but the larger standard deviations (i.e., uncertainty) of VIIRS AODs
than that of MODIS AODs were attributed to the less robust retrieval algorithm. Monthly variations
displayed larger underestimated AODs of VIIRS in winter, which was attributed to the large positive
bias in surface reflectance estimation, due to sparse vegetation and the larger surface brightness of
Wuhan in this season. The spatial distribution of VIIRS and MODIS AOD observation revealed that the
VIIRS IP AODs over the high-pollution areas (AOD > 0.8) with sparse vegetation were underestimated
by more than 20% and 40% in Wuhan and several regions, respectively. By contrast, several clear
areas (AOD < 0.2) indicated an overestimation of about 20% in the northeastern region. In summary,
the VIIRS IP AOD at 550 nm can provide a solid dataset with a high resolution (750 m) for quantitative
scientific investigations and environmental monitoring over Wuhan. However, the performance of
dark target algorithm in VIIRS is associated with aerosol types and ground vegetation conditions,
and it needs to be improved and modified to achieve good accuracy, similar to that of MODIS AOD
retrievals. This study and its results are indispensable for achieving a better, more accurate evaluation
of VIIRS AODs with high spatial resolution in urban cities, which will play an important role in the
assessment of environment quality for human life, and research on regional climate change.
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Abstract: The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi
National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution
Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and
is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental
Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS
atmospheric correction algorithm. The “MODIS-like” VIIRS data (VIIRS_ML) are being produced
experimentally at NASA, from a version of the “dark-target” algorithm that is applied to MODIS.
In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over
the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318)
measurements during 2 May 2012–31 March 2014 at three sites. These sites represent three different
surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the
retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias
(MB) of 0.04–0.06 and the correlation of 0.83–0.86, with the largest MB (0.10–0.15) observed in Beijing.
In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13–0.14 and a higher
correlation (0.93–0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed
by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol
model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant
model types during the evaluation period. The overall accuracy rate of the aerosol model used in
VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in
Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015,
but high seasonal differences are found especially over the Xinglong site. The values of SSA from
VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes,
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with a positive bias of 0.02–0.04 for fine mode, 0.06–0.12 for coarse mode and 0.03–0.05 for bi-mode at
440 nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors
(e.g., surface reflectance characterization or cloud contamination) are important sources of error
in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from
non-ideality in these aerosol models.

Keywords: aerosol optical depth; aerosol models; VIIRS; NCP region

1. Introduction

Atmospheric aerosols have important impacts on climate, air quality and human health [1–3].
Their properties are highly variable in both space and time. Space-based platforms provide a global
view of the aerosol system, unmatched by any other measurement system in terms of the spatial
coverage [4]. With the long-history of aerosol products derived from the Moderate resolution Imaging
Spectroradiometer (MODIS) and the aging of the instrument, there is programmatic interest in
continuing similar aerosol retrieval capabilities. Since the launch of the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP)
satellite in late 2011, there has been great interest in retrieving aerosol properties from VIIRS [5–7].

Currently, there are multiple algorithms available for deriving aerosol optical depth (AOD) and
other aerosol properties from VIIRS data [6,8]. Here, we consider two. The VIIRS Environmental
Data Record (VIIRS_EDR) is being produced by the United States National Oceanic and Atmospheric
Administration (NOAA) [6]. At the same time, the National Aeronautics and Space Administration
(NASA) is considering long-term continuity for developing an aerosol climate data record. For this
purpose, Levy et al. are experimenting with a “MODIS-like” dark-target algorithm for use on VIIRS
data (VIIRS_ML) [8]. How does each of these algorithms perform for retrieving AOD and other aerosol
properties over China, a region of extreme diversity of aerosol sources, compositions, and loadings?

Preliminary evaluation of VIIRS_EDR and VIIRS_ML derived AOD, has been performed
separately using co-located sunphotometer data from the AErosol Robotic NETwork (AERONET) and
other networks [9]. For the period of 1 May 2012–30 April 2013, Jackson et al. showed VIIRS_EDR
underestimated the AOD over land with global mean bias of −0.02 [6]. However, the Suomi NPP
VIIRS aerosol data product assessment report showed VIIRS_EDR overestimated the AOD in land
of 0.06 to 0.11 for the period of 1 May 2012–14 October 2012 [10]. In addition, larger biases were
found in western Asia and India [9]. Since experimental VIIRS_ML has only been available since 2015,
the evaluation is limited. Levy et al. briefly validate the VIIRS_ML AOD at 550 nm by comparing it to
AERONET observations from March 2013 to February 2014 and showed VIIRS_ML overestimates the
AOD over land with global positive bias of 0.005 [8].

The above studies have limited scope in that they only provide estimates of the global expected
error over land. They do not focus on evaluating products over regional scales, especially where
AERONET data are sparse. Hence, the focus of this study is to evaluate VIIRS_EDR and VIIRS_ML
data over the North China Plain (NCP: 114–120◦E, 34.5–41◦N), one of the most densely populated
regions in China that has experienced enormous economic growth in past two or three decades [11–14].
Indeed, the NCP is one of the most severely polluted areas in the world with frequent heavy haze
events in recent years [11,15,16]. Given that retrieved aerosol optical properties are often used as
a proxy for assessing climate and air quality in the NCP region, a regional validation of VIIRS aerosol
products has important consequences [12,17,18].
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The organization of this paper is as follows. We introduce the VIIRS instrument and the two
aerosol retrieval algorithms and corresponding data in Section 2. The validation data set and methods
for inter-comparison are in Section 3. The AOD evaluation results are presented in Section 4. Section 5
states the aerosol model types and the optical properties comparison between the CE318 sunphotometer
and VIIRS, including VIIRS_EDR and VIIRS_ML. The conclusions are presented in Section 6.

2. VIIRS Satellite Data

2.1. What Is VIIRS?

VIIRS is a cross-track scanning radiometer with 22 spectral bands covering the visible/infrared
spectrum from 0.412 to 12.05 μm. The design and concept of VIIRS operations combine aspects
from several legacy instruments, including the NOAA’s Advanced Very High Resolution Radiometer
(AVHRR), NASA’s MODIS, Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the Department
of Defense’s Operational Linescan System (OLS) sensors [19]. It has a wider swath (~3000 km) than
MODIS, which allows a global sample of the Earth everywhere every day. It flies in a Sun-synchronous
near-circular ascending polar orbit 829 km above the Earth with the local equator-crossing time at 13:30.

VIIRS has three types of bands: imagery bands (I-bands), moderate resolution bands (M-bands),
and the day-night band [6]. The M-bands (total 16 bands) have 0.742 km × 0.776 km nadir resolution
and 1.60 km × 1.58 km at the edge of scan. Other bands are used to create the VIIRS Cloud Mask (VCM),
which is used as input to aerosol algorithms, as well as in internal tests to characterize environmental
conditions. Most of M-bands are used to derive the aerosol parameters. Specifically, M1 (0.412 μm),
M2 (0.445 μm), M3 (0.488 μm), M5 (0.672 μm), and M11 (2.25 μm) bands are used over land; and M5,
M6 (0.746 μm), M7 (0.865 μm), M8 (1.24 μm), M10 (1.61 μm), and M11 are used over ocean. A detailed
description of the VIIRS bands is shown in [19].

2.2. Overview of the Two Retrieval Algorithms over Land

The VIIRS_EDR and VIIRS_ML algorithms are similar in many ways. Both algorithms start with
the satellite measurements of spectral reflectance at the top-of-atmosphere (TOA), and are compared
to a look-up table (LUT) to determine the most plausible solutions for aerosol and surface properties.
The measured reflectance at the TOA is a summation of scattering events from the surface and the
atmosphere. In both algorithms, the aerosol optical properties of the aerosol models are essential for
radiative transfer computing to generate the atmospheric LUT that is needed for AOD retrievals.

However, there are also differences. The VIIRS_EDR algorithm has the heritage from the MODIS
atmospheric correction algorithm for land surface reflectance, in which the expected surface reflectance
ratio at different wavelengths are used as a constraint in retrieving AOD [20,21]. In contrast, VIIRS_ML
has the heritage from the MODIS Collection-6 aerosol algorithm, in which surface reflectance ratios
at different wavelengths are prescribed and the TOA reflectance is used as the most important
constraints [8,22]. Aerosol model type assignment in the two algorithms is also different. In VIIRS_EDR
algorithm, the aerosol model type is selected at each pixel for each inversion by using extra blue
wavelengths to constrain the aerosol type, while in the VIIRS_ML algorithm, the aerosol model type
is assigned to each region and each season prior to retrieval based on the past cluster analysis of
AERONET inversions [22,23]. In our assessment of the VIIRS AOD in the NCP region, we will also use
aerosol properties from CE318 inversions to evaluate the aerosol model types and associated optical
properties in the VIIRS_EDR and VIIRS_ML algorithms, and thereby, analyze one likely source for
AOD retrieval uncertainties.

Based on the climatology of AERONET inversion data, the VIIRS_EDR algorithm defines a set of
five microphysical aerosol model types. These five models are denoted as dust (for example, observed
at Cape Verde), high absorption smoke (African savanna, Zambia), low absorption smoke (Amazonian
forest, Brazil), clean urban (Goddard Space Flight Center, Greenbelt, MD, USA), and polluted urban
(Mexico City, Mexico) aerosols. All model types have size distributions defined by bimodal lognormal
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distributions of spherical particles [6]. As explained by Jackson et al. [6], the retrieval LUT is created
by starting with a Mie scattering code, for which aerosol inputs include a real part and an imaginary
part of refractive indices and size parameters of aerosol fine and coarse mode (i.e., volume mean
radius, standard deviation and volume concentration). During the retrieval, the algorithm selects the
aerosol models with the lowest residual which is computed based on deviations between the 412 nm,
445 nm, 488 nm, and 2250 nm surface reflectances predicted from the 672 nm surface reflectance and
the computed surface reflectances using the retrieved AOD for that model type.

For the VIIRS_ML, aerosol model types are also derived from AERONET inversion climatology.
However, the retrieval algorithm uses that information in a different way. Levy et al. clustered
and classified AERONET retrieval products into statistics that represented the most likely aerosol
conditions for a particular region and season [23]. These aerosol model types are separated into
fine-mode dominated (fine model) and coarse-mode dominated (coarse model), and the fine model is
further separated into being strongly absorbing, moderately absorbing and weakly absorbing aerosol
models. In the classification, the moderately absorbing aerosol model is set as the default, overwritten
only if clear dominance of one of the other two aerosol model types is observed. By clustering, it is
shown that the single scattering albedo (SSA) values at 670 nm of three fine models is ~0.85 for strongly
absorbing, ~0.90 for moderately absorbing and ~0.95 for weakly absorbing and ~0.95 for the coarse
model. The global type classification was updated for Collection-6, by classifying the AERONET data
through 2010 [22,23]. Note that the categories of aerosol model type used for VIIRS_ML are not exactly
analogous to those used for VIIRS_EDR.

2.3. VIIRS_EDR Data

The VIIRS_EDR level 2 aerosol products are obtained from NOAA Comprehensive Large
Array-data Stewardship System (CLASS) at http://www.nsof.class.noaa.gov. The VIIRS_EDR aerosol
parameters are derived primarily from the M-bands of the radiometric channels covering the visible
through the shortwave infrared spectral regions (412 nm to 2250 nm). As explained by Jackson et al. [6],
the VIIRS_EDR AOD is generated from 8 × 8 pixel aggregations of the intermediate product (IP),
where in turn the IP represents retrieved AOD for each and every native resolution (e.g., 0.75 km) pixel.
The pixels with clouds, cloud shadows, snow, ice, subpixel water, bright land surface, fire, sunglint,
suspended sediments or shallow water, and large solar zenith angle are screened out using the internal
tests and the external VIIRS VCM before proceeding with the aerosol retrieval [6]. The VIIRS_EDR
product represents the statistics of the 8 × 8 aggregation, which is a retrieve then average strategy.
Consequently, the resolution of the VIIRS_EDR data is ~6 × 6 km2 at nadir (~12.8 × 12.8 km2 at the
edge of scan). Data screening and aggregation methods can be seen in [6].

VIIRS_EDR AOD has been collected from 2 May 2012 to 31 March 2014 over the NCP. The data
between 15 October 2012 and 27 November 2012 are rejected because of an inadvertent error introduced
in the operational aerosol code during this period [6]. The AOD at 488 nm, 550 nm and 672 nm and
AOD Quality Flags (QF1), as well as Land Model Aerosol Index flag (QF4), are used in this study.
The values of QF1 refer to the estimated “quality” of the retrieval product, so that QF1 = 0, 1, 2,
and 3, represent not value produced, low, medium and high quality, respectively. The values of
QF4 refer to which aerosol model type was used in the AOD retrieval, where QF4 = 0, 1, 2, 3, and 4,
refer to dust, high absorption smoke, low absorption smoke, clean urban, and polluted urban aerosol
model, respectively.

2.4. VIIRS_ML Data

VIIRS_ML data are available from the NASA Atmosphere Science Investigator-led Processing
System at the University of Wisconsin (A-SIPS; http://sips.ssec.wisc.edu/). Following the strategy of
the Dark-Target retrieval, the VIIRS_ML follows an average, then retrieve once logic [8]. This means
that the averaging is upon observations (spectral reflectance) within the box, and following the
MODIS protocol, the aerosol retrieval is performed only once. Using 10 × 10 pixel aggregations,

78



Remote Sens. 2017, 9, 432

the VIIRS_ML aerosol product is reported at 7.5 km (at nadir) resolution based on M-band pixel
resolution. The VIIRS_ML algorithm does the cloud masking by applying the internal spatial
variability and reflectance threshold tests (e.g., 3 × 3 pixel spatial variability and visible/1024/1038
nm tests). The strategies for masking, selecting and aggregating pixels for VIIRS_ML are described
in [8]. Similar to the VIIRS_EDR, the AOD at 550 nm, 488 nm and 672 nm over land and the Quality
Flag (QF) of aerosol retrievals during 2 May 2012 to 31 March 2014 are used. In order to be consistent
with the analysis of VIIRS_EDR, VIIRS_ML data during 15 October 2012 to 27 November 2012 were
not used for evaluation. The values of this QF are similar to the VIIRS_EDR QF1: 0 = bad, 1 = marginal,
2= good, and 3 = very good.

As for the aerosol model type, Levy et al. note that the aerosol model in NCP region is assumed
to be moderately absorbing fine model during Winter (DJF) and Spring (MAM), and weakly absorbing
fine model during Summer (JJA) and Autumn (SON) [22]. Since the aerosol type may differ day-to-day,
this assumption is meant to be climatologically representative and can lead to errors in instantaneous
AOD retrieval. These same assumptions are used for the VIIRS_ML.

3. Ground-Truth Data and Methods for Satellite-Sunphotometer Comparison

3.1. Sunphotometer Data

The ground data used to evaluate the VIIRS aerosol products in this study consists of CE318
sunphotometer (CE318) observations and retrievals. The CE318 instrument performs direct sun
extinction measurements at eight wavelengths ranging from 340 to 1020 nm and sky radiance
measurements at four wavelengths, i.e., 440, 675, 870, and 1020 nm. The AOD data were calculated from
direct sun observations with an accuracy of 0.01 to 0.02 [24,25]. Refractive index, volume mean radius,
volume concentration and single scattering albedo (SSA) retrieved from the CE318 sky measurements
characterize the aerosol type. The uncertainties of refractive index are 30–50% for the imaginary
part and 0.04 for the real part when AOD at 440 nm (AOD440nm) > 0.4 and solar zenith angle > 50◦,
and the uncertainties increase for lower AODs [26,27]. SSA uncertainty is estimated to be less than
0.03 for AOD440nm > 0.4 and the uncertainty increases for lower AODs [26,27]. Note that inversion
data (size/optics) are sparse compared to direct sun observations of spectral AOD.

CE318 sunphotometer data (including the corresponding inversion products) over three sites
in NCP region during the period of 2 May 2012–31 March 2014 were used. The location and
description of the three CE318 sunphotometer sites are provided in Table 1. These three sites can
be considered as representative of urban (Beijing), suburban (XiangHe) and regional background
(Xinglong) environments, respectively. Affected by Asian monsoons, the NCP region has a moderate
continental climate with cold winters and hot summers. Heavy anthropogenic pollution from
urbanization, industrial, and agricultural activities mixed with coarse dust particles (most occurring in
spring) result in a rather complex nature of aerosol physical and optical properties in the NCP [12].
Notably, the regional background station Xinglong is located at a mountain with the elevation of 970 m
which is higher than the other two sites. However, even at this station, urban/industrial and dust
aerosol could occur through aerosol regional transportation [28] and secondary aerosol formation.
Therefore, as will be shown in our analysis, the complex features of aerosol properties may help explain
some of the uncertainties in satellite retrievals of AOD in this region.

Table 1. Site location and description of the CE318.

Station Name Lon (◦) Lat (◦) Site Description

Beijing 116.381 E 39.977 N Urban station, 92 m a.s.l., located in urban area of Beijing
XiangHe 116.962 E 39.754 N Suburban station, 36 m a.s.l., 50 km to the east of Beijing

Xinglong 117.578 E 40.396 N Regional back-ground station, 970 m a.s.l., on the top of
a mountain, 100 km to the north of Beijing
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Data at Beijing and XiangHe are downloaded from AERONET (http://aeronet.gsfc.nasa.gov/)
and the data at Xinglong are obtained from China Aerosol Remote Sensing Network (CARSNET) [29].
AERONET level 1.5 inversion data (from sky-light measurements) are used since the level 2 inversion
data are very less frequent and unsuitable for data statistics. At the same time, we used the conditions
of AOD440nm > 0.4 and solar zenith angle > 50◦ to constrain the data quality according to [26,27].
The AOD in these two networks are consistent with one another as the correlation coefficients are
larger than 0.999 and have a 99.9% significance level [29]. The CARSNET calibration and comparison
with AERONET are described in detail in other references [29–31].

It is noted that Beijing and XiangHe are part of AERONET stations, and their aerosol data during
2005 were used in the cluster analysis for the VIIRS_ML aerosol model assignment, but the Xinglong
site was not used [23]. Moreover, the retrieved aerosol properties in recent years may change from those
used in 2005 and 2010 due to the rapid development in the past few years over the NCP region [11,12].
Therefore, using aerosol property data from more ground sites during recent years over this region
can be used to help evaluate whether those past analyses from shorter periods (e.g., only one year)
and fewer sites are still representative. Notably, none of these three sites were used in the analysis by
Dubovik et al. [27], which means they do not characterize typical aerosol properties of smoke, dust,
and urban particles that have been adopted in the VIIRS_EDR algorithm. Thus, these three sites are
better suited to evaluate the aerosol model type used in both the VIIRS_EDR and VIIRS_ML algorithms
over the NCP region.

3.2. Method for Data Matchup

The spatiotemporal collocation between satellite and CE318 measurements follows the method
of the Multi-sensor Aerosol Products Sampling System (MAPSS), in which sunphotometer data
with ±30 min of satellite overpass are compared with satellite data within 25 km radius of the
sunphotometer [32]. Minimum requirements for a matchup are at least two observations from
AERONET and 5 pixels from the satellite. The CE318 AOD at 550 nm and at VIIRS blue (488
nm) and red (672 nm) bands are interpolated from 440 nm, 675 nm, 870 nm and 1020 nm by
using an established fitting method [33]. The results for comparison of AOD values between VIIRS
(VIIRS_EDR and VIIRS_ML) and ground CE318 observations are presented with various statistical
parameters, including the number of matchup data (N), the mean bias (MB), root mean squared error
(RMSE), correlation coefficient (R), and the percentage of data within the expected error 0.05 + 0.15
AOD (%EE) which is used as the MODIS AOD expected uncertainty over land [34], the slope (Slope)
and intercept at y-axis (y-int) of linear regression.

3.3. Methods for Aerosol Model Evaluation and Aerosol Properties Analysis

Due to constraints placed on the inversion of CE318 sky-radiance data (AOD440nm > 0.4;
solar zenith angle > 50◦, etc.), statistics for aerosol optical properties are sparse. To collocate
aerosol optical properties from sunphotometer with aerosol models assumed by either VIIRS retrieval
algorithm, we require different averaging domains. Here, we use daily-averaged aerosol optical
properties retrieved from CE318 sky radiance measurements. Since the aerosol model types used for
satellite AOD retrievals may vary spatially, we select only the model type assumed at the pixel that
includes the site.

In the extraction of AOD from the VIIRS_EDR, those with quality QF < 1 retrievals are rejected
(these with QF < 1 are not products and are mostly with cloud contamination and sunglint).
Seasonal and total frequencies of each aerosol model type occurrence in the three sites are calculated to
show the typical aerosol model types used in the VIIRS_EDR land algorithm over NCP sites.

The aerosol model type evaluation of VIIRS (VIIRS_EDR and VIIRS_ML) is based on the SSA
comparisons between VIIRS and CE318. The SSA values at four wavelengths (440 nm, 670 nm,
870 nm and 1020 nm) of the five aerosol model types used in VIIRS_EDR can be obtained from
Dubovik et al. [27]. The values of SSA at 670 nm (SSA670nm) are 0.98, 0.84, 0.93, 0.97 and 0.88 for
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dust, high absorption smoke, low absorption smoke, clean urban and polluted urban aerosol model,
respectively. Thus, the SSA values at the NCP sites in the VIIRS_EDR retrival can be derived from
the aerosol model type assumed in the VIIRS_EDR pixel that includes the site. The VIIRS_ML
aerosol model type is assumed globally based on the cluster analysis of SSA670nm derived from all
AERONET inversions and it is fixed in each season for the NCP region (i.e., weakly absorbing fine
model for Summer and Autumn: SSA670nm ~ 0.95, moderately absorbing fine model for Spring and
Winter: SSA670nm ~ 0.90) [22,23], so it is unnecessary to extract the aerosol model from VIIRS_ML
pixel-by-pixel. Thus, we do the seasonal comparison; that is, the seasonal mean SSA670nm values of
CE318 inversion are calculated and compared with the seasonal SSA670nm values of the VIIRS_EDR
and VIIRS_ML. Only the VIIRS SSAs with the AOD550nm > 0.25 are used to meet the requirement of
CE318 AOD440nm > 0.4 [23].

The SSA is also used to classify the aerosol type of the CE318 inversion, which is to evaluate
the aerosol model type for each retrieval from the VIIRS algorithms. We firstly collocate the daily
matchup data between the VIIRS_EDR and CE318 and between the VIIRS_ML and CE318. To evaluate
the aerosol model type of VIIRS_EDR, the CE318 inversions are classified to the five aerosol types
as the VIIRS_EDR. The CE318 inversion with Angstrom exponent < 0.6 and AOD at 1020 nm > 0.3
(according to Dubovik et al. [27]) is classified as dust type. If not dust type, the CE318 inversion with
SSA670nm < 0.86 is the high absorption smoke, with 0.86 < SSA670nm < 0.905 is polluted urban, with
0.905 < SSA670nm < 0.95 is low absorption smoke, and with SSA670nm > 0.95 is clean urban aerosol
type. As for the evaluation of aerosol model type used in the VIIRS_ML, the CE318 inversions are
classified to the four aerosol types as the VIIRS_ML. Use the same way to find out the CE318 data
with coarse model (same as the dust). For the rest CE318 data, that with SSA670nm < 0.875 is regarded
as strong absorbing fine model, 0.875 < SSA670nm < 0.925 is the moderately absorbing fine model,
and SSA670nm > 0.925 is the weakly absorbing fine model. The threshold values of the classification are
based on the SSA values of the aerosol models used in the VIIRS algorithms. This method is actually
using the aerosol size and scattering properties to classify the aerosol type, which has been studied by
Giles et al. [35]. After classifying the CE318 aerosol type, the comparisons of aerosol type between the
VIIRS_EDR and CE318 and between the VIIRS_ML and CE318 are done to show the accuracy rate of
aerosol model type used in the VIIRS_EDR and VIIRS_ML. If the VIIRS aerosol model type is same as
that of CE318, the aerosol model type used in the VIIRS is deemed as accurate. The accuracy rate is
defined as the ratio of the number of accurate to the number of all daily matchups. The accuracy rate
reflects the applicability of aerosol model type used in the VIIRS algorithms.

We also conduct the SSA comparison of different modes (fine, coarse and bi-mode) between the
VIIRS_EDR and CE318 retrieval. We compute the SSA for all aerosol modes at 440 nm in the VIIRS_EDR
by inputting the aerosol parameters (refractive indices, size parameters and volume concentrations of
each mode) into Mie scattering calculation [36]. The reason for using 440 nm is that the aerosol model
properties in the VIIRS_EDR algorithm are mostly referred at 440 nm [6]. The input aerosol parameters
of the VIIRS_EDR at each site are obtained by extracting the aerosol model type over the site pixel
and calculated according to the Table 2 in reference [6]. Although SSA440nm is available from CE318
inversion, for consistency we also use the Mie code to compute the SSA440nm based on the aerosol
optical properties inversed from CE318 sky radiances. We have compared the SSAs between the CE318
inversion and the Mie scattering calculation and the result shows that the bias of the two SSA values
is very low (less than 0.01). That is because the CE318 inversion also uses Mie scattering calculation
to obtain SSA. The resultant SSA440nm of CE318 is compared with that of the VIIRS_EDR SSA440nm.
Since the CE318 sky-radiance inversion product is only reliable for AOD440nm > 0.4, we also choose the
aerosol properties of the VIIRS_EDR when AOD550nm > 0.25 [23].
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Table 2. Statistics of matchup of CE318 and VIIRS AOD at 550 nm in the NCP region during 2
May 2012–31 March 2014. N is the number of matchup data. MB is the mean bias. RMSE is root
mean squared error. R is correlation coefficient. %EE stands the percentage of data within the
expected error of 0.05 + 0.15 AOD. Slope and y-int are the slope and intercept at y-axis of the linear
regression, respectively.

QF N MB RMSE R %EE Slope y-int

VIIRS_EDR vs. CE318

QF > 0 860 0.05 0.24 0.83 44.3 0.85 0.07
QF > 1 762 0.04 0.22 0.84 46.5 0.88 0.05
QF = 3 564 0.06 0.23 0.86 48.9 0.91 0.07

VIIRS_ML vs. CE318

QF > 0 817 0.14 0.25 0.94 51.0 1.27 0.02
QF > 1 755 0.13 0.24 0.94 53.1 1.26 0.01
QF = 3 683 0.13 0.25 0.93 54.0 1.26 −0.00

4. Results of AOD Inter-Comparison

4.1. Evaluation of the VIIRS_EDR AOD at 550 nm

Table 2 reports the validation results of the two VIIRS algorithms compared to the collocated
ground CE318 observations, for the period of 2 May 2012–31 March 2014 over the NCP region.
There are 860, 762 and 564 instantaneous VIIRS_EDR–CE318 matchups of QF > 0, QF > 1 and
QF = 3 at the NCP sites during the period, respectively. Starting with gross statistics, the slope
and intercept of the best-fit equation between the VIIRS_EDR and CE318 AOD are 0.85–0.91 and
0.05–0.07, respectively, with R ranging from 0.83–0.86. The VIIRS_EDR data are well correlated with
CE318 observations. However, the VIIRS_EDR AOD showed a positive MB of 0.04–0.06 and a rather
large RMSE of 0.22–0.24. Only 44.3–48.9% of the compared AODs meet the expected error envelope of
0.05 + 0.15 AOD. Filtering by quality flag (QF > 1), the comparison improves for all statistics, however
constraining to only high quality flags (QF = 3) does not improve the overall agreement any further.
These issues need to be studied at each site.

The MB and RMSE in the NCP are both larger than the counterparts in the global assessment
statistics [6,9]. Table 3 presents the evaluation results of each NCP site, separately. Clearly, all properties
(MB, RMSE, R and %EE) demonstrate the worst performance over Beijing. The MB in XiangHe site is
(−0.02)–0.00 with high R of 0.89–0.92, which is more comparable to the global agreement [9]. Beijing is
an urban site, while the VIIRS_EDR uses the global surface reflectance ratios as the expected spectral
surface reflectance relationship, which may cause the largest error at the Beijing site [6].

Table 3. Statistics of the matchup between CE318 and VIIRS_EDR AOD at 550 nm over each site during
2 May 2012–31 March 2014.

VIIRS_EDR QF Site N MB RMSE R %EE Slope y-int

QF > 0
Beijing 336 0.10 0.29 0.76 36.9 0.83 0.17

XiangHe 323 −0.02 0.21 0.89 48.3 0.88 0.04
Xinglong 201 0.05 0.17 0.81 50.2 0.86 0.08

QF > 1
Beijing 291 0.10 0.27 0.79 38.8 0.90 0.14

XiangHe 289 −0.02 0.19 0.90 50.2 0.90 0.02
Xinglong 182 0.04 0.15 0.82 52.7 0.81 0.08

QF = 3
Beijing 204 0.15 0.30 0.80 36.8 0.82 0.22

XiangHe 220 0.00 0.18 0.92 53.6 0.89 0.05
Xinglong 140 0.02 0.14 0.83 59.3 0.81 0.06
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In the previous global evaluation for VIIRS_EDR products, it was recommended to use data with
a higher QF [9]. In the NCP, comparisons at both XiangHe (suburban) and Xinglong (rural) support
this recommendation (R and %EE increase and MB decreases with increasing QF). However, for the
Beijing site, the matchup statistics are poor, and increasing QF does not help. Thus, for sites that are
not optimal for aerosol retrieval in the first place (e.g., urban), QF may not be a useful diagnostic.

4.2. Evaluation of the VIIRS_ML AOD at 550 nm

Comparing the VIIRS_ML to CE318 (Table 2), there are 817, 755, and 683 matchups for QF > 0,
QF > 1, and QF = 3, respectively. Since each algorithm has its own definition of QF, there are different
relative contributions of each QF level [6,8]. Overall, the VIIRS_ML AODs show a high correlation
with CE318 (R is 0.93–0.94) but overestimates over this region with high MBs (0.13–0.14) and large
slope values for the equations of best fit (1.26–1.27). More than half of the VIIRS_ML data are within
the expected error envelope (%EE > 50%). As compared to VIIRS_EDR, the VIIRS_ML has a higher
bias, but has larger correlation with more data within the EE.

Following site-by-site comparison for the VIIRS_EDR, we evaluate the VIIRS_ML AOD at each
site (Table 4). Like the VIIRS_EDR, the VIIRS_ML shows the largest bias over the Beijing urban site.
Since the urban surface reflectance may be underestimated in the “dark-target” algorithm, this can
lead to an overestimation of AOD [37]. The VIIRS_ML AOD over XiangHe performs the best with
the highest values of R and %EE but the MB is not the lowest and it is higher than that between the
VIIRS_EDR and CE318 (MB of (−0.02)–0.00). However, the R values between the VIIRS_ML and CE318
at all three sites are higher than those found for the VIIRS_EDR and CE318. The values of %EE of the
VIIRS_ML over the XiangHe and Xinglong sites are higher but lower over the Beijing site compared to
those between the VIIRS_EDR and CE318.

Table 4. Statistics of the matchup of the CE318 and VIIRS_ML AOD at 550 nm over each site during 2
May 2012–31 March 2014.

VIIRS_ML QF Site N MB RMSE R %EE Slope y-int

QF>0
Beijing 292 0.26 0.33 0.94 21.2 1.19 0.18

XiangHe 340 0.09 0.20 0.97 70.6 1.26 −0.03
Xinglong 185 0.03 0.13 0.89 62.2 1.07 0.02

QF>1
Beijing 263 0.26 0.33 0.91 22.8 1.14 0.20

XiangHe 322 0.08 0.20 0.97 72.0 1.26 −0.04
Xinglong 170 0.03 0.12 0.92 64.1 1.19 −0.01

QF=3
Beijing 227 0.28 0.36 0.89 19.8 1.08 0.25

XiangHe 302 0.07 0.19 0.97 73.2 1.26 −0.04
Xinglong 154 0.01 0.11 0.92 66.9 1.15 −0.02

The results of the quality flag analysis of the VIIRS_ML AOD are similar to those for the
VIIRS_EDR. Using high quality data leads to the best performance at the XiangHe and Xinglong
sites but it is not suitable at the Beijing site.

4.3. Evaluation of the VIIRS AOD at Red and Blue Bands

While the AOD is retrieved at 550 nm, neither algorithm uses reflectance at 550 to derive AOD.
This is because the Earth’s surface tends to be brighter in green wavelengths (e.g., vegetation), and not
suitable for aerosol retrieval. The VIIRS_EDR algorithm is based on the calculation of surface reflectance
at blue (488 nm) and red (672 nm) and three other bands (412 nm, 445 nm and 2250 nm) [6]. As for the
VIIRS_ML algorithm, AOD at 550 nm is inversed by using 488 nm, 672 nm and 2257 nm measured
TOA reflectance to find a the optimal solution [8]. Hence, the VIIRS AOD spectral dependence between
blue and red bands are also evaluated with the CE318 data. According to quality flag analysis in
Sections 4.1 and 4.2, we choose the matchup data of QF > 1 for both the VIIRS_EDR-CE318 and the
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VIIRS_ML-CE318. Then, we selected the data of VIIRS_EDR, VIIRS_ML and CE318 with the dates in
common. That was to select the matchup data of VIIRS_EDR, CE318 and VIIRS_ML.

Figure 1 shows the average AODs of the matchup data between VIIRS_EDR, CE318 and VIIRS_ML
at three wavelengths over the three sites. Compared to CE318 measurements, the VIIRS_EDR AOD at
488 nm overestimates over Beijing and Xinglong but performs well for the XiangHe site. At 672 nm,
the VIIRS_EDR AOD also overestimates over Beijing, but slightly undervalues AOD at XiangHe.
However, the VIIRS_ML AOD overestimates at all three wavelengths and over all the three sites,
especially over Beijing. The biases of each wavelength can reach 0.2. One of the possible reasons for
the larger bias over Beijing may be that the VIIRS_ML algorithm is actually the Dark-Target aerosol
retrieval algorithm and this algorithm may overestimate the AOD values over bright surfaces such as
urban centers by 0.2 [22,37]. The large VIIRS_ML biases may also be related to the errors of aerosol
model type (to be discussed in next section).

We also calculate the aerosol Angstrom Exponent (AE) between 488 nm and 672 nm
(AE = log(AOD488nm/AOD672nm)/ log(672nm/488nm)) to describe the AOD spectral dependence.
AE is often used as an indicator of aerosol size distribution which is related to aerosol type: AE ~ 0
corresponds to large particles; and AE ~ 2 corresponds to small particles. The average AE values
in Figure 1 are calculated from each matchup data set. The AE values of the VIIRS_EDR and the
VIIRS_ML show large differences when comparing to that from CE318. AE biases of the VIIRS_EDR
are 0.06 in Beijing, 0.31 in XiangHe and 0.55 in Xinglong, while the biases for the VIIRS_ML are −0.42
over Beijing, −0.17 in XiangHe and 0.20 over Xinglong. The AE of the VIIRS_EDR is larger than that
from CE318 over all the three sites, but the AE of the VIIRS_ML is often lower than CE318 except for
over Xinglong site. These indicate that the aerosol size of aerosol model type used in the VIIRS_EDR
algorithm is smaller while VIIRS_ML is larger except for Xinglong (the aerosol model type used in
VIIRS AOD retrieval will be discussed in next section).

Figure 1. The average aerosol optical depth (AOD) of matchup data at blue (488 nm), red (672 nm)
and 550 nm wavelengths between VIIRS_EDR, CE318 and VIIRS_ML. N is the number of matchup
data. The average and standard deviation of Angstrom Exponent (AE) from 488 nm and 672 nm of
each matchup data set is also shown in this figure: red for CE318, blue for VIIRS_EDR, and green for
VIIRS_ML.

5. Results of Aerosol Model and the Optical Properties Inter-Comparison

The aerosol model types used in the VIIRS_EDR and the VIIRS_ML over the NCP are evaluated
by comparing SSA values with those derived from the CE318 inversion. The comparisons of aerosol
optical properties between the VIIRS_EDR and CE318 are also shown in this section to help explain
the error from aerosol model used in VIIRS_EDR.
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5.1. Evaluation of the VIIRS_EDR Aerosol Model Type

Figure 2 shows the frequencies of each aerosol model type used in the VIIRS_EDR (hereafter
called M_VIIRS_EDR) AOD retrieval at the Beijing, XiangHe and Xinglong sites during the evaluation
period. For M_VIIRS_EDR, the dust and clean urban aerosol models are the two dominant model
types used in NCP region. In Beijing, the M_VIIRS_EDR shows that dust and clean urban models
account for more than 80% of the aerosols during the evaluation period. The frequency of the polluted
urban model is less than 1%. However, Beijing is a mega city with a population of approximately
21 million and five million vehicles are located in the heavy polluted NCP region. It is undisputed
that polluted urban aerosol is the dominant aerosol [38]. Thus, the M_VIIRS_EDR is unsuitable at the
Beijing site. Because XiangHe is located 50 km to the east of Beijing, the M_VIIRS_EDR for XiangHe
shows similar results to Beijing. However, XiangHe also shows some differences from Beijing: dust
and clean urban models decrease and other models increase. As for Xinglong station (regional back
ground station), the M_VIIRS_EDR shows more polluted urban and low absorption smoke and less
dust models than the Beijing and XiangHe stations. From Beijing to Xinglong, the M_VIIRS_EDR
shows that the frequency of polluted urban aerosol models increase, which is inconsistent with the
fact that pollution decreases from Beijing to Xinglong according to past study results in the NCP
region [12,28,39].

To show the aerosol model type differences between the VIIRS retrievals and CE318
sunphotometer observations, the seasonal values of SSA670nm of the CE318 inversion, VIIRS_EDR
and VIIRS_ML in the NCP three sites are shown in Table 5. Comparing the VIIRS_EDR and CE318,
the SSA670nm values from the VIIRS_EDR are higher than those from the CE318 during almost all
seasons and over all the three sites. This result reflects more frequent weakly absorbing aerosol model
type used in VIIRS_EDR retrievals in the NCP sites, as Figure 2 shows more frequency of dust and
clean urban aerosol models. The largest difference between the VIIRS_EDR and CE318 at Beijing and
XiangHe sites is shown during winter with 0.07 at Beijing and 0.08 at XiangHe. However, the difference
at Xinglong during winter is smallest. The largest difference at the Xinglong site occurred during the
spring and summer and the difference value is 0.03, which is less than those at Beijing and XiangHe.
These indicate that the M_VIIRS_EDR at Beijing and XiangHe have more errors than at Xinglong.

Figure 2. The frequencies of the aerosol model types used in the VIIRS_EDR at Beijing, XiangHe and
Xinglong. Urban(P) is the polluted urban aerosol model, Urban(C) is the clean urban aerosol model,
Smoke(LA) is the low absorption smoke aerosol model, Smoke(HA) is the high absorption smoke
aerosol model, and the last aerosol model is for Dust.

To know how many aerosol types used in VIIRS_EDR are suitable, we calculated the accuracy
rate of the M_VIIRS_EDR at the NCP three sites and the results are shown in Figure 3. The accuracy
rates of the M_VIIRS_EDR over Beijing, XiangHe, and Xinglong are 0.24, 0.20, and 0.37, respectively
(Figure 3a). The accuracy rate of the M_VIIRS_EDR over Xinglong is highest, which is consist with
the lowest SSA difference between the VIIRS_EDR and CE318 at Xinglong. As for each model type,
although the dust model is more used in the M_VIIRS_EDR (Figure 2), the accuracy rate of the dust
model is very small at Beijing and XiangHe and even equal to zero at Xinglong site (Figure 3a,c).

85



Remote Sens. 2017, 9, 432

The accuracy rate of low absorption smoke is relatively higher than other models of M_VIIRS_EDR.
The accuracy rate of the polluted urban aerosol model is practically zero because the frequency of
polluted urban model occurred in the M_VIIRS_EDR over Beijing and XiangHe stations is very low
(Figure 2) and it is different from the aerosol type of the CE318 of the matchup. All these results
indicate that the M_VIIRS_EDR selected more weakly absorbing aerosol models in the NCP sites.

It is worth to noting that with more frequencies of clean and dust aerosol models (higher SSA
values) used in the VIIRS_EDR retrieval, the VIIRS_EDR AOD should have an underestimation if the
surface reflectance characterization in VIIRS_EDR algorithm is perfect. The fact that the VIIRS_EDR
AOD in Beijing has a high bias reflects that other factors (e.g., surface reflectance characterization
or cloud contamination) are important error sources in the VIIRS_EDR algorithm, and their effects
on aerosol retrievals override the effects from non-ideality in aerosol model types. This can be
an interesting topic for future studies.

Table 5. The seasonal values of SSA at 670 nm from CE318 inversion, VIIRS_EDR and VIIRS_ML
during 2 May 2012–31 March 2014.

Station Sensor
SSA at 670 nm

Spring Summer Autumn Winter

Beijing
CE318 0.94 ± 0.02 0.96 ± 0.03 0.95 ± 0.03 0.91 ± 0.04

VIIRS_EDR 0.96 ± 0.02 0.96 ± 0.03 0.97 ± 0.02 0.98 ± 0.01
VIIRS_ML ~0.9 ~0.95 ~0.95 ~0.9

XiangHe
CE318 0.91 ± 0.04 0.95 ± 0.03 0.92 ± 0.04 0.89 ± 0.04

VIIRS_EDR 0.96 ± 0.02 0.95 ± 0.03 0.96 ± 0.03 0.97 ± 0.01
VIIRS_ML ~0.9 ~0.95 ~0.95 ~0.9

Xinglong
CE318 0.93 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.96 ± 0.03

VIIRS_EDR 0.96 ± 0.02 0.94 ± 0.02 0.95 ± 0.03 0.97 ± 0.00
VIIRS_ML ~0.9 ~0.95 ~0.95 ~0.9

Figure 3. The accuracy rate of the aerosol model used in: the VIIRS_EDR (a,c); and the VIIRS_ML (b,d).
The accuracy rate stands for the ratio of the number of accurate model type used in the VIIRS to all the
matchups between the VIIRS and CE318. The accuracy rate of each model is the ratio of the number of
accurate model to the matchups of its corresponded model type.

86



Remote Sens. 2017, 9, 432

5.2. Evaluation of the VIIRS_ML Aerosol Model Type

Using the same way of evaluating the M_VIIRS_EDR, the aerosol model type assumed in the
VIIRS_ML (M_VIIRS_ML) in the NCP sites is evaluated and shown in Table 5 and Figure 3. In Table 5,
it can be found that the biases of SSA670nm between the VIIRS_ML and CE318 are ≤0.04 in almost
all sites and all seasons except for Xinglong during the winter. The average bias for all seasons is
−0.015, 0.0075 and −0.0075 at Beijing, XiangHe and Xinglong, respectively. These biases are less than
the differences between the VIIRS_EDR and CE318 at the corresponding site. That is likely because
the M_VIIRS_ML is defined according to the AERONET sunphotometer inversion in local regions
while M_VIIRS_EDR is from the predefined aerosol model types at five sites located in other places.
Notably, the obvious undervaluation of the VIIRS_ML SSA over Beijing during almost all seasons may
cause the overestimation of the VIIRS_ML AOD over Beijing (MB ≥ 0.26 shown in Table 2) versus the
VIIRS_EDR.

However, there are some large differences of SSA670nm between the VIIRS_ML and CE318 in
some seasons. The moderately absorbing model in spring over Beijing used in the VIIRS_ML may
be inappropriate because the CE318 inversion shows weakly absorbing type. The largest difference
is found at Xinglong (regional background site). The absolute biases in all seasons over this site are
≥0.3 and the highest bias 0.6 is occurred in the winter. The CE318 shows weakly absorbing aerosols in
the winter that is in contrast to the moderately absorbing aerosols used by the VIIRS_ML. This may
indicate that the M_VIIRS_ML over the NCP may be unsuitable for regional background sites.

In Figure 3, it can be found that the accuracy rates of the M_VIIRS_ML over Beijing, XiangHe,
and Xinglong are 0.47, 0.51, and 0.46, respectively (Figure 3b). The average accuracy rate of the
M_VIIRS_ML over the NCP region (0.48) is higher than that of M_VIIRS_EDR (0.27). As for each
aerosol model type (Figure 3d), the accuracy rate of the weakly absorbing fine model is higher than
the moderately absorbing fine model in Beijing and XiangHe. However, in Xinglong, the accuracy
rate of the weakly absorbing fine model is lower than the moderately absorbing fine model. The large
difference of the accuracy rate of the two model types in Beijing reflects that the moderately absorbing
fine model assumed in the spring and winter may require careful consideration because of the dust in
the spring and more strongly absorbing aerosols in the winter cannot be neglected [39].

For different sites, the accuracy rates of the M_VIIRS_EDR over Beijing and XiangHe are higher
than their corresponding values of the M_VIIRS_EDR. From Beijing to Xinglong, the accuracy rate of
the M_VIIRS_EDR decreases, while M_VIIRS_ML varies little with lowest value over Xinglong site.
This reflects that the M_VIIRS_EDR is unsuitable over the NCP urban and suburban sites, while the
M_VIIRS_ML is suitable over urban and suburban sites. The highest accuracy rate of the M_VIIRS_EDR
over the NCP sites is only 0.37. Thus, the aerosol model type selection in the VIIRS_EDR algorithm is
inappropriate in the NCP region, which may cause an important error in the AOD inversion.

5.3. Inter-Comparison of Aerosol Properties between CE318 and the VIIRS_EDR

Since the M_VIIRS_EDR performs less well in the NCP region based on above analysis and
M_VIIRS_ML is defined according to the CE318 inversion in local regions, we only compare the
aerosol properties between CE318 and the VIIRS_EDR. Table 6 shows the averages of the SSA440nm

of fine, coarse and bi-modal aerosols derived from CE318 (AOD440nm > 0.4) and the VIIRS_EDR
(AOD550nm > 0.25) at the three sites over the time period of evaluation (2 May 2012–31 March 2014).
The values of SSA440nm from the CE318 are less than that of the VIIRS_EDR for all modes and all sites,
which indicates that VIIRS_EDR overestimates SSA440nm values over all sites (consistent with SSA670nm

in Table 5). The difference of SSA440nm in the coarse mode (i.e., 0.09 in Beijing, 0.12 in XiangHe, and 0.06
in Xinglong) is larger than SSA440nm in fine mode (i.e., 0.02 in Beijing, 0.04 in XiangHe and 0.03 in
Xinglong). This indicates that aerosol properties in the coarse mode in the VIIRS_EDR need to be
revised for the NCP region. The biases of bi-mode SSA440nm are 0.03 (Beijing), 0.05 (XiangHe) and 0.03
(Xinglong). The overestimation of SSA but largest positive AOD MB of the VIIRS_EDR over Beijing
site indicate again that other positive bias factor (e.g. surface reflectance characterization) overpowers
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the negative bias due to SSA of aerosol model type over Beijing. The largest overestimation of SSA and
negative MB of AOD (in Table 3) are occurred at XiangHe, which may indicate that errors from the
aerosol model type are overpowering at the XiangHe site.

Table 6. The fine (f), coarse (c) and bi-mode (Bi) aerosol SSA at 440 nm for CE318 and the VIIRS_EDR
during 2 May 2012–31 March 2014.

Station SSA(f) SSA(c) SSA(Bi)

Beijing
CE318 0.95 0.72 0.93

VIIRS_EDR 0.97 0.81 0.96
Bias(VIIRS-CE318) 0.02 0.09 0.03

XiangHe
CE318 0.93 0.66 0.91

VIIRS_EDR 0.97 0.78 0.96
Bias 0.04 0.12 0.05

Xinglong
CE318 0.95 0.72 0.93

VIIRS_EDR 0.97 0.78 0.96
Bias 0.02 0.06 0.03

Since the SSA is calculated by inputting the aerosol parameters in Table 2 from Jackson et al. [6]
to the Mie scattering code and large differences of SSA between the VIIRS_EDR and CE318 are
found above, it is necessary to compare the aerosol properties between the VIIRS_EDR and CE318.
The constraints of CE318 AOD440nm > 0.4 and VIIRS_EDR AOD550nm > 0.25 are also used and the
daily aerosol optical properties retrieved from CE318 sky radiance measurements are averaged
before the followed analysis. Table 7 shows the average aerosol physical properties from CE318
and the VIIRS_EDR. The refractive index is RI with real part is RI(r), while imaginary part is RI(i).
Volume mean radius, standard deviation and volume concentration are r, σ and V, respectively.
The fine and coarse mode aerosols are shown by f and c in bracket pairs. Figure 4 shows the seasonal
comparison of normalized aerosol physical properties from CE318 and the VIIRS_EDR at the three
sites. Each parameter is normalized between 0.1 and 1 to well show the difference of CE318 and the
VIIRS_EDR. The length of each radius in the circle equals 1 and each radius direction stands for one
aerosol parameter.

Table 7. The average aerosol physical properties (at 440 nm) of CE318 and VIIRS_EDR during 2 May
2012–31 March 2014.

Station Sensor RI(r) RI(i) r(f) σ(f) V(f) r(c) σ(c) V(c)

Beijing
CE318 1.49 0.0089 0.20 0.53 0.14 2.70 0.60 0.18

VIIRS_EDR 1.43 0.0043 0.19 0.44 0.13 3.15 0.69 0.19

XiangHe
CE318 1.49 0.013 0.19 0.53 0.13 2.81 0.62 0.16

VIIRS_EDR 1.43 0.0053 0.19 0.41 0.15 3.50 0.74 0.10

Xinglong
CE318 1.47 0.0083 0.22 0.56 0.10 2.84 0.61 0.10

VIIRS_EDR 1.43 0.0056 0.18 0.40 0.13 3.51 0.75 0.08

Distinctly differences of various parameters between CE318 and the VIIRS_EDR can be found.
For the total averages in three sites (Table 7), CE318 shows high values of RI(r) 1.47–1.49 and RI(i)
0.0083–0.013, which indicates that aerosol in the NCP is more absorptive than that used in the
VIIRS_EDR, which corresponds the overestimation of SSA for the VIIRS_EDR (Table 5). The r(f) values
from CE318 (0.19–0.22) are slightly higher than the values of the VIIRS_EDR (0.18–0.19), while the
r(c) values of CE318 (2.70–2.84) are significantly lower than the values of the VIIRS_EDR (3.15–3.51),
which may cause more dust aerosol for the VIIRS_EDR (Figure 2) and also reflects the dust aerosol
model in Cape Verde maybe different from the dust in Asia [40,41]. The σ(f) in CE318 is higher than the
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VIIRS_EDR but lower for σ(c). The V(f) values of CE318 are lower than that of the VIIRS_EDR except
for Beijing station. The V(c) of the VIIRS_EDR is comparable with that of CE318 except in XiangHe,
which consists with the lowest accuracy rate of the M_VIIRS_EDR in XiangHe (Figure 3a).

In Figure 4, the shapes generated by eight parameters (1, RI(r); 2, RI(i); 3, r(f); 4, σ(f); 5, V(f); 6, r(c);
7, σ(c); and 8, V(c)) for CE318 and the VIIRS_EDR differ from each other and each of them (CE318
and VIIRS_EDR) shows a different seasonal variation. For Beijing, CE318 shows similar shapes in
summer and autumn but significantly different in spring and winter; higher RI(r) in spring and winter
and higher RI(i) in winter. While the VIIRS_EDR shows two pairs of similar shapes; spring–summer
and autumn–winter. As for XiangHe station, CE318 shapes are similar to Beijing’s but the VIIRS_EDR
shows some difference from Beijing’s; autumn is not similar to winter but similar to spring and summer.
As for Xinglong, CE318 shapes show a distinct difference in winter compared to XiangHe’s due to the
lower RI(r), RI(i) and r(c) and higher r(f), while the VIIRS_EDR shapes are similar to XiangHe’s in
all seasons.

The significant differences of the aerosol microphysical properties between the VIIRS_EDR and
CE318 over the NCP indicate that the aerosol microphysical properties in the VIIRS_EDR algorithm
are not suitable over the NCP region. Furthermore, this also reflects that the five models based on the
five AERONET stations in the reference [27] can not be applied globally.

Figure 4. The comparisons of normalized aerosol physical properties from CE318 and VIIRS_EDR at
the three sites. Each parameter at each site is normalized between 0.1 and 1 to well show the difference
of CE318 and VIIRS_EDR. The length of each radius in the circle equals to 1 and each radius direction
stands for one aerosol parameter: 1, real part of refractive indices; 2, imaginary part of refractive indices;
3, volume mean radius of fine mode; 4, standard deviation of fine mode; 5, volume concentration
of fine mode; 6, volume mean radius of coarse mode; 7, standard deviation of coarse mode; and 8,
volume concentration of coarse mode, respectively. The values in last column in each site stand for the
values of the eight aerosol properties at the radiuses of 0.1 and 1 positions.

6. Conclusions

Using CE318 data at three sites in the NCP region to evaluate the VIIRS AOD, aerosol model
types and aerosol optical properties used in the VIIRS_EDR and VIIRS_ML algorithms at three sites
over the NCP, we conclude:

a. The VIIRS_EDR AOD at 550 nm has a positive MB of 0.04–0.06 with R of 0.83–0.86. Among the
three sites, the bias at Beijing is largest with MB of 0.10–0.15, RMSE of 0.27–0.30 and low
%EE of 36.8–38.8%. The quality flags analysis shows that using the high quality products of
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AOD at XiangHe and Xinglong are recommended but not at Beijing site. The VIIRS_ML AOD
overestimates more over the NCP region with higher positive MB of 0.13–0.14 but shows higher
correlation (0.93–0.94) with ground-based AOD. The results of evaluation of the VIIRS_ML for
each site and quality flags analysis are found to be similar to that for the VIIRS_EDR.

b. The aerosol model types used in the VIIRS_EDR AOD retrieval in the three sites are mostly dust
and clean urban aerosol models (the frequencies of these two models in three sites are all larger
than 50%) with less frequency of polluted urban aerosol models used (less than 1%). The accuracy
rates of the M_VIIRS_EDR over the Beijing, XiangHe and Xinglong sites (0.24, 0.20 and 0.37) are
lower than that of the M_VIIRS_ML (0.47, 0.51 and 0.46) during the evaluation period.

c. The values of SSA440nm from CE318 are less than the VIIRS_EDR for all modes and sites,
with differences of 0.02–0.04 for fine mode, 0.06–0.12 for coarse mode and 0.03–0.05 for bi-modes.
The overestimation of SSA but positive AOD mean bias of the VIIRS_EDR indicate that other
factors (e.g., surface reflectance characterization or cloud contamination) are important error
sources in the VIIRS_EDR algorithm, and their effects on aerosol retrievals override the effects
from non-ideality in aerosol model types. The differences of SSA670nm between VIIRS_ML
and CE318 in the NCP are mostly less than 0.015 but high seasonal differences are also
found. The undervaluation of SSA used in the VIIRS_ML algorithm over the NCP causes
the overestimation of AOD, especially at Beijing site.

We recommend that the aerosol model types and the microphysical properties in the VIIRS_EDR
algorithm in NCP region are not representative and need to be refined. The AOD bias in Beijing is
largest but we do not find the lowest accuracy rate of the M_VIIRS_EDR. In addition, the higher values
of the VIIRS_EDR SSA versus CE318, which should lead to lower AODs from the satellite inversion,
are inconsistent with the positive MBs of AOD in the NCP region. All these points indicate that there
are other error sources that need to be examined in the AOD retrieval for the VIIRS_EDR algorithm,
especially for Beijing site. Future studies should investigate these potential sources of error including
the surface reflectance and cloud contamination.
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Abstract: Aerosol Optical Depth (AOD) is crucial for urban air quality assessment. However, the
frequently used moderate-resolution imaging spectroradiometer (MODIS) AOD product at 10 km
resolution is too coarse to be applied in a regional-scale study. Gaofen-1 (GF-1) wide-field-of-view
(WFV) camera data, with high spatial and temporal resolution, has great potential in estimation of
AOD. Due to the lack of shortwave infrared (SWIR) band and complex surface reflectivity brought
from high spatial resolution, it is difficult to retrieve AOD from GF-1 WFV data with traditional
methods. In this paper, we propose an improved AOD retrieval algorithm for GF-1 WFV data.
The retrieved AOD has a spatial resolution of 160 m and covers all land surface types. Significant
improvements in the algorithm include: (1) adopting an improved clear sky composite method by
using the MODIS AOD product to identify the clearest days and correct the background atmospheric
effect; and (2) obtaining local aerosol models from long-term CIMEL sun-photometer measurements.
Validation against MODIS AOD and ground measurements showed that the GF-1 WFV AOD has a
good relationship with MODIS AOD (R2 = 0.66; RMSE = 0.27) and ground measurements (R2 = 0.80;
RMSE = 0.25). Nevertheless, the proposed algorithm was found to overestimate AOD in some cases,
which will need to be improved upon in future research.

Keywords: Gaofen-1; aerosol optical depth; deep blue; Wuhan; urban aerosol

1. Introduction

As an important component of atmosphere, aerosols play a vital role in climate change, earth
radiation budget and air quality [1–3]. Atmospheric aerosol is a major source of uncertainty in the
global climate system for its high spatial and temporal variability and short lifetime [4]. Satellite
remote sensing provides a convenient way to estimate aerosol optical properties in space and time [5].
Numerous satellite data-based aerosol retrieval algorithms have been developed in recent years [6–9].

A key physical parameter which can be retrieved from satellite data is Aerosol Optical Depth
(AOD), which is defined as the integrated light extinction over vertical path through the atmosphere.
AOD has been widely applied in many aspects such as atmospheric correction of satellite images [6],
air quality assessment [10] and haze pollution monitoring [11]. To estimate AOD from satellite data,
the core problem is to separate the atmospheric and surface scattering contributions from the total
signal observed by satellite. Generally, there exist two uncertain factors in the separating process:
the determinations of aerosol model and surface reflectance. Aerosol model is usually derived from
long-term AErosol RObotic NETwork (AERONET) or other regional ground measurements [12,13].
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Many methods were successively developed in the estimation of surface reflectance from satellite
observation. One of the earliest and more classic techniques is called Dark Dense Vegetation (DDV)
or Dark Target (DT), a method which utilizes the stable correlations between visible bands and
the shortwave infrared (SWIR) band at 2.1 μm [14]. The method and its improved version have
been successfully applied in the AOD retrieval of moderate-resolution imaging spectroradiometer
(MODIS) [15,16], Landsat TM [17,18], and many other sensors [19–21]. The DT method shows a good
performance over dark surfaces (e.g., dense vegetation), but tends to overestimate AOD over bright
surfaces (especially urbanized areas) [22,23]. Another widely adopted technique is called the Deep
Blue (DB) method, which is based on the assumption that the surface reflectance keeps unchanged or
changes little during a specified period. The DB method is able to retrieve AOD over bright surfaces
(e.g., desert, arid/semiarid and urban regions). The DB algorithms have been developed for many
satellite sensors such as SeaWiFS [24], MODIS [25,26] and GOCI [27].

With the rapid growth of industrialization and urbanization in China during recent years, aerosol
pollution problems such as haze and high particulate matter concentration have become increasingly
severe for most regions of China [28,29]. Valid and high resolution AOD retrieval covering all land
surface types (including urban areas) is very important for regional air quality monitoring in China.
However, retrieving AOD over urban areas in China remains a challenging problem. The primary
difficulty is the estimation of surface reflectance. The DT method is limited over urban areas; moreover,
it is difficult to acquire completely “clear” images when using the DB method to establish surface
reflectance database over urban areas with heavy aerosol loadings. Furthermore, the determination of
the aerosol model is also difficult in many urban regions of China due to the lack of enough ground
measurements and complex aerosol sources.

Most of the currently released AOD products (e.g., MODIS, SeaWiFS, MISR and MERIS) are
usually at a spatial resolution of a few kilometers, which is too coarse for regional-scale applications.
High spatial resolution sensors such as the Landsat series usually have a long re-visiting period
(16 days), which makes it more difficult in terms of algorithm design. Gaofen-1 (GF-1) satellite,
launched by the Chinese government in April 2013, has four Wide-Field-of-View (WFV) cameras
onboard. Four WFV cameras provide multi-spectral images from visible to near-infrared (NIR) band,
with a high spatial resolution of 16 m and a re-visiting period of 4 days. Although the absence of SWIR
band makes it difficult to retrieve AOD using the DT method, the high temporal resolution makes it
possible to use the DB method.

In this paper, we attempted to retrieve high resolution AOD (160 m × 160 m) from GF-1
WFV data by using an improved DB method. The algorithm was implemented over Wuhan, an
urban area in central China. In the proposed algorithm, surface reflectance of GF-1 WFV was
estimated by establishing a seasonal surface reflectance database with the support of the MODIS AOD
product. An aerosol model was determined by statistical analysis of long-term ground measurements.
To evaluate the retrieved results from the proposed algorithm, the spatial distribution of retrieved AOD
was presented and analyzed in detail, and the retrieved results were compared with corresponding
MODIS AOD and ground measurements respectively. Finally, the performance and limitations of the
algorithm were also discussed.

2. Study Area and Datasets

2.1. Study Area

Wuhan (113◦41′E–115◦05′E, 29◦58′N–31◦22′N), provincial capital of Hubei province, is the largest
city in central China (Figure 1). It is situated on the middle-lower Yangtze Plain and eastern Jianghan
Plain, with two large rivers (Yangtze River and Han River) flowing through the main city. As a
significant regional economic center in central China, Wuhan has a population of more than ten million,
and covers an area of about 8594 km2. According to the classification result from GF-1 WFV data
in Wuhan, the built-up area and water occupy about 23% and 15% of the total area, respectively.
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With the rapid growth of urbanization and industrialization, Wuhan has been suffering from severe air
pollution in recent years, including high particulate matter concentrations and haze pollution [30,31].
The annual mean AOD at 500 nm over Wuhan is up to 1.0, and the region is mainly populated with
fine-mode particles [32].

Figure 1. Geolocation of Wuhan city shown by Gaofen-1 Wide-Field-of-View (GF-1 WFV) image
(RGB composited).

2.2. Datasets

2.2.1. Gaofen-1 Wide-Field-of-View (GF-1 WFV) Data

GF-1 WFV data are provided from four WFV cameras onboard the GF-1 satellite, with a spatial
resolution of 16 m and a temporal resolution of 4 days. The detailed characteristics of GF-1 WFV
instruments are summarized in Table 1. Here we collected all the available GF-1 WFV data over
Wuhan from July 2013 to January 2016 (download from http://www.cresda.com/CN/). All data
need to be well pre-processed before beginning the AOD retrieval process. The pre-processes include
geometric correction, image cutting and mosaic, and radiometric calibration. The accuracy requirement
of geometric correction is 1~2 pixels. The accuracy and stability of radiometric calibration is crucial
in the AOD retrieval using satellite instruments, especially for GF-1 WFV cameras without on-board
calibration. Feng et al. [33] performed a cross-calibration of GF-1 WFV cameras using Landsat 8
Operational Land Imager (OLI) images. Validations with satellite data and in situ measurements
showed that the calibration uncertainty is ~8%. The calibration coefficients from the work by Feng et al.
were adopted in this paper. In addition, according to the research by Li et al. [34], the signal-to-noise
ratio (SNR) of GF-1 WFV cameras at four bands are 294, 125, 77 and 34 respectively, which are slightly
lower than the SNR of corresponding MODIS bands. However, considering the difference in spatial
resolution, the SNR of GF-1 WFV cameras could have an obvious improvement when resampled to
a resolution of 160 m. Therefore, the radiometric performance of GF-1 WFV cameras is in a good
condition and could meet the requirement in the AOD retrieval.
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Table 1. Characteristics of WFV (Wide-Field-of-View) cameras aboard on Gaofen-1 satellite.

Band Band Range (μm) Spatial Resolution (m) Re-Visiting Period (Days) Swath (km)

Blue 045–0.52

16 4 800
Green 0.52–0.59
Red 0.63–0.69
NIR 0.77–0.89

2.2.2. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) Data

The AOD data, derived from MODIS sensors onboard Terra and Aqua, are provided by
two independent algorithms (DT and DB) at a nominal spatial resolution of 10 km × 10 km (MOD04
for Terra and MYD04 for Aqua, available from https://ladsweb.nascom.nasa.gov/search/index.html).
The recent version of the MODIS AOD product has been updated to Collection 6. As the DT retrieval
cannot provide accurate results over urban areas, here we choose MODIS DB AOD in the research for
its expansion of spatial coverage over urban areas and improved retrieval accuracy [26]. The spatial
coverage of MODIS DB retrieval can reach up to 100% over the Wuhan region in cloudless conditions,
which makes it suitable to be used to evaluate the average aerosol loading and its spatial variation.
Corresponding to the overpassing time of GF-1 (10:30 local solar time), all MODIS DB AOD data from
Terra (MOD04) over Wuhan during 2013–2016 were collected; and then the regional average AOD, its
standard deviation and spatial coverage were calculated to assist the automatic selection of GF-1 WFV
images in a clean and cloudless condition.

2.2.3. Ground Measurements

Ground measurements from a Cimel sun photometer CE-318 and handheld MICROTOPS-II sun
photometer were included in the research. The information of the two instruments is summarized
in Table 2, and the geolocation is shown in Figure 1. The sun photometer CE-318 was installed
at the campus of Wuhan University, an urban site of Wuhan (30◦32′N, 114◦21′E, named as WHU
here). The instrument provides a long-term observation of aerosols over Wuhan since 2007.
The detailed analysis of observation results from the instrument has been described in Wang et al. [32].
The MICROTOPS-II sun photometer was used to measure AOD at a rural site of Wuhan (30◦28′N,
114◦32′E, named as WHR here) during December 2014 to June 2015. Multiyear observation results
from WHU were used to analyze the aerosol model over Wuhan. Measurements from both WHU and
WHR were used to evaluate the algorithm accuracy.

Table 2. The list of input variables used to calculate the look-up table.

Site Lat/Lon Terrain Instrument Observing Period

WHU 30◦32′N, 114◦21′E Urban CE-318 2008–2012; December 2014–June 2015
WHR 30◦28′N, 114◦32′E Rural MICROTOPS-II December 2014–June 2015

3. AOD Retrieval Algorithm

The basic principle of AOD retrieval algorithm is based on radiative transfer theory. Assuming a
lambertian surface under a plane-parallel atmosphere, the reflectance at the top of atmosphere (TOA)
can be expressed by the following equation [35]:

ρTOA
λ (μs, μv, φ) = Tg

[

ρatm
λ (μs, μv, φ) +

T(μs)T(μv)ρs
λ(

1 − Sλρs
λ

)

]

(1)

where μs = cosθs, μv = cosθv, θs is solar zenith angle, θv is view zenith angle, φ is relative azimuth
angle, λ represents the corresponding sensor band, ρTOA

λ is the apparent reflectance, Tg is the gaseous
transmission, ρatm

λ is the atmospheric path reflectance (Rayleigh and aerosol), Sλ is the spherical
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albedo of the atmosphere, T(μs) and T(μv) correspond to the downward and upward atmospheric
transmission respectively, and ρs

λ is the Lambertian surface reflectance.
To solve the radiative transfer equation, a radiative transfer model Second Simulation of the

Satellite Signal in the Solar Spectrum (6S) was adopted in the study [35]. Given specific band, view
geometry, atmospheric model, AOD, aerosol type and surface reflectance, the TOA reflectance can
be simulated by 6S according to the calculation of three key parameters: ρ, s and T(T(μs)T(μv)).
For satellite remotely sensed data, if aerosol type and surface reflectance are determined, AOD can be
estimated by comparing measured and simulated TOA reflectance.

Generally, in order to speed up the calculation process, the Look-Up Table (LUT) technique is
adopted. The LUT for AOD retrieval is a multidimensional data table, which contains pre-calculated
parameters, ρ, s and T, under specific view geometry, atmospheric model, AOD, aerosol type
and surface reflectance. The detailed set of intervals and ranges for input variables in the LUT
is listed in Table 3. Utilizing the pre-calculated LUT, the TOA reflectance for any given pixel can be
simulated by linear/nonlinear interpolation between the neighboring bins for geometry, AOD and
surface reflectance.

Table 3. The list of input variables used to calculate the look-up table.

Input Variables No. of Entries Entries

SZA 14 0, 6, 12, . . . , 78
VZA 14 0, 6, 12, . . . , 78
RAA 16 0, 12, 24, . . . , 180
AOD 9 0, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0

Atmospheric model 2 Mid-latitude summer/winter
Surface reflectance 4 0.0, 0.1, 0.2, 0.3

SZA: solar zenith angle; VZA: view zenith angle; RAA: relative azimuth angle.

Retrieving AOD from satellite data requires an accurate determination of surface reflectance and
local aerosol type. As GF-1 WFV cameras do not have a SWIR band, it is difficult to estimate the surface
reflectance from GF-1 WFV data using the DT method. However, a re-visiting period of 4 days makes it
possible to estimate the surface reflectance from GF-1 WFV data using the DB method. By compositing
the clearest GF-1 WFV images over Wuhan during a season, the seasonal surface reflectance of GF-1
WFV data can be determined. Based on the aerosol optical properties derived from long-term ground
observations over Wuhan, aerosol types from each season and different AOD ranges are determined
by statistical analysis.

A complete flowchart of the GF-1 WFV AOD retrieval algorithm is shown in Figure 2. The main
processes include: pre-process of GF-1 WFV data; calculation of LUT containing local aerosol types and
establishment of surface reflectance database. According to the LUT and surface reflectance database
established for GF-1 WFV cameras, the TOA reflectance at any geometry and AOD can be simulated.
Thus, AOD at 550 nm can be estimated by matching the measured and simulated TOA reflectance.

To demonstrate the availability of GF-1 WFV data in AOD retrieval, a sensitive analysis was
performed by simulating the TOA reflectance in GF-1 WFV blue band under different AOD and
surface conditions (as shown in Figure 3). In the simulation, the view geometry condition was set as:
θs = 30◦, θv = 30◦, φ = 100◦; and the aerosol type was set as continental mode in the 6S. Obviously,
the GF-1 WFV blue band is very sensitive to the AOD in the range of 0 to 3 in various surface conditions.
When AOD is greater than 3, the TOA reflectance increases slowly with AOD in all surface conditions.
It indicates that AOD could be accurately estimated from GF-1 WFV data in most cases when the
surface reflectance and aerosol type are accurately estimated.
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Figure 2. Flowchart of AOD retrieval algorithm for GF-1 WFV data. Ave, std and cov represent average
value, standard deviation and spatial coverage of MODIS AOD, respectively.

Figure 3. The change of simulated TOA reflectance in GF-1 WFV blue band with different AOD and
surface reflectance.

Two important issues in the GF-1 WFV data process need to be noted here. One is cloud mask;
the other is gaseous absorption correction (including water vapor and ozone). Since there is no thermal
infrared band in GF-1 WFV data, a tailor-made cloud masking method was devised to take advantage
of TOA reflectance and corresponding surface reflectance in the three visible bands. The method
screens clouds according to the high reflectivity by cloud and high contrast between clouds and the
underlying surface. The detailed criterion for cloud masking is listed in Equation (2).

i f
(
ρTOA

red > 0.2
)

and
(
ρTOA

red − ρ
Sur f
red > 0.1

)
then mask (2)

where ρTOA
red and ρ

Sur f
red are the TOA reflectance and surface reflectance of GF-1 WFV red band

respectively. The thresholds determined for cloud mask are based on a trial-and-error approach.
Figure 4 shows the cloud mask results for some selected GF-1 WFV images using the proposed
approach. Generally, the method shows a good performance in the cloud screening of GF-1 WFV data.

Since there is spatio-temporal variation of water vapor and ozone over Wuhan, gaseous absorption
correction using standard atmospheric profile from 6S may bring uncertain error. Here an accurate
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correction of gaseous absorption for water vapor and ozone was performed for all GF-1 WFV data.
The water vapor data were collected from NCEP (National Center for Environmental Prediction)
reanalysis daily average products (http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml);
and the ozone data were extracted from OMI (Ozone Monitoring Instrument) 1◦ × 1◦ grid ozone
products (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI).

 

Figure 4. The origin maps (a–c) and corresponding cloud mask results (d–f) for three selected GF-1
WFV images. The white regions in (d–f) represent cloud covering areas.

After a description of basic principle of the AOD retrieval algorithm for GF-1 WFV data, two key
parts of the algorithm are described in detail. The analysis of aerosol optical properties over Wuhan is
described in Section 3.1. The methodology of surface reflectance determination for GF-1 WFV data is
addressed in Section 3.2.

3.1. Aerosol Optical Properties over Wuhan

The determination of local aerosol types is crucial for AOD retrieval. It has been reported in many
researches that inappropriate aerosol models have a significant impact on the accuracy of MODIS
AOD product in China [36,37]. The aerosol optical properties over Wuhan present a complex variation
pattern for various aerosol sources such as industries, traffic, biomass burning and dust [32]. According
to the aerosol optical properties derived from long-term ground measurements at WHU, the average
AOD (550 nm) during 2008–2012 is up to 0.7, and nearly 50% of AOD values are in the range of 0.5–1.0
(Figure 5a); the scattering map of Single Scattering Albedo (SSA) and Fine Mode Fraction of AOD
indicates that this region is dominated by urban/industrial, biomass burning and mixed aerosol types
(Figure 5b) [38,39].

To derive local aerosol types over Wuhan, a method following the research of Kim et al. [40] was
adopted in this paper. The method discriminates various aerosol types by statistical analysis of aerosol
optical properties in different seasons and AOD ranges. The average volume size distribution for four
seasons (spring, summer, autumn and winter) in different AOD ranges is shown in Figure 6, and the
corresponding refractive index and SSA data are listed in Table 4. Generally, the aerosol volume
size distribution over Wuhan follows a bimodal lognormal size distribution with obvious seasonal
variability in volume concentration and peak radius. Fine-mode particles are dominant in all seasons
except spring, when frequent dust events cause an increase in coarse-mode particles. It is consistent
with the analysis results using AERONET measurements over East Asia [40]. The refractive index and
SSA at 670 nm in different seasons and AOD bins, as listed in Table 4, also present a seasonal variability.
The average refractive index (real part) for spring (MAM: March, April and May), summer (JJA: June,
July and August), autumn (SON: September, October and November), and winter (DJF: December,
January and February) are 0.87, 0.86, 0.83 and 0.86 respectively; while the average SSA are 1.50, 1.40,
1.43 and 1.46 for each season in the same order as above.
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Figure 5. (a) Frequency distribution of ground-measured daily AOD at 550 nm over Wuhan from 2008
to 2013; (b) Scatter map of SSA at 440 nm and FMF of AOD at 670 nm (SSA: Single Scattering Albedo;
FMF: Fine Mode Fraction).

Figure 6. The average volume size distribution for each season under different AOD ranges. Spring
(MAM: March, April and May); summer (JJA: June, July and August); autumn (SON: September,
October and November); and winter (DJF: December, January and February).

Table 4. The refractive index and single scattering albedo at 670 nm for each season under different
AOD ranges.

Parameters Season
AOD Range

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–3.0

Refractive index
(real) at 670 nm

Spring 1.54 1.45 1.48 1.48 1.51
Summer 1.33 1.41 1.41 1.42 1.41
Autumn 1.46 1.44 1.42 1.40 1.41
Winter 1.46 1.46 1.46 1.45 1.44

Refractive index
(imaginary) at 670 nm

Spring 0.0122 0.0428 0.0175 0.0094 0.0065
Summer 0.0258 0.0538 0.0121 0.0112 0.0039
Autumn 0.0425 0.0539 0.0247 0.0180 0.0220
Winter 0.0268 0.0304 0.0245 0.0139 0.0141

Single scattering
albedo at 670 nm

Spring 0.86 0.78 0.86 0.90 0.92
Summer 0.78 0.72 0.91 0.93 0.97
Autumn 0.81 0.75 0.85 0.89 0.86
Winter 0.84 0.82 0.85 0.90 0.90

Spring (MAM: March, April and May); summer (JJA: June, July and August); autumn (SON: September, October
and November); winter (DJF: December, January and February).
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3.2. Surface Reflectance Determination

Assuming a constant surface reflectance over one region during a specific period, the regional
surface reflectance can be estimated from time series of satellite images by using clear sky composite
technique. The method has been widely applied in the AOD retrieval algorithm for many satellite
sensors in global and regional scale. For example, the method was applied in MODIS DB algorithm
to provide global land AOD product [41], and it was also used to retrieve regional high resolution
AOD from MODIS and Landsat data [42,43]. Allowing for the high spatial and temporal resolution
of GF-1 WFV data, it is feasible to retrieve high resolution AOD using clear sky composite method.
The main difficulties lie in the complex surface reflectivity (especially over urban areas) brought from
high spatial resolution, which may result in complicated variations in satellite signals caused by cloud
and topographic shadow, surface feature change and Bidirectional Reflectance Distribution Function
(BRDF) effect.

To estimate surface reflectance from GF-1 WFV data, we proposed a novel strategy in the selection
and compositing of GF-1 WFV images. The compositing period was determined to be three months in
consideration of observing frequency of GF-1 WFV cameras. To avoid directly composite all GF-1 WFV
images, MODIS AOD product was introduced in the selection of clear sky images. We calculated the
regional mean, minimum, maximum, standard deviation and spatial coverage value of MODIS AOD
over Wuhan corresponding to the overpassing time of GF-1 WFV data. Three criteria were adopted
to ensure the selection of clearest and cloudless GF-1 WFV images. They were: (1) mean value < 0.5;
(2) standard deviation < 0.1; and (3) spatial coverage > 70%. Furthermore, in order to minimize the
BRDF effect, only GF-1 WFV images with satellite view zenith less than 30◦ were selected. The eligible
GF-1 WFV images with a total number of 31 are listed in Table 5. A small number of GF-1 WFV images
that failed to meet the above criteria were also included to ensure enough eligible images during
each season.

As the heavy loading of aerosols over Wuhan, the aerosol effect is non-negligible on clear days.
After a first selection of clear sky GF-1 WFV images with the support of prior knowledge from MODIS
AOD product, atmospheric correction was performed for all eligible images by using 6S with the
corresponding averaged MODIS AOD and established seasonal aerosol model. Finally, the atmospheric
corrected images were composited seasonally by using minimum reflectance technique. It should
be noted here that the compositing process was not pixel-based but window-based in a 10 × 10 size
(corresponding to a spatial resolution of 160 m × 160 m). In each processing window, the 30% brightest
and 30% darkest pixels were excluded, and the average value of remaining 40% pixels was used to
represent the reflectance of the entire window. The same calculation was performed in the AOD
retrieval process. The window-based calculation method can effectively avoid the impact of retained
clouds, topographic shadow and changing of surface features on the AOD retrieval.

Figure 7 shows the seasonal surface reflectance images (red, green, blue (RGB) composited)
derived from GF-1 WFV data over Wuhan during 2014, and Figure 8 shows the seasonal surface
reflectance variation of typical land cover types (urban, forest and farmland). It can be seen from the
two figures that the surface reflectance over Wuhan presents an obvious seasonal variation pattern.
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Figure 7. Seasonal surface reflectance images (red, green, blue (RGB) composited) derived from GF-1
WFV data over Wuhan during 2014. MAM (March, April and May), JJA (June, July and August),
SON (September, October and November) and DJF (December, January and February) represent the
season of Spring, Summer, Autumn and Winter respectively.
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Figure 8. Seasonal surface reflectance variation of typical land cover types.
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Table 5. List of GF-1 WFV candidate images for surface reflectance database.

Year Season GF-1 WFV Image Date
MODIS AOD

View Zenith(◦)
Mean Min Max Std Coverage

2013

JJA
8 July 2013 0.27 0.11 0.70 0.11 99.5 31.0

1 August 2013 0.12 0.05 0.48 0.09 84.7 38.1
10 August 2013 0.09 0.05 0.59 0.07 100.0 7.5

SON

19 September 2013 0.28 0.14 0.88 0.10 95.4 12.4
1 October 2013 0.49 0.22 0.96 0.10 92.9 18.4
6 October 2013 0.42 0.09 0.92 0.16 100.0 31.4
9 October 2013 0.35 0.09 0.72 0.14 99.5 22.3

14 October 2013 0.42 0.21 0.92 0.15 100.0 27.6
7 November 2013 0.20 0.12 0.34 0.06 48.0 14.5
19 November 2013 0.38 0.14 0.58 0.10 100.0 6.7

2014

DJF 23 January 2014 0.32 0.11 0.60 0.13 85.7 7.0

MAM 17 March 2014 0.43 0.25 0.64 0.09 100.0 5.2

JJA
22 July 2014 0.31 0.09 0.84 0.12 92.9 0.9
26 July 2014 0.40 0.05 1.25 0.37 75.0 4.7
30 July 2014 0.11 0.05 0.50 0.07 100.0 10.2

SON

21 September 2014 0.08 0.05 0.57 0.09 71.4 24.8
8 October 2014 0.38 0.26 0.61 0.07 100.0 6.0

24 October 2014 0.36 0.17 0.58 0.09 100.0 14.7
14 November 2014 0.27 0.18 0.39 0.05 100.0 11.1

2015

DJF

8 December 2014 0.23 0.05 0.50 0.09 99.5 20.6
16 December 2014 0.14 0.05 0.22 0.03 100.0 29.8
17 December 2014 0.06 0.04 0.22 0.03 100.0 22.1
21 December 2014 0.22 0.03 0.46 0.12 99.5 17.3

MAM
25 March 2015 0.19 0.05 0.62 0.11 100.0 1.0
14 April 2015 0.25 0.13 0.44 0.06 100.0 25.0

JJA
3 August 2015 0.08 0.05 0.25 0.04 100.0 10.0
23 August 2015 0.17 0.05 0.65 0.15 99.5 33.4

SON
20 October 2015 0.53 0.17 0.84 0.10 100.0 4.4

1 November 2015 0.54 0.36 0.79 0.13 72.4 20.2

2016 DJF
16 December 2015 0.08 0.03 0.15 0.03 100.0 24.3
17 December 2015 0.06 0.03 0.20 0.04 100.0 26.6

MAM: March, April and May; JJA: June, July and August; SON: September, October and November; DJF: December
(last year), January (current year), and February (current year); Mean, min, max and std represent regional mean,
minimum, maximum value and standard deviation of MODIS AOD respectively. Coverage represents the percentage
of valid AOD over Wuhan; View zenith is the satellite view zenith angle of corresponding GF-1 WFV image at the
center position of Wuhan.

4. Results and Discussion

4.1. Retrieved Results from the Proposed Algorithm

Utilizing the algorithm described above, we processed all the GF-1 WFV data over Wuhan from
July 2013 to January 2016. Figures 9 and 10 show continuously retrieved results during haze periods in
the summer and winter of 2014 respectively. It can be seen that the proposed algorithm could obtain
valid AOD over all land surface types in cloudless condition (Figure 10g,h). Water bodies were masked
in the algorithm for their rapid variation in surface reflectance. Because the looser thresholds were
set in the cloud screening process, the algorithm could retrieve AOD effectively in hazy conditions
(Figures 9e,f and 10i). Nevertheless, looser thresholds also lead to incomplete cloud screening in some
cases, and the retained clouds could further result in some extremely high AOD values (Figures 9d
and 10j). The retrieved AOD presents a uniform spatial distribution with relatively low value (<0.5) on
cloudless and clear days (Figure 10g,h), whereas on polluted and hazy days the AOD rapidly increases,
thus presenting an obviously non-uniform spatial distribution (Figures 9f and 10f). The AOD during
heavy hazy days ranges from 2 to 4, indicating a severe air pollution (Figures 9e and 10i).
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Figure 9. The AOD retrieval results from GF-1 WFV data during a haze period in summer. (a–c) are
the RGB composited GF-1 WFV images on 3 June, 6 June and 11 June of 2014 respectively; (d–f) are the
corresponding retrieved AOD at 550 nm. Water bodies were masked in the algorithm.

Figure 10. The AOD retrieval results from GF-1 WFV data during a haze period in winter. (a–e) are the
RGB composited GF-1 WFV images on 15 January, 19 January, 23 January, 27 January and 31 January of
2014 respectively; (f–j) are the corresponding retrieved AOD at 550 nm.

Based on the complete AOD results in 2014 and 2015, we obtained the spatial distribution of yearly
average AOD over Wuhan (Figure 11). There exists an obvious difference in the spatial distribution
of yearly average AOD over urban and non-urban areas of Wuhan. The high AOD value zone is
mainly distributed in the urban area of Wuhan (located in the center region), with a regional mean
value of about 0.9, whereas most AOD values over non-urban areas of Wuhan range from 0.5 to 0.8.
This situation is common in many cities of the world, where the anthropogenic aerosol emissions
sourced from traffic, industry and cooking are dominant year round [44]. Annual difference also can
be seen in the yearly average AOD map over Wuhan. The high AOD zone was distributed in the east
of the urban area in Wuhan during the year 2014, whereas it was found to be partly transported to the
western urban area of Wuhan during 2015. This may be caused by the change of aerosol source, wind
direction and other environmental factors over this region.
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Figure 11. The spatial distribution yearly average AOD over Wuhan derived from GF-1 WFV data in
2014 (a) and 2015 (b).

4.2. Comparison of GF-1 WFV AOD with MODIS AOD

A spatial and temporal comparison between GF-1 WFV AOD and MODIS AOD is presented in
this section. First, we perform an intercomparison of spatial distribution between GF-1 WFV AOD
(160 m), MODIS DB AOD (10 km) and MODIS DT AOD (3 km). Figure 12 shows the spatial distribution
of GF-1 WFV, MODIS DB and MODIS DT AOD on 8 July 2013 (cloudless, clear day) and 7 June 2014
(cloudless, hazy day). It can be seen that the spatial distribution patterns and values of GF-1 WFV,
MODIS DB and MODIS DT AOD are roughly consistent with each other. The GF-1 WFV AOD tends to
be a little higher than the MODIS DB and DT AOD, which may be caused by the difference in spatial
resolution, overpassing time and retrieval algorithm. Similar to GF-1 WFV AOD, the MODIS DB
AOD could also cover all land surface types in Wuhan; nevertheless, the GF-1 WFV AOD at a spatial
resolution of 160 m provides more abundant details than MODIS DB AOD in the spatial distribution.
The MODIS DT AOD has a finer spatial resolution compared to MODIS DB AOD, but it fails to cover
bright surfaces (including urban areas) in Wuhan.

 

Figure 12. Comparison between GF-1 WFV AOD at 160 m, MODIS DB AOD at 10 km and MODIS
DT AOD at 3 km. (a–c) are the GF-1 WFV AOD, MODIS DB AOD and MODIS DT AOD respectively
on 8 July 2013; (d–f) are the GF-1 WFV AOD, MODIS DB AOD and MODIS DT AOD respectively on
7 June 2014.
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To further validate the spatial and temporal consistency between GF-1 WFV AOD and MODIS
AOD, we resampled all the GF-1 WFV AOD data to the same spatial resolution of MODIS DB AOD, and
then compared the GF-1 WFV AOD with the spatio-temporally matched MODIS DB AOD. Figure 13
shows the relationship between GF-1 WFV AOD and MODIS DB AOD. They present a reasonable
relationship, with a correlation coefficient (R2) of 0.66 and root mean square error (RMSE) of 0.266.
The slope (0.54) is less than 1, indicating that GF-1 WFV AOD is generally higher than MODIS DB AOD.

Figure 13. Relationship between GF-1 WFV AOD and MODIS DB AOD at 550 nm. RMSE and N
represent Root Mean Square Error and total number of matched pixels respectively.

4.3. Comparison of GF-1 WFV AOD with Ground Measurements

Using the ground measurements at WHU and WHR (See Figure 1) from December 2014 to
June 2015, we evaluated the accuracy of GF-1 WFV and MODIS AOD. The criterion of collocation
between satellite-derived and ground-measured AOD is: (1) the time difference between satellite
and ground measurements is less than 30 minutes; (2) the collocated satellite-derived AOD is the
average value of pixels within a sampling widow (3 × 3 for MODIS DB AOD, 5 × 5 for GF-1 WFV
AOD) centered on the ground site. The scatter plots between GF-1 WFV AOD, MODIS DB AOD and
ground-measured AOD are shown in Figure 14. Because the satellite-derived AOD was reported to
show different accuracies and biases in different regions with various surface types [45], we therefore
performed independent statistics over ground sites WHU and WHR.
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Figure 14. A comparison between GF-1 WFV AOD, MODIS DB AOD and ground-measured AOD at
550nm. (a) Scatter plot between GF-1 WFV AOD and ground-measured AOD; (b) Scatter plot between
MODIS DB AOD and ground-measured AOD.
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Compared with MODIS DB AOD (R2 = 0.57; RMSE = 0.30), GF-1 WFV AOD shows a better
relationship with ground measurements, with a higher correlation coefficient (R2 = 0.80) and a smaller
RMSE (RMSE = 0.25). However, the slope between GF-1 WFV AOD and ground measurements is 1.34,
indicating that the proposed algorithm tends to overestimate AOD, whereas the slope between MODIS
DB AOD and ground measurements is close to 1, indicating that the MODIS DB algorithm has smaller
bias error. Generally, the relationship of satellite-derived and ground-measured AOD is approximately
the same at urban (WHU) and rural (WHR) site for GF-1 WFV and MODIS data. Moreover, the slope
at WHU is higher than the slope at WHR for both GF-1 WFV and MODIS AOD, thereby indicating
that the proposed algorithm and MODIS DB algorithm have better accuracy over urban areas when
compared to rural areas.

4.4. Performance and Limitations of the Proposed Algorithm

To our knowledge, retrieving high resolution AOD from satellite data is still uncommon at the
present time. In related literature, Sun et al. [9,46] made an attempt to retrieve AOD from Chinese HJ-1
CCD and Landsat 8 OLI data with the support of MODIS surface reflectance products. The method
may contain specific uncertainties in the transformation of different satellite data, and is limited in
the spatial resolution of retrieved AOD (up to 500 m corresponding to the resolution of MODIS data).
Luo et al. [43] proposed a mixed algorithm of the DT and DB methods to retrieve high resolution
AOD from Landsat TM data over Beijing. The application potential of the method is limited, however,
due to the long re-visiting period (16 days) of Landsat TM images.

By making full use of high spatial and temporal resolution of GF-1 WFV data, an operational
AOD retrieval algorithm was proposed in this paper. The algorithm is capable of retrieving AOD
over both bright and dark land surfaces in cloudless condition. The retrieved GF-1 WFV AOD has
a spatial resolution of 160 m and temporal resolution of 4 days, which makes it possible to capture
the detailed spatial variety and complete process of haze pollution over Wuhan region (as shown in
Figures 9 and 10). The retrieved GF-1 WFV AOD achieve a high consistency with collocated MODIS
AOD (R2 = 0.66; RMSE = 0.27) and ground measurements (R2 = 0.80; RMSE = 0.25). The validation
results are on the same level as the performance of regional high resolution MODIS AOD retrieval
over north and south China [42,47]. Nevertheless, the proposed algorithm tends to overestimate AOD
in the comparison with MODIS AOD and ground measurements, which need to be further analyzed
and improved upon in future research.

To analyze the error sources of the proposed algorithm, we visualized the relative errors ((GF-1
WFV AOD − Ground-measured AOD)/Ground-measured AOD) from view of different WFVs, seasons
and scattering angles (Figure 15). First, GF-1 satellite has four WFV cameras all used in the AOD
retrieval. Satellite data from four WFV cameras have different view geometries and sensor response
characteristics, which may result in errors in the retrieval algorithm. The relative error distribution
of GF-1 WFV AOD classified by WFVs is shown in Figure 15a. WFV1 has the most collocated AODs,
81% of which show a positive relative error. WFV4 has only 4 collocated AODs, all of them showing
a negative relative error. It seems that the algorithm accuracy changes with different WFV sensors,
though more data is needed to confirm this conclusion. Second, As GF-1 WFV AOD is retrieved by the
seasonal surface reflectance database, there may exist seasonal difference in the algorithm accuracy.
It can be seen from the limited collocated AODs that the algorithm tends to overestimate AOD in spring
(MAM) and underestimate AOD in winter (DJF) (Figure 15b). The seasonal difference is mainly caused
by impact factors such as background aerosol correction and minimum reflectance image composite in
the establishment of surface reflectance database. Finally, the BRDF effect correction is significant for
the MODIS DB algorithm [26,47], whereas it was also found that the effect of BRDF correction was not
significant for MODIS data in a regional study [40]. As for the GF-1 WFV data, the BRDF effect seems
to be severer for the high spatial resolution and wide swath. In the proposed algorithm, the BRDF effect
was minimized by limiting satellite view zenith angle (<30◦) and adopting window-based calculation
strategy in the surface reflectance determination process. In order to evaluate the impact of BRDF effect
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on the algorithm accuracy, the relative error distribution of GF-1 WFV AOD along with corresponding
scattering angles were analyzed in Figure 15c. Nearly all AODs with relatively low scattering angles
(100◦–120◦) have a small positive relative error, whereas AODs with high scattering angles (120◦–150◦)
show an irregular variation in the relative error. More specifically, the small number of high relative
errors in absolute value (>80%) all occur in high scattering angles (>130◦). This analysis demonstrates
the impact of the BRDF effect on the accuracy of the proposed algorithm, which needs to be taken into
account in future research.

Figure 15. The relative error distribution of GF-1 WFV AOD. (a) Relative error distribution classified
by WFV sensors; (b) relative error distribution classified by seasons; (c) relative error distribution
classified by scattering angles (◦).

5. Conclusions

To fill in the blank of high resolution Aerosol Optical Depth (AOD) for regional air quality
studies, we proposed an improved approach to retrieve AOD from Gaofen-1 Wide-Field-of-View
(GF-1 WFV) data. The proposed algorithm can work effectively over all land surface types in Wuhan
area, with a spatial resolution of 160 m × 160 m and a temporal resolution of 4 days. The improved
techniques used in the algorithm include: (1) Seasonal aerosol model over Wuhan was obtained
and introduced in 6S model based on long-term ground measurements; (2) The moderate-resolution
imaging spectroradiometer (MODIS) AOD product was introduced to support the image selection and
background aerosol correction in the establishment of seasonal surface reflectance database for GF-1
WFV data.

Retrieved results show that the proposed algorithm works well during clear and hazy days,
and provides more abundant details in spatial distribution than the MODIS AOD product. The GF-1
WFV AOD data were compared with MODIS and ground-measured AOD respectively for validation.
Generally, GF-1 WFV AOD presents a good relationship with MODIS AOD (R2 = 0.66; RMSE = 0.27)
and ground measurements (R2 = 0.80; RMSE = 0.25). Moreover, compared with MODIS AOD, GF-1
WFV AOD has a finer spatial resolution and covers more land surface types, rendering it more
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suitable for application in the studies of regional atmospheric environments such as air quality and
haze monitoring.

There still exist some uncertainties to be further determined in the proposed algorithm. Although a
high correlation is achieved in the validation against MODIS and ground-measured AOD, the proposed
algorithm tends to overestimate AOD in many cases. Key factors including season, different WFV
cameras and Bidirectional Reflectance Distribution Function (BRDF) effect were found to have potential
impact on the accuracy of the algorithm. In order to improve the stability and accuracy of the algorithm,
the impact of these factors need to be further analyzed after a collection of more satellite and ground
measurements in the future.

Finally, it should be noted here that in recent years the Chinese government has launched an
increasing number of satellites (e.g., HJ-1A/B, CBERS-04, GF-2, and GF-4) for ecological environment
monitoring (for detail information, please see http://www.cresda.com/CN/index.shtml). These
satellites have similar orbits, band sets, as well as spatial and temporal resolutions. The algorithm
described here provides a good example for the application of these satellites to atmospheric
environment monitoring.
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Abstract: Aerosol optical depth (AOD) has been widely used in climate research, atmospheric
environmental observations, and other applications. However, high AOD retrieval remains challenging
over heavily polluted regions, such as the North China Plain (NCP). The Visible Infrared Imaging
Radiometer Suite (VIIRS), which was designed as a successor to the Moderate Resolution Imaging
Spectroradiometer (MODIS), will undertake the aerosol observations mission in the coming years.
Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol
loading through the 6SV radiative transfer model (RTM) with a focus on three aspects: cloud masking,
ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened
out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD
retrievals. Second, the greenness of the surface could not be accurately identified by the top of
atmosphere (TOA) index, and the quality of the aggregation data may be artificially high. Thus, the
AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data
coverage (at least 37.97% of all data records were missing according to ground-based observations)
and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according
to radiative simulations). To resolve these problems, the implementation of a spatial variability cloud
mask method and surficial index are suggested in order to improve the algorithm.

Keywords: AOD; VIIRS; heavy aerosol loading; retrieval algorithm; remote sensing

1. Introduction

Atmospheric aerosols are solid and liquid particles that are suspended in the air and are often
related to dust, smoke, soot, and sea salt. Climate models indicate that aerosols can significantly
impact the radiation budget of the Earth [1], cloud formation [2], and precipitation [3]. However, the
uncertainty associated with the average climate impacts of aerosols remains large [4,5]. Furthermore,
aerosols can also impact human health in heavily polluted regions [6–8]. The aerosol optical depth
(AOD) is a basic optical property of aerosol research and has been broadly applied in climate research
and atmospheric environmental observations.
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Satellite remote sensing has the advantage of observing and quantifying aerosol systems at a
global scale from space [9]. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi
National Polar-orbiting Partnership (Suomi-NPP) spacecraft was launched in October of 2011 [10]. This
instrument was largely built on the success of the Moderate Resolution Imaging Spectroradiometer
(MODIS), which has successfully retrieved AOD for more than 15 years [11]. The VIIRS was designed
to have many similar features as its predecessors, and its aerosol algorithm was also based on the
MODIS Dark-Target algorithm [12]. VIIRS will perform tasks for climate and air quality applications
after MODIS completes its mission.

The accuracy and availability of AOD products under polluted atmospheric environments, such
as heavy polluted areas in China, are limited. Increasing fossil fuel consumption and biomass burning
in China [13] have caused severe air pollution events and have worsened the atmospheric environment
in northern China [14,15]. Haze is an atmospheric phenomenon in which aerosol particles obscure the
clarity of the sky and decrease the visibility below 10 km. Frequent haze events can be detected by
ground-based observations [16,17] such as the AErosol Robotic NETwork (AERONET) [18], Chinese
Sun Haze-meter Network (CSHNET) [19,20], and others. In situ observations have shown that the haze
frequency and affected area have significantly increased over recent decades [21,22]. However, limited
in situ observations and uneven distributions could introduce considerable uncertainty. Satellite
observations can provide wide spatial coverage and long-term data records. From a temporal
perspective, Zhang et al. [23] used the Absorbing Aerosol Index (AAI) to show that the haze over
northern and eastern China follows an increasing trend that is similar to the pattern that is observed
from MODIS AOD [24,25]. Climate Data Records (CDR) and regular air quality observations require
an accurate, consistent, and wide-coverage AOD product [26,27]. However, certain retrieval vacancies
exist over areas of heavy aerosol loading, so the VIIRS AOD products are not acceptable under hazy
conditions. Previous research has attempted to improve the ability to retrieve hazy AODs with MODIS
data [11,28]; however, the quality of these products remains insufficient under polluted conditions.

AOD products may be influenced by unsuitable hypotheses for cloud masks and pixel selection
and poor data quality assurance. The success of aerosol retrieval depends on the ability to screen
out unsuitable pixels. The most important step is accurate cloud masking. The standard MODIS
cloud mask (MxD35) is considered too cloud conservative and not clear-sky sufficient for aerosol
retrieval [29,30]. Therefore, after applying the MODIS Collection_4 algorithm, Martins et al. (2002)
developed a new independent cloud mask that was mainly based on a spatial variability test. With
VIIRS, the cloud mask in aerosol retrieval is based on a VIIRS cloud mask product (VCM), which
is similar to MxD35 [12,31]. Although the VCM product performs well as evaluated by MODIS
and CALIPSO data [32], this product still has flaws when used in AOD retrieval. Furthermore, the
ephemeral water body test calculates the top of the atmosphere (TOA) normalized difference vegetation
index (NDVI) and excludes pixels below a certain threshold [12]. However, heavy aerosol loading
likely affects the calculation of this parameter. The data quality for the product’s aggregation strategy
depends on the pixel number and greenness. The greenness is defined by another TOA NDVI [33]
that is minimally affected by the AOD. However, under hazy conditions, the hypothesis must be
reconsidered. Therefore, under heavy aerosol loading conditions, AOD products can be affected by
cloud masking, the ephemeral water body test, and quality assurance issues.

This article focuses on analyzing how these three factors influence the AOD retrieval algorithm
under polluted atmospheric conditions and provides feasible advice. The data from the retrieval
algorithm and analytical method are described in Section 2. Then, a radiative transfer simulation and
certain examples are used to illustrate the results of a cloud mask, ephemeral water body test, and data
aggregation in Section 3. Section 4 analyzes the causes of these impacts and provides a quantitative
evaluation. Finally, Section 5 provides concluding remarks.
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2. Data and Methods

2.1. North China Plain

The study area is mainly located on the North China Plain (NCP), which is the largest alluvial
plain in China. The NCP is surrounded by the Yanshan and Taihang mountains to the north and
west and vast deserts in north-western China and Mongolia. Because its climate is characterized
by both humid winds from the Pacific and dry winds from the interior of the Asian continent, the
composition of the particulate matter in the air is complex and includes dust, sea salt, and industrial
matter. The NCP is the most polluted area in China and one of the most polluted areas in the world
because of weather conditions, terrain influences, and pollutant emissions (Figure 1).

Figure 1. Annual average AOD distributions over the research area in 2015 (MODIS Collection 6 Deep
Blue AOD at 550 nm). The right-hand figure shows the NCP, which is marked by a black square frame
in the left-hand figure.

During periods of intense atmospheric pollutant emissions and calm and steady weather,
particulate concentrations are extremely high, resulting in hazy days and inhibiting AOD satellite
retrievals. Figure 2 shows the VIIRS AOD product on three polluted days over the NCP. Certain
areas with heavy aerosol loading, such as the invalid values in the red ellipses in Figure 2, lack
satellite-retrieved AOD information.

Figure 2. National Oceanic and Atmospheric Administration (NOAA)’s VIIRS AOD products (all data
quality) over hazy areas. The AOD products were overlaid on the true color image, and no retrieval
areas were set as transparent. Some AOD values are invalid, which are marked with red ellipses,
because of heavy haze events.
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2.2. Ground-Based Observations

AERONET uses sky scanning spectral radiometers to make ground-based observations of
atmospheric aerosol optical properties and precipitable water [18,34]. The network provides a
long-term and continuous dataset for satellite product validation. The level 2.0 AOD datasets
have undergone cloud screening, calibration checks, and quality assurance. The level 2.0 dataset
of Beijing_CAMS station from 2013 to 2016 was used in this study.

Because AERONET does not measure the 550 nm band, the AOD at 500 nm is used instead,
denoted AODAERONET. We defined AODAERONET > 0.6 as polluted. The protocol requires at least
six AERONET measurements within a 3-h period centered on the satellite overpass time. In total,
187 days were selected as polluted days. The VIIRS EDR data matchup requires retrievals within a
27.5-km-radius circle that is centered on the AERONET station [35]. If at least 20% of the pixels of all
the potential retrievals are found to be clouds, the record is defined as being affected by cloud. The
ephemeral water body and over-range tests are performed identically to the cloud test.

2.3. Satellite Data

The VIIRS instrument aboard the Suomi-NPP spacecraft was launched in October of 2011 and
was designed to have similar capabilities as MODIS. Suomi-NPP orbits with a similar equator crossing
time as Aqua. VIIRS data from 2013 to 2016 were used in this study, including sensor TOA reflectance
(ρTOA), cloud mask data, geolocation data, and AOD data. The TOA measurement data were level 1b
Sensor Data Records (SDR), including moderate-resolution bands (M-bands) with a spatial resolution
of 750 m and imagery bands (I-bands) with a spatial resolution of 375 m. The cloud mask data were
pixel-level Intermediate Product (IP) data. The AOD data were 6-km-resolution level 2 Environmental
Data Records (EDR) aggregated as 8 × 8 IP retrievals. All of these data were downloaded from
the National Oceanic and Atmospheric Administration (NOAA)’s Comprehensive Large Array-data
Stewardship System (CLASS) website (http://www.class.ncdc.noaa.gov/saa/products/welcome).

MODIS is a key sensor aboard the Terra and Aqua satellites, which were launched in 2000 and
2002, respectively. MOD09 is the eight-day surface reflectance (ρS) product of MODIS/AQUA. The
dataset was fused to the monthly average surface reflectance in January 2015 by using a minimum
method [36]. These mature surficial reflectance data were used as input data in the radiative simulation.
The dataset was downloaded from The Level-1 and Atmosphere Archive & Distribution System
(LAADS) Distributed Active Archive Center (DAAC) managed by the National Aeronautics and Space
Administration (NASA) (https://ladsweb.nascom.nasa.gov/search/).

2.4. Radiative Transfer Simulation

The Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model
(RTM) provides accurate simulations of satellite and plane observations [37]. The new vector version
(6SV) of this code can work in both scalar and vector modes [38].

In this article, we used the 6SV RTM to simulate the radiative transfer procedure. The angle,
aerosol type and target altitude were not important factors when analyzing the influences of high
AOD values. Therefore, the satellite zenith angle, solar zenith angle, and relative azimuth angle were
set to 30◦, 30◦ and 60◦, respectively. The aerosol type was assumed to be continental, and the target
altitude was set to 0.

In Section 3.1, ρTOA was simulated under each AOD (in 550 nm) from 0 to 3 using different ρs

values for VIIRS bands M1 and M3.
In Section 3.2, three typical land covers—soil, vegetation, and water—are selected. The surface

reflectance information for several land cover types is listed in Table 1. We used 6SV to calculate ρTOA

in the VIIRS bands I1 and I2 and then obtained the TOA NDVI.
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Table 1. Surface reflectance information of five types of land cover.

ρs Soil 1 Soil 2 Soil 3 Soil 4 Water Vegetation

I1 (0.638 μm) 0.18 0.18 0.20 0.22 0.02 0.04
I2 (0.862 μm) 0.25 0.33 0.30 0.30 0.02 0.40

In Section 3.3, the MODIS surface reflectance product was used to simulate the TOA reflectance
in the NCP area (113◦E–116◦E, 34◦N–39◦N) under three different atmospheric conditions. The air is
assumed to be clean when AOD = 0.1, it is lightly polluted when AOD = 1, and it is heavily polluted
when AOD = 2.

2.5. Method and Algorithm

2.5.1. Cloud Mask Algorithm

The VIIRS cloud mask depends on an external identification result, the VCM-IP product, which
is not robust enough for aerosol retrievals. The VCM technique incorporates several cloud detection
tests to determine whether a pixel is obstructed by a cloud, and the VIIRS pixels are assigned a label
depending on the cloud confidence level, i.e., confidently cloudy, probably cloudy, probably clear,
or confidently clear [39,40]. These tests include reflectance, brightness temperature (BT), brightness
temperature difference (BTD), and spatial tests using M-band and I-band data.

The spatial variability in the reflectance at the TOA is suitable for a cloud mask that is devoted
to the retrieval of aerosol data [41]. The spatial test uses the absolute standard deviation of every
3 × 3 pixel (3 × 3 STD) threshold to identify clouds. The 3 × 3 STD (σ) is calculated as follows:

σ =

√
∑9

i=1(ρi − ρ)2

9
(1)

where ρi is the TOA reflectance of each pixel and ρ is the average TOA reflectance of all nine pixels.
In this study, we calculated the 3 × 3 STD in bands M1 (0.412 μm) and M3 (0.486 μm).

2.5.2. Ephemeral Water Body Test Method

The presence of surface water over land can affect retrieval algorithms; thus, an ephemeral water
body detection test was applied to overcome this deficiency. This test is based on the TOA NDVI
values calculated using bands I1 (0.638 μm) and I2 (0.862 μm) with the following equation [12]

NDVI = (ρI2 − ρI1)/(ρI2 + ρI1) (2)

where ρI1 and ρI2 are the TOA reflectances of bands I1 and I2, respectively. The TOA NDVI threshold
is 0.1. If the TOA NDVI value of a pixel is less than the threshold, the pixel is identified as an ephemeral
water body [12].

2.5.3. EDR Product Aggregation Strategy

The VIIRS AOD EDR product was constructed by aggregating 8 × 8 arrays of pixel levels retrieved
from AOD IP. The overall quality (high, medium, and low) of the EDR depends on the pixel number,
which is based on the IP quality within the EDR cell.

The quality of IP retrievals may be affected by the zenith and azimuth angles, clouds, pixel
greenness, and other factors. Among these parameters, greenness was the only factor affected by
aerosol loading. Thus, we only considered greenness and assumed that the other factors remained
unchanged. The brightness index was used to identify when a pixel was dominated by a bright surface,
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less vegetated soil, or vegetation-dominated soil [12]. This index is also referred to as NDVISWIR [33]
and is calculated by using the equation

NDVISWIR = (ρM8 − ρM11)/(ρM8 + ρM11) (3)

where ρM8 and ρM11 are the TOA reflectance values of bands M8 and M11, respectively.
The VIIRS algorithm identifies a bright pixel when

NDVISWIR < 0.05 AND ρM11 >0.3 (4)

A vegetation-dominated pixel corresponds to NDVISWIR > 0.2, and the other pixels with
intermediate values are defined as less vegetated. “Vegetation-dominated” is a necessary condition for
“high” quality, and less vegetated conditions should be sufficient to assign the “degraded” quality flag [42].

The EDR product was labelled “high/medium/low” quality, depending on the number of AOD
IP retrievals of different quality in the 8 × 8 EDR cell. The aggregation logic is displayed as a flowchart
in Figure 3 according to the Algorithm Theoretical Basis Document (ATBD) [42].

Figure 3. IP to EDR aggregation flow chart.

3. Results

3.1. Cloud Mask

The aerosol retrieval only works under cloud-free conditions. Thus, cloudy pixels must be
identified and removed. The VIIRS AOD retrieval depends on the cloud mask when using the
information from the VCM input.

We obtained cloud mask information in the form of “Confidently Cloudy” and “Probably Cloudy”
from the AOD IP (IVAOT) quality flag (QF) data. To reveal inadequate cloud tests under heavy aerosol
loading, we chose two locally hazy days—23 December 2013 and 18 March 2016—which are shown
in Figure 4. On 23 December 2013 (Figure 4a), the NCP was covered by heavy haze but was almost
cloud free. However, the VCM result indicates clouds in the area. A similar indication was found on
18 March 2016 (Figure 4b). These pixels would be excluded, which would result in no AOD retrieval.
The VCM performs well in clear areas, although heavy aerosol loading may mislead the tests.
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Figure 4. Two-day VIIRS true color images (a,b) and NOAA cloud mask result (c,d) over the NCP on
23 December 2013 and 18 March 2016. The cloud pixels are represented in blue in the cloud mask result.

In the visible channel, aerosols show a highly homogeneous spatial structure that can be easily
separated from most clouds. Thus, the spatial variability test is efficient at masking clouds during
aerosol retrieval [41]. We used a 6SV radiative transfer core to simulate ρTOA in the VIIRS bands M1
and M3. As shown in Figure 5, the difference in ρTOA values is smaller under high AOD conditions
than under low AOD conditions. Therefore, the ρTOA values under heavy aerosol conditions are more
homogeneous than those under clear sky conditions. The high degree of homogeneity under heavy
aerosol conditions makes these pixels easier to distinguish from clouds.

Figure 5. ρTOA simulation for the M1 (a) and M3 (b) bands under different AOD values (ranging from
0 to 3). The different lines represent several surface reflectance values.

We pre-selected more than 200,000 pixels from the RGB image in eastern Asia and classified them
into three groups—clouds, haze, and clear sky—by visual interpretation. Figure 6 shows the statistical
STD histograms of every 3 × 3 set of pixels in the VIIRS bands M1 and M3. The upper row is the
frequency distribution diagram, and the bottom row is the cumulative frequency distribution diagram.
In Figure 6a,b, the frequency peak of haze was located farther from that of clouds than that of clear sky.
In Figure 6d, the differences among clouds, haze, and clear sky are more significant. Therefore, clouds
and haze are easily separated in standard deviation histograms. Based on the histogram in Figure 6,
the thresholds were defined as the separator between clouds and clear sky. We hope to reserve clear
sky pixels as much as possible on the basis of the majority of cloud pixels being screened out. The
red vertical lines are the suggested thresholds based on the 3 × 3 STD test for VIIRS bands M1 and
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M3. The threshold in M1 is 0.005, and the threshold in M3 is 0.01. These thresholds generally do
not exclude aerosol pixels (less than 2% of these samples) and only allow a small amount little cloud
contamination (less than 5%).

Figure 6. Histograms (a,b) and cumulative histograms (c,d) of the ρTOA STD in the VIIRS bands M1
(left column) and M3 (right column) for three types of pixels, including clouds (blue), haze (grey), and
clear sky (green). The red lines are the suggested thresholds of the spatial variability test, which are
0.005 for M1 and 0.01 for M3.

3.2. Ephemeral Water Body Test

We extracted the results of the ephemeral water body test from the “IVAOT” QF data from
13 January 2014 and 10 March 2014, as shown in Figure 7. In these days of low precipitation, the
NCP area could not contain as large a range of ephemeral water bodies as the algorithm test. These
identification errors only occur in heavy aerosol loading areas.

Figure 7. VIIRS true color image on 13 January 2014 (a) and 10 March 2014 (b) and the corresponding
ephemeral water body test results (c,d) over the NCP. The ephemeral water body pixels are represented
in blue.
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Figure 8 shows the TOA NDVI simulation results for different land cover types. As seen in the
vegetation line, the NDVI decreases with increasing AOD, and the NDVI value is always greater than 0.
The TOA NDVI of water exhibits an almost constant negative pattern at any AOD range. Additionally,
the TOA NDVI value of soil is obviously influenced by AOD: the values are greater than zero at low
AOD values and close to or even less than zero at higher AOD values.

Figure 8. TOA NDVI simulation results for six types of land cover. The satellite zenith angle was 30◦,
the solar zenith angle was 30◦, and the relative azimuth angle was 120◦. In this simulation, the aerosol
type was assumed to be continental, and the AOD ranged from 0 to 3.

The threshold of the VIIRS ephemeral water body test is 0.1. If the TOA NDVI value of a pixel
is less than the threshold, then the pixel is identified as ephemeral water body. As the simulation
in Figure 8 shows, certain soil pixels tended to be identified as ephemeral water bodies at high
AOD levels.

3.3. Available Retrievals

Based on the NOAA AOD distribution image (Figure 2), the retrievals failed in certain areas
with heavy aerosol conditions. The cause of this failure was demonstrated by radiative simulation.
Here, we use AERONET ground-based observation data from 2013 to 2016 to quantify this deficiency.
The high AOD values were not retrieved because of the mistaken identification as clouds or ephemeral
water bodies. Moreover, this process might have occurred because the AOD retrieval range (0–2) was
exceeded. Table 2 lists the number of retrieval results compared with the AERONET dataset. Clouds,
ephemeral water bodies, and the retrieval ranges are denoted as a, b, and c, respectively.

Table 2. Number of VIIRS AOD EDR retrievals compared with the AERONET Beijing_CAMS station.

Factor Count Total

Complete retrieval - - 67

Partial retrieval

a 19

49
b 14
c 2

a, b 2
a, b, c 12

No retrieval

a 16

71
b 22

a, b 29
a, c 3

a, b, c 1

120



Remote Sens. 2017, 9, 397

Of the 187 AERONET observations, only 67 days have complete retrievals, and 71 days have no
retrievals at all. The no-retrieval days comprised 37.97% of the dataset. Additionally, 49 days (26.20%)
feature partial retrievals. The factors that were responsible for the lack of retrieval varied and included
clouds, ephemeral water bodies, retrieval ranges, or combinations of multiple factors. In the partial
retrieval group, the area with the 27.5-km-radius circle centered on the Beijing_CAMS station contains
at least 20% pixels with retrieval data and at least 20% pixels with no retrieval data. We cannot confirm
whether the clouds were real or whether pixels were mistakenly identified as clouds. However, some
misidentification had to be included for clarity. In this example, the interference percentage of clouds
and ephemeral water bodies was approximately equal. In summary, at least 37.97% of the high AOD
data were not retrieved at the Beijing_CAMS station because of heavy aerosol loading.

3.4. Quality Assurance

The reason why NDVISWIR was selected as a quality indicator was that the radiance in these
bands is only slightly influenced by aerosol loading [33]. However, this hypothesis is inappropriate
when the AOD is high.

Figure 9a shows the MODIS 1.23 μm surface reflectance of the NCP in January 2015. Then, we
used the reflectance to calculate NDVISWIR when AOD = 0.1, 1 and 2, which are denoted NDVISWIR_0.1,
NDVISWIR_1 and NDVISWIR_2, respectively. Figure 9b is the difference between NDVISWIR values
under AOD = 0.1 and AOD = 1 (NDVISWIR_1-NDVISWIR_0.1). Figure 9c shows the difference between
the NDVISWIR values under AOD = 0.1 and AOD = 2 (NDVISWIR_2-NDVISWIR_0.1). As shown
in Figure 9b,c, the NDVISWIR values of aerosol loads of AOD = 1 and 2 were much higher than
those of AOD = 0.1. These differences can also be observed in Figure 10, which is a histogram of
NDVISWIR values under different aerosol loading conditions. The frequency peak moves towards
higher NDVISWIR values as the AOD increases. The pixels with higher NDVISWIR values probably
tended to be identified as vegetation-dominated pixels. Although longer wavelengths are less
influenced by aerosols, the influence cannot be neglected when the AOD is high. Therefore, the
TOA NDVISWIR is not suitable for land cover detection at high AOD levels.

Figure 9. (a) MODIS surface reflectance at 1.23 μm over the NCP. The NDVISWIR values were simulated
by using the surface reflectance under aerosol conditions of AOD = 0.1, 1 and 2. (b) Difference in the
NDVISWIR simulation values between AOD = 1 and 0.1. (c) Difference in the NDVISWIR simulation
values between AOD = 2 and 0.1. The surface type identification results under different aerosol loads
of (d) AOD = 0.1, (e) AOD = 1 and (f) AOD = 2 were also identified.
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Figure 10. Histograms of NDVISWIR when AOD = 0.1, 1, and 2. The red lines represent the NDVISWIR

frequency peak under the three different atmospheric conditions.

Every pixel was classified as “less vegetated” or “vegetated-dominated” according to the
conditions in Section 2.5.3. Figure 9d–f show the classification results for AOD = 0.1, 1 and 2,
respectively. The vegetation-dominated areas under AOD = 2 conditions are much larger than those
under AOD = 0.1.

The EDR data QF depends on the quality and quantity of the IP data. Because this work was
only concerned with surficial dominant types, we calculated the QF with 6-km-resolution EDR cells
(including 8 × 8 pixels) using the aggregation strategy referred to in Section 2.5.3. Figure 11 shows the
EDR QF when AOD = 0.1, 1, and 2. In Figure 11a, the data quality is better because the AOD is low.
However, in Figure 11b,c, more pixels are identified as vegetation-dominated areas (see Figure 9e,f)
when the AOD is higher, resulting in higher-quality EDR data. Certain EDR cells were identified as
high quality in the central and western areas at AOD = 2, as shown in Figure 11c, whereas the cells
were identified as medium quality at AOD = 0.1.

Figure 11. EDR data quality simulation results over the NCP under different aerosol loading:
(a) AOD = 0.1, (b) AOD = 1, and (c) AOD = 2.
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Table 3 lists the numbers and percentages of high- and medium-quality pixels under different
aerosol loads, which correspond to the data in Figure 11. The high-quality EDR data percentage
increased from 63.42% at AOD value of 0.1 to 80.91% at AOD value of 2.

Table 3. EDR data quality statistics under three aerosol loading conditions.

AOD = 0.1 AOD = 1 AOD = 2

Number Percentage Number Percentage Number Percentage

High 9909 63.42% 11,125 71.20% 12,651 80.97%
Medium 5716 36.58% 4500 28.80% 2974 19.03%

4. Analysis and Discussion

The AOD retrieval algorithm has three key basic scientific problems: cloud masks, aerosol models,
and surface reflectance. Furthermore, the algorithm faces complex issues under high aerosol loading
conditions. We analyzed and investigated these influences from the perspective of cloud masks,
ephemeral water body tests, and data quality. These main effects influenced the retrieval availability
and data quality.

4.1. Impact on Retrieval Availability

Accurate pixel selection is an important step before AOD inversions. Inappropriate pixels, such
as clouds, bright surfaces, ice, snow, sun glint, among others, must be screened out. The cloud mask
represents the most uncertain part of the AOD retrieval. Certain cloud mask methods [43–45] may have
difficulty differentiating between clouds and high aerosol concentrations [41]. The VCM identification
results also exhibit this limitation under high aerosol loading conditions, such as those shown in
Figure 4. This type of error diminishes the retrieval area because of the masking of certain hazy pixels
as clouds.

Identifying ephemeral water bodies is also an important component of pixel selection. However,
when aerosol loading is high, the TOA radiative characteristics are obviously affected by the
atmosphere and result in inaccurate identifications. As shown in Figure 8, the “soil 2” and “soil 3”
lines decreased to values close to 0 when the AOD is high (AOD > 2.5). For less vegetated NCP areas,
the NDVI of bare soil may decrease close to or less than zero under the influence of high AOD values.
Therefore, these pixels would be screened out as ephemeral water body pixels. In certain sub-tropical
and temperate climate regions, these mistaken identifications will occur under heavy aerosol loading
when the vegetation coverage decreases in winter.

The influence of these two issues discussed above is focused on the available amount of AOD
retrieval data. Cloud masks and ephemeral water body tests are influenced by heavy aerosol loading,
resulting in the elimination of certain suitable pixels before retrieval. Therefore, AOD datasets tend
to lack information in areas with high AOD values, resulting in underestimations in the spatial and
temporal average AOD. This influence would lead to lower concentrations compared to ground-based
observations and chemistry transport model (CTM) simulation results, which is very important for
radiation and climate research as well as for air quality monitoring.

4.2. Impact on Data Quality

Using the Dark-Target retrieval algorithm, the AOD accuracy depends on surficial type and
whether the type is consistent with the dark dense vegetation hypothesis. Therefore, the greenness
parameter (TOA NDVISWIR) is an important indicator for determining the data quality. The NDVISWIR

is only slightly affected by the atmosphere at low AOD values, but the effects at high AOD values
cannot be ignored. An investigation into the effects of different AOD values on data quality was
performed for the NCP. The high-quality data percentage increased from 63.42% (AOD = 0.1) to 80.97%
(AOD = 2). In this case, the data quality was different for each AOD assumption. However, in a
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realistic situation, the data quality should not change with increasing AOD. Furthermore, the data
quality should be lower because of the lower accuracy of RTM simulations under high AOD conditions.
Therefore, the quality degree is overestimated when the AOD is high. For scientific climate research
that uses high-quality AOD data, overestimated data may introduce uncertainty errors that are related
to high AOD values and may influence the uniformity of the data standard.

Aerosol models and radiative simulations are other influential factors. The aerosol model that is
used in satellite observations is based on cluster analysis with global long-term AERONET data [46,47].
However, the aerosol components are complex and change when pollution episodes occur in extremely
polluted countries or areas. Therefore, aerosol models are unlikely to be truly representative of the
optical conditions viewed by satellites. Furthermore, compared to the Monte Carlo code, the 6SV RTM
performs worse when AOD = 0.8 than when AOD = 0.2 [48]. Additionally, the error would be further
magnified at higher AOD values because of multiple scattering.

4.3. Proposed Solution

Feasible methods are recommended for resolving these problems. On one hand, we should
consider using a spatial variability test method that is effective for cloud tests with aerosol retrieval.
According to the histogram analysis, the difference between clouds and haze is enhanced using
3 × 3 STDs. High aerosol concentration areas can be easily distinguished from clouds with this test.
The suggested thresholds are 0.005 for the M1 band and 0.01 for the M3 band. On the other hand, the
problems of ephemeral water bodies and data quality are both caused by atmospheric interference.
Therefore, we recommend using the surficial parameters to overcome this issue. We could use a
simplified retrieval algorithm to calculate the approximate values of AOD and use them as crude
atmospheric corrections. Additionally, pre-calculated surface parameters could be used instead of TOA
parameters to provide more accurate estimates of ephemeral water bodies and vegetation coverage
and diminish the interference of high aerosol loading. Additionally, researchers should note that the
quality of high AOD data is not credible when using satellite AOD products and should use these
data carefully.

5. Conclusions

As a key optical and physical parameter of aerosols, AOD is critical for environment and climate
research. However, under heavy aerosol loading conditions, cloud masks and ephemeral water body
tests decrease the amount of available retrieval data, and the algorithm overestimates the data quality.
Candidate pixels were identified as clouds or ephemeral water bodies because of heavy aerosol loading,
indicating that certain crucial research areas that are associated with high AOD would not be retrieved.
This retrieval coverage limitation can be attributed to incorrect cloud masks and water body tests.
According to the statistical results from the AERONET Beijing_CAMS station, at least 37.97% of the
high AOD data were not retrieved. Additionally, more high-quality (80.97% in radiative simulation)
AOD data were retrieved under polluted atmospheric conditions because of improper TOA NDVI
tests. These factors restrict the use of the AOD product. In environmental air quality assessments,
a lack of high values may lead to underestimations in the spatial and temporal mean AOD values.
This study used VIIRS AOD data as an example to qualitatively and semi-quantitatively analyze the
limitations and deficiencies of AOD data under heavy aerosol loading. This work was necessary to
improve algorithms and data applications.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant
No. 91543128 and Grant No. 41301494) and the National Science and Technology Ministry (Grant No.
2014BAC21B03). The original VIIRS and MODIS data that were used in this paper are available for free through
the links in Section 2. We are grateful for the AERONET data services.

Author Contributions: Y.W., L.C., and S.L. conceived and designed the experiments; Y.W. performed the
experiments; Y.W. and X.W. analyzed the data; and Y.W., Y.S., and Z.Z. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

124



Remote Sens. 2017, 9, 397

References

1. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere—Aerosols, climate, and the hydrological
cycle. Science 2001, 294, 2119–2124. [CrossRef] [PubMed]

2. Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O.
Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [CrossRef] [PubMed]

3. Koren, I.; Feingold, G. Aerosol-cloud-precipitation system as a predator-prey problem. Proc. Natl. Acad.
Sci. USA 2011, 108, 12227–12232. [CrossRef] [PubMed]

4. Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M.S. Global estimate of aerosol direct radiative forcing from
satellite measurements. Nature 2005, 438, 1138–1141. [CrossRef] [PubMed]

5. Intergovernmental Panel on Climate Change. Fifth Assessment Report: Climate Change 2013; Cambridge
University Press: Cambridge, NY, USA, 2013.

6. Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer,
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama J. Am. Med. Soc.
2002, 287, 1132–1141. [CrossRef]

7. Tie, X.X.; Wu, D.; Brasseur, G. Lung cancer mortality and exposure to atmospheric aerosol particles in
Guangzhou, China. Atmos. Environ. 2009, 43, 2375–2377. [CrossRef]

8. Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.;
Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable
to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden
of disease study 2010. Lancet 2012, 380, 2224–2260. [CrossRef]

9. Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Carlson, B.E.; Chowdhary, J.; Lacis, A.A.; Liu, L.;
Rossow, W.B.; Travis, L.D. Past, present, and future of global aerosol climatologies derived from satellite
observations: A perspective. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 325–347. [CrossRef]

10. Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the visible infrared
imaging radiometer suite onboard the suomi national polar-orbiting partnership (S-NPP) satellite. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [CrossRef]

11. Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The collection
6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [CrossRef]

12. Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS
aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [CrossRef]

13. Wang, L.L.; Xin, J.Y.; Li, X.R.; Wang, Y.S. The variability of biomass burning and its influence on regional
aerosol properties during the wheat harvest season in north China. Atmos. Res. 2015, 157, 153–163. [CrossRef]

14. Chen, H.P.; Wang, H.J. Haze days in north China and the associated atmospheric circulations based on daily
visibility data from 1960 to 2012. J. Geophys. Res. Atmos. 2015, 120, 5895–5909. [CrossRef]

15. Tao, M.H.; Chen, L.F.; Su, L.; Tao, J.H. Satellite observation of regional haze pollution over the north China
plain. J. Geophys. Res. Atmos. 2012, 117. [CrossRef]

16. Lee, K.H.; Li, Z.; Cribb, M.C.; Liu, J.; Wang, L.; Zheng, Y.; Xia, X.; Chen, H.; Li, B. Aerosol optical depth
measurements in eastern China and a new calibration method. J. Geophys. Res. Atmos. 2010. [CrossRef]

17. Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F. Analysis of a winter regional
haze event and its formation mechanism in the north China plain. Atmos. Chem. Phys. 2013, 13, 5685–5696.
[CrossRef]

18. Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.;
Nakajima, T.; et al. Aeronet—A federated instrument network and data archive for aerosol characterization.
Remote Sens. Environ. 1998, 66, 1–16. [CrossRef]

19. Xin, J.Y.; Wang, Y.S.; Pan, Y.P.; Ji, D.S.; Liu, Z.R.; Wen, T.X.; Wang, Y.H.; Li, X.R.; Sun, Y.; Sun, J.; et al. The
campaign on atmospheric aerosol research network of china care-china. Bull. Am. Meteorol. Soc. 2015, 96,
1137–1155. [CrossRef]

20. Xin, J.Y.; Wang, Y.S.; Li, Z.Q.; Wang, P.C.; Hao, W.M.; Nordgren, B.L.; Wang, S.G.; Liu, G.R.; Wang, L.L.;
Wen, T.X.; et al. Aerosol optical depth (aod) and angstrom exponent of aerosols observed by the chinese sun
hazemeter network from august 2004 to september 2005. J. Geophys. Res. Atmos. 2007, 112, 13–16. [CrossRef]

21. Che, H.Z.; Zhang, X.Y.; Li, Y.; Zhou, Z.J.; Qu, J.J.; Hao, X.J. Haze trends over the capital cities of 31 provinces
in china, 1981–2005. Theor. Appl. Climatol. 2009, 97, 235–242. [CrossRef]

125



Remote Sens. 2017, 9, 397

22. Su, B.; Zhan, M.; Zhai, J.; Wang, Y.; Fischer, T. Spatio-temporal variation of haze days and atmospheric
circulation pattern in china (1961–2013). Quat. Int. 2015, 380, 14–21. [CrossRef]

23. Zhang, X.; Wang, L.; Wang, W.; Cao, D.; Wang, X.; Ye, D. Long-term trend and spatiotemporal variations of
haze over china by satellite observations from 1979 to 2013. Atmos. Environ. 2015, 119, 362–373. [CrossRef]

24. He, Q.S.; Li, C.C.; Geng, F.H.; Lei, Y.; Li, Y.H. Study on long-term aerosol distribution over the land of east
china using modis data. Aerosol Air Qual. Res. 2012, 12, 304–319. [CrossRef]

25. Lin, J.T.; Li, J. Spatio-temporal variability of aerosols over east china inferred by merged visibility-geos-chem
aerosol optical depth. Atmos. Environ. 2016, 132, 111–122. [CrossRef]

26. Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H.
Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review
and perspective. Ann. Geophys. 2009, 27, 2755–2770. [CrossRef]

27. Popp, T.; de Leeuw, G.; Bingen, C.; Bruhl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.;
Griesfeller, J.; et al. Development, production and evaluation of aerosol climate data records from european
satellite observations (AEROSOL_CCI). Remote Sens. 2016. [CrossRef]

28. Li, S.S.; Chen, L.F.; Xiong, X.Z.; Tao, J.H.; Su, L.; Han, D.; Liu, Y. Retrieval of the haze optical thickness in
north china plain using modis data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2528–2540. [CrossRef]

29. Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. Modis collection 6 aerosol
products: Comparison between aqua’s e-deep blue, dark target, and “merged” data sets, and usage
recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [CrossRef]

30. Remer, L.A.; Mattoo, S.; Levy, R.C.; Heidinger, A.; Pierce, R.B.; Chin, M. Retrieving aerosol in a cloudy
environment: Aerosol product availability as a function of spatial resolution. Atmos. Meas. Tech. 2012, 5,
1823–1840. [CrossRef]

31. Frey, R.A.; Ackerman, S.A.; Liu, Y.H.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X.G. Cloud detection with
modis. Part i: Improvements in the modis cloud mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25,
1057–1072. [CrossRef]

32. Vermote, E.; Justice, C.; Csiszar, I. Early evaluation of the viirs calibration, cloud mask and surface reflectance
earth data records. Remote Sens. Environ. 2014, 148, 134–145. [CrossRef]

33. Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm:
Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer
spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [CrossRef]

34. Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments
of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance
measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [CrossRef]

35. Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanre, D.; Slutsker, I.; Holben, B.N.
A spatio-temporal approach for global validation and analysis of modis aerosol products. Geophys.
Res. Lett. 2002. [CrossRef]

36. Sun, L.; Wei, J.; Wang, J.; Mi, X.T.; Guo, Y.M.; Lv, Y.; Yang, Y.K.; Gan, P.; Zhou, X.Y.; Jia, C.; et al. A universal
dynamic threshold cloud detection algorithm (udtcda) supported by a prior surface reflectance database.
J. Geophys. Res. Atmos. 2016, 121, 7172–7196. [CrossRef]

37. Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in
the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [CrossRef]

38. Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J., Jr. Validation of a vector version of the 6s
radiative transfer code for atmospheric correction of satellite data. Part i: Path radiance. Appl. Opt. 2006, 45,
6762–6774. [CrossRef] [PubMed]

39. Hutchison, K.D.; Iisager, B.D.; Kopp, T.J.; Jackson, J.M. Distinguishing aerosols from clouds in global,
multispectral satellite data with automated cloud classification algorithms. J. Atmos. Ocean. Technol. 2008, 25,
501–518. [CrossRef]

40. VCM ATBD, VIIRS Cloud Mask (VCM) algorithm theoretical basis document (Revision E): 474-00033.
Released August 2014. Available online: https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/
D0001-M01-S01-011_JPSS_ATBD_VIIRS-Cloud-Mask_E.pdf (accessed on 22 April 2017).

41. Martins, J.V.; Tanre, D.; Remer, L.; Kaufman, Y.; Mattoo, S.; Levy, R. Modis cloud screening for remote sensing
of aerosols over oceans using spatial variability. Geophys. Res. Lett. 2002, 29. [CrossRef]

126



Remote Sens. 2017, 9, 397

42. Aerosol ATBD, VIIRS aerosol optical thickness and particle size parameter algorithm theoretical basis
document (Revision B): 474-00049. Released May 2014. Available online: https://www.star.nesdis.
noaa.gov/jpss/documents/ATBD/D0001-M01-S01-020_JPSS_ATBD_VIIRS-AOT-APSP_B.pdf (accessed
on 22 April 2017).

43. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky
from clouds with modis. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [CrossRef]

44. Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The modis cloud
products: Algorithms and examples from terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [CrossRef]

45. King, M.D.; Menzel, W.P.; Kaufman, Y.J.; Tanre, D.; Gao, B.C.; Platnick, S.; Ackerman, S.A.; Remer, L.A.;
Pincus, R.; Hubanks, P.A. Cloud and aerosol properties, precipitable water, and profiles of temperature and
water vapor from modis. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [CrossRef]

46. Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of
absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002,
59, 590–608. [CrossRef]

47. Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to moderate resolution
imaging spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007. [CrossRef]

48. Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction
and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215–2226. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

127



remote sensing 

Article

Aerosol Retrieval Sensitivity and Error Analysis for
the Cloud and Aerosol Polarimetric Imager on Board
TanSat: The Effect of Multi-Angle Measurement

Xi Chen 1,2, Dongxu Yang 1,*, Zhaonan Cai 1, Yi Liu 1 and Robert J. D. Spurr 3

1 Key Laboratory of Middle Atmosphere and Global Environment Observation,
Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Huayan Li, Chaoyang District,
Beijing 100029, China; chenxilageo@mail.iap.ac.cn (X.C.); caizhaonan@mail.iap.ac.cn (Z.C.);
liuyi@mail.iap.ac.cn (Y.L.)

2 University of Chinese Academy of Sciences, No. 19A, Yuquan Lu, Shijing Shan District,
Beijing 100049, China

3 RT Solutions, Cambridge, MA 02138, USA; rtsolutions@verizon.net
* Correspondence: yangdx@mail.iap.ac.cn; Tel.: +86-186-1140-6910

Academic Editors: Jun Wang, Omar Torres, Yang Liu, Alexander A. Kokhanovsky,
Richard Müller and Prasad S. Thenkabail
Received: 22 November 2016; Accepted: 16 February 2017; Published: 22 February 2017

Abstract: Aerosol scattering is an important source of error in CO2 retrievals from satellite. This
paper presents an analysis of aerosol information content from the Cloud and Aerosol Polarimetric
Imager (CAPI) onboard the Chinese Carbon Dioxide Observation Satellite (TanSat) to be launched in
2016. Based on optimal estimation theory, aerosol information content is quantified from radiance and
polarization observed by CAPI in terms of the degrees of freedom for the signal (DFS). A linearized
vector radiative transfer model is used with a linearized Mie code to simulate observation and
sensitivity (or Jacobians) with respect to aerosol parameters. In satellite nadir mode, the DFS for
aerosol optical depth is the largest, but for mode radius, it is only 0.55. Observation geometry is
found to affect aerosol DFS based on the aerosol scattering phase function from the comparison
between different viewing zenith angles or solar zenith angles. When TanSat is operated in target
mode, we note that multi-angle retrieval represented by three along-track measurements provides
additional 0.31 DFS on average, mainly from mode radius. When adding another two measurements,
the a posteriori error decreases by another 2%–6%. The correlation coefficients between retrieved
parameters show that aerosol is strongly correlated with surface reflectance, but multi-angle retrieval
can weaken this correlation.

Keywords: aerosol; CAPI; DFS; retrieval error

1. Introduction

As one of the most important greenhouse gases, column-averaged CO2 concentrations can
be monitored by several space-based instruments, including the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY) [1,2] on the European Environmental
Satellite (ENVISAT) and the Atmospheric Infrared Sounder (AIRS) [3,4] on the National Aeronautics
and Space Administration (NASA) Aqua platform. However, to characterize CO2 surface flux and the
distribution of CO2 sources and sinks, the uncertainty of column-averaged CO2 dry air mole fractions
(XCO2) retrieval should be less than 1 ppm. This requirement can only be fulfilled by the dedicated
CO2 monitoring sensors, such as the Greenhouse gases Observing Satellite (GOSAT) launched in
2009 [5] and the Orbiting Carbon Observatory-2 (OCO-2) launched in July 2014 [6]. In this context,
the Chinese Carbon Dioxide Observation Satellite (TanSat) will have been launched in the end of
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2016 [7,8]. GOSAT, OCO-2 and TanSat measure in three near-infrared (NIR) bands around 0.76, 1.6 and
2.06 μm, which are more sensitive to CO2 variations in the lower troposphere to meet the requirement
of CO2 surface flux retrieval [9].

The retrieval of column-averaged CO2 dry air mole fractions (XCO2) is biased due to uncertainties
arising from atmospheric particle scattering [10], mainly caused by aerosols. As part of air pollution,
aerosols are dramatically affected by human activities, especially for big cities developing quickly in
China. Depending on the chemical components and particle size, aerosols with different absorbing
and scattering properties could change the light path and have an impact on the radiation. While
algorithm dependent, aerosols are shown to produce different patterns of bias in retrieved XCO2 [11,12].
The instruments in NASA’s Afternoon Constellation (A-Train) can provide near-simultaneous (same
Equator-crossing time, i.e., 1:30 p.m.) observations of clouds and aerosols. As the newest member
of the A-Train, OCO-2 retrievals will utilize the synergy with other missions in the A-Train, such as
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and MODIS (Moderate
Resolution Imaging Spectroradiometer), to correct CO2 retrieval bias [6]. Unlike OCO-2, however,
GOSAT has two subunits: a Fourier-transform spectrometer (the main sensor) and the Cloud and
Aerosol Imager (CAI). As an auxiliary sensor, CAI is essential for screening areas contaminated by
clouds and correcting for the effects of scattering and absorption by aerosols, so reducing the retrieval
errors of XCO2 [13]. For TanSat, a similar concept for a synergistic observation instrument is the Cloud
and Aerosol Polarimetric Imager (CAPI), which is designed to observe radiance in five bands from the
ultraviolet to NIR (0.38, 0.67, 0.87, 1.375 and 1.64 μm), with additional measurements of the Stokes
vector polarization quantities at 0.67 and 1.64 μm [14]. In addition to aerosol detection, CAPI also
performs cloud screening, and the 1.375-μm channel is mainly used to detect cirrus. As with CAI,
the additional aerosol information from simultaneous CAPI measurements is expected to deliver
improvements in CO2 retrieval accuracy. The wavelengths and signal-to-noise ratio (SNR) for each
channel and some other important instrumental characteristics of CAPI are shown in Table 1.

Table 1. Instrument configuration for the Cloud and Aerosol Polarimetric Imager (CAPI).

Channels
Band Centre

Wavelength (μm)
Band Range

(μm)
Signal-to-Noise

Ratio (SNR)
Radiance

(W/m2/μm/sr)
Polarization

Angle 1

1 0.38 0.365–0.408 260 28.0 -
2 0.67 0.66–0.685 160 22 0◦, 60◦, 120◦
3 0.87 0.862–0.877 400 25 -
4 1.375 1.36–1.39 180 6.0 -
5 1.64 1.628–1.654 110 7.3 0◦, 60◦, 120◦

1 Polarization angle represents the angle three polarizers placed in one axial direction.

The backscattered radiation varies substantially due to scattering by aerosols in the atmosphere.
Aerosol optical depth (AOD), expressed in terms of integration of aerosol extinction coefficient over
height, and the Ångström exponent, a dependency of aerosol optical depth on wavelength, are often
used to describe aerosol optical properties depending on the chemical composition, microphysical
parameters and the vertical distribution [15,16]. Several satellite instruments have been used to monitor
aerosols from space by detecting multispectral reflected radiance. The MODIS, AVHRR (Advanced
Very High Resolution Radiometer) and SCIAMACHY instruments can provide measurements from
the visible to infrared in nadir viewing geometry [17–22]. Near-UV measurements from the TOMS
(Total Ozone Mapping Spectrometer) and OMI (Ozone Monitoring Instrument) are suitable for aerosol
detection over bright land surfaces [23,24]. AOD and the Ångström exponent can be derived from
these observations [25–27], but the microphysical properties of aerosols, such as the refractive index
and particle size distribution, cannot usually be determined exactly [21]. The Multi-angle Imaging
SpectroRadiometer (MISR) measures radiance at various viewing angles along the track and combines
these measurements in the retrieval to improve aerosol detection [28–30]. Furthermore, polarization has
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long been shown to be sensitive to the aerosol microphysical properties [31]. Therefore, simultaneous
measurements of polarization and radiances, such as those obtained from the Polarization and
Directionality of Earth Reflectances (POLDER) instrument [32,33] at 14 viewing angles, are shown to
be valuable for characterizing aerosol microphysical properties [34].

The TOA radiances measured by satellites are affected by both aerosol backscattering and surface
reflection. Therefore, the main challenge in improving satellite aerosol retrieval is to separate the
contributions from aerosols and surface reflection [35]. Some algorithms use the relationship of surface
reflectance between visible bands and the near-infrared band, like MODIS [18,19]. Others utilize the
lower surface reflectance at shorter wavelengths, such as UV or the blue band, like the OMI aerosol
algorithm [24,36,37]. A simultaneous retrieval approach for retrieving aerosol parameters along with
XCO2 has been proposed [38]. Simulation experiments applicable to measurements of GOSAT or
OCO-2 have shown that residual aerosol-induced CO2 errors can be reduced to some extent by this
method [39].

In this study, we focus on analyzing the sensitivity to aerosol parameters and their retrieval errors
from the a priori error and instrument noise using simulated CAPI observations. A numerical tool
comprising a forward model, an instrument model and an error analysis model is established for CAPI
simulation. This tool is similar in concept to the one developed for Geostationary (GEO) satellites [40]
and used in simulation of CAPI [41]. The degrees of freedom for the signal (DFS) are used to evaluate
the sensitivity of CAPI measurements to aerosol parameters in the state vector (AOD, refractive index
and particle size distribution). Based on the optimal estimation inverse model, component retrieval
errors are also calculated and analyzed. This theory has been used in estimation of information content
from satellite measurements in some studies [38,42,43].

The wide field of view (FOV) for CAPI may cause some differences in aerosol retrieval for different
viewing zenith angles (VZA); therefore, we check the variation in DFS and retrieval error with viewing
angles. We focus on the comparison between two VZAs: 0◦ and 16◦ based on the FOV of CAPI.
In addition, TanSat can be oriented to operate in target mode, to collect multi-angle observations at
specific surface targets when the satellite moves overhead. The improvement in retrieval accuracy from
the incorporation of these multi-angle measurements is also evaluated. We also conduct an analysis to
compare the error patterns due to uncertainties from different sources for different types of aerosols.

The structure of the paper is as follows. Section 2 contains a description of the forward model.
Section 3 summarizes the principles of our aerosol retrieval model and presents the retrieval sensitivity
and error analysis methodology. Forward model simulation for CAPI is shown in Section 4. Section 5
presents a discussion of the information obtained from simulated measurements. The analysis of the a
posteriori error and correlations between the retrieved elements are discussed in Section 6. The last
section summarizes the paper.

2. Description of the Forward Model

A forward model is developed to simulate the TOA radiance and polarization measurements and
to provide the necessary Jacobians with respect to the state vector. This forward model is a combination
of a linearized aerosol Mie-scattering model [44] and a vector linearized discrete ordinate radiative
transfer model (VLIDORT). The optical processes taken into consideration are Rayleigh scattering, gas
absorption, particle scattering and surface reflection. We discuss the components of the forward model
in the following subsections.

2.1. The Linearized Aerosol Scattering Model

A linearized aerosol model is an independent tool that can derive both the aerosol optical
properties and their Jacobians with respect to aerosol microphysical properties [44]. These optical
properties are aerosol extinction and scattering optical depth, the phase-function-normalized scattering
matrices, as well as the corresponding coefficients expanded using generalized spherical functions.
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The aerosol extinction or loading profile is specified at a reference wavelength. Instead of
specifying aerosol loading at each level (which implies the retrieval of the entire aerosol profile),
we use a parameterized aerosol profile described by only one or two parameters. In this study, we
focus on the tropospheric aerosol, which is assumed to be distributed in the lower atmosphere
(0–3 km). The total aerosol loading can be described either by the column number density or by
the AOD. A distribution function h(zk) is used to parameterize the aerosol profile [39], so that AOD
(or number density) in layer k at height zk is expressed in terms of the total column AOD (or number
density) and distribution function as follows:

τaer,k = τaerh(zk)Δzk, (1)

where τaer is total AOD and Δzk is the depth of layer k. The distribution function h(zk) can be selected
as an exponential, linear or Gaussian function.

The extinction and scattering cross-section and normalized scattering matrix expansion coefficients
are obtained from the linearized Mie code [44]. For simplicity, we use a mono-modal particle size
distribution (PSD) like what the researchers have used in Frankenberg et al. [38]. Although aerosol
particles in the actual atmosphere always exist as a mixture of several components [45], here we focus
on the sensitivity of CAPI measurements to each aerosol component. Four typical types of aerosol
(dust, soot, sea salt and sulfate) are used in our experiment. The Mie code will also calculate analytical
partial derivatives of the optical properties with respect to the aerosol refractive index components
and PSD parameters [44].

2.2. The Rayleigh Scattering and Gas Absorption Model

Atmospheric states are represented on a 25-level vertical grid, which includes the profiles of
temperature and pressure and the volume mixing ratios of trace gases (O2, H2O and CO2). For CO2

absorption, we divided the CO2 profile into two regimes. The lower regime is from the surface to 2 km,
with the rest of the atmosphere comprising the upper regime. The concentration of CO2 in the lower
regime changes frequently due to various sources and sinks, while little change happens in the upper
regime. Three ancillary parameters are also included to correct for the effect of using climatology data;
these are (1) a single temperature shift S applied to all temperature levels uniformly, (2) the surface
pressure; and (3) a scaling factor, FH2O, for the total amount of water vapor.

Rayleigh scattering cross-sections and depolarization ratios are taken from Bodhaine et al. [46].
Jacobians of the Rayleigh optical depth are obtained by an appropriate differentiation.

For trace gas absorption, spectroscopic line parameters from the high-resolution transmission
molecular absorption database (HITRAN) [47] are used as an input for the line-by-line (LBL)
computation of absorption cross-sections. As with the Rayleigh optical inputs, the gas absorption
optical properties are fully linearized.

2.3. The Surface Model

In this study, we take the surface reflection over land into consideration. Because CO2 can only
be retrieved at low AOD, in which circumstance single scattering dominates the radiative transfer
process, and to keep consistent with CO2 retrieval algorithm, we assume a Lambertian surface whose
albedo is parameterized as follows. Based on the principle of the Medium Resolution Imaging
Sensor (MERIS) [48] and LANDSAT TM data [49], wavelength-dependent surface reflectance data are
constructed by assuming that any land surface is covered by both green vegetation and bare soil with
a fraction. Thus, the spectral surface albedo α(λ) is taken to be a weighted linear mixture of the actual
spectra of the vegetation albedo αveg(λ) and bare soil albedo αsoil(λ):

α(λ) = cαveg(λ) + (1 − c)αsoil(λ). (2)
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This is a simplified model that simulates most of the Earth’s land surface, but ignores other less
common land cover types. However, for MERIS, the fraction of soil and vegetation is derived from the
normalized difference vegetation index (NDVI) in the satellite scene, while in our model, this fraction
is treated as a state vector element.

The spectra of vegetation and bare soil are taken from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) database [50]. In our retrieval scheme, the surface spectral albedo
is then characterized by the single parameter c in Equation (2) above. The analytical Jacobian with
respect to this parameter is easy to obtain from the Lambertian albedo Jacobian.

2.4. The Radiative Transfer Model

The VLIDORT radiative transfer (RT) model is used to calculate radiances and their Jacobians
with respect to atmosphere and surface parameters. VLIDORT is a linearized pseudo-spherical vector
radiative transfer code based on the discrete ordinate method for the determination of single and
multiple scattering radiation fields with solar-beam and/or thermal emission (Planck function) sources
of radiation in a multilayer stratified atmosphere [51].

VLIDORT computes a four-element diffuse field of Stokes components {I, Q, U, V}, with I
being the total intensity, Q and U describing linearly-polarized radiation and V characterizing
circularly-polarized radiation. The magnitude of V is very small in the Earth’s atmosphere, and
therefore, we ignore this component in our calculations. For diffuse radiation, especially with a high
aerosol concentration, multiple scattering has an obvious effect on the optical paths. Contributions from
both attenuated solar beam single scattering and multiple scattering are included in VLIDORT [52].
For nadir-viewing at large solar zenith angles (SZA), the pseudo-spherical approximation, which
treats solar beam attenuation for a curved atmosphere while all scattering events still take place in a
plane-parallel medium, is deployed in VLIDORT instead of the pure plane-parallel assumption.

The optical properties, the layer total optical thickness, total single-scattering albedos and the
4 × 4 spherical-function expansion coefficient matrix characterizing the scattering phase function,
and their corresponding derivatives with respect to retrieved parameters are required as inputs to
VLIDORT. These optical and linearized inputs are from the aerosol model, Rayleigh scattering and gas
absorption model introduced in previous sections, through suitable application of the chain rule.

3. Retrieval Method

3.1. Optimal Estimation Theory and Retrieval Error Analysis Method

The retrieval is done using optimal estimation theory. The DFS is used to represent the number of
independently-retrievable quantities that can be derived from the inversion. Here, we summarize the
main formulas used in the analysis.

The DFS is defined as the trace of the averaging kernel matrix, which describes the sensitivity of
the retrieval to the true state vector:

A =
∂x̂

∂x
= GK. (3)

Here, K is a Jacobian matrix (derivatives of the simulated measurements with respect to elements
of the state vector), and G is the contribution function matrix, defined as:

G =
(

KTS−1
ε K + S−1

a

)−1
KTS−1

ε , (4)

in which Sε is the observation error covariance matrix and Sa represents the a priori error covariance
matrix. The averaging kernel matrix relates the retrieval state x̂ to the a priori xa and the true state
vector x as follows:

x̂ = (In − A)xa + Ax + Gyεy, (5)
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in which In is a unit matrix with dimension n (the rank of the state vector) and εy represents random
error in the measurements.

In general, the averaging kernel quantifies the ability to infer the a posteriori state x̂ for specified
observation noise and a priori characterization. The closer A is to the unit matrix, the greater
is the information that can be obtained from observation and the less it depends on the a priori
characterization. We will discuss the DFS for a number of simulation scenarios in the following section.

From Equation (5), an expression for the retrieval error can be derived:

x̂ − x = (A − In)(x − xa) + GyKb

(
b − b̂

)
+ GyΔf

(
x, b, b′)+ Gyε, (6)

The retrieval error comprises four sources: the smoothing error, the model parameter error, the
forward model error and the measurement noise. In this equation, the vector b is the ancillary model
parameters that are not included in the state vector. The smoothing error is the component related to a
priori uncertainties. Thus, the smoothing error covariance matrix Ss corresponding to the a priori error
Sa is:

Ss = (A − In)Sa(A − In)
T . (7)

Similarly, measurement noise Sm and the model parameter error covariance Sf can be expressed
as Equations (8) and (9), respectively (assuming these are distributed normally):

Sm = GSεG
T . (8)

S f = GKbSbKT
bGT . (9)

The error covariance matrix Sε indicates instrument noise, which is usually random and
uncorrelated between channels, and is therefore defined by the SNR in each channel of CAPI in our
study. The evaluation of forward model error cannot be completed easily by some matrix calculation,
so in this work, we do not take this error into consideration and only estimate the uncertainty
introduced by ancillary parameters in the forward model. In addition, we ignore the uncertainties of
other parameters, with auxiliary vector b only including the aerosol profile shape parameters.

In sum, the total posterior error of aerosol retrieval is usually expressed as:

Ŝ = Sm + Ss =
(

KTS−1
ε K + S−1

a

)−1
. (10)

If the model parameter errors are included, Sf is added to this equation.

3.2. The State Vector and A Priori Uncertainty

In our analysis, the state vector x consists of aerosol optical parameters and surface parameters.
The real and imaginary parts of the refractive index at the reference wavelength and the a priori of the
mode radius and variance for lognormal PSD corresponding to the four mono-modal aerosol types
are taken from the Optical Properties of Aerosols and Clouds (OPAC) database [45]. The land surface
model parameter c (the fraction of vegetation cover) is also included in the state vector. Generally,
the state vector includes six parameters: AOD, the real part and the imaginary part of the refractive
index, PSD mode radius and variance and the fraction of vegetation surface albedo. The aerosol loading
profile is assumed to take a Gaussian-shaped distribution, which is described by two parameters: the
peak height and the half width of the profile. The AOD at the reference wavelength, aerosol profile
parameters and surface parameters are consistent in simulations for each aerosol type. Table 2 lists
the a priori and corresponding a priori uncertainties (square-root of the variance) for all state vector
elements. To describe the fast and dramatic change of aerosol due to human activity, the a priori
uncertainty of AOD is assumed 100%. The real part of refractive index of each type of aerosols has
a small difference and changes little; thus, an assumption of 0.15 a priori uncertainty is available for
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each aerosol type. On the contrary, the uncertainty of the imaginary part of the refractive index is more
difficult to estimate and is assumed large. The values are based on a previous study [38] and change
with aerosol type. Similarly, the a priori uncertainties of the PSD mode radius and variance also follow
the assumptions in [38]. Considering the relatively accurate estimation about the surface albedo, the a
priori error of vegetation fraction is 0.2.

Table 2. State vector elements used in the simulation for each aerosol type.

State Vector Element Aerosol Types A Priori A Priori Error (1σ)

AOD 1 - 2 0.3 0.3

Real refractive index 1

Dust 1.53

0.15 2Soot 1.75
Sea salt 1.381
Sulfate 1.43

Imaginary refractive index 1

Dust 0.008 0.02
Soot 0.44 1.0

Sea salt 4.26 × 10−9 1.0 × 10−8

Sulfate 1.0 × 10−8 3.0 × 10−8

PSD mode radius

Dust 0.39 0.4
Soot 0.0118 0.01

Sea salt 0.209 0.2
Sulfate 0.0695 0.07

PSD variance

Dust 2.0

2.0 2Soot 2.0
Sea salt 2.03
Sulfate 2.03

Vegetation fraction - 2 0.5 0.2
1 Aerosol optical depth (AOD) and the refractive index are specified at a reference wavelength of 550 nm. 2 The a
priori and a priori error of AOD and vegetation fraction, as well as the a priori error of real refractive index and
particle size distribution (PSD) variance are the same for four aerosol types.

The measurement vector ys for each viewing geometry is established using simulated (synthetic)
CAPI measurements, including radiances I for the five CAPI bands and polarization quantities Q and
U from Bands 2 and 5 (Table 1). Thus, the measurement vector for single-angle viewing is:

ys = [Iband1, Iband2, Qband2, Uband2, Iband3, Iband4, Iband5, Qband5, Uband5]
T . (11)

To improve retrieval information using observations at multiple angles, we extend the
measurement vector by concatenating individual measurements:

y = [ys1
T , ys2

T , ys3
T , · · · ]T (12)

where the subscripts s1, s2, s3, . . . indicate observations at different viewing angles. Jacobians for the
various bands and viewing geometries are concatenated in the same way.

In this study, we consider an ideal scenario and ignore calibration errors and systematic
errors. The measurement noise is assumed to follow the SNR of each channel (Table 1). When
considering the multi-angle observation, the instrument noise is accumulated in the same way as the
measurement vector.

4. Simulated CAPI Measurements and Aerosol Sensitivity

CAPI measurements (radiances at the TOA) are simulated at multiple viewing angles by our
forward model, and Jacobians with respect to the state vector are obtained. We select four viewing
angles including the nadir (0◦), the largest angle in the FOV (16◦) and two larger angles (30◦, 60◦)
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in the target mode. To compare the influence of surface albedo for the different bands and aerosols,
the simulation is repeated over two different surfaces (large albedo of α(λ), called the bright surface,
and small surface albedo of 0.5 × α(λ), called the dark surface). We also simulate observations in both
winter and summer to investigate the impact of SZA on retrieval. Table 3 summarizes the simulation
scenarios, with the corresponding observation geometries.

Table 3. Angles used in the simulation scenarios 1.

Scenario
Solar Zenith

Angle (Degree)
Viewing Zenith
Angle (Degree)

Scattering Angle
(Degree)

Surface Albedo

Winter 65 0 (nadir), 16, 30, 60 115.0, 114.0, 111.5, 102.2 bright (α(λ)), dark
(α(λ) × 0.5)Summer 20 0 (nadir), 16, 30, 60 160.0, 154.6, 144.5, 118.0

1 Relative azimuth angles for the fore and aft satellite viewing are 90◦ and 270◦, respectively.

The Jacobians of radiance and polarization, with respect to various aerosol properties, are
calculated by linearization capabilities of the forward model. Figure 1 illustrates the Jacobians of
radiance and polarization with respect to AOD. These Jacobians of radiance depend on the wavelengths
and aerosol types and show little sensitivity to the surface albedo. Polarization at 670 nm is largely
sensitive to the viewing angles and aerosol types. The Jacobian of radiance for soot is always negative
due to its absorption of radiation, while the main scattering property of sea salt and sulfate causes
their Jacobians to be positive regardless of the surface albedo. Moreover, the effect of surface albedo on
the Jacobian of radiance is not consistent for each band. For example, the Jacobians for dust increase at
1640 nm, but decrease at 380 nm when the surface albedo is higher (Figure 1). This is the result of the
balance of aerosol scattering and surface reflection in different bands.

Figure 1. Jacobians of AOD in all channels of CAPI at four viewing angles (0◦, 16◦, 30◦, 60◦) and 20◦

solar zenith angle (SZA) with a bright and a dark surface for four types of aerosols. (a–c) represent
Jacobians at 380 nm, 870 nm and 1375 nm, respectively. (d–f) and (g–i) are polarized Jacobians of Stokes
vector I, Q and U at 670 nm and 1640 nm, respectively. The black, red, green and blue markers mean
radiance or polarization for dust, soot, sea salt and sulfate, respectively. The asterisks represent the
bright surface with albedo α(λ), and squares mean the dark surface with 0.5 × α(λ) as albedo. The thin
blue dashed line represents zero Jacobian.
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5. Impact of Observation Geometry and Multi-Angle Retrieval

In this section, we calculate the averaging kernels and discuss the diagonal elements of averaging
kernel matrices for the four types of aerosol. Aerosol microphysical properties determine the different
characteristics of aerosol scattering phase function as shown in Figure 2. The corresponding scattering
phase functions for different simulation scenarios in Table 3 are also emphasized.

Figure 2. Scattering phase functions of four aerosol types used in this study. Black, red, green and
yellow thick solid lines represent the scattering phase function of dust, soot, sea salt and sulfate.
Scattering angles corresponding to different solar zenith angles and viewing zenith angles are indicated
by cyan and blue thin solid or dashed lines, respectively. VZA, viewing zenith angle.

5.1. Influence of Observation Geometry

Figure 3 shows the DFS of each retrieved aerosol parameter for different observation geometries
in both nadir viewing mode and target mode. It is clear that the DFS of AOD and PSD variance for all
aerosol types are close to 1.0, while the DFS of the real and imaginary parts of the refractive indices
and PSD mode radius are less and dependent on aerosol type. For example, among four aerosol
types in the retrieval at nadir viewing with small SZA (20◦), dust has the largest total information
with 4.81 DFS, while the total DFS for soot is the smallest, only 3.05 (Figure 3). The difference of DFS
between different aerosol types is determined by their scattering properties (Figure 2) and indicates
the sensitivity of CAPI measurement to aerosol properties.

The ground pixels in the wide FOV of CAPI will be observed at different VZA (from 0◦–16◦) or
different SZA. The viewing geometry can lead to some changes in aerosol information due to different
aerosol scattering phase functions when scattering angle varies. Thus, we also compare the impact of
different viewing geometries on the information obtained regarding aerosol parameters in Figure 3.
For example, for dust at 20◦ SZA, DFS at the forward 16◦ VZA (blue bar) is lower than that at nadir,
which is consistent with the lower scattering phase function at VZA of 16◦ (Figure 2). However, the
DFS of soot for the four viewing scenarios in the nadir observation in our simulation are similar, due
to the rather uniform distribution of its scattering phase function (Figure 2). Similarly, the comparison
of the DFS at the same VZA, but different SZA (green and yellow bars in Figure 3) also proves the
consistent relationship between phase function and aerosol DFS.

In addition to considering the vegetation fraction of surface albedo in the state vector, we also
compare the DFS over two surface albedos, the bright and dark surface defined in Section 4, in Figure 3.
Consistent with the sensitivity to AOD shown in Figure 1, the DFS for soot over the dark surface at 20◦

SZA is smaller than that over the bright surface due to less sensitivity (less absolute value of Jacobians

136



Remote Sens. 2017, 9, 183

at 0.5 × α(λ), such as the red markers in Figure 1). Similarly, the larger DFS for dust and sea salt at
20◦ SZA over the dark surface correspond to larger Jacobians (black and green markers in Figure 1).
Therefore, although the wavelength dependence of surface albedo remains unchanged, the surface
albedo value could still have an impact on aerosol information content.

Figure 3. The degrees of freedom for the signal (DFS) of corresponding aerosol parameters at different
viewing angles in high and low solar zenith angles for four types of aerosol over the bright and dark
surface defined as in Section 4. The left column is for the bright surface, and the right column is for the
dark surface. Four rows represent four aerosol types: dust (a,b), soot (c,d), sea salt (e,f) and sulfate
(g,h). Different colored bars represent corresponding different observation geometries. The X-axis
represents five retrieved aerosol parameters: AOD, real (mr) and imaginary part of refractive index
(mi), mode radius (mod-r) and variance (mod-v) of PSD.

5.2. Improvement of Multi-Angle Measurement

In target mode, to validate satellite data with ground-based observation, TanSat can monitor
the same location several times along an orbit. Therefore, several measurements of different viewing
geometries for a specific ground pixel can be combined to improve the aerosol retrieval information
and accuracy, similar to what has been achieved for POLDER [53]. For simplicity, three along-track
measurements at the forward VZA 16◦, backward VZA 16◦ and nadir viewing angles are combined for
the multi-angle retrieval. From Figure 3, it is clear that the DFS in multi-angle mode increase compared
to the single-view nadir mode result (such as the red and green bars). The additional information
acquired in the multi-angle mode is most striking for the PSD mode radius, whose DFS is limited
in nadir viewing and can be enhanced 0.22 on average. For the other parameters, we obtain a large
amount of information at only-nadir viewing, so the improvement of multi-angle retrieval is not
obvious. However, this improvement for soot is so little that only another 0.04 DFS is provided for the
PSD mode radius. This situation can be explained by the weak scattering of soot and the small change
of phase function in the chosen geometries. Generally, the DFS of the multi-angle retrieval of dust
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reaches 4.97, indicating we can retrieve almost all five aerosol parameters independently in multi-angle
mode. For sea salt and sulfate, the total DFS are 3.85 and 3.87 in the multi-angle mode, respectively,
so we can obtain a large amount of information for the four parameters other than the imaginary part
of the refractive index. Unfortunately, for soot, the DFS is still only 3.25 in the multi-angle mode, and
the ability to retrieve the real part of the refractive index and PSD radius is not improved. In summary,
the DFS in multi-angle retrieval increases by 0.31, on average, compared to the nadir mode.

6. Error Analysis and Correlation Matrix for Aerosol Retrieval

In the previous section, we focused on the ability to retrieve aerosol properties from CAPI
measurements. Another crucial issue to be considered is the source of error in this retrieval. In this
section, we discuss the a posteriori error covariances, Ŝ, and analyze its sources of a priori uncertainty
and measurement noise, respectively, for all of the scenarios described in Section 5. Model parameter
uncertainties only related to aerosol profile parameters (half-width, peak-height) are also taken into
consideration. The impact of different observation geometries and satellite operational modes are
presented. Finally, an error correlation matrix between all of the retrieved parameters is derived,
to analyze the correlation between the surface and aerosol parameters.

6.1. Retrieval Error and Its Components

From Figures 4 and 5, it can be seen that the patterns of posterior errors and the corresponding
smoothing errors are similar for all aerosol types. This implies that the a priori uncertainties rather
than measurement noise are the dominated component of the posterior error. We also note that among
all retrieved parameters, the imaginary part of the refractive index and the PSD mode radius have the
largest posterior errors in nadir mode, i.e., 78% and 70% on average. Therefore, the retrieval accuracy
of these two parameters cannot be guaranteed. Actually, for aerosols with little absorption, i.e., sea
salt and sulfate, the DFS of the imaginary part of the refractive index are close to zero (Figure 3c,d),
and the posterior errors are almost 100% (Figure 4l,p and Figure 5l,p); therefore, this parameter cannot
be retrieved from measurements. In other words, its information is mainly from a priori, and the
measurement noise has little effect on this parameter (Figure 4j,n and Figure 5j,n).

In addition to a posteriori error, measurement noise and smoothing errors, forward model
parameter uncertainties from two aerosol profile parameters are also investigated in Figures 4 and 5.
The apparent low values of these errors for sea salt and sulfate indicate that the inaccuracy in depicting
the shape of the aerosol profile has little impact on the retrieval uncertainty for these two aerosols.
The corresponding model parameter errors for dust and soot are larger, mainly because radiation in
the UV band is sensitive to the height of aerosols with absorption.

Furthermore, we also note that in Figure 4, when the scattering phase function is larger at certain
observation angles, lower retrieval errors are derived. However, purely noise-related errors are more
random. From Figure 5, it is found that the use of three measurements in retrieval can effectively reduce
posterior and smoothing errors, especially for those parameters with large errors. The posterior error
of the PSD mode radius is reduced the most (23% on average), while the least improvement is achieved
for the real part of the refractive index (less than 1%). Among all of the aerosols, the improvement of
the multi-angle mode is most apparent for dust (76%), in relation to the large variability of its scattering
phase function over the range of our sampled scattering angles. Similarly, the least improvement is
achieved for soot (only 10%) due to both the small scattering property and the comparatively uniform
phase function.
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Figure 4. Different error estimates (1σ) of aerosol parameters at different observation geometries for
all aerosols. Each row represents one type of aerosol: dust (a–d), soot (e–h), sea salt (i–l) and sulfate
(m–p), respectively. The range of ordinate represents percentage.

Figure 5. Different error estimates (1σ) of aerosol parameters at different solar zenith angles in nadir
and multi-angle mode. Others are the same as Figure 4.
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If another two measurements (forward VZA 30◦ and backward VZA 30◦) are added in multi-angle
retrieval, the retrieval errors will be reduced to a greater extent. Figure 6 shows that smoothing
errors, and posterior errors are all improved again when five measurements are used in the retrieval.
Measurement noise is also reduced, except for soot. Thus, adding more measurements in aerosol
retrieval is not an efficient method to improve measurement noise for soot. For dust, which had the
greatest improvement in multi-angle retrieval, the smoothing errors are less than 0.1% and almost can
be ignored; meanwhile, the average posterior errors are as low as 3% when the number of measurement
angles reaches five. The posterior errors for soot, sea salt and sulfate decrease by 4%, 6% and 2% on
average, respectively. Finally, we find that a larger number of retrieval measurements can result in less
smoothing and posterior errors, impacting on aerosols, especially dust.

Figure 6. Four kinds of retrieval errors for multi-angle retrieval in three viewing angles and five
viewing angles respectively. Others are the same as Figure 4.

6.2. Correlation of Surface and Aerosol

The error correlation matrices for elements of the state vector are shown in Figure 7. Our main
objective is to study the correlation of surface and aerosol parameters (coefficient of vegetation fraction
and AOD) and to analyze the strength of the correlation between surface reflection and aerosol
scattering. The larger the correlation coefficient, the harder it is to separate the radiative effect from
surface and aerosol. For all aerosols, the correlation coefficients between the vegetation fraction and
AOD are not less than 0.6, indicating that surface reflection has some influence on aerosol retrieval.
However, the correlation coefficients are positive for dust and soot, whereas negative for sea salt
and sulfate. If the vegetation fraction is large, the surface albedo decreases, thereby resulting in a
diminution of the radiance at TOA. When AOD increases, more scattering for sea salt and sulfate
can lead to an enhancement of the radiance at the TOA. Thus, the vegetation fraction and AOD
for non-absorbing sea salt and sulfate correlate negatively. When comparing nadir and multi-angle
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retrieval, the correlation of AOD and the vegetation fraction decreases to less than 0.4 for dust in
multi-angle measurements. However, there is no obvious distinction for the other three types of
aerosols. This proves that multi-angle retrieval can reduce the correlation between surface reflection
and aerosol scattering for a strong scattering aerosol.

Figure 7. The correlation matrices of retrieval variables for four types of aerosols (four rows): dust
(a,b), soot (c,d), sea salt (e,f) and sulfate (g,h). The left column is in nadir viewing mode, and the right
column is in multi-angle mode.

7. Conclusions

In this study, we have investigated the potential to retrieve aerosol properties and the analysis
of sources of retrieval errors, based on numerical experiments using simulated observations in five
bands of CAPI on board TanSat. A forward model comprising a linearized Mie code, a trace gas
absorption and Rayleigh scattering model, a surface parameterization and a linearized vector radiative
transfer model are introduced. In the simulations, we assume a mono-modal aerosol, with a lognormal
PSD and a Gaussian-model aerosol profile distribution. The retrieved parameters include five aerosol
properties and one surface parameter. The Jacobians of simulated radiances and polarizations with
respect to AOD at different observation geometries are discussed. The retrieval sensitivity specified by
the DFS and the retrieval errors are analyzed and compared at different viewing geometries, as well as
with multi-angle retrieval for four of the main components of the natural mixed aerosol.

In the nadir view mode of CAPI, we find that of all of the retrieval parameters, the lowest DFS
is obtained for the PSD mode radius (0.55 on average), as well as large posterior error (70%), while
the DFS for AOD is always close to 1.0. The range of the total DFS from 3.05–4.83 and the variability
of retrieval errors among the different aerosol types confirm the sensitivity of CAPI observations to
aerosol microphysical properties.

When retrieval is performed with measurements at three along-track viewing angles (±16◦, nadir),
there is additional information for all aerosol properties, with the average increase of the DFS being
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0.31 and the posterior error reduced by a maximum of 23%. By adding another two measurements
from other viewing geometries in the retrieval, the aerosol information obtained is improved, and
the posterior error can decrease again, from 2%–6%, showing that it is worthwhile to fly CAPI in
target mode instead of nadir-only mode. When CAPI works in nadir viewing, the different VZA in
the wide FOV of the satellite has little impact on the aerosol information and retrieval error, related
to the aerosol phase function. In addition to posterior error, we also analyze the smoothing errors,
instrument noise and forward model parameter errors. The results show that the a priori uncertainty
is the dominating source of posterior error. Moreover, retrieval errors for sea salt and sulfate are not
sensitive to the inaccuracies of aerosol profile distribution, but they result in large errors for dust and
soot. Additionally, not only the dependence of surface albedo on wavelength, but also the surface
albedo value affects aerosol information content. The error correlation coefficients between the surface
parameter and AOD for all aerosols indicate that their different optical properties result in a different
strength of correlation between surface reflection and aerosol effects. Multi-angle retrieval can reduce
this correlation too some extent for dust.

In recent CO2 retrieval algorithms, an aerosol model has been added to produce a realistic
atmosphere, and the performance of imperfect characterization of the aerosol is proven dominative
in CO2 retrieval uncertainties [11]. Thus, aerosol properties synchronously retrieved from CAPI
measurements could help to reduce CO2 retrieval errors for TanSat. It should be noted that the analysis
of the retrieval of aerosol properties and error sources in this study is preliminary and accounts only for
the impact of different observation geometries and the number of angles for multi-angle observation,
as well as a number of pure aerosol types. The effect of aerosols on high precision greenhouse gas
retrieval will be considered in future studies. More complex aerosol and surface models that reflect
reality more closely will also be considered.

Acknowledgments: This study was supported by the National High-Tech Research and Development Program
of China (2011AA12A104), the Chinese Academy of Sciences strategic priority program on space science
(XDA04077300), the National Natural Science Foundation of China (41375035) and the External Cooperation
Program of the Chinese Academy of Sciences (Grant No. GJHZ1507).

Author Contributions: Dongxu Yang, Zhaonan Cai and Yi Liu conceived of and designed the experiments.
Xi Chen performed the experiments, analyzed the data and wrote the paper. Robert J. D. Spurr contributed
analysis tools.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

References

1. Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noe’l, S.; Rozanov, V.V. SCIAMACHY mission
objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [CrossRef]

2. Buchwitz, M.; de Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.P.H.;
Bergamaschi, P.; Kärner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:
Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [CrossRef]

3. Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.E.A. AIRS: Improving weather forecasting and
providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [CrossRef]

4. Crevoisier, C.; Heilliette, S.; Chédin, A.; Serrar, S.; Armante, R.; Scott, N.A. Midtropospheric CO2

concentration retrieval from AIRS observations in the tropics. Geophys. Res. Lett. 2004, 31. [CrossRef]
5. Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation

Fourier-Transform Spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring.
Appl. Opt. 2009, 48, 6716–6733. [CrossRef] [PubMed]

6. Crisp, D.; Atlas, R.M.; Breon, F.-M.; Brown, L.R.; Burrows, J.P.; Ciais, P.; Connor, B.J.; Doney, S.C.; Fung, I.Y.;
Jacob, D.J. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 2004, 34, 700–709. [CrossRef]

7. Chen, W.; Zhang, Y.; Yin, Z.; Zheng, Y.; Yan, C.; Yang, Z. In the tansat mission: Global CO2 observation and
monitoring. In Proceedings of the 63rd International Astronautical Congress, Naples, Italy, 1–5 October 2012.

142



Remote Sens. 2017, 9, 183

8. Liu, Y.; Yang, D.X.; Cai, Z.N. A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments
using GOSAT data. Chin. Sci. Bull. 2013, 58, 1520–1523. [CrossRef]

9. Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for
CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse
gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [CrossRef]

10. Yang, D.; Liu, Y.; Cai, Z. Simulations of aerosol optical properties to top of atmospheric reflected sunlight in
the near infrared CO2 weak absorption band. Atmos. Ocean. Sci. Lett. 2013, 6, 60–64.

11. O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.;
Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against
synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [CrossRef]

12. Houweling, S.; Hartmann, W.; Aben, I.; Schrijver, H.; Skidmore, J.; Roelofs, G.-J.; Breon, F.M. Evidence of
systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos. Chem. Phys. 2005, 5, 3003–3013.
[CrossRef]

13. Ishida, H.; Nakjima, T.Y.; Yokota, T.; Kikuchi, N.; Watanabe, H. Investigation of GOSAT TANSO-CAI cloud
screening ability through an intersatellite comparison. J. Appl. Meteorol. Clim. 2011, 50, 1571–1586. [CrossRef]

14. Zhang, J.; Shao, J.; Yan, C. Cloud and Aerosol Polarimetric Imager. In Proceedings of the Conferences of the
Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote
Sensing, and Laser-Matter Interaction, Suzhou, China, 20–29 October 2013.

15. Herman, M.; Deuzé, J.L.; Devaux, C.; Goloub, P.; Bréon, F.M.; Tanré, D. Remote sensing of aerosols over land
surfaces including polarization measurements and application to POLDER measurements. J. Geophys. Res.
1997, 102, 17039–17049. [CrossRef]

16. Maso, M.D.; Kulmala, M.; Riipinen, I.; Wagner, R.; Hussein, T.; Aalto, P.P.; Lehtinen, K.E.J. Formation and
growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä,
Finland. Boreal. Environ. Res. 2005, 10, 323–336.

17. Hasekamp, O.P.; Landgraf, J. Linearization of vector radiative transfer with respect to aerosol properties and
its use in satellite remote sensing. J. Geophys. Res. 2005, 110. [CrossRef]

18. Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of
tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer. J. Geophys. Res.
1997, 102, 17051–17067. [CrossRef]

19. Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm:
Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance. J. Geophys. Res. 2007, 112. [CrossRef]

20. Nagaraja Rao, C.R.; Stowe, L.L.; McClain, E.P. Remote sensing of aerosols over the oceans using AVHRR
data theory, practice and applications. Int. J. Remote Sens. 1989, 10, 743–749. [CrossRef]

21. Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Rossow, W.B.; Lacis, A.A. Aerosol retrievals over the ocean
by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt. 1999, 38,
7325–7341. [CrossRef] [PubMed]

22. De Graaf, M.; Stammes, P.; Aben, E.A.A. Analysis of reflectance spectra of UV-absorbing aerosol scenes
measured by SCIAMACHY. J. Geophys. Res. 2007, 112, 485–493. [CrossRef]

23. Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A long-term record of aerosol
optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59,
398–413. [CrossRef]

24. Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols
and surface UV products from ozone monitoring instrument observations: An overview. J. Geophys. Res.
2007, 112. [CrossRef]

25. Chiapello, I.; Goloub, P.; Tanré, D.; Marchand, A.; Herman, J.; Torres, O. Aerosol detection by TOMS and
POLDER over oceanic regions. J. Geophys. Res. 2000, 105, 7133–7142. [CrossRef]

26. Chu, D.A.; Kaufman, Y.J.; Ichoku, C.; Remer, L.A.; Tanre, D.; Holben, B.N. Validation of MODIS aerosol
optical depth retrieval over land. Geophys. Res. Lett. 2002, 29. [CrossRef]

27. Abdou, W.A.; Diner, D.J.; Martonchik, J.V.; Bruegge, C.J.; Kahn, R.A.; Gaitley, B.J.; Crean, K.A. Comparison
of coincident multiangle imaging spectroradiometer and Moderate Resolution Imaging Spectroradiometer
aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. J. Geophys. Res.
2005, 110. [CrossRef]

143



Remote Sens. 2017, 9, 183

28. Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.; Martonchik, J.V.; Ackerman, T.P.;
Davies, R.; Gerstl, S.A. Multi-angle Imaging Spectroradiometer (MISR) instrument description and
experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [CrossRef]

29. Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A. Multiangle Imaging Spectroradiometer
(MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network
(AERONET) observations. J. Geophys. Res. 2005, 110, 1–16. [CrossRef]

30. Liu, Y.; Koutrakis, P.; Kahn, R. Estimating fine particulate matter component concentrations and size
distributions using satellite-retrieved fractional aerosol optical depth: Part 1—Method development. J. Air
Waste Manag. Assoc. 2007, 57, 1351–1359. [PubMed]

31. Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610.
[CrossRef]

32. Leroy, M.; Deuze, J.L.; Breon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanre, D.; Bouffies, S.;
Chazette, P.; Roujean, J.L. Retrieval of atmospheric properties and surface bidirectional reflectances over
land from POLDER/ADEOS. J. Geophys. Res. 1997, 102, 17023–17037. [CrossRef]

33. Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.;
Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized
measurements. J. Geophys. Res. 2001, 106, 4913–4926. [CrossRef]

34. Hasekamp, O.P.; Landgraf, J. Retrieval of aerosol properties over land surfaces: Capabilities of
multiple-viewing-angle intensity and polarization measurements. Appl. Opt. 2007, 46, 3332–3344. [CrossRef]
[PubMed]

35. Sinyuk, A.; Dubovik, O.; Holben, B.; Eck, T.F.; Breon, F.-M.; Martonchik, J.; Kahn, R.; Diner, D.J.; Vermote, E.F.;
Roger, J.-C.; et al. Simultaneous retrieval of aerosol and surface properties from a combination of AERONET
and satellite data. Remote. Sens. Environ. 2007, 107, 90–108. [CrossRef]

36. Torres, O. Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison
to SAFARI 2000 ground-based observations. J. Geophys. Res. 2005, 110. [CrossRef]

37. Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-Train CALIOP
and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [CrossRef]

38. Frankenberg, C.; Hasekamp, O.; O’Dell, C.; Sanghavi, S.; Butz, A.; Worden, J. Aerosol information content
analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse
gas retrievals. Atmos. Meas. Tech. 2012, 5, 1809–1821. [CrossRef]

39. Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO2 from simulated
space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt.
2009, 48, 3322–3336. [CrossRef] [PubMed]

40. Wang, J.; Xu, X.; Ding, S.; Zeng, J.; Spurr, R.J.D.; Liu, X.; Chance, K.; Mishchenko, M.I. A numerical testbed
for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary
satellite constellation of GEO-CAPE and GOES-R. J. Quant. Spectrosc. Radiat. 2014, 146, 510–528. [CrossRef]

41. Chen, X.; Wang, J.; Liu, Y.; Xu, X.; Cai, Z.; Yang, D.; Yan, C.-X. Angular dependence of aerosol information
content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-Train satellites.
Remote. Sens. Environ. 2016. under review.

42. Martynenko, D.; Holzer-Popp, T.; Elbern, H.; Schroedter-Homscheidt, M. Understanding the aerosol
information content in multi-spectral reflectance measurements using a synergetic retrieval algorithm.
Atmos. Meas. Tech. 2010, 3, 1589–1598. [CrossRef]

43. Geddes, A.; Bösch, H. Tropospheric aerosol profile information from high-resolution oxygen A-band
measurements from space. Atmos. Meas. Tech. 2015, 8, 859–874. [CrossRef]

44. Spurr, R.J.D.; Wang, J.; Zeng, J.; Mishchenko, M.I. Linearized T-matrix and Mie scattering computations.
J. Quant. Spectrosc. Radiat. 2012, 113, 425–439. [CrossRef]

45. Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The software package OPAC. Bull.
Am. Meteorol. Soc. 1998, 79, 831–844. [CrossRef]

46. Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh optical depth calculations. J. Atmos.
Ocean. Technol. 1999, 16, 1854–1861. [CrossRef]

47. Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.;
Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant.
Spectrosc. Radiat. 2009, 110, 533–572. [CrossRef]

144



Remote Sens. 2017, 9, 183

48. Von Hoyningen-Huene, W.; Freitag, M.; Burrows, J.B. Retrieval of aerosol optical thickness over land surfaces
from top-of-atmosphere radiance. J. Geophys. Res. 2003, 108. [CrossRef]

49. Meer, F.V.D.; Jong, S.M.D. Improving the results of spectral unmixing of landsat thematic mapper imagery
by enhancing the orthogonality of end-members. Int. J. Remote. Sens. 2000, 21, 2781–2797. [CrossRef]

50. Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal
emission and reflection radiometer (ASTER). Geosci. Remote Sens. 1998, 36, 1062–1071. [CrossRef]

51. Spurr, R. Lidort and vlidort: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer
models for use in remote sensing retrieval problems. In Light Scattering Reviews 3; Kokhanovsky, D.A.A., Ed.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 229–275.

52. Spurr, R.J.D. Vlidort: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for
forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. 2006,
102, 316–342. [CrossRef]

53. Mukai, S.; Sano, I. Retrieval algorithm for atmospheric aerosols based on multi-angle viewing of
ADEOS/POLDER. Earth Planets Space 1999, 51, 1247–1254. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

145



remote sensing 

Article

Modelling Seasonal GWR of Daily PM2.5 with Proper
Auxiliary Variables for the Yangtze River Delta

Man Jiang 1, Weiwei Sun 1,2,*, Gang Yang 1 and Dianfa Zhang 1

1 Department of Geography and Spatial Information Techniques, Ningbo University, 818 Fenghua Road,
Ningbo 315211, China; jiangman126@126.com (M.J.); yanggang@nbu.edu.cn (G.Y.);
zhangdianfa@nbu.edu.cn (D.Z.)

2 State Key Lab of Information Engineering on Survey, Mapping and Remote Sensing, Wuhan University,
Wuhan 430079, China

* Correspondence: sunweiwei@nbu.edu.cn; Tel.: +86-182-5879-6120

Academic Editors: Yang Liu, Jun Wang, Omar Torres, Richard Müller and Prasad S. Thenkabail
Received: 9 December 2016; Accepted: 1 April 2017; Published: 5 April 2017

Abstract: Over the past decades, regional haze episodes have frequently occurred in eastern China,
especially in the Yangtze River Delta (YRD). Satellite derived Aerosol Optical Depth (AOD) has been
used to retrieve the spatial coverage of PM2.5 concentrations. To improve the retrieval accuracy of the
daily AOD-PM2.5 model, various auxiliary variables like meteorological or geographical factors have
been adopted into the Geographically Weighted Regression (GWR) model. However, these variables
are always arbitrarily selected without deep consideration of their potentially varying temporal or
spatial contributions in the model performance. In this manuscript, we put forward an automatic
procedure to select proper auxiliary variables from meteorological and geographical factors and
obtain their optimal combinations to construct four seasonal GWR models. We employ two different
schemes to comprehensively test the performance of our proposed GWR models: (1) comparison with
other regular GWR models by varying the number of auxiliary variables; and (2) comparison with
observed ground-level PM2.5 concentrations. The result shows that our GWR models of “AOD + 3”
with three common meteorological variables generally perform better than all the other GWR models
involved. Our models also show powerful prediction capabilities in PM2.5 concentrations with only
slight overfitting. The determination coefficients R2 of our seasonal models are 0.8259 in spring,
0.7818 in summer, 0.8407 in autumn, and 0.7689 in winter. Also, the seasonal models in summer
and autumn behave better than those in spring and winter. The comparison between seasonal and
yearly models further validates the specific seasonal pattern of auxiliary variables of the GWR model
in the YRD. We also stress the importance of key variables and propose a selection process in the
AOD-PM2.5 model. Our work validates the significance of proper auxiliary variables in modelling the
AOD-PM2.5 relationships and provides a good alternative in retrieving daily PM2.5 concentrations
from remote sensing images in the YRD.

Keywords: seasonal GWR models; auxiliary variable selection; geographically weighted model;
MODIS AOD; PM2.5 concentrations; Yangtze River Delta

1. Introduction

Widespread air pollution has become a severe problem in China, with increasing population and
pollution emissions. The Yangtze River Delta (YRD), as one of the most developed regions in eastern
China, has been suffering deterioration of air quality and even more frequent haze episodes, severely
threatening both life and health of its people. Particulate matter with an aerodynamic diameter less
than 2.5 μm (PM2.5) is one of most harmful components of pollution haze and it has severely toxic
effects on climate, environment and human health [1,2]. Numerous epidemiological studies have
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validated the direct relation between high PM2.5 concentrations and rising human health problems like
asthma, tumors, and lung cancer [3–7]. Therefore, PM2.5 concentration monitoring is a significant and
pressing issue for both assessing human health exposure and making effective air pollution control
measures in the YRD region.

Ground-based monitoring networks could provide accurate and real-time PM2.5 concentrations.
However, the discrete monitoring sites only measure PM2.5 concentrations around a certain distance of
the sites and cannot provide a spatial coverage of PM2.5 concentrations. Moreover, major monitoring
stations are scattered in urban environments and particularly in the metropolis, leaving most rural
areas uncovered. Even though the number of monitoring stations in China has been clearly increasing
in recent years, the sites are still insufficient to fill all space gaps of the YRD region [8,9].

In contrast, satellite remote sensing has distinct advantages in long-term monitoring and
large-scale spatial coverage. Many satellite sensors like MODIS, MISR, and SeaWiFS collect the
aerosol information in the atmosphere including aerosol scattering and absorption. They are widely
used in estimating and monitoring PM2.5 concentrations with aerosol optical depth (AOD). AOD
measures the light extinction by aerosol scattering and absorption and it reflects the particle number
and property of PM2.5 in the total atmosphere. The satellite sensors then estimate the spatial coverage
of daily coverage of daily PM2.5 concentrations via the retrieval relations between ground-level PM2.5

concentrations and satellite-based AOD [10–18].
The retrieval models of PM2.5 concentrations coverage from satellite-based AOD can be divided

into three main types: the scaling factor models [19,20], the physical analysis models [21,22], and the
empirical statistical models [23]. Scaling factor models mainly originate from the chemical transport
model (CTM), and they determine the scale factor between satellite-based AOD and ground-level
PM2.5 concentrations to estimate large-scale spatial distributions of satellite PM2.5 concentrations.
The models were designed for atmospheric regions without ground PM2.5 monitoring data and the
retrieval accuracy of PM2.5 concentrations is relatively low [23]. Moreover, complicated parameters
are mandatorily requiring to initialize and optimize the CTM. Different from scale factor models,
physical analysis models analyze the AOD-PM2.5 relationships and incorporate accountable physical
parameters to construct quantitative functions of satellite PM2.5 concentrations [24]. Unfortunately, it is
a big challenge to collect these physical parameters in realistic applications. Furthermore, the physical
mechanisms in reality are far more complicated than these ever-proposed formulas. Empirical statistical
models bring about more accurate distribution retrievals of PM2.5 concentrations when compared
with the physical analysis models or scaling factor models [21]. Empirical statistical models [25]
construct statistical regression functions between satellite-based AOD and in situ PM2.5 concentration
measurements, and they can be grouped into two classes including early-stage statistical models and
advanced statistical models.

Early-stage statistical models are mainly referred to as simple or multiple linear regression
models, whereas advanced statistical models develop features in delineating spatial and temporal
variations in the relationships between AOD and PM2.5 concentrations. Typical examples of advanced
statistical models are the general additive line model (GAM) [26], the geographical weighted regression
model (GWR) [27], the linear mixed effects (LME) [28], the geographically and temporarily weighted
regression model (GTWR) [29], the two step models [10,14], and the three step models [30,31]. Amongst
all of them, the GWR has a simple mathematical theory, low computational complexity, and relatively
stable performance in considering unstable relationships between ground-level PM2.5 concentrations
and remote sensed AOD [8,9,15,16,26,32]. Moreover, the GWR shows good compatibility and it is
always combined with other schemes to construct complicated statistical models such as the two
steps models [14] and three step models [31]. The behaviors of GWR correlate closely with the above
formulated models and therefore we focus our study on the GWR model and aim to promote its PM2.5

retrieval performance in realistic applications of the YRD region.
The GWR model observes that the relation between PM2.5 concentrations and AOD varies

across different spatial locations, and additional factors in geography or meteorology are usually
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incorporated into the model to help explain the generation and dilution of PM2.5 concentrations in
the atmosphere [10]. Meteorological factors are mainly derived from physical models, and typical
variables adopted in GWR include boundary layer height, relative humidity, temperature, and wind
speed etc. Geographical factors, mainly referring to the land use the regression model, to explain
spatial variations of air pollution in outdoor environments. Geographical variables mainly include
demography, land use type, elevation, and vegetation coverage ratio etc. Table 1 lists representatives
of auxiliary variables from meteorological or geographical factors in the GWR model for retrieving
daily PM2.5 concentrations. These auxiliary variables have been proven to enhance the stability of
GWR in PM2.5 concentration retrieval. However, unfortunately, two big problems still exist in how
to properly select meteorological or geographical factors, and that severely hinders the performance
improvement of the daily GWR model in realistic applications of the YRD region.

Table 1. Representatives of auxiliary variables in geographical weighted regression model (GWR)
model for PM2.5 concentrations.

Study Area Meteorological Factors Geographical Factors References

China relatively humidity, air temperature, wind
speed, horizontal visibility — [16]

Global GEOS–Chem chemical transport model (CTM) urban land cover, elevation [32]

China boundary layer height, temperature, wind
speed, relative humidity, air pressure

population density, monthly
mean normalized difference

vegetation index (NDVI)
[9]

Pearl River Delta region temperature, wind speed, relative humidity — [15]

North American
Regional

boundary layer height, relative humidity, air
temperature, wind speed percentage of forest cover [27]

(1) The subjective scheme in selecting meteorological or geographical factors might result in
unrepresentative or redundancy among different variables and that would reduce the retrieval
performance of the daily GWR model. Different meteorological or geographical factors do have
divergent contributions in the GWR model, but the contributions from these variables have never been
carefully analyzed. Meanwhile, strong intra-correlations might exist among different meteorological
or geographical factors. For example, air temperature has a negative correlation with air pressure,
and the elevation correlates closely with demography on the same sites. However, current literatures
have never carefully investigated the procedure in selecting proper meteorological or geographical
variables for daily GWR modelling. Arbitrary selection of these factors would adversely degrade the
accuracy of GWR in realistic applications.

(2) The subjective selection scheme has neglected metabolic contributions of these meteorological
or geographical factors to the retrieval performance of the daily GWR model across four different
seasons. Working mechanism and contributions of these meteorological or geographical variables
vary across different seasons, causing the wide range of daily model performance [27]. For example,
in eastern China, the wind dilutes air pollution in summer whereas it might show opposite influences
in spatial distributions of PM2.5 concentrations in winter. The reason is that the winter monsoon brings
the articles from the north of China. Accordingly, it is of great necessity to consider the particularity of
variable contributions of different factors in different seasons in order to guarantee good performance
of the GWR model.

In our previous work of literature [33], we tested different potential influences from meteorological
factors and geographical factors in retrieving PM2.5 concentrations with the regular GWR model.
In this manuscript, we design an automatic procedure to select proper variables from meteorological
or geographical factors in the YRD region and construct specific GWR models for retrieving daily
PM2.5 concentrations in four different seasons. We validate our seasonal GWR models by comparing
with regular GWR models with varying auxiliary variables and by comparing the predicted PM2.5

concentrations with the observed. As far as we know, few relevant works have carefully explored
the situation in current literatures especially for the YRD region. The recently proposed timely
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structure adaptive modeling (TSAM) tried to construct a daily AOD-PM2.5 model by selecting daily
varied auxiliary variables [34]. However, the prediction procedure of TSAM is too complicated to
implement in the YRD region. Accordingly, the objects of this manuscript are to: (1) make clear
different contributions of the main meteorological or geographical factors and their combinations
to the GWR model of the YRD region; (2) propose an automatic procedure to find proper auxiliary
variables for modelling GWR in different seasons; and (3) provide detailed equations of seasonal GWR
models to benefit the retrieval of daily PM2.5 concentrations in the YRD region.

2. Materials and Methods

2.1. Data

2.1.1. Ground-Level PM2.5 Concentration Data

Our study region YRD includes Zhejiang, Jiangsu, Anhui provinces, and Shanghai city.
We selected the year of 2013 as our study period because of the increasing public attention to haze
episodes from 2013 [35] and the data accessibility of PM2.5 monitoring sites in 2013. Figure 1 illustrates
the 123 PM2.5 monitoring sites of the YRD region in 2013. Ground-level hourly PM2.5 concentration
data was downloaded from China air quality real-time release system of the Chinese Ministry of
Environmental Protection (available at http://106.37.208.233:20035). The PM2.5 concentrations were
measured by Tapered Element Oscillating Microbalances (TEOM) or beta attenuation method (BAM or
β-gauge). The data has an uncertainty less than 0.75%, with its accuracy reaching up to ±1.5 μg/m3 for
the hourly average, and hence it is accurate enough as ground truth for PM2.5 concentration measures.
From the consideration of simplicity and convenience, the PM2.5 concentration data at Beijing time
11:00 AM from 1 January to 31 December 2013 was collected to match with the passing time of the
MODIS Terra satellite (i.e., approximately 10:30 a.m. at local time).

Figure 1. The ground PM2.5 monitoring sites and meteorology stations in the Yangtze River Delta
(YRD) region.

2.1.2. MODIS AOD

The MODIS sensors on the Terra and Aqua satellites provide global information of the
Earth-atmosphere system in 36 spectral bands from visible to thermal infrared spectrum range
(0.4–14 μm) with a swath width of 2330 km in 1–2 days. Compared with many other satellite-derived
AOD products, the MODIS AOD has the greatest reputation because of its high temporal resolutions,
relatively high spatial resolutions, good accuracy, and easy accessibility [36]. The latest MODIS AOD
production version Collection 6 is constructed from MODIS imagery via both enhanced DB and DT
algorithm and the AOD product is adaptable for both dark and bright surfaces. We in this study
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uses the Terra MODIS C6 DT 10-km AOD product and the data was download from Level-2 and
Atmosphere Archive & Distribution System of NASA (available at http://ladsweb.nascom.nasa.gov/).

2.1.3. Meteorological Datasets

Referring to previous studies, we manually choose six factors as preliminarily auxiliary
meteorological variables, including temperature (Temp), wind speed (WS), air pressure (Apre),
vapor pressure (Vpre), relative humidity (RH), and surface horizontal visibility (VSB). The particle
concentrations of PM2.5 largely depend on the meteorological conditions. High surface temperature or
high air pressure accelerates the atmospheric vertical motion to transport ground pollutants into higher
places. Wind speed is an effective index of quantifying surface motions of air flow and affects the
horizontal transport of ground pollutants. Relative humidity makes a correction of aerosol humidity
in the atmosphere in order to better match with ground dry PM2.5 concentrations. High relative
humidity largely enhances the size and light extinction of particles, which comprise the sulfate, nitrate,
and ammonium from coal and biomass burning, industrial, and vehicular sources. We also take
vapor pressure as a meteorological variable because we regard it is a comprehensive variable and it
correlates closely with the generation or aggregation of PM2.5. The daily averaged data of above five
variables were acquired from the China Daily Surface of Climatic Dataset in Chinese Meteorological
Administration (available at http://data.cma.cn/). The YRD region has a total of 72 ground-level
monitoring sites in Figure 1.

Although BLH has been a common used variable for AOD vertical correction in many previous
studies, recent real experiments proved that BLH made unclear contributions in the GWR model for
retrieving PM2.5 concentrations in the YRD [28]. The biomass burning in the YRD greatly influences
the aloft aerosol above the BLH, and the vertical correction of AOD might be underestimated by the
BLH [37]. In contrast, the visibility directly reflects the relationship between AOD and ground-level
extinction coefficient [16] and shows great significance in GWR modelling of PM2.5 concentrations [8].
Therefore, we implemented VSB as a preliminary meteorological variable rather than BLH. The
visibility data was acquired from 23 ground-level monitoring sites in the YRD and the dataset at
11:00 was collected from the National Climatic Data Center (NCDC) Global Surface Hourly database
(available at http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=
1&node=gis).

2.1.4. Geographical Datasets

We also manually selected three widely used geographical factors as preliminarily auxiliary
geographical variables, geomorphy feature (GEOM), elevation, and vegetation coverage. We chose
the geomorphy feature because it impacts the spread of air pollutants. The geomorphy feature
dataset was obtained from the Institute of Geographical Sciences and Natural Resource Research,
Chinese Academy of Sciences (available at http://www.resdc.cn/data.aspx?DATAID=124), with
spatial resolutions of 10 km equal to the MODIS AOD product. The original geomorphy data was
manually recategorized from 26 classes into four new classes in YRD, including plain, platform, hill,
and mountain, in order to differentiate their influences in AOD-PM2.5 relationships. The elevation
is supposed to have negative effects on PM2.5 distributions, because of the gravity sedimentation of
air particles. The 90 m Digital Elevation Model (DEM) of SRTMDEM3 dataset was acquired from the
Geospatial Data Cloud (available at http://www.gscloud.cn/). High vegetation coverage reduces
the entry of aerosols into the atmosphere and absorbs particles in the atmosphere [38]. The 16-day
synthesized normalized difference vegetation index (NDVI) product of MODIS (MOD13A2) was
achieved from NASA (available at http://ladsweb.nascom.nasa.gov/) to represent the vegetation
coverage with spatial resolutions of 1000 m. The time of MOD13_A2 product was carefully chosen
to coincide with those of other daily datasets, including MODIS AOD, PM2.5 concentrations, and the
meteorological dataset prior to the day.
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2.1.5. Data Pre-Processing and Integration

All the above datasets (Ground-level PM2.5 concentrations, MODIS AOD, meteorological data, and
geographical data) were transformed into the WGS84 geographic coordinate system. Meteorological
data and ground-level PM2.5 concentrations were acquired at different monitoring stations, and the
average distance of two kinds of station was manually measured at 0.144 degrees. We argue that the
meteorological condition varies insignificantly within the average distance and meteorological stations
are evenly distributed in the study region. So it is reasonable to spatially join each PM2.5 monitoring site
with its nearest meteorological station. Accordingly, the ground-level PM2.5 concentration measures
and its meteorological data were then registered into the same monitoring site. Meanwhile, the YRD
region was digitized into grid cells with a fixed grid size of 0.1 degrees. Using overlay analysis, the
averages of MODIS AOD and geographical data (DEM, MODIS NDVI and geomorphy data) within
each grid cell were assigned as corresponding values of its grid cell.

The MODIS AOD product has many missing pixels mainly due to cloud coverage, high surface
reflectance above bright and urban areas, and model retrieval errors. That greatly reduces the usability
of the AOD product in matching it with ground-level PM2.5 concentration measures and also lowers
the number of validated records in the GWR modelling. For the daily PM2.5 concentrations retrieval,
a proper number of daily validated records of ground-level PM2.5 concentrations and AOD is a key
point to ensure the robustness and accuracy of GWR modelling. A too small number of daily records
could not reflect the realistic spatial coverage of PM2.5 concentrations on the same day. According
to practical experience from our preliminary trials, the daily threshold of 20 records was manually
chosen to guarantee a sufficient number of validated daily records of AOD and ground-level PM2.5

concentrations; the final records in our seasonal GWR modelling are 3482 scattering in 66 days of 2013.

2.2. Method

2.2.1. The Regular GWR Model

The GWR model is a spatial regression model that generates spatially continuous coefficients
of all variables across the study area. It mainly contributes in analyzing the unstationary status
of the spatially varied relationship between independent variables and dependent variables [39].
The GWR model assumes that the AOD-PM2.5 relationship varies greatly with spatial locations
in the study area, and it has been adapted to describe the unstable relations between PM2.5

concentrations and AOD, as well as other geographical or meteorological factors. In this study,
considering the nine auxiliary variables in Table 2 to constitute the preliminary variable set AV =

{DNVI, Geom, Elev, Temp, RH, WS, Apre, Vpre, VSB}, the regular GWR model in retrieving daily
PM2.5 concentrations can be formulated as

PM2.5(i,j) = β0(i,j) + βAOD(i,j)AOD(i,j) +
c

∑
k=1

βk(i,j)AVk
SUB(i,j) (1)

where AOD(i,j) and PM2.5(i,j) represent main variables of the daily GWR model at the position i on day
j, with the coefficient of AOD as βAOD(i,j); β0(i,j) is a constant coefficient denoting the location-specific
intercept at the position i on day j; AVk

SUB denotes the k-th element of a subset selected from the set of
auxiliary variables AV, with the subset size c no less than 9, and βk(i,j) is the location-specific slope or
coefficient of its corresponding auxiliary variable AVk

SUB.

151



Remote Sens. 2017, 9, 346

Table 2. Main parameters of all involved variables in GWR modelling.

Data Variables (Abbreviation) Unit
Time

Frequency
Spatial

Parameters

Main Variables
PM2.5 concentration PM2.5 μg/m3 Hourly 121 stations

MODIS AOD AOD — Daily 10 km

Preliminary
Auxiliary
Variables

Geographical data
NDVI — 16 days 1 km

Geomorphy (Geom) — — 10 km
DEM(Elev) m — 90 m

Meteorological data

Temperature (Temp) ◦C

Daily 72 stations
Relative humidity (RH) %

Wind speed (WS) m/s
Air pressure (Apre) Pa

Vapor pressure (Vpre) Pa
surface horizontal visibility (VSB) km Hourly 23 stations

2.2.2. Seasonal GWR Modelling with Proper Auxiliary Variables

Selecting proper auxiliary variables is of great significance to guarantee the performance of the
GWR model as well as to maximize the contribution of each selected auxiliary variable. Previous works
validated the seasonal variability of different auxiliary variables in affecting the AOD-PM2.5 relations
in the GWR model. Therefore, we would like to propose an automatic procedure to select the proper
auxiliary variables and construct specific GWR models for retrieving daily PM2.5 concentrations in the
four different seasons. With main variables of daily PM2.5 and daily AOD product, with preliminary
auxiliary variables of NDVI, Geom, Elev, Temp, RH, WS, Apre, Vpre, and VSB, the main procedure of
constructing seasonal GWR models includes the following steps shown in Figure 2.

1. The datasets of main variables and preliminary auxiliary variables are categorized into four
different seasons, spring, summer, autumn, and winter.

2. Different regular GWR models are constructed with main variables and auxiliary variables in
different seasons. For each model in each season, we take AOD and PM2.5 as main variables
and separately add each element of nine single auxiliary variables one at a time into the GWR
model. The performance of obtained regular GWR models is quantified via the Determination
Coefficient (R2). By comparing with the simple seasonal GWR model without auxiliary variables,
we rank the contributions of each auxiliary variable in the regular GWR modelling of daily PM2.5

in descending order. Dominating auxiliary variables for GWR modelling in different seasons are
then obtained.

3. Spearman correlation coefficient analysis is implemented into each pair of dominating auxiliary
variables in different seasons. The operation is to reduce the collinearity and redundancy
among dominating auxiliary variables. The spearman correlation coefficient is a nonparametric
rank correlation coefficient, and it is a distribution-free version of the classical Pearson’s
product–moment correlation coefficient [40]. A higher coefficient means stronger relationships
among different auxiliary variables and the coefficient at 0.3 is regarded as the threshold of weak
correlations in our study. Once two dominating auxiliary variables have the spearman correlation
coefficient over 0.3, and only one of them is chosen for further GWR modelling. The pruned
auxiliary variables are obtained after the Spearman correlation coefficient analysis.

4. Factor analysis is carried out to verify the representativeness of pruned auxiliary variables.
The idea of factor analysis is to group the variables having high correlations or close connections
into the same class, where each class represents a basic structure called the common factor.
The main common factors are able to reflect the major information of the original variables.
In this study, the average of four season accumulated variance of the first four common factors
is 70.97%. Moreover, the factor rotation in factor analysis provides actual physical meaning to
explain working mechanisms of each pruned auxiliary variables. In the manuscript, we do not
use uniform seasonal load matrix to construct new daily common variables and replace original
variables because of the big probability of exaggerated errors.
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5. The proper auxiliary variables are achieved for four different seasonal GWR models. The seasonal
GWR models for daily PM2.5 are finally obtained in the YRD region.

Daily MODIS 
AOD Product

Daily ground-
level PM2.5

Daily meteorological 
dataGeographical data

AOD PM2.5 NDVI GEO DEM TEMP RH WS APRE VPRE VSB

Main Variables  Auxiliary Variables

Categorizing the dataset of all  variables conforming to 
different four seasons

Ranking contributions of all auxiliary variables in the regular 
GWR modeling of daily PM2.5

Obtaining dominating auxiliary variables for GWR modelling in 
different four seasons

Four seasons

Successively constructing regular GWR models with main 
variables and each auxiliary variable in different seasons

Making spearman correlation analysis to prune the number of 
dominating auxiliary variables and reduce their collinearity 

Implementing factor analysis to evaluate the 
representativeness of left auxiliary variables after pruning

Achieving proper auxiliary variables for GWR modelling in 
different four seasons 

The Spring 
GWR model  

The summer 
GWR model

The autumn 
GWR model 

The winter 
GWR model  

Evaluation and verification of seasonal 
GWR models of daily PM2.5

Figure 2. The procedure of constructing seasonal Geographically Weighted Regression (GWR) models
with proper auxiliary variables.

2.2.3. Model Evaluation and Verification

In the manuscript, we employ two different schemes to comprehensively testify the performance
of our seasonal GWR models: (1) comparison with other regular GWR models by varying the number
of auxiliary variables; and (2) comparison with observed ground-level PM2.5 concentrations.

We change the number of auxiliary variables to construct different GWR models and compare their
performance with our obtained seasonal GWR models in the same season. To assess the performance
of model fitting and evaluation, four popular measures are adopted, including R2, corrected Akaike
Information Criterion (AICc), Root Mean Squared Prediction Error (RMSE), and Mean Absolute
Percentage Error (MAPE). R2 is a common indicator for model fitting, and AICc is used to make
comparisons between GWR models with different auxiliary variables. RMSE and MAPE describe the
residuals between predicted PM2.5 concentrations and the observed. MAPE weights the residual in
terms of measured PM2.5 concentrations, and smaller MAPE indicates higher PM2.5 concentrations
in the same residual condition. Compared with MAPE, RMSE is more sensitive to higher residual
because it places more punishment on a higher residual than a lower one.

On the other hand, we compare the predicted daily PM2.5 concentrations with the observed PM2.5

measures in the testing sites to further verify the performance of our seasonal GWR models. From the
above mentioned, some grids have no daily AOD from MODIS remote sensing to correspond with
their PM2.5 measures on the same ground-level monitoring sites because of cloud coverage and other
reasons. The PM2.5 concentrations in these grids are chosen to constitute the testing samples and their
corresponding AOD measures are filled with the average AOD values of their nearest neighbors using

153



Remote Sens. 2017, 9, 346

buffer analysis via 0.3 degrees. The reason for filling absent AOD with buffer analysis is that many
experiments from previous works validated that the AOD would not diverge greatly within a small
distance. Moreover, with the proper auxiliary variable combination, the 10-fold cross validation is
implemented to testify the predication performance of our seasonal GWR models.

3. Results

3.1. Descriptive Statistic of Datasets

Table 3 lists the statistic information of two major variables PM2.5 and AOD for model fitting and
evaluation in the experiments. The average PM2.5 is highest in winter (97.76 μg/m3), then followed
by spring (68.02 μg/m3), autumn (57.95 μg/m3), and summer (39.50 μg/m3). The averages of AOD
reach the highest value in spring (0.82), then followed by summer, winter, and autumn. We argue
that the inconsistent seasonal patterns of PM2.5 and AOD are caused by different seasonal impacts of
meteorological or geographical factors, rendering that the PM2.5 concentrations and AOD are scattered
to different extents even in opposite directions. Compared with model fitting in four seasons, the
averages of PM2.5 concentrations implemented in model evaluation are slightly higher. The reason
for this is because some grids with higher PM2.5 concentrations but without AOD caused by cloud
coverage are grouped as testing samples for model evaluation.

Table 3. Description statistics of PM2.5 and Aerosol Optical Depth (AOD) for GWR model fitting
and evaluation.

Whole
Year

Variable
Model Fitting (N = 3482, day = 66) Model Evaluation (N = 715, day = 66)

Mean Min Max SD Mean Min Max SD

PM2.5 (μg/m3) 61.75 3 400 40.43 67 21 267 32.
AOD (Unit less) 0.69 0.03 3.51 0.41 0.62 0.04 2.98 0.35

Spring

Variable
Model Fitting (N = 1237, day = 21) Day-Site Evaluation (N = 198, day = 21)

Mean Min Max SD Mean Min Max SD

PM2.5 (μg/m3) 68.02 3 279 38.43 68.72 12 257 35.89
AOD (Unit less) 0.82 0.08 3.51 0.41 0.69 0.11 3.21 0.39

Summer

Variable
Model Fitting (N = 809, day = 16) Day-Site Evaluation (N = 182, day = 16)

Mean Min Max SD Mean Min Max SD

PM2.5 (μg/m3) 39.50 3 400 23.25 41.50 14 400 26.25
AOD (Unit less) 0.67 0.04 2.33 0.34 0.67 0.06 2.33 0.35

Autumn

Variable
Model Fitting (N = 1014, day = 18) Day-Site Evaluation (N = 181, day = 18)

Mean Min Max SD Mean Min Max SD

PM2.5 (μg/m3) 57.95 5 205 35.62 62.5 9 235 35.62
AOD (Unit less) 0.58 0.035 2.50 0.42 0.59 0.04 2.70 0.51

Winter

Variable
Model Fitting (N = 422, day = 11) Day-Site Evaluation (N = 154, day = 11)

Mean Min Max SD Mean Min Max SD

PM2.5 (μg/m3) 96.76 5 284 50.10 102.3 25 267 45
AOD (Unit less) 0.62 0.037 2.94 0.41 0.59 0.04 3.02 0.41

3.2. Proper Auxiliary Variables Analysis

We first respectively add each of the nine auxiliary variables into the simple GWR model. Figure 3
illustrates the determined coefficients R2 of each auxiliary variable in its seasonal models. In four
seasons, VSB contributes greatly to improving the GWR performance, whereas Georm and NDVI
have little contributions to the GWR model in fitting the AOD-PM2.5 relationships. The contributions
from Vpre, Temp, WS, Elev, and Apre in GWR modelling diverge greatly across different seasons.
In spring, the mean and median of WS, Vpre, VSB, and Temp variables show better contributions than
other variables. The wider variations of R2 from NDVI and Apre indicate more variations of their

154



Remote Sens. 2017, 9, 346

contributions in spring GWR modelling. In summer, Vpre, and VSB show remarkable performance,
followed by Elev and Apre, while the WS variable shows less impact compared with its contribution
in spring GWR modelling. In autumn, WS, Temp, Vpre, and VSB have remarkable contributions
compared to other variables, regardless that Apre is less stable than the four variables above. In winter,
all the variables have relatively unstable contributions in GWR modelling with wider ranges of R2, and
the reason for this might be the relatively smaller fitting samples and the fluctuating meteorological
conditions in winter. From the above contributions of all the single auxiliary variables, we preliminarily
selected the Elev, WS, Apre, Vpre, VSB, and Temp for further analysis.

Figure 3. Contributions from nine auxiliary variables in GWR modelling of four seasons and the whole
year. (a) spring, (b) summer, (c) autumn, (d) winter, (e) whole year, (f) curve line of contributions from
all auxiliary variables in four seasons and the whole year. The box gives the 25%–75% percentile and
the line in the box denotes the median. The whisker is the maximum and minimum of R2, the points
outside the box are outliers, inside the box an average of R2.
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With Spearman correlation coefficient analysis, the number of auxiliary variables is pruned to
reduce the collinearity and redundancy among different variables. For the spring model, the Temp is
removed because of its serious collinearly with Vpre. The Apre variable is discarded in the summer
model because of its clear redundancy with Elev. The Vpre variable is dropped in the autumn model
because of its collinearity with VSB. The variables in the winter model do not show clear collinearity.
Three variables are left for four seasonal models and the yearly model respectively, WS, Vpre, and VSB
for spring, Elev, Vpre, VSB for summer, WS, Temp, VSB for autumn, Apre, RH, VSB for winter and WS,
Vpre and VSB for the whole year.

We implement factor analysis to verify the representatives of pruned auxiliary variables. We use
the factor analysis method to extract the common factor and calculate the factor load matrix. The result
shows the first four factors separately reach their 70.52% accumulated variance in spring, 71.31%
in summer, 74.64% in autumn, and 67.38% in winter. The first common factor includes AOD and
VSB, sometimes with RH in. The second common factor consistently includes Vpre and Temp. The
third common factor usually includes WS and Elev. The last common factor includes NDVI and
Geom. Apre is possible to be involved in both the first and third common factors. We respectively
name these four common factor components comprehensive index, vertical diffusion effect, horizontal
diffusion effect, and geographic effect according to their physical mechanism with the ground-level
PM2.5 concentrations. In this case, we find the pruned auxiliary variables exactly represent three
common meteorology factors, and therefore factor analysis provides theoretical supports for our
selected auxiliary variables. However, the geographic effect does not involve variables in our model,
we will explain the reason latter.

From the above, we finally obtain three proper auxiliary variables for four seasonal GWR models
and the year GWR model (listed in the supplementary file). The proper auxiliary variables are WS,
Vpre, and VSB for spring GWR model, Elev, Vpre, VSB for summer model, WS, Temp, VSB for autumn
model and Apre, RH, VSB for winter model. Integrating the proper auxiliary variables with the main
variable, four seasonal GWR models and the year model for further comparison are finally obtained.

3.3. Evaluation and Verification of Seasonal GWR Models

In order to validate our four seasonal models, we implement two groups of experiments to
validate our four seasonal models. The first experiment in comparison with other GWR models by
changing different auxiliary variable combination is to verify the performance of our proper auxiliary
variable combination in four seasonal models. The second experiment is to evaluate the behaviors of
four seasonal GWR models in predicting daily PM2.5 concentrations.

3.3.1. Comparison of Regular GWR Models with Varied Auxiliary Variables

In order to testify the performance of three variable combinations, we respectively change the
number of auxiliary variables from 0–4 to construct eight comparison GWR models in each season.
Table 4 lists auxiliary variables of 36 GWR models of four seasons in the comparison, and the nine
models can be grouped into five types: “AOD + 0”, “AOD + 1”, “AOD + 2”, “AOD + 3” (our model
with three proper auxiliary variables), and “AOD + 4”. The fourth variable in the comparison compared
against our seasonal models is manually selected according to its contribution of a single variable in
regular GWR modelling.
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Table 4. The list of all GWR models with different variable combinations.

Model
Groups

Models Spring Summer Autumn Winter Year

AOD + 0 1 AOD

AOD + 1
2 AOD, WS AOD, Elev AOD, WS AOD, Apre AOD, WS
3 AOD, Vpre AOD, Vpre AOD, Temp AOD, RH AOD, Vpre
4 AOD, VSB AOD, VSB AOD, VSB AOD, VSB AOD, VSB

AOD + 2
5 AOD, WS, Vpre AOD, Elev, Vpre AOD, WS, Temp AOD, Apre RH AOD, WS, Vpre
6 AOD, WS, VSB AOD, Elev, VSB AOD, WS, VSB AOD, Apre, VSB AOD, WS, VSB
7 AOD, Vpre, VSB AOD, Vpre, VSB AOD, Temp, VSB AOD, RH, VSB AOD, Vpre, VSB

AOD + 3
(Ours) 8 AOD, WS,

Vpre, VSB
AOD, Elev,
Vpre, VSB

AOD, WS,
Temp, VSB

AOD, Apre,
RH, VSB

AOD, WS,
Vpre, VSB

AOD + 4 9 AOD, WS, Vpre,
VSB, Elev

AOD, Elev Temp,
Vpre, VSB,

AOD, WS, Temp,
Vpre, VSB

AOD, WS, Apre,
RH, VSB

AOD, WS , Temp,
Vpre, VSB

Figure 4 demonstrates all the model fitting and evaluation results from all the models in four
seasons. In spring, the R2 of model fitting and model evaluation rises when the auxiliary variables
gradually increase from 1–3, consistent with the decreasing RMSE and MAPE from 14.0 μg/m3 to
12.8 μg/m3 and from 27% to 22% in model fitting respectively. The optimal R2, MAPE, and AICc reach
the optimal result in model 5, although the RMSE has the minimum value in model 8 of “AOD + 3”.
With the variable number varying from 1–4, the overfitting degree of all models decreases from “AOD
+ 0”, achieves the bottom at “AOD + 3” and then increases from “AOD + 3” to “AOD + 4”. Specifically,
our spring GWR model of “AOD + 3” has the slightest overfitting degree whereas its “AOD + 2” model
encounters the most serious overfitting.

 

Figure 4. (a–d) The comparison of all seasonal GWR models with different auxiliary variables. Blue
scattering points are quantitative measures (R2, RMSE, MAPE and AICc) of model fitting and red points
are those of model evaluation. The dash lines are fitted curves of all scattered points in different seasons.
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In summer, an overall gradual improvement of model performance exists from “AOD + 0” to
“AOD + 3”, with a slight descending in “AOD + 4”. For the GWR model fitting process, R2 increases
from 0.69 to 0.78, RMSE decreases from 7.25 μg/m3 to 6.18 μg/m3, and MAPE decreases from 22.5%
to 19.0%. The model performance of GWR slightly descends from “AOD + 3” to “AOD + 4”, and the
model 8 of “AOD + 3” behaves best of all the models in summer. From model 1 to model 8, AICc
values vary within a smaller range from 320.1 to 321.7, and the overall tendency of AICc in model
evaluation is consistent with that of model fitting.

Similar to that of summer, the R2, RMSE, and MAPE in autumn models show gradual
improvement in performance from model 1 to model 8, with R2 increasing from 0.72 to 0.75, RMSE
decreasing from 11.35 μg/m3 to 10.17 μg/m3 and MAPE decreasing from 22.5% to 19.0%. Model 8 of
“AOD + 3” has the highest R2, lowest RMSE and MAPE and relatively less overfitting among all the
models and it performs best of all.

In winter, the variation of R2, RMSE, and MAPE diverges more than those of the other three
seasons. The explanation for this is partly because of fewer samples in both model fitting and
evaluation. In terms of R2, Figure 4 shows a more apparent increasing tendency and does not have
descending tendency at “AOD + 4” model. From model 1 to model 8, R2 increases from 0.68 to 0.77,
RMSE decreases from 17.67 μg/m3 to 15.11 μg/m3, MAPE decreases from 18.5% to 15.3%. More
variation and severer overfitting also occur in the winter models, with the decreasing R2 averaged at
0.173 from model fitting to model evaluation.

From the above, the comparison with changing numbers of auxiliary variables explains the best
performance of our “AOD + 3” model, and verifies the effectiveness of our selected proper auxiliary
variables in modelling seasonal GWR models.

Moreover, we listed key coefficients of auxiliary variables involved in nine GWR models from 1–9
on 16 September 2013 to further explain the special performance of our “AOD + 3” GWR model. We
selected the day because of its high AOD coverage rate. Table 5 shows the coefficients of all involved
auxiliary variables in the nine models. The results show that the auxiliary variables have clear effects
in model fitting and evaluation. From model 1 to model 9, the changing combinations of the auxiliary
variables explain their divergent contributions in improving the performance of the GWR model.
Among all the nine models, the “AOD + 3” of model 8 performs best, with lowest overfitting in model
fitting and evaluation. Figure 5 illustrates spatial distributions of PM2.5 retrieved from these nine
models on 16 September 2013.

Table 5. Parameter estimations and Mean Absolute Percentage Errors (MAPEs) for GWR models 1–9
on 16 September 2013.

Model
Parameter Estimate MAPE (%)

βAOD βWS βTemp βVSB βVpre Fitting Evaluation

1 6.87 — — — — 22.17 35.91
2 7.56 1.28 — — — 21.89 35.29
3 6.67 — 4.31 — — 21.85 36.34
4 0.81 — — −6.65 — 22.64 33.18
5 6.38 0.55 2.24 — 22.24 34.34
6 2.77 1.33 — −9.49 — 20.92 33.05
7 3.22 — 6.38 −5.82 — 20.99 34.04
8 3.09 0.61 3.89 −5.00 — 20.81 32.25
9 3.84 0.81 5.98 −4.81 1.45 20.92 32.79
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Figure 5. Spatial distribution maps of retrieved PM2.5 concentrations of all 9 models on 16 September
2013. The radial basis interpolation (RBF) method was utilized to interpolate meteorological variables
and grid them into cells with spatial resolution of 0.1 degree. (a–i) correspond to retrieved maps of
PM2.5 concentrations from models 1–9 in Table 4.

3.3.2. Comparison with the Observed PM2.5 Concentrations

In this section, we validate the behaviors of four seasonal “AOD + 3” GWR models in predicting
daily PM2.5 concentrations, using 10-fold cross validation scheme.

Figure 6 depicts the regression results with zero intercept between our predicted PM2.5 against
observed PM2.5 measures. All the four models behave as slightly overfitting when compared against
their cross-validation results. The result also shows that our seasonal GWR models in summer and
autumn perform better than those in spring and winter. In spring, the slope and R2 for model fitting
are 0.9618 and 0.8328. In summer, the slope and R2 for model fitting are 0.9702 and 0.8503. In autumn,
the slope and R2 for model fitting are 0.9758 and 0.9156. In winter, the slope and R2 for model fitting

159



Remote Sens. 2017, 9, 346

are 0.9706 and 0.8577. The slopes of four seasons are all less than 1, indicating that the estimated model
generally underestimates the actual observed data. All the four models behave as slightly overfitting
from model fitting to evaluation, with the slightest increase of RMSE in the summer and the most
severe increase in the winter. The main reason for the worse performance in winter is partly because of
the relatively small sample size. We argue that the frequent eruption of heavy pollution episodes in
the winter of 2013 [35] also aggravated the possibility of unexpected situations in PM2.5 estimation,
causing higher RMSE values in the winter GWR model.

Figure 6. (a–d) Comparison between observed PM2.5 and predicted PM2.5 concentrations in the four
seasonal models. The dashed lines are regression lines.
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Moreover, we compare the autumn GWR model with the yearly model to further validate the
specific seasonal variables pattern of our GWR models. The yearly model has the same auxiliary
variables with our autumn model, and the reason for choosing the autumn model is because of
its relatively larger sample size for GWR modelling. The result shows the autumn GWR model
performs better than the yearly model, with 1.2 μg/m3 lower RMSE and 2.79% lower MAPE in model
fitting (Figure S1 in the supplementary file). The cases are similar in model evaluation. In addition,
the overfitting is more severe in the yearly model, with a bigger gap between fitting and evaluation.
The above also indicates that it is of great necessity to consider the seasonal auxiliary variables
and establish seasonal models rather than the yearly model to guarantee the performance of the
GWR model.

4. Discussion

Satellite images provide a reliable method to retrieve spatial coverages of PM2.5 concentrations.
One key problem is how to construct the GWR relations between satellite based AOD and ground-level
PM2.5 measures, with the help of auxiliary meteorological or geographical factors. The auxiliary
variables arbitrarily adapted in the GWR model might have unclear contributions to the PM2.5

concentration retrievals. Meanwhile, the contribution from single auxiliary variables or their
combinations to the GWR modelling varies across different seasons. Therefore, we proposed an
automatic procedure to select proper meteorological or geographical factors for GWR modelling
in different seasons, rendering their proper auxiliary variable combinations to construct optimal
daily GWR models in the YRD region. We made careful comparisons between our seasonal GWR
models and regular GWR models with different auxiliary variables, between the predicted PM2.5

concentrations from our models and the observed ones, in order to validate our model performance.
The results explain that our seasonal models have better performance for PM2.5 retrievals than the
comparison models.

Theoretically speaking, the relationship between daily AOD and PM2.5 is widely affected by
few auxiliary variables. Also the proper choice of auxiliary variables could then upgrade the model
accuracy as well as reduce the model redundancy. The effects from nine preliminary auxiliary variables
which we adopted in PM2.5 concentrations, can be grouped into four different aspects—comprehensive
effect, vertical diffusion effect, horizontal diffusion effect, and geographical effect. The contribution of
each selected auxiliary variable in our models is not constant, and it varies greatly among different
seasons like that of TSAM [34]. VSB is a comprehensive indicator of air quality showing significant
influences in all four seasons. Vpre is the partial pressure of water vapor in the whole atmosphere
column, and our experimental results indicate that it is a good auxiliary variable for GWR modelling
in spring, summer, and autumn when compared with the widely adopted RH in the current literature.
The reason for this we guessed is because Vpre reflects and corrects the humidity of the whole aerosol
column. Apre shows greater contribution in the winter GWR model than in those of other seasons.
We guess the reason for this is that the high air pressure occurring in winter always comes along
with cold air and sand-dust from the north or northwest of China, and that greatly increases the
PM2.5 concentrations in the YRD. Two geographical variables, Geom and NDVI, were not significant
in the GWR modelling and accordingly were excluded from the auxiliary variable combinations.
The relatively simple geomorphy features of the YRD, with 49% of plain and 7.9% of mountain, render
that the Geom shows insignificant contributions in the GWR modelling. Although NDVI is relatively
weaker with respect to other contemporary meteorology variables, it shows significant contributions
in the spring and winter models. That indicates seasonal contribution patterns of NDVI in the PM2.5

retrieval model. In general, our experimental results illustrate that the daily AOD-PM2.5 relationships
closely correlate with meteorological factors rather than geographical factors. The explanation for this
is that the shifting meteorology conditions highly affect the generation or diffusion of daily PM2.5

concentrations in the short term whereas geographical factors are crucial to long term prediction [30].
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The combination of proper auxiliary variables in our seasonal models is carefully investigated in
our study by comparing with regular GWR models via changing the number of auxiliary variables.
The comparison between our seasonal models and the yearly model illustrates the importance of
proper auxiliary variables. Generally, our seasonal models have the optimal performance with
three auxiliary variables, and less or more variables than three would bring about instability or
redundancy of the GWR models. Adding extra auxiliary variables shows little improvement in the
GWR model but even reduces the model performance and aggravates the overfitting, due to the
increasing risk of intra-correlations among variables [41]. We further analyzed the auxiliary variables
in four seasonal model “AOD + 3” and guessed that they coincided with three meteorological effects
in PM2.5 concentrations. For the spring, WS determines the horizontal diffusion effect of PM2.5, Vpre
correlates closely with the vertical diffusion of PM2.5, and VSB represents the comprehensive effect of
PM2.5 concentrations. For the summer season, Elev replaces WS in spring and has a close relation with
the horizontal diffusion effect. For the autumn model, Temp correlates closely with the air vertical
movement. For winter, Apre shows more correlation with the air vertical movement. The seasonal
average PM2.5 prediction of model evaluation R2 is 0.79, and the result of our seasonal models is
comparable to those of the previous works by Fang [34], but with less variables and computation cost.
We also applied the specific seasonal GWR models to 2014, and the achieved result is satisfying (Figure
S2 in the supplementary file).

Unfortunately, our study simultaneously has the following shortcomings needing improvement
in the future. First, the selection of the seasonal variable largely depends on our numerous empirical
statistical works and the analysis of common factors. Also, theoretical explanations of specific seasonal
variables cannot be fully figured out and need to be further investigated. Second, only natural factors
were involved in our study and which might result in neglecting some potential effects from anthropic
factors especially social geographical factors. Actually, anthropic factors, especially social geographical
variables have great potential in improving the PM2.5 retrieval model [42]. The supplement work of
more anthropic variables into our seasonal GWR models will be completed in a further study. Finally,
the filling problem of absent pixels in the AOD product requires careful investigation in order to
increase the number of validated records for more robust GWR modelling and to promote the utility
of proposed seasonal GWR model in all daily conditions of the YRD region.

5. Conclusions

Auxiliary variables like meteorological or geographical factors show great potential in improving
the GWR model accuracy for retrieving PM2.5 concentrations from satellite AOD. However,
the selection of proper variables and their different contributions in the four seasons have never
been carefully investigated, hampering further applications of the GWR model in the YRD region.
In this study, we put forward an automatic procedure of seasonal proper variable selection considering
the contribution of each single variable and its inner structure in the GWR modelling. Moreover,
we investigated the seasonal pattern of auxiliary variables, and constructed four seasonal GWR
models with properly selected auxiliary variables. Our seasonal GWR models with proper variable
combinations were tested with two groups of experiments. The seasonal GWR models was compared
with regular GWR models by changing auxiliary variables and the predicted PM2.5 concentrations from
the four seasonal models were compared against the observed measures and that of the yearly GWR
model. Our selected proper auxiliary variables in four models of “AOD + 3” reduce the redundancy
of regular GWR models and simultaneously help to obtain better model accuracy than with other
regular GWR models. The prediction performance of the four seasonal models behaves better than
the yearly model and the predicted result coincides well with the observed ones, having high R2 in
model evaluation, averaged as 0.79 in 10-fold cross validation. Therefore, seasonal varied contribution
of variables should be taken into consideration in PM2.5 concentration retrieval and our seasonal GWR
models could be a good alternative in modelling daily PM2.5 concentrations from remote sensing in
the YRD region.
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Abstract: Monitoring fine particulate matter with diameters of less than 2.5 μm (PM2.5) is a critical
endeavor in the Beijing–Tianjin–Hebei (BTH) region, which is one of the most polluted areas
in China. Polar orbit satellites are limited by observation frequency, which is insufficient for
understanding PM2.5 evolution. As a geostationary satellite, Himawari-8 can obtain hourly optical
depths (AODs) and overcome the estimated PM2.5 concentrations with low time resolution. In this
study, the evaluation of Himawari-8 AODs by comparing with Aerosol Robotic Network (AERONET)
measurements showed Himawari-8 retrievals (Level 3) with a mild underestimate of about −0.06 and
approximately 57% of AODs falling within the expected error established by the Moderate-resolution
Imaging Spectroradiometer (MODIS) (±(0.05 + 0.15AOD)). Furthermore, the improved linear
mixed-effect model was proposed to derive the surface hourly PM2.5 from Himawari-8 AODs from
July 2015 to March 2017. The estimated hourly PM2.5 concentrations agreed well with the surface
PM2.5 measurements with high R2 (0.86) and low RMSE (24.5 μg/m3). The average estimated PM2.5
in the BTH region during the study time range was about 55 μg/m3. The estimated hourly PM2.5
concentrations ranged extensively from 35.2 ± 26.9 μg/m3 (1600 local time) to 65.5 ± 54.6 μg/m3

(1100 local time) at different hours.

Keywords: air pollution; geostationary satellite; Himawari-8; hourly AOD; hourly PM2.5

1. Introduction

Ambient fine particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) are
associated with adverse human health effects; thus, they are regarded worldwide as a public health
threat [1,2]. Given the finer size of PM2.5 compared with PM10 (aerodynamic diameters less than 10
μm), PM2.5 can be breathed deeply into the lungs and seriously damage human organs [3]. The PM2.5
concentrations in the Beijing–Tianjin–Hebei (BTH) region, which is one of the most populated and
polluted regions in North China, have increased significantly in the past few decades due to rapid
economic growth and industrialization, further resulting in severe events of atmospheric pollution [1,4].
However, data on PM2.5 concentrations are often sparse because monitoring activities are often
conducted in urban areas due to difficulties and high costs of technical application; thus, these data
hardly reflect the real effects of local meteorology, topography, and the location of emission sources [5].
Satellite measurements can offer information on aerosol optical depths (AODs) with large-scale spatial
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coverage and different temporal–spatial resolutions. A promising correlation exists between AOD and
atmospheric particles because AOD represents the quantity of light removed from a beam via aerosol
particle scattering or absorption along the optical path [1,6–8]. Thus, satellite measurements have been
widely employed as a proxy to infer surface PM2.5 concentrations [2,5,9].

Previous studies proposed establishing empirical models to correlate ground-level PM2.5 and
satellite-derived AOD (e.g., linear, nonlinear, and logarithmic models) [10–12]. In addition to the
AOD, predictors, such as aerosol types, meteorological factors, and land use information, have been
incorporated into models to improve model performance [13–15]. Advanced statistical methods, such
as generalized linear regression models [12], mixed effects models [16], generalized additive models [9],
geographically-weighted regression [2], and semi-empirical models [7], have been employed to
represent the relationships between the ground-level PM2.5 concentration and various predictors.
Xin et al. [8] demonstrated the linear relationship of daily PM2.5 with the Moderate-resolution Imaging
Spectroradiometer (MODIS) AODs (R2 = 0.57) in North China from 2009 to 2011. Ma et al. [1] explored
the relationship between the mass concentration of surface PM2.5 and MODIS AODs in the BTH
region, and they suggested that the relation strongly depends on the season. Xie et al. [17] developed
a mixed-effect model to derive daily estimations of surface PM2.5 using a 3 km MODIS AOD in
Beijing, and the model performed well in cross-validations (CVs) with R2 of 0.75−0.79. A similar study
developed linear mixed-effect (LME) models to integrate MODIS AODs, meteorological parameters,
and satellite-derived tropospheric NO2 column density to estimate daily PM2.5 concentrations over
the BTH region, in which model accuracy was calculated at R2 = 0.77 with a mean error of 22.4% [18].
Other statistical models, including multiple linear regression [19], non-linear models [19], generalized
additive models [9], and geographically-weighted regression [2,20] were developed to estimate the
spatial distributions of PM2.5 and reduce the estimated errors. However, when PM2.5 was estimated
and these models were applied in the BTH region, two issues were noted. First, the AODs obtained
from polar orbit satellites were limited by observation frequency (e.g., MODIS conducted only twice a
day) [21,22], so they were insufficient for understanding PM2.5 evolution. Second, it is still necessary
to continue exploring more suitable models that can reflect the relationship between AOD and PM2.5.

A geostationary satellite can overcome the estimated PM2.5 with low time resolution [23].
Himawari-8, which is operated by the Japan Meteorological Agency and was launched on 7 October
2014 (operated on 7 July 2015), is a new geostationary meteorological satellite sensor that can
characterize aerosols [24]. Himawari-8 can provide AODs with 10 min intervals and 5 km coverage
over about one-third of the Earth (i.e., the Western Pacific Ocean, East and Southeast Asia, and
Oceania) [25,26]. However, the accuracy evaluation of Himawari-8 aerosol production is limited,
and bias and error characterization is a critical step in satellite aerosol production [21,27]. Therefore,
we evaluated Himawari-8 retrievals by comparing them with the Aerosol Robotic Network (AERONET)
sites before the AODs were applied in estimating PM2.5. In this study, a primary estimation of hourly
PM2.5 based on the Himawari-8 hourly AODs over the BTH region in China was executed from
July 2015 to March 2017. An improved LME model was proposed to estimate PM2.5 concentrations
in the BTH region, and the model performance was assessed by a 10-fold CV method. The spatial
distributions of hourly PM2.5 concentrations were derived from the improved LME model.

2. Study Area and Datasets

2.1. Study Area

The BTH region, also known as the Jing–Jin–Ji region, is the capital region of China. As the core
area of the Bohai Economic Rim, the BTH region consists of two municipalities (Beijing and Tianjin)
and 11 prefecture-level cities in Hebei Province. As shown in Figure 1, the BTH region with an area of
217,127 km2 is located in northeastern mainland China between the longitudes of 113◦ to 120◦E and
latitudes of 36◦ to 43◦N. With a temperate continental monsoon climate, the BTH region has humid
and hot summers and dry and cold winters. In 2014, the annual average temperature in the BTH
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region was from 3.8 ◦C to 15.5 ◦C, whereas the annual average precipitation was around 400 mm. The
dense population, industrialization, congested local traffic, and coal consumption of the BTH region
all contributed to its status as the most concentrated PM2.5 region in China [1,18].

Figure 1. Elevation map of (a) China and (b) Beijing–Tianjin–Hebei region. (b) Spatial distributions of
fine particulate matter (PM) and AERONET sites in Beijing–Tianjin–Hebei region.

2.2. Datasets

The datasets used in this study included Himawari-8 Level 3 hourly AOD data and hourly
observation data of surface PM2.5 concentration in the BTH region (Figure 1). Datasets covering
more than a year (from July 2015 to March 2017) were used. The center of Himawari-8 is 140.7◦E
over equator, and the observation area is located from 80◦E to 160◦W and from 60◦N to 60◦S [28].
Himawari-8 can provide AODs at 500 nm and Ångström exponents with 10 min intervals and 5 km
coverage over about one-third of the Earth (i.e., Western Pacific Ocean, East and Southeast Asia, and
Oceania) [25,26]. The AODs were subjected to quality assurance with four confidence levels, namely,
“very good,” “good,” “marginal,” and “no confidence” (or “no retrieval”). In this study, we only
evaluated aerosol retrievals with the highest confidence level (“very good”). Himawari-8 hourly AODs
with high quality were evaluated by comparing with AERONET measurements at level 1.5 because
the accuracy reports of Himawari-8 retrievals were scarce. AERONET AODs could be used as a basis
of comparison for satellite validation because their accuracy was less than 0.02 [29].

Hourly surface PM2.5 mass concentrations were obtained from the official website of the China
Environmental Monitoring Center, which has been described in detail in a previous work [30].
Automated monitoring systems were installed in each site and used to measure the ambient
concentration of SO2, NO2, O3, CO, and PM2.5 and PM10 according to China Environmental Protection
Standards. Meteorological data were obtained from reanalysis datasets (i.e., ERA-Interim) of the
European Centre for Medium-Range Weather Forecasts (ECMWF). The ECMWF uses data assimilation
systems and forecasting models to reanalyze observation datasets [31]. The ERA-Interim, one of
the reanalysis datasets of ECMWF, offers a global atmosphere reanalysis since 1979. Meteorological
data from the ERA-Interim include surface relative humidity (RH, %), and boundary layer height
(BLH, m). The surface type is approximated by the Normalized Difference Vegetation Index (NDVI),
which is obtained from MODIS 16-day NDVI production “CMG 0.05 Deg 16 days NDVI” in
“MOD13C1/MYD13C1.” An NDVI larger than 0.4 usually indicates vegetated areas, whereas a smaller
value refers to soil-dominated surface in generally [27]. Additionally, the DEM covering the BTH region
with a resolution of 90 m produced by the National Aeronautics and Space Administration (NASA)
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was downloaded from the Consortium for Spatial Information (http://srtm.csi.cgiar.org/index.asp).
Detailed information of the datasets applied in this study is shown in Table 1.

Table 1. Summary of datasets applied in this study.

Dataset Variable Unit Temporal Resolution Spatial Resolution Source

PM2.5 PM2.5 μg/m3 1 h Site CEMC

AOD
Ground AOD Unitless ~15 min Site AERONET
Satellite AOD Unitless 1 h 0.18 Himawari-8

Meteorological
Factors

RH % 6 h 0.125◦
ECMWFBLH m 3 h 0.125◦

Land
NDVI Unitless 16 days 0.05◦ MODIS
DEM m not available 90 m NASA

3. Method

3.1. Evaluation Method of the Himawari-8 AOD

Evaluation methods were applied as follows: (1) accuracy, which refers to the average difference
between two datasets; (2) precision, which is the standard deviation of the difference; (3) uncertainty,
which refers to root mean square deviation; (4) correlation coefficient (R), which refers to the correlation
and dependence of the statistical relationships between two datasets; and (5) percentage of Himawari-8
AODs falling within the expected error (EE) range (±(0.05 + 0.15 AOD) over land), as established
by MODIS (i.e., from the continuous validation of the MODIS aerosol team). The MODIS EE is
a linear envelope line below and above the 1:1 line on a scatterplot, which can encompass at least
67% (about one standard deviation) of the collocations [27,32]. The MODIS uncertainty applied in
this study can assess whether the high-quality Himawari-8 AOD can achieve the accuracy of MODIS.
The spatiotemporal collocations between the Himawari-8 retrievals and AERONET AODs were
consistent with those of other studies [27,33,34]. We averaged all of the Himawari-8 retrievals within
the 20 km radius of an AERONET site to represent the satellite aerosol value. To obtain a representative
Himawari-8 AOD around an AERONET site, the requirements are as follows: approximately 20% of
the total Himawari-8 AODs within the 20 km radius circle centered on an AERONET site and at least
two observations obtained from the AERONET within 30 min centered on the Himawari-8 measuring
time. The threshold value of 20% can be found in the evaluation study of VIIRS (Visible Infrared
Imaging Radiometer Suite) retrievals [35].

3.2. PM2.5 Estimated Model

The LME model with day-specific random effects for AOD was developed in [16], which can
account for daily variations in the PM2.5-AOD relationship. The day-specific LME model has been
widely applied in many studies because of its high accuracy [5,18,36]. The LME model is an extension
of linear regression models for data that are collected and summarized in groups. The model describes
the relationship between a response variable and independent variables, with coefficients that vary
with respect to one or more grouping variables. The model consists of two parts: fixed effects and
random effects [18]. Fixed-effects terms are the conventional linear regression part, and random effects
are associated with individual experimental units drawn at random from a group (category). Random
effects have prior normal distributions with mean 0 and constant variance, whereas fixed effects do not.
The LME model can represent the covariance structure related to the grouping of data by associating
the common random effects to observations that have the same level of a grouping variable [37].

Given that time-varying parameters, such as RH, PM2.5 vertical, and diurnal concentration
profiles, and PM2.5 optical properties influence the PM2.5-AOD relationship, the statistical model
allows for time variability in this relationship. If the spatial variability of these time-varying parameters
is negligible, namely, the PM2.5-AOD relationship varies minimally spatially on a given time over
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the spatial scale, a quantitative relationship between PM2.5 concentrations and AOD values in their
corresponding grid cells can be determined on a time basis [16]. Basic LME models were applied in
previous studies [17,36]. We used the fitlme function of Matlab R2016b (MathWorks company), and
the model structure is expressed by Model 1:

PM2.5n,m = [β0 + bhour
0,n,m] + [β1 + bhour

1,n,m]× AODn,m + β2 × RHn,m + β3 × BLHn,m

+β4 × DEMn,m + β5 × NDVIn,m + εn,m;
(bhour

0,n,m, bhour
1,n,m) ∼ N[(0, 0, ∑)], εn,m ∼ N(0, σ2);

(1)

where n represents the monitoring grid index and m represents the hour (e.g., PM2.5n,m represents the
hourly average ground-level PM2.5 measurements at time m at monitoring grid n); β0 and b0,n,m are
the fixed and random intercepts, respectively; β1 and bhour

1,n,m are the fixed and hour-specific random
slopes for AOD predictor, respectively; and β2–β5 are the fixed slopes for other predictors. Fixed effects
correspond to the average effects of predictors on PM2.5 concentrations for the entire period. Random
terms reflect the hour-to-hour variations in the AOD–PM2.5 relationship influenced by meteorology
and satellite retrieval conditions. In addition, εn,m ∼ N(0, σ2) represents the observation error, and
∑ represents the variance–covariance matrix of the random effects.

The assumption of PM2.5-(AOD, predictors) relationships vary minimally spatially on a given
day over a specific region, and neglect of spatial non-stationarity in regional scales is the premise
for estimating PM2.5 by Equation (1) [16,18]. Therefore, one of the limitations of the aforementioned
model is that it does not consider spatial variabilities in large-region regressions, which is important
for estimating geographical elements in large regions. Different cities are affected by various pollution
sources, meteorological conditions, population densities, number of vehicles, and so on. All these
factors influence the large-region regressions of LME models. Given that our study area was relatively
large and our study period was relatively long, the relationship between PM2.5 and AOD was
expected to vary in both space and time. To address both the spatial and temporal heterogeneity of the
PM2.5–AOD relationship, we developed an improved LME model to fit the random (including hour-
and location-specific) intercepts for the whole model and the random slopes for the AODs. We consider
that the hour and location have corporate effect on the large-region regression for AOD-PM2.5 relation,
which can be expressed as follows (Model 2):

PM2.5n,m = [β0 + bhour∗location
0,n,m ] + [β1 + bhour∗location

1,n,m ]× AODn,m + β2 × RHn,m

+β3 × BLHn,m + β4 × DEMn,m + β5 × NDVIn,m;
(bhour∗location

0,n,m , bhour∗location
1,n,m ) ∼ N[(0, 0, ∑)], εn,m ∼ N(0, σ2);

(2)

The term hour ∗ location used in the model is only the value of A times B, which represents the
group-level parameters for calculating the random effects (bhour∗location

0,n,m and bhour∗location
1,n,m ). This term

can be written as “hour : location” in Matlab. To represent a location (longitude and latitude) as a
single value, we defined a complex number including location information as:

Location = longitude + latitude ∗ i (3)

where the real and imaginary parts of the expression correspond to longitude and latitude, respectively.
To obtain the PM2.5 estimation at a large region, bhour∗location

0,n,m and bhour∗location
1,n,m can be derived from

the nearest location and corresponding hour training in the model. “Predict” function in Matlab can
estimate predicted responses from the trained LME model at the values in the new datasets. However,
the “predict” function cannot search for the nearest location for estimating PM2.5 in a new location.
Therefore, we rewritten the “predict” function with the ability of search for the “nearest” PM2.5 site
trained in the model. If we cannot find an appropriate random effect from a group-level in the trained
model for estimating PM2.5 at a time and location, the PM2.5 in this case will be removed. As a
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practical technique that extends the ordinary LME model, Model 2 can examine the spatial variation at
a regional scale.

In this study, the 10-fold CV was selected to compare and verify the performance of the LME
and improved LME models. All of the samples were split into ten folds; that is, each fold was set
approximately 10% of the total sample number. For each fold, one part was used for validation,
whereas the remaining nine parts were used for training. This process was repeated for every fold.
The predicted PM2.5 concentrations from all 10-fold processes were compared with the measured
PM2.5 concentrations. Model performance was assessed by a determination coefficient (R2), root mean
square error (RMSE), and mean absolute error (MAE).

4. Results

4.1. Evaluation of Himawari-8 AOD

The results of the matchup comparison between Himawari-8 and AERONET are shown in
Figure 2a–e, and the corresponding statistics are listed in Table 2. About 1000 instantaneous
high-quality matchups of Himawari-8 and AERONET were determined for Beijing_CAMS, Beijing,
Beijing_RADI, and Xianghe during the study period. The comparison of the Himawari-8 AODs against
the AERONET observations showed the performances of Himawari-8 retrievals at the five sites, all of
which exhibited high correlations (R2: 0.74–0.81), low uncertainty (0.18–0.22), and a large percentage
(54–59%) of retrievals falling within the EE. Himawari-8 also showed a slight underestimation with
accuracy of about −0.06. The linear regression (yellow line in Figure 2) between AERONET and
Himawari-8 retrievals demonstrates the slope from 0.58 to 0.65 and the positive intercept from 0.06 to
0.08. Overall, the performances of the current Himawari-8 AOD retrievals at the five sites were almost
consistent with the AERONET AODs.

Figure 2. Collocations scatterplots of Himawari-8 and AERONET AODs at five sites of
(a) Beijing_CAMS; (b) Beijing; (c) Beijing_PKU; (d) Beijing_RADI; and (e) Xianghe. The study period is
from July 2015 to March 2017. The width of each pixel is 0.04 AOD, and the number of collocations
falling within/above/below EE are represented in each figure. The yellow line is the regression line,
the gray solid line is the 1:1 line, and the gray dashed lines are the expected errors (EE) envelopes.
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Table 2. Comparative statistics of collocated Himawari-8 and AERONET AODs.

Site N Accuracy Precision Uncertainty R2 % Above/Within/Below EE

Beijing_CAMS 1031 –0.06 0.19 0.20 0.76 16/58/26
Beijing 926 –0.06 0.17 0.18 0.78 15/59/26

Beijing_PKU 373 –0.10 0.20 0.22 0.81 13/55/32
Beijing_RADI 954 –0.08 0.19 0.20 0.81 15/54/31

XiangHe 1018 –0.05 0.20 0.20 0.74 19/57/24

The time series of the hourly Himawari-8 AODs, AERONET measurements, and AOD bias with
standard deviations (shadows) during the assessment period at the five AERONET sites are shown
in Figure 3. The AODs of Himawari-8 and AERONET appeared to be coincident with each other.
However, an underestimation of the Himawari-8 AOD was observed from 0900 to 1100 local time (LT)
in the five AERONET sites.

Figure 3. Time series of hourly AODs of Himawari-8 and AERONET, and hourly AOD difference
between Himawari-8 and AERONET from the collocated matchups and standard deviations (shadows)
over (a) Beijing_CAMS; (b) Beijing; (c) Beijing_PKU; (d) Beijing_RADI; and (e) Xianghe. The study
period is from July 2015 to March 2017.

Figure 4 presents the spatial and hourly Himawari-8 AOD dataset at daytime from July 2015
to March 2017. The spatial distributions of the averaged AOD indicated large values in the BTH
central and south regions, whereas small values emerged over the northwest region. The average
AOD obtained from Himawari-8 was 0.32 ± 0.27. The average maximum AOD for the daytime was
0.38 ± 0.31 at 1500 LT. The mean AOD at 1100 LT was minimum with a mean AOD of 0.30 ± 0.26.
Variations in mean AODs at the BTH region could be partially attributed to the underestimated
Himawari-8 AODs from 0900 to 1200 LT (Figure 3).
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Figure 4. Spatial distributions of the averaged AOD derived from the Himawari-8 for all available data
(a) and different hours (0900–1600 local time) (b–i). The study period is from July 2015 to March 2017.

4.2. Verification of Estimated PM2.5

To train the model, ground PM2.5 and these predictors require time–space consistency. Therefore,
surface PM2.5 measurements should match the Himawari-8 AODs in space and time. We averaged all
Himawari-8 retrievals within the 30 min and 5 km radius of a PM2.5 monitoring site to represent the
satellite AOD value. To evaluate how much the AOD, meteorological, and land parameters used in the
final model could improve the model performance, we fitted different models with various predictors
as shown in Table 3. The Akaike information criterion (AIC) provides the relative quality of statistical
models for a given dataset. The finalized LME model is generally determined based on the model
performance denoted by fitting the R2 (highest) and AIC (lowest) values [20]. The performances of
models were assessed by coefficient of determination (R2), MAEs, and RMSEs between the measured
and estimated PM2.5 concentrations. The MAE was defined as (sum of absolute errors)/(the number
of observations). The RMSE was defined as the square root of the mean of the squared errors.

The LME model with day-specific random effects is widely used in PM2.5 estimation [5,17].
Tests 1 and 2 using AOD as the only independent variable (the AOD-only model) showed that the
LME model with hour-specific random effects exhibited better performance than that with day-specific
effects. Tests 3–6 reveal that these predictors slightly improved for the model. We also fitted a model
only using meteorological and land data without AOD (the non-AOD model) to determine how AOD
could benefit the model performance (Tests 7 and 10). We found that AOD had an obvious positive
effect on Models 1 and 2. If the intercept without random effects (Test 8), the performance is worse than
Test 9 (Model 1). A comparison of Models 1 and 2 demonstrated that the improved model exhibited
outstanding performance.
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Table 3. Result comparison of model fitting with different predictors.

ID Predictor(s) Group Variable AIC R2 RMSE MAE

Test 1 AOD Day 859,622.35 0.64 39.3 25.0
Test 2 AOD Hour 845,625.88 0.74 33.1 20.4
Test 3 AOD; NDVI Hour 845,589.45 0.74 33.1 20.4
Test 4 AOD; RH Hour 845,569.14 0.74 33.1 20.4
Test 5 AOD; BLH Hour 845,488.73 0.74 33.1 20.5
Test 6 AOD; DEM Hour 844,323.77 0.74 32.9 20.4
Test 7 Model 1 without AOD Hour 876,681.07 0.59 41.4 26.7
Test 8 Model 1 without bhour∗location

0,n,m Hour 852,313.20 0.70 35.8 22.6
Test 9 Model 1 Hour 844,079.65 0.74 32.8 20.4
Test 10 Model 2 without AOD Hour; location 815,754.76 0.83 26.6 15.8
Test 11 Model 2 Hour; location 809,533.48 0.93 17.1 10.1

Table 4 displays the analysis of variance (F-test and p-value) explained by each of the individual
terms in Models 1 and 2. All p-values (<0.01) indicate significant effects of these predictors for the
corresponding model. Beta is the coefficient of the fixed term for the two models.

Table 4. Analysis of variance (F-test and p-value) explained by each of the individual terms in different
models. Beta is the coefficient of the fixed term for the two models.

Term
Model 1 Model 2

F-Test p-Value Beta F-Test p-Value Beta

Intercept 767.6983 <0.01 39.43 2.0496 × 103 <0.01 54.44
AOD 1.2631 × 103 <0.01 96.38 4.9156 × 103 <0.01 104.34
RH 100.7208 <0.01 −0.15 38.2626 <0.01 0.11

DEM 1.2633 × 103 <0.01 −0.03 326.3786 <0.01 −0.02
BLH 216.8013 <0.01 −0.01 1.7214 × 103 <0.01 −0.02

NDVI 2.5560 0.11 −3.06 339.0167 <0.01 −28.91

Table 5 displays the estimate for the standard deviation of normal distribution for the
random-effects term for intercept, AOD, and error grouped by hour for each day. Their confidence
interval is small, which indicates that the random effects for intercept, AOD, and error grouped by
hour for each day and bhour∗location

1,m is significant.

Table 5. Standard deviations of normal distribution for the random-effects terms in the two models.

Model 1 Model 2

bhour
0,m bhour

1,m ”n,m bhour∗location
0,m bhour∗location

1,m ”n,m

Estimate 37.03 124.64 33.76 41.02 112.90 19.84
Lower 35.68 120.39 33.59 39.97 109.81 19.72
Upper 38.42 129.04 33.92 42.09 116.08 19.95

Previous studies on the PM2.5–AOD statistical model mainly used the site-based CV [16] and
sample-based 10-fold CV methods [2]. For the site-based CV, one of the PM2.5 monitoring sites was
used for validation, and the rest of the sites were used for model fitting; this process was conducted
for each round of validation. In this section, the two CVs were selected to verify the performance of
the proposed model. A comparison of the performance of the LME and improved LME models is
presented in Table 6.

The predictive performances of the LME models during the study period were low with R2 of 0.73
and 0.73, RMSE of 34.4 μg/m3 and 34.5 μg/m3, and MAE 21.7 μg/m3 and 21.7 μg/m3 for site-based CV
and 10-fold CV, respectively. The superiority of the improved model to the LME model in estimating
PM2.5 concentrations was confirmed by the site-based CVs and the 10-fold CVs, as evidenced by
the RMSE and MAE values (Table 6). Site-based CVs could verify the performance of the improved
LME model on location without any PM2.5 measurements. The 10-fold CV for the improved LME
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model presented higher R2 (0.86 versus 0.73), lower RMSE (24.5 μg/m3 versus 34.5 μg/m3), and lower
MAE (14.2 μg/m3 versus 21.7 μg/m3) compared with the ordinary LME model. Zheng et al. [18] used
LME models to estimate daily PM2.5 concentrations in the BTH region with a R2 of 0.77 in the 10-fold
CV (predictor: MODIS AODs, meteorological factors, and tropospheric NO2). Therefore, to ensure
a relatively good estimation of PM2.5 concentrations, the improved LME model (Model 2) was applied
in our study analysis.

Table 6. Result comparison of model fitting and cross-validation for Model 1 and 2.

Model N
Site Cross-Validation 10-Fold Cross-Validation

R2 RMSE MAE R2 RMSE MAE

Model 1 83,989 0.73 34.4 21.7 0.73 34.5 21.7
Model 2 83,989 0.87 24.1 14.0 0.86 24.5 14.2

Figure 5 presents the scatterplot of the comparison between measured and estimated PM2.5
concentrations in the BTH region at different hours. In these scatterplots, colors indicate the number
of data points for a corresponding pixel. The high CV R2 values of the improved LME model (i.e.,
0.86 for all data and 0.81–0.90 for different hours) prove the acceptable performance of the model
in the BTH region; that is, the model yielded reasonable predictions. However, the different CV R2

values at different hours (e.g., maximum of 0.90 at 1500 LT; minimum of 0.81 at 0900 LT) imply that the
performance of the improved LME model was higher at noon and in the afternoon than for the other
hours during daytime. Figure 3 presents the underestimations of the Himawari-8 AODs from 0900 to
1100 LT at the five AERONET sites. Discrepancies in hourly results such as for the CV RMSE at 1600 LT
(13.4 μg/m3), which was smaller than for the other hours (above 20 μg/m3), could be attributed to
the relatively small number of matchups. Furthermore, the MAE in the BTH region was 14.2 μg/m3

for all matchups, and the values ranged from 9.0 μg/m3 to 17.4 μg/m3 for the different hours. PM2.5
difference was equal to the estimated value minus the measured PM2.5 (Table 7).

Figure 5. 10-fold cross-validation of estimated PM2.5 concentrations by comparing measured PM2.5
from all available data (a) and in different hours (0900–1600 local time) (b–i). The number of samplings
(N), correlation coefficients (R), and linear regressions are included in the plot.
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Table 7. Averages of estimated and measured PM2.5 at different hours.

Local Time N R2 Estimated PM2.5 Measured PM2.5 PM2.5 Bias

ALL 83,989 0.86 61.6 ± 61.4 61.5 ± 65.8 0.1 ± 24.3
0900 7378 0.81 58.6 ± 41.5 57.6 ± 45.2 1.1 ± 19.7
1000 10,150 0.82 63.5 ± 53.2 64.5 ± 58.9 –1.0 ± 24.9
1100 11,639 0.83 71.0 ± 65.2 71.7 ± 71.8 –0.8 ± 29.5
1200 12,648 0.85 66.9 ± 67.1 67.0 ± 72.3 –0.1 ± 28.1
1300 11,870 0.88 66.7 ± 69.6 66.6 ± 73.4 0.1 ± 25.4
1400 12,294 0.89 62.9 ± 67.5 62.3 ± 71.0 0.6 ± 23.8
1500 11,548 0.90 54.8 ± 60.6 54.1 ± 63.8 0.6 ± 20.1
1600 6462 0.82 35.3 ± 30.3 34.0 ± 31.7 1.3 ± 13.4

Figure 6 shows the spatial distributions of the estimated PM2.5 errors in individual PM sites in
the BTH region, which could be used to evaluate the accuracy of the improved LME model for each
PM2.5 monitoring site. The red (blue) solid circles indicate that the estimated PM2.5 was overestimated
(underestimated). Figure 6a shows the mean bias from all available data. Accordingly, the PM2.5
concentrations were overestimated in one of the sites in Qinghuangdao (~20 μg/m3) and Shijiazhuang
(~15 μg/m3). Coasts with complex surfaces and aerosol types may reduce the performance of the
Himawari-8 aerosol retrievals. In Qinghuangdao, the sites near the coast may result in overestimation
at all hours. By contrast, sites with underestimations were observed in some parts of Tianjing. As shown
in Figure 6, the rest of the sites displayed light-colored solid circles, which indicated unclear estimated
biases. Despite the general consistency between estimated and measured PM2.5 concentrations in
Figure 6a, site discrepancies were obvious in different hours, as shown in Figure 6b–i. In the ante
meridiem (0900–1100 LT), most of the mild positive biases were observed in Beijing, Shijiazhuang, and
Xingtai, whereas negative biases existed in Tianjing and Handan. The Himawari-8 AODs, which were
highly accurate at noontime, might have contributed to the slight biases at 1200–1500 LT.

Figure 6. Differences in estimated and measured PM2.5 for individual PM monitoring sites: (a) all
available data; (b–i) different hours (0900–1600 local time).
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4.3. Spatial Distribution of PM2.5

The hourly spatial distributions of PM2.5 in the BTH region (Figure 7) were spatially
heterogeneous, which implies the applicability of the improved LME model. Many fine-scale variations
in AOD of Figure 4 show up as variations in the PM2.5 estimates in Figure 7. The consistency of spatial
distribution between AOD and PM2.5 indicate the geographic correlations of AOD and PM2.5.

Figure 7. Spatial distribution of averaged PM2.5 estimations obtained from improved LME model for
(a) all available data and (b–i) different hours (0900–1600 local time). The study period is from July
2015 to March 2017.

Urban areas with high PM2.5 concentrations, such as Beijing, Shijiazhuang, Xingtai, and Handan,
were effectively captured by the improved LME model. The average PM2.5 in the BTH region was
58.2 ± 52.7 μg/m3 (Table 7), which exceeded the World Health Organization Air Quality Interim
Target-1 standard of 35 μg/m3. The average PM2.5 in southern BTH was larger than 50 μg/m3, which
was considerably higher than those in the northern regions. Severely-polluted areas were located in
Cangzhou and Hengshui, as evidenced by the large mean PM2.5 concentrations of 66.9 + 58.7 and
67.8 + 56.7 μg/m3, respectively. Industrial production and high vehicle population contributed to high
anthropogenic emissions, further resulting in a relatively high PM2.5 in southern BTH. Low PM2.5 in
northern BTH (i.e., Zhangjiakou and Chengde) were observed at less than 35 μg/m3 on average; these
areas have hilly topography and low human activities, resulting in low anthropogenic emissions. Our
results were similar to that of a previous study [8], which reported an annual mean PM2.5 concentration
of 45–55 μg/m3 in the southern anthropogenic area. The satellite-derived population-weighted average
of PM2.5 in Beijing was 51.2 μg/m3 during the study period (March 2013 to April 2014) [17]. A one-year
study on the PM2.5 estimations in the BTH region using a generalized additive model presented an
annual mean value of 69.4 μg/m3 with values ranging from 13.3 μg/m3 to 133.7 μg/m3 [9].

The spatial distributions of the hourly PM2.5 estimations differed across hours (Figure 7b–i); that
is, 1100 LT was most polluted with a large mean PM2.5 of 65.5 ± 54.6 μg/m3 (Table 8), as opposed to the
minimum average of PM2.5 at 1600 LT. The hourly variations were consistent with the measured mean
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PM2.5 values (Table 7), but these mean values were smaller because the estimated PM2.5 concentrations
were averaged using datasets from urban and suburban regions. The variations in hourly Himawari-8
AODs also disagreed with the estimated PM2.5; for example, the maximum PM2.5 (65.5 ± 54.6 μg/m3)
corresponded to the minimal AOD (0.30 ± 0.26) at 1100 LT. Several factors might have influenced the
variations, such as meteorological factors, which could synergistically affect PM2.5 concentrations.

Table 8. Average Himawari-8 AOD and estimated PM2.5 at different hours in the BTH region.

Local Time Himawari-8 AOD Estimated PM2.5 (μg/m3)

ALL 0.32 ± 0.27 58.2 ± 52.7
0900 0.33 ± 0.25 52.6 ± 38.0
1000 0.31 ± 0.26 59.7 ± 47.6
1100 0.30 ± 0.26 65.5 ± 54.6
1200 0.32 ± 0.27 61.3 ± 56.8
1300 0.34 ± 0.28 62.2 ± 59.9
1400 0.37 ± 0.30 59.5 ± 58.1
1500 0.38 ± 0.31 52.3 ± 50.9
1600 0.37 ± 0.29 35.2 ± 26.9

MAM 0.30 ± 0.26 46.0 ± 38.4
JJA 0.38 ± 0.32 42.5 ± 29.8

SON 0.36 ± 0.31 57.8 ± 50.7
DJF 0.26 ± 0.23 71.5 ± 70.1

The spatial and seasonal images of averaged PM2.5 estimations obtained from the improved LME
model are shown in Figure 8. The different seasons in Figure 8 are denoted as MAM (March, April, and
May), JJA (June, July, and August), SON (September, October, and November), and DJF (December,
January, and February). The void regions in northern regions in winter were due to the limitation
of Himawari-8 in retrieving high-quality AOD under scarce vegetation in winter. Strong seasonality
of PM2.5 concentrations was also found from the averaged PM2.5 concentration. Winter was the
most polluted season with a mean estimated PM2.5 of 71.5 ± 70.1 μg/m3, whereas summer was the
cleanest season with a mean predicted concentration of 42.5 ± 29.8 μg/m3. The mean predicted PM2.5
concentration was 46.0 ± 38.4 μg/m3 in spring and 57.8 ± 50.7 μg/m3 in autumn.

Figure 8. Spatial distribution of seasonally-averaged PM2.5 estimations obtained from the improved
LME model.
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5. Discussion

Given the sparse distribution of stationary PM2.5 sites, satellite data with wide spatial coverage
are growing as one of the most important supplementary tools to estimate PM2.5 concentrations in
a wide geographical space. The relationship between surface PM2.5 and column-integrated AOD
is associated with vertical and size distribution of aerosols [38,39]. The particulate matter vertical
distribution has been considered from a physics perspective, which could improve the correlation
between PM2.5 and AOD [40,41]. Humidity correction for PM2.5 estimation is necessary because “dry”
PM2.5 measurements after particles are heated to 50 ◦C may undervalue the aerosol particle mass
(aerosol hygroscopicity results in AOD being affected by humidity) [42].

In this study, related factors, such as AOD, meteorological parameters, and land type, are
individually integrated into the typical LME model to test their benefits on model performance. BLH
and RH can be regarded as the correction factors of height and humidity, respectively [39]. Moreover,
this study developed an improved LME model for satellite-based PM2.5 estimation. The improved
LME model considered the spatial and temporal heterogeneity of the PM2.5–AOD relationship.
As expected, the improved LME model clearly showed better performance in estimating PM2.5
concentrations from Himawari-8 AOD compared with the typical LME model in the BTH region.
This result confirmed the necessity of the LME model in simultaneously considering spatial–temporal
heterogeneity for PM2.5-(AOD, predictors) relationships.

The differences in performance of the improved model at 0900 and 1100 LT might be due
to the underestimation of the Himawari-8 AODs at the specified times. PM2.5 underestimations
predominantly occurred when the measured ground-level PM2.5 concentrations were high (i.e., greater
than 80 μg/m3). Meanwhile, overestimated PM2.5 concentrations existed with slightly polluted levels,
which was similar to those in the same region according to another study [18]. This result could be
attributed to the nonlinear relationship between PM2.5 concentrations and AODs at different aerosol
loadings [9]. Moreover, the predicted PM2.5 concentrations using the average AOD for the PM2.5
monitoring sites within the 5 km radius may not fully represent the site measurements.

For the hourly spatial distributions of PM2.5 in the BTH in Figure 7i, estimated PM2.5 at LT
16:00 showed a significant decrease. The Himawari-8 retrievals with high quality at 1600LT in winter
were less than that in summer because the sun angle was probably too low for Himawari-8 retrievals
at 1600LT in winter. The PM2.5 concentration in summer was lower than that in winter (Figure 8).
Therefore, the limited collocations between ground PM2.5 and satellite-based AODs may result in the
decrease at LT 16:00.

6. Conclusions

The spatial distributions of hourly PM2.5 concentrations are significant and necessary in
understanding PM2.5 evolution. In this study, the primary estimation of hourly PM2.5 concentrations
at daytime in the BTH region was executed with a proposed improved LME model using ground-based
PM2.5 observations and collocated Himawari-8 (Level 3) with hourly AODs from July 2015 to
March 2017.

(1) The Himawari-8 AOD with a “very good” confidence level was evaluated by comparing its
values with the AERONET observations for the given study period. The Himawari-8 AODs at the five
AERONET sites presented mild underestimations of about −0.06 with 57% of the AODs falling within
the EE made from MODIS [±(0.05 + 0.15 AOD)].

(2) An improved LME model was developed for hourly PM2.5 estimation based on the
relation between PM2.5 and AOD. The estimated PM2.5 concentrations agreed well with the surface
PM2.5 measurements, as evidenced by the high R2 (0.86) and low RMSE (24.5 μg/m3) based on
10-fold cross-validation.

(3) The average PM2.5 estimations of the improved LME model in the southern BTH were
higher than those in the northern regions. The average PM2.5 concentration in the BTH region
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was 58.2 ± 52.7 μg/m3. The estimated hourly PM2.5 concentrations ranged extensively from
35.2 ± 26.9 μg/m3 (1600 LT) to 65.5 ± 54.6 μg/m3 (1100 LT).

Future studies can focus on the improvement of the LME model to depict the spatial distributions
of PM2.5 concentrations using fine spatial resolutions. The accurate derivation of surface PM2.5
concentrations from satellite retrievals largely depends on the quality of satellite aerosol products.
Thus, efforts to improve the Himawari-8 AODs for hourly PM2.5 estimation or observation should
be considered.
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Abstract: The Planetary Boundary Layer Height (PBLH) plays an important role in the formation
and development of air pollution events. Particulate Matter is one of major pollutants in China. Here,
we present the characteristics of PBLH through three-methods of Lidar data inversion and show
the correlation between the PBLH and the PM2.5 (PM2.5 with the diameter <2.5 μm) in the period
of December 2015 through November 2016, over Nanjing, in southeast China. We applied gradient
method (GRA), standard deviation method (STD) and wavelet covariance transform method (WCT)
to calculate the PBLH. The results show that WCT is the most stable method which is less sensitive to
the signal noise. We find that the PBLH shows typical seasonal variation trend with maximum in
summer and minimum in winter, respectively. The yearly averaged PBLH in the diurnal cycle show
the minimum of 570 m at 08:00 and the maximum of 1089 m at 15:00 Beijing time. Furthermore, we
investigate the relationship of the PBLH and PM2.5 concentration under different particulate pollution
conditions. The correlation coefficient is about −0.70, which is negative correlation. The average
PBLH are 718 m and 1210 m when the PM2.5 > 75 μg/m3 and the PM2.5 < 35 μg/m3 in daytime,
respectively. The low PBLH often occurs with condition of the low wind speed and high relative
humidity, which will lead to high PM2.5 concentration and the low visibility. On the other hand,
the stability of PBL is enhanced by high PM concentration and low visibility.

Keywords: planetary boundary layer; PM2.5; air pollution; Lidar

1. Introduction

In recent years, with the acceleration of urbanization and industrialization, air pollution is
becoming more and more serious in China [1,2]. Fine Particulate Matter (PM) has become one of major
pollutants because they can be inhaled into human body by respiration, resulting in various respiratory
and cardiovascular disease [2]. Meanwhile, they can directly scatter and absorb solar radiance and
indirectly modify cloud properties [3–6], thus, play an important role in Earth’s energy budget, climate
change and atmospheric environment. The PM concentration level also affects the stability of planetary
boundary layer (PBL) [7,8]. Different numerical models and measurements have been applied to
investigate the radiative forcing of nitrate [9], sulfate [10,11], and carbonaceous aerosols [12,13], as well
as their mixtures [14–17] over East Asia. These studies demonstrated that aerosol particles can reduce
the solar radiation reaching ground and augment the planetary albedo. The negative radiative forcing
and cooling effects of aerosols in lower PBL and ground can suppress the development of PBL.

On the other hand, the concentration of aerosols is strongly affected by the meteorological
conditions [18–20] and the PBLH plays an important role [21]. PBL is a strongly turbulent layer
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between earth’s surface and free troposphere. The PBLH can weaken the exchange between boundary
layer and free troposphere, because weak turbulence will occur in the bulk of the atmosphere due to
the stable stratification between different layers [22]. Air pollutants released from non-buoyant ground
sources, including aerosols, dust and other gaseous pollutants, are restricted within the boundary
layer [23]. Therefore, the dispersion and transport of lower tropospheric particles mainly depend on
the PBLH [24,25].

Consequently, the determination of PBLH is important to evaluate air-pollution events.
The PBLH can be calculated from remote sensing observations methods, including satellite [26,27],
wind profiler [28], ceilometer [29–31], sodar [32,33] and ground-based Lidar [34–37]. Lidar can provide
continuous measurements with highly temporal-spatial resolution, and the continuous automatic
inversion of PBLH from Lidar data is more feasible. Several methods have been employed to
calculate the PBL height by using Lidar data, such as the gradient method [38–41], standard deviation
method [42,43], wavelet analyses [44–46], and idealized profiles method [47,48]. Due to the big
variation of aerosol concentration in boundary layer and free troposphere, the fundamental principle
of these methods is to extract the height where the largest Lidar signal variance (i.e., strongest decrease
of the backscatter signal) appears. However, each method has its own limitations (e.g., susceptible to
noise and stratified aerosol structures). To our best knowledge, the study of multi-methods estimate
of PBLH and the correlation between PBLH and PM2.5 in Yangtze River Delta (YRD) is insufficient.
In particular, the research on the PM2.5–PBLH interaction helps better understand air pollution process
and mechanism; this becomes very important for the severe haze episodes in the urban cities of
China [8,20,23].

Here, we present a study of the PBLH variations and the correlation between PBLH and PM2.5

by inversing PBLH through three different ways. The Lidar data were collected during December
2015–November 2016 in Nanjing, one of the megacities in YRD, China. Section 2 introduces the
observation settings and the inversion methods, including the gradient method, standard deviation
method and wavelet covariance transform method. In Section 3, we compare the PBLH calculated
by different methods, show the characteristics of seasonal and diurnal PBLH variations, and further
discuss the relationship between PBLH and PM2.5 through statistics on one-year data and a case study.
Finally, the conclusion and perspective are given in Section 4.

2. Materials and Methods

2.1. Observation

The LIDAR backscatter signal profile and the inversion for PBLH were carried out during
December 2015–November 2016 in Nanjing, west part of Yangtze River Delta, China. A Raman Lidar
system (LR112-D400) manufactured by Raymetrics of Greece was used at Atmospheric Parameters
Vertical Detection Site (APVDS) in Nanjing University Xianlin Campus (32.12◦N, 118.95◦E). The Lidar
system is based on a pulsed Nd:YAG laser, which transmits short pulses at 355 nm with a 10 Hz
repetition rate and the maximum output energy of 85 mJ. The optical receiver is a Cassegrain telescope
with 400 mm diameter and a field of view of 1.75 mrad. Four receiving channels are used to collect
elastic scattering and polarization signals (355 parallel and 355 perpendicular channels) and Nitrogen
(N2) Raman scattering signals at 387 nm and water vapor Raman-scattering at 408 nm, respectively.
The maximum detection height and minimum vertical resolution are 18 km and 7.5 m, respectively.
The Lidar overlap area is around 255 m. The Lidar system worked in the rainless daytime during
the one-year period. Due to the limitation of weather conditions and lack of operators, 63 days of
effective samples were collected. The observational data covers 10 months of four seasons in Nanjing,
including winter (December 2015–January 2016–February 2016), spring (March 2016–April 2016–May
2016), summer (June 2016–August 2016) and autumn (September 2016–November 2016), respectively.
Lidar profiles obtained in this study are averaged over 4 min, which matches the typical time scale of
atmospheric turbulence within the boundary layer [22].
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The PM2.5 concentration and visibility were measured at Xianlin Ambient Air Quality Monitoring
Site (XAAQMS), which is located on the Xianlin Campus of Nanjing Normal University (32.11◦N,
118.92◦E) and only 4 km away from the APVDS. A continuous ambient particulate monitor (Thermo
TEOM-1405) was used for the PM2.5 measurement and the hourly-average data were collected.
Meteorological parameters including temperature, relative humidity and wind speed over the same
period were provided by the National Meteorological Station of Nanjing (NMSN ID: 58238, 32.00◦N,
118.80◦E). The location of APVDS, XAAQMS, and NMSN are shown in the map of Nanjing in Figure 1.

Figure 1. Map of Nanjing, China and the location of observation sites including APVDS (32.12◦N,
118.95◦E), XAAQMS (32.11◦N, 118.92◦E), and NMSN (32.00◦N, 118.80◦E).

2.2. Inversion of Backscatter Coefficient by Lidar

The Lidar equation [35] can be expressed as:

P(R) = P0
cτ

2
An

O(R)
R2 β(R)exp[−2

∫ R

0
α(r)dr], (1)

where P(R) is the power received from a distance R and P0 is the average power of a single laser
pulse. τ is the temporal pulse length, A is the area of primary receiver optics, n is the overall system
efficiency and O(R) is the overlap function. β(R) and α(r) represent backscatter coefficient and extinction
coefficient, respectively.

The Lidar equation in this paper is solved by using the Klett–Fernard method [49]. Backscatter
coefficient can be calculated through following equation:

β(R) =
RCS(R)·exp[2(L − Lmol)

∫ Rre f
R βmol(r)dr]

RCS(Rre f )
Cβmol(Rre f )

+ 2L
∫ Rre f

R RCS(r′)·exp[2(L − Lmol)
∫ Rre f

R βmol(r′′ )dr′′ ]dr′
, (2)

where C =
βmol(Rre f )+βaer(Rre f )

βmol(r)
, and βmol and βaer are backscatter coefficient of air molecules and aerosol,

respectively. Reference point Rre f represents the clean atmosphere where βaer(Rre f ) = 0 and C = 1.

The Range Corrected Signal (RCS) is defined as RCS(R) = P(R)R2. L = αaer(R)
βaer(R) is the aerosol Lidar

ratio and Lmol =
αmol(R)
βmol(R) .
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2.3. Inversion of Planetary Boundary Layer Height

Aerosol is generally more abundant within the boundary layer than the upper atmosphere, thus
for Lidar systems, the backscattered Lidar signals (e.g., RCS) within the PBL are much higher than
that in the free troposphere. Based on this fact, several methods have been employed to determine the
PBL height from Lidar data. In this study, we choose the GRA, WCT and STD method to estimate the
PBLH where RCS abruptly decreases. The inversion methods are shown as follows:

The GRA method defines the position of the largest negative signal derivative (D(z)) as the
instantaneous top of PBL or PBLH [37–41]. The D(z) can be expressed as follows:

D(z) =
dRCS

dz
, (3)

In the STD method, the PBLH is defined as the height of the maximum of Lidar signal variance [42,43].
The variance peaks of standard deviation (σ) are calculated from the variation in height of RCS,
as follow:

σ = [
1
N ∑i=1,N

(
RCSi − RCS

)2
]

1
2
, (4)

In WCT method [37,44–46], the conversion covariance function Wf(a, b) is defined as:

Wf (a, b) =
1
a

∫ zt

zb

RCS(z)h(
z − b

a
)dz, (5)

where z is the height, zt and zb are the upper and lower limits of RCS profiles, a is the spatial dilation of
the function, and b is the translation of the Haar function, i.e., the central position of the Haar function.
The Haar function (h) is defined as follows:

h
(

z − b
a

)
=

⎧
⎪⎨

⎪⎩

+1, b − a
2 ≤ z < b

−1, b ≤ z < b + a
2

0, elsewhere
. (6)

In this paper, zb is set as 255 m where the Lidar starts to collect full backscatter signals due to
the limitation of the geometric overlap function. zt is set as 2500 m to save the computing time and
cloud contamination; this will not cut off the true maximum PBLH because we first visually see aerosol
distribution gradient from the Lidar images. As shown in supplementary Figure S1, both the PBLH
results from lidar and radiosonde agree well. The spatial extent (a) of the function is 150 m. The WCT
method evaluates the similarity between RCS and Haar function. The abrupt change in RCS will occur
at the height where Wf(a, b) reaches the maxima, and the PBLH can be determined accordingly.

3. Results and Discussion

3.1. Comparison between Three PBLH Calculation Methods

We applied three methods above to calculate the PBLH. Figure 2 presents the results of Lidar RCS
profiles and PBLHs, as well as their daily variation on 17 January 2016. At first, Figure 2a illustrates
three PBLHs at 11:50 when cloud covers the Lidar detective region. The PBLH inversion is sensitive
to the backscatter signal of boundary layer clouds [40]. The GRA method determines the PBLH at
918 m at the lower layer of cloud. The other two methods locate the PBLH at the upper layer of cloud
with the value of 1049 m and 1076 m for STD and WCT method, respectively. Figure 2b,c compares
the variation of PBLH calculation within 8 min (17:32–17:40). PBLHs derived from the GRA and STD
method change abruptly from 1215 m to 1025 m in such a short period, while the RCS profile and
the PBLH derived from WCT method are almost unchanged. The nearly 200 m difference of PBLHs
from GRA and STD methods may be contributing to the signal noise. The GRA and STD methods
are more mutable and more sensitive to noise when comparing with WCT method, which can also
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be observed in the diurnal variation in Figure 2d. Therefore, the WCT is the most stable method in
PBLH determination. However, these methods are all able to show the variation of PBLH, which can
be expressed as increasing in the morning and noon reaching, the maximum in the afternoon and
decreasing after sunset. The average value of PBLH on 17 January 2016 is 1403 ± 156 m, and the PBLH
from the above three methods are 1559 m, 1373 m and 1278 m for GRA, STD and WCT, respectively.

Figure 2. The RCS profile and PBLH at: 11:50 (a); 17:32 (b); and 17:40 (c) on 17 January 2016 and the
diurnal variation of RCS and PBLH calculated by three methods (d) on 17 January 2016. The black,
blue and green lines represent the PBLH calculated by GRA, STD and WCT, respectively.

3.2. PBL Statistical Characteristics

The PBLH generally shows seasonal and diurnal changes because of the variation in solar
radiation, wind speed, atmospheric stability, etc. The following paragraphs will identify and discuss
the statistical characteristics of PBLH over Nanjing.

The box plot in Figure 3 shows and compares statistical characteristics of PBLH seasonal variation,
which is calculated by the GRA, STD and WCT methods and the average values of three methods.
The figure reveals an annual variability of PBLH between 300 and 2433 m. Annual average boundary
layer height is about 992 m, which is in good agreement with the experimental data in China [36,50]
and is lower than the observational results from European countries [35,51]. The PBLH reaches lowest
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in winter with 822 m on average, and has its highest value 1351 m in summer. The PBLH values in
spring and autumn are similar with the value of 1051 m and 1096 m, respectively. Schneider et al. [51]
and Matthias et al. [52] also found the annual cycle with a maximum in summer and a minimum in
winter. The possible explanation can be given as the higher solar radiation and heat flux in summer
lead to stronger surface heating and then stronger turbulence and convection [51].

Figure 3. The seasonal variation of PBLH from the GRA, STD, and WCT methods, and their average of
three above methods during one-year observation over Nanjing, China. The bottom and top of the
box are the first and third quartiles, and the band inside the box is the median and the diamond is the
average. The whisker is the lowest (highest) datum within 1.5 interquartile ranges (IQR) of the lower
(upper) quartile, and data not included between the whiskers are plotted as an outlier with a plus.

The whiskers and outliers in Figure 3 show the variability in the PBLH in different seasons. It is
clear that the PBLHs in winter are the most stable and have the minimum PBLH standard deviation
(209 m). Though the maximum seasonal average PBLH is found in summer, the greatest variability
of PBLH is found in spring with the standard deviation of 380 m. Spring is the only season with
some outliers of PBLH and the maximum PBLH reaches 2433 m. Kamp et al. [53] found that the
mean diurnal trend of PBLH in spring did not differ greatly from summer on clear days, while with
the boundary-layer clouds the PBLH can be higher in spring than the one in summer. Thus, the
variability in spring may be due to the existence of boundary-layer clouds. Considering the three
different methods in seasonal PBLH inversion, the GRA method overestimates in winter and spring,
and underestimates in summer and autumn, while WCT method shows an opposite trend with GRA
in Figure 3. All three methods can reveal the characteristics of PBLH in different seasons.

Figure 4 depicts the hourly average PBLH and three-method average value of the PBL height and
the related standard deviation during the daytimes (08:00–20:00). The diurnal cycle shows similar
pattern in different seasons, which is generally minimum in the morning (08:00) and maximum in the
afternoon. For annual average diurnal variation, the PBLH is 570 m at 08:00 and rises to a peak of
1089 m at 15:00. From 16:00 to 20:00, the annual average PBLH remains relatively stable and shows
only a little lower after sunset, and finally decrease to 998 m at 20:00. The pattern in winter and spring
are most similar to the annual cycle. The PBLH is kept at high level at 14:00 and 18:00 in summer,
which leads to a two-peak pattern in this season. Strawbridge et al. [54] also observed the PBL peak at
around 18:00–20:00 by using a Rapid Acquisition Scanning Aerosol Lidar (RASCAL) in August, 2001
in the Lower Fraser Valley (LFV) of British Columbia. The PBLH shows the greatest diurnal variations
in summer and lowest in winter, which coincides with the results from Figure 3. The maximum
among the year occurs at 15:00 in summer at 1554 m and the minimum occurs at 08:00 in winter at
552 m, respectively.
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Figure 4. Diurnal variation of PBLH (three-method average) in different season observation in Nanjing,
the error bar represents the standard deviation of each hour.

The error bar in Figure 4 represents the standard deviation of each hour. Therefore, larger error
bars indicate more variability in PBLH, which is related to the more active convection within boundary
layer. The standard deviation shows the greatest change in spring. The least stable PBLH can be found
from 14:00 to 17:00 in spring, and the standard deviation is larger than 430 m. However, in the morning
and evening of spring, the standard deviation is as low as 150 m. The diurnal variation of standard
deviation resembles average PBLH; the higher the PBLH is, the larger the standard deviation is. This
is possibly due to the strong turbulence and the weak stability of PBL [22]. The standard deviation is
smaller than 210 m in winter’s diurnal cycle, as the PBLH among four seasons, and winter PBL is the
steadiest over the observation period.

3.3. PBLH Variation Properties under Different Particulate Pollution Conditions

In order to study the PBLH variation under different particulate pollution conditions, we classify
the PM2.5 concentration according to the new NAAQS of China. The air pollution level or category is
often classified according to the PM2.5 concentration. The NAAQS in China sets PM2.5 concentration
limits for 24-hour average with 35μg/m3 for Grade I and 75μg/m3 for Grade II [55]. Thus, in this
study, three particulate pollution conditions are classified by the PM2.5 concentrations levels as follows:
(1) good condition, with PM2.5 concentration less than 35 μg/m3; (2) slightly polluted, with PM2.5

concentration betwee 35 μg/m3 and 75 μg/m3; and (3) polluted, with PM2.5 concentration exceeding
75 μg/m3. We assume that the human-made emissions very little in Nanjing under the same season or
month. We also exclude the data when the significant variations of weather or climate occur.

Figure 5 compares the PBLH calculated by the GRA, STD and WCT methods and the average
of 3 methods under the good, slightly polluted, and polluted conditions. PBLH is relatively lower in
polluted condition than that in good condition, and the average PBLH is 718 m and 1210 m, respectively.
In slightly polluted days, the height of PBL is moderate with the value of 1027 m. Very high daytime
average PBLH values can appear under good condition, however, the lowest value occurs under
slightly polluted condition, though exceeds the 1.5 IQR. Moreover, the very low values of daytime
average PBLH within the 1.5 interquartile ranges (IQR) are mostly limited to the polluted condition.
The value of PBLH shows greater variability under the conditions with higher PBLH, while the value
of PBLH is less variable when the PBLH is low. The standard deviation of PBLH under the good
condition is 334 m, which is almost 3 times of the PBLH standard deviation under the polluted condition
(106 m). Deng et al. [46] performed PBLH detection during a severe haze process in November 2009 in
Guangzhou, China, and found that PBLH exceeded 1 km during the cleaning process and only 500 m
during the severe haze, which agree well with our results. The explanation can be associated with the

189



Remote Sens. 2017, 9, 668

enhanced stability of urban boundary layer when the particulate matter concentration is high. Particles
reduce the incoming solar radiation and lower the surface heating, leading to lower turbulent mixing
and lower PBLH. PBLH will determines the level up to which the surface emissions are distributed,
thus the shallow PBL further facilitate the particulate matter accumulation [23].

Figure 5. Average PBL height calculated by GRA, STD, and WCT methods under good, slightly polluted
and polluted particulate pollution conditions, respectively.

Figure 6 displays the diurnal cycles of PM2.5 concentration and PBLH from 08:00 to 20:00 under
different particulate pollution conditions and their correlation. PM2.5 concentrations are the lowest in
the good condition, and the diurnal variation is not obvious and most of the hourly average PM2.5 is
around 23 μg/m3. In slightly polluted and polluted conditions, the PM2.5 level is high in both morning
and evening. For slightly polluted, the maximum concentration of PM2.5 is 61.43 μg/m3, which appears
at 09:00, while the greatest value of PM2.5 in polluted condition occurs at 20:00 with 119.23 μg/m3.

Figure 6. Diurnal variation of PBLH (three-method average) and PM2.5 concentration under different
particulate pollution conditions (a); and the correlation between daily average PBLH and PM2.5

concentration (b). The correlation coefficient is −0.70, and the number of points is 63. The correlation
is significant at the 0.01 level.

Generally, PBLH shows the opposite trend with the PM2.5. The three conditions have comparable
PBLH during the period 08:00–10:00 as well as at 20:00 of Beijing time. However, the PBLH varies a lot
among different conditions in the afternoon. In the polluted condition, the PBLH rises from 459 m to
688 m in the first four hours, and then remains steady at around 730 m from 12:00. The PBLHs under
the good condition exhibits the most apparent diurnal variation. It is located at 651 m at 08:00, and
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then significant increase to 1405 m at 15:00. It is remains steady from 16:00 to 18:00 and then drops to
1114 m at 20:00. The general increasing trend from 08:00 to 09:00 under the slightly polluted condition is
similar to the one under the polluted condition, and the PBLH remains at this level untill 20:00.

Figure 6a shows the diurnal variations of PBLH and PM2.5 under the different pollution conditions,
which indicate a negative correlation between the PBLH and PM2.5 concentrations. Figure 6b
further compares their relationship with the daily averaged PBL height and PM2.5 concentration.
The correlation coefficient is up to −0.70 and significant at the 0.01 level, which means a strong
anti-correlation between the PBLH and PM2.5. This anti-correlation can be associated with two
interaction ways. On the one hand, particulate matter can change the extinction capacity of atmosphere.
The increasing concentration of atmospheric particulate matter (especially fine particles) weakens the
solar radiation that can reach ground. Therefore, the turbulent kinetic energy in the air close to the
ground decreases and the mixing of air is not strong enough to form a higher boundary layer [56].
One the other hand, when the PBLH is relatively low, the decreasing turbulence intensity in the PBL is
not conducive to the diffusion of pollutants. Thus, the PM2.5 concentration will accumulate within
the PBL. In addition, we note that the effects from the cloud, seasons and extreme weather processes
can also affect the PBLH [36,53,57]. At the same time, we analyzed a case in summer, the negative
correlation between the PBLH and PM2.5 concentration are shown in supplementary Figures S2 and
S3. In order to rule out the impact of these factors, we performed a case study in four consecutive days
without cloud cover in Section 3.4.

3.4. Case Study

We further explore the relationship between the PBLH and PM2.5 concentration in a selected
period, which includes the development and dismiss of a particle pollution case for a continuous
4-days long. Figure 7 displays the hourly averaged PBLH, PM2.5 concentration, wind speed,
visibility, temperature and relative humidity from 14 to 17 December 2015. PM2.5 concentration
drops dramatically from 200 μg/m3 to 30 μg/m3 in these days. In the meantime, PBLH correlates
negatively with PM2.5 and increases from around 620 m on 14 December to 1020 m on 17 December.
The transition of PBLH and boundary layer structure between 15 and 16 December can also be observed
from Figure 8. On 14 and 15 December, the PBLH is relatively low with the daily average value of
627 m and 699 m, respectively. Accompanied with the low PBLH, the average wind speed is only
2.5 m/s. The shallow boundary layer and weak wind impose restrictions on the diffusion of pollutants
as well as water vapor. With a high relative humidity as 71.79 % on average, aerosols are more
likely to accumulate through hygroscopic formation and increase PM2.5 concentration [58]. Thus,
more particle formation and less air diffusion lead to high PM2.5 level, which are 137.58 μg/m3 and
155.91 μg/m3 on 14 and 15 December, respectively. On the first two polluted days, the visibility is
as low as 6 km. The strong atmospheric extinction ability due to high level PM2.5 results in the low
visibility [57]. Therefore, the radiation will be impaired through the high particulate matter loading
and further against the development of boundary layer. On 16 and 17 December, the development
of PBL encourages the dispersion of particulate matter. High PBLH can be observed as 1029 m on
17 December, whereas PM2.5 decreases to 37.93 μg/m3 on the last two days accompanied with higher
wind speed and lower relative humidity. With dry clean air on 16 and 17 December, the visibility grows
up to 40 km, which represents an almost six-fold increase of visibility. Growing visibility indicates the
weaken extinction effect of particulate matter, and will in turn facilitate the PBL development.
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Figure 7. Time series of: (a) PBLH and PM2.5 concentration; (b) surface wind speed (U) and visibility
(VIS); and (c) temperature (T) and relative humidity (RH).

Figure 8. The diurnal variation of RCS and PBLH (calculated by three methods: black, blue and
green lines represent GRA, STD and WCT method, respectively) on: 15 December 2015 (a); and
16 December 2015 (b).

4. Conclusions

In this paper, the seasonal and diurnal variations of daytime PBLH in Nanjing have been estimated
from the one-year Lidar data by three different inversion methods, gradient method, standard deviation
method and wavelet covariance transform method, and the correlation properties between PBLH and
PM2.5 were analyzed through both annual statistic and case study.
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Generally, the three methods show consistent variation of PBLH. The PBLH estimate can be
affected by the backscatter signal of boundary layer clouds, and the GRA and STD methods are all
more sensitive to the signal noise than the WCT method.

Annual average PBLH in the daytime during December 2015–November 2016 in Nanjing is 992 m.
The daytime PBLH shows typical seasonal trend, highest in summer and lowest in winter, and the
values of which are 1351 m and 822 m, respectively. PBLH shows the maximum variability in spring,
with the standard deviation of 380 m. The diurnal cycle shows similar pattern in different seasons, and
for annual average diurnal variation, the minimum PBLH is 580 m, which appears at 08:00, and the
maximum is 1089 m at 15:00, respectively.

The PBLH is relatively lower when the ground PM2.5 concentration is higher. The average
daytime PBLH is 718 m and 1210 m in the polluted condition (PM2.5 > 75 μg/m3) and good condition
(PM2.5 < 35 μg/m3), respectively. The diurnal variation of PBLH is the opposite to that of PM2.5

concentration. Daily averaged PBLH and PM2.5 concentration are anti-correlated with a correlation
coefficient of −0.70.

In the case study, PM2.5 concentration drops from 200 μg/m3 to 30 μg/m3 during 14–17 December
2015 while the PBLH increases from around 620 m to 1020 m. The polluted case accompanied with the
low PBLH, while the clean case shows the opposite trend (high PBLH, high visibility, high wind speed,
and low relative humidity).

This study revealed the variation characteristics of PBLH and its correlation between particulate
matter concentrations on the ground, based on the one-year data over Nanjing of East China. We should
note that the anthropogenic emissions in Nanjing are assumed to vary little by season. The significant
or large-scale weather and/or climatology processes (e.g., cold front, monsoon, El Nino, La Nina,
etc.) could be important issues in further study of the PBLH variation, and requires a longer period
of observations.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/7/668/s1,
Figure S1: Comparison of PBL-height between the (a) Lidar and (b) radiosonde measurement on 15 August 2016,
Figure S2: Time series of (a) PBL height and PM2.5 concentration, (b) surface wind speed (U) and visibility (VIS),
and (c) temperature (T) and relative humidity (RH), respectively, from 14 August to 17 August 2016, Figure S3:
The diurnal variation of RCS and PBLH (calculated by three methods: black, blue and green lines represent GRA,
STD and WCT method, respectively) in 15 August 2016 (a) and 16 August 2016 (b).
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Abstract: This paper introduces the technique of retrieving the profiles of vertical distribution
of ozone considering temperature and aerosol correction in DIAL sounding of the atmosphere.
The authors determine wavelengths, which are promising for measurements of ozone profiles in
the upper troposphere–lower stratosphere. An ozone differential absorption lidar is designed for
the measurements. The results of applying the developed technique to the retrieval of the vertical
profiles of ozone considering temperature and aerosol correction in the altitude range 6–15 km in
DIAL sounding of the atmosphere confirm the prospects of ozone sounding at selected wavelengths
of 341 and 299 nm with the proposed lidar. The 2015 ozone profiles retrieved were compared with
satellite IASI data and the Kruger model.

Keywords: intercomparison; differential absorption lidar; ozone; satellite measurements; IASI;
upper troposphere; lower stratosphere

1. Introduction

Laser remote sounding techniques with the use of the lidar (Light Detection and Ranging)
technology are widely used for the study and monitoring of the atmosphere. Among the techniques
used for measuring the spatial distribution of the concentration of an atmospheric gas, the most
sensitive is the differential absorption method (DIAL).The essence of the method is that radiation is
transmitted in the atmosphere simultaneously at two wavelengths: one of them (λon) is on a strong
absorption line or band of the gas to be measured and another (λoff) is off the absorption line and
is weakly absorbed in the atmosphere or not absorbed at all. At present, DIAL sounding of trace
atmospheric gases including ozone, is implemented [1–3].

Laser sounding of the ozonosphere became routine at some observatories since the second half of
the 1980s [4–7]. It allows data to be received on vertical distribution of ozone (VDO), which successfully
supplement similar data received by in situ methods with the use of ozonesondes, rockets, or satellites
(TOMS, SAGE-II, TERRA, MetOp, etc.).

It should be noted that the profiles of IASI/MetOp-measured atmospheric ozone concentrations
were earlier compared with the profiles measured in the troposphere with compact airborne lidars,
ozone sondes, ground-based lidars, and Brewer–Dobson spectrophotometers [8–10].
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Laser sounding of the vertical distribution of stratospheric ozone has been carried out at the
Siberian Lidar Station (SLS) of Institute of Atmospheric Optics SB RAS (Tomsk, 56.5◦N, 85.0◦E) since
1989. A long period of lidar observations of stratospheric ozone has shown that the most important
part of the ozonosphere for the study is located in the lower stratosphere, where ozone is affected by
the dynamic factor. DIAL measurements of ozone profiles in different altitude ranges with different
ozone content are carried out at different combinations of wavelengths [4–7].

The aims of this work are the development of an algorithm and program for VDO retrieval
with temperature and aerosol correction; selection of the VDO sounding wavelengths; the design of
an ozone lidar; and analysis of the measurement results, including the comparison between the ozone
vertical profiles retrieved from the ground-based DIAL lidar system data and the profiles retrieved
from IASI/MetOp data.

2. Methods

2.1. Selection of Wavelengths

Lidar measurements of VDO are carried out on the basis of the method of the differential
absorption of the backscattered laser radiation in the ultraviolet spectral range 200–370 nm
(Hartley–Huggins band) [11]. In practice, several pairs of wavelengths can be implemented in ozone
lidars with the help of different lasers. Table 1 represents the specifications of some lidars used for
ozone measurements and operating at different combinations of wavelengths.

Table 1. Specifications of lidars used for measurements of stratospheric ozone.

Country,
Observations Site

Start of
Measu-Rements

Radiation Source: Wavelength,
nm/Pulse Energy, mJ/Pulse
Repetition Frequency, Hz

Receiving Mirror
(Diameter), m

Ref.

Russia, Tomsk
(56.5◦N, 85◦E) 1989

XeCl + SRS (H2)
308/100/100;
353/50/1000

2.2
0.5
0.3

[12]

USA, California
(34◦N, 118◦E) 1986 XeCl + SRS (H2)

308–353 0.9 [13]

France, Provance
(44◦N, 6◦E) 1986

XeCl+ Nd:YAG
308/250/50;
355/150/50

4 mirrors of 0.53 [14]

Germany,
Hohenpeiβenberg

(48◦N, 11◦E)
1987

XeCl + SRS (H2)
308/300/20;
353/150/20

0.9 [15]

France, Italia, the
Antarctic

(66◦S, 140◦E)
1991

XeCl+ Nd:YAG
308/180/80;
355/150/10

0.8 [16]

Argentina,
Buenos-Aires
(35◦S, 59◦W)

1999
XeCl+ Nd:YAG
308/300/100;
355/255/10

0.5 [17]

More than 85% of atmospheric ozone is located in the stratosphere. To measure the much smaller
concentrations of tropospheric ozone, sounding wavelengths should be selected from the short
wavelength range, closer to the ozone absorption band center, to increase the concentration sensitivity
of the method. In this spectral range, the absorption cross-section σ is several times larger than that
for wavelengths used in stratospheric measurements (e.g., σ299 = 4.4 × 10−19 cm2 for the wavelength
λon = 299 nm and σ308 = 1.4 × 10−19 cm2 for λon = 308 nm).

KrF laser radiation (248 nm) or the fourth harmonics of an Nd:YAG laser (266 nm) is usually used
for measurements of tropospheric ozone, in combination with a technique based on the stimulated
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Raman scattering (SRS) in H2, D2, CO2, and other gases [4,5,7]. The most common are hydrogen and
deuterium. Table 2 represents possible sets of wavelengths that correspond to the first, second, and
third Stokes (C) frequencies of SRS conversion in H2, D2, and CO2.

Table 2. Sets of wavelengths that correspond to Stokes (C) frequencies of SRS conversion in H2,
D2, and CO2.

Pumping Radiation

Wavelength, nm

H2

C1 C2

D2

C1 C2 C3

CO2

C1 C2

Nd:YAG, 266 nm 299 341 289 316 287 299
KrF, 248 nm 277 313 268 291 319

Different wavelength combinations are used in practice in different altitude ranges in the
troposphere and lower stratosphere. Thus, the wavelength pairs 289/316 and 287/299 nm allow
measurements of ozone profiles up to altitudes of about 10 km [4,5]; the pair 292/319 nm, up to
14–16 km [4]; the pairs 277/313 and 292/313 nm, up to altitudes of 8–12 and 15 km, respectively [7].

We have estimated possibilities of the vertical ozone profile sounding in the upper
troposphere–lower stratosphere at the wavelength pair 299/341 nm. During the calculations,
actual lidar parameters were used: radiation energy of 20 mJ at both wavelengths, pulse repetition
frequency of 15 Hz, receiving mirror diameter of 0.5 m, signal accumulation time of 1.5 h. To determine
the transmitter–receiver efficiency, actual values of transmittance of optical elements of spectral
selection and of efficiency of photomultiplier tubes (PMTs) were used; noises were taken from
actual measurements. The calculations have shown that these wavelengths allow the sounding up
to about 22 km (the ozone maximum is located in the altitude range 19–21 km in Tomsk) and ozone
measurements in the troposphere. The ozone concentration error is within 4–10% limits up to altitudes
of about 20 km.

The sounding altitude maximum is determined, first, by the range of signal detection at λon,
which is always shorter than the range of signal detection at λoff due to stronger ozone absorption.
In view of this, λon = 299 nm is preferable to 277 or 292 nm. In addition, wavelengths of 299 and
341 nm are implemented in one sounding beam (from one laser source in one SRS cell), in contrast to,
e.g., the 292/313 nm pair (see Table 2).

A system on the basis of a SRS cell filled with hydrogen is cheaper than with deuterium.
Thus, the wavelength pair 299/341 nm is of higher information content for VDO measurements

in the upper troposphere–lowerstratosphere (5–22 km altitude range).

2.2. Theoretical Base of the VDO Retrieval

Initial equations for the calculation of the ozone concentration during DIAL lidar sounding of the
atmosphere have the form

Non(H) = c · [βa
on(H) + βm

on(H)] · exp

⎡

⎣−2
H∫

0

αa
on(H) + αm

on + kon · n(H)

⎤

⎦ (1)

No f f (H) = c ·
[

βa
f f (H) + βm

o f f (H)
]
· exp

⎡

⎣−2
H∫

0

αa
o f f (H) + αm

o f f + ko f f · n(H)

⎤

⎦ (2)

where N(H) is the echo-signal recorded at corresponding wavelengths (on at an absorption line and
off out of the absorption line), C is the instrumental constant, αa is the aerosol extinction coefficient,
βa is the aerosol backscattering coefficient, k is the absorption cross-section of ozone, n(H) is the
ozone concentration.
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Let Equation (1) be divided by Equation (2):

No f f (H)

Non(H)
=

βa
o f f (H) + βm

o f f (H)

βa
on(H) + βm

on(H)
· exp

{

−2
H∫

0

[
αa

o f f (H)− αa
on(H)

]
· dH

}

· exp

{

−2
H∫

0

[
αm

o f f (H)− αm
on(H)

]
· dH

}

· exp

{

−2
H∫

0

[
ko f f (H)− kon(H)

]
· n(H) · dH

} (3)

where kon(H) and ko f f (H) are the absorption coefficients and are off the ozone absorption line,
dependent on the temperature.

Let us transform Equation (3) to the form

ln

{
No f f (H)

Non(H)
·
[

βa
o f f (H) + βm

o f f (H)

βa
on(H) + βm

on(H)

]}

= −2
H∫

0

[
αa

o f f (H)− αa
on(H)

]
· dH − 2

H∫

0

[
αm

o f f (H)− αm
on(H)

]
· dH

−2
H∫

0

[
ko f f (H)− kon(H)

]
· n(H) · dH

(4)

and derive Equation (4):

d
dH

ln

{
No f f (H)

Non(H)
·
[
βa

o f f (H) + βm
o f f (H)

βa
on(H) + βm

on(H)

]}

= −2 ·
[
αa

o f f (H)− αa
on(H)

]
− 2 ·

[
αm

o f f (H)− αm
on(H)

]

−2 ·
[
ko f f (H)− kon(H)

]
· n(H).

Then

−2 ·
[
ko f f (H)− kon(H)

]
· n(H) =

d
dH

ln

{
No f f (H)

Non(H)
·
[
βa

o f f (H) + βm
o f f (H)

βa
on(H) + βm

on(H)

]}

+ 2 ·
[
αa

o f f (H)− αa
on(H)

]
+ 2 ·

[
αm

o f f (H)− αm
on(H)

]
.

(5)

The final equation for the ozone concentration is derived with the use of
mathematical transformation

n(H) =
1

kon(H)− ko f f (H)
︸ ︷︷ ︸

A

·

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dH

ln

[
No f f (H)

Non(H)

]

︸ ︷︷ ︸
B

− d
dH

ln

[
βa

o f f (H) + βm
o f f (H)

βa
on(H) + βm

on(H)

]

︸ ︷︷ ︸
C

− 2 ·
[
αa

o f f (H)− αa
on(H)

]

︸ ︷︷ ︸
D

− 2 ·
[
αm

o f f (H)− αm
on(H)

]

︸ ︷︷ ︸
F

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

or
n(H) = A · {B − C − D − F}. (7)

Actual variations in the air temperature can cause variations in the ozone absorption cross-section,
which results in systematic errors in VDO retrieval. Therefore, it is reasonable to carry out a correction
to the temperature dependence kon(H,T), koff(H,T) in the algorithm for VDO retrieval.

A model of the behavior of ozone absorption cross-sections, presented in Table 3 and based on
data from [18,19], was used in the technique.

The absorption coefficients kon(H) and ko f f (H) are used in term A of Equation (6).
Real temperature variations in the atmosphere can significantly change the ozone absorption coefficient.
Therefore, it is reasonable to use the correction to the temperature dependence kon(H, T), ko f f (H, T) in
the VDO retrieval algorithm such that A takes the form
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A = K299(H,T) − K341(H,T) = (5.8815E−16)− (1.1538E−17)·(T(H)− 273)
+ (9.0281E−20)·(T(H)−273)2 − (3.5194E−22)·(T(H)− 273)3

+ (6.8356E−25)·(T(H)−273)4 − (5.2918E−8)·(T(H)− 273)5,
(8)

where T(H)–is the model Kelvin temperature distributed with altitude.

Table 3. Ozone absorption cross-section (cm2) at the ozone sounding wavelengths [18,19].

Wavelength, nm
Temperature, K

218 228 243 273 295

On line

299 4.1 × 10−19 4.1 × 10−19 4.25 × 10−19 4.3 × 10−19 4.6 × 10−19

Off line

341 6 × 10−22 6 × 10−22 6 × 10−22 6 × 10−22 1.2 × 10−21

Let us consider term C in Equation (6):

C =
d

dH
ln

[
βa

o f f (H) + βm
o f f (H)

βa
on(H) + βm

on(H)

]

(9)

and transform it to the form

βa
o f f (H) + βm

o f f (H)

βa
on(H) + βm

on(H)
=

βa
o f f (H) + βm

o f f (H)

βm
o f f (H)− Rm

o f f (H)
=

1
Ro f f (H)

·
{

βa
on(H)

βm
o f f (H)

+
βm

on(H)

βm
o f f (H)

}

=

1
Ro f f (H)

·
{(

λo f f

λon

)x

·
βa

o f f (H)

βm
o f f (H)

+

(
λo f f

λon

)4
}

=
1

Ro f f (H)
·
(
λo f f

λon

)x

·
[

Ro f f (H)− 1
]
+

1
Ro f f (H)

·
(
λo f f

λon

)4

=

(
λo f f

λon

)x

·
[

1 − 1
Ro f f (H)

]

+
1

Ro f f (H)
·
(
λo f f

λon

)4

,

(10)

where, at the corresponding wavelengths λ (on at an absorption line and off out of the absorption line),
Roff(H) is the real distribution of the scattering ratio, x is the parameter that characterizes
the particle size, βα

off(H) is the aerosol backscattering coefficient, βm
off(H) is the molecular

backscattering coefficient.

From the equalities
βm

o f f (H)

βm
o f f (H)

=
(

λo f f
λon

)4
and

βa
o f f (H)

βa
o f f (H)

=
(

λo f f
λon

)x
, one can find

βa
on(H) =

(
λo f f

λon

)x

· βa
o f f (H) (11)

Finally,

C =
d

dH

{

ln
(

λo f f

λon

)x

·
[

1 − 1
Ro f f (H)

]

+
1

Ro f f (H)
·
(

λo f f

λon

)4
}

(12)

Now consider term D in Equation (6). Since

αa = b · βa, i.e., αa(H) = b · βa(H) (13)

then
D = 2 · 0.04

[
βa

o f f (H)− βa
on(H)

]
(14)
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Using βa
on(H) =

(
λo f f
λon

)x · βa
o f f (H) and βa

o f f (H) =
[

Ro f f (H)− 1
]
· βm

o f f (H)

D = 2 · 0.04 ·
{

βa
o f f (H) ·

[
1 −

(
λo f f
λon

)x
]}

= 2 · 0.04 ·
{[

Ro f f (H)− 1
]
· βm

o f f (H) ·
[

1 −
(

λo f f
λon

)x
]}

(15)

Let us also transform term F in Equation (6) using the relations αm
on(H)

αm
o f f (H)

=
(
λo f f
λon

)4
and

αm
o f f =

3
8π︸︷︷︸

0.119

· βm
j f f (H):

F = 2 · 0.119 · αm
o f f

[

1 − αm
on(H)

αm
o f f (H)

]

= 2 · 0.119 · βm
o f f (H)

[

1 −
(

λo f f

λon

)4
]

(16)

Aerosol scattering exceeds molecular scattering by several times in the case of high atmospheric
aerosol content, which significantly distorts ozone profiles retrieved under unconsidered scattering
and attenuating properties of the atmosphere at the sounding wavelengths. In the algorithm for VDO
retrieval described, the aerosol correction is considered in the Equations (9) and (15) by means of
introduction of a real distribution of the scattering ratio Roff(H), while VDO in the usual, undisturbed
atmosphere can be calculated at Roff(H) = 1.

The vertical profile of the backscattering coefficient βa
π(H) is derived from laser sounding data.

The coefficient decreases with an increase in altitude. For clearer representation of aerosol stratification,
the scattering ratio

R(H) =
[
βa
π(H) + βM

π (H)
]
/βM

π (H) (17)

is used, where βM
π (H) is the molecular backscattering coefficient.

2.3. Software for VDO Retrieval

Software for altitude ozone profile retrieval from laser sounding data developed on the basis of
the above algorithm (see the block diagram in Figure 1) allows:

1. Reading the lidar data;
2. Recording the retrieval results in ASCII format;
3. Moving average smoothing of lidar signals;
4. Temperature and aerosol correction;
5. Smoothing of the VDO retrieval results.

Figure 1. Structure of the software for vertical distribution of ozone (VDO) retrieval from laser
sounding data.
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To decrease the retrieval errors, the temperature correction of ozone absorption coefficients is
used in the software. A high aerosol concentration in the 0–20 km altitude range should be considered
during lidar signal retrieval when sounding at 272/289 nm and 299/341 nm wavelengths; therefore,
aerosol correction is considered in the software. Model seasonal (winter and summer) midlatitude
values of altitude distributions of the temperature and molecular backscattering coefficient have been
introduced in the software for calculations.

Linear smoothing is used in the software for both input lidar data and retrieval results. The linear
smoothing (moving average smoothing) is a well-known technique and is widely used in processing
of experimental data in different fields of natural sciences. The linear smoothing is a special
case of numerical filtering of signals with random errors using a rectangular window and unit
weight coefficients.

The technique and software developed were used for VDO retrieval in the upper
stratosphere–lower stratosphere at 299/341 nm wavelengths.

3. Materials

3.1. SLS Ozone Lidar

The sounding wavelengths selected (299/341 nm) were used in the SLS ozone lidar designed.
Its block diagram is shown in Figure 2.

Figure 2. Block diagram of Siberian Lidar Station (SLS) ozone lidar: field diaphragm (1), cell for
spectral selection with a PMT (2), mechanical shutter (3), rotating mirrors (RM); automated adjustment
unit of an output rotating mirror (4); solid-state laser (Nd:YAG); SRS conversion cell with H2(H2)
amplifiers/discriminators (AD)); high-voltage power supply units for the PMT(HSU); lenses (L1 and L2);
system for synchronizing the shutter operation time and the instant of laser pulses emission (5).

The fourth harmonics (266 nm) of the fundamental frequency of a Nd:YAG laser (LS-2134UT laser,
LOTIS TII company, Minsk) is used as a laser radiation source, which is then

SRS converted in hydrogen in the first (299 nm) and second (341 nm) Stokes components.
The receiving telescope has been designed according to the Newton scheme on the basis of a primary
mirror, 0.5 m in diameter, with a focal length of 1.5 m. The recording channel of the lidar is equipped
with PMTs (R7207-01) and HAMAMATSU amplifier/discriminators (C3866). Lidar signals are recorded
in the photocurrent pulse counting mode. To support PMT linear modes, a mechanical shutter is used,
which cuts off a high-power optical signal from the nearest sounding zone. An automated unit for the
output rotary mirror adjustment has been designed on the basis of computer-driven step motors.

The SRS cell is made from a tube (stainless steel) 3 cm in inner diameter and 1 m in length.
Input and output windows are made of quartz Quartz Ultraviolet (KU). The pumping pulse energy at
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a wavelength of 266 nm is 60 mJ. The pumping power density required for SRS conversion is provided
by lens L1 with a focal length of 1 m. It is mounted before the SRS cell and focuses radiation at its
center. Confocal collimating lens L2 is mounted behind the cell.

Basic specifications of laser sources and receiving optical elements of the SLS ozone lidar:

1 Transmitter
2 Sounding wavelength, λ, nm 299, 341
3 Pulse energy, mJ (corr. λ) 25, 20
4 Frequency, Hz (corr. λ) 15
5 Divergence, mrad 0.1–0.3
6 Receiver
7 Mirror diameter, m 0.5
8 Focal length, m 1.5

The efficiency of SRS conversion was measured versus the hydrogen pressure in the Raman cell,
which was varied from 1 to 9 atm. Figure 3 shows the relative intensities of pumping radiation
(266 nm), the first (299 nm) and the second (341 nm) Stokes components of SRS conversion as functions
of hydrogen pressure at the SRS cell exit.
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Figure 3. Relative intensities of pumping (266 nm), the first (299 nm) and the second (341 nm) Stokes
conversion components of SRS conversion as functions of hydrogen pressure.

The intensities of 299 and 341 nm lines become equal at a hydrogen pressure of 2 atm, which allows
ozone sounding under equal radiation energies at these wavelengths. However, to increase the upper
sounding limit, a pressure of 1 atm is more efficient, since the energy is redistributed toward the
299 nm line, which is absorbed by ozone stronger than the 341 nm line.

3.2. IASI/MetOp

The IASI is mounted onboard the European Space Agency meteorological satellite MetOp.
The satellite monitors CO2, CH4, N2O, CO, O3, and HNO3 atmospheric gases; measures the
temperature and humidity profiles in the troposphere and lower stratosphere in the near real time
within the European Program “European Polar System”. IASI provides for spectra of high radiometric
quality with a resolution of 0.5 cm−1 in the range from 625 to 2760 cm−1 [20]. The ozone profiles were
retrieved from satellite sounding data in the range 1025–1075 cm−1.

The satellite data were received by the 2.4 XLB satellite data reception station (Orbital Systems, USA)
put into operation at IAO SB RAS in 2011 [21]. The information from the station allows comparison
between the satellite data and SLS lidar sounding data.
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4. Results

The VDO profiles retrieved from lidar sounding data are compared with the IASI/MetOp
measured profiles.

VDO was measured at SLS IAO SB RAS during 2015. Using the above described technique,
the retrieved profiles of ozone were calculated for the upper troposphere–lower stratosphere and
compared with the IASI/MetOpt measured profiles. The range of lidar signal detection was from 6 to
15 km. The ozone vertical profile error was from 6 to 11%. The retrieval error is estimated by the sum

Esum
2 = e2

1 + e2
2 + e2

3

where e1 is the absorption cross-section error, e2 is the standard error of measurements in the photon
counting mode, and e3 is the scattering ratio error. The absorption cross-section error e2 does not
exceed 2% [18].

The standard error of measurements in the photon counting mode e2 is defined as

e2
2 = 0.25 ·

[
1

Non(H)
+

1
No f f (H)

]

The scattering ratio error e3 is defined as

e2
3 =

No f f (H)
[

No f f (H)− Nnoise(H)
]2 +

No f f (Hcalib)
[

No f f (Hcalib)− Nnoise(Hcalib)
]2 + K

where Hcalib—calibration height, Nnoise—noise signal, K—constant value that appears due to the
assumptions of the processing technique and the estimated value 3 · (0.01)2.

The aerosol impact on the ozone profile in the troposphere and lower stratosphere is strong;
therefore, the aerosol correction is to be used in the VDO retrieval algorithm.

Before the VDO retrieval, the scattering ratio is calculated by the lidar signal at the wavelength
341 nm. This allows the aerosol correction with the use of a real scattering ratio instead of its model
values, and thus minimizes the aerosol impact on the ozone profile in the dynamic gaseous and aerosol
medium at tropospheric and lower stratospheric altitudes. Figure 4 shows the mean error of VDO
retrieval over all the measurement days.
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Figure 4. Mean error of ozone profile retrieval over 2015.
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It should be noted that the lidar operates in the photon counting mode at a spatial resolution of
100 m, while the IASI profile has a step of 150 m and larger as the altitude increases, which is connected
with the ozone profile retrieval algorithm of this interferometer [22]. IASI O3 retrieval errors, according
to the estimates given in paper [23], reach values of 30%. The IASI curve is smoother and does not
describe VDO in detail; the lidar measurements show the ozone behavior in more detail.

The coordinates and time of the lidar and satellite sounding are given in Table 4.

Table 4. Coordinates and time of satellite and lidar sounding used for comparison of VDO profiles
for 2015.

Date

Siberian Lidar Station MetOp (IASI) Satellite

Greenwich Time
Coordinates

(56.5◦N, 85.0◦E)
Greenwich Time Coordinates

13 January 2015 11:53–13:45 14:17 56.472◦N, 85.387◦E
19 February 2015 12:39–14:13 14:53 56.681◦N, 85.164◦E

5 March 2015 13:05–14:56 15:02 56.472◦N, 85.118◦E
20 March 2015 13:32–15:24 14:53 56.691◦N, 85.124◦E
6 April 2015 14:25–16:17 15:41 56.254◦N, 84.935◦E

26 April 2015 15:11–17:03 15:26 56.585◦N, 84.594◦E

Figure 5 exemplifies the comparison of lidar and satellite vertical profiles of ozone measured on
26 April 2015; the VDO profiles are compared with the Krueger model [24].
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Figure 5. VDO profiles retrieved in comparison with the Kruger model: ozone profile without
temperature and aerosol corrections (1), ozone profile with temperature and without aerosol
corrections (2), ozone profile without temperature and with aerosol corrections (3), combination
of corrections (aerosol and temperature) (4) (a); VDO profiles retrieved in comparison with the Kruger
model and IASI satellite data (b).

We have analyzed the ozone profiles retrieved for April 2015 corrected to the temperature and
aerosol and without corrections. One can see from Figure 5a that the efficiency of the corrections is
significant. For the retrieval without temperature correction, the absorption cross-section constant
σ299= 4.4 × 10−19 cm2 was used. High saturation of the aerosol component at tropospheric and lower
stratospheric altitudes is corrected to both aerosol (terms C and D or Equations (12) and (15)) and
temperature (term A or Equation (8)). Each correction used approaches the profiles to the IASI data.

206



Remote Sens. 2017, 9, 447

Thus, the combination of corrections provides for a reliable ozone profile close to the IASI data
(Figure 5b). The differences between profiles 3 and 4 are caused by the absorption cross-section values:
the absorption cross-section in profile 4 is smaller than in profile 3; therefore, the values of profile 4 are
higher than the values of profile 3 (Figure 5a).

Figure 6 shows all the considered cases of comparison of ozone profiles measured at the SLS
and retrieved from IASI data (see Table 4). The measurements are reduced to the total altitude range
6–15 km for convenience. Increased ozone concentrations measured at the SLS as compared to IASI
are seen in the range from 8.5 to 12.5 km throughout the whole observation period.

Figure 6. Intercomparison of vertical profiles of ozone for 2015.

5. Discussion

The following conclusions can be drawn from the analysis of the ozone profiles average over the
period under study (Figures 7 and 8).

Figure 7a shows the mean lidar and satellite ozone profiles, and Figure 7b, the total difference
between them (lidar–IASI) over all measurement days, as well as the standard deviation of this
difference, minimum and maximum, and the mean. The error is calculated with the use of the standard
deviation of the difference (lidar–IASI) and the ratio (lidar–IASI)/lidar over all days of measurements.
Figure 7c shows the total difference between the lidar and IASI profiles normalized to the lidar profile
for each measurement day, and the standard deviation with the minimum, maximum, and mean.

Figure 8a shows the mean lidar and Krueger model profiles, and Figure 8b, the total difference
between them (lidar–Krueger model) over all measurement days, as well as the standard deviation of
this difference, minimum and maximum, and the mean. Figure 8c shows the total difference between
the lidar and Krueger model profiles normalized to the lidar profile for each measurement day, and
the standard deviation with the minimum, maximum, and mean.

Thus, in Figure 7b, one can trace the variability of the difference between the lidar and satellite
VDO in absolute units. The difference minima show how IASI data exceed the lidar data on VDO,
and the minima, vice versa. The mean difference shows the difference between the lidar and IASI data
over all measurement days. The normalized difference in Figure 7c shows more clearly the deviations
between the values over all measurement days in percentage.

The difference between the lidar and IASI profiles of the ozone concentration grows with altitude.
Hence, the mean difference in the ozone concentrations (lidar–IASI) varies from −1.56 × 1012 mol. cm−3

at an altitude of 15 km to 0.53 × 1012 mol. cm−3 at 13 km (Figure 6b). The maximal differences over
all the profiles are from −0.01 × 1012 mol. cm−3 at an altitude of 7.2 km to 1.08 × 1012 mol. cm−3 at
14.3 km. The minimal differences over all the profiles vary from −0.77 × 1012 mol. cm−3 at 15 km to
0.39 × 1012 mol. cm−3 at 12.3 km.
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Ozone shows pronounced annual variations; therefore, to find relative errors of its measurements
with IASI, the difference in the concentrations was normalized to the lidar data: (Lidar–IASI)/Lidar.
These data are shown in Figure 7c; it is seen that the mean relative difference is positive in the altitude
ranges 6–6.5 and 8.4–14.6 km and attains 23.2% at an altitude of 12.4 km. The mean relative difference
is negative in the altitude range from 6.5 to 8.4 km and 14.6–15 km: it attains the negative maximum of
−33.8% at 7.5 km. The maximal relative difference changes from 3.45 to 60% in the range 6–15 km.
The minimal relative difference over all the profiles in this range is −120.6% at 7.7 km; it attains 15.4%
at 12.3 km. The relative difference varies in the range from −19.3 to 60% at 6 km and from −70.5 to
28.8% at 15 km.

Thus, the intercomparison performed shows that the absolute differences in the lidar and IASI
measured ozone concentrations can change from −0.77 to 1.08 × 1012 mol. cm−3; therefore, the relative
difference is in the range from −120.6 to 60%.

It should be noted that the retrieved profiles of altitude distribution of the ozone concentration
tend to IASI satellite data profiles more than to the Krueger model.

 
(a) (b)

(c)

Figure 7. Mean vertical profiles of ozone (a), their difference (Lidar–IASI) in abs. units (b), and the
relative difference (Lidar–IASI)/lidar (c).
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Figure 8. Mean vertical profiles of ozone (a), their difference (Lidar–Krueger) in abs. units (b), and the
relative difference (Lidar–Krueger)/lidar (c).

6. Conclusions

The results of using the developed techniques for VDO retrieval with temperature and aerosol
correction in the altitude range 6–15 km during the DIAL lidar sounding of the atmosphere confirm
the prospects of the wavelengths chosen (299 and 341 nm) for ozone lidar sounding.

Results of lidar measurements at 299 and 341 nm agree with model estimates, which point towards
acceptable accuracy of ozone sounding in altitudes near 6–15 km.

At present, works are being carried out on optimization of optical and photoelectronic elements
of the lidar signal detection system with the aim of increasing the upper limit of the sounding and
improving the measurement accuracy. A more effective and comparatively easy-to-use BaB2O4 (BBO)
crystal has been mounted as a fourth harmonic converter.
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Abstract: As a primary basic gas in the atmosphere, atmospheric ammonia (NH3) plays an important
role in determining air quality, environmental degradation, and climate change. However, the
limited ground observation currently presents a barrier to estimating ground NH3 concentrations
on a regional scale, thus preventing a full understanding of the atmospheric processes in which this
trace gas is involved. This study estimated the ground NH3 concentrations over China, combining
the Infrared Atmospheric Sounding Interferometer (IASI) satellite NH3 columns and NH3 profiles
from an atmospheric chemistry transport model (CTM). The estimated ground NH3 concentrations
showed agreement with the variability in annual ground NH3 measurements from the Chinese
Nationwide Nitrogen Deposition Monitoring Network (NNDMN). Great spatial heterogeneity of
ground NH3 concentrations was found across China, and high ground NH3 concentrations were
found in Northern China, Southeastern China, and some areas in Xinjiang Province. The maximum
ground NH3 concentrations over China occurred in summer, followed by spring, autumn, and winter
seasons, which were in agreement with the seasonal patterns of NH3 emissions in China. This study
suggested that a combination of NH3 profiles from CTMs and NH3 columns from satellite obtained
reliable ground NH3 concentrations over China.

Keywords: NH3; satellite; CTM; spatial; ground

1. Introduction

Ammonia (NH3) is the primary form of reactive nitrogen (Nr) in the environment and a
key component of the ecosystems, representing more than half of atmospheric Nr emissions [1,2].
NH3 emissions have been increasing in recent years due to the increasing agricultural livestock
numbers and the increasing application of Nr fertilization [2,3], resulting in the high NH3

concentrations in the atmosphere. NH3 increase has enhanced the acidification and eutrophication of
the ecosystems on local and international scales [2,4]. Previous studies have shown that the lifetime
of NH3 is very short from hours to several days [5,6] converting to particulate matter (PM) as well
as leading to dry and wet depositions. NH3 reacts with acid-forming compounds such as sulfur
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dioxide (SO2) and nitrogen oxides (NOx) to form particles containing ammonium sulfate ((NH4)2SO4)
and ammonium nitrate (NH4NO3) in the atmosphere [7]. These processes increase the amount of
atmospheric particulate matter, particularly for particles smaller than 2.5 micrometers in diameter
(PM2.5), thereby reducing visibility and negatively affecting environmental and human health [8,9].
Therefore, monitoring the ground NH3 concentrations on a regional scale is vitally important to assist
in enacting effective measures to protect the eco-environments and public health, with respect to air,
soil, and water quality.

Progress in the understanding of the NH3 cycling process, flux measurements, and
instrumentation have allowed advances in estimating NH3 concentrations in the atmosphere on a local
or regional scale, based on the simulation of the chemical transport models (CTM). For example, a
coupled MM5-CMAQ modeling system was used for computing the ground NH3 concentration based
on the NH3 emission developed with a spatial resolution of 27 km × 27 km in the Beijing–Tianjin–Hebei
(BTH) region of China [10]. The simulation error of ground NH3 concentration in different seasons in
BTH range from −24.4% to 7.8%, indicating the ground NH3 concentrations simulated by MM5-CMAQ
are comparable with the observations; A GEOS-Chem model was used to estimate the global and
seasonal NH3 with a resolution of 2◦ latitude × 2.5◦ longitude [11], showing that the simulated
ground NH3 concentrations are biased low compared to the Tropospheric Emission Spectrometer
(TES) with seasonal mean differences of −0.92 to 1.58 ppb. Similar reports on estimating ground NH3

concentrations from CMT could also be tracked in several studies [12–14]. Although these CTMs could
simulate the profiles of NH3 concentrations in the atmosphere, the ground NH3 concentrations over a
large scale, such as on a national scale over the entire area of China, are still poorly understood due to
the large pixel sizes and the relatively high uncertainties resulting from errors of the emission data and
the simplification of the chemistry schemes. Fortunately, numerous studies have shown that CTMs can
produce profiles for aerosol [15–18], NO2 [19–21], NH3 [2,22–24], and SO2 [19,25], denoting that the
vertical profiles of the NH3 concentrations from CTM were highly beneficial in calculating the ground
NH3 concentrations.

In comparison with CTM simulations, satellite remote sensing is considered as an observational
perspective and offers another way to obtain large-scale NH3 columns with high spatial resolutions,
based on advanced infrared spectroscopy (IR) sounders, such as the Infrared Atmospheric Sounding
Interferometer (IASI), the Tropospheric Emission Spectrometer (TES), and the Cross-track Infrared
Sounder (CrIS) [26,27]. Large-scale distributions of IASI NH3 columns could denote the status of NH3

levels in regions not covered by ground measurement networks, expanding insight into new NH3

sources including industry, agriculture, and biomass burning [2,22]. However, satellite NH3 can only
provide the columns and has no information of the vertical distributions of the columns (from the
ground to the top of the atmosphere), presenting a barrier in obtaining the ground NH3 concentrations.
Fortunately, as mentioned in the last paragraph, the detailed NH3 profiles could be obtained from
CTMs. Combining the advantages of CTMs (NH3 profiles) and satellite observations (large-scale
overages with high spatiotemporal resolutions), the ground NH3 concentrations can be derived.

We aimed to generate spatiotemporal ground NH3 concentrations with the aid of the remotely
sensed NH3 columns and vertical NH3 profiles from a CTM. The estimated ground NH3 concentrations
were further compared with the national ground monitoring network of the Chinese Nationwide
Nitrogen Deposition Monitoring Network (NNDMN). Our purpose is not to replace traditional
algorithms, but to combine the advantages of satellite with high spatial and temporal resolutions,
and CTMs with detailed NH3 vertical profiles in order to obtain high spatiotemporal ground
NH3 concentrations over China, hence providing basic information for the ground status of NH3

concentrations and guiding the monitoring plans in the future over China.
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2. Materials and Methods

2.1. Ground NH3 Concentrations in the Atmosphere

Monitoring ground-based NH3 concentrations on a regional scale is not straightforward due to
the technical limitations and great variability of the concentrations in time and space [28]. While the
availability of NH3 concentration data and the flux measurements on local scales is increasing, the
measurements on a regional scale are sparser [1].

We used the monthly ground NH3 concentrations from the Chinese Nationwide Nitrogen
Deposition Monitoring Network (NNDMN, made available on request by Prof. X.J. Liu, China
Agricultural University) to evaluate the accuracy of the satellite-derived ground NH3 concentrations.
Monthly NH3 concentrations (in units of μg N m−3) were measured at 44 sites from 2010 to 2013
(Figure 1). The network mainly covered farmland sites but also included some grassland (two) and
forest (four) sites across China [29,30]. The ground NH3 concentrations in NNDMN were monitored
using both DEnuder for Long-Term Atmospheric (DELTA) systems as well as Adapted Low-cost,
Passive High Absorption (ALPHA) samplers [30,31]. ALPHA is a passive sampling system, while
DELTA is an active sampling system. Monthly ground NH3 concentrations were mostly monitored
by DELTA, and few monitoring sites were measured by ALPHA. Xu et al. [30] showed that these
two methods on measuring ground NH3 concentrations were not significantly different and can be
considered consistent.

Figure 1. Spatial distribution of ground monitoring NH3 sites in the Chinese Nationwide Nitrogen
Deposition Monitoring Network (NNDMN).

2.2. IASI NH3 Columns

The IASI instrument is on board the polar sun-synchronous MetOp platform, which crosses the
equator at a mean local solar time of 9.30 a.m. and p.m. [32]. In this study, we used the measurements
from the morning overpass as they are generally more sensitive to NH3 because of higher thermal
contrast at this time of day [1]. IASI has an elliptical footprint of 12 km by 12 km (at nadir) and up to
20 km by 39 km (off nadir), depending on the satellite viewing angle. The availability of measurements
is mainly dependent on the cloud coverage.
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The current method is based on the calculation of a spectral hyperspectral range index and
subsequent conversion to a NH3 total column using a neural network. Details on the retrieval
algorithms can be found in Whitburn et al. [32]. We requested the IASI NH3 data from Université
Libre De Bruxelles, and processed the daily observation data to monthly average data for deriving
the ground NH3. In the present work, the observations with a cloud coverage lower than 25%, and
relative error lower than 100% or absolute error less than 5 × 15 molec. cm−2 were processed [27].

2.3. NH3 Profiles from MOZART-4

MOZART-4 (Model for Ozone and Related chemical Tracers, version 4) is a three-dimensional (3-D)
global chemical transport model simulating the chemical and transport processes, which can be driven
by essentially any meteorological dataset and with any emissions inventory [24,33]. The MOZART-4
used in this study includes detailed chemistry, an improved scheme for the determination of albedo,
aerosols, online calculations of photolysis rates, dry deposition, H2O concentration, and biogenic
emissions. A comprehensive tropospheric chemistry with 85 gas-phase species, 12 bulk aerosol species,
39 photolyses, and 157 gas-phase reactions has been included in MOZART-4 [24]. The chemical initial and
boundary conditions, spatially and temporally varying (6 h), are constrained by global chemical transport
simulations from MOZART-4/GEOS-5 (Goddard Earth Observing System-5) with 1.9◦ latitude × 2.5◦

longitude horizontal resolution and 56 vertical levels from the surface. Details on the meteorological
data and emission inventory used for driving MOZART-4 as well as related configurations can be
tracked in Emmons et al. [24]. We requested the MOZART output data from NCAR (National Center for
Atmospheric Research, Boulder, CO, USA). The output data are varying 6 h (daily). We calculated the
monthly data by averaging the daily data, and then used the monthly data for analysis.

2.4. Satellite Derived Ground NH3 Measurements

The fundamental thoughts of the methodology in this work were demonstrated in previous studies
for aerosol [15–17], NO2 [19–21] and SO2 [19,25]. The recent progress in satellite NH3 measurements
also made this methodology applicable in estimating the ground NH3 concentrations by combining
the NH3 profiles from CTM and NH3 columns.

We had three major steps to estimate the satellite-derived ground NH3 concentrations (Figure 2).
First, we produced continuous monthly IASI NH3 columns according to the method in previous
studies [27,32]. Second, we simulated the vertical profiles from MOZART-4, and calculated the ratio of
ground NH3 to NH3 columns. Third, we derived the satellite-derived ground NH3 concentrations
combining the IASI NH3 columns and the ratio in the second step. Of these three steps, the second
step of simulating the vertical profiles was the most important and complex one. We demonstrate here
the key algorithms to simulate the vertical profiles from MOZART.

 

Figure 2. Schematic of the method to estimate the satellite-derived ground NH3 concentrations.
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We retrieved the NH3 profiles from MOZART to convert the IASI NH3 columns to ground NH3

concentrations. The NH3 vertical profile function was simulated by the following equation in the grid
cell using the output data from MOZART-4:

f (h) =
n

∑
i=1

aie
−(h−bi)

2

c2
i (1)

where n ranges from 2 to 6, representing the number of Gaussian items; ai, bi, and ci indicate the
constants for each Gaussian item; h indicates the vertical height from the ground and f (h) is the
NH3 concentration at height h. Theoretically, we can use n larger than 6 (with more Gaussian items).
However, it is highly dependent on the computational time cost and computer memory limitations.

We simulated the NH3 vertical profile using Equation (1) by each grid cell, based on the 56 vertical
layers of NH3 concentrations from MOZART. For each grid cell, we had five models (n = 2, 3, 4, 5, 6)
and used R2 and root-mean-square error (RMSE) to assess each model performance. We selected the
best one with highest R2 and lowest RMSE (i.e., determined the value of n).

The MOZART NH3 columns can be gained by integration based on the simulated profile function:

F
(
htrop

)
=
∫ htrop

0
f (h)dh (2)

where F
(
htrop

)
denotes NH3 columns and htrop indicates the tropospheric height.

The satellite-derived ground NH3 concentration is calculated as:

[SN H3]G = [SN H3]Trop ×
f (hG)

F
(
htrop

) (3)

where
[

SN H3
]

Trop indicates the IASI NH3 columns, f (hG) denotes the ground NH3 concentration

from MOZART, and F
(
htrop

)
represents the MOZART NH3 columns.

We used the national ground-based NH3 concentrations in NNDMN between 2010–2013 to
validate the satellite-derived ground NH3 concentrations. We applied the correlation coefficient (r) and
relative error ((observation-estimation)/observation) at each monitoring site to assess the accuracy of
the satellite-derived ground NH3 concentrations.

3. Results and Discussion

3.1. Accuracy Assessment of the Estimated Ground NH3 Concentrations

To convert the IASI NH3 columns to ground NH3 concentrations, it is essential to obtain the
vertical NH3 profiles. We retrieved the vertical NH3 profiles from MOZART in this study (as an
example, the vertical NH3 concentrations at five locations in January 2013 from MOZART are shown in
Figure A1). The NH3 profiles were simulated by each grid cell in China (Figure A9) with determination
of coefficients (R2) larger than 0.95 accounting for 99.81% of all grid cells (Table A1 and Figure A9).
Then, we estimated the ground NH3 concentrations based on IASI NH3 columns and the modeling
MOZART NH3 profiles.

We used 44 ground-based sites from NNDMN between 2010–2013 to assess the performance
of the estimated monthly ground NH3 concentrations. The correlation between the estimated and
measured at each site is given in Table A2 in Appendix A, and the relative bias of each site as well
as the yearly comparisons between the estimated and measured ground NH3 concentration are
given in Figures 3 and 4. We found 90.91% of minoring sites has a relative error within −30%–50%,
showing an agreement between the estimated and measured. The seasonal absolute error by
inverse-distance-weighted (IDW) interpolation is also shown in Figure A2. We found the absolute error
in winter (December, January, and February) was higher than in other seasons, which can be explained
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by the highest relative error in IASI NH3 columns in the winter season (Figure A3). In addition, Figure 4
demonstrates a comparison between the estimated and measured ground NH3 concentrations before
and after applying the IASI NH3 data. We found a relatively higher correlation (R, 0.81 vs. 0.57) and a
better consistency (slope, 0.96 vs. 0.50) between the satellite-derived ground NH3 concentrations and
the measured ground NH3 concentrations than those from MOZART not applying the IASI NH3 data.

Figure 3. Spatial distribution of the relative error (a), correlation (b) and root-mean-square error (RMSE)
(c) of the estimated ground NH3 concentration (μg N m−3) at 44 NNDMN sites.

Figure 4. Yearly comparisons between the estimated and measured ground NH3 concentration
(μg N m−3). (a) indicates the comparison between the measured ground NH3 concentrations and
the estimated ground NH3 concentrations from MOZART at the lowest layer before applying the
satellite data, while (b) represents the comparison between the measured and estimated ground NH3

concentrations by applying the satellite data using the methods in Section 2.4.
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3.2. Spatial Pattern of the Ground NH3 Concentrations

Spatial distribution of ground NH3 concentrations in 2012 over China is shown in Figure 5a.
High ground NH3 concentrations greater than 10 μg N m−3 were concentrated in North China and
South China including Beijing–Tianjin–Hebei (BTH), Shandong, Henan, Hubei, Anhui, Sichuan and
Jiangsu provinces, forming the major regions of intensive agriculture over China. Low ground NH3

concentrations are predominantly located in TP (Tibetan Plateau), where both the synthetic fertilizers
and livestock waste were the least among 32 provinces [34,35]. The spatial ground NH3 concentrations
revealed considerable spatial heterogeneity across China and were in agreement with the percent
farmland area (Figure 5a,b), reflecting its unique agricultural structure and farming practice.

Figure 5. Spatial distribution of the ground NH3 concentration (μg N m−3). (a) represents the yearly
estimated ground NH3 concentrations; (b) denotes the percent farmland area; (c) denotes the Infrared
Atmospheric Sounding Interferometer (IASI) NH3 columns and (d) indicates the ratio of ground NH3

concentration to NH3 columns from MOZART.

High ground NH3 concentrations were also observed in some areas in Xinjiang province
(Figure 5a), where our estimation were about −30% to −10% underestimation compared with
measurements in NNDMN (Figure 3). Moreover, relatively high NH3 columns could be observed by
satellite IASI instrument (Figure 5c). Synthetic N fertilizers and livestock waste both dominated the
spatial distribution of the total emissions [34,35], hence determining the spatial patterns of the ground
NH3 concentrations. Previous studies reported that the NH3 emissions from livestock exceeded those
from the farmland in China, and NH3 emissions from livestock accounted for about 54% of the total
NH3 emissions over China [35]. The contribution of livestock to the total NH3 emissions in Xinjiang
(where sheep are widely raised) accounted for higher than 60% [10,35]. Thus, due to the combining
influence of both synthetic N fertilizers and livestock waste, the spatial distributions of ground NH3
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concentrations and percent farmland differed, especially in regions where the livestock dominated
the NH3 emissions. In addition, most of the ground NH3 emissions were more concentrated on the
ground and relatively hard to transport vertically compared with other regions in China, which can be
clearly seen by the ratio of ground NH3 concentrations to NH3 columns from MOZART (Figure 5d).

3.3. Seasonal Variations of the Ground NH3 Concentrations in China

To demonstrate the seasonal variations of the ground NH3 concentrations in China, we calculated
the monthly average values throughout China (Figure 6a). We found the maximum ground NH3

concentrations over China occurred in summer (June, July, and August), followed by spring (March,
April, and May), autumn (September, October, and November) and winter (December, January, and
February) seasons. It is interesting that the seasonal ground NH3 concentrations were in agreement
with the seasonal patterns of NH3 emissions in China conducted by Kang et al. [36], Huang et al. [35],
and Xu et al. [37] (Figure 6b–d), indicating that the NH3 emissions are the key factor influencing
seasonal pattern of the ground NH3 concentrations. The maximum NH3 emissions in summer is
reasonable due to more than 40% of the fertilization and more than 25% of livestock emissions occurring
in summer [36,37]. In addition, high temperature in summer in China may also accelerate the NH3

volatilization (NH4
+→NH3 + H+) from fertilizer, animal waste, city garbage or vehicles [6,38–40], and

hence cause high ground NH3 concentrations. In contrast, in winter, temperature frequently below
freezing leads to reduced NH3 volatilization and lower NH3 concentrations than in other seasons.

Figure 6. Seasonal patterns of ground NH3 concentrations in China. (a) indicates the monthly variations
of ground NH3 concentrations (μg N m−3) in China; (b) represents the monthly variations of the total
NH3 emissions (Tg, 1012 g) in China conducted by Kang et al. [36]; (c) shows the the monthly variations
of the sum of fertilizer and livestock NH3 emissions (Tg) in China conducted by Huang et al. [35]
and (d) denotes the monthly variations of the fertilizer NH3 emissions (Tg) in China conducted by
Xu et al. [37].

To more accurately quantify the effects of meteorological parameters on the seasonal trends
of the ground NH3 concentrations, we selected the five best-simulated ground sites with n >30
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(Table A2) for demonstrating meteorological parameters, such as temperature, wind speed, humidity,
and precipitation on the seasonal variations of the ground NH3 concentrations (Figures 7 and A4–A8).
The monthly wind speed, temperature, relative humidity, and precipitation for each site were taken
from the China Meteorological Administration. A positive correlation (R = 0.6, p = 0.00) was found
between the ground NH3 concentrations and temperature. An inverse relationship between the ground
NH3 concentrations and humidity (Figure 7), indicated that higher relative humidity may contribute to
more NH3 loss rates (NH3→ NH4

+). In addition, we also conducted a partial correlation analysis [41]
regarding ground NH3 concentrations, temperature, and humidity by considering their interactions
using the function “partialcorr” in Matlab. We found the partial correlation between ground NH3

concentrations and humidity was −0.10 (p = 0.03), showing a significant inverse relationship between
the ground NH3 concentrations and humidity. Significant effects of air humidity on NH3 loss were
also demonstrated previously [42,43]. However, precipitation and wind speed were not significantly
correlated with ground NH3 concentrations (p = 0.632, precipitation vs. NH3; p = 0.156, wind speed vs.
NH3) as shown in Figures A4–A8.

Figure 7. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at five sites with best-simulated ground NH3

concentrations from January 2010 to December 2013 (0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).
The relationship between the ground NH3 concentrations and precipitation (mm), humidity (%), and
wind speed (m/s) at each site is provided in Figures A4–A8.

3.4. Comparison with Previous Studies

The first relatively complete work on the national ground measurements of NH3 concentrations
in China is NNDMN, and the results of ground measurements were published by Xu et al. [30], which
we considered as a truly comprehensive and valuable work on the national status of the ground
NH3 concentrations, and which shed some light on the actual status of ground NH3 concentrations.
The national measurements in NNDMN provide the best accurate datasets for validating the modeling
ground NH3 concentrations. In the previous studies, due to very limited ground measurements (not
to mention the national monitoring measurements), it was difficult to validate the accuracy of the
modeling ground NH3 concentrations in China. The lack of measurements makes it necessary to
assess the modeling ground NH3 concentrations in China [44]. Recently, Zhao et al. [45] presented
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a comprehensive work on the national-scale model validation of ground NH3 concentrations with
1/2◦ longitude by 1/3◦ latitude horizontal resolution using the GEOS-Chem model, showing the
correlation coefficient with NNDMN between 2011–2012 which was about 0.65 on the annual scale [45].
Compared with Zhao et al. [45], we used the same datasets from NNDMN while having a longer time
period (2010–2013) to validate our estimated ground NH3 concentrations, and found the correlation
coefficient was about 0.81 (slope = 0.96 and intercept = 1.31) on the annual scale as shown in
Figure 4, demonstrating better agreement with the ground measurements. The relatively higher
accuracy in estimating ground NH3 concentrations may result from different datasets used for
estimation, where we used the satellite observation and Zhao et al. [45] used the NH3 emission
data used for modeling. Uncertainties existed in the estimation of NH3 emission resulting from
the methodology of calculation, which simplified the complexity of the real status of emission
process [36]. For example, N-fertilizer NH3 emission in BTH between different studies varied
greatly as 256.5 Gg [35], 502.5 Gg [46], 432.7 Gg [10]; livestock NH3 emission in BTH between different
studies varied as 556.6 Gg [35], 675.2 Gg [46], and 891.6 Gg [10]. The estimation of NH3 emissions by
Zhou et al. [10] even nearly doubled that by Huang et al. [35] and Dong et al. [46]. The actual local
emission factors in different regions differed from each other greatly, due to the difference of the local
meteorological conditions, fertilizing time, and fertilizer kinds [37]. The NH3 emissions are mainly
based on statistical NH3 emissions at a city or county level, and the accuracy is strongly dependent on
both the limited spatial and temporal resolutions of the coarse statistical data [35–37,44,47].

The present study derived ground NH3 concentrations from IASI NH3 columns and the
profiles from MOZART-4, implying that a combination of CTM modeling and satellite monitoring
obtained a reliable ground NH3 estimation over China. More generally, this attempt to generate the
ground NH3 measurements with a relative high resolution from IASI and MOZART has highlighted
known limitations in the ground NH3 monitoring measurements, which may in some cases not be
representative of the estimated NH3 concentrations horizontally and vertically. Here we highlight
the need to acquire more comprehensive datasets of ground NH3 concentrations, and dedicated
measurement campaigns focusing on the ground NH3 measurement will no doubt allow improvements
in the validation of estimated NH3 in the future. In addition, we focused on the spatial pattern of
ground NH3 concentrations derived from satellite and a CTM, which is based on the monthly average
and may be limited for the specific analysis such as secondary aerosol formation, photochemistry, and
consideration of regulation. It is also beneficial and even essential to gain higher temporal resolution
of ground NH3 concentrations in the future.

4. Conclusions

We critically estimated the ground NH3 concentrations over China, combining IASI NH3 columns
and NH3 profiles from MOZART. We aimed to generate ground NH3 concentrations over China,
and hence provide potential to understand both the spatial and temporal variations of ground NH3

concentrations in order to guide future ground NH3 monitoring plans. The intention was not to replace
traditional algorithms but to provide new insight on the current status of ground NH3 over China,
and to generate more reliable ground NH3 concentrations. The IASI NH3 columns and NH3 profiles
from the atmospheric chemistry transport model are encouraged to be combined to generate ground
NH3 concentrations at local or regional scales, and the estimated results should be further improved.

This study introduced methods to estimate ground NH3 concentrations over China using IASI
NH3 columns and NH3 profiles. The estimated ground NH3 concentrations were validated by
44 sites from NNDMN, showing promising results between the estimated and measured, and then
the spatial and temporal variations of ground NH3 concentrations were demonstrated. High ground
NH3 concentrations greater than 10 μg N m−3 were mainly located in Beijing, Hebei, Shandong,
Henan, Jiangsu, eastern Sichuan, and some regions in Xinjiang provinces, while low ground NH3

concentrations were concentrated in the Tibet-Plateau area. The maximum ground NH3 concentrations
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over China occurred in summer, followed by spring, autumn, and winter seasons, which are in
agreement with the seasonal patterns of NH3 emissions in China.
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Appendix A

Figure A1. Vertical NH3 concentrations (μg N m−3) simulated by Mozart at five locations in
January 2013.

Figure A2. A quick illustration of the site bias of ground NH3 concentrations across China by
interpolating the residuals between the measured and estimated using the inverse-distance-weighted
(IDW) interpolation. The figures were generated using ArcGIS 12.0 software (https://www.arcgis.com/).
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Figure A3. Relative error (%) of IASI NH3 columns. (a) indicates the annual IASI NH3 error (with
a cloud coverage lower than 25%) averaged from 2008 to 2015; (b) indicates the averaged monthly
relative error from 2008 to 2015 in different regions (every dot indicates the relative error at a month in
a region); (c) indicates the temporal variations of relative error over China at a monthly scale.

Figure A4. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at GZL from January 2010 to December 2013
(0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).
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Figure A5. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at TLF from January 2010 to December 2013
(0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).

 
Figure A6. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at CL from January 2010 to December 2013
(0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).
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Figure A7. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at YPH from January 2010 to December 2013
(0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).

Figure A8. The seasonal variations of ground NH3 concentrations (μg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at FYU from January 2010 to December 2013
(0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).
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Figure A9. (a,b) R2 and RMSE (molec./cm2) for the Gaussian simulation of the NH3 profiles (68~142◦E,
5~55◦N) in 2013.

Table A1. Descriptive statistics for results of Gaussian simulation.

Season (%) N = 2 N = 3 N = 4 N = 5 N = 6 R2 > 0.95 R2 > 0.99

Spring 0.70 12.02 33.33 34.61 19.31 99.86 96.94
Summer 0.79 10.47 28.24 37.09 23.38 99.86 97.52
Autumn 0.48 7.60 24.58 37.93 29.39 99.86 98.89
Winter 0.92 10.25 31.03 35.80 21.97 99.64 96.46

All 0.72 10.09 29.29 36.36 23.51 99.81 97.45

Note: Spring includes March, April, and May; Summer includes June, July, and August; Autumn includes September,
October, and November; Winter includes December, January, and February. N indicates the numbers of the Gaussian
items. For details, please refer to the methods part.
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Table A2. Comparison between monthly IASI satellite-derived ground NH3 concentrations and the
NNDMN monitoring sites from 2010 to 2013.

Site Landuse Long (◦E) Lat (◦N) n
R (±std)

This Study

BYBLK Alpine grassland 83.71 42.88 22 0.68 (0.05)
FK Desert-oasis ecotone 87.93 44.29 32 0.49 (0.04)
TLF Desert in an oasis 89.19 42.85 28 0.84 (0.07)
SDS Urban 87.56 43.85 38 0.69 (0.06)
TFS Suburban 87.47 43.94 35 0.56 (0.05)
CL Desert-oasis ecotone 80.73 37.02 12 0.94 (0.08)
TZ Desert 83.66 38.97 12 0.89 (0.07)

YPH Farmland 77.27 39 12 0.83 (0.05)
HT Farmland 79.89 37.15 5 0.99 (0.08)

AKS Farmland 80.83 40.62 17 0.72 (0.06)
KRL Farmland 85.86 41.68 6 0.94 (0.08)
NLT Forest 84.03 43.31 4 0.33 (0.03)

NSXC Forest 87.04 43.35 7 0.98 (0.09)
CAU Urban 116.28 40.02 45 0.57 (0.05)
ZZ Urban 113.63 34.75 44 0.55 (0.04)
SZ Farmland 116.2 40.11 45 0.86 (0.07)
BD Farmland 115.48 38.85 12 0.44 (0.04)
QZ Farmland 114.94 36.78 45 0.50 (0.04)
YQ Farmland 112.89 38.05 45 0.57 (0.05)

ZMD Farmland 114.05 33.02 45 0.27 (0.02)
YL Farmland 108.01 34.31 45 0.27 (0.02)
YC Farmland 116.63 36.94 35 0.77 (0.06)

GZL Farmland 124.83 43.53 42 0.82 (0.06)
LS Farmland 124.17 43.36 42 0.62 (0.05)
DL Coastal 121.58 38.92 40 0.73 (0.05)
WY Forest 129.25 48.11 12 0.31 (0.02)
GH Forest 121.52 50.78 12 0.38 (0.03)
WW Farmland 102.6 38.07 39 0.32 (0.02)
DL Grassland 116.49 42.2 6 0.52 (0.04)
WX Farmland 115.79 30.01 29 0.56 (0.05)
BY Farmland 113.27 23.16 44 0.47 (0.04)
TJ Farmland 111.97 28.61 39 0.42 (0.03)

FYU Farmland 113.34 28.56 40 0.76 (0.06)
HN Farmland 113.41 28.52 40 0.36 (0.03)
NJ Farmland 118.85 31.84 18 0.82 (0.06)
FY Farmland 117.56 32.88 11 0.79 (0.06)
ZJ Coastal 110.33 21.26 41 0.63 (0.05)
FZ Coastal 119.36 26.17 45 0.49 (0.03)
FH Coastal 121.53 29.61 41 0.57 (0.04)
XS Forest 113.31 28.61 40 0.67 (0.06)
WJ Farmland 103.84 30.55 39 0.28 (0.02)
ZY Farmland 104.63 30.13 42 0.74 (0.06)
YT Farmland 105.47 31.28 30 0.78 (0.06)
JJ Farmland 106.18 29.06 12 0.94 (0.08)
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Abstract: In the past decades, continuous efforts have been made at a national level to reduce Nitrogen
Dioxide (NO2) emissions in the atmosphere over China. However, public concern and related research
mostly deal with tropospheric NO2 columns rather than ground-level NO2 concentrations, but
actually ground-level NO2 concentrations are more closely related to anthropogenic emissions,
and directly affect human health. This paper presents one method to derive the ground-level NO2

concentrations using the total column of NO2 observed from the Ozone Monitoring Instrument (OMI)
and the simulations from the Community Multi-scale Air Quality (CMAQ) model in China. One
year’s worth of data from 2014 was processed and the results compared with ground-based NO2

measurements from a network of China’s National Environmental Monitoring Centre (CNEMC).
The standard deviation between ground-level NO2 concentrations over China, the CMAQ simulated
measurements and in-situ measurements by CNEMC for January was 21.79 μg/m3, which was
improved to a standard deviation of 18.90 μg/m3 between our method and CNEMC data. Correlation
coefficients between the CMAQ simulation and in-situ measurements were 0.75 for January and
July, and they were improved to 0.80 and 0.78, respectively. Our results revealed that the method
presented in this paper can be used to better measure ground-level NO2 concentrations over China.

Keywords: NO2; ground-level concentrations; OMI; CMAQ; profile shape

1. Introduction

Nitrogen dioxide (NO2) is a pollutant trace gas in the atmosphere that plays an important role
in atmospheric tropospheric chemistry and radiative heating [1–3]. Atmospheric ozone chemistry
is affected by NO2 in terms of ozone formation, whereas in the troposphere, NO2 regulates the
surface ozone level and maintains oxidizing capacities [4]; furthermore, exposure to ozone leads to
adverse health effects for humans [5]. At high concentrations, NO2 is toxic to humans [6,7]. Some
epidemiological studies have shown that long-term NO2 exposure is consistently associated with
decreased lung function and with increased risks of respiratory symptoms [8–13], and daily
time-series research results show that NO2 and non-accidental mortality are strongly correlated [14–16].
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In addition, NO2 can initiate the formation of acid rain and can indirectly affect the global climate
by perturbing greenhouse gas, ozone and methane levels [3]. Furthermore, NO2 is a precursor of
ammonium nitrate, which is an important component of atmospheric particulate matter pollution [17].

Concentrations of NO2 columns are traditionally monitored through in-situ measurement
networks [18]; however, these in-situ measurements are sparse in many parts of the world. Since 1995,
satellite retrievals of NO2 columns have provided more measurements than the ground-based and
aircraft measurements. Some attempts to estimate emission levels have been made using a top-down
approach [19] and satellite measurements. These studies show that satellite remote sensing can be
used to monitor NO2 columns at regional to global scales [20–22]. Satellite observations of global
NO2 columns began in 1995 with the development of the Global Ozone Monitoring Experiment
(GOME) [23], followed by launch of the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) [24], the Ozone Monitoring Instrument (OMI) onboard Earth Observing
System (EOS)/Aura [25,26], and the GOME-2 [27]. The retrieval of tropospheric NO2 columns is
especially relevant to the state of the atmosphere (e.g., NO2 profile shape). The uncertainties of GOME,
SCIAMACHY and OMI observations are estimated to be on the order of 30–60% for individual
measurements [28–31].

Over the last decades, the incredible economic growth of China has led to serious atmosphere
pollution problems, continuous efforts have been made at national levels to reduce NO2 emissions
in the atmosphere. The monitoring of long-term pollutant emissions and the trend of concentration
has been a key aspect of the evaluation of NO2 emission abatement strategy effects. However, public
concern and related research based on satellite observations of NO2 columns have been focusing
mainly on tropospheric NO2 columns instead of ground-level NO2 concentrations; when actually,
ground-level NO2 concentrations are more closely linked to the air pollution and impact on human
health. This paper presents a method of estimating ground-level NO2 concentrations over China based
on tropospheric NO2 columns retrieved from the OMI and model simulations. Section 2 provides a brief
introduction to OMI and its retrieval of tropospheric NO2 columns, the CMAQ model, ground-level
in-situ measurements, and a method to derive the ground-level NO2 concentrations by combining
OMI tropospheric NO2 columns and the CMAQ model. Comparisons of the derived NO2 with
ground-based NO2 concentrations and model simulations in China are given in Section 3. A discussion
and conclusion are given in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Measurement of OMI Tropospheric NO2 Columns

The Dutch-Finnish OMI installed on NASA’s EOS Aura satellite is a nadir-viewing imaging
spectrograph that measures direct and atmosphere-backscattered sunlight within an ultraviolet-visible
(UV-VIS) range of 270 nm to 500 nm [26]. EOS Aura was launched on 15 July 2004, and it traces a
sun-synchronous polar orbit at approximately 705 km altitude over a period of 100 min and with a
local equator crossing time of between 13:40 and 13:50, local time [31]. The OMI instrument is equipped
with two two-dimensional Charge Coupled Device (CCD) detectors. The CCDs record the complete
270–500 nm spectrum in one direction and observe the Earth’s atmosphere with a 114◦ field of view
that is distributed over 60 discrete viewing angles, and which is perpendicular to the flight direction.
The OMI’s wide field of view corresponds to a 2600 km-wide spatial swath across the Earth’s surface,
which is large enough to achieve complete global coverage once a day. The exposure time of the
CCD-camera is 2 s, corresponding to a spatial sampling of 13 km along the track (2 s × 6.5 km/s, with
the latter being the orbital velocity projected onto the Earth’s surface). Along the cross track, OMI pixel
sizes vary with viewing zenith angles from 24 km in the nadir to approximately 128 km in extreme
viewing angles of 57◦ along the edges of the swath [31].

Detailed descriptions of the NO2 retrieval algorithm were provided by Boersma et al. [32],
Bucsela et al. [33] and Celarier et al. [34]. The NO2 retrieval algorithm involves a two-step procedure [31].
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The first step employs a standard Differential Optical Absorption Spectroscopy (DOAS) technique [35]
to determine slant column densities with a nonlinear least squares fitting within the 415–465 nm
windows. The slant column represents the integrated abundance of NO2 along the average photon
path through the atmosphere. The second step is to derive initial vertical column densities by dividing
slant column densities with an unpolluted air mass factor (AMF), which is defined as the ratio of
the observed slant column to the vertical column. The AMF can be calculated using a single mean
unpolluted NO2 profile, and it estimates the stratospheric contributions to slant columns, which can
be made by assimilating slant columns into the Thematic Mapper 4 (TM4) atmospheric Chemical
Transport Model (CTM), including stratospheric chemistry and meteorological fields.

Major errors in the retrieval of tropospheric NO2 columns have been estimated at
~0.7 × 1015 mol cm−2 from the slant column fitting (~0.15 × 1015 mol cm−2 in the stratospheric slant
column and ~0.5 × 1015–1.5 × 1015 mol cm−2 in the tropospheric AMF for individual cloud-free pixels
(with an effective cloud fraction of <0.2)) [31]. AMF errors are primarily caused by cloud interference,
surface albedo, aerosol, and profile shape uncertainties [29,30,32,36,37]. Error contributions to relative
tropospheric AMF uncertainties (31%) are reported to include the following: 15% from surface albedo,
30% from cloud fractions, 15% from cloud top pressure levels and 9% from profile shapes [31].
The separation between the stratosphere and troposphere also serves as a source of error, and while the
overall error in the OMI vertical column density under clear and unpolluted conditions is estimated
at 5%, it can reach up to 50% in the presence of pollution and clouds [32]. Stripes affecting slant
columns in the swath direction in Version 1.0.0 have been greatly reduced in Version 1.0.5, largely
due to the improved dark current correction mechanisms that are available through Collection
3 Level 1B processing [38]. In this study we used the OMI standard tropospheric NO2 product
(version 3.0) available from the NASA Goddard Earth Sciences (GES) Data Active Archive Center
(http://disc.sci.gsfc.nasa.gov/Aura/overview/data-holdings/OMI/). One year’s worth of OMI NO2

tropospheric columns data in 2014 in China were used because the ground-based NO2 measurements
are available for validation. We used here the data taken at an effective cloud fraction of <0.2. We used
OMI tropospheric NO2 columns covering an area of 18◦N–55◦N and 70◦E–138◦E.

2.2. Model Description

The two main components of the modeling system are Community Multi-scale Air Quality
(CMAQ), developed by the US Environmental Protection Agency (US EPA) to simulate multiple
atmosphere quality issues with multi-scale capabilities [39], and Regional Atmospheric Modeling
System (RAMS). CMAQ is a multi-scale and multi-pollutant air quality model developed for
depicting the detail processes about dust formation, transport, deposition, and other important
characteristics [40]. The comprehensive suite aerosol composition (sulfate, nitrate, ammonium, black
carbon, organic mass, dust and sea salt) is taken into consideration. The aerosol particle size distribution
is comprised of three modes: Aitken mode, accumulation mode, and coarse mode. In this study the
chemical mechanism CB05 [41] and aerosol evaluation processes of CMAQ Version 4.7 is used.

RAMS is a multifunctional numerical code for simulating and forecasting meteorological
phenomena, and has good capacity to depict the boundary layer, which is important for simulating
the dust formation. In this study, RAMS is used to provide the three-dimensional meteorological
field for CMAQ, including boundary-layer turbulence, cloud, precipitation, and other meteorological
elements. The meteorological fields from RAMS are used instead of the CMAQ default meteorological
driver. In this study, the RAMS was run in a four-dimensional data assimilation mode along
with re-initialization every 4 days, with the first 24 h designated as the initialization period.
The three-dimensional meteorological fields of the RAMS were obtained from the European Center for
Medium-Range Weather Forecast (ECMWF) datasets, which were available every 6 h with a spatial
resolution of 1◦ × 1◦. Many previous works have shown the successful use of the RAMS-CMAQ
modeling system by comparing the simulation results with diverse measurement data [42–45].
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In this study, the emission inventory by the RAMS-CMAQ modeling system is introduced
as follows. The anthropogenic emissions of aerosols and their precursors (CO, NOx, SO2, volatile
organic compounds (VOCs), black carbon, organic carbon, PM2.5, and PM10) are obtained from the
monthly-based emission inventory [46–48], updated from the previous version [49], over East Asia.
This emission inventory has a spatial resolution of 0.25◦ × 0.25◦ and involves four emission categories,
including industry, power, transport and residential. The model domain (Figure 1) is on a rotated
polar stereographic map projection centered at (35◦N, 116◦E) with a 64 km grid cell. The modeling
system has 15 vertical layers in the coordinates system unequally spaced from the ground to ~23 km,
and approximately half of them are concentrated in the lowest 2 km to improve the simulation of the
atmospheric boundary layer. Research has shown that the NO2 concentrations in China modeled using
the RAMS-CMAQ modeling system are generally in good agreement with surface observations and
satellite measurements [50–53].

Figure 1. Model domain for RAMS-CMAQ used in this study is on a rotated polar stereographic map
projection centered at (35◦N, 116◦E) with a 64 km grid cell.

2.3. Ground-Level In Situ Measurement

Along with the rapid economic growth that has occurred over the past two decades, environmental
pollution has emerged as a severe issue in China. The Chinese government has established the China
National Environmental Monitoring Centre (CNEMC), which is directly affiliated with the ministry
of environmental protection of the People’s Republic of China. CNEMC’s main functions are to
undertake state environmental monitoring, develop state environmental monitoring technologies, and
provide monitoring information and technical support to the country’s environmental management
and decision-making bodies. Since the beginning of 2013, CNEMC has begun to establish a
network for monitoring ground-level NO2 concentrations over China. Currently, there are more
than 800 atmospheric pollution-monitoring stations in this network, hourly ground-level NO2

concentrations released by these monitoring stations were measured with the standard methods
(http://www.cnemc.cn/publish/totalWebSite/0493/187/newList_1.html). The Thermo Scientific
Model 42i, which is used to monitor ground-level NO2 concentrations in these monitoring stations,
is designated by the United States Environmental Protection Agency (US EPA) as a Reference
Method for the measurement of ambient concentrations of NO2 pursuant with the requirements
defined in the Code of Federal Regulations. The Model 42i Chemiluminescence Analyzer combines
proven detection technology, easy-to-use menu-driven software, and advanced diagnostics to offer
unsurpassed flexibility and reliability. We found that the 2014 annual observation data is the most
abundant, and has the minimum discontinuity after statistics.
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In this study, we used ground-level NO2 concentration observation data released by
CNEMC-monitored stations in 2014 to compare. We first eliminated the data released by the CNEMC
stations that had a monitoring time of less than 20 days a month. Then, we analyzed the longitude and
latitude of each monitored station, computed the mean of the data released by stations distributed
in the same 64 km grid cell according to latitude and longitude. In addition, because the OMI was
launched into a Sun-synchronous orbit crossing the equator at approximately 13:45, we computed
the mean of the CNEMC’s ground-level NO2 concentration observation data between 13:00 and 14:00
as daily mean values to compare. In this study we obtained monthly mean values of ground-level
NO2 concentrations released by 100 CNEMC monitored stations. Distribution of these 100 monitored
stations is shown in Figure 2.

 

Figure 2. Distribution of the 100 ground-level NO2 concentrations CNEMC monitored stations.

2.4. Determination of Ground-Level NO2 Concentrations

Airborne measurements of the southeastern United States show that NO2 in the boundary layer
can greatly contribute to NO2 tropospheric columns over polluted regions [54]. Retrievals based on
satellite observations have revealed a close relationship between land surface NO2 emissions and
tropospheric NO2 columns [36,55–59]. These studies clearly suggest that tropospheric NO2 columns
retrieved from satellite observations can be used to derive the ground-level NO2 concentrations.
In this study, we used the RAMS-CMAQ modeling system to simulate the relationship between
satellite observations of tropospheric NO2 columns and the ground-level NO2 concentrations over
China following the method described by Lamsal et al. [60,61], who conducted a simulation of
tropospheric NO2 profiles over the United States and Canada using the Goddard Earth Observing
System (GEOS)-Chem global three-dimensional model of tropospheric chemistry at 2◦ × 2.5◦,
version 7-03-06. However, previous research on ground-level NO2 concentrations by combining
with satellite observations and model simulations has failed to consider the influence of China’s high
atmospheric pollution on obtaining the vertical distribution of tropospheric NO2 profiles over China.
In addition, compared to the GEOS-Chem global model, the RAMS-CMAQ modeling system, with
its higher spatial resolution of a 64 km grid cell, is more appropriate to simulating tropospheric NO2

profiles over China. Many works have shown that the modeled NO2 concentrations over China
by the RAMS-CMAQ modeling system are more appropriately suited to China’s high atmospheric
pollution [51–53]. In this study we compensated for this shortcoming by estimating ground-level NO2
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concentrations over China using the OMI standard NO2 product combined with simulations from
the RAMS-CMAQ model, after obtaining the more appropriate vertical distribution of tropospheric
NO2 profiles.

In this study, the different spatial resolution from the OMI standard NO2 product and
simulation from the RAMS-CMAQ modeling system has hindered the estimating of ground-level
NO2 concentrations over China. Our approach to reconstructing consistent spatial resolution was to
degrade higher spatial resolution data to a single consistent coarse spatial resolution. Here we first
calculated the distance of latitude and longitude from each grid cell of the RAMS-CMAQ model with
relatively coarse spatial resolution of 64 × 64 km2 grid cells to all grid cells of the OMI tropospheric
NO2 columns with higher spatial resolution of 13 × 24 km2, and considered the two grid cells of the
different data with minimum distance of latitude and longitude to correspond to each other. Then
we estimated ground-level NO2 concentrations over China using the OMI standard NO2 product
combined with simulation from the RAMS-CMAQ model after reconstructing a consistent spatial
resolution of 64 × 64 km2.

3. Results

3.1. Verification of Distributions of Tropospheric NO2 Profiles from RAMS-CMAQ

In this section, verification of vertical distributions of tropospheric NO2 profiles from the
RAMS-CMAQ model is presented. We first counted the monthly mean of tropospheric NO2 columns
from OMI observations over China in 2014. After the corresponding unit conversion, we calculated the
ratio of ground-level NO2 concentrations released by CNEMC to tropospheric NO2 columns by OMI,
then compared the ratio of simulated NO2 concentrations distributed within the atmosphere from the
ground to a height of 100 m to simulated concentrations distributed within the atmosphere from the
ground to ~23 km by the RAMS-CMAQ model. We verified the accuracy of the vertical distribution of
tropospheric NO2 profiles over China from the RAMS-CMAQ model by comparing the correlation of
these two sets of ratios, the results of which are shown in Figure 3.

 

Figure 3. Scatter plots to verify accuracy of vertical distribution of tropospheric NO2 profiles over
China from the RAMS-CMAQ model in January, April, July and October in 2014.
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It is found that the vertical distribution of tropospheric NO2 profiles over China has a large
spatial and temporal variation. To illustrate these spatial-temporal variations in tropospheric NO2

profiles over China, we chose to analyze the vertical distributions of tropospheric NO2 profiles in five
representative cities: Beijing, Xingtai, Chengdu, Urumqi and Hefei. Information on these five cities is
listed in Table 1. The vertical distributions of tropospheric NO2 profiles in these five cities are shown
in Figure 4. The x-axis shows NO2 concentrations simulated by the RAMS-CMAQ modeling system,
and the y-axis shows the corresponding heights expressed by the natural logarithm. Natural logarithm
height was used because the vertical layers by the RAMS-CMAQ modeling system were unequally
spaced in the coordinates system, and heights corresponding to the different vertical layers varied
dramatically. It is evident from Figure 4 that the tropospheric NO2 columns are mainly distributed
within the atmosphere from the ground to a height of 100–150 m.

Table 1. The information of the selected five cities.

City Name Latitude Longitude City Condition

Beijing 40.00◦ 116.00◦ a megalopolis located in northeastern China that presents
relatively high levels of air pollution

Xingtai 37.05◦ 114.48◦ one of the most air-polluted cities in China, and an important
energy base in the North China area

Chengdu 30.67◦ 104.06◦ a large city located in southwestern China with relatively high air
pollution compared to other southwestern cities

Urumqi 43.77◦ 87.68◦ a large city located in northwestern China but with lower levels of
air pollution compared to other cities located in the east

Hefei 31.86◦ 117.27◦ a large city located in southeastern China with relatively low
levels of air pollution compared to other cities located in the north

Figure 4. The simulated NO2 vertical profiles over Beijing (a), Xingtai (b), Chengdu (c), Urumqi (d)
and Hefei (e) in January, April, July and October in 2014.

3.2. Spatial-Temporal Variations of Derived Ground-Level NO2 Concentrations

In this section, spatio-temporal variation trends of derived ground-level NO2 concentrations
combining OMI observations with the RAMS-CMAQ model are presented. Figure 5 shows the
monthly mean values of the derived ground-level NO2 concentrations over China in January, April,
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July, and October, 2014. From Figure 5, we can see that among different seasons the ground-level
NO2 concentration levels over China were high in the winter/spring and low in the summer/fall,
and for different regions they were high in the eastern, developed areas, but low in the western,
developing areas of China, due to there being more anthropogenic emissions in the eastern areas
(e.g., ground-level NO2 concentrations in the developed North China Plain reached 60.00–100.00 μg/m3

whereas concentrations in the less developed western areas reached 5.00–20.00 μg/m3). We analyzed
these spatial distribution characteristics of ground-level NO2 concentrations for China in combination
with industrial development and anthropogenic emissions. A significant positive correlation was found
between the magnitude of ground-level NO2 concentrations and levels of industrial development and
anthropogenic emissions. Of the different seasons in China, winter ground-level NO2 concentration
values are the highest of the year, which is mainly attributable to winter coal use for heating.

Figure 5. Monthly derived ground-level NO2 concentrations over China in January, April, July, and
October in 2014.

3.3. Comparisons of the Derived NO2 with Ground-Based Measurements for Different Regions

A comparison between monthly mean ground-level NO2 concentrations for different regions
from in-situ measurements and the concentrations derived from OMI satellite data in conjunction with
the RAMS-CMAQ modeling results is shown in Figure 6, the x-axis is the month, and the y-axis is
the ground-level NO2 concentrations. We analyzed the ground-level NO2 concentrations in the five
representative cities, i.e., Beijing, Xingtai, Chengdu, Urumqi and Hefei. As the CNEMC atmospheric
pollution monitoring stations are unevenly distributed across the country, we first computed the
average values of ground-level NO2 concentrations released by all monitoring stations distributed
within a city, calculated the average value of OMI tropospheric NO2 columns over the same city, and
then we obtained the ground-level NO2 concentrations of the same city. Figure 6 shows that the average
correlation coefficients largely fall within a range of 0.70~0.80 for the selected five representative cities
of Beijing, Xingtai, Chengdu, Urumqi and Hefei, and that the correlation coefficients for Beijing,
Xingtai and Hefei are, relatively, better. Beijing is one of China’s mega cities and has, relatively, more
ground monitoring stations. The data quality in Beijing is better, creating a more solid foundation
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for air pollution monitoring research and long-term monitoring. Xingtai is currently one of the most
heavily air-polluted cities in China, and the air quality levels in Xingtai were ranked last. Hefei’s air
is similar to Beijing. Figure 6 shows that our method is more precise at determining levels for cities
with heavy air pollution, and for those cities with more ground monitoring stations. In general the
vertical distributions of tropospheric NO2 profiles for these cities based on the RAMS-CMAQ model
are, relatively, more accurate representations of air quality conditions; therefore, ground-level NO2

concentrations retrieved are more accurate.

Figure 6. Line charts of the derived ground-level NO2 concentrations with in-situ measurements from
ground network and the RAMS-CMAQ simulation over Beijing, Xingtai, Chengdu, Urumqi and Hefei
cities in 2014.

From Figure 6, we also found that, compared to the in-situ ground measurements, the
RAMS-CMAQ simulated values are underestimated, and in areas with high NO2 concentrations,
the underestimations are more obvious (e.g., in Xingtai City). Overall, the results of our method are
similar to the in-situ measurements. The standard deviation between ground-level NO2 concentrations,
the RAMS-CMAQ simulated measurements and those measurements released by CNEMC in Beijing
was 10.25 μg/m3, and the standard deviation between our method and CNEMC’s was 9.03 μg/m3.
The variance between the RAMS-CMAQ and CNEMC data for Beijing was 105.01, and the variance
between our method and that of CNEMC was 81.51. The standard deviation between the RAMS-CMAQ
simulated measurements and those released by CNEMC for Xingtai was 15.68 μg/m3, and the standard
deviation between our method and that released by CNEMC was 12.65 μg/m3. The variance between
the RAMS-CMAQ model and CNEMC results for Xingtai was 246.00, and the variance between our
method and that of CNEMC was 160.07. The analysis shows that ground-level NO2 concentrations
derived using OMI tropospheric NO2 columns together with vertical distributions of tropospheric
NO2 profiles from RAMS-CMAQ model simulations were more accurate than the simulations from
RAMS-CMAQ model only.

Figure 6 shows the derived ground-level NO2 concentrations by OMI and RAMS-CMAQ
model are generally lower than the in-situ ground measurements by CNEMC in these cities in
winter, except for Chengdu, this result is similar to Lamsal’s result that the derived surface NO2

by OMI and GEOS-chem over western North America are generally lower than the local in-situ
measurements in winter [60]. Larger differences between the in-situ measurements and the derived
ground-level NO2 concentrations in China likely reflect a combination of enhanced spatial variations in
polluted regions and preferential placement of in-situ monitors in polluted locations. The ground-level
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NO2 concentrations estimated from our approach are generally consistent with the in-situ ground
measurements for these five cities, and the occasional large discrepancies may reflect local variation
processes. In addition, the consumption of bulk coal and household coal for heating, cooking and
other uses in winter is common in China, especially in rural areas. However, information about these
sources of NO2 emissions are generally not grasped by the government. The emission inventory by
the RAMS-CMAQ model generally also overlooks wintertime NO2 emission caused by bulk coal
and household coal in China, which led to the underestimation of the derived ground-level NO2

concentrations in winter from our approach. The vertical distribution of tropospheric NO2 profiles over
China from the RAMS-CMAQ model as shown in Figure 3 also verified this underestimation of our
results. Chengdu is surrounded by mountains. From west to east, the terrain of Chengdu is divided
into three parts, comprising mountains, plains and hills. It is difficult to operate the local in-situ NO2

measurements such as the elevation of the western part of Chengdu is mainly over 3 km while the
elevation of the central part is about 400 m to 700 m. However, in order to ensure the integrity of this
study, it is necessary to study ground-level NO2 concentration in Chengdu, which is a representative
metropolis in Southwest China. Meanwhile, the worse result in Chengdu reflects that our approach has
to be improved when considering complicated topographies, which is a future work we will conduct.
Additionally, more ground-based monitoring data will be helpful for future analysis.

3.4. Comparisons of the Derived NO2 with Ground-Based Measurements for Different Seasons

In this section, we compared the ground-level NO2 concentrations retrieved from our method with
in-situ measurements for different seasons across China. As satellite data offer broader observational
data coverage than in-situ measurements, data in a large area of China and for different seasons were
used. We used mean monthly values from the 100 ground-level NO2 concentration CNEMC-monitored
stations mentioned in Section 2.3 to compare. Figure 7 shows good correlations between the derived
ground-level NO2 concentrations and the monthly mean ground-level NO2 over China for 2014.
The correlation coefficient, R, was 0.80 for January and was 0.78 for July; compared to ground-level NO2

concentrations simulated using the RAMS-CMAQ model only. The standard deviation between our
method and those measurements released by CNEMC for January was 18.90 μg/m3, and the standard
deviation between the RAMS-CMAQ simulated measurements and CNEMC’s was 21.79 μg/m3.
The variance between our method and that released by CNEMC for January was 257.19, and the
variance between the RAMS-CMAQ and CNEMC data was 353.09. The standard deviation between
our method and that released by CNEMC for July was 11.31 μg/m3, and the standard deviation
between the RAMS-CMAQ simulated concentrations and CNEMC’s was 12.11 μg/m3. The variance
between our method and that released by CNEMC for July was 127.96, and the variance between
the RAMS-CMAQ and CNEMC data was 146.59. Analyzing the ground-level NO2 concentrations
retrieved from our method for different seasons, we found clear seasonal variations in the derived
ground-level NO2 concentrations, with the largest variations occurring in the winter and the least
pronounced in the summer. This is mainly attributable to increases in burning and heating emissions
in the winter. Therefore, anthropogenic emission is the main factor that is impacting changes in
ground-level NO2 concentrations. The ground-level NO2 concentrations calculated in this paper can
be used to measure the influence of anthropogenic emissions on atmospheric quality.

Figure 7 also shows that the ground-level NO2 concentrations estimated by OMI and
RAMS-CMAQ model are generally lower than the in-situ measurements by CNEMC over China
in January and July, the underestimation of the derived ground-level NO2 concentrations in January
from our approach may be caused by the wintertime consumption of bulk coal and household
coal in China, which are not considered in the emission inventory by the RAMS-CMAQ model.
The underestimation level of the derived ground-level NO2 concentrations in July is lower than in
January, which corresponds to the underestimation level of the vertical distributions of tropospheric
NO2 profiles as shown in Figure 3. OMI-derived ground-level NO2 concentration represents the
mean concentration over several hundred square kilometers, while in-situ measurements are point
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observations in general, which led to a slope of linear regression line of less than 1 in Figure 7. Possible
explanations for the seasonal discrepancy between the derived ground-level NO2 concentrations and
in-situ measurements include errors in the in-situ NO2 concentrations, in the RMAS-CMAQ simulated
vertical distributions of tropospheric NO2 profiles, and in the OMI tropospheric NO2 column retrieval.
Another likely contributor to the seasonal discrepancy is the use of mean NO2 profiles in the OMI
air mass factor calculation [60]. Seasonal variation would yield an underestimate in retrieved NO2

columns in winter versus in summer. In addition, seasonal variation in surface reflectivity could also
play a part.

 

 
(a) (b)

Figure 7. Scatter plots of the derived ground-level NO2 concentrations with in-situ measurements
from ground network (a) and the RAMS-CMAQ simulation (b) over China in January and July 2014.

4. Discussion

In this study, we have used the OMI tropospheric NO2 columns and the RAMS-CMAQ modeling
system to infer ground-level NO2 concentrations. Several previous studies reported that the simulation
of tropospheric NO2 profiles over the United States and Canada using the GEOS-Chem global
three-dimensional model of tropospheric chemistry at 2◦ × 2.5◦ were obtained, and ground-level NO2

concentrations over the United States and Canada were measured by the Ozone Monitoring Instrument
(OMI) [60,61]. However, these previous studies on ground-level NO2 concentrations by combining
satellite observations and model simulations, on the one hand, has not been implemented in China,
and the influence of severe atmospheric pollution also increases the level of difficulty of obtaining
the vertical distribution of tropospheric NO2 profiles over China. On the other hand, compared to
the GEOS-Chem global model used in the previous studies, the RAMS-CMAQ modeling system with
the higher spatial resolution of 64 km grid cell is more appropriate for simulating tropospheric NO2

profiles over China. Much research has shown that the modeled NO2 concentrations over China
by the RAMS-CMAQ model are more appropriate to China’s high atmospheric pollution [51–53].
In this study we inferred the ground-level NO2 concentrations over China using the OMI NO2 product
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combined with simulation from the RAMS-CMAQ model after obtaining the more appropriately
vertical distribution of tropospheric NO2 profiles.

We derived the ground-level NO2 concentrations using the total column of NO2 observed from the
OMI and the simulations from the RAMS-CMAQ model in China. Data for 2014 were processed and
compared to in-situ measurements derived from the CNEMC monitoring network. The derived
ground-level NO2 concentrations were also compared with the simulated ground-level NO2

concentrations by the RAMS-CMAQ. Overall, ground level NO2 concentrations were underestimated
by the RAMS-CMAQ model. Using observed data corresponding to in-situ CNEMC measurements,
the standard deviation between the RAMS-CMAQ simulated measurements and in-situ measurements
by CNEMC for January was 21.79 μg/m3, it was improved to 18.90 μg/m3 between our method
and CNEMC data. The variance between our method and that released by CNEMC for January was
257.19, and the variance between the RAMS-CMAQ and CNEMC data was 353.09, the root mean
square error between the RAMS-CMAQ simulations and in-situ measurements by CNEMC for January
was 13.66 μg/m3, which was improved to 12.07 μg/m3 between our method and CNEMC data.
The standard deviation between the RAMS-CMAQ and CNEMC data for July was 12.11 μg/m3, and
it was improved to 11.31 μg/m3 between our method and CNEMC data. The variance between our
method and that released by CNEMC for July was 127.96, and the variance between the RAMS-CMAQ
data and CNEMC data was 146.59. The root mean square error between the RAMS-CMAQ simulations
and in-situ measurements by CNEMC for July was 8.70 μg/m3, which was improved to 7.52 μg/m3

between our method and CNEMC data. Correlation coefficients between the RAMS-CMAQ simulation
and in-situ measurements were 0.75 for January and July, and they were improved to 0.80 and 0.78,
respectively, from our approach. Compared to that of the in-situ measurements in different regions,
the standard deviation between ground-level NO2 concentrations, the RAMS-CMAQ simulated
measurements, and in-situ measurements released by CNEMC in Beijing was 10.25 μg/m3, which was
improved to 9.03 μg/m3 between our method and CNEMC data33; the standard deviation between
the RAMS-CMAQ and CNEMC data in Xingtai was 15.68 μg/m3, which was improved to 12.65 μg/m3

between our method and CNEMC data.
Major errors in the retrieval of ground-level NO2 concentrations using the total column of NO2

observed from the OMI and the simulations from the RAMS-CMAQ model have been estimated
in the following aspects. First, the errors in the retrieval of OMI tropospheric NO2 columns have
been estimated at ~0.7 × 1015 mol cm−2 from the slant column fitting (~0.15 × 1015 mol cm−2 in
the stratospheric slant column and ~0.5 × 1015–1.5 × 1015 mol cm−2 in the tropospheric AMF for
individual cloud-free pixels (with an effective cloud fraction of <0.2)) [31]. AMF errors are mainly from
cloud interference, surface albedo, aerosol, and profile shape uncertainties [29,30,32,36,37]. Separation
between the stratosphere and troposphere is also a source of error; and while the overall error in the
OMI vertical NO2 columns under clear and unpolluted conditions is estimated at 5%, it can reach up
to 50% in the presence of pollution and clouds [32]. Second, in this study, we used the RAMS-CMAQ
modeling system to simulate of tropospheric NO2 profiles over China. The emission inventory by the
RAMS-CMAQ model, such as the anthropogenic emissions of aerosols and their precursors (CO, NOx,
SO2, volatile organic compounds (VOCs), black carbon, and organic carbon, PM2.5, and PM10), are
obtained from the monthly emission inventory [46–48] updated from the previous version [49] over
East Asia. The errors in the retrieval of tropospheric NO2 profiles over China by the RAMS-CMAQ
model are mainly due to the emission inventory and the meteorology field. The meteorology field is
important to the modeled mass concentrations, aerosols and their precursor simulations. The accuracy
of wind field and relative humidity simulation could obviously affect the dust particle transport and
optical properties calculation [50]. Last, because the different spatial resolution from the OMI standard
NO2 product and simulation from the RAMS-CMAQ model has hindered the estimating ground-level
NO2 concentrations, another source of error was the reconstructed consistent spatial resolution, for
which we degraded the higher spatial resolution data to a single consistent coarse spatial resolution.
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In this study, we did not take into account the averaging kernel (AK). AK is a well-established
concept in the retrieval of remote sensing observations as the link between the retrieved quantities
and reality. It is proportional to the height-dependent sensitivity of satellite observation to changes
in tracer concentration, and provides the interpretation of the value of the air mass factor. The AK
provides important information needed for quantitative analysis of the satellite data, especially for
interpreting the satellite retrieval of trace gases to users. It’s very useful to remove the dependence on
a priori assumptions about the profile shape for inter-comparison between model simulations and
satellite measurements. In this paper, we focused on estimating ground-level NO2 by combining the
OMI standard product OMNO2 from NASA (Version 3) and the RAMS-CMAQ modeled NO2 profiles,
rather than on satellite-model comparison, so we didn’t consider the AK in this study. However, the
OMI NO2 standard product is not directly suitable to studying VCDs on a scale below the resolution of
the ancillary parameters (such as 2◦ × 2.5◦ for priori NO2 profiles), and the AK can be used to correct
the NO2 VCDs when more accurate NO2 profiles are available, which will improve satellite NO2 VCD
products and also the ground-level nitrogen dioxide concentrations inferred from satellites. While this
correction is beyond the scope of this study, we are developing a customized OMI NO2 retrieval by
recalculating AKs using the high-resolution RAMS-CMAQ modeled NO2 profiles, and will apply it to
the estimation of ground-level NO2 in future study. We did not take into account NO2 emissions from
natural sources such as biomass burning, soil, and lightning, because they are negligible compared
to anthropogenic emissions over urban areas. In addition, the contribution of free tropospheric NO2

produced from lightning mainly occur in low latitude areas, while the NO2 high concentration areas,
such as the Beijing Tianjin Hebei region, were mainly distributed in the middle and high latitude areas.

5. Conclusions

Most works using satellite observations of NO2 focused on tropospheric NO2 columns rather than
on ground-level NO2 concentrations. However, ground-level NO2 concentrations are more closely
related to anthropogenic emissions and directly affect human health. This paper presents a means of
estimating ground-level NO2 concentrations based on OMI tropospheric NO2 columns and the vertical
distribution of tropospheric NO2 profiles simulated using the RAMS-CMAQ model. One year’s worth
of data from 2014 was processed and the results were compared to ground-based NO2 measurements
from a network of CNEMC, and the simulated ground-level NO2 concentrations by the RAMS-CMAQ
model. Our results revealed that the method presented in this paper can be used to better measure
ground-level NO2 concentrations over China.

Further analysis of the ground-level NO2 concentrations retrieved from this algorithm shows that
seasonal variations of the ground-level NO2 concentrations are pronounced, with the largest occurring
in the winter and the lowest in the summer. Such variations are mainly due to significant increases in
burning and heating emissions levels in winter. The ground-level NO2 concentrations presented in
this paper can be used to better measure distribution of NO2 in the atmosphere and study the effects of
anthropogenic emissions on atmospheric pollution conditions. Further validations and improvements
of this method are ongoing, and include the quality control of in-situ measurements, whose errors
have not been taken into account. We plan to develop a simple empirical formula based on the CMAQ
model for directly converting OMI column values to ground-level NO2. Such an algorithm may be
used to more accurately monitor ground-level NO2 using satellite data and to generate measurements
with better spatial and temporal coverage than surface measurements.
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Abstract: Surface NO2 volume mixing ratio (VMR) at a specific time (13:45 Local time) (NO2 VMRST)
and monthly mean surface NO2 VMR (NO2 VMRM) are estimated for the first time using three
regression models with Ozone Monitoring Instrument (OMI) data in four metropolitan cities in
South Korea: Seoul, Gyeonggi, Daejeon, and Gwangju. Relationships between the surface NO2 VMR
obtained from in situ measurements (NO2 VMRIn-situ) and tropospheric NO2 vertical column density
obtained from OMI from 2007 to 2013 were developed using regression models that also include
boundary layer height (BLH) from Atmospheric Infrared Sounder (AIRS) and surface pressure,
temperature, dew point, and wind speed and direction. The performance of the regression models is
evaluated via comparison with the NO2 VMRIn-situ for two validation years (2006 and 2014). Of the
three regression models, a multiple regression model shows the best performance in estimating
NO2 VMRST and NO2 VMRM. In the validation period, the average correlation coefficient (R), slope,
mean bias (MB), mean absolute error (MAE), root mean square error (RMSE), and percent difference
between NO2 VMRIn-situ and NO2 VMRST estimated by the multiple regression model are 0.66, 0.41,
−1.36 ppbv, 6.89 ppbv, 8.98 ppbv, and 31.50%, respectively, while the average corresponding values
for the other two models are 0.75, 0.41, −1.40 ppbv, 3.59 ppbv, 4.72 ppbv, and 16.59%, respectively.
All three models have similar performance for NO2 VMRM, with average R, slope, MB, MAE, RMSE,
and percent difference between NO2 VMRIn-situ and NO2 VMRM of 0.74, 0.49, −1.90 ppbv, 3.93 ppbv,
5.05 ppbv, and 18.76%, respectively.

Keywords: surface NO2 volume mixing ratio; NO2; OMI; multiple regression

1. Introduction

The main anthropogenic source of nitrogen dioxide (NO2) is fossil fuel combustion, while natural
sources of NO2 include lightning, forest fires, and soil emissions [1,2]. In particular, since NO2 is
emitted in large quantities in automobile exhaust gas, NO2 is often used as an indicator of traffic-related
air pollution in urban areas [3]. In terms of its effect on human health, long-term NO2 exposure can lead
to respiratory depression and respiratory illness [4–8]. In addition, it is a precursor of aerosol nitrate,
tropospheric ozone, and the hydroxyl radical (OH), the main atmospheric oxidant [9]. It is therefore
important to measure NO2 and various methods are used, with chemiluminescence, a well-known
technique for measuring surface NO2 volume mixing ratio (VMR) [10]. In situ measurements such as
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the chemiluminescence method are, in general, more accurate than remote sensing techniques, but
require a large number of in situ instruments to provide the spatial distribution of the NO2 VMR at high
resolution [11]. In recent years, NO2 vertical column density (VCD) has been measured from satellites
that can monitor NO2 at global scale over a short time scale. Space-borne sensors that have observed
global distributions of NO2 are the Global Ozone Monitoring Experiment (GOME) aboard European
Remote Sensing-2 (ERS-2) (1995–2003), Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography/Chemistry (SCIAMACHY) aboard Environmental Satellite (Envisat) (2002–2012), the
Ozone Monitoring Instrument (OMI) aboard EOS-AURA (2004–present), and GOME-2 aboard the
Meteorological Operational satellite (MetOp)-A (2007–present) and MetOp-B (2012–present) [12–17].
In many countries, air quality regulation requires surface NO2 VMR so the NO2 VCD obtained
from satellites cannot be used directly. In recent years, studies have been conducted to investigate
the feasibility of estimating the surface NO2 VMR using the NO2 VCD obtained from satellite
measurements and, in particular, the correlation between the NO2 VCD obtained from satellite
measurements and the surface NO2 VMR.

Ordónez et al. [18] reported the correlation between tropospheric NO2 VCD and the NO2 VCD
measured by GOME and ground based in situ devices in Milan. Kharol et al. [3] estimated the
annual average ground-level NO2 concentrations in North America using chemical transport model
(GEOS-Chem) data and OMI NO2 columns and also reported the annual trend of the estimated
ground-level NO2 concentrations. However, no studies have attempted to estimate the surface NO2

VMR at higher temporal resolutions such as hourly and monthly using the NO2 VCD measured
by satellites.

In this present study, we estimate for the first time the surface NO2 VMR at a specific time
(13:45 Local time (LT)) (NO2 VMRST) and the monthly mean surface NO2 VMR (NO2 VMRM) using
two linear regression models and a multiple regression model with the tropospheric NO2 VCD
obtained from OMI (Trop NO2 VCDOMI) in five metropolitan cities. In addition, the performance
of each regression method is evaluated by comparing the estimated surface NO2 VMRs with those
obtained from in situ measurement (NO2 VMRIn-situ).

2. Study Area and Period

A large amount of anthropogenic NOX is emitted in Northeast Asia including China, Korea
and Japan [19]. Especially, the annual mean NO2 tended to increase in Seoul from 1995 to 2009 [20].
The study areas were selected where the surface NO2 VMR is continuously measured in Korean
metropolitan cities (Figure 1). Metropolitan cities such as Busan and Incheon where the OMI pixel
covers both sea and land are excluded since there are no surface NO2 data available over the sea.
Therefore, the selected areas are Seoul, Gyeonggi, Daejeon, and Gwangju. Seoul is covered by four
OMI pixels and is divided into eastern and western areas (West Seoul and East Seoul). The study
period is the nine years from 2006 to 2014. This is split into a seven-year training period (2007–2013)
to determine the coefficients of the regression models used in this study, and two years of validation
(2006 and 2014) when the surface NO2 VMRs estimated from the resulting three regression models
are evaluated by comparison with the in situ data. The three regression models used in this study are
described in detail in Section 3.
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Figure 1. Study areas in South Korea.

2.1. Data

The data used in this study are Trop NO2 VCDOMI and Atmospheric Infrared Sounder (AIRS)
boundary layer height (BLHAIRS), atmospheric temperature (TempAIRS) and pressure (PressAIRS),
together with in situ measurements of NO2 VMRIn-situ, surface temperature (TempIn-situ), surface
pressure (PressIn-situ), surface dew point (DewpointIn-situ), surface wind speed (WSIn-situ), and surface
wind direction (WDIn-situ) (see Table 1).

Table 1. Satellite and in situ data used in this study.

Data Time (LT)

Satellite
Trop NO2 VCD OMI Level3 NO2 Daily data

(OMNO2d) 13:45

BLH, Temperature, Pressure AIRS/Aqua L3 Daily Support Product
(AIRS + AMSU) V006 (AIRX3SPD) 13:30

In situ
Surface NO2 VMR Air Korea

13:00 and 14:00Surface Temperature, Surface Pressure,
Surface Dew point, Surface Wind Speed,
Surface Wind Data

AWS (Automatic Weather System)

2.1.1. Ozone Monitoring Instrument (OMI) Data

The Trop NO2 VCDOMI data were obtained from OMI Level3 NO2 Daily Data (OMNO2d)
provided by the NASA Goddard Earth Sciences Data and Information Services Center (http://disc.sci.
gsfc.nasa.gov/Aura/data-holdings/OMI) [17,21,22]. OMI is a nadir-viewing UV–visible (270–500 nm)
spectrometer aboard the Aura platform launched in July 2004 [23]. Aura is a polar orbiting satellite
with an overpass time of 13:45 LT. The spectral resolution of the OMI is about 0.5 nm and the spatial
resolution is 13 × 24 km at nadir. Cloud-screened NO2 data (Level-3 OMI NO2 Cloud-Screened Total
and Tropospheric Column NO2 (V003)) are used in the present study (Cloud Fraction <30%).

2.1.2. Atmospheric Infrared Sounder (AIRS) Data

The BLHAIRS, TempAIRS, and PressAIRS used in this study were obtained from the AIRS/Aqua L3
Daily Support Product (AIRS + AMSU) 1 degree × 1 degree V006 (AIRX3SPD.00) from NASA Goddard
Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/uui/datasets/
AIRX3SPD_V006/summary?keywords=%22AIRS%22) [24–26]. The AIRS/Advanced Microwave
Sounding Unit (AMSU) is a sounding suite launched in May 2002 aboard Aqua [26,27]. Aqua is a
polar orbiting satellite with an overpass time of 13:30 LT and a horizontal spatial resolution of 40 km
at nadir.
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2.1.3. In Situ NO2 Data

The NO2 VMRIn-situ data were obtained from Air Korea (http://www.airkorea.or.kr/last_amb_
hour_data). Since NO2 VMRIn-situ is available hourly, the average of the values at 13:00 and 14:00
LT is used to be closer to the OMI overpass time. In a previous study [18], the in situ measurements
were grouped into five different NO2 levels: clean, slightly polluted, averagely polluted, polluted, and
heavily polluted. Many stations are located close to roads and are exposed to emissions. In addition,
the in situ NO2 data from stations within GOME pixels (320 × 40 km) were averaged, since in situ
measurements are only representative of a small fraction of the satellite ground scene. In the present
study, the NO2 VMRIn-situ obtained from in situ measurements located close to streets were excluded
in this study. We used the average of three or more NO2 VMRIn-situ from stations located at least 2 km
from each other.

2.1.4. In Situ Meteorological Data

The TempIn-situ, PressIn-situ, DewpointIn-situ, WSIn-situ, and WDIn-situ used in this study are
Automatic Weather System (AWS) data provided by the Korea Meteorological Administration (http:
//sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SFC&MNU=MNU).
Since meteorological data are available hourly, the average of the data at 13:00 LT and 14:00 LT
is used. The surface wind data, especially wind direction can be impacted by local topography
and interferences.

3. Methodology

In this study, NO2 VMRST and NO2 VMRM were estimated using three regression models with
Trop NO2 VCDOMI. Table 2 summarizes the three models.

Table 2. Regression models used for surface NO2 VMR estimation in this study.

Model Equation

M1 13:45 LT and Monthly NO2 VMRin situ = aTrop NO2 VCD (a)
OMI + b

M2 13:45 LT and Monthly NO2 VMRin situ = aBLH NO2 VMR (b)
OMI + b

M3 13:45 LT Section 3, Multiple regression Equation (1)
M4 Monthly

Notes: (a) NO2 tropospheric vertical column density obtained from OMI; and (b) BLH NO2 VMROMI =
Trop NO2 VCDOMI Gas constant R TempAIRS×1013

Avogadro constant NA BLHAIRS PressAIRS
, where the AIRS pressure and temperature are boundary layer mean

values, Gas constant R = 8.314472 m3 pa K−1 mol−1 and Avogadro constant NA = 6.022 × 1023 mol−1.

3.1. M1

M1 is the linear regression equation where Trop NO2 VCDOMI is used as the independent variable.
Figure 2 shows the linear regression between Trop NO2 VCDOMI and NO2 VMRIn-situ at 13:45 LT
during the training period, with R2 (coefficient of determination), slope, and intercept of 0.47, 0.80 and
11.47, respectively. Figure 3 shows the linear regression between monthly mean Trop NO2 VCDOMI

and monthly mean NO2 VMRIn-situ during the training period, with R2, slope, and intercept of 0.62,
0.77, and 10.95, respectively. The final form of the M1 equation for estimating NO2 VMRST is shown in
Table 3, and that for estimating NO2 VMRM in Table 4.

Tables 3 and 4 show the equations M1, M2, M3, and M4 with the regression coefficients determined
from the training period.
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Figure 2. Scatter plot between Trop NO2 VCDOMI at 13.45 LT and NO2 VMRIn-situ to determine the
regression coefficient for M1 for the training period 2007–2013.

Figure 3. As Figure 2 but for the monthly mean values.

Table 3. Final form of the regression models used for estimating surface NO2 VMR at a specific time
and R2 obtained from the regression between NO2 VMRIn-situ and the corresponding independent
variable for the training period.

Equation R2

13:45 LT

M1 NO2 VMRST = 1.71 × Trop NO2 VCDOMI − 0.68 0.47

M2 NO2 VMRST = 4.19 × BLH NO2 VMROMI + 1.57 0.38

M3

NO2 VMRST = 0.000602 × Trop NO2 VCDOMI − 0.000107 × TempIn-situ
−0.000083 × DewpointIn-situ + 0.000061 × PressIn-situ
−0.000002 × BLHAIRS − 0.002435 × WSIn-situ
+0.001190 × WD In-situ − 0.039996

0.47

Table 4. As Table 3 but for monthly mean surface NO2 VMR.

Equation R2

Monthly mean

M1 NO2 VMRM = 1.23 × Trop NO2 VCDOMI + 4.74 0.62

M2 NO2 VMRM = 2.92 × BLH NO2 VMROMI + 6.74 0.59

M4
NO2 VMRM = 0.657241 × Trop NO2 VCDOMI − 0.137334 × DewpointIn-situ

−0.136096 × PressIn-situ − 0.004331 × BLHAIRS − 0.770356 × WSIn-situ
+2.370956 × WD (west)In-situ + 157.361668

0.63
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3.2. M2

There might exist a minor fraction of the tropospheric NO2 column in upper troposphere
particularly because of lightning. However, the NO2 amount in upper troposphere could be considered
negligible in metropolitan cities, where a significant amount of NOX is emitted. Therefore, assuming
Trop NO2 VCDOMI is mostly present within the PBL, the relationship between Trop NO2 VCDOMI and
the surface NO2 VMR may change as the PBL varies. However, a minor fraction of the tropospheric
NO2 column can also be in the upper tropospheric, particularly because of lightning. This NO2 fraction
in upper tropospheric might cause either small or negligible reduction in correlations of the OMI
NO2 VCD between and surface NO2 VMR as the upper part of the troposphere (free troposphere)
contribution is assumed to be negligible [28]. To reflect the BLH in the regression equation, Trop NO2

VCDOMI is first divided by BLHAIRS to calculate the NO2 concentration in the PBL and then converted
to the NO2 mixing ratio in the PBL (BLH NO2 VMROMI) using TempAIRS and PressAIRS [29] as shown
Table 2. Only a single OMI pixel contained completely within an AIRS pixel was used. Figure 4
shows the linear regression between BLH NO2 VMROMI and NO2 VMRIn-situ at 13:45 LT during the
training period. Here R2, slope and intercept are 0.38, 1.58, and 14.30, respectively. Figure 5 shows the
corresponding linear regression for the monthly mean data, with R2, slope and intercept of 0.59, 1.71,
and 12.75, respectively. The final form of equation M2 to estimate NO2 VMRST is shown in Table 3,
and for the monthly values in Table 4.

Figure 4. Scatter plot between BLH NO2 VMROMI at a specific time (13:45 LT) and NO2 VMRIn-situ to
determine the regression coefficient for M1 for the training period 2007–2013.

Figure 5. As Figure 4 but for the monthly mean values.
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3.3. M3 and M4

M3 and M4 are multiple regression equations for estimating NO2 VMRST and NO2 VMRM.
Multiple regression equations consist of a dependent variable, independent variables, and their
regression coefficients. In addition to Trop NO2 VCDOMI and BLHAIRS, meteorological factors (surface
temperature, dew point, atmospheric pressure, wind direction, and wind speed) are used as candidate
independent variables for the multiple regression equation in the present study. In a previous
study [30], these meteorological factors were also used as candidate independent variables to estimate
surface SO2 concentration in Shanghai, China. Temperature, pressure, boundary layer height, wind
speed, and wind direction were selected as the candidates for independent variables since they are
known to either directly or indirectly affect the spatial mixing of NO2 molecules in boundary layer.
Furthermore, temperature and dewpoint were selected as candidates for independent variables as they
affect the boundary layer height [31].

The multiple regression equation can be defined by the following equations:

ŷ = β0 + β1x1 + β2x2 + . . . + βnxn + ε (1)

where ŷ and β0 are the dependent variable (NO2 VMRIn-situ) and regression coefficient, respectively;
x1, x2,..., xn are the candidate independent variables (Trop NO2 VCDOMI, DewpointIn-situ, PressIn-situ,
TempIn-situ, BLHAIRS, WSIn-situ, and WDIn-situ); β1, β2, . . . , βn are the regression coefficients of the
independent variables; and ε is the difference between observations (NO2 VMRIn-situ) and estimated
values (NO2 VMRestimate). The regression coefficients can be estimated by least square fitting:

m

∑
j=1

ε2
j =

m

∑
j=1

(
yj − ŷj

)2 (2)

where yj is the observed value with m data points. By minimizing the sum of ε2, regression coefficients
can be derived. These least square fitting techniques are based on the following assumptions: the linear
relationship, a normal distribution and equal variance in the residuals. The least squares regression
is sensitive to the presence of some points that are excessively large or small values in the training
data [32]. To determine the independent variables (xn) and regression coefficients (βn) included in the
final form of equations M3 and M4, we considered the variation inflation factor (VIF) and p-value to
ensure their statistical significance. First, we examined the VIF that explains the multicollinearity of a
candidate independent variable with regard to other candidate independent variables. The VIF of the
j-th independent variable is expressed as:

VIF
(

xj
)
=

1
1 − R2

j
(3)

where R2
j is the coefficient of determination for the regression of xj against another independent

variable (a regression that does not involve the dependent variable j). The VIF indicates how much
xj is correlated with the other candidate variables. A candidate independent variable with a very
high VIF can be considered redundant and should be removed from the multiple regression equations.
Candidate independent variables that do not satisfy the criterion VIF < 10 [33], were excluded from
the independent variables. The p-value was also used to select independent variables. The highest
still statistically significant p-level was shown by Sellke et al. [34] to be 5%. Among the independent
variables that satisfy the VIF criterion, those that also satisfy p-value <0.05 are selected as final
independent variables in the multiple regression equations. The independent variables selected for
equations M3 and M4 are shown in Table 5. The final form of equation M3 to estimate NO2 VMRST is
shown Table 3, and that for NO2 VMRM in Table 4.
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Table 5. Final independent variables included in multiple regression equations (M3 and M4).

Final Selected Independent Variables p-Value VIF

M3

Trop NO2 VCDOMI 0 1.26
TempIn-situ 0.000032 7.02

DewpointIn-situ 0.000306 7.16
PressIn-situ 0.009981 3.14
BLHAIRS 1.73 × 10−15 1.12
WSIn-situ 3.86 × 10−133 1.33
WDIn-situ 1.7493 × 10−38 1.07

M4

Trop NO2 VCDOMI 2.4832 × 10−89 1.64
DewpointIn-situ 0.000421 6.47

PressIn-situ 0.034582 6.65
BLHAIRS 0.000834 2.32
WSIn-situ 3.86 × 10−133 1.59
WDIn-situ 1.699 × 10−7 1.25

4. Results

4.1. Daily Estimates

Figure 6 shows the day-to-day variations of NO2 VMRIn-situ and NO2 VMRST estimated at 13:45
LT in West Seoul and East Seoul using M1, M2 and M3 in Table 3 for 2006 and 2014. A slightly
larger difference in magnitude is found between NO2 VMRIn-situ and NO2 VMRST obtained with M3
compared to those between NO2 VMRIn-situ and NO2 VMRST obtained with M1 and M2. However,
NO2 obtained from M3 showed moderate agreement with NO2 VMRIn-situ in the form of the day-to-day
variation. Results for Daejeon, Gwangju, and Gyeonggi are included in the Supplementary Materials.

Figure 7 shows the R, slope, mean bias (MB), mean absolute error (MAE), root mean square error
(RMSE) and percent difference between NO2 VMRST and NO2 VMRIn-situ for the validation period
(2006 and 2014). The R obtained with M1 ranges from 0.49 to 0.71, showing better agreement than
that with M2 (0.47 < R < 0.65). M3 showed the best correlation with NO2 VMRIn-situ (0.67 < R < 0.90).
The slopes from both M1 and M2 are close to one in East Seoul, whereas they are lower in the other
cities. The MB from M1, M2, and M3 ranges from −7.74 to 5.80 ppbv. In all study areas, the MAE
(5.79 ppbv < MAE < 8.25 ppbv) of M3 is lower than those (6.58 ppbv < MAE < 11.41 ppbv) of M1
and M2, which means that NO2 VMRST estimated from M3 show moderate agreement with NO2

VMRIn-situ in terms of magnitude. The RMSE from M3 is found to be lower than those from M1 and
M2. The NO2 VMRST from M3 have the lowest RMSE in all study areas (7.21 ppbv < RMSE < 11.37
ppbv). In addition, percent differences estimated from M3 and NO2 VMRIn-situ are lower in all study
areas than from M1 and M2. In estimating NO2 VMRST, M3, which is a multiple regression method
with various independent variables as inputs, generally showed good statistical performance except
for MB.
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Figure 6. Time series of NO2 VMRIn-situ and NO2 VMRST at 13:45 LT estimated by M1, M2 and M3 in
East Seoul and West Seoul for: 2006 (a,c); and 2014 (b,d).
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Figure 7. (a) R; (b) slope; (c) MB; (d) MAE; (e) RMSE; and (f) percent difference between NO2 VMRST

against NO2 VMRIn-situ in 2006 and 2014 for M1, M2, and M3.

4.2. Monthly Estimates

Figure 8 shows the temporal variation of monthly mean NO2 VMRIn-situ and NO2 VMRM

estimated using M1, M2 and M4 of Table 4 in West Seoul and East Seoul using monthly mean
independent variables during the validation period (see the detailed input data in Section 2.1). Figure 8
shows good agreement in terms of the temporal pattern between the estimated NO2 VMRM and
monthly mean NO2 VMRIn-situ. However, we found a large difference between NO2 VMRIn-situ

and NO2 VMRM in periods when there was a jump in NO2 VMRIn-situ between successive months.
For example, no models calculated NO2 VMRM that were similar to NO2 VMRIn-situ in December
2006, which is very different from that in November 2006. NO2 VMRIn-situ (NO2 VMRM from M1,
M2, and M4) in November and December in 2006 are 19.32 ppbv (15.94, 17.96, and 17.62 ppbv) and
30.30 ppbv (15.94, 17.96, and 17.62 ppbv) in Daejeon, 15.26 ppbv (12.29, 13.87, and 18.09 ppbv) and
32.55 ppbv (12.73, 14.57, and 18.46 ppbv) in Gwangju, 29.31 ppbv (25.86, 25.97, and 22.35 ppbv) and
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40.64 ppbv (29.91, 29.15, and 26.85 ppbv) in Gyeonggi, and 31.25 ppbv (22.80, 24.55, and 23.64 ppbv)
and 45.93 ppbv (28.65, 28.92, and 26.49 ppbv) in West Seoul. Especially in West Seoul, there are several
periods when NO2 VMRIn-situ changes rapidly compared with the previous month. The NO2 VMRM

obtained from the three models at these times are in poor agreement with the pattern of monthly
NO2 VMRIn-situ. As described in Section 2, despite the use of NO2 VMRIn-situ located away from the
streets, the in situ measurement sites in West Seoul are located closer to the streets than the in situ
measurement sites in Daejeon and Gwangju. This may explain why there are more periods when NO2

VMRIn-situ changes rapidly from one month to the next. It is difficult to estimate the rapid change of
NO2 VMR near the NO2 source using regression models that reflect the relationship between the in
situ measurements and the OMI sensor covering both source and non-source areas in a single pixel.

Figure 8. Time series of NO2 VMRIn-situ and NO2 VMRM estimated by M1, M2, and M4 for 2006
and 2014.

Figure 9 shows the R, slope, MB, MAE, RMSE and percent difference between NO2 VMRM and
monthly mean NO2 VMRIn-situ in 2006 and 2014. In general, NO2 VMRM agreed better with NO2

VMRIn-situ than did the NO2 VMRST. The value of R from M1, M2 and M4 and monthly mean NO2

VMRIn-situ ranged from 0.68 to 0.82 in all areas. MB was close to 0 in most study areas. MAE was less
than 5 ppbv in Daejeon, Gwangju, Gyeonggi, and East Seoul where there is good agreement between
NO2 VMRM from M1, M2, and M4 and monthly mean NO2 VMRIn-situ, whereas MAEs in West Seoul
ranged from 5.66 to 6.79. RMSEs between NO2 VMRIn-situ and NO2 VMRM from M1, M2, and M3 are
found to be lower than 7 ppbv in the study areas except for West Seoul. In addition, the three models
showed percent differences of less than 30% except for the value estimated from M1 in Gwangju.
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Figure 9. (a) R; (b) slope; (c) MB; (d) MAE; (e) RMSE; and (f) percent difference between NO2 VMRM

and monthly mean NO2 VMRIn-situ in 2006 and 2014.

5. Discussion

In a previous study [18], tropospheric NO2 VCDs obtained from GOME were compared with
tropospheric NO2 VCDs calculated using NO2 concentrations obtained from both in situ measurements
and the Model of Ozone and Related Tracers 2 (MOZART-2). There are also several previous studies
estimating surface NO2 VMR using satellite data [3,35]. Among them, Kharol et al. [3] estimated the
annual variation of ground-level NO2 concentrations using both GEOS-Chem data and OMI data.
However, in the present study, NO2 VMRST and NO2 VMRM were estimated for the first time at higher
temporal resolution using three regression models with Trop NO2 VCDOMI as input.

5.1. Estimation of Surface NO2 VMRs at a Specific Time (13:45 LT)

• Among the three regression models, the multiple regression model M3 performed best in
estimating NO2 VMRST. The linear regression model (M2), in which BLH is used as an
independent variable in addition to Trop NO2 VCDOMI, has comparable performance to that of
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the model (M1) which uses Trop NO2 VCDOMI as the only independent variable.The BLH varies
with latitude [36], but the latitudinal variation of BLH is not well represented since the spatial
resolution of the AIRS used in this study is coarser than the spatial resolution of OMI. It might
also be associate the BLHAIRS data quality. We expect better results using BLH data obtained
from LIDAR.

• The average difference was found to be 46.04% between NO2 VMRIn-situ and NO2 VMRST obtained
from M1, 44.29% between NO2 VMRIn-situ and NO2 VMRST obtained from M2, and 31.50%
between NO2 VMRIn-situ and NO2 VMRST obtained from M3 in all cities, while there was moderate
agreement in the temporal pattern of NO2 variation between NO2 VMRIn-situ and NO2 VMRST

obtained from M1, M2, and M3 (Figure 6).
• In terms of statistical evaluation with respect to the in situ data, M3 showed the best performance

in general.
• The results produced by M2 are not improved compared to those by M1 which may imply that

surface NO2 VMR is dominantly affected by tropospheric NO2 column while the BLH effect could
be negligible in areas of the present study. It might also be associate the AIRS BLH data quality.

5.2. Estimation of Monthly Mean Surface NO2 VMRs of a Specific Time (13:45 LT)

• We found good agreement in the temporal pattern between the estimated NO2 VMRM and
monthly mean NO2 VMRIn-situ (Figure 8). However, there was a large difference between NO2

VMRIn-situ and NO2 VMRM in the period when there was a clear change in NO2 VMRM between
one month and the next. Despite the use of NO2 VMRIn-situ located away from streets, the in situ
measurement sites in West Seoul are located closer to streets than the in situ measurement sites
in Daejeon and Gwangju. This may explain why there are more periods when NO2 VMRIn-situ

changes rapidly in successive months. It is difficult to estimate the rapid change of NO2 VMR near
NO2 sources with regression models that reflect the relationship between the in situ measurements
and the OMI sensor covering both source and non-source areas in a single pixel.

• In terms of statistical evaluation, the three regression models (M1, M2, and M4) were found to be
similar (Figure 9).

• NO2 VMRM shows better agreement with the NO2 VMRIn-situ than does NO2 VMRST. The reason
for the better performance in the monthly mean estimation could be attributed to reduced errors
in the monthly mean OMI data [37] as well as fewer occasions with sudden monthly changes in
NO2 VMRIn-situ than rapid day-to-day changes in NO2 VMRIn-situ.

This present study provides the results in the condition of 2 km distance between the in situ
NO2 measurement location and NOX point source. For a future study, performances of the models
need to be investigated depending on the distance between the in situ NO2 data and point sources.
We expect that the regression methods used to estimate the surface NO2 VMR using Trop NO2

VCDOMI will be useful in providing information on surface NO2 VMR in metropolitan cites on a
monthly timescale. In future research, the estimation of surface NO2 VMR may be attempted at higher
time resolution with geostationary satellite sensors (e.g., geostationary environmental monitoring
spectrometer (GEMS), tropospheric emissions: monitoring of pollution (TEMPO), and Sentinel-4). In
further work, improvements are needed in the input data or the model formulation before the surface
NO2 can be estimated on a daily basis.

6. Conclusions

In this study, monthly and specific time estimates of NO2 VMR were obtained for the first time
using three regression models in four metropolitan cities for two years, 2006 and 2014. The multiple
regression model (M3) was found to perform best in estimating NO2 VMRST in all cities. For surface
NO2 estimates at the specific time (13:45 LT), M3 generally gives better R, MAE, RMSE, and percent
difference than the other two models (M1 and M2). A comparison between monthly surface NO2
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VMR estimates and those at the specific time showed that agreement with NO2 VMRIn-situ was
better for monthly estimates. In estimating NO2 VMRM, three regression models (M1, M2, and M4)
showed similar performance. In estimating daily and monthly surface NO2 VMR variations, when
the surface NO2 VMR changes rapidly, the difference between surface NO2 VMR estimated from all
models and NO2 VMRIn-situ is found to be large. In future studies, using higher spatial resolution
satellites is expected to improve the relationship with in situ measurements. In addition, the use
of other independent variables that may co-vary with rapid changes of surface NO2 VMR should
be investigated.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/2072-
4292/9/6/627/s1.
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Abstract: People in central-eastern China are suffering from severe air pollution of nitrogen oxides.
Top-down approaches have been widely applied to estimate the ground concentrations of NO2

based on satellite data. In this paper, a one-year dataset of tropospheric NO2 columns from the
Ozone Monitoring Instrument (OMI) together with ambient monitoring station measurements and
meteorological data from May 2013 to April 2014, are used to estimate the ground level NO2. The
mean values of OMI tropospheric NO2 columns show significant geographical and seasonal variation
when the ambient monitoring stations record a certain range. Hence, a geographically and temporally
weighted regression (GTWR) model is introduced to treat the spatio-temporal non-stationarities
between tropospheric-columnar and ground level NO2. Cross-validations demonstrate that the
GTWR model outperforms the ordinary least squares (OLS), the geographically weighted regression
(GWR), and the temporally weighted regression (TWR), produces the highest R2 (0.60) and the lowest
values of root mean square error mean (RMSE), absolute difference (MAD), and mean absolute
percentage error (MAPE). Our method is better than or comparable to the chemistry transport model
method. The satellite-estimated spatial distribution of ground NO2 shows a reasonable spatial
pattern, with high annual mean values (>40 μg/m3), mainly over southern Hebei, northern Henan,
central Shandong, and southern Shaanxi. The values of population-weight NO2 distinguish densely
populated areas with high levels of human exposure from others.

Keywords: NO2; ground level; OMI; GTWR; China

1. Introduction

High ground level nitrogen oxides (NOx = NO + NO2) are identified to be deleterious to
human health, including decreased lung function and an increased risk of respiratory symptoms [1,2].
In addition, NOx can also produce other photochemical pollutants like O3 in photochemical reactions,
and acts as a gaseous precursor of aerosols and acid rain. Thus, the NOx concentration has been
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included in multi-pollutant health indices [3] and its monitoring with complete spatial coverage is
needed for exposure assessment. Since 1995, a series of satellites sensors, e.g., the Global Ozone
Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric
Cartography (SCIAMACHY), and the Ozone Monitoring Instrument (OMI) have been successfully
used to retrieve vertical NO2 columns [4–8]. A dramatic increase in tropospheric NO2 columns
was revealed by the GOME and SCIAMACHY observations over China [9–12], the world’s largest
developing country along with the fastest growing economy.

Given that the existing ambient monitoring stations are sparse and unevenly distributed, there is
a growing interest in the top-down satellite approach to obtain timely map of the spatial variations
of surface concentrations of NO2. A close relationship between ground level NO2 concentrations
and satellite-retrieved tropospheric NO2 columns is expected based on two facts: (1) ground level
NO2 accounts for the majority of tropospheric NO2 columns since human activities are their main
source; and (2) the short lifetime of near-surface NO2 results in little transport, both vertically and
horizontally [13]. Petritoli et al. [14] demonstrated a significant correlation between in situ NO2

measurements and the GOME tropospheric NO2 columns. Recently, satellite observations were
combined with land use regression models to provide spatio-temporally resolved ambient NO2 [15–17].
In addition, an approach proposed by Lamsal et al. [18] that combines the vertical profiles of NO2

generated by the chemical transport model and satellite tropospheric NO2 columns, has been widely
used to estimate ground level NO2 concentrations [19,20]. However, the emission inventories used for
the model simulations are based on outdated statistical data about human activities. These model-based
profiles may not capture the actual vertical distribution of NO2, especially where anthropogenic NOx

emissions are undergoing rapid changes such as in China [21]. Kim et al. [22] estimated the surface
NO2 volume mixing ratio by using multiple regression models with OMI data.

In this study, a geographically and temporally weighted regression (GTWR) model is introduced
to estimate the ground level NO2 concentrations by using the OMI tropospheric NO2 columns over
central-eastern China. The GTWR model is adapted from the geographically weighted regression
(GWR) model [23–26] by taking into account spatio-temporal non-stationarity, which has been proven
to effectively establish the relation between satellite-retrieved aerosol optical depth and fine particulate
matter (PM2.5) [27,28]. Furthermore, population-weighted ground level NO2 concentrations are
calculated to evaluate population exposure levels in different regions.

2. Study Area and Data

2.1. Study Area

This study focuses on the central-eastern China with a geographic scope of 20◦N–45◦N and
105◦E–124◦E (major populated areas in China, see left panel in Figure 1). The study area covers 20
province-level administrative units in mainland China, including the regions of the North China Plain,
Yangtze River Delta, and Pearl River Delta that are most polluted. 715 ambient monitoring stations are
located in this study area (see the right panel in Figure 1).
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Figure 1. Study area and locations of ambient monitoring stations.

2.2. OMI Tropospheric NO2 Columns

OMI is a Dutch-Finnish nadir-viewing hyperspectral instrument onboard the Earth Observing
System Aura satellite in a Sun-synchronous orbit with an equatorial crossing time of approximately
13:45 local time. It measures sunlight backscattered radiances from the Earth in three channels covering
a wavelength range of 270 to 500 nm (UV-1: 270 to 310 nm; UV-2: 310 to 365 nm; and, visible: 365 to
500 nm) at a spectral resolution of 0.45 to 0.63 nm [29]. OMI makes simultaneous measurements in a
swath of width 2600 km, divided into 60 fields of view (FoVs). The FoVs vary in size from ~13 × 26 km
near nadir to ~40 × 250 km at the outermost FoVs. The OMI measurements in the spectral range
402–465 nm are used to retrieve the NO2 columns. First, NO2 slant columns are determined from the
OMI calibrated earthshine radiance spectra by using the differential optical absorption spectroscopy
(DOAS) algorithm [30]. Second, the slant columns are then converted into the vertical columns using
air mass factors (AMFs) calculated from radiative transfer models. Finally, the stratospheric and
tropospheric column amounts are derived separately under the assumption that the two quantities are
largely independent [31].

Here, we used the Version 3 Aura OMI NO2 Standard Product (OMNO2) available from
the NASA Goddard Earth Sciences Data and Information Services Center (http://disc.gsfc.nasa.
gov/Aura/OMI/omno2_v003.shtml). The major improvements include: (1) an improved spectral
fitting algorithm for retrieving slant column densities, including the use of monthly mean solar
spectral irradiances; (2) improved Global Modeling Initiative model-based monthly a priori NO2 and
temperature profiles [32]. For further details, please refer to [33]. The main error sources in determining
tropospheric NO2 columns are associated with uncertainties in the surface albedo, aerosols, cloud
interference, and the NO2 vertical profile [34–37]. Overall, OMI retrievals tend to be lower in urban
regions and higher in remote areas, but generally agree with other measurements within ±20% [38].

The data were filtered using a number of criteria [39] to ensure retrieval quality including:
(1) cloud radiance fraction <0.3, (2) surface albedo <0.3, (3) solar zenith angles <85◦, (4) 10 < cross-track
positions < 50, and (5) root mean squared error of fit <0.0003. In addition, the cross track pixels affected
by row anomaly (http://www.knmi.nl/omi/research/product/rowanomaly-background.php) were
excluded, which was first noticed in the data in June 2007. Then, the NO2 tropospheric column
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densities from the Level-2 OMNO2 Swath product were binned on to a 0.1 × 0.1◦ grid by calculating
the area-weighted averages at each grid cell.

2.3. Ambient Monitoring Station Data

The Ministry of Environmental Protection of Republic of China has built 1497 ambient monitoring
stations over 367 cities in order to assess the air quality in China. Hourly mean concentrations of
air pollutants including PM2.5, PM10, NO2, SO2, and O3 are available since 2013 in the national air
quality publishing platform (http://106.37.208.233:20035/). In this study, hourly mean ground-based
NO2 concentrations of 715 stations in central-eastern China from 1 May 2013 to 30 April 2014
(13:00–15:00 local time) were included. The locations of these stations are shown in Figure 1.

2.4. Meteorological Data

In order to improve the performance of our regression model, a number of meteorological
parameters such as air temperature, relative humidity, planetary boundary layer height, wind
speed, and air pressure from the Weather Research & Forecasting Model (WRF, version 3.4.1) were
used. NCEP FNL Operational Model Global Tropospheric Analyses dataset of 1 × 1◦ resolution
(http://rda.ucar.edu/dsszone/ds083.2/) was adopted in the WRF model. The WRF model is
a mesoscale numerical weather prediction system designed for both atmospheric research and
operational forecast, and serves as a wide range of meteorological applications across scales from tens
of meters to thousands of kilometers. The nested domain scheme with 30 km horizontal grid space of
WRF output centered at 115◦E, 32.5◦N was adopted, and the temporal resolution of WRF outputs was
set 1 h intervals. The number of altitude levels is 30 and the top-level pressure is 50 hPa. The physical
options used in WRF include the single-moment 3-class (WSM3) microphysics, the Yonsei University
(YSU) PBL scheme, the Rapid Radiative Transfer Model (RRTM) longwave and Dudhia shortwave
radiation schemes, and Noah land surface model. Then, the hourly mean meteorological data from
13:00 to 15:00 local time with a spatial resolution of 30 km was interpolated to a 0.1 × 0.1◦ grid same as
the NO2 tropospheric column products.

2.5. Population Data

Worldwide gridded population data are available at 5-year intervals from 1995 to 2020
from the NASA Socioeconomic Data and Applications Center (Gridded Population of the
World, v4; http://sedac.ciesin.columbia.edu/). The population data in 2013 was obtained by
linearly-interpolating the data in 2010 and 2015 using 0.1 × 0.1◦ resolution.

3. Methodology

3.1. GTWR Model

The GTWR model for the relationship of ground NO2 concentrations and satellite tropospheric
columns can be expressed as [40]:

NO2_ground(i) = β0(ui, vi, ti) + β1(ui, vi, ti)NO2_Trop(i) + εi, (i = 1, 2, . . . , n) (1)

where (ui, vi, ti) represents the given coordinates of the training sample i in location (ui, vi) at time ti.
NO2_ground(i) is the ground level NO2 concentration observed by the ambient monitoring station at
(ui, vi, ti). NO2_Trop(i) is the OMI NO2 column density, β0(ui, vi, ti) indicates the intercept of the GTWR
model, β1(ui, vi, ti) is a coefficient describing the unique spatial and temporal relationship between
NO2_ground(i) and NO2_Trop(i). εi is the random error.

We introduced a number of meteorological parameters to the GTWR, i.e., air temperature at 2 m
above the ground (T), relative humidity (RH), wind speed at 10 m above the ground (WS), planetary
boundary layer height (PBLH), dew point temperature at 2 m above the ground (Td), and the ambient
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pressure near ground (P). Akaike’s information criterion (AIC) [41] was used to judge whether the
GTWR performance could be improved with the addition of each specific meteorological parameter.
The AIC value for the GTWR model is expressed as:

AIC = 2n ln(σ̂) + n ln(2π) + n
(

n + tr(S)
n − 2 − tr(S)

)
(2)

where σ̂ is the maximum likelihood estimation of the standard deviation for random error
εi(i = 1, 2, . . . , n). S is the hat matrix of the dependent variable. tr(S) is the trace of matrix S.
S and σ̂ are calculated using Equations (17) and (18), respectively. The smaller AIC is, the better the
model performance will be. As indicated in Table 1, the model performance improves substantially
when the meteorological parameters of PBLH, RH, WS, T, and P are included. This is because that:
(1) high temperature can increase photochemical reactions and hence reduce the lifetime of NO2;
(2) high relative humidity is related to low NO2 concentration since it enhances the conversion rate
of secondary aerosol from NOX; (3) high PBLH is often related to low NO2 concentration when it is
supposed that NO2 are well-mixed and confined within the planetary boundary layer; (4) high wind
speed is favorable to pollutant dispersion that will result in the decrease of NO2 concentration; and
(5) high pressure increases atmospheric stability, leading to less atmospheric general circulation and
thus more NO2.

Table 1. Akaike’s information criterion (AIC) values when satellite, planetary boundary layer height
(PBLH), relative humidity (RH), wind speed at 10 m above the ground (WS), air temperature at 2 m
above the ground (T), and ambient pressure near ground (P) data are included respectively in the
geographically and temporally weighted regression (GTWR) model.

Satellite PBLH RH WS T P

373,664 372,215 371,529 370,684 370,049 369,750

The GTWR can be modified as:

NO2_ground(i) = β0(ui, vi, ti) + β1(ui, vi, ti)× NO2_Trop(i) + β2(ui, vi, ti)× RH(i) + β3(ui, vi, ti)× T(i)
+ β4(ui, vi, ti)× PBLH(i) + β5(ui, vi, ti)× WS(i) + β6(ui, vi, ti)× P(i) + εi, (i = 1, 2, . . . , n)

(3)

β1(ui, vi, ti), β2(ui, vi, ti), β3(ui, vi, ti), β4(ui, vi, ti), β5(ui, vi, ti), and β6(ui, vi, ti) denote the slope
of T, RH, PBLH, WS, and P, respectively. In the GTWR model, a local weighted least squares algorithm
is employed to determine the parameters of β(ui, vi, ti):

β̂(ui, vi, ti) = (XTW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y (4)

where W(u0, v0, t0) is a square matrix comprising the geographically and temporally weighted values
of training datasets for measurement i by the diagonal elements. X and Y are, respectively, expressed as:

W(u0, v0, t0) =

⎛
⎜⎜⎜⎜⎝

w1(u0, v0, t0) 0 · · · 0
0 w2(u0, v0, t0) · · · 0
...

...
. . .

...
0 0 · · · wn(u0, v0, t0)

⎞
⎟⎟⎟⎟⎠ (5)

X =

⎛
⎜⎜⎜⎜⎝

1 NO2_Trop(1) RH(1) T(1) PBLH(1) WS(1) P(1)
1 NO2_Trop(2) RH(2) T(2) PBLH(2) WS(1) P(2)
...

...
...

...
...

...
...

1 NO2_Trop(n) RH(n) T(n) PBLH(n) WS(1) P(n)

⎞
⎟⎟⎟⎟⎠ (6)
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Y =

⎛
⎜⎜⎜⎜⎝

NO2_ground(1)
NO2_ground(2)

...
NO2_ground(n)

⎞
⎟⎟⎟⎟⎠ (7)

The temporal distance dt
i0 and the spatial distance ds

i0 are given by:

dt
i0 =

∣∣ti − t0
∣∣ (8)

ds
i0 =

√
(ui − u0)

2 + (vi − v0)
2 (9)

By combining the temporal distance dt
i0 and the spatial distance ds

i0, the spatio-temporal distance
is defined as:

dst
i0 = ds

i0 ⊗ dt
i0 (10)

where ⊗ denotes different kinds of operators. Here, the “+” operator is adopted, the dst
i0 is hence

computed by:
dst

i0 = λds
i0 + μdt

i0 (11)

where λ and μ stand for the scale factors of temporal and spatial distance, respectively. Furthermore,
an ellipsoidal coordinate system is used to calculate the dst

i0:

(
dst

i0
)2

= λ
(
ds

i0
)2

+ μ
(
dt

i0
)2

= λ
[
(ui − u0)

2 + (vi − v0)
2
]
+ μ(ti − t0)

2 (12)

Gaussian distance decay-based functions and Euclidean distance are chosen to construct the
spatio-temporal weight matrix W(u0, v0, t0). The diagonal element wi(u0, v0, t0) of the W(u0, v0, t0)

can be obtained by:

wi(u0, v0, t0)= exp[− 1
2 (

d0i
hST

)
2
], i = 1, 2, 3, . . . , n

= exp

{
− 1

2

(
λ
[
(ui−u0)

2+(vi−v0)
2
]
+μ(ti−t0

2

h2
ST

)}

= exp
{
− 1

2

(
(dS

i0)
2

h2
S

+
(dT

i0)
2

h2
T

)}

= exp
{
− 1

2
(dS

i0)
2

h2
S

}
× exp

{
− 1

2
(dT

i0)
2

h2
T

}
(13)

where hST , hT and hS are the parameters of spatio-temporal, spatial, and temporal
bandwidths, respectively.

Adaptive spatio-temporal bandwidths are adopted according to the density of sample points
around the given point (u0, v0, t0). When many sample points are closely distributed around the given
point, the bandwidths are small. On the contrary, if there are not enough sample points near it, the
bandwidths are larger when THE sample points are sparsely distributed. In practice, the bandwidths
are determined with an optimization technique by cross-validation through minimizing Equation (14).

CV(hST) = ∑
i
(yi − ŷ(hST))

2 (14)

where the function ŷi(hST) denotes the predicted value from the GTWR which is built without sample
i.

The ground level NO2 at (ui, vi, ti) is estimated by:

N̂O2_ground(i) = xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y (15)
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where xT
i =

(
1, NO2_Trop(i) , RH(i) , T(i) , PBLH(i) , WS(i) , P(i)

)
, and

Ŷ =

⎛
⎜⎜⎜⎜⎝

N̂O2_ground(1)
N̂O2_ground(2)

...
N̂O2_ground(i)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y
...

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y

⎞
⎟⎟⎟⎟⎟⎠ = SY (16)

where S is the hat matrix of Y and is calculated as:

S =

⎛
⎜⎜⎜⎜⎜⎝

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)
...

xT
i (X

TW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)

⎞
⎟⎟⎟⎟⎟⎠ (17)

The maximum likelihood estimation of the standard deviation for rand error is calculated as:

σ̂ =

√
RSS

n − tr(S)
(18)

where RSS is the residual sum of squares between estimated ground level NO2 concentrations and
observed ones:

RSS=YT(In−S)T(In−S)Y (19)

3.2. Population-Weighted NO2

The population data are introduced to calculate the population-weighted NO2 (PNO2) for
different province-level administrative units:

PNOj
2 =

m
∑

k=1
NOj,k

2 × Populationj,k

m
∑

k=1
Populationj,k

(20)

where PNOj
2 is the population-weighted NO2 for province j, NOj,k

2 and Populationj,k are the NO2

concentration and population data of pixel k in province j respectively.

3.3. Implementation Process and Statistical Indicators

To correlate the ground-based measurements with satellite data, the 715 ambient monitoring
stations in the central-eastern China were merged into 509 stations by averaging all of the
measurements within a grid of 0.1 × 0.1◦. For the 509 grid cells, the total numbers of satellites
and ambient monitoring observations are 54,867 (Figure 2a) and 110,545 (Figure 2b), respectively.
Combining the satellite and ground observations, there are 31,463 valid data pairs (Figure 2c). The
spatial distribution of the numbers of filtered satellite observations in Figure 2a shows a north-south
difference, which is likely due to a higher cloud fraction over southern China. These 509 stations with
total 31,463 dataset were divided randomly into 10 groups. The model fitting and cross-validation
process was repeated 10 times, for every time one group was used for the cross-validation and the
rest were used to train the fitting model until all groups were entered into the cross-validation once,
thereby creating out-of-sample predictions for all the stations [42]. To be more specific, all of the 31,463
datasets were used both in the fitting and the cross-validation.

Some statistical indicators were employed to quantitatively assess the model performances. They
are the coefficient of determination (R2), whose higher value indicating better fitting accuracy, the root
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mean square error (RSME), that is sensitive to both systematic and random errors, the mean absolute
difference (MAD), that measures the mean error magnitude, and the mean absolute percentage error
(MAPE), which characterizes the prediction accuracy of a statistical model.

Figure 2. Numbers of satellite observations (a), ambient monitoring observations (b), and valid satellite
and ground observation pairs (c) for 593 grid cells.

4. Results and Discussion

4.1. Spatio-Temporal Non-Stationarities between Tropospheric-Columnar and Ground Level NO2

According to previous studies [43,44], the tropospheric NO2 profiles show a large spatial-temporal
variation. It is necessary to assess the impact of the spatio-temporal non-stationarities on the
satellite-estimated ground level NO2 concentrations. Lamsal et al. [38] showed that OMI retrievals
are underestimated in urban regions and overestimated in remote areas about 20%. To isolate the
influence of different land covers types, 293 pure urban grids and corresponding ambient stations
were picked out from the total 509 grids and stations. As shown in Figure 3a, the mean values of
tropospheric-columnar and corresponding ground level NO2 over three provinces in eastern China
(see also Figure 1) i.e., Shandong, Zhejiang, and Hunan, are compared. The mean values of OMI
tropospheric NO2 columns of the three provinces are different when the column data is composited
with respect to the ground level NO2 mass concentrations from ambient monitoring stations. This
is related to the spatial difference in tropospheric NO2 profiles due to different topographies and
meteorological conditions. Moreover, the mean values of OMI tropospheric NO2 columns in summer
(May to July 2013), autumn (August to October 2013), winter (November 2013 to January 2014), and
spring (February to April 2014) are compared in Figure 3b. The relationship between the NO2 columns
and ground level NO2 shows a significant seasonal variation. The NO2 columns in winter and autumn
are higher than those in summer and spring when the values of ground level NO2 are at the same
level. This seasonal difference is more notable when ground concentrations increase, which is likely
because of the longer lifetime of NO2 in winter and autumn as compared to that in summer and spring.
Consequently, it can exist for a longer time in the upper layer in the case of high ground emissions. The
numbers of satellite observations used in Figure 3a,b are given in Tables 2 and 3, respectively. It should
be pointed out that the numbers of satellite observations for high ground level NO2 (>100 μg/m3) are
less than five in Hunan and in summer.
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Figure 3. Mean values of tropospheric NO2 columns (×1016 molec/cm2) in different provinces (a) and
different seasons (b) when the column data is composited with respect to the ground level NO2 mass
concentrations observed at 293 pure urban ambient monitoring stations. Error bars stand for one
standard deviation.

Table 2. Numbers of satellite observations used in Figure 3a.

Province
Ground Level NO2 Mass Concentrations

0–20 21–40 41–60 61–80 81–100 101–120 121–270

Shandong 1002 1265 611 299 126 68 79
Zhejiang 1371 1240 491 156 57 37 33
Hunan 66 101 57 24 13 3 2

Table 3. Numbers of satellite observations used in Figure 3b.

Season
Ground Level NO2 Mass Concentrations

0–20 21–40 41–60 61–80 81–100 101–120 121–270

Summer 1567 1137 283 94 23 3 4
Autumn 1815 1423 436 169 51 21 13
Winter 1059 1785 1248 653 313 174 175
Spring 2022 2336 870 296 96 37 30

4.2. Comparison between Model Fitted and Ground-Observed NO2

The ordinary least squares (OLS), GWR, temporally weighted regression (TWR), and GTWR
models were tested using the same datasets. As shown in Tables 4 and 5, the OLS performance reveals
that the tropospheric NO2 columns are potentially useful for ground level NO2 with R2 of 0.45 and
0.44 for fitting and validation, respectively. The TWR outperforms the GWR with significant increases
of R2 values from 0.55 and 0.49 to 0.61 and 0.55. This suggests that the temporal non-stationarity is
more dominant than the spatial non-stationarity between the tropospheric NO2 columns and ground
level NO2. Among the four models, the GTWR has the best performance in both model-fitting and
cross-validation with the highest R2 and lowest errors (RMSE, MAD, and MAPE). Nevertheless, the
GTWR regression shows a slight over-fitting, i.e., the R2 generated from the cross-validation is 0.09
smaller than that from the model-fitting. In addition, the scatter plots in Figure 4 shows the largest
correlation slope and the smallest intercept for the GTWR model. It is worth noting that all of the
regression line slopes for the four models are less than 1. Figure 5 is present to assess the impact of the
numbers of valid observations on the GTWR performance. The R2 over Hunan (Figure 5a) is smaller
than those over Shandong (Figure 5b) and Zhejiang (Figure 5c), due to less observations.
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Table 4. Quantitative assessment of model-fitting through ordinary least squares (OLS), geographically
weighted regression (GWR), temporally weighted regression (TWR), and GTWR.

Model R2 RMSE (μg/m3) MAD (μg/m3) MAPE (%)

OLS 0.45 0.11 12.54 73.24
GWR 0.55 0.10 11.16 61.10
TWR 0.61 0.09 10.59 60.52

GTWR 0.69 0.08 9.38 52.10

Table 5. Quantitative assessment of cross-validation through OLS, GWR, TWR, and GTWR.

Model R2 RMSE (μg/m3) MAD (μg/m3) MAPE (%)

OLS 0.44 0.33 12.57 73.45
GWR 0.49 0.31 12.09 68.83
TWR 0.55 0.29 11.27 64.63

GTWR 0.60 0.28 10.68 60.19

Figure 4. Scatter plots between the observed NO2 and predicted NO2 concentrations using OLS (a),
GWR (b), TWR (c), and GTWR (d) for cross validation over central-eastern China from May 2013 to
April 2014.
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Figure 5. Scatter plots between the observed NO2 and predicted NO2 concentrations for cross validation
over Shandong (a), Zhejiang (b), and Hunan (c) from May 2013 to April 2014.

There are three possible errors in the estimation of ground level NO2 concentrations using
the satellite-based GTWR model. First, satellite data are collected over an area of hundreds of
km2, while in-situ measurements are point observations. Second, the errors in the retrieval of OMI
tropospheric NO2 columns are underestimated in urban regions and overestimated in remote areas
by about −20% and 20%, respectively [38]. Third, the uncertainty in the meteorological parameters
can affect the vertical distribution of tropospheric NO2. Zhang et al. [45] validated the NCEP FNL
data against meteorological station data over Henan, China during 2012, and they found the errors of
air temperature and pressure are −3~2 K and −10~10 hPa, respectively. We introduced the expected
random errors (Gaussian distribution) from the tropospheric NO2 columns, air temperature, and
air pressure, to assess their impact on the performance of the GTWR model. As shown in Table 6
and Figure 6, our model uncertainties are relatively low with the expected uncertainties from the
model parameters.
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Figure 6. Scatter plots between the observed NO2 and GTWR predicted NO2 concentrations with
random errors from tropospheric NO2 columns (20%) (a), air temperature (2 K) (b), and air pressure
(10 hPa) (c) over central-eastern China from May 2013 to April 2014.

In the GTWR model, the smaller the spatio-temporal distance between two samples is, the greater
weight coefficients are given. As illustrated in Figure 7, the GTWR performs much better than the OLS
for the samples whose distances to the ambient monitoring stations are within 100 km, whereas the
GTWR performance is worse than the OLS (0.41 versus 0.44 for R2) for the samples that are more than
100 km away from the ambient monitoring stations. In the regions like Anhui, Jiangxi, and Fujian,
where the ambient monitoring stations are very sparse and unevenly distributed, the nearest samples
are mostly more than 100 km away. Hence, we used adjustable bandwidths according to the sample
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distances rather than the fixed ones. As compared to Figure 7, the R2 in Figure 8 improves from 0.41 to
0.50 for the samples with larger distances (>100 km) after adjusting the bandwidth.

Table 6. Quantitative assessment of GTWR cross-validation with random errors from tropospheric
NO2 columns, air temperature, and air pressure.

Variations Random Errors R2 RMSE (μg/m3) MAD (μg/m3) MAPE (%)

Tropospheric NO2 columns 20% 0.57 0.29 11.01 62.40
Air temperature 2 K 0.59 0.28 10.75 61.11

Air pressure 10 hPa 0.59 0.28 10.75 60.86

Figure 7. Scatter plots between the observed NO2 and predicted NO2 concentrations using GTWR
((a–c) and OLS (d–f) for samples with different distances (a,d) <20 km; (b,e) 20–100 km; (c,f) >100 km)
for cross validation over central-eastern China from May 2013 to April 2014.

Figure 8. Scatter plots between the observed NO2 and GTWR predicted NO2 concentrations for
samples with different distances ((a) <20 km; (b) 20-100 km; (c) >100 km) after adjusting the bandwidth
for cross validation over central-eastern China from May 2013 to April 2014.
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To compare the GTWR method with the chemistry transport model (CTM) approach, we
generated the tropospheric NO2 profiles by using a WRF-Chem model with the monthly MIX Asian
anthropogenic emission inventory [46]. This emission inventory has a spatial resolution of 0.25 × 0.25◦

and involves four emission categories, including industry, power, transport, and residential. The
model has 20 vertical levels and the top level pressure is 200 hPa. The RADM2 chemical mechanism
is used for the gas-phase chemical reaction calculations. The Modal Aerosol Dynamics Model for
Europe-MADE/SORGAM is chosen for the aerosol scheme. Then, we estimated the ground level
NO2 concentrations in January 2014 over central-eastern China using the approach described by
Lamsal et al. [18,19]. As shown in Figure 9, the result of the GTWR fitted is much better than
the WRF-Chem. Recently, Gu et al. [43] estimated the ground level NO2 over China using the
chemistry transport model approach with the Community Multi-scale Air Quality (CMAQ) model by
considering the influence of China’s high atmospheric pollution on obtaining the vertical distribution
of tropospheric NO2 profiles. They achieved a correlation coefficient (R) of 0.80 for January 2014, which
is comparable to the coefficient of determination (R2) of 0.60 obtained by the GTWR.

Figure 9. Scatter plots between the observed NO2 and predicted NO2 concentrations by GTWR (a) and
WRF-Chem (b) for cross validation over central-eastern China in January 2014.

To further evaluate the performance of the GTWR model, the comparison of the annual mean
of NO2 concentrations between the model-fitted and ground-observed data is given in Figure 10.
Overall, the NO2 concentrations estimated by the GTWR model agree well with the ground-based
measurements. More than 90% of the cross-validation stations possess low mean discrepancies of less
than 10 μg/m3.

4.3. Spatial Distribution of GTWR Fitted Ground-Observed NO2

The spatial distributions of annual mean NO2 values are shown in Figure 11. The fitted
ground-observed NO2 concentrations by GTWR in (a) have similar spatial patterns to the satellite
tropospheric NO2 columns in (b). The concentrations are comparable to the interpolated in situ
observations using the Kriging method in (c) over the region with high values. Importantly, in the areas
without monitoring stations (e.g., southern Jiangxi and northern Fujian), Figure 11a provides more
reasonable estimations that are overestimated in Figure 11c. In Figure 11a, high NO2 concentrations are
clustered in the regions of North China Plain, Yangtze River Delta, and Pearl River Delta. Especially,
the NO2 concentrations in southern Hebei, northern Henan, central Shandong, and southern Shaanxi
exceeded the Level 2 standard of the Chinese National Ambient Air Quality Standard (40 μg/m3).
Figure 12 denotes dramatic seasonal changes in the spatial distribution of GTWR fitted ground level
NO2. Unparalleled high values are found in winter, while the lowest values are found in summer.
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4.4. Population-Weighted Ground Level NO2 Concentrations

Given the NO2 toxicity to human health, it is necessary to evaluate population exposure levels
over different provinces. Traditionally, the province-level mean NO2 concentration provided by the
Chinese environmental protection agencies are the arithmetic means of all values in administered
cities. Here, we calculated the annual mean population-weighted NO2 (AMPNO2) concentrations by
using Equation (20). The annual mean NO2 concentrations (AMNO2) and AMPNO2 of 17 provinces
in central-eastern China are summarized in Table 7. AMPNO2 is higher than AMNO2 for all of the
provinces, especially for densely populated provinces, e.g., Hebei, Beijing, and Guangdong. People
from these 17 provinces except Anhui, Fujian, Jiangxi, and Hunan, are exposed to high-level NO2

concentrations (>30 μg/m3). Heibei, Tianjin, and Beijing suffer from the most serious NO2 pollution,
with more than 70% of people affected by high-level NO2. The satellite-estimated ground level NO2

concentration is observed at afternoon (13:00–15:00) leading to underestimated annual mean values.

Table 7. Annual mean NO2 (AMNO2) concentrations and population-weighted NO2 (AMPNO2)
concentrations for 17 provinces in central-eastern China.

Province AMNO2 (μg/m3)
AMPNO2

(μg/m3)
Population
(Millions)

Proportion of People Exposed
to High-Level NO2

Concentrations (>30 μg/m3)

Hebei 27.47 35.23 108.74 74.14%
Tianjin 31.67 34.38 23.04 85.84%
Beijing 26.09 33.86 33.73 87.03%
Shaanxi 25.66 32.43 53.35 55.78%
Henan 29.73 32.12 132.31 56.30%

Shandong 30.21 31.3 139.65 58.28%
Shanxi 24.59 28.43 54.76 46.07%

Shanghai 26.02 27.87 33.56 14.61%
Jiangsu 24.86 27.04 113.16 35.40%
Hubei 23.4 25.56 81.48 19.49%

Chongqing 22.13 25.29 38.34 21.16%
Zhejiang 21.17 25.08 76.21 21.03%

Anhui 21.8 23.48 84.41 0%
Guangdong 14.91 21.09 138.15 18.92%

Fujian 16.9 18.76 47.94 0%
Jiangxi 15.76 17.23 62.96 0%
Hunan 15.55 16.9 89.44 0%

5. Conclusions

In this study, a satellite-based GTWR model has been applied to estimate ground level NO2

concentrations over central-eastern China. OMI tropospheric NO2 columns, together with ambient
monitoring station measurements and meteorological data from May 2013 to April 2014 were
considered. The results show that the GTWR model produces the highest cross-validation R2 (0.60) and
the lowest errors (RMSE, MAD, and MAPE), in comparison with other models, i.e., OLS, GWR, and
TWR. The model performance is significantly correlated with the meteorological parameters that likely
describe the NO2 vertical profile shapes. Our method is better than or comparable to the CTM method.

The satellite-estimated spatial distribution of annual mean NO2 shows a similar spatial pattern
to the tropospheric NO2 column and possesses similar value with the in situ observation. High
annual mean NO2 concentrations (>40 μg/m3) are found in southern Hebei, northern Henan, central
Shandong, and southern Shaanxi. Seasonal changes in the spatial distribution of ground level NO2

are easily identifiable with unparalleled high values in winter and the lowest values in summer. The
population-weighted NO2 demonstrates that people who lived in densely populated areas are more
likely to be exposed to high NO2 pollution.

One of the major error sources in the estimation of ground level NO2 concentrations using OMI
data is the spatial gradient and the horizontal inhomogeneity between individual satellite pixels. In
September 2017, the TROPOMI/S5P will be launched and measure tropospheric NO2 columns with a
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higher spatial resolution (7 km × 7 km) [47], which enables an improved accuracy in the ground level
NO2 estimation.
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Abstract: In order to address the behaviour of nitrogen dioxide (NO2) and sulphur dioxide
(SO2) in the context of a changing climate, linear and non-linear trends for the concentrations
of these two trace gases were estimated over their seasonal standardised variables in the Southern
Hemisphere—between the Equator and 60◦ S—using data retrieved by the Ozone Monitoring
Instrument, for the period 2004–2016. A rescaling was applied to the calculated linear trends so that
they are expressed in Dobson units (DU) per decade. Separately, the existence of monotonic—not
necessarily linear—trends was addressed by means of the Mann-Kendall test. Results indicate that
the SO2 exhibits significant linear trends in the planetary boundary layer only; they are present
in all the analysed seasons but just in a small number of grid cells that are generally located over
the landmasses or close to them. The SO2 concentrations in the quarterly time series exhibit, on
average, a linear trend that is just below 0.08 DU decade−1 when significant and not significant values
are considered altogether, but this figure increases to 0.80 DU decade−1 when only the significant
trends are included. On the other hand, an important number of pixels in the lower troposphere, the
middle troposphere, and the lower stratosphere have significant monotonic upward or downward
trends. As for the NO2, no significant linear trends were found either in the troposphere or in the
stratosphere, yet monotonic upward and downward trends were observed in the former and latter
layers, respectively. Unlike the linear trends, semi-linear and non-linear trends were seen over the
continents and in remote regions over the oceans. This suggests that pollutants are transported away
from their sources by large-scale circulation and redistributed hemispherically. The combination of
regional meteorological phenomena with atmospheric chemistry was raised as a possible explanation
for the observed trends. If extrapolated, these trends are in an overall contradiction with the projected
emissions of both gases for the current century.

Keywords: nitrogen dioxide; sulphur dioxide; concentrations; linear trends; non-linear trends;
Mann-Kendall test; Southern Hemisphere

1. Introduction

There is now widespread consensus that changes in the composition of the Earth’s atmosphere
caused by human activities play a relevant role in the Earth’s climate system. Unlike the greenhouse
gases that induce a positive radiative forcing, aerosol particles influence the global radiation budget
causing a net negative radiative forcing associated with a cooling effect on the atmosphere ([1] and
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references therein). Broadly speaking, the radiative contribution of the aerosols can be centred in
three main categories depending on what they interact with: aerosols-surface, aerosols-radiation
and aerosols-clouds, or considering the aerosols’ influence on the atmosphere as a direct, indirect, or
semi-direct effect [2–5]. In addition to the radiative influence, aerosols are significant contributors
to air pollution and they have a direct linkage with the biogeochemical cycles of the atmosphere,
the oceans and the surfaces, acting as micronutrients for the marine and terrestrial biosphere. Aerosol
deposition can also have detrimental environmental effects (e.g., the acidification of precipitation
by sulphurs [6]) with impacts on the aquatic and terrestrial ecosystems [7–9], yet the benefits or
the detrimental effects on ecological processes depend upon both the amount and composition of
deposition and the underlying ecosystem conditions.

Amidst the aerosols with greater relevance, nitrogen dioxide (NO2) and sulphur dioxide (SO2)
must be considered since they are reactive short-lived atmospheric trace gases, with both anthropogenic
and natural sources that strongly impact on human health and the environmental degradation either
directly or through the formation of secondary aerosols [10,11]. The main sources of nitrogen oxide
compounds, nitric oxide (NO) and NO2—collectively referred to as NOx—include fuel combustion,
biomass burning, soil emissions and lightning, and they can impact on climate in a number of
interconnected ways [12]. Tropospheric NO2 is a highly reactive and toxic gas which, in the presence
of sunlight, water vapour (H2O) and carbon monoxide (CO) or volatile organic compounds, drives the
production of ozone (O3) and hydroxyl radicals (OH), the principal tropospheric oxidants [12,13]. In
the stratosphere, NOx contributes to the ozone-loss cycles [14] and may indicate long-term changes
in the tropospheric emissions of the long-lived nitrous oxide (N2O) [13]. On the other hand, SO2

is a colourless, non-flammable, non-explosive gas, toxic at high concentrations, and its principal
contribution to air pollution is related to the acidification of precipitation and subsequent impacts on
the receiving ecosystems [6].

SO2 dissolves in cloud droplets and oxidises to form sulphuric acid (H2SO4) [15], which can
fall to the Earth as acid rain or snow, or form sulphate aerosol particles in the atmosphere through
oxidation [11]. The main contributions of SO2 are related to anthropogenic emissions (including the
combustion of sulphur-containing fuels [15]) and natural phenomena (including biomass burning [16])
and the oxidation of dimethyl sulphide (CH3SCH3), emitted from phytoplankton [15], and from the
degassing and eruptions of volcanoes [16]. During long-term persistent volcanic eruptions SO2 can be
injected into the stratosphere and converted to sulphate aerosols, reflecting the sunlight and therefore
inducing a cooling effect on the Earth’s climate. They also have a role in ozone depletion. Volcanic
SO2 is often injected into the atmosphere at altitudes above the planetary boundary layer (PBL), while
anthropogenic SO2 emissions are predominantly in or just above the PBL [11]. Additionally, SO2 in
the atmosphere is associated with adverse health effects, including respiratory and cardiovascular
diseases. The United States Environmental Protection Agency (EPA) has estimated that two thirds of
SO2 and a fourth of NOx found in the atmosphere come from the burning of fossil fuels to generate
electricity [17]. World Health Organization guidelines recommended daily SO2 exposure levels not to
exceed 125 μg m−3 on average over a 24 h period [18]. NO2, SO2, and their oxidised products O3 and
PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) are designated as “criteria
pollutants” by both the European Commission and the EPA (see e.g., [11] and references therein).
PM2.5 have serious health effects, and it also causes acidification of water and the biosphere, with
adverse consequences on plants, soils, and weather and climate through direct radiative forcing and
indirect modification of cloud formation and optical properties ([11] and references therein).

The preceding lines highlighted the importance of assessing the role of aerosols and their impacts
on the Earth’s climate system, for which a global understanding of their spatial and temporal behaviour
is required. Reliable, up-to-date inventories of emissions and concentrations are the first step when
attempting to evaluate these impacts and to address the effects on the climate system over different
timescales. Although in situ measurements provide valuable information, they are insufficient to
these particular aims for they are scarce spatially, temporally, or both and they must be at least
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complemented by remotely-sensed data. Following this, the Ozone Monitoring Instrument (OMI)
provides the scientific community with a valuable source of information since it is the first space-borne
hyperspectral ultraviolet/visible spectrometer that enables a continuous mapping of several trace gases
and ozone, including SO2 and NO2, globally and on a daily basis [19]. There have been an increasing
number of studies related to NOx and SOx emissions in the last decade [10,13,20–25]. However, few of
them were devoted to analysing linear and non-linear trends in the Southern Hemisphere (SH), and
those papers dealing with this particular topic only studied specific locations [26]. In order to fill this
gap and to complement the existing studies, this paper presents a comprehensive analysis of NO2 and
SO2 linear and non-linear trends in the entire SH within the 2004–2016 period using OMI data.

2. Materials and Methods

The NO2 and SO2 data used in this research were retrieved by the OMI aboard the Aura spacecraft,
which was launched in July 2004 [27,28]. The OMI is a nadir solar backscatter spectrometer that
operates in the 270–500 nm spectral range [19]. It began collecting data in August 2004 [27], and data
production commenced in October the same year [28]. OMI has the highest spatial resolution, the least
degradation, and the longest record among all satellite ultraviolet-visible instruments, which permits
an improved space-borne estimation of NO2 and SO2 emissions and the study of their temporal
behaviours ([11] and references therein).

The datasets for the two gas species were obtained from the Goddard Earth Sciences Data and
Information Services Center (GES DISC) through the National Aeronautics and Space Administration’s
(NASA) Mirador search engine (https://mirador.gsfc.nasa.gov/). The NO2 daily product corresponds
to the OMNO2G version 3 dataset, whose coverage has a resolution of 0.25◦ × 0.25◦ on a global
basis [29]. NO2 measurements made by the OMI are performed in the visible spectrum within the
402–465 nm range [30]. Each OMNO2G daily file includes pixel information regarding the column
concentrations of this gas in the troposphere (Trop) and the stratosphere (Strat), as well as the total
column. All these quantities are expressed in molecules cm−2. A single quality flag (QF) for these three
concentrations and a number of ancillary variables are included too. Only those records with a value of
“0” for this QF should be used [29]. In a first processing of each daily file only those registries fulfilling
this condition were selected. Under these circumstances, negative concentrations, should there be any,
were flagged as missing data. Simultaneously, the concentrations were converted to Dobson Units
(DU) (1 DU = 2.69 × 1016 molecules cm−2 [31]). This was done for the sake of homogeneity since the
SO2 concentrations are given in DU (see below), and also because it is a much more familiar unit that
has been traditionally used in research efforts mainly related to ozone [32–34], but also dealing with
other atmospheric constituents [35].

On the other hand, the SO2 daily product used here was the OMSO2G version 3 dataset. It has a
resolution of 0.125◦ × 0.125◦ [36]. The OMSO2G daily files include the following concentration
estimates for this gas: PBL, lower troposphere (TRL), middle troposphere (TRM), and upper
troposphere and lower stratosphere (STL), the former two associated with anthropogenic activity and
the latter two associated with volcanic activity [27]. SO2 PBL concentrations are estimated using the
Band Residual Difference Algorithm [37], whereas concentrations in the rest of the layers are estimated
using the Linear Fit Algorithm [16]. Unlike the NO2 dataset, all these quantities are directly expressed
in DU. Another difference with the NO2 dataset is that there is an individual QF for each concentration.
As with the NO2, a first processing was carried out for SO2 but considering each individual QF. In
cases where negative concentrations fulfilled the QF condition the values were flagged as missing.

Apart from the fact that both datasets have a different spatial resolution the concentrations for
these two species are provided in an irregular grid that varies from day to day. A regridding was
therefore carried out in order to overcome these drawbacks. Data was mapped into a common grid
having a resolution of 1◦ and 1.25◦ in latitude and longitude, respectively, for both constituents.
This was done in order to match a standard grid of 180 × 288 pixels in which different Total Ozone
Mapping Spectrometer (TOMS) products—ozone, reflectivity, etc.—were given (e.g., [38,39]). More
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specifically, the regridding process assigned a daily mean value to the centre of each of the 51,840
possible boxes. This mean value was calculated over all the daily non-missing available data that fell
within −89.5+ (i − 1)± 0.5 for i = 1, 2, . . . , 180 and −179.375+ 1.25(j − 1)± 0.625 for j = 1, 2, . . . , 288
(latitude and longitude, respectively, both expressed in degrees). The outcome of this regridding is the
mapping of daily irregular NO2 and SO2 global fields into a common regular grid. They constitute the
starting point of this research. The period of analysis is the 2004–2016 period.

Long-term seasonal means and standard deviations (SDs) were calculated at each of the pixels of
the TOMS-like grid for southern summer, autumn, winter, and spring, including data from December,
January and February (DJF), March, April and May (MAM), June, July and August (JJA), and September,
October and November (SON), respectively. A minimum number of three values were required in
order not to consider the seasonal mean at any pixel as missing. All the seasons were brought together
in order to represent the quarterly (Q) cycle. The long-term means and SDs for this case were calculated
too. The seasonal means and SDs show prominent, yet spurious, loci of maximum values for the
SO2 concentrations—but not for the NO2 concentrations—in southern Brazil (BRA). As an example,
Figure 1 shows the Q mean concentrations for both gases. The high prominent SO2 concentrations in
the specified region are attributed to the so-called South Atlantic Anomaly (SAA), a region centred in
central South America (SA) where the intensity of the Earth’s magnetic field has a minimum, enabling
the entrance of high-energy particles from space [40]. Given that satellites are exposed to high levels of
radiation when they fly over this region [41], the SAA increases the noise in OMI-retrieved data in a
significant fashion [24]. The remarkable difference in Figure 1 can be attributed to the photon energy
being proportional to its frequency, which is greater by two orders of magnitude for the ultraviolet
wavelengths with respect to the visible ones.

Figure 1. Mean concentrations for the quarterly (Q) time series over the study period for (a) NO2 in
the stratospheric (Strat) and (b) SO2 in the planetary boundary layer (PBL). Values expressed in DU.
The prominent mean concentrations in southern Brazil (BRA) in (b) are related to the South Atlantic
Anomaly (SAA).

Standardised anomalies for each of the seasons and for the Q time series were built in order to
homogenise the entire study region and to remove (or at least attenuate) the distortion created in the
SAA region. Standardised anomalies are a useful tool to make sets of different data comparable to each
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other. They have been used across a number of applications [42–44]. Figure S1 shows a loop for the
DJF SO2 standardised anomalies in the PBL. This is an example that shows how the simple procedure
of using standardised anomalies removed the SAA signal, for it is not discernible in each of the figures
of this loop. A trend analysis was carried out on the standardised anomalies for each of the seasons
individually and for the Q time series. The trends for the standardised anomalies were calculated
and statistically tested using a level of significance of 95%. These trends were rescaled by multiplying
them by the corresponding SD in order to get a linear trend for the original seasonal concentrations.
A rescaling was also applied to the statistic used to test the rescaled trends in order to assess the
significance of the trends for the original variables. As pointed out in the Intergovernmental Panel on
Climate Change’s (IPCC) Fifth Assessment Report there is no physical reason for the time series to have
a linear behaviour in time [45]. Apart from the linear trend analysis, the Mann-Kendall (MK) test [46],
which evaluates the existence of monotonic upward or downward trends, were implemented on the
standardised anomalies. According to [46] the test relies upon the calculation of the following quantity:

S =
n−1

∑
j=1

n

∑
i=k+1

sgn
(

xi − xj
)
, (1)

In (1) n represents the number of points in each of the time series of standardised anomalies, and

sgn
(

xi − xj
)
=

⎧
⎪⎨

⎪⎩

−1 i f xi < xj
0 i f xi = xj
1 i f xi > xj

(2)

For n ≥ 10 (which is the case here) the normal approximation test is used, for which the value of
the statistic Z is defined as

Z =

⎧
⎪⎪⎨

⎪⎪⎩

S−1√
VAR(S)
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0 i f S = 0
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In (3) VAR(S) stands for the variance of S, defined as VAR(S) =[
n(n − 1)(2n + 5)− ∑

q
p=1 tp

(
tp − 1

)
(2n + 5)

]
/18 with q and tp being the number of tied groups and

the number of values in the p − th group, respectively [46]. Positive and negative values of Z indicate
upward and downward trends, respectively. The value of (3) is compared against the critical value Zc

of a normal distribution, which depends upon the choice of the level of significance (e.g., Zc = 1.96 for
a level of significance of 95%). The results of the trend analyses are presented in the next section.

3. Results

3.1. SO2 Trends

3.1.1. PBL

Seasonal SO2 linear trends in the PBL are shown in Figure 2. Pixels with a significant trend are
cross-hatched. Trend calculations were not carried out for grid cells that had at least one missing value.
This is particularly relevant at the higher latitudes of the study region where the number of missing
values is remarkable. Skipping the trend calculation in these cases avoids the estimation of potential
spurious trends that may arise from time series with missing values at the beginning or the end of the
study period. This is the reason why some panels of the figure show a lowermost blank latitudinal
band, most notably in the JJA one (and consequently in the Q one) owing to polar night effects. Each
of the panels was built using the same scale. Trends in the PBL range from −1.375 to 2.825 DU
decade−1, disregarding the season. Trends in the Q time series are smoother, ranging from −0.50 to
1.50 DU decade−1 (Figure 1a). Only 42 pixels (out of 10,686 analysed) have a significant linear trend.
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Significant positive trends occur in central SA, to the east of the Democratic Republic of the Congo
(COD), and over Vanuatu (VUT), and significant negative trends were seen in north-eastern Papua
New Guinea (PNG). The significant positive trends in eastern COD and over VUT, approximately
of 1 DU decade−1 and 0.30 DU decade−1, respectively, are in line with an increase in annual SO2

emissions in the 2012–2014 period when compared with the 2005–2007 biennium [24]. Eastern COD
has the largest concentration of significant adjoining points. Nyiamuragira and Nyiragongo are the
two active volcanoes in the region that contribute to the emissions [47], the latter ranking among
Africa’s most active volcanoes [48] and classified as a “Decade” volcano [49]—i.e., a volcano that was
particularly selected for studies due to its proneness to cause natural disasters. The significant negative
trends in PNG are also in agreement with the existing literature, with several volcanoes contributing to
these figures [50]. Overall, the hemispheric average trend (HAT) is just below 0.08 DU decade−1 if all
10,686 analysed points are considered, but it experiences a tenfold increase—to 0.80 DU decade−1—if
only the 42 pixels with a significant trend are included. In both cases these figures are in contradiction
with the IPCC’s predicted decrease in SO2 concentrations within the century [51].

Linear trends for the DJF quarter are shown in Figure 2b; they range from −0.80 to 2.60 DU
decade−1. The number of analysed pixels is 13,982 with only 62 of them showing a significant linear
trend. Like in the Q case, the HAT including only these points is much stronger (0.57 DU decade−1)
than that obtained by averaging the entire set of grid cells (0.07 DU decade−1). As in Figure 2a, eastern
COD shows a significant positive trend (of the order of 0.60 DU decade−1 in this case), whereas
northern PNG shows a significant negative trend (approximately −0.60 DU decade−1). Two new
regions with a significant linear trend that were not present in Figure 2a appear over the eastern Indian
Ocean, yet they are negligible when compared with the trends found over the continents. Overall, the
region that has the largest increase in significant values occurs in SA, particularly over north-western
Argentina (ARG) where the trends are in the order of 0.30 DU decade−1. Trends in MAM (Figure 2c)
range from −0.60 and 1.50 DU decade−1. The number of points with a significant trend reduces to
40 (out of 13,030 analysed pixels) with the location of them restricted to eastern COD and SA. Linear
trends in the former region are in the order of 1 DU decade−1 on average. As to SA, positive and
negative significant values occur: the most positive trends were over the south-eastern Brazilian coast
(around 1.30 DU decade−1) while the most negative values (of the order of −0.30 DU decade−1) were
located approximately over the southernmost portion of the Province of Buenos Aires (ARG). Once
again, the HAT estimated only using the pixels that have a significant value (0.90 DU decade−1) is ten
times greater than that using the entire set.

The season that has the maximum number of grid cells with a significant trend is JJA, accounting
for 75 of them (out of 11,802 points) (Figure 2d). The HAT calculated using the significant points only
is −0.14 DU decade−1 but it reverses the sign and is approximately seven times weaker when the
entire domain is used to estimate it. The two regions with significant values are the same that were
present in MAM, but with the one in SA including a largest portion of their pixels with a significant
trend in the South Atlantic coasts. Regarding eastern COD, the trend is again positive and in the order
of 2 DU decade−1, the strongest one for the season. However, the most dramatic effect occurs in the
eastern coasts of SA, where pixels having negative trends account for the majority of the significant
points, with an average trend of −0.60 DU decade−1. The number of pixels with a significant trend
in SON accounts for 55 (out of 12,130) (Figure 2e). They consist of a single pixel in northern PNG
(−0.70 DU decade−1) and the rest of them in central SA, spanning the 20◦S–40◦S latitudinal band, with
negative trends off the coast (approximately −0.60 DU decade−1 on average) and positive ones over
the landmass. Significance in eastern COD vanishes in this season. The strongest positive values in
central SA are in the order of 1 DU decade−1; they take place in central Chile (CHL), where Santiago
(SCL), one of Latin America’s most polluted cities [52,53] is located. The dispersion of pollutants in
central CHL is hindered by the presence of inversion layers associated with anticyclonic conditions,
the effect of which can be seen in the trends across all the seasons and even in the Q case. However,
if these subsidence-related inversions are a cause of the strongest SON trends there they are not the
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only cause since these inversions are not more frequent during SON but span the entire year [52,53].
The HAT—considering the significant trends only—is almost 0.60 DU decade−1; this value is more
than eleven times greater than that estimated using all the points.

Figure 2. Linear trends (background colours) for the SO2 seasonal concentrations in the planetary
boundary layer (PBL) (in DU decade−1) for (a) Q, (b) December, January, February (DJF), (c) March,
April, May (MAM), (d) June, July, August (JJA), and (e) September, October, November (SON).
Significant trends are cross-hatched. The level of significance is 95%. Pixels that had at least a
seasonal missing value were not included in the analysis.
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3.1.2. TRL, TRM and STL

Unlike the SO2 concentrations in the PBL, the linear trend analysis revealed significance at none
of the pixels for the SO2 seasonal concentrations in the TRL, TRM and the STL. Figures 3–5 show
these non-significant linear trends in the SO2 seasonal concentrations in the TRL, the TRM and the
STL, respectively. These trends are expressed in DU century−1 in view of their weakness. They range
from −3.60 to 8.90, −1.51 to 8.24, and −1.35 and 5.15 DU century−1 in the TRL, the TRM and the
STL, respectively.

The most extreme linear trends in the TRL occur in JJA both for the positive and the negative
values (Figure 3). The former ones occur in eastern COD (around 8 DU century−1 on average) and
the latter ones take place in the South Atlantic Ocean (SAO) off the Brazilian coasts (in the order of
−3 DU century−1 on average). In the case of the Q time series (Figure 3a) the number of pixels with
a significant monotonic trend is 619 (out of 10,325) split into 555 and 64 for upward and downward
trends, respectively (Table 1). These points do not extend beyond 42.5◦S, and they are distributed
as follows: 388 between 0◦S and 20◦S (i.e., the tropical band), 227 for the 20◦S–40◦S band (i.e., the
subtropical band), and just 4 in the 40◦S–60◦S band (i.e., the high-latitude band). Furthermore, there
are regions with a relatively small amount of these pixels, most notably northern Amazonia (NAM),
the eastern Tropical Pacific off the coasts of Ecuador and Peru (PER), and the SAO. By contrast, there
are regions that have a large concentration of such points, most notably the eastern Pacific off the
coasts of northern CHL and southern PER, all of them with an upward trend, and northern PNG, with
grid cells exhibiting a downward trend.

Table 1. Number of pixels with a significant monotonic trend (not necessarily linear) for the SO2

seasonal concentrations in the lower troposphere (TRL).

Latitudinal Band Q DJF MAM JJA SON

0◦S–20◦S 388 387 298 379 359
20◦S–40◦S 227 573 387 454 382
40◦S–60◦S 4 159 98 56 62

Total upward 555 921 480 314 602
Total downward 64 198 303 575 201

Total analysed pixels 10,325 13,490 12,706 11,551 11,693

The number of grid cells with a monotonic trend for the DJF time series increases to 1119 (out
of 13,490) with 387, 573 and 159 of them filling the tropical, the subtropical and the high-latitude
bands, respectively (Table 1). Furthermore, 921 (198) of these points are associated to an upward
(downward) trend. The south Pacific and the south Atlantic oceans between 45◦S and 60◦S are the two
most notable regions that are empty of these pixels (Figure 3b). On the other hand, the region with
a greater number of contiguous points showing a monotonic downward trend is northern PNG; in
contrast, the points with an upward trend seem to be evenly distributed across the Atlantic and the
Pacific basins. Regarding the MAM time series, the number of pixels that have a trend is 783 (out of
12,706); 298, 387 and 98 occur in the tropical, the subtropical and the high-latitude bands, respectively
(Table 1). The number of pixels with an upward (downward) trend is 480 (303). The most notable
feature of this season is the dipole that is present in SA, with pixels showing a positive trend occurring
in central SA and pixels with a negative trend located off the coasts of ARG. On the other hand, points
with a significant monotonic trend at high latitudes are almost void in the south Pacific and the south
Atlantic oceans (Figure 3c); these regions coincide with the void areas present in the DJF case.
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Figure 3. Linear trends (background colours) for the SO2 seasonal concentrations in the lower
troposphere (TRL) (in DU century−1) for (a) Q, (b) DJF, (c) MAM, (d) JJA, and (e) SON. Red and
blue arrows mark the pixels that have a significant monotonic upward and downward trend (not
necessarily linear), respectively. A level of significance of 95% was set. As in Figure 2, pixels whose
time series had at least a seasonal missing value were not included in the analysis.
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Figure 4. As in Figure 3 but for the SO2 seasonal concentrations in the middle troposphere (TRM). Q,
DJF, MAM, JJA and SON figures are shown in panels (a–e), respectively.
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Figure 5. As in Figure 3 but for the SO2 seasonal concentrations in the upper troposphere and the lower
stratosphere (STL). Q, DJF, MAM, JJA and SON figures are shown in panels (a–e), respectively.

The JJA time series record 889 pixels (out of 11,551) with a significant monotonic trend, with the
most number of them lying in the subtropical belt (454), followed by the tropical and the high-latitude
bands with 379 and 56, respectively (Table 1). There are no pixels in such condition beyond 46.5◦S.
Even though north of this latitude all regions seem to be fairly populated, these points are particularly
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dense in the eastern coast of SA and over the Atlantic, where there is a large region with pixels having
a downward trend (Figure 3d). Actually, JJA is the only season that is dominated by points with such
a characteristic and, in general, the subtropical (tropical) band seems to include the majority of the
points with a downward (upward) trend. As for the SON quarter, the number of grid cells with a
significant trend is 803 (out of 11,693), with the tropical and the subtropical bands including almost
the same number (359 and 382, respectively), and the high-latitude band including the remainder
with a count of just 62 (Table 1). In addition, three quarters of these pixels have an upward trend.
The largest concentration of points with a monotonic trend takes place over central SA where the
trends are upwards (Figure 3e).

The non-significant linear trends for the seasonal SO2 concentrations in the TRM (Figure 4) are
weaker than those in the TRL. The strongest negative values (in the order −1.50 DU century−1) occur in
DJF in north-eastern PNG, while the strongest positive ones (approximately 8 DU century−1) take place
in SON in central BRA. Even though these trends are not significant, the latter result should be taken
with caution as the effect of the SAA might not have been completely removed by the normalisation
that was carried out on the variables, yet other effects cannot be ruled out. Notwithstanding, biomass
burning in Amazonia traditionally peaks in September [54,55], and hotter fires can create their own
convective systems so that the trace gases can be transported well into the higher troposphere ([55]
and references therein).

The number of pixels with a significant monotonic trend in the Q time series is 736 (out of 10,359)
with 666 representing an upward trend and the rest of them exhibiting the opposite trend (Table 2).
The count of grid cells with a trend is greater in the tropical band with more than half of them located
there, followed by the subtropical and the high-latitude bands. For the rest of the seasons the latitudinal
band that has the greatest population of pixels with a significant trend is the subtropical one, followed
by the tropical and the high-latitude bands.

Table 2. As in Table 1 but for the SO2 concentrations in the TRM.

Latitudinal Band Q DJF MAM JJA SON

0◦S–20◦S 439 399 324 394 333
20◦S–40◦S 292 592 396 412 395
40◦S–60◦S 5 148 93 62 66

Total upward 666 956 555 362 592
Total downward 70 183 258 506 202

Total analysed pixels 10,359 13,521 12,725 11,567 11,732

The largest density of pixels with a trend occurs in SA, from the northern coasts of CHL to
southern BRA, extending along northern ARG (Figure 4a). They are associated with upward trends
with the contribution of at least two volcanoes (Isluga in CHL and Sabancaya in PER) [24]. The 70
points that have a downward trend mainly locate over the Atlantic east of BRA, in eastern South Africa,
and in northern PNG. In the last case, the contribution of several volcanoes with decaying activity
in the recent years is documented [50]. On the other hand, NAM is another region with no pixels
showing any trend at all, apart from those in the high latitudes.

The number of points with a significant trend in DJF is 1139 (out of 13,521) with 956 (183) having
an upward (downward) trend. Most of them are distributed across the tropical and the subtropical
latitudes. Apart from the high latitudes, NAM is again the region that has the least concentration of
pixels in that condition, followed by the SAO (Figure 4b). By contrast, the regions that show the higher
density of such pixels coincide with those present in the Q case, i.e., the region between northern CHL
and southern BRA for upward trends and northern PNG for downward trends. Regarding MAM,
the points that have a significant monotonic trend are 813 (out of 12,725) with 555 (258) of them having
an upward (downward) trend. The largest concentration of grid cells showing an upward trend occurs
in the same region than in the Q and the DJF cases, i.e., from central CHL to southern BRA across
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northern ARG. By contrast, the least concentration of points with a trend occurs over the southern
oceans. Unlike the Q and the DJF cases NAM does show points with a significant monotonic trend in
this season, and their trend is upwards (Figure 4c). As to the JJA quarter, 868 pixels (out of 11,567) show
a significant monotonic trend. They are split between 362 (506) points with an upward (downward)
trend. As in the TRL case (cf. Table 1), this makes JJA the only season with the number of pixels having
a downward trend exceeding their upward counterpart. Downward trends dominate the subtropical
latitudes whereas upward trends abound in the tropical latitudes. The region that has the higher
density of points with downward trends is the SAO and these pixels are in conjunction with negative
linear trends that are the season’s strongest negative ones (Figure 4d). In the case of SON, 794 pixels
(out of 11,732) have a significant trend, 592 (202) of them exhibiting upward (downward) trends. Most
of these points are scattered across the tropical and the subtropical latitudes. The region that has a
relative larger concentration of pixels with a significant monotonic trend is the same as in the Q case,
i.e., the region that extends from the northern coasts of CHL to southern BRA across northern ARG,
conjoined with positive linear trends (Figure 4e).

The non-significant linear trends for the SO2 seasonal concentrations in the STL are shown in
Figure 5. These linear trends are also expressed in DU century−1. They range from −1.35 to 5.15 DU
century−1 considering individual points. The regions that have the average strongest positive and
negative linear trends are Amazonia (approximately 4.40 DU century−1) and northern PNG (around
−1.30 DU century−1), respectively, both in the SON quarter.

The count of pixels with a significant monotonic trend in the Q time series is 619 (out of 10,379),
split between 495 and 124 for the upward and the downward trends, respectively (Table 3). Most
of these points are distributed across the tropical latitudes, followed by the subtropical and the
high-latitude bands. As with the previous layers, the higher number of points with a significant trend
shifts from the tropical to the subtropical band for the rest of the seasons. The location of the most
concentration of points with upward and downward trends in the Q case is similar to that of the TRM’s
counterpart (Figure 5a, cf. Figure 4a).

Table 3. As in Table 1 but for the SO2 concentrations in the STL.

Latitudinal Band Q DJF MAM JJA SON

0◦S–20◦S 339 345 304 368 280
20◦S–40◦S 270 502 393 417 367
40◦S–60◦S 10 140 84 65 68

Total upward 495 768 487 300 450
Total downward 124 219 294 550 265

Total analysed pixels 10,379 13,554 12,734 11,590 11,747

Regarding the DJF time series, the number of grid cells with a significant trend is 987 (out of
13,554), with 768 (219) of them exhibiting an upward (downward) trend. The highest density of
points with an upward monotonic trend occurs over central ARG and CHL; this region is associated
with upward linear trends. On the other hand, the location of the highest concentration of pixels
with a downward trend is once again northern PNG and they are conjoined to negative linear trends
(Figure 5b). As to MAM, the count of points with an upward (downward) trend is 487 (294), out of a
total of 12,734. The location that has the most concentration of pixels with an upward trend in this
season seems to replicate the DJF’s one, yet with a thin zonal line of disruption across approximately
30◦S; the higher density of points with a significant downward trend occurs in the SAO east of the
Argentine coasts. In both cases these pixels are in compliance with their corresponding linear trends
(Figure 5c). The matter concerning the downward trends is more exaggerated in JJA where these pixels
span a much larger region than in the MAM’s case (Figure 5d). As before (cf. Tables 1 and 2), JJA is
the only season with the number of points having a downward trend exceeding that with an upward
trend (Table 3). Concerning the SON quarter, the count of points with a significant trend stands at
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715 (out of 11,747), split into 450 (265) with an upward (downward) trend. The regions that have the
largest concentration of pixels with and upward and downward trends coincide with the ones in the Q
counterpart and they are in correspondence with their linear trends (Figure 5e).

3.2. NO2 Trends

The linear trends for the seasonal time series of Trop and Strat NO2 concentrations and the
pixels that show a monotonic upward or downward trend for the standardised anomalies of the same
variables are shown in Figures 6 and 7, respectively. As with the SO2 seasonal concentrations in most
of the layers of the atmosphere all these linear trends are not significant across the analysed seasons
both in the Trop and the Strat. In the former layer the linear trends range from −3.25 to 2.50 DU
century−1 (Figure 6) and they are weaker in the latter layer, ranging from −1.184 to 0.363 DU century−1

(Figure 7).
Unlike the SO2 case the number of pixels with a monotonic upward trend in the Trop is the

dominant characteristic in all the seasons (Figure 6), with the maximum number of them (7954 out of
8095) taking place in the Q time series (Table 4)—they are largely concentrated in the subtropical and
high-latitude bands over the oceans. On the other hand, MAM is the season that shows the largest
number of pixels exhibiting a monotonic downward trend, with these points being mainly distributed
across the tropical latitudes but with a large concentration of them also taking place in southern SA
(Figure 6c). Despite this, grid cells with an upward trend are by far the most dominant in all the
seasons. These results are quite in agreement with an overall increase in the global tropospheric NO2

concentrations in the recent years [56]. The regions exhibiting positive and negative monotonic trends
in all the seasons are in correspondence with the linear trends shown at these locations. According
to [57] the months of maximum NO2 concentrations over central SA/Amazonia, southern Africa and
northern Australia (AUS) take place in the SON quarter. There are pixels with a significant monotonic
trend in these regions within the specified season, with southern Africa and large portions of central
SA/Amazonia exhibiting upward trends and northern AUS exhibiting downward trends; the presence
of downward trends in western Amazonia is noteworthy as well (Figure 6e). The upward trends are
evidence that the emissions in the corresponding regions increased in the analysed period, and the
converse situation occurs for the downward trends, most notably in northern AUS. Unfortunately, no
further links of this kind can be established for the rest of the seasons as much of the maximum NO2

concentrations in the SH take place during SON.
The lack of previous research covering the topics dealt with in our paper does not permit direct

comparison at a hemispheric scale. However, trends for tropospheric NO2 concentrations were
presented at major urban agglomerations in the SH [26]. According to Figure 6a the monotonic upward
trends in Lima and SCL are in qualitative match with the results presented in [33] as they are in Jakarta
and Sydney for a downward trend, whereas they do not match in Buenos Aires, Johannesburg, San
Pablo and Rio de Janeiro, as the monotonic trends at these cities are not significant. The case of Sydney
is interesting since Figure 6a shows that the only pixel with a significant downward trend in the region
is located at this city.

The fact that the standardised seasonal NO2 Strat concentrations time series have no pixels with
a monotonic upward trend for any of the analysed seasons is the most striking feature of this paper.
The Q time series have the least number of points exhibiting a downward trend with a count of just 70
(Table 5) that are located in the subtropical latitudes (Figure 7a). This number increases to 6042 for
DJF with most of these pixels distributed across the subtropical and the high-latitude bands but with
blanks in several zones, most notably in the southern SAO (Figure 7b). MAM is the season that has the
largest number of pixels with a monotonic trend with a count of 10,292, most of them beyond 20◦S
with a noticeable blank region at high latitudes south of AUS (Figure 7c). A feature of the Q, the DJF
and the MAM time series is that there are virtually no points with upward linear trends. This is not
the case for JJA and SON (Figure 7d,e, respectively) whose count of pixels with a monotonic trend
reduces dramatically to 1168 and 372, respectively.
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Figure 6. As in Figure 3 but for the seasonal concentrations of NO2 in the troposphere (Trop). Q, DJF,
MAM, JJA and SON figures are shown in panels (a–e), respectively.
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Figure 7. As in Figure 3 but for the seasonal concentrations of NO2 in the stratosphere (Strat). Q, DJF,
MAM, JJA and SON figures are shown in panels (a–e), respectively.
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Table 4. As in Table 1 but for the NO2 concentrations in the Trop.

Latitudinal Band Q DJF MAM JJA SON

0◦S–20◦S 1455 792 650 938 1630
20◦S–40◦S 3382 1883 1575 1031 3144
40◦S–60◦S 3258 1641 1715 1838 2459

Total upward 7954 4108 3472 3461 7054
Total downward 141 208 468 346 179

Total analysed pixels 17,280 17,280 17,280 17,280 17,280

Table 5. As in Table 1 but for the NO2 concentrations in the Strat.

Latitudinal Band Q DJF MAM JJA SON

0◦S–20◦S 0 47 1338 0 0
20◦S–40◦S 70 3179 5172 48 8
40◦S–60◦S 0 2816 3782 1120 364

Total upward 0 0 0 0 0
Total downward 70 6042 10292 1168 372

Total analysed pixels 17,280 17,280 17,280 17,280 17,280

4. Discussion

The prevailing meteorological conditions were briefly mentioned as a cause of SCL being a
pollution-prone city. These conditions, along with other factors (such as topography) may conspire to
make other regions of the world as polluted as, or even more polluted than, SCL, either seasonally
or on an annual basis. Notwithstanding, the degree of relationship between concentrations and
emissions is in general not as straightforward as this example suggests. This can be figured out from
the trends observed in remote areas over open waters of the SH where there are no sources and the
pollutants owe their existence to atmospheric transport. The number of research efforts devoted
to identifying different linkages between the concentration of pollutants and the meteorological
conditions is on the rise in both hemispheres, but they are more numerous in the Northern Hemisphere
due to a number of factors that include this hemisphere having a large number of megacities, and
therefore the highest concentration of regions with strong industrial activity. Even though the areas
closer to the sources of pollutants (natural or anthropogenic) are expected to be the most affected by
the emissions, the local and regional meteorology, the general circulation [58,59] and the chemistry
should be considered altogether in order to establish the spatial extent of the influence and the actual
concentrations. Recently, a study carried out for China found that the discrepancy in the relative
values of the emissions and the SO2 concentrations in the lower troposphere owing to a change in
local meteorological conditions can represent up to 20–30%. Under the same scenario, the deviations
from a linear relationship linking the emissions and the columnar concentrations can be up to 50% [60].
A similar study for the NOx regarding trends showed that meteorology may account for up to a
30% difference in emission/concentration differences [61]. More generally, the characteristics of the
emissions—e.g., increase or decrease over time, seasonality—combined with a global warming scenario
that leads to the alteration of the meteorological conditions may have an impact on the evolution
of the concentrations and hence on the observed trends. The expansion of the tropical belt, the
intensification of the Hadley Cell (HC) and the strengthening of upper tropospheric jets (UTJs) are part
of the meteorological aspects of the global warming scenario that may play a role in the distribution of
these pollutants, thereby modulating their concentrations across both hemispheres.

This work focused on the SH. The count of analysed pixels across all the seasons covered the
entire study region for the NO2 concentrations both in the troposphere and in the stratosphere. This
was not the case for the SO2 concentrations in the different analysed atmospheric layers owing
to missing data. Our results show that there is a marked seasonality in the characteristics of the
linear and non-linear trends over the SAO for the SO2 concentrations, and in the sub-tropics and the
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mid-latitudes for the NO2 concentrations. In particular, both the linear and the non-linear trends in the
SO2 concentrations—and to a lesser extent in the NO2 concentrations—over the SAO exhibit a general
reversion in their condition in JJA with respect to the rest of the seasons (including the Q case), from
upward to downward.

As mentioned above, the overall features in the global distribution of the seasonal SO2

concentration trends can be at least partly interpreted by recalling some components of the large-scale
circulation and their evolution in the recent years. A noteworthy distinction of these trends is the
absence of significance in the linear trends in NAM in Figure 2 and in the monotonic non-linear trends
in the same region in Figures 3–5, for the Q case as well as for the DJF and the SON seasons in all
these sets of figures. This can be due to the effects of the HC’s ascending branch, whose vigorous
vertical currents remove the specie from the equatorial latitudes and deposits it in the descending
regions, located around 30◦S on average, where the concentration of significant trends is considerable.
Taking into account the described mechanism, the upward trends found in the sub-tropical latitudes
of SA can be attributed to two distinct effects: (a) increasing emissions and (b) intensification of the
HC. The intensification of the HC has been proven in [62] and it is present in different reanalysis
datasets from 1979 through 2009. It is a plausible explanation for what is observed, provided the
intensification of the HC is also valid within our study period. Although not statistically different from
zero, the background linear trends in NAM shown in Figures 3–5 are worth mentioning as they are
consistent with a removal of this specific pollutant there. Grid cells with a significant positive non-linear
trend in SA reach their southernmost position in DJF in concordance with the descending branch
of the HC occupying its most poleward position during the summer months [62]. This agreement
reinforces the intensification of the HC as a plausible mechanism for the latitudinal distribution of
the observed trends. The poleward extent of the HC depends upon a number of land-sea contrast
parameters—most notably the meridional temperature gradient—and moisture content [63] and so
does the southernmost position of the significant trends. The relationship is complex, however, since
the expansion of the tropical belt seems to have a dependence on the state of some modes of variability
of the coupled atmosphere/ocean system, which in turn seems to depend on the concentration of
anthropogenic aerosols [64]. The study of SO2 concentrations in the SH is particularly important to this
topic considering the effects SO2 has on ozone depletion and the role played by the polar stratospheric
ozone depletion in driving the widening of the tropical belt [65,66].

The importance of the UTJs to synoptic processes is that they drive the location of the storm tracks
through baroclinic instability, but they also play a role acting as waveguides or inhibiting the poleward
transport of wave activity [67], therefore interfering with the meridional circulation described above.
The latitudinal distribution of the trends can be partly ascribed to the semi-horizontal transport of the
pollutants away from their sources aided by the UTJs and redistributed by the eddy perturbations they
contribute to create. UTJs are stronger in the winter hemisphere [68] thus creating more favourable
conditions for baroclinic perturbations to develop. Generally speaking, the widening of the tropical belt
implies an intensification (weakening) of the polar (subtropical) UTJ in DJF, and the converse situation
takes place for JJA, i.e., the subtropical (polar) UTJ experiences a strengthening (weakening), yet the
regions exhibiting significance are much more reduced [68]. Particularly over SA, the subtropical
UTJ shows upward linear trends in both seasons [68] and this feature can be used to easily interpret
the linear trends in PBL SO2 concentrations for JJA (Figure 2d). Indeed, a strengthened UTJ has the
potential to create more intense storm tracks, and the region in the SAO concentrating the downward
trends is located in one of the most cyclogenetic regions of the SH, particularly during JJA [67].

The clockwise rotation of these low pressure systems removes the pollutants from the oceanic
regions and accumulates them east of the Andes so that the positive trends there are also in agreement
with this mechanism. Regarding the non-linear downward trends, the highest concentration of them
in the SAO during JJA (Figures 3d, 4d and 5d) may respond to a chemical process combined with
the aforementioned changing atmospheric conditions. The oxidation of SO2 in the troposphere is
at its maximum in the winter months [69]. Furthermore, due to its high aqueous solubility [70],
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the production of sulphates via in-cloud oxidation of SO2 has been reported to be important [71,72].
The intensification of the subtropical UTJ in the SAO region from central SA to southern Africa during
JJA impact on both the frequency and the strength of the storm tracks there, with both characteristics
expected to increase, leading to more cloudiness and hence more proneness to in-cloud oxidation of
the SO2. Upward trends in the column of integrated water vapour content over the oceans in most
of the regions of interest [45] are in concordance with the proposed mechanisms. The strengthening
of the subtropical UTJ is also seen in the southern Indian Ocean from southern Africa to AUS [68],
and the neighbouring regions exhibit non-linear downward trends in SO2 concentrations as well.
A similar situation is also observed over New Zealand. There are no reasons for not to consider the
same meteorological mechanisms for the NO2 trends. Concerning this particular pollutant, significant
downward trends are generally closer to the landmasses—i.e., closer to the emission sources when
compared with their SO2 counterparts. This may respond either to an actual reduction in the emissions
or to the fact that NO2 has a lifetime of a few minutes against photolysis, leading to the generation
of O3 [73], another tropospheric pollutant. In general, both NO2 and SO2 react with OH in polluted
atmospheres, leading to the production of acids—it actually constitutes the dominant loss mechanism
for NOx and the removal is much more efficient for the NOx species than it is for the SO2 [70].
The benefits of having a downward trend in both SO2 and NO2 concentrations at certain regions may
be only apparent, as their reduction may imply these two compounds are oxidising and leading to the
potential formation of acid rain.

5. Conclusions

The seasonal standardised anomalies of sulphur dioxide (SO2) and nitrogen dioxide (NO2)
concentrations in different layers of the atmosphere were analysed for linear and non-linear trends in
order to address the behaviour of these two pollutants in the context of a changing climate. The studied
region was the Southern Hemisphere (SH) between the Equator and 60◦S, the analysed period was
2004–2016, and Ozone Monitoring Instrument (OMI) data was used for both gases. To the best of
our knowledge this is the first time the characterisation of non-linear trends was carried out in the
entire SH. Standardisation was carried out as a twofold purpose: to remove (or at least attenuate)
the known influence of the South Atlantic Anomaly in OMI data and to homogenise the datasets
in the entire domain. On the one hand, linear trends were estimated and statistically tested. This
procedure was carried out on the standardised anomalies of seasonal SO2 concentrations in the
planetary boundary layer (PBL), the lower troposphere (TRL), the middle troposphere (TRM) and
the upper troposphere and the lower stratosphere (STL), and NO2 concentrations in the troposphere
(Trop) and the stratosphere (Strat), for the austral summer (DJF), autumn (MAM), winter (JJA) and
spring (SON) time series, as well as for the quarterly (Q) time series. The obtained linear trends for the
standardised anomalies were converted so that the trends for the original time series could be informed.
On the other hand, non-linear trends were estimated for the series of standardised anomalies by means
of the Mann-Kendall test and it was assessed whether the grid cells had a significant monotonic
upward or downward trend.

The main findings of this paper can be summarised as follows. The SO2 concentrations show
significant linear trends in the PBL only, but just a few pixels located mainly over the landmasses
display such behaviour. The location of such pixels and their trends are in general in agreement with
the existing literature. Even though an important number of grid cells in the TRL, the TRM, and the
STL do not have significant linear trends, they exhibit significant monotonic upward or downward
trends depending upon the region and the seasons considered, both over the landmasses and in remote
regions over the oceans. A noteworthy feature is that JJA shows a large number of points with a
downward trend in all the layers, while the opposite holds for the rest of the seasons. Concerning
the NO2 concentrations, no significant linear trends were found either in the troposphere or in the
stratosphere, but the former (latter) layer shows monotonic upward (downward) trends. Results are in
agreement with a general increase in NO2 and SO2 emissions in the recent years [74,75] but they are
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not in accordance with the predicted emissions for these two gases within the different scenarios of
climate change for the current century. The presence of trends in remote areas of the hemisphere away
from the sources (which are mostly located in the landmasses) suggests that the general circulation
combined with local processes—both subject to climate change—and chemistry play an important role
in the transport and the spatial distribution of these pollutants. The statistic used to test the significance
of the monotonic upward or downward trends revealed different degrees of non-linearities but the
exact types of these non-linear evolutions were not addressed. The determination of the most suitable
function to fit will likely help in further understanding the way the concentrations of these two gases
will behave in the future. This is a matter for future investigation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/9/891/s1.
Figure S1: Loop of standardised anomalies of PBL SO2 concentrations in DJF. Significant values are cross-hatched;
the number of them is shown in parenthesis. The level of significance was set to 95%.
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Abstract: We performed measurements of SO2 emissions with a high UV sensitive dual-camera
optical system. Generally, in order to retrieve the two-dimensional SO2 emission rates of a source, e.g.,
the slant column density of a plume emitted by a stack, one needs to acquire four images with UV
cameras: two images including the emitting stack at wavelengths with high and negligible absorption
features (λon/off), and two additional images of the background intensity behind the plume, at the
same wavelengths as before. However, the true background intensity behind a plume is impossible
to obtain from a remote measurement site at rest, and thus, one needs to find a way to approximate
the background intensity. Some authors have presented methods to estimate the background behind
the plume from two emission images. However, those works are restricted to dealing with clear sky,
or almost homogeneously illuminated days. The purpose of this work is to present a new approach
using background images constructed from emission images by an automatic plume segmentation
and interpolation procedure, in order to estimate the light intensity behind the plume. We compare
the performance of the proposed approach with the four images method, which uses, as background,
sky images acquired at a different viewing direction. The first step of the proposed approach involves
the segmentation of the SO2 plume from the background. In clear sky days, we found similar results
from both methods. However, when the illumination of the sky is non homogeneous, e.g., due to
lateral sun illumination or clouds, there are appreciable differences between the results obtained by
both methods. We present results obtained in a series of measurements of SO2 emissions performed
on a cloudy day from a stack of an oil refinery in Montevideo City, Uruguay. The results obtained with
the UV cameras were compared with scanning DOAS measurements, yielding a good agreement.

Keywords: UV cameras; SO2 emissions rates; DOAS; plume segmentation

1. Introduction

The development of remote sensing systems based on ultraviolet (UV) cameras for gas detection
in the atmosphere has been growing in recent years. Focus has been primarily on the quantification of
volcanic sulphuric dioxide (SO2) emissions, and more recently, on emissions from industrial sources.
Since the pioneering work of Mori and Burton [1] and Bluth et al. [2], several studies (Burton et al. [3])
and intercomparisons (Kern et al. [4]) have been performed on volcanic emissions and fumarolic fields
(Tamburello et al. [5]). The use of UV cameras has the advantage of providing images with high spatial
and temporal resolution, providing more information in a single reading than other techniques, such as
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scanning methods with similar outputs (two dimensional SO2 map) like Imaging Differential Optical
Absorption Spectroscopy (IDOAS) [6]. Some issues concerning UV cameras have been discussed in
the literature, for example, light dilution effects (Mori et al. [7], Campion et al. [8]), calibration issues
(Lübcke et al. [9]), image corrections (e.g., vignetting and others effects), and the selection of different
system parameters (Kantzas et al. [10], Kern et al. [11]). Further, with a similar approach using images
acquired at different wavelengths, water fluxes from volcanic plumes can be quantified (Pering et al. [12]).

This technique was more recently employed for monitoring anthropogenic SO2 emissions to the
atmosphere from sources such as power plants, oil refineries or, more broadly, any industrial stack,
provided these are strong enough to overcome the detection limit. A low-cost design (Wilkes et al. [13])
of this kind of systems helps to reach that objective. Those emissions have been largely studied
with scanning methods based on Differential Optical Absorption Spectroscopy (DOAS) (Platt and
Stutz [14]), including stationary ground based measurements with multi axis—DOAS (MAX-DOAS)
(Rivera et al. [15], Frins et al. [16]), and mobile measurements (e.g., Rivera et al. [17], Frins et al. [18]).
Consistent results are obtained between the emission rates found by the application of those methods
and data obtained from in situ devices, validating these techniques.

In comparison with the large amount of work on volcanic plumes, few measurements of
anthropogenic sources have been performed with UV cameras. Early studies were carried out by
McElhoe and Conner [19], Dalton et al. [20]. More recently, Smekens et al. [21] have remotely measured
emissions from a coal-burning power plant using an UV SO2 camera system, obtaining good agreement
with data provided by sensors located within the stacks. Further, a SO2 camera system to measure
ship emissions was used by Prata [22].

Some specific problems may arise when UV cameras are used to quantify emissions of
anthropogenic sources. For example, typical industrial emissions have lower concentration of SO2

than volcanoes, so the detection limit plays an important role. Also, the acquisition of a SO2-free
(clean) reference image for an accurate retrieval can sometimes be complicated, due to the landscape
surrounding the stacks, both in industrial environments or volcanoes. To solve this, a great effort to
obtain the background images is required, as discussed below. Furthermore, in systems consisting of
two cameras, pixels with the same coordinates in both cameras do not necessarily correspond to the
same spatial point. Thus, it is necessary to find a correlation between the two images, prior to applying
any evaluation method.

A method to obtain background images is by pointing the UV cameras to an emission-free
sky region, which is especially troublesome on cloud days. Some authors (see [4,10,21]) have also
presented methods to estimate the background behind the plume from two emission images. However,
most of those works are restricted to deal with clear sky or almost homogeneously illuminated days.
The method proposed by Smekens et al. [21] deserves special attention. They apply a polynomial fit to
the sky images that include the SO2 plume. Then, a transmittance image is calculated by taking the
ratio between the original image and the polynomial approximation. Finally, applying an iterative
thresholding procedure, they intend to extract (segment) the plume region. On cloudy days, however,
the sky image could present spurious structures, similar to the ones appearing in the plume image, so
the described procedure does not always allow distinguishing between plume and clouds.

In the present paper, we describe a new (non-iterative) procedure to estimate the intensity
background behind the plume, before light has traversed it. Thus, instead of four images (two images
of the SO2-plume and two images of the background), only images of the plume are necessary. The first
step of the proposed method involves the segmentation of the SO2-plume from the emission images,
by taking the ratio between the (raw) sky images at two specific wavelengths, λon and λoff, where the
SO2-absorption cross-section is significantly different (see below). This approach is efficient in locating
the plume region still under cloudy conditions. The second step consists of a polynomial interpolation
procedure to estimate the light intensity behind the plume.

The purpose of this work is to present our new two-image method (2-IM) that uses background
images constructed from the emission images, and to compare its performance with the four-images
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method (4-IM), which uses as background sky images acquired at a different viewing direction relative
to the emission images.

We tested the 4-IM and 2-IM approaches by performing measurements of SO2-emissions from
a stack of an oil refinery placed in Montevideo City, Uruguay. The optical system used consists of two
ultraviolet sensitive cameras provided with narrow band UV filters, which can simultaneously acquire
two images at different wavelengths. Considerations on image processing and system detection limits
are discussed. We also compared the results with MAX-DOAS measurements.

In the next section, the basics of the measurement techniques are presented. The experimental
setup and results are discussed in Sections 3 and 4, respectively. Conclusions are presented in Section 5.

2. SO2-Emission Retrieval with UV-Cameras

2.1. Radiative Transfer Considerations

Based on the Lambert-Beer law, the light reaching a detector after passing through a certain air
mass (e.g., a plume containing several trace gases and aerosols) can be expressed as:

I(λ) = I0(λ) exp

{

−
[

∑
k

σk(λ)
∫

ck(l) dl

]

−
∫

εs(λ, l) dl

}

(1)

where λ is the wavelength, I(λ) and I0(λ) are the light intensities after and before traversing the air
mass, respectively, σk(λ) is the absorption cross-section of the k-th gas species present in the air mass,
ck(l) its concentration, and l denotes the optical path inside the air mass. εs is the scattering extinction
coefficient due to aerosols present in the air mass. Equation (1) is valid as long as the aerosol load is
low enough to ensure single scattering processes.

When using UV cameras, I(λ) and I0(λ) are represented by images filtered by the instrument
function of the optical system. These images will be denoted as I(λ,i,j) and I0(λ,i,j), respectively, where
(i,j) are pixel coordinates. Roughly, we can say that I(λ,i,j) is an image (at wavelength λ) of the gas
emission, while I0(λ,i,j) is an image of the background intensity before light traverses the plume.

In the following, we will assume that there is only one absorbing trace gas species, specifically
SO2, and we will consider two specific wavelengths: λon is chosen in the spectral range where the
SO2-absorption cross-section is high, and λoff lies as close as possible to λon, but the SO2-absorption
cross-section is almost negligible. In this work, λon is ~310 nm and λoff is ~330 nm (the full detail can
be seen in Section 3.2).

From (1), the optical depths at these wavelengths are:

ln
(

I0(λon, i, j)
I(λon, i, j)

)
= σSO2(λon)

∫
cSO2(l) dl +

∫
εs(λon, l) dl (2)

and

ln

(
I0(λo f f , i, j)
I(λo f f , i, j)

)

=
∫

εs(λo f f , l) dl (3)

To describe Mie scattering at λon,off, it is assumed (see e.g., [14], Section 4.2):

εs(λon, l)
εs(λo f f , l)

=

(
λo f f

λon

)α

(4)

where α is the Angström exponent.
Then, from (2) and (4), the cumulative optical depth due to the SO2 absorption along the optical

path reaching the pixel (i,j) will be:
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τSO2(i, j) = σSO2(λon)
∫

cSO2(l) dl
= ln

(
I0(λon ,i,j)
I(λon ,i,j)

)
− ∫ εs(λon, l) dl

= ln
(

I0(λon ,i,j)
I(λon ,i,j)

)
−
(

λo f f
λon

)α∫
εs(λo f f , l) dl .

(5)

Substituting (3) into (5), we obtain an expression for the SO2 optical depth:

τSO2(i, j) = ln
(

I0(λon, i, j)
I(λon, i, j)

)
+

(
λo f f

λon

)α

ln

(
I(λo f f , i, j)
I0(λo f f , i, j)

)

(6)

In the particular case when one assumes that in the volume of interest (e.g., a plume) no aerosols
are present, one has εs(λoff,l) = 0, and then:

I(λo f f , i, j) = I0(λo f f , i, j) (7)

And thus, expression (6) reduces to:

τSO2(i, j) = ln
(

I0(λon, i, j)
I(λon, i, j)

)
(8)

In general, however, four images are necessary for retrieving a 2D-map of the cumulative SO2

optical depth (τSO2), as shown in Equation (6). Two of them, I(λon/off,i,j), are images of the emission of
a certain source, e.g., images of the plume of a SO2-emitting stack, and the other two, I0(λon/off,i,j), are
images of the background.

In the example of a plume emitted by a stack, the background images should be images of the
light intensity behind the plume, which are impossible to acquire from a remote site in the presence
of the plume. The typical way (see e.g., [9,11]) of acquiring background images is by changing the
viewing direction to obtain plume-free images of the sky, as schematically illustrated in Figure 1.
In practice, this could mean a 90◦ change in looking direction.

Figure 1 depicts a broad panorama of the region to be considered. The region delimited by the
dashed red lines allows obtaining the emission images, while the region delimited by the dashed green
lines allows obtaining the emission-free background images. Henceforth, this imaging procedure will
be called the four-image method (4-IM).

The procedure described above works well if the illumination in the background viewing direction
is approximately equal to that in the plume direction, since the light reaching the cameras depends on
the solar zenith and azimuth angle, assuming no clouds are present. Additional posterior corrections
could be necessary, according to user criterion, for example, subtracting a constant offset from the
image as proposed by Mori and Burton [1].

In order to reduce the number of images needed to retrieve the SO2 map (τSO2) from Equation (6),
in the following section we propose constructing plume-free background images (I0(λon/off,i,j)) through
an interpolation from a portion of emission free sky available in the two emission images I(λon/off,i,j).
Henceforth, this approach will be called the two-image method (2-IM).
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Figure 1. Typical procedure for obtaining the required four images in the four-image method (4-IM).

2.2. 2-IM Approach: Artificial Background Generation

Since the optical system consists of two cameras for acquiring images at different wavelengths,
pixels with the same coordinates in both cameras do not necessarily correspond to the same spatial
point. Thus, prior to applying any evaluation method (2-IM or 4-IM), the process starts with an image
pre-processing for establishing a correspondence between pixels of different cameras. This starts with
the subtraction of the dark current images. After that, a binary segmentation is performed in order
to keep the same shapes at both wavelengths, i.e., stacks. Then, a 2D cross correlation is made to
obtain the correspondence between pixels in the images acquired by both cameras. All these steps are
performed in an automatic way.

For the sake of simplicity, to build the artificial background images (I0(λon/off,i,j)), we will assume
that the plume moves almost horizontally and the light intensity on each side of the plume (immediately
above and below) is similar to that directly behind the plume, and that the plume cross section is small
in comparison with the whole image. We will model the background as:

I0(λ, x, y) = p(λ, x, y) (9)

where (x,y) is a Cartesian coordinate system (with x and y along the horizontal and vertical direction,
respectively). p is a low degree (e.g., third to fifth degree) polynomial matching the sky intensity on
each side of the plume and filling the gap in the region inside it, as schematically illustrated in Figure 2
(the procedure described above could be applied when the plume moves in any arbitrary direction.)

The procedure to build artificial background images through polynomial fitting requires
processing the emission images I(λon/off,i,j). The first step is to know the position of the plume in
the images. To do this, we compute the quotient I(λon,i,j)/I(λoff,i,j). The intensity quotient on the
plume is smaller than in the surrounding sky, due to the SO2 absorption at λon. Thus, this operation
does not alter the contrast between plume and background, and eliminates clouds structures because
they are present in both wavelengths. After that, a global thresholding is performed, and the result is
labelled by connecting neighbour pixels with 8-connectivity, i.e., a pixel z with coordinates (i,j) and its
8 adjacent neighbors that fulfil the condition to have the same image values as z. These two conditions,
location and value, determine if the pixel belongs to the “neighbors vicinity with 8-connectivity” or
not, defining and labelling each simply connected region (Gonzalez and Woods [23]). Thus, the plume
is obtained by selecting the region with the larger number of labels.

Our automatic (and non-iterative) plume segmentation approach could be useful when large
numbers of images have to be processed.

Once the plume is segmented from the images I(λon/off,i,j), we take vertical profiles at horizontal
separations of one pixel. For every vertical profile without plume, a low-order polynomial fit (filling
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the gap) is applied, as illustrated in the inlet of Figure 2. This generates a sheet that approximates the
background at the position of the plume. A more detailed description of the procedure is given in
Section 4.

Figure 2. Scheme of the procedure for generating artificial background images in the two-image
method (2-IM).

The dashed curve in the inlet of Figure 2 depicts a vertical intensity cut across the plume, while
the solid curve illustrates the polynomial fit needed to generate the artificial background images.
The fitting procedure allows estimating the light intensity behind the plume.

3. Materials and Methods

3.1. Site Description

We tested our approach by observing SO2 emissions as a by-product of fossil fuel combustion
of an oil refinery located north of the Montevideo Bay (34◦52′10′′S, 56◦13′21′′W). The complex has
an area of approximately 1 km2, as shown in Figure 3. From outside the plant, one can observe two
stacks from which SO2-emissions were identified (green marker in Figure 3).

 

Figure 3. Measurement site (yellow marker), stack (green marker) and oil refinery facility, marked with
green outline.
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The measurement site (yellow marker in Figure 3) was selected by taking into account the
(southern) wind direction. Its location (approximately 850–900 m east from the source) was chosen
to be as close as possible to the stack, in order to reduce light dilution effects. The camera system
was oriented looking to western direction, so the viewing direction was perpendicular to the plume.
Trees and buildings present in the camera’s field of view were filtered out before starting the evaluation
process. During measurement time, only scattered radiation (not direct sun light) reached the cameras.

3.2. UV Cameras: Image Acquisition and Pre-Processing

We used a pair of Alta U6 cameras developed by Apogee Instruments. The cameras have a CCD
(model KAF-1001E, 1024 × 1024 pixels, 24 × 24 μm pixel size), with response in the spectral range of
300–1100 nm, and a quantum efficiency of approximately 10–30% at 310 nm and 330 nm, respectively.
Two Coastal Optics telescopic quartz lenses of 105 mm focal length, and two 25 mm diameter
interferometric filters from Asahi Spectra, were mounted in front of each camera. The measured
central wavelengths were (λon) 310 nm and (λoff) 331 nm, with Full Width at Half Maximum (FWHM)
of 10 nm and 9 nm, respectively.

The filter transmission curves and the SO2 cross section (Vandaele et al. [24]) are shown in Figure 4.
In order to avoid light from lateral directions that could reach the CCD at different wavelengths
compared with the central one, each filter was positioned between the lens and the camera detector [11]
using custom adapters to fit the filter and the F-mount lens. The focal length of the zoom lenses and
their apertures were manually set to obtain the desired image exposure.

Figure 4. Normalized SO2 absorption cross-section (green) (from [24]), and normalized filter
transmittances obtained in laboratory measurements.

The cameras were fixed side by side to a solid aluminum track, both looking in the same direction.
Thus, the acquisition system (two cameras) simultaneously captures the current state of the emission
without mechanical movement of the filters. In order to fully control the acquisition process and ensure
raw images, a software in C++ language was written to allow communication between the cameras
and PC, setting and controlling the internal temperature of the system and acquiring the images.

Since the acquisition system used in the present work consists of two cameras, we developed
an algorithm to establish the correspondence between the pixels of one image and the other. The first
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step is a binary segmentation of the images acquired by the two cameras. In this way, we obtained new
images with the stack position without the plume. Then, we proceed to make a 2D cross correlation in
order to find the pixels shifts, and construct a transformation matrix with the information to match the
pixels of both cameras. Objects with approximately the same pixel coordinates at different distances
from the observation site may have a pixels mismatch. If this distance is of the order of kilometers, the
pixel mismatches could be low and it would not need the matching procedure at all.

4. Results and Discussion

On 26 March 2015, between 10:46 and 12:04 local time, we acquired several hundred pairs of
images of the plume emitted from a stack of the oil refinery with the UV cameras, as described in
Section 3.1. We adapted the exposure times in order to acquire images under different illumination
levels due to changes in the solar zenith angle (SZA). The exposure times were selected in the range of
400 to 600 ms, and 200 to 450 ms, for 310 and 330 nm, respectively. This was done in order to obtain
a good SO2 signal, which corresponds to 60–80% of the intensity saturation level. Longer exposure
times are required for the camera with the 310 nm band pass filter, due to the low intensity of the solar
radiation and low quantum efficiency of the CCD at this spectral region. The internal temperature
of the cameras was set to 10 ◦C. After the emission observations, the entrance optics was blocked in
order to acquire dark current images and correct them before the evaluation process. Figure 5 shows
an example of a pair of raw images I(λ310,i,j) and I(λ330,i,j).

Figure 5. Example of raw images I(λon/off,i,j) at λon = 310 nm (left image) and at λoff = 330 nm (right
image) of a plume observed on 26 March 2015. The dark overlaps in the corners of the images are
caused by the filter position in the optical systems. The cameras used are designed for 50 mm diameter
lens, so we adapted the system to place the 25 mm diameter filters, causing a small reduction in the
effective area of the CCD.

Then, we established correspondence between the pixels of the raw images I(λon/off,i,j), as
described in Section 3.2, and a spatial low-pass filtering was performed to remove some small artifacts
from the images. Afterwards, we performed the quotient I(λon,i,j)/I(λoff,i,j) and selected a working
region enclosing plume and sky to both sides of the plume, disregarding trees and image borders
(Figure 6a). By thresholding and labelling (Gonzalez and Woods [23]), we located the plume spatial
distribution (Figure 6b). Due to the low-pass filtering and the posterior thresholding operation, the
region occupied by the plume looks a little broadened, but this involves only a few pixels which do
not affect the final results (emission rate calculation).
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Figure 6. (a) Quotient I(λon,i,j)/I(λoff,i,j) expressed in arbitrary units; (b) Image obtained after the
process of thresholding and labelling. The region marked with light blue correspond to the plume,
obtained by selecting the region with the major number of labels.

As a next step, the region occupied by the plume was removed (segmented) from the images
I(λon/off,i,j) (see Figure 7a,b). Then, we took vertical profiles at horizontal separations of one pixel,
For every vertical profile without plume, a fifth-order polynomial fit (filling the gap) was applied that
generated a sheet that approximates the background I0(λon/off,i,j), as mentioned in Section 2.2 (see inlet
in Figure 2). This procedure is shown in Figure 8.

Figure 9a,b shows the generated artificial background images I0(λ310,i,j) and I0(λ330,i,j) resulting
from the procedure described above. It is important to mention that the artificial background does not
need to be recalculated each time. We want to retrieve an emission map, as long as the illumination
conditions (or clouds) do not change. If this is not the case, i.e., clouds behind the plume move rapidly,
in order to minimize the error in the retrieval process, the artificial background should be generated
for each set of images.

On the other hand, Figure 10a,b shows background images acquired by changing the viewing
direction (~70◦ to the left of the stack), as required by the 4-IM method. Clearly, the background images
acquired by varying the viewing direction do not match with the artificial background generated by
the 2-IM procedure.

Figure 11 shows the subtraction between the background acquired changing the viewing direction
and the background derived from the fitting process for each wavelength. Clearly, it can be seen
different structures due to the clouds.

Figure 7. Images I(λon/off,i,j) with the plume removed. (a) λon = 310 nm; (b) λoff = 330 nm.
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Figure 8. Segmented plume and vertical profiles resulted for images acquired at: (a) 310 nm; (b) 330 nm.
In (c,d), the marked vertical profiles without the plume are shown, together with the results of the
applied polynomial fit.

Figure 9. Artificial background sky. (a) I0(λ310,i,j); (b) I0(λ330,i,j).

Figure 10. Background images acquired on 26 March 2015 by changing the viewing direction (4-IM
method) to the left of the stack, as illustrated in Figure 1, acquired at: (a) 310 nm; (b) 330 nm.
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Figure 11. Result of the subtraction of background obtained by the 4-IM and 2-IM procedures:
(a) 310 nm; (b) 330 nm.

In order to retrieve a two-dimensional map of optical depth τSO2(i,j) (alternatively, the differential
slant column density, dSCD, derived after a calibration procedure), in a first approximation, we will set
(λoff/λon)α ≈ 1 in Equation (6).

Illustrative examples of the two-dimensional emission maps obtained from Equation (6) by
using the 2-IM approach are presented in Figure 12a in false colour—SO2-free sky (i.e., zero
SO2-concentration) is depicted in dark blue and high SO2-concentration is depicted in red as shown
in the scale on the right. The plots in Figure 12b show vertical intensity cuts (optical depth τSO2(i,j))
across the plume at different horizontal positions.

Figure 12c shows the result obtained by the 4-IM method starting from the same raw images as
before (Figure 5), but now by using the background images shown in Figure 10a,b. Figure 13 shows
other examples of two-dimensional maps of SO2 optical depths obtained from Equation (6) using the
2-IM and 4-IM approaches.

Figure 12. (a) Result of SO2 differential optical depth retrieval by the 2-IM method: two-dimensional
map of SO2 optical depth obtained from Equation (6) using the artificial background shown in
Figure 8a,b. (b) Vertical cuts of the plume at different horizontal positions (e.g., the red line indicates a
vertical cut at the position of the horizontal pixel number 200). (c) Result of SO2 differential optical depth
retrieval by the 4-IM method: two-dimensional map of SO2 optical depth obtained from Equation (6)
using the background shown in Figure 9a,b. (d) Vertical cuts of the plume presented in (c) at different
horizontal positions.
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(A) (B) (C) 

Figure 13. Examples of two-dimensional maps of SO2 optical depths obtained from Equation (6) for
a cloudy day (26 March 2015). (A) results obtained by applying the 2-IM (red and green profiles);
(B) results obtained by applying the 4-IM (magenta and black cuts). (C) vertical cuts at different
horizontal positions of the plumes shown in (A) and (B) plotted in the same color as the cuts.

The comparison of Figures 12 and 13A with Figure 13B clearly show that the retrieved SO2 optical
depths obtained from both methods are quite different when clouds are present. For example, the
artificial sky derived from applying the 4-IM procedure appears inhomogeneous and shows a large
amount of spurious SO2 optical depth outside the emitting plume. Meanwhile, the artificial sky
obtained using the 2-IM procedure appears homogeneous and shows an optical depth near to zero as
expected. Also, the peak values of the SO2 optical depth at the plume are overestimated by the 4-IM
method in a magnitude of 25–30%, with respect to the 2-IM ones.

4.1. Calibration and Detection Limit

In order to calculate the actual value of the SO2-emission rate of the stack, the two-camera system
requires calibration. For the purposes of the present work, however, calibration plays a secondary role,
since the relative performance comparison between 2-IM and 4-IM approaches can be done in terms of
SO2-optical depth.

In order to estimate the SO2-density [ppm.m] from the measured optical depth (τSO2(i,j)),
we performed calibration measurements using SO2-calibration cells containing 94, 480, 985 and
1740 ppm.m. After a linear fitting procedure, we estimate that a SO2-density of the order of
800 ppm.m corresponds to a value of τSO2(i,j) ≈ 0.3, which results from the linear calibration curve
τSO2(i,j) = (3.7299 × 10−4) τSO2(i,j) [ppm.m]. The calibration was performed on a clear day (with
a cloud-free sky).

The calibration uncertainty can be estimated by performing a characterization during different
days and sky conditions (e.g., SZA and presence of clouds). We found that under different conditions,
around midday, the calibration changes at most 20%.
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The resulting optical depth (applying the 2-IM method) at image areas outside the plume will
be considered as noise, for example, the rapid fluctuations outside the plume region in the plots in
Figures 12 and 13C. We estimated the detection limit of our measurements through the standard
deviation of the noise, as discussed in [4]. For the measurements performed on 26 March, the estimated
detection limit was 47.5 ppm.m. This confirms that our system works well in conditions of relatively
low emissions of industrial stacks.

4.2. Emission Rate Calculation

Assuming that the trace gases of the plume are transported at wind speed, the SO2-flux can be
calculated through the expression (Frins et al. [25]):

ΦSO2 = n̂ · →v R ∑
i

SSO2(αi)Δαi (10)

where
→
v is wind speed, R the distance to the plume in the viewing direction, n̂ is the normal to the

plume cross-section, and SSO2 is the SO2 differential slant column density at the elevation angle αi
(in the interval of width Δαi).

Error sources in the emission rate calculation are due to: (1) uncertainties in the wind speed;
(2) uncertainties in the determination of differential slant column densities, and (3) uncertainties in the
determination of distance to the plume.

The wind direction was estimated by visual inspection of the plume, while the wind speed was
estimated, on average, at 24.6 km·h−1, derived from the movement of plume features in successively
captured images. This, and other methods to determine the plume speed, has been used in similar
systems [21], and by ground based measurements with a single [26] or multiple spectrometers [27].
It should be mentioned that optical flow methods are accurate speed estimation tools, especially for
turbulent plumes [28]. We estimate an uncertainty of approximately 10% due to the wind speed.
The error in the slant column density is partially due to the calibration process, and its estimated value
is in the order of 4%. Potential errors derived from radiative transfer effects like light dilution were
ignored, since we are dealing with distances to the plume in the order of 850–900 m (Kern et al. [29]).

Finally, the distance between plume and observation site was estimated with the help of Google
Earth, and its uncertainty was approximately 10% (estimated considering small changes by the wind
direction). Thus, taking into account all the aforementioned uncertainties, we found an estimated error
in the order of 20% in the emission rate. Certainly, the total error estimation will depend on the method
utilized for generating the background, but it is difficult to quantify a priori its order of magnitude.

It is important to mention that for the calculation of emission rates, the crude SCDs obtained by
the 4-IM procedure could not be utilized without—at least—a previous convenient compensation of
the non-uniform intensity distribution in the picture. Thus, the results of the estimations of emission
rates by the 4-IM procedure shown in Figure 12c,d and Figure 13B require some caution.

This problem practically does not occur in the 2-IM procedure, because the artificial background
images are extracted from the proper emission images by applying a polynomial fit. Therefore, when
some cloudiness is present in the sky, the construction of the background images utilizing the 2-IM
method could produce a better retrieval of emissions, than by the 4-IM-method of pointing the camera
in a different direction.

For the 2-IM procedure, emission rates between 162 ± 36 kg·h−1 and 626 ± 140 kg·h−1 were
obtained. On average, an emission rate of 329 ± 74 kg·h−1 was obtained. Figure 14 shows the results
for the emission rates quantified by both methods. It is clear that the flux derived by 4-IM method
is overestimated (the emission rate for this method was computed after a manually correction of the
offset that is shown in Figure 13C), showing a dynamic behavior along the measurement time. This is
due to the changing of background conditions due to the presence of clouds. On the other hand, the
2-IM method shows an approximately constant behavior, coherent with the assumption of a constant
work regime of the facility.

320



Remote Sens. 2017, 9, 517

Figure 14. Comparison of the SO2 emission rates obtained by the 2-IM (black squares) and 4-IM (red
dots) methods.

4.3. Comparison with MAX-DOAS Measurements

In order to validate the SO2 fluxes obtained using the 2-IM approach, we simultaneously
performed measurements with a MAX-DOAS instrument (Hoffmann Messtechnik GmbH) from
the same location where the cameras were placed. The instrument includes an Ocean Optics USB2000+
spectrometer, with a spectral range between 317 and 465 nm. The resolution varies in the range of
0.45–0.65 nm, and has a full field of view of approximately 0.8 degrees. The internal temperature of the
instrument was set to 10 ◦C before starting the measurements, and we acquired a dark current and
offset spectrum for correction at the end of the day.

To perform these measurements, the MAX-DOAS instrument was set to acquire spectra with an
acquisition time of 30 s in a loop routine of elevation angles from 0◦ to 20◦ in 1◦ steps, 45◦, and finally
a zenith measurement, which was later used as reference in the DOAS evaluation. The whole plume
cross section was completely scanned three times. During the measurements, the wind speed was
24.2 km·h−1 (derived from the images) and the sky was covered with clouds.

For the calculation of slant column densities, the WINDOAS software (Fayt and van Roozendael [30])
was used. For the SO2 analysis, the SO2-cross section at 294 K (Vandaele et al. [24]), O3 at 243 K
(Bogumil et al. [31]), HCHO (Meller et al. [32]), NO2 (Vandaele et al. [33]), a synthetic Ring spectrum
calculated using DOASIS software (Kraus [34]), and a fourth degree polynomial were included.
The analysis window was set between 317 nm and 335 nm. Once the SO2 slant column densities at
different elevation angles crossing the plume were obtained, we proceeded to obtain the corresponding
SO2 emission rates.

With the MAX-DOAS instrument, were measured SO2-emission rates between 265 ± 59 kg·h−1

and 382 ± 85 kg·h−1. On average, we obtained an emission rate of the order of 315 ± 41 kg·h−1, which
is consistent, within the experimental error, with the SO2-emission rate of 352 ± 77 kg·h−1 obtained by
the 2-IM procedure.

5. Conclusions

In this work, we presented a new approach that uses background images constructed from
emission images by an automatic segmentation and interpolation procedure to estimate the light
intensity behind plumes. We also compared its performance with the four images method, which uses
as background sky images acquired at a different viewing direction. Unlike other methods published
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in the literature (e.g., [21]), we focus our efforts to present a non-iterative approach that locates the
plume region in an acceptable way, trying to minimize user intervention.

We demonstrated that, even when clouds are present, the SO2 emission rate derived by the
2-IM approach agrees, within the experimental error, with the results obtained by the MAX-DOAS
measurements. This is not the case for the 4-IM approach due to spurious non-homogeneities in the
images, which resulted from the comparison of different cloud structures. As can be observed in
Figure 14, the 2-IM method provides an emission rate that varies in the range of 160–626 kg·h−1, while
the 4-IM method primarily varies between 400 and 1500 kg·h−1, in the same period of observation.
The results obtained by 2-IM, agrees with the MAX-DOAS observation, which was on average in the
order of 352 kg·h−1.

It is important to note that, for evaluating emission rates by using the 2-IM procedure, two images
less are needed than by the 4-IM method, which requires moving the cameras from their original
position pointing in a new direction. As this direction selection is not always representative of the
background, and also depends on the personal discretion of the user, it could lead to different results.

The 2-IM approach has the advantage that the cameras are always at rest pointing in direction of
the SO2-emitting source, which is a necessary condition for acquiring an image sequence (i.e., a video)
with the purpose of studying its temporal evolution. On the contrary, in the 4-IM procedure, the need
of mechanical movement of the cameras may be a drawback in dynamical situations (e.g., background
illumination changes due to the variation of the solar zenith angle, displacements of clouds behind the
plume) in which the emissions and lighting conditions are changing with time.

Under stationary clear sky conditions, appreciable differences in the results obtained by both
methods should not be expected. However, the change of viewing direction in the 4-IM approach also
changes the relative sun position, which may lead to a kind of spatially variant offset in the emission
results that should be corrected.

The 2-IM procedure requires certain additional software tasks, in comparison with the 4-IM.
However, the computational cost is not relevant if we perform the image processing by, for example,
using a GPU. The main assumptions of the 2-IM approach is that the light intensity on each side of the
plume (right and left in case of a vertical plume, and above and below in the case presented here) is
similar to that directly behind the plume, and that the plume cross section is small in comparison with
the whole image.

Acknowledgments: This work was funded by the Comisión Sectorial de Investigación Científica (CSIC, UdelaR,
Uruguay), Programa de Apoyo a las Ciencias Básicas (PEDECIBA) and Agencia Nacional de Investigación e
Innovación (ANII). Erna Frins acknowledges funding by the L’Oreal National Award for Women in Science.
Also, we would like to thank Tom. D. Pering and two anonymous referees for their comments and improving
the manuscript.

Author Contributions: Matías Osorio, Erna Frins and José A. Ferrari conceived the ideas, performed the
experiments, and wrote the manuscript. Álvaro Gómez provided image processing expertise knowledge.
Nicolás Casaballe and Gastón Belsterli helps in the field measurements and data evaluation. Miguel Barreto helps
to design the experiment. All authors contributed to the analysis and discussion of the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mori, T.; Burton, M. The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in
volcanic plumes. Geophys. Res. Lett. 2006, 33. [CrossRef]

2. Bluth, G.J.S.; Shannon, J.M.; Watson, I.M.; Prata, A.J.; Realmuto, V.J. Development of an ultra-violet digital
camera for volcanic SO2 imaging. J. Volcanol. Geotherm. Res. 2007, 161, 47–56. [CrossRef]

3. Burton, M.; Prata, F.; Platt, U. Volcanological applications of SO2 cameras. J. Volcanol. Geoterm. Res. 2015, 300.
[CrossRef]

4. Kern, C.; Lübcke, P.; Bobrowski, N.; Campion, R.; Mori, T.; Smekens, J.F.; Stebel, K.; Tamburello, G.;
Burton, M.; Platt, U.; et al. Intercomparison of SO2 camera systems for imaging volcanic gas plumes.
J. Volcanol. Geotherm. Res. 2015, 300, 22–36. [CrossRef]

322



Remote Sens. 2017, 9, 517

5. Tamburello, G.; Kantzas, E.P.; McGonigle, A.J.S.; Aiuppa, A.; Giudice, G. UV camera measurements of
fumarole field degassing (La Fossa crater, Vulcano Island). J. Volcanol. Geotherm. Res. 2010, 199. [CrossRef]

6. Bobrowski, B.; Hönninger, G.; Lohberger, F.; Platt, U. IDOAS: A new monitoring technique to study the 2D
distribution of volcanic gas emissions. J. Volcanol. Geotherm. Res. 2006, 150, 329–338. [CrossRef]

7. Mori, T.; Kazahaya, K.; Ohwada, M.; Hirabayashi, J.; Yoshikawa, S. Effect of UV scattering on SO2 emission
rate measurements. Geophys. Res. Lett. 2006, 33. [CrossRef]

8. Campion, R.; Delgado Granados, H.; Mori, T. Image-based correction of the light dilution effect for SO2

camera measurements. J. Volcanol. Geotherm. Res. 2015, 300. [CrossRef]
9. Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J.M.; Vogel, L.; Zielcke, J.; Delgado

Granados, H.; Platt, U. On the absolute calibration of SO2 cameras. Atmos. Meas. Tech. 2013, 6, 677–696.
[CrossRef]

10. Kantzas, E.P.; McGonigle, A.J.S.; Tamburello, G.; Aiuppa, A.; Bryant, R.G. Protocols for UV camera volcanic
SO2 measurements. J. Volcanol. Geotherm. Res. 2010, 194, 55–60. [CrossRef]

11. Kern, C.; Kick, F.; Lübcke, P.; Vogel, L.; Wöhrbach, M.; Platt, U. Theoretical description of functionality,
applications, and limitations of SO2 cameras for the remote sensing of volcanic plumes. Atmos. Meas. Tech.
2010, 3, 733–749. [CrossRef]

12. Pering, T.D.; McGonigle, A.J.S.; Tamburello, G.; Aiuppa, A.; Bitetto, M.; Rubino, C.; Wilkes, T.C. A novel and
inexpensive method for measuring volcanic plume water fluxes at high temporal resolution. Remote Sens.
2017, 9, 146. [CrossRef]

13. Wilkes, T.C.; Pering, T.D.; McGonigle, A.J.; Tamburello, G.; Willmott, J.R. A Low-Cost smartphone
sensor-based UV camera for volcanic SO2 emission measurements. Remote Sens. 2017, 9, 27. [CrossRef]

14. Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy—Principles and Applications. In Physics of
Earth and Space Environments; Springer: Berlin/Heidelberg, Germany, 2008.

15. Rivera, C.; Mellqvis, J.; Samuelsson, J.; Lefer, B.; Alvarez, S.; Patel, M.R. Quantification of NO2 and SO2

emissions from the Houston Ship Channel and Texas City industrial areas during the 2006 Texas Air Quality
Study. J. Geophys. Res. 2010, 115. [CrossRef]

16. Frins, E.; Ibrahim, O.; Casaballe, N.; Osorio, M.; Arismendi, F.; Wagner, T.; Platt, U. Ground based
measurements of SO2 and NO2 emissions from the oil refinery “la Teja” in Montevideo city. J. Phys.
Conf. Ser. 2011, 174. [CrossRef]

17. Rivera, C.; Sosa, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B. Tula industrial complex (Mexico)
emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system.
Atmos. Chem. Phys. 2009, 9, 6351–6361. [CrossRef]

18. Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U. Scanning and mobile
multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo,
Uruguay. Atmos. Environ. 2014, 98, 347–356. [CrossRef]

19. McElhoe, H.B.; Conner, W.D. Remote Measurement of Sulfur Dioxide Emissions Using an Ultraviolet Light
Sensitive Video System. J. Air Pollut. Control Assoc. 1986, 36, 42–47. [CrossRef]

20. Dalton, M.P.; Watson, I.M.; Nadeau, P.A.; Werner, C.; Morrow, W.; Shannon, J.M. Assessment of the UV
camera sulfur dioxide retrieval for point source plumes. Atmos. Environ. 2009, 188, 358–366. [CrossRef]

21. Smekens, J.F.; Burton, M.; Clarke, A. Validation of the SO2 camera for high temporal and spatial resolution
monitoring of SO2 emissions. J. Volcanol. Geotherm. Res. 2015, 300, 37–47. [CrossRef]

22. Prata, A.J. Measuring SO2 ship emissions with an ultraviolet imaging camera. Atmos. Meas. Tech. 2014, 7,
1213–1229. [CrossRef]

23. Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2007.
24. Vandaele, A.C.; Simon, T.C.; Goilmont, J.M.; Carleer, C.M.; Colin, R. SO2 absorption cross section

measurement in the UV using a Fourier transform spectrometer. J. Geophys. Res. 1994, 99, 25599–25605.
[CrossRef]

25. Frins, E.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U. DOAS-measurement of the NO2

formation rate from NOx emissions into the atmosphere. Atmos. Meas. Tech. 2012, 5, 1165–1172. [CrossRef]
26. McGonigle, A.J.S.; Inguaggiato, S.; Aiuppa, A.; Hayes, A.R.; Oppenheimer, C. Accurate measurement of

volcanic SO2 flux: Determination of plume transport speed and integrated SO2 concentration with a single
device. Geochem. Geophys. Geosyst. 2005, 6. [CrossRef]

323



Remote Sens. 2017, 9, 517

27. Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P.J.; Sutton, A.J.; Harris, A.J.L.
Accurately measuring volcanic plume velocity with multiple UV spectrometers. Bull. Volcanol. 2006, 68,
328–332. [CrossRef]

28. Peters, N.; Hoffmann, A.; Barnie, T.; Herzog, M.; Oppenheimer, C. Use of motion estimation algorithms for
improved flux measurements using SO2 cameras. J. Volcanol. Geotherm. Res. 2015, 300, 58–69. [CrossRef]

29. Kern, C.; Deutschmann, T.; Vogel, L.; Wöhrbach, M.; Wagner, T.; Platt, U. Radiative transfer corrections for
accurate spectroscopic measurements of volcanic gas emissions. Bull. Volcanol. 2009, 72, 233–247. [CrossRef]

30. Fayt, C.; van Roozendael, M. WinDOAS 2.1, Software User Manual, Belgian Institute for Space Aeronomy,
Brussels, Belgium. Available online: http://bro.aeronomie.be/WinDOAS-SUM-210b.pdf (accessed on
22 May 2017).

31. Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.;
Bovensmann, H.; Frerick, J.; et al. Measurements of molecular absorption spectra with the SCIAMACHY
pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the
230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [CrossRef]

32. Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde
between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. 2000, 105, 7089–7101. [CrossRef]

33. Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colins, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.;
Coquart, B. Measurements of the NO2 absorption cross-sections from 42000 cm−1 to 10000 cm−1

(238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [CrossRef]
34. Kraus, S.G. DOASIS—A Framework Design for DOAS. Ph.D. Thesis, University of Mannheim, Mannheim,

Germany, 2006.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

324



remote sensing 

Article

Attributing Accelerated Summertime Warming in
the Southeast United States to Recent Reductions in
Aerosol Burden: Indications from Vertically-Resolved
Observations

Mika G. Tosca 1,2,*,†, James Campbell 3, Michael Garay 1, Simone Lolli 4, Felix C. Seidel 1,

Jared Marquis 5 and Olga Kalashnikova 1

1 Jet Propulsion Laboratory and California Institute of Technology, Pasadena, CA 91109, USA;
michael.j.garay@jpl.nasa.gov (M.G.); felix.c.seidel@gmail.com (F.S.); olga.kalashnikova@jpl.nasa.gov (O.K.)

2 School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
3 Naval Research Laboratory, Monterey, CA 93943, USA; james.campbell@nrlmry.navy.mil
4 NASA-JCET, University of Maryland, Baltimore Country and NASA Goddard Space Flight Center,

Greenbelt, MD 20771, USA; slolli74@gmail.com
5 University of North Dakota, Grand Forks, ND 58202, USA; jared.marquis@und.edu
* Correspondence: mtosca1@artic.edu
† Current address: School of the Art Institute of Chicago (SAIC), Chicago, IL, USA.

Received: 10 April 2017; Accepted: 26 June 2017; Published: 1 July 2017

Abstract: During the twentieth century, the southeast United States cooled, in direct contrast with
widespread global and hemispheric warming. While the existing literature is divided on the cause of
this so-called “warming hole,” anthropogenic aerosols have been hypothesized as playing a primary
role in its occurrence. In this study, unique satellite-based observations of aerosol vertical profiles are
combined with a one-dimensional radiative transfer model and surface temperature observations
to diagnose how major reductions in summertime aerosol burden since 2001 have impacted surface
temperatures in the southeast US. We show that a significant improvement in air quality likely
contributed to the elimination of the warming hole and acceleration of the positive temperature trend
observed in recent years. These reductions coincide with a new EPA rule that was implemented
between 2006 and 2010 that revised the fine particulate matter standard downward. Similar to the
southeast US in the twentieth century, other regions of the globe may experience masking of long-term
warming due to greenhouse gases, especially those with particularly poor air quality.

Keywords: warming hole; air quality; southeast US; global warming; climate change; aerosols

1. Introduction

During the latter half of the twentieth century, while the globally-averaged surface temperature
increased [1], the southeastern United States (SEUS) experienced cooling [2–4]. Annually-averaged
surface temperature observations calculated from three widely recognized datasets (Figure 1a,
described in Section 2.1) show a warming trend of +0.54 ± 0.30 ◦C century−1 between 1900 and 2008 for
the continental United States, for instance, but a minimal cooling trend of −0.02 ± 0.39 ◦C century−1

in the SEUS (30–35◦ N; 95–80◦ W) (Figure 1b). While this so-called “warming hole” is noted
in the literature, its origin is still unknown, though several recent studies link it to changes in
large-scale convective precipitation [5], low-level circulation [6], decadal swings of the Pacific Decadal
Oscillation (PDO) [7], or interannual variations in tropical Pacific sea surface temperatures [8].
However, recent well-supported hypotheses attribute the warming hole instead to high regional
aerosol emissions [9–13]. In support of this hypothesis, the widespread cooling is thought to have
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persisted most strongly between 1970 and 1990 when the surface concentration of particulate matter
peaked in the SEUS [11,14]. Indeed, observations of net surface solar radiation over the United States
show a corresponding multi-decadal decrease from 1961 through 1990 [15].
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Figure 1. Time series of mean annual temperature anomalies for the southeast US (solid lines; 30–35◦ N,
95–80◦ W) and the continental US (dashed lines; 25–50◦ N, 125–65◦ W). For panel (a), the unique
colors represent three independent gridded temperature datasets–red = Delaware, black = GHCN
and blue = Berkeley; For panel (b), the lines are each respective region’s mean temperature anomaly,
averaged across all three datasets in (a). The trend lines in (b) are linear trends of temperature anomalies
from 1900–2008, with error estimates, calculated using bootstrapping techniques (n = 1000), shown as
the solid shaded regions.

Anthropogenic aerosols can locally cool the climate both directly through their effect on incoming
solar radiation [16,17] and indirectly through their influence on clouds [18–20]. Reflective aerosols
increase the planetary albedo and cool the surface [16], while their indirect modification of cloud
reflectivity and lifetime accomplishes the same effect [21,22]. In general, high aerosol emissions in
the twentieth century are thought to have masked up to a third of continental global warming [23].
Though evidence suggests that anthropogenic emissions of reflective sulfate aerosols in the SEUS
produce a direct local cooling effect [24,25], other research shows that the effect may be more
limited [26], and may induce mesoscale changes to cloud and wind fields that significantly limit
and modify the overall surface temperature effect of aerosols [27,28]. Shindell et al. [29] also
suggest that while inhomogeneous radiative forcing from aerosols produces a wide range of surface
temperature responses in climate models, the strongest sensitivity to this inhomogeneous forcing is in
the extratropical northern hemisphere, including the SEUS. Finally, there is evidence that anthropogenic
global warming also indirectly increases emissions of biogenic aerosol precursors, the presence of
which is likely to further enhance the cooling effect [30]. The sum of these effects suggests that aerosols
have indeed likely played an outsized role in modulating global warming in the SEUS.

Recent work by Attwood et al. [31] and Kim et al. [32] indicates that recent decreases (since
the 1990s) in aerosol concentration in the SEUS have led to increased solar radiation at the surface.
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In seeming contradiction, other studies link increased surface radiation in SEUS to changes in cloud
cover and not aerosols [33]. However, a related study suggests that trends in precipitation, and not
cloud cover, are responsible for recent trends in surface temperatures [34]. Moreover, another study
suggests that neither clouds nor precipitation can fully account for the observed temperature trends in
the SEUS, and that aerosols need to be considered [2]. We also note that Zhang et al. [35] report
an increase in absorbing aerosol optical depth over the continental US during the 21st century,
which occurred in tandem with an overall decrease in total optical depth, suggesting an overall
shift in the species composition of aerosol emissions over the past two decades or so. Here, we present
evidence, using a unique vertically-resolved dataset of aerosol extinction, that aerosols have contributed
to accelerating positive temperature trends in the SEUS since 2001, though they are likely only one
piece of the puzzle. We note that all post-2001 aerosol and temperature trends reported in the text are
statistically significant.

2. Materials and Methods

2.1. Surface Temperature Trend Calculation

We analyzed regional temperature trends using three reliable, high-resolution (≤1◦) gridded
temperature datasets at varying temporal and spatial resolutions: the University of Delaware terrestrial
air temperature time series (http://climate.geog.udel.edu/~climate/html_pages/Global2011/),
available from 1900–2010 at 0.5◦ × 0.5◦ spatial resolution; the Berkeley Earth Land + Ocean dataset
(http://berkeleyearth.org/data/) available from 1750-present at 1◦ × 1◦ spatial resolution; and the
Global Historical Climatology Network (GHCN) CAMS (Climate Anomaly Monitoring System) land
air temperature time series, available from 1948-present at 0.5◦ × 0.5◦ spatial resolution [36]. The
three datasets were chosen because they fit four criteria: high-resolution, gridded, globally-resolved
and publicly available. Additionally, the datasets are widely respected [37] and were all constructed
completely independent from each other. We calculated both least-squares and Theil–Sen linear trends
and estimated the significance using a bootstrapping technique (n = 1000).

2.2. CALIOP Aerosol Retrievals for 2006–2014

We used version 3.01, 3.02, and 3.30 NASA Cloud Aerosol Lidar with Orthogonal Polarization
(CALIOP) Level 2 5-km 532 nm daytime aerosol extinction coefficient data to create summertime-mean
(May–September) vertical profiles at 75 m vertical resolution from data collected for 2006–2014.
As described in Section 3.1, we restricted our study to the summertime because that was when
the warming hole was strongest and when aerosol optical depth was highest. The data were screened
for quality assurance using the rubric described by Campbell et al. [38], which very closely mirrors the
method described by Winker et al. [39] that is formally endorsed by the CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations project development team. However, the following
screening metrics in Campbell et al. [38] improve the robustness of the retrieval method for the
purposes of this investigation. First, no profiles were considered if cloud was observed, so as to
minimize the corresponding signal attenuation impacting the retrieval of aerosol extinction coefficient
in any way. Second, no profiles were considered if the corresponding retrieval failed to resolve aerosol
within 250 m of the surface. Finally, profiles were removed if the retrieval failed to observe any aerosol
(i.e., aerosol optical depth; AOD = 0). This choice was based on personal communication with Travis
Toth (University of North Dakota), and will discussed in a forthcoming publication (which is currently
still in preparation). These restrictions as a whole, however, limit the effects of signal attenuation that
we believe could compromise the averaged solutions off extinction coefficient profile derived for this
study. Approximately 2500 qualifying profiles were averaged each year to construct these profiles.
Averages were solved using a Gaussian weighting function to increase the significance of retrievals
relative to the center of the 5◦ × 15◦ study domain. We further constructed domain-average CALIOP
532 nm aerosol extinction profiles at 75 m vertical resolution corresponding with each of the native
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Level 2 species resolved for use in a radiative transfer model experiment described below. Campbell
et al. [38], among others, characterize CALIOP AOD and its relative accuracy.

We calculated the total aerosol optical depth (AOD) from the CALIOP data by integrating the
extinction coefficient by height. We used atmospheric boundary layer (ABL) data from the ERA
(ECMWF Reanalysis) interim [40] to estimate the mean monthly mid-day (1:00 p.m. local time) ABL.
We calculated above- (and below) ABL AOD by integrating the extinction coefficient for only that
portion of atmosphere that was above (or below) the ERA-estimated noontime ABL height for each
month. We also used satellite AOD measurements from the Multi-angle Imaging SpectroRadiometer
(MISR) instrument [41] (Version 22, Level 3) for comparison and validation.

Though we note that each seasonally-averaged vertical profile contains approximately 2500
unique CALIOP profiles, we acknowledge that the lower spatial (and temporal) coverage may affect
the overall robustness of our analyses, though we anticipate that the overall conclusion to this work is
largely unaffected by these limitations.

2.3. Fu–Liou–Gu Radiative Transfer Model

The aerosol direct effect on radiative forcing is investigated using the Fu–Liou–Gu (FLG)
model [42–45]. The vertical profiles used to force the model were constructed from the CALIOP
data described above and were taken as a mean extinction at each 75 m layer (the mean of
approximately 2500 qualifying profiles per year). An individual profile was created for each aerosol
species defined by CALIOP and then matched with the corresponding species in the FLG model.
To calculate the net radiative forcing and heating rates for each single species extinction profile, the
partial contribution to the total AOD and the value of the species optical depth at each altitude level is
required as input for the model

FLG parameterization uses eighteen different types of aerosols, with single scattering aerosol
properties parameterized through the Optical Properties of Aerosol and Clouds (OPAC) catalog [46,47].
However, for our study, four main aerosol types (as defined by CALIOP) contributed more than 95%
to the total AOD; these were dust (“transported dust” in FLG), polluted continental (“urban” in FLG),
polluted dust (“half urban, half dust" in FLG), and smoke (“black carbon” in FLG). We note the
concerns raised by Burton et al. [48] in resolving polluted dust in the Version 3 Level 2 CALIOP
algorithms, and concede some measurable offset is introduced here when applying the speciated terms
in the manner described. Since we are comparing profiles derived from separate years, however, and
our concern focuses on the relative differencing of forcing calculations between the two, our belief is
that the uncertainty is self-contained overall and the analysis is ultimately reasonable.

According to Gu et al. [46], the FLG also takes into account the effect of water vapor (available from
the standard atmosphere atmospheric profile) on aerosols. We performed two simulations: “pristine”,
where the aerosols were excluded (totally clear conditions) and “total sky”, where the individual
aerosol species were included. We combined these results into two experiments: FULL, which is simply
the “total sky” simulation for each year, and AERO, which is the “total sky” simulation minus the
“pristine” simulation for each year. For both experiments, the US1976 standard summer mid-latitude
thermodynamics profile was used. Use of the standard atmosphere implies that the water vapor profile
was invariant year-to-year. We acknowledge that this is a limitation as water vapor does absorb in
the near infrared and that this could impact our direct radiative forcing measurements. However,
while we recognize this could cause a small error in our calculations, the data suggest that it does not
approach the magnitude of biases derived and discussed or affects the nature of our conclusions.

3. Results and Discussion

3.1. Summertime Warmth Linked to Improved Air Quality

The twentieth century warming hole was especially notable during the summer (Figure 2a)
when anthropogenic aerosol concentrations in the SEUS are highest [49]. Summertime temperatures
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(May–September) in the SEUS decreased by a negligible −0.01 ± 0.35 ◦C century−1 between 1900
and 2008, compared with a substantial +0.99 ± 0.35 ◦C century−1 increase in Western US (35–48◦ N;
125–110◦ W) temperatures during the same time period (Figure 2c). Time series analysis using LOESS
(locally weighted scatterplot smoothing) curve smoothing shows that much of the 20th century
decrease in SEUS summertime surface temperature occurred before 1975, plateauing between 1975
and 1990, and with a slight rebound beginning afterward; indeed, the 1900–1975 trend in SEUS surface
temperature was a robust −0.27 ± 0.25 ◦C century−1 (Figure 3). This period roughly coincided with
the peak in SEUS tropospheric aerosol concentration [14].
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Figure 2. (a) linear trends in summer (May–September) surface temperatures from the Delaware
dataset for 1900–2008 (0.5 degree resolution); (b) linear trends in summer surface temperatures from the
Berkeley dataset for 2001–2015 (one-degree resolution). Stipling indicates statistically significant trends
at 95% confidence; (c) regionally averaged summer surface temperature anomalies for 1850–2015 for
the Southeast US (black) and the Western US (red) (regions defined by boxes in (a,b)). Linear trends for
1900–2008 (dashed lines) and 2001–2015 (solid lines) are noted; (d) summertime surface temperature
and aerosol optical depth (AOD) anomalies for the southeast US for 1990–2015. The 2001–2015 linear
trend is noted by solid lines. Error estimates calculated using the bootstrapping method (n = 1000) are
shown as shaded solids.

In recent years, the summertime warming hole has not only disappeared but reversed
(Figure 2b). The 2001–2015 temperature trend in the SEUS was +0.54 ± 0.52 ◦C decade−1, compared
with +0.18 ± 0.62 ◦C decade−1 in the Western US over the same period. Using the alternative Theil–Sen
linear trend-fitting algorithm [50], the reversal is still notable and significant, with a positive +0.50 ◦C
decade−1 trend in SEUS versus a negative −0.18 ◦C decade−1 trend in the Western US. When only the
most recent decade (2001–2010) is considered, ensuring that the average contains input from all three
primary surface temperature records, the contrast is more striking: +0.69 ± 0.68 ◦C decade−1 in SEUS
and −0.48 ± 0.74 ◦C decade−1 in the Western US.

Contemporary (2001–2015) satellite AOD measurements from the Multi-angle Imaging
SpectroRadiometer (MISR) instrument [41] (Version 22, Level 3) show high summertime aerosol
loading in the SEUS, especially when compared with the Western US where population densities are
lower (Figure 4a). Summertime AOD (from MISR) in the SEUS was, on average, 0.05 to 0.10 greater
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than the long-term annual mean. In contrast, summertime AOD in the Western US was only 0.00 to 0.04
greater during the summer months.

.

Figure 3. Time series of the 1900 to “year” linear trend (least-squares) for each “year” from 1960 to
2015. The green shaded region represents the error estimate (95% confidence) of the linear trend. Note
the negative trends for the time period ranging from 1900 to 1970 through the time period ranging
from 1900 to 2010, and the recent flip to positive trends after 2010.
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Figure 4. Cont.
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Figure 4. (a) summertime (May–September) aerosol optical depth (AOD) averaged for 2001–2015;
(b) the linear trend (2001 to 2015) in summertime AOD. Aerosol data were taken from MISR
(Multi-Angle Imaging Spectroradiometer) Stipling indicates statistically significant trends at 95%
confidence; (c) main: vertical profiles of average summertime (May–September) aerosol extinction
coefficients (km−1) in the southeast US (SEUS) for both 2007 and 2014 calculated using CALIOP (Cloud
Aerosol Lidar Orthogonal Polarization) lidar data. inset: summertime SEUS aerosol optical depth
(AOD) averages for two periods (2000*–2007 and 2008–2014). CALIOP_total = total column AOD from
the CALIOP instrument; CALIOP_elev = only elevated AOD (above the boundary layer) from the
CALIOP instrument and MISR = MISR total column AOD. * For the two CALIOP variables: 2006–2007.

The trend in regionally averaged summertime AOD in the SEUS was −0.05 decade−1 between
2001 and 2015 (Figure 2d, Figure 4b). In contrast, summertime reductions in Western US AOD
were minimal, where they existed at all (Figure 4b). Using a bootstrapping technique for error
calculation (n = 1,000), we estimate that the 14-year reduction in SEUS AOD was statistically significant
(−0.05 ± 0.03). However, a decomposition of the linear trend reveals a sharp drop in AOD between
2007 and 2008. The linear trend from 2001–2007 was near-zero (+0.01 decade−1), and the linear trend
from 2008 to 2015 was insignificantly negative (−0.03 decade−1), suggesting that the majority of the
decrease occurred between 2006 and 2009; indeed, the trend from 2005 to 2010 was −0.16 decade−1.
The smoothed curve, fit using LOESS smoothing techniques (n = 5 years), further illustrates this
sharp transition. We note that an EPA rules change to the Clean Air Act (CAA) National Ambient
Air Quality Standards (NAAQS) for Fine Particulate Matter (PM2.5), implemented beginning in 2006
(Environmental Protection Agency, 40 C.F.R. § 50, 71 FR 2620) corresponds well with the aerosol
changes resolved in the data. The rule lowered the 24-h PM2.5 standard from 65 μg m−3 to 35 μg m−3.
That the timing of this rule and its subsequent implementation matches well with the sudden trend
reversal represents a circumstantial link that may reconcile the observed relationship [51], though we
acknowledge that we have only limited evidence indicating a steep drop in surface-level particulate
matter concentration from 2007 to 2009 for several southeast US stations.

The 2001–2015 AOD decrease in the eastern United States (Figure 4b) coincided with a marked
increase in average surface temperature (Figure 2d). The spatial correlation of AOD decrease and
temperature increase implies that warmer regional temperatures were driven in some manner by
improved air quality. To reconcile this relationship, we used vertical profiles of aerosol extinction
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combined with a one-dimensional radiative transfer model (Sections 2.2 and 2.3) to assess whether the
link could be corroborated quantitatively or was mere coincidental correlation.

Summertime monthly mean profiles of SEUS aerosol light extinction coefficient were derived for
2006–2014 using data from the CALIOP instrument [38] (see Section 2). Similar to our results using
MISR, CALIOP data show significant reductions in aerosol burden even over the shorter 2006–2014 time
series (Figure 4c). More importantly, CALIOP data show that reductions in aerosol burden were not
restricted to the surface layer but persisted as high as 5 km above the surface (though not much higher).
The mean summertime (May–September) aerosol extinction coefficient decreased by an average of
35% from 2007 (the first full year of data) to 2014 (Figure 4c). In fact, the mean integrated AOD above
the ABL was 41% lower (from 0.13 ± 0.00 to 0.07 ± 0.01) during 2008–2014 when compared with
2006–2007. This contrasts with a 26% reduction for the same time period for the entire tropospheric
column (from 0.30 ± 0.02 to 0.23 ± 0.02) (Figure 4c). Furthermore, this decrease was not the result of a
positive trend in ABL height, which can enhance the near-surface contribution to total aerosol loading.
The ERA interim data show that, while the mean summertime regional ABL experiences interannual
fluctuations, the overall trend was neither positive or negative.

Seasonal increases in the amount of secondary aerosols present above the boundary layer in the
summer have been proposed to explain the apparent discrepancies noted between the total column
aerosol burden from satellites and the measured near-surface pollution reported in EPA pollution
measurements [49]. Our data support these findings, but, more notably, the CALIOP data show no
apparent trend in aerosol composition from 2007 to 2014, from the surface through the mid-troposphere,
indicating a continuity in relative airmass physical properties approaching the surface despite an
overall reduction in their relative magnitudes.

3.2. Modeling Results Corroborate Observations

The FLG radiative transfer model was used to estimate the direct effect of these reductions in
aerosol burden on the surface energy budget and column radiative heating profile, and to examine how
that effect compares with the observed temperature trends previously discussed. We forced the model
(see Section 2.3) with observed changes in vertically-resolved, CALIOP-derived aerosol extinction,
broadband surface reflectance from MISR, and standard meteorological conditions, and estimated the
direct radiative forcing of the reduced aerosol burden from 2007 to 2014 at solar noon. We performed
two experiments, which are described in Section 2.3: FULL (direct forcing effect of aerosols) and AERO
(direct forcing effect of aerosols minus a control simulation with no aerosols). Here, we present results
from both, but focus on the FULL simulation.

The observed 35% decrease in CALIOP-measured aerosol extinction between 2007 and 2014
resulted in a 29 W m−2 (30 W m−2 for AERO) increase in solar noon net surface energy flux (Rn,sr f )
(Figure 5, inset). When we consider the respective CALIOP aerosol profiles for every year (2007 to 2014),
the linear trend, which factors in all the intermediate years (2008–2013; see Table 1) in Rn,sr f was
2.3 W m−2 year−1 (2.5 W m−2 year−1 for AERO), which, when multiplied by seven (the number of
years from 2007 to 2014), was less than the 29 W m−2 absolute difference between 2014 and 2007,
but was nevertheless similar. These values are similar to what we derived using an empirical model
generated for a Rayleigh-only atmosphere with a direct and diffuse component and gaseous absorption
and the observed total column change in AOD (−0.09) [52]. Despite being the average for the entire
SEUS, the positive surface energy fluxes also correspond remarkably well with observations from
the Goodwin Creek, MS, USA SURFRAD (Surface Radiation Budget Network) 34.25◦ N, 89.87◦ W;
https://www.esrl.noaa.gov/gmd/grad/surfrad/goodwin.html) surface radiation monitoring station
(Figure 5, inset, Figure 6), which is located in a region of particularly large aerosol reductions
(e.g., Figure 4b), is located outside of urbanized area in an area of representative vegetation, and
is the only SURFRAD site within our region of interest.
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Table 1. Fu-Liou-Gu (FLG) radiative transfer model reported net surface forcing values for each simulation.

Year
Net, Noontime Forcing (W m−2)

FULL AERO

2007 −50.3 460.1
2008 −29.4 480.9
2009 −29.0 483.9
2010 −35.4 477.3
2011 −30.2 483.7
2012 −28.1 484.2
2013 −32.8 478.1
2014 −21.3 490.4

Trend (year−1) +2.30 +2.45
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Figure 5. main: vertical profiles of the difference (2014–2007) in heating rates (thick black line) and
atmospheric temperatures (red and blue lines) in SEUS from the ’FULL’ FLG-RTM (Fu-Lio-Gu Radiative
Transfer Model) model experiment (black line) at solar noon (1800 UTC) and atmospheric sounding
data from Birmingham, AL, USA (dashed lines) and Jackson, MS, USA (solid lines) at 8:00 a.m. local
time (1200 UTC) and 8:00 p.m. local time (0000 UTC). inset: net surface radiation differences (2014
minus 2007) at solar noon from the ‘FULL’ and ‘AERO’ (see Section 2.3) FLG-RTM experiments and the
integrated 1700–1900 UTC average from the Goodwin Creek, MS, USA SURFRAD (surface radiation)
measuring station. Goodwin Creek values were computed by pairing the number of days and the
times so that the intrinsic sampling was identical.

333



Remote Sens. 2017, 9, 674

.

Figure 6. A diurnal time series of average summertime (May–September) direct minus normal surface
radiation received at Goodwin Creek, MS, USA for 2007 (pink) and 2014 (yellow).

Curiously, while surface energy fluxes increased in the radiative transfer model over the temporal
study period, total top of atmosphere (TOA) fluxes decreased between 2007 and 2014: −53.3 W m−2

in the FULL simulation and −50.5 W m−2 in the AERO simulation. As described below, this was
probably a result of decreased aerosol absorption in the middle troposphere. In fact, while the trend
in TOA radiative forcing was negative, the magnitude was still positive (e.g., 114.8 W m−2 in 2007 to
61.6 W m−2 in 2014 in the FULL simulations).

The FLG-estimated positive change in surface energy flux is a result of less solar absorption and
scattering by aerosols in the atmospheric column. In the FULL simulation, lowered aerosol burdens
from 2007 to 2014 resulted in a −3.4 K day−1 average decrease in solar noon heating rates between the
surface and 4 km (Figure 5). The maximum decrease in heating rates occurred between 0.5 and 2.5 km,
corresponding with large observed temperature reductions (2014–2007) at 0.7 km in the temperature
sounding data from Birmingham, AL and Jackson, MS (Figure 5). The slight misalignment of the
modeled and observed peaks is likely due to differences in the vertical resolution of the sounding data
and the model as well as temporal differences; the soundings were taken at 7:00 a.m. (1200 UTC) and
7:00 p.m. (0000 UTC next day) local time, while the model simulations were performed for solar noon
(1:00 p.m. local time). Atmospheric heating rates (and, subsequently, temperatures) throughout the
lower troposphere were lower in 2014 because the atmospheric aerosol burden was lower. The model
results indicate that a decrease in aerosol burden allowed more radiation to reach the surface and
atmospheric absorption and semi-direct heating were suppressed. The results are consistent with the
observed surface temperature trends, indicating that aerosols played a substantial role in the increasing
temperatures observed in this region.

4. Conclusions

In summary, our results show that reduced aerosol direct radiative effects were of sufficient
magnitude to contribute to the reversal of negative trends in twentieth century SEUS surface
temperature. We present observations from both MISR and CALIOP showing statistically significant
decreasing aerosol concentrations both at the surface and at elevated layers from 2007 to 2014
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(supplementing results from Attwood et al. [31]). We demonstrate, using reliable profile data and
a physically-based model that total column aerosol reductions increase the surface energy flux via
direct effects, decrease the column atmospheric heating rate, and act as a probable contribution to
an increase in regional surface temperatures since 2001. The consistency of our radiative transfer
model results forced with changes in the observed aerosol budget with both surface radiation and
atmospheric temperature profile measurements indicates that our results are robust and that the direct
influence of aerosols played a significant role in the reversal of the warming hole in the SEUS. We note
that Yu et al. [13] find evidence that a substantial portion of the trend reversal may be due to indirect
effects. Specifically, they suggest that aerosol effects on shortwave cloud forcing combined with offset
from the greenhouse warming of increased water vapor, may explain the temperature trend in SEUS.
Our results neither support or contradict this hypothesis and suggest that direct and indirect effects
may both play a role in SEUS temperature trends.

The local, direct effect from aerosols is unlikely to explain the entirety of the observed temperature
trend reversal, and we acknowledge that the combination of the aerosol forcing with changes in
clouds may also play a role. For example, we note significant noise, and relatively low temporal
correlation, in both the surface temperature and aerosol trends, suggesting the existence of external
mechanisms. Furthermore, Ruckstuhl et al. [53] and Philipona et al. [54] describe a similar rebound in
surface temperature trends over mainland Europe in the 1980s as a response to changes in both aerosol
burden and cloud distribution—though they note that the change due to direct aerosol forcing greatly
outweighed changes from clouds—and our study seemingly validates their results in a different region.
Using 2007–2014 cloud fraction data from CALIOP, we find that there is no trend in both total summer
cloud fraction (−0.7% ± 1.7%) or liquid cloud fraction (+1.4% ± 1.7) (Figure 7). Similarly, there is
no evidence of a trend in monthly cloud fraction or cloud top height anomalies in the MISR data for
the same region and a slightly longer time period (Figure 8). While these results do not immediately
prove that clouds play no role in the observed temperature trend reversal, they do lend evidence to our
analysis that the trend reversal may be driven more directly by changes to atmospheric aerosol burden.

However, while clouds may not have played a role in the reversal of the warming hole, we note
that our work only addresses the relative role of aerosol trends. We acknowledge that other factors may
also have contributed to positive temperature trends in the SEUS in the twenty-first century (e.g., [55]).
In particular, we note that while multi-year trends in AOD and temperature appeared consistent with
a direct influence of aerosols on surface temperature, the lack of covariance on interannual timescales
suggests that other factors may have been substantial contributors. Our work indicates that aerosols
were likely to have played a role in modulating surface temperatures but that other factors—which we
did not explicitly account for in this study—may outweigh the aerosol effect. Further investigation of
the relative roles of these other factors using a general circulation climate model is a logical next step.

We note that our work does not resolve the larger question of why surface temperatures in the
SEUS were particularly sensitive to aerosol trends. While our analysis was restricted to the deep
South (where the warming hole was largest), we acknowledge that equally substantial negative AOD
trends along the eastern seaboard (Figure 4b) roughly corresponded to positive temperature trends
(Figure 2b). Furthermore, extreme warming in eastern Texas did not correspond to equally notable
aerosol trends (Figure 2b), suggesting eminent contributions from other meteorological and climatic
factors. We also note that while temperature and aerosol trends did co-vary at the regionally-averaged
scale, they did not do so at smaller spatial scales; further investigation is necessary to determine
why the aerosol effect was not more geographically targeted, though other regional aerosol-specific
studies may help elucidate why [56,57]. Going forward, we feel that this work would benefit from
the integration of several ground-based observations, including, but not limited to, lidar, ceilometers
and photometers. The Aerosol Robotic Network (AERONET), for example, can provide a more direct
measure of AOD with potential to characterize aerosol properties, which, when combined with surface
radiation measurements, can help elucidate more regionally targeted anomalies [58]. Futhermore, in
this work, vertically resolved measurements were critical toward explaining the atmospheric warming
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and surface radiative response to changing aerosol burden. While the network of ground-based lidar
equipment (MPLNET: https://mplnet.gsfc.nasa.gov/) does not currently include data within our
study domain, these data are valuable for similar or expanded studies of this problem and further
work should attempt to utilize any vertically-resolved aerosol data that may be available now or
in the future.

Figure 7. CALIOP-derived cloud fraction over the Southeast US (SEUS) for 2007 through 2014 showing
no evident trend during the period.

20012001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

150

125

100

75

50

25

0

-25

-50

-75

-100

-125

-150

C
lo

ud
 fr

ac
tio

n 
an

om
al

y 
(x

10
4 )

C
lo

ud
 h

ei
gh

t a
no

m
al

y 
(m

)

Figure 8. MISR-derived monthly cloud fraction over the Southeast US (SEUS) for March 2000 through
2015 showing no evident trend during the period. The thick gray line represents the anomaly in the
mean cloud height smoothed with a 12-month running mean. The actual data are in blue and the gray
lines indicate the 1-sigma bounds. The thick green line is the cloud fraction anomaly.

Despite many caveats, this study presents evidence that aerosols played a first-order role in
accelerating positive surface temperature trends in the SEUS in recent years. It follows, then, that
degraded air quality and aerosol forcing in other regions may similarly be masking climate warming
effects within surface temperature records. This is especially true for regions with extremely poor air
quality like northern India and eastern China [59–62]. This study provides contextual evidence for
considering aerosol radiative effects and regional cooling when interpreting corresponding surface
temperature trends. The logical next step includes characterizing the relative contribution of air quality
improvements in the SEUS to increased warming using a regional climate model (such as the Weather
Research and Forecasting model); we anticipate running these simulations in the near term.

336



Remote Sens. 2017, 9, 674

Acknowledgments: The research included in this manuscript was supported by an ACCDAM grant from the
NASA Earth Sciences Division, Radiation Sciences program. We thank the MISR team for providing facilities and
useful discussions. We also thank the Naval Research Laboratory for computing facilities. The MISR and CALIOP
data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. The links to the
temperature datasets are found in Section 2. We also thank Yu Gu (UCLA) for productive conversations and help
with the FLG radiative transfer model and Jeffrey Reid (NRL) for productive conversations and suggestions over
the past year.

Author Contributions: All authors contributed substantially to this work. All authors performed the research
and helped produce the figures. Kalashnikova funded the research and conceived the hypothesis with Tosca,
Garay and Campbell. Tosca assembled the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004.
2. Portmann, R.W.; Solomon, S.; Hegerl, G.C. Spatial and seasonal patterns in climate change, temperatures,

and precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329.
3. Capparelli, V.; Franzke, C.; Vecchio, A.; Freeman, M.P.; Watkins, N.W.; Carbone, V. A spatiotemporal analysis

of U.S. station temperature trends over the last century. J. Geophys. Res. 2013, 118, 7427–7434.
4. Melillo, J.M.; Richmond, T.C.; Yohe, G.W. Climate Change Impacts in the United States: The Third National

Climate Assessment; Technical Report; U.S. Global Change Research Program: Washington, DC, USA, 2014.
5. Liang, X.Z.; Pan, J.; Zhu, J.; Kunkel, K.E.; Wang, J.X.L.; Dai, A. Regional climate model downscaling of the

U.S. summer climate and future change. J. Geophys. Res. 2006, 111, D10108.
6. Pan, Z.; Arritt, R.W.; Takle, E.S.; Jr., W.J.G.; Anderson, C.J.; Segal, M. Altered hydrologic feedback in a

warming climate introduces a “warming hole”. Geophs. Res. Lett. 2004, 31, L17109.
7. Meehl, G.A.; Arblaster, J.M.; Branstator, G. Mechanisms contributing to the warming hole and the consequent

U.S. East-West differential of heat extremes. J. Climate 2012, 25, 6394–6408.
8. Robinson, W.A.; Reudy, R.; Hansen, J.E. General circulation model simulations of recent cooling in the

east-central United States. J. Geophys. Res. 2002, 107, 4748.
9. Yu, S.; Saxena, V.K.; Zhao, Z. A comparison of signals of regional aerosol-induced forcing in eastern China

and the southeastern United States. Geophs. Res. Lett. 2001, 28.
10. Shindell, D.; Faluvegi, G. Climate respnose to regional radiative forcing during the twentieth century.

Nature Geosci. 2009, 2, 294–300.
11. Leibensperger, E.M.; Mickley, L.J.; Jacob, D.J.; Chen, W.T.; Seinfeld, J.H.; Nenes, A.; Adams, P.J.; Streets, D.G.;

Kumar, N.; Rind, D. Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: Climate
response. Atmos. Chem. Phys. 2012, 12, 3349–3362.

12. Mickley, L.J.; Leibensperger, E.M.; Jacob, D.J.; Rind, D. Regional warming from aerosol removal over the
United States: Results from a transient 2010–2050 climate simulation. Atmos. Environ. 2012, 46, 545–553.

13. Yu, S.; Alapaty, K.; Mathur, R.; Pleim, J.; Zhang, Y.; Nolte, C.; Eder, B.; Foley, K.; Nagashima, T. Attribution of the
United States “warming hole”: Aerosol indirect effect and precipitable water vapor. Sci. Rep. 2014, 4, 6929.

14. Leibensperger, E.M.; Mickley, L.J.; Jacob, D.J.; Chen, W.T.; Seinfeld, J.H.; Nenes, A.; Adams, P.J.; Streets, D.G.;
Kumar, N.; Rind, D. Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 1: Aerosol
trends and radiative forcing. Atmos. Chem. Phys. 2012, 12, 3333–3348.

15. Liepert, B.G. Observed reductions of surface solar radiation at sites in the United States and worldwide
from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 1421.

16. Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A., Jr.; Hansen, J.E.; Hofman, D.J. Climate
forcing by anthropogenic aerosols. Science 1992, 255, 423–430.

17. Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 1997, 102, 6831–6864.
18. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science

2001, 294, 2119–2124.
19. Lohmann, U.; Lesins, G. Stronger constraints on the anthropogenic indirect aerosol effect. Science 2002,

298, 1012–1015.
20. Rosenfeld, D. Aerosols, clouds, and climate. Science 2006, 312, 1323–1324.
21. Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230.

337



Remote Sens. 2017, 9, 674

22. Rotstayn, L.D. Indirect forcing by anthropogenic aerosols: A global climate model calculation of the
effective-radius and cloud-lifetime effects. J. Geophys. Res. 1999, 104, 9369–9380.

23. Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P.; Wild, M. Disentangling greenhouse warming and aerosol
cooling to reveal Earth’s climate sensitivity. Nature Geoscience 2016, 9, 206–289.

24. Mitchell, J.F.B.; Johns, T.C. On modification of global warming by sulfate aerosols. J. Climate 1997, 10, 245–267.
25. Andreae, M.O.; Jones, C.D.; Cox, p.m. Strong present-day aerosol cooling implies a hot future. Nature 2001,

435, 1187–1190.
26. Levy, H.; Schwarzkopf, M.D.; Horowitz, L.; Ramaswamy, V.; Findell, K.L. Strong sensitivity of late 21st

century climate to projected changes in short-lived air pollutants. J. Geophys. Res. 2008, 113, D06102.
27. Ming, Y.; Ramaswamy, V. Nonlinear climate and hydrological responses to aerosol effects. J. Clim.

2009, 22, 1329–1339.
28. Rotstayn, L.D.; Cai, W.; Dix, M.R.; Farquhar, G.D.; Feng, Y.; Ginoux, P.; Herzog, M.; Ito, A.; Penner, J.E.;

Roderick, M.L.; et al. Have Australian rainfall and cloudiness increased due to the remote effects of Asian
anthropogenic aerosols? J. Geophys. Res. 2007, 112, D09202.

29. Shindell, D.T.; Faluvegi, G.; Rotstayn, L.; Milly, G. Spatial patterns of radiative forcing and surface
temperature response. J. Geophys. Res. 2015, 120, 5385–5403.

30. Paasonen, P.; Asmi, A.; Petaja, T.; Kajos, M.K.; Aijala, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.;
Birmili, W.; et al. Warning-induced increase in aerosol number concentration likely to moderate climate
change. Nat. Geosci. 2013, 6, 438–442.

31. Attwood, A.R.; Washenfelder, R.A.; Brock, C.A.; Hu, W.; Baumann, K.; Campuzano-Jost, P.; Day, D.A.;
Edgerton, E.S.; Murphy, D.M.; Palm, B.B.; et al. Trends in sulfate and organic aerosol mass in the Southeast
US: Impact on aerosol optical depth and radiative forcing. Geophys. Res. Lett. 2014, 41, 7701–7709.

32. Kim, P.S.; Jacob, D.J.; Fisher, J.A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R.M.; Sulprizio, M.P.; Jimenez, J.L.;
Campuzano-Jost, P.; et al. Sources, seasonality, and trends of southeast US aerosol: an integrated
analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model.
Atmos. Chem. Phys. 2015, 15, 10411–10433.

33. Augustine, J.A.; Dutton, E.G. Variability of the surface radiation budget over the United States from 1996
through 2011 from high-quality measurements. J. Geophys. Res. 2013, 118, 43–53.

34. Tang, Q.; Leng, G. Changes in cloud cover, precipitation, and summer temperature in North America from
1982 to 2009. J. Clim. 2013, 26, 1733–1744.

35. Zhang, L.; Henze, D.K.; Grell, G.A.; Torres, O.; Jethva, H.; Lamsal, L.K. What factors control the trend of
increasing AAOD over the United States in the last decade? J. Geophys. Res. 2017, 122, 1797–1810.

36. Fan, Y.; van den Dool, H. A global monthly land surface air temperature analysis for 1948-present.
J. Geophys. Res. 2008, 113, D01103.

37. Levi, B.G. Earth’s land surface temperature trends: A new approach confirms previous results. Phys. Today
2013, 66.

38. Campbell, J.R.; Tackett, J.L.; Reid, J.S.; Zhang, J.; Curtis, C.A.; Hyer, E.J.; Sessions, W.R.; Wetphal, D.L.;
Prospero, J.M.; Welton, E.J.; et al. Evaluating nighttime CALIOP 0.532 um aerosol optical depth and
extinction coefficient retrievals. Atmos. Meas. Tech. 2012, 5, 2143–2160.

39. Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution
of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361.

40. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data
assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597.

41. Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Bull, M.A. Regional aerosol retrieval results from MISR. IEEE Trans.
Geosci. Remote Sens. 2002, 40, 1520–1531.

42. Fu, Q.; Liou, K.N. On the correlated k-distribution method for radiative transfer in nonhomogeneous
atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156.

43. Fu, Q.; Liou, K.N. Parametrization of the radiative properties of cirrus clouds. J. Atmos. Sci. 1993,
50, 2008–2025.

44. Gu, Y.; Farrara, J.; Liou, K.N.; Mechoso, C.R. Parametrization of cloud-radiative processes in the UCLA
general circulation model. J. Climate 2003, 16, 3357–3370.

338



Remote Sens. 2017, 9, 674

45. Gu, Y.; Liou, K.N.; Ou, S.C.; Fovell, R. Cirrus cloud simulations using WRF with improved radiation
parametrization and increased vertical resolution. J. Geophys. Res. 2011, 116, D06119.

46. Gu, Y.; Liou, K.N.; Jiang, J.H.; Su, H.; Liu, X. Dust aerosol impact on North African climate: A GCM
investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys. 2012,
12, 1667–1679.

47. Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull.
Am. Meteor. Soc. 1998, 79, 831–844.

48. Burton, S.P.; Ferrare, M.A.; Vaughan, A.H.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol
classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas.
Tech. 2013, 6, 1397–1412.

49. Ford, B.; Heald, C.L. Aerosol loading in the Southeastern United States: Reconciling surface and satellite
observations. Atmos. Chem. Phys. 2013, 13, 9269–9283.

50. Theil, H. A rank-invariant method of linear and polynomial regression analysis. I. Nederl. Akad.
Wetensch. Proc. 1950, 53, 386–392.

51. Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.L. Particulate sulfate ion concentration and SO2

emissions trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 2012,
12, 10353–10365.

52. Gregg, W.W.; Carder, K.L. A simple spectral solar irradiance model for cloudless maritime atmospheres.
Limnol. Oceanog. 1990, 35, 1657–1675.

53. Ruckstuhl, C.; Philipona, R.; Behrens, K.; Coen, M.C.; Durr, B.; Heimo, A.; Matzler, C.; Nyeki, S.; Ohmura, A.;
Vuilleumier, L.; et al. Aerosol and cloud effects on solar brightening and the recent rapid warming.
Geophys. Res. Lett. 2008, 35, L12708.

54. Philipona, R.; Behrens, K.; Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid
warming in Europe since the 1980s. Geophys. Res. Lett. 2009, 36, L02806.

55. Meehl, G.A.; Arblaster, J.M.; Chung, C.T.Y. Disappearance of the southeast U.S. “warming hole” with the
late 1990s transition of the Interdecadal Pacific Oscillation. Geophys. Res. Lett. 2015, 42, 5564–5570.

56. Che, H.; Xia, X.; Zhu, J.; Dubovnik, O.; Holben, B.; Goloub, P.; Chen, H.; Estelles, V.; Cueas-Agullo, E.;
Blarel, L.; et al. Column aerosol optical properties and aerosol radiative forcing during a serious
haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements.
Atmos. Chem. Phys. 2014, 14, 2125–2138.

57. Prats, N.; Cachorro, V.E.; Berjon, A.; Toledano, C.; De Frutos, A.M. Column-integrated aerosol microphysical
properties from AERONET Sun photometer over southwestern Spain. Atmos. Chem. Phys. 2011,
11, 12535–12547.

58. Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.;
Nakajima, T.; et al. AERONET-A federated instrument network and data archive for aerosol characterization.
Remote Sens. Environ. 1998, 66, 1–16.

59. Donkelaar, A.V.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.K. Global estimates
of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development
and application. Environ. Health. Perspect. 2010, 118, 847–855.

60. Li, P.; Yan, R.; Yu, S.; Wang, S.; Liu, W.; Bao, H. Reinstate regional transport of PM2.5 as a major cause of
severe haze in Beijing. Proc. Natl. Acad. Sci. USA 2015, 112, E2739–E2740.

61. Yan, R.; Yu, S.; Zhang, Q.; Li, P.; Wang, S.; Chen, B.; Liu, W. A heavy haze episode in Beijing in February of
2014: Characteristics, origins and implications. Atmos. Pollut. Res. 2015, 6, 867–876.

62. Yu, S.; Li, P.; Wang, L.; Wang, P.; Wang, S.; Chang, S.; Liu, W.; Alapaty, K. Anthropogenic aerosols are a
potential cause for migration of the summer monsoon rain belt in China. Proc. Natl. Acad. Sci. USA 2016, 11,
E2209–E2210.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

339





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MDPI AG 

St. Alban-Anlage 66  

4052 Basel, Switzerland 

Tel. +41 61 683 77 34 

Fax +41 61 302 89 18 

http://www.mdpi.com 

Remote Sensing Editorial Office 

E-mail: remotesensing@mdpi.com 

http://www.mdpi.com/journal/remotesensing 

 

 

 





MDPI AG 
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03842-641-7


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



