
Edited by

Implementation 
of Sensors and 
Artificial Intelligence 
for Environmental 
Hazards Assessment 
in Urban, Agriculture 
and Forestry Systems

Sigfredo Fuentes, Ranjith R Unnithan, Eden Tongson and 
Nir Lipovetzky

Printed Edition of the Special Issue Published in Sensors

www.mdpi.com/journal/sensors



Implementation of Sensors and
Artificial Intelligence for
Environmental Hazards Assessment
in Urban, Agriculture and
Forestry Systems





Implementation of Sensors and
Artificial Intelligence for
Environmental Hazards Assessment
in Urban, Agriculture and
Forestry Systems

Editors

Sigfredo Fuentes

Ranjith R Unnithan

Eden Jane Tongson

Nir Lipovetzky

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Sigfredo Fuentes

The University of Melbourne

Australia

Ranjith R Unnithan

The University of Melbourne

Australia

Eden Jane Tongson

The University of Melbourne

Australia

Nir Lipovetzky

The University of Melbourne

Australia

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Sensors

(ISSN 1424-8220) (available at: http://www.mdpi.com).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-2904-2 (Hbk)

ISBN 978-3-0365-2905-9 (PDF)

Cover image courtesy of Eden Tongson

Modified from Nearmap image from the city of Melbourne, Australia. Downloaded on the 22nd of

Nov 2021.

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Sigfredo Fuentes and Eden Jane Tongson

Editorial: Special Issue “Implementation of Sensors and Artificial Intelligence for
Environmental Hazards Assessment in Urban, Agriculture and Forestry Systems”
Reprinted from: Sensors 2021, 21, 6383, doi:10.3390/s21196383 . . . . . . . . . . . . . . . . . . . . 1

Adegbite Adesipo, Oluwaseun Fadeyi, Kamil Kuca, Ondrej Krejcar, Petra Maresova,

Ali Selamat and Mayowa Adenola

Smart and Climate-Smart Agricultural Trends as Core Aspects of Smart Village Functions
Reprinted from: Sensors 2020, 20, 5977, doi:10.3390/s20215977 . . . . . . . . . . . . . . . . . . . . 5

Sigfredo Fuentes, Eden Tongson and Claudia Gonzalez Viejo

Urban Green Infrastructure Monitoring Using Remote Sensing from Integrated Visible and
Thermal Infrared Cameras Mounted on a Moving Vehicle
Reprinted from: Sensors 2021, 21, 295, doi:10.3390/s21010295 . . . . . . . . . . . . . . . . . . . . . 27
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Artificial intelligence (AI), together with robotics, sensors, sensor networks, internet of
things (IoT) and machine/deep learning modeling, has reached the forefront towards the
goal of increased efficiency in a multitude of application and purpose. The development
and application of AI requires specific considerations, approaches, and methodologies. This
special issue focused on the applications of AI to environmental systems related to hazard
assessment in Urban, Agriculture and Forestry. A total of ten papers were published in
this special issue, with topics ranging from reviewing the current climate-smart agriculture
approaches for smart village development [1] to the integration of visible and infrared
thermal cameras for automated urban green infrastructure monitoring on top of moving
vehicles [2]; the implementation of machine learning to classify contaminant sources
for urban water networks [3]; water network contamination assessment using machine
learning in the UK [4]; future landscape changes, seismic and hazard assessment tested in
Tabriz, Iran assessed using satellite remote sensing [5]; AI applied to a robotic dairy farm to
assess milk productivity and quality traits using meteorological and cow data [6]; AI and
computer vision from visible and infrared thermal images to obtain non-invasive biometrics
from sheep to assess welfare [7]; the assessment of smoke contamination and smoke taint
in wines due to bushfires using a low-cost electronic nose and AI [8]; the classification
of smoke contaminated grapevine berries and leaves using chemical fingerprinting and
machine learning [9]; and the detection of aphid infestation in wheat plants and insect-plant
physiological interactions using low-cost electronic noses, chemical fingerprinting and
machine learing [10].

The development of smart villages in Europe requires a framework to secure sus-
tainability based on climate-smart agriculture. As argued by Adesipo et al. [1], these
considerations need to be based on advances in technology to increase yield and minimize
the farming losses associated with biotic and abiotic stresses. This approach will help
for the efficient planning and management of smart villages with smart agriculture. The
proposed frameworks will secure the success of these smart-agriculture practices under
current and future climate change scenarios, making the system flexible and reactive based
on recent smart technological advances related to sensor technologies for automated moni-
toring, data processing and reporting. Digital technological advances were reported for
an automated urban green infrastructure monitoring using integrated visible and infrared
thermal cameras in Fuentes et al. [2]. Studied in Melbourne, Australia, this system is a novel
assessment method which utilizes moving vehicles as monitoring robots to assess tree by
tree growth and water status using computer vision algorithms. It was suggested that
this system could be used on public transport to support the city council’s management,
maintenance and improvement of green infrastructure and as a potential tool to increase
urban resiliency to climate change, specifically against the urban heat island effect.

Sensors 2021, 21, 6383. https://doi.org/10.3390/s21196383 https://www.mdpi.com/journal/sensors
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One of the detrimental effects of reduced green infrastructure is the contamination
of waterways and water networks. The study by Lučin et al. [3] proposed a classification
system based on machine learning models (Neural Network and Random Forest) to predict
the number of contaminant injections in the Richmond water supply, UK. This study also
proposed that the implementation of these algorithms can be used to run simulations to
detect potential contamination risks and nodes with a high probability of contamination,
making a management system more predictive than reactive with such vital urban re-
sources. Similar work was conducted by Grbčić et al. [4] to locate contamination sources
in water networks with a combination of Artificial Neural Network (ANN) to classify
pollution sources. Other types of hazard assessments in urban systems were based on
a case study in Tabriz, Iran, by Mohammadi et al. [5]. Using satellite remote sensing to
extract land information made it possible to predict landscape changes due to seismic
activity with high accuracy ranging from 94 to 96%. These technological advances can be
extrapolated to other cities with similar risks.

For agricultural systems, novel digital technologies were applied for farm animal
welfare assessment based on weather information and cow data to predict milk productivity
and quality through supervised machine learning [6]. The models developed presented
high accuracies for correlation models in the range of R = 0.86 and R = 0.87, respectively.
The proposed AI system’s automation can be implemented in robotic and conventional
dairy farms to respond more efficiently to climatic anomalies, such as cold stress or heat
waves, to maintain animal welfare. Heat stress in animal transport has recently been a
focus of public concern due to the high mortality of animals transported by sea passing; for
example, the Persian Gulf with 50 ◦C. A high level of heat stress can result in serious health
issues to animals and ultimately death. Digital and AI technologies based on integrated
visible and infrared thermal cameras were proposed by Fuentes et al. [7] to assess the
physiological parameters of sheep in heat stress environments. The proposed models
showed high accuracies to monitor the heart rate, respiration rate and skin temperature
of animals. These digital technologies could help farmers manage their livestock more
efficiently through objective assessments of animal welfare.

Climate change effects include the increased incidence, number and severity of climatic
anomalies such as heatwaves and bushfires. These climatic anomalies have a specific impact
on viticulture and winemaking, specifically with bushfires producing smoke contamination
on leaves and berries, which are later passed to the wine through the fermentation process.
These have been investigated in two studies focused on implementing digital technologies
and machine learning modeling using low-cost electronic noses [8] and near-infrared
spectroscopy to assess the levels of smoke contamination in berries and smoke taint in
wines [9]. The models demonstrated high accuracy, showing the good potential of these
approaches as practical options for grape-growers. The application of these tools offers
an accurate, cost-effective and objective assessment of smoke contamination and taint in
wines for efficient management purposes.

Finally, low-cost electronic noses and near-infrared spectroscopy were also imple-
mented to assess the infestation of insects in plants and the insect-plant interaction [10].
This study presented a novel way to sniff aphid infestation in wheat plants and estimate
plant physiological parameters using machine learning modeling. Models developed
resulted in the high accuracy of monitoring insect numbers, early infestation and physio-
logical parameters such as photosynthesis, transpiration and stomatal conductance, which
usually require expensive instrumentation for single leaf measurements. This research
also proposed a deployment system using unmanned aerial vehicles (UAV) to increase the
spatial and temporal monitoring scales for more efficient assessments.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
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Abstract: Attention has shifted to the development of villages in Europe and other parts of the world
with the goal of combating rural–urban migration, and moving toward self-sufficiency in rural areas.
This situation has birthed the smart village idea. Smart village initiatives such as those of the European
Union is motivating global efforts aimed at improving the live and livelihood of rural dwellers.
These initiatives are focused on improving agricultural productivity, among other things, since most
of the food we eat are grown in rural areas around the world. Nevertheless, a major challenge faced by
proponents of the smart village concept is how to provide a framework for the development of the term,
so that this development is tailored towards sustainability. The current work examines the level of
progress of climate smart agriculture, and tries to borrow from its ideals, to develop a framework
for smart village development. Given the advances in technology, agricultural development that
encompasses reduction of farming losses, optimization of agricultural processes for increased yield,
as well as prevention, monitoring, and early detection of plant and animal diseases, has now embraced
varieties of smart sensor technologies. The implication is that the studies and results generated around
the concept of climate smart agriculture can be adopted in planning of villages, and transforming them
into smart villages. Hence, we argue that for effective development of the smart village framework,
smart agricultural techniques must be prioritized, viz-a-viz other developmental practicalities.

Keywords: smart village; smart agriculture; climate-smart agriculture; technology; sustainability

1. Introduction

The need to develop rural communities in terms of productivity and convenience, so as to curb
urban migration has received much attention in the last decade. First, the Institute of Electrical and
Electronics Engineers (IEEE), as part of its mission, commenced the installation of solar-powered
bulbs in many rural communities worldwide [1]. This was followed in 2016 by the Cork Declaration,
agreed amongst 340 representatives of European states towards ensuring that rural communities
enjoy better lives. These efforts culminated into the coining of the word “smart village”, defined as a

Sensors 2020, 20, 5977; doi:10.3390/s20215977 www.mdpi.com/journal/sensors5
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community that tries to develop current strength and resources, while making futuristic developmental
plans on the basis of technology [2,3]. While there are several thematic areas of priority within the smart
village development framework, agriculture is seen as the most important of them all [3]. Furthermore,
the need to bridge the digitization gap between cities and villages, is also an important aspect, so that
lives and livelihood can be improved. Since a smart village is one that seemingly accepts new
technologies, precision agriculture uses ultra-modern techniques for animal and crop production,
which saves time and reduces wastage, and meets the requirements of smart villages. This is crucial for
the sustainability of smart villages [4]. This is because improved food production and efficient animal
management systems must be at par with village development, and must be continually transformed
to influence the different aspects of smart villages, in terms of policy and practice [5].

To effectively play its role in smart villages, precision agriculture covers smart and climate smart
agriculture (CSA) techniques, and other aspects that are capable of ensuring higher agricultural
production output in an environment-friendly manner, provides optimum income for the farmer,
and is able to feed a growing population. Many studies showed that these processes can be realized
through the adoption of ultra-modern agricultural techniques such as bio and nano technologies [6],
IoT and blockchain-based methods [7], and drone technologies [8], among other climate smart ideas.
On the basis of this argument, efforts that tend to reduce farming losses, increase yield, as well as monitor,
detect, and potentially prevent plant and animal diseases are now being automated, finding growing
applications, and offering optimal solutions. Based on the forgone explanations, the current study
attempts to establish smart and CSA trends in smart village research, in order to see how much they
are useful for smart village development.

The rest of this study is arranged as follows. Section 1.1 draws a foundation for this study,
by focusing on the research question. Section 2 briefly builds a background for smart village research by
listing existing projects, and describes a few state-of-the-art smart agricultural solutions. In Section 3,
attention is drawn to climate-smart agriculture, with specific reference to what makes up the concept,
a few challenges in its framework, as well as the latest progress in its development. Section 4 describes
the challenges created by the interplay of adopting CSA in smart villages, and also tries to answer
the research question. The section also conceptualizes climate-smartness, as it influences sustainable
development of smart villages. Finally, Section 5 describes future research directions in smart-village
and smart agricultural research, and draws relevant policy recommendations and conclusions

1.1. Research Question

Based on the vast importance of agriculture in smart village development, this study adapts
its research question from the editorial note presented by the editors of MDPI’s special issue within
the Sustainability journal published in August 2018. Within the report, Visvizi and Lytras [9] gave
a revealing background of future directions for smart village research. The editors pointed to a few
research questions that future smart village research should strive to answer. One of these is: “How will
smart and CSA research give account of, and conceptualize transformation and change in the smart
village context?”(p. 8) [9]. This question is what the current study modifies and seeks to answer.

2. Related Literature

2.1. Current Smart-Village Projects Around the World

Before delving completely into smart agricultural systems in smart villages, it is important
to consider existing smart village initiatives in order to have an updated knowledge of smart
village trends, and why smart agriculture might need to be prioritized. Zavratnik et al. [10] described
the IEEE smart village project, and the EU smart village initiative, which are further elaborated in
subsequent paragraphs.

The IEEE smart village program is one of the most popular today. It has a goal of advancing
education in off-grid societies, and fostering sustainability in the entire value chain of the smart
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village energy sector. Initially taking off as an initiative that seeks to provide community solutions
in 2009, the current name was coined 5 years later. The IEEE smart village plan is a global initiative,
touching lives in Asia, some parts of North America, and mostly in Africa [1], through the promotion
of smart energy production in rural areas, and is mostly financed through fundraising. Major efforts
that were developed from the initiative include the so-called SunBlazer II—a movable power base
solar station [11]; “Learning beyond the Light Bulb” [12]—a program aimed at training locals on
the development and design of off-grid solar electricity panels and fostering its sustainability and
scalability. As reported by Zavratnik [10], the program also comes with a remote study event that runs
for about nine months, and allows practice exchange amongst involved communities, for knowledge
sharing and skill enhancement.

Within the framework of the Consultative Group on International Agricultural Research (CGIAR),
several smart-village projects took off around the world. Many of which were funded through
international research organizations with clear impacts in areas that were worse hit by climate change [10].
These projects mostly focus on training smallholder farmers on agricultural resilience, through the
adoption of practices that support food security [13], so that persons within these affected communities
are able to maintain a livelihood through agricultural methods that help decrease GHG emissions.
For instance, farmers in the Lower Nyando valleys of Kenya are benefitting from improved agroforestry
systems that adopts knowledge of Information and Communication Technology (ICT) [13]. Thanks to the
CGAIR initiative, they are able to cultivate cash crops in-between rows of multi-purpose trees, thereby
improving soil stability and enrichment. Given the increased demand for trees, several nurseries were
developed, adding farmers’ incomes, and with women as the highest beneficiaries. The state of Bihar in
India also benefitted from the CGIAR’s smart village initiative. It previously had soils that were greatly
affected by water-logging, but new drainage construction changed the channel of rapidly flowing
flood waters, out of the farming areas [14]. This improved system also ensured that underground
aquifers were steadily recharged. Improved technological ideas also saw better rainwater harvesting in
areas benefitting from the Climate Change Agriculture and Food Security (CCAFS) program. Overall,
weather and planting can now be monitored from smartphone applications by the farmers, in order to
avoid unwanted losses [15].

The European Union’s smart village initiative is by far the most organized and detailed system.
Having undergone several fine-tuning, the initiative has improved tremendously since the Cork
Declaration 2016 [10]. Notable amongst the goals of the EU smart village drive is agricultural boost,
mainly because the rural areas are where European foods are mostly produced [16]. There is also
the goal of reduced youth exodus to urban centers [17]. In the first assembly of the newly adopted
“Intergroup SMART Villages for Rural Communities”, György Mudri, a former Members of European
Parliament stressed that smart villages are not only for the development of new infrastructures, but also
for building capacity of locals [18]. In response to this statement, The Austrian Chamber of Agriculture
commenced online training for about 10,000 farmers, who now have remote access to latest agricultural
researches and can subsequently implement such ideas on their farms [19]. There is also the so-called
COWOCAT rural initiative, which currently trains youth to commence working in villages [19].

Description of smart village drives of the above initiatives show that agriculture is one of the most
prominent aspects of the smart village plans. As a result, this study delves into smart agricultural
practices that can the build capacity of smart villages, if adopted.

2.2. Ultra-Modern Smart Agricultural Solutions

While there are varieties of smart technologies adopted in agriculture nowadays, this section
focuses only on bio-sensors, agricultural drones, IoT and Blockchain-based sensors, and a number of
combined technologies that adopted animal husbandry, as well as in crop, soil, and pest management.

7
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2.3. Nanostructured Biological Sensors

Biological sensing devices are some of the new technological interventions reshaping agricultural
systems today, which might be adopted in smart villages. As reported by Antonacci [6], bio-sensors
with extremely small structures were found to possess the ability to help in crop maturity evaluation,
management of amount of pesticides and fertilizers, as well as detection of humidity levels in
soils for effective irrigation. To carry out these functions, bio-sensors rely on the characteristics of
nano-materials, such as immobilizing bio-receptors on transducers, integrating and miniaturizing
some biological components of plants, transducer systems, and micro-fluids, into very complex plants
make-up [20,21]. Although the use of harmful pesticides is gradually being phased out in agricultural
systems, less harmful pesticides are still very much in use [22]. In areas known for prior pesticides usage,
modern agricultural techniques often aim at detecting pesticide presence, as well as their levels within
the soil, before cultivation. To do this, cutting-edge bio-sensors with very high sensitivity (because
of their surface-volume ratio), extremely rapid response time, and quick electron-transfer kinetic are
utilized. The sensors possess stable strength to map pesticide quantities within soils, and longer
lifespan, when compared to the earliest bio-based sensors [23]. Newly improved bio-sensors with
extremely small structures are also able to surpass soil pre-treatment, due to the presence of pesticides,
herbicides, and fungicides, without losing their potency [6].

Yu et al. [24] developed tyrosinase/TiO2 biosensor to determine the presence of atrazine pesticides.
This was done by fabricating a structure through the allowance of vertical growth of TiO2 nanotubes.
This meant that well-arranged nanotubes would provide large surface areas for immobilizing the
tyrosinase enzyme. The structure gave room for excellent loading of enzymes, as well as transfer
of electrons, which yielded improved system robustness and sensitivity. The system was tested in
well-grinded, air-dried paddy soils, gathered at varying depths. The soil also passed through a sieving
process using a 1.0 mm filter, and a 35 ◦C re-drying process that lasted for 48 hrs. It was subsequently
mixed with acetone, prior to undergoing shaking at a temperature of 25 ◦C for 60 min. Results given
by [24] showed that after carrying out analysis of supernatants, atrazine was observed to be present in
0.2 ppt to 2 part-per-billion. Standard deviation was subsequently found to be below 0.05 ppt when
compared to high performance liquid chromatography (HPLC).

Dong et al. [25] introduced a novel nano-structured bio-sensor technique for detecting very low
pesticide traces in soil. The technique works by electrochemically reducing Ellman’s reagent via
the inhibition of acetylcholinesterase. This bio-sensor adopts amperometric, designed to immobilize
acetylcholinesterase on multiple walls of carbon-type nanotubes-chitosan nanocomposites modified
glassy carbon electrode. High sensitivity of the system is offered by the very good conductivity
and biological compatibility of multiple walls of carbon-type nanotubes-chitosan [25]. This can be
additionally improved by electrochemically reducing 5,5-dithiobis (2-nitrobenzoic) acid. In testing the
system, methyl parathion pesticide was observed to exhibit an inhibitive effect on acetylcholinesterase.
An electrochemical change in the reduction response of 5,5-dithiobis (2-nitrobenzoic) acid was also
observed. Overall, the system was found to possess a pesticide detection precision of 7.5 × 10−13 M
when tested on spiked soil.

In another nano structured bio-sensor study, Shi et al. [26] observed the presence of soil acetamiprid
using SELEX; a new 20 mer bio-sensing unit that is able to bind acetamiprid, using aptamer made of
nanoparticles of gold. The unit works to detect the pesticide optically at values ranging from 75 nM
to 7.5 μM. It bears the combined characteristics of a nanomaterial, and those of artificial molecules.
Tested soils were collected around Tongji University, China, with initial air-drying carried out before
the sample was grinded, to allow 1.0 mm sieving. A second drying was also done using an oven
at 35 ◦C for 2 days, prior to acetone mixing and shaking at 25 ◦C for 60 min. Dichloromethane was
subsequently added to the mixture, and then removed ultrasonically before the sample was filtered.

Beyond sensing pesticides within soils, bio-sensors with very tiny structures were also employed
in monitoring diseases of crop plants. A very important aspect of any smart village is the effective
management of farm economy, achievable through the protection of crops against diseases. Quantum
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dots offer classical examples of materials that are useful for monitoring plant diseases, as they possess
broad excitation spectra. Safarpour et al. [27] identified the vector responsible for sugar beet’s yellow
vein and Rhizomania disease like Polymyxa betae. This was detected using quantum dot techniques that
subjected the plant root sap samples to several pre-treatment in order to extract the virus. The quantum
dots unit utilizes Förster Resonance Energy Transfer (FRET) modeling in its detection operation [27].
By using a similar technology, Bakhori et al. [28] detected synthetic oligonucleotide of Ganoderma
boninense. However, this work employed adjusted quantum dots with carboxylic groups that are
then conjugated using a DNA probe. This gave rise to an improved sensitivity of the system, yielding
3.55 × 10−9 M as the detection limit [28].

By adopting bio-sensors in the detection of soil nutrients and fertilizers, Ali et al. [29] revealed
that soil nitrates can be detected using a system that relies on microfluidic impedimetric sensing.
The unit works by adopting nano-sheets of graphene oxide and the nanofibers of the so-called
poly (3,4-ethylenedioxythiophene). The researchers showed that poly (3,4-ethylenedioxythiophene)
composite can bear the enzyme; nitrate reductase, and also measure the amount of nitrate ions in
soil samples on which sweet corn was cultivated. This is done at 0.44-442 mg/L concentration, so the
detection limit was 0.135 mg/L [29]. Carrying out the procedure, however, involves sample drying at
105 ◦C, and subsequent nitrate extraction through the addition of 2 M KCl solution. The mixture was
shaken for 60 min, and filtered using Whatman filter paper. Finally, sample extraction was kept in a
syringe for infusion into the experimental device.

Several other research examples exist for bio-sensor utilization in agricultural work. Nevertheless,
a summary of some state-of-the art techniques, some of which are already described elsewhere,
is presented in Table 1.
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2.4. Drone Technologies (Unmanned Aerial Vehicles)

Unmanned Aerial Vehicles (UAV), also known as drones, have become popular in agricultural
production work. In a review study by Mogili [8], the researchers reported that drones can be used
in pesticide and fertilizer application, so that humans do not come in contact with the some of these
pesticides, which are harmful, and are gradually being phased out. Drones can also function as water
sprinkling systems [8,36].

Primicerio et al. [37] adopted VIPtero, a UAV for managing a vineyard in an experimental set-up
in Italy. The system, which is made up of an aerial platform with six rotors and a camera, can fly
in a self-governed manner to a particular point in the air, in order to take measurement of the
vegetation canopy reflectance. Prior to flight take-off, accuracy of the camera is evaluated in relation
to ground-based measurements with high resolution, which were gathered using field spectrometer.
Subsequently, VIPtero gets air-bound in the vineyard, and gathers as many as 63 multi-spectral images
in a 600 seconds time period. The recorded images are analyzed and classified, prior to the production of
vigor maps on normalized difference vegetation index. Results showed the heterogeneity conditions of
the crops, implying that they were in line with those gathered using the ground-based spectrometer [37].
This smart system appears to be promising as an effective and detailed data gathering system in
agriculture, and can be adopted over larger areas in smart villages.

In another UAV based research, Burgos et al. [38] used a 4 cm Sensefly Swinglet UAV to differentiate
green cover from grape canopy. A digital surface model (DSM) with 3 dimensions was adopted to
create an exact digital terrain models (DTM), acquired via the use of processing libraries of python,
and subsequently subtracted from DSM, so as to arrive at a differential digital model (DDM) for the
measured terrain (a vineyard). Vine pixels within the DDM were obtained by selection of pixels >50 cm
elevation from the ground. The results indicated that there is a possibility of separating vine row
pixels from green cover pixels, as a differential digital model pointed to values ranging from –0.1 m
to +1.5 m. Furthermore, manual polygon delineation, which depended on an RGB image of the vine
rows and green cover, revealed huge differences averaging 1.23 m and 0.08 m for vine and ground,
respectively. Elevation of the vine rows was good and tallied with its topping height of 1.35 m from
the field [38]. The authors noted that vine pixels extraction would aid future analyses, such as pixels’
supervised classification.

Berni et al. [39] also demonstrated the possibility of generating remotely sensed data over an
agricultural field, using a UAV that had a relatively cheap narrowband and thermal multispectral
imaging sensors of 20 cm and 40 cm resolutions, respectively. The system gave rise to surface reflectance
and temperature data, after adapting MODTRAN-based atmospheric correction. Biophysical parameter
estimation was carried out using a number of vegetation indices, leading to the production and
validation of chlorophyll content, detection of water stress from PRI index, as well as the temperature
of the canopy. These results showed that the system yielded the same results as the conventional,
expensive, and risky manned airborne sensors.

2.5. IoT-based Sensors with Complimentary Blockchain Technology

Many villages face severe agricultural challenges and that require upgrading to smart agriculture,
which offers a wide range of state-of-the-art solutions. For example, in villages where access to
water is a challenge, Khoa [7] maintained that IoT-based sensors can be useful in water-management
irrigation systems on large rural farms. In their research, the authors developed a novel system
that is able to monitor soil water level and schedule sprinkling/spraying times in well-calculated
amounts. This relatively cheap technique, functions by receiving real-time data from sensors fixed
within strategically arranged tunnels, in and around the farm. Based on the information supplied by
sensors, which can be received through a mobile phone application, the user might decide to water
the farm. Subsequently, when soil water level increases to an optimal level, the system notifies the user,
who can remotely or manually switch-off the water-pumps. A unique feature of this system is its
usability in up to two farms [7]. In a similar study, Nagpure et al. [40] described another IoT-based
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system that works by using a similar routine as [7]. However, two differences include; scaring animals
away using current pulses, and wireless sensor monitoring of the ecological conditions (e.g., altitude
and humidity) to ascertain the amount of irrigation water needed each time [40], which the latter
unit possesses.

Mat et al. [41] presented an IoT-based mushroom cultivation, which produced a better yield
when compared to the conventional system. This tool is based on an automated sensors for fertilizer
application and water sprinkling on the farm, which can be controlled from the farmer’s mobile phone
or manually, from a centralized point within the farm. The system ensures that the timing for wetting
the crop is strictly adhered to, so that the farming operation can progress even without the farmer.
Overall, it was observed that average mushroom size in thickness and weight exceeded conventional
cultivation by 0.3 cm and 5 gram, respectively.

As reported by Prathibha [42], it is important to curb the effect of environmental conditions on
crop yield output. To do this, an efficient measurement method of the elements of weather might be
required. Prathibha’s research, therefore, proposed a CC3200 combined sensor unit, which comprises a
processor for network, a micro-controller, a Wi-Fi unit, a camera, as well as temperature and humidity
sensors. This weather utility device comes as a portable unit with low power consumption for longer
battery-life. The system monitors temperature (using a thermopile sensor that uses infrared technology)
and humidity across the agricultural field, which are subsequently processed as camera images and
sent via Wi-Fi to the farmer’s mobile phone as multi-media messages. Information of this nature
helps the farmer to know how good the soil water is to support the grown crop. A similar study [43]
designed another unit that can also send immediate signals to a farmer, after recording real-time data
on weather, in and around the farm. This unit was made up of a breadboard, a combination of sensors
that can monitor UV Index/IR/Visible light (SI1145 Digital Sensor), soil moisture content, humidity,
temperature (DHT11), an ESP32s Node MCU, all of which are connected to a monitor, which is in
turn linked remotely to the famer’s mobile phone, using an LED visual alert and Blynk mobile phone
application. Two very special characteristics of this unit are; its ability to save power in sleep mode,
for a battery life that averages 10 days, and the speed of sending signal (180 s) [43].

By using a pre-coded algorithm, also known as the “Cuckoo Search Algorithm” [44], a framework
for automated watering of a piece of farmland was designed. Based on pre-analysis of different kinds
of soils, the researchers found that a soil moisture value of 700 meant dry, and would require immediate
watering. The IoT sensor was, therefore, designed on the basis of this information, comprising the
so-called ThingSpeak, which also gives direction on the most suitable soil type for a specific crop.
A temperature-based sensor was initially used on the soil, and the result was sent to a converter
called Arduino. Depending on the measured value, the Arduino was connected to an automated
watering system, which could be controlled from the mobile device handled by the farmer. When soil
wetting gets to optimal levels, the soil sensor sends a feedback signal to the farmer who then stops
the watering [44].

While IoT-based sensing techniques are available for improving precision agriculture, optimizing
these ideas with blockchain technologies might offer even more robust results. Patil et al. [45] noted that
IoT-based sensing technologies might sometimes be flawed on the grounds of; extremely large scale,
a lack of homogeneity of different IoT-based sensing operations, as well as standardization. This meant
that the data gathered using IoT-based sensing technologies comes with privacy concerns for the
farmer [45]. Hence, the researchers developed a blockchain greenhouse farming tool to cater to security
and privacy. The model is made up of a smart greenhouse (a covered piece of farmland protected
from environmental conditions) that comprises a series of sensors and actuators, smart hub (a local
blockchain which manages the connectivity of all sensors and equipment in the smart greenhouse);
an overlay network connection that manages the nodes; a cloud storage platform and an end-user
platform. A system of this nature addresses security challenges across all fronts within the farm [45].
In another Blockchain-based smart agricultural study [46], a traceability platform for food safety was
designed. In collaboration with the Internet of Things, the system involved “Enterprise Resource
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Planning” where farmers, processing plants, and organizations involved in the logistics of agricultural
and food products, and the consumers, can assess on their mobile phones, a blockchain node that gives
detailed description of how the products were cultivated, harvested, stored, processed, and sold [46].
The essence of this technique was to build virtual trust in food processing, using the so-called Trusted
Trade Blockchain Network Cloud Platform (TTBNCP)

2.6. Smart Animal Production, Management, and Monitoring

The use of machine vision in body condition scoring of dairy received extensive research attention
in the last few decades. Fox et al. [47] listed animal nutrition, insemination, and health as core
reasons for body condition monitoring. When this process is carried out by the farmer or veterinary
doctor (human monitoring), there is a possibility for biased data gathering, due to the individual’s
mental state, level of experience, and residual knowledge [48]. Furthermore, the process might also be
time-consuming. Improvement in body condition scoring in the 1970s employed ultrasounds [49],
which was flawed on the ground that mastering the collection of reliable ultrasonic body condition
scoring required more time in comparison to data gathering by humans [50]. Additionally, the cost
of purchasing the ultrasound device, and hiring an expert, made the process too expensive. This led
to camera-recording of animals applied to body condition monitoring, based on the belief that this
would yield better results [48]. Fourier descriptor cameras [51], thermal [52], and RGB cameras [53]
were adopted. Nevertheless, images could not be processed automatically until seven years ago [54].
As a step in the right direction for body condition scoring, Spoliansky et al. [55] used a 3D camera that
was well-equipped to carry out automatic image processing, leading to the development of effective
and unbiased collection of body condition scoring, in 2017 [55]. The system provides real-time data,
useful for commercial milking purposes, and genetic evaluation (based on lactation). In addition,
automated image gathering of body condition scoring might provide ease of monitoring when there
are more than one animal. This is pivotal to early warning signs for morphological changes in animal
body size [48].

Yanmaz et al. [56] suggested adopting thermography in the early detection of lameness in horses.
Two types of thermography are—contact and contactless types. Contactless thermography has higher
precisions via infrared radiation. Internal temperature of the affected animal part can be viewed
on a medical thermogram, so that treatment can be planned early. Similarly, temperature around a
sick cattle’s gluteal region differs significantly from those of other parts when studied using thermal
infrared scanning [57]. As reported by Steensels et al. [58,59], temperature management in poultry,
as well as early mastitis identification are some other areas where thermal scanning was reported to
be useful.

Accelerometers exist nowadays for remote measurement of animal gait [60]. This can determine
when the animal is lying or walking [48]. The method is also useful in the determination of
lameness, animal sickness, or how much the animal feeds [61], based on the distance covered by
the animal against time. The device can be mounted on the leg, ear or other parts of the animal,
so that it continuously sends signals to the farmers’ mobile phone. When the animal is lying down,
the instrument automatically changes its processing speed. The device was also utilized in monitoring
the health of fishes, by attaching it to their fins [62]. A demerit of the system, however, is the fact that
continuous processing of mobility data tends to rapidly reduce battery life [63].

Wearable belts that are able to tap animal sweat and measure the amount of sodium it contains
are some of the latest smart technologies in animal husbandry. In the work of Glennon et al. [64],
the authors developed a smart technique for quick detection of the sodium content of sweat. The unit
appears in two ways, one that resembles a vertically placed watch and can be worn round an animal leg,
and the other that looks like a horizontal pod. Both come with a Velcro strap that can be used to attach
it to the animal skin. The systems, through capillary action, receive sweat via its orifice, and send it
through an electrode that is sensitive to sodium. The electrode in turn sends it into a storage section
containing an adsorbent substance. Sweat flow rate can be improved by varying the width of the sweat
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flow channel in-between electrode and the storage section of the system. Sweat flow rate generally
decreases with decreased width of the flow channel. This also determines the length of time the system
will be used before the electrode and the adsorbent material are changed. Stored sweat is available for
measurement as total harvested sweat volume as well as its sodium concentration per time. Electrode
signals are moved to an electronic board that possesses high input impedance for voltage capturing.
Results of this analysis are sent to a remote base station, which is either a laptop, or mobile phone,
using bluetooth technology for onward visualization and possible storage.

In livestock management [65] a pregnancy detection method was developed, which makes
use of Xbee transmitters linked to LM35 temperature sensors. Two animals were experimented,
with temperatures recorded at five days and twelve days from insemination. The sensing system was
attached to the tail of the cows. Temperature records were found to be high in pregnant cow, especially
in the evenings. The sensing unit works effectively within a distance of 40 m, and serves as a low-cost
technique, when compared to some invasive pregnancy detection methods in livestock.

In an ongoing study aimed at finding a sensor that is able to detect the level of progesterone
in milk fed to cattle [66], interdigital sensors are used, which are able to yield single side access to
the substance being tested. Within the study, progesterone hormone of about 20 mg was allowed to
dissolve in 0.5 mL of approximately 100 per cent ethanol. The solution was subsequently poured
into about 1000 mL of pure Milli-Q water, so that a stock solution was achieved. Successive mixture
dilution led to 0.02 ng/mL progesterone concentration. The sensor offered different results at varying
progesterone concentration with sensitivity in the pitch range of 50 μm [66].

Infectious coughs in piggery need rapid detection and treatment. To detect this kind of cough,
Ferrari et al. [67] fixed 1 m multi-directional microphones of 50 to 16,000 Hz around a farm. The microphone
was connected to a laptop, and animal cough sound patterns were recorded, digitized, and analyzed
using Matlab 7. Having earlier injected healthy animals with citric acid, acoustic parameters such
as time difference between coughs, peak frequency, and root mean square were used to differentiate
coughs from a healthy pig from those of infected ones. While healthy pigs relaxed for about 52 s
after each cough attack, the infected pigs coughed after every 37 s. Peak frequency for infected and
non-infected pigs was observed to be 1600 Hz and 600 Hz, respectively.

3. Moving towards Climate-Smart Agriculture

Having established in Section 2.1 that agriculture is one of the most important factors to be
considered in smart village development, it is crucial to stress that climate change is a major stressor
for agricultural development of rural communities [68]. The implication is that developing an
agriculturally-smart village entails accepting the concept of climate-smart agriculture. Agricultural
risk posed by climate is a threat to food security. As a result, there is an urgent need to effectively
manage agricultural production, while fighting climate change through adaptation, resilience and
mitigation [69]. This is what climate-smart agriculture offers.

There is currently no unified definition for climate-smart agriculture (CSA). In fact, almost
every new study within the framework of smart-agriculture, views CSA in a slightly unique way.
Nevertheless, to build a strong foundation for climate-smart agricultural framework in smart village
development, the current study adopts existing knowledge and definitions, to coin a new and more
robust definition for the term. Table 2 presents some definitions put forward by climate change and
agricultural scholars and research organizations. Keywords derived from the definitions show that
each has one or more shortcomings. As a result, it might be difficult to build the concept of smart
village on a definition that lacks one or more fundamental aspects.

Given the definitions in Table 2, considerable aspects of climate-smart agriculture include;
capacity building, sustainability, emission reduction, vulnerability reduction, profit, food security,
transformation, new knowledge, new technology, and productivity. By linking the above keywords
together, we define climate-smart agriculture as a “transformative and sustainable kind of agriculture
that tries to increase efficiency (productivity) in food security and production systems, using a
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combination of the pillars of climate change (adaptation, resilience, and mitigation) as well as smart
and new technological knowledge, that do not only build capacity of farmers’ in terms of farming
techniques, but also increase profit, reduces vulnerability of the systems as well as their results (farm
products/animals), through the reduction of GHG emissions.”

Table 2. Definitions of CSA.

Definition Keywords Reference

The combination of activities that helps to: build
adaptive measures that increase productivity, increase

resilience to stresses posed by climatic change,
and reduce GHG emissions.

Capacity building;
emission reduction [70]

A sustainable method through which improved
productivity and income is achieved in agricultural

production via the adoption of adaptation, resilience and
GHG emissions mitigation

Sustainability; Emission
reduction; productivity; profit;

capacity building
[71]

Processes that transform agricultural systems to boost
food security, given current changes in climate

Productivity; transformation;
food security [68]

A system of agriculture that supports emission reduction
while creating improved productivity profits,

nonetheless reducing vulnerability

Vulnerability reduction;
emission reduction;

profit growth
[72]

A system of agriculture that improves production in a
sustainable manner, while building capacity to ward-off

agricultural and climate change challenges

Sustainability; capacity
building; productivity [73]

Strategies that are able to curb agricultural challenges
through the increment of resilience activities to extreme

weather conditions, building adaptive capacities to
climate change and mitigating agriculture-based

GHG emission increase.

Capacity building;
emission reduction. [74]

Practices that add to improved food security globally,
and further enable farmers to effectively adapt to the

incidence of climate change and global emission levels

Capacity building; emission
reduction; food security [75]

Combined use of ultramodern technologies and
processes that work together to boost farming

productivity and incomes, while increasing the farm’s
and farmers’ ability to manage climate change through

GHG emission reduction.

New technology adoption;
productivity, profit; capacity

development;
emission reduction

[76]

A technique that combines a number of sustainable
techniques to fight particular climate challenges within a

specified farming area

Sustainability; GHG
emission reduction [77]

An agricultural framework that tries to develop and
adopt technique that will improve rural livelihoods, food

security, and facilitate adaptation to climate change,
while also providing mitigation benefits

New knowledge; food security;
capacity building. [78]

While it can be argued that the list of keywords suggested within the current study is not
exhaustive, many other definitions tend to be built around at least one of these keywords. Figure 1 is a
diagrammatical representation of the main aspects of climate-smart agriculture for which it stands as a
significant part of a smart village. The implication of the above expository listing of the fundamental
parts of climate-smart agriculture means that for a smart village to be so called, it must strive to
maintain within its agricultural systems all different aspects of CSA. Furthermore, other aspects of
the smart culture within the smart village setting; smart energy management, smart living and smart
healthcare, etc., must tap from these fundamental attributes of CSA, in order to provide robust services
in their smart village functions.
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Figure 1. Key aspects of climate-smart agriculture (CSA).

In demonstrating whether CSA could increase rice yield in China, Xiong et al. [79] used crop
simulation models; version 0810 of the Environmental Policy Integrated Climate (EPIC) model [80],
and version 4.0 of the so-called DSSAT, an acronym for Decision Support System for Agro-technology
Transfer [81], respectively. It was observed that these software simulations that gave ideas on cultivar
improvement and optimization of management practices for rice due to climate change, led to increased
rice production. The EPIC models specifically yielded over 2000 kgha−1 during the 30-year period
under review [79].

Rural African farmers tend to suffer a lot from adverse weather conditions. This further creates a
need for cheap and reliable weather forecast system. To attend to such needs in Nigeria [82], a cheap
automatic weather station that functions on solar energy was designed. By linking meteorological
sensors to microcontrollers, the farmer could gain access to processed information related to weather,
through a television screen. A thermometer collects temperature information, while the anemometer
and LDR measures wind speed and sunlight, respectively. Embedded temperature sensors within the
microcontroller receives analog information gathered by the thermometer and converts it to digital
signals [82]. In some cases, unprocessed data can also be sent to farmer’s mobile phones. The cheap
rate of the unit shows that it can serve as a very good system for crop management and food security,
in the least developed nations.

In a research carried out by Tenzin et al. [83], to ensure effective weather monitoring around
a farm, the authors designed a very cheap cloud-based weather measurement unit, using an integration
of different unique weather sensors. The system, which is made up of a base and a weather station,
as well as a display unit, is capable of effectively gathering humidity, temperature, wind direction,
wind speed, and many other weather data types. By experimenting its usage and statistically analyzing
gathered data, it was observed that the unit provided similar results as the Davis Vantage Pro2 weather
monitor, which was pre-installed on the same farm, thus, offering a cheaper option [83].

In a bid to design an integrated farm that efficiently manages water and reduces climate-demanding
inputs, Doyle et al. [84] designed an aquaponics unit for vegetables and fish. The design consists
of a 12V DC pump that delivers water from the fish tank to the flood tank, which then supplies the
area where the crops are planted at a constant rate. As soon as water is removed from the fish pond,
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it is carried by gravity through the grow bed area, where it is stored until it is needed for watering the
vegetable bed. The pump is powered using a solar panel of 150-Watt with a 120 Ah battery.

Having described some smart agricultural and climate-smart agricultural studies, it is important
to note that while smart agriculture is mostly developed, research on CSA is relatively new and still at
the level of policy and framework description [85]. In a systematic review study by Chandra et al. [85],
the authors observed that research on CSA is mainly divided into three parts; global policy and
plans around the world concerning further development of the concept, scientific research directions,
and integration of pillars of the concept (which includes; adaptation, resilience, mitigation, and food
security). With respect to CSA policy framework developed by the World Bank, Taylor [86] faulted the
fundamental make-up of the concept on the following grounds.

� There are no explicit conditions that can be referred to as success of CSA, which makes certain
fundamental aspects like productivity, completely implicit.

� Being an important part of sustainability, resilience as pointed out within World Bank’s CSA
framework is not defined, thus, leaving the term implicit.

� Given an absence of conceptual framework for CSA, literature relating to the topic are merely
based on success stories of some normative research on agricultural improvement.

� CSA tries not to be involved with how consumer sovereignty influences food production around
the world, towards the consumption demands of the elite.

Given these fundamental shortcomings of CSA [86] ‘climate-wise food system’ is suggested as a
more direct term that should be used to refer to sustainable food production systems, rather than CSA.
Another criticism on the policy and framework of CSA comes with the injustice meted to smallholder
farmers, as a result of the implementation of the concept [87]. By administering interview to some CSA
experts, analysis based on a number of ethical positions showed that implementation of climate-smart
agricultural approaches is not fair, especially with respect to allocation of income benefits and challenges
of cost associated with emission reduction [87], among smallholders farmers and small agricultural
processing industries. Budiman [87] further argued that based on how climate justice works, sharing
of income benefits should depend on the financial capability of farmers.

In a comparative study of Philippines and Timor-Leste, five important features of climate-smart
agricultural practices were observed by Chandra and McNamara [88]; strategies at country-specific
institutional levels; delegated financial procedures; the state of the market; technology; and knowledge.
In the two countries, CSA was used to resolve climate vulnerability challenges more than it was
associated with emission reduction goals [88]. Overall, the researchers observed that advancing
the course of CSA in these countries might involve multi-stakeholder approaches that cuts across
different levels of participation, both within and outside the farm, rather than mere technical CSA
developmental inputs [88]. From the above arguments for and against CSA, it is clear that while there
are still fundamental challenges revolving round the CSA concept, the terms might likely continue to
be utilized for agricultural problem solving, until it attains uniformity and intersection of ideologies,
amongst researchers and policy makers.

What does Smart- and CSA Offer Smart Villages?

Having described in previous sections how the concept of CSA has evolved amidst the
challenges faced within its developmental framework, an examination of the utility of climate-
and technology-driven agriculture to smart villages is important. According to Azevedo [5], there is
a big chance that CSA will empower and strengthen the conceptualization and execution of smart
village in different ways. Safdar and Heap [89] noted that development of small grids to power certain
climate-smart technologies has so far spurred a re-imagination of the possibility of home solar powering
in many Indian villages. Items such as solar lanterns, and street solar lighting systems have become
very popular. Nevertheless, a new concern is the way to enhance local productions and repairs of these
materials, in order to cater for higher tariffs of importing them to interior villages, and shipping them
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back for repairs, when the items develop technical faults. The report also stressed how CSA has so far
upheld gender equality, for instance, the CCAFS project in Kenya’s Nyando valley has mostly favored
women whose incomes have improved due to new technology for growing their vegetables [13].

In documenting how CSA could provide smart village farmers with possible economic benefits,
Khatri-Chhetri et al. [90] carried out a research using farmers of India’s Indo-Gangetic Plains. Major CSA
practices by the farmers include diversifying crops, land levelling using laser, nutrient management in
a site-specific mannerism, management of residue, and zero tillage, among others. The researchers
started by calculating how much the farmers spent to adopt three most prominent CSA systems (variety
of crops, land levelling using laser, and zero tillage). These values were estimated as +1402, +3037
and –1577 INR ha-1, respectively, for rice-wheat cultivation system. By improving their varieties in
terms of crop production, the study results showed that the farmers of the Indo-Gangetic Plains can
have their net return increase to up to INR 15,712 per-hectare, per-year. Similarly, when cultivating
wheat and rice with no tillage, farmers could make up to INR 6951 per-hectare, per-year, and INR 8119
per-hectare, per-year with laser-based land levelling. Given the analyses of this results, it implies that
integrating individual systems together would result in an even higher yield as well as income for
the farmers. In econometric terms, adoption and execution of CSA practices for crop production in
the north Indian River plain would significantly influence the cost of production, which decreased,
but produced an increased yield of rice and wheat.

Scherr et al. [78] reported that CSA offers to rebrand villages by providing them with embrace
‘climate-smart landscapes’. This means that integrated landscape management principles that adopts
the pillars of climate change must be in place prior to agricultural land allocation. The development
of CSA objectives also requires strong institutional mechanism. When such systems are in place,
its effects transcends to other parts of the village. Steenwerth [74] noted that while smart village
residents might consider migrating to big cities, climate-smart agriculture could cause a rethink,
as it gives room for entrepreneurial development in the agricultural sector, as seen in the case of youth
training embarked upon in rural areas across Europe. Additionally, CSA also caters for increased
demand for food due to the world’s growing population. This is achieved through methods that do not
jeopardize environmental health [74]. With respect to animal husbandry, some zoonotic diseases can be
detected early, so that treatment plans are set underway to prevent the farmer from infection. CSA also
motivates the achievement of sustainable development goals through agricultural practices that use
techniques that can drive food security, improve resilience, and effectively manage emissions [70].
CSA practices are also able to curb environmental challenges related to water pollution through the
use of agrochemicals [91]. A notable aspect where smart agriculture surpasses expectations is the
possibility of using it as a tool for enterprise resource planning, through which the safety of agricultural
products/foods can be monitored [46].

4. Discussion

Revisiting the Research Question

How will smart- and climate-smart agricultural research give account of, and conceptualize
transformation and change in the smart village context?

In responding to the modified research question above, it is important to draw important ideas
from the definitions of smart- and CSA. Albeit, CSA bears all characteristics of smart agriculture, with a
step further in lowering GHG emissions. Consequently, accounts of conceptualizing transformation
and change in smart village context might tend towards the adoption of key aspects of climate-smart
agriculture (see Figure 1), which are somewhat multi-disciplinary in nature [92]. What this implies
is that for smart villages to reach desired level in terms of development through research and policy
frameworks, ideas of climate-smartness must be fully embedded across the facets of smart village
agenda. According to Katara et al. [93], continuous adoption of new technologies is the first way
to conceptualize transformation of smart villages. Since technology is bound to continually change,
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it becomes easy to bring evolving and smarter changes to smart village progress. This means that
rural population must fully embrace ICT, especially since smart village idea is based on the fact that
technology is adopted to hasten the growth of sustainable development [93]. Secondly, efficiency
and productivity are not completely new words in smart village research. Nevertheless, it might be
useful for smart village policy analysts to learn from prevention of losses for which CSA is known [94].
Another important aspect through which transformation of smart villages can be conceptualized is
through capacity building of rural dwellers. As in the case of climate-smart agriculture, building
capacities would bring about self-sufficiency for persons within these communities, thus reducing
urban migration [15,19]. This is part of the current efforts within the different smart village initiatives.
Of all the initiatives that smart village research can draw from climate-smart agricultural practices,
the idea of seeking and promoting “new knowledge” [95] might be technically referred to as the most
significant. Given that the world has now embraced a knowledge-based economy for which smart
village development has to be a part.

On the basis of towing a part of steady development in its processes, future smart village
developmental projects need to adopt successful projects of the past as a yardstick for planning.
For instance, tremendous success was recorded by the IEEE smart village initiative; the EU smart
village-drive, as well as the CCACFS projects, to mention a few. By adopting the recipe for success within
these projects, more smart-village projects would be actualized in many parts of the world. Furthermore,
it is noteworthy to state that existing smart village projects also have unique challenges. Notable
amongst the challenges faced by smart villages within the IEEE project is the issue of maintenance
and repairs [96]. Although as part of the project framework, two individuals are often selected and
trained within the villages to fix damaged smart inputs, when demands for these inputs become high,
the number of technicians might no longer be sufficient to cater for repair and maintenance needs.
This is one aspect where smart village development must learn from climate-smart ideas where capacity
development is well-planned and readily available.

Another aspect for which smart village development can gain from climate-smart agriculture is
in its sustainability approach. While CSA strives for the cheapest routes to progress in agriculture,
smart village development mostly depends on donations and funding, which slows down the pace of
making progress and achieving sustained growth. As a result, for any smart villages project to achieve
lasting success, such a project would have to plan self-funding strategies [10], where inputs within
the village is used to generate income that would fund new projects for growth, rather than unduly
wait for funding before progress is made. In building its growth, smart village planners might need to
prioritize new knowledge and link it to new technology for early warning measures against potential
environmental disasters. Furthermore, proponents also need to ensure that pillars of climate change
are largely considered in building infrastructures [13]. This is because the impact of climate change
might continue to be felt for a long time.

While ideas drawn from smart and climate-smart agriculture might indeed be useful for smart
village development, Hargreaves et al. [97] explained that specific policies grounded in the values of
rural areas are needed to help them transform into smart villages. This transformation must, therefore,
bring effective utilization and management of resources within smart villages. The idea of transformation
within the context of smart villages mostly draws attention to digital transformation, which is very
important [98]. Another result of technological change is the social changes it brings [99,100].

Given the forgone discussion on how smart village development can be spurred from ideas
borrowed from smart- and climate-smart agriculture, we argued that the development of a smart village
has to be a gradual process. This is because the development must systematically and strategically
prioritize the most important aspects, such as clean energy management and agriculture, bearing in
mind the sustainability of the process.
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5. Current Lessons & Future Research Direction

Overall, this study revealed a number of lessons from smart-agriculture and climate-smart
agriculture ideas, which, if adopted in smart villages, would achieve the following goals.

� Improvement and optimization of existing smart village projects/processes in terms of precision
and speed.

� Increased efficiency and productivity, which can lead to increased income/profit on ventures
embarked upon by smart-village dwellers.

� Better planning brought about by efficient forecasting and prediction systems, which help to
guide against potential dangers, and to take proactive steps in planning and preparation for
such eventualities.

� Offer of cheaper and equally effective data gathering avenues for easy detection of challenges
and problems.

� Reduced dependence on external funding, and a drive for self-sufficiency encouraged
by innovation.

While the above lessons are specific to smart village development, there are specific shortcomings
of climate-smart agriculture that must be noted [91,92], and which ought not to be adopted in smart
village development.

1. Sain et al. [101] used cost-benefit analysis to analyze variability and uncertainty of some CSA
parameters. It was observed that while CSA is generally promising, not all CSA parameters were
indeed profitable in the long run [101].

2. With CSA comes IoT, Blockchain, and artificial intelligence in agricultural operations. As such,
there is the challenge of helping rural farmers understand the operation of smart farm inputs,
and interpretation of data gathered from the farms using CSA tools [102]. The situation might be
worse in rural Africa, where farmers rarely have any level of formal education.

3. Interoperability is another serious challenge for adopting CSA. An example is described by
Kalatzis et al. [103] in the use of gaiasense TM farming solution.

4. The cost of acquiring smart farming implements cannot be overlooked when listing some known
challenges of CSA [104]. Smart sensors for instance are generally expensive [105].

As a result of some of the aforementioned challenges of CSA, future studies might look at the
challenges posed by the adoption of “climate-smart” agriculture, prior to the full adoption of its
fundamental aspects, as described in this study. This is because research by Taylor [86] pointed
out certain foundation faults in the description of CSA by the World Bank group. There is also a
fundamental problem in how CSA handles climate justice [87]. Another aspect opened to future
research is the development of the climate-smart villages, as used in some studies [69]. While this has
been achieved in some parts of the world today [13], it might be the case that smart-village research is
yet to reach a maturity level as to warrant even more terms to be coined from it.

6. Conclusions

The uniqueness of smart village projects around the world means that approaches towards smart
village development might also differ. This study showed that smart and CSA are key areas that must
be considered in developing a smart village project, and offer several lessons to proponents of smart
village ideas, given how these concepts have enjoyed steady conceptualization in the research literature.
Another important consideration that must be carefully explored is the tendency of developing smart
villages in line with the concepts upon which smart cities are built. Having clarified in Section 1 that
smart villages are not extensions of smart cities [106], it is important to understand that the challenges
of rural areas differ significantly from those of cities. Hence, smart village development must come
with uniquely defined plans and strategies for its development [107].
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A major driving force for “smarting up” rural areas is the mass exodus of persons to the cities,
as well as inferior services offered in these villages [107]. Nevertheless, an introduction of the smart
village concept comes with new opportunities brought about by technology, which is currently touted
as the major economic driver of the 21st century. The current study, therefore, tries to adopt the
technological ideas of CSA in creating a foundational path for smart village development. To do this,
the study carefully analyzes the framework of CSA and proposes that the same be adopted for
developing smart villages. It is observed that certain fundamental aspects of technological innovation;
productivity, new knowledge, new technology, capacity building, vulnerability reduction, increased
profits, etc., are fundamental to the building of smart villages. Nevertheless, these fundamental terms
cannot be embedded immediately. Rather, it must follow gradual process that gives priority to the
important aspects.
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Abstract: Climate change forecasts higher temperatures in urban environments worsening the urban
heat island effect (UHI). Green infrastructure (GI) in cities could reduce the UHI by regulating
and reducing ambient temperatures. Forest cities (i.e., Melbourne, Australia) aimed for large-scale
planting of trees to adapt to climate change in the next decade. Therefore, monitoring cities’ green
infrastructure requires close assessment of growth and water status at the tree-by-tree resolution
for its proper maintenance and needs to be automated and efficient. This project proposed a novel
monitoring system using an integrated visible and infrared thermal camera mounted on top of
moving vehicles. Automated computer vision algorithms were used to analyze data gathered at an
Elm trees avenue in the city of Melbourne, Australia (n = 172 trees) to obtain tree growth in the form
of effective leaf area index (LAIe) and tree water stress index (TWSI), among other parameters. Results
showed the tree-by-tree variation of trees monitored (5.04 km) between 2016–2017. The growth and
water stress parameters obtained were mapped using customized codes and corresponded with
weather trends and urban management. The proposed urban tree monitoring system could be a
useful tool for city planning and GI monitoring, which can graphically show the diurnal, spatial, and
temporal patterns of change of LAIe and TWSI to monitor the effects of climate change on the GI
of cities.

Keywords: urban tree management; tree monitoring; computer vision; tree water stress index; leaf
area index

1. Introduction

Green infrastructure (GI) has become a priority in most cities worldwide and has
been recognized as an essential element in urban planning and development. The urban
green infrastructure, which includes natural vegetation, parks, street trees, green roofs,
and small gardens, provides various benefits to the environment, community, and the
economy. The GI of a city contributes valuable benefits such as regulation and reduction
of temperature during heatwaves [1] through plant transpiration [2], while green roofing
decreases albedo [3]. GI improves air quality [2] and reduces flood risk [4,5] and stormwater
pollution [6], among other environmental benefits. Beyond improving the ecosystem,
GI has been linked to improving people’s physical and mental health [1]. Within the
major challenges in urban cities are extreme heat and the urban heat island effect (UHI).
UHI mainly occurs within cities with a higher proportion of concrete in relation to their
green infrastructure (GI) [7]. In these cities, the ambient temperature increase can be
multiplied by a 1.4–15 factor depending on circumstances within and surrounding a
particular city environment [8,9]. UHI may worsen in the future, corresponding to the
predicted climate change.

The maintenance of GI in cities may pose a challenge for city councils due to the
number and complexity of tree and plant species, especially in cities classified as forest
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cities, such as Melbourne, Australia [1,2]. The City of Melbourne established a goal as
part of the Urban Forestry Strategy to plant 3000 trees per year as one of the primary
strategies for the climate adaptation program. The city council aimed to increase canopy to
140,000 trees in 2040, twice the coverage of the existing number of trees that it manages
at present [3]. Trained arborists maintain public trees through routine inspection and
assessment, which can also be requested through public reporting. Trees situated in heavily
accessed areas such as parks and boulevards are inspected annually, while other locations
are inspected at least once in 2 years. The city eliminates about 800 tree stands due to
various reasons, including threats to safety. A considerable population of trees managed
by the City of Melbourne are a century old and may pose higher risk of decline and,
consequently, safety risk.

The manual inspection of urban trees by arborists is quite time demanding and ineffi-
cient. With the large-scale greening plans in urban cities such as Melbourne, it is highly
impractical and nearly impossible to monitor GI to achieve high temporal and spatial reso-
lution through the current manual practice. Other methods use wireless sensor networks,
including the monitoring of soil moisture, temperature, light, humidity, and pressure [10],
using internet of things (IoT) systems [4], real-time controls [5], and plant/tree-based sen-
sors, such as sap flow probes [6,11]. These methods produce accurate and high temporal
data resolution. However, one major disadvantage is that this method can only be applied
to a few representative plants, as installing sensors to numerous trees is costly. Further-
more, the sensor networks require frequent monitoring and high maintenance, requiring
specialized personnel with specific technical skills.

More spatially representative approaches for GI monitoring of cities are based on
satellite remote sensing on relevant vegetation indices (VIs) related to growth and water
status [12]. This has been applied in China for 70 major cities [13], and in Sweden [14]
using Sentinel-2 and Landsat-8 satellites [13], as well as in Croatia using World View 1,
2, and 3 with high resolution visible and multispectral bands [15]. The use of satellite
imagery can monitor large areas from a single image or stitched up images incorporating
several square kilometers, which is a major advantage. Also, information can be readily
available, and sources can be either free or low-cost (i.e., Landsat and Sentinel satellites).
However, disadvantages can include low resolution of information per pixel, reaching
0.5 m for panchromatic imagery, and between 2 m to 30 m per pixel for multispectral
imagery. Higher spatial resolution imagery may be expensive, such as those from the
World View satellites. Furthermore, satellite revisit time to the same spot (i.e., in cities) may
be between 10–15 days, and data quality depends on how clear the skies are.

To address the problem of low temporal and spatial resolution, airborne, and un-
manned aerial vehicles (UAV) have been implemented to monitor GI in cities [16–19].
However, the use of airborne remote sensing comes with a cost, requiring a pilot and
skilled personnel to operate the instrumentation, process the information, and deliver
interpreted information to relevant city council personnel for GI management and deci-
sion making. Some services such as Nearmap (Nearmap, Barangaroo, NSW, Australia)
offer high-resolution visible images with a high temporal resolution for major cities and
coastlines [20,21]. However, the application of visible images is mainly for monitoring
of growth parameters for trees [22]. The recent popularity of UAV has also expanded its
application in remote sensing, with the accommodation of various camera and sensor
payloads aside from visible such as multispectral camera and LIDAR [23–26]. With UAV,
the main challenge is the implementation in countries with strict civil aviation regulations,
such as many cities in Europe, the United States, and Australia, among others. In Australia,
for example, the Civil Aviation Safety Authority (CASA) has a very strict regulation to fly
drones within 30 m in proximity to people, making flights in heavily populated cities, such
as Melbourne (Victoria, Australia) virtually impossible [27].

This paper proposes a novel GI monitoring approach based on prototype integrated
visible and infrared thermal cameras to automatically obtain different VIs based on growth
and tree water status parameters on a tree-by-tree scale. The integrated cameras are
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mounted on top of moving vehicles, circulated through one of the most important and
historical Elm tree avenues in Melbourne (Royal Parade), Australia. The integrated system,
which is composed of low-cost instrumentation, could be mounted on top of public trans-
port vehicles, such as buses and trams, city council vehicles, and rubbish trucks. Public
transport vehicles allow for incursion to potentially every street at multiple times in a
day, offering a high temporal and spatial resolution of trees monitoring. The proposed
system enables automated data acquisition, analysis, and mapping and does not require
specialized personnel. It can also offer diurnal monitoring of trees to assess in real-time
the effects of weather anomalies, such as heatwaves, floods, and heavy winds, among
others, and the detection of pest and disease incidence. The novel technology (integrated
cameras) and application could potentially be an accurate, cost-effective, and user-friendly
tool for city councils, and they could base management strategies with high reliability on
the system proposed, such as tree lopping, detection of encroachment of tree branches on
power lines, and deterioration of old trees.

Only a few studies are based on the implementation of cameras for upward-looking
imagery and analysis without any automation. These have been restricted to the 3D mod-
eling of trees using handheld cameras and point cloud analysis [28] and the analysis of
trees’ thermal characteristics [29]. Other applications using different technologies, such as
hyperspectral cameras [30] and low-cost electronic noses (e-noses) [31], using the method-
ology proposed can be implemented to obtain more information from trees and their
environment, such as diagnosis of vegetation health.

This study has been based on the integration of previously developed technology
from our research group for the automated analysis of visible and infrared thermal imagery
for different crops such as eucalyptus trees [22], grapevines [32–35], kiwi plants [36], apple
trees [37], cherry trees [38–40], and cocoa plants [41], among others.

2. Materials and Methods

Data acquisition was performed in Melbourne, Australia, mainly based on an inte-
grated visible and infrared thermal camera developed and processed using customized
computer vision algorithms.

2.1. Urban Site and Tree Material Description

The monitoring site (Figure 1) was located along the iconic Royal Parade avenue in the
city of Melbourne, Australia, that starts at Grattan Street (−37◦48′02.27′′ S; 144◦57′26.27′′ E;
33 m.a.s.l.) finishing on Park Street (−37◦46′41.45′′ S; 144◦57′36.56′′ E; 46 m.a.s.l.), and vice
versa. The trees are planted along a nature strip separating the main road and the access
road in both directions. The main roads (North and South bound) are divided by a median
strip containing the Route 19 tram lane. Each way corresponds to 2.52 km, with a total
distance of 5.04 km both ways. There are 172 deciduous trees considered in the monitoring,
composed of different Elm species (Ulmus spp.) planted in 1900 and 1997 [42]. The trees are
irrigated using sub-surface irrigation, and tree lopping management is performed regularly
by the Melbourne city council.

2.2. Climate and Weather Information Description

The climate in Melbourne is classified as subtropical oceanic with mild winters and
pleasant to hot summers. Windy conditions are common, and weather changes can occur
within the same day. The average temperatures between November and January are
between 22 and 26 ◦C, with minimum temperatures between 11 and 14 ◦C. The yearly
average precipitation is 670 mm, with an even distribution throughout the year of around
50 mm per month. Sunshine hours are higher between September and March (between
6–9 h). Specific weather data available for the trial site and the monitoring period were
acquired from the Bureau of Meteorology, measured from a meteorological station located
in Melbourne Olympic Park (Number: 086338) at 3.4 km from Royal Parade. The weather
information extracted from this station was: maximum daily temperature (◦C), rain (mm),
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and solar radiation (MJ m−2). Monitoring was performed from November 2016 (late spring)
to January 2017 (summer).

Figure 1. Location monitored using a moving vehicle from (A) start of Royal Parade from Grattan Street to (B) Park Street
(2.52 km), and vice versa. There were 172 trees monitored, consisting of different species of Elm trees (Ulmus spp.).

2.3. Integrated Visible and Thermal Infrared Camera System

The integrated camera system (Figure 2) consisted of a visible RGB video camera
and a thermal infrared camera FLIR AX8™ (FLIR Systems, Wilsonville, OR, USA) with
a resolution of 90 × 60 pixels, connected to a web-based system that can simultaneously
capture and store the videos and infrared thermal images (IRTIs) to be further downloaded
for analysis or transmitted to cloud storage and processing system. The thermal camera
had a spectral range of 7.5–13 μm, an accuracy of ±2 ◦C, and an emissivity of 0.985. The
IRTI capture rate was every second. The RGB video camera is connected to a Raspberry Pi
Camera Module V2.1 (Raspberry Pi Foundation, Cambridge, UK; Figure 2A), board, and
memory card. This device has an 8-megapixel sensor with a resolution of 640 × 360 pixels,
4:3 aspect ratio, and 30 frames per second (fps). Videos were recorded within the unit in
H.264 video compression format and automatically converted into Motion Pictures Expert
Group-4 (.mp4) files. The camera was fitted with a 3-axis gimbal to minimize movements
when acquiring the data (Figure 2A); an integrated temperature, relative humidity, and
solar radiation sensors within a 3D printed Stevenson screen (Figure 2A); and a magnetic
GPS tracker (Figure 2B). The integrated camera was mounted on top of a car (Figure 2B)
with a height between the camera and the tree canopies of approximately 5 m.
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Figure 2. The integrated camera system. (A) The system is composed of weather and shock resistant case (1) that holds the
Raspberry Pi boards and battery; thermal infrared camera FLIR AX8™ (2); the visible Red, Green, and Blue (RGB) Raspberry
Pi Camera Module V2.1 (3); power mount receptacle (4) to charge the internal battery; 3-axis gimbal (5) to provide stability
to the camera; integrated temperature, relative humidity, and solar radiation sensors (Stevenson screen, 6). (B) Example of
the mounting procedure of the integrated camera on top of a vehicle. The camera was also integrated with a magnetic GPS
tracker (7).

The radiometric data from the thermal infrared camera were obtained every second
while traveling through the Royal Parade. They were recorded as in comma-separated
values (.csv) format files and the visible RGB images in Joint Photographic Experts Group
(.jpg). Both sets of data were obtained using the Sense Batch software (SENSE Software,
Warszawa, Mazowsze, Poland). The data were analyzed using customized codes developed
and updated using Matlab® R2020b (Mathworks Inc., Natick, MA, USA).

The camera’s integrated sensors consisted of an AM2302 (wired DHT22) temperature-
humidity sensor (Guangzhou Aosong Electronics Co., Ltd., Guangzhou, China). This sensor
can obtain new data from it once every 2 s (0.5 Hz), which is accurate for 0–100% humidity
readings with 2–5% accuracy and −40 to 80 ◦C temperature readings with ±0.5 ◦C accuracy.
The SP-510-SS upward-Looking Thermopile Pyranometer (Apogee Instruments, Inc., Lo-
gan, UT, USA) has a sensitivity of 0.05 mV per W m−2, with a measurement range between
0 to 2000 W m−2 (net shortwave irradiance) and repeatability of <1%. The detector response
time is 0.5 s with a field of view of 180◦ and spectral range of 385–2105 nm, directional
(Cosine) response less than 30 W m−2 at 80◦ solar zenith, temperature response: <5% from
−15 to 45 ◦C at the operating environment: −50 to 80 ◦C, and 0 to 100% relative humidity.

2.4. Image Pre-Processing and Computer Vision Algorithms

Every frame corresponding to a canopy from the visible (RGB) video and infrared
thermal images were analyzed using the computer vision algorithms described in
Sections 2.4.1 and 2.4.2, respectively. Figure 3 shows an example of a visible (RGB) frame
and corresponding infrared thermal image from an Elm tree canopy along the Royal Parade.
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Figure 3. Example of a visible (RGB) image (A) and the corresponding infrared thermal image
(B) from an Elm tree taken using the integrated camera on top of a moving vehicle.

The pre-processing of the RGB images consisted of the binarization (Figure 4A) using
the blue channel from the RGB images by selecting the lowest part of the histogram curve
(valley) detected automatically between the pixels corresponding to the canopy material
(first peak) and the background or sky (second peak) (Figure 4B). After binarization, each
image was automatically subdivided into a 5 × 5 sub-images to perform gap analysis.
A large gap (lg) per sub-image was considered when there was over 75% of sky. Total
pixels (tp) corresponded to a fixed value related to the resolution of the camera used. This
pre-analysis has been described in detail in Fuentes et al. [22].

The pre-processing of the thermal images was performed in batch after each measure-
ment campaign using the SENSE Batch software (Sense Software, Warszawa, Mazowsze,
Poland), which extracts radiometric data per pixel in a comma-separated file (.csv) in the
form of a matrix processed in Matlab (Figure 4C). Leaf material was selected by simple
automatic elimination of temperatures below 0 + ◦C since this separates the sky from
the canopy material (Figure 4D). From the segmented image, the canopy temperature
was automatically extracted (Tcanopy) as entry parameter for the TWSI and Ig calculation
(Equations (7) and (8)).

2.4.1. Canopy Architecture and Growth Parameters

Videos from the visible camera were processed automatically using a customized code
written in Matlab® R2020b to analyze frames following a computational process proposed
by Fuentes et al. (2008) [22].

Canopy architecture parameters were obtained using the following algorithms consid-
ering the fractions of foliage projective cover (ff), crown cover (fc), and crown porosity (Φ),
which were calculated using the following computational algorithms proposed by Fuentes
et al. (2008) [22]:

f f = 1 − tg
tp

(1)

fc = 1 − lg
tp

(2)
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φ = 1 − f f

fc
, (3)

where lg = large gap pixels, tg = total pixels in all gaps, and tp = total gap pixels.

Figure 4. Example of the automated pre-processing of visible (RGB) images transformed to binary
images (A) using the blue channel as filter (B) and the corresponding infrared thermal image (C)
filtered to create a mask (D) to account for leaf material.

LAI (adimensional) is calculated from Beer’s Law, defined as the total one-sided area
of leaf tissue per unit 3 ground surface area [43]. Hence, the LAI values describe m2 of leaf
area per m2 of soil.

LAI = − fc
ln φ

k
(4)

where k = coefficient of light extinction (k = 0.5), which is applicable for tall trees [22], and
the clumping index at the zenith, Ω(0), was calculated as follows:

Ω(0) =
(1 − φ) ln

(
1 − f f

)
ln(φ)/ f f

. (5)
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The clumping index is a correction factor in obtaining effective LAI (LAIe), also adi-
mensional, which is the product of:

LAIe = LAIxΩ(0). (6)

Equation (5) describes the non-random distribution of canopy elements. If Ω(0) = 1
means that the canopy displays random dispersion, then for Ω(0)> or <1, the canopy is
defined as clumped.

2.4.2. Infrared Thermal Image Analysis

A tree water stress index (TWSI) was derived from the common crop water stress
index (CWSI) [32] used in agriculture, which is a normalized value (0–1) and, therefore
adimensional, and it was calculated using the following equation after determining Tdry
and Twet [44]:

TWSI =
Tcanopy − Twet

Tdry − Twet
(7)

where Tcanopy is the actual canopy temperature extracted from the thermal image at deter-
mined positions, and Tdry and Twet are the reference temperatures (in ◦C) obtained using
the statistical temperature distribution discrimination described in published research [39].

An infrared index (Ig), which is adimensional and proportional to leaf conductance
and water vapor transfer (gs), can be obtained using the relationship as follows [45]:

Ig =
Tcanopy − Twet

Tdry − Twet
= gs (raw +

(
s
γ

)
rHR) (8)

where raw = boundary layer resistance to water vapor, γ = psychrometric constant, and
s = slope of the curve relating saturation vapor pressure to temperature [45,46].

For automated analysis, the leaf energy balance approached was implemented using
integrated sensors within the camera described in Figure 2A as [32]:

Tdry − Ta =
rHRRni

ρcp
(9)

where Ta is the air temperature measured at the same positions and time as infrared
thermography acquisition, rRH = the parallel resistance to heat and radiative transfer, Rni
is the net isothermal radiation (the net radiation that would be received by an equivalent
surface at air temperature), ρ is the density of air, and cp is the specific heat capacity of air.
This formula uses the concept of isothermal radiation and assumes a dry surface with the
same aerodynamic and radiative properties, in which the sensible heat loss will equal the
net radiation absorbed [47].

Twet − Ta =
rHRraWγRni

ρcp[γ(raW) + srHR]
− rHRδe

γ(raW) + srHR
(10)

The thresholds Twet and Tdry are references that can be leaves painted with water
(Twet) and use petroleum jelly (Tdry) to obtain through infrared thermography the max-
imum and minimum temperatures to be found within a specific canopy at the time of
measurements [32]. The leaf energy balance approach allows the implementation of an
automated procedure to obtain these thresholds using the sensors incorporated in the
integrated camera proposed (Figure 2).

2.5. Survey, Automated Detection of Trees Location, Data Extraction, and Mapping

Acquisition of images was performed on four dates: twice in November 2016 (17 and
19 November), followed by 19 December 2016 and 16 January 2017. The image surveys
were all performed at 1–2 pm during maximum atmospheric demand (maximum vapor
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pressure deficit), a common practice in agriculture to assess plant water status for irrigation
assessment requirements.

For the 172 Elm trees monitored in this study, the GPS location was extracted from
Google Earth Pro (Googleplex, Mountain View, CA, USA). The tree positions were used
as anchors to automatically extract information from procedures previously explained for
canopy architecture and infrared thermal-based parameters. The automated extraction
consisted of identifying the nearest coordinates registered in the integrated camera to the
anchored GPS for specific trees.

Once the data were extracted, they were mapped using a customized code written
in Matlab® R2020b to produce: (i) geo-located icons (circles) with relative sizes to denote
changes in growth (LAIe), and (ii) geo-located circles with a different color to represent
different TWSI values. The process can be used to map any parameter extracted using
Equations (1)–(10).

3. Results

3.1. Weather Data within the Period of Measurement and Calculated Parameters

Figure 5 shows the weather information acquired from the closest meteorological
station from the trial site. The first two dates of measurement (A: 17 November 2016 and
B: 29 November 2016) had maximum rain events of 12.6 and 17 mm of rain in the previous
week, and maximum temperatures of 31.4 and 20 ◦C, respectively. These dates had high
solar radiation (28.8 MJ m−2 and 31 MJ m−2, respectively). In the last two measurement
surveys (19 December 2016 and 16 January 2017), there were no or minimal rain events
(0 mm and 4 mm, respectively) within two weeks preceding the measurements. Both dates
had high maximum temperatures and solar radiation values (30.02 and 32.7 ◦C and 29.3
and 30.5 MJ m−2, respectively).

Figure 5. Meteorological data showing daily maximum temperature (◦C) solar radiation (MJ m−2) and rain (mm) in the
Royal Parade for four different dates studied: (A) 17 November 2016, (B) 29 November 2016, (C) 19 December 2016, and
(D) 16 January 2017.

Table 1 shows the main canopy and tree water status parameters for all the measure-
ment survey days. There was considerable variation in LAI and LAIe from a minimum of
0.61 and 0.41, found the last date of measurement, to maximum values of 5.98 for LAI in the
first date of measurement and 4.97 LAIe for the second date of measurement. Furthermore,
the lowest Tc values, TD, and TWSI corresponded to the second measurement date.
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Table 1. Growth and water stress parameters obtained using the proposed urban tree monitoring system, measured at
Royal Parade in Melbourne, Australia, for four measurement surveys between 2016 and 2017. Parameters are presented
with maximum, minimum, means, and standard deviation values (SD) for leaf area index (LAI, adimensional), effective LAI
(LAIe, adimensional), canopy temperature of trees (Tc, ◦C), temperature depression (TD, ◦C), thermal infrared index (Ig,
adimensional), and tree water stress index (TWSI, adimensional).

Parameter/Date
17 November 2016 29 November 2016 19 December 2016 16 January 2017

Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD

LAI 0.81 5.98 2.67 ±1.17 0.86 5.33 2.58 ±0.90 0.63 4.88 2.70 ±0.88 0.61 4.11 1.86 ±0.57
LAIe 0.48 3.56 1.59 ±0.70 0.80 4.97 2.41 ±0.84 0.47 3.67 2.03 ±0.66 0.41 2.72 1.23 ±0.38

Tc 25.9 30.7 28.2 ±1.21 16.5 21.5 19.3 ±1.10 23.6 30.3 27.9 ±1.05 23.7 36.6 31.5 ±1.99
TD 0.7 5.5 3.2 ±1.21 −1.5 3.4 0.7 ±1.10 −0.1 6.6 2.3 ±1.05 −3.9 9.1 1.3 ±1.99
Ig 0.19 0.93 0.43 ±0.12 0.26 1.36 0.66 ±0.17 0.20 1.07 0.39 ±0.12 0.18 1.19 0.45 ±0.15

TWSI 0.52 0.84 0.70 ±0.06 0.42 0.79 0.61 ±0.06 0.48 0.84 0.73 ±0.06 0.46 0.84 0.70 ±0.07

3.2. Comparative Analysis of Main Extracted Parameters from Trees

Figure 6A compares growth parameters (LAIe) for the 172 trees monitored with the
TWSI for the different measurement dates. The trends followed apparent curvilinear
relationships with the last two dates (19 December 2016 and 16 January 2017) with lower
LAIe and higher TWSI than the earliest dates (17 November 2016 and 29 November 2016).
Figure 6B shows the comparison between the Ig and TD parameters related to stomatal
conductance from trees. There was contrasting behavior of these parameters for the first
two dates with lower Ig and higher TD for the first and flat distribution of the whole range
of Ig values with low TD close to the 0 values. On the contrary, the last two dates had
similar behavior with low Ig and TD values ranging from −3 to around 3 ◦C.

Figure 6. Comparison between effective leaf area index (LAIe, dimensionless) and tree water stress index (TWSI) (A),
and between the infrared thermal index (Ig) and temperature depression (TD, ◦C) (B) for 172 elm trees monitored along
the Royal Parade in Melbourne, Australia for four different dates between 2–16 and 2017, using the proposed urban tree
monitoring system.

3.3. Main Growth and Tree Water Stress Parameters Map

Figures 7 and 8 show the proposed urban tree monitoring system’s main outputs,
displaying the main parameters extracted per tree along Royal Parade in four measurement
dates. Figure 7 shows the LAIe for different trees with the relative size of circles corre-
sponding to trees changing according to growth differences between dates. Figure 8 shows
changes in color of circles representing the trees relative to the TWSI for different dates.
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Figure 7. Mapping of effective leaf area index (LAIe) along the Royal Parade (5.04 Km) of 172 trees using the proposed
urban tree monitoring system for four different dates: (A) 17 November 2016, (B) 29 November 2016, (C) 19 December 2016,
and (D) 16 January 2017. Different colors and relative circle sizes correspond to the LAIe scale.

Figure 8. Mapping of tree water stress index (TWSI) along the Royal Parade (5.04 Km) of 172 trees using the proposed
urban tree monitoring system for four different dates: (A) 17 November 2016, (B) 29 November 2016, (C) 19 December 2016,
and (D) 16 January 2017. Different colors correspond to the TWSI scale.
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4. Discussion

The proposed urban tree monitoring system that uses an integrated camera on mov-
ing vehicles can automatically provide information on trees’ growth and water status
changes, which can serve as a powerful decision-making tool for city councils for tree
management (i.e., supply water requirement at appropriate times and tree lopping for
power lines encroachment and public safety management). The reliability of the system
is based on the growth and canopy architecture parameters and algorithms used, which
have been successfully implemented for other trees such as eucalyptus [22], and tree crops
such as cherry trees [38,40], apple trees [37], and grapevines [33,48–50]. Tree water stress
algorithms have been used to describe the water status of many trees and crops [32,51–53].
Furthermore, most of the tree canopies were visible in the field of view of canopies for both
visible and infrared thermal images (Figures 3 and 4), making the analysis representative
of the whole tree. Furthermore, since images are upward-looking, the monitored parts of
the trees were the under canopy and were shaded, which has been regarded as the most
consistent and representative part to monitor using infrared thermal imagery [46,54].

The sensitivity of the growth and physiological parameters obtained and their varia-
tions are specifically shown in Figure 6 and compared between the trees measured (indi-
vidually) and temporally (within dates). The variation is sensible in response to weather
conditions and changes related to atmospheric demand (temperature) and water availabil-
ity (rain). These trends and their sensitivity are further supported by the mapping of the
processed data in the form of LAI (Figure 7) and TWSI (Figure 8). The parameters obtained
are in accordance with weather information acquired within the measurement dates. The
first two dates (17 November 2016 and 29 November 2016) corresponded to milder weather,
with cooler weather for the second date with a maximum temperature of 20 ◦C, followed by
rain events. For the second date, lower atmospheric demands produced a flat response for
TWSI and TD. In the case of TD, lower TD values, close to 0 ◦C, are related to low stomata
opening and transpiration (Figure 6B). However, they were not associated with higher
TWSI (Figure 6A). The rest of the dates (19 December 2016 and 16 January 2017) have
more significant increases in TWSI with higher atmospheric demands (evapotranspiration),
as shown by higher maximum temperatures and solar radiation. The highest and more
significant determination coefficient (Figure 6B) between Ig and TD was found for the dates
with higher atmospheric demand (first, third, and fourth dates), which was expected since
these parameters are related to stomata aperture [32,54].

Another advantage of the proposed system is that it allows the automatic mapping of
data obtained from surveys on a tree-per-tree scale (Figures 7 and 8). For growth parameters,
such as LAIe (Figure 7), some of the trees with higher growth showed decreased LAIe from
the first to the second date of measurement, which may be related to continuous tree
lopping management from the council (Figure 7A,B). However, the lowest and most
consistent LAIe values were found in the last date of measurement (January 2017), which
corresponded to one of the hottest months in summer and the starting of the senescence
stage for the Elm trees (Figure 7D), in comparison to the previous dates. For TWSI, the
parameter trends followed water availability from rain events during the last weeks and
maximum temperatures with the highest values corresponding to the warmest dates in
December 2016 and January 2017 (Figure 8C,D).

The integrated cameras could be mounted on public transport of cities, such as buses
and trams. The installation of the system on trams is ideal, being on rails are on a fixed
route, which can offer more precise data acquisition and more reliable comparative analysis.
Furthermore, at least along the Royal Parade route (Route 19), a particular tram can pass
through the same spot every 80–90 min, which can acquire at least 13 data points in one
day from 5 am to midnight. To access more places within the city, such as suburb streets,
cameras could be installed on rubbish trucks and buses, which have more extensive access
to residential areas. This layout of the trams’ path is similar to many European cities since
they have similar designs.
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The diurnal data collected may be more relevant for infrared thermal parameters to
assess tree water status changes throughout the day compared to changes in growth, which
are expected to be minimal, while data related to changes in leaf or branch angle due to
water stress after sunset could be relevant to assess night-time water loss by trees, as this
phenomenon is relevant to other tree species and crops [55–59]. Continuous daily data
of water stress may also offer insights of tree behavior within heat waves [60], pest and
disease interactions [61,62], windy days, and mortality estimates [63]. The volume of data
that can be gathered through the proposed system allows the implementation of machine
learning modeling and artificial intelligence to promptly detect problems for management
and mitigation, avoiding damage to infrastructure and the public due to unpredicted fallen
trees or big branches.

The system has been proposed, and data analysis can be deployed as a user-friendly
digital platform producing maps with tree water status and growth maps depicted in
Figures 7 and 8. Users can click on any individual tree and obtain numerical and other
management information as it is already set up for planting date and basic information of
trees by the Melbourne city council [3]. Furthermore, since the conception of the integrated
camera idea, on which this paper was based, FLIR has released an integrated visible
4K video camera and a high resolution infrared thermal imaging: FLIR Duo Pro (FLIR
Systems, Wilsonville, OR, USA). This camera is intended to be mounted as a payload
for UAV vehicles. It can also be used to acquire data to obtain the analysis proposed
in this paper mounted on vehicles as per Figure 2B. The downside will be the costs of
using these cameras if many vehicles are required for this purpose. It is thought that the
higher resolution from the FLIR camera will not impact with statistical significance results
obtained with the low-cost camera system presented in this paper. The latter is supported
by previous research that has compared different resolutions of visible and thermal infrared
cameras for growth and water status assessment on trees with no significant differences for
the parameters studied [39,64], which can be explained by the short height between the
camera and the canopies included for these type of studies, which is between 3–5 m.

This study was based on an extensive avenue in which there were a predominant tree
species. Hence, further studies should be conducted for different tree species to account for
the variety that exists in a normal urban green infrastructure environment. Even though
the algorithms used in this study have been proven to be robust for other horticultural tree
species, specific calibrations should be made to consider different canopy architectures and
sensitivity/tolerance to different water stress levels.

5. Conclusions

The urban green infrastructure could be automatically monitored using a low-cost
integrated camera system mounted on top of moving vehicles. Specifically, the main
advantages of the system described in this paper compared to similar studies to monitor
the green infrastructure in urban environments are: (i) low-cost instrumentation required
to integrate visible and infrared thermal cameras; (ii) the system can be mounted on
public transport such as buses, trams, and city council vehicles with the extra advantage
when considering garbage trucks since they can access every street of a city if extensive
monitoring is required; (iii) it could provide high spatial and temporal data resolution,
which is related to the frequency of public transport through the same trees; (iv) algorithms
implemented are robust and have been successfully tested on a wide variety of horticultural
trees; (v) the system does not require special permits or trained pilots, such as the case of
UAVs, and they also do not have restrictions due to privacy issues since they monitor urban
infrastructure in an upward-looking fashion above the pedestrian level. These operational,
cost-effectiveness, accuracy, and privacy-related advantages of the system proposed can be
compared to those of manual measurements of green infrastructure, using sensors and IoT
on sentinel trees, remote sensing using satellites, UAVs, or the airborne instrumentation
(Nearmap) discussed in this paper. Furthermore, the high volume of data collected (spatial
and temporal) using the system proposed in this paper could allow the implementation
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of machine learning algorithms and artificial intelligence (AI) to obtain further vegetation
indices of trees to manage the cities’ green infrastructure efficiently, to maximize resources,
and to minimize detrimental effects of climate change and risk to infrastructure and people.
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15. Gašparović, M.; Medak, D.; Miler, M. Geospatial monitoring of green infrastructure–case study Zagreb, Croatia. In Proceedings

of the International Conference SGEM Vienna GREEN 2017, Vienna, Austria, 27–29 November 2017.
16. Perc, M.N.; Cirella, G.T. Evaluating green infrastructure via unmanned aerial systems and optical imagery indices. In Sustainable

Human–Nature Relations; Springer: Berlin/Heidelberg, Germany, 2020; pp. 171–184.
17. Dimitrov, S.; Georgiev, G.; Georgieva, M.; Gluschkova, M.; Chepisheva, V.; Mirchev, P.; Zhiyanski, M. Integrated assessment

of urban green infrastructure condition in Karlovo urban area by in-situ observations and remote sensing. One Ecosyst. 2018,
3, e21610. [CrossRef]

18. Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and classifying green infrastructure typologies for climate-related studies
based on remote sensing data. Urban For. Urban Green. 2019, 37, 154–167. [CrossRef]

40



Sensors 2021, 21, 295

19. Koc, C.B.; Osmond, P.; Peters, A.; Irger, M. Understanding land surface temperature differences of local climate zones based on
airborne remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2724–2730.

20. Lumiatti, G.; Carley, J.T.; Drummond, C.D.; Vos, K. Use of emerging remote sensing technologies for measuring long-term
shoreline change and coastal management. In Proceedings of the Australasian Coasts and Ports 2019 Conference: Future
directions from 40 [degrees] S and beyond, Hobart, Australia, 10–13 September 2019; p. 797.

21. Evans, S.M.; Griffin, K.J.; Blick, R.A.; Poore, A.G.; Vergés, A. Seagrass on the brink: Decline of threatened seagrass Posidonia
australis continues following protection. PLoS ONE 2018, 13, e0190370. [CrossRef] [PubMed]

22. Fuentes, S.; Palmer, A.R.; Taylor, D.; Zeppel, M.; Whitley, R.; Eamus, D. An automated procedure for estimating the leaf area
index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the
relationship between remotely sensed and field measurements of LAI. Funct. Plant Biol. 2008, 35, 1070–1079. [CrossRef] [PubMed]

23. Ritter, B. Use of Unmanned Aerial Vehicles (UAV) for Urban Tree Inventories. Master’s Thesis, Clemson University, Clemson, SC,
USA, 2014.

24. Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote
sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft.
Urban For. Urban Green. 2018, 30, 72–83. [CrossRef]

25. Wei, L.; Huang, C.; Wang, Z.; Wang, Z.; Zhou, X.; Cao, L. Monitoring of Urban Black-Odor Water Based on Nemerow Index and
Gradient Boosting Decision Tree Regression Using UAV-Borne Hyperspectral Imagery. Remote Sens. 2019, 11, 2402. [CrossRef]

26. Miyoshi, G.T.; Arruda, M.d.S.; Osco, L.P.; Marcato Junior, J.; Gonçalves, D.N.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.;
Gonçalves, W.N. A Novel Deep Learning Method to Identify Single Tree Species in UAV-Based Hyperspectral Images. Remote
Sens. 2020, 12, 1294. [CrossRef]

27. Molnar, A.; Parsons, C. Unmanned Aerial Vehicles (UAVs) and law enforcement in Australia and Canada: Governance through
‘privacy’in an era of counter-law? In National Security, Surveillance and Terror; Springer: Berlin/Heidelberg, Germany, 2016; pp. 225–247.

28. Miller, J.; Morgenroth, J.; Gomez, C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and
volume estimates. Urban For. Urban Green. 2015, 14, 932–940. [CrossRef]

29. Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case
study on commercial streets in Seoul, Korea. Sustainability 2018, 10, 519. [CrossRef]

30. Hernández-Clemente, R.; Hornero, A.; Mottus, M.; Penuelas, J.; González-Dugo, V.; Jiménez, J.; Suárez, L.; Alonso, L.; Zarco-
Tejada, P.J. Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: Lessons learned from
empirical relationships and radiative transfer modelling. Curr. For. Rep. 2019, 5, 169–183. [CrossRef]

31. Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles:
An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [CrossRef]

32. Fuentes, S.; De Bei, R.; Pech, J.; Tyerman, S. Computational water stress indices obtained from thermal image analysis of grapevine
canopies. Irrig. Sci. 2012, 30, 523–536. [CrossRef]

33. Fuentes, S.; Poblete-Echeverría, C.; Ortega-Farias, S.; Tyerman, S.; De Bei, R. Automated estimation of leaf area index from grapevine
canopies using cover photography, video and computational analysis methods. Aust. J. Grape Wine Res. 2014, 20, 465–473. [CrossRef]

34. Fuentes, S.; Tongson, E.J.; De Bei, R.; Viejo, C.G.; Ristic, R.; Tyerman, S.; Wilkinson, K. Non-Invasive Tools to Detect Smoke
Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach. Sensors
2019, 19, 3335. [CrossRef]

35. Baofeng, S.; Jinru, X.; Chunyu, X.; Yuyang, S.; Fuentes, S. Digital surface model applied to unmanned aerial vehicle based
photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng. 2016, 9, 119–130.

36. Xue, J.; Fan, Y.; Su, B.; Fuentes, S. Assessment of canopy vigor information from kiwifruit plants based on a digital surface model
from unmanned aerial vehicle imagery. Int. J. Agric. Biol. Eng. 2019, 12, 165–171. [CrossRef]

37. Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, A.J. Digital Cover Photography for Estimating Leaf
Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient. Sensors 2015, 15, 2860–2872. [CrossRef]

38. Mora, M.; Avila, F.; Carrasco-Benavides, M.; Maldonado, G.; Olguín-Cáceres, J.; Fuentes, S. Automated computation of leaf
area index from fruit trees using improved image processing algorithms applied to canopy cover digital photograpies. Comput.
Electron. Agric. 2016, 123, 195–202. [CrossRef]

39. Carrasco-Benavides, M.; Antunez-Quilobrán, J.; Baffico-Hernández, A.; Ávila-Sánchez, C.; Ortega-Farías, S.; Espinoza, S.;
Gajardo, J.; Mora, M.; Fuentes, S. Performance Assessment of Thermal Infrared Cameras of Different Resolutions to Estimate Tree
Water Status from Two Cherry Cultivars: An Alternative to Midday Stem Water Potential and Stomatal Conductance. Sensors
2020, 20, 3596. [CrossRef]

40. Carrasco-Benavides, M.; Mora, M.; Maldonado, G.; Olguín-Cáceres, J.; von Bennewitz, E.; Ortega-Farías, S.; Gajardo, J.; Fuentes, S.
Assessment of an automated digital method to estimate leaf area index (LAI) in cherry trees. N. Z. J. Crop Hortic. Sci. 2016,
44, 247–261. [CrossRef]

41. Fuentes, S.; Gonzalez Viejo, C.; Wang, X.; Torrico, D.D. Aroma and quality assessment for vertical vintages using machine
learning modelling based on weather and management information. In Proceedings of the 21st GiESCO International Meeting,
Thessaloniki, Greece, 23–28 June 2019; pp. 23–28.

42. City of Melbourne. Trees, with Species and Dimensions (Urban Forest). Available online: https://data.melbourne.vic.gov.au/
Environment/Trees-with-species-and-dimensions-Urban-Forest-/fp38-wiyy/data (accessed on 26 October 2020).

41



Sensors 2021, 21, 295

43. Watson, D.J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area
between species and varieties, and within and between years. Ann. Bot. 1947, 11, 41–76. [CrossRef]

44. Nyakatya, M.; McGeoch, M. Temperature variation across Marion Island associated with a keystone plant species (Azorella
selago Hook.(Apiaceae)). Polar Biol. 2008, 31, 139–151. [CrossRef]

45. Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric.
For. Meteorol. 1999, 95, 139–149. [CrossRef]

46. Jones, H.G.; Stoll, M.; Santos, T.; Sousa, C.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal
closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [CrossRef] [PubMed]

47. Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press:
Cambridge, UK, 1992.

48. De Bei, R.; Fuentes, S.; Collins, C. Vineyard variability: Can we assess it using smart technologies? IVES Tech. Rev. Vine Wine
2019. [CrossRef]

49. De Bei, R.; Fuentes, S.; Gilliham, M.; Tyerman, S.; Edwards, E.; Bianchini, N.; Smith, J.; Collins, C. VitiCanopy: A free computer
App to estimate canopy vigor and porosity for grapevine. Sensors 2016, 16, 585. [CrossRef]

50. De Bei, R.; Kidman, C.; Wotton, C.; Shepherd, J.; Fuentes, S.; Gilliham, M.; Tyerman, S.; Collins, C. Canopy architecture is linked to
grape and wine quality in Australian Shiraz 2018. In Proceedings of the Web of Conferences—XII International Terroir Congress
Zaragoza 2018, Zaragoza, Spain, 18–22 June 2018.
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Abstract: In the case of a contamination event in water distribution networks, several studies have
considered different methods to determine contamination scenario information. It would be greatly
beneficial to know the exact number of contaminant injection locations since some methods can only
be applied in the case of a single injection location and others have greater efficiency. In this work,
the Neural Network and Random Forest classifying algorithms are used to predict the number of
contaminant injection locations. The prediction model is trained with data obtained from simulated
contamination event scenarios with random injection starting time, duration, concentration value,
and the number of injection locations which varies from 1 to 4. Classification is made to determine if
single or multiple injection locations occurred, and to predict the exact number of injection locations.
Data was obtained for two different benchmark networks, medium-sized network Net3 and large-
sized Richmond network. Additionally, an investigation of sensor layouts, demand uncertainty, and
fuzzy sensors on model accuracy is conducted. The proposed approach shows excellent accuracy in
predicting if single or multiple contaminant injections in a water supply network occurred and good
accuracy for the exact number of injection locations.

Keywords: water distribution networks; water network contamination; machine learning; random
forest; neural network

1. Introduction

Contamination in water distribution networks can occur due to deliberate or unin-
tentional intrusions and it is of extreme importance to determine the contamination event
parameters so it can be detected which parts of water distribution networks have been
exposed to the contaminant and needed measures can be conducted. This is considered to
be an inverse problem since injection location, injection starting time, injection duration,
and contaminant chemical concentration value needs to be predicted based on sensor
measurements. Numerical simulations are used to determine these parameters, but model
limitations need to be taken into consideration. EPANET [1] is the most commonly used
software for water distribution network simulations and uses an advective approach which
cannot efficiently analyze contaminant dispersion in the networks. Piazza et al. [2] con-
ducted experiments where it was shown that dispersive and diffusive processes must be
incorporated in the transport model for less turbulent fluid flows to achieve more accurate
results than the pure advection model. Also, EPANET assumes complete mixing in all
network junctions, which can be valid only in the case of a single outlet or if there is con-
siderable distance between two junctions. Therefore, EPANET extension EPANET-BAM [3]
was proposed which uses experimentally calibrated mixing model parameter to more
accurately model mixing in network junctions. A number of studies investigated mixing
behavior for different conditions, both experimentally and numerically, to further enhance
these simpler 1D numerical models [4–9].
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Huang and McBean [10] investigated a data mining approach for identifying possible
sources of intrusion where single and multiple injection scenarios were considered. In the
case of multiple injection scenario, the method provided a limited number of nodes with
the probability of them being the true contamination source. However, in their work, it is
not predicted what is the true number of injection locations. In Wang and Harrison [11] a
Bayesian approach was coupled with Support Vector Regression to provide a probability
distribution of water network nodes being contaminant sources. However, a single injection
is assumed, and it is noted that multiple contaminant sources should be considered in future
work where the likelihood evaluation needs to be adjusted. Seth et al. [12] investigated
the efficiency of three different methods for source detection; Bayesian probability-based
method, backtracking method (using contaminant status algorithm), and optimization-
based method where accuracy in case of multiple injection locations was investigated for
two and three contamination injection locations. It was noted that the Bayesian method is
designed only for a single contamination location while the contaminant status algorithm
used in De Sanctis et al. [13] provides a list of possible solutions that narrow down search
space for the optimization method; however, it also does not identify the possible number
of injection locations. In Lučin et al. [14] a new search space reduction method was
proposed, which can eliminate a considerable number of source nodes for both single and
multiple injection locations, but with considerably greater reduction for single injection
scenario. A number of different optimization approaches were considered to determine the
contamination source, an overview of proposed methods can be found in Adedoja et al. [15].
Optimization approach can be easily extended to consider multiple contamination sources,
as mentioned in [16–18].

If considering the optimization approach with multiple injection locations, with each
additional source of contamination, the complexity of search space increases with an in-
crease of optimization variables. Since the number of injection locations is not known,
as a precaution, multiple injection locations should be allowed, since optimization can
set variables to zero (which eliminates that source node and eliminates the number of
injection locations), but it cannot add additional variables (injection locations) during the
optimization process. In this way, in the case of a single injection location, optimization can
eliminate other source nodes (all contamination parameters would be set to 0). However,
this considerably increases the complexity of the considered problem since unnecessary fit-
ness function evaluations would be conducted due to greater search space. Thus, it would
be greatly beneficial to determine the number of injection locations before the optimization
algorithm is employed. Also, if it is known that a single injection event occurred, a number
of methods can be used more efficiently to reduce the complexity of the problem. For ex-
ample, the machine learning approach provides probabilities for each network node being
the true contamination scenario, which greatly reduces the number of suspect nodes and
helps in quicker detection of true contamination location. However, in the case of multiple
injections, different likelihood evaluation is needed which increases the complexity of
the machine learning approach. Prediction of the number of contamination sources has
previously been conducted for air pollution in Wade and Senocak [19], but to authors
knowledge was not conducted for water distribution network contamination scenarios.

Machine learning tools have been increasingly used in contamination detection,
where Random Forest has been used for groundwater source of contamination detec-
tion [20] and source detection in a river [21]. In Grbčić et al. [22] Random Forest algorithm
was used to predict contamination event parameters in water distribution networks and in
Grbčić et al. [23] new machine learning-based algorithm was proposed. A great advantage
of prediction models is that they can be constructed before an accident occurs, so when
a contamination event is detected prediction can be made even for large networks in a
computationally efficient way. Thus, the proposed model which predicts number of injec-
tion locations can be used prior to conducting approaches that search for contamination
parameters, without influencing the reaction time needed to contain the contamination
event. However, in accident situations hydraulic conditions can greatly differ from those
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on which model was trained, thus, a wrong prediction could be made. This can be handled
with the preparation of multiple prediction models with different hydraulic conditions
or by using a prediction model that achieves great accuracy with the small number of
inputs so time for prediction also becomes negligible considering the benefit of search
space reduction when redundant optimization parameters are not used.

In this paper, the Random Forest and Artificial Neural Network classifier are used to
predict the number of contamination sources based on contamination sensor measurements
in the water distribution network. Sensor measurements of contamination needed for
model teaching are obtained from contamination scenarios simulated using EPANET2 with
Monte Carlo generated contamination parameters. An investigation was conducted for
two different sized benchmark water distribution networks with different sensor layouts,
to examine the efficiency of the proposed machine learning approach. Investigation of
demand uncertainty and fuzzy sensors is also estimated.

2. Materials and Methods

2.1. Benchmark Water Supply Networks

Prediction of the number of injection sources is conducted for two benchmark different
sized networks. Investigated networks are Net3 EPANET2 example consisting of 92 nodes
and Richmond network consisting of 865 nodes, obtained from The Centre for Water
Systems (CWS) at the University of Exeter [24]. For the Net3 network, two different sensor
layouts are investigated. In first layout four sensors were placed in network nodes 117,
143, 181, and 213 as in [25] and in second layout four sensor were placed in network
nodes 115, 119, 187, and 209 as in [26]. Additionally, an investigation of the number of
sensors was conducted. For the first layout, two sensors were placed in network nodes
117 and 181, and for the second layout sensors were placed in network nodes 119 and
209. For Richmond network five sensors were placed in network nodes 93, 352, 428, 600,
and 672 where sensor layout was taken from [27]. Layout with three sensors placed in
network nodes 93, 428, and 672 was also considered. Considered networks with sensor
layouts can be seen in Figures 1 and 2.

Contamination scenarios are simulated using EPANET2 version 2.0.12. where for both
networks, simulation time is 24 h with a hydraulic time step of 10 min, quality time step
5 min, pattern time step 10 min and report time step 1 h. For all conducted simulations,
the EPANET2 flow paced method is used for the contaminant injection. Contamination
scenario parameters are chosen randomly. The number of injection locations is chosen from
1 to 4 nodes. The starting time and duration of contamination injection are chosen from 0
to 24 h. Concentration was randomly chosen from 10 to 2000 mg/L. For contamination
scenarios with multiple injection locations starting time, duration, and concentration was
kept the same for every injection location.

Prior to simulating multiple injection scenario, independent simulations for each
randomly chosen node as a source of contamination are conducted. If contamination is not
registered for the investigated node with chosen contamination parameters, that node is
eliminated as source location and only nodes for which contamination was detected in at
least one sensor are kept as a source of contaminant. For example, if four source nodes are
randomly chosen to be the source of contamination, but only two source nodes influence
sensor detection of contaminant, the same time series of sensor measurements would be
obtained for two, three, and four injection locations since the latter two do not influence
contamination measurements. If four sources are given to the prediction model as input,
where contamination can be measured only from two sources, that would significantly
reduce the accuracy of the prediction model. Thus, only nodes which contribute to the
contamination measurements in sensors are considered for multiple injection scenario.
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Figure 1. Net3 network with sensor layouts.

Figure 2. Richmond network detail with sensor layout.

An example of the proposed methodology can be seen for arbitrarily chosen Net3
contamination scenario in Figure 3. Randomly chosen contamination scenario parameters
are 3 source nodes (159, 151 and 123), with contamination value of 200 mg/L, starting time
13 h and 20 min and injection duration 2 h. Sensor measurements for chosen contamination
scenario can be seen in Figure 4. It can be observed that for source node 151 contamination
scenario remains undetected in all sensors placed in the water distribution network, thus for
multiple sources scenario only source nodes 123 and 159 are further considered.
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Figure 3. Contours of chemical for randomly chosen Net3 contamination scenario 90 min after injection starting time.
Contamination from source node 151 remains undetected, so the source node is not included for multiple injections scenario.
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(a) (b)

(c) (d)
Figure 4. Sensor measurements for Net3 contamination scenario with (a) injection node 159, (b) injection node 123,
(c) injection nodes 123 and 159 and (d) contamination measurements in the sensor in node 181.

2.2. Demand Uncertainty and Sensor Type

To investigate demand uncertainty, for both Net3 and Richmond networks, for every
network node first it was randomly chosen if demand will be altered or not. If node
base demand was to be altered, the percentage from 0–5% is randomly chosen for each
network node, to reduce or increase base demand by the chosen percentage, resulting in
a random demand span of 10%. To further investigate influence of demand uncertainty,
the percentage from 0–10% is randomly chosen to reduce or increase base demand, resulting
in a random demand span of 20%. All network demand patterns were kept the same,
only base demand was changed. This method was conducted for every contamination
scenario, thus resulting in different hydraulic conditions for each contamination scenario.

For sensor type influence, fuzzy sensor measurements were made where sensor
detection was considered either low, medium, or high. Chemical concentration value C
in range 0 < C < 300 mg/L was considered low, in range 300 < C < 1000 mg/L was
considered medium and high if C > 1000 mg/L. Prediction model input features were
defined as 0 if no contaminant was detected, 1 for low measurements, 2 and 3 for medium
and high measurements, respectively.

2.3. Machine Learning Classifiers

Two different machine learning classifiers, Random Forest and Artificial Neural Net-
work were used to compare the efficiency of the proposed method. Random Forest al-
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gorithm [28], based on multiple decision trees is used, with 250 estimators (trees) with a
maximum depth of 30 and the minimum number of samples required to split an internal
node 8. An artificial neural network with three hidden layers with 100 nodes in each layer,
with hyperbolic tangent activation function and Adam solver for weight optimization is
used. Proposed parameters were chosen with the grid search hyperparameter optimization
method, while other parameters, which are not mentioned, are kept constant. Imple-
mentation in the Python library Scikit-learn [29] version 0.20.3 is used for both classifiers.
Obtained data was split 70% for teaching and 30% for model testing. Flowchart of the
prediction model can be seen in Figure 5. Data generation and prediction model training
was done using the supercomputing resources at the Center for Advanced Computing and
Modelling, University of Rijeka.

Figure 5. Flowchart of Machine Learning algorithm for prediction of number of contamination
sources.
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Input data for the prediction model is the time series of sensor measurements. For both
Net3 and Richmond network, 25 features per sensor are obtained, which resulted in
100 features for Net3 and 125 features for Richmond network. The output of the machine
learning model is the number of injection locations where two different prediction models
are used. The first prediction model was used to predict the exact number of injection
locations, i.e., 4 different classes are predicted. In the second model it is predicted only if
single or multiple injections occurred, i.e., 2, 3 and 4 injection locations are treated as same,
multiple injections class, thus only 2 different classes are predicted (single and multiple
injections). To further increase the accuracy of the latter prediction model, the threshold
value is introduced. Only if the model predicts a single source scenario with a probability
greater than the chosen threshold value, single source prediction is made. In other cases,
the scenario is treated as multiple sources. Threshold values of 50%, 60%, 70%, 80%, 90%,
and 95% are investigated.

3. Results

3.1. Model Accuracy

The influence of input data on prediction model accuracy is investigated for both
benchmark networks where data ranged from 50,000 to 500,000 inputs (Figure 6). An inves-
tigation is conducted for prediction model with 2 categories (model predicts only if single
or multiple injection locations are present) and with 4 categories (model predicts an exact
number of injection locations). For each model and each number of inputs, 20 runs were
conducted to take into consideration the influence of random seed. For the Net3 network
second sensor layout with sensors placed in nodes 115, 119, 187, and 209 was considered.
For Net 3 results are presented for both RF and NN prediction models. Standard deviation
ranged from 0.63% for 50,000 to 0.33% for 500,000 inputs for NN model, and from 0.33%
for 50,000 to 0.1% for 500,000 inputs. It can be observed that the RF model has slightly
better accuracy for all investigated models. Also, due to the faster execution time of the RF
model, for all further analyses, only RF results will be presented. For Richmond network,
standard deviation ranged from 0.28% for 50,000 inputs to 0.12% for 500,000 inputs which
indicates the stability of the model. Presented results are an average of all 20 runs.

(a)

Figure 6. Cont.
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(b)

Figure 6. Accuracy of prediction models for different number of inputs for (a) Net3 network and
(b) Richmond network.

It can be observed that even for a small number of input data considerable accuracy
can be achieved. For model with 2 categories even with 50,000 inputs accuracy of the model
is above 85% for both considered networks. After 200,000 inputs accuracy of the models
for both networks tend to only slightly increase with the further increase of the number of
input data. For 500,000 inputs accuracy of the Net3 network is 66.83% and for Richmond
network 72.96%. When simplification is made, and the model only needs to predict single
or multiple injection locations, accuracy significantly increases and for 500,000 inputs for
the Net3 network is 91.46% and for the Richmond network 93.4%.

3.2. Threshold Influence

To further increase the accuracy of the prediction model, the threshold value is introduced
for the model which predicts 2 categories. Detailed results are presented for models with
500,000 inputs for Net3 (Tables 1 and 2) and Richmond network (Tables 3 and 4). Presented
results are the average of values obtained from 20 runs. As expected, with the increase in
threshold value accuracy of the prediction model increases. However, with a greater threshold
value, a greater number of single injection scenarios, as a precaution, are classified as multiple
sources, thus a smaller number of true single injection scenarios are detected. For both
networks, when the threshold value is 95%, a very low percentage of correct prediction of
single source scenarios can be observed when prediction model parameters chosen with grid
search optimization method (250 estimators, maximum depth 30, minimum samples for split
8) were used (Tables 1 and 3). Thus, different prediction model parameters (180 estimators,
maximum depth 80, minimum samples for split 10) were also investigated to test its influence
on model accuracy when threshold values are considered. In Tables 2 and 4 it can be observed
that for the greatest threshold value (95%) correct prediction of single sources scenarios greatly
increases, and is around 30% of the total number of single source scenarios. As threshold
value decreases, similar percentages are observed for both models, which indicates that model
accuracy is similar for different RF parameters. However, when greater prediction certainty is
expected, model parameters must be carefully considered.
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For both networks, accuracy with threshold value 95% is above 99.5%. It can be observed
from Table 2 that for Net3 only 36% of total number of single source scenarios are correctly
predicted where for Richmond network (Table 4) that value is 37%. For threshold value 50%
for Net3 94.5% of single injection scenarios are correctly predicted; however, the number of
wrong predictions increases. The same can be observed for the Richmond network where
for threshold value 50%, 97.8% of single injection scenarios are correctly predicted but the
percentage of wrong single injection scenarios increases from 0.8% to 12.7%.

The problem remains with scenarios that are wrongly predicted even for a threshold
value of 95%. With further increase of threshold value, the number of wrongly predicted
scenarios would decrease, but only because ultimately all scenarios would be classified as
multiple sources (this can also be observed in Tables 1 and 3 for first chosen RF parameters).
Thus, optimum threshold value should be chosen to both provide a reasonable number
of single injection scenario predictions but with a high model accuracy. In-depth analysis
of scenarios where the model wrongly predicts a single injection scenario with a high
threshold value should be conducted. Also, it should be investigated how much accuracy
of the model can be further increased with a larger number of inputs and with the usage of
different classifiers.

Table 1. Influence of threshold value on model accuracy for Net3 network (250 estimators, maximum depth 30, minimum
samples for split 8). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.98% 48,682 3307 (6.8%) 36 (0.07%)
90% 99.73% 48,682 15,388 (31.6%) 405 (0.8%)
80% 98.6% 48,682 34,717 (71.3%) 2085 (4.3%)
70% 97.5% 48,682 41,204 (84.6%) 3683 (7.6%)
60% 96.7% 48,682 44,334 (91.1%) 4914 (10.1%)
50% 95.7% 48,682 46,388 (95.3%) 6390 (13.1%)

Table 2. Influence of threshold value on model accuracy for Net3 network (180 estimators, maximum depth 80, minimum
samples for split 10). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 48,783 17,458 (35.8%) 508 (1%)
90% 99.4% 48,783 25,426 (52.1%) 863 (1.8%)
80% 98.9% 48,783 35,197 (72.2%) 1667 (3.4%)
70% 98.2% 48,783 40,640 (83.3%) 2636 (5.4%)
60% 96.7% 48,783 43,977 (90.2%) 3737 (7.7%)
50% 95.7% 48,783 46,091 (94.5%) 5072 (10.4%)

Table 3. Influence of threshold value on model accuracy for Richmond network (250 estimators, maximum depth 30,
minimum samples for split 8). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.9% 52,911 375 (0.7%) 5 (0.001%)
90% 99.8% 52,911 10,889 (20.6%) 303 (0.6%)
80% 97.9% 52,911 37,463 (70.8%) 3076 (5.8%)
70% 95.8% 52,911 49,149 (92.9%) 6269 (11.9%)
60% 94.8% 52,911 51,427 (97.2%) 7819 (14.8%)
50% 93.9% 52,911 52,198 (98.65%) 9178 (17.3%)
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Table 4. Influence of threshold value on model accuracy for Richmond network (180 estimators, maximum depth 80,
minimum samples for split 10). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 52,941 19,499 (36.8%) 435 (0.8%)
90% 99.3% 52,941 30,305 (57.2%) 1085 (2.1%)
80% 98.3% 52,941 42,000 (79.3%) 2567 (4.9%)
70% 97.3% 52,941 47,654 (90%) 4061 (7.7%)
60% 96.4% 52,941 50,433 (95.3%) 5433 (10.3%)
50% 95.5% 52,941 51,775 (97.8%) 6703 (12.7%)

3.3. Sensor Layout

The influence of sensor layout was tested for both Net3 and Richmond networks.
20 runs were conducted for the model with 500,000 inputs and average accuracy for all
runs can be seen in Table 5. It can be observed that for the same number of sensors, their
layout influences the accuracy of prediction models. This is expected, since the same
behavior can be seen when the detection rate of contamination event is investigated for
different sensor layouts. In the paper by Ostfeld et al. [30] for the same network and the
same number of sensors detection likelihood of contamination event greatly differs for
different sensor layouts. Results show that the prediction model for 2 categories (predicts
single or multiple injections) is less influenced by sensor layout and all sensor layouts have
accuracy around 90% or higher.

Interestingly, greater model accuracy can be observed when a smaller number of
sensors is placed for Net3 layout with sensors in nodes 117, 143, 181, and 213 and for
Richmond network. However, it can be explained with the fact that a greater number
of contamination events remain undetected. i.e., with the greater number of sensors,
contamination events from the greater number of network nodes are detected, resulting in
more combinations when considering multiple injection locations. When sensor placement
is sparser, a smaller number of network nodes can be detected when the contamination
event occurs, resulting in a smaller number of combinations for multiple injection locations
and consequently providing better model accuracy with 500,000 inputs.

Table 5. Influence of sensor layout for Net3 and Richmond networks on prediction model accuracy.

Sensors Locations
Accuracy

4 Categories 2 Categories

Net3

117, 143, 181, 213 71% 94%
115, 119, 187, 209 67% 91%

117, 181 75% 89%
119, 209 63% 89%

Richmond 93, 352, 428, 600, 672 73% 93%
93, 428, 672 83% 92%

3.4. Demand Uncertainty and Fuzzy Sensors

Influence of demand uncertainty and fuzzy sensors was investigated for Net3 network
with 4 sensors in nodes 117, 143, 181 and 213 and for Richmond network with 5 sensors
in nodes 93, 352, 428, 600 and 672. 20 runs were conducted for RF models with 500,000
inputs and average accuracy can be observed in Table 6. When demand uncertainty is
considered the accuracy of RF models slightly decreases for both networks. The influence
of fuzzy sensors is more prominent, where the greater reduction in prediction accuracy
can be observed for the Net3 network. When considering both demand uncertainty and
fuzzy sensors in the same model, accuracy further slightly decreases. However, it can be
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observed that for both networks model which predicts 2 categories has accuracy above 90%
for all cases. This shows that the proposed model could be applied in a real case scenario.

Table 6. Influence of demand uncertainty and fuzzy sensors for Net3 and Richmond network on
prediction model accuracy.

Net3

4 Categories 2 Categories

perfect sensors 71% 94%
demand uncertainty (±5%) 69% 93%

demand uncertainty (±10%) 69% 93%
fuzzy sensors 65% 91%

demand uncertainty (±5%) and fuzzy sensors 64% 90%
demand uncertainty (±10%) and fuzzy sensors 63% 90%

Richmond

4 Categories 2 Categories

perfect sensors 73% 93%
demand uncertainty (±5%) 72% 93%

demand uncertainty (±10%) 72% 93%
fuzzy sensors 72% 93%

demand uncertainty (±5%) and fuzzy sensors 71% 93%
demand uncertainty (±10%) and fuzzy sensors 71% 92%

4. Discussion

Accuracy of prediction models for both networks has similar results with small differ-
ences, which shows that the proposed methodology could be successfully applied to other
networks. Further investigation should be conducted for large size water distribution net-
works and different sensor placements, to fully investigate the robustness of the proposed
method. Also, it must be noted that simplification was used in this study, where all source
nodes had the same parameters (injection starting time, duration, and concentration value),
thus, it should be investigated how the model predicts if those parameters are different for
each injection node.

Although slightly, with the increase of input data model accuracy still increases, so in
further study a greater number of data inputs should be investigated. Also, in the proposed
scenarios report time step was chosen to be 1 h, resulting in 25 features per sensor. It should
be investigated if a greater number of features, i.e., smaller report time step would increase
model accuracy and if similar model accuracy could be achieved with a smaller number of
contamination readings. The optimal number of features and inputs should be investigated
to achieve great accuracy but with reasonable execution time. However, to obtain a greater
number of inputs a greater amount of time is needed, so the model should be trained
before the actual contamination event occurs. In that case, the model would be trained
with simulation results with average demand patterns. This surely would mean that true
contamination event will have different demands which would influence the accuracy
of the prediction model. Investigation of demand uncertainty with arbitrarily chosen
demand variation spans showed that small differences of base demands slightly influence
prediction model accuracy. However, it must be taken into consideration that when base
demand variation is defined with percentage, small demand variation is achieved when
base demand is small and greater demand variation only when base demand is greater.
Greater difference in demands should be further investigated since the usual variability
of consumption can be greater than considered in this paper. Different machine learning
models, with different expected demand patterns, can be prepared for contamination
event so prediction can be obtained instantaneously. However, in case of contamination
event, greater oscillations in the hydraulics of water distribution network could occur, such
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as pipe burst or some other unplanned event, which would greatly influence change in
demand patterns. Thus, it would be beneficial to investigate other algorithms that could
increase accuracy with a smaller number of input data. In that case, input data can be
obtained after the contamination event occurred, in a reasonable amount of time. That
would be greatly beneficial since the simulation model can then be calibrated with sensor
measurements from the field and input data would be more precise. The proposed method
can be easily coupled with other machine learning approaches since inputs obtained for
this model can also be used for teaching model that predicts injection location.

Investigation of different sensor layouts, demand uncertainty, and fuzzy sensors
showed that sensor layout and type of sensors have the greatest impact on prediction model
accuracy. Demand uncertainty slightly decreases model accuracy. However, model ac-
curacy can be greatly reduced when a real case event is considered since both demand
uncertainty and measurement errors can be greater than considered in this work. Thus,
a threshold value is introduced which can help increase model accuracy. Greater thresh-
old value increases model accuracy; however, it also leads to a greater number of single
injection scenarios classified as multiple injections. It is also observed that prediction
models are not very sensitive to model parameters; however, when threshold value is
used, i.e., model prediction certainty is evaluated, model parameters are very important
for method efficiency. Thus, the investigation of different machine learning approaches
should be further investigated to increase model accuracy.

When observing presented results it must be taken into consideration that numerical
model simplifications are made, where EPANET was used which assumes complete mixing
in all network junctions and uses pure advection transport model. Also, in the presented
study benchmark networks are used, and numerical simulations are conducted for only
24 h, where more than 24 h are needed to obtain stable contamination scenario results.
However, the functionality of the presented machine learning approach is not dependent
on the numerical model setup, and it is assumed that the same numerical approach that is
chosen for the optimization process is to be also chosen for the prediction model preparation.
In this way, all discrepancies due to numerical model simplifications would be also present
in the optimization and as such are not the result of using the proposed machine learning
approach. Furthermore, network uncertainties were not considered regarding internal pipe
diameter and pipe roughness which should be considered in the further research.

5. Conclusions

In this paper, the machine learning approach is presented which helps identify the
number of injection locations based on sensor measurements. Random Forest classifier and
Neural Network classifier are used on medium-sized benchmark network, where Random
Forest classifier provided better accuracy and faster execution time, thus is used for all
other investigations. Two different sized benchmark networks are considered, where it is
shown that the machine learning approach can be successfully used to predict the number
of injection locations. This can help define the number of optimization parameters, where
redundant parameters can be avoided which needlessly increase the complexity of the
problem. The prediction model shows great accuracy when it predicts only if single or
multiple injection locations occurred. The threshold value is proposed which further
increases model accuracy since the single injection scenario is assumed only if the model
predicts with certainty greater than the threshold value. Lower accuracy is obtained
when the exact number of injection locations is predicted. The accuracy of the prediction
model is investigated for different sensor layouts and in case of demand uncertainties and
fuzzy sensors. Conducted research showed promising results, where exploration of other
algorithms and increased number of input data should be investigated to further increase
the accuracy of both models.
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1 Department of Fluid Mechanics and Computational Engineering, Faculty of Engineering, University of
Rijeka, 51000 Rijeka, Croatia; lgrbcic@riteh.hr (L.G.); ilucin@riteh.hr (I.L.); sinisa.druzeta@riteh.hr (S.D.)

2 Center for Advanced Computing and Modelling, University of Rijeka, 51000 Rijeka, Croatia
* Correspondence: lado.kranjcevic@riteh.hr

Received: 3 April 2020; Accepted: 30 April 2020; Published: 3 May 2020

Abstract: In this paper, a novel machine learning based algorithm for water supply pollution source
identification is presented built specifically for high performance parallel systems. The algorithm
utilizes the combination of Artificial Neural Networks for classification of the pollution source
with Random Forests for regression analysis to determine significant variables of a contamination
event such as start time, end time and contaminant chemical concentration. The algorithm is based
on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data
with sensors placed within a water supply network and selecting a most probable pollution source
based on a tournament style selection between suspect nodes in a network with mentioned machine
learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium
sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time,
end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the
algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the
medium sized network. For all the 30 runs on the small sensor network, the true contamination event
scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L,
respectively. The root mean square errors for all 30 algorithm runs for the three variables were
48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time
was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors
were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down
the potential sources of contamination leading to a pollution source identification, start and ending
time of the event and the contaminant chemical concentration.

Keywords: machine learning; artificial neural networks; random forests; water network pollution;
sensor networks; parallel computing

1. Introduction

Identifying the source of contamination in a water supply network is an important task since
a contamination event is potentially hazardous to the human population in an urban environment.
Additionally, a fast identification of a pollution source enables the governing authorities to rapidly
react in order to stop the further spread of the contaminant through the water supply network.

Researches have tackled the issue of water supply networks contamination in several ways
which include an optimal positioning of water quality sensors in a network [1–3] to facilitate the
source identification process and optimally cover all possible intrusion points, rapid contamination
event response procedures [4–6] and simulation-optimization methods for contamination source
detection and duration based on simulation of the water network contamination event [7–9]. Many
researches have incorporated additional uncertainties into the hydraulic simulation process which
include uncertain sensor measurements and water demand variability [10–12]. A recent and thorough
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review of various approaches in tackling the water supply pollution source identification problem can
be found in Adedoja et al. [13].

The optimization-simulation approach for finding the source of pollution in a network entails that
an optimization algorithm is being coupled with a water supply network hydraulic simulator and the
difference between the measured sensor data and the optimization algorithm generated and simulated
values (sensor water quality readings through a certain time interval) is being minimized. Through
this procedure, the source of contamination, starting time and the end time of the contamination event
and the contaminant chemical concentration are obtained.

Probabilistic approaches are also possible for determining the source of contamination in a water
supply network and the methods for this approach that were used in previous studies include the
Bayesian Belief Networks (BBN) [14–16] and backward probabilistic models [17] which show the
ability to predict the source of the contamination with a high probability. Data-driven methods are
also a possible tool for the water supply network contamination problem. In [18,19], a database was
compiled by massive data mining of hydraulic and water quality simulation contamination events for
a fast identification of a source in case of a real event. The sensor readings in case of a contamination
event are matched with the simulation events from a database and in [19] a statistical maximum
likelihood approach was used for matching. In [20], Monte Carlo (MC) water quality and hydraulic
simulations were run in parallel and then used to detect the source of pollution with a certain criteria.

In [21] the logistic regression approach was used to determine top candidates for being the true
contamination source with them additionally being explored with local search methods to determine
other relevant variables of a contamination event (start time, end time and chemical concentration).
The input data for the logistic regression were the sensor readings through time that were constantly
updated with new data.

Data-driven models would include using machine learning algorithms to localize the contamination
sources in a water supply network. Kim et al. [22] used an Artificial Neural Network (ANN) to find
the source of pollution in a small network and Rutkowski and Prokopiuk [23] used a learning vector
quantization Neural Network (LVQNN) to locate a zone with a supply network where a potential source
of contamination would be located. Wang et al. [24] used Least Squares Support Vector Machines
(LS-SVM) to enhance the reliability and accuracy of water sensor contamination detection.

Previous studies have extensively explored Monte-Carlo based methods in air pollution and
groundwater pollution source detection problems. In Guo et al. [25] a Markov Chain Monte Carlo
(MCMC) sampling method coupled with a Bayesian probabilistic approach was applied to find a
source of unsteady atmospheric dispersion which was numerically modeled. Wade and Senocak [26]
used Bayesian inference MCMC for the purpose of reconstructing multiple air pollution sources.
The study was tested on real-field data and the method includes a ranking of the most probable
number of pollution sources which is based on error analysis. In the work by Bashi-Azghadi et al. [27]
Probabilistic Support Vector Machines (PSVM) and Probabilistic Neural Networks (PNN) were used
to determine an unknown source of pollution in a groundwater system. Vesselinov et al. [28] studied
the application of semi-supervised machine learning methods with synthetic and real measured data
to identify contamination sources of chemical mixtures in groundwater flows.

In this study we present an algorithm which utilizes the ANN for classification of contamination
source in a water supply network and Random Forests (RF) for prediction of contamination start time,
end time and chemical concentration. The algorithm is built in a high performance computing (HPC)
environment and uses a parallel tournament style selection of most probable contamination source
node between a group of nodes. All network nodes are divided in chosen number of tournament
groups, where each group is assigned to a single processing core. Monte Carlo (MC) hydraulic
and water quality simulations using EPANET2 (Rossman [29]) are run in parallel and the obtained
simulation results are used to create models for every tournament group. Network nodes are randomly
distributed into tournament groups and the parameters for every simulation (contamination start
time, end time and chemical concentration) are randomized. Each network node in a tournament
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group obtains the same number of results (or MC simulations). Once a node is selected as a winner
in the tournament process from existing groups, new tournament groups are created with a reduced
number of suspect nodes and this process is repeated until a stopping criterion is satisfied which in
this case is the number of set tournament loops which is also a parameter of the algorithm. The whole
algorithmic framework was built with a combination of the Python 3.7 programming language and
Simple Linux Utility for Resource Management (SLURM) for HPC systems. The ANN classification
and the RF regression analysis were done using the Python machine learning library scikit-learn 0.22.
The algorithm was tested on two benchmark networks taken from previous studies and it shows good
results but also a possibility for improvement with future studies. The algorithm shows a great ability
to include the true source node as a top candidate among the remaining source nodes and is good at
predicting the other relevant contamination event parameters which can be further used for coupling
with optimization algorithms.

2. Materials and Methods

2.1. Water Supply Network Benchmarks

The algorithmic framework was tested on two benchmark networks—the Net3 example from
EPANET2 and the Richmond water supply network (Van Zyl [30]).

The Net3 EPANET2 benchmark water supply network consists of 92 nodes and was specifically
made for water quality hydraulic simulations. The simulation parameters are set as: the total simulation
time is 24 h with a 10 min hydraulic time step and 5 min water quality time step and a 10 min pattern
time step. The already optimized water quality sensor layout was set as the one from the work by [7]
(network nodes 117, 143, 181 and 213 are set as sensors). The Net3 network layout with the sensor
placement can be seen in Figure 1. In each MC simulation of Net3, both the start and the end times
(Sm, Em) of the contamination event were randomly set from 0 to 24 h with an obvious restriction that
Em > Sm. The value of Cm was randomly chosen from an interval from 10 to 1000 mg/L and was
kept constant throughout the whole contamination scenario. The sensors used in Net3 recorded data
during the whole 0–24 h interval for every hour (a total of 25 water quality measurements per sensor)
which means that there were 100 input features for the RF regression analysis.

The Richmond network consists of 865 nodes and it was obtained from The Centre for Water
Systems (CWS) at the University of Exeter [31]. Simulation time was set as 72 h with a 1 h hydraulic
time step, a 5 water quality time step and a 1 pattern time step. The sensor layout was set according to
the work by Preis and Ostfeld [7] (nodes 123, 219, 305, 393 and 589 are sensors nodes). The Richmond
water supply network layout detail can be seen in Figure 2. The selection of random parameters for
each MC Richmond network simulation were defined the same way as for the Net3 network. The
Richmond network sensors recorded data during the 0–72 h interval for every hour (a total of 73
measurements per sensor) making a total of 365 input features for the RF regression analysis.
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Figure 1. Net3 water supply network layout with sensor positioning by Preis and Ostfeld [7].

Figure 2. Richmond water supply network layout with sensor positioning by Preis and Ostfeld [7].

2.2. Algorithmic Framework

The algorithm presented in this study was designed to work in a HPC environment in order to
detect the water supply network contamination source in a rapid and efficient way. It is based on
distributing all potential contamination source nodes of a water supply network into subgroups for
which MC simulations would be done in conjunction with machine learning methods to determine
which node would best fit to be the true source node of contamination. In this way, each node in a
subgroup would be a part of a tournament in which the node with the highest probability of being
the contamination source would continue to the next tournament round. After each tournament, the
winning nodes would be redistributed in a new tournament group until a predetermined number
of tournaments was reached. Each CPU in a HPC system is assigned a tournament node group and
after each tournament the total number of used CPUs would decrease since the losing nodes would
be discarded and the remaining nodes which are fewer would form new tournament groups. The
flowchart of the whole algorithmic framework is shown in Figure 3.
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Figure 3. Algorithm flowchart.
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As seen in the flowchart, the algorithm is initialized with reading all potential source nodes X in
a water supply network and then distributing them in tournament groups of constant size k which
is a parameter of the algorithm and can be freely selected. As each tournament group is assigned to
a CPU, the number of used CPUs n is determined with n = X/k. After distributing the tournament
groups to each CPU, MC simulations are performed m times (m/k times for each suspect node in the
tournament group with ideally the modulus of m/k being zero—if not, a node is randomly selected
for the additional run) with randomly selected starting Sm and ending Em times of the contamination
event, and the contaminant chemical concentration Cm. Input and output data of each MC simulation
are being saved for each suspect node x in every tournament group n.

After the MC simulations are done, the input (sensor readings through time) and output data
(source node with used Sm, Em and Cm) are used for training each tournament group’s machine
learning (ML) model. The ML model used can be any ML classifying algorithm which supports the
prediction of multiple classes. ML output variable set consists of all network nodes that are within that
tournament group. After the model was trained with the MC generated data, the sensor readings of
the contamination event are being used for the ML prediction of the most probable source node in each
tournament group. The nodes with the highest probability in all tournament groups are considered
to be the tournament winners. After every used CPU generated a tournament winner, a list of all
winners is compiled and if the number of set tournament loops l is not exceeded, the tournament
process and distribution is repeated and the number of nodes X is updated (it is equal to the number
of winners). In this case, the number of X should be smaller than in the previous tournament loop and
consequently the number of used CPUs is reduced since it is dependant on the number of nodes for
distribution. It is important to note that each winning node’s input and output data is saved from
every tournament loop.

If the freely selected algorithm parameter l is exceeded, each winning node is then assigned again
to a CPU and with its previously obtained MC input and output data, a ML model is trained and a
prediction is performed for the remaining variables of the contamination event (Sm, Em and Cm). The
predicted values of Sm, Em and Cm of each winning node’s ML regression model are then used for
simulating the contamination event scenario and the obtained sensor readings are then compared with
the real contamination event sensor readings with a RMSE analysis, which in turn creates a ranking
where the node with the smallest RMSE is placed at the top.

This whole algorithmic framework was built within the open source workload manager for cluster
systems SLURM and the Python 3.7 programming language.

2.3. ANN Classifier

In the previous sub section, the tournament ML classifier was generally defined in the whole
algorithmic framework and basically any ML algorithm which can predict multiple classes can be
used. In this study, the ANN algorithm is used for classifying the most probable source nodes in a
tournament group.

The Multi-layer Perceptron (MLP) type of ANN was used from the Python 3.7 machine learning
library scikit-learn 0.22 [32]. The MLP ANN was constructed with both input and output layers and
three hidden layers in between. Both first and last hidden layers consisted of 100 neurons, while the
middle hidden layer was formed with 500 neurons. The stochastic gradient-based optimizer ADAM
for MLP weights optimization was selected through the process of hyper parameter tuning, just as the
number of neurons in every ANN layer.

With a preliminary analysis of the possible input variables of the ANN MLP model it was
determined that great accuracy of the model can be achieved if only the maximum values of the
chemical concentration recorded per sensors through a time interval in the water supply network are
used. The preliminary analysis was done through 10 runs and each run when the true source node
was in the top 6 of the final nodes was considered successful. The analysis was done on the Net3
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benchmark network with the contaminant source node 119 as described in Section 3.1. The true source
node was a part of the top 6 ranking suspect nodes for all of the 10 preliminary runs.

This means that the number of neurons at the input layer is equal to the number of sensors
used in the water supply network. Furthermore, using the whole time interval of all sensor water
quality readings as ANN MLP inputs was tested in the preliminary analysis and it was found that
the performance was not better (8 out of 10 runs were successful) than using the maximum values
of recorded water quality through time, so naturally, the maximum values per sensor were used as
inputs since the number of ML model features is much smaller that way.

The output of the MLP was a list of all tournament group nodes and an assigned probability of
each node being the true contamination source after the real contamination event sensor reading was
evaluated with the trained model.

In Figure 4 the whole MLP can be seen with max(Csn(t)) being the maximum concentration
recorded by the n-th sensor in the network and Nn% being the probability that the tournament node n
is the true source node. All of the MC generated input and output data (of each tournament group) is
used to train the ANN model for each tournament group as the goal of the classifier is to predict the
most probable contamination source node of each tournament group. The success was assessed by
observing the prediction of the whole algorithmic process and not the accuracy of each tournament
group ANN model.

Figure 4. MLP with all layers.

2.4. RF Regression

The ML regression model for each tournament winning node after the parameter l was exceeded
in the algorithmic framework can also be done with any ML algorithm which supports multi output
regression. The RF algorithm (Breiman [33]) from scikit-learn 0.22 was selected for this purpose.
All parameter values of the algorithm were set as default except for the number of estimators (trees in
the random forest) which was set to be 200 with the process of hyperparameter optimization.

The input values for the RF regression analysis were sensor water quality readings throughout
the whole time interval of the simulation (unlike the inputs used for the MLP ANN) and the output
variables were the predicted values of Sm, Em and Cm for every winner node. A flowchart of the RF
regression is seen in Figure 5 with Csn(t0...tmax) representing the chemical concentration recorded by
the sensor n during simulation time.
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Figure 5. Flowchart of the RF regression analysis.

3. Results and Discussion

3.1. Net3 Network Contamination Scenario

The contamination event scenario for the Net3 benchmark network was chosen to be from the
same node (119) as in the one from the work by Preis and Ostfeld [7] and the location can be seen in
Figure 6. The contamination event characteristics at source node 119 were freely chosen with the event
starting at 14:20 h and lasting until 20:20 h with a constant chemical mass inflow of 813.7 mg/L.

The selected number of algorithm loops l was 3, the number of m (MC simulations for every
tournament group) was 200 and the size of a tournament group k was 2, which means that with 92
initial water supply network nodes, the number of used CPUs for every tournament group was 46
and after every loop that number was halved. After three loops, the number of tournament winners
was 11, which means that 11 CPUs were used for the RF regression analysis and prediction of other
relevant variables.

Figure 6. Net3 water supply network contamination source location.

The contamination source search was repeated 30 times since there the algorithm consists of a
stochastic component (MC simulations). In 22 out of 30 runs the true source node was the suspect
node with the highest probability and in the remaining eight runs the true source node was a part
of the final winners list, which means that the ANN classification can successfully narrow down the
search space from 92 to 11 nodes in this case. The average run which includes MC simulations, ANN
classification and RF regression lasted for 8 min (even though the RF regression lasted only for 8 s).
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The algorithm was run (at its initial loop) on 46 Intel Xeon E5 CPUs (two cluster nodes). Out of the
other eight runs when the true source node was not ranked first, it was always in the top six of the
tournament winners.

In Figure 7 a comparison can be seen between the true contamination event (14:20 h to 20:20 h
with 813.7 mg/L) and all of the 30 predicted contamination events for the true source node. It can be
seen that the end time prediction of the event is very accurate while the starting time only lacking in
accuracy on three runs. The overall RMSE for the starting time for all 30 runs is 48 min, the end time is
4.38 min and the chemical concentration is 18.06 mg/L. The average RMSE For the three of the worst
runs with respect to the starting time was 2.47 h. In Table 1, a summary of all runs can be seen through
the RMSE analysis and the successful runs represent how many times of the total of 30 runs the true
source node was part of the final tournament. The minimum and maximum errors for Sm, Em and Cm

for all 30 runs are presented in Table 2.

Figure 7. Net3 network true contamination event (black) and predicted contamination events (grey).

In Table 3 the best and worst runs are compared with the true contamination event parameters
for Sm, Em and Cm. The overall best and worst runs are calculated (individual RMSE) by taking into
account all of the three variables.

Table 1. Contamination event RMSE analysis for Net3 network of all 30 runs.

Successful Runs Sm Sm RMSE Em Em RMSE Cm Cm RMSE

30 14:20 h 48 min 20:20 h 4.38 min 813.7 mg/L 18.06 mg/L

Table 2. Net3 network minimum and maximum errors (Sm, Em and Cm) for 30 runs.

min Sm max Sm min Em max Em min Cm max Cm

−3.8 h +0.2 h 0.0 h +0.2 h −0.31 mg/L −40.11 mg/L
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Table 3. Net3 network contamination event results comparison between true, best and worst of the
total 30 runs.

Run Sm Em Cm

True 14:20 h 20:20 h 813.7 mg/L
Best 14:20 h 20:20 h 813.4 mg/L

Worst 14:10 h 20:20 h 773.6 mg/L

In Figure 8 the nodes which were ranked first in the 30 runs can be seen along with a corresponding
number of times they were ranked first. It can be observed that the nodes are topologically clustered
together. This is expected since due to the multimodal nature of the problem.

Figure 8. Number of times out of 30 runs for which a node (marked blue) was ranked as first for the
Net3 contamination event.

3.2. Richmond Network Contamination Scenario

The Richmond network contamination event scenario was chosen to start at the same node (153)
as in the work by Preis and Ostfeld [7] and the location can be seen in Figure 9. The contamination
event characteristics at source node 153 were chosen with the event starting at 06:50 h and lasting until
07:40 h with a constant chemical mass inflow of 837 mg/L.

The selected number of algorithm loops l was 1, the number of m (MC simulations for every
tournament group) was 2500 and the size of a tournament group k was 4, which means that with 865
initial water supply network nodes, the number of used CPUs for every tournament group was 432.
After 1 loop the number of tournament winners was 217, which means that 217 CPUs were used for
the RF regression analysis and prediction of other relevant variables.
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Figure 9. Richmond water supply network contamination source location.

The contamination source search was repeated 30 times just like for the Net3 contamination
search. The true source node was ranked first in seven out of 30 runs and it was in the tournament
winners list 29 out of 30 times which means that the true source node was not subjected to the RF
regression analysis for only one run. The total average run time of the MC simulations and the ANN
classification was 41 min and 75 s for the RF regression analysis. The algorithm was run (at its initial
loop) on 432 Intel Xeon E5 CPUs. Even though it was ranked first in only seven runs, that was the most
number of times a node was ranked first out of the 30 runs. In the 29/30 runs it was in the winners list
(which consisted of 217 nodes) it always finished in the top 10 after RF regression was completed.

In Figure 10 the comparison between the true contamination event and the predicted
contamination events can be seen. The starting and ending times RMSE for the 29 of the 30 total
runs are 6.06 min and 12.36 min respectively, while the chemical concentration RMSE is 299.84 mg/L.
The starting and ending times of the predictions are in good agreement with the true values but the
chemical concentration value is underestimated by the RF regression.

A RMSE analysis summary of all runs with the number of successful runs can be seen in Table 4.
The minimum and maximum errors for all 29 runs for the Richmond network are shown in Table 5
and in Table 6, the best and worst runs comparison is shown in terms of all the predicted variables (Sm,
Em and Cm).

Table 4. Contamination event RMSE analysis for Richmond network of all 30 runs.

Successful Runs Sm Sm RMSE Em Em RMSE Cm Cm RMSE

29 06:50 h 6.06 min 07:40 h 12.36 min 837 mg/L 299.84 mg/L

Table 5. Richmond network minimum and maximum errors (Sm, Em and Cm) for 30 runs.

min Sm max Sm min Em max Em min Cm max Cm

0.0 h +0.4 h −0.4 h +0.6 h −122.81 mg/L −446.81 mg/L

Table 6. Richmond network contamination event results comparison between true, best and worst of
the total 30 runs.

Run Sm Em Cm

True 06:50 h 07:40 h 837 mg/L
Best 06:50 h 07:40 h 714.2 mg/L

Worst 06:50 h 08:00 h 390.2 mg/L
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Figure 10. Richmond network true contamination event (black) and predicted contamination
events (grey).

3.3. Algorithm Parameters Investigation

In this subsection, an analysis of the influence of algorithm parameters is given. The required
number of MC simulations m for each node, the tournament group size k and the number of algorithm
loops l are separately explored. The examination of m, k and l was done on the Net3 water supply
network with the previously defined contamination event scenario (source at node 119, Sm = 14:20 h,
Em = 20:20 h and Cm = 813.7 mg/L). Each different setup (of m, k and l) was independently run 10
times and a run was considered successful if the node was present in the final ranking after the RF
regression and RMSE analysis.

Firstly, the influence of parameter m on the prediction accuracy was explored and a complete
summary can be seen in Table 7. The selected tournament group size k for all runs was 2 and the
number of loops l was set as 1 during the exploration of parameter m.

Table 7. Influence of the number of MC simulations on the accuracy and efficiency of the algorithm.

m Successful Runs Best Rank Worst Rank Times Won Sm RMSE Em RMSE Cm RMSE Average Run Time

20 9 1 7 2 1.44 h 1.21 h 291.89 mg/L 50 s
40 9 3 8 0 1.76 h 1.11 h 371.93 mg/L 70 s
80 10 1 6 1 0.75 h 0.36 h 283.45 mg/L 120 s
100 10 1 6 4 0.18 h 0.21 h 187.39 mg/L 160 s
200 10 1 6 4 0.58 h 0.18 h 109.40 mg/L 270 s
400 10 1 6 5 0.83 h 0.10 h 39.23 mg/L 420 s
800 10 1 5 6 0.14 h 0.11 h 9.43 mg/L 560 s
1000 10 1 6 9 0.32 h 0.03 h 15.69 mg/L 820 s
1200 10 1 1 10 0.06 h 0.00 h 11.61 mg/L 980 s
2000 10 1 1 10 0.03 h 0.00 h 3.57 mg/L 1400 s
3000 10 1 1 10 0.03 h 0.00 h 4.46 mg/L 2100 s
4000 10 1 1 10 0.00 h 0.00 h 4.09 mg/L 3200 s
5000 10 1 1 10 0.03 h 0.00 h 1.41 mg/L 4000 s
6000 10 1 1 10 0.03 h 0.00 h 3.59 mg/L 4800 s

10,000 10 1 1 10 0.00 h 0.00 h 2.00 mg/L 6300 s

The first column of Table 7 represents the total number of MC simulations per tournament group,
which means that since the tournament group size was 2 for each run, each node in the tournament
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group was the source node in m/2 MC simulations. When observing the analysis of the parameter
m in Table 7 it can be seen that the higher the value of the parameter is, both contamination event
prediction accuracy (as seen through the decrease Sm, Em and Cm RMSE) and the average computation
time per run (last column) increases. This is expected since more randomly generated data covers
more possible scenarios and more input data for the ML model enables a wider and more accurate
solution space exploration. Additionally, the best and worst ranks of the true source node are shown
and the number of times the true source node won (Times won meaning the rank was 1).

When m was set as 80 the number of successful runs was 10 and the worst possible rank was 6.
This means that after 2 min of computation time on average, the search space was reduced from 92
total nodes to 6, which is a reduction of 93.5%. The set of runs when m was 400 could be considered as
the first set of runs when the results are acceptable in terms of finding the true source node since it was
the winner 50% of the time.

When the value of m is 2000 and above it can be seen that there is not a significant change in
prediction accuracy as the RMSE values of Sm and Cm exhibit stability and minor oscillations, while Em

has showed a steady convergence to the same value as the true contamination scenario for all 10 runs.
For further exploration of the tournament group size k, the chosen m was 800 as it exhibited a

reasonable computation run time, accuracy in terms of the average RMSE and the number of times the
true source node was ranked first. The same scenario was chosen as the one for the investigation of m
with the number of tournament loops l set as 1. Five different tournament group sizes k were explored
and are summarized in Table 8.

Table 8. Influence of the number of the tournament group size k on the accuracy and efficiency of
the algorithm.

k Successful Runs Best Rank Worst Rank Times Won Sm RMSE Em RMSE Cm RMSE CPUs Used

2 10 1 5 6 0.14 h 0.11 h 9.43 mg/L 46
4 10 1 5 7 0.27 h 0.08 h 27.46 mg/L 23
10 10 1 5 5 0.74 h 0.17 h 83.16 mg/L 9
40 5 1 3 1 0.35 h 2.19 h 215.59 mg/L 2
80 4 1 2 2 0.27 h 0.53 h 143.04 mg/L 2

From the results presented in Table 8 it can be observed that when the tournament group is larger,
both accuracy and prediction reliability decrease. Furthermore, besides tournament group sizes of
2 and 4, a reasonable result in terms of reliability is achieved with k = 10 with a total search space
reduction of 94.6% and even a 50% winning rate in the 10 successful runs. The number of used CPUs
for each tournament group size is added and with the given as the last column of the Table 8. Even
though a tournament group size of 2 is not that impressive when compared to those of 4 and 10 in the
categories of best and worst rank and times won, the achieved overall Sm, Em and Cm RMSE shows
that it is undoubtedly more accurate.

Lastly, the influence of the number of tournament loops l is investigated and a summary of
the results is shown in Table 9 . The same scenario was used as for the exploration of previous two
parameters with k = 2 and with a total number of MC simulations m = 800. An additional column m/L
was added to the Table 9 which defines the number of MC simulations m (of a tournament group) per
every loop l.

It can be observed that increasing the number of loops l up to a certain value increases the accuracy
and reliability of the algorithm. Even though the total number of MC simulations is the same for every
run and the computational strain in that sense is similar, adding more loops decreases the number of
used CPUs after every tournament loop since losing nodes are omitted and that can be considered as a
great advantage.
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Table 9. Influence of the number of the tournament loops l on the accuracy and efficiency of the
algorithm.

l Successful Runs Best Rank Worst Rank Times Won Sm RMSE Em RMSE Cm RMSE m/L

1 10 1 5 6 0.14 h 0.11 h 9.43 mg/L 800
2 10 1 6 8 0.18 h 0.08 h 23.20 mg/L 400
3 10 1 4 8 0.11 h 0.04 h 15.42 mg/L 267
4 10 1 3 9 0.08 h 0.03 h 14.71 mg/L 200
5 10 1 3 7 0.07 h 0.08 h 14.57 mg/L 160
6 10 1 2 8 0.07 h 0.05 h 23.29 mg/L 134
7 10 1 1 10 0.03 h 0.05 h 14.77 mg/L 115
8 9 1 3 7 0.07 h 0.07 h 25.49 mg/L 100

The value of Sm, Em and Cm RMSE does not differ much for all tested loops l since the total
number of MC simulations is preserved. When the number of loops is set to 8, the successful number
of runs dropped as the number of MC simulations per loop (m/L) was not high enough and the true
source node was not in the final RF analysis ranking for one run. This was also observed for smaller
values of m in Table 7. It can be argued that a higher number of loops positively affects the success of
the algorithm in predicting the relevant variables (source node, Sm, Em and Cm) since there is a higher
chance that a main tournament top ranking rival to the true source node is omitted in the process
of removing losing nodes after every tournament loop. However, setting l too high could result in
unsuccessful runs as well (due to a small m/L) as it can be seen in Table 9.

4. Conclusions

In this paper a novel algorithmic framework for water supply network contamination source
node identification is presented and tested on two different benchmark networks. The algorithm is
specifically created for massively parallel HPC systems and it utilizes a combination of MC simulations
and ML methods to identify the contamination event source node and all the relevant variables such
as starting and ending times of the event and the contaminant chemical concentration.

The algorithm is based on running an equal number of MC simulations on a group of nodes in
parallel and then selecting the node (via MLP ANN) with the highest probability of being the true
contamination source node as the winner of the group (tournament). The number of MC simulations
per tournament group is set as a parameter of the algorithm just like the number of tournament loops
and the size of a tournament group. After a set of tournament winners is created, the algorithm utilizes
a ML regression analysis using RF in parallel and creates a ranking of potential source nodes based on
a simple error analysis with the true contamination event sensor data recorded.

The novel algorithmic framework, tested on two realistic and complex benchmark networks cases,
displays the capability to narrow down the search space for the source node efficiently, leading to a
pollution source identification. The algorithm can be also used in predicting the starting and ending
times of the contamination event and the contaminant chemical concentration.

An investigation of algorithm’s parameters which are the number of MC simulations, size of a
tournament group and number of loops was also conducted. It is demonstrated that increasing the
number of MC simulations is beneficial to the algorithm’s ability to predict the true source node and
relevant variables since more randomly generated data entails a broader solution space coverage,
however this comes with an increase in computational time. It was observed that in order to increase
the reliability of an accurate prediction the size of a tournament group should be as low as possible,
depending on computational resources. Increasing the number of tournament loops shows to be
advantageous in prediction accuracy; however, the number of MC simulations for each tournament
loop should be high enough in order to preserve the reliability of prediction.

Further research is needed in determining the connection between the network size (initial number
of potential source nodes) and the number of MC simulations needed to cover the search space of
the contamination event efficiently and thoroughly. Furthermore, additional research should be done
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regarding the used ML methods investigating the use of different classifiers for the tournament group
winner selection and various ML algorithms capable of multi-output regression analysis for the final
node ranking. It would be also possible to couple the algorithm with simulation-optimization methods
for an even faster convergence towards a true pollution source node detection in a way that only the
tournament winners are subjected to the optimization process.
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Abbreviations

The following abbreviations are used in this manuscript:

BBN Bayesian Belief Networks
MC Monte Carlo
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Abstract: Exact land cover inventory data should be extracted for future landscape prediction and
seismic hazard assessment. This paper presents a comprehensive study towards the sustainable
development of Tabriz City (NW Iran) including land cover change detection, future potential
landscape, seismic hazard assessment and municipal performance evaluation. Landsat data using
maximum likelihood (ML) and Markov chain algorithms were used to evaluate changes in land cover
in the study area. The urbanization pattern taking place in the city was also studied via synthetic
aperture radar (SAR) data of Sentinel-1 ground range detected (GRD) and single look complex
(SLC). The age of buildings was extracted by using built-up areas of all classified maps. The logistic
regression (LR) model was used for creating a seismic hazard assessment map. From the results,
it can be concluded that the land cover (especially built-up areas) has seen considerable changes
from 1989 to 2020. The overall accuracy (OA) values of the produced maps for the years 1989, 2005,
2011 and 2020 are 96%, 96%, 93% and 94%, respectively. The future potential landscape of the city
showed that the land cover prediction by using the Markov chain model provided a promising
finding. Four images of 1989, 2005, 2011 and 2020, were employed for built-up areas’ land information
trends, from which it was indicated that most of the built-up areas had been constructed before
2011. The seismic hazard assessment map indicated that municipal zones of 1 and 9 were the least
susceptible areas to an earthquake; conversely, municipal zones of 4, 6, 7 and 8 were located in the
most susceptible regions to an earthquake in the future. More findings showed that municipal zones
1 and 4 demonstrated the best and worst performance among all zones, respectively.

Keywords: remote sensing; GIS; Markov chain; land use; urban information; Tabriz City

1. Introduction

Rapid urbanization, deforestation and increasing population have led to global environmental
changes [1]. Because of this, large areas of agricultural land are being converted into urban land
and industrial estates, which are prone to land degradation [1,2]. Typically, urbanization influences
climate and water quality [3], which can result in changes in local climate. One of the main means
by which to understand the relationship between humans and their environment is recording the
changes occurring where they live [3,4]. Useful information can be obtained from the pattern and
direction of land cover changes, from which better planning for sustainable development is possible.
Landsat satellite imageries are widely used medium-scale data for land surface change analysis [2,5].
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The low temporal baseline of these data is considered as a weak point that sometimes results in the
omission of some dynamic changes [3]. Urban sprawl significantly changes landscapes across urban
areas [6], which is usually associated with changes among vegetation, built-up areas and bare lands in
the near or remote future. For seismic hazard assessment caused by an earthquake, urban information
is urgently needed [7]. Normally, field checks and digital interpretation using the technology of
remote sensing (RS) are among the common ways to extract urban information [1,7,8]. Geographic
information systems (GIS) together with remote sensing technology can provide useful information for
decision-makers [9]. RS data have successfully been applied for mapping and measuring the area and
the extent of land cover. Satellite image performance has now been improved to a ground resolution of
less than 1 m to be acquired. Physical assessment of urban areas from remotely sensed data enables
comparative analysis of a city’s extent within a region [3]. In order to record all changes, selecting the
proper temporal baseline of RS data is very important [10]. The Landsat satellite imagery (medium
spatial resolution RS data) has widely been utilized to quantitate urbanization across the world [2,11].

Predicted land use changes can help land use planners in mitigating the negative impacts on the
environment. In recent years, the city and the surrounding areas have been several times shocked
by large and small earthquakes. In developed countries, building inventory information is provided
by local and central institutes [7]. Nevertheless, in developing countries like Iran, this is quite the
opposite, so researchers should work and provide information to different organizations. Normally,
this kind of study requires great effort and considerable financial support. There are many faults in
Iran, a few of which have recently been activated and claimed many lives and also caused a great
deal of damage to properties [12]; because of the possibility of the recurrence of such events in the
near or remote future, fear still exists among inhabitants in these areas. Typically, because of the high
buildings, this fear is most common among people in large cities like Tabriz.

Efforts have been made to carry out land cover information extraction using RS data and techniques.
Urbanization influences ecosystems, but in order to determine and understand these impacts, precise
and accurate information about the land cover’s temporal and spatial changes is essential [2,3]. Built-up
areas are very important for many studies, including those considering buildings’ age, seismic hazard
assessment, and prediction, so as to enable the optimal updating of built-up areas. Maximum likelihood,
as one of the best methods for classification [11,13], was employed for extracting land cover using
four cloud-free Landsat data. Accordingly, building inventory and urban sprawl information are
important factors for damage estimation [7,14,15]. In order to determine if older buildings have been
constructed under older seismic hazard standards, a map of the ages of buildings is needed [7,12]. For a
fast and effective response during an earthquake, an urgent evaluation is needed [7], but, at present,
sufficient information is provided to be used in the future to mitigate possible damages in the study
area. Previous research simply studied the land cover detection of the city, but a comprehensive study
on land cover change detection, future potential land cover, municipal performance evaluation and
seismic hazard assessment is missing for Tabriz, which is one of the largest and most important cities
in Iran. Therefore, this study presents a more comprehensive examination of the study area compared
to the previous research, making it highly significant.

Many studies conducted land cover change detection and prediction using different models of fuzzy
logic modeling [16–20]; geo-statistical methods [21–24]; Markov-CA [5,10,25–32]; cellular automata
models [33–36]; propagating aleatory and epistemic uncertainty [37,38]; artificial neural network [39–43];
Hopfield neural network [44–48]; supervised back-propagation neural network [49,50]; self-adaptive
cellular based deep learning [51–54]; analytical hierarchy process [27,55,56]; geographic information
system (GIS)-based hybrid site condition [15,57,58]; recurrent neural network [59–62]; change vector
analysis [63–67]; and different satellite imageries of both SAR and optical [1–3,6,7,9–11,13,14,68–76].

Previous studies on Tabriz City were not comprehensive, failing to include seismic hazard
assessment and municipality performance. In recent years, the rapidly increasing population of the
city has necessitated the construction of high-rise buildings and conversion of agricultural land into
built-up areas. A comprehensive study that exploits the advantages of both remote sensing and GIS can
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turn satellite data into an actionable level that can be used for proper environmental planning. For the
study area, a comprehensive evaluation from the point of view of satellite datasets and GIS is lacking.
To fill this gap, GIS layers of various spatial information, SAR images from Sentinel-1 and optical
images from Landsat missions were gathered to perform a new study of land cover change detection,
future potential landscape, distribution of buildings by age, municipal performance evaluation and
building damage assessment in Tabriz.

2. Description of the Study Area

The study area (with a population of over 1.7 million and area of 321.03 km2) is the metropolitan
area of Tabriz, East-Azerbaijan, Iran, defined by its 10 municipal regions (Figure 1). Tabriz City is
located in Azarbaijan geological zone, which is surrounded in the northern region by Alborz, in the
south by Semnan and in the west by the Tabriz–Urumiyeh Faults [77]; therefore, it is considered as
an area susceptible to earthquakes. Tabriz City continues to the Pontic highlands in Turkey [77,78].
The central and western regions of Iran are comparable with the Azarbaijan geological zone [79],
where there are a few important faults [15,78–80]. The Tabriz fault is the most important one near to
the city of Tabriz, extending in the northwest–southeast direction from the Zanjan zone and continuing
to the northern mountains of Tabriz City [78]. It has been selected because: (1) it is the 5th large city
of Iran which is located near the Tabriz fault, and in recent years, the land cover has rarely been
updated; (2) it is a hub for cities in the northwest and west of the country (mainly due to better facilities
including more job opportunities, higher quality education and more health centers, more people tend
to migrate to the city); and (3) for such cities with this level of importance, future land cover prediction
and seismic hazard assessment is vital. Seasons in Tabriz are regular, and it has a continental and
cold semi-arid climate; at the same time, the average annual precipitation in the study area is around
320 mm, while the average annual temperature is almost 12.6 ◦C [81,82]. The city experiences humid
and rainy weather in autumn, while it has a few snowy days during the winter season; at the same
time, in spring, the city has a mild and fine climate, and during summers, the region can experience a
semi-hot climate [81,82].

Figure 1. The geographical extent of the city.
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3. Materials and Methods

3.1. Database and Data Acquisition

3.1.1. Optical Satellite Data

For the study area, we obtained four cloudless satellite data, from which a Landsat-5 image of
the year 1989 was selected as the base image for the study. All the Landsat images were downloaded
through the USGS portal. Based on the metadata, only the data with cloud coverage of less than
10% were selected. Then, we searched for and collected RS data between 1989 to 2020, and cloudless
Landsat-5 data for 2005 and 2011 were found. Regarding data for the year 2020, an image of Landsat-8
operational land imager (OLI) was collected. The images include seven bands in the range of visible
to thermal-infrared for Landsat-5 and nine bands for Landsat-8. The ground resolution of images
in optical bands is 30 m, except for a panchromatic band of Landsat-8, which is 15 m. The technical
characteristics of the Landsat data are clearly presented in Table 1.

Table 1. Characteristics of the optical data used.

Satellite Name Sensor Mode Resolution (m) Path Row Date

Landsat-5 (Thematic Mapper) TM 30 168 34 30 June 1989
Landsat-5 TM 30 168 34 20 July 2005
Landsat-5 TM 30 168 34 5 July 2011
Landsat-8 OLI 30 168 34 11 June 2020

3.1.2. Synthetic Aperture Radar data

The study was focused on the Landsat missions to carry out the objectives, but the SAR data of
Sentinel-1 (SLC and GRD) were also employed for extracting land cover, especially built-up areas,
because built-up areas are associated more with seismic hazard assessment; therefore, the validity and
reliability of its extraction should be taken into account. Table 2 shows the geometric attributes of
SAR data.

Table 2. Geometric attributes of SAR data used.

Satellite Name Platform Product Type Sensor Mode Date

Sentinel-1 S1A SLC IW 11 June 2020
Sentinel-1 S1A SLC IW 23 June 2020
Sentinel-1 S1A GRD IW 11 June 2020

3.2. Data Preprocessing and Processing

First of all, all data of Landsat-5 and 8 were processed for atmospheric, radiometric corrections
and the spatial resolution of them was enhanced to 15 m using a panchromatic band of Landsat-8.
It is worth mentioning that in pan-sharpening, spectral information will remain unchanged, while
the spatial resolution of higher pixel size images will be assigned to the lower one. Here, the 30-m
spatial resolution of the Landsat-5 data was enhanced to just 15-m using the panchromatic band of the
Landsat-8. These data were imported into TerrSet Software for classification, change detection and
prediction using the Markov chain algorithm for the years 2011 and 2030. At the first stage, the regions
of interest (ROIs) were extracted carefully; then, by the maximum likelihood algorithm, changes
in land cover from Landsat satellite images were detected, classified and mapped. Furthermore,
all ancillary data were processed and applied together with classified maps for the prediction steps
using the Markov chain model. The overall approach for the current research includes three key
procedures: (1) geometric correction of data; (2) classification of optical satellite data and prediction
of the future potential landscape of the city; and (3) municipal performance evaluation and seismic
hazard assessment (Figure 2). Ancillary reference data were collected from the Municipality of Tabriz
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and open street map (OSM) and were applied for training the Markov chain algorithm. These data
included a digital elevation model (DEM), buildings, land use, places, railway, roads, green space,
waterway and welfare services shapefile of the city (Table 3). Additionally, those data which were
collected from the municipality of Tabriz were up to date and were based on the latest changes that
occurred in the city.

Figure 2. The methodology of the research.
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Table 3. Information on ancillary reference data.

Ancillary Data Description

DEM 30 m SRTM DEM downloaded from USGS website

Buildings Polygon shapefile of buildings collected from the municipality of Tabriz

Land Use
Information on recently modified land use of a few place across the city, collected

from the municipality of Tabriz

Places Towns, crossroads and squares

Railway Railway shapefile obtained from OSM

Roads Roads shapefile obtained from OSM

Green Space
Information of recent made green areas over the city, collected from the

municipality of Tabriz

Waterway Waterway shapefile acquired from OSM

Welfare Services
Masques, hotels, educational institutes, public parks, sports centers and gyms,
banks, petrol stations, hospitals, drug stores, markets and recreational facilities

3.3. Model Used in the Study

3.3.1. Maximum Likelihood

A maximum likelihood classifier was applied to extract surface information from RS data.
This defined the statistical values with a normal distribution for each class in image’s bands. On the
other hand, the algorithm estimated the probability that one pixel would fall into the defined classes.
This procedure was continued for all the pixels and the pixels were assigned for those classes that
produced the highest probability as follows [83]:

gi(x) − 1n p(∞i) − 1
2

1n|Σi| − 1
2
(x−mi)

∑
i

−1 (x−mi) (1)

where the number of classes is defined by gi (x), which represents the number of imageries’ bands,
p(∞i) describes the probability of class, which occurs in the images, the covariance matrix is defined
by
∣∣∣∑i

∣∣∣; additionally, the inverse matrix is
∑

i −1, and mi is the mean vector [83].

3.3.2. Markov Chain

Markov chain is a model from which the future potential landscape can be relatively detected,
so that, based on the extracted information from the past data, it detects the future pattern of a land
cover [25–27]. In this countable sequence, the chain moves state at discrete time steps [84,85]. It is
worth mentioning that this sequence of time process is called a sequence-time Markov chain [84,86].
Markov chains have many applications in different fields. Overall, this model for land cover prediction
produces promising findings [4,35]. The model calculated the following formulas [25]:

pij =
nij

ni
(2)

k∑
j=1

pij = 1 (3)

where transition probability is defined by pij, i and j describe two types of land cover, the total of pixels
of each class is shown by ni and nij, which represents the number of transformed pixels from class i to
class j, and finally, k defines the number of land cover classes.
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3.3.3. Logistic Regression Model

A good deterministic seismic hazard assessment is generally associated with effective and
well-approved models [16]. In recent years, the LR model has been widely employed to analyze
binary variables and, as a result, it has been introduced as an promising approach in environmental
studies [19,42]. Therefore, the LR classification model was adopted in this study. It deals with
independent and dependent parameters, where this relationship is nonlinear and can be calculated as
Equations (4) and (5) [87,88]:

P =
1

1 + e−Z (4)

where P is an earthquake’s probability occurrence (0 ≤ P ≤ 1), and e−Z is a linear logistic factor
(−∞ ≤ P ≤ +∞) that is calculated based on Equation (5) [87]:

Z = log it (p) = ln(
p

1− p
) = b0 + b1x1 + · · ·+ bn xn (5)

where Z is a linear logistic factor, p is an earthquake’s probability occurrence, n is the number of
conditioning variables, and b0 is the constant coefficient.

Factors Used for Seismic Hazard Assessment

Hazard studies give valuable information about human environments, which, if the results of
these studies are taken into account, may protect them from such events in the future. Complex natural
hazards such as landslides or flood mapping need considerable data collection and analysis [19,89].
However, in this study, a susceptibility map of potential sites of earthquakes is produced, in which
the most important conditioning parameters for it are soil type, proximity to fault lines and lithology
condition (Figure 3). A simple probabilistic seismic hazard analysis (PSHA) model was used, which is
a useful algorithm, especially when in situ seismic data are not widely available. In the study area,
the distribution of the faults is not complex and the Tabriz fault’s orientation is straightforward.
However, it must be noted that, due to the lack of actual seismic data, this model cannot address
uncertainties well [74]. The occurrence probability and intensity of risk assessment depend on selected
conditioning factors [17].

Figure 3. Conditioning parameters used for susceptibility mapping (a) fault lines; (b) lithology; and (c)
soil type.
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3.4. Accuracy Assessment and Validation

3.4.1. Confusion Matrix for the Classified Maps

Using Google Earth (GE) images, thirty (altogether ninety) ground control points (GCPs) were
randomly extracted for each land cover (Figure 4) and then converted into ROIs for accuracy assessment.
The overall accuracy and Kappa coefficient were employed in this research. These two models are
measured based on Equations (6) and (7), respectively [90,91]:

OA =
1
N

∑
pii (6)

where OA defines the total accuracy of the model, test pixels are described by N, and
∑

pii represents
the total number of correctly classified pixels.

 
Figure 4. GCPs for all years.

Kappa coefficient is a statistical model that is employed to measure the reliability of the qualitative
items [91]. It is universally accepted that this model is a more robust method than the simple calculations.
The Kappa coefficient provides reliable and valuable information for the findings obtained. OA must
be calculated first in order to measure it.

K = (OA− 1
q
)(1− 1

q
) (7)

where OA defines the total accuracy of the model; k and q are Kappa coefficient and unclassified pixels,
respectively.

84



Sensors 2020, 20, 7010

3.4.2. Validation of the Predicted Map of the Year 2011

The predicted land cover map using the Markov chain model for 2011 was validated by the
generated land cover map of the same year. This was only conducted to determine the reliability and
accuracy rate of the model that will be used for the prediction of the future landscape of the year 2030.

3.4.3. Validation of Extracted Land Cover Using SAR Data

GRD and SLC products of Sentinel-1 SAR data were used for the validation of mapped land cover.
For this reason, a pair of SLC products for two close dates was preprocessed in sentinel application
platform (SNAP) software and used for the extraction of land cover using RGB creation in the GIS
environment. At the same time, the GRD product was also applied for this matter in order to ensure
the complete reliability of the mapped land cover; the reliability of the land cover was essential because
it was used to create many maps for the study area.

4. Results

4.1. Land Cover Classification

Reliable detection of landscape change using remote sensing data must strike a balance between
affordability and product accuracy [78,92,93]. By applying the maximum likelihood method, vegetation,
built-up and bare land surfaces in 1989, 2005, 2011 and 2020 were extracted for the study areas.
This information was utilized to create a few maps of buildings by age, municipality performance and
seismic hazard assessment. ROI extraction is one the most important steps in land cover classification,
from which exact land cover can be extracted, and it also affects the overall accuracy [70,71,94]. Tables 4
and 5 detail the number of pixels and ROI separation characteristics, respectively. The mean pixel
count of the extracted ROIs was used for obtaining the spectral signatures of the land cover. Therefore,
an image-derived technique was applied for the extraction of the spectral signatures.

Table 4. Number of pixels used for ROIs.

ROI Summary Pixel Count: 1989 Pixel Count: 2005 Pixel Count: 2011 Pixel Count: 2020

Vegetation 10,311 11,434 10,120 9312
Built Area 18,280 17,356 15,670 21,098
Bare Land 23,649 25,780 22,456 27,809

Table 5. ROI pair separation.

Years 1989 2005 2011 2020

Vegetation and Built Area 1.99575610 1.99296923 1.99971843 1.99938326
Vegetation and Bare Land 1.99787821 1.99999926 1.99999977 1.99999849
Built Area and Bare Land 1.99888996 1.99999990 1.99899203 1.99832448

The land cover maps for years 1989, 2005, 2011 and 2020 were generated using the maximum
likelihood algorithm. Most of the new built-up areas occurred at the edges of the existing urbanized
regions, which are displayed in orange color. Figure 5 details the spatial patterns of classified land
cover from 1989 to 2005. The vegetation extent on the map is presented in green, built areas in orange
and bare land in light yellow pixels. Figure 6 quantifies the changes which occurred from 1989 to 2005.
For the sake of distribution clarity, two column charts of gain/losses and net changes were created
for changes that occurred from 1989 to 2005. Moreover, vegetation lost around 20 km2 and gained
18 km2 from 1989 until 2005 (net change −2.63 km2). At the same time, 49.47 km2 was added to the
built-up area, while only 4.07 km2 was removed from it (net change +45.39 km2). Finally, compared to
built-up areas, losses for bare land are considerable, so that it lost around 55.35 km2 from its areas and
approximately 12 km2 was added to bare land (net change −42.76 km2).
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Figure 5. Spatial distribution of changes from 1989 to 2005.
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After visual inspection, general information over the city was gathered; the only drawback of our
classification using the maximum likelihood algorithm was considering the airport band of Tabriz
City as a built-up area. This bias may be because of the similarity of backscatters for roads inside the
built-up areas with the airport band; however, this is a negligible area and can be addressed using
simple editing using GIS.

Figure 7 represents the spatial trends of land cover from 2011 to 2020, from which increasing
vegetation coverage inside the city and beyond is considerable. Two charts of gain/losses and net
changes were also provided for changes which occurred from 2011 to 2020 (Figure 8); from these, it can
be concluded that from 2011 onwards, only around 4 km2 was added to the built-up areas. For many
readers, this should be of great concern, but, based on an interview with the municipality of Tabriz
(the interview was performed with a public affairs officer of the municipality on 18/08/2020 through
phone call), from 2011 onwards, the city’s buildings were constructed and grew vertically, meaning
that old buildings with one or two floors were replaced by buildings with more than three floors.
A summary of statistical reports for land cover changes from 2011 to 2020 is as follows: (1) net change
for vegetation coverage was +20.56 km2, meaning that approximately 33.83 km2 was added to it and
13.27 km2 was subtracted from it; (2) 18.64 km2 was subtracted from built-up areas, while 22.73 km2

was added to it; and (3) not surprisingly, bare land lost 46.14 km2 and gained 21.68 km2 so that the net
change for it can be −24.47 km2.

Figure 7. Spatial distribution of changes from 2011 to 2020.

Figure 9 clearly shows cross changes from one land cover to the other. For example, those areas
that were once built-up areas but were replaced with vegetation coverage are displayed in light green.
Dark green represents areas that once were bare land that have become vegetation. The areas indicated
by the red color are areas that were originally vegetation but were replaced with built-up areas. At the
same time, changes from bare land to built-up areas are indicated by the dark red color. Furthermore,
the light yellow color shows areas that were replaced by bare land from vegetation. Additionally,
the dark yellow color highlights areas that were built-up areas but then changed to bare grounds.
This kind of map is important in showing changes among land cover between two specific years.
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Figure 9. Cross change map of land cover.

4.2. Future Potential Landscape of Tabriz Using Markov Chain Model

The land cover potential pattern of the year 2030 was mapped for the study area. To understand
the level of reliability of the model used (because there was no information for the year 2030), the land
cover map of the year 2011 was also estimated using land cover maps of the years 1989 and 2005.
Considering the predicted land cover map of 2011, around 86% of vegetation coverage was forecasted
to remain unchanged (which is a high percentage), and changes from built-up area to vegetation
were predicted by approximately 1%, while this rate was roughly 4% from bare land to vegetation.
It was forecasted that 96% of the built-up areas would remain unchanged, which is also quite high
and shows that the model works well, so the prediction for the year 2030 can be reliable to a great
extent. The change prediction rates of vegetation to built-up areas and also the bare lands to built-up
areas were estimated to be almost 6% and 8%, respectively. Like vegetation, around 86% of bare land
was predicted to remain bare land by the year 2011 (which also represents a good prediction rate).
Figure 10 and Table 6 detail the spatial pattern and statistical changes in land cover by the year 2011
(using land cover maps of years 1989 and 2005), respectively.

Table 6. Probability of land cover changes in 2011 predicted from maps of the years 1989 and 2005.

Vegetation % Built Area % Bare Land %

Vegetation 0.8616 0.0618 0.0767
Built Area 0.0138 0.9604 0.0258
Bare Land 0.0440 0.0872 0.8688
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Figure 10. Predicted map of 2011.

Figure 11 and Table 7 highlight the spatial trends and statistical findings of land cover changes
by the year 2030, respectively. Considerable findings were extracted regarding the predicted land
cover from the map of 2030. Around 74% of vegetation coverage was forecasted to remain unchanged,
meaning that almost 26% is likely to be replaced by other types of land cover. Changes from built-up
area to vegetation are predicted by approximately 7%, while this rate is quite high for bare land to
vegetation, at roughly 26%. It was estimated that 79% of the built-up areas would remain stable as
themselves. The change prediction rates of vegetation and bare land to built-up areas are high, at an
estimated rate of almost 9% and 11%, respectively. Approximately only 61% of bare land is likely
to remain bare land by the year 2030, meaning that based on the changes which occurred until the
year of 2020, the municipality plans to change bare land to other types of land cover. One of the
considerable results in this regard could be the probability of changes from built-up areas to bare land,
at approximately 13% (which is a quite high figure); based on the interview with the municipality,
this is maybe because of the reconstruction of buildings over the city that occurred and was recorded
by the satellite images used in this study. However, these are only predictions based on changes from
the year 2011 to the year 2020.
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Figure 11. Predicted map of 2030.

Table 7. Probability of land cover changes in 2030 predicted from maps of years 2011 and 2020.

Vegetation % Built Area % Bare Land %

Vegetation 0.7495 0.0915 0.1590
Built Area 0.0769 0.7927 0.1304
Bare Land 0.2637 0.1198 0.6164

4.3. Building Age Map of the Study Area since 1989

The built-up areas’ distribution by age for the years of 1989, 2005, 2011 and 2020 was extracted
(Figure 12 and Table 8). Pixels in light pink color are classified as built-up areas until 1989 and the
pink color represents built-up areas that developed after the year of 2005. Areas indicated in red color
are defined as newer urban areas that were constructed from 2005 until 2011. The newest built-up
areas that have been constructed since 2011 are shown in the dark red color. Most of Tabriz City was
constructed before 2011, but relatively new urban areas in and around the study area can be seen,
which indicates that urban development has been gradually taking place. The proportion of built-up
areas is presented in Table 8, which shows that the total built-up area constructed before 1989 is around
45 km2. In the year 2005, the built-up area doubled to approximately 90 km2. Almost 21 km2 was
added to built-up areas by the year 2011. Not surprisingly, only approximately 4 km2 has been added
to the built-up areas since 2011 (this does not mean that urbanization has stopped since then); this is
because buildings have been reconstructed vertically (a few floors) instead of containing only one or
two floors. Our interview with the municipality also confirmed that the old buildings with one or
two floors are being reconstructed and replaced with buildings with three or more floors. This has
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good advantages, such as providing more land with the municipality for establishing other projects,
while there is sufficient housing for citizens as well.

Figure 12. Spatial distribution of building age.

Table 8. Area of constructed regions by four different years.

Year 1989 2005 2011 2020

Area of built-up regions (km2) 45.30 90.98 112.70 116.81

Urbanization Rate

Based on the built-up area extracted from the classified maps in this study, urbanization rate (UR)
was calculated using the following user-defined equation:

UR =
A
T

(8)

where UR is the urbanization rate, A is an extended area of built-up areas for each period, and T
contributes to the time passed for urban growth. According to the equation, UR for a different period
related to the current study is as follows: it is worth mentioning that the results are km2 per year.

UR(2005) =
45.68

16
= 2.85

UR(2011) =
21.72

6
= 3.62
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UR(2020) =
4.11

9
= 0.45

4.4. Municipal Performance Evaluation for 10 Municipal Zones of Tabriz City

Based on the changes that occurred from the year 2011 to 2020, the performance of municipal
zones of Tabriz city was evaluated (considering the changes towards more built-up areas and green
space along with less bare land), meaning that when more bare land for a municipal zone was
converted to built-up and vegetation areas, it was considered that the zone worked well. Following
our evaluation, the best and worst municipalities are municipal numbers one and four, respectively.
Figure 13 and Table 9 show spatial and statistical changes in different types of land cover for each
municipality, respectively.

Table 9. Quantitative results for municipal performance evaluation since 2011.

No. of Municipal
Region

Land Cover
The Year

2011 (km2)
The Year

2020 (km2)
Percent of
Changes

Rate of
Change (km2)

Performance
Rank

1
Vegetation 2.37 11.76 396.2 9.39

1Built Area 12.26 13.59 10.8 1.33
Bare Land 43.25 32.55 −24.7 −10.7

2
Vegetation 2.41 8.12 236.9 5.70

3Built Area 13.55 14.31 5.6 0.7
Bare Land 9.28 2.81 −69.7 −6.46

3
Vegetation 1.70 6.64 290.5 4.9

4Built Area 16.17 14.90 −7.8 −1.2
Bare Land 17.80 14.15 −20.5 −3.6

4
Vegetation 7.28 6.58 −9.6 −0.7

10Built Area 17.25 16.82 −2.4 −0.4
Bare Land 0.83 1.96 136.1 1.13

5
Vegetation 1.21 4.72 290 3.51

2Built Area 7.51 10.42 38.7 2.91
Bare Land 22.88 16.49 −27.9 −6.39

6
Vegetation 25.07 23.67 −5.5 −1.3

9Built Area 14.82 15.74 6.2 0.9
Bare Land 26.47 26.94 1.7 0.4

7
Vegetation 19.18 21.70 13.1 2.5

7Built Area 19.38 17.38 −10.3 −2
Bare Land 17.81 17.30 −2.8 −0.5

8
Vegetation 0.03 0.07 133.3 0.04

8Built Area 3.85 3.76 −2.3 −0.09
Bare Land - - - - 0.05 - - - - - - - -

9
Vegetation 0.59 1.52 157.6 0.93

5Built Area 0.78 1.15 47.4 0.36
Bare Land 2.31 1.02 −55.8 −1.29

10
Vegetation 0.38 1.31 244.7 0.93

6Built Area 8.18 8.19 0.1 0.009
Bare Land 2.31 1.37 −40.6 −0.94
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Figure 13. Municipal performance evaluation map.

4.5. Seismic Hazard Assessment

Four susceptible zones were finally reclassified. Figure 14 clearly shows the spatial patterns of
areas to susceptible to earthquakes concerning the municipal zones of the city. Most of the municipal
zone numbers 1, 9 and 10 are located in the low susceptibility zone, while the entire municipal
zone number 8 and most of the municipal zone numbers 3, 4, 6 and 7 are located in the very high
susceptibility zone.

 
Figure 14. Earthquake susceptibility mapping.
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4.6. Accuracy Assessment and Validation for This Study

4.6.1. Confusion Matrix for the Classified Maps

The land cover classification mapping using RS data is a relatively easy effort, while the accuracy
and inaccuracy of it depends on proper data and models used [2,61]. An accuracy assessment using
the confusion matrix was accomplished for all four classification maps. The overall accuracy for
the classified maps of 1989, 2005, 2011 and 2020 was around 96% 96%, 93% and 94%, respectively.
Meanwhile, these values for the Kappa coefficient were almost 93%, 92%, 85% and 88%, respectively
(Table 10).

Table 10. Statistical results using the confusion matrix for all classified maps.

Statistical Parameters
Year of Classified Maps

Overall Accuracy (%) Kappa Coefficient (%)

1989 96.1354 0.9363
2005 96.0151 0.9222
2011 93.6413 0.8556
2020 94.0700 0.8873

4.6.2. Validation of the Predicted Map of the Year 2011

Using the land cover map of 2011, the predicted map of the same year was validated. Since there
was not any information for the year 2030, the validation was not possible. However, fortunately,
the prediction map of the year 2011 was well validated (meaning that it only predicted a few areas
incorrectly; most were predicted well); therefore, it can be concluded that the prediction map of the
year 2030 can be also correct to a great extent. These land cover products were then used to validate
urban extent extraction, which confirmed that land cover extraction was done successfully. Validation
interpretation was based on these three data: (1) initial land cover was the classified map of the
year 2005 (2); predicted land cover for the year 2011; and (3) validation land cover (classified map of
the year 2011). Figure 15 represents the validation of the predicted map of the year 2011. However,
for interpretation of the image, two examples are presented here: (1) 1/1/1 means that these areas in all
aforementioned images were vegetation, and (2) 2/3/3 means that these areas were bare land originally
but were predicted as built-up areas.

4.6.3. Validation of the Extracted Land Cover for the Year 2020 as a Basis for Seismic
Hazard Assessment

The magnitude of errors using conventional methods is a complex issue from which the extracted
land cover from them cannot be directly applied for understanding the changes which occurred [3,52].
Additionally, uncertainties are inherent aspects of remotely sensed studies [3]; to minimize uncertainties,
SAR data were also applied. This attempt ensured that urban land cover was not missed using optical
images. To successfully validate the extracted built-up areas which were utilized for seismic hazard
assessment of the city, SAR data were also used. A few small areas were marked by a few geometric
symbols (square-shaped) in each set of satellite data (Figure 16). These areas were then enlarged
and displayed with different shapes for each type of land cover, comparing the built-up surface from
two SAR data of GRD and SLC products, ensuring that the built-up areas in both were successfully
matched. After preprocessing and processing of SAR data in the SNAP environment, both bands of VV
and VH were employed for RGB creation in the GIS environment. The VV band of the slave imagery
was used for R and the VH band of the master one was employed for G and B windows.
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Figure 15. Validation of the predicted map of the year 2011.

 
Figure 16. Land cover maps using both optical and SAR data.
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5. Discussion

Generally, a few diverse factors may affect the results of change detection and prediction [9,84].
The land cover’s spatiotemporal pattern and characteristics in this study were completely different
from those which have been measured before, in which a comprehensive study including land cover
change detection, future potential landscape, distribution of buildings by age, municipal performance
evaluation and building damage assessment was carried out for the metropolitan area of Tabriz,
especially for the municipality of Tabriz that has suffered from a lack of such studies. Previous studies
were mainly focused on simple methods for measuring the land cover, seismic hazard and building
vulnerability for the study area [80,95,96]. During the first period (1989–2005), the built-up area
increased as a result of population growth and migration to the city, which was mainly based on
destroying vegetation and bare land. During the second period (2011–2020), bare land was replaced
by other types of land cover and, in this period of time, one of the most considerable findings was
increased vegetation across the city, which, based on the findings, reflects the efforts of the municipal
regions to increase the vegetation to a satisfactory level. Urban growth was mainly observed in the
bare land and the vegetated areas, far from the economical areas.

The dynamics of the land cover are correlated [77]. Here, built-up areas grew considerably in
the first period (1989 to 2005), while in the second period (2011 to 2020), this growth was negligible.
For the second period, we found that vegetation areas experienced more positive changes than the first
period among land cover. The built-up areas in both periods (1989 to 2005 and 2011 to 2020) showed
the largest degree of change among all land covers, which could be linked to the rapid urbanization in
Tabriz. The change in speed of bare land was relatively fast in both periods, in which it underwent
the most significant land cover changes for the entire period. In addition, vegetation was directly
linked to the civil projects of the municipality that turned bare land and old built-up areas into green
lands. This analysis suggests that the land cover in Tabriz has considerably changed during the last
three decades.

According to the findings for the year 2030, the general trend of change is toward more vegetation
and built-up areas as well as less bare land, meaning that the municipality plans to convert more bare
land to other types of land cover. Specifically, in the year of 2030, the vegetation and built-up areas will
preserve most of their areas and will be larger because of the change from bare land to these types of
land cover. Besides this, almost 60 percent of the area of bare land will be preserved, because always
bare land will be used for the development of new projects. This implies that the landscape pattern of
Tabriz has a tendency to be more optimized in this period.

Based on the results of the urbanization rate, from the year 1989 until 2005, the city of Tabriz
experienced growth in urban areas of around 2.85 km2 per year. At the same time, this rate was
3.62 km2 per year from 2005 until 2011. Additionally, from 2011 to the year 2020, this rate was only
0.45 km2 annually.

Seismic hazard assessment is always an essential part of sustainable development projects for
urban areas [7,15]. Seismic hazard assessment produces a greater cost efficiency when focusing only
on urban areas (rather than the entire area including vegetation and bare land), which has the greatest
impact on people when they are destroyed. The application of seismic hazard assessment has not
yet been conducted for a city like Tabriz, which is growing fast based on the population rate and its
situation as a hub to the other cities of the region. Therefore, a seismic hazard assessment (even a
simple one) could enable the local authorities and the policy-makers to direct urbanization to those
areas with low or moderate susceptibility. Concerning the earthquake risk for the city, policy-makers
should take this into account for future urban sprawl, meaning that they can design stricter policies for
new buildings that are constructed or reconstructed in more susceptible areas.

Model validation is important to assess the level of the models’ reliability and validity. Validation
of the created maps was performed at three stages. In the first, the classified outputs of the years 1989,
2005, 2011 and 2020 were validated using a confusion matrix. In the second step, and since the land
cover map of the year 2020 was selected for damage assessment, two other maps from Sentinel-1 SAR
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data were also employed. Finally, a classified map of the year 2011 was used to validate the prediction
map of the year 2011 (only to assess whether the model could predict the future potential landscape or
not, so that its prediction for the year 2020 could also be considered correct).

Based on the findings of this study, for arid and semi-arid regions (like the current study area),
the maintenance of the existing vegetated areas rather than planting more grasses and trees in less
suitable areas is recommended. Although this study, as well as many previous works, has demonstrated
that the remotely sensed data and techniques can be well applied for monitoring changes in cities,
we recommend that more high-resolution satellite imageries be used to gain further insights into such
changes. Future research should focus on the deep learning techniques for change detection and the
prediction of land cover; more details on seismic and risk assessments can also be obtained using deep
learning algorithms for the study area. The only major limitation of this study was encountered when
obtaining ancillary data from the municipality of Tabriz.

6. Conclusions

Cities need comprehensive and innovative plans in order to ensure progress based on sustainable
development. Although it is very difficult to obtain absolute results from remotely sensed data, relative
findings can be captured, which can be effective for any future planning. This study has emphasized
changes in land cover and the future landscape in Tabriz City. Other important issues that the current
research was focused on include information on building age, municipal performance evaluation and
building damage assessment, which contributes to earthquake damage estimation. This study has also
compared the results of optical satellite imagery with SAR data to extract the spatial distribution of
buildings for the year 2020, which was the base map to evaluate municipal zone performances and
seismic hazard assessment. The main findings of the current study are as follows: Landsat images
for the years 1989, 2005, 2011 and 2020 were used to quantify the land cover changes from 1989 until
2020 and the results using the confusion matrix were promising. At the same time, by using and
comparing SAR data, the accuracy of built-up areas for the year 2020 was well validated and verified.
Referring to the assessment of the distribution of built-up areas by age for Tabriz City, we found that
most of the built-up areas had been developed before 2011, and from then onwards, the city has been
progressing vertically. Seismic hazard assessment for the future of the city was conducted by using
a logistic regression model, from which results indicated that municipal zones 1 and 9 are located
inside low susceptibility areas, while municipal zones 4, 6, 7, 8, and also most of zones 3 and 10,
are located in highly susceptible regions. Further findings revealed that land cover prediction by using
the Markov chain model provided a good opportunity to identify the future potential landscape of the
city. Finally, based on the land cover maps of 2011 and 2020, the performances of the municipal zones
were evaluated, from which results showed that municipal zone 1 followed by zone 5 have the best
performances among all. Besides this, the performance of municipal zone 4 is negligible, as is much of
municipal zone 6.
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Abstract: Increased global temperatures and climatic anomalies, such as heatwaves, as a product
of climate change, are impacting the heat stress levels of farm animals. These impacts could have
detrimental effects on the milk quality and productivity of dairy cows. This research used four years
of data from a robotic dairy farm from 36 cows with similar heat tolerance (Model 1), and all 312 cows
from the farm (Model 2). These data consisted of programmed concentrate feed and weight combined
with weather parameters to develop supervised machine learning fitting models to predict milk yield,
fat and protein content, and actual cow concentrate feed intake. Results showed highly accurate
models, which were developed for cows with a similar genetic heat tolerance (Model 1: n = 116, 456;
R = 0.87; slope = 0.76) and for all cows (Model 2: n = 665, 836; R = 0.86; slope = 0.74). Furthermore,
an artificial intelligence (AI) system was proposed to increase or maintain a targeted level of milk
quality by reducing heat stress that could be applied to a conventional dairy farm with minimal
technology addition.

Keywords: machine learning; heat stress; animal welfare; climate change; automation

1. Introduction

Robotic dairy farms or Automated Milking Systems (AMS) are the result of the implementation of
state of the art technology related to robotics to increase milk yield through increased efficiency and
automation [1,2]. These technologies are developed in response to the increasing market opportunities
for the dairy industry globally, which is projected to grow by 35% by 2030 [3]. However, global demands
will also be accompanied by 14 million traditional dairy farms shutting down production due to
increased competitiveness and requirements for guaranteed milk quality and animal welfare [4].
The latter is considered a growing concern for consumers, which is achieved by AMS since it is based
on the “milking when they like” system increasing wellbeing and welfare of cows [5]. Further potential
advances to AMS technologies have been researched in recent years through the implementation of
biometrics monitoring of animals to assess physiological changes in production systems [6]. Some of
these technologies are noninvasive using visible (RGB) imagery/video, and infrared thermal imagery
for heart rate, respiration rate, and body temperature assessments. These technologies could result in
improvements in the monitoring of heat stress in farm animals.

Modeling heat stress in AMS has concentrated recently on the rumination and milking
performance [7], identifying specific thresholds with production factors [8] and thermal comfort
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indices [9], mainly through the calculation of the temperature-humidity index (THI) using several
models [10]. According to a study by Nascimento et al. [11], who compared nine different models to
calculate THI, the equation from Berman et al. [12] (Equation (10) below) was significantly correlated
with physiological data of cows such as respiration rate, heart rate, rectal, and skin temperatures.
However, all previous methods use deterministic mathematical equations with minimal animal
information in the analysis, and the noncontact biometric analysis could be cost-prohibitive for the
near-future application to conventional dairy farms.

Artificial intelligence (AI) applied to Digital Agriculture deals with the implementation and
integration of digital data, sensors, and tools on agricultural applications from the farm to consumers [13].
These technologies can include big data, sensor technology, sensor networks, remote sensing, robotics,
and unmanned aerial vehicles (UAV). Data processing is performed using new and emerging
technologies, such as computer vision, machine learning, and AI, among others. The implementation
of AI not only should benefit high technological systems, such as AMS, but also conventional dairy
farms to increase their competitiveness in the future.

This research was based on machine learning modeling using ubiquitous environmental data
obtained from automatic meteorological stations and cow information available by all dairy farms as
inputs. Target information related to important parameters related to milk productivity, milk quality,
and actual feed of dairy cows was obtained from an AMS belonging to The University of Melbourne,
Australia. High accurate machine learning (ML) models that can be applied to any dairy farm from
AMS to conventional were obtained. Furthermore, this paper proposes an AI system model to be
implemented in any dairy farm to automatically assess and ameliorate heat stress by implementing
ML models developed with an automated sorting and gate system.

2. Materials and Methods

2.1. Site, Robotic Dairy Farm, and Data Acquisition

The study was conducted in a dairy farm located at The University of Melbourne Dookie
College, Victoria, Australia (36◦22’48” S, 145◦42’36” E). This region had an average annual rainfall
of 537 mm (monthly extremes: 30.5–57.6 mm) and mean daily solar exposure of 17 MJ m2 −1

(extremes: 7.3–27.3 m2 −1) from 1991–2019; data obtained from the Bureau of Meteorology (BoM)
Dookie Agricultural College station 081013. The farm consists of 43 ha of irrigated pastures based
on perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum). The herd in
this site consists of Holstein-Friesian cows. The farm contains three Lely Astronaut robotic milking
machines (Lely Holding S.à.r.l., Maassluis, The Netherlands), with a capacity of 60 cows per machine
(maximum capacity of 180 cows) that move voluntarily for milking. As described by Dunshea et al. [14],
cows wear an identification transponder neck collar (Lely Holding S.à.r.l., Maassluis, The Netherlands),
which records the cows’ activity. The robotic milking system can automatically record parameters such
as lactation days counted from day 0 at calving up to the time of next calving including the dry cow
period, lactation number, milking frequency per day, milk yield (kg day−1), milk protein (%), milk fat
(%) and somatic cells, programmed concentrate feed (kg day−1), concentrate feed intake (kg day−1),
and liveweight (kg). Records of these data from June 2016 to March 2019 were used for this study.

Weather data were obtained from the meteorological station (Adcon Telemetry GmbH,
Klosterneuburg, Austria), located at the Dookie Agricultural College, which provides data every
15 min for each day of the year. Parameters obtained were (i) temperature (T; ◦C), (ii) relative humidity
(RH; %), (iii) rainfall as daily running total (mm), (iv) wind speed (km h−1), and (v) wind direction
(◦). Based on these data, other variables such as dewpoint temperature (Tdp; ◦C; Equation (1); [15]),
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wet bulb temperature (Twet; ◦C), and THI were calculated. The latter was calculated using the following
nine different equations (Equations (2)–(10); [11]):

Tdp =
243.5

(
17.67×T
243.5+T + ln RH

100

)

17.67−
(

17.67×T
243.5+T + ln RH

100

) (1)

THI1 = 0.4× (T + Twet) × 1.8 + 32 + 15 (2)

THI2 = (0.15× T + 0.85× Twet) × 1.8 + 32 (3)

THI3 = (T × 0.35 + Twet × 0.65) × 1.8 + 32 (4)

THI4 = 0.72× (T + Twet) + 40.6 (5)

THI5 = (1.8× T + 32) − [(0.55− 0.0055×RH) × (1.8 + T − 26)] (6)

THI6 =
(
0.55× T + 0.2× Tdp

)
× 1.8 + 32 + 17.5 (7)

THI7 = T +
(
0.36× Tdp

)
+ 41.2 (8)

THI8 = (0.8× T) +
(RH

100

)
× (T − 14.4) + 46.4 (9)

THI9 = 3.43 + 1.058× T − 0.293×RH + 0.0164× T ×RH + 35.7 (10)

where Twet was calculated in batch using a customized code written in MATLAB®R2020a (Mathworks
Inc., Natick, MA, USA; [16]), calculations were based on T, Tdp, and surface pressure and the bisection
search method.

2.2. Statistical Data and Machine Learning Modeling

Mean values of THI calculated with Equation (10) along with milk yield, milk protein, and fat
content, and concentrate feed intake were obtained and plotted to visualize the effects of the different
seasons on each parameter. Statistical data obtained from the inputs and targets consisted of minimum,
maximum, and mean values of each parameter.

Two ML models were developed based on artificial neural networks (ANN) using the Bayesian
Regularization training algorithm. The latter was chosen as it showed the best accuracy and performance
as well as no over or underfitting [17] after testing 17 different algorithms using a customized code
written in MATLAB®R2020a. The inputs for the models (Figure 1) were based on the maximum values
per day of the weather data (i) T, (ii) RH, (iii) rainfall, (iv) wind speed, (v) wind direction, (vi) Tdp,
(vii) Twet, (viii–xvi) THI calculated with the nine equations, and some data obtained from the robotic
milking system, (xvii) programmed concentrate feed, (xviii) lactation days, (xix) lactation number,
(xx) milking frequency, and (xxi) liveweight. The targets were also obtained from the robotic milking
system. They consisted of (i) milk yield, (ii) milk protein, (iii) milk fat, and (iv) concentrate feed intake
(i.e., cereal grain-based pellets fed to cows during milking, making up approximately 40% of cows
diet). All data were normalized from −1 to 1. Model 1 was constructed using the data of cows with a
similar heat tolerance (N = 36; heat tolerance range: 93–112) determined by estimation of Australian
genomic breeding values for heat tolerance [18] following genotyping of each cow using hair follicle
samples as per the commercial procedure (CLARIFIDE for dairy, Zoetis Australia Pty Ltd, Banyo,
QLD, Australia). The genotyping experiment was approved by the University of Melbourne Faculty of
Veterinary and Agricultural Science (FVAS) Animal Ethics Committee (AEC ID 1814645.1). In general,
for heat stress, cows with Australian breeding values < 100 are less tolerant to hot, humid conditions
than the average, while the cows with values > 100 are more tolerant than the average. Specifically,
cows with breeding values of 93 will be 7% less heat tolerant than an average cow, and a cow with
heat tolerance breeding values of 110 would be 10% more heat tolerant as compared to an average
cow. In contrast, Model 2 was developed using data from all cows (N = 312) independent of their heat
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tolerance to create a general model. Samples were divided randomly as 70% for training and 30% for
testing using a default derivative function. Ten neurons were chosen as the best number giving the
highest accuracy and best performance based on the means squared error (MSE).

Figure 1. Diagram of the two-layer feedforward regression models with a tan-sigmoid function in the
hidden layer and linear transfer function in the output layer. Abbreviations: THI: Temperature-humidity
index; W: Weights; b: Bias.

3. Results

Figure 2 shows the mean values per season of each year for THI9 and the four parameters used
as targets in the ML models to represent the effect of different weather patterns on those variables.
As expected, the highest THI were obtained in the summer seasons of all years (77.5–79.7) and the
lowest in winter of all years (47.6–49.1). The highest average milk yield per cow was observed in
winter (33.4 kg day−1) and spring 2017 (33.5 kg day−1) with the lowest yield in summer 2018–2019
(23.4 kg day−1). The latter season also presented the lowest protein content in milk (3.1%) and
concentrate feed intake (4.3 kg day−1). Spring 2018 and autumn 2018 had the lowest (3.9%) and the
highest milk fat content (4.6%), respectively.

Figure 2. Mean values per season of each year for temperature-humidity index (THI9) and the four
parameters used as targets in the machine learning (ML) models to represent the effect of different
weather patterns on potential heat stress, milk productivity, and quality.

Table 1 shows the minimum, maximum, and mean values per year of each parameter used as
inputs to construct the ML models. The lowest mean temperature (19.3 ◦C) was observed during 2016,
which, at the same time, presented the lowest mean THI1–THI9 (58.1–72.0), highest mean RH (95.6%),
and daily rainfall (3.9 mm). On the contrary, 2019 had the highest maximum temperature (44.9 ◦C)
and, until March, the lowest mean RH (69.2%), and daily rainfall (0.3 mm), as well as the highest mean
THI1–THI9 (68.6–82.8). Data for lactation days = 0 are the day the calf was born, and milk production
commenced. Due to the voluntary milking system on the farm, there are some days when cows are
not milked (i.e., milking frequency = 0). Furthermore, there were cows on the farm with extended
lactations (>600 days). These were ‘carryover’ cows that were in an extended lactation because they
failed to get pregnant in a timely manner.
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Table 2 shows the minimum, maximum, and mean values of the parameters used as targets for
the ML models. It can be observed that 2017 presented the highest milk yield per cow on average
(30.7 kg day−1), although 2016 had the highest maximum milk yield per cow (65.4 kg day−1). Likewise,
for milk protein, 2017 had the highest maximum value (6.1%), while 2018 presented the highest mean
value (3.4%). Regarding milk fat content, 2019 had the highest maximum and mean values (10.9% and
4.3%, respectively). In 2019, the lowest average concentrate feed intake (4.0 kg day−1) was observed,
while 2017 presented the highest mean (7.4 kg day−1) and the highest maximum value (24.3 kg day−1).

Table 2. Minimum, maximum, and mean values of the parameters used as targets to develop the
machine learning models.

Parameter/Year
2016 * 2017 2018 2019 *

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Milk yield (kg day−1) 0.0 65.4 28.1 0.0 60.2 30.7 0.0 61.2 28.8 0.0 52.1 21.2
Milk protein (%) 1.8 5.8 3.3 1.8 6.1 3.2 2.2 5.8 3.4 0.9 4.9 3.1

Milk fat (%) 1.0 10.7 4.2 0.8 10.2 4.0 0.7 10.3 4.2 0.7 10.9 4.3
Concentrate feed
intake (kg day−1)

0.0 19.5 7.3 0.0 24.3 7.4 0.0 18.8 6.7 0.0 10.6 4.0

* Values from 2016 cover from June to December and 2019 cover from January to March. Abbreviations: Min:
Minimum; Max: Maximum.

Table 3 shows the statistical results of both models to predict milk yield, milk fat, and protein
content, and concentrate feed intake. It can be observed that both models presented similar results
with high overall correlation coefficients (Model 1: R = 0.87; Model 2: 0.86; Figure 3). None of the
models showed any signs of overfitting as the correlation coefficient of all stages was the same, and the
performance of training (Model 1: MSE = 0.0186; Model 2: MSE = 0.0154) was lower than the testing
stage (Model 1: MSE = 0.0189; Model 2: MSE = 0.0157). According to the 95% confidence bounds,
Model 1 presented 3.88% outliers (4513 out of 116,456) and Model 2 presented 3.60% (23,998 out
of 665,836).

Table 3. Statistical results of each stage of the machine learning models.

Stage
Samples

(Cows x Days)
Observations

(Samples x Targets)
R b

Performance
(MSE)

Model 1

Training 20,380 81,520 0.87 0.76 0.0186
Testing 8734 34,936 0.86 0.76 0.0189
Overall 29,114 116,456 0.87 0.76 -

Model 2

Training 116,521 466,084 0.86 0.74 0.0154
Testing 49,938 199,752 0.86 0.74 0.0157
Overall 166,459 665,836 0.86 0.74 -

Abbreviations: R: Correlation coefficient; b: Slope; MSE: Means squared error.
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(a) (b) 

Figure 3. Overall regression graphs of (a) Model 1: Using the 36 cows with similar heat tolerance
(93–112), and (b) Model 2: Using data from 312 cows.

4. Discussion

4.1. Seasonality and Milk Yield

During the four years included in this study (2016–2019), there was a clear variation within
seasons reflected by environmental parameters (THI) and milk productivity parameters (Figure 2).
Higher heat stress risks for cows were observed in the summer of 2018–2019. Even though the THI
parameter had a higher tendency, it was not significantly greater compared to the THI of summers
belonging to 2017 and 2016 (THI = 79.7 compared to 78.7 and 77.5, respectively). However, milk yield
and quality parameters were lower for 2018 compared with previous years. The high variability among
all parameters shown through the years considered for this study can be considered as an advantage
for ML modeling. These differences can be further supported by the data presented in Tables 1 and 2
with more specific data per year. Prolonged periods of high temperature and relative humidity have
shown to be detrimental to dairy cows performance due to heat stress [19]. This makes more critical
the development of cost-effective methodologies to measure and alleviate heat stress during these
periods of high THI [20].

4.2. Machine Learning Models

By investigating thermotolerance in cows from a genetic point of view, it could help to
decrease economic losses associated with lower milk productivity, quality, and animal welfare [21,22].
Other methods have been based on the physical modification of the environment, such as shade and
shelters, and dietary interventions to reduce heat stress effects, such as grape residue [23], açai [24],
betaine [14,25], slowly fermentable grains [26], and other types of feed [27,28].

The ML models developed in this research (Model 1 and Model 2) do not differ much when
considering 36 genetically similar cows for heat tolerance compared to a total of 320 cows. There is
a slight difference in the slope for the general model considering all cows (Model 2; slope = 0.74)
compared to Model 1 (slope = 0.76). Considering highly heat stress-tolerant cows helps to decrease
underestimations made by Model 1 compared to Model 2. However, it can be considered that these
differences are minimal when considering the number of cows deemed for Model 1 (n= 36) compared to
Model 2 (n = 312). Furthermore, Model 1 presented a slightly higher percentage of outliers, considering
them as outside the 95% confidence bounds, with 3.88% compared to 3.60% for Model 2 (Figure 3),
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this difference is minimal and small for both models considering the number of observations in each
model (Table 3).

4.3. Artificial Intelligence to Manage Heat Stress and Milk Productivity

Physical modification of the environment to reduce ambient temperature or increase heat loss
from the animal body, such as shading and fans, have been previously applied for lactating buffaloes
with positive results [29], and in dairy cows using mixed-flow fans [30]. However, one of the most
effective methods found is spraying water over animals using sprinkler systems [31–34]. This paper
proposed the implementation of Model 2 with an automated system based on an individual cow
assessment combined with environmental factors obtained from an automatic meteorological station
(AME) (Figure 4). The AME can be easily connected to a processing unit (microprocessor or smartphone
App) that can read the RFID from cows that are going to be milked to obtain cow information required
by the model (Figure 1). The model outputs can be automatically set to specific thresholds for volume
and milk quality that is desired by the dairy farm. The system can then automatically control gates
to direct individual cows either to a cooling system with water sprinklers, the cows to reduce heat
stress or to normal milking sections. The heat-stressed cows will be assessed the next day again, if they
continue to be heat stressed, they will go to the sprinkler system and get milked to avoid mastitis.

Figure 4. Proposed artificial intelligence (AI) application based on the automated processing of
meteorological station and radio frequency identification system (RFID) for specific cow data input and
machine learning (ML) processing. This system activates the gate system to draft cows to a cooling
system or normal milking.

The technical advantages of the proposed system (Figure 4) are: (i) ML modeling is based on
readily available environmental data by most of the dairy farms and from government services with
meteorological stations close to the farms; (ii) the environmental data can be automatically extracted
from government services, such as the Bureau of Meteorology (BoM, Australia) [35] or by direct
connectivity of a nearby automatic meteorological station to the RFID & ML Processing Unit (Figure 4);
(iii) the digital database per cow can be implemented as part of the system to incorporate data such
as programmed concentrate feed, lactation days and number, milking frequency, and liveweight.
This information will need to be updated by the dairy farm personnel; (iv) cows can be identified
by the system with normal RFID systems to extract cow data automatically from databases, and (v)
the system requires an automated gate system to draft cows to the heat stress sprinkler system or the
normal milking facilities.
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The managerial advantages that could be obtained by implementing the system proposed are:
(i) milk volume and quality information available in real-time, per cow, and according to daily
environmental conditions; (ii) prediction of actual concentrate feed intake per cow for feed monitoring
management compared to programmed concentrate feed; (iii) real-time information to manage heat
stress in a per cow basis to increase efficiency and maintain milk volumes and quality set as objectives,
and (iv) data recorded from specific dairy farms can be incorporated in the model to increase the
accuracy of target predictions.

With these considerations, an AI system for dairy farms can be implemented with reasonable
investment affordable to small and medium dairy farmers. An alternative or complementary approach
to an engineering solution may be to introduce dietary interventions such as betaine or antioxidants to
cows likely to experience heat stress [14,28]. However, the time lag before the tissue concentrations of
these nutrients are optimized could reduce the immediacy of this approach.

It should be noted that individual pasture intake could not be included in the model as the cows
grazed as a single herd, so it was not measured. While this could no doubt add precision to the model,
individual pasture intake cannot be measured under commercial grazing systems, and inclusion in the
model would reduce its commercial utility.

5. Conclusions

The machine learning models developed in this research may be applied to assess automatically
animal welfare, milk productivity, and quality. Based on the inputs of the models, this machine learning
modeling technique can be applied to any dairy farm. Implementation of Artificial Intelligence in dairy
farms and the ML models developed here will require minimal technological additions, automated gate,
and cooling systems. This paper has shown a practical application of AI using detailed information
from a robotic dairy farm for the benefit of small and medium dairy farms to increase competitiveness
in an increasingly demanding international market.
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Abstract: Live sheep export has become a public concern. This study aimed to test a non-contact
biometric system based on artificial intelligence to assess heat stress of sheep to be potentially used
as automated animal welfare assessment in farms and while in transport. Skin temperature (◦C)
from head features were extracted from infrared thermal videos (IRTV) using automated tracking
algorithms. Two parameter engineering procedures from RGB videos were performed to assess Heart
Rate (HR) in beats per minute (BPM) and respiration rate (RR) in breaths per minute (BrPM): (i) using
changes in luminosity of the green (G) channel and (ii) changes in the green to red (a) from the
CIELAB color scale. A supervised machine learning (ML) classification model was developed using
raw RR parameters as inputs to classify cutoff frequencies for low, medium, and high respiration rate
(Model 1). A supervised ML regression model was developed using raw HR and RR parameters from
Model 1 (Model 2). Results showed that Models 1 and 2 were highly accurate in the estimation of RR
frequency level with 96% overall accuracy (Model 1), and HR and RR with R = 0.94 and slope = 0.76
(Model 2) without statistical signs of overfitting

Keywords: animal welfare; skin temperature; artificial intelligence; heart rate; respiration rate

1. Introduction

Live animal exports have been lately under scrutiny by the public and animal welfare advocates [1],
especially live export though shipping, related to welfare conditions and heat stress during long
trips up to six weeks by sea, which in extreme cases can result in the death of animals in rates up
to 2–3.8% [2]. Specifically, these mortality rates have been recently found in animal shipments from
Australia through the Persian Gulf, which can reach temperatures of 36 ◦C with 95% relative humidity
resulting in heat stress [3].

Heat stress events for animals are not only restricted to animal transport through sea or land,
but it can also happen in farms due to increased ambient temperatures related to climate change,
which can directly impact the health and welfare of animals [4–7]. There have been several types
of research investigating the genetic resilience and adaptation of animals to heat stress [8–11] and
mitigation strategies [12–14]. Many of these studies have based their assessment of heat stress
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on environmental indices, such as ambient temperature and relative humidity combined to form
a temperature-humidity index (THI) [14–16]. The THI can be coupled with direct assessment of the
effects of heat stress using physiological responses through manual monitoring [17,18], using sensors
directly located on animals [19], behavioral assessments or including molecular, cellular and metabolic
biomarkers [20–22]. These methods, though very reliable and robust, are intensive, requiring animal
restraining, are labor-intensive, and time-consuming, also requiring specialized instrumentation and
technical know-how from the personnel acquiring the data. Moreover, the use of intravaginal/rectal
devices or contact sensors can be stressful for the animals [23].

Applications of artificial intelligence (AI) and machine learning modeling (ML) have been recently
implemented to analyze environmental factors, such as THI, and its effects on heat stress of dairy cows
and final productivity and quality of milk to maximize the utility of big data available from robotic
dairy farms [24]. Further, AI and ML have been applied for processing and modeling remotely sensed
information, which may offer a powerful tool to automatically extract critical physiological data from
videos and infrared thermal imagery from animals and welfare analysis or the effects on quality of
products [23,25–27].

Non-invasive methods to assess heat stress, based on remote sensing, have shown to be promising,
as they avoid biases in the physiological data obtained from animals due to stresses imposed by
wearable sensors, such as collars, polar sensors (for respiration and heart rate measurements),
or intravaginal/rectal sensors for body temperature measurements [23,28]. Specifically, computer vision
and infrared thermal remote sensing techniques have been recently applied to assess animal stress
based on skin temperature and respiration rate [23,29] or the detection of heart rate and respiratory
rates in pigs through luminosity changes from RGB videos of animals [29,30].

One of the main constraints in applying remote sensing techniques on sheep involves the thick fleece
from unshorn animals, which presents a thick resistance layer from the skin. The advantage of utilizing
these remote sensing techniques on pigs, especially hairless breeds, is that reflectance from visible and
infrared thermal wavelengths are a direct representation of skin changes. Hence, non-invasive methods
are required to be applied to body sections with less hair or wool in sheep and with outputs that can be
representative, such as the head and face parts [23,30,31]. Specifically, these areas mainly correspond
to the nose for respiration and heart rate and the whole head for skin temperature, especially focused
on the eye section, since they are the only exposed internal organs to the environment, which may
represent core body temperatures.

This study aimed to test a non-contact biometric system based on artificial intelligence to assess
heat stress of sheep to be potentially used as automated animal welfare assessment in farm and while in
transport. Specifically, it was focused on the automatic tracking of regions of interest (ROI) from sheep
RGB videos and infrared thermal videos (IRTV) and the assessment of physiological information such as
skin temperature, respiration rate (RR), and heart rate (HR) modeled using machine learning algorithms
of sheep subjected to thermoneutral and controlled heat stress conditions. The system proposed
was based on an affordable and integrated RGB 4K video camera and a high-resolution thermal
infrared camera. It was further recommended an artificial intelligence approach to extract information
automatically from sheep that could be coupled to blockchain [32,33] to have an independent assessment
of animal welfare to be applied in the farm and transport or vessel environments. The latter could allow
research on automated systems to ameliorate heat stress on farm animals or during transportation,
such as mister or sprinklers, and will offer a blockchain system for control and certification of good
practices on the farm or transportation to abattoirs or export markets.

2. Materials and Methods

2.1. Location, Animal Treatments, and Data Acquisition

This study was based on live animals and approved by the Faculty of Veterinary and Agricultural
Sciences, University of Melbourne Animal Ethics Committee (AEC#1914872.1). It was conducted at
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The University of Melbourne (UoM), Dookie Campus, Victoria, Australia (36◦22′48′′ S, 145◦42′36′′ E).
Twelve sheep (Merino lambs 4–5 months old) were acclimatized to indoor facilities and housed in the
individual pens for 3 days before starting measurements. They were fed a mixed ration (50% pellets,
25% oaten, and 25% Lucerne chaff) formulated to meet or exceed the National Research Council
(NRC) [34] requirements, complemented with fresh water ad libitum. Room exhaust ventilation was
performed using fans through the whole time of the experiments to simulate ventilation usually
performed during live sheep export shipments. The latter mainly rely on mechanical ventilation
using fans to remove heat and water vapor produced by animals, to ventilate moisture produced
from manure pads, and to remove any possible build-up of noxious gases. After acclimatization,
sheep were relocated to metabolic cages and housed in two temperature and relative humidity control
rooms (Figure 1), conditioned to have two treatments with six sheep exposed to cyclic heat stress:
(i) room at 28–40 ◦C and 40–60% relative humidity (RH), the cycles consisted of high temperatures
of 36–40 ◦C every day from 8:00 to 16:00, and then reduced to 28–30 ◦C, and thermoneutral (control)
conditions (ii) room at 18–21 ◦C and RH between 40 and 50%. The temperature (T) and RH were
recorded every 30 min in each room using a universal serial bus (USB) temperature and humidity
data logger (TechBrands; Electus Distribution, Rydalmere, NSW, Australia). These data were used to
calculate the THI using the formula from Equation (1), which was specially developed for sheep [35].

THI = T − ⌈(0.31− 0.31RH)(T − 14.4)
⌉

(1)

An integrated RGB video and infrared thermal video (IRTV) camera, FLIR®Duo Pro (FLIR Systems,
Wilsonville, OR, USA) was fixed in each room using a small rack and tripod for stabilization (Figure 1A).
This device has two cameras to record simultaneously RGB videos (Resolution: 4000 × 3000; Field of
View: 56◦ × 45◦) and IRTV (with a resolution of 336 × 256; Field of View: 35◦ × 27◦; Thermal Sensitivity:
<50 mK; Thermal Frame Rate: 9 Hz; Accuracy: ±5 ◦C). The camera has Bluetooth® connectivity
(Bluetooth Special Interest Group, Kirkland, WA, USA) and, hence, can be controlled remotely using
a FLIR smartphone/tablet personal computer (PC) application, FLIR® UAS 2 (FLIR Systems, Wilsonville,
OR, USA). The RGB video and IRTV data were recorded three times daily (8:00; 12:00; 16:00) during
1 min each time for four weeks to have a wider range of physiological data.

Two kinds of measurements were conducted using: (i) traditional/manual techniques, and (ii)
non-contact biometrics based on remote sensing (Figure 1B). The manual methods consisted of (i) heart
rate (HR) using an elitecare® Sprague stethoscope (eNurse, Brisbane, QLD, Australia) and a timer,
(ii) respiration rate (RR) visually with a chronometer assessing animal inhalations and exhalations,
(iii) skin temperature from the right flank, below the wool in contact with the skin using a digital
thermometer (Model: DT-K11A; Honsun, Shanghai, China), and (iv) rectal temperature using the
same type of digital thermometer (Model: DT-K11A). The remotely sensed data (FLIR camera) were
recorded using two FLIR® Duo integrated cameras for 1 min on each side of the room to capture
all sheep three times a day, as previously mentioned. The thermal videos were used to assess skin
temperature. In contrast, the RGB videos were recorded to evaluate HR and RR using computer
vision analysis and customized ML modeling developed by the Digital Agriculture Food and Wine
Group (DAFW) from UoM based on changes in luminosity within the RGB (HR) and Lab (RR)
channels that have been developed for humans and animals based on the photoplethysmography
(PPG) principle [23,30,31,36–38]. For the validation/calibration purposes of these newly developed ML
models, only the most representative recordings were used; therefore, not all sheep were analyzed due
to chamber size restrictions.
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Figure 1. Images showing the experimental layout for thermoneutral (control) and heat stress chambers
and implementation of feature tracking algorithms and machine learning (ML) Models 1 and 2
developed, with (A) the FLIR® Dup Pro camera setup, (B) shows the selected region of interest (ROI:
nose) from each sheep visible and extraction of corresponding respiration rate and heart rate values
from the video analysis using machine learning (Models 1 and 2), and (C) the selected region of interest
(ROI: face) from each sheep and automatic tracking and extraction of temperature values (◦C) from
the infrared thermal video (IRTV) analysis. Abbreviations: BrPM: breaths per minute; BPM: beats
per minute.

2.2. Computer Vision Analysis to Obtain Biometrics

The radiometric IRTVs were saved in sequence file extension (seq) and batch converted to Audio
Video Interleaved (AVI) using the Sense Batch software (Sense Software, Warszawa, Mazowsze, Poland).
The latter was also used to extract in batch and parallel the radiometric data from each frame from
all thermal videos in comma-separated values (csv) files. The IRTV was imported to MATLAB®

R2020a (MathWorks Inc., Natick, MA, USA) and the Video Labeler functions from the Computer Vision
Toolbox™ 9.2 in MATLAB® R2020a were then used to select and track ROIs focusing on the head
from each animal (automatic). Specifically, for sheep, the face was selected because the hottest visible
spots are found in the eyes and nose (Figure 1C). Once the ROIs were tracked, labels were saved
automatically, and a customized algorithm written in MATLAB® R2020a by the DAFW Group from
UoM was used to obtain the maximum (Max), mode, and standard deviation (SD) of the temperatures
from each frame from the selected ROI. Additionally, the mean, Max, mode, and SD from the Max
temperatures from all frames were calculated.

For the analysis of raw signals related to HR and RR, the RGB videos acquired in QuickTime
Movie (MOV) file-extension were used. These were analyzed using the Video Labeler functions from
the Computer Vision Toolbox™ 9.2 in MATLAB® R2020a and the point tracker algorithm, which can
detect features defined as a region of interest (ROI) and track one or more region of interest (ROI)
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based on the Kanade–Lucas–Tomasi (KLT) algorithm. For this specific study, the nose section was
used as ROI for both HR and RR analysis (Figure 1B), as this is the area in which less wool may be
found, as other areas may interfere with the readings creating biases in the data extracted. The ROI
labels obtained were automatically exported and used to crop the RGB videos to get smaller videos
only from the nose area from each sheep selected. These cropped videos were then automatically
analyzed to obtain the signal changes from luminosity and different channels (RGB, CIELAB) using
a modified version of the raw video analysis (RVA) algorithm developed as a function to measure
HR in humans using the photoplethysmography (PPG) method [38] developed by the DAFW Group
from UoM. This algorithm applies a fast Fourier transformation (FFT) for the transformation of the
time signal to frequency and uses a second-order Butterworth filter with cutoff frequencies (Hz) for
analysis. To assess raw signals related to RR, the RVA algorithm was modified (RVAm) to determine
the luminosity changes in the “a” channel from the CIELAB color scale (green to red). The raw
signals from computer vision analysis of cropped videos were evaluated within the cutoff frequency
range 0.33–3.1 Hz for a ML classification model (Model 1, detailed in the machine learning modeling
subsection), and the respiration cutoff frequency ranges used were according to the outputs of Model 1
described in detail below for low: 0.2–1.2 Hz; medium: 1.2–2.2 Hz, and high: 2.2–3.2 Hz. On the other
hand, to assess HR, the luminosity changes in the green (G) channel of the RGB color scale were used
within a frequency range of 0.83–3.00 Hz, since the normal and stressed HR for sheep had a lower
spread in values compared to RR.

All the steps mentioned above were automated into a pipeline code using components as functions,
which are represented in the diagram of Figure 2, in which the only supervised processes are the initial
ROI selection for the IRTVs and RGB Videos.

2.3. Statistical Analysis and Machine Learning Modeling

Linear regression analysis for temperature data with intercept passing through the origin and
p ≤ 0.05 as criteria were used to compare the skin and rectal temperature measurements using the
manual methods against each other and the non-invasive infrared thermal biometrics (IRTV) with
XLSTAT ver. 2020.3.1 (Addinsoft, New York, NY, USA). Furthermore, linear regression analysis
for RR and HR data measured manually and from videos using computer vision analysis with
a single frequency range for RR and using frequency ranges for low, medium, and high, as previously
mentioned, were performed. Statistical parameters, such as determination coefficient (R2), p-value,
and root means squared error (RMSE) were calculated to test the goodness of fits.

Based on a proposed parameter engineering procedure, raw RR-related parameters obtained
from RGB Video analysis, using the RVAm algorithm and a single frequency range (0.33–3.1 Hz),
of mean, minimum (Min), maximum (Max), and standard deviation (SD) of luminosity changes
and mean, SD, frequency, and amplitude were used as inputs to develop an initial ML supervised
pattern recognition model to classify the sheep cropped videos into low, medium, and high respiration
frequencies (Model 1; Figure 2D). For this procedure, a customized MATLAB® code, developed by the
authors, was used to test 17 artificial neural networks (ANN) training algorithms [39]. The Bayesian
Regularization algorithm was selected as the best performing algorithm from this procedure based
on the accuracy [correlation coefficient (R)] and best performance (means squared error (MSE)) with
no signs of overfitting. This algorithm does not require a validation stage as it updates the weights
and biases according to the optimization of the model, and is very effective on avoiding overfitting
especially for small and/or noisy datasets [39–41]. Samples were divided randomly with 70% used
for training (n = 94), and 30% for testing (n = 40). Figure 2D shows the model diagram with the
two-layer feedforward network with a tan-sigmoid function in the hidden layer and Softmax function
in the output layer. Ten neurons were selected as the best performance with no under- or over-fitting,
which was obtained from a neuron trimming test (data not shown).
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Figure 2. Diagram showing the algorithms pipeline for RGB video analysis process from (A) region of
interest selection; (B) cropped videos from sheep feature to be analyzed; (C1) raw video analysis (RVA)
for heart rate (HR) signals using the green channel (RGB); (C2) modified RVA (RVAm) for respiration
rate (RR) analysis using the “a” channel (CIELAB) wide cutoff frequency range; (D) machine learning
pattern recognition (Model 1) to obtain actual cutoff frequency range; (E) re-analysis of RR signals;
(F) regression machine learning (Model 1) to obtain accurate HR an RR. Model diagram abbreviations:
w: weights; b: bias.

Once the videos of sheep were classified automatically into low, medium, and high RR by
cutoff frequency ML analysis, the videos are automatically reanalyzed using the corresponding
frequency ranges, low: 0.2–1.2 Hz; medium: = 1.2–2.2 Hz; high: 2.2–3.2 Hz, by calling three separated
functions. From this analysis, the outputs from raw RR and HR parameters were used as inputs
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to develop a fitting/regression model to predict the real values of RR and HR based on the manual
measurements as targets (Model 2). Again, 17 different training algorithms [40] for artificial neural
networks (ANN) were assessed in batch to find the best model based on output statistics. The Bayesian
Regularization algorithm was selected as the best performing from this procedure. For modeling
purposes, samples were divided randomly as follows: 70% (n = 94; observations (n × targets) = 188)
for training and 30% (n = 40; observations (n × targets) = 80) for testing. Figure 2F depicts the model
diagram showing the two-layer feedforward network with a tan-sigmoid function in the hidden layer
and a linear transfer function in the output layer. Ten neurons were selected as the best performance
with no under- or over-fitting, which was obtained from a neuron trimming test (data not shown).

Multivariate data analysis based on a biplot (variables and samples) of principal component
analysis (PCA) was performed using XLSTAT to find relationships and patterns among the data
between real physiological parameters and estimated using computer vision tools and models
proposed. The cutoff point of 60% of data variability explained by the total of both PC1 and PC2 was
considered to test significance [42]. The THI index calculated using Equation (1) was also included to
compare data from sheep in control and heated chambers.

3. Results

Figure 3a shows the results from the linear regression of rectal and skin temperatures measured
with the manual/traditional methods compared to those obtained from the IRTV analysis. There was
a narrow distribution of temperatures from all sources (from around 35−40 ◦C) since the study was
performed on live animals. The linear regression passing through the origin (0,0) was statistically
significant (p < 0.001) and presented a very high correlation and determination coefficients (R = 0.99;
R2 = 0.99; RMSE = 0.66; slope =0.97) between these two parameters with 3.6% of outliers (4 out of 110)
based on the 95% confidence intervals. On the other hand, Figure 3b shows the results from the linear
regression of observed skin temperature (manual/traditional methods) and the values obtained from
the remote sensing analysis using the IRTVs. These relationships were also statistically significant
(p < 0.001) with an R2 = 0.99 (R = 0.99); RMSE = 1.66; slope = 1.02. Based on the 95% confidence
intervals, it only had 2.73% of outliers (3 out of 110). Similarly, Figure 3c shows the results from the
linear regression of observed rectal temperature (manual/traditional methods) and the values obtained
from the remote sensing analysis using the IRTVs. The lineal model resulted with very high correlation
and determination coefficients (R = 0.99; R2 = 0.99) and was statistically significant (p < 0.001) with
RMSE = 1.71; slope = 0.98 and 3.6% of outliers (4 out of 110) based on the 95% confidence intervals.

  
(a) (b) 

Figure 3. Cont.
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(c) 

Figure 3. Linear regressions comparing results from (a) rectal vs. skin temperatures measured manually
using a digital thermometer (DT), (b) observed skin temperature (manual) vs. temperature from the
infrared thermal video analysis (IRTV), and (c) observed rectal temperature (manual) vs. temperature
from the IRTV analysis. Abbreviations: Obs: observed, Conf: Confidence.

Figure 4A shows the linear regression between RR and HR measured manually and raw signal
analysis related to HR and RR using computer vision analysis with a single cutoff frequency range
for respiration rate (0.33–31. Hz) and HR (0.83–3.00 Hz). It can be observed that the correlation and
determination coefficients were very low (R = 0.15; R2 = 0.02; p < 0.001) with RMSE = 23.73 and
slope = 0.09 mainly represented by the poor correlation found for the RR raw data. On the other hand,
Figure 4B shows the same manually measured HR and RR rates against the raw computer vision
analysis using different cutoff frequency ranges for RR according to low, medium, or high values (low:
0.2–1.2 Hz; medium: = 1.2–2.2 Hz; high: 2.2–3.2 Hz). It can be observed that the correlation increased
significantly (R = 0.78; R2 = 0.61; p < 0.001) compared to Figure 4A, with RMSE = 21.81 and slope = 0.67.

Figure 4. Linear regressions comparing results from (A) respiration rate (RR) and heart rate (HR)
measured manually (x-axis) and using computer vision analysis with a single cutoff frequency range for
respiration rate (0.33–3.1 Hz; y-axis), and (B) respiration rate and heart rate measured manually (x-axis)
and using computer vision analysis with the corresponding cutoff frequency range for respiration
rate according to low, medium or high respiration rate (low: 0.2–1.2 Hz; medium: = 1.2–2.2 Hz;
high: 2.2–3.2 Hz; y-axis).
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Table 1 shows the results from the ML pattern recognition model to classify cropped videos from
sheep into low, medium, and high RR, according to the cutoff frequencies for these three levels. It can
be observed that it presented a very high overall accuracy (96%) with no signs of overfitting as the
MSE of the training stage (MSE < 0.01) was lower than the testing (MSE = 0.10). Figure 5 depicts the
receiver operating characteristics (ROC) curve with the true positive (sensitivity) and false-positive
(specificity) rates of the three categories, with all three categories within the true positive side of the
curve; the high RR group presented the lowest sensitivity.

Table 1. Results of the artificial neural networks pattern recognition model (Model 1) showing the
accuracy, error, and performance based on means squared error (MSE) for each stage for the selection of
cutoff frequency related to low, medium, and high respiration rate signals from computer vision analysis.

Stage Samples Accuracy Error Performance (MSE)

Training 94 100% 0% <0.01
Testing 40 85% 15% 0.10
Overall 134 96% 4% -

Figure 5. Receiver operating characteristics (ROC) curve of the pattern recognition (Model 1) depicting
the true-positive and false-positive rates.

Table 2 shows the results of the ML model developed using the results from the remote sensing
analysis proposed to obtain physiological parameters using RGB video, computer vision, and ML
modeling (Figure 2) to extract parameters used as inputs to predict RR and RH. It can be observed that
the overall model presented a high correlation (R = 0.94) and slope close to the unity (0.92) with no
signs of overfitting as the performance MSE value of the training stage (MSE = 72) was lower than the
testing (MSE = 512). Furthermore, the overall model presented 9.7% of outliers (13 out of 134) based
on the 95 confidence intervals (Figure 6).
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Table 2. Results of the artificial neural networks regression model (Model 2) showing statistical data
such as correlation coefficient (R), slope, and performance based on means squared error (MSE) for
each stage.

Stage Samples Observations R Slope Performance (MSE)

Training 94 188 0.98 0.94 72
Testing 40 80 0.84 0.86 512
Overall 134 268 0.94 0.92 -

Figure 6. Artificial neural network overall fitting model showing the correlation coefficient (R),
observed (x-axis), and predicted (y-axis) respiration rate and heart rate values. Abbreviations: BrPM:
breaths per minute; BPM: beats per minute; T: Targets.

Figure 7 shows the PCA comparing the HR, RR, and skin temperature measured with manual
techniques (HRreal, RRreal, and SkTreal) with those predicted using Model 2 (HRM2, and RRM2) and
measured by computer vision algorithms (SkTcv), as well as the THI (Equation (1)) for sheep from
both treatments (control and heat stress) in different days/times of measurements. The resulting PCA
described a total of 82.92% of total data variability (PC1: 65.04%; PC2: 17.88%). It can be observed
that the manual measurements and those assessed using the proposed methods were closely related.
Furthermore, skin temperature was related to THI. As expected, there was a clear separation and
clustering between the sheep physiology under control treatment (blue circles) compared to those
under heat stress (red crosses), with the latter associated with higher RR, skin temperatures, and THI.
PC1, which is the main responsible for the separation of the data according to the treatments, is more
related to RR and skin temperature, with HR with lower variability related to PC2. The THI values
obtained in this study ranged from 18 to 20 for control and between 27 and 36 for heat stress conditions
(data not shown).
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Figure 7. Principal components analysis of data measured with manual techniques (i) SkTreal: skin
temperature real, (ii) HRreal: heart rate real, (iii) RRreal: respiration rate real, and those measured
using computer vision analysis and predicted using the machine learning models (iv) SkTcv: skin
temperature computer vision, (v) RRM2: respiration rate from Model 2, (vi) HRM2: heart rate from
Model 2, and the temperature-humidity index (THI) from each day of the control and heat stress rooms.

4. Discussion

4.1. Selection of Critical Sheep ROIs, Features Tracking, and Automation

Due to constraints in the experimental chambers related to interference from the metabolic cages
and sheep head movement through them, especially while feeding (Figure 8), it was not possible to
use single co-registered ROIs for RGB videos and IRTV. The latter would have simplified the modeling
procedure; however, results could have been only applicable to animals with visible features and with
no obstructions through the whole video recordings, rather than those with obstructions like bars from
the cage (Figure 8A,B). Hence, the methodology proposed has greater practical applications in penned
and transported animals. By selecting the whole head of the sheep as ROI for IRTV analysis (Figure 8;
red rectangles), with automated maximum temperature extraction, it gives a higher probability of
extracting meaningful temperature information from the eyes, nose or mouth regions at any specific time
from cropped videos even when the head moves across obstacles, such as bars from the cages (Figure 8).
Furthermore, without obstructions and considering nose and mouth regions as ROI, a simplified
skin temperature extraction could also have been easily implemented by signal analysis of peaks and
valleys that represents mathematically the variability between temperatures related to inhalations
and exhalations using a similar RVA analysis of the signal (Figure 2). However, considering obstacles
(metabolism cage bars) and head movement through them (Figure 8), the temperature variability could
have been biased and difficult to discriminate from those related to obstacles (Figure 8A), which would
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have rendered this potential simple procedure with higher errors in skin temperature estimation
similar to Figure 4A. On the contrary, the method proposed in this research resulted in high accuracy
compared to measured skin and rectal temperatures with closer relationship from the 1:1 line for skin
temperatures as expected (Figure 3).

A   B   

Figure 8. Examples of sheep with head and features tracked as region of interest (ROI) for the head
(blue rectangles) for infrared thermal video (IRTV) analysis and nose/mouth regions (blue rectangles)
for heart and respiration rates analysis from RGB video analysis behind bars (A) and through the bars
(B) of cages.

In the case of HR and RR, ROIs were selected from the nose/mouth region of the animals since
they have more hairless skin exposed (Figure 8; blue rectangles). The nose region is considered
the best area to measure RR as it is where inhalation and exhalation occurs and the area in which
a large number of blood vessels are found in sheep [43,44], which also allows measuring HR more
accurately. Specifically, from these ROIs, changes in luminosity are related to the rushing in and out
of the bloodstream and cooling down and warming up of skin surfaces, which can be related to HR
and RR, respectively. This would happen obviously on surfaces of living and breathing organisms,
making inanimate obstacle’s luminosity unchanged and easy to discriminate either by signal analysis
from RGB video or to be detected by ML modeling.

4.2. Computer Vision Analysis of Raw Signals Obtained from Videos

The sensitivity of the raw signal analysis extracted from computer vision algorithms related to
raw HR and RR can be determined by the use of specific cutoff frequency ranges (Hz) as determined
by the RVA and RVAm algorithms [38]. Since the range of RR observed for sheep under control and
heated environments is very high (27–240 BrPM) compared to HR (63–132 BPM), the selection of
cutoff frequency to extract RR raw data is critical. By selecting the whole range cutoff frequency range,
results showed low sensitivity when compared to observed RR data (Figure 4A).

Accuracies for HR and respiration rates found through computer vision analysis with different
cutoff frequencies for sheep to obtain raw HR and RR (Figure 4B) were in accordance to those using
similar methodologies for cattle [31] and pigs [30]. In the case of HR, this study had a narrower range
between 55 and 135 BPM, with the lower range consistent to the average HR reported for lambs without
stress of 57 ± 5 [45].

For RR rate analysis, a review showed that by using cutoff frequencies between 0.20 and 0.40 Hz
in the case of sheep and goats corresponded to RR of 12–24 BrPM. However, a breathing frequency
study in ruminants recorded RR of 54 BrPM, equivalent to 0.9 Hz, which is within the reference range
for adult sheep of 12–72 breaths per minute [46]. In this study, RR ranged from around 45–260 BrPM,
which is consistent with ranges found in other sheep studies under normal and heat stress conditions,
such as BrPM values between 31 and 247 BrPM [47]. Hence, higher RR corresponding to stressed
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sheep corresponded to three times higher than those associated with around 1 Hz frequency. By using
maximum values of 3 Hz for higher RR values, resulting in more accurate raw RR obtained from
computer vision algorithms (Figure 4B).

4.3. Machine Learning Modeling to Extract Further Sheep Biometrics

The ANN pattern recognition algorithm (Model 1) was able to pre-process the data to obtain these
specific cutoff frequency ranges for RR analysis, which increased the accuracy and performance of
Model 2 compared to lower accuracies and performances using a single frequency cutoff range for
both HR and RR and computer vision analysis (Figure 4B). By using computer vision analysis for
skin temperature extraction and ANN models 1 and 2 allowed full automation in the estimation of
HR and RR from RGB video and IRTV. Furthermore, the integrated FLIR cameras used have direct
connectivity drivers to be used within MATLAB® environments that can allow real-time extraction of
sheep biometrics using the codes developed in this study as shown in Figure 1B, C. From Figure 2,
the only supervised procedure is the initial ROIs selection for visible animals, making the rest of the
process automatic through the pipeline of algorithms, functions and ML models proposed (Figure 2).

Pre-processing of videos using a wider cutoff frequency range for signal analysis of cropped
videos from sheep, plus classification (Model 1) and re-analysis, it takes around 20 s for a 1-min
video approximately, using parallel computing capabilities on a 4-core laptop PC. Hence, using higher
computer capabilities, it was estimated for this time requirement to be between 3–5 s to allow
signal stabilization and cut start to initiate real-time rendering of outputs as shown in Figure 1B, C.
Specifically for HR in humans, the same pre-analysis periods can be found for commercial software,
such as FaceReader (Noldus, Wageningen, The Netherlands) and the computer application Cardiio
(Cardiio, Inc., Cambridge, MA, USA) for smartphones and tablet PCs.

4.4. Comparison between Non-Invasive Biometrics and Environmental Heat Stress Indices

In previous studies, sheep exhibit heat stress with THI ≥ 23 for Mediterranean dairy sheep and
THI ≥ 27 in Comisana dairy sheep [48]. These THI values are consistent with the ranges for heat
stress treatment applied in this study (THI: 26–36). Sheep regulate heat through panting mainly;
hence, the RR is the main heat regulatory mechanism for these animals [47]. Very high RR values
found for heat-stressed sheep (260 BrPM) were related to the highest THIs between 27 and 36 (Figure 7).
From the same figure, vectors related to THI, skin temperature, and RR (for both observed and extracted
through biometrics) were related as expected, which help to maintain a relatively constant maximum
HR showing heat stress regulation. Higher THI is related to higher panting from sheep, which helps
reducing skin and the internal temperature of animals. Some sheep from the heat stress treatments
appear in the PCA graph close to the control cluster, which may correspond to more genetically resilient
sheep to heat stress [49,50].

4.5. Artificial Intelligence System Proposed Based on Algorithms and Models Developed

Automatic ROI selection from sheep can be achieved through the training of deep learning
algorithms to recognize specific sheep features, such as those for the head and nose/mouth
regions. This has been achieved using convolutional networks for pigs [51], wildlife animals [52],
marine animals [53], and chimpanzee faces [54], among others. Other methodologies based on ML,
such as discriminant analysis, independent components Analysis, and ANN, among others, have been
used for animal detection, classification, and tracking [55–59].

Previously, an AI system to reduce heat stress and increase milk production and quality has been
proposed for dairy farms based on the analysis of THI data and cow management information through
ML [24]. From the latter study, automatic drafting doors are controlled from ML outputs that transport
the cows to the milking area or to a sprinkler-based system to reduce heat stress. A similar method can
be implemented here using the algorithms and models developed in this study (Figure 9A). The system
proposed has the advantage that there are no physical obstacles between the camera/analysis hub
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and the individual sheep monitored. In open environments, this AI system could be coupled with
virtual fencing systems through collars and the internet of things (IoT) to automate the separation
of heat-stressed sheep towards a sprinkler cooling system (Figure 9A). Virtual fencing has been
successfully applied for automated cattle control systems [60,61], for sheep [62,63], with acceptable
ethical frameworks assessed for their implementation [62,64].

 
Figure 9. Representation of potential artificial intelligence applications implementing models developed
in this study for (A) in farm detection of heat-stressed sheep and isolation towards a cooling or shaded
area from non-stressed sheep by synchronization with an automated sorting gate, and (B) detection of
heat stress for sheep in transport coupled with cooling fan systems.

The AI systems proposed can also be implemented in confined sheep in the preparation or
during transport (Figure 9B), which could be coupled to blockchain [32,33] to have an unbiased
control and independent assessment of animal welfare to be applied in the farm and transport or
vessel environments.

5. Conclusions

This study proposed the implementation of automated computer vision algorithms and machine
learning models to obtain critical biometrics from recorded RGB, and infrared thermal videos from
sheep, to help in the automated assessment of heat stress. The implementation of the proposed system
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requires affordable hardware capabilities, such as the FLIR integrated cameras, which can include
dedicated AI micro-processors and blockchain technology. The user-friendly AI system proposed
would be able to analyze non-invasive biometrics from sheep in the farm automatically, and through
their transport to secure animal welfare, through independent analysis of information incorporating
blockchain technology for control purposes. Advances proposed in this paper could offer an AI-based
system to monitor animal welfare in farms, and also as a tool to assess animal welfare in transport by
land or sea independently, using blockchain. The latter not only could serve governments to audit live
animal exports but also the industry in general, for more transparency to the public in their treatment
of living animals for human consumption.
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Abstract: Bushfires are increasing in number and intensity due to climate change. A newly developed
low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field
trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density
smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with
in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with
in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine
learning algorithms to obtain a classification model, with treatments as targets and seven neurons,
with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2
to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries
one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99;
R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the
intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96;
b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination
levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.

Keywords: climate change; machine learning; electronic nose; smoke taint; wine sensory

1. Introduction

When bushfires occur within the grape growing season, vineyards can be affected at critical stages
(véraison to harvest) [1], which could result in different levels of smoke contamination in berries and
smoke taint in wines [2,3]. The intensity, number, and severity of bushfires are increasing due to
climate change as well as the window of opportunity [4].
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The growing concerns in Australia regarding bushfire scale and frequency are shared by wine
regions around the world, including the USA, Canada, South Africa, Portugal, Chile, and others [5].
To assess the potential risk of smoke taint, the industry typically relies on the analysis of grape samples
by commercial laboratories to quantify smoke taint marker compounds (i.e., volatile phenols and
their glycoconjugates), but this can be prohibitively expensive for some producers [6,7]. Alternatively,
grapes can be harvested and vinified so that sensory analysis can be conducted in-house. However,
depending on the timing of smoke exposure, these approaches may not inform decision-making within
the time-constraints of vintage.

To date, there has been little research into the use of affordable in-field technology to assess
grapevine smoke contamination. Recently, the authors’ group published a study evaluating short-range
remote sensing in the thermal and near-infrared spectrum, combined with machine learning, as a
novel approach to assessing smoke contamination in grapevine leaves, berries, and wines, with high
levels of accuracy [5]. These tools may support rapid decision-making, enabling the implementation of
management strategies that reduce the risk of contamination carrying over into wine, as smoke taint.

Electronic noses (e-nose) are comprised of an array of metal oxide semiconductor sensors
(MOS) sensitive to different gases that can measure a variety of volatiles in the environment [8].
Early developments of e-noses involve arrays of 5–8 tin-oxide type of MOS sensors, requiring the
use of sealed chambers and/or a complete setup of different devices to heat the sample and obtain
headspace to be injected in the e-nose chamber, which has made the e-noses non-portable as they
require a laboratory setup [9,10]. Some studies have explored different signal extraction methods,
such as the Lorentzian model, which has resulted in a powerful and rapid-response technique [11].
Ayhan et al. [12] explored the fluctuation-enhanced sensing method to detect and classify gases
with improved accuracy when developing classification models using machine learning algorithms.
Some applications include medical diagnostics [13], space shuttles and stations [14–16], crime and
security [17], and food and beverages, such as rapeseed to detect volatile compounds in pressed oil [18],
wine [19], and beer [20], among others. The latter study describes a low-cost e-nose developed with nine
gas sensors to assess the aroma profile of beers coupled with machine learning modeling. Examples
of the implementation of e-noses for food science can be found from early literature reviews [21]
through the implementation of disease diagnostics [22], more recent applications to assess food
quality [23], meat quality assessment [24], for food control [23], assessment of food authentication and
adulteration [25], and for the wine industry [26–30]. However, the e-noses used in the past range in
complexity, accessibility to users, and cost.

Low-cost e-noses can be used in the field to assess smoke contamination levels coupled with the
internet of things (IoT) for data transmission and analysis from different locations or nodes within
vineyards. However, a more efficient approach could be to mount e-noses to assess gases in different
parts of vineyards and to generate geo-referenced maps of these gases on unmanned terrestrial
vehicles (UTV), robots [31], or unmanned aerial vehicles (UAV) [32]. The levels of smoke-related
contaminants could be modeled using machine learning algorithms to infer the levels of contaminants
in berries, and therefore, the risk of smoke taint in the final wine. However, they could not be used to
directly “sniff” these contaminants from bunches since smoke-derived volatile compounds are rapidly
metabolized in berries, leading to the formation of glycoconjugates, which are odorless [2,5–7,33–35].

This study evaluated the potential for low-cost e-noses to be used to assess wines made from
grapes exposed to different levels (densities) of smoke. The e-nose measurements were used as inputs
in machine learning modeling strategies, and the concentrations of smoke taint marker compounds in
berries and wines used as targets. Further, targets were obtained from a sensory analysis trial, during
which consumers assessed the wines made from each treatment. In total, five machine learning models
were created based on e-nose data to assess (i) the level of contamination in grapevines related to smoke
exposure from wine samples using classification models (Model 1); (ii) to evaluate smoke-related
compounds from wines, such as 20 glycoconjugates and 10 volatile phenols in berries after 1 h smoke
(Model 2), (iii) smoke-related compounds in berries measured at harvest (Model 3), (iv) for wines made
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from treatments (Model 4), and (v) consumer sensory analysis using 12 wine descriptors (Model 5;
Figure 1). The models obtained were of high accuracy, which could allow the implementation of this
artificial intelligence (AI) technology in the winemaking process to assess the effect of ameliorating
management techniques in the field (Model 1) through micro-vinifications, to assess the best timing for
skin contact during fermentation for red wines, the addition of activated carbon to adsorb smoke-related
compounds, wine filtration using membranes, reverse osmosis, and other commercial fining agents,
among others [34,35].

Not only could the implementation of this technique help winemakers evaluate the different
amelioration techniques mentioned above, but it could also monitor almost real-time changes in the
aroma profiles of wine and assess which technology could best maintain a certain quality or style target.

This paper described how the e-nose was implemented for the different treatments and wine
samples used and the specific machine learning algorithms used to develop five machine learning
models with their respective analyses for accuracy and performance. A discussion on potential
applications of the e-nose and models was also described for the wine industry to monitor and reduce
smoke taint in wines.

2. Materials and Methods

2.1. Description of Treatments and Wine Samples

Field trials involving the application of smoke and/or in-canopy misting to Cabernet Sauvignon
grapevines have been reported previously [3]. Briefly, three different smoke treatments were
applied to vines (at approximately 7 days post-véraison): (i) low-density smoke exposure (LS),
(ii) high-density smoke exposure (HS), and (iii) high-density smoke exposure, with in-canopy misting
(HSM). Two controls were also included: (iv) a control without misting (C; no smoke treatment) and
(v) a control with misting (CM; no smoke treatment). Treatments were applied to six adjacent vines,
except for HSM, which was applied to five adjacent vines (i.e., one vine was missing). Smoke treatments
involved exposure of grapevines to straw-derived smoke using a purpose-built tent for 1 h. At least
one buffer vine separated treatments. The wine was subsequently produced on a small scale (i.e., ~5 kg
per fermentation, performed in triplicate for each treatment), as described previously [3].

2.2. Electronic Nose

Wine samples were measured (in triplicate) using a portable, user-friendly, and low-cost e-nose,
comprising nine different sensors, which were sensitive to different gases, as mentioned in Table 1, plus a
humidity and temperature sensor (AM2320; Guangzhou Aosong Electronics Co., Ltd., Guangzhou,
China). Sensor details have already been reported [20]. A total of 100 mL of wine was poured into a
500 mL beaker, and the e-nose was placed on top of the container for 1 min to capture the gases present
in the sample. The e-nose was calibrated for 20–30 s before and after measuring each sample to reset
the readings to baseline. Values from all sensors were automatically recorded in a comma-separated
values (.csv) file to facilitate analysis.

Table 1. Sensors, attached to the electronic nose, and the gasses they are sensitive to.

Sensor Name Gases Manufacturer

MQ3 Ethanol

Henan Hanwei Electronics Co.,
Ltd., Henan, China

MQ4 Methane
MQ7 Carbon monoxide (CO)
MQ8 Hydrogen

MQ135 Ammonia, alcohol, and benzene
MQ136 Hydrogen sulfide
MQ137 Ammonia
MQ138 Benzene, alcohol, and ammonia
MG811 Carbon dioxide (CO2)
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2.3. Chemical Analysis of Glycoconjugates and Volatile Phenols

Volatile phenols (Table 2) were evaluated in wine samples using stable isotope dilution analysis
(SIDA) methods, as previously described [15,17–19]. Isotopically labeled standards of d3-guaiacol,
d3-4-methylguaiacol, d7-o-cresol, and d3-syringol were prepared in house by the Australian Wine
Research Institute’s (AWRI) Commercial Services Laboratory (Adelaide, Australia) using published
methods [15,17,18]. Measurements were performed using an Agilent 6890 gas chromatography
coupled to a 5973 mass-spectrometer (Agilent Technologies, Forest Hill, VIC, Australia). The limit of
quantitation for volatile phenols was 1–2 μg L−1.

A range of volatile phenol glycoconjugates (Table 2) was measured using high-performance
liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) according to stable isotope dilution
analysis (SIDA) methods previously described [18,20]. The analysis was performed using an Agilent
1200 high-performance liquid chromatography (HPLC) equipped with a 1290 binary pump, coupled
to an AB SCIEX Triple QuadTM 4500 tandem mass spectrometer, with a Turbo VTM ion source
(Framingham, MA, USA). The preparation of the isotopically labeled internal standard d3-syringol
gentiobioside has been previously reported [18,20]. The limit of quantitation for volatile phenol
glycosides was 1 μg kg−1.

Table 2. List of glycoconjugates and volatile phenols, their abbreviation, and the sample in which they
were measured.

Compound Abbreviation/Label Sample

Glycoconjugates

Syringol gentiobiosides SyGG Berries/Wine

Syringol glucosides SyMG Berries/Wine

Syringol pentosylglucosides SyPG Berries/Wine

Cresol glucosylpentosides CrPG Berries/Wine

Cresol gentiobioside CrGG Berries

Cresol glucosides CrMG Berries

Cresol rutinosides CrRG Berries/Wine

Guaiacol pentosylglucosides GuPG Berries/Wine

Guaiacol gentiobiosides GuGG Berries/Wine

Guaiacol rutinosides GuRG Berries/Wine

Guaiacol glucosides GuMG Berries/Wine

Methylguaiacol
pentosylglucosides MGuPG Berries/Wine

Methylguaiacol rutinosides MGuRG Berries/Wine

Methylguaiacol glucosides MGuMG Berries

Methylsyringol gentiobiosides MSyGG Berries/Wine

Methylsyringol
pentosylglucosides MSyPG Berries/Wine

Phenol rutinosides PhRG Berries/Wine

Phenol gentiobiosides PhGG Berries/Wine

Phenol pentosylglucosides PhPG Berries/Wine

Phenol glucosides PhMG Berries/Wine

138



Sensors 2020, 20, 5108

Table 2. Cont.

Compound Abbreviation/Label Sample

Volatile Phenols

Guaiacol Guaiacol Berries/Wine

4-Methylguaiacol 4-Methylguaiacol Berries/Wine

Phenol Phenol Berries

o-Cresol o-Cresol Berries/Wine

Total m/p-cresols Total m/p-cresol Berries

m-Cresol m-Cresol Berries/Wine

p-Cresol p-Cresol Berries/Wine

Syringol Syringol Berries/Wine

4-Methylsyringol 4-Methylsyringol Berries/Wine

Total cresols Cresols Berries

2.4. Sensory Evaluation-Consumer Test

A consumer test was conducted with participants (N = 31; age range: 21–59 years; 77% female
and 23% male) constituted of staff and students from The University of Melbourne (UoM; Ethics ID:
1545786.2) that had been recruited via e-mail. According to the power analysis conducted using the SAS®

Power and Sample Size v. 14.1 software (SAS Institute Inc., Cary, NC, USA), the number of participants
was enough to find significant differences between samples (power: 1 − β > 0.99). The session was
carried out in the sensory laboratory of the Faculty of Veterinary and Agricultural Sciences (FVAS) in
individual booths with uniform white light-emitting diode (LED) lights. Each booth was equipped
with a tablet PC in which the Bio-Sensory Application (The University of Melbourne, Parkville, VIC,
Australia) was set up with the questionnaire to gather consumer responses. The appearance, overall
aroma, smoke aroma, bitterness, sweetness, acidity, astringency, a warming sensation, and overall
liking were assessed on a likeness scale (i.e., dislike extremely—neither like nor dislike—like extremely).
The levels of smoke aroma and perceived quality were rated on an intensity scale (i.e., absent-intense).
Both liking and intensity measures were presented on a 15 cm non-structured continuous scale.
In addition, emotional responses were recorded, using a 0–100 FaceScale, where 0 = sad ,
50 = neutral , and 100 = happy . Samples were randomly assigned a 3-digit code, and 10 mL
samples were served at room temperature (20 ◦C) in International Standard Wine Tasting Glasses
(Bormioli Luigi, Fidenza, Italy). Samples were served in random order to avoid bias. Plain water and
water crackers were used as palate cleansers between samples.

2.5. Statistical Analysis and Machine Learning Modeling

Analysis of variance (ANOVA) was conducted on e-nose data using XLSTAT (ver. 19.3.2, Addinsoft
Inc., New York, NY, USA), and Tukey’s honest significant difference test (HSD; α = 0.05) was used to
assess significant differences between treatments.

Machine learning modeling was performed based on artificial neural networks (ANN) for both
pattern recognition and regression models, using codes written in Matlab® R2019b (Mathworks,
Inc., Natick, MA, USA) developed to test 17 different training algorithms. Five distinct models were
developed using 20 data points from the peak of the e-nose outputs (nine sensors) as inputs. Model 1
(pattern recognition) used the scaled conjugate gradient training algorithm to classify the wine samples
into the five different treatments: (i) LS, (ii) HS, (iii) HSM, (iv) C, and (v) CM. All four regression
models were developed using the Levenberg Marquardt algorithm. Model 2 consisted of the use of the
20 glycoconjugates and 10 volatile phenols (Table 2) found in berries one hour after being exposed to
smoke as targets. In comparison, Model 3 used the same 20 glycoconjugates and 10 volatile phenols
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in berries but measured at harvest. The targets used for Model 4 were 17 glycoconjugates and seven
volatile phenols analyzed in the wine samples (Table 2). On the other hand, Model 5 was developed to
predict 12 sensory responses, using the liking of (i) appearance, (ii) overall aroma, (iii) smoke aroma,
(iv) bitterness, (v) sweetness, (vi) acidity, (vii) astringency, (viii) a warming sensation, (ix) overall
liking, and (x) the intensity of (i) smoke aroma, (ii) perceived quality, and (iii) the FaceScale emotional
response as targets.

All inputs and targets were normalized from −1 to 1. Data were divided randomly for all ANN
models, with 60% of the data being used for the training stage, 20% for validation, and 20% for testing.
Model 1 used a cross-entropy loss to test performance, while Models 2–5 were based on means squared
error (MSE). Figure 1 shows the diagrams for Model A (Figure 1a), Models 2–4 (Figure 1b), and Model
5 (Figure 1c); all models consisted of a two-layer feedforward network with the hidden layer using
a tan-sigmoid function and the output layer using softmax neurons (Model 1) and a linear transfer
function (Models 2–5). A trimming test (data not shown) was performed to find the optimal number
of neurons (3, 5, 7, 10) to get the best performance. Statistical data reported for regression models to
assess under- or overfitting consist of the correlation coefficient (R), slope (b), MSE, and determination
coefficient (R2); the latter was calculated using the curve fitting tool found in Matlab®.

(a) 

(b) 

 
(c) 

Figure 1. Model diagrams of the two-layer feedforward networks for (a) Model 1 for pattern recognition
to classify samples into the five treatments using seven neurons, (b) Models 2–4 for regression to predict
20 glycoconjugates and 10 volatile phenols (Table 2) in Model 2: berries 1 h after smoke, Model 3:
berries at harvest, and Model 4: wine, and (c) Model 5 for regression to predict 12 different sensory
responses using 10 neurons. Abbreviations: W: weights, b: bias.
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3. Results

3.1. Electronic Nose Results

Figure 2 shows the results from the ANOVA for the e-nose responses. It can be observed that
there were significant differences (p < 0.05) between samples in the outputs from all nine sensors
that integrated the e-nose. Ethanol gas (MQ3) presented the highest values for all wine samples with
CM (mean = 4.07 V) being significantly different from HSM (mean = 3.85 V), HS (mean = 3.82 V),
and C (mean = 3.92 V), and these from LS (mean = 3.66 V). Hydrogen sulfide (MQ136) was the
lowest for all samples, and CM (mean = 0.34 V) was significantly different from all other samples
(means = 0.23–0.27 V). The CO2 sensor readings are inverse; therefore, higher Volts mean lower
concentration; it can be observed that all the samples with smoke treatments (LS, HS, and HSM) had
the lowest CO2 and presented significant differences with control samples (CM and C).

Figure 2. Mean values of the electronic nose outputs showing the letters of significance from the ANOVA
and Tukey post hoc test (α = 0.05). Sensors: MQ3 = ethanol, MQ4 =methane, MQ7 = carbon monoxide,
MQ8 = hydrogen, MQ135 = ammonia/alcohol/benzene, MQ136 = hydrogen sulfide, MQ137 = ammonia,
MQ138 = benzene/alcohol/ammonia, MG811 = carbon dioxide.

Table 3 shows the minimum, maximum, and average values of the glycoconjugates and volatile
phenols detected in berries one hour after smoking, in berries at harvest, and wine. It can be observed
that there was a wide range of values for all of the compounds, which indicated these were adequate
samples to be used for machine learning modeling and to detect smoke contamination.
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Table 3. Minimum (Min), maximum (Max), and mean values of the glycoconjugates (berries: μg kg−1;
wine: μg L−1) and volatile phenols (μg L−1) detected in berries and wine.

Compound
Berries

1 h After Smoking
Berries

at Harvest
Wine

Min Max Mean Min Max Mean Min Max Mean

Syringol gentiobioside 2.37 56.93 15.42 6.30 772.81 186.55 10.43 582.11 152.58

Syringol monoglucoside 0.14 26.97 6.38 2.65 68.34 19.22 0.36 14.54 4.26

Syringol pentosylglucosides 0.76 4.52 1.79 6.41 369.14 88.76 1.70 103.37 27.73

Cresol glucosylpentosides 8.07 47.12 18.13 41.69 1395.52 382.63 0.40 17.67 5.28

Cresol gentiobioside 0.18 0.71 0.45 1.94 6.46 3.55 NA NA NA

Cresol monoglucoside 0.24 61.87 16.36 0 35.47 8.70 NA NA NA

Cresol rutinoside 1.62 13.34 4.90 3.11 122.07 38.35 2.91 133.85 40.55

Guaiacol pentosylglucosides 2.29 25.61 7.57 15.76 1233.46 268.39 5.30 330.36 80.47

Guaiacol gentiobioside 0.05 1.38 0.40 0.54 67.44 16.33 0.30 2.81 0.99

Guaiacol rutinoside 0 1.35 0.48 1.13 32.03 9.97 0 48.60 15.24

Guaiacol monoglucoside 0.03 30.04 7.07 1.22 30.25 7.15 0.12 12.60 3.46

Methylguaiacol pentosylglucosides 0.55 11.51 3.29 6.79 266.50 57.32 1.43 51.79 12.72

Methylguaiacol rutinoside 0.60 5.58 1.89 6.45 153.06 44.36 0.79 40.92 11.97

Methylguaiacol monoglucoside 0 0 0 0.94 11.52 3.89 NA NA NA

Methylsyringol gentiobioside 0.33 13.34 3.49 2.53 302.51 72.52 0.15 30.69 7.41

Methylsyringol pentosylglucosides 0.07 0.39 0.17 1.57 34.84 10.36 0.20 8.35 2.46

Phenol rutinoside 0.31 3.78 1.26 3.75 175.57 53.28 1.42 77.58 23.40

Phenol gentiobioside 0.01 0.61 0.15 0 28.54 6.57 0.08 6.22 1.70

Phenol pentosylglucosides 1.44 24.97 7.02 16.21 812.10 215.13 0.53 22.59 6.31

Phenol monoglucoside 0.04 2.55 0.63 0.99 21.52 5.65 0.74 43.48 11.86

Guaiacol 2.39 139.72 41.57 2.06 12.97 5.08 0 39.00 11.73

4-Methylguaiacol 3.54 27.72 9.50 3.52 4.45 3.80 0 5.00 1.40

Phenol 1.40 85.68 21.12 1.26 26.38 9.61 NA NA NA

o-Cresol 1.65 54.02 16.31 1.74 8.08 4.02 0 14.00 4.87

Total m/p-cresol 0.56 63.07 16.01 0.52 7.71 2.99 NA NA NA

m-Cresol 1.90 45.07 12.08 1.84 5.89 3.24 0 14.00 4.53

p-Cresol 0 18.00 4.38 0 2.04 0.44 0 9.00 2.60

Syringol 5.17 180.31 47.67 9.32 13.77 11.73 1.00 6.00 3.13

4-Methylsyringol 1.83 24.36 6.62 1.75 2.11 1.83 0 0 0

Total cresols 2.22 117.08 32.32 2.26 15.79 7.01 NA NA NA

Abbreviations: NA: Not applicable. Values <1 (μg L−1 and μg kg−1) are considered as below the limit of detection.
However, actual values were included in the modeling strategies.

Table 4 shows the minimum, maximum, and average values of the responses from the sensory
session conducted with consumers when evaluating the wines. It can be observed that the results from
all attributes were within the whole range of the scales used for liking and appearance (0–15) and
FaceScale (0–100), which made the data suitable to be used for machine learning modeling.
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Table 4. Minimum (Min), maximum (Max), and mean values of the sensory session responses for
wine tasting.

Data/Sensory Attribute Min Max Mean

Appearance liking 0.45 15.00 7.19

Overall aroma liking 0.30 14.85 6.21

Smoke aroma intensity 0 15.00 4.98

Smoke aroma liking 0 15.00 4.72

Bitter liking 0.30 15.00 5.98

Sweet liking 0 14.70 6.16

Acidity liking 0 14.70 6.23

Astringency liking 0.30 15.00 6.27

Warming liking 0.30 15.00 6.20

Overall liking 0.30 14.85 6.07

Perceived quality 0 14.85 5.66

FaceScale 0 99.00 42.15

3.2. Machine Learning Models

Table 5 shows the statistical results from Model 1 for the classification of the samples into the five
different treatments. It can be observed that there was a high accuracy for all stages (>90%) and 97%
for the overall model. According to the performance values, there were no signs of overfitting, as the
training stage had a cross-entropy value lower than the validation and testing, and these two had
similar performance. In Figure 3, the results from the receiver operating characteristic (ROC) curve are
shown. This graph depicted the sensitivity (true positive rate) and specificity (false positive rate) of the
overall model, with optimal operating points of 98%, 100%, 93%, 93%, and 98% for C, CM, LS, HS,
and HSM, respectively.

Figure 3. Receiver operating characteristic (ROC) curve for Model 1 to classify wine samples into the
five different smoke treatments.
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Table 5. Statistical results from the pattern recognition model (Model 1) to classify samples into five
different treatments (control, control with mist, low smoke, high smoke, and high smoke with mist).

Stage
Model 1

Samples Accuracy Error
Performance

(Cross-Entropy)

Training 180 99% 1% 0.01

Validation 60 93% 7% 0.04

Testing 60 92% 8% 0.05

Overall 300 97% 3% -

Table 6 depicts the statistical data for the four regression models. Model 2 had very high overall
correlation and determination coefficients (R = 0.98; Figure 4a; R2 = 0.95). The close value of the
validation and training correlation coefficients (R = 0.96 and R = 0.98, respectively), along with the
fact that the performance of the training stage (MSE = 0.01) was lower than that of the validation
and testing (MSE = 0.03 and MSE = 0.02, respectively), showed that there were no signs of under- or
overfitting. Models 3 and 4 had similar statistical values, both with high accuracy (Model 3: R = 0.99;
Figure 4b; R2 = 0.97; Model 4: R = 0.99; Figure 4c; R2 = 0.98). These models also showed no signs of
under- or overfitting. On the other hand, Model 5 also had a very high overall accuracy (R = 0.98;
Figure 4d; R2 = 0.96) with similar performance values for validation and testing (MSE = 0.04) and
higher than that of the training stage (MSE = 0.02). All models presented a slope close to the unity
(b ~ 1) for all stages (Figure 4).

Table 6. Statistical results from the four regression models (Models 2–4: glycoconjugates and volatile
phenols; Model 5: sensory) showing the correlation coefficient (R), determination coefficient (R2),
slope (b), and performance based on means squared error (MSE) for each stage.

Stage/
Model 2

(Berries 1 h Smoke)
Samples Observations R R2 b

Performance
(MSE)

Training 180 5400 0.98 0.96 0.96 0.01

Validation 60 1800 0.96 0.92 0.97 0.03

Testing 60 1800 0.97 0.95 0.97 0.02

Overall 300 9000 0.98 0.95 0.97 -

Stage/
Model 3

(Berries at Harvest)
Samples Observations R R2 b

Performance
(MSE)

Training 180 5400 0.99 0.98 0.97 0.01

Validation 60 1800 0.98 0.95 0.96 0.02

Testing 60 1800 0.98 0.97 0.95 0.01

Overall 300 9000 0.99 0.97 0.96 -

Stage/
Model 4
(Wine)

Samples Observations R R2 b
Performance

(MSE)

Training 180 4320 0.99 0.99 0.99 <0.01

Validation 60 1440 0.98 0.95 0.96 0.02

Testing 60 1440 0.98 0.96 0.95 0.01

Overall 300 7200 0.99 0.98 0.98 -
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Table 6. Cont.

Stage/
Model 5

(Wine Sensory)
Samples Observations R R2 b

Performance
(MSE)

Training 180 2160 0.98 0.97 0.97 0.02

Validation 60 720 0.97 0.94 0.97 0.04

Testing 60 720 0.97 0.94 0.97 0.04

Overall 300 3600 0.98 0.96 0.97 -

 
(a) (b) 

  
(c) (d) 

Figure 4. The overall correlation of the models to predict 20 glycoconjugates and 10 volatile phenols
(Table 2) of (a) Model 2: berries after 1 h smoking, (b) Model 3: berries at harvest; (c) 17 glycoconjugates
and seven volatile phenols of Model 4: wine. (d) Shows the Model 5 to predict 12 sensory descriptors
obtained in a consumer test (Figure 1c).
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4. Discussion

Nowadays, the only alternative for grape growers is to apply potential amelioration techniques
before the bushfires and hope for the best since there are limited tools that can be applied
in the field or at the winemaking stage, which can render results in near real-time for proper
decision-making [35,36]. Recently, non-invasive devices have been proposed using infrared thermal
imaging to assess contaminated grapevine canopies in the field and smoke taint in berries and wines
using near-infrared spectroscopy [5,33]. The research presented in this paper has contributed to the
potential implementation of new and emerging sensor technologies and modeling strategies using
machine learning in the viticulture and winemaking industry. These low-cost e-noses could become
a game-changer for the management of smoke contamination and taint in berries and wines due
to bushfires.

In general, previous applications of e-noses in the wine industry have been implemented mainly
for the analysis of grapes and crushing methods [37], improvement of maceration and fermentation
processes [38], to monitor the aging of wine in barrels [39–41], geographical classification [42],
wine spoilage [28,43,44], and to assess correlations with human perception through sensory
evaluation [27,29,45]. However, most of these studies have been based on multivariate data analysis
and correlation analysis.

Low-cost sensors presented in this research, developed by integrating an array of gas sensors [20],
could be used in the winery to assess the level of grapevine smoke exposure. In the present study,
models were developed to evaluate the effects of different amelioration techniques (Model 1) for berries
immediately after the bushfire event (Model 2), at harvest time (Model 3), and in the actual wines
(Model 4). Since smoke-derived glycoconjugates in berries are difficult to detect using e-noses due to
the binding of these compounds with sugars in the berries, these assessments need to be performed
after the winemaking process, in which the compounds are released through the maceration and
fermentation processes.

A further model (Model 5) developed to assess sensory characteristics of wines rapidly and
objectively, which can be implemented in parallel with successful amelioration techniques to reduce
smoke taint, such as the addition of activated carbon to wines or fining agents [2,34]. For the latter
case, Model 5 will offer a near real-time assessment of the techniques used.

The advantages of implementing these models coupled with low-cost sensor technology are
that grape growers and winemakers will not depend on random sampling, which may not render
representative results, or external laboratory services, which may not deliver results in a timely manner
due to being overwhelmed by large sample volumes that are delivered when concurrent bushfires
occur. Knowing the levels of smoke-derived compounds and the effects on consumer appreciation
in the winemaking process offer the following advantages: (i) rapid and user-friendly smoke taint
determination; (ii) potential implementation of techniques to reduce smoke taint using activated carbon
or fining agents on samples and re-test using the e-nose and models developed; (iii) sensory panel not
required for assessments/modifications, minimizing the time for the commercial release of wines and
economic impacts of smoke taint.

Further applications of these low-cost e-noses can be implemented to assess the maturity of
grapes in the field, specifically through the alcohol-based sensors. The latest research has shown
that ethanol is released from grape berries when they become oxygen stressed [46]. So, being able to
assess when cell death begins would be a useful tool in monitoring berry health and fruit ripening
potential. These processes of berry cell death assessment can be done non-destructively by near-infrared
spectroscopy and machine learning modeling [47] or by tracking ethanol release from grapevine
bunches through the implementation of low-cost e-noses in the field using sensor networks or as a
payload of low altitude unmanned aerial vehicle (UAV) surveys [48,49].
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5. Conclusions

Low-cost e-nose sensor technology coupled with machine learning offers the advantage of
easy implementation in field conditions using sensor networks or in the winery. Machine learning
models obtained could make available valuable information to winemakers and winegrowers for
the decision-making process to produce commercial wines by minimizing smoke taint. An artificial
intelligence system can be implemented based on sensor technology and machine learning developed
here to obtain the least tainted wine or to target specific sensory aroma profiles to take advantage of
the decontamination process to maximize the likability of wines.
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Abstract: Wildfires are an increasing problem worldwide, with their number and intensity predicted
to rise due to climate change. When fires occur close to vineyards, this can result in grapevine smoke
contamination and, subsequently, the development of smoke taint in wine. Currently, there are
no in-field detection systems that growers can use to assess whether their grapevines have been
contaminated by smoke. This study evaluated the use of near-infrared (NIR) spectroscopy as a
chemical fingerprinting tool, coupled with machine learning, to create a rapid, non-destructive
in-field detection system for assessing grapevine smoke contamination. Two artificial neural network
models were developed using grapevine leaf spectra (Model 1) and grape spectra (Model 2) as inputs,
and smoke treatments as targets. Both models displayed high overall accuracies in classifying the
spectral readings according to the smoking treatments (Model 1: 98.00%; Model 2: 97.40%). Ultraviolet
to visible spectroscopy was also used to assess the physiological performance and senescence of leaves,
and the degree of ripening and anthocyanin content of grapes. The results showed that chemical
fingerprinting and machine learning might offer a rapid, in-field detection system for grapevine
smoke contamination that will enable growers to make timely decisions following a bushfire event,
e.g., avoiding harvest of heavily contaminated grapes for winemaking or assisting with a sample
collection of grapes for chemical analysis of smoke taint markers.

Keywords: smoke taint; remote sensing; climate change; near-infrared spectroscopy; volatile phenols

1. Introduction

The incidence and intensity of wildfires are increasing worldwide, mainly due to the effects of
climate change [1–5]. Bushfires that occur near wine regions can result in grapevine smoke exposure,
which can alter the chemical composition of grape berries. Wine produced from these smoke-affected
grapes may exhibit unpalatable smoky aromas and flavors, such as “burnt wood”, “ashy”, and “burnt
rubber” [6–9]. These undesirable characters have been attributed to smoke-derived volatile phenols
(VPs), including guaiacol, 4-methylguaiacol, cresols, and syringol [7,10,11]. It is thought that these VPs
accumulate primarily in the skin of grape berries following smoke exposure and, to a lesser extent,
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in the pulp and seeds [12–15]. Grapevine smoke exposure, and the resulting smoke taint in wine,
have caused significant financial losses for grape growers and winemakers due to discarded grapes and
unsaleable wine. For example, the 2009 Black Saturday bushfires in Victoria, Australia, were estimated
to have caused AUD 300 million in lost revenue [16–19]. More recently, the Australian Grape and Wine
Incorporated (AWGI) estimated an AUD 40 million loss from the 2019/2020 summer bushfires [20].
Vineyard smoke exposure, therefore, remains a significant issue for the wine industry, particularly
given the increasing frequency and severity of bushfires [21].

Grapevine leaves have also been found to accumulate VPs, and a positive correlation has been
demonstrated between the levels of smoke compounds detected in leaves and wine when they were
included in the primary fermentation [13,22,23]. From a physiological point of view, smoke exposure
has also been shown to decrease stomatal conductance in leaves, which may result from the reaction of
carbon dioxide (CO2) and carbon monoxide (CO) with water vapor in the substomatal cavity producing
carbonic acid (H2CO3) [24,25]. Carbonic acid reduces the pH in the stomata, resulting in partial or
complete stomatal closure [25,26]. Damage to leaf surfaces following smoke exposure has also been
observed, with the development of necrotic lesions or, in extreme cases, total leaf necrosis [10,22,27].
This may be the result of ozone (O3) present in smoke, which has been linked to chlorophyll destruction
and accelerated leaf senescence [28,29].

Some chromatographic techniques such as gas chromatography-mass spectrometry (GC-MS)
and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) have been
developed to quantify levels of free and glycosidically bound VPs in grapes and wines [30–33].
While these techniques are currently used for qualitative and quantitative analysis and may assist
growers in determining the level of smoke taint in the final wine, there are numerous shortcomings:
sample preparation is time-consuming and destructive, and analyses require expensive reagents,
standards, and equipment, as well as trained personnel. Furthermore, following a bushfire event,
there may be long delays in the availability of results due to large numbers of samples being submitted
to commercial laboratories for analysis [34,35]. Consequently, alternative methods of smoke taint
analysis have recently been investigated and may offer non-destructive sample preparation, as well as
accurate and rapid results.

The use of spectroscopic techniques has increased in recent years due to their ease of use,
rapid results, minimal sample preparation, and non-destructive nature, all of which allow repeated
measurements to be taken [34–39]. Furthermore, the development of smaller, handheld spectroscopic
devices coupled with decreasing costs, has allowed these technologies to be more readily accessible
and affordable to growers and farmers, while their portability allows for in-field use, reducing the risk
of sample deterioration during transportation [39,40]. Ultraviolet (UV) to visible (Vis) spectroscopy
involves the region between 200–780 nm, which can be used to analyze compounds containing organic
acids, phenolic compounds, and pigments such as anthocyanins, carotenoids, and chlorophylls [41].
UV-Vis spectroscopy has been used to determine the contribution of chemical compounds towards the
composition of extra virgin olive oils to determine the region in the Mediterranean it was produced,
to optimize the aging process of Spanish wines, and to assess the impact of heating edible oils and to
determine their acid level [42–44]. Near-infrared (NIR) spectroscopy between the light spectra regions
of 780–2500 nm has been widely used in agricultural and food science applications, with NIR bands
corresponding to overtones resulting from the vibrations of O-H, C-H, N-H, and S-H bonds [39,41].
Various spectroscopic techniques, most notably in the NIR region, have been used for numerous
applications in viticulture, including the assessment of grape quality and ripeness as well as the
authentication of geographical origin [38,45–50]. Research has also been conducted on the use of
mid-infrared (MIR) spectroscopy (between 2500–25,000 nm) of the electromagnetic spectrum, as well
as synchronous two-dimensional MIR correlation spectroscopy (2D-COS) for the classification of
smoke tainted wines [34,35]. Both techniques showed potential for screening smoke tainted wine,
with MIR spectroscopy achieving 61 and 70% classification rates for control and smoke affected wines,
respectively. However, classification rates were affected by the degree of smoke taint, as well as
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compositional differences arising from the grape variety and oak maturation [34]. While this technology
may help to assess wine samples for smoke taint, it does not provide an early, in-field detection system
that could help growers identify which grapes may be contaminated before winemaking. At present,
there is very little research investigating the in-field use of Vis-NIR spectroscopy for the classification
of smoke-affected grapevine leaves and berries. Research by Fuentes and coworkers [19] developed a
model using NIR spectroscopy between the region of 700–1100 nm to predict the levels of guaiacol
glycoconjugates in berries and wine, and the levels of guaiacol in wine. These models may offer
growers a non-destructive in-field detection system for grapevine smoke contamination. However,
further research is required to determine the effectiveness of different NIR regions for monitoring
smoke contamination.

Several chemometric techniques have been used to analyze spectral data, including partial least
squares (PLS) regression, principal component analysis (PCA), and artificial neural networks (ANN),
to name a few [41]. Of these techniques, ANNs have increased in popularity as classification, prediction,
and clustering tools, particularly since they can better interpret the non-linear patterns of spectral
data [51–54]. Machine learning (ML) modeling based on ANN can be trained from a set of given data
known as ‘inputs’ or independent variables and form complex, non-linear relationships with these
inputs and the ‘targets’ or dependent variables [54]. For example, preliminary ML models for the
classification of smoke tainted grapevines have been developed using infra-red (IR) thermal imagery
from canopies, which gave an indication of changes in stomatal conductance for classification of
control and smoke-exposed grapevines [25]. In addition to this, another model has been proposed
that aims to quantify levels of smoke derived compounds in grapes and wine using NIR spectroscopy
measurements as inputs [25]. Furthermore, UV-Vis spectroscopy may offer insights into the degree of
physiological performance of leaves as well as fruit ripening and quality through analyzing pigment
content, such as chlorophylls, anthocyanins, and carotenoids [55–59].

The objective of this study was to investigate the use of NIR spectroscopy, coupled with ML
modeling for the detection of grapevine smoke contamination. Grapevine leaves and berries were
analyzed in the vineyard in a smoke trial using a NIR spectrometer, and the absorbance values
were used as inputs to train different machine learning algorithms in order to create ANNs with
the best classification performances. In addition to this, UV-Vis spectroscopy was used to assess the
physiological performance and degree of senescence of leaves, as well as the degree of ripening and
anthocyanin content of grapes. This may offer growers a rapid and non-destructive detection system
that they can employ themselves to obtain real-time information regarding smoke exposure. This will
facilitate timely decision-making around which fruit to sample for chemical analysis and/or to harvest
to maintain wine quality.

2. Materials and Methods

2.1. Vineyard Site and Experimental Design for the Smoke Trial

The smoke trial was conducted in late January-early February during the 2018/2019 growing
season, at the University of Adelaide’s Waite Campus in Urrbrae, South Australia (34◦58′ S, 138◦38′ E).
The trial, described previously by Szeto and colleagues [60], involved the application of smoke and/or
in-canopy misting to Cabernet Sauvignon grapevines and comprised five different treatments: a control
(C), i.e., neither misting nor smoke exposure; (ii) a control with misting (CM), i.e., in-canopy misting
but no smoke exposure; (iii) a high-density smoke treatment (HS); (iv) a high-density smoke treatment
with misting (HSM); and (v) a low-density smoke treatment without misting (LS). Treatments were
applied to Cabernet Sauvignon grapevines planted in 1998 at 2.0 and 3.3 m vine and row spacings,
and trained to a bilateral cordon, vertical shoot positioned trellis system (VSP), hand-pruned to a
two-node spur system, with under vine drip irrigation (twice weekly, from fruit set to pre-harvest).
Smoke treatments were applied (approximately seven days post-véraison, the period grapes are thought
to be most susceptible to smoke contamination [10]) using a purpose-built smoke tent (Figure 1a,b)
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and experimental conditions reported previously [4,61]: low and high-density smoke treatments were
achieved by burning different fuel loads (i.e., ~1.5 and 5 kg of barley straw, respectively). In-canopy
misting was evaluated as a method for mitigating the uptake of smoke-derived volatile phenols by
grapes and involved the continuous application of fine water droplets (65 μm) to the grapevine bunch
zone using a purpose-built sprinkler system (delivering water at 11 L/h), as previously described [62].
Each treatment was applied to six vines from three adjacent panels, except the HS treatment, which
comprised only five vines, with treatments separated by at least one buffer vine. LS, HS, and HSM
treatments comprised duplicate applications of smoke to 1.5 panels/three vines at a time (except for one
HS treatment). The in-canopy sprinkler system was turned on 5 min before the first HSM treatment
was applied and off 15 min after the second HSM treatment was completed, such that CM and HSM
grapevines were misted for approximately 2.5 h in total. The second and fifth vine from each treatment
(the middle vines from smoke treatments) were then selected for physiological and NIR measurements.

  
(a) (b) 

Figure 1. Smoke treatments were applied to grapevines using a purpose-built smoke tent; grapevines
were enclosed in the tent and exposed to smoke derived from the combustion of barley straw (a,b).

2.2. Physiological Measurements

The rate of photosynthesis (A), stomatal conductance (gs), and transpiration (E) were determined
using a portable infrared gas analyzer equipped with a broad leaf chamber (LCpro-SD, ADC Bioscientific
Ltd., Hoddesdon, UK). Measurements were taken on three leaves of each side of the canopy per vine
(n = 12 leaves per treatment) with a photosynthetic photon flux density of 1000 μmol m−2 s−1 supplied
by a high efficiency, low heat output, mixed red-blue light-emitting diode (LED) array unit. Water
vapor and CO2 concentration in the chamber were set to ambient. Measurements were taken one day
(24 h) after smoke treatments were applied, on clear, sunny days.

2.3. Determination of Volatile Phenols and Their Glycoconjugates in Grape Juice/Homogenate

The concentration of volatile phenols and their glycoconjugates were determined (in grape juice
and homogenate, respectively) using analytical methods described previously [30,32,33,60]. Volatile
phenols were measured by stable isotope dilution analysis (SIDA) [3,30,33], using an Agilent 6890 gas
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chromatograph coupled to a 5973-mass spectrometer (Agilent Technologies, Forest Hill, Vic., Australia).
Isotopically labeled standards, i.e., d4-guaiacol and d3-syringol, were prepared in-house using methods
outlined previously [3,30,33]. The limit of quantitation for volatile phenols was 1–2 μg/L. Volatile
phenol glycoconjugates were also measured by SIDA [30,32], using an Agilent 1200 high-performance
liquid chromatograph (HPLC) equipped with a 1290 binary pump, coupled to an AB SCIEX Triple
QuadTM 4500 tandem mass spectrometer, with a Turbo VTM ion source (Framingham, MA, USA).
The preparation of the isotopically labeled internal standard, i.e., d3-syringol gentiobioside, has been
reported previously [30,32]. The limit of quantitation for volatile phenol glycosides was 1 μg/kg.

2.4. Near-Infrared Data Collection

Grapevine leaf and berry spectra were collected one day after smoke exposure, using a
microPHAZIRTM RX Analyzer (Thermo Fisher Scientific, Waltham, MA, USA), which had a spectral
range of 1596 to 2396 nm at intervals of 7–9 nm. Prior to undertaking the measurements and after every
10–15 readings, the device was calibrated using a white background calibration standard (included with
the device). The white background was placed on top of the leaf while measuring to avoid signal noise
inclusion due to variation in light or environmental changes. Leaves and berries were also analyzed
using the Lighting Passport ProTM handheld spectrometer (Asensetek Incorporation, Xindian District,
New Taipei City, Taiwan), which has a spectral range of 380–780 nm at intervals of 1 nm. Measurements
were taken at approximately 3 cm from the leaves and berries. All measurements were conducted at
ambient temperature between 9:00 a.m. and 6:00 p.m.

For the leaf spectral measurements, nine sunlit and nine shaded, mature, fully expanded leaves
were selected (i.e., 18 leaves per vine, 36 leaves per treatment). Leaves were free of any visible signs of
disease or blemishes. Each leaf was measured in three areas, in triplicate, using the microPHAZIRTM

RX Analyzer, while three measurements per leaf were taken with the Lighting Passport ProTM handheld
spectrometer. For the berry spectra, two bunches were selected per vine, and nine berries (three from
the top, middle, and bottom of each bunch) were measured, in triplicates using the microPHAZIRTM

RX Analyzer (n = 540). On the other hand, twelve berries per treatment were analyzed using the
Lighting Passport ProTM (n = 180) while still attached to the bunch.

2.5. Calculating Spectral Indices

Spectral indices for the analysis of pigment content were calculated for both leaves and berries.
Leaf spectra taken using the Lighting Passport ProTM were used to calculate the normalized difference
vegetation index (NDVI), normalized anthocyanin index (NAI), plant senescence reflectance index
(PSRI), and carotenoid reflectance index (CRI) [56,57,59,63–65]. Berry spectra were used to calculate
the NAI and PSRI. The calculations and wavelengths used for determining these indices are given in
Table 1.

Table 1. Calculations for the spectral indices investigated in this study.

Index Name Index Abbreviation Equation References

Normalized difference
vegetation index NDVI (I780−I660)

(I780+I660)
[56,57]

Normalized anthocyanin
index NAI (I780−I570)

(I780+I570)
[56,57]

Carotenoid reflectance
index CRI550

1
I510 − 1

I550 [63,64]

Carotenoid reflectance
index CRI700

1
I510 − 1

I700 [65]

Plant senescence
reflectance index PSRI I680−I500

I750 [59]
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2.6. Statistical Analysis

Physiological measurements, spectral indices, volatile phenols, and their glycoconjugates were
analyzed by one-way analysis of variance (ANOVA) using Minitab®version 18.1 (Minitab Inc.,
State College, PA, USA). Mean comparisons were performed using the Fisher least significant difference
(LSD) method as a post-hoc test at α = 0.05. Near-infrared data were analyzed using The Unscrambler
X version 10.3 software (CAMO Software, Oslo, Norway). Absorbance values for all wavelengths
were plotted for both the microPHAZIRTM RX Analyzer and Lighting Passport ProTM leaf and berry
readings. Principal component analysis (PCA) was also performed using The Unscrambler X program.
All microPHAZIRTM RX Analyzer measurements were pre-processed using the second derivative
transformation, Savitzky–Golay derivation, and smoothing using The Unscrambler X version 10.3
software prior to the plotting of graphs and statistical analysis.

2.7. Artificial Neural Network Modeling

Three ANN models were developed for berry and leaf NIR readings, which were used as inputs to
classify the different smoke treatments using customized code written in MATLAB®(version R2020a,
MathWorks Inc., Natick, MA USA) (Figure 2). This code tested a total of 17 training algorithms in a
loop to find the optimum in terms of accuracy and performance. Once the optimum training algorithm
was identified, further training was performed to develop the most accurate ANN model. For both
models, the Levenberg–Marquardt training algorithm was found to be the best algorithm, resulting in
models with the highest accuracy and no signs of overfitting.

(a) 

(b) 

Figure 2. Two-layer feedforward network with ten hidden neurons and sigmoid function for the three
classification models: (a). microPHAZIRTM leaf model (Model 1) and (b). microPHAZIRTM berry
model (Model 2). Abbreviations: C = control without misting; CM = control with misting; HS = high
density smoke without misting; HSM = high density smoke with misting; and LS = low density smoke.

Overtones within the 1596–1800 nm range were used as inputs for the microPHAZIRTM leaf
model (Model 1). This region was selected to avoid water overtones and any classification resulting
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from the water status of the vines. The entire spectral range was used for the microPHAZIRTM berry
model (Model 2) (1596–2396 nm). The two models were developed using a random data division with
70% (n = 1134 for Model 1 and 378 for Model 2) training, 15% (n = 243 for Model 1 and 81 for Model 2)
for validation with a mean squared error (MSE) performance algorithm and 15% (n = 243 for Model 1
and 81 for Model 2) for testing with a default derivative function. Ten hidden neurons were selected
for each of the two models after conducting a trimming exercise with three, five, and ten neurons.

3. Results

3.1. Physiological Measurements

Results of gas exchange parameters are shown in Table 2. The transpiration rate was lower for the
HS treatment (P < 0.005) with a mean rate of 1.43 mmol m−2 s−1, while no differences were observed in
the other treatments. The CM and C treatments both had the highest gs values with an average value
of 0.15 mol m−2 s−1 for each, while HS and LS treatments had the lowest average gs at 0.056 mol m−2

s−1 and 0.082 mol m−2 s−1 respectively. Mean rates of A were found to be highest in the C and CM
treatments (10.77 μmol m−2 s−1 and 9.66 μmol m−2 s−1, respectively), while the LS and HS treatments
had the lowest (7.01 μmol m−2 s−1 and 5.59 μmol m−2 s−1, respectively).

Table 2. Gas exchange parameters measured for the different smoke treatments.

Smoke
Treatment

E (mmol m−2 s−1) gs (mol m−2 s−1) A (μmol m−2 s−1)

Mean SD Mean SD Mean SD

C 2.48 a 0.70 0.15 a 0.05 10.77 a 3.46
CM 2.31 a 0.54 0.15 a 0.05 9.66 ab 2.31
HS 1.43 b 0.62 0.06 c 0.03 5.59 d 2.8

HSM 2.06 a 0.44 0.10 b 0.03 8.15 bc 1.97
LS 2.18 a 0.78 0.08 bc 0.03 7.01 cd 2.42

Abbreviations: C = control without misting; CM = control with misting; HS = high density smoke without misting;
HSM = high density smoke with misting; and LS = low density smoke; SD = standard deviation. Means followed by
different letters are significantly different based on Fisher least significant difference (LSD) post hoc test (α = 0.05).

3.2. Levels of Smoke Taint Marker Compounds in Grape Juice/Homogenate

Differences in volatile phenol concentrations between HS and HSM treatments were found for
guaiacol, 4-methylsyringol, and syringol (P < 0.05; Table S1). In particular, 4-methylsyringol and
syringol had the largest differences in concentrations amongst the smoke treatments, with the HS
treatment exhibiting the highest mean values (17 and 126 μg/L, respectively) followed by the HSM
treatment (9 and 59 μg/L, respectively) while the CM treatments exhibited the lowest mean values
(2 and 8 μg/L), which displayed the lowest mean value. There were no differences between the HS and
HSM treatments, nor between the C, CM, and LS treatments for 4-methylguaiacol, phenol, and total
cresols; however, HS and HSM grapes had significantly higher volatile phenol concentrations than C,
CM, and LS grapes.

Some differences in volatile phenol glycoconjugate levels could be seen amongst the five smoke
treatments. Some glycoconjugates displayed differences between the HS and HSM treatments. There
was no difference in GuRG levels between the LS, HS, and HSM treatments, with no levels detected in
the C and CM treatments. The HS smoke treatment had the highest levels of PhRG, PhGG, CrPG, SyGG,
and SyPG, followed by the HSM and LS treatments and then the C and CM treatments. Interestingly
the C and HS treatments had the highest level of CrGG followed by the CM and HSM treatment, while
the LS treatment had the lowest concentration.
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3.3. NIR Absorbance Patterns for Leaves and Berries

Absorbance spectra for the averages of replicates for both raw and transformed leaf absorbance
spectra are depicted in Figures 3 and 4. For the microPHAZIRTM RX Analyzer leaf absorbances,
clear differences in spectral readings were observed for each smoking treatment. A peak was observed
at approximately 1784–1793 nm (Figure 3a), while for the transformed data (Figure 3b), large peaks are
present between 1596–1647 nm.

(a) 

 
(b) 

Figure 3. Raw leaf absorbance (a) and second derivative spectra (b) measured with the microPHAZIRTM

near-infrared (NIR) analyzer for the different smoke and misting treatments. Abbreviations: C = control
without misting; CM = control with misting; HS = high density smoke without misting; HSM = high
density smoke with misting; and LS = low density smoke.
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(a) 

(b) 

Figure 4. Raw berry absorbance (a) and second derivative spectra (b) measured with the
microPHAZIRTM NIR analyzer for the different smoke and misting treatments. Abbreviations:
C = control without misting; CM = control with misting; HS = high density smoke without misting;
HSM = high density smoke with misting; and LS = low density smoke.
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Differences in absorption readings were also found for the microPHAZIRTM RX Analyzer berry
absorbance spectra (Figure 4a). Peaks were originally observed at approximately 1785 and 1902 nm, but
in the transformed data (Figure 4b), large peaks were observed between approximately 1596–1640 nm
and 1820–1940 nm.

3.4. Principal Component Analysis

Figure 5a shows the principal component analysis (PCA) for the microPHAZIRTM RX Analyzer
leaf spectra with absorbance values between 1600–1800 nm. The first principal component (PC1)
accounted for 62% of the data variability, while principal component two (PC2) accounted for 24%.
Hence, 86% of the total variability was explained by these PCs. There was no clear separation of the
different smoke treatments when modeled with the microPHAZIRTM leaf spectra. PC1 was represented
by wavelengths between 1604–1621 nm and between 1621–1647 nm (loadings shown in Figure 5b).
PC2 was represented by wavelengths between 1613–1647 nm, as well as 1604 nm.

 
(a) 

 
(b) 

Figure 5. Principal component analysis (PCA) for the microPHAZIRTM leaf absorbance values between
1600–1800 nm (a) and loadings (b). Abbreviations: C = control without misting; CM = control
with misting; HS = high density smoke without misting; HSM = high density smoke with misting;
and LS = low density smoke.

160



Sensors 2020, 20, 5099

Figure 6a shows the PCA for the microPHAZIRTM RX Analyzer berry spectra, where 59% of
the data variability was described by PC1, while PC2 accounted for 10% of the data variability; thus,
a total of 69% of the total data variability was explained by the first two components of the PCA.
As with the microPHAZIRTM RX Analyzer leaf spectra, most of the smoke treatments overlapped
quadrants. The CM treatment was grouped primarily in the upper right quadrant, while C and LS
treatments were grouped primarily in the lower right. The HS treatment was located primarily in the
upper right and left quadrants, while the HSM treatment was grouped in the left upper and lower
quadrants. PC1 one was represented by the wavelength region 1604–1622. PC2 was represented by the
wavelengths between 1630–1647 nm and 2374–2389 nm (loadings shown in Figure 6b).

 

(a) 

 
(b) 

Figure 6. Principal component analysis (PCA) for the microPHAZIRTM berry absorbance values
between 1600–2396 nm (a) and loadings (b). Abbreviations: C = control without misting; CM = control
with misting; HS = high density smoke without misting; HSM = high density smoke with misting;
and LS = low density smoke.
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3.5. Spectral Indices

Results for the spectral indices are shown in Table 3. In the case of the leaf NDVI and NAI,
the HS and C treatments had the lowest mean values (0.72 and 0.64 for the HS treatment and 0.84 and
0.74 for the C) (P < 0.05). There were no differences for the remaining treatments. For the leaf PSRI,
the HS treatment had the highest mean value at 0.065, with no differences for the remaining treatments.
For the leaf CRI500, the LS and HS treatments had the highest values at 1.45 and 1.20, respectively,
and for the CRI700, the LS treatments had the highest mean values at 1.76, with no differences for the
remaining treatments.

In the case of the berry NAI, the HS and LS treatments had the highest mean values with 0.88 and
0.87, with both the C and LS treatments having the lowest mean values of 0.80 and 0.75. For the PSRI,
both the LS and C treatments had the highest mean values of 0.02, while the HSM had the lowest value
at −0.02.
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3.6. Artificial Neural Network Models

Table 4 shows the confusion matrices for the two models developed using the spectral readings
as inputs and the experimental treatments as targets. Both models displayed high accuracy in
classifying the spectral readings according to the treatments, with an overall accuracy of 98% for the
microPHAZIRTM leaf model (Model 1) and 97.4% for the microPHAZIRTM berry model (Model 2).
Models 1 and 2 presented validation accuracies (94% and 93%, respectively) close to those of the
training stage (100% both models). Furthermore, performance values for training (Models 1 and
2: MSE < 0.01) were lower than the other stages and validation (Model 1: MSE = 0.02; Model 2:
MSE = 0.03) and testing (Model 1: MSE = 0.02; Model 2: MSE = 0.04) were similar; this indicates that
there were no signs of overfitting for both Model 1 and Model 2.

Figure 7 depicts the receiver operating characteristic (ROC) curves for the two ANN models
developed. All models showed high true-positive rates (sensitivity) and low false-positive rates
(specificity) for classifying the spectral readings according to the experimental treatment, which can
also be observed in the last column of each confusion matrix. For Model 2, the HS treatment had the
highest sensitivity (100%), followed by the CM and HSM treatments (99.1% each) and LS treatment
(96.3%). The C treatment had the lowest sensitivity of 92.6% for this model. For Model 1, the C
treatment had the highest sensitivity (99.1%), followed by the LS treatment (98.8%), HS treatment
(97.8%), and CM treatment (97.5%), while the HSM had the lowest sensitivity of 96.9%.

Table 4. Statistical results for the artificial neural networks pattern recognition models. Model 1:
microPHAZIRTM for leaves, and Model 2: microPHAZIRTM for berries. Performance is based on
means squared error (MSE).

Stage Samples (n) Accuracy % Error % Performance (MSE)

Model 1

Training 1131 100 0 0.00
Validation 243 94.2 5.8 0.02

Testing 243 92.6 7.4 0.02
Overall 1617 98.0 2 -

Model 2

Training 378 100 0 0.00
Validation 81 92.6 7.4 0.03

Testing 81 90.1 9.9 0.04
Overall 540 97.4 2.6 -
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(a) 

(b) 

Figure 7. Receiver operating characteristic (ROC) curves for the two models developed (a) the
microPHAZIRTM leaf model, (b) the microPHAZIRTM berry model. Colored lines represent the
different smoking treatments. Abbreviations: C = control without misting; CM = control with misting;
HS = high density smoke without misting; HSM = high density smoke with misting; and LS = low
density smoke.
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4. Discussion

4.1. Physiological Measurements

Leaf gas exchange parameters were measured the day after smoking. The three smoke treatments
showed significant reductions in gs, in particular, the high-density smoke without misting (HS)
treatment, which showed the lowest average reading for gs (Table 2). Stomatal closure is one of the first
responses to smoke exposure undertaken by plants [6,26], and a study by Ristic and colleagues [26]
found that the time required for gs to recover following one hour of smoke exposure for Cabernet
Sauvignon grapevines was approximately 6–10 days. A previous study by Bell et al. [6] found that gs

of potted Cabernet Sauvignon grapevines had returned to 60% of pre-smoke exposure rate following
fifteen min exposure to smoke using Tasmanian blue gum (Eucalyptus globulus L.) leaves as fuel, while
rates had returned to 80% of pre-smoke values following exposure to smoke derived from Coast Live
Oak (Quercus agrifolia Née) leaves. This indicates that in addition to the type of fuel used, the intensity
of smoke exposure may also affect the extent of stomatal closure and, hence, reduction in gs. It is,
therefore, not surprising that the HS treatment had the lowest gs. However, it is interesting that the
low smoke treatment (LS) had lower gs than the high smoke with misting treatment (HSM), which
indicates that misting may have reduced the effect of smoke exposure on gs. During a bushfire, the type
of fuel burnt will vary depending on the region and the type of plant species native to the area, as well
as the amount of smoke exposure due to land topography and wind vectors; therefore, the effect on
gs may vary [17,18,23,66]. While misting only partially prevented the uptake of volatile phenols and
glycoconjugates in grapes [60], it did appear to have a physiological effect. It is evident that misting
reduced the effect of smoke exposure on gs. Smoke contains a complex mixture of gases such as sulfur
dioxide (SO2), O3, and nitrogen dioxide (NO2), as well as dust particles that have been shown to
inhibit photosynthesis and affect stomatal opening [6,26,29]. Stomata are the primary point of entry for
these gases and dust particles [6]; therefore, misting may help prevent the uptake of dust and other
particles by trapping them in water that has condensed on the leaf surface, preventing their entrance
into the stomata. The present water may also act as a solvent for gases such as SO2 and NO2, thereby
incorporating them into a solution that then may drip off the leaf surface. In addition to this, smoke
exposure may trigger stomatal closure by producing high vapor pressure deficits [26,29]. The presence
of misting may help reduce the leaf-to-air vapor pressure difference produced by smoke exposure,
thereby reducing the impact on gs. Misting also appeared to reduce the effect of smoke exposure on
transpiration rate (E) as there were no differences between the two control treatments and the LS and
HSM treatments. Only the HS treatment had significantly reduced E. Mean rates of photosynthesis (A)
followed similar patterns to gs, with the HS treatment having the lowest value, followed by the LS
treatment and then the HSM treatment, while the control without misting (C) had the highest rate of
A. This indicates that while misting may have reduced A in the control treatments, it may also help
reduce the effects of smoke exposure on A.

4.2. Near-Infrared Spectroscopy Patterns and Principal Component Analysis

From the PCA biplots (Figures 5 and 6) and spectra (Figures 3 and 4) generated in the current study,
it is evident that smoke exposure alters the NIR spectral signals of grapevine leaves and berries, and this
may prove useful for the detection of grapevine smoke contamination. For the microPHAZIRTM RX
Analyzer leaf spectra, high loadings (Figure 5b.) were observed for the wavelength regions between
1604–1621, 1621–1647, and 1613–1647 nm, all of which correspond to C-H stretching of sugars and
aromatic compounds [67–70]. For the microPHAZIRTM RX Analyzer berry spectra, high loadings
(Figure 6b.) were observed for the wavelength regions between 1604–1622, 1630–1647, and 2374–2389
nm, which correspond to C-H stretching of sugars, such as glucose, as well as aromatic hydrocarbons,
which may be due to the presence of smoke-derived volatile phenols, such as guaiacols, cresols,
and syringols, and their glycoconjugates [67,68,71,72].
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4.3. Spectral Indices

4.3.1. Leaf

The normalized difference vegetation index (NDVI) gives an indication of plant vigor and
fruit ripening resulting from relative changes in chlorophyll content. It is based on the variation
between the maximum absorption of red by chlorophyll pigments and the maximum reflectance in
the infrared caused by leaf cellular structure [56,57,73–75]. Similarly, relative changes in anthocyanin
content are expressed as the normalized anthocyanin index (NAI). Both the NDVI and NAI are
expressed as a normalized value between −1 (lack of green or redness) to +1 (green or red) [56,57].
Not surprisingly, HS leaves had the lowest NDVI and NAI values. Previous studies investigating the
effects of pollution on leaf pigments found a decrease in photosynthetic pigments following exposure
to pollutants, including sulfur dioxide (SO2), carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone
(O3) [59,76,77]. These studies are often used as comparisons for investigating the effects of smoke
exposure on leaves as compounds in air pollution can also found in smoke [6,22]. There were no
differences in NDVI and NAI values between the LS, HSM, and control treatments (C and CM),
indicating that misting may reduce the effects of smoke exposure on leaf pigments, and low levels of
smoke exposure for one hour may also have no effect. Longer periods of smoke exposure (days or
weeks, as is often the case with wildfires) may be required to cause a noticeable change in leaf pigments.

The plant senescence reflectance index (PSRI) gives an indication of the stage of leaf senescence
and fruit ripening through assessing changes in carotenoid accumulation and their proportion to
chlorophyll. Values range from −1 to +1, with higher values indicating increased stress and carotenoid
accumulation [55,63–65,78]. The PSRI was highest for the HS treatment, indicating heightened stress
and leaf senescence. This also corresponds with the high CRI500 value for this smoke treatment,
indicating increased carotenoid accumulation.

4.3.2. Berries

Research by Noestheden et al. [5] found that smoke exposure induced changes in phenylpropanoid
metabolites in Pinot Noir berries and wine, some of which are associated with the color and mouthfeel
of the wine. Berries exposed to HS and LS treatments had the highest mean NAI values, indicating
that smoke exposure may increase anthocyanin content, possibly due to an increase in phenolic
accumulation as a stress response induced by exposure to ozone present in smoke [5,79,80]. The HSM
treatment had a low NAI value, indicating that misting may reduce anthocyanin concentrations through
increased irrigation. Castellarin et al. [81] found that early (before véraison) and late (after the onset of
ripening) season, water deficits increased anthocyanin accumulation during ripening. The application
of in-canopy misting may reduce water stress and, therefore, reduce anthocyanin accumulation.

Interestingly the HSM followed by the HS treatments had the lowest PSRI values. As carotenoid
concentrations in grapes generally decrease during véraison, this may have resulted in lower PSRI
values. Therefore, the PSRI may not be suitable for assessing the degree of ripening in grape berries.

4.4. ANN Modeling

Both ANN models classified leaf and berry readings as a function of smoke exposure with
high accuracy. The microPHAZIRTM leaf model (model 1) had the highest positive classification,
with 98% accuracy (Table 4). The NIR region selected for use in Model 1 was between 1600–1800 nm
in order to minimize any possible interference due to the absorption spectra of water in the region
of approximately 1930 nm [69]. Furthermore, the region between 1680–1690 nm is associated with
aromatic C-H stretching [67]; as such, any patterns observed by the ANN would most likely be due to
the presence of smoke-derived volatile phenols. Research by Kennison [22] found a positive correlation
between levels of smoke-derived compounds found in leaves and levels in wine; this ANN model
developed may, therefore, offer a rapid, in-field method for assessing grapevine smoke contamination.
It also demonstrates great promise for further research into the use of NIR spectroscopy coupled with
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unmanned aerial vehicles (UAVs) with Global Positioning System (GPS) trackers, which could fly over
vineyards to scan grapevine canopies and provide maps of smoke contaminated regions.

The microPHAZIRTM berry model (model 2) also had a high overall accuracy in classifying
grape berries according to smoke treatment (97.4%). For Model 2, the entire wavelength range
between 1600–2396 nm was used. This includes the C-H stretching of aromatic compounds at 1680 nm,
O-H stretching at 1930 nm associated with glucose, cellulose, and water, and C=O second overtone
associated with carboxylic acids and water between 1900–1910 nm [67,69]. As NIR measurements
were conducted in-field on whole berries, this offers a non-destructive tool for assessing grapevine
smoke contamination. Whole grapes may be used for assessment as smoke compounds have been
found to occur primarily in grape skins [3,25]. Furthermore, the Lighting PassportTM smart handheld
spectrometer may be of interest to growers due to its affordability compared to other spectrometers.
It is also very small and lightweight, making it easy to undertake measurements in-field, and it can be
connected to smartphones via Bluetooth, where data can be stored and retrieved for later analysis [82].

The two ANN models more accurately differentiated the spectral readings relative to PCA.
This may be because ANNs are better suited to handle complex, non-linear data, and more readily
find patterns or relationships between data than other forms of analysis [53,83–85]. Research by
Janik et al. [53] found that the combination of ANNs with partial least squares (PLS) or PCA overcomes
issues of non-linearity as well as increasing the accuracy of regression models in predicting total
anthocyanin concentrations in red grape homogenates. This may also explain why Model 2 was able
to accurately differentiate the berry spectral readings from C, CM, and LS treatments, despite analysis
of variance indicating there were no statistically significant differences.

As smoke exposure altered the chemical fingerprinting of grapevine leaves and berries, the ANN
models were able to detect changes in the spectral patterns and then classify the readings as a function
of experimental treatments. This may offer grape growers a rapid method of assessing the level of
smoke contamination in grape berries and leaves, with a high level of accuracy and precision. This may
assist growers in deciding which berry samples to send for further chemical analysis to quantify the
levels of smoke compounds in grapes and predict the level of smoke taint in the final wine, or they may
decide to avoid harvesting heavily contaminated grapes for winemaking. Furthermore, as this method
is non-destructive, repeated measurements are possible. By knowing the level of smoke contamination,
growers can make informed decisions.

While the ANN models developed were able to classify Cabernet Sauvignon leaf and berry
spectra accurately, further research is required to assess whether these models can be used for other
grape varieties, as differences in berry composition and leaf physiology may affect the accuracy of
classification [6,34]. Previous research evaluated MIR spectroscopy for the classification of smoke
tainted wines found compositional differences due to grape variety prevailed over differences resulting
from low levels of smoke exposure [34]. Furthermore, the physiological responses of different grape
varieties to smoke were found to vary, both in magnitude and in recovery time [6,26]. Thus, further
testing of these models using berry and leaf spectra from different grapevine varieties is required.

5. Conclusions

Results from this study indicate that smoke exposure alters the NIR spectra of Cabernet Sauvignon
grapevine leaves and berries. As a result, accurate classification models can be developed using ANN
modeling. Artificial neural networks are better at classifying non-linear or complex data than traditional
techniques, such as principal component analysis. Furthermore, the use of UV-Vis spectroscopy may
offer insights into the physiological performance of leaves and the quality and degree of ripening
of grapes. These techniques may assist grape growers in identifying grapevines that have been
contaminated by smoke, thereby informing decision-making to avoid harvesting and processing
heavily contaminated grapes and/or the need for mitigation techniques to manage the risk of smoke
taint in resulting wine. Further testing of the ANN models developed in the current study is required
to assess their accuracy in classifying grapevine leaf and berry spectra from other grape varieties.
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Abstract: Advances in early insect detection have been reported using digital technologies through
camera systems, sensor networks, and remote sensing coupled with machine learning (ML) modeling.
However, up to date, there is no cost-effective system to monitor insect presence accurately and insect-
plant interactions. This paper presents results on the implementation of near-infrared spectroscopy
(NIR) and a low-cost electronic nose (e-nose) coupled with machine learning. Several artificial neural
network (ANN) models were developed based on classification to detect the level of infestation and
regression to predict insect numbers for both e-nose and NIR inputs, and plant physiological response
based on e-nose to predict photosynthesis rate (A), transpiration (E) and stomatal conductance (gs).
Results showed high accuracy for classification models ranging within 96.5–99.3% for NIR and
between 94.2–99.2% using e-nose data as inputs. For regression models, high correlation coefficients
were obtained for physiological parameters (gs, E and A) using e-nose data from all samples as inputs
(R = 0.86) and R = 0.94 considering only control plants (no insect presence). Finally, R = 0.97 for NIR
and R = 0.99 for e-nose data as inputs were obtained to predict number of insects. Performances
for all models developed showed no signs of overfitting. In this paper, a field-based system using
unmanned aerial vehicles with the e-nose as payload was proposed and described for deployment of
ML models to aid growers in pest management practices.

Keywords: remote sensing; volatile compounds; artificial neural networks; photosynthesis modeling;
plant water status modeling

1. Introduction

Early detection of insect infestation in crops is critical for decision-making related to
pest management and alerting potential infestation to neighboring susceptible crops. One
of the most common agronomical assessments for detrimental insect infestation in crops is
visual at determined and critical periods of the crop development in synchronicity with
the insect’s population dynamics [1] and migrations [2]. The next step for more practical
monitoring is using pheromone traps [3], which can be used for more ecological pest man-
agement [4]. Some of these pheromone traps have been integrated with digital technologies,
such as video cameras [5] to assess effectiveness [6] and implementing computer vision for
pest identification and automatic counting using machine learning [7–12]. Some of these
systems are web-based and used to support agronomical decision-making in developing
countries [8].

Even though these applications are certainly an advancement in automated pest
monitoring and management, they still rely on sentinel locations within the crop field.
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The latter could translate into an economic limitation for extensive crops, which require a
significant number of monitoring nodes and increasing complexity of the sensor network.
Furthermore, these monitoring and counting systems do not give much information on
the insect-plant interaction, insect natural predator’s interaction, or detrimental effects or
symptomatology from the plant’s perspective.

Other remote sensing techniques have been implemented for pest detection in crops [13]
based on sensor networks [14], IoT for moths [15], hyperspectral imaging based on air-
borne [16], satellite [17], and unmanned aerial vehicles (UAV) [18], among others. These
systems offer the advantage of increased spatial resolution and potential temporal resolu-
tion in airborne and UAV platforms. However, there are some disadvantages related to
the plant-based nature of remote sensing monitoring. The first disadvantage is related to
monitoring and modeling based on plant symptomatology in response to insect attacks,
often assessed late, with detrimental implications in yield and quality of produce. Another
disadvantage is that there is no assurance that symptomatology targeted using remote
sensing to detect insects are entirely related to the specific biotic stress of interest. Some
plants may have other biotic and abiotic symptomatology, such as water, salinity, and other
insect interaction stresses. These issues could create biases in models developed and hinder
capabilities of deployment of models to other locations.

Hence, there is a need for a digital system that considers the early detection of the
pest of interest and early interaction with the host plant. To understand the specific
insect-plant interactions for machine learning modeling purposes, controlled experiments
must be considered before deployment in field conditions. Furthermore, a digital system
based on volatile compounds could offer advantages compared to other systems. The
implementation of electronic noses (e-noses) for insect detection have been proposed for
disease detection and diagnosis [19] and pest detection [20], specifically for cotton [21], as
a portable e-nose development, and specifically for aphid detection on tomato plants [22]
using four low-cost gas sensors and comparing with gas chromatography results. In wheat,
some authors have also used commercial e-noses to detect mite infestation [23] to predict the
age and insect damageduring storage using linear discriminant analysis [24], and to detect
rusty grain beetle, Cryptolestes ferrugineus, and red flour beetle in wheat [25]. Some studies
have also combined computer vision systems and e-noses for pests in agriculture [26].
There is an increasing interest in developing compact, portable, and low-cost e-noses
for these purposes [27]. However, most of these new researches are focused only on the
detection of the variation in volatile compounds related to the insect presence and the
interaction between insects and plants [25,28–30], and in some researches, combining e-nose
and computer vision [26] for insect detection and identification, but so far, no attempt has
been made to separate them through comprehensive modeling on these separate processes.

This paper proposed the implementation of a newly developed e-nose comprised
of nine gas sensors described by Gonzalez Viejo et al. (2020) [31] and near-infrared spec-
troscopy (NIR) for the early detection of aphids (Rhophalosiphum padi) on wheat plants in
controlled conditions. Raw data from the e-nose and NIR were used as inputs for machine
learning algorithms to develop different classification models to detect insect’s presence at
different phenological stages and regression models to predict the number of insects and
physiological responses of plants based on gas-exchange measurements. Furthermore, a
deployment system was proposed to validate these models in the field using the e-nose as a
UAV payload to test different flying altitudes for detection sensitivity purposes. The latter
system could have several advantages compared to research done so far by addressing the
gaps discussed above.

The implementation of the proposed system can be highly beneficial to growers being
able to provide high temporal and spatial resolution for more precise and targeted decision-
making. Furthermore, the deployment of this system could support not only pest detection
and management but also other agronomical activities, such as plant water status and
irrigation scheduling and the detection of other biotic and abiotic stresses.
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2. Materials and Methods

2.1. Plant and Insect Material, and Experimental Design Description

Wheat seeds of Kittyhawk variety (Pacific Seeds, Toowoomba, QLD, Australia) were
surface sterilized with 0.8% sodium hypochlorite and were pre-germinated in the dark at
4 ◦C for 48 h, followed by lit conditions (17–25 ◦C) for 72 h. The germinated seeds were
transferred individually to Jiffy-7® pellets (Jiffy Products S.L. (Private) Ltd., Mirigama, Sri
Lanka). The seedlings were further grown to a two-leaf stage (GS12) prior to transplanting
in pots.

The plants were grown in a non-circulating passive hydroponic method based on
Kratky [32]. The wheat seedlings were transplanted into 3 Li (190 mm × 170 mm) hy-
droponic pots (Anti-Spiral Pot, Garden City Plastics, Dandenong South, VIC, Australia)
filled with expanded clay pebbles (CANNA Aqua Clay Pebbles, Subiaco, WA, Australia)
as substrate, with three seedlings placed equidistant in each pot. Duplicate pots were
placed in a black plastic tub filled with modified Hoagland nutrient solution [33] up to root
submergence level. The nutrient solutions were replaced every two weeks throughout the
experiment. Each tub of hydroponic set-up is placed inside an insect rearing tent (Bug-
Dorm, Australian Entomological Supplies Pty., Ltd., South Murwillumbah, NSW, Australia)
constructed with nylon mesh with 160 μm aperture. The plants were maintained inside a
growth room (Biosciences Glasshouse Complex, The University of Melbourne, Parkville,
VIC, Australia) with 16 h daylight/8 h night and 20–25 ◦C controlled automatically.

Oat aphids (Rhophalosiphum padi) were obtained from laboratory cultures of Pest
& Environmental Adaptation Research Group, School of Biosciences, The University of
Melbourne, Australia. The starting colony was allowed to reproduce for population
increase in a rearing tent supplied with wheat plants (in a similar hydroponic set-up
described above). Adult R. padi were randomly selected from the colony plants and
introduced into the experimental plants, approximately at stem elongation stage with third
leaf emerged (GS32). Three treatments were determined based on the economic threshold
for winter cereals which is an average of 15 aphids per tiller on 50% of tillers [34]: high
load (15 aphids per tiller in 50% of tillers), medium load (10 aphids per tiller in 50% of
tillers), and low aphid load (5 aphids per tiller in 50% of tillers). The aphids were carefully
transferred into the wheat plants with a fine natural bristle brush. For simplicity, days
referred in models developed correspond to days after infestation at the wheat phenological
stage GS32.

A total of eight experimental set-ups were made with duplicate set-ups for each
treatment (low, medium, and high aphid load) and two aphid-free set-ups as controls. Each
experimental set-up was composed of one insect rearing tent, containing two pots with
each pot planted with three wheat plants, maintained in hydroponics as described above
and shown in Figure 1. These were randomly arranged inside the growth room.

Insect population models (adults) were developed using initial insect infestations
and exponential growth models applicable to sigmoidal population insect growth [35,36].
Curves were adjusted by image analysis and manual insect counting per leaf, and extrapo-
lation per plant in the middle and end of the experiment to account for insect mortality
(data not shown).

2.2. Physiological Measurements

Plant physiological parameters such as stomatal conductance (gs; mol H2O m−2 s−1),
transpiration (E; mmol H2O m−2 s−1), and photosynthesis (A; μmol CO2 m−2 s−1) were
measured using a Li-6400 XT open gas exchange system (Li-Cor Inc., Environmental Sci-
ences, Lincoln, NE, USA). Measurements were made on the youngest fully expanded leaves,
repeated three times in different tillers of each plant (n = 18 per tent; n = 36 per treatment).
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Figure 1. Wheat plants were grown in non-circulating passive hydroponic system (left) and contained
in insect rearing tents (right).

2.3. Near-Infrared Spectroscopy Measurements

A single leaf of each wheat plant (three per pot and six leaves per tent) was measured
on six different spots (n = 36 per tent; n = 72 per treatment) using a handheld near-infrared
(NIR) spectroscopy device (MicroPHAZIR™ RX; Thermo Fisher Scientific, Waltham, MA,
USA). This device measures the absorbance values within the 1596–2396 nm wavelength
range. A blank reference was used as background to calibrate the device every 10 mea-
surements and was placed on the top of the leaf while measuring to avoid recording noise
from the environment (Figure 2). The raw absorbance values were used for all analyses
presented in this study.

 
Figure 2. Photosynthetic gas exchange (left) and near-infrared (right) devices while taking measurements.
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2.4. Electronic Nose Measurements

A portable and low-cost electronic nose (e-nose) developed by the Digital Agri-
culture Food and Wine Group and the Department of Electrical and Electronic Engi-
neering from The University of Melbourne was used to assess volatile compounds pro-
duced by the control plants and treatments with aphids. This e-nose consists of an ar-
ray of nine sensors sensitive to different gases: (i) MQ3 (alcohol), (ii) MQ4 (methane:
CH4), (iii) MQ7 (carbon monoxide: CO), (iv) MQ8 (hydrogen: H2), (v) MQ135 (am-
monia/alcohol/benzene), (vi) MQ136 (hydrogen sulfide: H2S), (vii) MQ137 (ammonia),
(viii) MQ138 (benzene/alcohol/ammonia), and (ix) MG811 (carbon dioxide: CO2), as well
as a humidity and temperature sensor to measure the environment conditions (Figure 3;
Henan Hanwei Electronics Co., Ltd., Henan, China). The e-nose was calibrated for ~30 s
prior to recording each measurement to ensure all sensors reached the baseline and then
placed inside the tent on top of the plants to record data for 1.5 min; each tent was mea-
sured in triplicates. The output data (Volts) were then analyzed using a code written in
MATLAB® R2020a (Mathworks Inc., Natick, MA, USA) to extract the mean values of ten
segments from the highest peak of the curves as described by Gonzalez Viejo et al. [37].

 
(a) (b) 

 
(c) 

Figure 3. Electronic nose (e-nose) showing (a) the front part with gas sensors and their model
ID (Henan Hanwei Electronics Co., Ltd., Henan, China) and (b) the back part which holds the
humidity/temperature sensor; (c) Shows the e-nose positioning while taking measurements.
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2.5. Statistical Analysis and Machine Learning Modeling

Physiological and e-nose data were analyzed using ANOVA to assess significant
differences (p < 0.05) between samples; additionally, a Tukey honestly significant difference
(HSD) post hoc test (α = 0.05) was conducted using XLSTAT v.2020.3.1 (Addinsoft, New
York, NY, USA). These data were then analyzed for significant correlations (p < 0.05) based
on covariance using MATLAB® R2020a and represented with a matrix.

Several machine learning models based on artificial neural networks (ANN) were de-
veloped with three different purposes to (i) predict physiological data using e-nose outputs
and the infestation level (control: 0, low: 0.25, medium: 0.75, and high: 1) as inputs using
data from all treatments (Model 1), and only the baseline and control treatments (Model 2),
(ii) classify samples into the different infestation treatments (control, low, medium, and
high) using the NIR absorbance values (Models 3–7), and e-nose outputs (Models 8–12) as
inputs, and (iii) predict the number of aphids using the NIR absorbance values (Model 13)
and e-nose outputs (Model 14) as inputs. All models were constructed using a customized
code written in MATLAB® R2020a to test 17 different training algorithms in a loop and
find the best models based on accuracy and performance [38,39]. Furthermore, a neuron
trimming test (3, 5, 7, and 10 neurons) was performed to assess the most optimal number
of neurons to avoid under- or over-fitting of the models (data not shown). The regression
models (i, iii) consisted of a feedforward network with a hidden (tan-sigmoid function)
and an output (linear transfer function) layer. On the other hand, the classification models
(ii) consisted of a feedforward network with a hidden (tan-sigmoid function) and an output
(Softmax neurons) layer.

The best models to predict the physiological data (photosynthesis, stomatal conduc-
tance, transpiration) were developed using the Bayesian Regularization training algorithm
for regression modeling. For this, two models were developed: Model 1 using as inputs the
e-nose outputs and infestation level (control: 0, low: 0.25, medium: 0.75, and high: 1) from
all measurements and treatments (general model), and Model 2 using the e-nose outputs
from samples with no insects such as the baseline and control (Figure 4a). Data were
divided randomly as 70% for training and 30% for testing using a performance algorithm
based on means squared error (MSE).

Models to classify the samples into the different treatments (Figure 4b) using the NIR
absorbance values as inputs were developed using the Levenberg–Marquardt training
algorithm. One model was developed per day of measurement as Model 3 (baseline +
Day 3), Model 4 (Day 7), Model 5 (Day 10), Model 6 (Day 14), and Model 7 (Day 17) to assess
the level of infestation at different stages. Data were divided randomly as 70% for training,
15% for validation using a performance algorithm based on MSE, and 15% for testing. On
the other hand, models to classify the samples into the different treatments using the e-nose
outputs as inputs were constructed using the Bayesian Regularization training algorithm.
Same as the previous, one model was developed per day of measurements as Model 8
(baseline + Day 3), Model 9 (Day 7), Model 10 (Day 10), Model 11 (Day 14), and Model 12
(Day 17). Data were also divided randomly as 70% for training and 30% for the testing
stage using the MSE performance algorithm.

The Bayesian Regularization training algorithm produced the best models to predict
the number of aphids using the NIR absorbance values (Model 13) and e-nose outputs
(Model 14) from days 7 to 17 as inputs (Figure 4c). A random data division was used as
70% for training and 30% for testing with an MSE performance algorithm.
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(a) 

(b) 

(c) 

Figure 4. Diagrams of machine learning models based on artificial neural networks showing (a) the
structure of regression Models 1 and 2; (b) Pattern recognition Models 3 to 12, and (c) Regression
Models 13 and 14. Abbreviations: W: weights; b: bias; electronic nose sensors MQ3: alcohol; MQ4:
methane; MQ7: carbon monoxide; MQ8: hydrogen; MQ135: ammonia/alcohol/benzene; MQ136:
hydrogen sulfide; MQ137: ammonia; MQ138: benzene/alcohol/ammonia; MG811: carbon dioxide.
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For Models 3–14, six support vector machine (SVM) algorithms (i) linear, (ii) quadratic,
(iii) cubic, (iv) fine Gaussian, (v) medium Gaussian, and (vi) coarse Gaussian were also
tested to compare results with ANN and find the best models. These algorithms were run
using the Classification and Regression Learner applications in MATLAB® Statistics and
Machine Learning Toolbox 12.1. Accuracy percentage for classification and correlation
coefficient (R) and MSE for regression models were considered to compare the different
ML methods/algorithms. However, only accuracy percentage and R values are reported in
results due to their lower accuracy compared to ANN. These algorithms were not tested
for Models 1 and 2 because SVM algorithms are unable to construct multi-target models,
which makes them inefficient for further deployment.

3. Results

Table 1 shows non-significant differences (p > 0.05) between treatments for baseline
measurements of any physiological parameters. For photosynthesis, at days 10 and 17,
the control was significantly higher (p < 0.05; 12.47 and 12.57 μmol m−2 s−1, respectively)
than the infested treatments. Similarly, stomatal conductance was significantly higher for
control at days 7, 10, and 17 (0.51, 0.55, and 0.62 mol m−2 s−1, respectively). On the other
hand, transpiration was significantly higher for control in all measurement days (day 3–17)
with values within the 3.60–6.00 mmol m−2 s−1 range.

Figure 5a shows that the non-infested plants presented higher absorbance values at
Days 10–17, especially within the 1900–2000 nm range, with Day 7 being the lowest. For
the infested treatments (Figure 5b), the major overtones were also within the 1900–2000 nm
range. The lowest absorbance values were at Day 7 for all low, medium, and high treat-
ments, while the highest values were found at Day 17 for the medium and high treatments.

 
(a) (b) 

Figure 5. Near-infrared curves showing the absorbance values within the 1596–2396 nm wavelength range for (a) the control
measurements and (b) the treatments (low, medium, high infestation) measured at different dates.

Figure 6 shows there were significant differences (p < 0.05) between treatments in
all measurement days for all sensors, except for MQ4 (CH4) on Day 3, MQ136 (H2S) on
Days 3, 14, and 17, and MQ8 (H2) at Days 14 and 17. It can be observed that the highest
values were found in sensors MG811 (CO2), MQ4 (CH4), MQ3 (alcohol), and MQ7 (CO).
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Figure 7 shows that both photosynthesis and transpiration had a positive and signifi-
cant correlation (p < 0.05) with MQ3 (alcohol; r = 0.45 and r = 0.65, respectively), and MQ7
(CO; r = 0.55 and r = 0.71, respectively), and a negative correlation with number of aphids
(r = −0.44 and r = −0.59, respectively) and MQ4 (CH4; r = −0.51 and r = −0.45, respec-
tively). Similarly, stomatal conductance had a positive correlation with MQ3 (r = 0.65) and
MQ7 (r = 0.69), and a negative correlation with number of aphids (r = −0.56). Transpiration
and stomatal conductance were also positively correlated with MQ8 (H2; r = 0.43). On the
other hand, number of aphids had a positive correlation with MQ4 (r = 0.52) and a negative
correlation with MQ3, MQ7, MQ8, MQ135, MQ136, MQ137, and MQ138 with correlations
within the r = −0.56–−0.81 range.

Figure 7. Matrix showing the significant correlations (p < 0.05) between the physiological data,
number of aphids, and the electronic nose sensors. Color bar represents the negative (yellow) to
positive (blue) correlations. Numbers within the boxes denote the correlation coefficients (r).

Table 2 shows the results from the machine learning regression models to predict
physiological data (photosynthesis, stomatal conductance, and transpiration) using the
e-nose outputs and infestation level as inputs. Model 1 was constructed as a general model
using data from all treatments, and measurement days had an overall correlation coefficient
R = 0.86. It had no signs of under- or overfitting as the MSE value of the training stage
(MSE = 0.05) was lower than the testing (MSE = 0.06); however, the slope values were
medium (b = 0.76). On the other hand, Model 2, which was developed using only the data
from non-infested plants (baseline and controls), had high overall accuracy (R = 0.94) with
high slope values (b = 0.90) and no signs of under- or overfitting with training MSE = 0.02
lower than testing MSE = 0.04. The overall models are shown in Figure 8, where data
points from Model 1 (Figure 8a) are more dispersed and had 5% of outliers (216 out of 4320)
based on the 95% prediction bounds. Model 2 (Figure 8b) also presented 5% of outliers (81
out of 1620), but the slope was closer to the unity (b = 0.90). It can also be observed that for
Model 2, most of the outliers were from stomatal conductance, while in Model 1, they were
more similar for the three targets.
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Table 2. Machine learning regression models based on artificial neural networks (Bayesian Regularization) to predict
physiological data using the electronic nose outputs as inputs. Abbreviations: R: correlation coefficient; b: slope; MSE:
means squared error.

Stage Samples Observations R b
Performance

(MSE)

Model 1—General (all treatments and measurement days)—10 neurons

Training 1008 3024 0.87 0.75 0.05

Testing 432 1296 0.83 0.75 0.06

Overall 1440 4320 0.86 0.75 -

Model 2—Baseline and control—10 neurons

Training 378 1134 0.95 0.90 0.02

Testing 162 486 0.93 0.90 0.04

Overall 540 1620 0.94 0.90 -

 
(a) (b) 

Figure 8. Overall regression models to predict physiological data using (a) the electronic nose outputs and infestation level
as inputs for general data using all treatments at all measurement days and (b) using the electronic nose outputs as inputs
with the baseline and control data (non-infested). Abbreviations: R: correlation coefficient; T: targets.

Table 3 shows the results from the pattern recognition models to classify samples into
the different treatments (control, low, medium, and high) using the NIR absorbance values
as inputs. It can be observed that Model 3 was constructed using data from the baseline and
Day 3, and Model 6 was developed with data from Day 14; both had a very high overall
accuracy of 97%, being the lowest in accuracy compared to the other days of measurement.
Model 4 was developed using data from Day 7 presented a higher overall accuracy of 98%.
On the other hand, Models 5 and 7 had the highest overall accuracy (99%), with Model 5
being the best as it was constructed using a lower number of neurons (Model 5: 7 neurons;
Model 7: 10 neurons). None of the five models presented any signs of under- or overfitting,
and the MSE values of training (MSE < 0.01 for all) were lower than the validation and
testing, and the latter stages had similar MSE values.
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Table 3. Machine learning pattern recognition models based on artificial neural networks (Levenberg–
Marquardt) to classify samples into infestation treatment levels using the near-infrared absorbance
values as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error
Performance

(MSE)

Model 3—Baseline + Day 3—10 neurons

Training 404 100% 0.0% <0.01

Validation 86 88.4% 11.6% 0.05

Testing 86 88.4% 11.6% 0.05

Overall 576 96.5% 3.5% -

Model 4—Day 7—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 95.3% 4.7% 0.02

Testing 43 93.0% 7.0% 0.02

Overall 288 98.3% 1.7% -

Model 5—Day 10—7 neurons

Training 202 100% 0.0% <0.01

Validation 43 97.7% 2.3% 0.01

Testing 43 95.3% 4.7% 0.02

Overall 288 99.0% 1.0% -

Model 6—Day 14—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 90.7% 9.3% 0.05

Testing 43 86.0% 14.0% 0.04

Overall 288 96.5% 3.5% -

Model 7—Day 17—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 97.7% 2.3% 0.01

Testing 43 97.7% 2.3% 0.01

Overall 288 99.3% 0.7% -

Accuracy results for Models 3–7 using SVM were lower than those from ANN
Levenberg–Marquardt algorithm (Table 3). Results were within the following ranges:
(i) Linear SVM (Models 3–7: 56–74%), (ii) Quadratic SVM (Models 3–7: 80–95%), (iii) Cubic
SVM (Models 3–7: 90–92%, 88–98%), (iv) Fine Gaussian SVM (Models 3–7: 82–83%), (v)
Medium Gaussian SVM (Models 3–7: 58–65%), and (vi) Coarse Gaussian SVM (Models 3–7:
41–45%). As can be seen, the model with the highest accuracy was with quadratic SVM
(98%). However, this is lower than the ANN models, which presented the highest accuracy
of 99.3%.

Table 4 shows the results from the pattern recognition models to classify samples
into the different treatments (control, low, medium, and high) using the e-nose outputs
as inputs. It can be observed that Models 8, 9, and 11 were developed using data from
days 3, 7, and 14, respectively, and had very high overall accuracy (98%). Whilst Model 10
constructed with data from Day 10 presented the highest overall accuracy (99%). On the
other hand, Model 12, developed using data from the last day of measurements (Day 17),
presented high overall accuracy of 94%; however, it was the lowest compared to models
from previous days. All of the models were constructed using three neurons, and none

187



Sensors 2021, 21, 5948

of them presented signs of under- or overfitting as the MSE values of the training stage
(MSE < 0.01) were lower than the testing.

Table 4. Machine learning pattern recognition models based on artificial neural networks (Bayesian
Regularization) to classify samples into infestation treatment levels using the electronic nose outputs
as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error
Performance

(MSE)

Model 8—Baseline + Day 3—3 neurons

Training 336 99.7% 0.3% <0.01

Testing 144 95.1% 4.9% 0.02

Overall 480 98.3% 1.7% -

Model 9—Day 7—3 neurons

Training 168 100% 0.0% <0.01

Testing 72 94.4% 5.6% 0.03

Overall 240 98.3% 1.7% -

Model 10—Day 10—3 neurons

Training 168 100% 0.0% <0.01

Testing 72 97.2% 2.8% 0.01

Overall 240 99.2% 0.8% -

Model 11—Day 14—3 neurons

Training 168 98.8% 1.2% <0.01

Testing 72 97.2% 2.8% 0.02

Overall 240 98.3% 1.7% -

Model 12—Day 17—3 neurons

Training 168 97.6% 2.4% <0.01

Testing 72 86.1% 13.9% 0.06

Overall 240 94.2% 5.8% -

Accuracy results for Models 8–12 using SVM were lower than those from ANN
Bayesian Regularization algorithm (Table 4). Results were within the following ranges:
(i) Linear SVM (Models 8–12: 75–85%), (ii) Quadratic SVM (Models 8–12: 84–96%), (iii) Cubic
SVM (Models 8–12: 88–98%), (iv) Fine Gaussian SVM (Models 8–12: 89–93%), (v) Medium
Gaussian SVM (Models 8–12: 85–94%), and (vi) Coarse Gaussian SVM (Models 8–12:
72–85%). As can be observed, the model with the highest accuracy was cubic SVM (98%).
However, this was lower than the ANN models, which presented the highest accuracy
of 99.2%.

Table 5 shows the results from regression models to predict the number of aphids
using data from Days 7 to 17. It can be observed that Model 13, developed using NIR
absorbance values as inputs, had a very high overall correlation coefficient (R = 0.97). How-
ever, Model 14, constructed with the e-nose outputs as inputs, presented higher accuracy
(R = 0.99). Both models had very high overall slope values (b = 0.97), and none showed any
signs of under- or overfitting based on the performance values. From the overall models,
Model 13 (Figure 9a) had 4.98% of outliers (43 out of 864) based on the 95% prediction
bounds with the highest number of outliers due to the low infestation treatment. Similarly,
Model 14 (Figure 9b) presented 5% of outliers (36 out of 720); however, for this model, the
highest number of outliers was due to the medium infestation treatment. The difference in
the number of aphids (target) between both models relies on the samples/measurements
as NIR was measured on each plant, while e-nose was measured per tent.
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Table 5. Machine learning regression models based on artificial neural networks (Bayesian Regular-
ization) to predict the number of aphids’ data using the near-infrared absorbance values (Model 13)
and electronic nose outputs (Model 14) from Days 7 to 17 as inputs. Abbreviations: R: correlation
coefficient; b: slope; MSE: means squared error.

Stage Samples Observations R Slope
Performance

(MSE)

Model 13—NIR Day 7–Day 17—10 neurons

Training 605 605 0.99 0.97 555

Testing 259 259 0.94 0.98 3078

Overall 864 864 0.97 0.97 -

Model 14—E-Nose Day 7–Day 17—10 neurons

Training 504 504 0.99 0.98 20,014

Testing 216 216 0.98 0.94 40,125

Overall 720 720 0.99 0.97 -

(a)                                                                                                                        (b) 

Figure 9. Overall regression models to predict the number of aphids using (a) the near-infrared absorbance values and
(b) the electronic nose outputs as inputs with data from Days 7–17. Abbreviations: R: correlation coefficient; T: targets.

Correlation coefficients for Models 13 and 14 using SVM were lower than those from
ANN Bayesian Regularization algorithm (Table 5). Results from regression SVM were the
following: (i) Linear SVM (Model 13: R = 0.68; Model 14: R = 0.80), (ii) Quadratic SVM
(Model 13: R = 0.85; Model 14: R = 0.91), (iii) Cubic SVM (Model 13: R = 0.95; Model 14:
R = 0.89), (iv) Fine Gaussian SVM (Model 13: R = 0.80; Model 14: R = 0.97), (v) Medium
Gaussian SVM (Model 13: R = 0.73; Model 14: R = 0.92), and (vi) Coarse Gaussian SVM
(Model 13: R = 0.60; Model 14: R = 0.70). It can be observed that for the model developed
using NIR inputs, i.e., Model 13, the highest accuracy was with cubic SVM (R = 0.95), while
for the model developed using e-nose inputs, i.e., Model 14, the highest accuracy was
obtained with medium Gaussian SVM (R = 0.97). However, these were presented with
lower accuracies than the ANN models which presented R values of 0.97 (Model 13) and
0.99 (Model 14).
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4. Discussion

4.1. Physiological Response of Plants to Insect Infestation

Having no statistical differences in physiological data for the baseline with no insects
for all plants (Table 1) helped ascertain that those initial conditions were similar for all
the plants considered in the study, and no other stresses were present. Differences in
physiological data after the introduction of insects in different treatments followed a
variable pattern with not much difference for the photosynthetic rate (A), which is expected
since plants compensate by either maintaining or increasing in some conditions A due to
abiotic [40,41] or biotic stresses such as aphid attack [42].

In the case of stomatal conductance (gs) and transpiration, there were decreasing
values according to the level of insect infestation, which is in accordance with previous
studies, which have shown that gs is the most sensitive parameter to other stresses, such
as water stress [43,44], pathogen-based stress [45], and water stress–aphid interactions in
wheat [46].

4.2. Chemical Fingerprinting and Volatile Compounds’ Response to Insect Infestation

The NIR measurements offer a chemical fingerprint of the different leaf samples moni-
tored, including the baseline measurements (Figure 5a) and treatments (Figure 5b) for the
different days of the experimental trial. The main variations observable are in the overtones
corresponding to hydrogen peroxide (H2O2) in the range of 1596 and 1650 nm [47,48]
with similar absorbance levels for all treatments, which may explain the lower effect on
photosynthesis reductions. The overtones for water content (status) are shown in the major
peak within 1900–2000 nm (1940 nm) [49]. Furthermore, overtones of aromatic compounds
can be found in the range of the NIR instrument sensitivity, at 1660 nm, 1672 nm, and
1685 nm [50,51]. Compounds with amide functional groups are at 1920 nm, 1960–1980 nm,
2000–2050 nm, and 2110–2160 nm [51,52]. Overtones of urea, which is an important amide
compound, are found at 1990 nm, 2030 nm, and 2070 nm [51]; this was expected to be
found in the samples as it is a nitrogen component contained in fertilizers added to the
hydroponic solution, which is translocated through the plants.

In the case of e-nose (Figure 6), the baseline data were similar for plants and all tents
measured. However, some differences between tents were statistically significant, contrary
to the physiological data measured by gas exchange (Table 1). This can be explained by
the sensitivity and responsiveness of e-nose sensors (every 0.5 s), which depend on small
eddies formed in the growth chamber. Some sensors were more stable than others, such as
MQ4 for Day 3, corresponding to methane sensitivity. The differences in sensor readings
for subsequent days are expected, and it is assumed that their patterns are related to the
interaction between aphids and plants and the increased number of insects in time and
plant growth/decline, even small changes in the MG811 (CO2), which corresponds to
photosynthetic activity.

When analyzing the correlations between physiological parameters and the sensors
that compose the e-nose (Figure 7), it can be seen that, as expected, there is a positive
and direct correlation between photosynthesis, stomatal conductance, and transpiration.
On the contrary, there is an inverse correlation between physiological parameters and
the number of insects, which corresponds to the decline of the plants or response to
insect activity. Alcohol has been documented to be produced in plants as an allelopathic
response to insect infestation. However, salivary proteins from aphids are able to stop
this process when feeding on the plant sap [53,54]. The latter effect may explain the
inverse correlation between the number of insects and the MQ3 sensor response signal.
Furthermore, methane (MQ4) signal response increase may be due to activity of insects
and anaerobic digestion [55], which explains the inverse correlations with physiological
parameters and positive correlations with the number of insects. The carbon monoxide
sensor (MQ7) had a similar response as the alcohol sensor (MQ3), shown by the high
correlation coefficient (r = 0.89) and MQ8 (hydrogen). Most of the other sensors (MQ135,
MQ136, MQ137, and MQ138) had an inverse correlation with the number of insects. The
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inverse correlation between the ammonia sensors (MQ135, MQ137, and MQ138) may be
due to the capacity of aphids to assimilate ammonia into amino acids [56]. Finally, the levels
of CO2 (MG811) were not significantly affected by the interaction between insects and
plants. The correlations among the different sensors from the e-nose have been reported in
previous research [31], which explains in detail the e-nose used in this study.

4.3. Machine Learning Models Developed

The plant physiological machine learning model developed from e-nose data as inputs
and LiCOR data as targets for all plants and treatments (Figure 8a), and only control
plants (Figure 8b) showed high correlation coefficients and no signs of overfitting. As
far as authors ’ knowledge, this is the first time these models are presented, which use a
low-cost e-nose compared to an established gas exchange method for plant physiological
measurements. The LiCOR instrument has been used as a validation method for several
remote sensing techniques for other crops [57–60]. The accuracy of the models obtained
may not be surprising since both systems, LiCOR and the e-nose, measure gas exchange
in different ways. Furthermore, these models are supported by the correlations between
different sensors and physiological parameters (Figure 7). The lower correlation found in
the ML model, including all plants (R = 0.86), may be explained by the higher variability of
the data due to the interaction between plant and insect. Both models may be used to assess
the level of the effect of plant-insect interaction on physiological parameters and for further
applications to assess plant water stress [61], irrigation scheduling, and the physiological
effect of other biotic or abiotic stresses, such as salinity, other insects, plant diseases, and
environmental stress such as heatwaves, cold temperatures, and smoke contamination due
to bushfires [62].

The accuracy of classification ML models based on NIR and e-nose data as inputs
and level of insect infestation as targets was high and similar with over 94% accuracy
for all models and dates, with slightly higher accuracies for ML models based on e-nose
(Tables 3 and 4, respectively). Within the most important are Models 3 and 8, respectively,
since they can be considered for early detection only after three days of insect introduction
to the plants’ environments and the corresponding treatments in a critical and vulnerable
wheat phenological stage. In these models specifically, the baseline data from all plants were
used as control, which explained the higher number of samples (576 and 480, respectively).
Even though there was unbalanced data for the treatments as classifiers, the models were
able to recognize non-infected plants with 96.5% and 98.3%, respectively. All further
models can be used either to monitor insect activity or to verify the effectiveness of control
methods using either chemical pesticides [63], organic pesticides [64,65], and natural
predators through integrated pest management (IPM) [66,67].

4.4. Deployment Method for ML Models Developed Proposed Using UAV

One of the main advantages of creating AI models for the early detection of pests using
growth chambers is that data can be obtained in control conditions. Hence the ML models
developed do not include stresses related to other biotic or abiotic factors. The similarity of
models developed using NIR and e-nose validate the effectiveness of the low-cost instru-
mentation proposed by comparing them with more established instruments, such as NIR
spectroscopy; other studies have used, as a validation point, gas chromatography [20,22].

One advantage of the NIR models, especially for insect number detection, is that they
are based on the different patterns of chemical fingerprinting resulting from the plant-insect
interactions. Hence, this instrument can be used as a validation method to deploy the ML
models developed in this study to field conditions. NIR measurements in plant leaves take
just seconds and can be made on a grid of 10 × 10 m in a wheat field instead of visual insect
counting, which is extremely difficult and time-consuming [68,69]. The latter can also
be assessed using mathematical modeling strategies based on population models [36,70]
or through smartphone devices and machine vision [71], image analysis and machine
learning [72], and deep learning [73]. However, the e-nose model with R = 0.99 was more
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adequate, accurate, practical, and is a low cost method. Even though ANN models were
selected as best compared to SVM, the authors also have the latter models available for
deployment depending on future usage needs.

The deployment method for the e-nose proposed is as a payload for a UAV (Figure 10);
the advantage of the e-nose is that it weighs only 200 g, and power can be accessed via the
UAV. To assess the sensitivity and efficacy of the models, it is proposed to start flights at 5,
15, 20, and 50 m from the crop’s surface to test the ML models.

Figure 10. Diagram showing the proposed validation and deployment of machine learning models
developed for early detection of aphids in wheat fields using an unmanned aerial vehicle and the
e-nose as payload.

5. Conclusions

The low cost and accuracy of the models presented in this study could make the early
detection of insect infestation in crop fields feasible using the UAV system proposed. The
data and models used in this study can be used as a base for deployments in wheat fields
and validation points considering other insects of interest. Further models developed
following the phenological stages of plants can be used as testing systems for agronomical
management practices for insect control, such as chemical and organic product applications,
the introduction of natural predators, and integrated pest management tools. Furthermore,
plant physiology models based on the low-cost e-nose opens the use of models to assess
other biotic and abiotic stress effects on plants for further management practices such as
fertilization, irrigation scheduling, and the general effect of climate change and climatic
anomalies, such as heatwaves, frosts, and smoke contamination due to bushfires.
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6. Milosavljević, I.; Hoddle, C.D.; Mafra-Neto, A.; Gómez-Marco, F.; Hoddle, M.S. Use of Digital Video Cameras to Determine the

Efficacy of Two Trap Types for Capturing Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Èntomol. 2020, 113,
3028–3031. [CrossRef] [PubMed]

7. Remboski, T.B.; de Souza, W.D.; de Aguiar, M.S.; Ferreira, P.R., Jr. Identification of Fruit Fly in Intelligent Traps Using Techniques
of Digital Image Processing and Machine Learning. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
Pau, France, 9–13 April 2018; pp. 260–267.

8. Chulu, F.; Phiri, J.; Nyirenda, M.; Kabemba, M.M.; Nkunika, P.; Chiwamba, S. Developing an automatic identification and early
warning and monitoring web based system of fall army worm based on machine learning in developing countries. Zamb. ICT J.
2019, 3, 13–20. [CrossRef]

9. Barbedo, J.G.A. Detecting and Classifying Pests in Crops Using Proximal Images and Machine Learning: A Review. AI 2020, 1,
312–328. [CrossRef]
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