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Kadir Diler Alemdar, Ömer Kaya, Antonino Canale, Muhammed Yasin Çodur and Tiziana
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1. Overview of the Articles in This Special Issue

Geographic Information Systems (GIS) and Remote Sensing (RS) techniques are of
great interest for the renewable energy field. The assessment and monitoring of Renewable
Energy Sources (RESs) potential is critical in planning their high-penetration in the energy
systems. To this aim, several different measurements tools such as in-situ measurements
(cup anemometers and buoys), on-site RS tools (e.g., LIDAR and SODAR), satellite image
data and reanalysis datasets (e.g., ECMWF and MERRA) can be used.

This Special Issue aims to provide the state-of-the-art tools mentioned earlier in
different energy applications and at different scales, i.e., urban, regional, national and even
continental, for planning and policymaking of renewable scenarios. For this purpose, the
Special Issue “GIS and Remote Sensing for Renewable Energy Assessment and Maps” has
been designed and launched, intended for renewable energy engineers, GIS and platform
users, as well as planners. Among a very high number of submissions, 13 articles were
selected for acceptance and publication.

The first paper by Jie et al. [1] presents a deep convolutional neural network to
automatically extract distributed photovoltaic power stations from high-resolution RS
images automatically and efficiently. In addition, a gated fusion module was introduced
based on a semantic segmentation model with an encoder-decoder structure to address the
problem that small photovoltaic panels are challenging to identify.

The following paper by Spyridonidou et al. [2] develops an innovative sustainable
spatial energy planning framework at a national scale for identifying and prioritizing ap-
propriate, technically and economically feasible, environmentally sustainable and socially
acceptable sites for the siting of large-scale Onshore Wind Farms (OWFs) and Photovoltaic
Farms (PVFs).

The third paper in this Special Issue, by Riva Sanseverino et al. [3], estimates the
life-cycle land-use requirement for PV development to provide scientific-based evidence
for policymakers on the quantity of land required so that the land budget can be suitably
allocated.

The following paper by Bhavya Kausika and van Sark [4] focuses on atmospheric
input parameters using calibration and validation of the solar radiation model developed
in GIS where emission and transmissibility have also been investigated. The results show
that the default values of the emission and transmission model lead to underestimation or
overestimation of solar radiation.

The next paper by Coelho Vieira da Costa et al. [5] identifies existing PV solar plants
using semantic segmentation and a mosaicking approach for large image classification. The
authors compared four architectures (U-net, DeepLabv3+, Pyramid Scene Parsing Network,
and Feature Pyramid Network) with four backbones (Efficient-net-b0, Efficient-net-b7,
ResNet-50, and ResNet-101).
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The sixth paper of this Special Issue, by Alcalá et al. [6], proposes a method for
automated assessment of Small Hydro-Power (SHP) potential for a run-of-river (RoR)
scheme using GIS. Results showed that the headrace’s length represented a significant
contribution to hydro-power potential estimation.

In the next paper, Kokkos et al. [7] utilize the six-hourly data of wind speed for the
period between 2011 and 2019, as retrieved from the Copernicus Marine Environmental
Service (CMEMS), to map the Thracian Sea. This study involved descriptive statistics on
wind speed and direction data; frequency distributions of daily-mean wind speeds per wind
direction sector; total wind energy content assessment per wind speed increment and sector,
total annual wind energy production (MWh/year), wind power density, probability density
function and Weibull wind speed distribution, together with the relevant dimensionless
shape and scale parameters.

In the eighth paper, Heydari et al. [8] propose a combined forecasting model consisting
of empirical mode decomposition, fuzzy group method of data handling neural network
and grey wolf optimization algorithm. Furthermore, a combined K means and identifying
density-based local outliers was applied to detect and clean the proposed forecasting
model’s raw supervisory control and data acquisition data. As a result, the proposed model
by Heydari and et al. has higher accuracy than others in the literature and provides single
and combined forecasting models in different time-steps ahead and seasons.

The ninth paper by Vaisi and et al. [9] presents an innovative monthly thermal energy
mapping method to calculate and visualize heat demand accurately for various types
of buildings. The method includes three consecutive phases: (i) calculating energy loss,
(ii) completing a dataset that includes energy and building information, and (iii) generating
the monthly heat demand maps for the community.

In the tenth paper, Diler Alemdar et al. [10] examined how the Covid-19 pandemic
has affected Istanbul’s traffic mobility and air quality. The authors observed, visualized,
compared, and discussed the post- and pre-lockdown impact on Istanbul’s traffic mobility
and air quality. Various spatial analyses were performed in GIS with statistical data use.
Thus, the environmental effects of the pandemic could be better observed. The results
showed positive traffic mobility and air quality changes, especially in April–May. PM10,
SO2, CO, NO2 and NOx parameter values improved by 21.21%, 16.55%, 18.82%, 28.62%
and 39.99%, respectively.

Barbarelli and Nastasi [11] in the eleventh paper classify and analyze expeditious
evaluation methods to assist energy managers and system designers in dealing with tides
and tidal currents. The most straightforward methods for future work plans are evaluated
according to the geographical features of the site, which is supported by more complex and
accurate on-site measurements and modeling.

In the twelfth paper, presented by Valenzuela-Domínguez and et al. [12], a mathe-
matical model based on easy access to geographical and meteorological information to
calculate the total solar radiation on the earth’s surface is examined. The study’s results
were verified by statistical analysis and satellite estimates from the National Aeronautics
and Space Administration (NASA). This practical approach and the results obtained for
estimating solar radiation in other parts of the globe can be replicated without the need to
read the meteorological stations on-site and thus reduce the cost of deciding on the location
of solar energy collection equipment.

Finally, the last article presented by Quiroga-Ocaña and et al. [13] aims to calculate
and evaluate the optimal angles of inclination and azimuth for a receiver surface using a
mathematical model developed for the state of Mexico using a set of criteria. This study
aims to identify the optimal performance to achieve the maximum possible solar radiation
during the year for solar projects in the study area. The results show that this model can
be used as a tool to accelerate decision-making in the design of solar harvest surfaces and
allow the design of discrete tracking systems with an increase in solar energy harvest of
more than 5% per year.
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Abstract: Distributed photovoltaic power stations are an effective way to develop and utilize solar
energy resources. Using high-resolution remote sensing images to obtain the locations, distribution,
and areas of distributed photovoltaic power stations over a large region is important to energy
companies, government departments, and investors. In this paper, a deep convolutional neural
network was used to extract distributed photovoltaic power stations from high-resolution remote
sensing images automatically, accurately, and efficiently. Based on a semantic segmentation model
with an encoder-decoder structure, a gated fusion module was introduced to address the problem that
small photovoltaic panels are difficult to identify. Further, to solve the problems of blurred edges in the
segmentation results and that adjacent photovoltaic panels can easily be adhered, this work combines
an edge detection network and a semantic segmentation network for multi-task learning to extract the
boundaries of photovoltaic panels in a refined manner. Comparative experiments conducted on the
Duke California Solar Array data set and a self-constructed Shanghai Distributed Photovoltaic Power
Station data set show that, compared with SegNet, LinkNet, UNet, and FPN, the proposed method
obtained the highest identification accuracy on both data sets, and its F1-scores reached 84.79% and
94.03%, respectively. These results indicate that effectively combining multi-layer features with a
gated fusion module and introducing an edge detection network to refine the segmentation improves
the accuracy of distributed photovoltaic power station identification.

Keywords: distributed photovoltaic power stations; remote sensing images; convolutional neural
network; multi-layer features; edge

1. Introduction

Renewable energy is a sustainable and inexhaustible energy, including biomass energy,
wind energy, solar energy, etc., which plays an important role in solving the energy crisis. Biomass
energy can be converted into Eco-fuels, and it has been found that Eco-fuels are a sustainable energy
scenario at the local scale [1]. The main use of wind energy is to convert energy into electricity
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through wind turbines. Solar energy is a clean and safe renewable energy source (RES) with strong
development potential and application value [2]. Photovoltaic power generation is an effective way to
use solar energy [3], of which there are two main forms: Centralized photovoltaic power generation
and distributed photovoltaic power generation [4,5]. Centralized photovoltaic power stations are
installed primarily in the desert and other ground areas and the generated electricity is usually
incorporated into the national public power grid [6], while distributed photovoltaic power stations
are generally installed on tops of buildings and the generated electricity is mainly for the inhabitants’
own use [7]. Distributed photovoltaic power stations have advantages such as unlimited installed
capacity, no occupation of land resources [8], and no pollution. Thus, exploitation of distributed
photovoltaic power generation is an important solar energy development mode that has entered a stage
of rapid development and is supported by Chinese policy [9,10]. The International Energy Agency
predicts that the world’s total renewable energy generation will grow by 50% between 2019 and
2024, with solar photovoltaic generation alone accounting for nearly 60% of the prospective growth.
Distributed photovoltaic generation is expected to account for approximately half of the growth in
total photovoltaic power generation [11]. The installed capacity of distributed photovoltaic power
stations is currently growing rapidly. Consequently, the ability to accurately and efficiently acquire the
installation locations, distribution, and total area of distributed photovoltaic power stations over a wide
range is of importance to energy companies, governmental departments, and investors. For example,
obtaining information of distributed photovoltaic power stations can help optimize power system
planning [12]. The information of distributed photovoltaic power stations and solar irradiance data of
building surfaces can be combined to predict the power generation potential [13]. Moreover, it can
also support the development of open data and energy systems and facilitate the development of
the energy field [14]. However, due to the spontaneity and randomness of distributed photovoltaic
power station construction, it is difficult to obtain accurate information regarding the quantity and
distribution of distributed photovoltaic power stations solely from governmental department planning
information. In addition, distributed photovoltaic power stations are generally installed on the tops
of buildings, making it difficult to investigate their distribution and area manually. High-resolution
remote sensing imagery has the characteristics of high spatial resolution, high efficiency, and wide
coverage. Thus, it provides the possibility for automatic identification of large-scale distributed
photovoltaic power stations.

Traditional distributed photovoltaic power station identification methods rely mainly on manually
designed features, and it is difficult to accurately obtain the location and area of photovoltaic power
stations. Malof [15] pioneered the use of manual features for extracting distributed photovoltaic power
stations and proposed a method that first obtains all the maximally stable extreme regions (MSERs) [16]
from an image and then filters out the areas with low confidence. Then, color features and shape
features in the remaining candidate area are extracted for classification by a support vector machine
(SVM) [17]. However, this method does not obtain photovoltaic panel areas accurately. Later, Malof [18]
used color, texture, and other features in the neighborhood of each pixel to represent the pixel, and then
used a random forest [19] to predict the category of each pixel. However, this method also has difficulty
accurately obtaining the location and area information of photovoltaic panels. On the basis of the
research conducted by the authors of [18], Malof [20] cascaded the random forest and convolutional
neural network [21] to identify distributed photovoltaic power stations. However, this method still
relies on feature information designed by humans. In a later work, Malof [22] proposed a distributed
photovoltaic power station identification model based on a VGG model [23]. However, its ability to
accurately obtain the locations and shapes of photovoltaic panels is limited.

As deep learning technology has developed, a series of convolutional neural network (CNN)
models have been proposed [23–30]. Semantic segmentation technology based on deep learning can use
a CNN, which has strong feature-learning ability, to automatically learn object features from massive
amounts of data. Compared with earlier machine learning methods, such as SVMs and random forests,
CNNs significantly improved the object extraction accuracy. Semantic segmentation technology has
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been widely applied and developed rapidly in fields such as medical image segmentation, automatic
driving, and video segmentation. Jiang [31] used a CNN model and small data sets to extract the heart
and lungs. Zhou [32] proposed the UNet++model that has achieved high accuracy in nodule, nuclei,
and liver segmentation. In addition to 2D medical image segmentation, the 3D full convolutional neural
network can be used to realize organ segmentation in CT images [33]. Deep learning has become a robust
and effective method for medical image segmentation [34]. In the field of automatic driving, CCNet [35]
and ACFNet [36], respectively, used spatial context information and class context information to
achieve the segmentation of objects in the street scene. Gated-scnn [37] combined shape and semantic
information to extract targets on the street. In addition, in order to improve the performance of target
segmentation in automatic driving, the idea of knowledge distillation has been used to retain the
model’s high precision while reducing the computation [38]. For the video semantic segmentation
task, Paul [39] proposed an efficient video segmentation method that combines a convolutional neural
network running on the GPU with an optical stream running on the CPU. Pfeuffer [40] added recurrent
neural network into the video segmentation model to make full use of the time information of video
sequence and improved the accuracy of video segmentation. Jain [41] proposed a video segmentation
model with two input branches, which made use of the feature information of the current frame and
the context information of the previous frame. Nekrasov [42] proposed a video segmentation algorithm
without reliance on the optical flow, which further improved the efficiency of video segmentation.
In addition to the natural image domain, semantic segmentation methods based on fully convolutional
neural networks (FCN) [43] models have been widely used for object identification from remote
sensing imagery, including road extraction, building extraction, and water extraction. For example,
Zhou [44] proposed a road extraction method based on encoder-decoder structure and series-parallel
dilated convolutions. Wu [45] added attention mechanism to the model [44], which further improved
the accuracy of road extraction. Xu [46] designed a road extraction model based on DenseNet [30]
and attracted local and global attention. Gao [47] used the refined residual convolutional neural
network to extraction road in high-resolution remote sensing images. Xu [48] used deep convolutional
neural network to extract buildings and optimized the results with guided filters. Yang [49] used
DenseNet [30] and the spatial attention module to extract buildings. Huang [50] presented a residual
refinement network for building extraction that fused aerial images and LiDAR point cloud data.
Sun [51] proposed a building extraction method combining multi-scale convolutional neural network
and SVM. Yu [52] proposed a water body extraction method based on convolutional neural networks,
which used both spectral and spatial information from Landsat images Chen [53] proposed a cascade
hyperpixel segmentation and convolutional neural network classification method to extract urban
water bodies. Li [54] used fully convolutional network to extract water bodies from GeoFen-2 images
with limited training data. Some previous deep learning-based semantic segmentation methods
have been applied to the identification of distributed photovoltaic power stations. Yuan [55] was the
first to introduce an FCN model for distributed photovoltaic power station identification. However,
the adopted FCN model requires up-sampling by a large multiple, which may cause the loss of feature
information. Subsequently, SegNet [56] and UNet [57] were used to identify distributed photovoltaic
power stations [58,59]. Although the identification results of those models are superior to the results of
traditional methods, they still do not solve the problem that photovoltaic panels with small areas are
easily missed and densely installed photovoltaic panels are easily adhered.

To solve the above problems, this paper proposes a distributed photovoltaic power station
identification method that combines multi-layer features and edge detection. The main contributions
aims of this paper are as follows:

• To address the problem that small photovoltaic panels are difficult to recognize, a gated fusion
module is introduced into the encoder-decoder model to effectively fuse multi-layer features,
which improves the model’s ability to identify small photovoltaic panels.
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• To address the problem of edge blurring, a multi-task learning model that combines edge detection
and semantic segmentation is proposed to refine the edges of the segmentation results using
feature information of the target edge.

• Comparative experiments are conducted on the Duke California Solar Array data set [60] and the
Shanghai Distributed Photovoltaic Power Station data set, and the results verify the effectiveness
of the proposed method.

The remainder of this article is organized as follows. Section 2 introduces the distributed
photovoltaic power station identification model designed in this paper, including the encoder-decoder
architecture, gated fusion module, and edge detection network. Section 3 presents the experiments and
results analysis on the two data sets, including the experimental data, evaluation metrics, experimental
settings, and the experimental results. The results are analyzed and compared with those of other
methods. Finally, Section 4 concludes this paper.

2. Model Architecture and Design

The model proposed in this paper was composed of a semantic segmentation network and an
edge detection network. These 2 networks were trained in parallel for multi-task learning, as shown in
Figure 1. The semantic segmentation network was used to extract the semantic features of photovoltaic
panels, and its architecture included an encoder-decoder structure based on UNet. The encoder was
Efficientnet-B1 [61]. In the semantic segmentation network, a gated fusion module was introduced to
control the transmission of valuable information, effectively fuse multi-layer features, and improve
the ability to identify small photovoltaic panels. The edge detection network was used to extract the
edge features of the photovoltaic panels and guide the semantic segmentation network to produce
segmentation results with more refined edges to alleviate the problem of blurred and unrefined edges
in segmentation results.

Figure 1. Structure of the proposed model.

2.1. Semantic Segmentation Network with Gated Fusion Multi-Layer Features

A semantic segmentation network was used to extract the semantic features of photovoltaic
panels. Efficientnet-B1 uses an encoder, and a gated fusion module was introduced to effectively fuse
multi-layer features.

8
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2.1.1. Encoder and Decoder

This study adopted EfficientNet-B1, which has strong feature representation capabilities,
as the encoder for feature extraction. This decoder is the same as that used in the original UNet.
The Efficientnet-B1 network structure is shown in Figure 2. The basic component of Efficientnet-B1 is
the MBConv module. In the MBConv module, a 1× 1 convolution is first used to change the channels
of the input features, followed by a depth-wise convolution. Then, the channel attention mechanism
of SENet [62] is introduced, and finally, a 1 × 1 convolution is used to reduce the channels of the
feature maps.

Figure 2. Structure of EfficientNet-B1.

The original UNet encoder structure consists of 5 stages. The feature resolution at each stage is
successively changed to half of that of the previous stage through down-sampling, and the features of
each stage are fused with the corresponding decoder features through skip connections. Based on the
UNet structure, this paper adopted the output features of Stages 0, 2, 3, 5, and 7 of Efficientnet-B1 as
the 5 encoder blocks used in the encoder of our model, as shown in Figure 3, which assumes that the
size of the input image is 256× 256× 3.

Figure 3. Encoder structure in the proposed model.

The decoder is mainly used to gradually up-sample the low-resolution high-level features to
restore the original size of the input image. During the up-sampling process, the corresponding
features of the encoder and decoder are concatenated through skip connections. The decoder structure
block is shown in Figure 4. The decoding features represent the output feature of the previous decoder
block, and the encoding features represent the features passed to the corresponding decoder block
through the skip connections. First, the decoding features are up-sampled twice and then concatenated
with the encoding features on the channel dimension. The number of channels of the concatenated
features is the sum of the number of channels of the two features. After the concatenation and two
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3× 3 convolutional layers, the output features of the decoder block are obtained. The output features
of the current decoder block are the input decoding features for the next decoder block.

Figure 4. Structure of the decoder blocks.

2.1.2. Gated Fusion Module

Inspired by the research conducted by the authors of [63], a gating fusion module was introduced
to effectively fuse the multi-layer features to improve the ability to identify small photovoltaic panels.
The gating fusion module structure is shown in Figure 5. The input is the feature of the adjacent layer
of the encoder, and the features generated by the gating unit are used to measure the usefulness of the
feature at each position in the spatial dimension. This arrangement controls the transmission of useful
information and suppresses the transmission of useless information.

Figure 5. Structure of the gated fusion module.

The input to the gated fusion module consists of the features Fi from layer i and the features Fi+1

from the adjacent layer i + 1. Due to the differences in the feature sizes and the channel numbers,
Fi+1 is first up-sampled twice, and the number of channels in Fi+1 is converted to be the same as that
in Fi. Then, Fi+1 is input into the gating unit G. The output of gated fusion module is F′

i
.

The purpose of gating unit G feeds the input features into a 1× 1 convolution and then obtains
the gated features Gi through the sigmoid function, as shown in Equation (1). The gated feature
graph is used to judge the usefulness of the spatial position features of the input features. The range
of the gated feature values is [0, 1]. A value less than 0.5 (approximately 0) corresponds to useless
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feature information, whereas a value greater than 0.5 (approximately 1) corresponds to useful
feature information. The transfer of useful information and useless information is controlled by
element-by-element multiplication between the gated features and the input features of the gating unit:

Gi = σ(wi ∗ Fi), (1)

where σ is the sigmoid function, the asterisk (‘∗’) represents the convolution operation, and wi is the
weight parameter of the convolution.

The entire gated fusion module process can be defined as shown in Equation (2). For a position
(x, y), when Gi+1(x, y) is larger and Gi(x, y) is smaller, Fi+1 transmits useful information to Fi that
Fi lacks at this position. When Gi+1(x, y) is smaller or Gi(x, y) is larger, this useless information is
suppressed to reduce information redundancy:

F′i = (1 + Gi) ⊙ Fi + (1−Gi) ⊙ Gi+1 ⊙ Fi+1, (2)

where ⊙ denotes element-by-element multiplication.

2.2. Combining Edge Detection for Multi-Task Learning

The edge detection network was used to extract the edge features of photovoltaic panels.
The semantic segmentation network was trained using multi-task learning so that the network model
produced segmentation results with refined edges.

2.2.1. Edge Detection Network

Distributed photovoltaic stations have dense distribution characteristics, and the identified results
of adjacent photovoltaic panels are prone to adhesion. In this paper, edge information extracted by
the edge detection network was combined with the semantic segmentation network to ameliorate the
problem of edge blurring.

In this paper, an encoder-decoder structure was adopted in the edge detection network, as shown
in Figure 6. This is the same encoder used in semantic segmentation network for feature extraction
and feature sharing. The decoder structure of the edge detection network is also the same as that
of the semantic segmentation network. The object edge feature information is gradually obtained
through multiple up-sampling operations, and the edge feature extracted by the encoder is fused by
skip connections during the up-sampling process.

Figure 6. Structure of the edge detection network.
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2.2.2. Loss Function

In the parallel training of 2 networks, a semantic segmentation loss function and an edge
detection loss function are used to supervise the learning process for the semantic and edge features
of photovoltaic panels, respectively. The semantic segmentation network loss function is calculated
from the segmentation predictions and segmentation labels, while the edge detection loss function
is calculated from the edge predictions and edge labels. Both the semantic segmentation and edge
detection of photovoltaic power stations are binary classification tasks. In addition, compared with the
background, the segmentation labels and edge labels account for only a small proportion. To avoid
sample imbalance problems, a loss function composed of binary cross entropy (BCE) and the Dice loss
function (Dice), namely, BCE + Dice [64,65], is used in both the semantic segmentation network and
edge detection network. During training, the 2 loss functions are summed to obtain the total model
loss, as shown in the following equation:

Loss_total = Loss_seg + Loss_edge, (3)

where Loss_total is the total loss function of our proposed model, Loss_seg is the loss function of the
semantic segmentation network and Loss_edge is the loss function of the edge detection network.

The BCE loss function is shown in Equation (4). The Dice loss function is given by Equation (5).

BCE = −
1
n

n
∑

i=1

(gi × log(pi) + (1− gi) × log(1− pi)), (4)

Dice = 1−
2|G∩ P|

|G|+ |P|
= 1−

2
∑n

i=1(gi × pi)
∑n

i=1 g2
i
+
∑n

i=1 p2
i

, (5)

where n represents the number of pixels in the image, gi represents the value of the i-th pixel in the
label, pi denotes the value of the i-th pixel in the prediction result map, and G and P denote the label
and prediction result map, respectively.

3. Experimental and Result Analysis

3.1. Experimental Data

The experimental data in this study consisted of the Duke California Solar Array and Shanghai
Distributed Photovoltaic Power Station data sets.

1. Duke California Solar Array data set
This data set is currently the largest manually labelled distributed photovoltaic power station

data set, containing images and coordinate information of object boundary which can be used to
train semantic segmentation and object detection algorithms. The images in the data set are collected
by the United States Geological Survey (USGS), which uses remote sensing technology to perform
orthographic correction on images, eliminating distortions caused by camera and terrain. The image
size is 5000× 5000 pixels, the spatial resolution is 0.3 m, and each image includes three bands: Red,
green, and blue (the RGB code that is used to reproduce a broad array of colors). To ensure comparable
results, a total of 526 images from Fresno, Modesto, and Stockton were selected and split following
SolarMapper [66]. Fifty percent of the images were randomly selected to form the test set, and the
remaining 50% of images were divided into a training set and verification set at a ratio of 8:2.

Given the limited memory available on the graphics card, the original images in the training set
were clipped into 256 × 256 image blocks and the data were augmented by horizontal and vertical
mirroring and a rotation of 90 degrees. Finally, a total of 85,448 image blocks were collected for training.
During the training of the edge detection network, photovoltaic panel edge labels are needed. In this
study, the edge labels were obtained based on the semantic segmentation labels. Some sample images,
segmentation labels, and edge labels from this data set are shown in Figure 7.
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Figure 7. Samples from the Duke California Solar Array data set: (a) Image; (b) segmentation label;
(c) edge label.

2. Shanghai Distributed Photovoltaic Power Station Data Set
To verify the effectiveness of the proposed method in this paper for identifying domestically

distributed photovoltaic power stations, the Shanghai Distributed Photovoltaic Power Station data set
was constructed. The images were collected from the Songjiang and Pudong New districts in Shanghai.
The data set contains 1000 aerial images with a size of 2048× 2048 and a spatial resolution of 0.1 m and
the images include three bands: Red, green, and blue. The data set images were randomly divided
into a training set, a validation set, and a test set at a ratio of 7:1:2. The training set data were clipped
into 256 × 256 image blocks. Then, the data were augmented by horizontal and vertical mirroring
and rotations of 90, 180 and 270 degrees. Contrast transformation and brightness transformation was
carried out. Finally, a total of 55,560 image blocks were collected for training. Some sample images,
segmentation labels, and edge labels for this data set are shown in Figure 8.

Figure 8. Samples from the Shanghai Distributed Photovoltaic Power Station data set: (a) Image;
(b) segmentation label; (c) edge label.
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3.2. Evaluation Metrics

In this study, IoU, precision, recall, and F1-scores were used as evaluation metrics. The IoU is
the ratio of the intersection and union of the predicted result area and the labelled area. Precision
represents the ratio of pixels correctly predicted as positive among all pixels predicted as positive.
Recall represents the ratio of pixels correctly predicted as positive among all positive pixels. The F1 is a
metric that combines precision and recall. The four evaluation metrics are calculated as shown in the
following equations:

IoU =
TP

TP + FP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 =
2× Precision×Recall

Precision + Recall
, (9)

where TP (true positive) represents the number of pixels that are both predicted and labelled as positive
FP (false positive) represents the number of pixels that are predicted as positive but labelled as negative,
and FN (false negative) represents the number of pixels that are predicted as negative but labelled
as positive.

3.3. Experimental Setting

1. Experimental environment
The computer used in the experiments was equipped with an Ubuntu 16.04.5 LTS operating

system, an Intel (R) Xeon (R) E5-2678 v3 CPU, and two NVIDIA TITAN XP graphics cards, each with
12 GB of memory. PyTorch was used to build all the semantic segmentation models.

2. Training strategy and hyperparameter settings
All the models were trained using the Adam optimizer to help ensure a fast convergence speed.

The batch size of the input images in each training epoch was 64. The initial learning rate was 1× 10−3

and the learning rate decay adopted the cosine annealing learning rate decline strategy. The cycle was
10, and the minimum learning rate was 1× 10−5.

3.4. Experimental Results

To verify the effectiveness of the proposed method, EfficientNet-B1-UNet was considered as
the baseline network. Then, the gated fusion module and edge detection network were added
successively. The experiments used the Duke California Solar Array data set and the Shanghai
Distributed Photovoltaic Power Station data set. The experimental results on the Duke California Solar
Array data set are shown in Table 1.

Table 1. Experimental results of each improved module on the Duke California Solar Array data set (%).

Methods IoU Precision Recall F1

Effi-UNet 72.41 85.40 82.64 84.00
Effi-UNet + GFM 73.33 86.03 83.24 84.61

Effi-UNet + GFM + EDN 73.60 86.17 83.45 84.79

Effi-UNet represents UNet, which uses EfficientNet-B1 as the encoder; GFM represents the gated fusion module,
and EDN represents the edge detection network.

On the Duke California Solar Array data set, by adding the gated fusion module, the IoU of the
test set was increased from 72.41% to 73.33%, F1 was increased from 84.00% to 84.61%, and recall was
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increased from 82.64% to 83.24%. By adding the edge detection network, the IoU of the network model
was further improved from 73.33% to 73.60% and F1 was improved from 84.61% to 84.79%.

The experimental results of the Shanghai Distributed Photovoltaic Power Station data set are
shown in Table 2.

Table 2. Experimental results from successively improved models on the Shanghai distributed
photovoltaic power station data set (%).

Methods IoU Precision Recall F1

Effi-UNet 87.40 93.08 93.47 93.27
Effi-UNet + GFM 88.34 93.54 94.08 93.81

Effi-UNet + GFM + EDN 88.74 93.88 94.19 94.03

On the Shanghai Distributed Photovoltaic Power Station data set, adding the gating fusion module
increased the IoU of the test set from 87.40% to 88.34%, the F1-score from 93.27% to 93.81%, and the
recall from 93.47% to 94.08%. After adding the edge detection network, the IoU of the network model
was further improved to 88.74% and the F1-score improved to 94.03%.

The added modules improved all four evaluation metrics. This shows that the gated fusion
module and edge detection network proposed in this paper can improve the accuracy of distributed
photovoltaic panel identification tasks.

3.5. Results Analysis

1. The influence of the gating fusion module on the segmentation results
Figure 9 shows a sample image, and its segmentation results are shown both before and after

adding the gated fusion module. The first two rows of images are from the Duke California Solar
Array data set and the second two rows of images are from the Shanghai Distributed Photovoltaic
Power Station data set. The first column is the sample image, the second column is the labelled
image, and the third column shows the segmentation results of Effi-UNet. Compared with the labelled
image, the Effi-UNet results failed to detect of some small photovoltaic panels. The fourth column
shows the segmentation results of Effi-UNet + GFM, revealing that, with the help of the GFM
module, the network’s ability to identify small photovoltaic panels was improved, which verifies the
effectiveness of the module.

2. The influence of the edge detection network on the segmentation results
By extracting edge information and conducting multi-task learning of the edge detection and

segmentation networks, more refined segmentation results can be generated. In Figure 10, the first two
rows of sample images come were sourced from the Duke California Solar Array data set, while the
second two rows of sample images are were sourced from the Shanghai Distributed Photovoltaic Power
Station data set. The first column is the sample image, and the second column is the segmentation label.
The third column is the Effi-UNet + GFM segmentation results. Compared with the segmentation
label, the segmentation results of adjacent photovoltaic panels were adhered. The fourth column and
the fifth column, respectively, represent the semantic segmentation results and edge detection results
of Effi-UNet + GFM + EDN, and the sixth column is the label of edge detection. With the help of the
edge detection network, fine edge results were obtained, distinguishing adjacent photovoltaic panels
insofar as possible and alleviating the adhesion problem.
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Figure 9. Result samples before and after adding GFM: (a) Image; (b) label; (c) Effi-UNet results;
(d) Effi-UNet + GFM results.

Figure 10. Result samples before and after adding the edge detection network: (a) Image; (b) segmentation
label; (c) Effi-UNet + GFM results; (d) Effi-UNet + GFM + EDN segmentation results; (e) Effi-UNet +
GFM + EDN edge detection results; (f) edge label.
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3.6. Comparisons with Other Methods

To further verify the effectiveness of the proposed method, the identification method proposed in
this paper was compared with SegNet, LinkNet [67], UNet, and FPN [68] on the adopted two data sets.
The results and analysis are as follows.

3.6.1. Results on the Duke California Solar Array Data Set

The experimental results of each method on the test set of the Duke California Solar Array data
set are shown in Table 3. The results show that the proposed method outperformed the other methods
on all the evaluation metrics. The IoU of the proposed method in this paper reached 73.60%, and its
F1-score reached 84.79%. Moreover, the IoU of the proposed method was 6.6% better than the IoU
of SolarMapper [66]. The analysis of the results is as follows: (1) Although LinkNet, UNet, and FPN
combine features from different layers, they do not consider the differences between the high-level and
low-level features, nor do they make full use of object edge information. (2) In this paper, based on
the encoder and decoder structure network, the multi-layer features were fused effectively by the
gated fusion module, and the useful information was transferred by the gated mechanism improving
the ability to identify small photovoltaic panels. (3) Based on the semantic segmentation network,
the method in this paper combined an edge detection network for multi-task learning to ameliorate the
edge-blurring problem.

Figure 11 shows some of the experimental results of each method on the Duke California Solar
Array data set. The segmentation results in the first and second rows show that the method proposed
in this paper was better at identifying small photovoltaic panels compared with the other methods.
In the segmentation results shown in the third and fourth rows, although each method identified the
photovoltaic panel in the image, the method in this paper obtained more refined edges.

Table 3. Accuracy of each method on the Duke California Solar Array data set (%).

Methods IoU Precision Recall F1

SegNet 66.97 83.48 77.20 80.22
SolarMapper 67.00 — — —

LinkNet 69.23 83.60 80.11 81.82
UNet 70.28 83.83 81.30 82.54
FPN 71.11 84.79 81.50 83.11

Our method 73.60 86.17 83.45 84.79

3.6.2. Results on the Shanghai Distributed Photovoltaic Power Station Data Set

Table 4 shows the evaluation results of each model on the Shanghai Distributed Photovoltaic
Power Station data set, revealing that the method proposed in this paper outperformed all the other
methods on all the evaluation metrics. The IoU of the method in this paper reached 88.74%, and its
F1-score reached 94.03% Due to the encoder-decoder structure, the method proposed in this paper
effectively fused features from multiple layers, improved the ability to identify small photovoltaic
panels, and refined the segmentation edge results using the edge detection network. Therefore,
compared with the other methods, the method in this paper achieved higher accuracy.

Figure 12 shows an example of the experimental results of the proposed method and the compared
methods on the Shanghai Distributed Photovoltaic Power Station data set. As seen from the results in
the first row, the method proposed in this paper was better at identifying small photovoltaic panels,
and the identification results were more complete. In the second row, the two separate photovoltaic
panels were difficult to identify due to their small sizes. Compared with the other methods, the proposed
method not only recognized them but also obtained more refined edges in the identification results.
In the third row, multiple photovoltaic panels were close to each other, which was likely to cause
adhesion problems in the identification process. Compared with the other methods, with the help of
the edge detection network, the identification results of the method proposed in this paper had more
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refined edges and alleviated the adhesion problem. A comparison of the results in the fourth row
shows that the identification results of the proposed method had more refined edges.

Figure 11. Sample results of each method on the Duke California Solar Array data set: (a) Image;
(b) label; (c) SegNet; (d) LinkNet; (e) UNet; (f) FPN; (g) our method.

Figure 12. Sample results of each method on the Shanghai Distributed Photovoltaic Power Station data
set: (a) Image; (b) label; (c) SegNet; (d) LinkNet; (e) UNet; (f) FPN; (g) our method.
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Table 4. Accuracy of each method on the Shanghai Distributed Photovoltaic Power Station data set (%).

Methods IoU Precision Recall F1

SegNet 85.32 91.97 92.19 92.08
LinkNet 85.96 92.29 92.62 92.45

UNet 86.32 92.43 92.89 92.66
FPN 86.77 92.70 93.14 92.92

Our method 88.74 93.88 94.19 94.03

4. Conclusions

This paper presented a novel fully connected convolutional neural network model that
can automatically extract distributed photovoltaic power stations from remote sensing imagery.
A distributed photovoltaic power station identification method that combines multi-layer features and
edge detection was proposed to solve two problems: That small photovoltaic panels are difficult to
identify and that adjacent photovoltaic panels can easily adhere. The model structure was composed
of a semantic segmentation network and an edge detection network. A gated fusion module was
introduced into the semantic segmentation network to conduct effective multi-layer feature fusion,
and an edge detection network was used to guide the production of segmentation results with
refined edges. Experiments on the Duke California Solar Array data set and the Shanghai Distributed
Photovoltaic Power Station data set showed that the problem of missed small photovoltaic panels
was improved and that the identification accuracy was enhanced by introducing a gating fusion
module. By combining the edge detection network and semantic segmentation network for multi-task
learning, the edge information of the photovoltaic panel was used to constrain the segmentation
results, resulting in the extraction of photovoltaic panels with finer edges, which further improved the
identification accuracy. Compared with SegNet, LinkNet, UNet and FPN, the method proposed in this
paper achieved the highest identification accuracy on both data sets, and its F1-scores reached 84.79%
and 94.03%, respectively.

However, there are also some limitations in this study: (1) In terms of data source, due to the
limitations of the current data set, the trained model is only applicable to RGB optical images and cannot
be directly used to images containing more bands. (2) In terms of the spatial resolution of the image,
the training and testing of the method in this paper were carried out on the images with the same spatial
resolution. Due to the differences of solar panels in images with different resolutions, the accuracy
may be uncertain when the trained model is directly used to predict images with different resolutions.
(3) Since the training data only includes distributed photovoltaic power stations, the trained model
cannot be used to identify centralized photovoltaic power stations. The future work will be carried
out from the following aspects: (1) Explore the application of our method in multi-spectral images
and further improve the segmentation performance with more spectral information. (2) Multiple
images of different spatial resolutions will be collected to train our method so that our method can
identify distributed photovoltaic power stations in images with different resolutions. (3) A centralized
photovoltaic power station data set will be constructed, and our method will be extended to the
identification of centralized photovoltaic power stations. (4) In addition, the extracted results of
distributed photovoltaic power stations will be combined with solar radiation data to assess the power
generation potential.
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Abstract: In this work, an innovative sustainable spatial energy planning framework is developed
on national scale for identifying and prioritizing appropriate, technically and economically feasible,
environmentally sustainable as well as socially acceptable sites for the siting of large-scale onshore
Wind Farms (WFs) and Photovoltaic Farms (PVFs) in Israel. The proposed holistic framework consists
of distinctive steps allocated in two successive modules (the Planning and the Field Investigation
module), and it covers all relevant dimensions of a sustainable siting analysis (economic, social,
and environmental). It advances a collaborative and participatory planning approach by combining
spatial planning tools (Geographic Information Systems (GIS)) and multi-criteria decision-making
methods (e.g., Analytical Hierarchy Process (AHP)) with versatile participatory planning techniques
in order to consider the opinion of three different participatory groups (public, experts, and renewable
energy planners) within the site-selection processes. Moreover, it facilitates verification of GIS results
by conducting appropriate field observations. Sites of high suitability, accepted by all participatory
groups and field verified, form the final outcome of the proposed framework. The results illustrate
the existence of high suitable sites for large-scale WFs’ and PVFs’ siting and, thus, the potential
deployment of such projects towards the fulfillment of the Israeli energy targets in the near future.

Keywords: spatial energy planning; site-selection process; participatory planning; onshore wind
farms; photovoltaic farms; GIS; AHP; Borda Count; TOPSIS; Israel

1. Introduction

Environmental concerns related to reduction in greenhouse gas emissions and mitiga-
tion of climate change effects have established Renewable Energy (RE) as a mainstream
source of electricity generation globally. According to [1], by the end of 2019, the estimated
share of renewables in global electricity generation was 27.3%, while the net additional
installed capacity of RE Technologies (RETs) was higher compared to both fossil fuels and
nuclear for a fifth consecutive year. Moreover, the electricity generated from new Wind
Farms (WFs) and Photovoltaic Farms (PVFs) was more cost-efficient compared to fossil fuel
power plants in many locations worldwide [2], demonstrating the strong competitiveness
of wind and solar energy with conventional sources of electricity.

For global wind energy industry, 2019 was an outstanding year, since the new WF
installations corresponded to over 60 GW and the global cumulative wind power capacity
reached the amount of 651 GW by the end of 2019 [3]. Asia Pacific remained the world’s
largest wind energy market in 2019 followed by Europe, representing 50.7% and 25.5% of
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the global new wind installations, respectively. Developing markets, such as the Middle
East and Africa, with 1.6% of the global new wind installations, demonstrated steady,
but not significant growth during 2019 and, thus, they are currently last in the global
wind energy ranking. Regarding solar PV industry, the global PV power capacity reached
627 GW by the end of 2019, with China being currently the country with the largest capacity
(204.7 GW or 32.6% of the global cumulative PV power capacity) followed by the United
States (76 GW or 12.1% of global PV power capacity) [1]. In the Middle East, most of the
new PV installations (2 GW) were implemented in the United Arab Emirates (with some
PV projects installed in 2018, but commissioned in 2019), whereas in Israel and Jordan, the
additional PV power capacity reached 1.1 and 0.6 GW by the end of 2019, respectively [1,4].

Israel, as the most developed country in the Middle East, pledged to eliminate the
use of coal, gasoline, and diesel for energy production and transport by 2030, in favor
of renewables and natural gas [2]. In that respect, the Israeli energy targets aim at 10%
and 30% electricity generation from RE Sources (RES) by 2020 and 2030, respectively [2,5].
According to the latest available information from the Israeli Electricity Authority [6], by
the end of 2019, the cumulative PV power capacity reached 1.72 GW, which corresponds to
8.7% of the national electricity demand [4], followed by concentrated solar power capacity
(0.24 GW or 1.2% of electricity demand), biogas power capacity (0.04 GW or 0.2% of
electricity demand), and wind power capacity (0.03 GW or 0.15% of electricity demand).
Considering all the above and for facilitating the achievement of the Israeli energy targets,
it is deemed significantly important to develop a sustainable spatial energy plan for the
whole country, focusing on the potential deployment of the mature and cost-competitive
wind and PV technologies on a national scale. Such a plan would enable the efficient
determination of the most appropriate sites for the development of large-scale WFs and
PVFs, and, thus, it could set a consistent starting basis towards the production of large
amounts of electricity from RES in the country.

The appropriate site-selection for the efficient and sustainable deployment of WFs
and PVFs corresponds to an important process, which involves various environmental,
social, economic, technical, political, and legal aspects. Geographic Information Systems
(GIS) have been deployed solely or in combination with Multi-Criteria Decision-Making
(MCDM) methods within a large number of investigations related to either WFs’ [7–23] or
PVFs’ [24–40] siting, aiming to address the corresponding multidimensional siting problem.
The necessity of deploying GIS as a tool for the investigation of land suitability for single
wind turbines or for the proper PV deployment, land use management, and detailed energy
planning is also highlighted in [41] and [42], respectively. However, studies developing an
integrated methodological approach for the simultaneous determination of suitable sites
for both WFs and PVFs either at different areas for each RET (isolated WFs and PVFs) or at
common sites (colocated WFs and PVFs) are quite rare [43–46]. In particular, Ali et al. [43],
by combining GIS with the Analytical Hierarchy Process (AHP) and Local Experts’ (LEs)
opinion, investigated the existence of suitable areas for the siting of isolated WFs and PVFs
in the Songkhla Province in Thailand, and they provided important insights for the siting of
the aforementioned RETs on regional scale. A combination of GIS with AHP has been also
applied in [45] to assess the suitability of the land in South Central England for installing
isolated WFs and PVFs on regional scale. In [44], the author developed a multi-criteria
GIS-based approach for the determination of suitable areas for isolated WFs’ and PVFs’
siting in Colorado State, the United States (i.e., on regional scale). Finally, a site-selection
methodology based on the combination of GIS with AHP has been developed in [46] to
determine the most suitable sites for the siting of isolated and colocated WFs and PVFs
on regional scale and, more specifically, in Tehran, Iran. In Israel, however, there exists no
study focusing on the sustainable site-selection of WFs and/or PVFs on any spatial scale.

The present paper focuses on the development of an innovative Sustainable Spatial
Energy Planning (SSEP) methodological framework for Israel in order to identify and
prioritize on national scale appropriate, technically and economically feasible, environ-
mentally sustainable as well as socially acceptable sites for the siting of large-scale isolated
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and/or colocated onshore WFs and PVFs in the country. The proposed holistic framework
consists of distinctive steps allocated in two successive modules (the Planning and the Field
Investigation module), and it covers all relevant dimensions of a sustainable siting analysis
(social, economic, and environmental). Aiming at filling research gaps existing nowadays
in the site-selection processes of RETs, generally, the present SSEP framework advances a
collaborative and participatory planning approach by combining spatial planning tools
(GIS) and MCDM methods with versatile participatory planning techniques, in order to
consider the opinion of three different participatory groups (Local Public (LP), LEs, and
RE Planners (REPs)) within the site-selection processes. Moreover, it facilitates verification
of GIS results by conducting appropriate field observations. Initially, within the Planning
module, the required Siting Criteria (SC) for each examined RET related to economic, tech-
nical, environmental, societal, political, and legal factors are defined. All relevant spatial
data are collected and digitized and a RES database including relevant thematic maps is
developed in GIS to illustrate the spatial dimension of each SC. Suitable areas for WFs and
PVFs are, then, determined by: (i) utilizing specific SC that represent spatial constraints for
each examined RET and (ii) incorporating the LP and the LEs’ opinion in the formation of
the exclusion limits based on questionnaire surveys and suitable statistical analysis. Next,
for each examined RET, the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) is applied and three different Suitability Index (SI) maps are created by taking
into account the relevant importance of each Assessment Criterion (AC) in accordance with:
(i) the LP view and concerns, (ii) the LEs’ knowledge and experience, as well as (iii) the
REPs’ expertise. For prioritizing the AC, the social-choice method Borda Count (BC) [47] is
utilized in the case of the LP participation, while the AHP method, suitable for including
experts’ opinion in decision-making processes of RES [45], is applied for both LEs’ and
REPs’ participation. The most highly suitable sites, as obtained from the Planning module,
are, finally, further examined by performing direct field observations or by utilizing Google
Earth Pro software in case of inaccessible locations (Field Investigation module). The final
outcome of the proposed SSEP includes a set of highly suitable, accepted by LP, LEs, and
REPs, and field verified, sites for the deployment of large-scale isolated and/or colocated
onshore WFs and PVFs on national scale.

The remainder of the article is structured as follows. Section 2 briefly presents the pro-
posed SSEP framework, while in Sections 3 and 4, the Planning and the Field Investigation
module are described in detail, respectively. The results of the present paper are presented
and discussed in Section 5, while, finally, in Section 6, the concluding remarks and key
findings of this investigation are cited.

2. Overview of the Sustainable Spatial Energy Planning Framework

In order to identify the most appropriate, technically/economically feasible, environ-
mentally sustainable and socially acceptable site solutions for the deployment of large-scale
WFs and PVFs in Israel, the SSEP framework shown in Figure 1 is developed and applied.

The proposed SSEP framework corresponds to a well-structured collaborative and
participatory planning approach and it consists of six distinctive, successive steps allocated
into two modules: the Planning module and the Field Investigation module. The Planning
module aims at determining the suitability of the potential sites and it includes five steps
(Steps 1–5, Figure 1). Specifically, in Step 1, the SC are defined and all required geographic
information data are collected/digitized based on the special characteristics of the study
area (Israel), the special siting requirements of each RET, and the REPs’ expertise. Next,
in Step 2, a RES GIS database is developed for configuring and illustrating in the form of
thematic maps, the spatial dimension of each SC in a GIS environment. Step 3 follows,
which is related to the LP and LE participation within the site-selection process and, more
specifically, in the formation of the SC exclusion limits and the prioritization of the AC.
The next step (Step 4) includes the identification of appropriate sites. This is achieved by
eliminating all unsuitable areas based on specific SC and by considering the LP and the
LEs’ opinion. Finally, in Step 5, the suitability of the potential sites is determined, and three
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different SI maps are developed in accordance with: (i) LP view and concerns, (ii) LEs’
knowledge and experience as well as, (iii) REPs’ expertise. The most highly suitable sites
obtained from the Planning module, are then considered as input in the Field Investigation
module (Step 6 of the SSEP framework, Figure 1), aiming at verifying the corresponding
GIS results based on field observations. In this way, a set of highly suitable, accepted by LP,
LEs, and REPs, and field verified sites for the deployment of large-scale onshore WFs and
PVFs in Israel on national scale is obtained. This set represents the overall output of the
proposed SSEP. It is noted that the proposed framework could be implemented by a group
of REPs, which in the present investigation is assumed to include the authors of the paper.
In the following sections, the modules and the steps of the proposed SSEP framework are
described thoroughly.

Figure 1. Proposed Sustainable Spatial Energy Planning (SSEP) framework for large-scale Wind Farms’ (WFs’) and
Photovoltaic Farms’ (PVFs’) site-selection in Israel.

3. The Planning Module
3.1. Definition of SC and Data Collection/Digitization (Step 1)

In Step 1, the SC for WFs and PVFs are initially defined based on the special characteristics
and the policies of the study area, the available analog or digital geographic information data,
the special siting requirements of each RET, and the expertise of the REPs. These criteria
enable to identify and analyze spatially the environmental, economic, technical, political,
social, and legal characteristics of the study area. For each of the examined RET, eighteen
(18) SC have been taken into account, denoted hereafter as WSC for WFs and SSC for PVFs
(Table 1). Detailed description of the WSC and the SSC is given in Appendix A. All relevant
required geographic information data were collected from various sources (i.e., national
institutes, services, and official international and national digital databases providing
officially approved cartographic data), they were appropriately processed and Geographic
Information Datasets (GIDs) were finally obtained (Table 1) by deploying GIS. It is noted
that 10-year or 11-year suitable statistical analysis has been also conducted to obtain the
final data of some essential SC (e.g., SSC.1 and SSC.2).
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3.2. Development of a RES GIS Database (Step 2)

In Step 2, a RES GIS database including relevant thematic maps was developed in
GIS in order to: (a) illustrate the spatial dimension of each SC and, hence, (b) support the
implementation of the remaining SSEP steps by facilitating the assessment of the positive
or the negative spatial impact of each SC on the WFs’ and PVFs’ site-selection processes
in Israel. For this development, the national legal restrictions resulted from all existing
relevant policies [48–51] have been taken into account.

Table 1. Siting Criteria (SC), Geographic Information Datasets (GIDs), data processes, and sources employed in the present
work.

SC No. SC Name GID No. Data Process(es) Data Source(s)

WSC.1 Wind Velocity GID.1 Preprocessing [52]
SSC.1 Global Horizontal Irradiance (GHI) GID.2 Digitization [53]
SSC.2 Average Maximum Temperature GID.3 Digitization [54]

WSC.2/SSC.3 Slope of Terrain GID.4 Preprocessing [55]WSC.3/SSC.4 Elevation GID.4
WSC.4/SSC.5 Military Zones GID.5

Collection [56–58]WSC.7/SSC.8
Distance from the Existing High-Voltage

Electricity Grid
GID.5

WSC.12/SSC.13
Distance from Mineral Extraction Sites/

Quarrying
GID.5

WSC.5/SSC.6 Distance from the Existing Road Network GID.6

Collection and
Digitization [57–60]

WSC.6/SSC.7 Distance from Railways Network GID.6

WSC.10/SSC.11
Landscape Protection/Visual and Acoustic

Disturbance
GID.6

WSC.11/SSC.12 Distance from Touristic Zones GID.6
WSC.13/SSC.14 Distance from Economic Activities GID.6

WSC.14/SSC.15
Distance from Archaeological, Historical,

Cultural Areas
GID.6

WSC.8/SSC.9 Distance from Land Protected Areas, GID.7
Collection [61]WSC.17 Distance from Important Bird Areas GID.7

WSC.9/SSC.10 Distance from Civil and Military Aviation Areas GID.8 Digitization [60,62,63]

WSC.15/SSC.16 Distance from Water Areas GID.9
Collection and

Digitization
[58,60]

WSC.16/SSC.17 Distance from Coastline GID.10
Collection and

Digitization
[60,64]

WSC.18/SSC.18 Farm Minimum Required Area GID.11 Preprocessing -

3.3. Local Public and Local Experts’ Participation in the Site-Selection Processes (Step 3)

For implementing Step 3, two participatory techniques have been developed (Figure 2) in
accordance with each group (LP and LE) facilitating these two groups’ efficient involvement
within the site-selection processes and, more specifically, in Step 4 and Step 5 of the proposed
SSEP framework (Figure 1). The first technique (Figure 2a) corresponds to a public partic-
ipatory technique, and it is based on the utilization of a well-structured questionnaire,
where focus is given on essential social SC, while the AC are prioritized in accordance with
the principles of the BC method. The second one (Figure 2b) corresponds to an experts’
participatory technique. It is based on the deployment of a well-structured questionnaire,
where, contrary to the LP questionnaire, focus is given on essential economic, technical,
environmental, and political SC, while the AC are prioritized in accordance with the prin-
ciples of the AHP method. Details about these two techniques are given in the sections
that follow.
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Figure 2. Schematic view of the participatory techniques developed and applied in the present
site-selection processes for: (a) Local Public (LP) and (b) Local Experts (LEs).

3.3.1. Local Public Participation in the Site-Selection Processes

The questionnaire for the LP has been structured into four main sections. The first
section was devoted to the collection of demographic information of the participants (e.g.,
gender, age, education, and professional occupation related or not to RE), while the second
section focused on the LP opinion about the deployment of RET for electricity generation
(e.g., types of RETs that the LP recommends for the RES exploitation in Israel). The third
section of the LP questionnaire included questions related to the site-selection for both
examined RETs (i.e., exclusion limits for essential social SC, such as “the most appropriate
distance of WFs and PVFs from residential areas”). Finally, in the fourth section of the
LP questionnaire, the participants were asked to prioritize 12 AC for the deployment of
isolated WFs and PVFs based on their own different preferences. This prioritization was
achieved according to the principles of the BC method. BC represents a social choice
method that is generated by a large group of people for decision-making purposes, and
it is characterized by anonymity, neutrality, and consistency [47]. In the BC social choice
method, the participants of the decision-making issue rank the alternatives (the AC in our
case) in order of their preference. Once all the responses have been obtained, the preference
order can be determined.

In the present study, 200 fully-completed questionnaires have been obtained by the LP
from all over Israel (North, Central and South part). This geographic segmentation enabled
to investigate potential different policy orientations on the siting problem of WFs and
PVFs driven by quite different geographic locations. The results of the LP questionnaire
survey have been appropriately processed by performing statistical and correlation analysis
using the built-in tools of the SPSS software. In this way, essential insights related to the
deployment of WFs and PVFs in Israel based on the LP views and concerns have been
revealed. Moreover, the overall, among all LP participants, exclusion limits for social SC
have been obtained as well as the overall relevant importance (i.e., relevant weights) of
the AC with respect to the goal of the examined decision-making problems (siting of WFs
or PVFs).

3.3.2. Local Experts’ Participation in the Site-Selection Processes

In the case of the LEs, the relevant questionnaire has been again structured into four
main sections similar with those of the LP questionnaire. However, the questions in the
third section of the LEs’ questionnaire were related to the definition of exclusion limits
for essential economic, technical, environmental, and political SC (e.g., WSC.1, SSC.1,
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and WSC.2/SSC.3 in Table 1), while, in the fourth section of the LEs’ questionnaire, the
participants were asked to prioritize the 12 AC in accordance with the principles of the AHP
method [65,66]. In that respect, each LE performed pairwise comparisons between the AC
and quantified the relative importance of each AC with respect to the goal (siting of WFs
and PVFs) by deploying the fundamental nine point’s scale of the AHP. The corresponding
results were further processed to obtain the relative weights of the compared criteria and,
thus, to form the priority vector. The robustness of the pairwise comparisons was assessed
by calculating the consistency index and the consistency ratio [67]. The overall, among
all participating LEs, priority vector has been calculated by employing the aggregating
individual priorities technique (i.e., aggregation of all the individual priorities) [68,69],
since in the present investigation, each LE acts as an independent individual.

The LEs’ group involved in the present study consisted of 4 LEs (doctoral researchers,
senior managers, and professional engineers in RE) from universities and companies from
all over Israel, carefully selected, considering their background on the siting of WFs and/or
PVFs. These LEs quantified the exclusion limits of several essential SC and prioritized
the AC based on their own high experience, high-level of knowledge on the local climatic
conditions, and on the special characteristics of the study area, as well as the availability of
the land in Israel. It is noted that the number of LEs participated in the present work is a
bit larger compared to other previous relevant studies, where the opinion of one [23] or
two [17] or three [26] experts was taken into account.

3.4. Determination of Appropriate Sites (Step 4)

In Step 4, areas unsuitable for the siting of WFs and PVFs are identified and excluded
from further analysis. Hence, appropriate sites for the potential deployment of the afore-
mentioned RETs are, finally, determined. Unsuitable areas are identified by employing the
SC thematic maps of the RES GIS database developed in Step 2 along with the exclusion
limits of essential SC as resulted from the LP and LEs’ questionnaire surveys in Step 3. The
SC along with their siting aspect and their incompatibility zones for the case of WFs and
PVFs are shown in Tables 2 and 3, respectively. For determining unsuitable areas, two
linear geoprocessing models (one for the WFs’ and one for the PVFs’ site-selection) have
been created, edited and managed by building all required geoprocessing workflows in a
GIS environment.

Table 2. Siting Criteria (SC) and their incompatibility zones for large-scale Wind Farms’ (WFs’) site-selection.

No. Siting Criterion Siting Aspect Unsuitable Land Areas

WSC.1 Wind Velocity Economic <5.0 m/s
WSC.2 Slope of Terrain Economic/Technical >20%
WSC.3 Elevation Technical/Environmental >2000 m
WSC.4 Military Zones Political All
WSC.5 Distance from the Existing Road Network Economic/Technical/Social ≤150 m and >10,000 m
WSC.6 Distance from the Existing Railways Network Technical/Social ≤150 m

WSC.7 Distance from the Existing High-Voltage
Electricity Grid Economic/Technical ≤150 m and >30,000 m

WSC.8 Distance from Land Protected Areas Environmental ≤500 m (environmental
protected areas)

WSC.9 Distance from Civil and Military Aviation Areas Political/Technical ≤2500 m

WSC.10 Landscape Protection/Visual and Acoustic
Disturbance Social/Legal

≤1900 m (urban and
residential areas)

≤920 m (solitary residences)
WSC.11 Distance from Touristic Zones Social/Economic ≤1100 m

WSC.12 Distance from Mineral Extraction
Sites/Quarrying Technical/Restrictive ≤100 m

WSC.13 Distance from Economic Activities Social/Technical ≤500 m

WSC.14 Distance from Archaeological, Historical and
Cultural Areas Social/Political ≤1000 m (WHS)

≤500 m (rest cultural areas)
WSC.15 Distance from Water Areas Environmental/Social ≤100 m
WSC.16 Distance from Coastline Environmental/Social ≤500 m
WSC.17 Distance from Important Bird Areas Environmental ≤500 m
WSC.18 Farm Required Area Economic <2,500,000 m2
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Table 3. Siting Criteria (SC) and their incompatibility zones for large-scale Photovoltaic Farms’ (PVFs’) site-selection.

No. Siting Criterion Siting Aspect Unsuitable Land Areas

SSC.1 GHI Economic <1600 kWh/m2/year
SSC.2 Average Maximum Temperature Economic/Technical >40 ◦C
SSC.3 Slope of Terrain Economic/Technical >5%
SSC.4 Elevation Technical/Environmental >2000 m
SSC.5 Military Zones Political All
SSC.6 Distance from the Existing Road Network Economic/Technical/Social ≤150 m and >10,000 m
SSC.7 Distance from the Existing Railways Network Technical/Social ≤150 m

SSC.8
Distance from the Existing High-Voltage

Electricity Grid
Economic/Technical ≤150 m and >30,000 m

SSC.9 Distance from Land Protected Areas Environmental
≤500 m (environmental

protected areas)
SSC.10 Distance from Civil and Military Aviation Areas Political/Technical ≤1000 m

SSC.11
Landscape Protection/Visual and Acoustic

Disturbance
Social/Legal

≤800 m (urban and residential
areas)

≤120 m (solitary residences)
SSC.12 Distance from Touristic Zones Social/Economic ≤500 m

SSC.13
Distance from Mineral Extraction

Sites/Quarrying
Technical/Restrictive ≤100 m

SSC.14 Distance from Economic Activities Social/Technical
≤500 m (no buffer from

Industrial Zones)

SSC.15
Distance from Archaeological, Historical and

Cultural Areas
Social/Political

≤1000 m (WHS)
≤500 m (rest cultural areas)

SSC.16 Distance from Water Areas Environmental/Social ≤100 m
SSC.17 Distance from Coastline Environmental/Social ≤500 m
SSC.18 Farm Required Area Economic <5,000,000 m2

3.5. Determination of SI of the Appropriate Sites (Step 5)

3.5.1. Definition of AC

In order to prioritize the appropriate areas for large-scale WFs’ and PVFs’ siting, 12 AC
have been defined (hereafter called WAC and SAC for wind and solar energy exploitation,
respectively). Specifically, in the case of WFs, the appropriate areas resulting from Step 4 are
assessed and prioritized according to the following 12 WAC: wind velocity (WAC.1), slope
of terrain (WAC.2), proximity to road network (WAC.3), proximity to high-voltage electric-
ity grid (WAC.4), distance from land protected areas (WAC.5), distance from important
birds areas (WAC.6), distance from touristic zones (WAC.7), distance from archaeological,
historical, and cultural areas (WAC.8), land use (WAC.9), proximity to areas with high
population (WAC.10), wind energy potential (WAC.11), and visibility from the residential
areas (WAC.12). As for PVFs, the appropriate land areas resulting from Step 4 are assessed
and prioritized according to the following 12 SAC: GHI (SAC.1), average maximum tem-
perature (SAC.2), slope of terrain (SAC.3), proximity to road network (SAC.4), proximity to
high-voltage electricity grid (SAC.5), distance from land protected areas (SAC.6), distance
from touristic zones (SAC.7), distance from archaeological, historical, and cultural areas
(SAC.8), land use (SAC.9), proximity to areas with high population (SAC.10), solar energy
potential (SAC.11), and land aspect (SAC.12). The criteria that are introduced for the first
time in this paper as AC, are described in Appendix B.

3.5.2. Inclusion of AC Importance by Each Participatory Group

The prioritization of the AC in the WFs’ and the PVFs’ site suitability analysis was
made according to the outcome of the LP and the LEs’ questionnaire surveys (Step 3 of the
proposed SSEP framework) as previously described in Section 3.3. Additionally, to these
two groups, the relevant importance of the AC has been also quantified by the authors
of this paper (herein refereed as REPs) based on their own expertise in spatial and RE
planning. This quantification was implemented in accordance with the principles of the
AHP method as in the case of the LEs’ group. It is noted that the different backgrounds of
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the three participating groups may reflect different policy orientations of the examined RE
siting problems. Thus, the complexity of such critical planning issues can be revealed.

Based on all the above, Figure 3 shows the relevant importance (%) of the WAC and
SAC as obtained from the LP, the LEs, and the REPs. Compared to LEs and REPs, the
LP emphasizes mostly on the importance of the social and environmental aspects of the
present site-selection processes, since the results of the LP questionnaire survey led to
the largest relevant weights for WAC.10, WAC.9, WAC.12, WAC.6, and WAC.8 and for
SAC.6, SAC.10, SAC.9, and SAC.8, among all three participatory groups. At the same
time, however, the LP seems to acknowledge the importance of the existence of high wind
velocity and GHI in the potential sites, since for this group, large relevant weights have
been also obtained for WAC.1 and SAC.1. Comparing the LEs’ results with those of the
REPs, it can be concluded that REPs follow a clear technoeconomic policy orientation of the
siting issue, whereas LEs focus mostly on both economic and environmental AC. Finally,
all three participatory groups provide the smallest weight to WAC.7 and SAC.7.
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Figure 3. Relevant importance (%) of (a) Wind Assessment Criteria (WAC) and (b) Solar Assessment
Criteria (SAC) based on Local Public (LP), Local Experts’ (LEs’), and Renewable Energy Planners’
(REPs’) opinion.

3.5.3. Site Suitability Analysis

Having defined and prioritized the AC, site suitability analysis of the appropriate
sites of Step 4 is implemented. This is achieved by utilizing the TOPSIS method [70,71].
More specifically, the values of each AC are, initially, expressed into a common and
objective SI scale by deploying a 10-point suitability scale. Table 4 shows indicatively the
suitability classification of 4 essential WAC and SAC. Next, an m × n initial decision matrix
is established, where m represents the number of alternative sites and n, the number of AC.
The normalization of this matrix follows. The relative weights of the AC as obtained from
the application of the BC or the AHP method (depending upon the participatory group)
are then taken into account in order to estimate a weighted normalized decision matrix.
The prioritization of the sites and the determination of an initial SI follows. Lastly, the
10-point suitability scale is deployed to determine the final SI and the corresponding results
are incorporated in GIS for illustrating the spatial suitability allocation of the proposed
sites. In the present work, for each examined RET, three site suitability analyses have been
implemented, taking into account the opinion of each participatory group separately. In
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this way, different potential site-selection plans for the sustainable deployment of WFs and
PVFs in Israel can be realized.

Table 4. Suitability scaling of essential Wind Assessment Criteria (WAC) and Solar Assessment
Criteria (SAC).

AC
Suitability Scaling

2 4 6 8 10

WAC.1 (m/s) 5–6 6–7 7–8 8–9 >9
WAC.2 (%) - 15–20 10–15 5–10 0–5

WAC.4 (km) 20–30 15–20 10–15 5–10 0.15–5
WAC.6 (km) 0.5–1 1–2 2–3 3–4 >4

SAC.1
(kWh/m2/year)

- 1816–2026 2026–2105 2105–2187 2187–2303

SAC.2 (◦C) 28–29 27–28 26–27 25–26 <25
SAC.3 (%) - 4–5 3–4 2–3 0–2

SAC.5 (km) 20–30 15–20 10–15 5–10 0.15–5

4. The Field Investigation Module (Step 6)

In the Field Investigation module (Figure 1), the sites identified in Step 5 to have
high suitability (SI equal or higher than 6.0) for the siting of large-scale WFs and PVFs are
selected in order to verify the corresponding GIS results by performing field observations.
For achieving this, the workflow shown in Figure 4 is deployed. Initially, the precise
location of the site under investigation is determined based on the coordinates available
from the GIS results. Next, the site availability (i.e., no land use conflicts) is examined in the
field, while, moreover, the accuracy of the determined in GIS geographic boundaries of the
site is validated. The inspection of the site characteristics (e.g., land use, proximity to road
network, etc.) follows along with the identification of special site-specific characteristics,
which cannot be recognized in GIS (e.g., land occupation restrictions). Having implemented
all the above, the field data are compared with the corresponding GIS results. If these
data/results agree well, the SI calculated in the Planning module does not require any
update, the examined site is characterized as “field verified,” and it is, thus, considered as
an element of the overall output of the proposed SSEP. The opposite holds true in cases,
where the agreement between the field data and the GIS results is not adequate. It is noted
that for inaccessible locations, where direct field observations/on-site analysis cannot be
realized, Google Earth Pro software is alternatively deployed as shown in Figure 4. This
tool is also employed to verify the slope of terrain and the elevation of the examined sites.
Table 5 shows the site characteristics examined in the present investigation by direct field
observations and/or by deploying the Google Earth Pro software.

Table 5. Site characteristics examined in the present investigation within the Field Investigation
module.

Site Characteristic Field Investigation Process

Land use On-site analysis
Distance from residential areas On-site analysis and Google Earth Pro

Geographic boundaries and shape of the site On-site analysis and Google Earth Pro
Proximity to road network On-site analysis and Google Earth Pro

Slope of terrain Google Earth Pro
Elevation Google Earth Pro

Important bird areas On-site analysis
Environmental protected areas On-site analysis and Google Earth Pro

Touristic zones On-site analysis
Archaeological, historical, and cultural areas On-site analysis and Google Earth Pro

Land occupation On-site analysis and Google Earth Pro
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Figure 4. Workflow followed for the realization of the Field Investigation module (Step 6 of the
proposed SSEP).

5. Results and Discussion
5.1. Creation of SC Thematic Maps

Numerous thematic maps were created to depict the spatial dimension of SC in WFs’
and PVFs’ site-selection processes.

Indicatively, Figure 5a,b includes the thematic maps of WSC.1 (wind velocity at 100 m
height above the ground level, 10-year analysis) and of SSC.1 (GHI, 11-year analysis), re-
spectively, while the thematic maps of WSC.2/SSC.3 (slope of terrain) and of WSC.8/SSC.9
(distance from land protected areas) along with WSC.17 (distance from important bird
areas) are shown in Figure 6a,b, respectively.

Figure 5. Thematic maps of (a) Wind Velocity (WSC.1) and (b) Global Horizontal Irradiance (GHI)
(SSC.1) as defined in Table 1.
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Figure 6. Thematic maps of (a) Slope of Terrain (WSC.2/SSC.3) and (b) Distance from Land Protected
Areas (WSC.8/SSC.9) and Distance from Importance Bird Areas (WSC.17) as defined in Table 1.

5.2. Insights from the Local Public Participatory Process

LP participation in the examined WFs and PVFs site-selection processes revealed
valuable insights for the proper management of the LP prospective negative reactions to
the RETs’ deployment in the country of Israel.

As shown in Figure 7, most citizens (87.5%) supported the development of both
RETs in Israel, whereas 12.5% of the citizens participating in the LP questionnaire survey
expressed a negative attitude towards the deployment of Wind Turbines (WTs). The latter
percentage corresponds to citizens who mainly live in the Northern part of Israel, near to
either existing or planned WFs’ sites. The observed opposition against WTs was attributed
to (in descending order, Figure 7): (a) landscape and visual disturbance (LVD), (b) bird
collision and disturbance of wildlife habitat (BCDWH), (c) environmental impact (EI), (d)
lack of high wind energy potential (NHWEP) in the country, (e) acoustic disturbance (AD),
and (f) safety reasons (SR). It should be mentioned that the existing WFs in Israel do not
comply with the restrictions of the proposed in this paper SSEP. Therefore, this could
further feed their negative feelings of WFs’ deployment in Israel.

Figure 7. Local Public (LP) views (%) on Renewable Energy Technologies (RETs) per geographic segment and causes of
negative reactions towards WTs’ deployment in Israel.
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Most citizens suggested the deployment of PV projects at all construction scales
(Figure 8a). However, as shown in Figure 8b, large-scale projects were popular in the South-
ern part of Israel (55%), since they can produce larger amounts of electricity and potentially
cover the energy needs of a larger part of the population. On the other hand, small-scale
projects were popular in both North and Central Israel (48.6% and 40%, respectively), due
to low land availability in these parts of the country.
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Figure 8. Local Public (LP) preferences (%) on Photovoltaic (PV) projects: (a) per construction scale and (b) per both
construction scale and geographic segment.

Finally, the results of the LP questionnaire survey indicated that “Public Participation”
(PP) and “Appropriate Sites” (AS) correspond to two very important aspects in RETs’
site-selection processes (Figure 9). The high importance of participation highlighted in the
present investigation is also in line with previous studies, which acknowledge that PP is
crucial for the acceptance of wind energy projects [72–74].
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Figure 9. Local Public (LP) views (%) on the importance of Public Participation (PP) in the RETs’
site-selection processes and of Appropriate Sites (AS) for RETs.

5.3. Determination of Appropriate Sites

Numerous sites for WFs’ and PVFs’ deployment (203 and 1396, respectively) were
identified by superimposing the thematic maps related to exclusion criteria (Tables 3 and 4).
Wind Appropriate Sites (WAS) less than 2.5 km2 and Solar Appropriate Sites (SAS) less
than 5 km2 were further excluded from the analysis. Hence, 24 WAS of 160.80 km2 total
surface area and 87 SAS of 742 km2 total surface area were finally considered appropriate
for the potential siting of large-scale WFs and PVFs projects, respectively.

5.4. Site Suitability Analyses’ Results

Table 6 presents the results of the six site suitability analyses implemented in the last
step of the Planning module, where, the SI values are classified into three classes: low
suitability (0.01–3.99), moderate suitability (4.00–5.99), and high suitability (6.00–10.00).
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Each land SI reveals the suitability of the potential sites for the considered RETs and
visualizes their spatial allocation on the final suitability maps (Figures 10–12).

Table 6. Suitability analyses results using Geographic Information Systems (GIS) (final results of the
Planning module).

Suitability
Analysis No.

RET
Participatory

Group
Suitability Class Suitability

1 WT LP
High Suitability 2 WAS (11.12%)

Moderate Suitability 11 WAS (53.59%)
Low Suitability 11 WAS (35.29%)

2 WT LEs
High Suitability 1 WAS (7.25%)

Moderate Suitability 7 WAS (47.49%)
Low Suitability 16 WAS (45.26%)

3 WT REPs
High Suitability 2 WAS (9.73%)

Moderate Suitability 8 WAS (51.70%)
Low Suitability 14 WAS (38.57%)

4 PV LP
High Suitability 8 SAS (10.49%)

Moderate Suitability 63 SAS (72.82%)
Low Suitability 16 SAS (16.69%)

5 PV LEs
High Suitability 16 SAS (19.53%)

Moderate Suitability 54 SAS (63.29%)
Low Suitability 17 SAS (17.18%)

6 PV REPs
High Suitability 28 SAS (35.17%)

Moderate Suitability 47 SAS (51.85%)
Low Suitability 12 SAS (12.98%)

Figure 10. Suitability Index (SI) spatial allocation based on Local Public (LP) for (a) Wind Appropriate Sites (WAS) and (b)
Solar Appropriate Sites (SAS).
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Figure 11. Suitability Index (SI) spatial allocation based on Local Experts (LEs) for: (a) Wind Appropriate Sites (WAS) and
(b) Solar Appropriate Sites (SAS).

Figure 12. Suitability Index (SI) spatial allocation based on Renewable Energy Planners (REPs) for (a) Wind Appropriate
Sites (WAS) and (b) Solar Appropriate Sites (SAS).

The results of the WFs’ site suitability analyses (Table 6) demonstrate that the highest
suitability of the potential sites is obtained by considering the LP opinion (2 and 11 WAS
with high and moderate suitability, respectively). On the other hand, REPs opinion deter-
mined the potential PVFs’ sites with the highest suitability (28 and 47 SAS with high and
moderate suitability, respectively). As for the WAS and SAS spatial suitability allocation,
Figures 10–12 show the corresponding suitability maps according to LP views and concerns,
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LEs’ knowledge and experience and REPs’ expertise, respectively. It is noted that some
sites were identified suitable for the deployment of both RETs (e.g., WAS.2 and SAS.1).

Finally, Table 7 shows the WAS (SI > 6.0) and SAS (SI > 7.0) selected to be further
examined in the Field Investigation module. In this table, the area and the SI of the sites
along with the corresponding participatory group that lead to this SI are also included.

Table 7. Wind Appropriate Sites (WAS) and Solar Appropriate Sites (SAS) selected to be examined in
the Field Investigation module.

No. Participatory Group Area (km2) SI Value According to GIS

WAS.1 LP 12.32 6.32
WAS.2 LP 5.57 6.32
WAS.3 LEs, REPs 11.66 7.09, 7.54
WAS.4 REPs 3.98 6.01
SAS.1 LP, LEs 6.67 8.06, 7.20
SAS.2 LP 6.25 7.26
SAS.3 LP 7.85 7.15
SAS.4 REPs 8.66 8.18
SAS.5 REPs 5.14 7.37
SAS.6 REPs 7.99 7.33
SAS.7 REPs 5.21 7.19
SAS.8 REPs 14.04 7.18

5.5. Field Investigation Results

The further assessment of WAS.1-WAS.4 and SAS.1-SAS.2 (Table 7) within the Field
Investigation module was implemented by performing on-site analysis/direct field obser-
vations. However, for SAS.3-SAS.8 Google Earth Pro was deployed, since those sites were
not accessible. Table 8 shows the main field investigation results.

Table 8. Field investigation results.

Site No.
Main Field

Investigation
Process

Agreement between
Field Data and GIS

Results

Existence of Special
Site-Specific

Characteristics

Requirement for
SI Update

Field
Verified

Site

WAS.1 On-site analysis Very good Yes Yes No
WAS.2 On-site analysis Very good Yes Yes No
WAS.3 On-site analysis Very good Yes No Yes
WAS.4 On-site analysis Very good Yes No Yes
SAS.1 On-site analysis Very good Yes Yes No
SAS.2 On-site analysis Very good No No Yes
SAS.3 Google Earth Pro Very good Yes No Yes
SAS.4 Google Earth Pro Very good No No Yes
SAS.5 Google Earth Pro Very good No No Yes
SAS.6 Google Earth Pro Very good Yes No Yes
SAS.7 Google Earth Pro Very good No No Yes
SAS.8 Google Earth Pro Very good No No Yes

For all examined sites, GIS results were in a very good agreement with the correspond-
ing field investigation data, proving the high credibility of the present GIS site-selection
analysis. In addition, the field investigation verified the prioritization of the above sites.
The special site-specific characteristics identified, included, but not limited to, the follow-
ing: (a) land occupation restrictions, (b) indigenous villages that are unrecognized by the
Israeli government (i.e., Bedouin villages), (c) abandon and semiruined buildings, and (d)
existing PV installations (apart from large-scale projects) on SAS geographic boundaries.
The final characterization of each examined site as “field verified” was implemented by
considering the importance of the identified site-specific characteristics in terms of their
impact on the realization of the projects. Within this context, 2 WAS and 7 SAS were
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characterized as “field verified” sites having an SI as resulted from the Planning module
(Table 7) and, thus, they form the overall output of the proposed SSEP in the case of Israel.
The remaining three sites (i.e., WAS.1, WAS.2, and SAS.1) corresponding to “non-field
verified” sites, require an adequate update of their SI, since their site-specific characteristics
(e.g., land occupation restrictions and indigenous villages that are unrecognized by the
Israeli government (Bedouin villages)) have been considered to affect in a great extend the
potential deployment of large-scale WFs or PVFs.

6. Conclusions

In the present work, we develop an innovative SSEP framework to identify and
prioritize appropriate, technically and economically feasible, environmentally sustainable,
as well as socially acceptable, siting solutions of large-scale WF and PVF projects at national
scale. Spatial planning tools (GIS) and multi-criteria decision-making methods (AHP and
TOPSIS) were combined with versatile participatory planning techniques, to actively
involve three different participatory groups (LP, LEs, and REPs) into the site-selection
processes. A field investigation procedure was introduced, for the first time, to verify the
GIS suitability analysis results by performing direct field observations/on-site analysis, or
by deploying alternative tools, such as Google Earth Pro, for sites that were inaccessible.

The proposed site-selection methodological framework was applied in Israel. Thirty
criteria (SC and AC), corresponding to several economic, technical, environmental, societal,
political, and legal aspects were employed for the WFs’ and PVFs’ siting. The final outcome
of the proposed framework was the identification of two WAS (WAS.3 and WAS.4) situated
in the North Israel and seven SAS (SAS.2–SAS.8) situated in the Central and the South
Israel with high suitability for RES exploitation in Israel. The above sites were accepted by
all participatory groups and they were verified in the field. Key concluding remarks of the
present study can be summarized as follows:

• An extremely high, unexploited up to now, solar energy potential in Israel has been
highlighted.

• The citizens’ negative attitude towards the deployment of wind energy projects in
Israel may be related to the fact that the existing nowadays relevant projects in the
country do not comply with the restrictions of the proposed in this paper SSEP.

• The national RES GIS database developed in the present paper can contribute to an
accelerated development of RES in Israel.

• The involvement of different participatory groups (e.g., experts and public) into
the spatial planning process has revealed the potential to exploit the experts’ high
knowledge and valuable experience by understanding/acknowledging at the same
time the public concerns; hence, the aforementioned involvement can significantly
boost the deployment of wind and solar energy projects.

• The existence of high suitable sites for large-scale WFs’ and PVFs’ siting in Israel
illustrates that large-scale RES projects have the potential to contribute effectively
towards the fulfillment of the national energy targets in the near future.

• The results of the present paper could be further utilized within the context of creating
a national energy roadmap in Israel.

The proposed methodology includes successive modules and definite steps and can
be applied in several study areas and for various spatial planning scales. It could be
also further extended by integrating drone technologies within the Field Investigation
module in order to identify/map special site-specific characteristics and, thus, update, if
necessary, the SI calculated in GIS. Finally, an ecological impact assessment study should
accompany each proposed project in selected WAS and SAS, since the entire land of Israel
is of significant importance in terms of biological diversity.
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Appendix A

A detailed description of the SC used in the present investigation is cited below.
Wind Velocity (WSC.1): Mean wind velocity at 100 m above the ground level de-

fined according to LEs’ opinion and studies on geographic regions with relevant climatic
conditions (e.g., [11]).

GHI (SSC.1): Total amount of direct normal, diffuse horizontal, and ground-reflected
irradiance [24]. An 11-year statistical analysis (2006-2016) was conducted for 292 sites and
GIS interpolation tools were used to estimate GHI spatially on a national scale.

Average Maximum Temperature (SSC.2): The performance of the modules of PV sys-
tems declines in high temperatures [75,76]. Average maximum temperature is selected,
instead of mean temperature [e.g., 24,33,39], due to relatively high temperatures in Israel,
especially during the summer period. A 10-year statistical analysis (2009–2018) of average
maximum air temperature has been conducted for 292 sites and GIS interpolation tools
were used to estimate the average maximum temperature spatially on a national scale.

Slope of Terrain (WSC.2/SSC.3): Slope of terrain affects the project’s investment cost.
Larger slopes lead to larger installation costs.

Elevation (WSC.3/ SSC.4): Sites in high altitudes are avoided for large-scale WFs and
PVFs, since in those altitudes, rare flora and fauna species are commonly grown, while the
road and the electricity grid are frequently inadequate [77].

Military Zones (WSC.4/SSC.5): Land areas officially used by the National Army for
training and other purposes or as firing fields; thus, they cannot be considered for any
other use.

Distance from the Existing Road Network (WSC.5/SSC.6): The distance of a WF or
PVF from the existing road network could affect the construction/maintenance costs
and it could cause adverse effects (e.g., deforestation) in the environment due to road
construction [18]. A minimum distance is defined for safety and aesthetic reasons as well
as a maximum threshold for reducing associated costs and environmental concerns.
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Distance from the Railways Network (WSC.6/SSC.7): The existing railways network
and a proper buffer zone from it are excluded for safety, technical, and social reasons.

Distance from the Existing High-Voltage Electricity Grid (WSC.7/SSC.8): A proper
safety distance is defined from the national electricity grid to avoid any grid damage
during WFs’ and PVFs’ installation along with a maximum threshold from it to avoid
high construction/installation costs. Connection to the high or extra high-voltage grid
is selected, due to risks (e.g., cable destruction due to grid overloading) associated with
medium or low voltage grid [78,79].

Distance from Land Protected Areas (WSC.8/SSC.9): Appropriate distance from na-
tional environmental protected areas (i.e., nature reserves and national parks) and national
forests (if necessary) for preserving their environmental importance.

Distance from Civil and Military Aviation Areas (WSC.9/SSC.10): The operation of
WTs disturbs significantly the airports’ surveillance radar signals [43], while the glint from
PV panels can distract pilots’ vision and disturb also airports’ radars if PV panels are
located close to one another [43]. Two different safety distances have been applied from all
civil and military aviation areas (airports, airbases, public, or private airfields) in Israel.

Landscape Protection/Visual and Acoustic Disturbance (WSC.10/SSC.11): Appropri-
ate distance from residential areas and solitary residences contributing to landscape protec-
tion, visual, and acoustic disturbances avoidance and social acceptance.

Distance from Touristic Zones (WSC.11/SSC.12): Appropriate distance from touristic
sites (hotels, guesthouses and observation points, and tourist attractions) to reduce public
concerns towards wind and solar energy.

Distance from Mineral Extraction Sites/Quarrying (WSC.12/SSC.13): Appropriate
distance from land areas officially used for mineral extraction/quarrying based on their
low aesthetic value and high energy needs.

Distance from Economic Activities (WSC.13/SSC.14): Appropriate distance from land
areas officially used for industrial and commercial zones.

Distance from Archaeological, Historical, Cultural Areas (WSC.14/SSC.15): Appro-
priate distance from World Heritage Sites (WHS), nominated and protected by the United
Nations Educational, Scientific and Cultural Organization (UNESCO), archaeological mon-
uments, museums, historical places, and cultural areas to preserve their historical/cultural
importance.

Distance from Water Areas (WSC.15/SSC.16): Appropriate distance from water bod-
ies, rivers, canals, and streams.

Distance from Coastline (WSC.16/SSC.17): Appropriate distance from the coastline
according to the national legal restrictions [49].

Distance from Important Bird Areas (WSC.17): Appropriate distance from areas host-
ing a variety of significant birds for reducing the potential risk of birds’ collision on the
WTs and protecting rare birds’ species.

Farm Minimum Required Area (WSC.18/SSC.18): Minimum required area to enable
the siting of large-scale WFs and PVFs.

Appendix B

A detailed description of AC not included in the SC of Appendix A is cited below.
Land Use (WAC.9/SAC.9): Land areas corresponding to open areas, shrubs, grass

areas, meadow, vineyard, orchard, and agricultural farms. In Israel, WFs or PVFs are per-
mitted to be proposed and installed in sites currently used as agricultural farms, vineyard,
or orchard, due to the low availability of the land in the country. However, open areas are
considered here as more preferable one for WFs’ or PVFs’ siting, since no land use conflict
can be created.

Proximity to Areas with High Population (WAC.10/SAC.10): High population areas
require high amounts of electricity, especially at the peak time of domestic electricity
consumption in the study area (i.e., summer period). RETs installation near to areas with
high electricity consumption could cover the increased peak electricity demand and could
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contribute significantly to large electricity losses’ reduction and, thus, to energy supply
cost reduction.

Wind Energy Potential (WAC.11): Total amount of energy that a potential onshore
wind project could generate. The larger the WAC.11 value is, the higher the SI is for the
specific AC. For each appropriate site, WAC.11 was quantified based on: (a) the land
requirements for generating 1 MW from WTs according to the LEs’ opinion and (b) the
area factor indicating the fraction of the area that can be covered by WTs. This factor
was defined based on previous studies related to the proper micrositing configuration in
WFs [80].

Visibility from the Residential Areas (WAC.12): Distance and altitude at which an
WF can be seen from a resident with an unaided eye. Relevant visibility maps are produced
based on the elevation raster of the total surface area of Israel and they illustrate areas,
where an installed WT with total height equal to 150 m is visible or not from the residential
areas. The referred height is defined by the LEs based on the existing and future standards
of WFs in Israel. The higher the degree of visibility from the residential areas is, the lower
the SI is.

Solar Energy Potential (SAC.11): Total amount of energy that a potential PV project
could generate. The larger the SAC.11 value is, the higher the SI is for the specific AC.
For each appropriate site, SAC.11 was quantified based on: (a) the land requirements for
generating 1 MW from PV panels according to the LEs’ opinion, (b) the existing standards
and best practices of PV projects in Israel, as well as (c) the area factor, taken equal to
70% according to the maximum load occupancy of PV panels with the minimum shading
effect [35,38].

Land Aspect (SAC.12): Compass direction (e.g., Northern, Southern, or Western) that
a slope faces in the proposed site. SAC.12 is quite important for the efficiency of PV
installations, since it is directly linked with the amount of solar energy that could be
produced during the daytime [77]. The south-oriented appropriate sites receive the highest
suitability values [24,28,36].
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Abstract: Over the last 15 years, photovoltaics (PV) in Vietnam has experienced development. The
increased installed capacity of PV requires more land for installation sites as well as for manufacturing
the plants’ component and waste treatment during the plants’ decommissioning. As a developing
country, in which more than 80% of the population’s livelihood depends on agriculture, there are
concerns about the competition of land for agriculture and solar development. This paper estimates
the life-cycle land-use requirement for PV development in Vietnam, to provide the scientific-based
evidence for policy makers on the quantity of land required, so that the land budget can be suitably
allocated. The direct land-use requirement for PV ranges from 3.7 to 6.7 m2 MWh−1 year, and the
total fenced area is 7.18 to 8.16 m2 MWh−1 year. Regarding the life-cycle land use, the land occupation
is 241.85 m2a and land transformation is 16.17 m2 per MWh. Most of the required land area is for
the installation of the PV infrastructure, while the indirect land use of the background process is
inconsiderable.

Keywords: land use; life cycle thinking and photovoltaic system

1. Introduction

The achievement of the international targets on climate change set during the Paris
Climate Conference (COP21) will require a deep transition towards a decarbonized global
energy sector [1]. Renewable energy resources (RESs) are recognised as one of the optimal
options to reduce energy-related greenhouse gas (GHG) emissions [2]. According to the
International Renewable Energy Agency (IRENA) projections, the share of renewable
energy in the power sector would increase from 25% in 2017 up to 85% by 2050, mostly
through growth in solar and wind power generation [2].

The strategies implemented in the energy sector in order to mitigate climate change
could involve a trade-off among the economic sectors due to the competitive uses of limited
natural resources [3]. This is the case of land availability and the competitive use between
food and renewable energy production [4]. The exploitation of renewable energy systems,
such as photovoltaics (PV), bioenergy, etc. will involve the expansion of land devoted to
energy production [5–7].

Historically, land has been used for agriculture and food production. In line with
socio-economic development and population growth, increased demand on food will drive
the expansion of agricultural land use. According to the Food and Agriculture Organization
(FAO), feeding the global population by 2050 will require a 60% increase in food produc-
tion [7]. Food production security is a key pillar within the Sustainable Development Goal
“Zero Hunger” (SDG 2) set by the 2030 Agenda of Sustainable Development of the United
Nations which aims to end hunger and malnutrition by 2030.

Current resource use trajectories could compromise inclusiveness and sustainable
development. In this framework, the water–energy–food nexus approach is emerging as a
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systemic and integrated management of limited resources needed to achieve competing
objectives [7]. In order to support stakeholders in the resources planning, the availability
of reliable data on the resource demand in the different implemented strategies is of
paramount importance [8].

In this context, this study aims at evaluating the nexus between a significant increase
of PV energy and the land needed for the PV system installation. In order to give a reliable
estimation of the needed land, the authors apply a life-cycle approach [9–11] to assess
both direct and indirect land use related to the whole life cycle of the systems examined.
The functional unit is one MWh of solar power. The studied system boundary covers
different stages of PV life cycle from cradle (raw material extraction and PV components
manufacture) to gate (operation of PV plant and generation of solar power electricity). The
end of life phase has not been considered in this paper as the life cycle inventories of the
end-of-life treatment of PV modules are weak [12].

The case study is the Vietnam energy sector in which PV will increase from the current
5000 MWp up to 13 GWp in the near future [13]. Moreover, the competition of land for
agriculture and PV appears more strongly as the Vietnamese economy is growing. As in
many fast-developing countries, the Vietnamese economy is changing its structure from an
agriculture-based economy (46.3% of gross domestic product (GDP) in 1988 to 13.96% in
2019) to an industry-based (23.96% of GDP in 1988 to 34.49% in 2019) and a service-based
(from 29.74% of GDP in 1988 to 41.64% in 2019) economy [14].

PV has been widely proved to contribute to the GHG emissions reduction, as it
emits no carbon dioxide, methane and nitrous oxide during its operation stage [15]. Over
the whole life cycle, the GHG emissions of PV are less than one-fourth of those from
an oil-fired steam turbine plant and one-half of that from a gas-fired combined cycle
plant [16]. However, PV impacts abiotic resource consumption, freshwater ecotoxicity
and human toxicity significantly [17–19]. Considering the global expected diffusion of
the PV energy system and the potential competition for land among different economic
sectors, a deeper insight into life-cycle land use is required to support policy makers in
land resource allocation.

Several papers have studied land use for PV installation. In detail, Pimentel et al.
reported that the land requirement for PV was at 28 m2 for one MWh [20]. However, the
authors did not follow a life-cycle approach and only the land requirement for PV system
installation was accounted for and the indirect land use was not clearly mentioned.

Fthenakis and Kim conducted a review on life-cycle land requirements of different
energy generation technologies: coal, natural gas, hydroelectric, PV, wind and biomass [21].
In this study, the studied PV structures were constructed in the area with solar irradiance of
1.7–2.5 MWh m−2 year−1, 9.5–20.2% solar to electricity efficiency (module efficiency times
performance ratio). In terms of land transformation, solar power transformed a land area of
0.2 to 0.5 m2 MWh−1 [21]. A solar PV plant (SPP) with 2.4 MWh m−2 year−1 of solar irradi-
ance, at 13% module efficiency and 8% performance ratio occupied 9.9 m2 MWh−1 year [21].
Besides, indirect land impacts related to PV modules and balance-of-system (BOS), such
as inverter, transformer, mounting structures and energy for PV (e.g., fuels consumed
during transportation of the PV plants’ components), are negligible, between 22.5 and
25.9 m2 GWh−1, compared to direct land use [21].

Later on, in 2015, Aman et al. reviewed technical and environmental aspects of so-
lar systems, e.g., concentrating solar power (CSP) and PV [22]. In the paper, the land
transformation and land occupation were compared among different types of power
technologies, including coal and PV. Authors followed a life cycle approach and based
the assessment on the life cycle land use for PV system obtained by Fthenakis and Kim
(9.9 m2 MWh−1 year) [21]. In general, the land use of PV ranges from high to low, depend-
ing on the location where the PV modules are mounted [22], for example considering low
to high solar irradiance of the installation sites. While the direct land disturbed by the
solar infrastructures was estimated at 5.9 acres per MW for small PV and 7.2 acres per MW
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for large PV [22], it was not clear what was the exact amount of indirect land use due to
background processes, for example Si material extraction.

Bukhary et al. estimated and harmonized water and land use for CSP and PV technolo-
gies. The reviewed results are then incorporated into a system dynamic model to analyze
water and land availability and usage, and relevant carbon emission reduction in six
states in the USA based on their renewable portfolio standard (RPS) during 2015–2030 [23].
In term of land use, it was indicated that SPPs require an area of 18.1 × 106 m2 for
750 MW [23]. The land use for PV system was not assessed in a life cycle perspective since
its computation was based on data inferred from [24] which estimated land requirement
for PV system by including only land use for facility installation.

From the literature analysis, it was clear that only a few studies are available on the
land requirements of PV systems and that most of them did not follow a life-cycle approach.
Their focus was on the direct land use and neglected the indirect land use requirement,
except for the work of Fthenakis and Kim [21] who performed a life cycle assessment
(LCA) on a specific SPP. In addition, it is controversial on land requirements of PV, ranging
among 45 m2 MWh−1 [25]; 28 m2 MWh−1 [20]; 9.9 m2 MWh−1 year [21]; 5.9–7.2 acres per
MW [22]; and 18.1 × 106 m2 for 750 MW [23]. Considering that the land-use requirement
for PV depends on the solar irradiance and the technology efficiency, the disagreement of
land-use requirements in these studies may originate from the different solar irradiance in
the studied installation sites, as well as the applied technologies. Moreover, it should be
noted that there is a difference on approaches and scopes of the studies, for example the
inclusion of indirect land use and to what extent it is included, in both upstream (panels
and BOS manufacturing) and downstream processes (end-of-life treatment of the plants’
infrastructure). The difference on approaches and scopes of the studies would contribute
to the various results obtained.

In this context, this study will contribute to the state of the art by applying a life-cycle
approach for quantifying land use requirement of PV development by including all the
devices and all the processes needed for a PV system to deliver its function. Although
the study will provide a quantitative calculation of land area used for PV for Vietnam,
it can be used as a comparative basis of life-cycle land use requirement for PV globally.
The estimated land-use requirement for PV will support strategic land use planning, in
which the land resources are balanced and suitably allocated to sustainably exploit the
land budget and avoid the competition on land use for different socio-economic-industrial
activities including agricultural and energy production. The preliminary estimation of
the land needed for the installation of PV can be useful to identify the most suitable site
for the best layout of the plant in order to increase its efficiency and reduce costs [26].
The obtained results would not only limit for Vietnamese government but also benefit
the global policy making process in sustainably allocated limited land resources, and PV
investors and developers in economically financing the PV projects.

2. Methods and Data
2.1. Methods

The most common life-cycle approach applied for environmental impacts is LCA
methodology, which is clarified in the international standards of ISO 14040, ISO 14044 [9,10].
Life-cycle thinking (LCT) covers environmental, social and economic impacts of a prod-
uct (or service) from the natural resource extraction to the end-of-life of the product [11].
As a pillar of LCT, “LCA examines and evaluates all inputs, outputs and potential envi-
ronmental impacts of a product system over its life cycle” [10]. It is a holistic approach,
extending the traditional boundary of production stages to include upstream and down-
stream stages of material extraction and waste management along the product’s value
chain. LCA, consequently, considers the limited capacity of natural resources including
land, to meet increasing demand of human socio-economic activities, and avoids shifting
the environmental burden of one stage into other stages during the whole value chain of
the product. Examples of this approach are the inclusion of land use for mining coal for
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thermal electricity production or the consideration of land use for growing feedstock for
biofuels for energy production.

In this study, the life-cycle approach is applied by considering both the direct land use
for SPP installation and operation as well as indirect land use during background stages
e.g., raw material extraction and component production. As the rooftop solar systems
are installed on the roof of buildings, they require almost no land during installation and
operation. Moreover, the share of rooftop solar systems’ installed capacity in Vietnam
is small compared to that of SPP [13], therefore, the focus is on SPP life-cycle land use
requirements.

For direct land use requirement calculation, the study followed the method of
Bukhary et al. [23]. First, the direct land use estimate (L) of each SPP is calculated based on
the following Equation (1):

L =
P

I × SE
(1)

in which:
L: Direct land use estimate. It is the direct land area occupied by solar structure,

measured in m2 MWh−1 year.
P: packing factor (unitless). It is the ratio of land cover by the array, including land

area for the shading, to the actual land cover of the modules [23].
I: solar irradiance, measured in MWh m−2 year−1.
SE: solar to electricity efficiency (unitless). It is a product of performance ratio and

module efficiency [23].
Then, Equation (2) below is used to harmonize land use estimate of different SPPs

in Vietnam by adjusting several technical characteristics such as solar irradiance, module
efficiency, performance ratio and lifetime of the plant. Due to the differences in the solar
irradiance of the installation sites as well as the applied technologies of PV plants, the
direct land-use estimates are different among plants. The harmonized land use estimate
will provide a generalized result of land use requirement for PV in Vietnam, regardless
the technical characteristics. The harmonized solar irradiance, module efficiency and
performance ratio are assumed based on literature [23,27] and the mean value of the actual
situation in Vietnam. While the published features (land-use estimate, solar irradiance,
module efficiency and performance ratio) are the actual data of different SPPs in Vietnam.
Details of required data are discussed in the following parts.

Niharm =
Nipub Ipub × MEpub × PRpub × LTpub

Iharm × MEharm × PRharm × LTharm
(2)

in which:
Niharm: harmonized land use estimate (m2 MWh−1 year).
Nipub: land use estimate of all studied SPPs in Vietnam (m2 MWh−1 year).
Ipub: solar irradiance in installation sites (MWh m−2 year−1).
Iharm: harmonized solar irradiance, at 1.9 MWh m−2 year−1, which is the average solar

irradiance of installation sites.
MEpub: module efficiency of studied SPPs (unitless).
MEharm: harmonized module efficiency, at 0.18, which is the mean value of actual

modules’ efficiency in Vietnam.
PRpub: performance ratio of studied SPPs (unitless).
PRharm: harmonized performance ratio (unitless), at 0.8, which is based on [23].
LTpub: lifetime of studied SPPs (year).
LTharm: harmonized lifetime (year), at 30 years, which is based on [23].
The indirect land-use requirement is calculated on the basis of the secondary data

for production of components, e.g., modules and balance-of-system, and transportation
of the components to the construction sites of the PV plants, extracted from Ecoinvent 3.6
database [28]. The technologies considered include PV panels 330 kW, Inverter 100 kW,
Transformer 4500 kVA; Transformer 63 MVA; Transformer 100 kVA; Sea transportation
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by tanker, for dry goods; Road transportation >32 metric tons; and Electrical installation
of all components. The inventory data are the global average values, except for Road
transportation. The vehicle technology standard for Road transportation is Euro 4, which
is the same for the standard of road vehicle in Vietnam.

2.2. Solar Irradiance in Vietnam

The territory of Vietnam is long and narrow from the 8th to 23rd latitude of the
Northern hemisphere, within the tropical region. Consequently, the solar energy potential
in Vietnam is quite large, and feasibly exploited for the socio-economic and industrial
development of the country. However, due to the shape of the territory, the exploitation
potential of solar energy is different among regions. The national average solar irradiance
is around 4–5 kWh m−2 day−1, but it is quite low in the North and high in the South of
Vietnam [29]. From 17th latitude towards the South of Vietnam, the solar irradiance is high
and stable throughout the whole year, with difference at about 20% between the dry and
rainy seasons. The duration of sunlight is more than 12 h during days from vernal equinox
to autumnal equinox, and less than 12 h during days from autumnal equinox to vernal
equinox. The average sunny hours are between 1800–2600 h annually [29].

In general, the amount of solar radiation in Vietnam is thus relatively good. In
particular, in the Central Highlands, Southern Central and South regions, the amount
of solar irradiance is very good for developing PV systems. Table 1 presents the annual
irradiance of some provinces in Vietnam.

Table 1. Annual solar irradiance of some provinces in Vietnam. Reproduced from [30], The World
Bank Group: 2020.

Region Provinces Average Solar Irradiance (MWh m−2 year−1)

Central Highland

Kon Tum 1.74
Gia Lai 1.78

Dak Lak 1.79
Dak Nong 1.81
Lam Dong 1.80

Southern Central

Quang Ngai 1.70
Binh Dinh 1.90
Phu Yen 1.86

Khanh Hoa 1.98
Ninh Thuan 2.0
Binh Thuan 2.0

South
Vung Tau 1.86
Tay Ninh 1.91
An Giang 1.9

Average 1.9

2.3. Technical Characteristics of Photovoltaics (PV)

Solar to electricity efficiency depends on the technology and surrounding environment.
It is proportional to the performance ratio and modules’ efficiency. Performance ratio is the
ratio of alternating current electricity generated by the PV modules, taking into account
system loss, to the calculated electricity based on direct current module’s efficiency and
solar irradiance [27]. The review on the performance ratio of PV was determined to be
around 0.8 [23], which is the assumed value for harmonized SE parameter in Equation (2).
In this study, the published performance ratio is the actual figures of different SPPs in
Vietnam, ranging from 0.79 to 0.85.

Module efficiency is the percentage of solar energy converted into direct current
electricity by the modules. Module efficiency depends on the surrounding environment,
e.g., dust covered on the panel and in the atmosphere in forms of smog or air pollution.
The accumulation of dust results in efficiency loss [31,32]. It was also pointed out by
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Maghami et al. that the dust accumulation on the panel decreases both current and voltage
output, while dust in the atmosphere decreases the current output only [33]. The global
average module efficiency is around 0.19 [23]. In this study, the module efficiency are the
actual figures of different SPPs in Vietnam. These numbers range from 0.17 to 0.19. The
harmonized module efficiency is the mean value of the actual module efficiency in Vietnam,
at 0.18, which is lower than the global average.

The typical lifetime of SPP is between 30 and 60 years [16]. Review of LCA of PV plants
and solar rooftop systems assumed the lifetime to be 25 to 30 years [27]. Most of the panels’
manufacturers guarantee an efficiency of 25 years. After 25 years, the panel efficiency
reduces quickly. Therefore, the lifetime of 30 years is selected for both harmonized and
published values.

Packing factor is the ratio of the total land to the actual land cover [23]. The total
land is the area covered by the array, including the area provided to avoid shading and
maintenance activities. The actual land is the area covered by panels or mirrors [23]. The
work in [21] used different packing factors for solar power technologies, ranging from 2.1
to 5. For mono-crystalline (mono-Si) PV, the packing factor of 2.5 has been applied. In this
study, packing factors are actual figures of different SPPs in Vietnam. The packing factors
of the studied SPPs range from 1 to 1.8.

The studied SPPs include 11 SPPs in the Central Highland, 14 SPPs in the Southern
Central and seven SPPs in the South of Vietnam. They comprise commercialized SPPs
and SPPs that were approved for being connected to the grid. The total installed capacity
of these SPP is 2335 MW, most of them have an installed capacity of (or being larger
than) 50 MW; 28 out of 33 SPPs utilized the poly-crystalline (multi-Si) solar modules, with
installed capacity 1949 MW, accounting for 84% of the total installed capacity of studied
SPPs. Among the studied SPPs, there are only two SPPs installing the tracking system.
Information about the studied SPPs and applied technologies can be found in Table S1.

2.4. Inventory Data

The land-use inventories are described in land occupation and land transformation.
Land occupation describes the delay of land recovery over time, and is measured in
m2a [34], which means m2 over 30 years in this study. Land transformation describes
the change in land use, consequently causing changes in the ecosystem quality, and is
measured in m2 [34]. Land-use inventory data of the foreground process is based on the
total land use by the SPPs, or the fenced area of the power plants. This land area includes
the land occupied by the infrastructure within 30 years, and the land transformed from
other land use purposes into areas for plants’ infrastructure, internal road and green covers
within the fenced area of the power plants.

The inventory data for background processes are extracted from Ecoinvent 3.6
database [28]. The process of manufacturing PV panels is scaled from the data for 1 m2 of
panel into a piece of panel. The process of manufacturing inverter is scaled down from
the data for one piece of a 500 kW inverter into a 100 kW inverter. For the processes of
manufacturing transformers low voltage and high voltage, the data are directly taken from
Ecoinvent. For the process of manufacturing medium voltage transformer, the data is
scaled from average value of high voltage and low voltage transformer. Transportation
processes include sea transportation from the manufacturer sites (China) to the interna-
tional ports of Vietnam, and road transportation from the international ports of Vietnam
to the installation sites. Sea transportation is the global average data for transporting dry
goods by tankers. Road transportation is the European average data for transporting goods
by lorry according to the Euro 4 standard and at more than 32 metric tons. The distances
of transportation are assumed to be 3300 km for sea transportation and 200 km for road
transportation. Data of 3 kWp electrical installation is scaled up to 50 MWp electrical
installation. The inventory data for background processes are specified in Table 2.
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Table 2. Inventory data for background processes. Reproduced from [28], Ecoinvent: 2019.

Process Land Occupation (m2a) Land Transformation (m2)

Manufacturing of one piece of photovoltaic (PV) panel 330 kW 2.92 × 101 9.87
Manufacturing of one piece of inverter 100 kW 2.47 × 102 2.46 × 101

Manufacturing of one piece of transformer medium voltage 4500 kVA 3.46 × 10−3 7.66 × 10−3

Manufacturing of one piece of transformer high voltage 63 MVA 2.48 × 10−3 5.37 × 10−3

Manufacturing of one piece of transformer low voltage 100 kVA 3.16 × 10−3 6.84 × 10−3

Electrical installation 3 kWp 1.62 × 101 5.43 × 10−1

Sea transportation (tkm) 5.33 × 10−5 1.53 × 10−5

Road transportation (tkm) 9.88 × 10−3 1.90 × 10−4

3. Results and Discussion
3.1. Direct Land Use of PV in Vietnam

The direct land use estimates range from 3.7 to 7 m2 MWh−1 year. After harmoniza-
tion, the land use estimates range from 3.7 to 6.7 m2 MWh−1 year. The median value is
6.01 m2 MWh−1 year.

There is not much difference between the direct land-use requirement among vari-
ous silicon-based PV technologies, including mono-crystalline (mono-Si), poly-crystalline
(multi-Si) and panels with tracking system. The harmonized land-use estimates for PV
plants with mono-Si and multi-Si panels are around 5.6 m2 MWh−1 year. This may origi-
nate from the increasing module efficiency of multi-Si panels, which becomes closer to that
of mono-Si ones. The harmonized land-use estimates for PV plants with tracking systems
is slightly higher than those without tracking systems, at 5.9 m2 MWh−1 year.

The average land use efficiency for the fenced area of the PV plants ranges from
7.18 to 8.26 m2 MWh−1 year, which is lower than the average land use of PV, at 9.4 to
10.6 m2 MWh−1 year obtained by [23]. Table 3 presents the results obtained on the land-use
estimate of the SPPs in Vietnam.

Table 3. Harmonized land use estimates of the solar PV plants (SPPs) in Vietnam.

Technology
Direct Land Use (m2 MWh−1 year) Average Land Efficiency (Fenced Area)

(m2 MWh−1 year)Mean Median Min Max

mono-Si 5.68 6.14 3.69 6.67 7.18
multi-Si 5.63 6.01 3.81 6.53 8.04

Panels with tracking system 5.92 N/A 1 N/A N/A 8.26
1 Not available.

3.2. Life-Cycle Land-Use Requirement

The life-cycle land-use requirement for PV in Vietnam includes 241.85 m2a of land
occupation and 16.17 m2 of land transformation for one MWh of solar power over 30 years.

Most of the land area is required for the foreground process of SPPs’ infrastructure.
The indirect land use for the background of manufacturing and transportation of panels,
inverters and other components of the SPPs infrastructure to the installation sites are in-
considerable. The contribution of different processes to the life-cycle land-use requirement
is specified in Figure 1. As a matter of fact, most of panels and BOS utilized in SPPs in
Vietnam are imported from China, the indirect land use impacts from the manufacturing
and transporting of these components do not pose any environmental impacts on the local
land budget.
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Figure 1. Life-cycle land-use requirement for SPPs in Vietnam by processes.

The land occupation of 241.85 m2a represents the area of land occupied by the solar
infrastructure to generate one MWh of solar power within 30 years of operation. The land
transformation of 16.17 m2 represent the area of land needed to be transformed from the
previous situation into other purposes, e.g., constructing the SPP, manufacturing panels
and BOS, etc. As previously stated, the land occupation delays recovery whereas land
transformation causes a change in ecosystem quality. The land-use impact assessment
requires identifying the type of land use, the spatial extent, the temporal extent, and the
geographical location [34]. At the same time, other key elements need to be considered such
as function of the land, ownership of the land (co-benefits of the land for different land use
purposes), assumption on future or alternative land use and land recovery capacity [35].
This paper focuses on the land-use requirement of PV, therefore, only land areas with
specific types of land are presented (see Table 4). The land-use impact assessment is
excluded from the scope of this paper.

Table 4. Life-cycle land occupation and transformation of PV in Vietnam.

Land Use Flows Unit Value

Occupation, dump site m2a 2.03 × 10−2

Occupation, forest, intensive m2a 1.94 × 10−1

Occupation, industrial area m2a 1.50 × 10−2

Occupation, mineral extraction site m2a 1.69 × 10−2

Occupation, traffic area, rail/road embankment m2a 6.38 × 10−2

Occupation, traffic area, road network m2a 2.94 × 10−1

Occupation, unknown m2a 2.41 × 102

Occupation, water bodies, artificial m2a 2.68 × 10−2

Transformation, from annual crop, non-irrigated m2 1.13 × 10−2

Transformation, from unknown m2 8.05
Transformation, to industrial area m2 8.04

3.3. Limitations and Future Research

The water–food–energy nexus, which aims to secure the supply of these resources
by strengthening synergies and reducing trade-offs among these sectors, is vital to aim
towards sustainable developments paths. The land-use estimation of PV based on a
life-cycle perspective would avoid unnecessary land-use exploitation at global scale or
continental scale. The life-cycle perspective allows the matter to be investigated on a larger
scale than the mere national perspective.

The study sets the system boundary from cradle to gate, while the end-of-life treatment
of the PV has not been considered due to the limited availability of inventory data. The
missing evaluation of the PV end-of-life treatments is a weak point of this study as the

56



Energies 2021, 14, 861

waste treatment of panels and other components, either by landfilling, incineration or
recycle, would require a substantial area of land [36]. Different end-of-life management
options could involve different life-cycle land-use values [36]. This would open up future
research on inventory data for the end-of-life stage of PV.

The results of the study are replicable to verify the LCT approach as well as the quanti-
tative inventory of life cycle land use for PV. Although the case study limits the assessment
to the Vietnamese context (mainly for the use phase), the available datasets that describe
the life-cycle inventory of the PV systems and all the devices needed for a PV system to
deliver its function are valid globally, that makes it a representative and illustrative exam-
ple for LCA study on PV land use. Therefore, it can be used for supporting the land-use
strategic planning for PV in Vietnam as well as other countries with economic and climatic
characteristics similar to those of Vietnam, with an order of magnitude of the land-use
impact associated with a significant increase in ground-mounted PV plant installation.

4. Conclusions

The increasing demands on land for both agriculture and renewable energy devel-
opment require a clever strategy of land allocation. In this paper, a life-cycle approach
was applied to evaluate the land-use requirement for PV development in Vietnam. It is
identified that the direct land use for PV is 3.7 to 6.7 m2 MWh−1 year. The total fenced area
of a SPP would require 7.18 to 8.16 m2 MWh−1 year.

When the indirect land-use is included, the life-cycle land-use requirement includes
241.85 m2a of land occupation and 16.17 m2 of land transformation per MWh over 30 years
of lifetime. Both life-cycle land occupation and transformation mainly come from the
construction and operation processes whereas the indirect land use of background processes
is negligible.

Currently, the land budget for energy development in Vietnam is about 146.07 thou-
sand ha, which is mainly used for large hydropower plants, thermal power plants, dis-
tribution and transmission network [37]. There is no available information on the land
budget for developing PV in particular. However, considering the land area required for
one MWh of PV is 8.04 m2 MWh−1 year, the land area needed for about 5000 MWp or
4800 GWh of PV by 2019 is about 3800 ha, accounting for 3% of the total land budget for
energy development. As the government has no plan to degrow other types of power, it is
obvious that the land for PV development in the future would be transformed from land
for other purposes. The competition in land use for alternative purposes would potentially
limit the exploitation of PV in Vietnam in the near future.
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Abstract: Geographic information system (GIS) based tools have become popular for solar photo-
voltaic (PV) potential estimations, especially in urban areas. There are readily available tools for the
mapping and estimation of solar irradiation that give results with the click of a button. Although
these tools capture the complexities of the urban environment, they often miss the more important at-
mospheric parameters that determine the irradiation and potential estimations. Therefore, validation
of these models is necessary for accurate potential energy yield and capacity estimations. This paper
demonstrates the calibration and validation of the solar radiation model developed by Fu and Rich,
employed within ArcGIS, with a focus on the input atmospheric parameters, diffusivity and trans-
missivity for the Netherlands. In addition, factors affecting the model’s performance with respect
to the resolution of the input data were studied. Data were calibrated using ground measurements
from Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and validated
with the station data from Cabauw. The results show that the default model values of diffusivity and
transmissivity lead to substantial underestimation or overestimation of solar insolation. In addition,
this paper also shows that calibration can be performed at different time scales depending on the
purpose and spatial resolution of the input data.

Keywords: photovoltaic solar potential; calibration; validation; ArcGIS solar radiation; Netherlands

1. Introduction

Geographic Information System (GIS) based solar photovoltaic (PV) tools have been
developed and used increasingly in the past decade, as they provide a remote assessment
of PV siting, planning, integration and management [1]. These tools have been gaining
popularity within the public sector (general public, governments, etc.) and also the private
sector (PV installers, network operators, etc.). With increasing interest in sustainable
solar energy generation, the mapping of solar PV potential has been explored by many at
local [2,3], municipal [4,5] and regional scales [6]. At a local scale, it is easy and insightful to
assess individual buildings. This information, once generated, can be used for answering
several questions regarding the planning and siting of solar PV or solar thermal systems
and even in urban planning and policy evaluations [7,8].

Early methods for PV potential calculations used computational solar radiation models
which were either top-down or could not capture complex roof tops or probable shading
due to the surroundings [9,10]. Then, a combination of computational models and GIS
methods emerged for improving the solar irradiance calculations and for the estimation of
technical [6,11–13] and socio-economic potential [14]. GIS based algorithms, on the other
hand, help in capturing the spatio-temporal variation of solar irradiation and, consequently,
PV yields [15]. A number of solar irradiation and PV mapping tools that are currently
available and use different methodologies for rooftop PV potential analyses have been
reviewed [16–18]. These algorithms are driven by geographic data and atmospheric
parameters specific to the particular area. Most of the GIS based methods are based on some
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form of geographic data, such as satellite images, digital elevation models (DEM) [10,14,17]
or LiDAR data [19–22]. These methods use different assumptions and, hence, differ in their
accuracy and performance. Usually, the most common assumption is that every point on
the rooftop receives an equal amount of solar radiation, irrespective of the slope, orientation
and shading factors. Such assumptions often lead to inaccuracies [23]. When it comes to
preparing maps or creating PV potential tools, it is necessary that the tool is customized to
suit the geographic area, as solar irradiation and its associated weather parameters change
drastically depending on the location and time. Commonly used solar irradiance models
have been reviewed and analyzed [9,10,18]. Out of the few existing raster-based models,
the GRASS r.sun model developed by Šúri and Hofierka [24] and ESRI’s Solar Radiation
used in ArcGIS [25], developed by Fu and Rich [26], allow for integration of attributes that
vary spatially over large regions. In addition, these models also account for shadows from
surrounding buildings and trees, while allowing modeling over inclined surfaces, which is
of specific interest in the urban landscape.

For solar irradiance calculations, GRASS r.sun uses a Linke turbidity factor and beam
and diffuse radiation coefficients, which are obtained from a data bank and calculated
from decomposing global radiation measurements from a nearby weather station [27].
On the other hand, ArcGIS’s Solar Radiation uses simplified models, in addition to an
easily operable interface with high resolution geospatial graphics. In addition, in the Solar
Radiation tool, sky transmissivity and diffusivity parameters for calculation of direct and
diffuse insolation are values which can be changed via a time series; throughout the year,
every month, or within a day. Diffusivity ranges from zero to one, with typical values of
0.2–0.3 for clear sky conditions. Transmissivity also ranges from zero to one, with 0.5–0.7 for
clear skies. Note that transmissivity and diffusivity are inversely related [28]. The GRASS
r.sun is an opensource software, while ESRI’s Solar Radiation is a proprietary software.

The atmospheric parameters (Linke turbidity factor, clear-sky index, transmissivity,
etc.) can have a significant impact on the calculated annual irradiation [22,29]. These
atmospheric parameters are hard to model and customize for a particular location [24].
Using the tools without validating these variables can have a significant influence on
the final results; therefore, using parameters closer to local insolation values reduces the
variation in solar radiation estimation [20,30]. Especially, with the Solar Radiation, model
validation is necessary since the actual values cannot be defined from atmospheric data
prior to model implementation [10]. The Australian PV Institute’s (APVI) Solar Potential
Tool, developed by the University of New South Wales, uses the Solar Radiation model as
the background [31]. They used validation methods to estimate the accuracy of the APVI
tool in comparison to measurements of the output AC power of PV systems and NREL’s
System Advisory Model (SAM [32]). The study also analyzed the accuracy of ArcGIS’s
Solar Radiation tool with respect to insolation on shaded and unshaded surfaces [33].
Copper and Bruce [31] stated that a linear correction can be applied to ArcGIS’s estimates
of insolation in order to achieve better fits with the results from SAM. However, it was
observed that studies do not validate these models before using them, despite the influence
of this on the results.

This paper, therefore, addresses the relevance and implementation of using calibrated
values for diffusivity and transmissivity for estimation of global horizontal irradiation for
varying spatial resolutions and geographic areas, using the Solar Radiation tool of ArcGIS,
with particular focus on the Netherlands as a case study. We used the typical meteorological
year data as well as the most recent 10 years irradiance data for calibration purposes.

This paper is further organized as follows. In Section 2 the methods and data used are
presented. Section 3 shows and discusses the results for the annual and monthly analysis
of parameters with a validation case. Additionally, the model implemented for varying
spatial resolutions is also presented. Section 4 concludes the paper.
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2. Materials and Methods
2.1. ArcGIS Solar Radiation Tool

It is evident that solar irradiation varies with time, during a day, in a month and
throughout the year. It also varies with the climatic conditions and the position of the
sun. Therefore, the challenge for the model is to predict the values as close as possible to
reality. The tool is quite simple, requiring only a couple of atmospheric parameters. In
the case of the Solar Radiation tool, it is hard to calibrate these atmospheric parameters
of diffusivity and transmissivity before running the model. The Solar Radiation tool of
ArcGIS’s Spatial Analyst Toolbox calculates the solar radiation over a geographic area or
for specified point (latitude–longitude) locations, based on the hemispherical viewshed
algorithm explained in [34–36]. This tool takes location, elevation, slope, orientation and
atmospheric transmission as most the relevant inputs. The total amount of radiation
calculated for a given location is given as global radiation in the (energy) units of Wh/m2.

The variable parameters we discuss in this paper are atmospheric diffusivity and
transmissivity [28], which denote the proportion of global normal radiation flux that is
diffuse and the fraction of radiation that passes through the atmosphere (averaged over all
wavelengths), respectively. These values, thus, range from 0 to 1. All the calculations were
performed under clear sky conditions.

The Solar Radiation tool uses a diffusivity value of 0.3 and transmissivity value of 0.5
as the default settings and this is referred to as the default model throughout this paper. For
calibration of the Solar Radiation tool, solar irradiation for all combinations of diffusivity
(0.2–0.7) and transmissivity (0.3–0.7) parameters (modelled values) have been simulated.
In the results, for the purpose of analysis, these values will be referred to as whole numbers
preceded by D or T to denote diffusivity and transmissivity, respectively. For example,
D3T5 refers to a diffusivity of 0.3 and transmissivity of 0.5.

2.2. Calibration Data

A major source of meteorological data in the Netherlands comes from the Royal
Netherlands Meteorological Institute (KNMI) [37]. This institute provides a wide range of
meteorological products and manages 50 automatic ground-based weather stations across
the country, of which, 33 stations record the solar irradiance. Calibration of the atmospheric
parameters was conducted using the measured values from the KNMI network. The KNMI
station at De Bilt, in the Netherlands (52.10N, 5.18E) was chosen as a reference point for
data calibration. Irradiation values obtained from the ground stations were mapped and
interpolated to identify variations throughout the country for 10 years (2011–2020). The
De Bilt station was selected out of the 33 stations that provide irradiation data, as this
station is located in the center of the Netherlands and is commonly used as a reference
point by KNMI for describing and forecasting the weather in the whole of the Netherlands.
In fact, the change in irradiation from coast to mainland is not very prominent (about
10%) [38] and, therefore, a single station (at the center) can well be used as a reference when
performing nationwide calculations. The model will be implemented for the area of De Bilt
and meteorological data from that station will be used for atmospheric data calibration.
For calibration purposes, De Bilt values were chosen in order to see if it was performing
adequately to be used for the whole country.

Out of the 33 stations which measure irradiance, 30 stations were selected due to
interruptions in the data collection of 3 stations within the 10 years. The locations of these
KNMI ground measurement stations and their classification as either coast or mainland
used in this study are shown in Figure 1. Daily sums of measured irradiance from the
ground stations were gathered and aggregated per month and per year. In addition,
irradiation maps for the country were created using a simple inverse distance weighted
interpolation technique with irradiation data obtained from these 30 KNMI stations. This
provides an insight into the variation in irradiance within the country over the years at
low resolution, which is sufficient for checking for anomalies related to localized weather
conditions or instrumentation errors [39].
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Figure 1. Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands. Stations
are categorized as coast (blue dots) and mainland (red). The station in the center (black square) is the
De Bilt KNMI Station, and the station in the red square is the Baseline Surface Radiation Network
(BSRN) station Cabauw.

In addition to the KNMI stations, there is a Baseline Surface Radiation Network (BSRN)
station at Cabauw in the Netherlands. This is one of the stations that provides radiation
measurements as part of a worldwide network [40,41]. There are about 40 stations in this
global network in different climatic zones. These data are of primary importance for the
validation and evaluation of various satellite and model estimates of radiation parameters.
The Netherlands falls under the temperate maritime climate zone and Cabauw (51.97N,
4.93E) is a BSRN station in the Netherlands, which adheres to the highest achievable
data measurement standards. Therefore, data from this station were used to validate the
calibrated model [42]. This station is about 30 km southwest of De Bilt (see Figure 1).

2.3. Input Data for the Model

Since the Solar Radiation tool is GIS based, it requires inputs in terms of raster or
vector data. In particular, the Area Solar Radiation tool requires a DEM as an input to
model solar radiation over geographic areas. The DEM used as input in this study is of
50 cm resolution and was obtained from Actueel Hoogtebestand Nederlands (AHN) [43].
Additionally, a DEM of 5 m (AHN) and 30 m (Aster DEM) [44,45] were used for irradiance
calculations to evaluate the effect of spatial resolution on the outputs generated. A vector
dataset of the locations and attributes of the KNMI and BSRN stations was used to map the
measured irradiance values. Spatial resolution is one of the key factors deciding the quality
of the output, as can be observed from Figure 2. The higher the resolution, the greater the
detail in the images. Therefore, this should be chosen depending on the purpose of use.
Modelling irradiation on the rooftops can be performed with 50 cm data, as can be clearly
seen from Figure 2c. The slopes and orientations of the rooftops can also be calculated
effectively at this resolution, which helps in potential estimations at the building level.
With 5 m data, it is likely only possible to do this at the neighborhood or block level. With
30 m data, regional or national level estimations are possible.

64



Energies 2021, 14, 1865

 

PD | / 100MBE 1 ∑

Figure 2. Example of varying spatial resolution of the digital elevation models; (a) 30 m (b) 5 m and
(c) 50 cm. The white areas correspond to missing data.

2.4. Method

The Solar Radiation model was implemented for calibrating the model parameters T
and D. The model has the capability to predict the irradiance values for varying temporal
resolutions; daily, monthly, annual average and also within a specified time period. In this
paper, the values were calibrated for two cases of varying temporal resolutions; yearly
(annual average) and monthly average since this gives better information for potential
estimations. In addition to these two temporal scales, we evaluated the data at varying
spatial resolutions. All the modelled values were validated against a reference set for
the default case, modelled values calibrated per year and modelled values calibrated
every month.

The Solar Radiation modeling tool is computationally intensive, the process can run
from a few hours up to multiple days depending on the inputs provided. In this particular
tool, the simulation time is exponentially proportional to the resolution of the sky size and
the raster input [3]. This also means that the higher the resolution of the input image, the
greater the detail in the results and longer processing time.

ArcGIS uses Python as a scripting module to perform geographic data analysis, data
conversion, data management, and for map automation [46]. Therefore, a customized
Python script to run all permutations of atmospheric parameters of the model was incor-
porated to automatically run and iterate all the combinations of D and T values without
manual intervention. The computed values of different permutations and combinations
were then calibrated using measured values from the KNMI ground station in De Bilt. The
best fit parameters of diffusivity and transmissivity were estimated for each month and
year separately. The percentage difference (PD) between measured and modelled values
was used to find the best fit values per month and per year (Equation (1)) [47].

Data fitting is highly dependent on the purpose of use, and the spatial and temporal
scales at which the result is needed. In this paper, we chose to find the best fit values of
global horizontal irradiation (GHI) for one location (De Bilt) over 10 years, assuming that
the calibrated values from this location can be used for the whole country. The default
model values and the calibrated model values (GHImod) were then compared with the
measurements from De Bilt (GHImeas) using percent differences (PD) and mean bias error
(MBE). MBE is the statistical model performance indicator, representing the systematic
error of the prediction model to under or over estimate. The percentage difference PD and
MBE are defined as:

PD =|[(GHImeas − GHImod)/GHImeas]× 100 (1)

MBE =
1
N ∑(GHImod − GHImeas) (2)

with N referring to the number of measurements and the subscripts “meas” and “mod”
corresponding to the irradiation values measured at KNMI De Bilt and obtained from the
Solar Radiation model for all settings of D and T, respectively. Modelled data are calibrated
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per month and once a year. Analysis at a local scale to depict buildings was also performed
on an area close to the Cabauw station and this was chosen for validating the method.

3. Results and Discussion

This section presents and discusses the results of the calibration and validation meth-
ods along with insights into the spatio-temporal variation of solar radiation within the
Netherlands. In addition, the purpose of using a GIS based radiation model is presented.

3.1. Spatio-Temporal Variation of Solar Radiation in the Netherlands

Solar irradiation depends on the geographic position and local climatic variations.
The spatial and temporal variations in the global solar irradiation in the Netherlands for
the years ranging from 2011 till 2020 are shown in Figure 3. The coastal region generally
has a higher level of irradiation compared to the mainland. De Bilt, which is in the center
of the country, falls in the median zone. Irradiation values from this station can, therefore,
be taken as the average for the whole country.

 

Figure 3. Annual global horizontal irradiation in kWh/m2 derived from KNMI stations across Netherlands for the years
2011–2020. Data have been interpolated to create a continuous irradiation map. The locations of the KNMI stations are also
indicated as dots in the irradiation maps.

An overview of the ranges of values recorded at the 30 meteorological stations in the
Netherlands is shown in Figure 4. The boxplots show the annual irradiation as recorded at
the KNMI stations grouped as coast and mainland; 12 stations along the coast and 18 from
the mainland (see Figure 1). It is clear that the coastal area has higher irradiation values
compared to the mainland. It is worthy to mention that these values are larger than the
30-year average (983.41 kWh/m2 measured between 1981–2010) used to characterize the
Dutch climate [47]. Extremely high values have been recorded over the past three years.
Table A1 in Appendix A, shows the averaged irradiation values for the coast and mainland
categories, collected for the 30 stations in the Netherlands.
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Figure 4. The range of irradiation values for all 30 stations categorized as coast (east) and inland
(located west from the coast) for 10 years. Extremely high values were observed in the last 3 years,
with record highs above 1200 kWh/m2 for a few stations on the coast. The East to West variation of
irradiation in the Netherlands can also be inferred from the graph.

From Figure 4, it is also evident that irradiation for location/locations is not the same
every year. Even though the spatial variation of irradiation is prominent, even up to some
15% (Figure 3), we choose the De Bilt values for validation of the solar irradiance for the
whole country, as this is the central location of the country.

3.2. Calibrated Values vs. Default Values

All combinations of D and T for the 10 years have been modelled for the location of De
Bilt. Table 1 shows the GHI values measured at the De Bilt station per month for the year
2020 and modelled values from the same location with the default settings and calibrated
values (best combinations of D and T) and their corresponding percentage difference (PD).
Note, that the modelled values for different years are the same for every combination
each month, except for leap years, as shown in Table A2 in Appendix A. This is because
solar irradiation modelling has been performed on a single location (De Bilt station) with a
constant DEM for all the years, assuming that there are no height variations throughout the
10 years. The locations of the ground measurement systems are also usually unchanged
and are placed in fields with no obstructions. This clearly indicates that the model is very
sensitive to the provided height information, which in turn, can be used in a manner that is
dependent on the purpose of the analysis.

From Table 1, it is clear that the default model substantially underestimates the
GHI. On an annual basis, for the year 2020, the default model yields an annual sum of
891.12 kWh/m2, which is about 21% less than the measured values at De Bilt. Only for
two months (June and July) are the percentage differences below 6%, while in the winter
months, the differences are much larger. If these values are not adjusted, they might lead to
error propagation when these values used in further PV potential estimations. Therefore, it
is necessary to find the right combination of D and T parameters in order to achieve better
fits and, in turn, better accuracy. Choosing the correct temporal resolution for irradiance
estimations is, therefore, important for the final results. For example, when trying to look
at the production profile for a single household, hourly irradiance calculations can be
very useful, in particular, for optimization of self-consumption. On the other hand, if the
purpose is creating an irradiance map for the whole country, then it is more useful to select
a seasonal or yearly variation.
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Table 1. Global horizontal irradiation (GHI) from de Bilt from measured (GHImeas), results from
solar radiation default model D3T5 (GHImod) for the year 2020 and the corresponding percentage
differences (PD).

Month
GHImeas

(kWh/m2)
GHImod

(default)
PD
(%)

GHI
(calibrated)

PD
(%)

Jan 16.58 6.94 58.17 17.73 6.93
Feb 31.76 20.33 35.99 30.18 4.98
Mar 93.94 58.73 37.48 100.25 6.73
Apr 155.53 103.23 33.62 151.32 2.70
May 194.33 148.42 23.62 194.94 0.32
Jun 163.95 160.52 2.09 160.52 2.09
Jul 149.01 156.99 5.36 148.31 0.46

Aug 142.56 121.23 14.97 145.79 2.26
Sep 98.51 71.92 26.99 98.96 0.45
Oct 39.66 29.71 25.09 40.66 2.52
Nov 25.90 9.05 65.08 25.96 0.23
Dec 13.53 4.05 70.07 12.53 7.39

Annual 1125.27 891.12 20.81 1090.25 3.11

The best combination of diffusivity D and transmissivity T values was studied for the
Netherlands for every month and for a year as a whole at the De Bilt location. Best fit values
for each month were determined by finding the lowest PD between GHImeas and GHImod

(Equation (1)). The results for the best combination of D and T and the corresponding error
ranges for monthly fits are shown in Figure 5a,b and Figure 6a, respectively.

(b) 

(a) 

Figure 5. (a) Best fit D and T values for monthly calibrations over 10 years. The inverse relationship between D and T
values is observed here, (b) Calibrated diffusivity (D) and transmissivity (T) combinations for 2011–2020. Although certain
combinations are repeated, it is hard to find a pattern with these reoccurring combinations.
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(a) (b) 

Figure 6. (a) Range of PD for the default model and the calibrated model for all the 10 years and (b) Scatterplot of default
and best fit (calibrated values) per month and year vs. the measured values from de Bilt for 2020.

The difference in PD between the default and the calibrated model is huge (Figure 6a).
The PD for the calibrated model is well below 7% for most of the fits. Here, the highest
PD was also observed for the winter months, similar to the PD of the default model.
Most repeating (four times in 10 years) D and T values are also from the winter months.
The variation of best fit D and T values is shown separately for the 10 years in Figure 5a.
Figure 6b shows the fits achieved by calibrating the model using the monthly and yearly
fits, in comparison with the default model. It is evident as to how much error can be
reduced by using calibrated values from Figure 6b. The MBE for the default model for
2020, as shown in Figure 6b, is negative, which means that the model is underestimating
the value. Furthermore, analyzing the MBE values for all the 10 years revealed that the
default model is biased, which means that for all the 10 years under review, the default
model has underestimated the GHI.

Calibrating the values using only one annual DT combination resulted in higher PD
values than fitting the data using DT combinations optimized per month, as shown in
Table 1. Modelled values, obtained by using one DT combination per year, under estimate
the irradiance for winter months and overestimate the irradiance for summer months.
Therefore, over a year, the cumulative irradiation values are closer to the reference values.
However, the monthly fits are much better when looking at higher temporal scales. On the
other hand, if we are looking at lower spatial resolutions (district or country level), yearly
fitting could suffice. This is because detailed information would be masked as the DEM
input would be coarse (resolution of about 15 m–30 m or larger), which is not enough to
distinguish between individual buildings.

To a large extent, yearly fits also reduce the error as compared to the default model,
as shown in Table 2. The graph shown in Figure 7, plots the calibrated values of D and T
when using one value for the whole year. It can be seen that certain years (2015, 2018–2020)
with high levels of radiation have low diffusion and high transmission (D2T6), and low
radiation years (2012 and 2013) have high diffusion and low transmission (D6T4), similar
to what has been published recently [48]. The rest of the years have a median combination
of diffusion and transmission (D4T5). Therefore, on the basis of the trend from these data,
and the look up table (Table A2), it is feasible to predict the DT values for running the
model, without the need to run simulations to recalibrate the model for annual estimations.
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Table 2. Best fit DT values on an annual basis and the corresponding PD

Year DT Year PD (%) GHI meas

2011 D4T5 0.78 1026.04
2012 D6T4 0.92 988.75
2013 D6T4 0.56 1003.51
2014 D4T5 2.18 1040.74
2015 D2T6 1.59 1073.18
2016 D4T5 2.07 1039.47
2017 D4T5 0.2 1020.04
2018 D2T6 4.13 1137.19
2019 D2T6 0.78 1098.79
2020 D2T6 3.11 1125.27

Figure 7. Graph with best fit D and T values plotted for the years 2011–2020.

3.3. Validation of the Calibrated Values

The calibrated values for the year 2020 were used to model the irradiation for a built-up
area close to Cabauw. The results of the default model and results with calibrated models
are shown in Figure 8. Although, the underestimation in the default model is evident, it still
captures the surroundings efficiently. The relationship of the default values to the calibrated
year values is linear. For the case of the default model, building classification in terms of
suitability and delineation of suitable areas on the rooftop can still be done on the basis of
the regional min–max values of modelled solar irradiation. On the other hand, calibrated
values provide more possibilities in terms of potential estimations. Therefore, potential
area estimations can still be made when using the default model without calibration, as
long as the irradiation values are not directly used to estimate the power production or
capacity. This is especially valid for high resolution analyses. During the validation of
images, high values were observed (see Figure 8), especially on south facing roofs, for the
calibrated models. This could be due to the fact that the model was calibrated using data
from one point (the KNMI meteorological station at De Bilt).

 

Figure 8. Modelled irradiation for a geographic area with default model (D3T5) and calibrated models.
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The complexity involved in calibrating the ArcGIS model refers to the fact that one
measured value is used for a whole geographic area, be it measurements from the closest
ground station or a central location. In addition, the only atmospheric parameters which
can be changed are the D and T. This means that for high resolution rooftop analyses, even
the calibrated values may sometimes fall short. An example is shown in Figure 9, where the
irradiation profiles from different roof types are presented. Figure 9a shows the DEM of a
small selection from the area used for validation purposes along with the locations selected
for creating the radiation profiles. Small areas on the rooftops with different orientations
were selected; blue for north, red for south, pink for east, orange for west and green for
flat. All these locations are highlighted in the figure. Figure 9b shows the corresponding
ranges of irradiation values for each image created by the default and calibrated models in
boxplots and the mean values of the selected roof areas, plotted as lines.

(a) (b) 

Figure 9. (a) Colorized digital elevation models (DEM) with selected areas on different roof orientations and slopes. (b) box
plot of irradiation values in the images for the default and calibrated models for 2020 with mean lines from the selected
areas of different roof types.

The measured value at Cabauw is depicted as a black line at 1155 kWh/m2 (for 2020).
This value is closer to the first quartile for the monthly calibrated model, median for the
yearly calibrated model and third quartile for the default model. In this scenario, using
the calibrated model to model irradiation on the images or rather larger geographic areas
instead of point locations, one DT fit per year can be seen to perform better. In all three
cases east–west facing roofs have irradiation values closer to the first quartile. Flat roofs
have a value that is larger than the median but only for the calibrated models, this is
also larger than the measured irradiation. South and north facing roofs are closer to the
maximum and the minimum values in the region and are significantly higher or lower
than the measured values. The south facing and flat roof values from the default model
are closer to the measured values, while the calibrated models overestimate the irradiation
values. This suggests that the default model performs adequately when used for annual
calculations and that it has a linear relation with the fitted models.

3.4. Irradiation Modelling with Varying Spatial Resolution

The purpose of using ArcGIS is to be able to analyze solar irradiation based on location.
Locations can vary from a point (latitude–longitude), a particular building, a street, a
neighborhood or even a country. As mentioned earlier, the scale and purpose are important
in selecting the required spatial resolution. Figure 10 shows the effect of spatial resolution
in modelling solar radiation. It is evident as to which types of analysis are possible with the
resulting images. The very high resolution of 50 cm is quite good for bottom-up analyses in
urban applications of suitability modelling or power production and capacity estimations.
On the other hand, 5 m, for example, can be used for modelling parking areas or fields or
even for providing a general suitability classification of neighborhoods. Low resolution
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images can be useful at a regional or national level for very broad or generalized figures. It
should also be noted that the processing time is also related to the input resolution. For
this study area of about 1 km2, the processing time recorded while running the default
model was 01 m:12 s, 06 m:22 s, and 10 m:7 s, for 30 m, 5 m and 50 cm, respectively. It was
executed on a Windows machine with an Intel i5 processor with four cores and eight GB
RAM. This can become slightly complex and the processing time increases when smaller
time intervals, higher resolution and larger geographic areas are used.

0 

1050 

kWh/m2 

Figure 10. Solar Radiation with varying spatial resolution run with the default model in ArcGIS.

4. Conclusions

This paper shows the importance of using validated values of transmissivity and
diffusivity for performing irradiation analysis using the ArcGIS Solar Analyst Tool. The
analysis shows that there is not one unique combination of D and T values that can be used
as a constant for monthly fits; this also means that, for the prediction of solar irradiation for
the future, other modelling methods, such as r.sun, are also preferable in terms of control
of various atmospheric parameters. However, the Solar Radiation Tool is very simplistic
(easy to execute with a minimum number of atmospheric parameters required) and at the
same time, it can provide a detailed overview of shading or the effect of orientations and
slopes when using high resolution data.

DT combinations are highly dependent on climatic conditions and calibrated values
should be used depending on the purpose and scale. Calibrating this model is relatively
easy when one has access to measured radiation values and can improve the potential
calculations by at least 10–20%, depending on time scales used in the analysis. It was also
observed that the monthly variation of the combinations leads to higher accuracy results,
which is very useful when modelling energy profiles for households or even for generating
accurate potential information which is closer to reality. When looking at lower temporal
scales (yearly) one DT combination will suffice.

When the model is used to predict the annual irradiation, a direct relation could
be made with the measured values and, therefore, standardized values can be used, as
demonstrated. However, it must be noted that we assume that one single location (De Bilt)
is sufficient for calibrating the model. Hence, these values are reliable when using similar
data and settings as those used in this study and, therefore, are reproducible and reusable.
Better fits can be achieved when the model is calibrated using data from the closest ground
measurement station, no matter which resolution or temporal scale is used.

Finally, the spatial and temporal resolution play an important role in this model,
which are directly related to the accuracy of the model, level of detail and processing
time. We demonstrated the use of ArcGIS in mapping the PV potential, with optimized
and validated D and T values. While the method was applied to the Netherlands, it can
successfully applied to other regions. We finally recommend validating the ArcGIS model
with local irradiation data before it is used for modeling/mapping purposes, if the values
are to be used directly for potential estimations. This information can prove to be useful,
especially in driving data dependent policies for PV penetration in order to encourage
sustainable energy deployment.
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Appendix A

Table A1. Spatio-temporal variation of measured annual irradiation (kWh/m2) and its standard
deviation (std) in the Netherlands, comparing coast, mainland and the central De Bilt location. The
coast column contains averaged irradiation values of 12 stations (blue dots in Figure 1) collected over
10 years. Similarly, the mainland irradiation values were obtained from 18 stations away from the
coast (red dots in Figure 1).

Year
Annual Irradiation (kWh/m2)

Coast std Mainland std De Bilt

30-year average 1 983.41
2011 1067.2 35.4 1042.8 28.8 1026.0
2012 1056.1 30.7 1021.5 21.3 988.7
2013 1070.6 26.5 1020.1 18.6 1003.5
2014 1087.9 19.1 1048.3 24.1 1040.7
2015 1102.4 28.4 1073.9 26.1 1073.2
2016 1105.4 34.5 1053.5 20.4 1039.5
2017 1085.4 30.5 1038.1 29.7 1020.0
2018 1156.9 20.4 1166.4 20.8 1137.2
2019 1119.4 30.8 1100.4 24.7 1098.8
2020 1162.6 28.6 1130.9 33.2 1125.3

1 Averaged solar radiation from 1981–2010 collected from different KNMI stations [49].
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Table A2. Monthly modelled irradiation values for all combination of D and T at de Bilt using Solar Radiation tool.

D T Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2 0.3 0.82 4.30 18.66 40.54 64.27 71.52 68.98 49.54 24.65 7.23 1.25 0.36
0.2 0.4 2.41 9.33 32.85 64.08 96.69 106.06 103.01 76.74 41.75 14.59 3.39 1.23
0.2 0.5 5.67 17.25 51.48 92.25 133.88 145.21 141.82 108.74 63.47 25.48 7.46 3.26
0.2 0.6 11.58 28.88 75.06 125.32 176.08 189.20 185.63 145.79 90.24 40.66 14.45 7.35
0.2 0.7 21.58 45.25 104.31 163.83 223.81 238.59 235.00 188.44 122.73 61.13 25.72 14.92
0.3 0.3 1.00 5.04 21.19 45.19 70.96 78.75 76.06 55.00 27.82 8.39 1.51 0.44
0.3 0.4 2.94 10.97 37.39 71.56 106.96 117.00 113.80 85.37 47.21 16.98 4.10 1.52
0.3 0.5 6.94 20.33 58.73 103.23 148.42 160.52 156.99 121.23 71.92 29.71 9.05 4.05
0.3 0.6 14.22 34.13 85.86 140.58 195.66 209.65 205.99 162.92 102.51 47.55 17.57 9.17
0.3 0.7 26.59 53.68 119.72 184.31 249.41 265.14 261.52 211.20 139.87 71.75 31.40 18.68
0.4 0.3 1.24 6.03 24.58 51.38 79.89 88.38 85.49 62.29 32.04 9.94 1.85 0.56
0.4 0.4 3.66 13.15 43.44 81.53 120.67 131.59 128.18 96.88 54.48 20.15 5.04 1.92
0.4 0.5 8.63 24.44 68.39 117.88 167.80 180.94 177.23 137.87 83.19 35.36 11.16 5.11
0.4 0.6 17.73 41.13 100.25 160.92 221.77 236.92 233.12 185.76 118.88 56.73 21.74 11.60
0.4 0.7 33.27 64.93 140.26 211.62 283.53 300.54 296.87 241.54 162.73 85.90 38.98 23.70
0.5 0.3 1.57 7.42 29.31 60.04 92.38 101.88 98.70 72.49 37.95 12.11 2.34 0.72
0.5 0.4 4.65 16.21 51.92 95.49 139.85 152.02 148.31 113.00 64.66 24.60 6.37 2.47
0.5 0.5 11.00 30.18 81.93 138.37 194.94 209.53 205.55 161.18 98.96 43.25 14.12 6.60
0.5 0.6 22.65 50.94 120.41 189.39 258.32 275.10 271.11 217.74 141.79 69.59 27.57 15.00
0.5 0.7 42.63 80.67 169.01 249.85 331.31 350.09 346.36 284.03 194.73 105.72 49.58 30.73
0.6 0.3 2.07 9.51 36.41 73.04 111.13 122.12 118.51 87.80 46.81 15.36 3.06 0.95
0.6 0.4 6.15 20.80 64.63 116.43 168.62 182.66 178.51 137.17 79.93 31.27 8.36 3.30
0.6 0.5 14.56 38.80 102.23 169.12 235.64 252.42 248.04 196.14 122.62 55.10 18.56 8.82
0.6 0.6 30.03 65.64 150.65 232.10 313.15 332.37 328.10 265.71 176.16 88.87 36.32 20.10
0.6 0.7 56.67 104.28 212.15 307.20 402.97 424.43 420.60 347.75 242.73 135.45 65.50 41.26
0.7 0.3 2.91 12.98 48.25 94.71 142.37 155.85 151.53 113.31 61.58 20.79 4.27 1.35
0.7 0.4 8.64 28.45 85.83 151.32 216.58 233.74 228.85 177.46 105.39 42.39 11.67 4.68
0.7 0.5 20.49 53.17 136.06 220.36 303.49 323.89 318.86 254.41 162.05 74.84 25.96 12.53
0.7 0.6 42.34 90.15 201.04 303.29 404.52 427.81 423.07 345.66 233.45 121.01 50.90 28.60
0.7 0.7 80.07 143.63 284.04 402.78 522.41 548.32 544.33 453.97 322.72 184.99 92.02 58.83
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Abstract: Brazil is a tropical country with continental dimensions and abundant solar resources that
are still underutilized. However, solar energy is one of the most promising renewable sources in
the country. The proper inspection of Photovoltaic (PV) solar plants is an issue of great interest for
the Brazilian territory’s energy management agency, and advances in computer vision and deep
learning allow automatic, periodic, and low-cost monitoring. The present research aims to identify
PV solar plants in Brazil using semantic segmentation and a mosaicking approach for large image
classification. We compared four architectures (U-net, DeepLabv3+, Pyramid Scene Parsing Network,
and Feature Pyramid Network) with four backbones (Efficient-net-b0, Efficient-net-b7, ResNet-50,
and ResNet-101). For mosaicking, we evaluated a sliding window with overlapping pixels using
different stride values (8, 16, 32, 64, 128, and 256). We found that: (1) the models presented similar
results, showing that the most relevant approach is to acquire high-quality labels rather than models
in many scenarios; (2) U-net presented slightly better metrics, and the best configuration was U-net
with the Efficient-net-b7 encoder (98% overall accuracy, 91% IoU, and 95% F-score); (3) mosaicking
progressively increases results (precision-recall and receiver operating characteristic area under
the curve) when decreasing the stride value, at the cost of a higher computational cost. The high
trends of solar energy growth in Brazil require rapid mapping, and the proposed study provides a
promising approach.

Keywords: solar panel; deep learning; semantic segmentation

1. Introduction

Solar energy is one of the most promising renewable energy sources, being crucial for
sustainable development in places with intense sunlight. Several studies have shown that
solar energy systems allow for economic and efficiency gains, driven by technological and
productive development that enables cost reduction to overcome technical barriers [1,2].
According to Sampaio and Gonçalez [3], the main advantages of solar energy systems are
reliability, low costs of operation and servicing, low maintenance, a free energy source,
clean energy, high availability, generation closer to the consumer, a low environmental
impact, potential to mitigate greenhouse gas emissions, and noiselessness. In contrast,
the main disadvantages are a high initial cost, large installation area, high dependence on
technology development, and climatic conditions (solar irradiation). The benefits of solar
technology provided an exponential increase in installed solar energy capacity between
1992 and 2020 [4,5]. This detected growth of solar energy was not foreseen in previous
scenarios of the Intergovernmental Panel on Climate Change’s fifth assessment report [6].
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Creutzig et al. [7] considered that the cause of underestimating the potential of solar energy
was rapid technological learning and political support only for specific technologies. In
2019, China led the Photovoltaic (PV) solar energy capacity, followed by the European
Union and the United States of America, where together they hold more than 64% of the
world’s total capacity.

Brazil offers good prospects for net-zero carbon energy due to its abundance of
renewable energies: hydropower, bioenergy, wind, and solar [8]. Hydroelectric power
is the primary generator of electric energy in Brazil. However, thermal energy is still
needed to supply domestic demand in periods of prolonged drought [9–12]. Therefore,
the challenge is to increase renewable energy production to supply the growing energy
demand due to population growth and new technologies. One problem is that hydroelectric
expansion prospects are in the Amazon region, with substantial environmental restrictions,
such as extensive areas of flooding by dam reservoirs, methane emissions, and ecological
changes [13–16]. In addition, climate change scenarios in Brazil for the 2030s and 2080s
predict a decrease in rainfall and an increase in temperature, resulting in a reduction in
hydroelectric production and an increase in solar (slight) and wind (significant) energy
potential [17]. Thus, national progress needs to intensify alternative energy sources such as
combining wind and solar sources [18].

The Brazilian territory has a high solar incidence availability, with a vast area close
to the equator and without significant variations in the day’s solar duration [19]. The
semi-arid region has the most significant aptitude for installing solar power plants [20–25].
Between the two solar energy generation technologies, the Brazilian government has initially
prioritized PV instead of concentrated solar power [26]. In 1995, the Hydroelectric Company
of San Francisco developed the first PV system connected to Brazil’s grid in Recife [27].
The crisis in the Brazilian electric sector between the years 2013 and 2015 favored the
decentralization and diversification of the electric matrix sources. Therefore, since 2014,
Brazil’s solar energy has experienced a substantial expansion, with the first projects for PV
Plants being contracted by way of public auctions. In the second half of 2015, solar energy
production and distributed generation marked an inflection of growth driven by regulations
and adoption of incentive changes [28]. Despite the various barriers to the development
of solar energy (technological, economic, sociocultural, managerial, environmental, and
political) [29–34], the current strong growth in PV energy brings optimistic perspectives for
the electricity sector. Barbosa et al. [35] demonstrate, by modeling, that PV solar energy
in Brazil will reach more than 36% of total electricity in 2050. This rapid expansion is
mainly due to technology development, reducing investment costs, increasing the PV
Panels capacity, and other enterprise cost reductions [36]. Furthermore, energy security
policies and the eco-label design for improving air quality, by reducing greenhouse gas
emissions, also contribute to solar energy growth [37].

Moreover, in developing countries such as Brazil, the PV solar plants are vital for
ensuring energy security. Thus, inspecting solar plant constructions is important in order
to carry out effective public policies. In Brazil, the Brazilian Electricity Regulatory Agency
(ANEEL) is responsible for regulating the installed capacity expansion and monitoring
the powerplant construction progress [38]. However, the inspection is manual, which will
increase in complexity over time, requiring laborious work with skilled professionals and
high costs for fieldworks and technical analysis. According to the ANEEL database, the
growth expectancy for PV solar plant energy is considerable. For 2021, 32 new ventures are
expected, and more than 140 for 2022. Furthermore, sustainable energy sources (e.g., wind
and solar) tend to have many ventures with low energy production, increasing the number
of processes to evaluate, urgently requiring automatic processes.

Remote sensing data (aerial photography and satellite imagery) enable inspection
periodically, and have been widely used in the electrical sector for effective maintenance
of electrical lines [39–41], thermal monitoring from nuclear power plants [42–45], environ-
mental changes from hydroelectric dams [46–49], and energy consumption using nighttime
light satellite imagery [50–52], among others. In solar energy, many studies use remote sens-
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ing images, such as solar energy estimates [53–56], solar power plant site selection [57–62],
PV potential on building rooftops [63–66], and area estimation [67,68].

In automatic detection, Deep Learning (DL) emerges as a powerful method, especially
in regards to computer vision problems using convolutional neural networks (CNN),
due to its ability to process multi-dimensional arrays [69] with wide remote sensing
applications [70–75]. Several reviews were carried out on the different DL methods, in
which object detection, semantic segmentation, and instance segmentation were the most
common approaches [76–78]. The method choice is highly dependent on the task objectives.
When the main goal is to make a pixel-wise classification (as is the case with PV solar
plants), semantic segmentation is a great alternative [79,80].

Previous studies in PV solar panel detection have shown promising results using
the DL method, presenting very high accuracy. However, most studies consider urban
PV panels using aerial or high-resolution satellite images [81–83], while PV solar plant
mapping is still restricted [84]. This approach is an effective alternative to construction
inspection, requiring periodic data and free satellite imagery. Previous studies on PV panel
detection have not yet shown reasonable solutions for classifying large regions, and the
use of mosaicking with sliding windows is a promising solution [85–87].

The primary motivation for this study is the development of a methodology based
on remote sensing for the automatic monitoring of new installations of PV solar plants.
In Brazil, the high growth of solar energy throughout the territory, with a continental
dimension, prevents on-site inspection due to the financial and time cost, requiring the
development of technological alternatives. Therefore, this research aims to evaluate the
use of DL methods, representing the state of the art of computer vision, to identify and
monitor PV solar power plants from ANEEL’s database using Sentinel-2 images. This
methodology represents an innovation for the management and monitoring of installed
solar energy structures on the Brazilian territory, and similar research does not exist in the
country to date.

2. Materials and Methods

The present research had the following methodological steps (Figure 1): (2.1) data
preparation; (2.2) DL models; (2.3) DL accuracy analysis; (2.4) mosaicking; and (2.5) mo-
saicking accuracy analysis.

 

Figure 1. Methodological flowchart.
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2.1. Data Preparation

2.1.1. Study Area

Brazil has a large and diverse territory, presenting different solar energy incidence [21].
Nevertheless, many areas are extremely suitable for the installation of PV panels. Therefore,
we selected 24 areas to conduct this experiment (Figure 2). There are limited PV plants
installed in the Brazilian territory and currently no open datasets considering Sentinel-2
data [88]. However, the development of methodologies and expansion of databases is a
fundamental strategy for monitoring large-scale PV with a high growth trend.

 

Figure 2. Study Area.
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2.1.2. Image Acquisition and Annotations

We obtained Sentinel-2 cloudless images with four channels (Red, Green, Blue, and
near infra-red) for each region containing PV solar power plants. For each image, a special-
ist manually annotated ground truth (GT) masks considering two classes: background and
PV solar plant. The background class presents a wide variety of spectral behaviors, includ-
ing the different soil and vegetation compositions present in a large-scale country such as
Brazil. The research considered the difference in the light incidence and the construction of
panels in each region for DL model training.

2.1.3. Data Split

After preparing each tile with their respective annotations, we separated the dataset
into training, validation, and testing sets. For each area of interest that may contain more
than one PV solar plant, we cropped at least seven 256 × 256-pixel tiles. Table 1 lists the
distribution of areas and images for training, validation, and testing.

Table 1. Data split in training, validation, and test sets.

Set Number of Areas Number of Images

Train 15 210 (75%)
Validation 5 40 (14.28%)

Test 4 30 (10.71%)

2.2. DL Models

2.2.1. Architectures and Backbones

Semantic segmentation allows for a pixel-wise classification, being highly suitable
for many remote sensing applications [74]. Most semantic segmentation networks include
an encoder/decoder structure. The encoder aims to extract features, whereas the decoder
restores the image’s original dimensions. In the last few years, many architectures were
proposed to increase performance in this task (e.g., U-net [89], SegNet [90], Feature Pyramid
Network (FPN) [91], DeepLab [92,93], and Pyramid Scene Parsing Network (PSPNet) [94],
and backbones (e.g., ResNet [95], ResNeXt [96], and Efficient-net [97]). This study evalu-
ated four commonly used architectures (U-net, DeepLabv3+, FPN, and PSPNet) and four
backbones (ResNet-50 (R-50), ResNet-101 (R-101), Efficient-net-b0 (Eff-b0), and Efficient-
net-b7 (Eff-b7)). We used models from the Semantic Segmentation repository [98], which
provides different architectures and backbones in Pytorch.

2.2.2. Model Configurations

In addition to choosing the appropriate models, it is crucial to make fine adjust-
ments for the task at hand. The first problem is the reduced number of available samples.
Therefore, in addition to obtaining at least seven frames from each location, we applied
two augmentations in the training process: random horizontal flip and random vertical
flip (both with a probability of 0.5). The second problem is class distribution (there are
many more background pixels than solar panel pixels). Thus, we used a loss function that
minimizes this effect, the Dice Loss:

Dice Loss =
2x(pred ∩ GT)
|pred|+ |GT|

, (1)

in which pred is the DL prediction, and GT is the ground truth mask. In addition, we
used transfer learning with Imagenet [99] pre-trained weights for faster convergence; to
avoid overfitting, we applied callbacks, saving the model with the lowest Dice Loss in the
validation set. Regarding hyperparameters, we used: (a) 300 epochs; (b) Adam optimizer;
(c) 5 × 10-3 learning rate (lr); and (d) batch size of 5.
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2.3. DL Accuracy Analysis

Accuracy analysis is a fundamental step for DL model evaluation. Since semantic
segmentation models provide a pixel-wise mask, the metrics compare the predicted mask
and the GT mask through confusion matrix metrics. The confusion matrix (Table 2) has
four quadrants in binary tasks: True Negatives (TN), True Positives (TP), False Positives
(FP), and False Negatives (FN).

Table 2. Confusion matrix.

Prediction

0 1

Ground truth
0 TN FP
1 FN TP

The model outputs probability, whereas the GTs are integers. Thus, it was necessary
to establish a cutoff point for the threshold metrics. A stricter threshold tends to reduce
the commission errors, while a more permissive threshold tends to reduce omission errors.
Thus, we applied a commonly intermediate threshold of 0.5 for three metrics (overall
accuracy, F-score, and IoU):

Overall Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

IoU =
TP

TP + FP + FN
, (3)

F − score =
TP

TP + 1
2 (FP + FN)

, (4)

2.4. Mosaicking

The 256 × 256 pixel tiles used in training may not represent an entire scene, requiring
a postprocessing stage. Mosaicking using a sliding window algorithm is a very promising
solution. However, combining frames side by side to reconstruct a scene may also induce
errors in the single frame edges. A way to minimize this effect is to apply a sliding window
with overlapping pixels, where the final pixel will be the average from the overlapped
pixels. Thus, we compared six different stride values for the mosaicking strategy: 8, 16, 32,
64, 128, and 256 (adjacent frames). Figure 3 shows four images with consecutive frames
using different stride values. The smaller the stride value, the more overlapping pixels
(which tends to reduce errors in the frame edges).

Overall Accuracy =  TP + TNTP + TN + FP + FN , 
IoU =  TPTP + FP + FN , 

F score =  TPTP + 12 (FP + FN) , 

 

Figure 3. Four examples of different stride values of two consecutive frames in ascending order, where the stride value
a < b < c < d.
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2.5. Mosaicking Accuracy Analysis

To evaluate the mosaicking, we analyzed the ranking metrics Receiver Operating
Characteristic Area Under the Curve (ROC AUC) and Precision-Recall (PR) AUC, consider-
ing six stride values: 8, 16, 32, 64, 128, and 256. The ROC curve considers the true positive
rate (TP/(TP + FN)) and false positive rate (FP/(TN + FP)) and the PR curve considers
the precision (TP/(TP + FP)) and recall (TP/TP + FN). From the points generated, it is
possible to calculate the area under these curves.

3. Results
3.1. DL Metrics Results

Overall, the different architectures and backbones presented good results (Table 3).
The U-net presented the best metrics results regarding the different architectures, followed
by DeepLabv3+, FPN, and PSPNet. Despite the higher complexity of the DeepLabv3+
architecture, the U-net presented better results as the targets do not present a high variance
in scaling, one of the most significant benefits of this model. Moreover, although PSPNet
provided the worst results, the difference is not extremely large, and the training period is
considerably lower (less than half the time to train the Eff-b7 using the U-net architecture,
and nearly one-fifth of the period for training on the DeepLabv3+ architecture). When
analyzing the different backbones, apart from Eff-b0 with the PSPNet architecture, the
results did not change significantly. Moreover, metrics-wise, the accuracy score shows high
values among all models (<3% variation), possibly due to the fact that there are many more
pixels corresponding to the background class than the panels class. The IoU and F-score
provide much more meaningful results. The Eff-b7 using the U-net architecture had the
best IoU and F-score results, and an intermediate computational cost.

Table 3. Semantic segmentation evaluation (accuracy, IoU, F-score, and epoch period) using three ar-
chitectures (U-net, DeepLabv3+, and PSPNet), and four backbones (Efficient-net-b7 (Eff-b7), Efficient-
net-b0 (Eff-b0), ResNet-101 (R-101), and ResNet-50 (R-50)).

Architecture Backbone Accuracy (%) IoU (%) F-Score (%)
Epoch

Period (s)

U-net Eff-b7 98.08 91.17 95.38 12
Eff-b0 98.05 90.97 95.27 5
R-101 97.96 90.58 95.06 5
R-50 97.98 90.70 95.12 4

DeepLabv3+ Eff-b7 97.83 89.98 94.73 26
Eff-b0 97.77 89.82 94.64 5
R-101 97.46 88.47 93.88 7
R-50 97.02 86.63 92.84 6

PSPNet Eff-b7 97.35 88.03 93.64 5
Eff-b0 96.73 85.43 92.14 3
R-101 97.06 86.98 93.04 3
R-50 97.23 87.60 93.39 3

FPN Eff-b7 97.38 87.99 93.61 12
Eff-b0 97.45 88.21 93.73 5
R-101 97.58 89.21 94.30 6
R-50 97.25 87.74 93.47 5

Figure 4 shows three examples from the test set, and three examples from the vali-
dation set with their corresponding original images (RGB channels), GT, and prediction.
Despite some errors in the edges of the objects, these results suggest a correct identification
of the target, with few errors.

83



Energies 2021, 14, 2960

 

Figure 4. Three examples from the test set and three examples from the validation set with their corresponding original
image, ground truth (GT), and prediction.
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3.2. Mosaicking Results

Table 4 shows the ROC AUC scores using the 1536 × 768 area, using six different stride
values (8, 16, 32, 64, 128, and 256). The analysis only considered the best model (U-net with
Eff-b7 backbone). When the stride value decreases, results progressively improve in both
metrics. Nevertheless, decreasing the stride value increases the computational cost needed,
becoming a significant limitation, especially for practical applications.

Table 4. ROC AUC, PR AUC, and processing time for 8, 16, 32, 64, 128, and 256 stride values.

Stride ROC AUC PR AUC Processing Time (s)

8 99.42 97.85 2829
16 99.25 97.56 734
32 98.89 96.99 193
64 98.66 96.42 63

128 98.36 95.39 15
256 98.16 94.49 4

Figure 5 shows the original image, its corresponding GT, and the prediction using
U-net with Eff-b7 backbone and 8-pixel stride value on a 1532 × 768-pixel image. This
mosaicking strategy enables the classification of areas with large dimensions, outputting
images with no discontinuity.

 

Figure 5. Mosaic representation on a 1536 × 768-pixel image with the original image, the correspond-
ing ground truth (GT), and prediction using the U-net with Efficient-net-b7 backbone.
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4. Discussion

The best result of our study was the U-net with the Eff-b7 backbone, although the
other methods also reach high or adequate values. However, an unexpected result is that
U-net outperformed DeepLabv3+ by a slight margin. This result is probably because the
input images do not present multi-scale objects—one of the main contributions of the
DeepLabv3+ method. Therefore, these results show that simpler structures may be well
suited in some scenarios, highlighting the importance of testing different architectures.

Other solar panel detection studies using DL methods have demonstrated high ac-
curacy in different locations. However, studies carried out on PV solar plants are still
much lower than residential PV solar panels. Considering the large-scale solar plants, Hou
et al. [84] proposed a study in China with one thousand images achieving 95% IoU from
the U-net model. They used a much more significant amount of data, and the results were
not dissimilar to ours (92% IoU).

Generally, accuracy results are lower in residential PV solar panels due to their smaller
dimension and higher susceptibility to noise interference. Yuan et al. [100] applied a simple
ConvNet for large-scale solar panel mapping from aerial images, and evaluated their model
in the cities of Boston and San Francisco using completeness (0.84 and 0.87) and correctness
(0.81 and 0.85) metrics. Yu et al. [101] proposed DeepSolar with a substantial amount
of training data using high-resolution satellite images, obtaining 93.1% recall and 88.5%
precision, results very similar to our F-score (95%). Zhuang et al. [83] applied the U-net in
satellite images for residential panels, achieving 74% IoU. Recently, Jie et al. [82] combined
a U-net model with edge detection networks. The authors showed that the edge detection
increased performance on two city panel datasets by nearly 2% IoU. This effect may be
even less prominent in large solar plants since it is easier to detect borders, as shown in our
study. Even though these studies trained with smaller PV solar panels, the results show an
excellent ability to segment panels even with simpler models.

Thus, the results of our and previous studies suggest that the mapping of PV solar
panels should be addressed in a data-driven, rather than model-driven, perspective, i.e.,
the DL models do not present a significant difference, and the most important endeavor is
to obtain a reliable source of generating good annotations. Moreover, the present study
showed significant results using data augmentation despite a limited amount of data.

The mosaicking procedure enables the classification of areas of indefinite and large
sizes. We have shown that using a smaller stride value increases performance, but also the
computational cost. The stride value for a practical application should take both factors
into consideration. Regarding the mosaicking technique on semantic segmentation models,
de Albuquerque et al. [86] performed a comparative analysis using different stride values,
presenting progressively better ROC AUC scores for lower stride values, a result also
verified in our research.

This research presents many possibilities for future studies. A first proposition would
be to estimate energy production using the mapping of the photovoltaic solar panel from
DL, and the level of solar incidence in a specific region. Another relevant test would be
evaluating radar images due to cloud cover and atmospheric interference in optical images.
Although synthetic aperture radar (SAR) images are noisy, they can be useful in some
scenarios. Studies comparing the frame sizes according to the proposal by Bem et al. [102]
can also be valuable in understanding the model’s differences in various tasks (e.g., binary
and multiclass) and object scales.

5. Conclusions

The survey and monitoring of PV solar power plants are extremely important for
energy management and planning. The high growth of solar energy in Brazil, a country
with continental dimensions, generates an increase in inspection processes for ANEEL
that is only possible through technological innovation. Thus, this paper presented a
comparison between DL models for the classification of PV solar plants using Sentinel-2
images with four spectral bands (RGB and near infra-red), comparing four architectures
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(U-net, DeepLabv3+, FPN, and PSPNet) with four backbones (ResNet-50, ResNet-101, Eff-
b0, and Eff-b7), totaling 16 combinations. Additionally, we used augmentation and transfer
learning. The PV panel spectral and shape characteristics facilitate the accurate detection
of the panels. Results were satisfactory using the different backbones and architectures,
but U-net with Eff-b7 backbone presented the best results with 98% accuracy, 92% IoU, and
95% F-score. We estimate that the most critical factors when mapping PV solar panels are a
reliable source of data and their possible applications. For the classification of large regions,
the image mosaicking procedure significantly improves when using more overlapping
pixels, minimizing edge errors. The results are also expressive when analyzing the ROC
AUC score and PR AUC score, in which the results progressively increase whilst decreasing
the stride value. However, the computational cost may be a significant challenge for
practical applications, since the processing time significantly increases with the stride
value reduction. This methodology has many applications and satisfies the conditions
for automatically classifying PV solar plants using free Sentinel-2 imagery, allowing for a
significant advance in monitoring the implanted infrastructure.
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Abstract: This work proposed a base method for automated assessment of Small Hydro-Power
(SHP) potential for a run-of-river (RoR) scheme using geographic information systems (GIS). The
hydro-power potential (HP) was represented through a comprehensive methodology consisting
of a structured raster database. A calibrated and validated hydrological model (Soil and Water
Assessment Tool—SWAT) was used to estimate monthly streamflow as the Mesh Sweeping Approach
(MSA) driver. The methodology was applied for the upper part of the Huazuntlan River Watershed
in Los Tuxtlas Mountains, Mexico. The MSA divided the study area into a rectangular mesh. Then,
at every location within the mesh, SHP was obtained. The main components of the MSA as a
RoR scheme were the intake, the powerhouse, and the surge tank. The surge tank was located at
cells where the hydro-power was calculated and used as a reference to later locate the intake and
powerhouse by maximizing the discharge and head. SHP calculation was performed by sweeping
under different values of the penstock’s length, and the headrace’s length. The maximum permissible
lengths for these two variables represented potential hydro-power generation locations. Results
showed that the headrace’s length represented the major contribution for hydro-power potential
estimation. Additionally, values of 2000 m and 1500 m for the penstock and the headrace were
considered potential thresholds as there is no significant increment in hydro-power after increasing
any of these values. The availability of hydro-power on a raster representation has advantages for
further hydro-power data analysis and processing.

Keywords: small-hydro; GIS; tuxtlas mountains; Grid; SWAT; MSA

1. Introduction

Hydroelectric power generation can be classified, based on their storage schemes, into
two categories, reservoir and run-of-river (RoR) [1]. Higher power generation is associated
with reservoir hydro-power as they typically involve large-scale infrastructure. However, it
also carries negative environmental and human impacts, such as changes in the hydrology
of the river and community relocation. On the other hand, run-of-river schemes are better
suited for Small Hydro-Power (SHP) generation projects as they use the natural river flow,
requiring little or no impoundment infrastructure [2]. This makes them especially suited
for sustainable and community friendly distributed developments.

A run-of-river system (see Figure 1) is typically composed of an intake, a surge tank
(ST), and a powerhouse (PH). Power is generated by diverting the river’s flow via the
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headrace to the surge tank, where the water is slowed down sufficiently for suspended
particles to settle down. The water flow then continues to the powerhouse by the penstock
or pipeline for electricity generation, which is finally carried back to the river [3]. Therefore,
power generation will depend on the hydrological and topographical factors involving
different hydro-power facilities’ locations.

Figure 1. Run of River Scheme: (1) Diversion Weir, (2) Intake, (3) Headrace, (4) Surge Tank, (5) Pen-
stock, (6) Powerhouse, (7) Tail Race [4].

1.1. GIS-Based Power Assessment

It is not uncommon for suitable high-potential RoR sites to be located at remote
mountainous areas characterized by rough terrains, making site surveyed-based potential
assessment unpractical. In such situations, the use of geographic information systems
(GIS) and remote sensing (RS) provide powerful tools to overcome such challenges to a
large extent [5]. GIS- and RS-based techniques have been successfully applied to potential
assessment and site selection of solar [6–8], wind [9–11], and biomass [12–14] energy
resources. For these cases, such resources can be distributed over a uniform rectangular
grid (i.e., raster data). The raster models can be conceived as gridded maps where each
of its elements represents an area of the study zone and has information and geographic
location assigned to it [15]. The raster representation has advantages for data processing,
as different variables in raster data can be considered by directly overlaying their maps,
making it suitable for further analysis, such as for multi-criteria decision making (MCDM).

In turn, GIS is also becoming increasingly popular as an assessment tool for location
and selection of the different types of hydro-power opportunities due to their ease of
use, cost, and time effectiveness [16]. Nevertheless, unlike the other generation projects,
hydro-power potential is not presented as a distribution over a rectangular grid and
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not associated with a single position but with the river’s basin region that includes the
different hydro-power facilities’ different locations. In fact, hydro-power (see Equation (1))
depends on the discharge Q taken at the intake position and a gross hydraulic head H that
relates the height difference between the surge tank and the powerhouse, where the energy
is produced. Furthermore, Small Hydro-Power is typically distributed over an stream
network in which the selection of one hydro-power generation site may interfere with the
selection of another [17]. Namely, once a potential site is located over an influence area, it
restricts other possible potential sites to overlap the same influence area.

1.2. Hydro-power Potential Modeling

A common approach to evaluate a river’s basin hydro-power potential consists of
specifying points along the river, separated by a fixed interval, representing potential sites
over the stream network. These points are then evaluated using digital elevation models
(DEM) to calculate the gross hydraulic head and the available flow for the catchment
area [17]. Nevertheless, as the hydro-power potential modeling depends on the site’s
discharge and topography, it is highly sensitive to the approach used.

Some models are focused on identifying the locations with the highest potential, e.g.,
Kusre et al. [18] identified, as potential sites in the Kopili River in India, streams of 5th order
or greater with a bed slope greater than 2% and spaced 500 m. Palomino-Cuya et al. [19]
estimated maximum theoretical hydro-power potential in the La Plata basin in South
America by considering the mean annual discharge. This was done at sub-basin scale
by considering the mean elevation of upstream sub-basin calculated from hypsographic
curves, and at river scale, in cross-sections spaced 100 m; in order to obtain the maximum
hydro-power potential at main river scale, the energy values of each cross section produced
by the hydraulic head of 0.5 m were selected. Fujii et al. [20] estimated hydro-power
for six different rivers in Beppu city Bay, with lengths ranging from 3 to 6 km for sites
located 500 m from the mouth of each river. They were able to estimate mean discharge by
GIS using precipitation data and land use map for all months. Bayazit et al. [21] located
the sites with the most potential along the river by considering an scenario with average
precipitation and one with minimum precipitation. In order to obtain the height gradient,
focal statistics were applied for a 3 × 3 cells by considering the minimum height with the
neighbors, which is the corresponding head.

In order to maximize hydro-power benefit, some works have been devoted, not to
identify the site with the highest potential but, to schemes of non-overlapping projects along
the river, e.g., Larentis et al. [16] developed a GIS-based program called Hydrospot for RoR
and storage projects. Given a location along the river, they obtained another location in the
river within a radius according to the best relation between the head and the slope, which
is not necessarily the farthest point. They also calculated the gross potential due to the
terrain head for the dam-powerhouse alternative. The program considers the interference
of multiple plants and minimizes the difference between the value of the total potential
in the river basin before and after every flow regulation and at the site optimization cycle.
Zaidi and Khan [5] considered schemes of plants (from intake to turbine) separated by
100 m from each other. The gross head for each plant was calculated as the elevation
difference from the intake to the turbine located at a horizontal distance of 500 m. The
intake positions for a given scheme were selected as points separated by 100 m along the
river. Different schemes of plants were generated depending on the position of the initial
point, which is considered the first plant. Ibrahim et al. [22] proposed non-overlapping
RoR projects along the Gude River in Ethiopia. The intake sites were generated along the
given stream at uniform intervals, and a genetic algorithm is applied for optimization. The
benefit of each intake is optimized by considering constraints on turbine flow, penstock’s
length, and diameter. Thereafter, a second optimization scheme was performed by selecting
all non-overlapping projects. This way, a map for optimal intakes was considered all along
the river, identifying 22 optimal RoR projects on a 49 km length.
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Abdelhady et al. [23] developed a thorough optimization model to determine the ideal
arrangement of non-storage-based Small Hydro-Power projects along a selected stream.
The model maximized the annual benefit through a genetic algorithm and calculated the
intake location, penstock’s diameter and length, and turbine size and capacity.

Nevertheless, when selecting locations, the potential is not the only variable to be
considered. Some works also include social and economic factors or even the exact location
of the different components of the plant. Rojanamon et al. [3] performed a complete
study by considering environmental, economic, and social factors to find potential sites.
Specific criteria for site selection were also provided, such as the distance between the
weir site, powerhouse, and the surge tank head. Yi et al. [24] developed a model for Small
Hydro-Power for a RoR and a storage scheme, considering topographic, hydrologic, and
eco-environmental factors. The stream network grid was studied all along its waterways.
On every location circles with a radius of 100 m intervals were drawn, corresponding this
distance to the waterway length, and then selecting as optimal sites the ones with the short-
est waterway possible and maximum height. Zapata-Sierra and Manzano-Agugliaro [25]
proposed a methodology of evaluation of hydro-power in a Mediterranean climate. They
analyzed 10 basins in the Sierra Nevada and found a relation between altitude and basin
area for location of SHP by optimization of cost of civil work, the energy production, and
the population supplied energy and population. Sammartano et al. [26] identified potential
locations for run-of-river hydro-power plants by using GIS tools and the Soil and Water
Assessment Tool (SWAT) model within the Taw at Umberleigh River Basin, Southwest
England. Hydro-power potential was estimated for 2189 different locations at the river
network by dividing it into equal segments of 100 m. Potential sites (segments of the river)
were obtained according to environmental and economic criteria. The environmental analy-
sis was incorporated by excluding sites located in areas of high environmental sensitivities.
The economic analysis was implemented through an equation that calculated the turbine
and generator costs, which depended on the hydro-power and the head. Wegner et al. [27]
calculated hydro-power potential in Paraná hydrologic basin 3. The study included envi-
ronmental variables such as flooded and protected areas, slope, infrastructure, indigenous
land, consolidated area, as well as water availability. To carry out a detailed study of
the contributing areas, the drainage network was segmented into stretches with a maxi-
mum extension of 450 m, resulting in 3899 points to identify the potential sites within the
river network.

The present work proposes a new approach for Small Hydro-Power assessment that
describes the study zone’s hydro-power potential, distributed on a rectangular mesh in
raster format. This methodology presents a RoR scheme that considers the location of
the intake, the surge tank, the powerhouse, and the penstock’s and the headrace’s routes.
Because the effect of interference is not considered, as it needs a sequence of projects, this
leads to independent calculations, which are performed via parallel computing by using
R programming language packages (e.g., doParallel, parallel, foreach). The hydrologic
response of the selected watershed was calculated using a well-known semi-distributed
hydrologic model. The final product of the calculations yields an HP raster map. The
availability of a hydro-power distribution on a raster format has advantages, and can be
used as a base map for different studies such as suitability analysis implementation on a
planning step or determination of a sequence of hydro-power projects. The methodology
developed in this work for HP calculation is called mesh sweeping assessment (MSA) as
calculations are performed for every location on the mesh.

2. Materials and Methods

Theoretical potential P depends on the water density ρ, the hydraulic gross head H,
the discharge Q in a cross-sections of the river and an efficiency factor η, according to the
following equation [28]

P = ηρgQH (1)
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As previously mentioned, solar and wind potential estimation differs from the hydro-
power generation (HP) since the potential for the first two can be estimated where the panel
or turbine is located. On the other hand, hydro-power generation relies on the discharge Q
at the intake position and the gross head H corresponding to the height difference between
the surge tank and the powerhouse where the turbine produces the energy in the PH.

For the mesh sweeping assessment methodology proposed in this work, hydro-power
potential is obtained for every position on the study area, which is divided by a rectangular
mesh, provided a digital elevation model. This approach models a RoR scheme (see
Figure 2) in 3 main steps: first, the location of the surge tank is established, second the
location of the powerhouse and the headrace’s route are determined, and finally the location
of the intake and the penstock’s route are found. There are also three main simplifications
for the model. First, no interference effect is considered, second headrace and penstock
are modeled as straight lines, and third, no head losses are considered. Nevertheless, none
of these considerations compromises the base methodology, and improvements could be
implemented to obtain a better modeling on any of the three steps.

Figure 2. Run of River scheme includes the intake, the surge tank and the powerhouse.

2.1. First Step: Surge Tank Location

The main idea for the methodology is to establish the surge tank’s location to be the
same position where the power is calculated, placed on the ground and not along the
river. Constructions and water bodies are considered as exclusion or restricted areas, and
potential P are set to zero for these places.

2.2. Second Step: Powerhouse Location

The process for location of the PH is represented schematically on Figure 3 in Sub-
figures a, b, and c. On Figure 3a, candidates for PH within a radius RPH from the ST that
meet the PH slope criterion are colored in purple. This criterion requires that potential
sites have a gross head relative to the ST higher than 4 m. On Figure 3b, the remaining
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candidates meeting the PH obstacles criteria are colored in orange. These criteria require no
obstacles between the ST and the PH candidate if joined by a straight line, which is how
the penstock’s route is modeled. Finally, in Figure 3c, the PH location is selected to be the
site that maximizes the gross head, its corresponding penstock route is also shown. For
the present study, the values of the maximum horizontal distance RPH for the penstock
will vary from 100 to 2500 m. If no site meets any of these requirements, gross head H,
discharge Q and consequently power P are set to zero.

(a) (b) (c)
Figure 3. Powerhouse site selection process. (a) Slope Criteria (b) Obstacles Criteria (c) Maximum
gross head. Maximum permissible penstock’s length for example is set to RPH = 2000 m.

2.3. Third Step: Intake Location

Location for the intake is observed on Figure 4 for Subfigures, a, b and c. In Figure 4a
candidates for intake within a radius RI from the ST are colored in green. These sites meet
the stream criteria, where potential intake sites and the PH should belong to the same stream
segment in order to avoid water exchange. In Figure 4b, the remaining candidates meeting
the Intake slope criteria are colored in pink. These criteria require that the elevation of
potential sites is at least 3 m higher than the surge tank. Finally, in Figure 4c, the remaining
intake candidates shown in black meet the Intake obstacles criteria, which guarantees no
obstacles if a straight line is drawn from the ST to the intake candidate. Lastly, the site with
the maximum discharge is selected as the intake location. For the present study, the values
of the maximum horizontal distance RI for the headrace will vary from 100 to 2500 m. If
no site meets any of these requirements, discharge Q and consequently power P are set
to zero.

2.4. Hydro-Power Computation

Computations are performed for the Huazuntlan River Watershed, according to
Figure 5. The extent of the study area is 364.74 km2 with a resolution of 12.5 m which leads
to 2,334,360 different locations on the map. Due to the fact that the effect of interference is
not considered, calculations are performed via parallel computing. The script was run in R
free software (v.2020.4.0.0) [29] by using the packages (sp, raster, rgeos, rgdal, gdistance)
for spatial data manipulation and (doParallel) for parallel implementation.
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(a) (b) (c)
Figure 4. Intake site selection process. (a) Stream criteria (b) Slope criteria (c) Obstacles criteria.
Maximum permissible headrace’s length for example is set to RI = 3000 m.
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Figure 5. Mesh sweeping approach (MSA) methodology flow diagram.
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2.5. Watershed Description

The Huazuntlan River Watershed is located in the Sierra de Santa Martha that belongs
to the Los Tuxtlas Mountain range, an ecological reserve, and a multicultural zone. It
belongs to the state of Veracruz, Mexico, and drains to the Coatzacoalcos River basin. The
watershed covers approximately 118.6 km2 with the outlet at 18.1510 Lat and −94.7884 Lon.
The annual precipitation ranges from 1102 to 993 mm within the 19 year-study period (1995
to 2013). The minimum, mean, and maximum elevation of the watershed are 39, 574, and
1673 meters above sea level, respectively. Current land uses are shown in Figure 6. They
include evergreen forest (66.13%, FRSE), rangeland (14.93%, RNE1), rye (9.37%, RYER),
shrubland (3.45%, RNG1), agricultural and cultivated areas (5.02%, AGMX), and grassland
(1.09%, CRGR). The predominant soils in the watershed are sandy loam soils (55.25%) and
loam soils (44.75%).
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Figure 6. Huazuntlan River Watershed: left: digital elevation model; right: land use distribution.
Units in meters.

2.6. Hidrological Model

The hydrological response of the watershed was simulated using the Soil and Water
Assessment Tool (SWAT) [30]. The SWAT is a semi-distributed hydrological model that
executes at daily and monthly time steps [31–33]. The model was chosen because of its
ability to simulate flows at different time steps and its temporal-spatial representation of
climate, soil types, and land use. The SWAT model simulates the hydrological processes
based on the following water balance equation:

∆Wt = ∆W0 +
t

∑
i=1

(P − Qs − Ea − Ws − Qg)i (2)

where ∆W0 and ∆Wt are the initial and current soil water content, respectively, P is the
amount of precipitation, Qs is the amount of surface run-off, Ea is evaporation, Ws is the
amount of water in the vadose zone, and Qg is the baseflow. All variables on day i are
in meters.

2.6.1. Databases

The SWAT model requires a meteorological, topographic, land cover, and land use
data for the study watershed. All input data were integrated into the model via raster data
sets, weather station locations, and measured data files. The topography was described
using an DEM from the shuttle radar topography mission (SRTM) [34] with a 12.5 m
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horizontal resolution. Meteorological data were extracted from [35], which contains daily
records of precipitation, maximum and minimum temperatures, and wind speeds from
1950 to 2013 for all North America with a 1/6◦ spatial resolution. Relative humidity and
solar radiation inputs were generated using the generator integrated into the SWAT model
and developed by the National Center for Environmental Prediction (NCEP) and the Cli-
mate Forecast System Reanalysis (CFSR). Soil information was obtained from the world’s
digital soil map provided by the United Nations Food and Agricultural Organization
(FAO) [36]. All observed data used for calibration and validation purposes in the present
study were extracted from the Banco Nacional De Datos De Aguas Superficiales (BANDAS)
database [37], which contains daily and monthly discharges from 2070 streamflow stations.
Land use description for the watershed was extracted from the GlobCover initiative devel-
oped by the European Space Agency, which contains global cover maps using observations
from the 300 m MERIS sensor onboard the ENVISAT satellite [38].

2.6.2. Model Setup

ArcSWAT (v.2012.10.5.24) was used to facilitate the data entry, setup, and parametriza-
tion of the present study’s hydrological model. The watershed was delineated automat-
ically and based entirely on topographic and river network information such as DEM,
flow direction and flow accumulation raster maps. The watershed outlet was selected
to match the river mouth and the streamflow station. After delineating the watershed,
1477 HRUs (Hydrologic Response Units) were generated based on land use, soil type, and
slope characteristics.

The simulation was executed from 1 January of 1995 to 31 December of 2013. This
period was defined as a function of the available data. A five-year period was selected for
warm-up purposes in all the simulations. Eight years were used for model calibration from
the total simulation period, whereas the left five years were used for validation purposes.

2.6.3. Model Calibration, Validation, and Sensitivity Analysis

Model calibration was performed with the automatic tool Soil and Water Assessment
Tool Calibration and Uncertainty software (SWAT-CUP, v. 5.2.1.1; [39]). The selected
calibration algorithm was the SUFI-2 method [40,41]. In SUFI-2, the uncertainty, referred to
as the 95% prediction uncertainty, is propagated using the Latin Hypercube scheme (LHs)
and calculated at the 2.5% and 97.5% levels for all calibration variables [42]. The model
was calibrated at monthly time steps. A total of 500 simulations were carried out in each
of the eight iterations during calibration. The calibration process took place from 2000 to
2009 for the streamflow in the Huazuntlan River Watershed. The recommendations for
parameter regionalization discussed by [43]. Based on these directions, the parameters
selected for the calibration procedure are showed in Table 1. The validation of the model
was performed for a period starting in 2010 and ending in 2013.

Calibration and validation performances were assessed using the Nash-Sutcliffe effi-
ciency (NSE) and the percentage bias (PB) from the following equations:

NSE = 1 −
∑

n
i=1(Q

o
i − Qs

i )
2

∑
n
i=1(Q

o
i − Q̄s

i )
2 (3)

PB = 100 ×
∑

n
i=1(Q

o
i − Qs

i )
2

∑
n
i=1(Q

o
i )

(4)

where Qo
i is the observed streamflow, Qs

i is the simulated streamflow, and Q̄s
i is the mean

of the measured data. Values of NSE > 0.65, and −25% ≤ PB ≤ 25% are statistical
measurements necessary in order to consider a good calibration, as established in the
criteria provided by [44]. The correlation factor, R, was also calculated to observe the linear
dependence between the observed simulated responses from the following equation:
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R =
Sxy

SxSy
(5)

where Sxy is the covariance of the variables x and y, respectively, and Sx and Sy are the
standard deviations of the corresponding variables. The assessment metrics previously
mentioned were also used for the validation procedure. The sensitivity analysis was
performed using SWAT-CUP. The model estimates the sensitivity by changing the different
input parameters and analyzing the model’s output to these variations. Each parameter’s
significance is evaluated with a t-test and its corresponding p-value [39].

Table 1. Parameters used in streamflow calibration.

Parameter Description Unit Method Range

SURLAG Surface run-off lag coefficient days a 0.05 to 24
CN2 Curve Number for moisture condition - r −0.25 to 0.25

ALPHA_BF Base-flow recession constant days a 0 to 1
GWQMN Threshold water level in shallow aquifer for base-flow mm v 0 to 2

REVAPMN Percolation to the deep aquifer to occur mm v 0 to 500
RCHRG_DP Aquifer percolation coefficient - v 0.02 to 1
GW_REVAP Revap coefficient mm v 0.02 to 2
GW_SPYLD Specific yield of shallow aquifer m3/m3 v 0 to 0.4

GWHT Initial groundwater height m v 0 to 50
SHALLST Initial water depth in shallow aquifer mm v 0 to 5000
DEEPST Initial water depth in the deep aquifer mm v 0 to 10,000
CANMX Maximum canopy storage mm v 0 to 100

EPCO Plant evaporation compensation factor - v 0 to 1
ESCO Soil evaporation compensation factor - v 0 to 1

HRU_SLP Average slope steepness m/m r −0.25 to 0.25
LAT_TTIME Lateral flow travel time days v 0 to 180
SOL_AWC Available water capacity of the soil layer mm r −0.25 to 0.25

SOL_K Saturated hydraulic conductivity mm/h r −0.25 to 0.25
CH_K2 Channel hydraulic conductivity mm/h v 0.01 to 500
CH_N2 Manning’s roughness coefficient for a river - v 0.01 to 0.5

3. Results and Discussion

Results are presented as they were utilized in the proposed model. First, the hy-
drological model calibration and validation were presented along with its performance.
Second, the hydrological behavior was exposed in terms of the actual watershed physical
conditions and the model parameters. Third, hydro-maps were developed as functions of
two more relevant variables, the headrace, and penstock lengths. Thus the hydro-power
spatial distribution was shown. Additionally, the contribution of the variables mentioned
above is quantified by multiple regression analysis. Lastly, a more comprehensive MSA
methodology is illustrated to show its use and potentiality, and limitations.

3.1. SWAT Model Sensitivity Analysis

The top 10 most sensitive parameters from the 20 calibration parameters showed in
Table 1 were ranked from the most to the least sensitive variables (see Table 2). These
sensitive parameters were responsible for significant changes in the model output during
the calibration process. Results showed that the first five more sensitive parameters
control the overland run-off (CN2, t = 17.64), the base-flow recession response to changes
of the water table (ALPHA_BF, t = 14.86), the flow discharge peaks and residence time
through properties, such as the channel hydraulic conductivity (CH_K2, t = −8.98) and
the Manning’s roughness coefficient (CN_N2, t = −7.80), and, lastly, the soil evaporation
compensation (ESCO, t = 3.85), which modifies the depth distribution to meet the soil
evaporative demand to account for the capillary rise. Table 2 shows these variables present
significant p-values (+0.000).
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Table 2. Parameters used in streamflow calibration.

Rank Parameter Calibrated Value t-Stat p-Value

1 CN2 0.24 17.64 0.000
2 ALPHA_BF 0.52 14.86 0.000
3 CH_N2 0.068 −8.98 0.000
4 CH_K2 476.12 −7.80 0.000
5 ESCO 0.98 3.85 0.000
6 CANMX 0.36 −2.68 0.008
7 HRU_SLP 0.000839 1.96 0.050
8 SOL_AWC 0.024 −1.71 0.088
9 GWHT 1.16 1.49 0.137

10 GWQMN 3228.41 −1.39 0.165

3.2. SWAT Calibration and Validation

Overall, a good calibration of the proposed model was obtained when compared to
the observed flow discharge at the outlet of the Huazuntlan River Watershed. Figure 7
shows the observed flow discharge and the best simulated flow signal after automatic
calibration and validation procedures. The NSE value for the calibration period was 0.69,
R2 was 0.84, whereas PBIAS was 3.1%, which represent a good performance for monthly
flow discharge calculations according to [44]. Similarly, the performance during the vali-
dation period NSE was 0.64, R2 was 0.83, and PBIAS was 12.5%, which are in the range
bracketing a good fit between the observed and simulated signals (see Table 3). The mean,
maximum, and minimum observed discharge for the calibration period were 5.28, 28.78,
and 0.03 m3/s, respectively. The simulated flow showed a mean, maximum, and minimum
of 5.12, 20.75, and 0.55 m3/s, respectively. It can be noticed that similar flow magnitudes
were obtained between the predictions and the observations. However, minimum flow
conditions were the slightly over-predicted by the model. During the model validation,
the mean, maximum, and minimum observed discharge for the calibration period were
5.99, 40.35, and 0.04 m3/s, respectively, while during simulated conditions, the validation
period showed mean, maximum, and minimum of 5.30, 17.33, and 0.90 m3/s, respectively.
We can see that the mean discharge agreed well with its simulated counterpart. However,
several peaks during both calibration and validation were not able to be captured by the
model accurately. Similarly to the calibration period, the model slightly overestimated the
base-flow conditions, especially for those months with low values of precipitation.

Table 3. Observed vs simulated streamflow goodness of fit

Period NSE R2 PBIAS

Calibration 0.69 0.84 3.1
Validation 0.64 0.83 12.5
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Figure 7. Huazuntlan River Watershed hydrologic response. Top: monthly precipitation; Bottom:
observed streamflow (circles) and simulate streamflow (solid line).
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3.3. Hydrological Behavior of the Watershed

The SWAT model proposed in this study performed well and indicated a linear wa-
tershed hydrologic response as it presented a rapid response to rainfall events, except for
storm events presented during the intense summer rainfall generally preceded by dry con-
ditions. This linearity and rapid response of the watershed is attributed to the response to
the subsurface lateral flow [45]. Evidence of this type of hydrologic behavior is accountable
for the relatively high values of ALPHA_BF during the calibration period [46]. Although
non-linearity response assumes that overland flow in steep mountainous catchments is the
most significant contribution to the streamflow, surface run-off is unlikely to happen in
forested hillslopes due to the high hydraulic conductivities of the soil, which is the case for
the mainly forested Huazuntlan River Watershed. As a result, in the shallow soils found in
the study area, a preferential flow mechanism is likely to occur within the watershed. This
process is common to happen in mostly humid climate and forested watersheds [47] due
to ephemeral and perennial pipes in the soil maintained mainly by subsurface flow and
burrowing animals, respectively. This type of preferential flow is quite complex to explain
and simulated and it is only possible to discuss by the statistical properties of parameters
defining the movement of the subsurface in hydrological models. In addition, in SWAT
models, the representation of the water table attributes and position tends to be inadequate.
As a result, the parameters controlling shallow groundwater structure will have a large
source of uncertainty associated with them [48]. A more discrete spatial representation of
the aquifer characteristics and groundwater systems within sub-watersheds may increase
the model accuracy.

The overall hydrologic response of the watershed showed that observed and simulated
streamflow outputs presented similar phases and trends, as well as a reasonable match with
the observed peaks during humid season (see Figure 7). However, significant deviations
between the simulated and observed peaks were found. These deviations, present during
high-intensity rainfall events, might be due to the precipitation heterogeneity within the
watershed or the well-known curve number (CN) method limitations. The CN method
does not considered neither the storm or precipitation duration and its intensity [49], which
can limit the SWAT model to estimate the magnitude of the flow discharge peaks [50].
Regardless these limitations, the CN method slightly overestimated streamflow for some
large rainfall events and showed some limitations to capture the peak during the high-
intensity rainfall season. This peak mismatching, as previously mentioned, is present
due to the spatial-temporal variability of the rainfall data, which was heterogeneous by
nature. Additionally, peak discharges may be due to changes in land use influencing the
hydrological phenomena of the direct run-off. In this study, a increase of 25% of the overall
curve number was found during the calibration period. Although the calibration procedure
produced a good performance, a more accurate representation of the CN may be obtained
from a spatial and dynamic calibration of this parameter.

At large basins, the residence time plays an important role during calibration. These
residence time refers to the average time that a certain amount of water travels through a
defined river reach. In SWAT model, this variable is affected by the Mannign’s roughness co-
efficient, which by the definition influences the mean velocity of the flow traveling through
streams. This roughness was homogeneously assumed in the proposed SWAT model,
having a calibrated value of natural streams (∼0.06 [51]). Additionally, the hydraulic con-
ductivity of the overall system of streams presented an average value of 476.15 mm/day,
which represent a high transmissivity of water from the streams to the hillslope or vice
versa, which is consisted with the high rates of lateral flow dominating the flow hydro-
graph. Overall, the annual average discharge from 2000 to 2013 were 5.49 and 5.17 m3/s for
the measured and simulated data, respectively. These values and the performance metrics
indicate that the model can be applied for further assessment of the hydrologic response
under different land use scenarios. It is carefully noted, that some uncertainty is always
introduced into a hydrologic model regardless the agreement between the simulated and
observed signals [52]. The foretold uncertainties may arise from different sources, includ-
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ing the model conceptual structure, assumed initial conditions, observed input data, and
selected calibration parameters. The latter have been discussed extensively and although
20 parameters were selected as the most significant, Duan et al. [52] suggested that more
variables are needed for calibration purposes.

3.4. Hydropower Map

Hydropower maps were obtained by implementing the MSA according to the scheme
of Figure 5 for different pairs of values (RPH , RI) representing the headrace’s and penstock’s
maximum permissible lengths, respectively. Values of (100, 250, 500, 1000, 1500, 2000,
2500) m were used for RPH and RI to get a more comprehensive understanding of the
interaction between both variables. Due to computing access limitations (i.e., HPC account
expired), results for (RPH , RI) = (2500, 2500) m were not considered. As a result, only
48 simulations were analyzed. Potential sites include mountainous regions with steep
geographies, as well as downstream places.

Figure 8 shows hydro-power maps for the three representative (RPH , RI) cases,
(250, 2000), (1000, 2000) and (2500, 2000) m, where RI is a fixed value. For the sake
of visualization, different scales were used. It can be observed that for all three maps,
most of the values are close to zero. The main reason is that places far away from the
river were not included within the RPH or the RI radius. For some other cases, it could
be that obstacles were obstructing the headrace’s or the penstock’s path, or simply that
the study site did not meet the requirements given by the model. Overall, the larger the
RPH values, the more potential sites were found with higher hydro-power. Additionally,
spatially speaking, a non-uniform hydro-power distribution was present on all maps. This
behavior is due to an implicit balance between discharges Q and hydraulic heads H, which
is required for hydro-power estimation according to Equation (1). This translates to flow
discharges increasing from downstream to upstream (from north to south), and higher ele-
vation gradients present more commonly at high elevations. For instance, when (RPH , RI)
were (250, 2000) m, specifically Figure 8a, potential sites with hydro-power lower than
1500 kW tended to be located within the buffer created along flood plains of the river and
dominated by RPH . Locations with hydro-power higher than 1500 kW were mostly at the
junction of the river’s main stem and tributaries and other downstream zones. Similarly,
for Figure 8b,c, increments in hydro-power were due to the magnitude of RPH . However,
whereas the former showed the highest hydro-power values ranging from 1500 to 2500 kW
over similar locations as shown in Figure 8a, the extension increased. Lastly, Figure 8c
shows significant changes in potential locations for hydro-power generations, where the
locations with the highest hydro-power (>2000 kW) were located downstream and all over
the middle and top sections of the watershed. According to all this, it would be possible to
select high potential sites without interfering with other high potential sites.

For fixed values of RPH and three representative values of RI , Figure 9 shows cases
(2000, 250), (2000, 1000) and (2000, 2500) m. Once again, different scales were used for
each map for the sake of visualization. It can be seen that for the first scenario, there are
fewer potential sites for low values of RI with the highest hydro-power close to the mouth
of the river (Figure 9a). An increment in RI showed that hydro-power ranged from 500
to 2000 kW and was mostly located at the watershed’s headwaters. Additionally, a few
locations with HP > 2000 kW were at the junction of the main river and its tributaries
and close the watershed’s outlet (Figure 9b). The last scenario with RPH = 2000 and
RI = 2500 m showed a similar hydro-power distributions as in Figure 8c. However,
potential locations with moderate hydro-power conditions (1500 < HP < 2000) kW were
located mainly over the middle and top sections of the watershed, whereas the highest
hydro-power, HP > 2000 kW, were still located at the river’s junction and near the mouth
of the watershed (Figure 9c). Once again, it can be seen that high potential sites do not
interfere with other high potential sites under this approach.
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(a) RPH = 250 m, RI = 2000 m (b) RPH = 1000 m, RI = 2000 m (c) RPH = 2500 m, RI = 2000 m

Figure 8. Hydropower maps for fixed maximum headrace’s length RI = 2000 m.

(a) RPH = 2000 m, RI = 250 m (b) RPH = 2000 m, RI = 1000 m (c) RPH = 2000 m, RI = 2500 m

Figure 9. Hydropower maps for fixed maximum penstock’s length RPH = 2000 m.

The MSA shares common criteria with other methodologies. Works such as [3,16,17]
located the different components of the RoR scheme by fixing maximum distances between
surge tank and powerhouse. Then, the head was maximized according to the given criteria.
Nevertheless, in these works, hydro-power was assessed by first establishing the position
of the weir along the river. Thereafter, the position of the surge tank is conditioned when
included in the model. This limits the potential sites to locations along the river and at
sub-basin levels. This MSA method, on the other hand, allows multiple potential sites over
the entire study area or any raster region (e.g., Figures 8 and 9).

3.5. RPH and RI Contributions

To observe the effect of the RPH and RI parameters, Table 4 shows the mean value
for the 243 sites with the highest hydro-power. This amounts only to the 0.01% of the
total simulated data. The mean values ranged from 103 to 3432 kW. It is important to
highlight that considering the mean of all values (100% of the total data) would lead to
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wrong conclusions since there are plenty of locations with zero potential values. This
study was only concerned about the sites with the highest potentials. For the HP values
on Table 4, a multiple linear regression model with interaction effect was estimated as
P ∼ RPH + RI + RPH × RI with a 0.945 value for the R2 correlation coefficient. The
predictors RPH , RI and RPH × Ri were 0.355, 0.654, and 0.221 × 10−3, respectively. Table 5
shows reasonable contribution of interaction term and the penstock’s length, whereas the
strongest contribution to the hydro-power was due to the headrace’s maximum length
with a significance level of 0.05. Namely, an increase in 100 m for RPH is associated with an
increase in 35.456 + 0.0221 RI kW, meanwhile an increase in 100 m for RI is associated with
an increase in 65.379 + 0.0221 RPH kW. The interception term shows to be not significant in
the regression equation with p = 0.3625 since neither RPH or RI can be set to zero as this
combination makes an irrational arrangement in a hydro-power generation system.

Table 4. Mean HP[kW] for the 243 maximum values.

RPH /RI 100 250 500 1000 1500 2000 2500

100 103.8 305.9 505.9 676.7 804.5 995.2 1295.3
250 145.8 381.0 596.23 882.6 1189.6 1655.1 2077.3
500 264.7 479.6 756.2 1116.1 1337.9 1794.0 2549.2

1000 425.4 729.0 969.1 1378.9 1659.3 2511.1 3017.0
1500 562.1 1020.1 1301.9 1672.6 1897.9 2923.1 3341.3
2000 791.0 1281.5 1650.9 1972.1 2252.1 2973.4 3432.0
2500 754.5 1361.5 1734.6 2002.1 2351.3 3057.8 NA

Table 5. Regression Model for the Mean HP[kW] for the 243 maximum values.

Estimate Std. Error t-Stat p-Value

(Intercept) 79.6 86.5 0.92 0.3625
RPH 0.355 0.062 5.68 0.0000
RI 0.654 0.062 10.47 0.0000

RPH × RI 0.000221 0.000048 4.62 0.0000

Figure 10 describes the parametric space for RPH and RI through a contour plot for
the hydro-power conditions shown in Table 4. The interpolation was performed using a
cubic spline. A thorough analysis of the level plot supports the same conclusion as the
one derived from the regression equation. Small increments in RI produce a significant
increment in hydro-power, especially for high values of RPH . Besides, this description of the
two variables involved in hydro-power production allows the observation of all possible
system arrangements, which is an advantage derived from the use of raster information.
Figure 11a plots the mean HP against the RI by fixing the RPH for different values. It shows
a linear increment of the power as the RI length increases. Moreover, when RI takes values
from 1500 to 2000 m, there is a significant increment in power for RPH values higher than
1000 m. The lines RPH = 2000 m and RPH = 2500 m show no significant difference for
any RI value. On the other hand, Figure 11b plots mean HP against the RPH by fixing the
RI for different values. There was an asymptotic trend for RPH values higher than 1500
observed for all RI values. This suggested RPH values within the range (1000, 1500) m
behave as a threshold for this parameter, as no significant gains in power were obtained
when increasing. The lines RI = 2000 m and RI = 2500 m show no significant difference
for low RPH values.
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Figure 10. Mean HP for the 243 maximum values.
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Figure 11. Power as function of RI and RPH for mean of 243 maximum values. (a) Fixed RPH value
(b) Fixed RI value.

Table 6 indicates the maximum hydro-power for each run. Maximum HP values range
from 608 to 3752 kW for the (100, 100) m and (2000, 2500) m cases, respectively. One could
see that this case represented the topmost hydro-power condition, whereas the previous
case includes a representative selection of the maxima HP (e.g., 0.01% of the entire raster
database). A multiple linear regression model with form P ∼ RPH + RI was adjusted to
explained the variability of the maximum hydro-power as a function of RPH and RI . The
R2 value was equal to 0.950, which means HP depends linearly on the penstock’s and the
headrace’s length. The predictor’s values were 0.714 and 0.823 for RPH and RI , respectively
(Table 7). Although both variables had a significant effect on the maximum HP, headrace’s
length RI had a slightly stronger effect (p = 0.0000). Once again, the interception term
played an important effect on the maximum HP when considering a complete hydro-power
generation system. However, it would be meaningless to consider its effect on HP by itself.

Table 6. Maximum HP[kW] values.

RPH /RI 100 250 500 1000 1500 2000 2500

100 608.2 608.2 889.3 971.7 1206.1 1595.2 1875.6
250 608.2 795.6 889.3 1042.6 1552.6 1919.6 2577.5
500 795.3 842.1 968.7 1497.7 1688.6 2098.3 2764.6

1000 923.1 923.2 1452.3 1736.9 2041.1 2764.6 3390.2
1500 1280.9 1593.2 1733.4 2198.9 2365.8 3346.2 3707.9
2000 1684.8 1920.0 2386.9 2666.7 3013.9 3390.2 3751.9
2500 1684.8 1920.0 2573.1 2666.7 3013.9 3462.0 NA
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Table 7. Linear Regression Model for the maximum HP[kW] values.

Estimate Std. Error t-Stat p-Value

(Intercept) 225.4 65.1 3.46 .0012
RPH 0.714 0.036 19.66 0.0000
RI 0.823 0.036 22.66 0.0000

Figure 12a shows a linear increment of the hydro-power as RI increases, and a signifi-
cant increment when increasing from 1500 to 2000 m for RPH values greater than 1000 m.
Once again, the lines corresponding to RPH = 2000 m and RPH = 2500 had no significant
difference for any RI value. Additionally, for small RI values within the range (100, 500)
m some hydro-power lines for different RPH values intercept each other, that is the case
of (100, 500) m and (250, 500) m. There is no guarantee that by increasing RPH or RI by a
relatively small amount, HP value will increase. This is because the RPH and RI values
stand for the maximum permissible penstock’s and headrace’s length, respectively, but in
general, the values for both lengths are lower than permissible ones.

On the other hand, Figure 12b plots maximum HP against RPH for different RI values.
No significant increments were observed for RPH greater than 2000 m for all RI values.
There are also cases, where where hydro-power lines intercept, or closely intercept each
other. That is the case of (2500, 2000) m and (2500, 1500) m. Nevertheless, compared with
Figure 12a there are fewer cases since the increment on RI has a stronger increment on
the HP.

Results indicated that according the MSA the headrace’s length, RI , plays an im-
portant role on HP assessment and has to be taken into account to generate a more
effective hydro-power generation system. However, general studies for hydro-power
assessment models mainly focus on the penstock and ignore the headrace contribution in
their models [17,22,53].

(a) (b)
Figure 12. Power as function of RI and RPH for maximum HP values. (a) Fixed RPH value (b) Fixed
RI value.

3.6. Considerations

Although the raster representation associates a hydro-power potential to every po-
sition, it does not mean that all sites can be used at the same time, as there could be
interference between potential RoR projects. In fact, each cell of the hydro-power map
contains additional information such as the powerhouse locations, the intake, the surge
tank, and the headrace’s and penstock’s route, the flow discharge as well as the gross
head. Therefore, when one selects a location for potential use, not only consider that
single location but the complete facilities and a segment of the river, which restricts, in
consequence, the selection of other potential locations. Additionally to these considerations,
working with a raster representation carries advantages for further data processing and
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analysis. In fact, implementations such as turbine selection or MCDM analysis becomes
a straightforward task [28,54]. For instance, Figure 13 presents a simple scheme of 5 non-
overlapping projects by considering the RPH = 1500 m and RI = 2000 m. The extent was
divided in five equally sized horizontal rectangles from east to west. As a result of the
approach used in this study, the highest hydro-power values were 492.61, 1355.98, 1408.47,
2000.90, and 3346.18 kW for sites located from top to bottom of the image or downstream
direction. The highest potential location among all the trials is shown in black. More
complex optimization procedures could be implemented [22,55] as the MSA procedure
was designed for further applications and research. That being said, the MSA methodology
can be improved or extended without compromising it. An important improvement would
be modeling more complex routes for the headrace and the pentsock by incorporating
variables such as land use, watershed geomorphology, head losses, and economic costs. It
could also be possible to integrate the different scenarios for the different parameters RPH

and RI , all in a single raster, in order to provide enough information, and make it open and
accessible for the community.

Figure 13. Hydropower map for RPH = 1500 m and RI = 2000 m, presenting 5 non-overlapping projects.

4. Conclusions

The present work developed the MSA methodology devoted to obtain hydro-power
potential maps distributed on a rectangular grid for a run of river scheme. The study
area was the Huazuntlan River Watershed at the Tuxtlas Mountains, Veracruz, Mexico.
The proposed method calculates the hydro-power on each location of the map where the
position of the surge tank is established. Then, the position of the powerhouse and the
intake are determined in the respective order by using the topographic and environmental
factors, along with the SWAT model to obtain the watershed hydrologic response.
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Hydro-power maps, were generated by controlling the penstock’s and headrace’s
maximum permissible lengths (RPH ,RI). The regression model showed the parameter
RI had the major effect on the hydro-power estimation, followed by RPH and, lastly, the
interaction effect with a fair contribution. In a more realistic condition, where hydraulic
losses are considered, the impact of RI would be even greater than RPH on the hydro-power
generation. The selection of RPH = 1500 m and RI = 2000 m yield an HP = 3350 kW. This
scenario behaves as a threshold condition since no significant gains were obtained after
increasing either penstock’s or headrace’s maximum lengths.

Overall, the maps presented a non-uniform hydro-power distribution with possible
potential sites located at downstream, middle, and headwaters area of the watershed.
Moderate hydro-power values are mostly at the junction of the river’s main stem and
tributaries and other downstream areas. This makes the MSA procedure suitable for a
sequence of RoR project along the different sites of the watershed.

The SWAT model used here provided an effective tool to estimate streamflow condi-
tions for the different annual seasons in the study. The model shows an overall efficiency
of 0.67, which is considered a good performance for various hydrological models (i.e.,
0.65 < NSE < 0.75). However, the MSA method does not limit the use of other hydrological
models and is flexible to higher time increments.

Although the MSA method assumed penstock’s and headrace’s routes as straight
lines, and only gross hydro-power was calculated with no consideration of losses and
ecological flows, the base methodology can be easily enriched. For instance, the straight-
line assumption of the headrace and the penstock could be relaxed, and the model could
incorporate more variables such as land use, watershed geomorphology, head losses,
and economic costs. Additionally, improvements can include the hydrological modeling
temporal and spatial resolution, and the implementation of MCDM analysis.

The central idea of MSA the developed methodology is relatively simple to apply, and,
therefore, replicable. This approach involves elementary geoprocesses, such as searching
extreme values in raster maps variables, intersecting different geometries, calculating
distances, among others. However, these basic calculations can take seconds to minutes,
translating into long computation times for large study areas. For this, one needs high-
performance computing (HPC) equipment or reduce the number of pixels by choosing
smaller areas or with lower resolution and performing the calculations in parallel. Fur-
thermore, the results found through this method will be sensitive to how it is modeled.
Namely, the MSA is sensitive to define the headrace and the penstock routes, the criteria
for the location of the turbines and the intake, and at the same time as the hydrological
model used.
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Abstract: The present analysis utilized the 6-hourly data of wind speed (zonal and meridional) for
the period between 2011 and 2019, as retrieved from the Copernicus Marine Environmental Service
(CMEMS), covering the Thracian Sea (the northern part of the Aegean Sea). Data were estimated
from the global wind fields derived from the Advanced Scatterometer (ASCAT) L2b scatterometer
on-board Meteorological Operational (METOP) satellites, and then processed towards the equivalent
neutral-stability 10 m winds with a spatial resolution of 0.25◦ × 0.25◦. The analysis involved:
(a) descriptive statistics on wind speed and direction data; (b) frequency distributions of daily-mean
wind speeds per wind direction sector; (c) total wind energy content assessment per wind speed
increment and per sector; (d) total annual wind energy production (in MWh/yr); and (e) wind
power density, probability density function, and Weibull wind speed distribution, together with the
relevant dimensionless shape and scale parameters. Our results show that the Lemnos Plateau has
the highest total wind energy content (4455 kWh/m2/yr). At the same time, the area to the SW of the
Dardanelles exhibits the highest wind energy capacity factor (~37.44%), producing 7546 MWh/yr.
This indicates that this zone could harvest wind energy through wind turbines, having an efficiency
in energy production of 37%. Lower capacity factors of 24–28% were computed at the nearshore
Thracian Sea zone, producing between 3000 and 5600 MWh/yr.

Keywords: marine renewable energy; wind climate; wind power assessment; wind energy capacity
factor; scatterometer; Thracian Sea

1. Introduction

Through the European Green Deal, the European Union (EU) has set a target to reach
total decarbonization and achieve energy efficiency for its members by the year 2050 [1]. To
achieve this ambitious goal, the power production sector would follow the Clean Energy
Transition pathway, with renewable energy sources at the epicenter of such conversion.
In this gradually changing energy mix, the offshore wind industry is expected to play a
significant role, experiencing a considerable increase in the coming several decades [2,3].
The EU plans to install in all European Sea at least 240 gigawatts (GW) of global offshore
wind power capacity by 2050 [4]. Current developments illustrate the exponential growth in
offshore wind installations (e.g., offshore wind grew from 1% of annual capacity additions
in global wind installations in 2009 to over 10% in 2019) [3].

Technological progress, recent developments in floating technologies, and significant
cost reductions, in conjunction with local, low level, and controllable environmental im-
pacts, appear to be the main factors driving the transformation of offshore wind energy into
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a safe and commercially viable form of clean power generation [5]. In any case, the total
offshore installations reached 29.1 GW by the end of 2019, representing only 5% of total
global wind capacity and generating barely 0.3% of global electricity production. In the EU,
approximately 10 million households are now being served by offshore wind energy. In the
U.S., the first commercial Offshore Wind Farm (OWF) started its operation in December
2016. However, up to the present date development activity remains impressively high, and
sixteen active commercial leases for offshore wind development have been procured [6]. In
Southeast Asia, countries such as China, Japan, and Taiwan lead the market, with China
surpassing 1 GW in annual offshore wind installation [3].

The above indicates the enormous potential for offshore wind capacity growth. On
this account, a large amount of new OWFs will be designed, installed, and will become
operational, especially in Europe where the European Commission (EC) forecasts that total
offshore wind installations will range between 240 and 450 GW by 2050 [4].

Although all OWFs are concentrated in the North and the Irish Seas, a clear tendency
from the private sector to harvest the Mediterranean’s wind power potential has also been
observed. A 30 MW wind farm comprised of 10 monopole wind turbines is expected to
be installed in the Apulia region, southern Italy, as the first Mediterranean offshore wind
project to be implemented. Even though 1 GW of offshore wind power is equivalent to
emissions of 3.5 MT CO2 (Carbon dioxide), several technological, administrative, legislative,
environmental, socio-economic, and financial barriers exist in the development of OWF
projects. Such barriers have been summarized by Soukissian et al. [7]. The Geographic
Information System (GIS) mapping of offshore marine and maritime uses could assist the
selection of proper locations for and placements of turbines [8].

The most crucial suitability selection criterion for wind farm siting (i.e., the wind
resource availability [9]), in conjunction with the presence of a wide continental shelf
ensuring relatively shallow depths and an appropriate distance from shore [10], could be
met over the Thracian Sea in the Northern Aegean. Several investigators have assessed the
wind power potential in the broader area, especially in Çanakkale [5] and Bozcaada [11],
the Samothraki Island [12], and the whole Aegean Sea [13]. Most studies have utilized
data from meteorological stations [5,11]. Bagiorgas et al. [13] used wind data from offshore
buoys. Soukissian et al. [7] downscaled the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data, using a high-resolution meteorological model (15 year
period, 0.10◦ × 0.10◦) validated by offshore buoy data, while Majidi Nezhad et al. [12]
utilized the ERA–Interim reanalysis dataset (40 year period, mean monthly data).

In this work, the gridded 6-hourly wind data collected from ASCAT L2b scatterometer
on-board METOP satellites, combined with the ECMWF ERA–Interim atmospheric reanal-
ysis, as provided by the Copernicus Marine Environmental Monitoring Service (CMEMS),
were used to assess the offshore wind power potential over the whole Thracian Sea and the
Lemnos Plateau. This is an area of significant interest for wind offshore energy develop-
ment, especially along the NNE–SSW axis following the wind exiting from the Dardanelles
Straits [14,15].

Scatterometer data have been widely used in literature for large-scale wind resource
assessments, filling the gap in the absence of offshore meteorological stations while pro-
viding continuous, systematic, long-term, and relatively-accurate wind data. However,
data reliability suffers from low pixel resolution, together with errors related to sensor
malfunctioning, wind retrieval algorithm, rain contamination, land contamination, etc. [16].
Several global and regional wind resource assessment studies exist using scatterometer
data, mostly using QuickSCAT (Pimenta et al. [17] for offshore SE Brazil; Mostafaeipour [18]
for the Persian Gulf and Gulf of Oman; Karamanis et al. [19] for the Ionian Sea; and Fuverik
et al. [20] for the whole Mediterranean Sea). To minimize errors induced by the above fac-
tors, recent studies have explored offshore wind resources utilizing multiplatform datasets
such as QuickSCAT, rapidSCAT, METOP-A and METOP-B, OCEANSAT-2, and others [21].
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2. Materials and Methods
2.1. Study Area Description

The study area covers the Thracian Sea, the northern part of the Aegean Sea (from
39.7◦ N to 40.9◦ N and 23.7◦ E to 26.3◦ E), an area with complex bathymetry and hy-
drography (Figure 1). This area is characterized by abrupt topographic and bathymetric
changes due to the extensive width of the continental shelf (40 km) and the North Aegean
Trough, a NE–SW oriented deep trench separating the Thracian Sea shelf from Lemnos
Plateau [22]. Coastal morphology consists of semi-enclosed gulfs, such as Saros, Alexan-
droupolis, Kavala, and Strymonikos, located along the northern coast.

Figure 1. Study area map and CMEMS grid discretization.

This area is influenced by the outflow of the Black Sea Water, exiting from the Dar-
danelles Straits and the prevailing N–NE wind circulation, known as the Etesians [23].
The present analysis divided the study area into six main sub-areas based on their physio-
graphic and meteorologic characteristics: the western Thracian Sea (stations 7–9, 17–19),
central Thracian Sea (10–13, 20–23), eastern Thracian Sea (14–16, 24–29), the Lemnos Plateau
(43–46, 52–54), the Dardanelles’ zone of influence (47–49, 55, 56), and the Siggitikos Gulf–Mt
Athos (30–33, 41).

2.2. Wind Data Description

The 6-hourly data of wind speed (eastings and northings), measured 10 m above
sea level with a spatial resolution of 0.25◦ × 0.25◦, were retrieved from the Copernicus
Marine Environmental Monitoring Service (CMEMS). The data product used was encoded
as WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 (http://marine.copernicus.eu/
documents/PUM/CMEMS-WIND-PUM-012-006.pdf, accessed on 26 April 2021), referring
to a set of time-series comprised of level 4 reprocessed hindcasted wind observations,
assimilated on a global ocean model. Data were estimated from the global wind fields
derived from ASCAT scatterometers on-board the METOP-A and METOP-B satellites,
combined with ECMWF ERA–Interim atmospheric reanalysis.

The dataset consists of six meteorological variables: wind speed, zonal and meridional
wind components, wind stress amplitudes, and the associated components. The present
analysis covered the period from January 2011 to December 2019. The resulting fields were
estimated on a daily and monthly basis, as equivalent neutral-stability 10 m winds having
spatial resolutions of 0.25◦ in longitude and latitude over the study area (Figure 1).

In total, 56 grid points were analyzed, while in situ daily-mean wind data were re-
trieved for the above defined period from the World Meteorological Organization (WMO)
stations located at the Lemnos Airport and the Chrisoupolis Airport (Hellenic Meteoro-
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logical Service, Figure 1). These data were used to assess the consistency of the CMEMS
remotely sensed wind dataset in the study area.

2.3. Qualitative Wind Data Assessment

A set of statistical parameters were used to test the quality of CMEMS scatterometer
datasets. These include the difference between temporal means (defined as bias) and the
Root Mean Square Difference (RMSD) between the in situ (considered as ground-truth) and
the satellite data products, the scalar (r) and the regression coefficient slope (bS). A similar
analysis was also performed by Bentamy et al. [24] between CMEMS and offshore wind
data from buoys in the California, Canary, and Benguela zones. These statistical measures
are estimated as:

Bias = X − Y (1)

RMSD =

√

(X − Y)2 (2)

STD =

√

(

X − Y − X − Y
)2

(3)

ρ =

(

X − X
)

−
(

Y − Y
)

STD(X)− STD(Y)
(4)

bS =

√

Y2

X2
(5)

where X is the wind speed measured by the meteorological station and Y the CMEMS
wind speed.

2.4. Preliminary Data Processing

The 6-hourly wind data from 56 data points, located at the center of CMEMS grid
(covering the whole Thracian Sea) were retrieved in the form of u- and v-wind speed
time-series (in m/s) from 1 Janurary 2011 00:00 until 31 December 2019 21:00 (in total,
13,148 values per point). The power law was used to estimate the wind speed at wind
turbine hub height (93 m) with the 10 m wind speed, as:

Uhub = U10

(

Zhub

Z10

)a

(6)

where Uhub is the wind speed at the hub height of the wind turbine (m/s), U10 is the
CMEMS scatterometer data at 10 m above sea level (m/s), Zhub is the hub height of the
wind turbine (m), Z10 refers to 10 m above sea level, and α = 0.123 (as in Bagiorgas et al.) [13].

Using these wind data profiles, the mean daily and monthly values of wind speed
and direction at the hub height were produced for each examined grid point. Descriptive
statistical parameters on wind speed and direction data were computed as the dataset
minimum, first quartile (Q1), median, mean, third quartile (Q3), and maximum values.
Frequency distributions of daily-mean wind speeds were computed per wind directional
sector, and relevant tables were produced. Based on these results, wind roses were devel-
oped indicating the frequency variability per wind speed increment and per wind direction
sector. Mean-monthly wind speeds were computed on a year-to-year basis, and boxplots
were produced.

2.5. Weibull Probability Function

Several probability density functions are available in the literature to be fitted on the
distributions representing the wind speed frequency curve per directional sector for the
prediction of randomly distributed wind speed data [25]. The Weibull probability density
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function depicts an acceptable accuracy level in numerous wind power studies worldwide,
expressed mathematically as:

f (Wb) =
k

A

(

Wb

A

)k−1

e−(
Wb
A )

k

(7)

where f (W) is the frequency of occurrence of wind speed W, A is the scale parameter
(measure for the wind speed), and k is the shape parameter (description of the shape of the
distribution) per directional bin. The Weibull distribution parameters were estimated by:

k =

[

∑
n
b=1 Wk

b ln(Wb) f (Wb)

∑
n
b=1 Wk

b f (Wb)
−

∑
n
b=1 ln(Wb) f (Wb)

f (Wb ≥ 0)

]−1

(8)

A =

(

1
f (Wb ≥ 0)

n

∑
b=1

Wk
b f (Wb)

)1/k

(9)

where Wb is the mean wind speed per directional bin b, n is the number of bins, f (Wb) is the
frequency for wind speed ranging within bin b, and f (Wb) ≥ 0 is the probability for wind
speed equal to or exceeding zero. To estimate the Weibull distribution parameters k and A,
an analysis was performed in R programming language (fitdistrplus package [26]) using
the maximum likelihood estimation method per directional bin.

2.6. Wind Energy Content and Power Density

Using the estimated Weibull probability density function, the total wind energy
content per directional bin was computed. The total wind energy content (in kWh/m2/yr)
can be understood as the theoretic energy potential of a particular site. Therefore, it is a
useful metric for the resource assessment of an area and for comparative purposes among
areas, being independent of the characteristics of the wind turbine. The available wind
energy content per wind speed increment and wind direction at each gridded point of the
Thracian Sea was assessed using the R-package bReeze, by:

E(W) =
1
2

ρair H
n

∑
b=1

W3
b f (Wb) (10)

where ρair is the density of air at the sea level under a mean temperature of 15 ◦C and
one atmospheric pressure (=1225 kg/m3), n is the total number of directional bins (=16),
H is the number of hours of the desired period (=8760 per year), Wb is the wind speed
per directional bin, and f (Wb) is the probability of that bin, estimated by the Weibull
distribution described in the previous equation. [6].

Wind power density is an important factor when assessing the wind potential of a
location. It designates the available amount of energy per unit of time and swept area
of the blades at the selected location. It is this amount of energy that will be converted
to electricity by the wind turbine. The estimation of wind power density per directional
bin is achieved by fitting the Weibull distribution to the respective dataset, expressed
mathematically as:

P(W) =
1
2

ρair

n

∑
b=1

W3
b f (Wb) (11)

2.7. Annual Wind Energy Production

The estimation of the annual wind energy production is as follows:

AEP = Aturb
ρ

ρpc
H

n

∑
b=1

f (Wb)P(Wb) (12)
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where Aturb is the average availability of the turbine, ρair is the density of air (=1225 kg/m3),
ρpc is the specific air density for power curve definition, f (Wb) is the probability of the wind
speed bin Wb, estimated by the Weibull distribution, and P(Wb) is the power output for
that wind speed bin. Finally, H is the number of operational hours (= 8760 h).

The Capacity Factor (CF) represents the productive suitability of the wind turbine,
i.e., an indicator to assess the field performance of the turbine. It is defined as the ratio
between the average output power (Pout) of the wind turbine represented by the AEP and
the theoretical maximum power output on annual basis. It is defined as:

CF =
AEP

PthH
(13)

where Pth is the wind turbine’s theoretical power, defined as being proportional to the wind
speed cubed for wind speeds lower than the rated wind speed and equal to the turbine
rated power for higher wind speeds. In this work, the annual energy production and the
capacity factor were assessed based on a Siemens SWT 2.3 MW wind turbine with a height
of 93 m. This turbine was selected as a potential monopile system to be deployed at an
offshore wind farm in NE Lemnos. The power curve for this turbine (consisting of wind
speed and power pairs), starting at the cut-in wind speed of the turbine and ending with
the cut-out wind speed, is shown in Figure 2.

Figure 2. Wind turbine power curve.

3. Results
3.1. Assessment in Satellite Wind Analysis Accuracy

The intercomparison of the satellite-derived wind data products against “ground-
truth” data collected from meteorological stations led to the assessment of regional accuracy
in the satellite wind analysis. Unfortunately, offshore buoy data were not available. Thus,
comparisons were made against land-based stations of low altitude and in proximity to the
shore on a daily-mean basis. Figure 3a,b illustrate the scatter and fitted line plots between
the 10 m wind speed retrieved from CMEMS (grid points 45 and 2) and the wind data
collected from the Lemnos and Chrisoupolis meteorological stations, respectively.
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Figure 3. Density plots histograms of CMEMS wind speed data against wind data from on-site
stations in (a) Chrisoupolis Airport and (b) Lemnos Airport. The dashed line represents the perfect
match line, the red line the linear regression model fitted on the scattered data, and the light red area
the 95% confidence interval.

These figures illustrate the rather good correlation with a slight overestimation of
CMEMS wind speed data at the open Thracian Sea area (Lemnos: n = 3287; bias: −1.35;
RMSD = 2.43; STD = 2.02; ρ = 0.76; bS = 1.31), and a moderate overestimation at the Thracian
coastal zone (Chrisoupolis: n = 1825; bias: −1.25; RMSD = 2.33; STD = 1.97; ρ = 0.50;
bS = 1.59), in relation to the in situ meteorological datasets. In Lemnos, agreement is higher
at high wind speeds (15–20 m/s and >20 m/s, bias: −1.03; RMSD = 1.76; STD = 1.37;
ρ = 0.78; bS = 1.02). Regression equations for both areas were defined, as:

CMEMS scatterometer data = 1.011 × Meteorological station data + 1.230 (14)

for the Chrisoupolis Airport, and

CMEMS scatterometer data = 0.973 × Meteorological station data + 1.463 (15)

for the Lemnos Airport.
Errors and biases are attributed to the coarse resolution of data product, exhibiting

the tendency of satellite-derived ASCAT data to overestimate offshore winds [27]. Similar
findings were also reported by Alvarez et al. [28], showing that similar satellite data, such
as QuikSCAT, CCMP, and CFSR datasets, overestimated the wind (especially at high wind
speeds >4 m/s).

3.2. Descriptive Wind Statistics per Sub-Area

In order to be able to analyze the wind data at hub level (93 m) and to provide
analytical descriptive statistics, data from grid points were spatially-aggregated according
to the main physiographic units of the study area. Table 1 presents the summary values for
these sub-areas. Results indicate that along the Thracian Sea continental shelf, a gradient in
wind speed values exists with higher mean, median, and quartile values being exhibited
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towards the Eastern Thracian Sea. Furthermore, the highest offshore wind statistical
parameters are shown in the Lemnos Plateau and the Dardanelles area. However, the
maximum wind speed is lower than that in the West Thracian Sea. In all areas, data are
positively skewed. Data are highly skewed in the west and central Thracian Sea and in Mt
Athos (skewness >+5), characterized by increased maximum speeds under extreme events.
Leptokurtic curves prevail over the Thracian Sea and Mt Athos area (kurtosis ~1.3), and
mesokurtic curves prevail at the Lemnos Plateau and the Dardanelles.

Table 1. Descriptive wind statistics in (m/s) at hub height (93 m), per study sub-area.

Sub-Area Q1 Median Mean Q3 Max

West Thracian Sea 2.16 3.65 4.37 5.86 46.88
Central Thracian Sea 2.45 4.14 4.90 6.62 35.19

East Thracian Sea 3.17 5.32 6.05 8.25 29.66
Lemnos Plateau 3.60 6.20 6.99 9.57 32.72

Dardanelles’ Zone of Influence 3.82 6.48 7.15 9.81 29.30
Siggitikos Gulf and Mt Athos 2.86 4.88 5.82 7.89 31.73

An indicative time-series diagram illustrating the 6-hourly wind speed variability
in the Lemnos Plateau (grid point 46) at the hub height is shown in Figure 4. Winds
under extreme stormy conditions exceed the limit of 20 m/s, originating mainly from the
Dardanelles and affecting the northern part of the Aegean Sea. Data exhibit seasonality
showing higher winter values, with regular incidents exceeding 20 m/s. Mean monthly
values indicate that the seasonal component oscillates with an amplitude of 6 m/s, and
reveals a slightly upward trend (~0.008 m/s) over the years examined.

Figure 4. 6-hourly time series (blue line) and mean-monthly time-series (red line) of wind speed at
hub height in the Lemnos Plateau (grid point 46).

The wind speed exhibits intra-annual variability, with higher values in winter (espe-
cially in February) and significantly lower values in spring and summer (from April to
July). A representative boxplot diagram of monthly-mean wind speed values at the hub
level (93 m) at point 46 (the Lemnos Plateau) is shown in Figure 5.

Figure 5. Boxplots for monthly wind speed values at hub height in the Lemnos Plateau (point 46).
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The spatial variability of frequency distributions in daily-mean wind speeds, per wind
directional sector, are shown in Figure 6. It is apparent that NE winds prevail in the study
area, followed by ENE at the nearshore parts of the Thracian Sea and Mt Athos, and by
NNE winds at the offshore Thracian Sea, the Lemnos Plateau, and the Dardanelles. Wind
speeds and frequencies per directional bin are more dispersed in the West and Central
Thracian Sea and Mt Athos area, with mean wind speeds of 5.6 m/s, 6.0 m/s, and 7.5 m/s
(~30%, 36%, and 35%) from the NE and ENE directions, respectively.

Figure 6. Wind frequency roses at hub height over the study area.

Eastwards and offshore, wind speeds are significantly higher, of higher frequency, and
appear confined along the NE direction, as in point 46 (the Lemnos Plateau) which has a
mean NE wind speed of 9.5 m/s and 33% frequency of occurrence. This is attributed to the
impact of orographic effects on the cyclonic synoptic circulation of surface wind field over
the Black Sea and the funneling effect along the Turkish Straits. In parallel, these offshore
points illustrate the influence of moderately strong S winds (~7.5 m/s, 8%).

3.3. Spatial Variability in Weibull Fitting Function Parameters

To achieve a clear view of the available wind potential of an area, we may not rely only
on the description of the instantaneous and mean wind speeds. The statistical parameters k
and A of the fitted Weibull probability density function will provide a better understanding
of wind dynamics. The probability of occurrence, and therefore the fraction of time for
each wind speed range per directional sector, prevailing in the study area may be derived
through this function. Table 2 presents the annual variation in Weibull parameters per
directional bin for all study area sub-regions. For all bins, the Weibull shape parameter k
varies between 1.40 in the West Thracian Sea and 1.73 in the Dardanelles region of influence,
with a mean value of 1.61 throughout the gridded data at hub level (z = 93 m). At the
nearshore Thracian Sea area, k-mean values range from 1.39 from the N direction to 1.63
from the WSW direction.
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Table 2. Weibull probability density function parameters, per directional bin, at hub height for all sub-areas.

Sub-Areas/
Directional Bins

West Thracian Sea Central Thracian Sea East Thracian Sea Lemnos Plateau Dardanelles Siggitikos/Mt Athos

k A (m/s) k A (m/s) k A (m/s) k A (m/s) k A (m/s) k A (m/s)

N 1.38 4.71 1.45 4.67 1.35 5.08 1.42 5.03 1.47 5.05 1.46 5.41
NNE 1.50 5.87 1.61 7.08 1.79 8.79 1.71 8.80 1.82 9.16 1.56 7.49
NE 1.75 6.84 1.93 7.50 2.27 8.75 2.23 10.42 2.45 10.39 1.88 9.23

ENE 1.74 5.70 2.00 6.00 2.17 6.57 1.87 7.61 2.02 7.25 1.77 7.58
E 1.88 4.45 1.94 4.47 1.98 4.38 1.65 4.99 1.81 4.96 1.71 5.28

ESE 1.21 3.42 1.65 3.49 1.76 3.54 1.57 4.36 1.70 4.48 1.50 4.29
SE 1.50 3.32 1.28 3.24 1.60 3.81 1.46 4.75 1.55 4.56 1.51 4.23

SSE 1.48 3.62 1.38 3.79 1.51 4.38 1.57 5.89 1.65 5.76 1.46 4.81
S 1.27 4.53 1.35 5.40 1.56 6.70 1.67 8.13 1.75 8.42 1.40 6.13

SSW 1.44 4.02 1.53 5.26 1.68 6.74 1.73 7.43 1.79 7.68 1.51 5.64
SW 1.31 3.35 1.59 3.99 1.89 5.01 1.84 5.69 1.82 5.86 1.61 4.79

WSW 1.61 3.63 1.76 3.74 1.60 4.14 1.60 4.95 1.52 4.57 1.62 4.75
W 1.77 3.24 1.68 3.07 1.66 3.36 1.46 3.84 1.40 3.37 1.69 4.31

WNW 1.51 3.42 1.60 3.20 1.52 3.17 1.43 3.55 1.38 3.41 1.59 4.31
NW 1.45 3.87 1.40 3.33 1.34 3.31 1.31 3.95 1.19 3.41 1.40 4.68

NNW 1.50 4.09 1.29 3.29 1.30 3.50 1.56 3.93 1.59 3.54 1.48 4.81
all 1.40 4.79 1.48 5.42 1.64 6.77 1.63 7.81 1.73 8.02 1.47 6.44
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In terms of k-distribution over the various directional bins, higher values occur at the
NE direction in the East Thracian Sea, the Lemnos Plateau, the Dardanelles, and the Mt
Athos areas (ranging from 1.88 to 2.45), at the ENE direction in the central Thracian Sea
(k = 2.00), and the E direction in the western Thracian part (k = 1.88). In parallel, the Weibull
scale parameter (A) exhibits a gradual increase from the western nearshore zone (4.79 m/s)
towards the east (6.77 m/s) and then offshore until the Lemnos Plateau (7.81 m/s) and the
highly dynamic Dardanelles area (8.02 m/s). The NE direction displays the higher A-values
in all sub-areas, except for the East Thracian Sea where the NNE direction prevails. The
highest NE-bin A-value is seen at the Lemnos area (10.42 m/s), followed by the Dardanelles
region (10.39 m/s).

The Weibull probability density function, fitted on the NE wind speed data at a specific
grid point located at the Lemnos Plateau, together with the cumulative probability density
function and the relevant Q-Q and P-P plots, are shown in Figure 7. Based on this analysis
and the wind turbine power curve (Figure 2), it can be deduced that the probability of wind
speed from the NE direction within the turbine operational (>5 m/s) window is 79.81%.

Figure 7. Probability density model fitted on NE wind data at hub height (point 46, Lemnos Plateau)
(a) data histogram and fitted Weibull function, (b) Q–Q plot, (c) Cumulative density function, and
(d) P–P plot.

The iso-lines connecting points of equal k and A values, as extracted from the Weibull
probability distribution for the NE wind direction, is shown in Figure 8. Based on Figure 8a,
it is evident that k-values >2.4 occur in the Dardanelles area, and that k reduces gradually
towards the WNW direction with a stable rate of 0.1 per 20 km. On the other hand,
the spatial distribution of the scale parameter A seems more complex, with local peaks
(>10.5 m/s) at Bozcaada Island and at the Saros Gulf and a general W-E isolines orientation
indicating a sharp reduction in A towards the nearshore and onshore Thracian Sea grid
points (Figure 8b).

3.4. Total Wind Energy Content

Using the parameters of the Weibull distribution per grid point and integrating spa-
tially, Table 3 presents the wind energy content per directional sector, averaged over the
main sub-areas of the study region. The analysis suggests that the highest wind energy
content occurs in the Lemnos Plateau area (4455 kWh/m2/yr), followed by the Dard-
anelles (4398 kWh/m2/yr), Siggitikos/Mt Athos (3091 kWh/m2/yr), and East Thracian Sea
(2964 kWh/m2/yr).
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Figure 8. Spatial distribution of the Weibull probability density function parameters: (a) the shape
parameter k and (b) the scale parameter A (in m/s) at the hub level over the study area.

Table 3. Total annual wind energy content (in kWh/m2) at hub level, per directional bin, for all sub-areas.

Sub-Areas/
Directional Bins

West Thracian
Sea

Central Thracian
Sea

East Thracian
Sea

Lemnos Plateau Dardanelles
Siggitikos/Mt

Athos

N 82 62 80 73 59 91
NNE 214 389 775 887 973 436
NE 435 664 1256 2256 2206 1308

ENE 222 238 262 353 252 556
E 60 47 30 42 32 96

ESE 60 15 9 19 14 45
SE 18 30 12 27 21 33

SSE 23 23 25 72 58 62
S 69 112 183 358 395 168

SSW 27 87 227 235 272 89
SW 42 26 52 56 61 40

WSW 14 14 21 29 22 34
W 9 8 6 13 7 21

WNW 16 9 5 10 7 24
NW 29 14 8 17 11 40

NNW 36 37 13 15 9 47
all 1354 1774 2964 4455 4398 3091

Table 3 indicates that the Lemnos Plateau and the Dardanelles region have a high
wind energy content spread over three directional bins (NNE, NE, and ENE), representing
an annual wind energy content of 3496 kWh/m2 and 3431 kWh/m2, respectively. This
energy content is equivalent to the power density of 399 W/m2 and 391 W/m2, respectively.
Approximately 22% of this sectorial energy content is being produced by winds in the
0–5 m/s range, 43% within the 5–10 m/s, 26% in the 10–15 m/s range, 7% in the 15–20 m/s,
and only 2% by winds higher than 20 m/s. The contribution of the S sector in the total
wind energy content of these two areas also seems quite considerable.

3.5. Annual Wind Energy Production

Considering the wind profile produced from z1 = 10 m (CMEMS data) to hub height
(z2 = 93 m), the wind turbine power curve and dimensions and annual wind energy
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production (in MWh/yr) was estimated, following the previous Equation (10). The highest
wind energy may be produced in the Dardanelles region, with a spatially-averaged AEP-
value of 7546 MWh/yr. Approximately 75% of this energy (5684 MWh/yr) is concentrated
along the NNE, NE, and ENE directional sectors, with the NE–AEP being the highest
(48.8%). In parallel, most of the total AEP in Dardanelles is being produced from winds in
the range of 10–15 m/s (46% or 3532 MWh/yr) and 5–10 m/s (37% or 2859 MWh/yr).

In the Lemnos Plateau, the spatially-averaged estimated AEP-value reached 7212 MWh/yr,
mostly provided by the same directional bins (NNE, NE, and ENE), producing in total
5342 MWh/yr (i.e., 74% of total AEP). As previously discussed, most of the energy is
produced by winds in the range of 10–15 m/s and 5–10 m/s, with values of 3261 MWh/yr
and 2701 MWh/yr, respectively. The East Thracian Sea is another area of significant interest,
as the spatially-mean AEP approximates 5620 MWh/yr, 75% of which is produced from
the NNE, NE, and ENE sectors. Another interesting feature is the rising contribution of the
S and SSW directions (5.7% and 7.9%, respectively). The Siggitikos Gulf and the area of Mt
Athos exhibit AEP of the order of 5241 MWh/yr, while the Central Thracian and the West
Thracian Sea have values of 3743 MWh/yr and 2939 MWh/yr, respectively.

Based on the above AEP-estimates, the capacity factor of turbine performance reached
37.44% in the Dardanelles, 35.80% in the Lemnos Plateau, 27.89% in the East Thracian Sea,
and 26.02% in the Mt Athos area The capacity factor in the western and central Thracian
Sea was assessed at 14.58% and 18.58%, respectively.

4. Discussion

Over the latest decade, there has been a growing interest in exploiting wind energy
resources, particularly in offshore marine areas. This has been fueled by the recent trend
towards economic decarbonization and the stable turn towards marine renewables, in
association to cost reductions in turbine manufacturing, installation and maintenance,
and the advancements in floating wind turbine technology which is now capable of even
tripling the technical potential for offshore wind across the world [2,3]. Capital investments
and rates of return in this sector are highly correlated to wind energy resource density and
variability, indicating the need for long-term, high quality assessments of annual wind
energy production [29].

Although the methodology for such assessments has been standardized, there still
exist several bottlenecks related to the availability and reliability of long-term wind data
at the wind turbine level over the open sea. For this purpose, several investigators have
used wind data collected by on-site sensors (e.g., offshore buoys [13]), facing significant
periods of sensors malfunction and gaps in operation (these buoys are usually sparse), and
land-based meteorological stations (e.g., stations on islands and coastal zone) [5,30], which
collect long time-series but are prone to localized orographic effects. On the other hand,
data collected by satellites equipped with scatterometers may cover large marine areas,
but as measurements are available at the regular intervals of satellite crossings the outputs
of numerical models are utilized to fill in the spatio-temporal gaps. The final reanalysis
product contains gridded wind data, but at rather coarse spatial resolution [31]. In parallel,
scatterometers’ operation is limited by rain, ice, large spatial wind variability, and high
wind speeds.

Carvalho et al. [27] compared ASCAT-A and B wind data to wind speeds from off-
shore buoys and reported that scatterometer data slightly underestimated the wind field
(RMSE = 1.55; bias = 0.64; STDE = 1.40; R2 = 0.90) along the Atlantic coast of the Iberian
Peninsula. Pickett et al. [32] working with the QuickSCAT satellite showed that the satellite–
buoy wind differences nearshore were more significant than those offshore. Wang et al. [31]
performed a similar analysis at the Central California Coast, reporting that ASCAT had the
lowest error metrics compared to the QuickSCAT. Overall data products overestimated
winds relative to the buoy at low wind speeds and underestimated at high wind speeds.
These works indicate that different wind products performance varies considerably by
study region, indicating the need for site-specific analyses.
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In the present work, 6-hourly wind speed and direction data with 0.25◦ spatial resolu-
tion, obtained from CMEMS (blending ASCAT observations and the ERA Interim model
results), were daily averaged and then compared to ground-truth data from land-based
stations over the period between 2015 and 2019. The evaluation metrics illustrated slight
to moderate overestimation at the Lemnos Plateau and the Central Thracian Sea, respec-
tively. The Weibull parameters computed here appear in agreement with those reported by
Aslan [5] and Bagiorgas et al. [13].

In terms of the wind power density, Bagiorgas et al. [33] reported a mean value of
600 W/m2 at the Athos offshore buoy, located in the Lenmos Plateau, at a heigh of 10 m
from the sea surface water. Similarly, Bohran [34] calculated a mean energy content, ranging
between 400 and 1410 W/m2, at a height of 30 m at Bozcaada (in the Dardanelles area).
Aslan [5], using onshore wind stations, assessed the annual wind power content of the
Bozcaada Island (in the Dardanelles region) at 460 W/m2. Soukissian et al. [7] estimated
the wind power potential of the Lemnos area at 468 W/m2, and that of the Thracian Sea at
71.7 W/m2.

Our analysis suggested that at hub height (i.e., 93 m from sea level), the spatially-
averaged wind power density reaches 513 W/m2 at the Lemnos Plateau and 507 W/m2

at the Dardanelles, which is comparable to the above findings. Based on international
standards of wind density power classification, the wind energy potential at hub height
of Lemnos and the Dardanelles is classified in wind class 5 (excellent); the wind power
potential of the East Thracian Sea and Siggitikos Gulf/Mt Athos in wind class 3 (fair); the
Central Thracian Sea in class 2 (marginal); and the West Thracian Sea in class 1 (poor).
As shown in Table 3, winds from NNE, NE, and ENE directions contribute highly to this
energy production.

Considering the characteristics of a Siemens SWT 2.3 MW wind turbine, we have
assessed that a mean AEP of 5684 MWh/yr from the NNE, NE, and ENE sectors may be
produced in the Dardanelles region. In the Lemnos Plateau, these directional bins may
produce AEP of 5342 MWh/yr and ~5600 MWh/yr in the East Thracian Sea. The selected
turbine achieves a capacity factor of 37.4% in the Dardanelles and 35.8% in the Lemnos
Plateau. Konstantinidis et al. [15] estimated the capacity factor of Vestas V90-3 MW at
38.5% and RE power (Senvion) 5 M at 41% for the design of an OWF in the Lemnos area.

5. Conclusions

This work has examined the wind power potential of the Thracian Sea, a regional sea
at the northern part of the Aegean, with significant interest in regards to the installation
and operation of wind farms. CMEMS scatterometer wind data for the period between
2011 and 2019, blended with the numerical model reanalysis, were used for the assessment
of wind energy content and the annual wind energy production. Although it was at a
height of 10 m, the CMEMS wind data illustrated mild overestimation of the wind field
compared to the Lemnos station data. The estimated Weibull parameters and the assessed
wind power density were found comparable to that reported by previous investigators.
Earlier wind power assessments in the area utilized limited offshore buoy data or data from
nearshore, land-based stations. The basic differences in the present analysis, in relation to
previous works focusing in the area, lie in the fact that our analysis is based on gridded
data which covers extended offshore zones and quantifies the influence of each directional
bin on final wind energy production.

The highest spatially-averaged wind energy content at hub height occurs in the
Lemnos Plateau (4455 kWh/m2/yr), followed by the Dardanelles (4398 kWh/m2/yr),
Siggitikos/Mt Athos (3091 kWh/m2/yr), and East Thracian Sea (2964 kWh/m2/yr). In
these areas, most of the wind energy is produced by three directional bins (i.e., NNE, NE,
ENE) and by wind magnitudes between 5–10 m/s. The spatially-averaged wind power
density reaches 513 W/m2 at the Lemnos Plateau and 507 W/m2 at the Dardanelles, and
the wind energy production for the selected wind turbine reaches 7212 MWh/yr and
7546 MWh/yr, respectively.
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Abstract: A cost-effective and efficient wind energy production trend leads to larger wind turbine
generators and drive for more advanced forecast models to increase their accuracy. This paper
proposes a combined forecasting model that consists of empirical mode decomposition, fuzzy group
method of data handling neural network, and grey wolf optimization algorithm. A combined K-
means and identifying density-based local outliers is applied to detect and clean the outliers of the
raw supervisory control and data acquisition data in the proposed forecasting model. Moreover,
the empirical mode decomposition is employed to decompose signals and pre-processing data. The
fuzzy GMDH neural network is a forecaster engine to estimate the future amount of wind turbines
energy production, where the grey wolf optimization is used to optimize the fuzzy GMDH neural
network parameters in order to achieve a lower forecasting error. Moreover, the model has been
applied using actual data from a pilot onshore wind farm in Sweden. The obtained results indicate
that the proposed model has a higher accuracy than others in the literature and provides single and
combined forecasting models in different time-steps ahead and seasons.

Keywords: power system; wind power production; SCADA data; fuzzy GMDH neural network;
grey wolf optimization

1. Introduction

Wind power industries have been tremendously expanded and are expected to
progress at a compound annual growth rate (CAGR) of 5.2% between 2020 and 2027.
This extension resulted in the produced power cost of wind energy as one of the most sig-
nificant renewable and low-carbon energy resources. Wind power generation is currently
one of the principal renewable energy power generations [1–4]. Wind energy is stochastic,
uncertain, and discontinuous, antagonistically influencing the power grid’s protected and
stable activity and the nature of the power supply [5]. The stochasticity and discontinuity
of wind power could diminish the reliability prediction system and wind power quality [6].

A potential answer to these issues is to improve the forecast accuracy of wind gener-
ation. Several studies [7–12] are proposed to portray the distribution of the wind power
prediction, and diverse scientific methodologies are connected to improve its accuracy.
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Other studies proposed complex models such as the Laplace distribution [9], the Beta
distribution [10], the hyperbolic distribution [11], the Levy α-stable distribution [12], and
the flexible likelihood distribution [13], which have been proposed to improve the fitting
precision of the wind power prediction. In the previous decade, many studies to assess
and predict the various aspects of energy management and power systems have been
presented. For example, wind and solar power generation forecasting [14–16], condition
monitoring of wind turbines [17], electricity market [18], and load forecasting [19,20] are
proposed. Amjady et al. (2011) provided the short-term wind power prediction dependent
on the ridgelet neural network (RNN) with a high capacity estimate ability. They sug-
gested a differential evolution algorithm with a new selection mechanism and crossover
to train the network [21]. Han et al. (2017) proposed combined models based on autore-
gressive integrated moving average (ARMA) and non-parametric model for wind speed
forecasting [22].

The results demonstrated that non-parametric based combined models usually have
a better performance than other models. Jonas C. Pelajo et al. (2019) developed a model
to predict wind speed and energy price to determine the optimal maintenance planning
of a real wind farm in the Brazilian Northeast [23]. Osório et al. (2014) proposed a
combined forecasting model based on mutual information, wavelet transform, particle
swarm optimization, and adaptive neuro-fuzzy inference system framework to predict
the short-term wind power and electricity market prices [24]. Gallego-Castillo et al. (2016)
provided a quantile relapse model dependent on the recreating piece Hilbert space (RKHS)
system to predict the wind power probabilistic. Furthermore, they implemented two types
of models (online and offline) for a real wind farm [25]. Xiao et al. (2017) employed an
electrical power system prediction model using a wavelet neural network (WNN) model
and an improved cuckoo search algorithm. The results showed that the proposed model
essentially diminished the expectation error with respect to other relative models [26].

Kunpeng Shi et al. (2018) provided a combined model based on two-stage feature
selection and improved random forest models to short term wind power forecasting [27].
Van Quang Doan et al. (2019) have presented a mesoscale ensemble model to predict wind
speed ramps. The proposed model applied at real wind farms in Japan [28]. Duan et al.
(2021) developed a combined intelligent model based on the improved variational mode
decomposition and Correntropy long short-term memory neural network to predict wind
power. The model was evaluated using two wind farms in China at different sampling
intervals [29]. Yildiz et al. (2021) presented a two-step new deep learning approach based
on the variational mode decomposition (VMD) method and modified the residual-based
deep convolutional neural network for wind power forecasting [30]. Jafarzadeh et al. (2021)
provided a modified fuzzy wavelet neural network for short-term wind power forecasting
considering weather and power plant parameters. In order to evaluate the model, the Mnjil
wind power plant in Iran has been used [31].

In addition, GIS-based models play an important role in renewable energy poten-
tial assessment and prediction [32,33]. Furthermore, the behavior and performance of
renewable energy systems can be estimated using GIS models [34,35].

Generally, in order to model the wind turbine power production analysis, a combined
intelligent solution is required. It means that the data should first be modelled by a
combined data pre-processing model then a combined intelligent strategy should analyze
the processed data. This type of strategy plays an essential role in managing the energy
production of wind farms.

In this research, we propose an integrated strategy that couples an empirical mode
decomposition, fuzzy GMDH (group method of data handling) neural network, and grey
wolf optimization algorithm (GWO) to forecast the produced power of wind turbines.
Furthermore, to detect and clean outliers, a combined K-means and density-based local
outliers (LOF) are applied.

The main contributions and novelty of this paper are illustrated as follows:

132



Energies 2021, 14, 3459

(a) K-means is one of the most well-known clustering methods, a fast and efficient tech-
nique in unsupervised learning methods. However, it suffers from some deficiencies
such as (i) predefining the number of clusters and centers in advance, (ii) not being
able to handle noisy data and outliers properly, and finally, k-means is not proper
to classify clusters with non-convex shapes. In order to deal with these listed issues,
we proposed a combination of identifying density-based local outliers (LOF) and
k-means for cleaning the raw supervisory control and data acquisition (SCADA) data
as the initial section of the pre-processing.

(b) As wind speed and power forecasting involve the non-linear power curve, stochas-
tic and noisy behavior of the recorded wind data, the empirical mode decomposi-
tion (EMD) method is proposed to deal with these uncertainties and increase the
modelling accuracy.

(c) Fuzzy-GMDH neural networks are considered as one of the most effective methods to
model the time-series data with high-level noise and short input sampling. However,
initializing the hyper-parameters of fuzzy-GMDH is challenging and time-consuming.
With regards to adjusting the hyper-parameters, we apply a robust and fast search
method called the grey wolf optimization (GWO) algorithm. Applying the GWO as a
hyper-parameter tuner improved the proposed model’s accuracy and reliability to
forecast wind power.

(d) The proposed combined forecasting model has successfully verified on two actual
wind turbines SCADA datasets. In addition, the proposed forecasting model is
compared with the other valid combined forecasting models.

2. Materials and Methods

After a brief description of the SCADA system and data gathering, this section illus-
trates the artificial intelligence methods proposed in this paper.

2.1. SCADA System

The SCADA system, known as remote supervision and control of wind turbines in
wind farms, plays a significant role in the wind power forecasting models. This paper’s
collected and applied SCADA data is related to a large wind farm (located in Sweden). The
input data includes the power output of wind turbines and wind speed (short-term with
the interval of 10 min) for a year from Jan to Dec 2015. Furthermore, in order to evaluate
and compare the performance of the proposed hybrid model, we applied the SCADA data
for two wind turbines (wind turbine 1 (WT1) and wind turbine 2 (WT2)).

2.2. Proposed Wind Power Forecasting Strategy

In this study, a multi-step hybrid intelligent model has been proposed as a means to
predict wind power production (see Figure 1).

’

’

 

Figure 1. General schematic of the proposed forecasting model.

Due to the wide range of intelligent methods such as neural networks and metaheuris-
tic optimization algorithms, in this paper, we presented a hybrid forecasting model based
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on FGMDH and GWO for wind power production forecasting. The GWO optimization
algorithm can perform the neural network (FGMDH) training step well and optimize
the value of network parameters. Therefore, this algorithm (GWO) is constructive to the
performance of the proposed model for predicting wind power production.

Since the structure of the input matrix plays a significant role in determining the
output and accuracy of the model, in the first place, the various input signals (wind power
and wind speed) are decomposed through the EMD method to different high and low
frequencies (see Figure 2).

—

—

 
Figure 2. The EMD output, i.e., decomposition signals of wind power and wind speed of turbine 1 (WT1).

Five types of decomposed frequencies (IMF1, IMF2, IMF3, IMF4, residual) are selected
and applied by delaying a unit of time (t-1) as inputs of the model subsequently (see
Figure 3—inputs and output data structure). In addition, the lagged values (1 to 5) for
the original wind power signal and actual wind speed signal are considered as input
parameters (Figure 3—inputs and output data structure). In the next step, the FGMDH
method has been employed to predict the wind turbine power.

The FGMDH model structure includes different neurons. The parameters grouped
in the form of Gaussian variables and the weight of the fuzzy rule in each neuron are
unknown. In this paper, the GWO algorithm is applied with the purpose of optimizing the
FGMDH model variables (the group-unknown variables in neurons).

In this study, in order to evaluate the performance and reliability of forecasting models,
the wind turbine power production is predicted for different seasons at two times (10-min
and 1-h). The framework of the proposed model is represented in Figure 3.
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Figure 3. The framework of the proposed model. 
Figure 3. The framework of the proposed model.

2.3. Data Cleaning

The raw SCADA datasets usually include different forms of noise that directly nega-
tively affect the accuracy of the forecasting process. One of the most notable outliers can be
the negative wind turbine power outputs observed when the wind speed is shallow or dur-
ing a failure situation. For evaluating the distribution of the raw SCADA dataset, Figure 1
is plotted, and also an abnormal distribution of wind power can be seen in Figure 4.
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Figure 4. The distribution of the raw SCADA data WT1 (wind speed and power).

In the pre-processing section, it is recommended that [36] these negative powers
should be set as zero. In addition, to remove the impact of the data scale, a Min-Max
normalization is implemented for the feature scaling. Meanwhile, as each wind turbine
has a unique power curve that presents the average efficiency of the applied wind turbine,
without declaring the particular mechanical components, Figure 5 is plotted for showing
this characteristic of the first wind turbine in this research. The scatter data point indicates
the outliers.

Figure 5. The power curve model of the WT1.

The proposed cleaning data method is a combined K-means clustering and the identi-
fying density-based local outliers (LOF) method [37]. In the first step, a k-means clustering
method is employed to classify the SCADA data into various clusters. Then, in each cluster,
the local density-based method is adopted to eliminate the potential noises. The clean data
after using K-means clustering and the LOF method can be illustrated in Figure 6.
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𝑆(𝑡)
𝑚(𝑡)𝑚(𝑡) = [𝑈(𝑡) + 𝐿(𝑡)]2

ℎ(𝑡) = 𝑆(𝑡) − 𝑚(𝑡)ℎ(𝑡)ℎ(𝑡) = 𝑆(𝑡) − 𝑚(𝑡) ℎ(𝑡)
–

𝑟𝑛(𝑡) = 𝑆(𝑡) − ∑ 𝐶𝑖(𝑡)𝑛𝑖=1𝑟𝑛(𝑡)𝐶𝑖(𝑡) (𝑖 = 1,2, … , 𝑛)

Figure 6. The K-means clustering method performance and the applied data (WT1) divided into
10 clusters (left). The dark points represent the clean SCADA data after applying the LOF (right).

2.4. Empirical Mode Decomposition

The EMD is a method of signal decomposition that can analyse the non-linear and
non-stationary time series. Moreover, using this method is more accessible and more
understandable compared to wavelet decomposition [38,39]. In addition, EMD does not
stand in the need of deciding a mother function in advance (beforehand of time) by no
means such as wavelet decomposition. The most important characteristic of the EMD
is a fully data-driven decomposing means by which signals break down into various
independent components within the interval of local specifications of a signal.

Decomposing initial signals as intrinsic mode functions (IMFs) and residual into a
finite amount of oscillatory functions is the concept of EMD. These IMFs must be met by
the following conditions: (1) The number of extreme must be equal to the number of zero
crossings or their maximum difference is equal to one; (2) the mean value of the envelopes
characterized by local maxima and local minima must be zero at all components.

The EMD is a sifting method using a real signal to extract the IMFs and residual. The
calculation of the EMD can be given as the following steps [38,39]:

Stage 1: Recognize all local maxima and local minima in time series S(t).
Stage 2: Connect all local maxima and minima to produce the upper U(t) and lower

L(t) envelopes using a cubic spline line.
Stage 3: Calculate the point-by-point mean envelope from the upper and lower

envelopes and create the mean envelopes m(t) later as:

m(t) =
[U(t) + L(t)]

2
(1)

Stage 4: Compute the distinction between the mean envelopes and the actual signal:

h(t) = S(t)− m(t) (2)

Stage 5: Check whether h(t) is an intrinsic mode function (IMF). Provided that this is
true, it is treated as the ith IMF and afterwards the actual time series is supplanted by the
residuals h(t) = S(t)− m(t). If not, is supplanted by h(t).

Stage 6: Repeat Steps 1–5 until the standard deviation magnitude of the two consecu-
tive sifting results (IMFS and Residual) is lower than the predefined stopping criterion.

Using the above-mentioned sifting process, many IMFs can be obtained from high
frequency to low frequency, thereby disintegrating into several IMFs and a residual as:

rn(t) = S(t)− ∑
n

i=1 Ci(t) (3)
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where rn(t) and n are the last residuals and the number of IMFs, respectively.
Ci(t) (i = 1, 2, . . . , n) indicates different IMFs.

2.5. Fuzzy-GMDH Model

The FGMDH is a machine learning strategy in the hierarchical structure [40]. In this
model, every neuron has two inputs and an output. The general structure of the FGMDH
system was shown in Figure 3 (the FGMDH forecasting model). In this figure, the output of
each neuron in each layer is considered as the input in the following layer. The last output
is determined to utilize the mean of the last layer output.

The FGMDH structure part in Figure 6 demonstrates that the inputs from the mth
model and pth layer are the outputs of the (m − 1)th and mth model in the (p − 1)th layer.
The numerical function for computing the ypm (the output variable of the mth model in the
pth layer) is as follows:

ypm = f
(

yp−1,m−1, yp−1,m
)

= ∑
K

k=1 µ
pm
k · w

pm
k (4)

µ
pm
k = exp
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where w
pm
k and µ

pm
k are its corresponding weight parameter and the kth Gaussian function,

respectively. Moreover, a
pm
k and b

pm
k are the Gaussian parameters [41]. Furthermore, the

last output is calculated by the following equation:

y =
1
M ∑

M

m=1 ypm (6)

The learning procedure of feed forward FGMDH is known to solve the composite
problems as an iterative technique.

A simplified fuzzy logic rule has been provided by [40] to improve the GMDH
neural network:

If x1 = Fk1 and x2 = Fk2, then output y = wk

2.6. Gray Wolf Optimization

The GWO algorithm, which is a new meta-heuristic algorithm based on swarm
intelligence evolutionary, is proposed by Mirjalili et al. [42].

The GWO is inspired by grey wolves. The four types of grey wolves are hired as alpha,
beta, delta, and omega to replicate the hierarchy of management. On the other side, the
notable steps of grey wolves (encircling prey, hunting, attacking prey, and searching for
prey) are performed during the operation [43].

Encircling prey: The encircling behaviour of each agent of the group is computed by
the following mathematical formula:

→
d =

∣

∣

∣

∣

c.
→
x

t

p −
→
x

t
∣

∣

∣

∣

(7)

→
x

t+1
=

→
x

t

p −
→
a .

→
d (8)

The vectors
→
a and

→
c are computed as the following formula:

{

→
a = 2l.r1
→
c = 2.r2

(9)
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Hunting: For a mathematical simulation of the hunting behaviour of grey wolves, it is
assumed that α, β, and δ have better information about the possible location of the prey.
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3
(11)

Attacking the prey and searching for the prey: The
→
a is a random value in the interval

[−2a, 2a]. When the random value is less than 1, the grey wolves are enforced to attack the
prey and if the random value is greater than 1, the grey wolves are forced to diverge from
the prey.

2.7. Error Indicators

In order to assess the accuracy and reliability of the proposed forecasting model,
different error indicators have been used in this paper: The mean absolute percentage error
(MAPE), the sum squared error (SSE), the root mean squared error (RMSE), and the mean
absolute error (MAE). All error indicators are based on error percentage (unitless).
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100
m ∑

m

i=1
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where xreali and x f ori are the actual value and predicted value, respectively. m is the number
of data.

3. Results and Discussion

As discussed in the previous sections, in order to evaluate the performance and
efficiency of the proposed method, the real on-shore SCADA dataset for two wind tur-
bines (WT1 and WT2) has been exploited in this paper. Regarding the framework of
the proposed model (Figure 3), several frequencies of wind speed (IMF1Speed, IMF2Speed,
IMF3Speed, IMF4Speed, ResSpeed) and wind turbine power (IMF1Power, IMF2Power, IMF3Power,
and IMF4Power, and ResPower) are considered as input parameters of the model:

Original and decomposition signals
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In addition, several combined forecasting models such as MI-CNN [44], MRMR-
HNES [45], MI-CNEA [46], GRNN, and FGMDH have been applied to measure the perfor-
mance of the proposed model. First, the 1-year-dataset is selected as the prediction model
data and the predicted results are calculated with the error indicators presented in the
previous section. The results are shown in Table 1.

139



Energies 2021, 14, 3459

Table 1. Comparison of the wind turbine power forecasting errors of the models for two wind turbines (WT1 and WT2).

Forecasting Models Time Step

Error Criteria

RMSE SSE MAE MAPE

WT1 WT2 WT1 WT2 WT1 WT2 WT1 WT2

GRNN
10-min 0.315 0.29 125.011 102.29 0.299 0.265 18.516 20.818

1-h 0.381 0.387 133.366 124.971 0.312 0.365 21.815 22.716

FGMDH
10-min 0.236 0.241 18.533 19.084 0.217 0.228 9.232 11.883

1-h 0.288 0.272 64.265 54.079 0.276 0.231 10.237 12.11

MI-CNN [44]
10-min 0.056 0.072 13.35 12.816 0.045 0.033 4.262 3.981

1-h 0.094 0.085 40.58 41.732 0.068 0.038 4.837 5.002

MRMR-HNES [45]
10-min 0.149 0.184 11.922 9.818 0.143 0.166 4.523 5.105

1-h 0.167 0.202 44.514 51.165 0.149 0.171 5.592 5.235

MI-CNEA [46]
10-min 0.225 0.219 14.368 13.127 0.215 0.187 6.815 5.754

1-h 0.253 0.226 53.122 56.464 0.224 0.203 6.94 7.402

Proposed Model 10-min 0.013 0.013 10.706 8.069 0.012 0.01 2.856 3.012

1-h 0.026 0.024 36.594 34.079 0.032 0.012 3.208 3.516

In Table 1, the prediction results are calculated for two wind turbines in two different
time steps (10-min and 1-h). The wind turbine power production is highly dependent on
the wind speed. On the other hand, the wind speeds vary greatly on different days thus,
the forecasting time intervals for power production have been chosen amongst the days of
the four following months: February, May, August, and November which have the highest
fluctuation values for power production.

According to the results in Table 1, the performance of the proposed model is better
than the other provided models in different time steps and wind turbines. In addition,
the results indicate that the performance of the forecasting models in the 10-min time step
is better than the 1-h time step. Table 2 and Figure 7 indicate the results of the proposed
forecasting model and other models for wind turbine power production forecasting (WT1).

Table 2. Comparison of the wind turbine power forecasting errors of the models for the different seasons of a year.

Different
Seasons

Error
Criteria

GRNN FGMDH MI CNN [44] MRMR HNES [45] MI CNEA [46] Proposed Model

1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min

Winter

RMSE 0.482 0.414 0.326 0.318 0.122 0.083 0.173 0.153 0.262 0.226 0.015 0.013

SSE 171.315 46.555 37.336 16.265 19.820 9.352 28.819 11.474 22.872 13.077 17.634 6.317

MAE 0.445 0.396 0.306 0.277 0.079 0.049 0.147 0.144 0.229 0.224 0.013 0.012

MAPE 22.458 23.572 12.536 9.844 5.315 4.747 6.939 4.478 10.392 6.748 3.937 2.504

Spring

RMSE 0.383 0.401 0.309 0.298 0.110 0.086 0.163 0.147 0.244 0.232 0.014 0.012

SSE 131.719 51.513 40.546 15.327 19.608 7.342 33.549 11.493 28.090 14.120 11.519 5.306

MAE 0.363 0.359 0.284 0.275 0.074 0.054 0.147 0.138 0.222 0.208 0.019 0.012

MAPE 20.445 19.819 15.049 11.818 5.369 4.953 7.258 4.746 10.849 7.153 4.125 2.263

Summer

RMSE 0.341 0.313 0.302 0.291 0.081 0.064 0.169 0.143 0.253 0.246 0.014 0.012

SSE 121.481 37.914 41.151 13.011 12.780 5.311 13.907 7.453 28.994 12.030 11.134 3.006

MAE 0.313 0.264 0.274 0.288 0.055 0.040 0.148 0.143 0.223 0.216 0.017 0.012

MAPE 21.516 16.607 15.479 13.454 6.349 4.348 8.583 4.944 9.810 7.450 4.019 3.917

Fall

RMSE 0.372 0.328 0.285 0.268 0.118 0.074 0.163 0.162 0.247 0.244 0.018 0.014

SSE 91.819 34.725 53.183 26.130 22.378 9.427 24.238 10.587 37.390 18.337 13.238 6.263

MAE 0.415 0.307 0.239 0.234 0.080 0.040 0.161 0.137 0.243 0.207 0.015 0.014

MAPE 24.160 18.504 18.710 11.366 7.419 3.498 8.141 4.119 10.487 6.214 3.015 2.903
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Figure 7. The wind turbine power forecasting results of the comparative models for WT1.

According to the results of Table 2 and Figure 7, the performance of the forecasting
models has been evaluated in different time steps (10-min and 1-h) and seasons (winter,
spring, summer, and fall). Based on these results, the proposed model can predict the wind
turbine power more reliably and highly accurately multiple times ahead compared to the
other valid forecasting models (GRNN, FGMDH, MI-CNN, MRMR-HNES, and MI-CNEA).

4. Conclusions

Considering the highly volatile and nonlinear process of wind turbines power pro-
duction, a hybrid intelligent system to improve the accuracy and efficiency of wind turbine
power prediction has been proposed. For the initial step, the hybrid K-means-LOF and
EMD methods have been applied as a pre-processing step for removing the outliers and
decomposition of the SCADA data, respectively. Then, the processed data was given to the
forecasting model (FGMDH) and the future power of the wind turbine has been calculated.
Furthermore, in order to complete the proposed model as a parallel calculation, the GWO
algorithm has been used as an optimization method to optimize the FGMDH parameters.
In this study, the SCADA data for two wind turbines in the real wind farm located in
Sweden has been used to measure the performance and reliability of the proposed model.

The new forecasting model has been applied to predict the power of wind turbines for
two time-intervals ahead (10-min and 1-h) in 1 year and different seasons. The obtained
results pinpointed that the performance of the proposed method (EMD-FGMDH-GWO)
at different time intervals has a high accuracy and reliability than many other available
methods such as GRNN, FGMDH, MI-CNN, MRMR-HNES, and MI-CNEA. The MAPE
error indicator obtained for GRNN, FGMDH, MI-CNN, MRMR-HNES, MI-CNEA and the
proposed model is equal to 20.818, 11.883, 3.981, 5.105, 5.754, and 3.012, respectively. In
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addition, the proposed forecasting model can be extended and applied for different energy
sources to maximize the use of renewable energy sources and better manage their use. In
future studies, the proposed model will be extended to analyze different energy sources in
one area simultaneously.
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Abstract: District heating (DH) has a major potential to increase the efficiency, security, and sus-
tainability of energy management at the community scale. However, there is a huge challenge for
decision makers due to the lack of knowledge about thermal energy demand during a year. Thermal
energy demand is strongly dependent on the outdoor temperature, building area, and activities.
In this context, this paper presents an innovative monthly thermal energy mapping method to
calculate and visualize heat demand accurately for various types of buildings. The method includes
three consecutive phases: (i) calculating energy loss, (ii) completing a dataset that includes energy
and building information, and (iii) generating the monthly heat demand maps for the community.
Determining the amount of demand and the best location for energy generators from the perspective
of energy efficiency in a DH system in an urban context is one of the important applications of heat
maps. Exploring heat demand characteristics and visualizing them on maps is the foundation of
smart DHs.

Keywords: district heat network; thermal energy modelling; heat map; university campus; Ireland;
GIS energy mapping; building heat demand and generation; heat balance

1. Introduction

Cities are responsible for more than 50% of total global energy demand [1], while
a huge portion of this demand is utilized for thermal purposes to provide comfortable
indoor temperatures as well as domestic hot water in buildings [2,3]. In the ‘Heating
and Cooling Strategy’ of the European Commission (EC), the significant potential of
heating demand to reduce energy consumption was highlighted on one hand, and on
the other hand, district heat networks (DHN) were recommended as a successful method
for decarbonizing cities [3]. District heating (DH) is a promising approach to achieve
low carbon heat [4] and supports the use of various thermal sources, such as fossil fuels,
renewables, and waste heat [5].

However, compared with the electrical smart grid, DHN did not develop, particularly
in terms of sharing surplus heat technology. The main reason involves the complicated
prediction of heat demand for various types of buildings, such as hotels, sports centers,
colleges, residences, and commercial structures.

This study assessed the characteristics of a group of network members, i.e., buildings,
in terms of their ever-changing heat demand during a month or even a day. The patterns of
heat energy demand were investigated in further detail to generate a smart DHN (SDHN).
Using a case study, the authors explored how the heat demand varies in each month at
a university campus. The developed methodology helps to manage the heat demand in
shorter time periods, and this achievement increases the efficiency as well as the security

145



Energies 2021, 14, 5462

of a DHN. This method can improve knowledge in the field of DHN, moving the field
toward smart DHN (SDHN). SDHN can apply all types of energy sources, including fossil
fuels, renewables, or hybrids. The methodology provides a platform to share the extra heat
between the network members.

Understanding the amount and pattern of heat consumption of the studied campus
was the main objective of the research. The efficiency of heat consumption in the individual
heat boilers was assessed and compared with the efficiency of the DH system.

In addition, based on the completed energy building database (EBD), a GIS-based tool,
i.e., district heat balance (DHB) tool, was developed and applied to generate heat maps.
Then, the heat maps were used to discover thermal demand density, the baseload, and the
peak load of case study buildings. The main purpose of heat maps is to understand heat
consumption (size) and geo-scattering of thermal anchor loads. Heat maps are used to
extract effective policies to reduce thermal energy at the community scale. Determination
of the best location for central heat generators in an urban context from the perspective of
energy efficiency is one of the basic advantages of the heat maps. Assessing the criteria,
such as minimum heat loss and costs and maximum efficiency, as well as the optimum
land cost to determine the best location for heat generators, could be investigated in
future studies.

2. Background
District Heat Network (DHN)

In the contemporary century, four generations of district heat network (DHN) were
developed. The first and second generations applied before 1980, and they circulated steam
or pressurized water at over 100 ◦C. However, the third-generation (3G) circulates water at
medium to high temperature (80–100 ◦C), and all these are mentioned as high-temperature
district heat networks (HTDH). Since 2008, the fourth generation (4G) system introduced
what are called low-temperature district heating networks (LTDH), and they circulate
water between 30 and 70 ◦C. A study [6] has suggested that future grids may use 4G
distribution networks with annual mean temperatures of 50 and 20 ◦C for supply and
return, respectively. The references [7,8] have assessed ‘ultra-low temperature networks’
with the temperature below 50 ◦C. In this method, high-efficiency heat pumps can be used
at the endpoint (building boundary) if heat demand with higher temperatures is required.

The fifth generation (5G) of DHN is integrated with renewable energy resources
and relies on smart technologies [9]. The 5G systems are decentralized, bi-directional,
close to ground temperature networks that apply direct exchange of heat, combined
heating and cooling, cold return flows, and thermal storage to balance thermal demand as
much as possible [10,11]. The 5Gs focus on the decentralized heat generators installed at
customer stations. The success of this system highly depends on the accurate prediction of
heat demand.

Spatial analysis is essential to control DHN potential since its applicability depends
on the local characteristics of heat demands and patterns. Recently, Ireland started moving
toward the application of DHN when its first spatial energy demand analyses were pro-
duced for South Dublin in 2015 [12]. Nevertheless, the predominant heating method in the
country is local central heating (mostly individual boilers) and uses fossil fuel.

Most of the studies on DHN focused on the water temperature, and others [13–15]
presented a heat atlas that illustrated heat supply and demand at a large scale, such as a
city without focusing on individual buildings’ demands. A group of studies assessed the
length of network pipes using mixed integer linear programming (MILP) solvers [16], a
minimum spanning tree algorithm [17], or similar optimal network decision methods to
reduce heat losses during the heat distribution process [18].

Based on actual heat demand data, DH managers can design efficient DH plants and
consequently reduce the energy price [19]. The total daily space heating (SH) demand for
each geographical zone was calculated based on the proportion of day-specific heating,
in degree days [20]. Some studies also have been conducted to evaluate heat losses in
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DH systems by efficient transmission loads along a distribution network [21,22] as well
as determining the location of thermal energy demands [23,24]. Discovering the location
of huge thermal demands (large building size and high demand) in terms of DH network
energy efficiency is crucial.

The authors of [25,26] developed an algorithm to evaluate design heat demand of a
future urban context as a pathway for decision-makers. In references [27,28] using three
building case studies, a detailed investigation was presented on building consumption
profile modeling. A certain load profile was used for all buildings in the same category.
However, the buildings in an urban context are not necessarily classifiable in one group.

Based on the studies conducted across Europe in terms of domestic hot water demand,
Harney et al. [29] classified the demand into four categories, including short draw (e.g.,
handwashing), medium draw (e.g., dishwashing), shower bath, and bathtub. Each demand
class was responsible for 14%, 36%, 40%, and 10% of the total volume of daily domestic hot
water consumption, respectively.

Nicholas Fry [30] developed a method for mapping building-level heat demand
for three US demonstration municipalities, i.e., Montana, Idaho, and Washington. The
author determined 9 building categories, such as single family residential, office and retail,
multifamily, school/campuses, restaurants, and hospital–healthcare. According to this
study, a hospital’s annual heat demand is very much lower than that of a single family
residence. However, Chartered Institution of Building Services Engineers, CIBSE TM
46 [31], has suggested that both of them need 420 kWh/m2/year.

One of the best references for heat and electricity demand at the building level is
CIBSE TM46 [31], which presented the heat demand of 29 building categories based on
local weather, building conditioned area, and building type. For example, a school, a
university building, a hotel, a general office, and a restaurant need 150, 240, 330, 120,
370 kWh/m2/year of thermal energy, respectively. Comparing other published research,
TM46 presents a comprehensive number of building types with a high level of accuracy. It
shares a method to adjust energy demand patterns—for instance, the difference between
full and part time usage of a building. Nevertheless, TM46 does not present the demand
for monthly or shorter periods.

Hanmer et al. [32] studied the heat demand patterns in UK residences, and they
explored social routines, e.g., the timing of work and school affect heat consumption.
Based on the actual data and interview, the authors found two heat consumption peaks at
07:00 and 19:00 o’clock when people are leaving home for work and switching off boilers
at nighttime.

Directive (EU) 2019/944 determines and regulates the formation of citizen low energy
communities. Allowing for a broader diffusion of on-site renewable energy sources, for
example, solar thermal is believed to be a key factor in decreasing buildings’ carbon
footprint by generating and maximizing renewable energy self-consumption [33]. Several
studies investigated solar power community energy, but few studies focused on sharing the
extra solar thermal hot water at the community scale. Solar thermal hot water generation
varies during a day and year. Visualizing solar heat demand and generation as well as the
balance between them are applicable, applying daily or monthly heat maps. Addressing
the gap in this area could improve the security of SDHNs.

On the whole, the studies in the field of DHN could be classified into three categories:
(i) water temperature and the related technology, (ii) network characteristics, members
(buildings), and their efficiency as well as cost-effectiveness, and (iii) heat supply and
demand, energy resources, smart networks [34], and technology [35].

The reviewed literature highlighted the role of smart heat networks and their efficiency,
while heat demand and its consumption patterns are the fundamental part of this network.
The study of heat demand or supply maps and research in this field will help to achieve a
zero-carbon city. Open access to energy consumption and buildings data is fundamental to
improve energy assessments and mapping. Openness is the best way to speed up research
by public administrations, governments, and scholars. Therefore, open access promotes
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the construction of a reliable and robust dataset [36]. Open access to energy data is the
main obstacle in front of research in the DHN area.

3. Methods and Datasets
3.1. The Case Study

Trinity College Dublin (TCD), Ireland, founded in 1592 and located in Dublin city
center [37], was used as a case study. Figure 1 shows the boundary of the TCD campus. The
campus area is approximately 172,000 m2 and its perimeter is about 1718 m. There are 68
buildings located on the campus, with a footprint area of 51,615 m2. The overall building
area is approximately 156,665 m2. The footprint area shows the area of land used by the
ground floor of a building on the campus site, while the overall building area includes the
area of all floors, such as the basement floor. The scattering of the 68 case study buildings
on the campus is shown in Figure 1.

 

Figure 1. The boundary of TCD campus.

3.2. Visualizing Current TCD Campus Heating Method

The heating systems at TCD can be divided into two groups: (1) district heating (DH)
system, and (2) individual boiler systems. These heating systems are not connected, so
that each system is run, managed, and serviced independently. The first system applies in
the west part of the campus (yellow color in Figure 2) and serves the Buttery Restaurant;
Atrium; Houses 4, 10, 12, 14, 24, 26, and 35; Graduate Memorial Building; Provost’s House,
Public Theater; Reading Room; and Dining Hall. Individual boiler systems, on the other
hand, serve the rest of the buildings on the campus. The size of green circles on the map
(Figure 2) shows the number of boilers installed in each building. For example, in Berkeley
Library, six boilers were installed. As visualized, it will be possible in the future to connect
the individual boilers to create second or third DH zones on the campus.

To generate a robust base for a DH system, energy models and maps are essential [38].
Since a DH relies on local thermal energy demand densities as well as on resources, energy
maps that involve detailed information at the building scale are a prerequisite. The DH
heating system in TCD was compared with individual boiler systems.
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Figure 2. The current heating systems of TCD.

3.3. Assessment of Heat Losses at TCD Campus

Based on the actual data shared by the Estates Office of TCD, the overall annual heat
loss of the boiler systems was calculated. In addition, the heat loss of each boiler was
assessed. According to the ArcGIS analysis, the overall useful area of the buildings serviced
by the DH system was 43,793 m2. According to the CIBSE TM46:2008 methodology [31] and
the monthly thermal energy models (MTEMs) developed in [39,40], the buildings needed
(in 2012) 11,312,468 kWh thermal energy per year. These buildings occupy approximately
14,916 m2 of the campus land (the overall area of the footprint of buildings). The detailed
information, including the area and thermal energy demand of all buildings heated by the
DH system, is presented in Table 1.

Table 1. Information of the buildings heated by the DH system.

Building Name Footprint Area (m2)
Thermal Energy Demand

CIBSE (kWh/yr)

Dining Hall 2290 1,488,961
Art Block College 1410 737,633

Graduate’s Memorial 1004 757,904
Provost’s House 998 244,911

Disin House 923 182,179
Trinity College Dublin, New Square 863 24,736

Entertainment Hall 774 473,999
West Chapel accommodation Office 773 683,524

Student Residential 727 530,247
Student accommodation 1 718 920,199
Graduates Reading Room 690 417,820

Electrical Engineering 659 779,786
Trinity accommodations 622 2,236,607

General Office 3 573 4817
Trinity College Dublin 561 30,307

Student accommodation 2 310 76,7509
General Office 2 179 176,309

Chief Steward’s House 144 241,915
Laundry 53 327,109

Chief Steward’s House 1 23 285,996
Total 14,294 11,312,468

The Estates Office of TCD in 2015 reported that the boilers were switched off at
nighttime, between 7:00 p.m. and 6:00 a.m., throughout the year [41]. The results of the
survey show that the temperature of water in the boiler’s storage tank before switching
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off was 70 ◦C, but in the morning, it was 20 ◦C. The 50 ◦C difference between evening
and morning temperature of water indicates a significant heat loss. The Estates Office is
switching off the boilers because at nighttime there was nearly zero demand (kWh) for
space heating or hot water in many buildings. This was accomplished as a part of the
campus policy for energy efficiency. The policy was also implemented during the holidays
and weekends.

Based on the volume of water associated (i.e., the volume of the tanks), and other
necessary information (Table 2), the monthly and annual heat losses were calculated.
Equation (1) was used to calculate the heat losses.

Q = [c × M × (T2 − T1)] = cM ∆T (1)

where Q is the amount of heat loss, c is the specific heat of water (c = 4.1868 J/gr × ◦C), M
is water mass (liter), T2 − T1 = 50 ◦C, 1 L of water ∼= 1000 g.

Table 2. The calculated heat loss of boilers at TCD campus.

Boilers
Location

Tank Capacity
(Liter)

Flow-Return
Temperature (◦C)

Daily Heat Loss
(kJ)

Heat
Loss

(kWh)

Aras An Phiarsaigh 1600 70–60 334,944 93
Samuel Beckett 1100 70–60 230,274 64

200 Pearse St 800 70–60 167,472 47
199 Pearse St 1100 70–60 230,274 64
190 Pearse St 700 70–60 146,538 41
193 Pearse St 300 70–60 62,802 17
194 Pearse St 700 70–60 146,538 41

Civil Engineering 2000 70–60 418,680 116
Sports and CRANN 12,000 70–60 2,512,080 698

O’Reilly Building 5000 70–60 1,046,700 291
17–19 Westland Row 1300 70–60 272,142 76
Hamilton Building 3500 70–60 732,690 204

Biotechnology
Building

5750 70–60 1,203,705 334

East End 12,000 70–60 2,512,080 698
Parsons Building 3800 70–60 795,492 221
Moyne Institute 3200 70–60 669,888 186
Lloyd Building 6000 70–60 1,256,040 349

SNIAMS 4000 70–60 837,360 233
Physiology and

Zoology
5000 70–60 1,046,700 291

Anatomy 1200 70–60 251,208 70
Chemistry 3800 70–60 795,492 221

Berkeley Library 4250 70–60 889,695 247
Total 124,100 - 16,558,794 4600

Monthly heat losses (kWh) 138,000
Overall Annual heat losses (kWh) 1,679,000

According to the calculations, the overall annual heat loss of TCD boilers was ap-
proximately 1679 MWh. This is a huge heat loss and needs to be addressed properly. The
DH system in the west of TCD did not follow the daily switching on/off strategy. The
reason was that the DH system at nighttime serves a group of buildings, e.g., residential
accommodations, that need hot water continuously. The mixed-use functions of buildings
in the network—such as residential, which has continual heat demand—caused the DH
system to not need to turn on/off daily. The purpose of calculating the heat losses from the
individual boiler systems was to indicate that the other system, i.e., DHN, is more efficient.
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3.4. Calculation of Thermal Demand

A university campus is a sample of a community with various buildings that have
different thermal demands and patterns. The amount of heat demand is modified based
on the activities in buildings [40], outdoor temperature, and building area. Therefore,
calculating the accurate amount of thermal energy demand based on these factors is
fundamental. The actual heat demand data applied in the assessments related to both space
heating and domestic hot water. The monthly heat demand calculation was addressed
comprehensively by applying valid monthly thermal energy models (MTEMs) [39] for
typical educational buildings, such as a college. However, a campus also includes other
types of buildings, which are important from the heat demand perspective. Sports centers,
libraries, laboratories, amphitheaters, shops, and restaurants are usually found on a campus,
and they need a large amount of heat energy per unit area. For example, a restaurant needs
thermal energy of 370 kWh/m2 per year [31].

The other types of buildings on a campus except for the typical college buildings,
such as a restaurant, were called non-UC buildings, with various heat demand sizes and
patterns. The monthly heat demand estimations in non-UC buildings are also essential
to quantify daily or monthly thermal energy demand at the campus scale. The heat map
(HM) methodology developed in this paper considered all types of buildings on a campus
when calculating the heat demands. The HM method and the capability of the DHB tool
are explained in further detail in the following sections.

In fact, non-UC building types comprise 28 categories, as defined by CIBSE TM46 [31].
These 28 categories cover all types of buildings on a campus, and they include many
building types, for example, sport center, swimming pool, restaurant, lab, library, shop,
etc. Each type has its special thermal demand benchmark. To calculate the amount of
mean monthly thermal energy demand of non-UC buildings, the annual thermal energy
benchmarks based on the dominant function (single function) of the buildings were derived
from TM46 and divided by 12 (number of months in a year). Then the result was multiplied
by the total useful floor area (TUFA) of that building, which was obtained by survey. Using
Equation (2), the mean monthly heat demand was calculated for non-UC building types.

The mean monthly thermal energy demand for a non-UC building (Q1) with dominant
function (i) is:

Q1 = ((TM46 benchmark (i))/12) × A (2)

where benchmark (i) in kWh/m2/yr refers to the dominant function of the building, and A
is the total useful floor area (m2) of a given building.

A hybrid heat map (HM) methodology was developed, which was a suitable GIS-
based method for analysis and management of heat demand or surplus at the community
scale, in this case, a university campus. Hybrid methodology means the combination of
both MTEMs and TM46 methods. HM was also applied to assessing the efficiency and
feasibility of district heating (DH) systems at the case study campus.

3.5. Development of the Smart District Heating Network (SDHN) Dataset

The district heat balance (DHB) tool developed in this research is applicable for
calculating heat demand and generation at daily or monthly resolutions. In addition,
it can share a lot of valuable information about the buildings and energy analysis. If
a user of the DHB tool clicks on a given building in ArcGIS, for example on the Lloyd
Building, a window will open that delivers valuable information in a table format, as
presented in Figure 3. The information can be used for multiple purposes, for instance,
energy efficiency planning to reduce fossil energy consumption at the neighborhood scale.
The DHB tool shares useful information such as the monthly heat demand analysis data,
dominant and mixed activities in the building, gross heat density (H_UEDg), footprint
heat density (H_UEDf), building floor area, building total area, number of floors, and the
annual thermal energy demand of the case study buildings.
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Figure 3. Screenshot of attribute table of DHB tool, energy and building information.

4. Results and Discussion
Monthly Heat Maps for TCD Campus

The DHB tool is a GIS-based tool developed in this research to generate monthly
thermal energy maps. In ArcGIS, the DHB tool was linked with EBD (energy building
database), which includes all the energy data, such as display energy certificate information,
monthly thermal energy models (MTEMs) data, monthly thermal energy benchmarks
(MTEBs), and heat density. It also includes all the information obtained from the survey.
The attribute table of the DHB tool comprises 120,000 data cells, which were used to
generate the monthly heat maps.

To generate the monthly heat demand maps for case study buildings, two methods
were combined. The method of monthly thermal energy models (MTEMs) [39] was applied
for typical college buildings (PTC types) that did not need heating in summers. The CIBSE
TM46 [31] method was also applied to calculate the energy demand for non-UC buildings
(PTC types). In ArcGIS, both methods were combined, and the heat maps were generated.
Further information about these methods was explained in Section 3.4.

The analysis of the thermal energy map of TCD in January 2012 revealed that the
highest thermal energy demand among the buildings on the campus was 330,748 kWh
belonging to the Arts Building, followed by the Panoz Institute and Lloyd Building, with
231,550 and 225,250 kWh, respectively (Figure 4). The lowest demand, however, was
approximately 6500 kWh belonging to a storage facility building in the north of the campus
behind the Simon Perry Building. In the figure, the darker colors show a higher thermal
energy demand and lighter colors a lower thermal energy demand. NCC refers to ‘No
Condition Control’ spaces or unconditioned spaces such as a garage.
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Figure 4. The heat demand (HM) map of January.

The key characteristic of a spatial thermal demand map is to identify the locations of
potential anchor thermal energy loads. Anchor thermal energy loads are high heat demand
buildings, such as swimming pools. In addition to the high-density thermal energy load,
the other parameter that should be considered in the identification of an anchor load is the
continuing demand pattern. For instance, a building with high thermal energy density
during a short period, such as a month or even a season, is not a thermal anchor load.

Detailed analyses of the monthly fossil thermal energy demand of TCD buildings
were undertaken using the DHB tool and, as a sample, the demands in August are shown
in Table 3 at the building level. The analyses were presented at the building level; however,
they can be presented at a larger level, such as at a campus or an urban context level.

Table 3. The thermal energy demand in August at the building level.

FID Building Name
August Heat

Demand kWh

1724 Chapel 20,409
1920 GP 21,343
1351 Coffee Shop Pavilion 22,236
3604 Examination Hall 23,833
3603 Office at Front Square 27,259
1986 Graduate’s Memorial 44,187
1504 CRANN 49,231
1831 Accommodation Library Square 49,375
1367 Berkley Library 54,605
1990 Accommodation east tennis 54,774
3781 Old Library 56,017
1979 Accommodation south ARAS 56,960
1718 Provost’s House 61,469
1820 Staff accommodation 62,851
1722 Office Parliament Square 63,159
1932 Samuel Beckett Theater 70,473
1373 Berkeley Library 2 122,415
1365 Berkeley Library 3 122,437
1500 Sport Center 177,854
2044 Dining Hall 186,384
—- Total 1,347,271
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The HM of TCD in July 2012 is presented in Figure 5. According to the map, the
thermal energy demands of UC buildings (typical college buildings) at TCD were zero;
however, the non-UC buildings with functions such as residential, Sports Center (swim-
ming pool), restaurants, and library needed the thermal energy over this month. For the
definition and typical characters of a college building, refer to [40]. According to the HM
of July, the highest thermal energy demand belonged to Dining Hall with 186,384 kWh
followed by Sports Center with 177,854 kWh.

 

Figure 5. The heat demand map of July.

According to the ArcGIS statistical analysis, the overall thermal demand of non-UC
buildings in July 2012 was 1,529,438 kWh. In addition, the average daily thermal energy
demand was approximately 51,000 kWh, which indicates the baseload (the lowest daily
load) of the campus. On the other hand, the peak load (monthly and daily) can be derived
from the analysis of the January heat map presented in Figure 4. Based on the statistical
assessments, the thermal energy demand of TCD in January 2012 was approximately
3,944,680 kWh, which shows an average daily demand of 131,000 kWh. The difference
between baseload and peak load was 80,000 (kWh/day), which refers to the space heating.

This detailed information, i.e., baseload and peak load, which was obtained from the
analysis of the monthly heat maps, is crucial in designing a DH system. Such information is
very valuable at an urban scale. For example, understanding the thermal density, extracted
from the HM, helps urban planners to determine the optimized location for energy plants
nearby the anchor loads. This strategy reduces the energy loss of hot water in a DH system
due to the short distance between the energy plant and energy consumer, i.e., anchor loads.
In addition, knowing the base and peak heat loads is useful in the design of a DH system
plant in terms of water tank capacity and power. For instance, such evidence could be used
by mechanical engineers to calculate efficient plants.

By comparing both January and July maps (2012), essential information regarding the
anchor loads of the campus was obtained. The maps revealed the location of both anchor
loads, i.e., Dining Hall in the northwest of the campus and Sports Center on the opposite
side, northeast.

In addition, by analysis of the July heat map (Figure 5), two classes of buildings were
defined from the heat demand pattern perspective, (i) continual thermal consumers (CTC),
all buildings on the map except blue colored and NCC, and (ii) periodic thermal consumers
(PTC), blue colored buildings. PTC needs very low or nearly zero thermal energy during
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summers or at nighttime and holidays. Typical college buildings are a sample of this class.
CTC and PTC can be used as a foundation for thermal energy balance analysis.

The detailed analysis of thermal energy demand of both classes of buildings indicates
the footprint area of PTC was 28,234 m2, whereas the footprint area of the CTC class was
21,835 m2. The useful building area of PTC was 87,049 m2 while the useful building area
of CTC was 60,852 m2. Accordingly, the annual thermal energy consumption of the PTC
class was approximately 14,640 MWh, while the annual consumption of the CTC class was
16,657 MWh. The monthly thermal energy consumption of PTC buildings at the campus
scale is presented in Figure 6.

 

Figure 6. The monthly thermal energy consumption of PTC buildings.

To explore the daily heat demand patterns, the hourly actual heat consumption data
were obtained from the TCD energy database. Based on these hourly data, the daily heat
demand pattern of case study buildings was discovered. Through the assessment of daily
consumption data of PTC buildings, the daily energy demand pattern was extracted as
shown in Figure 7.

 

Figure 7. The thermal energy consumption pattern of PTC buildings, Aras An Phiarsaigh, December
2013 [42].

The thermal energy consumption pattern of the PTC class not only depends on
the outdoor temperature and modifications through a year, but it also depends on the
attendance timetable of students/staff. For example, at nighttime, e.g., from 6:00 p.m. when
there were few students, the boilers at TCD are switched off. This strategy was observed
on the weekends and holidays, as shown in Figure 7. The actual daily heat consumption
data were obtained from Cylon Active Energy Management online dataset [42].
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Further assessment of the HM maps revealed that the location of the energy plant of
the DH system at TCD is located beside an anchor load, i.e., Dining Hall (Figure 8), which is
an optimized decision in terms of reducing heat losses when hot water circulates between
the heating plant and the anchor load (Dining Hall). The shorter distance results in shorter
piping, lower risk of repairing, lower water leakage risk, lower heat losses, lower thermal
insulation, and consequently lower expenses. The closeness of heating plant/generator to
anchor loads (consumer) is a key criterion that should be considered in land development
in future urban planning. Determining the best location for energy generators from the
perspective of energy efficiency in a DH system at the community/urban context is one of
the important applications of heat energy maps.

 

Figure 8. Location of the anchor load and heating generator in the DH system.

According to the analyses of the heat maps of May, June, (Figures 9 and 10), July
(Figure 5), October (Figure 11), and the rest of the year (Figure 12), it can be concluded that
if the DH system at TCD develops, an open space in the west of the Sports Center is the
best location for a new DH station. Layout 1 in Figure 12 indicates the analysis applied to
determine the optimal location. Based on the closeness to the anchor load (Sports Center)
and the availability of open space, the location was determined.

Based on the distance analysis presented in Layout 1 (Figure 12), the college map was
divided into three sections with 241, 224, and 205 m intervals. The current DH system
covers the first interval, i.e., 241 m in the west of the campus. The suggested new DH
system can cover the rest of the campus with a maximum distance of 325 m, as shown in
the figure. The new location is specified with a circle with an area of 415 m2.

The suggested new DH system with maximum distance of 325 m can service the
buildings located in the southeast and east of the campus, such as the Parsons Building,
Moyne Institute, Chemistry Building, Smurfit Institute, Panoz Institute, Hamilton Building,
and Lloyd Building. Likewise, it can also serve another group of the buildings located
in the north of the campus with a distance of 224 m. Samuel Beckett Theater, Aras An
Phiarsaigh, and Simon Perry Building are examples of buildings in this group. In the
case of connecting both DH systems (the existing plant station near Dining Hall and
the recommended station near Sports Center), the maximum distance between them is
approximately 480 m. Establishing the recommended new DH system instead of individual
boilers can save a heat loss of 1679 MWh resulting from the daily boilers’ on/off strategy.
Using the DHB tool, seven monthly heat demand maps of TCD were generated and are
presented in Figure 13.
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Figure 9. Heat demand map of May. 
Figure 9. Heat demand map of May.

 

Figure 10. Heat demand map of June.

 

Figure 11. Heat map of October.
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Figure 12. Determining a location for a DH thermal station.

 

Figure 13. The monthly fossil fuel heat map of TCD in 2012.
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The amount of monthly thermal energy demand of TCD at the campus scale is
presented in Table 4. The overall annual thermal demand of the campus was 31,361
MWh/yr. The lowest demand at the campus scale was in July, with nearly 1529 MWh,
while the highest demand was in January with nearly 3945 MWh. The results show that
the heat demand of TCD in January was approximately 2.5 times greater than that in July.

Table 4. The monthly thermal energy demand at the campus level.

Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

kWh/yr 3945 3559 3364 2785 2398 1626 1529 1626 1723 2302 2979 3462 31,361

5. Conclusions

Thermal energy demand strongly depends on the building area, activity, and outdoor
temperature. Modeling and visualization of heat demand of individual buildings and
simultaneously at the neighborhood scale are fundamental to enhance the sustainability of
a smart DHN. In this paper based on monthly thermal energy models (MTEMs) and 29
CIBSE TM46 energy benchmarks, an integrated methodology for monthly heat demand
calculation and mapping for a university campus was developed. The generated heat maps
share detailed information to smartly manage the DHN. Based on the developed DHB tool,
the anchor and peak heat loads were calculated. Visualizing the location and size of heat
demand, such as the maximum and minimum loads and their consumption patterns, are
crucial for developing a DHN. According to the heat consumption patterns, two groups of
buildings, including continual thermal consumers (CTC) and periodic thermal consumers
(PTC) were identified. Discovering this detailed information is essential for managing a
DHN more sustainably. The methodology can replicate in any urban context to assess
the heat demand at both the individual building and community levels. This method
paves the way toward sharing surplus thermal energy across the DHN. Future studies may
focus on the sharing of heat energy between the community members using smart heat
measurement technologies.
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Abstract: As in other countries of the world, the Turkish government is implementing many preven-
tive partial and total lockdown practices against the virus’s infectious effect. When the first virus
case has been detected, the public authorities have taken some restriction to reduce people and traffic
mobility, which has also turned into some positive affect in air quality. To this end, the paper aims to
examine how this pandemic affects traffic mobility and air quality in Istanbul. The pandemic does not
only have a human health impact. This study also investigates the social and environmental effects.
In our analysis, we observe, visualize, compare and discuss the impact of the post- and pre-lockdown
on Istanbul’s traffic mobility and air quality. To do so, a geographic information system (GIS)-based
approach is proposed. Various spatial analyses are performed in GIS with the statistical data used;
thus, the environmental effects of the pandemic can be better observed. We test the hypothesis that
this has reduced traffic mobility and improved air quality using traffic density cluster set and air
monitoring stations (five air pollutant parameters) data for five months. The results shows that there
are positive changes in terms of both traffic mobility and air quality, especially in April–May. PM10,
SO2, CO, NO2 and NOx parameter values improved by 21.21%, 16.55%, 18.82%, 28.62% and 39.99%,
respectively. In addition, there was a 7% increase in the average traffic speed. In order for the changes
to be permanent, it is recommended to integrate e-mobility and sharing systems into the current
transportation network.

Keywords: pollutant emission; traffic mobility; COVID-19; sustainable transportation; paired sample
t-test

1. Introduction

The terms energy, production and use of energy have started to be used in every field,
especially in recent years, as energy is a great power that directly affects all humanity. We
have to use this power in a correct, environmentally friendly, innovative and sustainable
way, otherwise the irreversible consequences of climate change and global warming will
endanger the future of humanity. In addition to this ongoing danger, as of March 2019,
humanity faced the Coronavirus (COVID-19) pandemic [1]. Countries have taken many
measures to fight against this pandemic; the most important of which is the lockdown,
which is thought to prevent contact and contamination. As the lockdown times increased,
some environmental analyses began to be performed. This process showed that there was
a great change in air quality, especially in crowded cities and areas with high mobility [2,3].
The main reason for this change is the decrease in the mobility of conventional motor
vehicles used in urban transportation and emissions caused by transportation [4–6]. The
reduction in emissions has many positive effects in terms of both human health and the
environment. However, in order to ensure this effect is permanent, it is vital to encourage
and expand the use of sustainable energy and transportation types in urban transportation.
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Istanbul, which has the highest human and vehicle mobility in Turkey [7], was selected as
the study area, and the change in air quality, traffic density and vehicle speeds pre- and
post-lockdown were analyzed.

The study seeks answers to two main research questions in which the pre- and post-
lockdown situation is discussed. These are:

• RQ1: What is the impact of the pandemic on traffic parameters?
• RQ2: What is the impact of the pandemic on urban air quality?

In this analysis process, traffic density and vehicle speed data measured with the help
of sensors placed by the local municipality throughout Istanbul, as well as air quality index
values obtained from air quality measurement stations were considered. The data used can
be classified as big data. Geographic Information Systems (GIS) were used for both the size
of the data and the analysis results, in order to be more understandable. Although GIS is a
frequently preferred analysis tool in the literature in various analyses of COVID-19 and
monitoring the air quality of cities, remote sensing-based machine learning has also been
a very popular tool in recent years. GIS and remote sensing techniques are tools widely
applied to the energy field in various sectors, ranging from building construction [8] to
energy management [9], as well as to mobility [10]. In the mobility sector, the adoption of
new technologies related to vehicle traction (electric motors) is leading to improvements
in environmental impacts [11,12]. GIS maps are implemented in various areas, such as
in the monitoring, analysis of road accidents, identifying risk factors, in assessing road
congestion and in choosing mitigation strategies [13].

Optimal control and management of mobility entails starting with the inclusion of
electric vehicles in the national fleet and control by means of a series of sensors installed
in the infrastructure (such as video cameras, sensors for environmental and acoustic
parameters, sensors for measuring road flows, etc.) and finally the mapping of the results
acquired on a GIS basis in order to assess and draw up risk maps and consider the optimal
or most critical scenarios for a city as vehicle flows change [14–16]. The recent pandemic
has highlighted a number of critical issues and benefits brought about by the drastic
reduction of mobility that laid the basis for an assessment of mobility development in the
pre-pandemic phase, taking into account the sustainable and resilient aspect [17].

The paper is organized as follows: Section 2 presents literature studies on traffic
parameters, air quality and COVID-19. In Section 3, brief material and method information
about the study are given. In Section 4, there is analysis information of the GIS approach
by conducting a case study for Istanbul. In Section 5, the results of the study are discussed,
and sustainable transportation proposals were mentioned. Finally, it provides information
about the result of the study and future studies.

2. Literature Review on Vehicular Pollutant Emission Pre and Post Pandemic

In general, scientific or public questions about COVID-19 are discussed on social
media and related scientific studies. Some of the questions discussed, especially in terms
of transportation, are listed below [18]:

1. Is air quality related to virus spread?
2. How did traffic parameters such as traffic congestion and number of vehicles change

during the pandemic period?
3. Are public transportation sufficient and safe during the pandemic process?
4. How does air quality change pre- and post-lockdown?
5. Have the types of vehicles used and their purpose changed?

In this study, the authors focus on the second and fourth questions. Researchers have
conducted many studies on the air quality change and traffic mobility of the partial and/or
total lockdown imposed to struggle against the COVID-19 pandemic. Different methods
are used in current studies. In this section, studies on air quality change and traffic mobility
were presented. Finally, the contribution part of this paper to the literature was given.
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Çelik and Gül conducted a study to measure air quality during the COVID-19 pan-
demic. Comparison was made considering seven different emission parameters on post
and pre lockdown. While improvements were observed in PM10, NO2, NO and NOx
parameters, it was found that there was a partial deterioration in O2 parameter [19].

Şahin examined the impact of COVID-19 measures on air pollutants. In March 2020,
PM10, PM2.5, NO2, CO and SO2 from air pollutants were taken into consideration for the
Anatolian and European Side in Istanbul, and there were decreases of 32–43%, 19–47%,
29–44%, 40–58%, 38–69%, respectively [20].

Wang and Su analyzed the impact of the COVID-19 pandemic on air quality in China.
They observed that air quality in China improved, and global carbon emissions decreased.
The decrease of NO2 parameter was seen first in Wuhan, and then in all cities [21]. Dantas
et al. conducted a study on air quality in Brazil. When the partial lockdown period and the
same period of the previous year are compared in terms of air quality, the median values
of NO2 and CO are 24.1–32.9% and 37.0–43.6% lower, respectively [22].

Tian et al. examined the impact of the pandemic in Canadian cities in terms of urban
transportation and air pollution. Fuel consumption and CO2 emission values were taken
into consideration. Due to partial lockdown, fuel consumption and estimated CO2 values
declined to very low levels in April 2020. However, it started to rise again in May 2020.
Furthermore, while NO2 and CO parameters are found to be strongly associated with
COVID-19, the situation is not the same for the SO2 parameter [23].

Parker et al. observed that traffic mobility decreased by up to 50% as a result of the
pandemic in the Southern California region. When the 19 March–30 June period of the last
five years are compared with the same period in 2020, there are significant decreases in
PM2.5 and NOx parameters [24].

Gualtieri et al. analyzed changes in pollutant and greenhouse gas emissions due
to pandemic restrictions. It was found that urban road traffic in Italy has decreased by
48–60%. For comparison, the NO2, O3, PM2.5 and PM10 parameters on 24 February 2020–30
April 2020 and 25 February 2019–2 May 2019 were evaluated for six cities. There was an
improvement of 59.1% in the NO2, 17% in the PM2.5 and 32.1% in the PM10. An increase of
14.7% was observed in the O3 parameter [25].

Marinello et al. examined the traffic flow and air quality in the case study (Northern
Italy). The consideration period is February, May 2019/2020. The results showed that the
number of vehicles in traffic decreased by up to 82% in 2020. The decrease of the NO2 and
CO emissions is above 30% and 22%, respectively. On the other hand, an increase of 13%
was observed in the O3 parameter [26].

Chen et al. examined the effects of travel restriction on air pollution of 49 cities
in China. They found that the negative impact of usage private vehicle on air pollution
decreased during the pandemic. Significant improvements were observed in the parameters
PM2.5, PM10, SO2, NO2, CO and O3 [27].

Patra et al. studied short-term changes in road traffic patterns in the city of Chennai
(India). It has been observed that non-compulsory travel has dropped. However, as
the lockdown measures eased, road traffic started to increase. It can be stated that total
lockdown is most effective in reducing road travel activity, but a partial lockdown can only
provide temporary benefits [28].

Hicks et al. examined the effects of lockdowns on exhaust gas emissions in London.
During the lockdown periods, a 32% decrease in the traffic volume on the Marylebone
road and 15% increase in the average speed were observed. Thus, it has been revealed that
vehicle emissions have also decreased [29].

Teufel et al. have developed several simulations to measure the effect of reduction
of traffic-related heat emissions on urban temperature characteristics in the COVID-19
period. As it clear from simulation results, it has been revealed that an 80% reduction in
traffic density will reduce the temperatures by 1 ◦C on average in the city of Montreal
(Canada) [30].
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Boroujeni et al. conducted a study to examine the public effects of the pandemic.
Impacts in terms of mobility, traffic, air pollution, noise pollution and waste generation
were studied. It was observed that between January 3 and February 6, mobility in public
transport centers decreased by 85%. PM2.5 parameter was decreased by 24% in the state of
Victoria (Australia) [31].

Doucette et al. examined daily travel and accident values in Connecticut during
COVID-19. After the lockdown, the distance traveled by the vehicles was reduced by
43%. When comparing the pre- and post-stay at home periods, single vehicle crash ratios
increased by 2.29 times. In addition, the fatal accident severity in a single vehicle increased
by 4.10 times [32].

Lee et al. examined the changes in traffic in the first three months of 2020 in South
Korea during the pandemic process. There was a 9.7% decrease compared to 2019. It
was observed that the number of vehicles in traffic increased after the number of cases
decreased [33]. Parr et al. conducting a similar study, observed that the traffic volume
decreased to 47.5% compared to 2019 [34].

During and after the pandemic, several studies have been undertaken to analyze the
environmental impacts generated by mobility. One study conducted in China states that
correlation analysis between measured data and the ArcGIS system was useful in revealing
the relationships between pollutants and seven different sources [35].

A study in Poland monitored emissions during pandemic phases by defining a heat
map, i.e., a graphical illustration of the value of the tested characteristic, depending on its
concentration level and size, presented with a selected color palette [36].

In addition, a study conducted in India in the cities of Kolkata and Howrah Municipal
Corporation, West Bengal was designed to assess changes in air quality from the pre-
closure period to the closure period. This study focused on the application of GIS-based
techniques (spatial and temporal distribution of pollutants) using the interpolation method
and statistical methods such as analysis of variance (ANOVA) to understand the changing
association of pollutants in the pre- and during-closure phases [37].

When the aforementioned studies are examined, it is seen that there is an improvement
in air quality and a decrease in traffic mobility as a result of partial and/or total lockdown.
In most of the current studies, the limited and insufficient data, the simple of the results, the
lack of spatial analysis to better understand the results and the lack of recommendations
for permanent solutions, are expressed as gaps in the literature. In order to fill this gap, in
this study, traffic mobility and air quality change were examined using GIS-based spatial
analysis. Permanent solutions are suggested for administrators for these.

The contributions of this study to the literature are as follows:

1. To make it easier to understand and interpret the comparison of the periods before
and after the restriction in terms of air quality and traffic mobility, the relevant data
was comprehensively visualized.

2. Istanbul, a mega city, was chosen as the study area and the whole city was included
in the analysis and a huge traffic data was used. Hence, the study area was enlarged
and the integrity of the analysis was provided. Thus, robustness was ensured in the
change analysis of air pollutants.

3. Changes in traffic speeds are included in the study to analyze traffic mobility more
accurately. The including of traffic speeds in the study provided a unique opportunity
for managers to analyze travel delay. By comparing traffic changes in the normal and
pandemic situation, the delays can be revealed realistically.

4. Permanent solutions are required for positive situations such as improving air quality
and decreasing traffic mobility. For this purpose, e-mobility service recommendations
are given in this paper.

3. Materials and Method

A GIS-based approach was developed to find solutions to the determined research
questions. Data were collected to analyze air quality and traffic mobility. Traffic mobility
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and air quality data were processed in the GIS environment, and changes were analyzed.
The study stages are briefly given in the framework given in Figure 1. First of all, data
were collected for the study. The collected data was transferred to the GIS environment.
Visualization of the data has been achieved thanks to analyses applied in GIS. After spatial
analysis, it is easier to interpret the effects of the pandemic.

 

 

Figure 1. Framework of the paper.

3.1. Study Area

Istanbul, with a population of about 16 million, is the most urbanized city in Turkey [38].
Naturally, human mobility is quite high, and this mobility is usually provided by road.
Percent of 20 the number of motor vehicles in the country are located in this city. Istanbul
has a total surface area of 5500 km2. However, the total surface area of the regions with
high activity in Istanbul is 2000 km2. These areas are southeast of Europe and southwest of
Anatolia. The study area is given in Figure 2.

 

 

Figure 2. Study area.

Traffic parameters in Istanbul are different from many other cities in Turkey. The
reason for this is that despite its small surface area, it has a very crowded population
(although there are 16 million residents, this number increases significantly in the summer
season). To meet the transportation mobility of the crowded population, highway/seaway
and airline transports are all used together. For this reason, Istanbul is expressed as a
“transportation laboratory”. In addition, 25% of the motor vehicles in Turkey and most
other types of vehicles (motorcycles, shared vehicles, electric vehicles, etc.) are located
in Istanbul. Micro mobility and innovative vehicle transportation applications are first
launched in Istanbul. Since traffic congestion is a big problem in Istanbul, it is seen that
innovative micro mobility applications are easily adopted by the public. Another reason
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for this is that the young population and the number of people in Gen Z is very high. For
all these reasons, Istanbul can be shown as the city where the effects of the pandemic are
best analysed in the country.

Due to the high number of vehicles and other activities, problems in air quality are
observed. Automobile types constitute 69% of the traffic in Istanbul. Trucks have a large
share, with 16%. In addition, more than 50% of the vehicles used in Istanbul are diesel
vehicles [39]. In the “Air Pollution in Istanbul” report presented by the Ministry of Foreign
Affairs in 2018, the causes of air pollution are shown in the vehicle (traffic) and industry,
mining operations, agriculture and household sectors, respectively [40]; the biggest proof of
this situation is that Istanbul ranks first in the country in terms of carbon footprint. Because
of all these reasons, it is the city where most of COVID-19 cases seen in Turkey. In fact, the
first case and death in the country occurred in this city [41]. For this reason, the partial
and/or total lockdown, which is an important measure in fighting the pandemic, first took
place in Istanbul in the second half of March and in April–May (2020). During this period,
the authors think that traffic mobility decreased and air quality was improved. Traffic data
must be collected instantly to show the changes between post- and pre-lockdown. This
data collection process is not available in most cities, as it is costly. However, these data
are collected by the Istanbul Metropolitan Municipality (IMM) and shared for academic
studies. In addition, there are 36 air quality monitoring stations actively in Istanbul and
seven emission parameters are collected at air monitoring stations. Considering all these
reasons, Istanbul was chosen as the study area. The first case in Turkey on March 11 and
the first death occurred on March 17. The partial and/or total lockdown was implemented
throughout the country from the second half of March to June. Within the scope of the
study, certain periods were considered to measure the effects of the restrictions/lockdowns.
Post- and pre-lockdown were considered equal times for consistency of results. To do
so, data in January–February–March–April–May were collected to show the changes in
traffic mobility and air quality. Since the normalization process started with June, the other
months were not included in the study.

3.2. Collected Data

In order to measure the change in traffic mobility and air quality pre- and post-
lockdown, the number of vehicles in traffic, average vehicle speeds and air quality measure-
ment data are needed. For this purpose, traffic density data for five months was provided
by IMM. Real-time traffic density data are collected 24 h a day in the city with the help
of 1455 sensors. Vehicle data are collected in terms of passenger car unit in terms of the
homogeneity of the data. These data consist of the number of vehicles in traffic and the
average vehicle speed values.

36 air quality monitoring stations were established in Istanbul by the Ministry of
Environment and Urbanization. Measurements are officially made by the Ministry of
Environment and Urbanization of the Republic of Turkey At these stations, measurements
of emission values such as PM10, SO2, CO, NO2, NOX, O3, PM2.5 are made instantaneously,
and their averages are stored hourly and daily. Due to inconsistencies in O3 and PM2.5
emission values, the parameters were not included in the study. Five months of data were
considered for the other five air pollutants. In order for the five air pollutant values to
be meaningful and to be used in the study, there should be a difference in the values pre-
and post-pandemic. This difference can be revealed by various statistical methods. In this
study, this difference was analyzed using the “Paired-Samples T Test”. There is a significant
difference between the air pollutant data used pre and post the pandemic. The values of
statistical analysis are presented in Table 1. As a result of the statistical analysis, the p-alpha
value was found to be 0.01. In the literature, this value should be less than 0.05. It states
that if the p-value is less than the value of alpha 0.05, this means has a significant difference
and strong correlations [42].

168



Energies 2021, 14, 5729

Table 1. Statistical values of parameters.

Parameters
Std.

Deviation
Std. Error

Mean
Correlation T Value

Sig. 2-Tailed
(p Value)

PM10 11.212 1.321 0.726 2.276 0.026
SO2 1.936 0.228 0.826 3.248 0.002
CO 220.549 25.991 0.776 2.899 0.005

NO2 12.929 1.524 0.884 7.755 0.001
NOx 69.763 8.222 0.802 3.546 0.001

PM10 is a complex mixture in a solid or liquid state with a molecule larger than
0.0002 µm and smaller than 500 µm in the atmosphere or a gas mass. Particles below 10 µm
are called PM10 [19]. SO2 is a highly harmful gas with one sulfur and two oxygen atoms
with a covalent-polar bond between them, colorless and pungent odor [43]. CO gas is a
colorless, tasteless, odorless, flammable and toxic gas. As the rate of CO in the air increases,
death can occur in a shorter time. Air basically consists of Nitrogen (78%) and Oxygen
(21%) [44]. The most common nitrogen oxides (generally defined as NOx) are NO and NO2.
NO2 generally results from the burning of fossil fuels [45].

3.3. Geographical Information Systems

GIS is an integrated system where collection, storage, association, query and visualiza-
tion processes of geographic data are carried out [46]. GIS was preferred to analyze traffic
mobility and changes in air quality. The ArcMap 10.5 program was used in this study.
To ensure the consistency of spatial analysis, the data and data sources must be reliable
and accurate. The authors were very sensitive in this regard and the data were obtained
from official sources. The five-month traffic density data were transferred to the GIS. By
transferring the data to the GIS environment, it was possible to visualize the data. The
point density analysis type was used for spatial analysis of the number of vehicles and
average speed values. Emission values were also transferred to GIS and spatial analysis
was performed with Inverse Distance Weighted (IDW) analysis. An interpolation process
needs to be applied to air pollutants, vehicle numbers and vehicle speed data. In order to
visually present the analysis to the readers, the IDW interpolation method offered by the
ArcMap 10.5 program was preferred. When the studies in the literature are examined, it
is seen that there are many interpolation methods [47–50]. IDW is one of these methods
and is frequently used in the literature. In this study, IDW was used to obtain predictive
values between stations and to perform analysis. Thanks to the IDW method, which is
based on Tobler’s First Law of Geography, values in two distances and two value ranges
can be estimated [51,52].

Thanks to visualization within the borders of Istanbul, the effects of the pandemic can
be better analyzed. To accurate comparisons of these analysis results for five months, the
same interval was used in all analyses. The pixel values of the maps obtained are 900 m2

(30 × 30).
GIS is frequently used in the literature to analyze, visualize and interpret the change of

emission values and traffic parameters. Having proved its usability in this field, GIS is very
useful in terms of understanding the relevant data more easily during the pandemic period.
In this context, both researchers and administrators have used GIS-based approaches
quite widely.

4. Results

The key part of the study is the correct transfer of data to the GIS environment and
the implementation of the necessary analysis. Point density analysis was applied to show
the change of traffic density data over the five-month period in the most robust way. Both
the number of vehicles and the average vehicle speed data were used for this analysis. The
classification intervals must be the same in to provide a clear representation of the change
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in the five-month period (to not mislead the readers and to transfer correct information to
the literature).

The change maps of the number of vehicles and average vehicle speeds are given in
Figure 3. While red indicates congestion in the number of vehicles, green indicates free
flow. Red color on average vehicle speed indicates high speed. As is clear from Figure 3,
traffic density measurement sensors are located in road networks with high mobility and
dense traffic.

 

Figure 3. The maps of number of vehicles and vehicle speed’s changes.

As can be seen from Figure 3, there are significant changes in both the number
of vehicles and the average vehicle speed, especially in January–February–March and
April–May.

Partial/total lockdown in April and May significantly reduced the density of vehicle
traffic in the city center. In fact, this situation shows us that there will be a significant
improvement in traffic density if the use of private vehicles is reduced.

There has been an increase in average vehicle speed due to the improvement in traffic density.
Average vehicle speeds by months are 57.50, 55.20, 56.90, 59.00 and 58.56 (km/h), respectively.

The effect of restrictions on traffic also affects air quality. We used Interpolation
(IDW), a type of spatial analysis, to better show this effect. Five-month changes of five air
pollutants from 36 air quality stations established in Istanbul were analyzed. An important
part of the change in air quality occurs due to transport mobility. In Figure 4, changes
according to months and pollutants are given.
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Figure 4. The maps of changes of air quality.

The red color indicates the positive situation and the blue color the negative situation.
However, the improvement ratios of air quality parameters are presented Table 2.

Table 2. Month-based air quality values.

PM10 (µg/m3) SO2 (µg/m3) CO (µg/m3) NO2 (µg/m3) NOx (µg/m3)

January 36.265 3.632 385.298 40.254 114.483
February 38.873 4.157 361.411 42.407 108.067

March 44.984 3.547 433.284 41.385 117.692
April 33.160 3.148 338.846 30.519 72.110
May 29.935 3.159 299.790 28.509 63.993

Improvements−% 21.211 16.546 18.817 28.622 39.997

Therefore, the individual concentrations are shown in comparison in Figure 4 using a
better/worse display scale depending on the regulatory threshold values for each individ-
ual concentration. One of the biggest reflective pollution parameters of traffic mobility is
NO2. In this context, both temporal and spatial changes of NO2 parameter are given as
examples in Figure 5.

When Figure 5 is examined, there is a serious decrease in NO2 parameter values in
May and April. When the maps in Figure 3 are examined, it is seen that the traffic mobility
decreased considerably in April and May. Thus, it can be said that NO2 air pollutant
increases and decreases in relation to traffic mobility.

The main emissions (air pollutants) from traffic are known as NOx, PM and CO.
When the parameters are examined, it is seen that PM10 parameter density in city centers
decreases. However, the news of partial lockdown in March caused people to migrate to
rural areas. Therefore, a serious increase was observed in PM10 in March.
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Figure 5. Change of NO2 parameter according to months [53].

The SO2 parameter has generally remained stable except for February. The main
reason for the increase in February is the energy consumed for warming due to the cold
air temperature. A significant improvement is observed in the parameters of CO, NO2
and NOx during the partial lockdown period. The decrease in the number of vehicles
in traffic can be shown as the main reason for this decrease. These parameters have a
significant impact on human health. Emission values occur intensively in urban areas.
Different sustainable transportation practices can be developed for urban areas to achieve
permanent emission values during the pandemic period. These applications, which are not
very suitable for rural areas, will be fully integrated with urban transportation systems.

5. Discussion

Air quality is an important indicator for urban sustainability. On the other hand,
poor air quality has a very negative effect on human health and its consequences. The
World Health Organization announced that three million people die each year due to air
pollution, and billions of people are adversely affected. Recently, significant changes in
air quality have been observed due to pandemic. In particular, the restriction measures
applied in the fight against pandemic have seriously affected both people and vehicle
mobility. This situation has created a positive change in air quality. In other words, the
reduction in emission values as a result of reducing the use of private vehicles gives us
an important message. As is clear from Figure 3, a decrease in traffic density and an
increase in average traffic speed are observed, especially in April, compared to previous
periods. Since the emission values originating from transportation have decreased, the
positive change in air quality is clearly seen in Figure 4. However, positive situations lost
its effect with the normalization period, and even got worse. To make the improvements
permanent, especially in the areas marked in red, various micro mobility solutions need to
be implemented. It may be necessary to prohibit individual motor vehicles from entering
areas with poor air quality or central areas, or to introduce paid entry (congestion charge),
as has been done in various cities (Singapore, London, Milan, Stockholm). As with the
rest of the world, the devastating effects of climate change can now be seen concretely in
Turkey. Flood and fire disasters in July and August are the best examples of this situation.
While fire disasters were seen in 49 of the 81 provinces, flood disasters were seen in various
provinces simultaneously. In a two-month period, approximately 100 people died in these
disasters. These events show the dimensions of climate change. The phrase “climate change
in our lives” is now more appropriate instead of “climate change is at hand”. Sustainable
practices should be implemented in order to permanently ensure positive change in air
quality in our living spaces. In this direction, sustainable transportation modes should be
quickly integrated into the existing transport system to reduce traffic-related emissions.
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The most popular sustainable practices in recent years are e-mobility and sharing system.
E-mobility applications of transportation systems with electrification are increasing, but
currently insufficient. In addition, a demand-responsive transport (DRT) approach should
be expanded in urban transportation, considering passenger demands. In this context, the
suggestions for sustainable transportation are:

i. Providing electrification in public transportation vehicles
ii. Promoting electric vehicles instead of conventional motor vehicles (developed

countries such as Germany-France-Norway currently provide these incentives)
iii. Developing car sharing services
iv. Reducing the use of private vehicles and encouraging shared mobility
v. Disseminating the bicycle and e-bike sharing network
vi. Implementation and dissemination of e-scooter services
vii. Promotion of DRT for weak demand areas

With the implementation of such suggestions in urban transportation as soon as possi-
ble, positive changes in air quality will be achieved permanently. In addition, a decrease
in traffic density will be observed with the dissemination use of sharing transportation
modes.

The study has a few limits to be discussed. The fact that the traffic sensors used to
measure traffic mobility are only located on the road networks with high mobility and dense
traffic, prevents the analysis of the change in other transportation networks. However,
most mobility in Istanbul is in 2000 km2 (total surface: 5500 km2). Therefore, most of
the sensors are located in these areas. A total of 44 air quality-monitoring stations have
been established in Istanbul to measure air quality by the Ministry of Environment and
Urbanization. Eight of stations were not included in the study due to the data discontinuity.
Since there is no correct data flow for O3 and PM2.5 air pollutants, these parameters were
not used in the study.

6. Conclusions

The GIS information system related to the comparison of scenarios and related emis-
sions from vehicle traffic can be the starting point for the definition of a permanent technical
table, a meeting point for all the operators in the sector, i.e., local authorities, mobility
service providers, researchers, etc.

In this way it is possible to share knowledge and experience and to define timely,
effective and efficient actions to combat the phenomenon.

The information system for the evaluation of vehicle flows and environmental emis-
sions ensures. The information system for assessing vehicle flows and environmental
emissions ensures easier and more reliable recognition of environmental risk factors and
can be associated with other useful information, such as accident risk. In addition, such
tools allow an assessment of scenarios in different traffic and disaster contexts (such as
the recent pandemic) and enable a definition of solutions to improve the resilience and
sustainability of transport in the examined area.

In the absence of pharmaceutical interventions for the COVID-19, governments have
taken drastic steps like social distancing, quarantine, limited transport, partial/total lock-
down to prevent the spread of the virus.

The rapid change in vehicle flows in Istanbul from January to May 2020 showed a
change in vehicle emissions. The number of vehicles and the average speed were the
parameters evaluated not in a hotspot way, as it happens in several literature works but
on a map through the use of GIS. This made it possible to determine the real structure
of vehicular traffic on the road and its influencing factors, thus hypothesizing a possible
reduction in emissions.

Starting from the 2020 autumn–winter season, several countries have been facing a
slow and progressive worsening of the epidemic. Although the epidemic trend during
the summer of 2021 is showing reductions in some parts of the world, it is essential to
strengthen monitoring and mitigation activities in light of all possible epidemic scenarios
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that may arise. This paper lays the groundwork for assessing the environmental effects of
reducing vehicle traffic during the 2020 lockdown period in Turkey. After reconstructing
the activities carried out since the start of this pandemic event, the document takes stock of
several pollutants and the comparison of concentrations during the period examined.

The paper identifies the GIS and potential mitigation of impacts by proposing a shared
approach to remodelling containment/mitigation measures according to the assumed sce-
nario and risk classification. The aim of this study is therefore to show the changes on traffic
mobility and air quality of the restrictions applied during the pandemic process. To do so,
a GIS-based approach was proposed. A five-month period was considered to visualize the
change. As can be seen from the spatial analysis results, there are improvements in traffic
mobility and air quality in April–May. The parameter values in air quality are divided
into two as the averages of January–February–March and April–May. Thus, the change in
values pre- and post-restriction can be interpreted more easily. PM10, SO2, CO, NO2, NOx
parameter values are improved by 21.21%, 16.55%, 18.82%, 28.62% and 39.99%, respec-
tively. In addition, there was an increase up to 7% in average traffic speed. This positive
development in a short period time is very important, and new sustainable transportation
practices should be included in the transportation system in order to become permanent.

The results showed that:

• Rigorous short-term control measures during the COVID-19 pandemic drastically re-
duced both traffic flow and emissions. However, as the COVID-19 pandemic situation
and the resumption of social and economic activities, traffic flow and emissions will
tend to recover.

• Regardless of the pandemic phase, the largest circulating vehicle fleet has always been
medium and small passenger vehicles.

• In the spatial distribution, in Istanbul, the southeast of the European side and the
southwest of the Anatolian side has been the biggest contributor to emission intensity
due to a large cumulative volume of vehicles.

• The likelihood of road congestion has been reduced.

The comprehensive analysis of changing air quality and average speed can help the
government assess make corresponding strategy for sustainable transportation in the future
with help of this study. The findings of this paper provide some positive improvements
information to evaluate in understanding the effects of reduced traffic in urban areas on
air quality.
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Abstract: The main aim of this paper was to classify and to analyze the expeditious resource
assessment procedure to help energy planners and system designers dealing with tides and tidal
currents. Depending on the geographical features of the site to be evaluated, this paper reported
the easiest methods to adopt for later working plans, crucial for preliminary considerations but
to be supported by in situ measurements and by a more complex and detailed modelling. While
tide trends are predictable by using Laplace equations and Fourier series, tidal currents velocities
prediction is not easy, requiring suitable methods or hydraulic applications. Natural and artificial
sites were analyzed and the best method for each type of them was presented. The latter together
highlighting the minimum set of required information was discussed and provided as a toolkit for
assessing tides and tidal current energy potential.

Keywords: marine renewable energy; tides; tidal current; tidal velocity; barrages; channels; bathymetry;
flow rate; site analysis; coastal resources

1. Introduction

Decarbonization strategies are directly promoting renewable energy sources (RES)
exploitation to replace the current fossil fuel supply [1]. RES potential assessment becomes
the first step of analysis and its data accuracy plays a primary role in go/no go investment
decision making [2]. Several methods are available for solar and wind energy, while for
marine resources, few tools or atlases [3] are available for preliminary studies.

Marine energy forms are multiple, including (i) mechanical ones such as tides, currents,
and waves, (ii) chemical ones such as salinity gradients, or (iii) thermal ones such as
constant heat sinks.

Among them, tidal energy can be considered predictable over a long time scale since
it comes from the conversion of gravitational forces [4]. Its intermittency affects the design
of the harvester, but not its reliability since accurate predictions are linked to its nature.
However, its main drawback is the distribution over large surfaces entailing large efforts to
exploit it. Furthermore, the electricity generated by tidal energy conversion is not steady
and is not able to fill in the consumption peak of an energy system.

Tidal energy can be exploited in two main ways: (i) harvesting its height range in
natural bays and estuaries or in artificial barrages; and (ii) extracting the kinetic energy
from the tidal currents across natural and artificial channels [5].

Regarding case (i), the size of the barrage is determined by the bay or estuary to build
an artificial basin of water whereby, in so doing, its level increases and decreases with a
different period compared with the open sea. Therefore, the hydrostatic head occurs. The
energy harvesters located along the barrage extract power from the in- and out- water
flows. This can be compared to a low head hydro dam [6]. The calculation, indeed, follows
similarly with dedicated systems of equations.
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Referring to case (ii), the tidal stream enters in a bay or a channel located between
a mainland and offshore island. The most important parameter for the assessment is
the maximum average power, usually assumed as the average kinetic energy flux in an
undisturbed state across the most constricted channel’s cross section where the strongest
currents are present. Furthermore, the installation of energy harvesters plays a crucial role
since their presence affects the flow. This is the reason why it is fundamental to determine
the optimal threshold between amount of power to produce and the number of turbines to
install. It is possible, as discussed in [7].

In order to start an installation or tidal system, the site must first be selected. A
distinction between natural and artificial sites must obviously be made. The artificial sites
are concerned with the construction of dams that allow vast amounts of energy to be stored
but require major civil works. Instead, natural sites are synonymous with small lagoons,
estuarine canals, straits, etc.

Incredible costs are needed for artificial sites, which are put towards other uses, such
as environmental conservation, water storage, and viability, and not just to produce energy.
The classic realization is a tidal barrage that, due to tidal forces, is a structure similar to a
dam used to absorb energy from water moving in bidirectional way (inbound or outbound)
through bays or rivers. A tidal barrage permits water to flood into a bay or river in the
course of high tide, rather than damming water on one side like a traditional dam, and
discharges the water during low tide. That is achieved at crucial times of the tidal cycle
by calculating the tidal stream and regulating opening and closure of the sluice gates. In
order to absorb the energy as water flows in and out, turbines are located at these sluices.
The barrage technology of tidal energy exploitation requires the construction of a barrage
across a bay or river where tidal currents flow. Turbines mounted in the barrage generate
electricity while water flows in and out of the enclosed estuary basin, bay, or river. These
systems are comparable to a hydro dam generating pressure energy due to the difference
in height (head). The turbines are able to generate power when the water level outside the
basin or lagoon varies relative to the water level within. Several kind of turbines could be
used depending on the head and flow available, in some cases even reversible pumps or
pumps as turbines [8].

Embankments, caissons, pumps, sluices, and ship locks are the essential elements of a
barrage. These elements are located in very large concrete blocks.

Barrage systems depend on the high cost of civil infrastructure associated with the
placement of a dam across estuarine systems. Because of the detrimental consequences
associated with altering a big ecosystem where many varieties of species live, people have
resisted barrages [9].

Tidal currents are more attractive for minor costs than less invasive applications [10],
allowing installations in channels between an offshore island and the mainland or in a
strait at the entrance to the bay. In this case, prior to making the decision, many parameters
have to be considered or evaluated [11].

With the aim is to provide available power over a valuable period of time, the current
velocity characterization in terms of spatio-temporal variance is needed for the siting
activities: the optimum range is indicated as 1.5–3.5 m/s [12].

For designing the structural loading and power capability of the system, these pa-
rameters are inevitable. The geology of the seabed affects the construction of a kinetic
energy system significantly. Recent sediment dynamics research has postulated a threshold
value for initial particle movement [13–15]. However, bottom friction relies on various
settings and forcings, including the structure of bed-sediments and sea bottom morphol-
ogy [16] and the effect of hydro-dynamic processes, such as wave interaction and current
bottom-boundary layers [17].

This is vital for determining whether the sediments removed will impact turbine
components such as blades and structural parts under critical conditions. In addition, shore
and bed-boundary layer effects and roughness have not always been taken into account,
though tide trend is often the object of the theoretical output of energy.
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All these parameters should be taken into account in the complete feasibility analysis
of the production plant layout [18], starting from the tide oscillations, which are well-
known for each site as the sum of the harmonic components, up to the geomorphology of
the site, determining the flow velocity losses and thus the energy generated, and also the
availability of the installation. A shore must be able to bear heavy concrete structures to
decrease erosion due to sedimented currents, or simply to be defined as low roughness for
retaining structures such as gravity-based structures (GBS).

In order to properly deploy the machine in a location, many details are required at
this point. In particular:

• Geomorphology of the section for the optimum velocity range and bathymetry for
position definition;

• The real flow field in terms of velocity intensity and frequency for each velocity over a
date span;

• Planned energy output over the course of a year in order to test the installation strategy
(i.e., one large or many smaller machines, depending on the previous data acquired);

• Seabed or shore, for the final design choices to mount the mooring fixtures;
• Limitations and availability of sites to be assessed for the host country’s environmental

and economic effects.

Finally, once the above parameters have been established, the machine’s location and
design can be considered to be almost ready in terms of feasibility.

The review articles available in the literature deal with the status of research [19] or
regional outlook, such as the Ireland case [20], but a comprehensive and critical analysis of
expeditious assessment methods is not available, despite the recent availability of marine
databases [21].

Finally, the novelty of this paper is to provide readers an overview of the methods
and analyses present in the literature for assessing the tides oscillations and, particularly,
the tidal current velocities, by including, according to the sites conformation, 1D, 2D, and
3D approaches.

The main objective of this study was to help energy planners and system designers in
resource assessment procedures for tides and tidal currents.

2. Material and Method—Tides Genesis: Prediction Models

Tidal energy is generated directly from the gravitational and centrifugal forces between
the earth, the sun, and the moon [22]. Because of the gravitational force of the moon, the
sun, and the earth and the centrifugal one produced by the mutual rotation of the earth
and moon [23], a tide results in an oscillation of the ocean’s surface.

The moon exercises a gravitational force twice as big as that of the sun because it is
closer to the earth. Every 24 h, 50 min, and 28 s, the tidal phenomenon occurs twice [24].
A bulge of water is formed by the gravitational force of the moon, which is stronger on
the side of the earth nearest the moon. The rotation of the earth-moon system, creating a
centrifugal force, creates another water bulge furthest from the moon on the side of the
earth, shown in Figure 1.

The water around the landmass is at high tide when a landmass matches up with this
earth-moon system. In addition, the water around it is at low tide while the landmass is at
90◦ to the earth-moon system (see Figure 2). Every landmass is therefore subjected to two
high tides and two low tides during each cycle of the earth’s rotation [25].

The timing of these tides changes at every point on the planet as the moon rotates
around the earth, and the same apex of high or low tide occurs at the same point roughly
50 min later per day [26]. Every 29.5 days, known as the lunar cycle, the moon orbits the
earth. Between spring tides and neap tides, tides vary in size.

When the sun and moon are aligned with the earth, spring tides occur, whether
moving on the same side of the earth or on opposite sides, resulting in extremely high
spring tides. If the sun and moon are at 90◦ to each other, neap tides occur, resulting in low
neap tides (see Figure 3).
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’

Figure 1. The influence of the moon on tidal genesis. ’

 

Figure 2. Trend of the tides related to the moon position.

In particular land conformations like harbors, estuaries, and bays, the level oscilla-
tion of the ocean water also produces a horizontal movement of the water which causes
tidal currents. In general, a current can flow from the oceans into the harbors, bays, and
estuaries as the range of tides increase; this is called a “flood current”.

A current can flow into the oceans as the tides fall; this is called an “ebb current”. When
the tide stops to act, no horizontal motion is observed; this is referred to as “slack water”.

 

“ ”
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no horizontal motion is observed; this is referred to as “slack 
water”.

‘rule of thumb’
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Figure 3. Spring tide and neap tide.

To presume a correlation between the times of high/low tides and the times of maxi-
mum and minimum tidal currents, a ‘rule of thumb’ is adopted by many technical users of
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the sector. This rule implies that the flood and ebb current will occur between the high and
low tides, while the periods of slack water will happen at the same time as the high and low
tides. However, for most places, this rule does not apply. It is not a clear relation between
the times of high/low tide and the times of slack water or maximum current. Three “base
case” requirements exist. A “standing wave” form of current is the first. The cycles of slack
water would be exactly the same as the high and low tides in a standing wave, with the
highest flood and ebb current occurring halfway between the high and low tides.

The second is the presence of a “progressive wave”. The maximum flood and ebb
would arise at the times of the high and low tides in a progressive wave, with the slack
water between the times of high and low tides. The two abovementioned occurrences are
illustrated in Figure 4.

“ ”
“ ”

no horizontal motion is observed; this is referred to as “slack 
water”.

‘rule of thumb’

“ ” “ ”

“ ”

 

Figure 4. Standing wave and progressive wave.

A “hydraulic current” is the third case. In a hydraulic current, the current is formed
at two locations joined by a waterway by the difference in height of the tides. When the
difference between the two heights is the highest, the current is at its full flood or ebb.
When the height of the tide at the two places is about the same, slack water occurs.

At a small number of sites, hydraulic currents exist. Some instances would be:

• New York’s East Channel, which ties Long Island Sound to New York Harbor;
• Any Intra Coastal Water Way parts (ICWW);
• The Canal of Chesapeake and Delaware, linking Chesapeake Bay and Delaware Bay;
• Between barrier islands that create various tidal conditions on opposite sides of

the island.

Most generally, progressive currents characterize the oceanic entry of several bays
and harbors. At the head of larger bays and harbors (see example in Figure 5), stationary
wave conditions are most typical. Somewhere, most areas of the coast will fall in between a
progressive and standing wave current.

The exact relationship between high and low tide times and maximum current or
slack water is unique to each location and a general “rule of thumb” cannot be applied.

As the tidal currents are caused by the same forces that cause the tides, it is possible to
predict the currents in a very similar way to the tides.

Using the same techniques used to analyze tides, observational data on the currents at
a site can be evaluated and the results of such a study can be used to produce forecasts of
tidal currents. However, tide predictions and tidal current predictions are performed sepa-
rately because the relationship between tides and tidal currents is unique to each region.

• The times and heights of the tides are given by tide forecasts.
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• The dates and speeds of maximum current and times of slack water are given by tidal
current predictions.

It is up to the users to ensure that the right form of forecasts are used for their operations.

“ ”

 ’




 

“ ”




Figure 5. Example of bays in North America.

Tidal Analysis and Prediction-Tidal Constituents

Tides are completely predictable, as the number of harmonic elements can be foreseen.
Approximately 62 constituents [27] are of sufficient size to be considered for potential
use in the prediction of marine tides, although far fewer can often predict tides with
useful precision.

Generally, seven different harmonic components cause about 83% of the variation in
tides. These components originate from the influence of the moon or sun and the relative
periods occur once or twice per day. For example, the so-called ‘M2’ component is typically
the dominant tidal wave caused by the moon, twice daily. The periods of tidal components
are constant across locations, but the relative strengths (amplitudes) vary considerably.

These major tidal constituents, determined by geographic coordinates [28] and which
allow for prediction of the water level by harmonic analysis, are listed in Table 1 together
with their period and related strength.

Table 1. Main tidal constituents with relative strength.

Symbol Name Period (hrs) Strength (M2 = 1.0)

M2 Principal lunar 12.42 1.0000
S2 Principal solar 12.00 0.4652
N2 Larger lunar elliptic 12.66 0.1915
K2 Luni-solar declinational 11.97 0.0402
K1 Luni-solar declinational 23.93 0.1852
O1 Larger lunar declinational 25.82 0.4151
P1 Larger solar declinational 24.07 0.1932
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Then, in addition to the mean sea level Hm, it is possible to reconstruct the tide height
pattern as follows by considering n constituents and the corresponding frequencies ωi and
phases ϕi.

h(t) = Hm + ∑
n

1 Hisin(ωit + φi) (1)

The tidal components can be produced using the global inverse solution TOPEX/
Poseidon TPXO developed by Oregon State University [29]. The TPXO is a collection of
global ocean tide models that best match the Laplace Tidal Equations and altimetry data in
the least-square sense.

For eight primaries (i.e., M2, S2, N2, K2, K1, O1, P1, and Q1), two long periods (i.e., Mf,
Mm) and three non-linear harmonic constituents (i.e., M4, MS4, MN4), on a 1440 × 721, 1/4
degree resolution complete global grid, the model considered tides as complex amplitudes
of earth-relative sea-surface elevation.

If a power plant installation is considered in a natural site where tidal currents generate,
like a channel, a river, an estuary, a fjord, or a strait, where more consistent tidal currents
arise and flow parallel to the coast, it is necessary to know the tidal current velocities trend
in order to assess the feasibility of the installation. Therefore, measurement surveys are
essential. Velocity and tidal level data can be measured using an Acoustic Doppler Current
Profiler (ADCP) sensor and with a built-in pressure sensor.

However, since these surveys are both expensive and time-consuming, and because
of the various areas with potential suitability for tidal energy extraction, preliminary
estimations require simpler, more generalized methods. A simple model would need only
publicly accessible data, such as changes in sea level elevation (see Equation (1)).

3. Tides Applications and Tidal Currents Genesis: Prediction Models

In this section, both tides and tidal currents are analyzed in order to detect possible
applications and assess the energy annual yield. We start from the case of a basin with
barrage, which directly exploits the potential energy linked to the tides, and try to find
valid correlations regarding the tidal currents, which generate from the tides themselves.

3.1. Basin with Barrage

Tidal barrages take advantage of the potential energy contained in the tides. Electricity
is produced just like a hydroelectric dam with the exception that tidal currents flow in both
directions, as opposed to only one direction for a dam [30].

From the tide coming in (flood tide) and out (ebb tide), a head difference is created; if
the head difference is of a sufficient size, sluice gates are opened and water flows through
the barrage turbines. Below, the two operating modes are explained in more detail.

• Ebb generation (Figure 6a)

Through the sluices, the basin is filled until high tide flows. Then, when the tide
reaches maximum height, sluice gates are closed. At this point there could be “extra-
pumping” to further increase the level. To obtain an adequate head across the dam, the
turbine gates are held closed until the sea level starts to fall. Hence, when the tide reaches
minimum height, see Figure 6a, the gates are opened so that while head is sufficiently high,
the turbines work. This phase lasts until the difference in height (the head) is greater than
zero. The sluices are then kept opened, turbines are disconnected, and the basin is again
filled. With the tides, the cycle repeats. Generation of ebb (also known as generation of
outflow) takes its name because generation takes place as the tide reverts tidal direction.

• Flood generation (Figure 6b)

In this case, the achievement of the energy production happens in the opposite way.
The basin is filled by using the turbines working during tide flood and when the height
is maximum (see Figure 6b). This is normally much less powerful than ebb generation,
since the volume of the basin charged during flood is lower than the volume obtained
when ebb generation operates. In fact, this last is filled first during flood generation and
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even with extra water from inland rivers and extra streams connected to it via the land.
Therefore, the available level difference between the basin side and the sea side of the
barrage, essential for the turbine power produced, decreases faster than in ebb generation.
Instead of enhancing it as in ebb generation, rivers flowing into the basin can further reduce
the energy capacity. This is not, of course, a concern with the “lagoon” model without the
inflow of rivers.



“
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(a) (b) 

Figure 6. Ebb generation (a) and flood generation (b) plant scheme.

A first simple model to evaluate the energy production through turbines inserted in
the dam is based on the emptying/filling of the reservoir surrounded by the dam itself.

Therefore, it is possible to express the level of the sea as:

h1(t) = h(t) + a sin ωt (2)

where: h(t) is the mean sea level, h1(t) is the sea level outside the basin, h2(t) inside the basin
By introducing a suitable discharge coefficient Cd, velocity through a turbine is:

V = Cd

√

2g|h1(t)− h2(t)| (3)

The flow rate through the turbine(s), having blades area Aturbine, is instead:

Q = VAturbine (4)

While the differential dh, referred to a Basin area Barea, changes according to:

dh =
Q

Barea(h)
dt (5)

The basin area is expected to change with h in this situation. Typically, through two
experimentally determinable coefficients k1 and k2, linear laws will take this shift into
consideration as follows:

Barea = k1h(t) + k2 (6)

So, the level h2 can be found by following the next equation:

h2new = h2old ± dh (7)

Ultimately, the power provided by the turbine becomes:

P = ηturbηtrηgenρgAturbCd

√

2g|h1(t)− h2(t)|
3 (8)

It is assumed that a transmission efficiency ηtr of 67% and a turbine ηturb and generator
unit ηgen global efficiency of 60%–90% are typical values for small hydro power plants.
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The turbine’s efficiency ηturb varies, as the flow rate and head are not constant. A turbine
is usually designed to keep the efficiency constant for different flow rates for a given
operating band. The efficiency will drop rapidly, however, if it exceeds a certain condition.
Kaplan turbine efficiencies start to decline at 50% of the nominal flow in traditional hydro
power. In the next figure (Figure 7), this occurrence is highlighted.

 



Figure 7. Turbine efficiency vs. flow rate%.

This impact is even greater in a tidal barrage, as the maximum head is only reached for
a limited period of time and cross-flows through the turbine tunnel are required when the
system reaches a very low head (less than 10% of the maximum value). The efficiency of the
turbine and generator is therefore assumed to be 90% for peak power and 70% for annual
average power output. There is no consideration of additional losses due to transformation,
gear boxes, or downtime.

3.2. Model for Predicting Tidal Current Velocities

Tidal currents are generated from tides whenever the difference in height of the sea
level is converted in flow through a wide or narrow channel, in a strait or a gorge. They
flow parallel to the coast like a river and revert their direction generally twice per day.
Bringing essentially kinetic energy, they can be exploited by wind turbine-like machines.
Here, these machines were not analyzed, because they were not the focus of this paper.
More interesting is the way to assess the trend of these currents. In this section, some
models for simple evaluations are proposed, and energy resources are evaluated for both
artificial sites (barrages) and natural sites (channels).

Enclosed Bay with Channel

Continuity means that the change in volume within the bay must be equal to the flow
into the bay when considering an enclosed area, such as a fjord. The flow into the bay is
the flow through the canal linking the bay to the open ocean and other inputs, such as
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discharge from the river. If one disregards the freshwater input, the continuity equation
can be written as [31]:

Abay
dhi

dt
= Q (9)

where Abay is the region of the enclosed bay, which is expected not to shift with the h level
in this case; hi is the water level within the bay; and Q is the channel flow. The cumulative
drop across the channel in water level is equivalent to ho-hi, where ho is the level of water
on the outer side of the bay in the ocean. This total water-level drop can be divided into
two parts: one related to the channel friction (∆hf) and one related to the flow acceleration
towards the constriction (∆hb).

Using the Manning number, n, the frictional resistance can be calculated according to:

∆h f =
n2L

R4/3

(

Q

Ac

)2

(10)

where L is the channel’s length; R is the hydraulic radius; and Ac is the channel’s cross-
sectional area [31]. It is possible to write the variable ∆hb as:

∆hb =
Q2

2gA2
c

(11)

The friction and acceleration concept is assumed to be negligible in the simplest case,
and Equation (9) is used to model the channel velocity.

Only continuity is applied to measure the velocity of the channel. In addition, assum-
ing that during the tidal cycle the cross-sectional area will not change significantly, the
flow will depend on the channel velocity such that Q = Ac · u. Through this, a relationship
between the velocity and the tidal level can be achieved. Denoting the approximate velocity
with u, the equation becomes:

u =
Abay

Ac

dhi

dt
=

Abay

Ac

dho

dt
(12)

If the tidal water level with an angular frequency of ω has a sinusoidal difference,

h(t) = Hmax sin(ωt) (13)

The velocity is, then, u

u =
Abay

Ac
ω sin

(

ωt −
π

2

)

=
Abay

Ac
ω sin

[

ω

(

t −
T

4

)]

(14)

The velocity would then have a phase shift of T/4, being T the period of the tides
equal to 12 h and t the time in hours.

Equation (14) can be further extended to estimate the maximum velocity in the channel.
Writing the sinusoidal variation of the velocity with u(t) = umaxsin(ωt), the integration of
Equation (12) over half a tidal period gives the maximum velocity:

umax = 1.4 · 10−4
(

s−1
)Abay

Ac
Hmax (15)

by considering that ω = 2π/T. i.e., 6.28/(12 × 3600) = 1.4 × 10−4.
Case study: Skarpsundet tidal channel (Norway) [31].
In the following, an example of how it is possible to estimate the tidal current velocity

in a channel is reported together with ADPC measurements. The area is in the Norway
fjords, and particularly the case of the Skarpsundet tidal channel is analyzed. The following
figures (Figure 8a,b) report the map of the site with the channel and the connected bay
highlighted. Table 2 reports useful data for applying the methodology.
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(a) (b) 

ρ

Figure 8. (a) Maps of Norway’s fjords Elsfjorden and Ranfjorden, with the Skarpsundet channel highlighted. (b) Bathymetry
of the Skarpsundet channel and measurements station [31].

Table 2. Values for the Skarpsundet channel.

Variable Description Value

ρ Density 1025 kg/m3

L Length of Skarpsundet 1500 m
Ac Cross-sectional area 13,500 m2

W Average width of channel 700 m
Hc Average depth of Skarpsundet 15 m

Abay Fjord Area 3.8 × 107 m2

3.3. ADCP Measurements

A 600 kHz ADCP Workhorse Sentinel was used for measuring velocity and tidal level.
The built-in pressure sensor of the ADCP instead was utilized for measuring the water level.
By means of a downward-looking ADCP, one transect measurement and one different
survey were performed. Figure 8b shows the locations of the measurements: transect
measurements are marked as black lines. By using a low-frequency sampling rate, long-
time measurements were performed over 43 days. The ADCP measured velocities (#1—see
Figure 8b) were compared to the simulated ones obtained from TELEMAC-2D software
(Figure 9). The velocity reliefs in direction North-South agreed with the simulations
(Figure 9). Figure 10 illustrates the tidal velocity variations across the channel.

’s

ρ

—

 

— —Figure 9. N-S tidal velocities comparison from 1 June to 9 June 2011 (red—simulated, black—measured) [31].

3.4. Maximum Velocity and Tidal Range

At this point, it is necessary to test the goodness of the methodology by verifying if
the maximum velocities of the tidal range considered are according to Equation (15). On
purpose, only the long-time ADCP velocity series were used by obtaining the tidal range—
the difference from the maximum and minimum height or tide level—from the Norwegian

187



Energies 2021, 14, 6123

Hydrographic Service (NHS). The velocities were depth averaged and smoothed over one
hour, and then their maximum values, during flood and ebb, were extracted from the time
series. Figure 11 highlights the results of this analysis.

 

max, 0.11 0.16

max, 0.03 0.30  

Figure 10. Cross-sectional measurements during incoming tide with the depth line along the transect highlighted [31].

The correlation plot shows that the velocity variation was stronger for the outgoing
tide compared with the incoming.

umax,in = 0.11 + 0.16 · H (16)

umax,out = 0.03 + 0.30 · H (17)

Equations (16) and (17) are written for interpolating data measured, shown in Figure 11
together with dashed lines representing error band of ±0.05 m/s and 0.1 m/s, taking into
account that H is the peak to peak difference height equal to 2Hmax (see Equation (13)). It
can be seen that the slope in the equation was different between the flood and the ebb tide,
with a higher slope value for the ebb tide. The maximum velocity occurred, on average,
3 h and 35 min after high tide and 3 h 32 min after low tide.

— —

  

(a) (b) 

  

  

Figure 11. Velocity peaks versus tidal heights: (a) flood tide and (b) ebb tide. Dashed lines display 95% interval of
confidence [31].

Using Equation (15) and taking into account the parameters reported in Table 2, umax
became 0.4 m/s if the considered tidal range H is 200 cm. This value agrees strongly with
the measured cross-sectional average velocity during flood tide (0.42 m/s—see Figure 11a),
and weakly with the measured cross-sectional average velocity during ebb tide (0.63 m/s—see
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Figure 11b). However, measurements at a diverse location, more centered in the channel,
could yield different results.

Channels

Figure 12 illustrates the stream through a variable cross-section channel. It is assumed
that the current velocity u(x, t) is a function of time t and location x along the channel, but
independent of the cross-channel position. The dynamic equation that governs the flow is

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= −F (18)

—

—

𝜕𝑢𝜕𝑡 + 𝑢 𝜕𝑢𝜕𝑥 + 𝑔 𝜕ℎ𝜕𝑥 = −𝐹

 

𝑐 𝑑𝑄𝑑𝑡 − 𝑔ℎ0(𝑡) = −∫ 𝐹𝑑𝑥𝐿
0 − 12𝑢𝑒|𝑢𝑒|

 

Figure 12. Flow through a channel [7].

Where the pressure gradient to drive the flow is given by the slope of the surface
elevation h, and where F(x, t) represents an opposing force associated with natural friction
and possibly turbine presence. To be independent of the cross-channel location of the
frictional force associated with the turbines, the turbines must be deployed in a uniform
fence across the flow, so that all the water flows through the turbines itself. If the channel
is small compared with the wavelength of the tide, which usually reaches hundreds of
kilometers, even in shallow water, the continuity law ensures that the flux A · u along the
channel is independent of x (we neglected small changes in A associated with the rise and
fall of the tide) and can be written as Q(t).

The use of this in Equation (18) and the integration along the channel means

c
dQ

dt
− gh0(t) = −

∫ L

0
Fdx −

1
2

ue|ue| (19)

where c is

c =

L
∫

0

1
A(x)

dx (20)

The difference in sea level between the two basins is ho(t), meaning that this difference
is unaffected by the flow through the channel and also unaffected by F shifts as turbines
are installed.

3.5. The Easiest Case for Tidal Currents Velocity Estimation

The natural friction and head loss associated with separation at the exit could likely to
be relevant. It is assumed, however, that these effects are minimal, above all if the channel
is long and wide, so that the natural regime has a balance between the difference in sea
level and acceleration. Considering a sinusoidal tide:

h0(t) = acos(ωt) (21)
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where the amplitude is a and the frequency is ω. This forcing will, of course, at each end of
the channel be the distinction of sinusoidal tides rather than reflecting forcing from only
one end. By integrating Equation (18), the corresponding volume flux is

Q = Q0sin(ωt) (22)

Q0 =
ga

ωc
(23)

Taking into account the drag associated with the presence of turbines, expressed as

L
∫

0

Fdx = λQ (24)

Equation (19) becomes:

c
dQ

dt
− ga cos ωt = −λQ (25)

In this case

Q = Re
[(

ga

λ − icω

)

e−iωt

]

(26)

3.5.1. 3D and 2D Methods—Navier–Stokes Equations

When the site’s geometry is complex, for example when headlands and islets are
present, the approaches described previously fail. Where the coast is indented and head-
lands and islets are present, this is the case for complex geometries. Therefore, depending
on the characteristics of the seabed, more robust methods need to provide 2D or 3D ap-
proaches. The baroclinic Navier-Stokes equations were obtained by reducing the vertical
momentum equation to the hydrostatic pressure assumption by applying the Boussinesq
assumptions. The fluid was often believed in the simulation to be incompressible. The
equations for continuity and momentum are given below [32]:

∂h

∂t
+

∂[(d + h)U]

∂x
+

∂[(d + h)V]

∂y
+

∂[(d + h)W]

∂z
= Q (27)

∂U
∂t + U ∂U

∂x + V ∂U
∂y − f V

= −g ∂h
∂x − g

ρo

h
∫

−d

∂ρ′

∂x dz + τsx−τbx
ρo(d+h)

+ vh

(

∂2U
∂x2 + ∂2U

∂y2

)

+ vv

(

∂2U
∂z2

)

(28)

∂V
∂t + U ∂V

∂x + V ∂V
∂y − f U

= −g ∂h
∂y − g

ρo

h
∫

−d

∂ρ′

∂y dz +
τsy−τby

ρo(d+h)
+ vh

(

∂2V
∂x2 + ∂2V

∂y2

)

+ vv

(

∂2V
∂z2

)

(29)

∂p

∂z
= −ρg (30)

∂[(d+h)c]
∂t + ∂[(d+h)Uc]

∂x + ∂[(d+h)Vc]
∂y + ∂[(d+h)Wc]

∂z

= Dh

(

∂2c
∂x2 +

∂2c
∂y2

)

+ Dv

(

∂2c
∂z2

)

− λd(d + h)c + R
(31)

Taking into account shallow waters, the above equations reduce as:

∂h

∂t
+

∂[(d + h)U]

∂x
+

∂[(d + h)V]

∂y
= Q (32)
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∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− f V = −g

∂h

∂x
−

g

ρo

h
∫

−d

∂ρ′

∂x
dz +

τsx−τbx

ρo(d + h)
+ vh∇

2U (33)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
− f U = −g

∂h

∂y
−

g

ρo

h
∫

−d

∂ρ′

∂y
dz +

τsy−τby

ρo(d + h)
+ vh∇

2V (34)

∂[(d + h)c]

∂t
+

∂[(d + h)Uc]

∂x
+

∂[(d + h)Vc]

∂y
= Dh∇

2c − λd(d + h)c + R (35)

where:
d: depth of local water relative to a reference plane;
h: level of water;
U: vertically integrated velocity components towards the east;
V: vertically integrated velocity components towards the north;
Q: mass sources intensity per unit area;
f : parameter Coriolis;
Vh: viscosity of kinematic horizontal eddy;
ρo: density of reference;
ρ′: the density of the anomaly;
τsx: x-wind tension components acting on the surface of the sea;
τsy: y-wind pressure components acting on the surface of the sea;
τbx: shear pressure at the bottom of x-components;
τby: shear pressure at the bottom of the y-components;
c: salinity (transported substance) or temperature;
Cd: seabed friction;
Dh: lateral diffusivity of the eddy;
λd: method of first order decay;
R: is the term for the source per unit area.
A flexible finite-element-based coastal ocean model, THETIS, could be used to solve

the shallow water equations on an unstructured triangular mesh [33]. THETIS is built using
the Firedrake framework [34], which automates the generation of low-level application
code from high-level descriptions of the finite element discretization specified. Other open
source software is available: DELFT3D [35], TELEMAC [36], POM [37], and MIKE 21 [38].
However, detailed knowledge of the bathymetry or 3D conformation of the seabed is
required for providing optimal solutions.

Case study: Pentland Firth and Orkney Waters—North Scotland—tidal currents predictions
The above methods were applied in the area of Pentland Firth and Orkney Waters. The

Pentland Firth (PF), placed between the mainland Scotland and Orkney Islands, constitutes
36% of the total tidal energy in the United Kingdom and records the highest tidal currents in
the world [39] with current speeds exceeding 5 m/s in some cases. Particularly, TELEMAC
3D was used for predicting the speed.

TELEMAC 3D solves the Navier Stokes Equations (27)–(35) by using the Finite Element
Method, considering advection-diffusion equations of intrinsic quantities like salinity,
temperature, and concentration by requiring three main pieces of information: the geometry
(model mesh), the boundary condition of the domain, and the simulations configuration.

The Acoustic Doppler Current Profiler (ADCP) was used for validating the model
results; the data are very useful for 3D hydrodynamics modelling, as they provide data on
current velocities through the water column. The locations of the measurement devices are
illustrated in Figure 13.

Figure 14 reports the comparison between the tidal current velocities predicted by
the software TELEMAC in the location of Figure 13 (highlighted by the red circle) and the
ADPC measurements (black lines) related to the period between 16 September 2001 and
20 September 2001. The software output was obtained by changing the friction coefficient
of the seabed from 0.005 to 0.086 (green, red, and blue lines).
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—Figure 13. Pentland Firth and Orkney Waters in the United Kingdom—domain, bathymetry and ADPC measurements
devices locations [40].

   



 


















Figure 14. Tidal current prediction versus ADCP measurements for different depths measurements and for different seabed
friction coefficients Cd [40].
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3.5.2. Influence of the Coastal Boundary Layer and Deepness of the Seabed on the Tidal
Current Velocities

In some cases, when the flow is unaffected by macro vortex areas or recirculation,
tidal velocities can be expressed by appropriate coefficients [41,42], depending somehow
on the harmonic constituents, so that it is possible to use a harmonic series for foreseeing
their trend, as it follows:

V(t) = Am + ∑
i

Ai sin(ωit + ϕi) (36)

The previous formulation, which is related to a specific position, is not easy to model
and it requires measurements support. In addition, these velocities occur at the sea surface;
a correction to the peak value Vo is needed if the depth influence is considered [12,43]:

V(z) = Vo

(

zo−z

βzo

)
1
α

(37)

In the above equation, V(z) is the velocity at the depth z, and Vo is the velocity at the
depth (zo) of reference; z = 0 refers to the seabed position.

In proximity of the mainland, it is well known that the coastal boundary layer affects
the values of the tidal current velocities. This dependence is very hard to find. A simple
parabolic law estimating the reduction of these velocities (Vb) at a distance h from the coast
inner the boundary layer can be applied:

Vb = −Vo

(

h

hlim

)2

+ 2Vo
h

hlim
(38)

However, the previous equation is exploitable only if the thickness of the boundary
layer hlim is found [44].

4. Conclusions

This paper attempted to provide valid support and a set of tools for quickly estimating
the trend of the tides and of the tidal currents. This knowledge is fundamental for assessing
the feasibility of a marine plant able to harness this source of renewable energy. It is
important to understand that the tides offer a certain amount of gravitational energy, while
the tidal currents essentially carry kinetic energy. The tides are generated from the mutual
gravitational influence of the sun, the moon, and the Earth, and are characterized by a
periodic rise and fall of the sea level.

The tidal currents originate from these differences in height, whenever the land
conformation allows water flow in a channel, in a strait, or in a throat. The difference in the
sea level between the ends of a channel, induced by tidal oscillations, will determine the
variation in the flow rate through the channel. The predictability of the distribution of water
velocity density and energy supply for tidal applications, combined with the cross-sectional
area and depth, makes it possible to determine the possible output of energy.

A significant amount of information is easily accessible on the web and it is possible to
reconstruct the tides trend by means of harmonic Fourier series, whose main constituents
depend on the geographic coordinates.

The simplest way to exploit the tides is the building of a barrage for accumulating
water masses at high level to feed hydraulic turbines. However, the placement of a barrage,
for example in an estuary, has a considerable influence on the water and the environment
within the created basin. Many governments have been hesitant in recent times to give
permission for tidal barrages. In fact, a lot of issues affecting and changing the environment
equilibrium arise, as reported below.

• Turbidity: As a result of smaller amounts of water being transferred between the
basin and the sea, turbidity (the quantity of matter suspended in the water) decreases.
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This allows light from the sun to further reach the water, enhancing phytoplankton
conditions. The modifications spread the food chain, causing the environment to
change in general.

• Salinity: The average salinity within the basin decreases as a result of less water
exchange with the sea, also affecting the ecosystem. “Tidal Lagoons” do not suffer
from this problem.

• Sediment movements: Estuaries also have high volumes of sediments, from the rivers
to the sea, that move through them. Sediment deposition within the barrage may
result from the introduction of a barrage into an estuary, affecting the environment
and also the activity of the barrage.

However, many places around the world offer marine energy resources in form of
tidal currents. Tidal currents generate from tides and they are characterized by water
flows bringing large amounts of kinetic energy to apply directly on marine turbines. The
installations exploiting tidal currents are less problematic and the environmental issues are
more manageable. Unfortunately, differently from tides, is very hard to foresee the trend of
tidal currents, that being the essential aspect for assessing the feasibility of the power plant.

In this paper, many cases were faced by contemplating more approaches, from the
easiest to the most complex. The objective was to provide some formulas predicting the
trend of the tidal currents for rapid assessment of energy production. In some cases, simple
configurations, like channels or channels connected whit a bay, can be approached with
simple formulas, derived from the trend of the tides.

In the other cases, when the land conformation is very complex, 2D or 3D ap-
proaches are needed. Supporting these computations available online software like
TOPEX/Poseidon TPXO, or TELEMAC or THETIS, or POM, are able to predict the trend
of the tidal current. However, it is necessary to provide accurate information about the
bathymetry of the site.
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Abstract: The estimation of the solar resource on certain surfaces of the planet is a key factor in
deciding where to establish solar energy collection systems. This research uses a mathematical model
based on easy-access geographic and meteorological information to calculate total solar radiation at
ground surface. This information is used to create a GIS analysis of the State of Nuevo León in Mexico
and identify solar energy opportunities in the territory. The analyzed area was divided into a grid and
the coordinates of each corner are used to feed the mathematical model. The obtained results were
validated with statistical analyses and satellite-based estimations from the National Aeronautics and
Space Administration (NASA). The applied approach and the results may be replicated to estimate
solar radiation in other regions of the planet without requiring readings from on-site meteorological
stations and therefore reducing the cost of decision-making regarding where to place the solar energy
collection equipment.

Keywords: total solar irradiation; GIS analysis; mathematical model; grid map design; statistical
analysis; sustainable urban planning

1. Introduction

Solar energy is one of the most popular sources of renewable energy around the world.
Compared to other forms of energy supplies, such as fossil fuels, producing energy based on
solar resources reduces carbon dioxide emissions. This fact promotes more energy supply
diversification and as a result a regional energy independence for difficult access regions
from the electric grid. Moreover, according to the International Energy Agency (IEA),
solar power may become the World’s leading energy source by 2050. This phenomenon
is rapidly advancing towards the goal, e.g., solar energy accounted for about one-quarter
of all new energy production installations in the first half of 2017 in the United States,
which represents almost 1.6 million solar installations in total for the whole country [1]. An
important aspect to consider, as photovoltaic (PV) systems increase, is the amount of land
surface used to place the system that collect the solar resource. It is necessary to consider
soil consumption, electricity consumption, and renewable electricity production, as well
as their relationships and possible policies that will allow the adequate development of
large-scale use of solar resource collection systems [2].

Various approaches to estimate solar irradiation have been applied globally. Regard-
ing the task of measuring solar irradiation, it is well known that the best solution is to have
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meteorological stations that directly measure the total amount of solar radiation using spe-
cialized sensors such as pyranometers and pyrheliometers, but the installation, operation,
and maintenance of the stations can be expensive. On the other hand, the estimation of
solar irradiation is regularly realized by means of satellite readings [3] and mathematical
models [4]. These approaches may have a larger effective area range of measurement.
When comparing the cost between measuring and estimating, the first approach is more
expensive, and it requires investment in equipment and its installation and maintenance;
by contrast, accurate estimation models require considering many variables such as cloud
cover and solar zenith angle [5]. In this context, the present investigation focuses on the
estimation of solar irradiation using mathematical models.

Mathematical models have been reported for several years to estimate total solar
irradiation. A very complete work applied 294 different empirical-based mathematical
models to estimate the solar resource in regions of China. In the study, the models were
grouped according to their characteristics and two statistics were applied (root mean
square error (RMSE) and relative root mean square error (RRMSE)) to validate them [4].
Another reported result was performed via empirical models and considered the sky-
diffuse radiation [6]. Research efforts have also focused on reviewing the accuracy of
the models, and a study has analyzed twelve empirically based models and compared
them with models based on machine learning, the latter being the ones with the best
performance. These results have shown significant opportunity areas in some empirical
models [7]. This opens the possibility to other radiation estimation approaches such as deep
learning, which has been applied to a multi-layer perceptron (MLPs) method to estimate
horizontal daily solar irradiation [8], bayesian model averaging and machine learning [9],
or more theory-oriented control systems like Kalman filters [10].

An important consideration when working with mathematical models that estimate
solar resources is their validation. For example, Kausika et al. [11] report a calibration
and validation of a model, and for this they use experimental data from at least two
meteorological stations. In addition, disadvantages are presented such as underestimation
and overestimation of solar insolation.

Among research efforts dealing with solar energy, some of them deal with the growth
and application of solar energy in Mexico. Reports include an analysis of different scenarios
regarding the possible integration of solar systems in Mexico taking into account climate
policies, where it was found that the cost-optimal share of solar energy in electricity and
transportation would be 75% and 90%, respectively [12]. Other research reports a review of
the solar resource assessment in Mexico, where the differences in the estimated radiation
between the different maps reported for Mexico stand out; differences that can be of the
order of 40% between the reported values. When comparing these results with estimates
that make use of satellite measurements, which are more precise, an important drawback
is observed in the work of estimating solar irradiation in Mexico [13]. A more recent
investigation estimated solar irradiation, along with the assessment of available solar
resources based on meteorological and geographical data in the northwestern state of
Sonora [14].

The work reported by Enríquez-Velásquez et al. [14] is based on the mathematical
model developed by Obukhov et al. [15] and adapted for its use in a northern state
of Mexico. The estimates were validated with data from the National Aeronautics and
Space Administration (NASA) [16], which are satellite readings, and the Mexican National
Weather Service (Servicio Metereológico Nacional, SMN, by its acronym in Spanish), which
are meteorological stations [17]. The results in [14] were close to those obtained by NASA
and SMN. As part of the method, the area was divided into the 72 counties of Sonora State,
which have very irregular shapes, and more research is required on this regard.
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The SMN has meteorological stations all around the country and they have the ca-
pability to measure solar radiation. For the measurement, the stations are equipped with
pyranometers and pyrheliometers. Besides, there are two types of stations in the SMN net-
work: automatic meteorological stations (EMAS by its acronym in Spanish) and synoptic
meteorological stations (ESMAS, by its acronym in Spanish). Although there are slight
differences between the variables they measure, both have solar radiation sensors (which
is important to us in this study). Moreover, all stations provide measurements that are
considered valid within a radius of 5 km [17].

Even though Mexico has weather stations to measure solar radiation, the problem
to develop estimation models arises from the limited number of meteorological locations,
which is around 270 (190 EMAS and 80 ESMAS) [17]; therefore, there is a lack of meteoro-
logical stations, and this is more evident in the north of the country, where the case study
of this work is located. In addition, having stations implies operation and maintenance
costs, which is also a constraint. Moreover, it has been reported that a significant number
of stations may have erroneous measurements or that they have not met certain validation
criteria [18]. Another study reported that only 33% of the stations in the state of Sonora
(northwest of Mexico) were reliable, which is due to, among other causes, the possible
deficient maintenance of the stations. This generated loss or inconsistency of data, which
prevented reliable readings [14].

One of the states with the most industrial development in Mexico is Nuevo León
where solar energy harvesting could be a relevant option to reduce the operating costs
of various industrial processes, but also of consumption in houses/rooms. Although the
area of this state is 64,924 km2, there are only four meteorological stations to measure solar
radiation [17]. This situation poses a problem and in turn a motivation for the present study.

Given the previous context and scenario, this research focuses on the estimation of
solar irradiation using the mathematical approach reported in [14]; however, it applies a
different approach. We divide the area by means of a discrete grid, so it covers the entire
area of the state at evenly spaced points. As a reference, the coordinates (latitude and
longitude) of each square’s corner are taken instead of the midpoints of irregular surfaces.
The case study considered is the state of Nuevo León in the northeast of Mexico. Results
are validated by means of statistical methods and are compared against NASA estimations.
No field stations are required, so it gives an advantage over direct measurements in the
field, which implies the use of technological equipment.

The manuscript is organized as follows. Section 1 includes the context, relevance,
previous work, motivation, and contribution of this research. Section 2 explains the
database used for the study. Section 3 develops the applied methodology, whereas Section 4
presents the findings and discussions. The article closes with a section on conclusions and
future work.

2. Data Sources

This section describes The Power Project database of the National Aeronautics and
Space Administration (NASA) through the Surface Meteorology and Solar Energy (SSE),
which is available to the public through an internet portal [16]. The current research
work utilizes the resources in The Power Project to establish a proper estimation of solar
resource for the state of Nuevo León located in the northeast region of Mexico highlighted
in Figure 1.
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Figure 1. The state of Nuevo León is highlighted for reference. Geographical places of interest are
named for reference as well. The image was taken and modified from the work in [19].

It is intended that this research will allow evaluating the viability of implementation of
solar projects in this zone, as well as establishing methods of estimating the solar irradiation
in other areas using the same program. This data source was selected due to its reliability
and access to data worldwide for the parameters required for the calculations in the model
utilized in this research and as a reference for comparison against data obtained from
the model during the validation for the analyzed geographic zone. In addition, this data
source contains a collection of around 30 years of several meteorological parameters based
on satellite observation. This provides a solid comparison reference for validation of
the model.

Inside the main page of The Power Project, select the option POWER DATA ACCESS
VIEWER, and a map will be displayed. In the floating menu, select the Climatology option
and enter the desired latitude and longitude, along with the parameters of interest. With
this, the database provides the required data [16]. For the current research, clearness index
(kt) and surface albedo (ρ) were obtained from the database for the calculations as well as
all sky insolation incident on a horizontal surface (G) for validation of the model.

Note that other data sources such as meteorological stations from the Mexican na-
tional meteorological system (SMN) were considered but discarded due to the lack of
stations in the state of Nuevo León (only three stations), which was considered not enough
for comparison.

3. Methodology

This section presents the research methodology that was followed to obtain a GIS
analysis, which reflects the yearly behavior of the total insolation as well as the maximum
and minimum temperatures in the state of Nuevo León, Mexico. Besides, all the process
related to the validation of the model employed and the design of a representative grid are
illustrated for the state of Nuevo León. The applied methodology is presented in Figure 2.
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Figure 2. Applied methodology.

3.1. Mathematical Model

The work reported by Enríquez-Velásquez et al. [14] was based on the mathematical
model developed by Obukhov et al. [15] for high latitudes (55◦ N). This model was applied
in [14] for the calculation and evaluation of the solar resource in the Northwestern Mexican
state of Sonora at latitudes between 26◦ and 32◦ N. The applied mathematical formula for
the estimation of total solar irradiation arriving at an inclined surface (G) is as follows:

G = [GD(
cosθ

cosθz
)] + GDH [Ai(

cosθ

cosθz
) + [(1 − Ai)(

1 + cosβ

2
)] + [(GH)(ρ)(

1 − cosβ

2
)] (1)

Equation (1) presents the calculation of the total solar irradiation on a surface orien-
tated at any angle, it adds the direct, diffuse, and reflective components of solar radiation
for calculation. The model includes the tilt angle of the receiving surface (β), the surface
albedo (ρ), the incidence angle (θ), the solar zenith angle (θz), and the anisotropic index (Ai).
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Other parameters such as the diffusion index KD were calculated using the conditional
table reported in [14]. For further information on the calculation of each variable, the same
document can be consulted.

Table 1 shows the day taken to represent a reliable average representation of solar
irradiation for each month. In addition, the model was used to calculate the average
monthly solar irradiance on a horizontal surface throughout the year. The above-mentioned
model was written in MATLAB and was instructed to read the input data from an Excel file
containing the pertaining data of all the chosen geographical points of interest, and once
every calculation was made, it outputted the resulting data in a second Excel file for further
processing of the data. Furthermore, additional input data to run the mathematical model
were obtained with the use of Python code requesting mass data from NASA’s POWER
LARC API. These data were produced as several CSV files that were later merged using
Excel data manipulation tools for them to be readable by the model.

Table 1. Average representative day for each month.

Month Representative Day Day Number of the Year

January 17 17
February 16 47

March 16 75
April 15 105
May 15 135
June 11 162
July 17 198

August 16 228
September 15 258

October 15 288
November 14 318
December 10 344

In this research, 80 geographic coordinates were fed to the program at once. The
program calculations took around 90 min to complete for the millions of required cal-
culations for several geographical points. This represents a significant advantage over
calculating each data point manually or retrieving all the several results and parameters
from a database. The mathematical model presents a clear advantage of calculating several
geographical data points at once and generates an Excel file with the results in an acceptable
period of time.

3.2. Statistical Parameters

To validate the model, pertinent statistical methods were used to ensure data accuracy.
The data generated using the herein mathematical model were compared against the
data provided by NASA SSE project [16], specifically for “Total radiation arriving at a
horizontal surface” parameter G. The eight statistical methods employed are outlined in
Equations (2)–(9), where Xi stands for each G-value calculated by the mathematical model,
Yi is the G-value provided by NASA’s SSE database, n is the number of months (sample
size), and i represents the month number analyzed.

MAE—Mean absolute error

MAE =
1
n

n

∑
i=1

|Xi − Yi| (2)

In Equation (2), mean absolute error (MAE) represents the average of the error’s
magnitude. It is desired for this value to be as close to zero as possible. MAE calculates a
ratio relating the number of samples n to the magnitude of the error vector [20].
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MBE—Mean bias error

MBE =
1
n

n

∑
i=1

(Xi − Yi) (3)

In Equation (3), mean bias error (MBE) calculates the bias of the model results. For
this value, the closer it is to zero, the better [21].

RMSE—Root mean square error

RMSE =

√

1
n

n

∑
i=1

(Xi − Yi)2 (4)

In Equation (4), root mean square error (RMSE) calculates the standard deviation of
the calculated data [22]. It is desired to be as close to zero as possible.

MPE—Mean percentage error

MPE =
100
n

n

∑
i=1

(
Xi − Yi

Yi
) (5)

In Equation (5), mean percentage error (MPE) calculates the percentage of the error
in the model calculated data, it is used to describe the performance of the error. A ±10%
value is allowable [23].

RPE—Relative percentage error

RPE = (
Xi − Yi

Yi
)× 100 (6)

Equation (6) calculated the relative percentage error (RPE) that represents the percent-
age of error for each of monthly results. A ±10% value is permissible [24].

r—Correlation coefficient

r =

n

∑
i=1

(Xi − X̄)(Yi − Ȳ)

√

n

∑
i=1

(Xi − X̄)2
n

∑
i=1

(Yi − Ȳ)2

(7)

In Equation (7), r (correlation coefficient) indicates the correlation between two dif-
ferent variables in a range of ±1, where +1 is a positive linear correlation, −1 represents
a negative linear correlation, and 0 stands for no correlation at all. Correlation vales are
desired to be as close to 1 as possible. Moreover, X̄ represents the annual average G-value
calculated using the mathematical model, and Ȳ is the annual average G-value provided
by the NASA SSE database [25].

R2—Coefficient of determination

R2 = 1 − (

n

∑
i=1

(Yi − Xi)
2

n

∑
i=1

(Yi − Ȳ)2
) (8)

In Equation (8), the coefficient of determination, R2, determines the percentage of
variability between the results of the model and data set used, particularly in calculating
the adequacy of the model to explain the variations represented with a value from 0 to 1. It
is desired for R2 to be as close to 1 as possible [26].

t—Student distribution test

t =

√

(d f )(MBE)2

(RMSE)2 − (MBE)2 (9)
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As presented in Equation (9), the t—Student distribution test is commonly used to
relate the significance of two independent data sets, and it is specifically useful when
dealing with a small sample size (small value of n, in this case, 12 months). This statistical
test shows if a value shows statistical significance according to selected metrics. For this
test, a critical value of 4.025 was chosen to reflect a confidence level of 99% and eleven
degrees-of-freedom. In the formula, MBE represents the Mean bias error, RMSE represents
the Root mean square error, df stands for degrees of freedom, and n is the number of
months calculated. To prove statistical significance, the calculated t-value must be less than
the chosen critical value [27].

3.3. Model Validation

The NASA SSE data were used to validate the model’s results for each of the five
chosen locations by evaluating that these results coincide with, or approximate, the data
obtained by NASA SSE. Statistical models were calculated to analyze the performance of
the model compared to the data source. The model was validated using these strategic
points scattered at the edges of the Mexican state of Nuevo León under the premise of
having an overview of the model behavior under the most extreme parameter conditions
available in this territory.

The five points were chosen to represent the cardinal points in the state. They were
placed as follows: Monterrey city to the west, China represents a point in the center of the
state, Osca town to the East, Doctor Arroyo to the South, and Anáhuac to the North. This
deployment allowed more diverse data to be used for validation of the model, something
that would not have been possible if Mexico’s Meteorological Service’s data had been used
instead. The latitudes and longitudes of the five locations are listed in Table 2.

Table 2. Latitude and longitude coordinates for all five locations in the state of Nuevo León chosen
as reference points to validate the mathematical model with NASA’s data.

Location Latitude Longitude

Monterrey 25.68651° −100.31609°
Anahuac 27.24121° −100.13339°

China 25.70341° −99.23657°
Doctor Arroyo 23.67731° −100.18279°

La Osca 25.61642° −98.65004°

The calculated validation data were processed using several statistical methods to
ensure their significance and accuracy by comparing them to NASA’s long-term acquired
data. This comparison was further explored by plotting them side-by-side using MAT-
LAB functions.

3.4. Area Justification

To create a visual representation of the temperatures and solar radiation in the delim-
ited surface, a grid was created to generate heat maps for the whole state. The Tech District,
the area around the Monterrey tech campus, was selected as the origin point of this grid,
i.e., the rounded red-black point to the right of Z0 as shown in Figure 3. This is because
the location is of special interest for future research on solar energy, and a meteorological
facility is in the process to be installed in this area. The grid was generated from this point
using axes parallel to the equator and the Greenwich Meridian, respectively. Each grid cell
is composed of a 30 km-sided square, using the vertices of each cell as evaluation points for
the desired data (maximum temperature, minimum temperature, or solar irradiation); thus,
80 of these points were produced around the state of Nuevo León. The 30 km × 30 km grid
resolution was used to prevent retrieving too many data points, but at the same time pro-
viding acceptable results (supported by the statistical validation and comparison against
NASA SEE database). A higher resolution (with lower length for each cell side) is not
convenient as, if vertices are too close to each other, solar radiation will vary little between
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them. Figures 3 and 4 illustrate the work done in Google Earth software to distribute the
80 points and to draw the grid to cover all the surface of the state.

Figure 3. Geographical points (80 in total) selected for mathematical model calculation. The rounded
red-black point represents the grid’s origin.

Figure 4. The resulting grid strategically dividing the state of Nuevo León. The lines are parallel to
the equator and Greenwich Meridian.

3.5. Heat Maps

GIS maps are used to determine the amount of solar resource on a certain surface. The
total solar radiation was calculated for each point on the statewide grid for each month of
the year. Average maximum and minimum monthly temperatures were taken from the
NASA SSE data source for each point as a comparison reference. The model was run in
these chosen locations in the grid. The results were then plotted in several heatmaps to
provide an overview of the annual variation in solar irradiance arriving at a horizontal
surface throughout the state’s territory.
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The heatmaps were coded in Python with support of Pandas and Plotly libraries. The
Pandas library was used for data manipulation. The Plotly library was employed to fetch
maps and generate a heatmap on top of it, adding its corresponded legends and color bar.
At last, Kaleido library was employed to generate a resulting vectorized image for further
enhancement and postprocessing.

4. Results and Discussion

This section presents the results obtained in the research and discuss the findings to
develop an identification of opportunities and potential for solar energy in the state of
Nuevo León based on the results.

4.1. Model Validation Results

The mathematical model was analyzed for the five locations presented in Section 3,
which were selected in the state of Nuevo León to represent its surface. These points
were selected for each cardinal and one in the middle of the state to ensure the maximum
coverage possible. Based on these points, a validation comparing the model against the
NASA SSE database using the statistical parameters presented in Section 3 was realized.

The results obtained from the above-mentioned analysis were satisfactory for all the
cases and just small discrepancies were observed. Noticed values for MAE, MBE, and
RMSE were close to zero for almost all cases, which means minimum errors presented
between the model and the reference. Slightly higher values of these parameters were
shown in the cases of China and Anahuac, but they remain acceptable.

For MPE and RPE tests values close to zero percent were obtained for all localities,
which means all cases were on an acceptable range. It was found positive linear correlation
for all cases using the parameter “r”. Furthermore, for R2 tests, the best performance was
presented in Dr. Arroyo and La Osca, followed by Monterrey and Anahuac, a smaller
performance but still acceptable was observed in China.

The t-distribution test illustrates four of the analyzed points as statistically significant,
the only exception was Anahuac which remained a little high respect to the critical point
selected. Based on the realized statistical results, it was observed that the model is a very
close approximation to the values obtained from the NASA SSE database. This proves
that the model is a valid estimation of solar irradiation in the geographical coordinates
of the state of Nuevo León. Tables 3 and 4 provide all the monthly calculations for solar
irradiation obtained from the model and the reference from NASA SSE. Additionally, it
shows the values obtained for all the statistical metrics analyzed. To review the accuracy of
results, refer to the statistical parameters in Section 3.2.
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Table 3. Monthly comparison of G from the model against the G provided by NASA SSE database for the five target points.

Municipality Lat (°) Long (°) Parameter January February March April May June July August September October November December Annual
Average

Monterrey 25.68651 −100.31609 G_MODEL 3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.9 5.04 4.62 4.15 3.59 5.17

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

RPE −1.0444 0.6508 −1.5707 0.6734 0.0000 1.4540 0.4950 2.7875 −0.1980 −0.8584 −1.1905 −1.3736

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

Anáhuac 27.24121 −100.13339 G_MODEL 3.34 4.14 5.2 5.75 6.17 6.43 6.45 6.1 5.17 4.36 3.74 3.14 5

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

RPE −0.2985 2.2222 0.3861 1.7699 1.3136 1.7405 0.3110 2.8668 1.9724 0.4608 1.9074 0.0000

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

Dr. Arroyo 23.67731 −100.18279 G_MODEL 4.11 4.95 6.03 6.33 6.68 6.56 6.27 6.12 5.3 5 4.47 3.97 5.48

G_NASA 4.15 4.98 6.03 6.3 6.57 6.51 6.26 6.07 5.3 5 4.58 4.01 5.48

RPE -0.9639 −0.6024 0.0000 0.4762 1.6743 0.7680 0.1597 0.8237 0.0000 0.0000 −2.4017 −0.9975

KT 0.6 0.62 0.65 0.61 0.61 0.59 0.57 0.58 0.55 0.6 0.63 0.61 0.6

SRF_ALB 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.16 0.16 0.17 0.17

China 25.70341 −99.23657 G_MODEL 3.4 4.17 5.19 5.57 5.94 6.39 6.42 6.22 5.13 4.38 3.74 3.21 4.98

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

RPE 0.0000 0.9685 −0.7648 0.7233 2.2375 2.5682 0.7849 2.9801 1.7857 −0.4545 −1.5789 −1.8349

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

Osca 25.61642 −98.65004 G_MODEL 3.21 3.95 5.01 5.67 6.16 6.61 6.64 6.22 5.23 4.55 3.68 3.1 5

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

RPE −0.3106 0.0000 0.0000 1.7953 0.9836 0.6088 −0.1504 1.1382 −0.1908 −1.5152 −1.6043 −1.5873

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16
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Table 4. Statistical parameters to measure quality of estimated G against G from NASA SSE database for the five target points.

Municipality Lat (°) Long (°) MAE MBE RMSE MPE r R2 t

Monterrey 25.68651 −100.31609 0.0058 0.0058 0.0668 −0.0146 0.9982 0.9946 0.2909

Anáhuac 27.24121 −100.13339 0.0642 0.0642 0.0825 1.2210 0.9993 0.9947 4.1025

Dr. Arroyo 23.67731 −100.18279 0.0025 0.0025 0.0535 −0.0886 0.9994 0.9964 0.1553

China 25.70341 −99.23657 0.0425 0.0425 0.0903 0.6179 0.9989 0.9928 1.7686

Osca 25.61642 −98.65004 0.0050 0.0050 0.0512 −0.0694 0.9995 0.9982 0.3257

Figures 5–9 illustrate the behavior of the model respect to the values from the NASA
SSE database. The values shown in Figures 5–9 are in kWh/m2 for solar irradiation. It can
be observed that for La Osca, the model and the NASA SSE values were nearly identical
for all months, then for Dr. Arroyo and Monterrey small discrepancies were observed in
certain months. Finally, the biggest differences were found in Anáhuac and China for the
summer months, but these differences remain small.

Figure 5. Values obtained for La Osca from mathematical model and NASA SSE.

208



Energies 2021, 14, 6427

Figure 6. Values obtained for Doctor Arroyo from mathematical model and NASA SSE.

Figure 7. Values obtained for Monterrey from mathematical model and NASA SSE.
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Figure 8. Values obtained for Anáhuac from mathematical model and NASA SSE.

Figure 9. Values obtained for China from mathematical model and NASA SSE.

Based on the validation realized and results in Figures 5–9, it is shown that the model
proposed is a close estimation of solar resource in the region for latitudes from 23◦ to 28◦

and longitudes from −98◦ to −101◦.

4.2. GIS Analysis Results

From the GIS analysis applied to the grid described in Section 3 for strategical points
to calculate solar irradiation in Nuevo León, it was found that the minimum value during
the year for all the state surface was 2.97 kWh/m2 and reached a maximum value of
6.68 kWh/m2 in the analysis of the points studied. This illustrates the availability of solar
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resource in the states and its evolution throughout the year. As a result, for the 12 months
of the year, the GIS of average total solar irradiation at a horizontal surface, the average of
the maximum temperatures, and the average of the minimum temperatures are presented
in Figures 10–21. These GIS were generated from the computations in Appendix A.

Figure 10. GIS analysis for the month of January. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 11. GIS analysis for the month of February. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 12. GIS analysis for the month of March. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 13. GIS analysis for the month of April. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).
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Figure 14. GIS analysis for the month of May. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 15. GIS analysis for the month of June. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 16. GIS analysis for the month of July. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 17. GIS analysis for the month of August. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 18. GIS analysis for the month of September. (left) Average solar irradiation (kWh/m2),
(center) Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

212



Energies 2021, 14, 6427

Figure 19. GIS analysis for the month of October. (left) Average solar irradiation (kWh/m2), (center)
Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 20. GIS analysis for the month of November. (left) Average solar irradiation (kWh/m2),
(center) Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

Figure 21. GIS analysis for the month of December. (left) Average solar irradiation (kWh/m2),
(center) Maximum average temperature (◦C), and (right) Minimum average temperature (◦C).

The identified zone with the most constant solar irradiation levels during the year
was south-west of the state, except for the months of June–August, where solar irradiation
passes to be almost constant in the whole state but with slightly higher values in the north
and east of the state in June and July. The average maximum and minimum temperatures
for the state fluctuate in a range from 1.55 ◦C to 43.84 ◦C during the year for all the
points analyzed.

The highest temperatures were found in the northern and eastern regions, whereas the
lowest are in the south and west. On the other hand, the state contains mountainous terrain
in its southern and western areas, passing to plains in its northern and eastern regions. All
the previous factors must be considered in planning PV projects. Based on the previous
factors, it was found that the west region where the capital city of Monterrey is located
appears promising on average throughout the year for values of total solar irradiance.
However, the effect of low and high temperatures on photovoltaic systems must be taken
into account to realize the proper design for solar projects considering the effects of extreme
temperatures on solar PV panels (current and voltage). An advantage of the state in terms
of minimum temperatures is that there are no sub-zero temperatures, which facilitates the
design and selection of components of a photovoltaic system, by not leading to such large
variations in voltage due to temperature change.

A factor to consider for the west and south zones of the state is that the terrain is
mountainous, which makes it difficult to implement large-scale photovoltaic projects due to
space and suitable terrain issues. This is because of the space required to avoid shadowing
and the right distribution of solar panels in the terrain; the bigger the project, the most
terrain it will require. On the other hand, north and east regions are defined by plain terrain,
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which allows development of large-scale PV projects. Here, the main issue is maximum
temperatures in summer, which reduce efficiency in the energy conversion from PV panels,
so measures to counteract these effects must be taken in the design.

The GIS analysis applied to solar irradiation proves itself a useful tool that allows
easy identification of opportunity areas for photovoltaic systems in the state of Nuevo
León. The main advantage is that all information required for decision-making is shown,
comparing parameters which affect PV performance and planning, such as temperatures
and geographical terrain. It is important to consider the proper resolution for the analyzed
area. As explained in Section 3, a distribution of points on a grid of 30 × 30 km was defined.

Compared against the approach applied by Enríquez-Velásquez et al. [14], the ap-
proach herein has the improvement of using a grid to divide the area of interest, instead
of dividing the surface into municipalities, which have irregular shapes, as it was done
in the state of Sonora, Mexico. The grid concept is versatile and allows to estimate, in a
more uniform way, the solar resource of any area, taking a given latitude and longitude
as the origin point of the grid. It should also be considered that the mathematical model
will need to be validated if it is going to be applied to other latitudes and longitudes as
suggested by Kausika et al. [11].

5. Conclusions and Future Work

Based on the findings previously described in Section 4, it is concluded that the
mathematical model utilized in this research work was successful for computing total solar
irradiation and demonstrated high accuracy values for the state of Nuevo León in México.
This accuracy was proved using statistical metrics comparing the model against the NASA
SSE database as reference. The validation of the model was tested for the geographic zone
between latitudes from 28◦ to 23◦ N and longitudes from 98◦ to 101◦ W.

Based on a scrutiny of the state of Nuevo León using GIS analysis, the solar irradiation
calculated by the model was compared against maximum and minimum temperatures, and
opportunities for local photovoltaic (PV) development were identified. The GIS analysis
was realized over a grid of 30 × 30 km, which covers the totality of the state surface. This
approach allowed a clear visualization of the solar irradiation, without rejecting data due to
long distances between the points of the grid proposed. It was concluded that solar irradia-
tion in the state of Nuevo León ranges from 2.98 kWh/m2 to 6.68 kWh/m2, as minimum
and maximum ranges. This result demonstrated the high potential of solar energy projects
in the region. The comparison against extreme temperatures and geographical terrain
allowed to point certain areas in the region, which are more suitable for PV development.

It was also inferred that the most suitable zones for solar collecting systems may be
located in the southwest, which presented constant solar irradiation values throughout the
year; however, these zones are mountainous, so it should be considered in the design of
solar farms due to space requirements to avoid shadowing among solar panels. Note that
the most industrialized zone of the state is located in the Monterrey metropolitan area, and
it presents constant solar irradiation throughout the year, which represents great potential
for the sustainable development of the industrial base in the city.

This would result in greatly reducing the carbon emissions of the state, which is one
of the most industrialized in Mexico. As a result, this region would contribute towards
the accomplishment of Mexico’s international agreements in relation to the reduction
of its carbon footprint and commitments such as the Paris Agreement. This would be
reflected in urbanization and sustainable development in electricity generation for the city
of Monterrey. The mathematical model used in this research is shown to be an easy and
accurate tool to estimate solar irradiation in the region, with the ease of not depending on
field references for the calculations, and only requires meteorological data and geographic
coordinates easily accessible online.

This represents an economical alternative compared to meteorological stations that
require constant maintenance and cost of implementation. In addition to these factors, it
should be considered that a large number of meteorological stations must be available to
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cover the entire area of the state for the same resolution obtained by the model. Considering
all the previous factors, it is concluded that the proposed model and GIS analysis offer a
great opportunity for solar energy planning in the public and private sectors in the state,
and to used these GIS methods as decision-making tools and reference for the implementa-
tion of solar projects in the region. Furthermore, a tool for a possible cooperation with the
United States regarding sustainable development of both nations.

As future work, the application of the model is proposed by implementing different
inclination angles for the receiving surface, as well as surface azimuth to simulate the daily
tracking of the sun throughout the year. Besides, more databases for solar resource estima-
tion may be employed to reinforce the validation of our results. This would be the basis for
developing a solar monitoring system that would increase the efficiency of solar collection
in PV systems within the region, and thus, increasing their profitability and production of
electrical energy. Additionally, solar tracking could be used to design arrays of heliostats to
focus sunlight at a central tower to heat liquids and generate steam for electric generation
using solar thermal technologies. These projects are focused on sustainable urban and
industrial development facing the current challenges of climate change.
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Appendix A

Solar Irradiance Parameters for the 80 Selected Points in the State of Nuevo León

Table A1. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

D. Tec 25.6544◦ −100.2871◦ G_Model 3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.9 5.04 4.62 4.15 3.59 5.17

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 25.32 29.09 33.96 38.27 40.54 40.39 39.07 38.73 34.64 32.16 28.52 25.17 33.82

TS_MIN 5.07 6.96 9.97 14.2 17.87 19.46 19.15 19.31 17.54 13.68 9.16 5.8 13.18

A1 25.9252◦ −100.2871◦ G_Model 3.77 4.62 5.63 5.98 6.27 6.29 6.09 5.9 5.03 4.61 4.13 3.56 5.16

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 25.32 29.09 33.96 38.27 40.54 40.39 39.07 38.73 34.64 32.16 28.52 25.17 33.82

TS_MIN 5.07 6.96 9.97 14.2 17.87 19.46 19.15 19.31 17.54 13.68 9.16 5.8 13.18

A2 26.196◦ −100.2871◦ G_Model 3.49 4.29 5.34 5.77 6.17 6.41 6.21 5.9 5.02 4.43 3.83 3.36 5.02

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.18 29.31 34.63 39.31 41.99 42.29 41.06 40.87 36.6 33.8 29.16 25.04 34.94

TS_MIN 5.7 7.82 11.2 15.55 19.62 21.64 21.45 21.67 19.58 15.38 10.3 6.42 14.69

A3 26.4668◦ −100.2871◦ G_Model 3.46 4.27 5.33 5.76 6.17 6.41 6.22 5.9 5.01 4.41 3.81 3.33 5.01

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.18 29.31 34.63 39.31 41.99 42.29 41.06 40.87 36.6 33.8 29.16 25.04 34.94

TS_MIN 5.7 7.82 11.2 15.55 19.62 21.64 21.45 21.67 19.58 15.38 10.3 6.42 14.69
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Table A1. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

A4 26.7375◦ −100.2871◦ G_Model 3.44 4.25 5.31 5.76 6.17 6.42 6.22 5.89 5 4.39 3.79 3.31 5

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93
SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56
TS_MAX 24.9 29.23 34.88 39.64 42.35 43.17 42.17 42.13 37.76 34.73 29.43 24.72 35.43

TS_MIN 5.71 7.94 11.58 16 20.26 22.64 22.6 22.91 20.53 16.05 10.67 6.43 15.28

A5 27.0083◦ −100.2871◦ G_Model 3.35 4.15 5.21 5.75 6.17 6.43 6.45 6.1 5.18 4.37 3.76 3.16 5.01

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

TS_MAX 24.65 29.17 34.91 39.61 42.25 43.65 42.9 43.08 38.64 35.24 29.54 24.45 35.67

TS_MIN 5.92 8.28 12.13 16.6 20.96 23.63 23.74 24.14 21.43 16.76 11.16 6.67 15.95

A6 27.279◦ −100.2871◦ G_Model 3.33 4.13 5.19 5.75 6.18 6.43 6.45 6.1 5.17 4.35 3.74 3.14 5

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

TS_MAX 24.65 29.17 34.91 39.61 42.25 43.65 42.9 43.08 38.64 35.24 29.54 24.45 35.67

TS_MIN 5.92 8.28 12.13 16.6 20.96 23.63 23.74 24.14 21.43 16.76 11.16 6.67 15.95

A7 27.5498◦ −100.2871◦ G_Model 3.31 4.11 5.18 5.74 6.18 6.44 6.46 6.1 5.16 4.34 3.72 3.12 4.99

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

TS_MAX 23.98 28.54 34.21 38.9 41.48 43.4 42.93 43.39 39 35.02 29 23.8 35.3

TS_MIN 5.5 7.94 11.84 16.32 20.76 23.67 23.96 24.44 21.47 16.59 10.87 6.28 15.8
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Table A2. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

A-1 25.3836◦ −100.2871◦ G_Model 3.82 4.66 5.66 5.99 6.27 6.27 6.09 5.9 5.05 4.64 4.18 3.61 5.18

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 24.46 27.81 32.26 36.09 37.9 37.3 35.92 35.48 31.95 29.91 27.08 24.33 31.71

TS_MIN 3.78 5.35 7.96 11.92 15.15 16.35 15.99 16.05 14.65 11.29 7.42 4.54 10.87

A-2 25.1128◦ −100.2871◦ G_Model 3.84 4.68 5.67 5.99 6.26 6.27 6.08 5.9 5.06 4.66 4.2 3.64 5.19

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 24.46 27.81 32.26 36.09 37.9 37.3 35.92 35.48 31.95 29.91 27.08 24.33 31.71

TS_MIN 3.78 5.35 7.96 11.92 15.15 16.35 15.99 16.05 14.65 11.29 7.42 4.54 10.87

A-3 24.842◦ −100.2871◦ G_Model 4 4.86 5.87 6.31 6.59 6.59 6.3 6.12 5.36 4.92 4.36 3.92 5.43

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.15 27.47 31.79 35.5 37.13 36.09 34.43 33.94 30.84 29.18 26.59 24.07 30.93

TS_MIN 3.21 4.62 7.02 10.74 13.7 14.72 14.26 14.23 13.07 10.1 6.6 4.01 9.69

A-4 24.5711◦ −100.2871◦ G_Model 4.03 4.88 5.89 6.31 6.58 6.59 6.29 6.12 5.37 4.94 4.39 3.94 5.44

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.15 27.47 31.79 35.5 37.13 36.09 34.43 33.94 30.84 29.18 26.59 24.07 30.93

TS_MIN 3.21 4.62 7.02 10.74 13.7 14.72 14.26 14.23 13.07 10.1 6.6 4.01 9.69

A-5 24.3003◦ −100.2871◦ G_Model 4.05 4.9 5.9 6.32 6.58 6.58 6.28 6.12 5.38 4.96 4.42 3.97 5.46

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.76 28.21 32.65 36.47 38.11 36.74 34.62 34.07 31.13 29.61 27.11 24.65 31.51

TS_MIN 3.03 4.43 6.72 10.23 13.11 14.12 13.49 13.46 12.47 9.63 6.29 3.83 9.23
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Table A2. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

A-6 24.0294◦ −100.2871◦ G_Model 4.08 4.93 5.92 6.32 6.58 6.57 6.28 6.12 5.39 4.98 4.44 4 5.47

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.76 28.21 32.65 36.47 38.11 36.74 34.62 34.07 31.13 29.61 27.11 24.65 31.51

TS_MIN 3.03 4.43 6.72 10.23 13.11 14.12 13.49 13.46 12.47 9.63 6.29 3.83 9.23

A-7 23.7586◦ −100.2871◦ G_Model 4.1 4.95 6.02 6.33 6.68 6.56 6.27 6.12 5.3 5 4.47 3.96 5.48

G_NASA 4.15 4.98 6.03 6.3 6.57 6.51 6.26 6.07 5.3 5 4.58 4.01 5.48

SRF_ALB 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.16 0.16 0.17 0.17

KT 0.6 0.62 0.65 0.61 0.61 0.59 0.57 0.58 0.55 0.6 0.63 0.61 0.6

TS_MAX 25.08 28.54 33.01 36.74 38.19 36.43 33.61 33.3 30.68 29.35 27.17 24.91 31.42

TS_MIN 3.32 4.66 6.89 10.16 13.04 14.1 13.25 13.24 12.34 9.61 6.48 4.11 9.27

A-8 23.4877◦ −100.2871◦ G_Model 4.13 4.97 6.04 6.33 6.68 6.55 6.27 6.12 5.31 5.02 4.49 3.99 5.49

G_NASA 4.15 4.98 6.03 6.3 6.57 6.51 6.26 6.07 5.3 5 4.58 4.01 5.48

SRF_ALB 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.16 0.16 0.17 0.17

KT 0.6 0.62 0.65 0.61 0.61 0.59 0.57 0.58 0.55 0.6 0.63 0.61 0.6

TS_MAX 25.97 29.48 33.99 37.58 38.5 36.09 32.61 32.65 30.51 29.45 27.64 25.65 31.68

TS_MIN 4.54 5.84 8.13 11.26 14.05 15.11 14.17 14.18 13.34 10.63 7.58 5.28 10.34

A-9 23.2168◦ −100.2871◦ G_Model 4.15 4.99 6.05 6.33 6.67 6.55 6.26 6.12 5.32 5.04 4.52 4.01 5.5

G_NASA 4.15 4.98 6.03 6.3 6.57 6.51 6.26 6.07 5.3 5 4.58 4.01 5.48

SRF_ALB 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.16 0.16 0.17 0.17

KT 0.6 0.62 0.65 0.61 0.61 0.59 0.57 0.58 0.55 0.6 0.63 0.61 0.6

TS_MAX 25.97 29.48 33.99 37.58 38.5 36.09 32.61 32.65 30.51 29.45 27.64 25.65 31.68

TS_MIN 4.54 5.84 8.13 11.26 14.05 15.11 14.17 14.18 13.34 10.63 7.58 5.28 10.34

Z0 25.6544◦ −100.5859◦ G_Model 3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.9 5.04 4.62 4.15 3.59 5.17

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 25.32 28.96 33.57 37.91 40.24 39.88 38.3 37.82 34.1 31.91 28.42 25.21 33.47

TS_MIN 3.71 5.44 8.19 12.44 15.93 17.35 17.02 17.05 15.33 11.71 7.55 4.55 11.36
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Table A2. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

B0 25.6544◦ −99.98822◦ G_Model 3.4 4.18 5.19 5.57 5.94 6.39 6.42 6.22 5.14 4.38 3.74 3.22 4.98

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.67 29.68 34.81 39.12 41.46 41.65 40.51 40.4 36.15 33.45 29.34 25.5 34.81

TS_MIN 6.73 8.81 12.12 16.32 20.1 21.91 21.66 21.94 20.03 16.01 11.21 7.39 15.35

C0 25.6544◦ −99.68944◦ G_Model 3.4 4.18 5.19 5.57 5.94 6.39 6.42 6.22 5.14 4.38 3.74 3.22 4.98

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.67 29.68 34.81 39.12 41.46 41.65 40.51 40.4 36.15 33.45 29.34 25.5 34.81

TS_MIN 6.73 8.81 12.12 16.32 20.1 21.91 21.66 21.94 20.03 16.01 11.21 7.39 15.35

Table A3. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

D0 25.6544◦ −99.39066◦ G_Model 3.4 4.18 5.19 5.57 5.94 6.39 6.42 6.22 5.14 4.38 3.74 3.22 4.98

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.06 30.3 35.5 39.76 42.12 42.62 41.49 41.7 37.52 34.79 30.22 25.91 35.67

TS_MIN 8.2 10.39 13.87 17.96 21.66 23.57 23.44 23.79 21.77 17.76 12.95 8.84 17.02

E0 25.6544◦ −99.09189◦ G_Model 3.4 4.18 5.19 5.57 5.94 6.39 6.42 6.22 5.14 4.38 3.74 3.22 4.98

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.06 30.3 35.5 39.76 42.12 42.62 41.49 41.7 37.52 34.79 30.22 25.91 35.67

TS_MIN 8.2 10.39 13.87 17.96 21.66 23.57 23.44 23.79 21.77 17.76 12.95 8.84 17.02

F0 25.6544◦ −98.79311◦ G_Model 3.21 3.94 5.01 5.67 6.16 6.62 6.64 6.22 5.23 4.54 3.68 3.1 5
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Table A3. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.09 30.34 35.32 39.38 41.56 42.26 40.9 41.47 37.25 34.57 30.09 25.98 35.44

TS_MIN 8.88 11.04 14.38 18.26 21.72 23.66 23.67 24 21.98 18.08 13.51 9.53 17.39

Z1 25.9252◦ −100.5859◦ G_Model 3.77 4.62 5.63 5.98 6.27 6.29 6.09 5.9 5.03 4.61 4.13 3.56 5.16

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 25.32 28.96 33.57 37.91 40.24 39.88 38.3 37.82 34.1 31.91 28.42 25.21 33.47

TS_MIN 3.71 5.44 8.19 12.44 15.93 17.35 17.02 17.05 15.33 11.71 7.55 4.55 11.36

Z2 26.196◦ −100.5859◦ G_Model 3.49 4.29 5.34 5.77 6.17 6.41 6.21 5.9 5.02 4.43 3.83 3.36 5.02

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.24 29.33 34.48 39.22 41.93 42.01 40.54 40.17 36.25 33.58 29.06 25.13 34.74

TS_MIN 4.63 6.62 9.8 14.29 18.27 20.17 19.95 20.05 18.05 13.89 8.99 5.39 13.34

Z3 26.4668◦ −100.5859◦ G_Model 3.46 4.27 5.33 5.76 6.17 6.41 6.22 5.9 5.01 4.41 3.81 3.33 5.01

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.24 29.33 34.48 39.22 41.93 42.01 40.54 40.17 36.25 33.58 29.06 25.13 34.74

TS_MIN 4.63 6.62 9.8 14.29 18.27 20.17 19.95 20.05 18.05 13.89 8.99 5.39 13.34

Z4 26.7375◦ −100.5859◦ G_Model 3.44 4.25 5.31 5.76 6.17 6.42 6.22 5.89 5 4.39 3.79 3.31 5

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 24.85 29.18 34.8 39.68 42.43 43.02 41.78 41.55 37.45 34.46 29.22 24.63 35.25

TS_MIN 4.6 6.72 10.19 14.73 19 21.34 21.29 21.49 19.2 14.68 9.33 5.3 13.99
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Table A3. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

Z5 27.0083◦ −100.5859◦ G_Model 3.35 4.15 5.21 5.75 6.17 6.43 6.45 6.1 5.18 4.37 3.76 3.16 5.01

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

TS_MAX 24.98 29.5 35.31 40.05 42.66 43.84 42.81 42.79 38.63 35.27 29.63 24.66 35.84

TS_MIN 5.26 7.54 11.29 15.86 20.27 22.98 23.05 23.36 20.71 15.94 10.3 5.93 15.21

Z6 27.279◦ −100.5859◦ G_Model 3.33 4.13 5.19 5.75 6.18 6.43 6.45 6.1 5.17 4.35 3.74 3.14 5

G_NASA 3.35 4.05 5.18 5.65 6.09 6.32 6.43 5.93 5.07 4.34 3.67 3.14 4.93

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.53 0.55 0.58 0.56 0.56 0.57 0.58 0.58 0.55 0.55 0.57 0.53 0.56

TS_MAX 24.98 29.5 35.31 40.05 42.66 43.84 42.81 42.79 38.63 35.27 29.63 24.66 35.84

TS_MIN 5.26 7.54 11.29 15.86 20.27 22.98 23.05 23.36 20.71 15.94 10.3 5.93 15.21

Z-2 25.1128◦ −100.5859◦ G_Model 3.84 4.68 5.67 5.99 6.26 6.27 6.08 5.9 5.06 4.66 4.2 3.64 5.19

G_NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16

SRF_ALB 0.15 0.14 0.15 0.14 0.15 0.16 0.15 0.16 0.15 0.13 0.13 0.15 0.15

KT 0.58 0.6 0.62 0.58 0.57 0.56 0.55 0.56 0.53 0.57 0.61 0.58 0.58

TS_MAX 24.02 27.3 31.61 35.65 37.73 37.05 35.29 34.76 31.69 29.89 26.89 23.94 31.32

TS_MIN 1.83 3.25 5.58 9.52 12.67 13.9 13.54 13.46 12.18 9.04 5.37 2.74 8.59

Z-3 24.842◦ −100.5859◦ G_Model 4 4.86 5.87 6.31 6.59 6.59 6.3 6.12 5.36 4.92 4.36 3.92 5.43

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.01 27.37 31.77 35.78 38.06 37.05 34.87 34.3 31.79 30.13 27.03 24.01 31.35

TS_MIN 1.55 2.83 5.03 8.84 12 13.32 12.83 12.73 11.71 8.74 5.11 2.49 8.1

Z-4 24.5711◦ −100.5859◦ G_Model 4.03 4.88 5.89 6.31 6.58 6.59 6.29 6.12 5.37 4.94 4.39 3.94 5.44

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 24.01 27.37 31.77 35.78 38.06 37.05 34.87 34.3 31.79 30.13 27.03 24.01 31.35

TS_MIN 1.55 2.83 5.03 8.84 12 13.32 12.83 12.73 11.71 8.74 5.11 2.49 8.1
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Table A4. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

Z-5 24.3003◦ −100.5859◦ G_Model 4.05 4.9 5.9 6.32 6.58 6.58 6.28 6.12 5.38 4.96 4.42 3.97 5.46

G_NASA 4.06 4.85 5.9 6.24 6.52 6.48 6.28 6.01 5.3 4.94 4.46 3.93 5.41

SRF_ALB 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.6 0.62 0.64 0.61 0.6 0.59 0.57 0.58 0.56 0.6 0.63 0.62 0.6

TS_MAX 25.06 28.53 33.1 37.2 39.57 38.26 35.63 35.04 32.73 31.12 28.02 25.07 32.44

TS_MIN 2.34 3.65 5.81 9.49 12.66 14 13.3 13.24 12.29 9.39 5.86 3.26 8.77

Y2 26.196◦ −100.8847◦ G_Model 3.49 4.29 5.34 5.77 6.17 6.41 6.21 5.9 5.02 4.43 3.83 3.36 5.02

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.24 29.33 34.48 39.22 41.93 42.01 40.54 40.17 36.25 33.58 29.06 25.13 34.74

TS_MIN 4.63 6.62 9.8 14.29 18.27 20.17 19.95 20.05 18.05 13.89 8.99 5.39 13.34

Y3 26.4668◦ −100.8847◦ G_Model 3.46 4.27 5.33 5.76 6.17 6.41 6.22 5.9 5.01 4.41 3.81 3.33 5.01

G_NASA 3.44 4.21 5.29 5.65 6.11 6.17 6.15 5.71 4.93 4.38 3.79 3.28 4.93

SRF_ALB 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.17 0.17 0.14 0.14 0.15 0.16

KT 0.54 0.56 0.59 0.56 0.56 0.57 0.56 0.56 0.53 0.55 0.57 0.55 0.56

TS_MAX 25.24 29.33 34.48 39.22 41.93 42.01 40.54 40.17 36.25 33.58 29.06 25.13 34.74

TS_MIN 4.63 6.62 9.8 14.29 18.27 20.17 19.95 20.05 18.05 13.89 8.99 5.39 13.34

X3 26.4668◦ −101.1848◦ G_Model 3.72 4.57 5.6 6.07 6.5 6.41 6.1 5.9 5.11 4.65 4.08 3.51 5.19

G_NASA 3.72 4.51 5.58 5.96 6.39 6.3 6.08 5.69 5.06 4.61 4.05 3.5 5.12

SRF_ALB 0.16 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.15 0.15 0.16 0.16

KT 0.58 0.6 0.62 0.59 0.59 0.57 0.55 0.56 0.54 0.58 0.61 0.58 0.58

TS_MAX 25.01 29.09 34.21 38.95 41.86 41.73 39.84 39.3 35.7 33.17 28.67 24.93 34.37

TS_MIN 3.34 5.19 8.17 12.7 16.57 18.46 18.19 18.19 16.27 12.15 7.43 4.17 11.74

B1 25.9252◦ −99.98822◦ G_Model 3.38 4.16 5.18 5.57 5.94 6.4 6.43 6.22 5.13 4.36 3.72 3.2 4.97

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.67 29.68 34.81 39.12 41.46 41.65 40.51 40.4 36.15 33.45 29.34 25.5 34.81

TS_MIN 6.73 8.81 12.12 16.32 20.1 21.91 21.66 21.94 20.03 16.01 11.21 7.39 15.35
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Table A4. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

B2 26.196◦ −99.98822◦ G_Model 3.29 3.98 5.07 5.66 6.06 6.52 6.43 6.21 5.12 4.43 3.7 3.11 4.97

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.12 29.34 34.75 39.34 41.91 42.5 41.41 41.47 37.01 34.14 29.35 24.98 35.11

TS_MIN 6.89 9.1 12.63 16.88 20.87 22.97 22.84 23.17 20.99 16.79 11.71 7.59 16.04

B3 26.4668◦ −99.98822◦ G_Model 3.27 3.97 5.06 5.66 6.06 6.52 6.44 6.21 5.11 4.41 3.68 3.09 4.96

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.12 29.34 34.75 39.34 41.91 42.5 41.41 41.47 37.01 34.14 29.35 24.98 35.11

TS_MIN 6.89 9.1 12.63 16.88 20.87 22.97 22.84 23.17 20.99 16.79 11.71 7.59 16.04

B4 26.7375◦ −99.98822◦ G_Model 3.25 3.95 5.04 5.65 6.06 6.53 6.44 6.21 5.1 4.39 3.65 3.07 4.95

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 24.74 29.04 34.6 39.28 41.91 43.01 42.09 42.34 37.83 34.69 29.4 24.63 35.3

TS_MIN 6.86 9.14 12.87 17.19 21.32 23.7 23.7 24.09 21.64 17.24 11.96 7.61 16.44

B5 27.0083◦ −99.98822◦ G_Model 3.17 3.93 5.03 5.65 6.17 6.65 6.67 6.21 5.27 4.45 3.57 3.04 4.98

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 24.22 28.63 34.18 38.89 41.54 43.17 42.56 42.98 38.44 34.93 29.23 24.18 35.25

TS_MIN 6.49 8.85 12.68 17.05 21.3 23.93 24.09 24.52 21.82 17.26 11.82 7.31 16.43

B6 27.279◦ −99.98822◦ G_Model 3.14 3.91 5.01 5.64 6.18 6.66 6.67 6.21 5.26 4.43 3.54 3.02 4.97

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 24.22 28.63 34.18 38.89 41.54 43.17 42.56 42.98 38.44 34.93 29.23 24.18 35.25
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Table A4. Cont.

Location LAT LON Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
Average

TS_MIN 6.49 8.85 12.68 17.05 21.3 23.93 24.09 24.52 21.82 17.26 11.82 7.31 16.43

B7 27.5498◦ −99.98822◦ G_Model 3.12 3.89 5 5.64 6.18 6.66 6.68 6.2 5.25 4.41 3.52 3 4.96

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 23.64 28.06 33.55 38.33 41.01 43.07 42.82 43.47 38.88 34.88 28.85 23.68 35.02

TS_MIN 5.81 8.19 12.06 16.48 20.84 23.69 24.04 24.54 21.59 16.82 11.27 6.7 16

B-1 25.3836◦ −99.98822◦ G_Model 3.42 4.2 5.2 5.58 5.94 6.38 6.42 6.22 5.15 4.4 3.77 3.24 4.99

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.58 29.27 34.03 37.9 39.77 39.47 38.3 38.08 34.15 31.71 28.54 25.41 33.52

TS_MIN 6.34 8.18 11.22 15.26 18.68 20.06 19.72 19.93 18.29 14.63 10.36 6.98 14.14

Table A5. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

B-2 25.1128◦ −99.98822◦ G_Model 3.45 4.21 5.22 5.58 5.93 6.38 6.41 6.22 5.16 4.42 3.79 3.26 5

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.58 29.27 34.03 37.9 39.77 39.47 38.3 38.08 34.15 31.71 28.54 25.41 33.52

TS_MIN 6.34 8.18 11.22 15.26 18.68 20.06 19.72 19.93 18.29 14.63 10.36 6.98 14.14

B-3 24.842◦ −99.98822◦ G_Model 3.74 4.47 5.51 5.79 6.04 6.26 6.18 6.01 5.07 4.6 4.09 3.54 5.11

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.29 28.82 33.29 36.96 38.29 37.43 36.03 35.8 32.07 30.09 27.62 25.09 32.23

TS_MIN 5.72 7.38 10.16 13.95 16.92 17.92 17.48 17.6 16.22 13 9.26 6.38 12.66
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Table A5. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

B-4 24.5711◦ −99.98822◦ G_Model 3.76 4.49 5.52 5.8 6.04 6.25 6.18 6.01 5.08 4.61 4.11 3.56 5.12

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.29 28.82 33.29 36.96 38.29 37.43 36.03 35.8 32.07 30.09 27.62 25.09 32.23

TS_MIN 5.72 7.38 10.16 13.95 16.92 17.92 17.48 17.6 16.22 13 9.26 6.38 12.66

B-5 24.3003◦ −99.98822◦ G_Model 3.78 4.51 5.53 5.8 6.03 6.24 6.17 6.01 5.09 4.63 4.14 3.59 5.13

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.64 29.21 33.62 37.29 38.35 36.98 35.14 34.85 31.3 29.7 27.57 25.4 32.09

TS_MIN 4.98 6.55 9.12 12.63 15.35 16.2 15.62 15.72 14.6 11.59 8.19 5.68 11.35

B-6 24.0294◦ −99.98822◦ G_Model 3.81 4.53 5.55 5.8 6.03 6.24 6.17 6.01 5.1 4.65 4.16 3.61 5.14

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.64 29.21 33.62 37.29 38.35 36.98 35.14 34.85 31.3 29.7 27.57 25.4 32.09

TS_MIN 4.98 6.55 9.12 12.63 15.35 16.2 15.62 15.72 14.6 11.59 8.19 5.68 11.35

B-7 23.7586◦ −99.98822◦ G_Model 3.97 4.71 5.75 6.01 6.25 6.23 6.05 6.02 5.11 4.83 4.32 3.83 5.26

G_NASA 4.02 4.78 5.82 6.03 6.31 6.17 6.11 5.92 5.15 4.82 4.41 3.85 5.28

SRF_ALB 0.14 0.13 0.14 0.13 0.14 0.16 0.14 0.15 0.15 0.12 0.12 0.14 0.14

KT 0.58 0.59 0.62 0.58 0.57 0.56 0.55 0.57 0.53 0.58 0.61 0.59 0.58

TS_MAX 25.56 29.06 33.39 36.89 37.75 35.87 33.34 33.24 30.16 28.85 27.13 25.25 31.37

TS_MIN 4.77 6.22 8.64 11.84 14.49 15.39 14.62 14.7 13.75 10.9 7.78 5.47 10.71

B-8 23.4877◦ −99.98822◦ G_Model 3.99 4.73 5.76 6.02 6.24 6.22 6.05 6.02 5.12 4.85 4.35 3.86 5.27

G_NASA 4.02 4.78 5.82 6.03 6.31 6.17 6.11 5.92 5.15 4.82 4.41 3.85 5.28

SRF_ALB 0.14 0.13 0.14 0.13 0.14 0.16 0.14 0.15 0.15 0.12 0.12 0.14 0.14

KT 0.58 0.59 0.62 0.58 0.57 0.56 0.55 0.57 0.53 0.58 0.61 0.59 0.58

TS_MAX 26.22 29.72 34.08 37.46 37.94 35.44 32.14 32.36 29.95 28.87 27.46 25.76 31.45

TS_MIN 5.89 7.26 9.71 12.77 15.4 16.36 15.49 15.53 14.67 11.86 8.79 6.53 11.69
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Table A5. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

C1 25.9252◦ −99.68944◦ G_Model 3.38 4.16 5.18 5.57 5.94 6.4 6.43 6.22 5.13 4.36 3.72 3.2 4.97

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.67 29.68 34.81 39.12 41.46 41.65 40.51 40.4 36.15 33.45 29.34 25.5 34.81

TS_MIN 6.73 8.81 12.12 16.32 20.1 21.91 21.66 21.94 20.03 16.01 11.21 7.39 15.35

C2 26.196◦ −99.68944◦ G_Model 3.29 3.98 5.07 5.66 6.06 6.52 6.43 6.21 5.12 4.43 3.7 3.11 4.97

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.12 29.34 34.75 39.34 41.91 42.5 41.41 41.47 37.01 34.14 29.35 24.98 35.11

TS_MIN 6.89 9.1 12.63 16.88 20.87 22.97 22.84 23.17 20.99 16.79 11.71 7.59 16.04

C3 26.4668◦ −99.68944◦ G_Model 3.27 3.97 5.06 5.66 6.06 6.52 6.44 6.21 5.11 4.41 3.68 3.09 4.96

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.12 29.34 34.75 39.34 41.91 42.5 41.41 41.47 37.01 34.14 29.35 24.98 35.11

TS_MIN 6.89 9.1 12.63 16.88 20.87 22.97 22.84 23.17 20.99 16.79 11.71 7.59 16.04

C4 26.7375◦ −99.68944◦ G_Model 3.25 3.95 5.04 5.65 6.06 6.53 6.44 6.21 5.1 4.39 3.65 3.07 4.95

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 24.74 29.04 34.6 39.28 41.91 43.01 42.09 42.34 37.83 34.69 29.4 24.63 35.3

TS_MIN 6.86 9.14 12.87 17.19 21.32 23.7 23.7 24.09 21.64 17.24 11.96 7.61 16.44

C5 27.0083◦ −99.68944◦ G_Model 3.17 3.93 5.03 5.65 6.17 6.65 6.67 6.21 5.27 4.45 3.57 3.04 4.98

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 24.22 28.63 34.18 38.89 41.54 43.17 42.56 42.98 38.44 34.93 29.23 24.18 35.25

TS_MIN 6.49 8.85 12.68 17.05 21.3 23.93 24.09 24.52 21.82 17.26 11.82 7.31 16.43
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Table A6. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

C6 27.279◦ −99.68944◦ G_Model 3.14 3.91 5.01 5.64 6.18 6.66 6.67 6.21 5.26 4.43 3.54 3.02 4.97

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 24.22 28.63 34.18 38.89 41.54 43.17 42.56 42.98 38.44 34.93 29.23 24.18 35.25

TS_MIN 6.49 8.85 12.68 17.05 21.3 23.93 24.09 24.52 21.82 17.26 11.82 7.31 16.43

C7 27.5498◦ −99.68944◦ G_Model 3.12 3.89 5 5.64 6.18 6.66 6.68 6.2 5.25 4.41 3.52 3 4.96

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 23.64 28.06 33.55 38.33 41.01 43.07 42.82 43.47 38.88 34.88 28.85 23.68 35.02

TS_MIN 5.81 8.19 12.06 16.48 20.84 23.69 24.04 24.54 21.59 16.82 11.27 6.7 16

C8 27.8205◦ −99.68944◦ G_Model 3.1 3.87 4.99 5.63 6.18 6.67 6.68 6.2 5.24 4.4 3.5 2.98 4.95

G_NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95

SRF_ALB 0.16 0.15 0.16 0.16 0.16 0.18 0.18 0.19 0.18 0.16 0.14 0.15 0.16

KT 0.5 0.52 0.56 0.55 0.56 0.59 0.6 0.59 0.56 0.56 0.54 0.51 0.55

TS_MAX 23.64 28.06 33.55 38.33 41.01 43.07 42.82 43.47 38.88 34.88 28.85 23.68 35.02

TS_MIN 5.81 8.19 12.06 16.48 20.84 23.69 24.04 24.54 21.59 16.82 11.27 6.7 16

C-1 25.3836◦ −99.68944◦ G_Model 3.42 4.2 5.2 5.58 5.94 6.38 6.42 6.22 5.15 4.4 3.77 3.24 4.99

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.58 29.27 34.03 37.9 39.77 39.47 38.3 38.08 34.15 31.71 28.54 25.41 33.52

TS_MIN 6.34 8.18 11.22 15.26 18.68 20.06 19.72 19.93 18.29 14.63 10.36 6.98 14.14

C-2 25.1128◦ −99.68944◦ G_Model 3.45 4.21 5.22 5.58 5.93 6.38 6.41 6.22 5.16 4.42 3.79 3.26 5

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 25.58 29.27 34.03 37.9 39.77 39.47 38.3 38.08 34.15 31.71 28.54 25.41 33.52

TS_MIN 6.34 8.18 11.22 15.26 18.68 20.06 19.72 19.93 18.29 14.63 10.36 6.98 14.14
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Table A6. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

C-3 24.842◦ −99.68944◦ G_Model 3.74 4.47 5.51 5.79 6.04 6.26 6.18 6.01 5.07 4.6 4.09 3.54 5.11

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.29 28.82 33.29 36.96 38.29 37.43 36.03 35.8 32.07 30.09 27.62 25.09 32.23

TS_MIN 5.72 7.38 10.16 13.95 16.92 17.92 17.48 17.6 16.22 13 9.26 6.38 12.66

C-4 24.5711◦ −99.68944◦ G_Model 3.76 4.49 5.52 5.8 6.04 6.25 6.18 6.01 5.08 4.61 4.11 3.56 5.12

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.29 28.82 33.29 36.96 38.29 37.43 36.03 35.8 32.07 30.09 27.62 25.09 32.23

TS_MIN 5.72 7.38 10.16 13.95 16.92 17.92 17.48 17.6 16.22 13 9.26 6.38 12.66

C-5 24.3003◦ −99.68944◦ G_Model 3.78 4.51 5.53 5.8 6.03 6.24 6.17 6.01 5.09 4.63 4.14 3.59 5.13

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.64 29.21 33.62 37.29 38.35 36.98 35.14 34.85 31.3 29.7 27.57 25.4 32.09

TS_MIN 4.98 6.55 9.12 12.63 15.35 16.2 15.62 15.72 14.6 11.59 8.19 5.68 11.35

C-6 24.0294◦ −99.68944◦ G_Model 3.81 4.53 5.55 5.8 6.03 6.24 6.17 6.01 5.1 4.65 4.16 3.61 5.14

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 25.64 29.21 33.62 37.29 38.35 36.98 35.14 34.85 31.3 29.7 27.57 25.4 32.09

TS_MIN 4.98 6.55 9.12 12.63 15.35 16.2 15.62 15.72 14.6 11.59 8.19 5.68 11.35

C-7 23.7586◦ −99.68944◦ G_Model 3.97 4.71 5.75 6.01 6.25 6.23 6.05 6.02 5.11 4.83 4.32 3.83 5.26

G_NASA 4.02 4.78 5.82 6.03 6.31 6.17 6.11 5.92 5.15 4.82 4.41 3.85 5.28

SRF_ALB 0.14 0.13 0.14 0.13 0.14 0.16 0.14 0.15 0.15 0.12 0.12 0.14 0.14

KT 0.58 0.59 0.62 0.58 0.57 0.56 0.55 0.57 0.53 0.58 0.61 0.59 0.58

TS_MAX 25.56 29.06 33.39 36.89 37.75 35.87 33.34 33.24 30.16 28.85 27.13 25.25 31.37

TS_MIN 4.77 6.22 8.64 11.84 14.49 15.39 14.62 14.7 13.75 10.9 7.78 5.47 10.71
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Table A6. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

D1 25.9252◦ −99.39066◦ G_Model 3.38 4.16 5.18 5.57 5.94 6.4 6.43 6.22 5.13 4.36 3.72 3.2 4.97

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.06 30.3 35.5 39.76 42.12 42.62 41.49 41.7 37.52 34.79 30.22 25.91 35.67

TS_MIN 8.2 10.39 13.87 17.96 21.66 23.57 23.44 23.79 21.77 17.76 12.95 8.84 17.02

D2 26.196◦ −99.39066◦ G_Model 3.29 3.98 5.07 5.66 6.06 6.52 6.43 6.21 5.12 4.43 3.7 3.11 4.97

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.2 29.45 34.74 39.2 41.6 42.49 41.46 41.84 37.41 34.55 29.63 25.09 35.22

TS_MIN 8.06 10.29 13.86 18.01 21.79 23.92 23.91 24.29 22.05 17.92 12.99 8.77 17.16

Table A7. Monthly parameter measurements for each point on the state-wide grid.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

D3 26.4668◦ −99.39066◦ G_Model 3.27 3.97 5.06 5.66 6.06 6.52 6.44 6.21 5.11 4.41 3.68 3.09 4.96

G_NASA 3.24 3.95 5.08 5.54 5.99 6.37 6.45 6.04 5.08 4.41 3.63 3.1 4.91

SRF_ALB 0.15 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.14 0.14 0.15

KT 0.51 0.52 0.56 0.55 0.55 0.58 0.58 0.59 0.54 0.55 0.55 0.51 0.55

TS_MAX 25.2 29.45 34.74 39.2 41.6 42.49 41.46 41.84 37.41 34.55 29.63 25.09 35.22

TS_MIN 8.06 10.29 13.86 18.01 21.79 23.92 23.91 24.29 22.05 17.92 12.99 8.77 17.16

D-1 25.3836◦ −99.39066◦ G_Model 3.42 4.2 5.2 5.58 5.94 6.38 6.42 6.22 5.15 4.4 3.77 3.24 4.99

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.52 30.62 35.64 39.67 41.76 41.81 40.53 40.66 36.59 33.86 30.1 26.32 35.34

TS_MIN 8.39 10.49 13.86 17.89 21.39 23.01 22.76 23.06 21.25 17.4 12.83 8.98 16.77
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Table A7. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

D-2 25.1128◦ −99.39066◦ G_Model 3.45 4.21 5.22 5.58 5.93 6.38 6.41 6.22 5.16 4.42 3.79 3.26 5

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.52 30.62 35.64 39.67 41.76 41.81 40.53 40.66 36.59 33.86 30.1 26.32 35.34

TS_MIN 8.39 10.49 13.86 17.89 21.39 23.01 22.76 23.06 21.25 17.4 12.83 8.98 16.77

D-3 24.842◦ −99.39066◦ G_Model 3.74 4.47 5.51 5.79 6.04 6.26 6.18 6.01 5.07 4.6 4.09 3.54 5.11

G_NASA 3.75 4.5 5.53 5.71 6 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1

SRF_ALB 0.13 0.12 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.11 0.12 0.13 0.13

KT 0.56 0.57 0.6 0.56 0.55 0.56 0.56 0.57 0.53 0.56 0.59 0.56 0.56

TS_MAX 26.61 30.52 35.25 39.06 40.5 40.01 38.47 38.63 34.59 32.15 29.34 26.34 34.29

TS_MIN 8.11 10.07 13.25 17.11 20.24 21.5 21.12 21.38 19.8 16.22 12.06 8.68 15.79

E1 25.9252◦ −99.09189◦ G_Model 3.38 4.16 5.18 5.57 5.94 6.4 6.43 6.22 5.13 4.36 3.72 3.2 4.97

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.06 30.3 35.5 39.76 42.12 42.62 41.49 41.7 37.52 34.79 30.22 25.91 35.67

TS_MIN 8.2 10.39 13.87 17.96 21.66 23.57 23.44 23.79 21.77 17.76 12.95 8.84 17.02

E-1 25.3836◦ −99.09189◦ G_Model 3.42 4.2 5.2 5.58 5.94 6.38 6.42 6.22 5.15 4.4 3.77 3.24 4.99

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.52 30.62 35.64 39.67 41.76 41.81 40.53 40.66 36.59 33.86 30.1 26.32 35.34

TS_MIN 8.39 10.49 13.86 17.89 21.39 23.01 22.76 23.06 21.25 17.4 12.83 8.98 16.77

E-2 25.1128◦ −99.09189◦ G_Model 3.45 4.21 5.22 5.58 5.93 6.38 6.41 6.22 5.16 4.42 3.79 3.26 5

G_NASA 3.4 4.13 5.23 5.53 5.81 6.23 6.37 6.04 5.04 4.4 3.8 3.27 4.94

SRF_ALB 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.13 0.14

KT 0.52 0.54 0.57 0.54 0.54 0.57 0.58 0.59 0.54 0.54 0.55 0.52 0.55

TS_MAX 26.52 30.62 35.64 39.67 41.76 41.81 40.53 40.66 36.59 33.86 30.1 26.32 35.34

TS_MIN 8.39 10.49 13.86 17.89 21.39 23.01 22.76 23.06 21.25 17.4 12.83 8.98 16.77
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Table A7. Cont.

Location LAT LON Parameter January February March April May June July August September October November December Annual
Average

F1 25.9252◦ −98.79311◦ G_Model 3.19 3.93 4.99 5.67 6.16 6.62 6.65 6.22 5.22 4.52 3.65 3.07 4.99

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.09 30.34 35.32 39.38 41.56 42.26 40.9 41.47 37.25 34.57 30.09 25.98 35.44

TS_MIN 8.88 11.04 14.38 18.26 21.72 23.66 23.67 24 21.98 18.08 13.51 9.53 17.39

F-1 25.3836◦ −98.79311◦ G_Model 3.23 3.96 5.02 5.68 6.16 6.61 6.64 6.22 5.24 4.56 3.7 3.12 5.01

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.46 30.66 35.55 39.44 41.45 41.75 40.06 40.53 36.56 33.83 30.03 26.27 35.22

TS_MIN 9.16 11.27 14.56 18.31 21.59 23.34 23.25 23.53 21.72 17.96 13.58 9.75 17.33

G0 25.6544◦ −98.49433◦ G_Model 3.21 3.94 5.01 5.67 6.16 6.62 6.64 6.22 5.23 4.54 3.68 3.1 5

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.31 30.09 34.5 38.18 40.19 41.04 39.61 40.27 36.85 34.34 30.17 26.27 34.82

TS_MIN 9.83 11.82 14.88 18.52 21.93 24.04 24.1 24.4 22.56 18.77 14.37 10.49 17.97

G1 25.9252◦ −98.49433◦ G_Model 3.19 3.93 4.99 5.67 6.16 6.62 6.65 6.22 5.22 4.52 3.65 3.07 4.99

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.31 30.09 34.5 38.18 40.19 41.04 39.61 40.27 36.85 34.34 30.17 26.27 34.82

TS_MIN 9.83 11.82 14.88 18.52 21.93 24.04 24.1 24.4 22.56 18.77 14.37 10.49 17.97

G-1 25.3836◦ −98.49433◦ G_Model 3.23 3.96 5.02 5.68 6.16 6.61 6.64 6.22 5.24 4.56 3.7 3.12 5.01

G_NASA 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5

SRF_ALB 0.15 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.17 0.15 0.15 0.15 0.16

KT 0.49 0.51 0.55 0.55 0.56 0.59 0.6 0.59 0.55 0.56 0.54 0.5 0.55

TS_MAX 26.73 30.57 34.94 38.39 40.05 40.47 38.87 39.45 36.1 33.61 30.14 26.58 34.66

TS_MIN 10.29 12.29 15.31 18.79 21.98 23.9 23.87 24.12 22.46 18.8 14.6 10.91 18.11
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Abstract: This paper proposes the computation and assessment of optimal tilt and azimuth angles
for a receiving surface, using a mathematical model developed at the University of Tomsk, Russia.
The model was validated and analyzed for the Nuevo León State, Northeast Mexico, utilizing a set of
metrics, comparing against satellite data from NASA. A point of interest in the city of Monterrey was
analyzed to identify orientation patterns throughout the year for an optimal solar energy gathering.
The aim is providing the best orientation tilt angles for photovoltaic or solar thermal panels without
tracking systems. In addition, this analysis is proposed as a tool to achieve optimal performance
in sustainable urban development in the region. Based on the findings, a set of optimal tilt and
azimuth surface angles are proposed for the analyzed coordinates. The aim is to identify the optimal
performance to obtain the maximum solar irradiation possible over the year for solar projects in
the region. The results show that the model can be used as a tool to accelerate decision making in
the design of solar harvesting surfaces and allows the design of discrete tracking systems with an
increase in solar energy harvesting above 5% annually.

Keywords: solar irradiation; renewable energy assessment; solar harvesting surface; urban energy tools

1. Introduction

Renewable energy sources are essential to reduce greenhouse gases (GHG) and for
sustainable development. One of the main sources of renewable energy due to its acces-
sibility is solar radiation. The energy and land usage in several Italian provinces were
studied to analyze whether solar energy is the optimal renewable energy source to reach
the 2030 climate policies in Europe. It was concluded that solar energy is the cheapest
renewable energy source with the largest potential in the latitude of Italy [1]. This form of
energy can be harnessed by photovoltaic (PV) panels that work with semiconductors that
release electrons when in contact with solar radiation [2]. This process can be both used for
industrial and domestic purposes. Mexico has the potential capacity to develop renewable
technologies and produce 1172 gigawatts, stating that solar power is the best technology in
every scenario considered [3]. A great area of solar potential is the northeast, where Nuevo
León state is located. From an economical perspective, an advantage of Nuevo León is the
geographical location that opens the possibility of forming an integrated North American
energy market [3,4].
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In recent years, mathematical models of solar radiation have been refined because
they can significantly reduce the price and time of development of solar energy projects [5].
In this regard, several tools have been tested for their efficiency, such as in [6], where 23 soft-
ware packages and 4 mobile apps regarding photovoltaic systems were analyzed; they
found that none of the tools reviewed met every benchmark set of design and management
purposes. In order to improve these calculations, a system of eight different factors that
improve decision making during PV projects was proposed. The proposition of the system
is that, for future work, researchers should focus on working on these factors, such as
optimization of the PV layout design, instead of building a general design software for
PV arrays.

An extensively used approach to estimating solar resources is the utilization of satel-
lites. According to [7], a mathematical model, supported by the NASA SSE database, was
applied to predict the characteristics of solar radiation for any latitude and longitude in
Russia. Recently, reference [4] found that the model is a good estimation of solar resources
available and depends only on the geographical location and data available in the satellite
NASA SSE database. This fact allows the model to be independent of meteorological
stations or physical limitations and provides better coverage of the region [4].

Studies made in Libya by the Sebelas Maret University to compute the maximum solar
radiation were conducted, using a mathematical model to determine the optimal orientation
and positioning of a solar panel [8]. Similar calculations were made in Tunisia [9], where
they addressed the issue of computing the angle of PV panels. This was done as an
alternative to solar tracking control systems. Furthermore, calculating the best tilt angle
of the solar panels using mathematical modeling would make it easier to implement PV
panels and ensure their maximum efficiency.

A mathematical model computed the optimal tilt and azimuth angle for a PV array
in [10] for the city of Sharjah in the United Arab Emirates. The results showed a set of
optimal angles for Sharjah, using the sensitivity analysis of design parameters of bi-facial
solar PV technology. They studied the effects of albedo, tilt angle, and height from the
ground against power gain correlations. The application of the findings served to increase
the energy supply for the existent solar panels and to reduce the energy demand for cooling
in the buildings where PV systems were installed. The optimization of the tilt angle in the
PV systems had the highest effect during the winter in Punjab, Pakistan; this result can
be especially useful since the days are shorter and more energy is required for lightning
purposes [11].

In reference [8], a study to estimate solar radiation is presented. Three mathematical
models were compared: the Caperdaou, the Liu and Jordan, and the R. Sun model. These
were compared against the solar radiation received by a ground collector, and it was found
that the Caperdaou model was the most suitable for the Algerian region.

In Mexico, the solarimetric network is currently managed by the Mexican National
Weather Service (SMN). This network consists of several meteorological stations deployed
all over the country, which measures several variables of weather, including solar radiation.
The Mexican grid consists of two types of stations: automatic meteorological stations
(EMAs) and synoptic meteorological stations (ESIMEs). EMAs are conformed by mechani-
cal and electronic devices, such as sensors that monitor several meteorological variables.
These stations have the following sensors: wind speed, direction of the wind, atmospheric
pressure, temperature, relative humidity, solar radiation, and precipitation [12]. ESIMEs are
a set of sensors that realizes measurements automatically from the previously mentioned
meteorology variables [12]. Another difference between an EMA and an ESIME lies in the
way the information is presented; in EMAs, a file is created every ten minutes with all
the necessary variables. On the other hand, ESIMEs generate a synoptic message every
three hours [12]. The Mexican grid counts with only 189 EMAs, and 84 ESIMEs all over
Mexico [12]. In the state of Nuevo León, there are only three EMAs and one ESIME, as
shown in Figure 1, where the state is highlighted; these are not enough to have a complete
panoramic of the solar radiation in the state. Additionally, according to [13], more than half
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of the solar radiation sensors may not be correctly calibrated, leading to higher discrepan-
cies in the station results when measuring the solar radiation. In the same study, it is stated
that these measurements are not public and have a higher error than satellite readings,
which is around 10%. Another study of solar radiation in Mexico analyzed the findings of
the meteorological stations to validate their mathematical model, and found that only 33%
of the stations in the Sonoran region in northwest Mexico met their selection criteria [4].

Figure 1. Mexican meteorological grid. The state of Nuevo León is highlighted in red.

Due to the scarcity of local data concerning radiation analysis in Mexican geographical
coordinates, in this study, some relevant contributions with respect to the irradiation
calculations regarding the surface angle were made. These calculations were made for
the city of Monterrey in Mexico to build a photovoltaic array. However, they can be
extrapolated in order to analyze any coordinates in the world. The main objective of the
current research is utilizing a mathematical model as a tool to identify and propose several
setups for tilt and azimuth angles for solar collecting surfaces with no tracking systems
and increase their energy harvesting throughout the year as close as possible to an optimal
point. The idea is to save costs of tracking systems required by other technologies (such as
full tracking, or partial tracking), which require sensors and mechanical systems, as well
as increasing performance and production for future efficient solar systems (PV or solar
thermal), which impact in the green development in the region.

The literature review indicates the importance of calculating the parameters of solar
radiation acting on collecting surfaces as a way to identify the harvesting of the highest
amount of solar energy possible during the year. This paper is aimed to calculate and
assess the solar irradiation on a receiving surface at different tilt and azimuth angles to
obtain the greatest amount of energy captured, utilizing a mathematical model as a tool
with a data-driven approach based on the geospatial information retrieved.

This approach does not require weather stations, or a local sensing device deployed,
avoiding the cost of equipment and maintenance. Besides this, the proposed approach
can use databases which provides the albedo, the reflection index and the geographic
coordinates. This makes the approach flexible and adaptable.

This study is organized as follows: Section 2 describes the data source used to com-
pare the mathematical model. Section 3 presents the methodology, which describes the
mathematical model and statistical methods used to validate and analyze the impact of
different tilt and azimuth angles for a receiving surface. Section 4 consists of a report
and discussion of the accuracy of the model and the effect of changing the surface angles
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previously mentioned in the methodology. Finally, Section 5 provides the conclusions and
offers a brief mention of further research opportunities.

2. Data Sources

The present work used a resource to gather data related to solar radiation. The ob-
tained information was later compared with the findings of the mathematical model in
order to validate it. The resource was the database of NASA’s Surface Meteorology and
Solar Energy (SSE). As stated in the introduction, the set of EMAs and ESIMEs is scarce
(only four stations) and cannot be used to have a complete representation of the state of
Nuevo León. Due to this, it was decided not to use the Mexican national weather service
findings to validate the model.

The database of NASA’s Surface Meteorology and Solar Energy (SSE) contains infor-
mation about solar measurements, such as surface albedo (ρ) and the clarity index (KT) [14].
These two parameters represent the capacity of light reflection and the atmospheric effect
on light for the analyzed zone. These are used as inputs for the mathematical model to
calculate the solar irradiation.

Five geographic points were selected to cover a sufficiently representative area of the
state of Nuevo León, where Colombia is at the north of the state, Linares at the center, El
Grullo at the east, Monterrey at the west and Mier y Noriega at the south. Then, the average
total solar irradiation per month was calculated from these specific geographic points and
compared against the data from the NASA SSE database. Table 1 present the locations and
geographic coordinates.

Table 1. Geographical data for the selected municipalities.

Geographical Points Latitude Longitude

Monterrey 25.6865 −100.3161
Linares 24.8639 −99.5618

El Grullo 25.9791 −98.6245
Colombia 27.7035 −99.7607

Mier y Noriega 23.4249 −100.1171

3. Methodology

The methodology consisted of calculating solar irradiation based on a mathematical
model proved for other geographical regions around the world. This model was applied
to a specific point in the city of Monterrey as a case study. A comparison of different
angles (tilt and orientation) of the receiving surface was utilized for the calculations. Then,
statistical methods were used to compare the model against the values of solar irradiation
at the ground level of the NASA database. It is worth mentioning that NASA only provides
the solar irradiation that reaches a horizontal surface without tilt or azimuth surface angles;
therefore, the NASA data source focuses only on horizontal surfaces (parallel to the ground)
at different altitudes for its data of solar irradiation. On the other hand, the model used in
this research work can be used to analyze any orientation of the collecting surface. Finally,
the results for different surface tilts and orientations were used for comparison in order
to identify the best angles for the optimum performance of solar systems in the region
throughout the year.

3.1. Mathematical Model

This section closely follows the results presented in [4,7]. The total radiation arriving
at an inclined surface (G) is calculated by (1), which consists of the sum of the direct,
scattered, and reflected solar radiation that hits on a receiving surface. The model has eight
inputs: surface azimuth angle (γ), the tilt angle of the receiving surface (β), latitude (φ),
longitude (ψ), surface albedo (ρ), clarity index (KT), the difference in hours with respect to
the standard Greenwich meridian (Dif GMT) and the date of the year (N). These inputs
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are used in the equations presented in Appendix A. The main equation to calculate the
total solar irradiation for any orientation of a tilted collecting surface is presented in
Equation (1).

G = [GD(
cosθ

cosθz
)] + GDH [Ai(

cosθ

cosθz
) + [(1 − Ai)(

1 + cosβ

2
)] + [(GH)(ρ)(

1 − cosβ

2
)] (1)

where GH, GDH, and GD are the hourly total radiation arriving at a horizontal surface divided
into three components (total, diffuse and direct respectively), (Equations (A22)–(A24)); Ai is
the anisotropic index (Equation (A26)). Finally, θ is the incidence angle and θz is the solar
zenith angle, Equations (A5) and (A6), respectively.

The latitude and longitude data for the geographical location analyzed in Monterrey
were 25.6544 N and 100.2874 W respectively [15]. The surface albedo and the clarity index
for every month were taken from the database of NASA SSE [14]. Then, for the inclination
angles (β) a range from 0 to 60 degrees was selected. This is because of a suggestion
of angles between 10 and 50 degrees from a study realized in the city of Hermosillo,
located at a latitude and longitude similar to the points used in the present research [16].
Finally, in order to obtain a reliable average representation of solar irradiation for every
month in the year, each month was represented by a significant day. Table 2 shows the
representative days.

Table 2. Representative days considered.

Month Day of the Month Day Number of the Year [N]

January 17 17
February 16 47

March 16 75
April 15 105
May 15 135
June 11 162
July 17 198

August 16 228
September 15 258

October 15 288
November 14 318
December 10 344

3.2. Statistical Analysis

The accuracy of the mathematical model is validated against the data given by the
NASA database [14]; to prove how precise it is against the data source, there will be used
several statistical methods.

For all following mathematical formulas, n is the number of months in the year, i is
the number of the analyzed month, Y is the value of the reference (NASA SSE), X is the
value to analyze (model), X is the average annually of the values to analyze (model), and Y
is the average annually of the value of reference (NASA SSE). All formulas were obtained
from references [17–19].

• Mean Absolute Error (MAE)

– MAE provides a mean error magnitude among the different data sources; the
smaller the value obtained, the better the model.

MAE =
1
n

n

∑
i=1

|Xi − Yi| (2)

• Mean Bias Error (MBE)
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– MBE provides the bias that follows the average error; the closer it is to zero, the
more precise it is. If the value is less than zero, it is considered an underestimation,
and if it overpasses zero, it is considered overestimation. This statistical method
reflects the performance of the analyzed model.

MBE =
1
n

n

∑
i=1

(Xi − Yi) (3)

• Root Mean Square Error (RMSE)

– Represents the standard deviation of the calculated errors. The smaller the value,
the greater the accuracy.

RMSE =

√

1
n

n

∑
i=1

(Xi − Yi)2 (4)

• Mean Percentage Error (MPE)

– This parameter determines the behavior of the error. Values among the range of
ten percent to minus ten percent are acceptable.

MPE =
100
n

n

∑
i=1

(
Xi − Yi

Yi
) (5)

• Relative Percentage Error (RPE)

– Same as MPE, values between the range of ten percent to minus ten percent
are acceptable.

RPE = (
Xi − Yi

Yi
)× 100 (6)

• Correlation Coefficient (r)

– Utilized to measure the linear correlation between two variables on a scale of one
to minus one, where one is totally positive, minus one is totally negative, and
zero represents no linear correlation.

r =

n

∑
i=1

(Xi − X̄)(Yi − Ȳ)

√

n

∑
i=1

(Xi − X̄)2
n

∑
i=1

(Yi − Ȳ)2

(7)

• Coefficient of Determination (R2)

– Represents the proximity midst the line of calculated values and the reference
values; the closer it is to one, the greater the precision.

R2 = 1 − (

n

∑
i=1

(Yi − Xi)
2

n

∑
i=1

(Yi − Ȳ)2
) (8)

• t-student distribution

– Utilized to determine if the values of the mathematical model are statistical
representatives or not. The smaller the value of t, the better the performance of
the model. Statistical significance is considered based on a table of distribution t
of critical values, where a confidence level (α) and a degree of freedom (df ) are
used to find the critical value.

d f = n − 1 (9)

t =

√

(d f )(MBE)2

(RMSE)2 − (MBE)2 (10)
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3.3. Impact of the Variation of Inclination and Azimuth Angles on Receiving Surfaces

Once the mathematical model was validated, tests were made at a fixed point at the
Monterrey Tec campus, which is part of the Tec district located to the south of the city of
Monterrey, in a polygon of 452 hectares [20]. The computed location was at a latitude of
25.6544 N and a longitude of 100.2874 W. These tests were accomplished with different
tilt angles (β) and surface azimuths (γ) for a receiving surface. The purpose of this was
to build a lookup table from which it is possible to extract the information of the surface
angles that are most suitable to maximize the harvesting of available solar radiation at the
analyzed interest point.

4. Results and Discussion

This section presents the results found in the investigation. First, the results of the
validation of the model are presented, which allows it to be applied to a geographical point
of particular interest, thereby highlighting the findings found. All tables present the solar
irradiation in kWh/m2.

4.1. Model Validation

In general, when analyzing the results, it can be seen that there is a very close relation-
ship between the mathematical model and the NASA database (Figure 2). There are some
cases where there are minor discrepancies in the results. The greatest difference found
in the validation is in Monterrey, during the month of August; however, this difference
is 0.16 kWh/m2, representing an error of just 2.8%. Regarding the metrics, a monthly
average for every set of results is used to make the statistical analysis, which can be seen
in Table 3. Statistical tests with the MAE, MBE, and RMSE methods provided values very
close to zero in all geographic points. Most of the values for MPE and RPE fall within the
acceptable range of ±10%. In certain months the values in RPE overpass ±2%, but it is still
an acceptable range. For the r and R2 tests, almost all the values are very close to 1 and
even for the geographical point called Colombia reaches 1 in r. Finally, the metric known as
t-student showed that all the cases were significant, taking into account the critical value of
4025 for a confidence level of 99% (0.001) with 11 degrees of freedom [21]. From the results
given by the statistical tests, it can be concluded that the mathematical model works for the
location of the state of Nuevo León.

4.2. Discussion and Findings

Once the model was validated, different angles were chosen to compute the solar irra-
diation arriving at a solar harvesting surface, as shown in the Appendix B Tables A2 and A3.
The mathematical model was used to inquire which combinations of possible angles would
allow to capture the greatest amount of solar irradiation.

Table 3. Statistical test (model vs. NASA).

Municipality Parameters Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Annual Average MAE MBE RMSE MPE r R2 t

NASA 3.83 4.61 5.73 5.94 6.27 6.19 6.06 5.74 5.05 4.66 4.2 3.64 5.16
Monterrey Model 3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 0.006 0.006 0.067 −0.013 0.998 0.995 0.301

RPE −1.003 0.586 −1.538 0.710 −0.007 1.467 0.506 2.818 −0.187 −0.825 −1.202 −1.485

NASA 3.75 4.5 5.53 5.71 6.0 6.11 6.2 5.98 5.09 4.61 4.14 3.62 5.1
Linares Model 3.73 4.47 5.50 5.79 6.04 6.26 6.19 6.01 5.07 4.59 4.09 3.54 3.11 0.003 0.003 0.061 −0.096 0.999 0.996 0.178

RPE −0.449 −0.731 −0.471 1.408 0.675 2.449 −0.236 0.524 −0.403 −0.331 −1.295 −2.294

Nasa 3.22 3.95 5.01 5.57 6.1 6.57 6.65 6.15 5.24 4.62 3.74 3.15 5
El Grullo Model 3.18 3.92 4.99 5.67 6.16 6.62 6.65 6.22 5.22 4.52 3.65 3.07 4.99 0.008 −0.008 0.063 −0.423 0.999 0.997 0.413

RPE −1.183 −0.688 −0.374 1.757 1.031 0.829 −0.009 1.067 −0.391 −2.140 −2.394 −2.581

NASA 3.15 3.86 4.97 5.61 6.07 6.62 6.75 6.17 5.24 4.41 3.51 2.99 4.95
Colombia Model 3.11 3.88 4.99 5.63 6.18 6.67 6.68 6.20 5.25 4.40 3.51 2.99 4.96 0.012 0.012 0.044 0.159 1 0.999 0.908

RPE −1.267 0.492 0.443 0.428 1.791 0.711 −1.026 0.513 0.110 −0.133 −0.032 −0.118

NASA 4.15 4.98 6.03 6.3 6.57 6.51 6.26 6.07 5.3 5.0 4.58 4.01 5.48
Mier y Noriega Model 4.13 4.97 6.04 6.33 6.68 6.55 6.26 6.12 5.31 5.02 4.50 3.99 5.49 0.013 0.013 0.046 0.146 0.999 0.997 0.989

RPE −0.413 −0.137 0.199 0.491 1.637 0.662 0.078 0.849 0.199 0.431 −1.813 −0.435
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(a) Comparison in the municipality of
Colombia

(b) Comparison in the municipality of Mon-
terrey

(c) Comparison in the municipality of El
Grullo.

(d) Comparison in the municipality of Mier
y Noriega.

(e) Comparison in the municipality
of Linares.

Figure 2. Comparison between the solar irradiation calculated by the mathematical model and the
one gathered from the NASA database.

Different month arrangements were formed. The azimuth value was set to zero,
and the tilt angle was varied to calculate the corresponding irradiation value. Various
sets and groupings of months can be selected. Table 4 shows the average results of all the
combinations of all the groupings made in this paper. However, it is necessary to note the
particularities of each selection.

Table 4. Comparison of average annual solar radiation.

Monthly Alternative Quarterly Bimonthly Quarterly Biannual Fixed

Annual average 5.935 5.932 5.931 5.902 5.635 5.6
Annual average in Percentage 100% 99.94% 99.93% 99.44% 94.94% 94.35%
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Table 5 proposes 12 angle changes, one for each month, that would be the most efficient
in terms of capturing solar irradiation, but it is more demanding in terms of path tracking.
Table 6 requires only five changes, and the average efficiency is 99.93%. If the year is
divided into four periods of three months each, the efficiency remains high with an average
value of 99.44% with a follow-up cost of only four angular values as shown in Table 7.
Table 8 divides the year into two large groups of six months, and this selection requires
only two discrete positions; however, the efficiency is reduced to 94.94%. Finally, when
calculating the efficiency with a fixed angle of 25 degrees, Table 9, an efficiency of 94.35%
is obtained. Although different arrangements of months can be used, as an additional
example, the arrangement shown in Table 10 was formed, consisting of four partitions but
considering irregular distribution of grouping the months with an efficiency of 99.94%.
This is done in order to improve the efficiency of the array throughout the year. These
findings have an evident impact on the design of electromechanical solar tracking systems,
where the proposed mathematical model can be used as a reference of optimal angles to
obtain the best possible performance.

Table 5. The 12 months’ angle combinations.

Month Solar Irradiation Tilt Angle (β)

January 5.72 55
February 6.02 45

March 6.33 30
April 6.09 10
May 6.27 0
June 6.28 0
July 6.08 0

August 5.93 5
September 5.33 20

October 5.62 35
November 6.08 50
December 5.69 55

Table 6. Bimonthly angle combinations.

Month Solar Irradiation Tilt Angle (β)

January
5.86 45

February

March
6.15 20

April

May
6.27 0

June

July
6 0

August

September
5.43 30

October

November
5.88 50

December
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Table 7. Quarterly angle combinations.

Month Solar Irradiation Tilt Angle (β)

January
5.96 40February

March

April
6.18 0May

June

July
5.71 5August

September

October
5.76 45November

December

Table 8. Biannual angle combinations.

Month Solar Irradiation Tilt Angle (β)

January

5.77 20

February
March
April
May
June

July

5.50 35

August
September

October
November
December

Table 9. Fixed angle combinations.

Month Solar Irradiation Tilt Angle (β)

January

5.6 25

February
March
April
May
June
July

August
September

October
November
December
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Table 10. Alternative quarterly angle combinations.

Month Solar Irradiation Tilt Angle (β)

January
5.87 50

February

March 6.33 30

April

6.10 0
May
June
July

August

September
5.43 30

October

November
5.87 50

December

Notice that, as discussed above, there is a difference of an almost 6% loss between
leaving the tilt angle fixed and changing it every month; it is practically the same to be
changing it every month as it is to be doing it quarterly.

Figure 3 illustrates the relationship between the month of the year, the tilt angle (β)
and the solar irradiation. The aim of this figure is to provide a guide that presents how
solar irradiation behaves respect to different tilt angles during the year. Additionally,
Figure 3 offers an easy way to analyze data, which can be used to accelerate decision
making regarding the orientation of solar harvesting systems for optimal performance or
planning minimum values of solar irradiation throughout the year.

Figure 3. Total solar irradiation throughout the year in kWh/m2 depending on the tilt angle when azimuth equals 0.

As can be seen in Figure 4, any relationship between the tilt angle and the received
solar irradiation follows a behavior like that of a convex parabola, that is, there is a vertex
where the optimum angle is found, and the further away it is from this point, in either
direction, the lower the solar radiation that it receives. This effect is more visible in the first
and last quarter of the year, where both branches of the parabola can be observed in all
months, unlike the months of May, June and July, where the optimal angle is zero.
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(a) Total solar irradiation in the first quarter
of the year.

(b) Total solar irradiation in the second quar-
ter of the year.

(c) Total solar irradiation in the third quarter
of the year.

(d) Total solar irradiation in the fourth quar-
ter of the year.

Figure 4. Total solar irradiation throughout the year in kWh/m2, depending on the tilt angle when
azimuth equals 0, broken down into quarters.

5. Conclusions

A mathematical model developed at the University of Tomsk, Russia, for high latitudes
was applied to obtain a set of angles to maximize the energy collection in the state of Nuevo
León, a strategic region of northern Mexico, showing excellent results, according to the
evaluated metrics. The model was evaluated in specific points of the state, and was used
for a particular point within the university campus of Tec de Monterrey. The viability of
the model was evaluated when applied to solar harvesting surfaces to maximize energy
collection. It was found that the model allows studying the angular variation of a solar
harvesting surface in such a way that a set of angles was found that allows maximizing
the solar energy capture. The implications of this are of interest to solar engineering, as it
visualizes the possibility of designing discrete tracking systems, that is, tracking systems
that vary the angles at certain discrete positions to be selected by the user throughout the
year. This is a different approach to current solar tracking systems that are designed to do
continuous day-to-day monitoring at a high computational and economic cost. Discrete
tracking would be, according to our findings, simpler. However, more research is required
in this regard.

Another implication of our findings is that this type of study can be used to improve
the urban development of the region by reducing the costs of efficient solar collection
systems for the generation of green energy and reducing the regional carbon footprint, due
to energy production.

It is worth highlighting that, after a series of performance tests with different tilt and
surface azimuth angles for a receiving surface, it was found that the azimuth angle had
a minimal effect on the solar irradiation on the surface for a discrete monthly approach.
On the other hand, different tilt angles represent notable variations in the solar irradiation
obtained. Based on these findings, it was concluded the importance of modifying the tilt
and azimuth angles in order to achieve the best efficiency of solar irradiation that can be
received on a surface, such as solar panels in the analyzed location. This study presented
an approach that, if the results obtained against meteorological stations are compared,
the proposed method offers an effective quantitative advantage since it requires neither
monitoring stations nor the operating and maintenance costs involved. These results can
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be utilized to assess the deployment and planning of renewable energy systems based on
solar panels with adjustable angle.

Finally, as future work, applications of solar tracking and monitoring systems for
photovoltaic or thermal solar implementations are proposed based on this paper; this study
establishes the possibility of being used for the design of a discrete tracking system, based
on Tables 5–10 as inputs, which can be implemented as a sensorless open-loop control
system, as conventional solar tracking systems are based on continuous angle regulation.
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Abbreviations

The following abbreviations are used in this manuscript:

EMAs Automatic meteorological stations
ESIMEs Synoptic meteorological stations
NASA National Aeronautics and Space Administration
NASA SSE NASA Surface Meteorology and Solar Energy
MAE Mean absolute error (dimensionless)
MBE Mean bias error (dimensionless)
MPE Mean percentage error (%)
RMSE Root mean square error (dimensionless)
RPE Relative percentage error (%)
SMN Mexican National Weather Service
PV Photovoltaic
Greek Letters
β Tilt angle of the receiving surface with respect to the horizontal
γ Surface azimuth angle
δ Declination angle
φ Latitude
ψ Longitude
ρ Surface albedo
θ Incidence angle
θz Solar zenith angle
ω Solar hour angle
ωss Sunset hour angle
Symbols
a Hourly transparency coefficient first variable (dimensionless)
b Hourly transparency coefficient second variable (dimensionless)
Ai Anisotropic index (dimensionless)
Az Solar azimuth angle
B Equation of time coefficient (dimensionless)
df T-Student degrees of freedom (dimensionless)
Dif GMT Time zone hour difference with respect to Greenwich meridian (hours)
i Number of the analyzed month
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KT Clearness index (dimensionless)
n Number of months in the year
N Day number
r Correlation coefficient (dimensionless)
R2 Coefficient of determination (dimensionless)
Xi Reference value for statistical analysis
Yi Calculated value for statistical analysis
G Total radiation arriving at an inclined surface (W/m2)
G0 Hourly extra-atmospheric radiation arriving at a horizontal surface (W/m2)
GD Hourly direct radiation arriving at a horizontal surface (W/m2)
GDH Hourly diffuse radiation arriving at a horizontal surface (W/m2)
GH Hourly total radiation arriving at a horizontal surface (W/m2)
Gsc Solar constant = 1367 (W/m2)
h Solar altitude angle
H Average daily radiation arriving at a horizontal surface (Wh/m2)
H0 Average daily extra-atmospheric insolation arriving at a horizontal surface (Wh/m2)
HD Average daily extra-atmospheric insolation arriving at a horizontal surface (Wh/m2)
KD Diffusion index (dimensionless)
KT Clearness index (dimensionless)
Time hr Time of the day in hours

Appendix A. Equations from Mathematical Model

All the equations used in the mathematical model are shown below:
Declination angle of the sun (δ):

δ = [23.45 sin (
(360)(284) + N

365
)](

π

180
), Radians (A1)

The solar hour angle (ω):

ω = {15[(Time hr)− 12 − (Dif GMT)− EoT] + ψ}(
π

180
), Radians (A2)

The equation of time (EoT):

EoT =
9.87 sin 2B − 7.53 cos B − 1.5 sin B

60
, Hours (A3)

Value of B:
B = (

360
365

)(N − 81)(
π

180
) (A4)

The incidence angle (θ):

θ = cos−1[(sin δ · sin φ · cos β) + (cos δ · sin φ · sin β · cos γ · cos ω)− (sin δ · cos φ · sin β · cos γ)+

(cos δ · sin β · sin γ · sin ω) + (cos δ · cos φ · cos β · cos ω)], Radians
(A5)

The solar zenith angle (θz):

θz = cos−1[(sin φ · sin δ) + (cos φ · cos δ · cos ω)], Radians (A6)

The solar altitude angle (h):

h =
π

2
− θz, Radians (A7)

h = sin−1[(sin φ · sin δ) + (cos φ · cos δ · cos ω)], Radians (A8)

The solar azimuth angle (Az):

Az = cos−1[
(sin h · sin φ)− sin δ

cos h · cos φ
], Radians (A9)
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The sunset hour angle (ωss):

ωss = cos−1(− tan φ · tan δ), Radians (A10)

The hourly diffuse coefficient (rd):

rd =
π

24
(

cos ω − cos ωss

sin ωss − (ωss · cos ωss)
) (A11)

The hourly transparency coefficient (rt):

rt = rd(a + b cos ω) (A12)

Values of coefficients a and b:

a = 0.409 + 0.5016 sin (ωss −
π

3
) (A13)

b = 0.6609 − 0.4767 sin (ωss −
π

3
) (A14)

The clearness index (KT):

KT =
H

H0
(A15)

The average daily extra-atmospheric insolation arriving at a horizontal surface (H0):

H0 = Gsc(
24
π
){1 + [0.033 cos (

(360)N

365
)(

π

180
)]}[(sin φ · sin δ · ωss) + (cos φ · cos δ · sin ωss)], Wh/m2 (A16)

Solar constant (Gsc):
Gsc = 1367W/m2 (A17)

The average daily radiation arriving at a horizontal surface (H):

H = KT(H0), Wh/m2 (A18)

The diffusion index (KD):

KD =
HD

H
(A19)

The average daily diffuse radiation arriving at a horizontal surface (HD):

HD = KD(H), Wh/m2 (A20)

KD can be determined by the equations and conditions shown in Table A1. KD is
determined based on KT .

KD = f (KT) (A21)

Total (GH):
GH = rt(H), W/m2 (A22)

Diffuse (GDH):
GDH = rd(HD), W/m2 (A23)

Direct (GD):
GD = GH − GDH , W/m2 (A24)

The hourly extra-atmospheric radiation arriving at a horizontal surface (G0):

G0 = Gsc{1 + [0.033 cos [(
360(N)

365
)(

π

180
)]]} sin h, W/m2 (A25)

The anisotropic index (Ai):

Ai =
GD

G0
(A26)
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Table A1. Conditional table to determine the diffusion index (KD).

Condition Equation

if φ < 45◦ KD = 0.96268 − 1.452KT + 0.27365K2
T + 0.04279K3

T + 0.000246ωss + 0.001189[(90 − φ) + δ]

else if ωss > 150◦ KD = 0.6563 − 2.893KT + 4.594K2
T − 3.23K3

T + 0.004ωss − 0.0023[(90 − φ) + δ]

else if ωss > 125◦ KD = 1.6586 − 4.412KT + 5.8K2
T − 3.1223K3

T + 0.000144ωss − 0.000829[(90 − φ) + δ]

else if ωss > 100◦ KD = 0.3498 + 3.8035KT − 11.765K2
T + 9.1748K3

T + 0.001575ωss − 0.002837[(90 − φ) + δ]

else if ωss > 81.4◦ KD = 1.6821 − 2.5866KT + 2.373K2
T − 0.5294K3

T − 0.00277ωss − 0.004233[(90 − φ) + δ]

else KD = 1.441 − 3.6839KT + 6.4927K2
T − 4.147K3

T − 0.0008ωss − 0.008175[(90 − φ) + δ]

Appendix B. Positive and Negative Azimuth Angle Combinations for Monterrey Tec
Campus, State of Nuevo León

Table A2 presents the solar irradiation in kWh/m2 calculated using the proposed
model for all combination with a positive surface azimuth angle from 0 to 15 degrees and
tilt angle from 0 to 60. Table A3 shows the same but with negative surface azimuth angle
from −5 to −15 degrees.

Table A2. Positive azimuth angle combinations for Monterrey Tec campus (latitude: 25.6544 N; longitude: 100.2874 W).

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual Average γ β

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 0 0
4.13 4.94 5.86 6.05 6.24 6.21 6.04 5.93 5.16 4.87 4.50 3.94 5.32 0 5
4.44 5.20 6.03 6.09 6.17 6.10 5.95 5.92 5.25 5.08 4.83 4.26 5.44 0 10
4.72 5.43 6.17 6.08 6.07 5.95 5.83 5.87 5.31 5.26 5.11 4.55 5.53 0 15
4.97 5.63 6.26 6.04 5.93 5.78 5.68 5.79 5.33 5.40 5.37 4.82 5.58 0 20
5.19 5.79 6.32 5.95 5.75 5.57 5.49 5.67 5.32 5.51 5.59 5.05 5.60 0 25
5.37 5.91 6.33 5.83 5.55 5.33 5.28 5.53 5.28 5.58 5.77 5.25 5.58 0 30
5.51 5.99 6.30 5.68 5.31 5.07 5.03 5.34 5.21 5.62 5.91 5.41 5.53 0 35
5.62 6.02 6.23 5.49 5.04 4.78 4.76 5.13 5.10 5.61 6.01 5.54 5.45 0 40
5.69 6.02 6.12 5.27 4.75 4.46 4.47 4.89 4.97 5.58 6.07 5.63 5.33 0 45
5.72 5.98 5.96 5.01 4.43 4.13 4.16 4.62 4.80 5.50 6.08 5.68 5.17 0 50
5.72 5.90 5.77 4.73 4.10 3.78 3.82 4.33 4.60 5.39 6.06 5.69 4.99 0 55
5.67 5.78 5.55 4.42 3.74 3.42 3.47 4.02 4.38 5.24 5.99 5.66 4.78 0 60

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 5 0
4.13 4.94 5.86 6.05 6.24 6.21 6.04 5.93 5.16 4.87 4.50 3.94 5.32 5 5
4.44 5.20 6.03 6.08 6.17 6.10 5.95 5.92 5.25 5.08 4.82 4.26 5.44 5 10
4.72 5.43 6.16 6.08 6.07 5.95 5.83 5.87 5.31 5.25 5.11 4.55 5.53 5 15
4.97 5.62 6.26 6.03 5.93 5.78 5.68 5.79 5.33 5.40 5.36 4.81 5.58 5 20
5.18 5.78 6.31 5.95 5.76 5.57 5.49 5.68 5.32 5.50 5.58 5.05 5.60 5 25
5.36 5.90 6.32 5.83 5.55 5.33 5.28 5.53 5.28 5.57 5.76 5.24 5.58 5 30
5.51 5.98 6.29 5.68 5.31 5.07 5.04 5.35 5.21 5.61 5.90 5.40 5.53 5 35
5.61 6.02 6.22 5.49 5.05 4.78 4.77 5.13 5.10 5.61 6.00 5.53 5.44 5 40
5.68 6.01 6.11 5.27 4.76 4.47 4.48 4.89 4.96 5.57 6.05 5.62 5.32 5 45
5.71 5.97 5.96 5.02 4.44 4.14 4.16 4.63 4.80 5.49 6.07 5.66 5.17 5 50
5.70 5.89 5.77 4.73 4.10 3.79 3.83 4.34 4.60 5.38 6.04 5.67 4.99 5 55
5.66 5.77 5.54 4.42 3.75 3.43 3.48 4.02 4.38 5.23 5.98 5.65 4.78 5 60
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Table A2. Cont.

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual Average γ β

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 10 0
4.13 4.93 5.85 6.05 6.24 6.21 6.04 5.93 5.16 4.86 4.50 3.93 5.32 10 5
4.43 5.19 6.02 6.08 6.17 6.10 5.95 5.92 5.25 5.07 4.81 4.25 5.44 10 10
4.71 5.42 6.16 6.08 6.07 5.96 5.83 5.87 5.30 5.24 5.10 4.54 5.52 10 15
4.95 5.61 6.25 6.03 5.93 5.78 5.68 5.79 5.32 5.38 5.35 4.80 5.57 10 20
5.16 5.76 6.30 5.95 5.76 5.58 5.50 5.68 5.31 5.49 5.56 5.03 5.59 10 25
5.34 5.88 6.31 5.83 5.56 5.34 5.29 5.53 5.27 5.56 5.74 5.22 5.57 10 30
5.48 5.95 6.28 5.68 5.32 5.08 5.05 5.35 5.20 5.59 5.87 5.38 5.52 10 35
5.58 5.99 6.20 5.49 5.06 4.80 4.78 5.14 5.09 5.59 5.97 5.50 5.43 10 40
5.65 5.98 6.09 5.28 4.77 4.49 4.49 4.91 4.96 5.54 6.02 5.58 5.31 10 45
5.68 5.94 5.94 5.02 4.46 4.16 4.18 4.64 4.79 5.47 6.03 5.63 5.16 10 50
5.67 5.85 5.74 4.75 4.13 3.82 3.85 4.35 4.60 5.35 6.01 5.64 4.98 10 55
5.62 5.73 5.52 4.44 3.78 3.46 3.51 4.04 4.37 5.21 5.94 5.61 4.77 10 60

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 15 0
4.12 4.93 5.85 6.05 6.24 6.21 6.04 5.93 5.16 4.86 4.49 3.93 5.32 15 5
4.42 5.18 6.02 6.08 6.17 6.10 5.96 5.92 5.24 5.06 4.80 4.24 5.43 15 10
4.69 5.40 6.14 6.07 6.07 5.96 5.84 5.87 5.29 5.23 5.08 4.52 5.51 15 15
4.92 5.59 6.23 6.03 5.94 5.79 5.69 5.79 5.32 5.36 5.32 4.77 5.56 15 20
5.13 5.74 6.28 5.95 5.77 5.59 5.51 5.68 5.30 5.47 5.53 4.99 5.58 15 25
5.30 5.84 6.29 5.83 5.57 5.36 5.30 5.53 5.26 5.53 5.70 5.18 5.56 15 30
5.44 5.92 6.25 5.68 5.34 5.10 5.06 5.36 5.19 5.56 5.83 5.33 5.50 15 35
5.53 5.95 6.18 5.50 5.08 4.82 4.80 5.15 5.08 5.55 5.92 5.45 5.42 15 40
5.60 5.94 6.06 5.28 4.80 4.52 4.52 4.92 4.94 5.51 5.96 5.53 5.30 15 45
5.62 5.89 5.91 5.04 4.49 4.20 4.21 4.66 4.78 5.43 5.97 5.57 5.15 15 50
5.61 5.80 5.72 4.76 4.17 3.86 3.89 4.38 4.59 5.31 5.94 5.57 4.97 15 55
5.55 5.67 5.49 4.46 3.82 3.51 3.56 4.08 4.37 5.16 5.87 5.54 4.76 15 60

Table A3. Negative azimuth angle combinations for Monterrey Tec campus (latitude: 25.6544 N; longitude: 100.2874 W).

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual Average γ β

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 −5 0
4.13 4.94 5.86 6.05 6.24 6.21 6.04 5.93 5.16 4.87 4.50 3.94 5.32 −5 5
4.44 5.20 6.03 6.08 6.17 6.10 5.95 5.92 5.25 5.08 4.82 4.26 5.44 −5 10
4.72 5.43 6.16 6.08 6.07 5.95 5.83 5.87 5.31 5.25 5.11 4.55 5.53 −5 15
4.97 5.62 6.26 6.03 5.93 5.78 5.68 5.79 5.33 5.40 5.36 4.81 5.58 −5 20
5.18 5.78 6.31 5.95 5.76 5.57 5.49 5.68 5.32 5.50 5.58 5.05 5.60 −5 25
5.36 5.90 6.32 5.83 5.55 5.33 5.28 5.53 5.28 5.57 5.76 5.24 5.58 −5 30
5.51 5.98 6.29 5.68 5.31 5.07 5.04 5.35 5.21 5.61 5.90 5.40 5.53 −5 35
5.61 6.02 6.22 5.49 5.05 4.78 4.77 5.13 5.10 5.61 6.00 5.53 5.44 −5 40
5.68 6.01 6.11 5.27 4.76 4.47 4.48 4.89 4.96 5.57 6.05 5.62 5.32 −5 45
5.71 5.97 5.96 5.02 4.44 4.14 4.16 4.63 4.80 5.49 6.07 5.66 5.17 −5 50
5.70 5.89 5.77 4.73 4.10 3.79 3.83 4.34 4.60 5.38 6.04 5.67 4.99 −5 55
5.66 5.77 5.54 4.42 3.75 3.43 3.48 4.02 4.38 5.23 5.98 5.65 4.78 −5 60
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Table A3. Cont.

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual Average γ β

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 −10 0
4.13 4.93 5.85 6.05 6.24 6.21 6.04 5.93 5.16 4.86 4.50 3.93 5.32 −10 5
4.43 5.19 6.02 6.08 6.17 6.10 5.95 5.92 5.25 5.07 4.81 4.25 5.44 −10 10
4.71 5.42 6.16 6.08 6.07 5.96 5.83 5.87 5.30 5.24 5.10 4.54 5.52 −10 15
4.95 5.61 6.25 6.03 5.93 5.78 5.68 5.79 5.32 5.38 5.35 4.80 5.57 −10 20
5.16 5.76 6.30 5.95 5.76 5.58 5.50 5.68 5.31 5.49 5.56 5.03 5.59 −10 25
5.34 5.88 6.31 5.83 5.56 5.34 5.29 5.53 5.27 5.56 5.74 5.22 5.57 −10 30
5.48 5.95 6.28 5.68 5.32 5.08 5.05 5.35 5.20 5.59 5.87 5.38 5.52 −10 35
5.58 5.99 6.20 5.49 5.06 4.80 4.78 5.14 5.09 5.59 5.97 5.50 5.43 −10 40
5.65 5.98 6.09 5.28 4.77 4.49 4.49 4.91 4.96 5.54 6.02 5.58 5.31 −10 45
5.68 5.94 5.94 5.02 4.46 4.16 4.18 4.64 4.79 5.47 6.03 5.63 5.16 −10 50
5.67 5.85 5.74 4.75 4.13 3.82 3.85 4.35 4.60 5.35 6.01 5.64 4.98 −10 55
5.62 5.73 5.52 4.44 3.78 3.46 3.51 4.04 4.37 5.21 5.94 5.61 4.77 −10 60

3.79 4.64 5.64 5.98 6.27 6.28 6.09 5.90 5.04 4.62 4.15 3.59 5.17 −15 0
4.12 4.93 5.85 6.05 6.24 6.21 6.04 5.93 5.16 4.86 4.49 3.93 5.32 −15 5
4.42 5.18 6.02 6.08 6.17 6.10 5.96 5.92 5.24 5.06 4.80 4.24 5.43 −15 10
4.69 5.40 6.14 6.07 6.07 5.96 5.84 5.87 5.29 5.23 5.08 4.52 5.51 −15 15
4.92 5.59 6.23 6.03 5.94 5.79 5.69 5.79 5.32 5.36 5.32 4.77 5.56 −15 20
5.13 5.74 6.28 5.95 5.77 5.59 5.51 5.68 5.30 5.47 5.53 4.99 5.58 −15 25
5.30 5.84 6.29 5.83 5.57 5.36 5.30 5.53 5.26 5.53 5.70 5.18 5.56 −15 30
5.44 5.92 6.25 5.68 5.34 5.10 5.06 5.36 5.19 5.56 5.83 5.33 5.50 −15 35
5.53 5.95 6.18 5.50 5.08 4.82 4.80 5.15 5.08 5.55 5.92 5.45 5.42 −15 40
5.60 5.94 6.06 5.28 4.80 4.52 4.52 4.92 4.94 5.51 5.96 5.53 5.30 −15 45
5.62 5.89 5.91 5.04 4.49 4.20 4.21 4.66 4.78 5.43 5.97 5.57 5.15 −15 50
5.61 5.80 5.72 4.76 4.17 3.86 3.89 4.38 4.59 5.31 5.94 5.57 4.97 −15 55
5.55 5.67 5.49 4.46 3.82 3.51 3.56 4.08 4.37 5.16 5.87 5.54 4.76 −15 60
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