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In the modern era of industrial revolution, urbanization, and deforestation of forest
land, carbon (C) sequestration through well-known activities called “land use, land-use
change and forestry (LULUCF)” could establish a win–win situation from a climate change
and sustainable development perspective [1]. Equally important are the socio-economic co-
benefits of C sequestration, given their implications on properly designed policies especially
on restoration and/or conservation of forests located in the tropical eco-regions. Further, the
huge contribution of C sequestered in the vegetation and its underlain soil helps to protect
socio-economic damages from climate change [2]. The literature suggests that a spatial
relationship between types of vegetation, C sequestration, and its dynamics are urgently
needed to estimate their socio-economic benefits [3]. However, it is crucial to design
this activity for environmentalists, foresters, policymakers, etc., due to the inadequate
availability of data, the methodologies used to predict the baseline values of C stocks, and
the inadequate facilities used to assess the broader environmental and socio-economic
effects. These key challenges are robust and need to be integrated with livelihood costs,
benefits, and carbon trade-offs [4].

In the past two decades, the Himalayas are vulnerable to LULC change and climate
change, from both ecological and socio-economic perspectives [2,5]. In the scientific frater-
nity, numerous efforts have been carried out to increase the C storage, particularly in the
Himalayan range. However, the presence of vegetation biomass and its underlying soils
is beneficial for ecosystem functions and services, assisting in the provision of adaptation
and maintenance of natural resource-based livelihoods [6]. The planned adaptation can
reduce the impacts of climate change and further overcome the risk of key vulnerability
but is found to be scarce or costly [7]. Mitigation measures to reduce greenhouse gas
(GHG; particularly CO2, N2O, and CH4) emissions in advance will diminish the potential
risk associated with most key vulnerabilities [8]. Usually, soil enriched with soil organic
carbon (SOC) could help to improve the soil’s structure, fertility and ecosystem services,
ecological health, and water-holding capacity [9]. The decomposition of organic matter
(OM) by microbes (aerobically and/or anaerobically) provides direct benefits through the
biogeochemical cycle and maintains the fertility status of the soil [10]. Proper land-use
management practices, when adopted in advance, could increase the carbon stock (vegeta-
tion and soil) and further help with climate change mitigation. However, a trade-off exists
as, to realize the benefits to livelihood and ecosystem services that can be derived from
SOC, it must be depleted through extensive crop production resulting from a net release of
carbon dioxide [11]. Additionally, the trade-offs between these goals must be identified.
These represent key challenges in the modern era [12].
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Generally, carbon enters the terrestrial ecosystem by the process of photosynthesis in
green plants, which assimilate carbon dioxide (CO2) and fix into organic forms, such as
SOC and inorganic carbon (SIC) pools, before subsequently returning to the atmosphere [5].
All these activities depend on the fertility status of the soil, its climate, and its management
operations [2,11]. Carbon sequestered in soil systems is determined based on: (i) the input
rate of OM and its decomposition rate; (ii) the physical protection of either intra-aggregate
and/or organo-mineral complexes; and (iii) the soil depths at which the organic carbon
(OC) is placed. The carbon of plants in the SOC pool enters either through above-ground
litter or root material and is further consumed by herbivores and their excreta. It then enters
into the SOC pool. Further, fragments of plants change into small particulate OM fractions
in the soil. The literature revealed that a large proportion of the carbon that enters the soil
through various sources returns to the atmosphere through the respiration activities [13]
carried out by both microbes and root systems (CO2 efflux falling in the range of from
16 to 95%). Trumbore [14] stated that assessments of autotrophic and/or heterotrophic
respiration in the soil system are difficult. Apart from this, Ghosh and Maiti [15] carried
out work on coal mining and its vicinity and suggested that open-cast coal mining usually
caused a complete loss of C-sink potential due to the destruction of vegetation and soil
systems, and thus increased C sequestration potential by restoring the mine spoils area.
The mechanism of afforestation activities is widely accepted.

In general, global carbon (C) is categorized into five large pools, where biotic carbon
(550 Pg; Pg denotes petagram = 1015 g) contributes the minimum share [16], followed by
atmospheric (800 Pg), soil-based (950 Pg in SIC and 2,460 Pg in SOC), geologic carbon
(5000 Pg), and maximum by oceanic carbon (38,000 Pg) [17]. It is estimated that annually
9 Pg of carbon is released into the atmosphere due to industrial activity and the burning
of fossil fuels. Similarly, about 1.5 Pg C was released due to changes in land use and
deforestation [18]. However, each year, 60 Pg C is exchanged between terrestrial ecosys-
tems and the atmosphere, which will become important in the next few decades, allowing
one to buy time while new C-saving, -capture, and -sequestration technologies are being
developed [19]. In the global context, soils contain 1500 Pg of SOC at depths of up to
1 m, which is two times that of atmospheric carbon. It is also estimated that 160 Pg of
OC is stored in the soils of agricultural croplands worldwide [20]. In a meta-analysis, the
long-term use of native forest and pastureland for agricultural productions usually reduced
SOC stocks to 42% and 59%, respectively. It is also suggested that if improved agricultural
management practices are adopted, world agricultural soils have the potential to sequester
C from 0.4–0.8 Pg per year. These improved management practices in agriculture, such as a
conversion to permanent pasture, crop rotation, and fertilizer application, usually increase
C in soil [21]. The soil organic matter (SOM) retained by grassland is usually influenced by
various management practices, which further impacted the rate of carbon sequestration.
Guo and Gifford [22], in their meta-analysis study, suggested that the conversion of crop-
land to pasture increases 30% of the soil carbon. Conversely, the conversion of arable land
through grassland decreases the soil C amount by close to 60% [22]. Other management
practices, such as increased forage production, irrigation, the use of fertilization, the sowing
of grasses and legumes, and introducing earthworms, also drastically increase SOM and
change the environmental chemistry [21].

The CO2 concentration in the atmosphere exceeded the pre-industrial period by ~40%,
and forests, agricultural crops, soil, and water bodies play an important role in reducing
its level, behaving as major carbon sinks [2,8,11]. Furthermore, numerous innovative
approaches have been implemented, proposed, and formulated in the recent past to mit-
igate the effects of excessive GHG emissions on global climate change. Reforestation
through the conversion of non-forest lands to forest land is undoubtedly an important
dimension of C sequestration. Recently, C sequestration in the terrestrial ecosystems is
an important clean development mechanism (CDM) and a long-lasting solution to the
mitigation and management of GHG emissions. The impact of socio-economic factors, such
as a rapid increase in population and economic growth, changing lifestyle, a change in

2
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LULC, and various environmental policies, are important driving forces for future climate
change [23,24]. Reducing CO2 in particular and other major GHG is considered the most
pressing environmental challenge [17]. As the United States is a signatory of the United
Nations Framework Convention on Climate Change (UNFCCC), it is actively involved in
finding the key solutions to the problems created by climate change.

It is evident from the literature that very few studies have been conducted on the carbon
dynamics, rate of C sequestration in the terrestrial ecosystem, and its medium-/long-term
impact on socio-economics and livelihoods. Although filling these gaps in the research is
an urgent task for sustainable environmental management, further state-of-the-art studies
on C sequestration and its dynamics (sink and/or source) combining soil sciences, forestry,
agriculture and their impact on socio-economics are missing. The present Special Issue
explores the C sequestration of vegetation and its underlying soil, deforestation, as well
as its impact on climate change, a vulnerability risk assessment for the climate, socio-
economic impacts, and the mitigation of future climate impact strategies. The theme
of the Special Issue extends across environmental policy (e.g., the Paris Agreement and
REDD+), C sequestration in the terrestrial ecosystems, the applicability of land use, and
the C credit generated at regional and global scales. This Special Issue is highly useful
for environmentalists, hydrologists, soil scientists, and policymakers to understand the C
sequestration potential of the vegetation and underlying soil in the terrestrial ecosystems
at the regional, national and global scale to further study the long-term impacts on socio-
economic development resulting from its implementation via climate change modeling.

Author Contributions: Conceptualization, A.K. and M.K.; writing—original draft preparation, A.K.

and M.K.; writing—review and editing, A.K., M.K. and M.C.P. All authors have read and agreed to

the published version of the manuscript.

Acknowledgments: We thank all the reviewers for their feedback on earlier versions of the manuscripts

in this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ji, Y.; Guo, X.; Zhong, S.; Wu, L. Financialization, Uncoordinated Development of Population Urbanization and Land Urbanization,

and Economic Growth: Evidence from China. Land 2020, 9, 481. [CrossRef]

2. Kumar, A.; Kumar, M.; Pandey, R.; ZhiGuo, Y.; Cabral-Pinto, M. Forest soil nutrient stocks along altitudinal range of Uttarakhand

Himalayas: An aid to Nature Based Climate Solutions. CATENA 2021, 207, 105667. [CrossRef]

3. Magnani, M.C.; Azofeifa, A.S.; Metternicht, G.; Laakso, K. Integration of remote-sensing based metrics and econometric models

to assess the socio-economic contributions of carbon sequestration in unmanaged tropical dry forests. Environ. Sustain. Indic.

2021, 9, 100100. [CrossRef]

4. Stringer, L.C.; Dougill, A.J.; Thomas, A.D.; Spracklen, D.; Chesterman, S.; Speranza, C.I.; Rueff, H.; Riddell, M.; Williams, M.;

Beedy, T.; et al. Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in

drylands. Environ. Sci. Policy 2012, 19, 121–135. [CrossRef]

5. Tamang, M.; Chettri, R.; Vineeta; Shukla, G.; Bhat, J.A.; Kumar, A.; Kumar, M.; Suryawanshi, A.; Cabral-Pinto, M.; Chakravarty, S.

Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern

Himalayas. Land 2021, 10, 387. [CrossRef]

6. Huo, C.; Chen, L. Research on the Impact of Land Circulation on the Income Gap of Rural Households: Evidence from CHIP.

Land 2021, 10, 781. [CrossRef]

7. Nor Diana, M.I.; Muhamad, N.; Taha, M.R.; Osman, A.; Alam, M.M. Social Vulnerability Assessment for Landslide Hazards in

Malaysia: A Systematic Review Study. Land 2021, 10, 315. [CrossRef]

8. Kumar, A.; Yu, Z.G.; Klemeš, J.J.; Bokhari, A. A state-of-the-art review of greenhouse gas emissions from Indian hydropower

reservoirs. J. Clean. Prod. 2021, 320, 128806. [CrossRef]

9. Holm, A.M.; Watson, I.W.; Loneragan, W.A.; Adams, M.A. Loss of patch-scale heterogeneity on primary productivity and

rainfall-use efficiency in Western Australia. Basic Appl. Ecol. 2003, 4, 569–578. [CrossRef]

10. Scholes, R.J.; Monteiro, P.M.S.; Sabine, C.L.; Canadell, J.G. Systematic long-term observations of the global carbon cycle. Trends

Ecol. Evol. 2009, 24, 427–430. [CrossRef]

11. Kumar, A.; Bhatia, A.; Sehgal, V.K.; Tomer, R.; Jain, N.; Pathak, H. Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring

Wheat System of Northwestern Indo-Gangetic Plains. Land 2021, 10, 701. [CrossRef]

3



Land 2022, 11, 51

12. Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination

to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [CrossRef]

13. Darrah, P.R. Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 1996, 187, 265–275. [CrossRef]

14. Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground dynamics. Ecol. Appl. 2000,

10, 399–411. [CrossRef]

15. Ghosh, D.; Maiti, S.K. Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN

Sustainable Development Goals 13 and 15. Land 2021, 10, 1112. [CrossRef]

16. Houghton, R.A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [CrossRef]

17. IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Mitigation of Climate Change. Working Group III;

Cambridge University Press: Cambridge, UK, 2007.

18. Global Carbon Project. Carbon Budget 2008: An Annual Update of the Global Carbon Budget and Trends. Available online:

http://www.globalcarbonproject.org/carbonbudget/index.htm (accessed on 1 December 2021).

19. Morgan, J.A.; Follett, R.F.; Allen, L.H.; Del Grosso, S.; Derner, J.D.; Dijkstra, F.; Franzluebbers, A.; Fry, R.; Paustian, K.;

Schoeneberger, M.M. Carbon sequestration in agricultural lands of the United States. J. Soil Water Conserv. 2010, 65, 6A–13A.

[CrossRef]

20. Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.;

de Courcelles, V.d.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon.

Agric. Ecosyst. Environ. 2013, 164, 80–99. [CrossRef]

21. Lam, S.; Chen, D.; Mosier, A.; Roush, R. The potential for carbon sequestration in Australian agricultural soils is technically and

economically limited. Sci. Rep. 2013, 3, 2179. [CrossRef]

22. Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [CrossRef]

23. Chen, L.; Ye, W.; Huo, C.; James, K. Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic

Development: Evidence from China. Land 2020, 9, 517. [CrossRef]

24. Bhardwaj, D.R.; Tahiry, H.; Sharma, P.; Pala, N.A.; Kumar, D.; Kumar, A. Influence of Aspect and Elevational Gradient on

Vegetation Pattern, Tree Characteristics and Ecosystem Carbon Density in Northwestern Himalayas. Land 2021, 10, 1109.

[CrossRef]

4



land

Article

Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring
Wheat System of Northwestern Indo-Gangetic Plains

Amit Kumar 1,2 , Arti Bhatia 1,*, Vinay Kumar Sehgal 3 , Ritu Tomer 1 , Niveta Jain 1 and Himanshu Pathak 4

����������
�������

Citation: Kumar, A.; Bhatia, A.;

Sehgal, V.K.; Tomer, R.; Jain, N.;

Pathak, H. Net Ecosystem Exchange

of Carbon Dioxide in Rice-Spring

Wheat System of Northwestern

Indo-Gangetic Plains. Land 2021, 10,

701. https://doi.org/10.3390/

land10070701

Academic Editor: Marko Scholze

Received: 28 January 2021

Accepted: 16 March 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Environment Science and Climate Resilient Agriculture (CESCRA), ICAR-IARI,

New Delhi 110012, India; amitkumar.csb@gov.in (A.K.); ritutomer@gmail.com (R.T.);

niveta.jain@icar.gov.in (N.J.)
2 Central Muga Eri Research and Training Institute Lahdoigarh, Jorhat 785700, India
3 Agricultural Physics, ICAR-IARI, New Delhi 110012, India; vk.sehgal@icar.gov.in
4 IVCAR-National Institute of Abiotic Stress Management, Baramati 413115, India;

himanshu.pathak@icar.gov.in

* Correspondence: arti.bhatia@icar.gov.in

Abstract: Rice growing under anaerobic conditions followed by spring wheat under an aerobic

environment differentially impact the net ecosystem exchange (NEE) of carbon dioxide (CO2) in rice-

wheat systems of the north-western Indo-Gangetic Plains (IGP). This is the first estimation of the NEE

in a rice-spring wheat sequence via the eddy covariance technique in the north-western Indo-Gangetic

Plains, which was partitioned into gross primary productivity (GPP) and ecosystem respiration (RE)

and correlated with the environmental variables. Higher CO2 uptake of −10.43 g C m−2 d−1

was observed in wheat during heading as compared to −7.12 g C m−2 d−1 in rice. The net up-

take of CO2 was 25% lower in rice. The average daily NEE over the crop season was −3.74 and

−5.01 g C m−2 d−1 in rice and wheat, respectively. The RE varied from 0.07–9.00 g C m−2 d−1 in rice

and from 0.05–7.09 g C m−2 d−1 in wheat. The RE was positively correlated with soil temperature

at 5 cm depth (0.543, p < 0.01) in rice and with air temperature (0.294, p < 0.01) in wheat. The GPP

was positively correlated with air temperature (0.129, p < 0.05) and negatively correlated with vapor

pressure deficit (VPD) (−0.315, p < 0.01) in rice. In wheat, GPP was positively correlated with air

temperature (0.444, p < 0.01) and soil moisture (0.471, p < 0.01). The rate of GPP over the crop duration

was nearly the same in both rice and wheat, however, the RE was higher in rice as compared to

wheat, thus, the ratio of cumulative RE/GPP was 0.51 in rice and much lower at 0.34 in spring wheat.

Rice contributed 46% and 43% to the annual totals of RE and GPP, respectively, while spring wheat

contributed 36% and 51%. The NEE of CO2 was higher in spring wheat at −576 g C m−2 d−1 as

compared to −368 g C m−2 in rice. Thus, while estimating the carbon sink potential in the intensively

cultivated northern IGP, we need to consider that spring wheat may be a moderately stronger sink of

CO2 as compared to rice in the rice-wheat system.

Keywords: net ecosystem exchange; ecosystem respiration; gross primary productivity; eddy covari-

ance micrometeorological technique

1. Introduction

Carbon dioxide (CO2) is an important greenhouse gas (GHG) that is emitted from agri-
cultural fields [1]. The concentration of CO2 in the atmosphere has substantially exceeded,
by about 40%, that of pre-industrial levels [1–5]. Forests, agricultural crops, soil and water
bodies contribute towards the reduction in CO2 and act as major sinks [6–9]. Quantification
of exchange of CO2 between agricultural soils and the atmosphere is important in order to
assess the global carbon budgets as CO2 accounted for 76% of total anthropogenic GHG
emissions in 2010 [1–5,10]. Rice (Oriyza sativa) and wheat (Triticum aestivum) are the two
important crops that are essential for global food security. The rice–wheat cropping system
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is the largest agricultural production system in the world, occupying around 13.5 mil-
lion hectares (M ha) in South Asia [11] and around 13 M ha in China [12]. In China, the
rice harvest is followed by winter wheat (7–8 month duration), whereas in South Asia,
where the winters are milder, the wheat grown during the winter is called spring wheat
and is of shorter duration (4 months). In South Asia, 85% of the rice-wheat area lies in
the Indo-Gangetic Plains (IGP) which produce about 50% of the total food grains from
this region [13].

In the rice–wheat system of the study region, rice is grown during the summer months
from July to October when the climate is warm and sub-humid, whereas the successive
wheat is grown from December to April in a relatively dry winter [14]. There is a high level
of variation in the temperatures and the amount of rainfall received between the rice and
wheat crop growing seasons. Rice and wheat are grown not only in contrasting climatic
conditions but the agricultural practices of tillage, manure, fertilizer, seeding, transplanting
and water management also differ [15]. Rice is transplanted and grown in submerged
anaerobic soil, whereas wheat is grown in upland aerobic soil [16]. Rice is a tropical crop,
while wheat is a winter crop, with temperature playing a key role in their growth due to its
influence on photosynthetic efficiency [17]. The contrasting soil environments influence
the carbon and nitrogen dynamics, affecting the degradation of soil organic matter and,
thus, the net ecosystem exchange (NEE) of CO2.

Net ecosystem exchange (NEE) is a measure of the net exchange of C between an
ecosystem and per unit ground area of the atmosphere and is a primary gauge of ecosystem
C sink strength [18]. GPP represents the gross CO2 uptake through photosynthesis by
plants, whereas ecosystem respiration (RE) is the gross CO2 release from the ecosystem
through both autotrophic and heterotrophic respiration [19]. Rice and wheat ecosystems
may be significant sinks/sources of CO2, depending on the soil type, crop duration, man-
agement and the climate of the region. In Asian regions, measurements of net ecosystem
CO2 exchange have been conducted in rice and wheat [12,20,21]. The crop duration of both
rice and spring wheat in the South Asian region is about 100 to 120 days, unlike the winter
wheat which has a much longer duration. Winter wheat is mostly grown as a rain-fed crop,
whereas spring wheat is grown under irrigated conditions in the IGP [22].

Chen et al. [12] quantified the NEE of CO2 in a rice-winter wheat cropping system
in the North China Plain, however, no measurements have been collected of NEE in
South Asian rice-spring wheat systems, where two contrasting crops are grown in one
annual cycle. The factors controlling CO2 gas exchange between the rice canopy and
atmosphere are different from those in upland wheat fields, as rice is flooded during
most of its cultivation period, thus, leading to a great deal of uncertainty in the net CO2

budgets [23]. Thus, to reduce the uncertainties that exist in the global CO2 budgets of
rice-spring wheat systems, that occupy nearly 13.5 M ha of land area in South Asia, the
present investigation was conducted with the objective to understand (1) the differences in
NEE, RE and GPP between rice and spring wheat grown in rice-wheat rotation systems,
(2) compare the characteristics of diurnal and daily variations in the CO2 flux, (3) analyze
the environmental factors that affect these variations in NEE, RE and GPP in the north-
western Indo-Gangetic Plains.

2. Material and Methods

2.1. Site Description

This study was conducted in a Typic Ustochrept soil at the experimental farm of the In-
dian Agricultural Research Institute (IARI) (latitude 28◦38′37.7′ ′ N, longitude 77◦09′09.8′ ′ E,
207 MSL) Delhi, India, where an eddy covariance (EC) flux tower was installed in a rice–
wheat crop rotation system. The area provided a sufficient upwind fetch of homogenous
vegetation required for measuring fluxes using the EC technique. The climatic variables
during the rice and wheat season are shown in Figure 1.
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2.2. Climatic Description

The climate of the region is subtropical and semi-arid, receiving about 750 mm of
rainfall annually, 80% of which occurs during June to October. The mean maximum and
minimum temperatures are 33 and 23 ◦C during the rice and 25 and 11 ◦C during the wheat
growth periods.

2.3. Soil Properties

The alluvial soil of the study site had a bulk density of 1.42 g cm−3, pH (1:2 soil:water)
of 8.0, electrical conductivity of 0.47 dS m−1, and was loamy in texture. It had total N,
organic carbon, Olsen P, and ammonium acetate extractable K contents of 0.31, 4.6, 0.008,
and 0.14 g kg−1, respectively.

2.4. Crop Management

A conventionally puddled rice field was uniformly transplanted on 11 July 2013, with
a spacing of 20 cm (row to row) × 15 cm (hill to hill) distance. The field was irrigated when-
ever the moisture content dropped below the saturation level during the growing season,
except during the last two weeks before harvesting. Wheat was sown on 16 December
2013, maintaining a plant spacing of 20 cm (row to row) × 5 cm (plant to plant) distance.
Urea, at a rate of 120 kg N ha−1, was applied in three splits of 60, 30, and 30 kg N ha−1

at −1, 47, and 66 days after transplanting (DAT) in rice and −1, 25, and 67 days after
sowing (DAS) in wheat. The wheat crop was irrigated at the crown root (22 DAS), tillering
(44 DAS), late jointing (62 DAS), flowering (85 DAS) and milking (97 DAS). Phosphorus
(26.2 kg ha−1) and K (50 kg ha−1) were incorporated into the soil at the time of sowing
using single super phosphate (SSP) and muriate of potash (KCl), respectively, in both rice
and wheat. No pesticides were applied during crop cultivation. The crop leaf area index
was measured using a plant canopy analyzer (LAI-2000) at the key growth stages. The
yield related parameters were measured at the harvest of the crops. Total plant biomass of
1335 and 1392 gm−2 was recorded at harvest in rice and wheat, respectively.

2.5. Eddy Covariance Measurements

Flux densities of CO2, momentum, as well as the friction velocities over the rice
and wheat canopy were measured by the EC technique from 1 July 2013 to 30 June 2014
from pre-transplanting/sowing to harvesting in both the crops and also during the fallow
periods after rice and wheat. A sonic anemometer (CSAT3, Campbell Scientific, Logan,
UT, USA) measured the three-dimensional wind and the sonic, or virtual, temperature
along the three non-orthogonal sonic axes. The fluctuations in CO2 and H2O density were
measured using an LI-7200 (LI-COR, Lincoln, NE, USA) close-path infrared gas analyzer.
The data from CSAT3 and LI-7200 were sampled at 10 Hz using a CR3000 (Campbell
Scientific, Logan, UT, USA) data logger. The Edire software processed the data in real time
and computed the CO2 flux and frictional velocity along with the covariance, standard
deviations, and means on a half-hourly basis. NEE is usually calculated as the sum of eddy
CO2 flux (Fc) and CO2 storage change (Fs) within the airspace below the flux-measuring
height [24]. In this study, the Fs term was neglected for the NEE calculation as the canopy
height was relatively low at less than 1 m. In the current study, we use the term NEE,
which indicates CO2 flux only.

2.6. Auxiliary Measurements

The LI-7200 was installed at 2.05 m height with a northward, eastward and vertical
sensor separation of −5.5 cm, +5.0 cm and 0 cm from the CSAT3, respectively. The
north off set was 55◦. A net radiometer (CNR4, Kipp&Zonan, Delft, the Netherlands),
photosynthetically active radiation (PAR) sensor (PQS 1, Kipp&Zonan) were installed at
2.90 m height, whereas, the air temperature (AT) probe (Pt 100, Rotronic, Bassersdorf,
Switzerland) and relative humidity (RH) probe (Hygro Clip S3, Rotronic) were installed
at 2.0 m above the soil surface. Rainfall was measured with a tipping bucket rain gauge

7



Land 2021, 10, 701

(TE-525, Texas Instruments, Dallas, TX, USA). Data of these slow sensors were averaged
over a 30-minute period. The system received its power from four 12 V, 100AH DC
batteries and was also supported by an AC connection in parallel on foggy and cloudy
days. Vapor pressure deficit (VPD) was estimated from the vapor pressure monitored by
the LI-7200. The leaf area index (LAI) was periodically measured by a canopy analyzer
LI 2200 (LICOR, Lincoln, NE, USA) at the vegetative, reproductive and maturity stages.
Half-hourly measurements of soil moisture (SM), heat flux (SHF) and temperature (ST)
were taken at 5 cm soil depth using a water content reflectometer (CS 616-L), soil heat flux
sensor (HFT3 transducer) and soil and water temperature probe (107 B), respectively.

2.7. Quality Control of Flux Data

The flux data were subjected to quality control checks to screen data for instrument
malfunctions, rainfall, etc. A diagnostic output of LI-7200: automatic gain control (agc_li)
was used to filter out half-hourly values when the instrument was performing poorly and
for identification of outliers. Spike removal was carried out and then corrections for density
fluctuations [25] were performed for variations in temperature and water vapor. The coordi-
nate rotation correction was carried out following the method by Kaimal and Finnigan [26].
Sonic temperature correction for humidity was applied as per Van Dijk et al. [27]. The time
lag compensations due to the sensor separations between CSAT-3 and LI-7200 were applied
as per Fan et al. [28]. Data quality was checked by applying the stationarity test and integral
turbulence characteristics test [29] to the computed covariance. The rejection rate was 40%
(10% for non-stationary, 40% for integral turbulence characteristics and 14% for both tests)
in rice and 40% (15% for non-stationary, 40% for integral turbulence characteristics and
16% for both tests) in wheat. The rejection rate of data was larger when the canopy was
small due to lower magnitude of CO2 flux. The u* threshold of 0.1 m s−1 was estimated
by plotting the nighttime CO2 flux (Fc) and frictional velocity (u*). Gap-filling of missing
or discarded data was done by simple linear interpolation (1–3 consecutive missing data)
and mean diurnal variation method (up to 4–6 consecutive missing data) and by look-up
table approach for more than 6 h missing data using standard approach and available
data points.

2.8. Partitioning NEE into GPP and RE

Net ecosystem productivity is the net gain or loss of C from the ecosystem and was
the difference of gross primary production (GPP) and ecosystem respiration (RE).

NEP = GPP − RE (1)

The net ecosystem production (NEP) is equivalent to net ecosystem exchange (NEE)
but has an opposite sign [30]. Negative NEE or positive NEP indicates CO2 uptake by
the ecosystem.

NEP = −NEE (2)

GPP represents CO2 assimilation by photosynthesis of the plant during daytime, while
RE represents the CO2 released through respiration from the soil, aboveground plant parts,
and the roots of the plants during day and night. As plant respiration during the day is
unknown, direct measurement of GPP and RE is difficult [31]. The plant respiration rate
was assumed to be the same during the day and night [32]. We estimated the daytime
respiration RE (D) using the nighttime average of respiration RE (N). To partition NEE
into photosynthetic and respiratory components, we applied the conventional method
of Falge et al. [33], in which GPP and RE (D) are expressed as empirical functions of air
temperature. We estimated RE (D) using the relationship between nighttime NEE and air
temperature. At nighttime, as GPP is zero, the NEE is taken to be equal to RE (N). The RE
(N) increases as an exponential function of increasing temperature and is represented as:

RE = A.eBT (3)
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where, A and B are empirical constants; B is related to the temperature coefficient Q10,
as B = ln(Q10)/10, and A indicates RE at 0 ◦C [24]. We divided the whole study period
into different growth stages viz. early vegetative (EVS), tillering, stem elongation, booting,
heading, ripening and harvesting. For each growth period, the nighttime RE (filtered
using u* > 0.1 ms−1) was separated into 1 ◦C wide temperature bins and averaged, A and
B constants were determined by fitting the nighttime NEE as a function of averaged air
temperature using the least squares method. At each growth stage, a regression analysis
was performed between GPP and PAR [34]. The data after gap filling were used for
averaging the CO2 fluxes at different growth stages. The duration of each stage was used
as the weight while computing the CO2 flux for the whole season. Linear Regression and
partial correlation of the datasets were carried out using SPSS (16.0).

3. Results

3.1. Climatic Variability during Rice and Wheat Growing Season

Climatic conditions differed considerably between the two seasons of the study
(Figure 1). Solar radiation and wind speed were generally higher during the wheat season
than in rice. Higher rainfall (above seasonal average) was recorded during the rice season
in 2013 and total rainfalls of 1198 and 168 mm were recorded during the kharif (rice) and
rabi (wheat) season, respectively. In rice, most of the rain occurred during July, August and
September due to the south-west monsoon, while in wheat, it rained mostly in February
and March (non-monsoonal rainfall) due to western disturbances. The maximum air tem-
perature during the growth of rice was higher, while the minimum air temperature was
lower in wheat. The average air temperature from 1 July to 31 October 2013, was 28.4 ◦C
and from 1 December 2013, to 30 April 2014, was 17.7 ◦C and was higher by 1.0 and 0.9 ◦C
in rice and wheat than the seasonal averages [35], respectively. The average air temperature
was the highest at the post transplanting stage (30.5 ◦C) in rice and then decreased as crop
growth progressed. It decreased to 28.9 ◦C at maximum tillering. This decrease was accom-
panied by an increase in precipitation. The average air temperature again increased at the
booting stage in rice (29.8 ◦C). During wheat, air temperature decreased initially till early
in the vegetative stage and then subsequently increased. Total rainfall varied significantly
between the rice and wheat crops. A total of 1053 mm and 155 mm rainfall was received
during rice and wheat crop growth periods, respectively (Figure 1). The maximum rainfall
in rice was received corresponding to the maximum tillering till panicle initiation (425 mm)
stage, and in wheat corresponding to the stem elongation stage (54.8 mm). Average wind
speeds of 4.25 and 4.67 km h−1 were recorded during the rice and wheat growth periods,
respectively. Wind from east (E) and east-northeasterly (ENE) directions prevailed during
most of the rice crop growth period, while during the wheat period, northwest (NW) and
west-northwesterly (WNW) winds prevailed. The average sunshine hours during rice
and wheat growth periods were 4.76 and 5.08, respectively. Low levels of solar radiation
during the rice and wheat crop were associated with the rainy and winter foggy seasons in
northern India, respectively.

3.2. Diurnal Variation in NEE

Throughout the crop growth period, NEE was negative during the daytime (uptake)
and positive during the nighttime (release) (Figure 2). A higher negative NEE was observed
during the day in wheat as compared to rice. The average diurnal NEE varied between
+0.21 to −0.70 in rice and between +0.20 to −0.97 mgm−2s−1 in the wheat crop. The daytime
NEE decreased with the progress of the crop season in both rice and wheat, reaching a peak
average NEE of −0.7 mgm−2s−1 in rice (booting-flowering) and −0.97 mgm−2s−1 in wheat
(heading–ripening). The nighttime average NEE increased marginally during the booting
to ripening stages in rice, however, in wheat it showed a steady increasing trend from the
early vegetative stage, reaching a peak at the heading-ripening stage. A distinct diurnal
pattern in NEE was observed from the early vegetative to ripening stage in rice and wheat,
which followed a reverse pattern to that of the PAR during the daytime (Figure 3A,B).
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Figure 1. Variations in (A) relative humidity and soil moisture (B) air temperature and soil moisture

during the study period.

 

Figure 2. Daytime and nighttime net ecosystem exchange (NEE) in rice and wheat over the crop season.
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(A) 

Figure 3. Cont.
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(B) 

Figure 3. (A). Diurnal variation in NEE (empty circle) and incident photosynthetically active radiation

(PAR) (filled circle) at half hourly interval, averaged for different rice growth stages. (B). Diurnal

variation in NEE of CO2 (empty circle) and incident PAR (filled circle) at half hourly interval, averaged

for different wheat growth stages.
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3.3. Seasonal Variation in Daily NEE

The daily average NEE over the crop season varied from+0.67 to −8.83 g C m−2 d−1

in rice (Figure 4A) and from +01.07 to −11.96 g C m−2 d−1 in wheat (Figure 4B). The daily
average NEE increased with the rice growth stage and peaked during the reproductive
stage. During the reproductive stage of heading–flowering, the NEE was −8.83 g C m−2 d−1

in rice and −11.96 g C m−2 d−1 in wheat. The average daily NEE for the crop season
was 25% lower in rice at −3.74 g C m−2 d−1, as compared to −5.01 g C m−2 d−1 in
wheat (Table 1). Wheat had a cumulative NEE of −576 g C m −2, as compared to rice at
−368 g C m−2 (Table 1). The fallow period duration, after rice and wheat, was 61 and
91 days long, respectively. The NEE at the harvest of rice and wheat were 0.35 g C m−2 d−1

and 0.46 g C m−2 d−1, respectively (Table 1). The cumulative NEE was higher in the fallow
period after wheat at 32.76 g C m−2, as compared to after rice at 17.08 g C m−2.

Figure 4. Daily mean net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosys-

tem respiration (RE) at different growth stages of rice (A) and wheat (B) in northwestern Indo-

Gangetic Plains (IGP).
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Table 1. NEE, RE and GPP at different rice and wheat growing stages.

Crop/Stage

Crop/Stage Duration (Days) Rate (g C m−2 d−1) Cumulative (g C m−2)

Wheat Rice
Wheat Rice Wheat Rice Wheat Rice Wheat Rice Wheat Rice Wheat Rice

NEE RE GPP NEE RE GPP

Pre-sowing/Pre-
transplanting

4 4 0.69 0.88 0.7 0.89 0.01 0.01 2.76 3.52 2.8 3.56 0.04 0.04

Sowing-
germination/Post-

Transplanting
9 6 −0.27 −0.21 0.12 0.11 0.39 0.32 −2.43 −1.26 1.08 0.66 3.51 1.92

Early Vegetative
Stage

11 14 −1.28 −0.31 0.79 0.42 2.07 0.73 −14.08 −4.34 8.69 5.88 22.77 10.22

Tillering 27 11 −3.6 −2.25 2.01 0.99 5.61 3.24 −97.2 −24.75 54.27 10.89 151.47 35.64

Stem Elongation 28 19 −6.63 −3.41 3.21 3.53 9.84 6.94 −185.64 −64.79 89.88 67.07 275.52 131.86

Booting 10 13 −8.1 −6.54 3.77 6.71 11.87 13.25 −64.8 −85.02 30.16 87.23 94.96 172.25

Heading 15 18 −10.43 −7.12 5.23 7.3 15.66 14.42 −125.16 −128.16 62.76 131.44 187.92 259.56

Ripening 15 17 −4.34 −3.4 2.85 4.92 7.18 8.32 −86.8 −57.8 57.05 83.64 143.6 141.44

Harvest 2 2 0.46 0.35 1.04 0.86 0.58 0.51 0.92 0.7 2.08 1.72 1.16 1.02

Average/Total
(Crop period)

115 98 −5.01 −3.74 2.64 3.22 7.65 7.68 −576 −368 304 387 880 753

Fallow (after) 91 61 0.4 0.28 0.87 1.02 0.51 0.74 32.76 17.08 79.17 62.22 46.41 45.14

3.4. RE and GPP at Different Crop Growth Stages

The RE varied from 0.07 to 9.93 g C m−2 d−1 in rice and 0.04 to 7.08 g C m−2 d−1

in wheat depending upon the crop stage (Figure 4A,B). The rate of RE during the pre-
transplanting and pre-sowing period in rice and wheat was observed to be 0.89 and
0.7 C g m−2 d−1, respectively (Table 1).

The average rate of GPP over the different growth stages varied from 0.32 to
14.42 g C m−2 d−1 in rice and 0.39 to 15.66 g C m−2 d−1 in wheat (Table 1). The highest
GPP rate was observed during heading (14.42 and 15.66 g C m−2 d−1) in both of the
crops. The cumulative GPP was much higher in wheat at −888 g C m−2 as compared
to −753 g C m−2 in rice at our study site. Total plant biomasses of 1335 and 1392 gm−2

were removed at harvest in rice and wheat, respectively. The GPP rate increased with
increasing LAI (vegetative stage: LAI 0.9, GPP 2.42 g C m−2 d−1; reproductive: LAI 4.3,
GPP 13.83 g C m−2 d−1; maturity: LAI 1.9, GPP 7.18 g C m−2 d−1) in rice and in wheat
(vegetative: LAI 1.3, GPP 4.51 g C m−2 d−1; reproductive: LAI 4.6, GPP 13.76 g C m−2 d−1;
maturity: LAI 2.4, GPP 8.32 g C m−2 d−1).

3.5. Environmental Variables in Rice and Wheat

Differences in soil temperature at 5 cm depth were observed between rice and wheat.
The diurnal average soil temperature varied between 27.74 to 28.92 ◦C in rice and from
15.38 to 17.53 ◦C in wheat (Figure 5), depending on the intensity of incident solar radiation.
The diurnal mean air temperature ranged from 31.8 to 38.2 ◦C in rice and from 16.3 to
27.6 ◦C in wheat, respectively (Figure 5) and the diurnal RH varied between 60–85% in rice
and 40–80% in wheat. The relative humidity (RH) and air temperature (AT) showed an
opposite diurnal pattern with respect to each other. Soil heat flux (SHF) at 5 cm soil depth
was positive from about 12:00 hr to 20:30 hr and was negative from 21:00 hr to 11:30 hr in
both rice and wheat. The SHF ranged from −12.2 Wm−2 (7:00 hr) to +15.9 Wm−2 (15:30 hr)
in rice and from −15.6 Wm−2 (8:00 hr) to +16.2 Wm−2 (15:30 hr) in wheat. The diurnal
values of incident PAR and Net radiation (NR) were higher during the rice than in the
wheat season (Figure 5). The peak NR value in rice was 370.3 Wm−2 and 316.7 Wm−2

in wheat, with corresponding incident PAR values of 1742 µ mol m−2s−1 in rice and
1519 µ mol m−2s−1 in wheat. The average VPD was 1.75 kPa in rice and 1.48 kPa in wheat.
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Figure 5. Average diurnal pattern of relative humidity (RH), air temperature (AT), soil temperature (ST), soil heat flux

(SHF), net radiation (NR)and PAR in rice (empty circle) and wheat (filled circle).

4. Discussion

4.1. Diurnal and Seasonal Variation in NEE

The average nighttime NEE was, on average, 0.11 and 0.12 mgm−2s−1 during the
rice and wheat growth periods, respectively. These values are close to those measured by
Miyata et al. [36] in Japan (<0.2 mgm−2s−1) and Gao et al. [37] in China (0.12 mgm−2s−1)
in intermittently flooded rice paddies. The mean diurnal variation of NEE showed that
both rice and wheat crops acted as net CO2 sinks, as CO2 uptake during the day was
higher than emission after daylight hours. The highest values of half-hourly NEE were
observed during the reproductive stage and the variations in NEE followed those in
incident PAR. Zhang et al. [38] also observed relatively large fluctuations in diurnal NEE in
maize cropland, orchard, wetland and vegetable field ecosystems with highest CO2 uptake
levels observed in maize crops due to the differences in the light saturation point (α) and
carbon absorption capacities of the crops.

The highest leaf area index in rice (4.3) and wheat (4.6) was observed during the repro-
ductive stages of heading to flowering. As PAR values increased beyond 2000 µ mol m−2 s−1,
there was an increase in carbon assimilation in rice and wheat. As the wheat crop advanced
to the heading stage, the peak NEE increased to −1.48 mg CO2 m−2 s−1 with a PAR of
2342 µ mol m−2 s−1. Higher positive values of NEE at harvesting could be attributed to
increased CO2 emission from soil and plant respiration than uptake level by the plants.

The magnitude of NEE in rice was lower during the vegetative stages and reached
its maximum during reproductive stages of heading-flowering at −8.83 g C m−2 d−1 in
rice and −11.96 g C m−2 d−1 in wheat. Similar values of daily NEE between vegetative
and reproductive stages were reported for rice [34,39] and wheat [40]. With the onset of
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senescence during ripening and maturity, the daily NEE became less negative in rice and
turned positive at harvesting.

The daily average NEE during wheat and rice in our study was −5.01 and −3.74 g C m−2,
respectively, showing that spring wheat was a stronger CO2 sink than rice. Chen et. al. [12],
in a rice–winter wheat rotation system in China, observed a daily NEE of −2.35 and
−3.96 g C m−2 in wheat and rice, respectively, even though (Table 4) the winter wheat
field took up more CO2 on a seasonal basis as compared to the rice paddy fields because
of the longer growing season. Much higher levels of CO2 uptake have been reported in
maize as compared to soybean and wheat in other eddy covariance studies. Baker and
Griffis [41] observed a maximum CO2 uptake of 51.3 g CO2 m−2 d−1 in a maize crop in
maize/soybean ecosystem in the USA which was similar to the maximum CO2 uptake
of 45.8 g CO2 m−2 d−1 in a maize ecosystem in the North China Plain [42]. The CO2

uptake levels are different for crops such as corn, as compared to soybean and wheat,
due to biochemical and physiological differences between C3 (soybean, wheat) and C4
crops (maize).

Water management, duration and weather conditions are factors which differ in
crops and lead to differences in the NEE and uptake of CO2. In our study, the soil and
air temperatures were significantly different between the rice and wheat crop seasons
impacting the NEE. The rice duration was 98 days and was irrigated every 2–3 days,
whereas wheat irrigated for a duration of 115 days was irrigated five times. The cumulative
NEE at our site in the rice–wheat system was higher in wheat (−576 g C m−2) as compared
to rice (−368 g C m−2). A much higher NEE in rice of −448 g C m−2 was observed
by Bhattacharya et al. [19] in eastern India in a rice-rice system. Alberto et al. [34] and
Saito et al. [24] reported an NEE of −258 and −398 g C m−2 in rice. Higher NEE values have
been reported in winter wheat in Germany by Schmidt et al. [43] at −627 and −537 g C m−2

in (Table 4) because of the longer crop growth duration compared to spring wheat.
The NEE at the harvest of rice was positive at 0.35 g C m−2 d−1 due to the respiration

losses by the root residues (Table 1). The NEE was more positive at 0.46 g C m−2 d−1

after the wheat harvest due to higher soil temperatures resulting in higher respiration
losses (1.04 g C m−2 d−1) in wheat as compared to rice. More weed growth in the fallow
period after rice resulted in a higher average GPP at 0.74 g C m−2 d−1 as compared to
0.54 g C m−2 d−1 in the fallow period after wheat growth (Table 1). Higher soil tempera-
tures and low soil moisture in the fallow period after wheat resulted in lower GPP values
as compared to the fallow period after rice. Bhattacharya et al. [19] also reported a resultant
NEE of 22 g C m−2 in the summer fallow period as the RE was balanced by photosynthetic
CO2 assimilation. Moureaux et al. [44] reported a contribution of 20 g C m−2 due to
residues, which represents 5% of the seasonal carbon budget. The RE and GPP during the
fallow periods contributed to 17% and 5% of the annual cumulative RE and GPP.

4.2. Effect of Crop Growth, LAI and Air Temperature on GPP

The rate of GPP was significantly higher from booting to heading due to increased
daytime CO2 uptake, resulting in higher NEE values of −6.54 and −8.10 at booting and
−7.12 and −10.43 g C m−2 d−1 at heading in rice and wheat, respectively, due to increases
in LAI which increased the canopy light interception efficiency. The GPP increased with
LAI up to heading, but the GPP per unit leaf area later decreased because of increased
shading of the lower leaves in the canopy.

The GPP was significantly correlated to AT in both rice (0.129, p < 0.05) and wheat
(0.443, p < 0.01). Maximum CO2 uptake was observed at 26–31 ◦C and 10–26 ◦C in rice and
wheat, respectively. The AT started to decrease after the reproductive stage in rice, thereby
reducing the plant maintenance respiration, which produced a greater abundance of assimi-
lates available for growth and yield [45]. The rate of GPP decreased after ripening in wheat.
In wheat, higher temperatures after the reproductive stage stimulated photorespiration
and the wheat plants reduced their photosynthetic activity, thereby lowering the GPP after
ripening. Similar to our results, higher GPP levels from the vegetative to reproductive peri-
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ods were reported in rice by Campbell et al. [39] and higher net assimilation fluxes ranging
between −9 and −13 g C m−2 d−1 were reported in winter wheat by Béziat et al. [46].
Plants may reduce their photosynthetic activity, thereby lowering CO2 uptake at higher
temperature due to stomatal closure in response to increased transpiration losses.

4.3. Effect of NR, PAR, SM, RH and VPD on GPP

After sunrise, the NR gradually increased, reaching its peak value at around noon
and before starting to decline gradually. The same trend was also observed in PAR. During
the daytime, the GPP increased as there was greater CO2 uptake with increasing PAR. A
significant positive correlation was observed between PAR and GPP in both rice and wheat
(0.225, 0.348; p < 0.01), respectively (Table 2). The GPP is mainly dependent on the amount
of PAR absorbed (APAR) by green leaf area of the crop canopy [47].

Table 2. Partial correlation coefficient between ecosystem respiration (RE), gross primary productivity (GPP) and related

environmental variables.

Environmental Variables
Ecosystem Respiration (RE)

Environmental Variables
Gross Primary Productivity (GPP)

Rice (N = 4712) Wheat (N = 5472) Rice (N = 4712) Wheat (N = 5472)

AT 0.060 ns 0.294 ** AT 0.129 * 0.443 **

ST 0.543 ** 0.010 ns PAR 0.225 ** 0.348 **

SM −0.088 ns −0.322 ** VPD −0.315 ** −0.147 ns

SHF 0.084 ns 0.111 ns NR 0.248 * 0.099 ns

RH 0.140 ns −0.121 ns SM 0.172 ns 0.471 **

GPP 0.917 ** 0.698 **

For each pair of correlation all the other variables in the column are the covariates; * Significant at (p < 0.05); ** Significant at (p < 0.01);
ns = non-significant; N is number of observations.

When the PAR value was greater than 2500 µ mol m−2 s−1, the maximum carbon
assimilation rate was observed at the booting stage in rice, whereas a PAR of more than
2000 µ mol m−2 s−1 in wheat led to a greater CO2 uptake in wheat. These differences in
the rates of CO2 uptake were due to the different light response parameters of rice and
wheat. Apparent quantum yield (α) and Pmax (maximum photosynthetic capacity at light
saturation) varied at different growth stages according to the crop phenology (Table 3).
The highest P max was observed at the booting stage in rice, whereas it was highest at the
heading stage in wheat. The Pmax values ranged from 0.347 to 2.412 mg CO2 m−2s−1 for
rice and from 0.461 to 2.841 mg CO2 m−2s−1 in wheat. The initial value of α was in the
range of 0.0007 to 0.0008 mg CO2 µ mole photon−1 and started to increase at the vegetative
stage as the plants started to grow rapidly. It was the highest at the heading stage in both
rice and wheat. The average annual α and Pmax values in our study were a little lower
than those reported by Bao et al. [48] in a maize–winter wheat rotation system and by
Chen et al. [12] in a rice–winter wheat system. The ecosystem α and Pmax values, could
be affected by the differences in air temperature, vapor pressure deficit (VPD), and other
biotic factors, such as the green leaf area.

Table 3. Apparent ecosystem quantum yield (α), the hypothetical maximum of GPP (Pmax), at different growth stages in

rice and wheat.

Growth Stage
Rice Wheat

α (mg CO2 µmolephoton−1) Pmax (mg CO2 m−2s−1) R2 α (mg CO2 µmole photon−1) Pmax (mg CO2 m−2s−1) R2

EVS 0.0007 0.347 0.67 0.0008 0.461 0.61
LVS/Tillering 0.0012 0.642 0.84 0.0014 0.707 0.69

SE/MT-PI 0.0016 1.334 0.70 0.0017 1.469 0.73
Booting 0.0022 2.412 0.82 0.0022 2.203 0.89
Heading 0.0023 1.909 0.91 0.0026 2.841 0.70
Ripening 0.0018 0.938 0.76 0.0020 1.318 0.88
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In the current investigation, the VPD was between 1.5 to 2.5 kPa and influenced the
GPP in both the crops. The VPD increases with air temperature, increasing the plant
respiration rate and leading to a reduction in CO2 uptake [34]. However, it was difficult
to evaluate the effects of high VPD on overall photosynthesis and GPP because high VPD
conditions mostly persist for a short duration around midday and the stress impact may not
persist throughout the rest of the day [49]. The GPP was significantly negatively correlated
with VPD in rice (−0.315, p < 0.01) (Table 2). An increase in VPD may cause partial closure
of the stomata causing a reduction in photosynthesis and thereby reducing the GPP.

Soil moisture is another key parameter affecting plant productivity. It was positively
correlated with GPP in wheat (0.471, p < 0.01), however, no significant correlation of SM
with GPP was obtained in irrigated rice in our study as there was no moisture stress
(Table 2). Soil moisture generally has a positive relation with LAI and phenology, thereby
controlling the seasonal variation in GPP [30]. Limiting soil moisture constrains stomatal
conductance, thereby lowering carbon uptake and plant water use. In wheat, as the water
supply was limited and the RH was low (62.15%), water use was reduced as compared to
rice, where the RH was higher (71.85%) and water was abundant.

4.4. Effect of Crop Stage, Environmental Variables on RE

The primary cause of seasonal change in RE was changes in the above-ground biomass
with crop growth. The rate of RE during the pre-transplanting and pre-sowing periods in
rice and wheat was mainly due to soil and weed respiration (Table 1). The RE increased
in both rice and wheat until heading and then declined at the ripening stage following
the senescence of the green leaf area and old roots [30]. Baldocchi [50] observed higher
RE values during the ripening stage in wheat due to the differences in canopy’s radiative
temperature after the heading stage subsequent to normalizing the LAI, which led to higher
levels of canopy respiration. The respiration rate at the different growth stages in rice was
relatively higher than in wheat, despite the higher biomass in wheat, due to higher air and
soil temperature (ST) during rice. The higher value of RE during the pre-transplanting
period in rice was because of the higher ST (31 ◦C) which enhanced the soil respiration
and also due to the growth of weeds supported by rainfall and an increased number of
sunshine hours. Our rice field was frequently irrigated and due to availability of dissolved
oxygen in the irrigation water, there was microbial decomposition of soil organic matter
leading to higher soil respiration levels in the frequently irrigated rice [34]. Mielnik and
Dugas [51] observed that soil respiration increased as the soil water content decreased, but
under very dry conditions the CO2 efflux decreased due to low root and microbial activity.
In our study, there was no water stress at any stage in both the crops.

The RE was significantly positively correlated with ST in rice (0.543, p < 0.01) (Table 2).
The diurnal range of ST was smaller in rice on account of standing water which acted as a
barrier to ST changes [52]. The ST during most of the rice crop was nearly constant, except
at the maturity stage, while it showed comparatively larger variation in the case of wheat
and was influenced by changes in net solar radiation.

The RE was negatively correlated with soil moisture (SM) in both rice and wheat, how-
ever, it was significant only in wheat (−0.322, p < 0.01). The RE was positively correlated
with RH in rice and negatively correlated in wheat; however, it was not significant in both
the crops. The RE was positively correlated with AT in both rice and wheat, however, the
correlation was significant only in wheat (0.294, p < 0.01) (Table 2). Increased AT stimu-
lated respiration and photorespiration in plants and a decline in photosynthetic activity
occurred as leaf temperatures increased [53]. The SHF influenced the soil temperature and
transferred the energy to or from the soil for maintaining the optimum conditions for soil
microbial respiration [54], however, the RE was not significantly correlated with SHF in
both rice and wheat (Table 2).
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4.5. Relation between GPP and RE

The RE was positively correlated with GPP in both rice (0.917, p < 0.01) and wheat
(0.698, p < 0.01) (Table 2). The regression relation between daily GPP and RE in rice and
wheat over the crop season was positive, i.e., the higher the GPP (uptake of CO2) the higher
the RE (CO2 release) (Figure 6). The strength of this relationship in both the crops was
highly significant (p < 0.01), though a higher R2 of 0.94 was obtained in rice than the R2 of
0.74 in wheat. Thus, plants respire more with increased photosynthesis in order to achieve
higher growth and maintenance, thereby increasing the GPP. The maximum GPP and RE
rates of 14.42 and 5.23 g CO2 m−2 d−1 in rice and 15.66 g C m−2 d−1 and 7.3 g CO2 m−2 d−1,
respectively, in wheat were observed at the heading stage in our study. These were much
less as compared to the maximum GPP rates of 70.8, 59.8, 41.7, 41.8 g CO2 m−2 d−1 and the
maximum RE rates of 27.5, 32.3, 19.4, 28.7 g CO2 m−2 d−1 observed in the maize cropland,
orchard, wetland and vegetable field ecosystems, respectively, by Zhang et al. [38]. The
higher GPP in maize was due to the greater carbon assimilation capacities at the different
growth stages of the maize. With a greater leaf area, maize had a greater ability to absorb
PAR and this increased its CO2 uptake capacity. The differences in RE were mainly due to
the variations in air temperature, soil moisture and canopy radiative temperature.

Figure 6. Scatter plot of daily ecosystem respiration (RE) and gross primary productivity (GPP) in

(A) rice and (B) wheat over the crop season.

The cumulative RE at our site was 386.81 g C m−2 in rice, whereas it was much lower
at 303.89 g C m−2 in wheat (Table 4), even though wheat has a longer duration of growth.
Higher cumulative RE in rice of 521 and 743 was reported in the Philippines [34] and
Japan [24] (Table 4). The cumulative RE in wheat was reported to be 676 and 529 g C m−2

in winter wheat in Germany for two consecutive years by Schmidt et al. [43] (Table 4). The
much higher RE at these locations was probably due to higher soil organic carbon and
longer rice and winter wheat crop durations compared to at our study site.
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Table 4. Net ecosystem exchange (NEE), ecosystem respiration (RE) and gross primary productivity (GPP) at different rice

and wheat sites.

Location Climate NEE GPP RE RE/GPP Reference

Rice

International Rice Research Institute, Philippines Tropical −258 −778 521 0.67 [34]

Mase paddy site, Japan Tropical −396 −1140 743 0.65 [24]

Central Rice Research Institute, Cuttak, India Sub-tropical monsoon −448 −811 363 0.44 [19]

North China Plain, China Subtropical semi-humid
monsoon

−583
−512
−451

−1220
−1135
−859

637
623
459

0.52
0.54
0.53

[12]

Indian Agricultural Research Institute, New Delhi, India Sub-tropical, semi-arid −368 −753 387 0.51 Present study

Wheat

Selhausen test site, Germany (First Year) Temperate −627 −1304 676 0.51 [43]

Selhausen test site, Germany (Second Year) Temperate −537 −1067 529 0.49 [43]

North China Plain, China
Subtropical semi-humid
monsoon climate

−438
−431

−987
−966

552
538

0.56
0.56 [12]

Indian Agricultural Research Institute, New Delhi, India Subtropical semi-arid −576 −888 304 0.34 Present study

The annual GPP and RE in our study in a subtropical semi-arid rice–wheat crop
rotation system was −1725 and 832 g C m−2, whereas Bhattacharya et al. [19] recorded an
annual GPP and RE of −1340 and +883 g C m−2, respectively, in a tropical humid rice–rice
system. A lower annual GPP and RE of −1174, and810 g C m2, respectively, was reported
in wheat and −1008, and 872 g C m2 in maize in the North China Plain by Zhang et al. [55].

The RE/GPP ratio at our study site was 0.51 in rice and 0.34 in spring wheat (Table 4).
The ratio obtained for rice, in the range of 0.51–0.67, is comparable in magnitude to those
reported by other researchers (Table 4). The GPP/RE ratio was higher than one, which
implied that the most important factor affecting the GPP was PAR and the seasonal changes
in PAR explained 69% and 81% of the variability in NEE in rice and wheat, respectively.
The ratio obtained for spring wheat in this study was much lower than those reported by
other researchers studying winter wheat. Gifford [56] reported an RE/GPP ratio of 0.35 for
spring wheat grown in Australia, which is closer to the value obtained by us.

Carbon budgets have become a powerful tool in guiding climate policy and for iden-
tifying the mitigation measures required to keep the global temperatures below 2 ◦C,
the global average temperature increase limits set out in the United Nations Paris Agree-
ment [57]. The Indian IGP—occupying around 10.5 Mha of area under a rice–wheat
system [11]—is a carbon sink, playing an important role in the global carbon budget esti-
mation. The global carbon budget estimation in the northern IGP has—until now—been
mostly extrapolated from closed-chamber measurements in this major rice–wheat growing
region. The results of our study show that when estimating the carbon sink potential in
this intensively cultivated northern IGP, it must be taken into consideration that spring
wheat may be a moderately stronger sink of CO2 as compared to rice in the rice–wheat
crop rotation system.

5. Conclusions

The cumulative uptake of CO2 from the atmosphere by the transplanted rice was 25%
lower than wheat as the RE/GPP in wheat was much lower than that in rice. Increased
respiratory losses were noted as compared to wheat due to the warmer and wetter con-
ditions during the rice growing season. The RE in rice was significantly affected by the
soil temperature, whereas the air temperature significantly affected the respiratory losses
in wheat. Fluctuations in α and Pmax were the most important drivers of CO2 uptake at
the different growth stages in both rice and wheat. The highest CO2 uptake levels were
observed at the heading stage in both the crops. Seasonal changes in PAR explained 69%
and 81% of the variability in the daytime NEE in rice and wheat, respectively. The seasonal
NEE fluxes were strongly determined by the development of the crop canopy and CO2

uptake became dominant during the late vegetative to reproductive stages, turning the
wheat and rice field into a carbon sink up until the ripening stage. The fields acted as a CO2

source around the late maturity and harvesting stage of rice and wheat, when the daily
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NEE turned positive due to declining photosynthetic activity and enhanced ecosystem res-
piration from the soil. Intercrop variability in NEE and GPP values were mainly controlled
by PAR and AT. The GPP was observed to be positively correlated with RE in both rice
and wheat. Rice contributed 39%, 55.9% and 46.2% to the annual totals of NEE, RE and
GPP, respectively, while spring wheat contributed 61%, 44.1% and 53.8%. The integrated
cumulative NEE, RE and GPP for the annual rice–spring wheat rotation including the
fallow period were −894.16, 832.39 and 1724.55 g C m−2, respectively. The annual GPP/RE
ratio for the rice-spring wheat sequence was observed to be 0.48. The RE/GPP ratio of
spring wheat was lower as compared to earlier studies in winter wheat due to its shorter
crop duration and irrigated conditions, which ensured the availability of soil moisture. The
present results are most valuable in the context of the global carbon budget estimation,
which, so far, have mostly been extrapolated from closed-chamber measurements in this
major rice–wheat growing region.
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Abstract: Himalayan forest has been threatened by rapid anthropogenic activities, resulting in the

loss of forest diversity and climate change. The present study was carried out on four aspects

(northern, southern, western and eastern), at three different altitudinal ranges, namely, 1000–1300 m

above sea level (m a.s.l.), 1300–1600 m a.s.l. and 1600–1900 m a.s.l., and at three diverse mountain

ranges (Kalaghat, Barog and Nangali) of sub-temperate forest ecosystems of the mid Himalayan

ranges, to elucidate their influence on vegetation, tree characteristics and ecosystem carbon den-

sity. The results revealed that Pinus roxburghii is the most dominant forest community of the mid

Himalaya’s forest, irrespective of altitudinal gradient and slope. The south-facing slopes are oc-

cupied by the xerophytic tree species frequently found in the lower Shiwalik P. roxburghii forest,

whereas the north-facing ones are dominated by mesophyllic species, such as Cedrus deodara and

Quercus leucotrichophora, which commonly grows in the northwestern Himalayan temperate forest

ecosystem. The maximum stem density (211.00 Nha−1) was found at 1000–1300 m a.s.l., and on the

northern aspect (211.00 Nha−1). The maximum stem volume (236.50 m3 ha−1) was observed on the

northern aspect at 1000–1300 m a.s.l., whereas the minimum (32.167 m3 ha−1) in the southern aspect

at 1300–1600 m a.s.l. The maximum carbon density (149.90 Mg ha−1) was found on the northern

aspect and declined with increasing elevation from 123.20 to 74.78 Mg ha−1. Overall, the study

establishes that the southern and western aspects are very low in carbon density, whereas the north-

ern aspect represents higher biodiversity as well as carbon and nutrient stocks. Therefore, aspect

and altitude should be given due importance for efficient managing of biodiversity and mitigating

climate change.

Keywords: tree parameters; biomass density; altitude; ecosystem; vegetation community

1. Introduction

In recent decades, Himalayan forest has been threatened by rapid anthropogenic
activities, resulting in the loss of forest diversity and climate change. Mountain forests
cover about 23% of the total forest land area [1] and host ~12% of the human population
worldwide [2]. Compared to other mountain ecosystems, the Indian Himalayan region
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is dynamically young [3] and harbors a wide variety of biodiversity apart from sustain-
ing life for a significant part of the Indian subcontinent population. Vegetation cover
plays a crucial role in local, regional and global climate apart from decreasing erosion in
mountain areas [4]. By adopting sustainable environmental management practices, the
protection of mountainous habitats (particularly, biological diversity) will help in safe-
guarding livelihoods and further improvement of local communities. They also shield
individuals effectively from natural calamities, e.g., debris flows, floods and landslides [5].
In forest conservation and management, tree diversity plays an important role because it
provides resources and shelter to forest species [6]. Besides its effect on species diversity
and ecosystem functioning, it also affects tolerance and resistance to climate changes in
the future [7,8]. Several edaphic factors and topographical factors (e.g., altitude, aspect
and slope) control vegetation growth [9,10] and play a vital role in plant species distribu-
tion [7,11]. Altitude plays a key role in deciding the temperature system and diversification
of forest species [12,13]. Moreover, co-factors such as soil type and slope propensity help in
guiding forest composition at one altitude [14,15]. The determinants of species richness
are altitude, physiography, productivity [16] and biotic variables. A comprehension of
stand characteristics and forest structure is a prerequisite for identifying different eco-
logical processes and modeling the functioning and dynamics of forests [17]. Several
biotic (e.g., intensity of photosynthesis, leaf area index, forest types and plant architecture)
and abiotic characteristics (e.g., solar radiation, temperature, soil moisture and length of
growing season) affect carbon cycling and further affect the regional and/or global carbon
budget [18–21].

In addition to being a crucial natural constraint to climate change, forest habitats
occupy approximately 30% of land areas and play a dominant role in the exchange of carbon
dioxide (CO2) between the atmosphere and biosphere [22,23]. Major shares (81%) of the
terrestrial carbon (C) biomass are found in forest ecosystem [24], where 2/3 of the C is fixed
annually in terrestrial ecosystems [25]. Vegetation biomass is a central ecological element to
understand the climate system’s evolution and possible future changes. Therefore, biomass
acts as an important indicator of climate change prediction models, and further helps to
make mitigation and adaptation strategies [26]. Forests, particularly primary ones, are
actively engaged in the cycling of carbon (i.e., C stock in vegetation and its underlain
soil through the process of photosynthesis and respiration) [27], and the extent depends
on age, tree species, location of forests and management practices [28]. Due to land-use
change and tropical deforestation, nearly 1.7 billion tons of carbon is emitted annually,
which impacts climate badly [29,30]. The tree biomass pool is a vital origin of uncertainty
in C balance in tropical regions [31] and plays a crucial role in the global C cycle. The
management of forests for maintaining or enhancing carbon stocks is receiving increasing
interest from forest land owners and land management agencies [32,33] due to the impacts
from a change in climate intensity [34].

The structure and functions of Himalayan forests are believed to be changing over
time, resulting in loss of forest diversity [35]. In most of the studies, the parameters
pertaining to forest productiveness are overestimated because of the unaccountability of
slope and aspects [36]. The ecological studies and biomass estimation along altitudinal
gradients in forests of western Himalaya have been well documented over the years [37–39].
However, the literature reveals that very few studies report the effect of aspect in the
northwestern Himalayas on forest ecosystems. For the effective management of forest
ecosystems in the mid-hill of the Himalayas, there is an urgent need to know the key
indicators that impact the tree characteristics, plant communities, forest biomass and
its underlying soil with respect to elevation gradients, slope and aspect [7,36,40]. The
objectives of our study were to test the hypothesis that different aspects (northern, eastern,
western and southern) and altitudinal ranges influence the tree characteristics, vegetation
biomass, total carbon stocks and physico-chemical characteristics of the soil. By taking
into consideration these objectives, we shall be able to answer these above issues for
the management and conservation prospective of forest ecosystems in the mid hills of
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the Himalayas. This study would be helpful in designing afforestation and reforestation
programs for different altitudes and aspects in the mid Himalayas, for enhanced carbon
sequestration and mitigating climate change.

2. Materials and Methods

2.1. Study Area

The present study was carried out at three altitudinal ranges: AR1 (1000–1300 m
above mean sea level (m a.s.l.)), AR2 (1300–1600 m a.s.l.) and AR3 (1600–1900 m a.s.l.);
at four aspects: northern (N), southern (S), eastern (E) and western (W); and at three
separate mountainous ranges (Kalaghat, Barog and Nangali) located in the Solan district of
Himachal Pradesh (H.P), India, situated in the middle of the NW Himalayas. The area lies
between 30◦51′16′ ′ to 30◦53′40′ ′ N latitudes and 77◦9′27′ ′ to 77◦3′51′ ′ E longitude (Survey
of India Toposheet No. 53F/1) and lies in a transitional zone between the sub-tropical to
moist temperate Himalayas and falls under the Champion and Seth forest type of lower
Shiwalik P. roxburghii forest (9/C1a), Upper Himalayan P. roxburghii forest (9/C1b) and
Lower western Himalayan temperate forest (12/C1). The seasons are well marked, and
there are distinct pre-monsoon, monsoon, post-monsoon and winter seasons. On average,
the annual rainfall ranges from 1000 to 1400 mm, with little pre-monsoon precipitation, and
July–September contribute the most to precipitation. Winter precipitation of low quantum
is common. The mean minimum and maximum temperatures differ between 1 ◦C in the
winter and 35 ◦C in the summer with a mean annual temperature (MAT) of 20 ◦C. The
parent material is composed of shale, schist, quartzite and slate, with a sandy loam to loam
and clayey texture in discrete pockets. Brown and podzol soil forms commonly occur in
the upper regions. The soils are rich in nutrients and organic matter (OM) except sites that
are too exposed and eroded.

2.2. Vegetation Sampling and Data Analysis

During the winter season of 2017, a reconnaissance survey of the region was car-
ried out to identify the mountain ranges for the present investigation (Figure 1). In this
study area, the three altitudinal ranges, AR1, AR2 and AR3, of the three separate moun-
tainous (Kalaghat, Barog and Nagali) regions were selected. At every altitude, the four
aspects, i.e., the N-, S-, W- and E-facing slopes, each had three sample plots of 0.1 ha
(31.62 m × 31.62 m),which were randomly laid out on the surveyed area to analyze the tree
composition (12 elevation stands × 3 sample plot each with a total of 36 sample plots). For
the shrub- and herb-related characteristics, four subplots of size 5 m × 5 m and eight plots
of 1 m × 1 m were laid out within each tree sample plot, respectively. Further, the density
of the trees was determined by counting trees in each sample plot. In each sample plot,
trees and shrubs were marked and counted to determine the community parameters viz.
the frequency, stand density and Importance Value Index (IVI) [41]. The forest associations
and forest types were named based on tree composition and their stand density values. The
identification of plants was done with the help of the Herbarium of Dr. YSP University of
Horticulture and Forestry, Nauni, Solan, and the current taxonomic literature. Tree height
was measured using a Ravi multimeter (BlumeLeiss Hypsometer) from the uphill side in
the slopy areas [42], whereas the diameter of trees was measured at breast height (DBH,
about 1.37 m). The diameter of the grasses, herbs, shrubs and regeneration were derived
from the girth measured at the collar portion. Crown height (m) was taken from the ground
level to the point halfway between the lowest green branch and the green branches forming
a green crown all around. Similarly, crown length (m) was the vertical length from the top
to the point halfway between the lowest green branch and the green branches forming a
green crown all around. The diameter of the crown was determined in two directions (N–S
and E–W) and the mean diameter was estimated as per Assmann [43] and Chaturvedi and
Khanna [42].
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Figure 1. Map of the study area. The images were procured from Google Earth Pro 7.3.4.

2.3. Biomass and Carbon

The allometric equations proposed by the Forest Survey of India (FSI) and Forest
Research Institute (FRI) for respective forest tree species were used to estimate the growing
stock volume density (GSVD; m3 ha−1) [44]. After that, the estimated GSVD of the indi-
vidual tree species was converted into total tree biomass as the Above Ground Biomass
Density (AGBD; Mg ha−1) by multiplying the GSVD of the tree species by the Biomass
Expansion Factor (BEF) expressed below [45]. Specific gravity (SG) was calculated by the
method adopted by Rajput et al. [46].

Stem biomass (SB) = Average SG wood × Volume (1)

The BEF for hardwood is expressed by BEF = exp {1.91–0.34 × ln (GSVD)} (for
GSVD ≤ 200 m3 ha−1), but in the case of pine species, it is used as a fixed value based on
the GSVD (i.e., BEF for GSVD < 10, 10–100 and >100 m3 ha−1 are used as 1.68, 0.95 and
0.81 respectively) [47].

AGBD = GSVD × BEF (2)

The tree volume could be transformed into biomass by multiplying it with specific
gravity using the maximum moisture method [48]. Belowground biomass density (BGBD)
of trees was calculated by following IPCC [49] guidelines [22,50]. Further, total biomass
of the tree was finally computed by adding AGB and BGB. Moreover, the biomass of
the herbs and shrubs were calculated by the oven-dried weight. Thus, each shrub and
herb sample collected were brought to the laboratory followed by segregation into leaves,
branches and a stem portion after washing and oven-dried at 70 ◦C for 72 h till a constant
dry weight was achieved. Each sample was weighed to estimate AGB (including the stem,
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branch and leaves) of each species. BGB is estimated by extracting the roots of the sample
plant (shrubs). The extract of the root sample was packaged in the paper and brought
to the laboratory to know the biomass. First of all, root hairs of individual species were
washed thoroughly and weighed to know their fresh weight (Wi) and after that dried at
70 ± 5 ◦C for 72 h to estimate their dry weight. Similarly, total biomass of a shrub species
was calculated by adding its AGB and BGB components.

2.4. Total Carbon Density

Total carbon density (or stocks) of forest vegetation was estimated by vegetation
biomass (AGB+BGB) multiplied by a default value of 0.50 [49].

2.5. Vegetation Carbon Density

Vegetation carbon density (VCD) was calculated by adding all the biomass (tree,
shrubs and herbs).

VCD = Tree biomass + Herb biomass + Shrub Biomass (3)

2.6. Determination of Soil Characteristics

The soil samples were taken from the soil profile at 0–20 cm and 20–40 cm depths
in three replications from each 0.1 ha sample plot. These samples were then sun-dried
and sieved to a 2-mm size. The soil pH was determined by a combined glass–calomel
electrode of aqueous suspensions (1:2.5 soil:water ratio). Electrical conductivity (dS m−1)
was estimated by a conductivity bridge [51] of aqueous suspensions (1:2 soil:water ratio).
Soil organic carbon (SOC) was estimated by a well-known method of wet digestion [22,52].
Potassium (K) was measured by a flame photometer [53] and available nitrogen (N) and
phosphorus (P) by the alkaline permanganate method [54].

2.7. Ecosystem Carbon Density

The total ecosystem carbon density (ECD) is referred to as the sum of all carbon pools,
including the soil carbon density or stocks, and was measured as

ECD = SOC + Detritus carbon density + Tree carbon density (4)

Soil carbon density was calculated as follows: Soil bulk density (g cm−3) × Depth of
soil (cm) × Carbon (%) [55]. Solar radiation was estimated using a Lux meter.

2.8. Statistical Analysis

In this study, the data obtained on variations in vegetation, tree characteristics and
ecosystem carbon density were subject to statistical analysis by Factorial Randomized Block
Design using R Studio data analysis software, as follows:

Package: doebioresource
Function: frbd2fact
Syntax: frbd2fact (data, replicationvector, fact.A, fact.B, Multiple.comparison.test)
Arguments:

Data: dependent variables; Replication vector: vector containing replications; fact.A:
vector containing levels of first factor; fact.B: vector containing levels of second factor;
Multiple.comparison.test: 0 for no test, 1 for lsd test, 2 for Duncan test and 3 for
HSD test

The significance of the effect of aspect and altitudinal ranges on different parameters
was judged using an LSD post-hoc test.
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3. Results

3.1. Floristic Composition of Vegetation Species

The distribution of the floristic composition of the tree species growing at the study
sites varied with altitudinal range (Table S1). Among the tree species, Pinus roxburghii was
dominant followed by Quercus leucotrichophora and Erythrina indica. At the 1000–1300 m a.s.l.
altitudinal range (AR1), the maximum number of tree species (4) was recorded on the
northern aspect followed by the eastern, southern and western slopes, respectively. At
the 1300–1600 m a.s.l. (AR2) altitudinal range, the maximum number of species (6) was
recorded on the southern (S) aspect followed by the eastern (E) and northern (N) ones,
respectively. However, at the 1600–1900 m a.s.l. altitudinal range (AR3), the maximum
number of species (3) were recorded on the northern aspect followed by the western aspect.
Among the three altitudinal ranges, the AR2 altitude range displayed the highest number
of tree species, i.e., 14, while the lowest number was at AR3 (7). Similarly, 21 shrub species
represent the mid-hills of the northwestern Himalayas, out of which the prominent species
are Berberis aristata, Carissa carandas and Lantana camara, etc., whereas Cassia floribunda,
Hypericum oblongifolium and Sarcocoas aligna are the least prominent ones (Table S2). At
the AR1 altitudinal range, the maximum numbers of shrub species were found on the
southern aspect followed by the western, northern and eastern aspects, respectively. At the
AR2 altitudinal range, the northern and southern aspects were represented by 7 species
of shrubs, whereas the eastern and western aspects were represented by six species each.
At the AR3 altitudinal ranges, the number of species on the western and southern aspects
were slightly more than the eastern and northern aspects. In general, the number of shrub
species declined with increasing altitudinal ranges.

The overall status of plant diversity composition is presented in Figure S1. It reveals
that the mid-hills of the northwestern Himalayas are richer in shrub diversity than the
trees as measured by family, genus and species presence. Maximum diversity in trees and
shrubs was measured on the S-facing slope at 1300–1600 m a.s.l. and 1000–1300 m a.s.l.,
respectively. Maximum biodiversity was found on the S-facing slope, followed by north,
east and west, respectively.

3.2. Distribution of Vegetation Communities and Forest Types

The floristic composition concerning vegetation communities and forest type identified
revealed that P. roxburghii is an important component of all the communities at all the
combinations of altitude and aspect (Table S3). Lower (1000–1300 m a.s.l.) and upper
(1600–1900 m a.s.l.) altitudinal ranges of the E- and W-facing slopes of the study area were
represented by the P. roxburghii community, whereas the mid-altitude (1300–1600 m a.s.l.)
by the P. roxburghii–Quercus leucotrichophora and P. roxburghii–Myrica esculenta community,
respectively. The N-facing slopes are represented by the P. roxburghii–Q. leucotrichophora
community at all the altitudinal gradients. However, the S-facing slopes are represented
by the P. roxburghii–A. catechu community at a low altitude; P. roxburghii, Acacia catechu
and a diverse mixture of broad-leaved vegetation at mid altitude; and a pure P. roxburghii
community at a higher altitude. The vegetation of the E- and W-facing slopes is classified
into Himalayan subtropical pine forest (9/C1), subtype Upper Himalayan P. roxburghii
forest (9/C1b). S-facing slopes belong to the same forest type but a different subtype, i.e.,
Lower Shiwalik P. roxburghii forest (9/C1a). However, the N-facing slopes belong to entirely
different forest types, i.e., Lower western Himalayan temperate Ban Q. leucotrichophora
forest (12 C1).

3.3. Variation in Tree Characteristics

The various tree characteristics, namely, DBH, height, crown length, stem density,
stem volume and stem biomass, of the studied forest ecosystems are depicted in Table 1.
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Table 1. Tree parameters and biomass density on the different aspects and altitudinal ranges.

Altitudinal Ranges (AR)
(m a.s.l.)

Aspect (A)

E W N S Mean

DBH (cm)

AR1 (1000–1300) 25.00 19.00 36.30 23.40 26.00 a

AR2 (1000–1300) 22.00 18.60 22.50 22.80 22.00 b

AR3 (1000–1300) 26.20 20.00 26.00 19.40 20.00 b

Mean 28.00 a 21.80 b 22.00 b 21.16 b

LSD AR = 3.70 A = 4.30 AR × A = 3.90

Height (m)

AR1 (1000–1300) 14.50 10.22 22.40 16.48 16.26 a

AR2 (1000–1300) 13.00 9.30 11.60 10.00 12.18 b

AR3 (1000–1300) 12.00 12.30 13.00 10.00 11.38 b

Mean 13.90 ab 12.40 bc 16.30 a 10.50 c

LSD AR = 2.70 A = 3.20 AR × A = NS

Crown length (m)

AR1 (1000–1300) 4.70 5.50 7.90 4.40 6.00 a

AR2 (1000–1300) 6.00 4.60 5.30 3.50 5.00 a

AR3 (1000–1300) 5.00 3.00 3.15 2.20 3.00 b

Mean 5.16 3.70 5.20 4.40

LSD AR = 1.90 A = NS AR × A = 4.50

Stem density (N ha−1)

AR1 (1000–1300) 258.00 198.00 217.00 170.00 211.00 a

AR2 (1000–1300) 228.00 175.00 283.00 165.00 188.00 a

AR3 (1000–1300) 116.00 188.00 133.00 143.00 146.00 b

Mean 200.00 ab 154.60 c 211.00 a 166.00 bc

LSD AR = 37.00 A = 43.00 AR × A = NS

Stem volume (m3 ha−1)

AR1 (1000–1300) 118.83 40.90 236.50 74.40 117.68 a

AR2 (1000–1300) 132.16 39.50 105.40 32.17 77.33 b

AR3 (1000–1300) 101.58 35.30 40.90 53.00 57.89 b

Mean 127.60 a 53.00 b 117.50 a 38.60 b

LSD AR = 38.80 A = 44.80 AR × A = 53.23

Stem biomass (Mg ha−1)

AR1 (1000–1300) 120.50 36.58 72.75 21.58 82.85

AR2 (1000–1300) 58.92 16.25 132.16 18.66 56.50

AR3 (1000–1300) 20.08 35.50 63.91 21.91 35.35

Mean 66.50 a 29.44 b 89.61 a 20.72 b

LSD AR = NS A = 30.73 AR × A = 53.23

E—Eastern, W—Western, N—Northern, S—Southern, NS—non-significant. Mean values in the same column
followed by a different letter differ significantly at p ≤ 0.05 according to lsd post-hoc test.
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3.3.1. Diameter at Breast Height (DBH, cm)

The maximum average DBH of 26.00 cm was recorded at AR1, which was found to be
significantly (p < 0.05) higher than both AR2 and AR3 (Table 1). Irrespective of altitudinal
ranges, maximum DBH was recorded on the eastern aspect and was significantly higher
(p < 0.05) than the other aspects. The order of DBH among different aspect followed the
following trend: eastern (28.00 cm) > northern (22.00 cm) > southern (21.16 cm) > western
(21.00 cm). In the interaction, the maximum DBH (36.30 cm) was recorded on the northern
aspect at AR1, whereas the minimum (18.60 cm) was found on the western aspect at AR2.

3.3.2. Height (m)

Height (Table 1) showed a declining trend with an increase in altitude. AR1 displayed
a significant difference (p < 0.05) over both AR2 and AR3. Among the studied aspects, the
N-facing slopes demonstrated superiority over the other aspects. In the interaction, an
inconsistent trend was observed at the aspect level with an increase in altitudinal range.
The maximum (22.40 m) height growth was noticed on the northern aspect at AR1 and the
minimum (9.30 m) was on the western aspect (AR2).

3.3.3. Crown Length (m)

It is evident from Table 1 that among the altitudinal ranges, the maximum crown
length (6.00 m) was recorded at AR1 and was significantly higher (p < 0.05) than AR3, only.
The maximum crown length (5.20 m) was recorded on the northern aspect and minimum
(3.70 m) on the western aspect. The maximum crown length (7.90 m) in the interaction was
seen on the northern aspect at AR1, whereas the minimum (2.20 m) was on the northern
aspect at AR3.

3.3.4. Stem Density (N ha−1)

Stem density (N ha−1) was found to be significantly influenced by altitudinal variation
and aspect (Table 1). It declined with increasing altitude, and both AR1 and AR2 evinced
markedly higher values over AR3. Stem density was found to be maximum (211.00 Nha−1)
on the northern aspect, which was statistically at par with eastern aspect. However,
interaction effect between the altitude and aspect could not exercise a significant influence
on the stem density.

3.3.5. Stem Volume (m3 ha−1)

Stem volume (m3 ha−1) was also significantly influenced by altitude, aspect (Table 1),
and it declined with the increase in the altitude. A significant influence was observed
between AR1 over AR2 and AR3. Irrespective of altitudinal gradients, maximum stem
volume (127.60 m3 ha−1) was recorded on eastern aspect but was significantly at par with
the northern aspect. Minimum stem volume (38.60 m3 ha−1) was recorded on the southern
aspect, however it remains at par with western one. In the interaction, maximum stem
volume (236.50 m3 ha−1) was recorded on northern aspect at AR1, whereas minimum stem
volume (32.17 m3 ha−1) was recorded on southern aspect at AR2.

3.4. Vegetation Biomass and Carbon Density

3.4.1. Above Ground-Below Ground Biomass (Mg ha−1)

Table 2 evinced that significantly maximum AGB (116.25 Mg ha−1) was recorded at
AR1. Among the aspects, the maximum AGB (166.22 Mg ha−1) was recorded on the north-
ern aspect and the minimum (39.64 Mg ha−1) on southern ones. The trend observed for
AGB on different aspects followed the order: N > E > W > S. In the interaction between the
aspect and altitudinal ranges, northern aspect displayed maximum biomass accumulation
(252.31 Mg ha−1) at 1000–1600 m a.s.l. range, and was found to be considerably higher than
others. The results in respect of BGB and total biomass for altitudinal gradient, aspects,
and their interaction followed more or less similar trend as that of AGB.
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Table 2. Vegetation biomass and carbon density at different aspects and altitudinal ranges.

Altitudinal Ranges (AR)
(m a.s.l.)

Aspect (A)

E W N S Mean

Above ground biomass (t ha−1)

AR1 (1000–1300) 222.05 69.88 130.61 42.49 116.25 a

AR2 (1000–1300) 112.44 31.14 252.31 43.36 109.81 a

AR3 (1000–1300) 38.38 67.87 115.75 33.07 63.76 b

Mean 124.28 a 56.29 b 166.22 a 39.64 b

lsd AR = 40.00 A = 55.25 AR × A = 95.693

Below ground biomass (t ha−1)

AR1 (1000–1300) 47.88 14.67 41.65 9.39 28.40

AR2 (1000–1300) 29.77 6.54 90.31 7.6 33.56

AR3 (1000–1300) 8.06 22.96 32.24 6.94 17.5

Mean 28.57 b 14.72 bc 54.73 a 7.98 c

lsd AR = NS A = 18.74 AR × A = 32.46

Total tree biomass (t ha−1)

AR1 (1000–1300) 315.65 84.56 172.26 51.88 156.08 a

AR2 (1000–1300) 142.21 37.68 342.62 53.09 143.90 a

AR3 (1000–1300) 46.44 90.83 147.99 40.01 81.32 b

Mean 168.09 a 71.02 b 220.95 a 48.32 b

lsd AR = 58.69 A = 67.77 AR × A = 117.388

Shrub biomass (Mg ha−1)

AR1 (1000–1300) 1.84 1.75 1.85 2.37 1.95 a

AR2 (1000–1300) 1.60 1.76 1.56 1.79 1.67 ab

AR3 (1000–1300) 1.40 1.33 1.38 1.72 1.45 b

Mean 1.61 1.62 1.59 1.96

lsd AR = 0.303 A = NS AR × A = NS

Herb biomass (Mg ha−1)

AR1 (1000–1300) 2.93 3.27 3.10 3.92 3.30

AR2 (1000–1300) 3.24 2.77 2.80 3.94 3.19

AR3 (1000–1300) 2.55 2.46 2.22 3.49 2.68

Mean 2.90 b 2.83 b 2.71 b 3.78 a

lsd AR = NS A = 0.63 AR × A = NS

Vegetation biomass density (Mg ha−1)

AR1 (1000–1300) 320.41 89.57 177.22 57.97 161.29 a

AR2 (1000–1300) 146.82 42.11 347.33 58.66 148.73 a

AR3 (1000–1300) 50.39 94.63 151.86 45.16 85.50 b

Mean 172.62 a 75.46 b 225.27 a 53.93 b

lsd AR = 58.78 A = 67.85 AR × A = 117.52

E—eastern, W—western, N—northern, S—southern, NS—non-significant. Mean values in the same column
followed by a different letter differ significantly at p ≤ 0.05 according to the LSD post-hoc test.
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3.4.2. Shrub and Herb Biomass (Mg ha−1)

Table 2 shows that shrub biomass was significantly influenced by altitudinal ranges,
whereas herb biomass significantly differed between aspects. This shrub biomass decreased
with an increase in altitude (highest at AR1: 1.95 Mg ha−1 and lowest at AR3: 1.45 Mg ha−1).
Among the different aspects, the maximum shrub biomass (1.96 Mg ha−1) was estimated
on southern aspect and the minimum (1.59 Mg ha−1) on the northern ones. Similarly, the
maximum biomass of herbs (2.90 Mg ha−1) was recorded on the eastern aspect, and the
minimum (2.71 Mg ha−1) on northern.

3.4.3. Vegetation Biomass Density (Mg ha−1)

Vegetation biomass density declined with an increase in elevation; however, significant
differences (p < 0.05) were seen between AR1 and AR3 (Table 2). Vegetation biomass
(225.27 Mg ha−1) was maximum on the northern aspect followed by eastern, western
and southern, respectively. The interaction between altitudinal gradient and aspect also
exercised a significant influence on the vegetation biomass density. On the eastern, western
and southern aspects, the maximum values for this parameter were at AR1; however, on
the northern aspects, the maximum vegetation biomass density (347.32 Mg ha−1) was at
the altitudinal range of 1600–1900 m a.s.l.

Vegetation, soil and total ecosystem carbon density declined with the increase in
altitudinal range. However, significant differences were seen between AR1 and AR3

(Table 3). Carbon stored in the form of humus was maximum at AR2, while the carbon
stored in the leaf litter increased significantly with rising altitude. Among the four aspects,
VCD and ECD were significantly (p < 0.05) at their maximum on the northern aspects.

In contrast, carbon stored in the form of humus was significantly higher (p < 0.05) on
the eastern aspect and followed the following trend: E > S > N > W. Interaction between
altitudinal gradient and aspects also exercised a significant influence on the carbon density
of different pools, except the humus. On the eastern aspects, the maximum values for
the vegetation carbon pool were at AR1; however, on the northern aspects, the maximum
vegetation biomass was at the AR2 altitudinal range. Soil carbon density also varied
significantly (p < 0.05) at different altitudes with aspects. In general, the values on the
different aspects declined with an increase in altitude. Carbon density stored in the leaf litter
on the eastern and western aspects declined rapidly with an increase in altitude from AR1 to
AR3. On the northern and southern aspects, the maximum value was observed at AR2. The
maximum ECD (214.13 Mg ha−1) was recorded on the northern aspect, which remained
statistically identical to AR1 of the eastern aspect. The ECD did not vary significantly
(p < 0.05) at the western and southern aspects with the variation in altitudinal range.

3.5. Soil Physico-Chemical Characteristics

The soil physico-chemical characteristics of the sites under investigation is depicted in
Table 4. pH value (6.31) was found significantly (p < 0.05) higher at AR2 (1300–1600 m a.s.l.)
than both AR1 and AR3. Among the aspects, the maximum pH (6.34) was recorded on
the southern aspect and followed the following trend: southern > northern > western
> eastern. The organic carbon (OC) and available nutrients (particularly, N, P and K),
declined significantly (p < 0.05) with the increasing altitudinal ranges.

OC, available N and P were found to be highest on the northern aspect and lowest
on the southern aspect, whereas available K was the highest on the eastern aspect. Bulk
density showed an increasing trend with elevational range. Bulk density was maximum
(0.96 g cm3) on the southern aspect, followed by western, eastern and northern, respectively.
The values of the pH and bulk density increased significantly (p < 0.05) from L1 (0–20 cm)
to L2 (20–40 cm) layer. However, OC, available N, P and K declined significantly from the
L1 to L2 soil layer.
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Table 3. Carbon density in different pools, ecosystem carbon density and solar radiation at different

aspects and altitudinal ranges.

Altitudinal Ranges (AR)
(m a.s.l.)

Aspect (A)

E W N S Mean

Vegetation carbon density (Mg ha−1)

AR1 (1000–1300) 160.21 44.79 88.61 28.98 80.64 a

AR2 (1000–1300) 73.41 21.05 173.67 29.33 74.36 ab

AR3 (1000–1300) 25.20 47.31 75.93 22.58 42.75 b

Mean 86.27 a 37.71 b 112.73 a 26.96 b

LSD AR = 33.92 A = 29.38 AR × A = 58.76

Soil carbon density (Mg ha−1)

AR1 (1000–1300) 43.23 40.83 33.83 39.77 39.42 a

AR2 (1000–1300) 40.93 36.90 36.67 37.50 38.00 a

AR3 (1000–1300) 25.53 28.20 31.43 29.40 28.64 b

Mean 36.56 35.31 33.97 35.55

LSD AR = 36.56 A = NS AR × A = 5.94

Soil humus carbon density (Mg ha−1)

AR1 (1000–1300) 1.57 0.73 1.23 1.60 1.28 b

AR2 (1000–1300) 3.10 1.33 1.73 2.57 2.18 a

AR3 (1000–1300) 2.17 1.27 1.17 1.80 1.60 b

Mean 2.28 a 1.11 c 1.38 bc 1.99 ab

LSD AR = 0.55 A = 0.64 AR × A = NS

Leaf litter carbon (Mg ha−1)

AR1 (1000–1300) 2.22 2.02 1.25 1.92 1.85 b

AR2 (1000–1300) 2.17 1.94 2.06 2.11 2.07 a

AR3 (1000–1300) 1.98 1.78 1.71 1.95 1.86 b

Mean 2.12 a 1.91 c 1.67 d 1.99 a

LSD AR = 0.02 A = 0.051 AR × A = 0.11

Ecosystem carbon density (Mg ha−1)

AR1 (1000–1300) 207.23 88.37 125.73 71.58 123.20 a

AR2 (1000–1300) 119.61 61.22 214.13 70.66 116.40 a

AR3 (1000–1300) 54.88 78.56 110.52 55.20 74.78 b

Mean 127.20 a 76.11 b 149.90 a 65.80 b

LSD AR = 29.60 A = 34.18 AR × A = 59.21

E—eastern, W—western, N—northern, S—southern, NS—non-significant. Mean values in the same column
followed by a different letter differ significantly at p ≤ 0.05 according to the LSD post-hoc test.
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Table 4. Soil physico-chemical characteristics in different aspects and altitudinal ranges.

Treatment

Parameters

pH
Bulk Density

(g cm−3)

Organic
Carbon
(g kg−1)

Available N
(kg ha−1)

Available P
(kg ha−1)

Available K
(kg ha−1)

EC
(dS m−2)

Altitudinal range (AR) (m a.s.l.)

AR1 (1000–1300 m a.s.l.) 6.09 b 0.86 c 22.8 a 413.22 a 19.78 a 242.37 a 0.31 a

AR2 (1300–1600 m a.s.l.) 6.31 a 0.90 bc 21.2 b 355.68 b 16.70 b 223.38 b 0.30 b

AR3 (1600–1900 m a.s.l.) 5.98 c 0.94 a 15.3 c 327.11 c 13.42 c 209.20 c 0.29 c

LSD (E) 0.09 0.051 0. 89 21.23 1.33 6.87 0.009

Aspect (A)

E (Eastern) 5.98 c 0.87 bc 19.9 b 347.28 b 15.87 b 229.63 a 0.29 b

W (Western) 5.99 c 0.92 ab 19.3 bc 330.86 c 18.43 a 213.54 b 0.29 b

N (Northern) 6.18 b 0.85 c 21.2 a 480.80 a 18.62 a 195.79 c 0.31 a

S (Southern) 6.34 a 0.96 a 18.6 c 304.39 d 13.60 c 200.98 c 0.30 ab

LSD (A) 0.11 0.059 1.03 24.51 1.54 7.93 0.01

Soil layers (cm)

L1 (0–20 cm) 5.95 b 0.79 a 21.0 a 380.19 a 18.25 a 235.89 a 0.31

L2 (20–40 cm) 6.30 a 1.01 b 18.5 b 350.48 b 15.01 b 214.08 b 0.30

LSD (L) 0.07 0.04 0. 73 17.33 1.09 5.61 NS

* EC = electric conductivity. Mean values in the same column followed by a different letter differ significantly at p ≤ 0.05 according to the
LSD post-hoc test.

4. Discussion

4.1. Floristic Diversity and Distribution of Vegetation Community

The present study revealed a marked contrast among the four aspects for the compo-
sition of the species (trees as well shrub species), forest communities and forest types of the
mid-hill ecosystem of the northwestern Himalayas. S-facing slopes bear the tree species,
namely, Acacia catechu, Bauhinia variegata, Bombax ceiba, Butea monosperma, Erythrina indica
and Pinus roxburghii, which are xerophytic and are characteristic of the low hill forest ecosys-
tem of the Shiwalik region. The forest community and forest types were identified based
on the composition and importance value index, which are the P. roxburghii–A. catechu
community, pure P. roxburghii and A. catechu. The other broad-leaved tree species are
characteristics forest communities of the Low level Southern tropical sub-tropical pine
forest type [56]. N-facing slopes apart from P. roxbughii also supports the mesophilic tree
species, such as Acer oblongum, Cedrus deodara and Quercus leucotrichophra, etc. The forest
community identified on the N-facing slope is the P. roxburghii–Q. leucotrichophora com-
munity. However, on the E-facing slope, pure P. roxburghii occurs on the low and upper
altitudinal ranges and P. roxburghii–Q. leucotrichophora in the middle ones. These forest
communities have their presence across the sub-temperate region of the northwestern
Himalayas. The variation in the vegetation is mainly due to differential exposure to the sun
and the water-holding capacities of the underlying soil. The S-facing slopes are drier than
other slopes as they are exposed to sun rays during the day time and directly intercept
the moisture-laden southwest monsoon, leading to excessive soil erosion on these slopes.
In turn, the N-facing slopes support the moisture-loving tree species as they hold more
water because of indirect exposure to the sun and low-intensity north–east rains during the
winter season. The species richness of both trees as well as shrubs is found to be maximum
on the S-facing slopes followed by N-facing. The higher species richness of the S-facing
slopes may be mainly due to the dryness of the site on which no particular species have a
competitive advantage over others.

The diversity was recorded in terms of the distribution of the families, genera and
species at different altitudinal gradients. The species richness on the eastern, western and
southern aspects followed a hump shape, whereas, on the S-facing slopes, the species
richness declined with the increase in altitudinal gradient. Similarly, a higher species
richness of vascular plants also was observed at the middle elevations in the western
Himalayas [57]. The main reason for the low species richness and diversity in the lower
altitudinal ranges could be justified as this range was a more accessible area for livestock
grazing and human-made disturbance. It was also found that the E-, S- and W-facing slope
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of the lower and upper altitudinal gradients are occupied by the xerophytic vegetation
communities and middle altitudes by mesophyllic ones; this indicates the prevalence of
optimum growing conditions for temperature, rainfall and nutrients, etc. In turn, the
N-facing slopes are occupied by the P. roxburghii–Q. leucotrichophora community at all
the altitudinal gradients. Compared to moderate slopes, the reasons for a hump-shaped
distribution pattern may be due to changes in inclinations, exposures and geological
substrates in the mountains. However, the available area for plant establishment decreases
disproportionately at higher altitudes [58] and thus the ability for organisms to survive
also decrease. Such hump-shaped patterns may result from the perspective of population
ecology due to the dispersal of species from lower and higher elevations, resulting in the
highest overlap at mid-elevations of such dispersing populations. Contrary to this, only
dispersing species are obtained in the extremes of the gradient [59]. Anthropogenic activity,
primarily at lower altitudes (altitude < 1000 m a.s.l.), also plays a crucial role in decreased
species diversity [57,60]. According to Sang [61], water supply can be important at lower
altitudes in a continental climate, but a lower temperature is relevant at higher altitudes.
In general, environmental parameters [62,63] and management practices [64] are closely
associated with the diversity of forest species.

4.2. Variations in Tree Characteristics

Regional factors also play a vital role in understanding the ecological and evolutionary
responses of biota at different eco-regions [65,66]. In the present study, it was observed that
the tree parameters, such as diameter, top height, crown length and stem density, were in
the order AR1 > AR2 > AR3. This trend in the growth and developmental parameters could
be attributed to the nutrient and water conservation capacity of these altitudes. Lower
altitudes have a better level of OC, available N, P and K because of high temperature
and moisture conditions. Besides, higher altitudinal ranges can also suffer from both
nutrient leaching and water shortages [17,67]. In this study, the diameter of the tree
species followed the following order: eastern (28.00 cm) > northern (22.00 cm) > southern
(21.16 cm) > western (21.00 cm). Better growth on the eastern aspect can be due to the
occurrence of the dominative P. roxburghii community, which is best adapted to the forest
ecosystems of the mid-hills of the northwestern Himalayas. Tree parameters such as top
height, crown length, stem density and stem volume were found to be higher on the
northern aspect followed by the eastern, southern and western aspects. N-facing slopes of
the northern hemisphere receive indirect sunlight, which leads to taller trees and a longer
crown length [68]. Significant (p < 0.05) variation in stem density was observed on the
four studied aspects, the maximum (211.00 Nha−1) being on the northern and minimum
(154.00 Nha−1) on the western ones; this could be due to the better ability of this aspect to
support a greater number of individuals because of its better water- and nutrient-supplying
capacity. Mong and Vetaas [69] also recorded more tree species and higher tree densities
on N-facing forests slopes than S-facing ones and owed it to the pronounced aridity of the
area, where higher solar radiation results in faster drying of S-facing slopes, hence reducing
tree growth.

The tree diameter and height reported in the present study are more or less similar to
those from Banday et al. [70], also from the northwestern Himalayas. Missanjo et al. [71]
also reported significant differences (p < 0.05) in mean height (DBH) and biomass of
pine species at different altitudes. The stem density in the present investigation ranged
from 211 individuals per hectare at 1000–1300 m altitude to 146 individuals per hectare at
1600–1900 m a.s.l. Similarly, the SD varied from 283 to 116 in northern and southern aspects,
respectively. The SD in the present study is on the lower side than the values reported by
Bhardwaj et al. [37], but more or less comparable with the findings of Banday et al. [70]
under similar forest types of the Indian Himalayas. Pala et al. [72] have also reported
higher tree densities for the central Himalayan region, which may be due to variation in
species composition and other environmental factors. The reported values of the SD under
study are also on the lower side than the other reported values globally [70,73,74], which
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can be due to difference in the slope, aspect, or even in the same type of vegetation [75].
P. roxburghii is the dominant plant community and requires more space because of its light-
demanding nature and hence may be the reason for their lower densities. Banday et al. [70]
have also reported on P. roxburghii having the lowest density amongst the five forest types
of the northwestern Himalayas.

4.3. Vegetation Biomass and Carbon Density

It was observed that biomass stored in different components, viz., above, below and
total tree biomass, declined with increasing elevation. Similarly, a decline in the above-
ground biomass with increasing elevation has been reported by earlier worker [76–78].
The decline in the aboveground traits with increasing elevation could be owed to the
progressive fall in the level of OC, available N, P and K with an increasing elevation
gradient, thereby limiting biomass accumulation [76,79]. The elevational gradient we
investigated follow the classical pattern of nutrient availability. However, Alves et al. [80]
have also reported an opposite pattern of aboveground biomass accumulation for a short
elevation gradient of tropical Atlantic moist forest in Brazil. In addition to better storage of
biomass in different components of the vegetation, such as trees, shrubs, and herbs at the
lower altitudinal range, are also the optimum conditions of moisture, temperature, light,
better nutrient storage and less soil erosion. Biomass in different components, as well as
biomass carbon density, was maximum on the northern aspect followed by the eastern,
western and southern aspects, respectively. It again could be owing to the ability of this
aspect to support a higher tree density and bigger-sized trees because of better moisture and
nutrient storage ability. Contrary to this, shrub and herb biomass density was maximum
(1.96 Mg ha−1) on the southern aspect and minimum (1.59 Mg ha−1) on the northern aspect.
Furthermore, Måren et al. [68], in the semiarid ecosystem of inner Himalaya, reported
that bush cover was highest on S-facing slopes, and litter was highest on N-facing slopes
(p < 0.01). Stem volume and biomass decreased with an increase in altitude from 117.68
to 57.89 m3 ha−1 and from 89.61 to 20.72 Mg ha−1, respectively. Stem biomass was also
reported lowest (SB: 20.72 Mg ha−1) on the southern aspect and highest (SB: 89.61 Mg ha−1)
on the northern ones. The estimated value reported in this study was also supported by the
reported value of Leuschner and Moser’s [81], and a decrease in total biomass (AGB + BGB)
from the lower altitude to higher from 317 to 174 Mg dry mass ha−1 between 1050 and
3060 m a.s.l.. The argument is supported by the reason that the net primary productivity
(NPP) of the forest could also decrease with an increase in elevation because of an increase
in respiration loss [81]. The present study reported a significantly (p < 0.05) maximum
ECD (149.90 Mg ha−1) on the northern aspect, which declined with descending altitudinal
ranges. Thus, the maximum ECD (123.20 Mg ha−1) was recorded at lower altitudes and
the minimum (74.78 Mg ha−1) at the highest altitudinal range. Sharma et al. [36] had
also reported the occurrence of moister and other favorable environmental factors on
the northern aspects for higher growth and biomass. In the northern aspect, vegetation
carbon density was high because of optimum growing conditions, such as moisture and
temperature. However, the lower biomass and carbon density on the S- and W-facing forest
slopes may partly be due to biotic disturbance as these slopes are the perfect habitat for
human habitation and livestock grazing owing to their warmer temperature. The lower
altitudinal range had the highest ecosystem carbon density, which may be because of a
higher optimum growing condition, such as moisture, organic matter, soil condition and
temperature, etc., for trees and low soil erosion.

4.4. Soil Physico-Chemical Properties and Correlation

Higher levels of OC, available N, P and K at the lower altitudinal range may have
favored more biomass production and better nutrient cycling because of higher tempera-
tures, reduced soil erosion, and nutrient deposition. OC, available N and P displayed their
highest values on the northern aspect and lowest values on the southern aspect, whereas
available K was maximum on the eastern aspect. These are some of the reasons along
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with indirect sunlight for the higher biomass and carbon density of the N-facing slopes
compared to the S-facing slopes. However, Måren et al. [68] did not found any notable
contrast between slope and aspect, except for soil available K, which was reported to be
higher in S-facing slopes.

5. Conclusions

The results of the present investigation suggest that topographic factors, mainly the
aspect of the slope and altitude, play a substantial role in vegetation composition and stand
characteristics, carbon density and nutrient status of the soil. There is marked variation in
the vegetation composition, tree characteristics, carbon density and soil physicochemical
characteristics among the four aspects and altitudinal gradients. Therefore, they should
be given due importance for the efficient management of these forest ecosystems from a
biodiversity conservation and carbon mitigation point of view. Biodiversity of the tree
and shrub species, particularly light-demanding xerophytic species, such as A. catechu and
E. indica, are prevalent on the S-facing slope, which are otherwise very poor on account
of the C sequestration potential due to less accumulation of stem biomass and growth
rate. Aspect and slope can be the basis for fixing the boundary of the compartment/sub-
compartment (the fundamental unit of forest management) and their allotment under a
particular working circle/silvicultural system. S-and W-facing slopes are very poor on
account of their carbon density; therefore, they should be the focus of the attention of
plantation programs, such as joint forest management and REDD (reducing emissions
from deforestation in developing countries)/REDD+ (reduce emissions from deforestation
and forest degradation in developing countries). In turn, E-facing slopes are extensively
occupied by P. roxburghii communities, which should be managed intensively for the
production of timber and resin, etc. N-facing slopes harbor mesophyllic tree communities,
such as Q. leucotrichophora–P. roxburghii, and are a store house of diversity, carbon and
nutrients, and therefore should be conserved and enriched with valuable tree species such
as C deodara. The present study provides sufficient information related to the distribution
pattern and density of different species at different aspects and altitudinal ranges of mid-
Himalayan forest ecosystems. Based on the species distribution and density, we can go
for enrichment of these sites through various interventions, which will be quite useful in
biodiversity conservation and mitigating climate change.
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Abstract: In the modern era, Gmelina arborea plantations are a hotspot of future research because

of their high carbon sequestration potential. The present work was conducted during 2018 to 2020

on a young unmanaged Gmelina farm to understand the ecosystem’s carbon and its dynamics. The

study area was categorized into three age classes: ≤5, 5–10, and 10–15 years. In a plantation, Gmelina

trees (10%) were randomly selected while other trees (90%) were also taken into the consideration

for ecosystem carbon. A stratified random nested quadrate sampling method was adopted for

analyzing other vegetation forms under study. Overall, 51 individual species in the studied Gmelina

farm were found which includes 23 tree species, 7 shrub species, 16 herbs, 2 climbers, and 3 species

of ferns. The estimated quantitative vegetation parameters and diversity indices indicate that the

plant assemblages were heterogeneous with native diverse species evenly distributed with fairly

higher densities, frequencies, and abundance. Herbs were the most important species followed

by shrubs and trees. Consequently, with the increasing age of plantation, the richness of plant

species increased. Soil properties were significantly influenced by the age of the plantation but

exhibited no discreet trend. Total biomass density and total carbon density increased with increasing

plantation age while no drastic variation was found in available soil organic carbon (SOC) because of

insignificant variability in litter production. Total carbon, available SOC (up to 60 cm depth) and

ecosystem carbon in the three age class plantations fell in the ranges of 54.51–59.91, 48.18–55.73, and

104.81–110.77 Mg ha−1, respectively. The carbon sequestration potential of Gmelina arborea is higher

compared to other reported species and highly supportive of converting unutilized agricultural

landscapes to reduce the atmospheric carbon dioxide in future.

Keywords: plantation; climate change; land use management; carbon sequestration; soil

1. Introduction

Climate change is a global concern and forests play a vital role in regulation as they
are a viable option for offsetting terrestrial carbon dioxide emissions [1,2]. Unfortunately,
forests alone are not enough to offset all the terrestrial emissions [3] and there is a need is to
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find an alternate viable option to bridge this gap [4]. The accepted viable alternative is trees
outside forest (TOFs) in both agricultural and human-dominated landscapes, which will
not only meet timber, industrial, and livelihood demands but also effectively and viably
facilitate offsetting carbon dioxide (CO2) emissions with the forest ecosystems [5]. Tree-
based land use systems including those in the nonforested landscapes such as agricultural
land play an important role in global carbon (C) cycling since these are one of the largest
C pools which act as a potential C sink and also as one of the major sources of CO2 [4].
The productivity of the plantations is higher (3.2 Mg ha−1 yr−1) than the productivity of
natural forests (1.1 Mg ha−1 yr−1) [6]. This is because plantation forestry has an added
advantage over the natural forest in terms of better silvicultural practices [7]. Thus, the
past decades have witnessed increased interest in tree plantations in both agricultural- and
non-agricultural-dominated landscapes in the country, especially Teak (Tectona grandis),
Gmelina (Gmelina arborea), Deccan Neem (Melia azadirach), Champa (Michelia champaca),
and Sal (Shorea robusta) among the farmers and entrepreneurs, particularly in the sub-
Himalayan, i.e., Terai, region of West Bengal [8]. Gmelina arborea, which is native to India
and a prime fast growing species in farm forests in India, has the potential to replace and
act as a substitute for exotic timbers in the country [9]. The species has the potential to
store C and is also remunerative due to its multiple uses [8,10]. In addition to timber, wood
of the tree is used for fuel wood, paper and pulp making, and is used in other forest-based
industries [8].

Gmelina plantations have been established and encouraged in small woodlots, home
gardens, and agroforestry settings in the tropics and subtropics [8], including the Terai
region of West Bengal. The potential of these trees to offset C emission needs to be assessed
and monitored properly for which local, regional or national inventories are required [4].
Understanding the diverse and complex tree-based land use systems for C sequestra-
tion and nutrient cycling has become a global research interest [11]. The United Nations
Framework Convention on Climate Change (UNFCCC) has recognized the importance
of plantation forests as a greenhouse gas (GHG) mitigation option, as well as the need to
monitor, preserve and enhance terrestrial C stocks [12]. Studies on associated plant species
biodiversity, quantification of biomass, and C are available for Gmelina farms in India but
few attempts have been made regarding chronosequencing of C sequestration potential of
these plantations along with associated plant biodiversity [8], while none have been carried
out for the Terai region of West Bengal. The study was thus attempted with the hypothesis
that there will be chronosequence variations in terms of diversity, biomass, carbon storage,
and soil properties of the unmanaged Gmelina farm in Terai region of West Bengal with the
following objectives: (i) to assess physio-chemical characteristics of soil and (ii) to assess
phyto-diversity, biomass, and carbon storage of the Gmelina farm. The present study was
the first attempt in the region to assess the potential of Gmelina farms, which will be helpful
in the conversion of the unutilized land for C farming to create additional C sinks and may
further assist in trapping the available carbon dioxide in the atmosphere.

2. Materials and Methods

2.1. Site Description

The present study was conducted in the Terai region of West Bengal at Cooch Behar
district from September 2018 to February 2020. The study site is a sub-Himalayan region
located between 26◦30′–26◦56′ N latitude and 88◦7′–89◦53′ E longitude. The area around
(within 10 km) the University (Uttar Banga Krishi Viswavidyalaya, Pundibari—UBKV)
campus was surveyed for sampling plantations of Gmelina in the agricultural landscape
which was a predominantly rice-based cropping system with potato and/or fallow. More-
over, the cropping system is not intensive in the area and the land of most of the farmers
was marginal; therefore, they have poor resources. Gmelina or any other tree plantations
were not normally planted as a block in crop land by the farmers in the Terai region except
some scattered plantations mostly in home gardens or as boundary or roadside plantations.
The plantations were generally developed on land normally unsuitable for annual cropping
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by farmers and nonfarmers, in addition to crop land of the owners, and were kept fallow
until the planting of Gmelina or any other tree plantations. These plantation owners were
normally absentee growers. Gmelina was densely planted with a squared geometry of
3 × 3 m. The plantations were normally kept aside undisturbed without replanting the
gaps and allowing spontaneous plant growth. The area of most of the plantations was at
least one acre.

2.2. Climate and Weather

The study area is under moist tropical conditions [13], where average minimum and
maximum temperatures varied from 22.8 (during winter, January) to 32.32 ◦C (during
September). On average, the annual rainfall varied from 2000 to 3500 mm, the bulk of which
occurred during the premonsoon and monsoon periods—i.e., from May to September. The
relative humidity (RH) varied from 55 to 90%. The study area is warm and humid except
with a sort of spell of winter from December to March (Supplementary Figure S1).

2.3. Sampling and Inventory

As there were only 21 plantations in the study area, we were able to include them
all in the study. The selected plantations were marked using GPS (Model Garmin 72)
and based on their availability, plantations of three age classes (seven plantations each)
were categorized—i.e., ≤5 (Age class I (AC I)), 5–10 (AC II) and 10–15 years (AC III;
Supplementary Table S1). Each selected plantation was of about one acre in area. At each
plantation, the outer rows were excluded from measurement as a buffer. From the interior
rows, all Gmelina stems with diameters at breast height (dbh) of more than 10 cm were
recorded and additionally 10% of these trees were selected randomly and their heights were
recorded. Species other than Gmelina—all trees with a dbh > 10 cm—were recorded along
with their tree heights. Similarly, other tree species with dbhs ≥ 10 cm in the plantation were
also selected. Shrubs and herbs were sampled following a stratified random nested method,
where three (5 × 5 m) quadrats were marked diagonally across the plantation (two at the
corners and one at the center) for shrubs, while for herbs five 1 × 1 m plots were marked at
all corners and one at the center of the plantation. Most of the plant species were identified
in the field itself, while those which could not be identified were preserved by mounting in
herbarium sheets following standard procedures for identification. The mounted specimens
were cross-checked with the available herbarium in the Department of Forestry UBKV
Pundibari, West Bengal. A full inventory of the plant species found at the plantations was
prepared including trees, shrubs, and herbs. The biomass of plantations was separately
estimated for trees, shrubs, and herbs. Tree biomass was estimated separately for all the
species. Litter samples were collected once during January from ten sampling locations
with plots size of 1 × 1 m distributed throughout the plantation. To estimate the plantation
soil properties, a total of 63 representative soil samples were collected from each plantation
site—i.e., ≤ 5 (AC I), 5–10 (AC II) and 10–15 years (AC III) at three different depths (0–20,
20–40, and 40–60) using Dutch augur. Prior to estimation, collected soil samples were
air-dried, grinded with a wooden pestle, passed through a 2 mm sieve, and stored in cloth
bags for further analysis.

2.4. Quantitative Parameters

For each plantation, individual species were recorded for quantitative parameters
following standard procedures. Importance value index (IVI) as a summation of relative
frequency (RF), relative density (RD), and relative abundance (RA), as suggested by Cintron
and Novelli [14], was estimated to analyze the sociability of the plant assemblages in
the plantations.

2.5. Species Diversity Indices

Various diversity indices were estimated to analyze plant diversity of the plantations.
Species richness was described by the available species number in a studied plantation.
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Menhinick’s index (D′) [15] is based on the total number of species and the total number
of individuals of all species (N). D′: = S/

√
N. This index, unlike the Shannon–Wiener

index, gives more weightage to the rare species. The concentration of dominance was used
to evaluate species dominance within a community [16]. This provides information on
number of times a particular species was encountered during the sampling. Higher values
are indicative of less diverse community and concentration of dominance is calculated
using the following formula:

C = ∑ (ni / N)2 (1)

where ni denotes the number of individuals of a species
The Shannon–Wiener diversity index (H′) [17] of species diversity was used to describe

diversity, where higher values suggest more diverse nature of the plantations. The index
was estimated using following formula:

H′ = − ∑ (ni / N) ln (ni / N) (2)

The method of Pielou [18] was used to estimate the species evenness index:

EI = H′ / ln N. (3)

2.6. Biomass and Carbon Stock Estimation

A nondestructive method was adopted for quantifying above-ground biomass (AGB)
of the trees using a recent allometric model developed for forest types in northeast In-
dia [19].

AGB = 0.18D2.16 × 1.32 (4)

where D is the diameter of tree at breast height.
Below-ground biomass (BGB) was estimated as 15% of the AGB [20]. Total tree biomass

was the summation of AGB and BGB, which was estimated for each tree in the sampled
area and then summed up. The total herbs, shrubs, and tree biomass was further converted
into carbon by multiplying a factor of 0.50 [20].

2.7. Soil Properties

Soil properties such as bulk density (core sampler method), moisture (volumetric
method), electrical conductivity or electrical conductivity (EC) (soil water suspension
method), pH (Beckman’s pH meter), soil organic carbon (Walkley and Black’s rapid titration
method), available nitrogen (Modified Kjeldahl method), available phosphorus (Bray’s
method) and available potassium (Flame Photometer method) were analyzed following
standard methods [21–23]. Soil organic carbon (SOC) stock was estimated by multiplying
the SOC with weight of the soil (bulk density and depth) and is expressed as mega grams
per hectare (Mg ha−1) [24].

2.8. Statistical Analysis

The data were analyzed using the software package Gen Stat Eleventh Edition (VSN
International, Oxford, UK). One-way analysis and a Duncan multiple range test (DMRT)
test were also employed.

3. Results and Discussion

3.1. Diversity Indices and Species Composition

The diversity indices of Gmelina farm are given in Table 1. Overall, we found 51 species
including 23 tree species, 7 shrub species, 16 herbs, 2 climbers and 3 species of ferns. Four
species were not identified (see Supplementary Tables S2–S5).
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Table 1. Diversity indices of Gmelina farm forestry plantations.

Parameters Overall
Age Classes (Year)

≤5 5–10 10–15

Species richness 51 35 37 43
Genera richness 46 35 35 42
Family richness 33 25 25 30

Species diversity index 1.18 0.54 0.62 0.59
Concentration of dominance 0.03 0.04 0.05 0.04

Shannon–Wiener index 1.29 1.54 1.59 2.00
Evenness index 8.69 3.35 3.92 3.65

Amongst the plant species found to be associated with Gmelina plantations of all
age classes, herbs were prominently found followed by trees, ferns and climbers. Similar
studies on associated plant species diversity in tree plantations in agricultural landscapes
have been previously reported with either shrubs or herbs dominating [25]. Dominance of
one stratum generally suppresses the diversity of another [26].

The different diversity indices estimated for different age class plantations are given
in Table 1. Overall, the plant assemblages in the plantations were more diverse, evenly
distributed, heterogeneous, and stable compared to the different age class plantations. The
concentration of dominance of the different age classes estimated separately was much
less but indicated a similar and higher probability of a species being encountered during
sampling in these plantations. The H′ index reflects structure and heterogeneity of plant
assemblages in an ecosystem—i.e., higher the index value, the more diverse and stable
the community is [27]. The index values estimated for the different age class plantations
were much less but increased with increasing plantation age—i.e., the plantations with
increasing age became more heterogeneous and stable. Species in the different age class
plantations were more or less evenly distributed.

This is a considerably higher diversity of associated plant communities developed
in the Gmelina farm as there were no disturbances. The plantations were not managed
silviculturally by the owners after planting as they were kept aside. A similar increase
in plant diversity was also reported for farm forestry plantations and other nonforested
landscapes when they were not managed or kept aside [28]. The diversity of the associated
species in the Gmelina plantations increased with the increasing plantation age, reflecting
the compatibility of the associated species with Gmelina, which is in contrast to the studies
reporting on teak plantation due to its allelopathic effect [25]. Moreover, canopy gaps
in the plantation allowed enough sunlight to favor understory growth for early succes-
sional species [29]. The undisturbed Gmelina farm forestry plantations in the Terai zone of
West plantations aided the rehabilitation of fallow crop land in an agricultural landscape,
allowing homeostatic capability of the system [30].

The studied Gmelina undisturbed farm forestry plantations with increasing age pro-
moted succession along with resetting of many ecosystem processes such as improving
microclimate, soil fertility through litter input, microbial diversity and activity, biomass
production, and sequestration capacity [31]. Studies have confirmed succession in sole tree
species plantation resetting the disrupted processes associated with diversity [32]. Species
richness listed in the plant assemblages of the Gmelina plantations was comparable with
an earlier study involving plantations of Tectona grandis, Shorea robusta, Michelia champaca,
and Lagerstroemia speciosa, but less so than miscellaneous species stands in the Chilapatta
Reserve Forest not more than 10 km from the present study sites [33].

Generally, tree plantations outside the forest were recolonized with forest species of the
regional species pool [34], which promotes rehabilitation because of improved site quality
factors suitable for growth of native species [31]. It was shown in all the earlier studies
that in absence of disturbance, structural homogeneity of the plantation with succession
gradually leads to heterogeneous multilayered secondary forests with more heliophytes
and sciophytes in the understory. In the present study, 51 plant species including trees,
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shrubs, herbs, climbers, and ferns were documented from the Gmelina farm and if left to
grow undisturbed until their natural rotation, a more heterogeneous secondary forest can
be expected in this agricultural landscape. Rehabilitation of landscapes is a time-consuming
process which needs at least as long as 100 years to reset back, akin to the earlier native
forest [35] but not the same in terms of species richness and structure [25]. This study,
along with previous studies, supports the policy of using tree planting to restore degraded
agricultural landscapes particularly unsuitable for annual cropping with tree plantations of
Gmelina or other timber species for biodiversity, ecosystem functions, sustainable forestry,
and ecosystem services [25].

3.2. Vegetation Analysis

Frequency, abundance, density, and IVI estimated for the plantations are provided
in Supplementary Tables S2–S5. In central and eastern Himalayan forests, frequency
of tree layer was reported with a range of 10–100%, shrub layer 10–80%, herb layer 10–
100% [27,36,37]. A similar frequency range was also observed for the species in the present
study. The species documented in the study sites were native species of the region and were
mostly used by the local people for food, medicine, and fodder [38,39]. Frequency or the
degree of distribution of the species indicates the chance of occurrence of a species while
sampling. Acacia auriculiformis, Albizia lebbeck and 15 other species had lowest representa-
tions in the sampled plots, while Ageratum houstonianum had the highest representation.
Correspondingly, these species were also observed with the lowest and highest relative
representations, respectively, while sampling. Generally, the representation of species and
their relative representations during sampling initially increased—i.e., from AC I to AC
II—but then decreased from AC II to AC III.

Higher chance of occurrence of the associated plant species in Gmelina farm forestry
plantations also generally increased the numerical strength and abundance of the species,
which resulted in the easier establishment of these species in the plantations. These species
were initial colonizers as they adapted well as understory strata in the Gmelina farm forestry
plantations. Dalbergia sissoo, Lagerstroemia speciosa, Albizia lebbeck, Acacia auriculiformis, and
Moringa oleifera (all trees) were estimated as having the lowest densities, while Clerodendron
infortunatum, a shrub with the highest density in the plantations amongst the associated
species. Species density varies with forest community type, forest age class, tree species,
size class, site history, site quality factors, and disturbance [40]. Acacia auriculiformis, Albizia
lebbeck, Dalbergia sissoo, Lagerstroemia speciosa, and Moringa oleifera were the least abundant,
while Clerodendron infortunatum, a shrub, was the most abundant associated species in
the plantations.

Based on estimated IVI values, the most important of all the species associated with
Gmelina plantations was Clerodendron infortunatum, a shrub, and the least were Acacia
auriculiformis, Albizia lebbeck, Dalbergia sissoo, Lagerstroemia speciosa, and Moringa oleifera.
The other important associated species in the plantations were Clerodendron infortunatum,
Ageratum houstonianum, Cynodon dactylon, Ageratum conyzoides, Lantana camara, Diplazium
esculentum, Fragaria vesca, Lucas aspera, Tabernaemontana divaricata, Mikania micrantha, Coloca-
sia esculenta, Pouzolzia zeylanica, Bombax ceiba, Paspalum distichum, Matteuccia struthiopteris,
and Oxalis corniculata (see Supplementary Tables S2–S5). Based on the higher IVI values of
these species as compared to other recorded species, it can be concluded that these species
were successful primary colonizers in the Gmelina farm forestry plantations, forming a
definite structure with vertical understory strata comprising trees, shrubs, and herbs [30].

3.3. Soil Moisture, pH, Electrical Conductivity and Bulk Density

Soil moisture and EC (Table 2; Supplementary Tables S6 and S7) decreased gradually
with increase in soil depth from 0–20 cm to 40–60 cm in plantations of all age class series
but soil pH (Table 2; Supplementary Table S7) exhibited a reverse trend, while soil bulk
density (Table 2) exhibited no trend with depth. None of these soil physical parameters
show any consistent trend with increased plantation age, which is also evidenced by the
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staggered relationship observed between plantations of different age classes and their
soil physical parameters (Table 3). This indicates that the soil of Gmelina plantations was
highly inconstant and had unstable characteristics as these were planted in agricultural
landscapes [41–43].

Table 2. Soil moisture, pH, electrical conductivity (EC) and bulk density in Gmelina plantations.

AC
Moisture (%) pH EC (m mhos cm−1) Bulk Density (g cm−3)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

I 28.23 24.56 21.22 5.56 6.19 6.59 0.31 0.29 0.17 1.73 1.66 1.56
II 26.94 23.36 21.01 5.28 5.65 6.24 0.25 0.16 0.09 1.54 1.62 1.55
III 29.59 25.84 22.93 5.39 5.81 6.27 0.28 0.20 0.17 1.53 1.58 1.63

Mean 28.25 24.59 21.72 5.42 5.88 6.37 0.28 0.22 0.14 1.6 1.62 1.58
Sem 1.10 1.15 1.02 0.22 0.21 0.19 0.05 0.05 0.05 0.65 0.23 0.25
CD 3.38 3.54 3.13 0.66 0.65 0.59 0.15 0.17 0.15 NS NS NS

AC I (Age class I—≤5 years); AC II (5–10 years); AC III (10–15 years); D1—soil depth 0–20 cm; D2—20–40 cm; D3—40–60 cm; Sem—standard
error mean; CD—Critical difference.

Table 3. Pearson correlation matrix of stand, soil properties Total Biomass Density (TBD) and TCD.

AC pH EC N P K SOC TBD

AC 1
pH −0.266 * 1
EC −0.120 0.616 ** 1
N 0.060 −0.445 ** −0.170 1
P −0.077 −0.072 −0.142 0.002 1
K 0.253 −0.045 −0.018 0.063 0.020 1

SOC −0.051 0.043 0.382 ** −0.121 −0.120 −0.043 1
TBD 0.795 ** −0.128 −0.009 0.025 −0.135 −0.107 −0.067 1

** Significant at 0.01 level; * Significant at 0.05 level (2 tailed); AC—age class; EC—electrical conductivity; N—nitrogen; P—phosphorus;
K—potassium; SOC—soil organic carbon; TBD—Total Biomass Density (total biomass having both ABG and BGB).

Prior to the establishment of plantations, lands were unused or were agricultural
fallow in and around crop lands. The plantations were not at all managed except during
planting with farmyard manure (FYM) application or at the most once after one year
of planting. All these soil physical parameters except bulk density were significantly
influenced by the age of the plantations which, however, did not exhibit any discreet trend
with increasing age of the plantations. Soil water holding capacity (WHC) in tree-based land
use systems is influenced by rainfall, temperature, humidity, amount of incident radiation
on the soil floor, structure, and function of plant cover [44]. The Terai region of West Bengal
located in the foothills of eastern Himalayas has a tropical moist climate with high rainfall
and acidic soil [45]. High humidity and rainfall (Supplementary Figure S1) increased
the soil water retention by reducing evaporation rates and increasing the infiltration of
water [33]. Moreover, tree-based land use systems were reported with higher soil organic
matter on the surface soil layer due to litter input increasing the EC, thus making the soil
more acidic and these soils can also absorb and hold substantial quantities of water as
compared to subsurface layers [38]. Higher acidity of surface soil is due to accumulation
and subsequent slow decomposition of organic matter releasing acids [46]. Lower pH
at soil surface inactivates the soil fauna resulting in slower humus decomposition with
more nondecomposed matter on the soil floor [47]. The undisturbed Gmelina plantations
increased the soil organic matter continuously without being removed, which efficiently
regulated the soil physical properties by increasing leaching of bases and weathering
process due to decomposition of litter [48].

Soil moisture, pH, and EC in the plantations of different age classes (AC I—≤ 5 years,
AC II—5–10 years, and AC III—10–15 years) varied significantly because of site quality
factors at the landscape level (Supplementary Tables S6 and S7) arising due to microland-
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scape differences resulting from differences in developing understory vegetation and gaps
in the Gmelina canopy. There was mortality of Gmelina after its planting which resulted
in its discontinuous canopy. Differences in the development of understory vegetation
in the Gmelina plantations are indicated from the differences in its community parame-
ters. The skewed variability in soil properties in the plantations of different age classes
was due to no silvicultural operations performed and was thus strongly influenced by
socio-ecological conditions [49] such as vegetation structure of the plantations as well as
interculture operations performed on surrounding crop land [50].

3.4. Soil Available Organic Carbon, Nitrogen, Potassium and Phosphorus

The amount of available SOC, N, P, and K decreased with increasing soil depth,
highest at surface layer and lowest in the deepest layer analyzed (Table 4; Supplementary
Tables S8–S11).

Table 4. Soil organic carbon and available nitrogen, phosphorus and potassium.

AC.
SOC (Mgha−1) Available N (Kg ha−1) Available P (Kg ha−1) Available K (Kg ha−1)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

I 25.64 18.74 11.35 157.1 93.63 60.78 14.63 15.08 14.88 65.11 57.34 54.36
II 22.15 14.75 11.28 172.0 126.8 73.62 14.15 13.23 11.84 86.37 71.68 72.28
III 22.11 15.57 13.18 141.7 108.7 73.42 14.76 16.76 13.76 86.98 78.58 71.20

Mean 23.3 16.35 11.94 156.9 109.7 69.27 14.51 15.02 13.49 79.49 69.2 65.95
Sem 1.87 1.46 0.58 15.45 17.60 16.39 0.92 1.93 0.89 8.30 10.14 9.79
CD 5.77 4.50 1.79 47.59 54.22 50.50 2.84 5.95 2.76 25.59 31.24 30.18

AC I (Age class I—≤ 5 years); AC II (5–10 years); AC III (10–15 years); D1—soil depth 0–20 cm; D2—20–40 cm; D3—40–60 cm.

Regular litter input along with moderate temperature and humidity in the Gmelina-
based land use caused higher availability of organic carbon (OC) and nutrients on the
surface than the subsurface layers [51]. The availability of soil primary nutrients in planta-
tions was in the order N > K > P [36,52]. The estimated available amount of these primary
nutrients indicates that soil in the Gmelina farm was low-medium in available nitrogen,
low-high in available phosphorus, and low in available potassium [53]. Available soil nitro-
gen and potassium were synergistic to each other [54]. Forest and cultivated unmanaged
land were estimated with highest available amount of nitrogen and organic carbon, while
these are medium in well-managed cultivated soil and lowest in barren land [55]. Similar
to the soil properties in the plantations, the amount of available SOC and soil primary
nutrients also differed significantly but without any visible trends with increasing age of the
plantations indicating local differences (Supplementary Tables S8–S11). These differences
were due to variations at the microlandscape level in site quality factors associated with
socio-ecological conditions such as vegetation parameters and management of surrounding
crop fields [50].

The estimated amount of available SOC and primary nutrients was staggered at
different soil depths with no discreet trend, indicating highly inconsistent nature and
unstable characteristics of soil in the Gmelina farm [42]. Similar heterogeneity of soil
properties with no discreet trend observed in the present study area was also reported
from urban plantations [56]. Adequate soil management is crucial for nutrient availability
and OC [57]. Forests were converted to agricultural lands in the Terai region of West
Bengal and generally were not adequately managed, which resulted in the inconsistent
and unstable nature of soil indicated by the unpredictable behavior of soil properties
including less nutrient availability and OC build up than the natural forests [58]. The
plantations were established in unused or fallow crop land and kept undisturbed except
FYM application during planting and at the most once after one year of planting. The
growing plantation used nutrients from the soil with no or very little replenishment in the
soil from litter input initially. Moreover, there was also lesser understory vegetation during
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the initial years of plantation establishment adding less organic matter to the soil. With the
continuous growth of trees and increase in understory vegetation due to no management
of the plantations, there was nutrient build by organic matter (litter) input and thus the
amount of soil available nutrients did not exhibit any discreet trend with increasing age of
the plantations.

Factors such as topography, climate (temperature, precipitation, RH), weathering pro-
cess, vegetation cover, and microbial activities influence the build-up of OC and nutrients
in the soil [48]. Differences in the replenishment of nutrients back to the soil due to varied
litter input, soil water content, aeration, temperature, microorganisms, and efficiency of
the root system to absorb nutrients caused variation of feedback mechanism of various
ecosystem processes in the plantations [59]. Gmelina farm forestry plantations of different
age groups were thus vegetation with heterogeneous structures and compositions that
caused significant variation among their SOC build up and nutrient availability [60]. The
structures and compositions of vegetation and soil properties are positively correlated with
available SOC and nutrients [61]. There are abundant reports on negative influence of
forest conversion to crop land or plantation [62]. Tree-based land uses and management
practices, however, positively change the soil properties including SOC build up [36].

Contrary to the reports of higher availability of soil primary nutrients due to higher
soil organic matter in the tree-based land uses [33], the present study found no such trends
with the availability of soil primary nutrients with available C build up in the plantation
soil. Application of FYM at the early stage of plantation establishment might be the
reason for no such trends in the plantations. Further, human activities in and around the
plantations were also responsible for the unpredictable behavior of soil properties in the
plantations [63]. Trends or no trends, soils under Gmelina farm in the Terai region of West
Bengal without any management also accumulated a considerable amount of carbon and
primary nutrients sometimes comparable to forest and well-managed agricultural land
uses [64]. However, the process of carbon accumulation in soils of Gmelina farm forestry
plantations was still left largely unexplained akin to other studies [64].

3.5. Biomass Production and Biomass Carbon Stock

The AGB, BGB, and total biomass with their corresponding C quantified for the
Gmelina farm are given in Table 5. The overall contribution of AGB in the plantations was
87.37% to the total biomass. Overall in the plantations, trees contributed 96.72%, litter
contributed 3.17% and understory shrubs and herbs contributed only 0.11% of the total
biomass in the plantations, while overall in the plantations only Gmelina trees contributed
34.35% and associated trees contributed 62.37% of the total biomass. The biomass of
the plantation increased gradually with its increasing age, exhibiting a strong positive
correlation (r = 0.795; Table 3)—i.e., the biomass of the plantations increased with increasing
age. The quantum of biomass increases were higher from AC II to AC III (21.19% for above
ground, 21.26% for below ground, and 21.20% for total biomass) than from AC I to AC II
(4.07% for above ground, 2.66% for below ground and 3.89% for total biomass). ABG, BGB,
and TB of Gmelina were increased by 9.37, 9.28 and 9.36% from AC I to AC II, respectively;
while the increases were 19.39, 19.5 and 19.4% from AC II to AC III, respectively. In age
class I, mean contributions of total AGB, litter biomass and total shrubs + herbs biomass
to mean total biomass of the plantations were 87.27, 2.43, and 0.1%, respectively, while
contributions of Gmelina and associated trees AGB, BGB, and TB to mean total biomass of
the plantations were 28.98, 4.35, 33.33, 55.77, 8.34, and 64.1%, respectively.
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Table 5. Biomass and carbon stock (Mg ha−1) in Gmelina farm forestry plantations.

Component AGB BGB TB AGC BGC TC

Age class I (≤ 5 years)
Gmelina arborea 31.6 4.74 36.34 15.8 2.37 18.17

Bombax ceiba 12.24 1.84 14.08 6.12 0.92 7.04
Melia azaderach 2.20 0.33 2.53 1.1 0.16 1.26

Ailanthus grandis 5.36 0.80 6.16 2.68 0.4 3.08
Chukrasia velutina 2.15 0.32 2.47 1.07 0.16 1.23

Tectona grandis 10.26 1.54 11.8 5.13 0.77 5.59
Swietenia macrophylla 13.45 2.02 15.47 6.72 1.01 7.73

Dalbergia sissoo 2.72 0.41 3.13 1.36 0.20 1.56
Albizia lebbeck 12.42 1.86 14.28 6.21 0.93 7.14

Shrub 0.045 0.007 0.052 0.0225 0.0035 0.026
Herb 0.053 0.008 0.061 0.0265 0.004 0.031
Litter 2.65 - 2.65 1.32 - 1.32

Total 95.15 13.88 109.03 47.57 6.94 54.51

Age class II (5–10 years)
Gmelina arborea 34.56 5.18 39.74 17.28 2.59 19.87
Melia azaderach 2.68 0.4 3.08 1.34 0.2 1.36

Chukrasia velutina 9.1 1.36 10.46 4.55 0.68 5.23
Bombax ceiba 17.22 2.58 19.8 8.61 1.29 9.9

Tectona grandis 20.64 3.1 23.74 10.32 1.55 11.87
Ailanthus grandis 7.16 1.07 8.23 3.58 0.53 4.11
Syzygium cumini 3.59 0.54 4.13 1.79 0.27 2.06

Shrub 0.054 0.008 0.062 0.027 0.004 0.031
Herb 0.062 0.009 0.071 0.031 0.004 0.035
Litter 3.95 - 3.95 1.97 - 1.97

Total 99.02 14.25 113.27 49.51 7.12 56.63

Age class III (10–15 years)
Gmelina arborea 41.26 6.19 47.45 20.63 3.09 23.72
Melia azaderach 7.21 1.08 8.29 3.6 0.54 4.14

Chukrasia velutina 6.32 0.95 7.27 3.16 0.47 3.63
Bombax ceiba 16.68 2.50 19.18 8.34 1.25 9.59

Tectona grandis 20.36 3.05 23.41 10.18 1.52 11.7
Ailanthus grandis 12.4 1.86 14.26 6.2 0.93 7.13
Syzygium cumini 10.84 1.63 12.47 5.42 0.81 6.23

Shrub 0.057 0.008 0.065 0.028 0.004 0.032
Herb 0.073 0.011 0.084 0.036 0.0055 0.042
Litter 4.80 − 4.80 2.40 − 2.40
Total 120.0 17.28 137.28 60.0 8.64 68.64

Mean of all age classes 104.72 15.14 119.86 52.36 7.55 59.91

AGB: above-ground biomass; BGB: below-ground biomass; TB: total biomass; AGC: above-ground carbon; BGC:
below-ground carbon; TC: total carbon.

Prominent tree species associated with AC I were Bombax ceiba, Melia azaderach,
Ailanthus grandis, Chukrasia velutina, Tectona grandis, Swietenia macrophylla, Dalbergia
sissoo and Albizia lebbeck, contributing 12.88, 2.32, 5.65, 2.26, 10.82, 14.19, 2.87, and 13.10%,
respectively, to the total plantation biomass. Similarly, in AC II the contributions of total
plantation AGB, litter biomass, total shrub + herb biomass, and above-ground, below-
ground and total biomass of Gmelina and associated trees to total plantation biomass were
87.42, 3.49, 0.12, 30.51, 4.57, 35.08 and 61.30%, respectively, while in AC III the contributions
were 87.41, 3.5, 0.11, 30.06, 4.51, 34.56 and 61.83%, respectively. Melia azaderach, Chukrasia
velutina, Bombax ceiba, Tectona grandis, Ailanthus grandis, and Syzygium cumini were
associated with both AC II and AC III age group plantations and their contributions of
total biomass to the total plantation biomass were 2.72 and 6.04%, 9.23 and 5.29%, 17.48
and 13.97%, 20.96 and 17.06%, 7.26 and 10.39% and 3.65 and 9.08%, respectively. The
amount of biomass estimated in the Gmelina farm forestry plantations was less than that
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reported from plantation or stands in forest landscape from the same study area—i.e., Terai
zone of West Bengal [65]. Negligible contribution of understory vegetation and significant
contribution by above-ground parts to the total biomass of the tree-based land uses was
also reported by many previous works [66].

With increasing age, biomass increased with no change in the contribution of both AGB
and BGB towards total biomass from AC I to AC II and AC II to AC III. The contributory
trend of the different components of the Gmelina plantation towards total mean biomass
with increasing age also remained unchanged with increasing age of the plantation. Litter
production though increased with increasing age of the plantation but also exhibited the
same contributory behavior towards total mean biomass. Bombax ceiba, Melia azaderach,
Ailanthus grandis, Chukrasia velutina, and Tectona grandis were found in all the age classes of
Gmelina farm forestry plantations. The total biomasses of these associated tree species in
ACs I, II, and III were 37.04, 65.31 and 72.41 Mg ha−1 which were 33.97, 57.66, and 52.74%,
respectively, of the total plantation biomass. From AC I to AC II, the contribution of these
five associated species increased by 23.69% but from AC II to AC III their contribution
decreased by 4.92%. The total biomass contribution of Gmelina was 33.33%, 35.08%, and
34.56% towards total plantation biomass in AC I, AC II, and AC III, respectively. The trend
in contribution of total biomass towards total plantation mean biomass to the next higher
age class by the five common associated species and Gmelina was similar but the quantum
of change was more for the five associated species considered together than the Gmelina.

The change and dynamics of contribution by the components of Gmelina farm to-
wards total biomass can be explained by the increase in and intensity of both inter- and
intraspecific competition. Carbon is considered half of biomass, so any factor (biomass and
carbon) change that influences both [20] thus exhibits the same trends as exhibited by the
biomass with increasing age of the plantation. Biomass and biomass carbon varies with
land use, climatic conditions, edaphic conditions, topography, site quality, age, species
diversity, stem density, stem size distribution, density, structure, litter production, man-
agement practices, and disturbance history along with variations in canopy height and
wood density [67]. Similar quantification of biomass accumulation and carbon storage in
eucalyptus plantations was also reported by Kumar et al. [68]. Quantification of biomass in
tree plantations at agricultural landscape will aid in formulating sustainable management
strategies for increasing carbon pool build up outside forest land use [20].

3.6. Ecosystem Carbon Stock

The overall ecosystem C values estimated in the three age classes were 110.24, 104.81
and 110.77 Mgha−1 (Tables 4 and 5). The present study was unable to make a direct
and accurate estimation of C uptake by the vegetation because of high variability in tree
distribution and species causing uncertainties, as was also earlier reported [69,70].

Promoting plantations of suitable site-specific tree species in less or unproductive and
degraded agricultural lands is a recognized management action for offsetting terrestrial C
emission because of longer duration C storage both in biomass and soil [71]. Forests are
now net emitters due to degradation and deforestation [72]. Changing the forests to net
sink again from net emitter will need a supplement of additional C emission offset by the
best available land management options through promoting afforestation/reforestation
of available degraded and deforested lands [33]. Managing soil and biomass C in an
agricultural landscape by promoting Gmelina arborea or any other tree species plantation
will both be an avoided emission and net addition of C to terrestrial pools, thereby fulfilling
the global four per mile initiative [71]. The studied Gmelina farm forestry plantations with
only three age class series had considerable vegetation heterogeneity due to no disturbance
or management which if allowed growing full normal rotation period with selective logging,
development of seminatural secondary forest is expected [73].
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4. Conclusions

Farm forestry is now globally recognized as a low-cost viable option to supplement
forests in an effort to offset carbon (C) emissions. Younger Gmelina farm plantations (up
to 15 years of age) left aside after planting without silvicultural management in the Terai
region of West Bengal has the great potential of carbon sequestration due to their biomass
and soil. The ecosystem C in the three age classes (ACs I, II, and III) of plantations was in
the range of 104.81–110.77 Mg ha−1, of which carbon storage by tree and soil carbon as SOC
(up to 60 cm depth) were in the range of 54.51–59.91 and 48.18–55.73 Mg ha−1, respectively.
This C storage is mainly from young plantations and can play an important role if allowed
to complete a normal rotation cycle of 60–80 years. Further, a rotation cycle without any
disturbance with selective logging can develop considerable vegetation heterogeneity
which might lead to the conversion of homogenous plantations into seminatural secondary
forests. These microlandscapes within agricultural or human-dominated landscapes will
act as an oasis for biodiversity conservation. Further, carbon sequestration potential
of Gmelina arborea is reported to be higher compared to other species and very much
supportive for atmospheric carbon reduction in future under higher temperatures by
implementing a strategic plant diversity conservation plan.

5. Recommendations and Future Directions

This study recommends popular plantation programs through mission mode with
these high value timber species as C farming initiatives either in the unproductive and
degraded nonforested or agricultural landscapes. Popularizing such plantation programs
needs policy decisions and action with suitable site-specific tree species in participatory
mode with intensive growth. Plantations were generally thought to limit biodiversity and
are developed by the owner for economic benefits [74]. These allegations can be cleared up
by adopting different site-specific management strategies by removing disturbance factors
to allow heterogeneity of the landscape so that seminatural forest vegetation within the
agricultural or any other nonforested landscape is developed without compromising the
timber demands while bringing social and ecological benefits [75]. This requires further
studies to understand the plantations at various successional stages throughout the age
classes of natural rotation of species. The effect of plant community composition on
ecosystem functioning and services is yet to be understood [25]. Establishing plantations
with higher diversity of indigenous tree species is required for studying this relationship.
In farm tree plantations, plant life-history strategies require clear understanding to analyze
patterns of biomass allocation and partitioning in various tree species for sustainable
tree-based land management strategies and identifying the most productive tree species
for C sequestration [76]. Driving mechanisms of terrestrial C sinks and/or sources with
their regional patterns and magnitudes are unclear [77]. Therefore, there is a need to work
for the success of these plantations for C reduction. Even now, uncertainties prevail over
quantifying C fluxes in and out of a system due to insufficient pieces of information about
land use and land cover changes [78]. Thus, information on C exchange between these
plantations and atmosphere needs urgent attention for efficient C budgeting for viable
policy support and strategic decisions.
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Abstract: Open cast coal mining causes complete loss of carbon sink due to the destruction of

vegetation and soil structure. In order to offset the destruction and to increase sequestration of

carbon, afforestation is widely used to restore these mine spoils. The current field study was

conducted to assess the ecosystem status, soil quality and C pool in an 8 years old reclaimed mine

spoil (RMS), compared to a reference forest (RF) site and unamended mine spoil (UMS). Biochar

(BC) prepared from invasive weed Calotropis procera was applied in this 8 year RMS at 30 t ha−1

(BC30) and 60 t ha−1 (BC60) to study its impact on RMS properties and C pool. Carbon fractionation

was also conducted to estimate inorganic, coal and biogenic carbon pools. The C stock of 8 year

old RMS was 30.98 Mg C ha−1 and sequestered 113.69 Mg C ha−1 CO2. BC30 and BC60 improved

the C-stock of RMS by 31% and 45%, respectively, and increased the recalcitrant carbon by 65%

(BC30) and 67% (BC60). Spoil physio-chemical properties such as pH, cation exchange capacity,

moisture content and bulk density were improved by biochar application. The total soil carbon at

BC30 (36.3 g C kg−1) and BC60 (40 g C kg−1) was found to be significantly high compared to RMS

(21 g C kg−1) and comparable to RF (33 g C kg−1). Thus, eco-restoration of coal mine spoil and

biochar application can be effective tools for coal mine reclamation and can help in achieving the

UN sustainable development goal 13 (climate action) by increasing carbon sequestration and 15

(biodiversity protection) by promoting ecosystem development.

Keywords: coal mine spoil; reclamation; biochar; carbon sequestration; carbon fractionation

1. Introduction

The UN sustainable development goal (SDG) 13 stands for climate action and promotes
all activities which would ensure successful sequestration of carbon, whereas, SDG 15
safeguards and restores biodiversity protection [1,2]. Burning of fossil fuels is the primary
drivers of global warming and climate change, and the extraction of these resources
also adds to global concerns regarding the climate crisis [3,4]. Mining activities lead
to complete loss of vegetation and the carbon sink in the soil and plants are lost to the
atmosphere [5]. Mine spoils are carbon deficit with impoverished soil conditions that
cannot support plant and microbial growth. Coal mine restoration can help restore the
lost carbon sink by promoting plant growth and enriching the mine spoil, which helps
sequester the atmospheric carbon [6,7]. The most common techniques for mine restoration
include afforestation, agriculture and grassland development [8,9]. Plantation of hardy
species in reclaimed mine spoils (RMS) improves the soil organic carbon (SOC) pool and
improves the carbon sequestration potential of the ecosystem [10]. Development of natural
forest in mine spoils may take centuries due to the impoverished soil properties and lack
of substrate for supporting plant growth. Degraded land can be reclaimed by development
of forest cover. Technical reclamation such as leveling and grading of dump, reducing
slope length, stabilization of slope by blanketing with coir mat along with grass-legume
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mixture, application of top soil, fly ash and bio-solids can be used to enhance the vegetation
growth [11–13].

Restoration of RMS can potentially enhance soil C sequestration rate and improve
soil properties [14–16]. Akala and Lal, [17] reported that the SOC pool of a RMS increased
from 14 Mg ha−1 to 48.4 Mg ha−1 after 21 years of pastureland development in a degraded
coal mine site. In another 19 years old revegetated coal mine spoil (Singrauli, India) there
was 712% increase in the rate of carbon sequestration [18]. The sequestration of carbon
depends on the type of vegetation used for reclamation, age of reclamation and nature
of coal mine spoil. A study conducted by Mukhopadhyay et al. [19] in RMS reported
that the carbon density was higher for Dalbergia sissoo Roxb. and Acacia auriculiformis A.
Cunn. ex Benth. (39.6–43.7 kg C tree−1) and lowest for Albizzia lebbeck L. (20.7 kg C tree−1).
Thus, plantation can be an effective tool for coal mine spoil eco-restoration and enhanced
carbon sequestration.

A number of studies reported an increase in the soil carbon stock by biochar applica-
tion [20,21]. Biochar is a thermal degradation product of biomass produced in a pyrolysis
like condition by limiting the supply of oxygen [21]. Pyrolytic conversion of biomass
produces aromatic carbon that is resistant to degradation in soil, thus considered an option
to address the global CO2 emission problems by biomass decomposition [22]. Biochar has
a high mean residence time and aromaticity, making it highly recalcitrant in nature [11,23].
Thus, carbon that would normally be released as CO2 through biomass decomposition
is converted to biochar which is highly stable and aromatic. The aromaticty of biochar
depends on the chemistry of biomass used for biochar production. Mean residence time of
biochar depends on feedstock material, pyrolytic method used and the substrate where it is
applied [8,24,25]. Fidel et al. [26] reported that biochar has the potential to improve the soil
inorganic carbon by 0.023–0.045 mg C kg−1 and organic carbon by 0.001–0.0069 mg C kg−1.
According to a study conducted by Ghosh and Maiti, [27], Lantana camara biochar lowered
mine spoil CO2 flux to 3% (2.60 µmol CO2 m−2 s−1) and 2% (2.85 µmol CO2 m−2 s−1)
in comparison to control (4.92 µmol CO2 m−2 s−1). Biochar acts as an amendment and
improves physico-chemical; biological and nutritive soil properties [25,28]. An enriched
soil supports the growth of vegetation which can facilitate ecosystem development and
promote carbon sequestration in vegetation and soil. Thus, it is imperative to investigate
the link between the intrinsic characteristics of biochar and mine spoil restoration.

The excessive growth of invasive weeds in RMS during the plantation stage of recla-
mation causes the problem of allelopathy [28]. These weeds are usually uprooted and
left to decompose which adds to the atmospheric CO2 pool. During the dry tropical
summers, they act as fuel and cause even bigger problems of mine fire. One such weed
growing abundantly in RMS is Calotropis procera (Aiton) W.T.Aiton (family: Apocynaceae).
C. procera is a hardy shrub with an average height of 2 m and covered with a fissured corky
bark which is high in cellulose and lignin. This can be a potential feedstock for biochar
production and mine reclamation. Only a few studies have reported on biochar based
carbon sequestration in a RMS, and the available data are from laboratory or greenhouse
scale experiments [11,27]. The present study was conducted in an 8 year old RMS and the
carbon sequestered was calculated in this RMS. A 6 month biochar based field experiment
was also conducted to study the effect of biochar as an amendment for reclamation of
mine spoil. The study aims to understand how coal mine reclamation along with biochar
application can help in achieving UN SDG 13 and 15. Thus, the objectives of the study
are: (i) assessment of carbon sequestration in an 8 year old RMS by vegetation, litter and
soil carbon stock, (ii) application of C. procera biochar in the RMS in a 6 month field based
study, (iii) fractionation of carbon in RMS, biochar amended RMS, reserved forest (RF) and
unreaclaimed mine spoil (UMS) (iv) calculation of total CO2 sequestration in each system.
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2. Materials and Methods

2.1. Site Description

The study area is located in Damoda colliery, Jharia Coalfield, situated in the Dhanbad
district of Jharkhand, India (23◦–23◦48′ N; 86◦11′–86◦27′ E). The site map of the study area
is presented in Figure 1a,b. Damoda eco-restoration site is an 8 year old backfilled dump
site of 4 ha area. The geology of the mine spoil consisted of sandstone, carbonaceous shale,
intermixed shale and sandstone, Jhama (heat affected coal) with micaperidotite, subsoil and
coal. The area experiences extreme weather conditions with summer temperature of 42 to
46 ◦C and winter temperature of 22 to 5 ◦C and received 1900 mm rainfall in the year of the
study (2019). Jharia Coalfield is located in a dry tropical region and experiences three main
seasons: summer, monsoon and winter. The carbon sequestration study was conducted in
the February 2019, 6 months prior to which biochar was incubated in field conditions.

 

Figure 1. (a) Map of India, showing the Jharkhand state (b) Location map of Damoda ecorestoration site showing the

3 quadrats in the sampling area (c) Outer view of Damoda eco-restoration site showing dense bamboo cumps and stone

boundry (d) Reserve forest sampling site.

The eco-restored mine dump has a history of shovel–dumper based mining activity.
In 2011, plantation of hardy and multipurpose tree saplings was carried out in pits of
dimension 30 cm × 30 cm × 30 cm. Grass seeds such as Pennisetum pedicellatum Trin. were
also spread, which act as pioneer species and develop understory vegetation. Afforested
trees such as A. lebbeck, D. sissoo and Bambusa arundinacea (L.) Voss were dominant species
with sparse growth of plants such as Azadirachta indica A. Juss., Bauhunia veriegata (L.) Benth.,
Melia azedarach L., Psidium guajava L., Syzygium cumini (L.) Skeels., Terminalia arjuna (Roxb.)
Wight & Arn, and Zizyphus mauritiana Lam. Figure 1c shows the Damoda eco-restoration
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site with stone boundary. RF area near the mining area was used as a positive reference site
while UMS was used as a negative reference for the study. The most dominant trees in the
RF site were D. sissoo, A. lebbeck, Butea Monosperma (Lam.) Taub. and Shorea robusta Roth
(Figure 1d). UMS was coarser with rock debris, soils and subsoil materials. Since UMS was
not revegetated, tree species were absent.

2.2. Biochar Production, Characterization and Field Incubation

C. procera growing in the RMS was collected in bulk, sun-dried, grinded and used
for biochar production. Feedstock was pyrolysed in a muffle furnace at 450 ◦C for 60 min.
Biochar characterization was carried out using the methods given in Ghosh et al. [11]
and Ghosh and Maiti, [27]. The biochar field experiment was conducted as a completely
randomized design in a 2 × 3 factorial scheme, each with 50 cm × 50 cm plots with two
biochar application rate of 30 t ha−1 (BC30) and 60 t ha−1 (BC60), and each with three
replications (Figure 2a–c). The carbon sequestration study was done with a 6 months
incubation period in natural field conditions.

− −

 

Figure 2. (a) Biochar being applied in RMS, (b) Plots showing biochar application (50 cm × 50 cm ×
Figure 2. (a) Biochar being applied in RMS, (b) Plots showing biochar application

(50 cm × 50 cm × 10 cm), (c) Ecological restoration project site of Damoda, showing boundary wall

and sign board, (d) Soil sampling being done by a soil corer (80 cm × 20 cm), (e,f) Collection of litter

from a metal quadrat (50 cm × 50 cm).
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2.3. Soil Sampling

Soil samples were collected from the rhizospheric region (0–15 cm) of different tree
species, 8 samples collected from each quadrat with a metallic corer (80 cm × 20 cm) after re-
moving the litter (Figure 2d). A total of 24 samples (8 samples × 3 quadrats) were collected
from each RMS and RF. In the biochar incubation sites, 4 samples were collected from each
plot making the total number of samples 24 (2 application level × 3 replicates × 4 samples
per plot). Samples were placed in zip-lock packets and brought back to the laboratory
for physico-chemical analysis. Samples were air-dried inside the laboratory for a week at
room temperature.

2.4. Plant Biodiversity and Vegetation Analysis

Vegetation carbon stock was only analysed for RMS, RF and UMS, and no observable
changes were observed with 6-month biochar application on the tree stocks, hence this
data were not included. Three random quadrats of size 10 m × 10 m, covering total area
of 300 m2 were laid down for relative density [3]. Details on the density of the plants, IVI
values and total number of species in RMS are provided in the Supplementary Materials.
The density of species present in each site was expressed as number of individual species
present per hectare area [3].

Relative density (%) =
Number of individual plant species

Total number of species in a quadrat
× 100 (1)

Circumference of large tree species in the quadrats were measured at 1.37 m for the
measurement of diameter at breast height (DBH), and the height of the tree was measured
with a Distometer (Bosch GLM 40, India), while smaller vegetation (<3 m height) was
measured using a digital Vernier caliper (Precise®, India). Specific gravity of the wood was
measured by water displacement method. The aboveground biomass (AGB) was estimated
by the regression model developed by Chave et al. [29], which showed the best-fit for
tropical forests. The model estimated tree AGB by the following equation:

AGB = 0.0673 × (ρD2H)
0.976

(2)

where, AGB = above ground biomass (kg), ρ = wood specific gravity (g cm−3), D = DBH (cm)
and H = tree height (cm).

Root biomass (RB) was calculated by multiplying AGB by a factor of 2.25 [30]:

RB
(

Mg ha−1
)
= AGB

(
Mg ha−1

)
× 2.25 (3)

Tree carbon stock was calculated multiplying a factor of 0.5 by total tree biomass [31].

Tree C stock
(

Mg ha−1
)
= Total tree biomass

(
Mg ha−1

)
× 2.25 (4)

The CO2 sequestered by the plantation stock is calculated by relation given by
IPCC [30].

CO2sequestered
(

Mg ha−1
)
= Tree C stock

(
Mg ha−1

)
× 3.67 (5)

The AGB of bamboo clumps were calculated by the allometric relationship given
by Nath et al. [32] and Mazumder et al. [33]. This equation was primarily developed to
establish a relationship between culm height, density and AGB in thick walled bamboo.
The equation is as follows:

AGB = 7.5 × (D2H)
0.91

(6)

where H is total height of the bamboo culm, and D is DBH of the bamboo culm. 47% of the
total biomass stock was considered as total carbon stock [32].
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2.5. Herbaceous Biomass and Litter Analysis

The herbaceous biomass and litter present in the respective quadrats were measured
by placing three litter traps (50 cm × 50 cm) under the tree canopy per quadrat [34] as
shown in Figure 2e,f. The collected biomass was then dried in a hot air oven at 65 ◦C for
48 h. The dry weight of the litter obtained was converted to kg m−2 by dividing it by
quadrat area (50 cm × 50 cm) and then converting to kg ha−1. Litter was assumed to have
40% carbon; hence C stock was calculated by a conversion factor of 0.4.

2.6. Soil Characterization

2.6.1. Soil Carbon Fractionation

Soil fractionation for the determination of inorganic, biogenic (labile and stable) and
coal carbon present in the mine spoil was determined by the sequence of steps given by
Ussiri and Lal. [10] The steps followed for sequential extraction of different forms of soil
organic carbon, coal carbon and inorganic carbon in RMS, BC30, BC60 and RF are given in
Figure 3.

−

−

 

Figure 3. Sequential methods for the determination of total carbon, inorganic carbon and biogenic

carbon pools in RMS, BC30, BC60 and RF (n x indicated the number of times the step was repeated).

2.6.2. Soil Physico-Chemical Properties

The soil samples were air dried and sieved by a 2-mm sieve to remove the coarse
fraction from the fine earth fraction (<2 mm). pH and EC were determined in a soil
and water slurry (spoil: water, 1:2.5, w/v) by a multiparameter probe (HI-2020, Hanna
Instruments, India). Cation exchange capacity (CEC) was calculated by the ammonium
acetate extraction method [35]. Available-N was determined by a Kjeldahl distillation
unit (KJELODIST-EAS VA, Pelican Equipment Inc. India). Available-P was extracted by
NaHCO3 (pH 8.5) and measured by a UV-VIS Spectrophotometer (Shimadzu Corporation,
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Japan) [36]. Available-K was calculated by 1 N ammonium acetate method by using flame
photometer [5]. The C-stock is often underestimated due to the coarse fraction in mine soils,
hence only soil fraction (<2-mm particle size) was considered for bulk density calculation.
The bulk density was corrected by the equation given by Ahirwal et al. [6]:

Corrected Bulk Density
(

Mg m−3
)
=

Sample weight (Mg) × Fine earth fraction (%)

Volume of corer (m3) × 100
(7)

Soil organic carbon (SOC) of the study sites were calculated by the relation [6]:

SOC stock
(

Mg ha−1
)
=

Biogenic carbon pool(%) × BD
(

Mg m−3
)
× T (m) × 104 (m2 ha−1)

100
(8)

where SOC = Soil organic carbon; BD = corrected bulk density; and T = depth of the
soil layer.

2.7. Carbon Sequestration Study

The total C sequestration pool of an ecosystem is calculated by adding the C-stock
associated with (i) AGB and RB, (ii) understory vegetation and litter layer, and (iii) SOC
stock. Carbon is accumulated in vegetative parts such as leaf, twigs, and logs, live and
dead roots, and soil organic matter. The biomass carbon pool varies from plant to plant and
also by age of vegetation. Thus, the total ecosystem carbon pool can be assessed by adding
(i) AGB and RB carbon-pool, (ii) understory and litter C stock and (iii) biogenic carbon
stock at (0 to 15 cm). To determine the Carbon sequestration rate (Mg C ha−1 year−1), total
C stock (Mg C ha−1) was divided with by age of reclamation.

2.8. Statistics

One-way ANOVA was used to compare the means of data obtained from RMS, BC30,
BC60 and RF. Post hoc Duncan’s multiple range tests at p < 0.05 significance level was used
to test the significant difference in the C-stock in each level of analysis. SPSS 23 was used
for statistical studies, and software such as MS-EXCEL and ORIGIN Pro-8 was used for
graphical representation.

3. Results and Discussions

3.1. Biochar Characteristics

The general characteristics C. procera biochar are presented in Table 1. Biochar yield
obtained from C. procera feedstock was 51.87%. Biochar obtained was alkaline in nature
with a pH of 7.75 and EC of 4.7 mS cm−1. The total elemental C, H and N were 68.25%,
35.39% and 13.62% respectively. The C/N ratio of 5.01 indicates that the biochar is rich in
labile carbon, providing substrate for microbial action in the mine spoil, while H/C ratio of
0.51 for C. procera biochar represents its high degree of aromatization. C. procera has a high
organic carbon content of 42.24%, porosity of 78% and low bulk density of 0.25 g cm−3.

The high surface area and the porous morphology of the biochar surface can be seen
in the FE-SEM image of C. procera biochar given in Figure 4a,b. The porous structure
provides an enlarged surface area and substrate for microbial action. Several spectral peaks
representing various functional groups were observed on the C. procera biochar surface
(Figure 4c). At transmittance of 3391 cm−1 an O-H bond is prominent due to the breaking
of hydrogen bonded hydroxyl groups. Other bonds such as –CH3 (2924 cm−1), –CH2

(2870 cm−1), C = O (1600–1700 cm−1), due to cellulose of the feedstock, are also present.
The peaks at 500–600 cm−1 represent the aromatic carbons in the biochar surface.
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Table 1. Physio-chemical properties of C. procera biochar (n = 5, mean ± standard deviation).

Characteristics Values

Yield (%) 51.87 ± 2.27
pH Water (1:5; w/v) 7.75 ± 1.62

EC Water (1:5; w/v) (mS cm−1) 4.70 ± 0.12
C (%) 68.25 ± 4.58
H (%) 35.39 ± 5.22
N (%) 13.62 ± 2.40
H/C 0.51 ± 0.22
C/N 5.01 ± 1.28

OC (%) 42.24 ± 0.89
Porosity (%) 78 ± 4.00

Bulk density (g cm−3) 0.25 ± 0.01

 

−

−

−

−

Figure 4. (a) FE-SEM image of C. procera biochar at 500× magnification, (b) FE-SEM image of C. procera biochar at

1800× magnification showing the pore sizes, (c) FTIR spectra of C. procera biochar showing the surface functional groups.
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3.2. Plant Biodiversity and Vegetation Analysis

B. arundinacea clump density was 4033 clumps ha−1, whereas the tree density was
3233 trees ha−1. Relative distribution of the species in the reclaimed site is shown in
Figure 5. B. arundinacea clumps are most abundant (56%), followed by Albizzia spp. (18%),
D. sissoo (10.5%), and Z. mauritiana (5%). Das and Maiti [37] reported that the same re-
claimed mine spoil at 4 years old had a bamboo clumps density of 3033 clumps ha−1,
whereas the tree density was 2500 trees ha−1.

 

−

− −

− −

−

− − Č −

− − −
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Figure 5. Relative density of each species in the RMS showing the percentage of each species in the

study area.

3.3. Estimation of Biomass Carbon Stock

Plant biomass and C pool associated with RMS and RF are summarized in Table 2.
In RMS, Albizzia spp. (4.34 Mg C ha−1) had the highest total tree carbon stock, fol-
lowed by B. arundinacea (2.61 Mg C ha−1) and D. sissoo (2.91 Mg C ha−1). The total
carbon stock from the plant biomass was 12.59 Mg C ha−1 and CO2 sequestered was
48.17 Mg ha−1. Tree biomass of the RF was three times (30.63 Mg C ha−1) higher than
the RMS (12.59 Mg C ha−1) and UMS (3.52 Mg C ha−1). Čížková et al. [38] reported
1.6 t ha y−1 potential for carbon sequestration in reclaimed grasslands in a reclaimed lig-
nite mine. Ahirwal et al. [39] reported the effect of fast-growing trees on soil properties and
the ecosystem carbon pool after eight years of afforestation. The study reported greater car-
bon storage in D. sissoo (39 Mg C ha−1) compared to A. lebbeck (34 Mg C ha−1) and A. procera
(26 Mg C ha−1). In a 16 year reclaimed coal mine site, Ahirwal and Maiti, [40] reported that
the tree carbon stock was 75% of the reference forest site, plantation of multipurpose tree
species improved mine spoil fertility, facilitates natural growth of indigenous tree species.
Due to the plant soil-interaction in a coal mine spoil, the roots of the re-vegetated plants
alter soil structure and function [8]. Although carbon stock associated with RMS was less
than that of RF, yet the growth of native species proves that proper reclamation technology
can influence ecosystem development Thus, increase in C-stock proves that plantation is a
successful means of mine reclamation which certainly helps in achieving SDG 13 and 15.
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Table 2. Total biomass, tree carbon stock and CO2 sequestered in various coal mine spoils of the world and their values in

the current study (RMS: reclaimed mine spoil and RF: reserve forest).

Reclamation Type Location Age
Total Biomassk

(Mg C ha−1)
Tree Carbon Stock

(Mg C ha−1)
CO2 Sequestered *

(Mg ha−1)
References

Albizia lebbeck

Singrauli, India 4–5

17.28 8.64 31.70

[41]
Albizia procera 8.48 4.24 15.56
Tectona grandis 7.34 3.67 12.36

Dendrocalamus strictus 15.02 7.51 27.56

Mixed Plantation Singrauli, India 10 15.64 13.68 50.20 [18]

Reclaimed dump
Jharia, India 5

18.07 9.03 33.14
[42]

Reference forest 55.25 27.63 101.40

Albizia lebbeck

Jharia, India 8

73.66 34.62 127.05

[39]
Albizia procera 55.76 10.89 39.96
Dalbergia sisso 83.28 26.21 96.19
Natural forest 250.28 117.63 431.702

RMS Damoda
eco-restoration,

Jharia, India
8

25.18 12.59 46.17
Present Study

RF 61.26 30.63 112.41
UMS 7.05 3.52 12.93

* CO2 sequestered (Mg C ha−1) = Tree carbon stock (Mg C ha−1) × 44/12.

3.4. Herbaceous Biomass and Litter Analysis C-Stock

Litter consists of twigs, plant debris, foliage and branches which possess high nutrient
content. It is one of the most important sources of organic matter in the mine spoils, and
litter decomposition contributes to nutrients recycling and improvement in soil fertility [36].
During reclamation of a degraded mine spoil, increase in litter C improves the SOC of the
ecosystem and can be an indicator of restoration success. Litter and understory carbon
stock in RMS, BC30, BC60, RF and UMS are presented in Figure 6. The total carbon stock
in RMS was 1.24 Mg ha−1, while higher values of 1.64 Mg ha−1 and 1.73 Mg ha−1 were
observed for BC30 and BC60 respectively. Biochar application had carbon stock comparable
to the RF (1.79 Mg ha−1) and was significantly higher (p < 0.05) than UMS (0.5 Mg ha−1).

 

Litter and understory carbon stock in reclaimed mine spoil (RMS), biochar treatment at 30 t ha−

−

− −

− −

−

− − −

− −

− −

Figure 6. Litter and understory carbon stock in reclaimed mine spoil (RMS), biochar treat-

ment at 30 t ha−1 (BC30) and 60 t ha−1 (BC60), reserved forest (RF) and unreclaimed mine spoil

(UMS) (n = 24).
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3.5. Mine Spoil Properties

3.5.1. Inorganic, Biogenic and Coal Carbon Estimation

Carbon fractions in RMS, BC30, BC60, RF and UMS are presented in Figure 7a. The total
soil carbon at BC30 (36.3 g C kg−1) and BC60 (40 g C kg−1) was found to be significantly
high (p < 0.05) compared to RMS (21 g C kg−1), comparable to RF (33 g C kg−1), and
low in UMS (12 g C kg−1). Although there was no significant difference between the soil
inorganic carbon of RMS (1.9 g C kg−1), RF (2 g C kg−1) and UMS (0.7 g C kg−1), the
inorganic fraction was found to increase to 3.5 g C kg−1 and 4.5 g C kg−1 at BC30 and BC60,

respectively. Average coal carbon was higher in RMS, BC30, BC60 and UMS compared to RF.
A greenhouse experiment conducted by Rodríguez-Vila et al. [43] on copper mine spoils
reported a range of 20–207 g C kg−1 for total soil carbon and 3–27 g C kg−1 for inorganic
carbon by biochar application rate of 20–100%.

− −

 

 
−

− Figure 7. (a) Comparison of different carbon fractions in reclaimed mine spoil (RMS), biochar

treatment at 30 t ha−1 (BC30) and 60 t ha−1 (BC60), reserved forest (RF) and unreclaimed mine spoil

(UMS). (b) Comparison of labile and recalcitrant carbon fractions in RMS, BC30, BC60,RF and UMS.
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Biogenic carbon fraction is a complex pool which can be broadly divided into la-
bile and recalcitrant carbon pool. Labile pool has a residence time of years to a few
decades while the recalcitrant carbon pool can remain in the soil for hundreds to thou-
sands of years [37]. Figure 7b shows the labile and the recalcitrant carbon present in
RMS, BC30, BC60 and RF. Labile fraction was found to be 56% and 51% of biogenic
carbon pool for RMS and RF, respectively. The labile carbon trend was of the order
UMS > RMS > RF > BC30 > BC60. Recalcitrant fraction was found to be 44% and 49% of
the biogenic carbon pool for BC30 and BC60, respectively. The recalcitrant carbon trend
was of the order BC60 > BC30 > RF > RMS > UMS. Labile C pools can have a large impact
on soil-biochar interactions in the short term (~6 months), whereas recalcitrant carbon
pool is influential in soil properties and soil function for a longer period of time [24,26].
Sub-fractions of soil organic carbon are indicators of soil fertility and are instrumental in
understanding the influence of a management practice. In a study conducted on a 10 year
old reclaimed coal mine spoil, Das and Maiti. [44] reported that the biogenic C constituted
45–66% of total soil carbon in RMS. Fidel et al. [26] reported that biochar improves the soil
inorganic carbon by 0.023–0.045 mg C kg−1 and organic carbon by 0.001–0.0069 mg C kg−1

in eroded soil. The study also reported that labile biochar pools are stabilized by the
recalcitrant C pool. Thus, because of the higher recalcitrant fraction, biochar application
will play an instrumental role in increasing the C-stock and help achieve the UN SDG 13
and 15.

3.5.2. Other Physio-Chemical Properties

RMS, BC30 and BC60, RF and UMS properties are summarized in Table 3. Soil fraction
was significantly (p < 0.05) high in the reference forest compared to the 8 year old RMS
and UMS, biochar application had no effect in the soil fractions. pH of RMS was neutral,
biochar application resulted in an alkaline mine spoil, while it was slightly acidic in the
RF and UMS. EC of the RMS was 0.16 dS cm−1 compared to 0.11 dS cm−1 in RF soil,
0.17 dS cm−1 in UMS, 0.09 dS cm−1 in BC30 and 0.1 dS cm−1 in BC60. CEC was higher in
RF (13.1 C mol kg−1) compared to RMS (8.22 C mol kg−1). Moisture content in RF was
26% higher that of RMS, while BC60 and BC30 improved the moisture content by 33% and
55% respectively (p < 0.05). Available N and P showed significant difference (p < 0.05) in
the RMS and RF; available N and P in RF were 26% and 47% higher, respectively. The
exchangeable potassium was also found to be higher in RF (55.22 mg kg−1) compared
to the 8 year old RMS (102.1 mg kg−1). BC30 and BC60 improved the NPK values in the
mine spoil significantly (p < 0.05) which helps in vegetation growth. The corrected bulk
density was higher in the RF site (1.34 Mg m−3) compared to the RMS (0.71 Mg m−3), BC30

(0.65 Mg m−3) and BC60 (0.63 Mg m−3). Ghosh et al. [11] reported an increase in organic
carbon by threefold, CEC by twofold, with a decrease in bulk density to half, by Lantana
biochar application in a coal mine spoil. Thus, biochar application can effectively improve
the physio-chemical properties of the mine spoil which will help accelerate the process of
soil formation in a RMS and increase C-stock to near RF level. The application of biochar
improves the soil physico-chemical properties and increases the carbon stock in the soil.
This ameliorated mine spoil will support plant growth and help in ecosystem development.
This in the long run will help in achieving the UN SDGs 13 and 15.

3.6. Total C-Pool

The total C stock, CO2 sequestered and rate of C sequestration in RMS, BC30, BC60,
RF and UMS are presented in Table 4. The C stock of RF (72.11 Mg C ha−1) was almost
thrice the RMS (30.98 Mg C ha−1) and 5 times the UMS (13.92 Mg C ha−1). Application
of biochar @ 30 t ha−1 improved the C-stock of RMS by 33%, but was 42% lower than
the RF. Similarly, biochar @ 60 t ha−1 improved the C-stock of RMS by 47%, but was 36%
lower than the RF C-stock. CO2 sequestered had the sequence, RF (264.64 Mg C ha−1)
> BC60 (168.22 Mg C ha−1) > BC30 (151.70 Mg C ha−1) > RMS (113.69 Mg C ha−1) > USM
(48.37 Mg C ha−1). Mukhopadhyay and Masto [45] reported yard waste biochar improved
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the stable carbon pool in biochar amended mine spoil to 0.873 g CO2–C kg−1 compared to
0.03 g CO2–C kg−1 in mine spoil. Xu et al. [46] reported that the application of bamboo
leaf biochar at 5 and 15 Mg ha−1 application rate increased the ecosystem carbon stock by
1486.31% and 252.98%, respectively. This increase could be due to the increase in vegetative
cover with time. Plant growth can play an important role in decomposition and humus
layer formation, which later turned into soil organic matter and increases the organic
carbon pool of the soil and provides nutrients to the reclaimed vegetation.

Table 3. Characteristics of RMS (reclaimed mine soil), BC30 (biochar @ 30 t ha−1), BC60 (biochar @ 60 t ha−1), RF (reference

forest) soil and unreclaimed mine spoil (UMS) (n = 24, mean ± Standard deviation, within each row, values with same letter

are not significantly different, p < 0.05 with Duncan’s multiple range test).

Soil Parameters RMS BC30 BC60 RF UMS

Soil Fraction (<2 mm size)% 63.10 ± 12.06 b 63.10 ± 12.06 b 63.10 ± 12.06 b 88.12 ± 6.57 a 25.6 ± 3.4 c
Non- Soil Fraction (>2 mm size)% 36.89 ± 12.04 b 36.89 ± 12.04 b 36.89 ± 12.04 b 11.88 ± 3.20 c 74.4 ± 3.3 a

pH(water, 1:2.5, w/v) 7.15 ± 0.41 b 9.66 ± 0.2 a 9.53 ± 0.57 a 6.12 ± 1.22 c 6.3 ± 0.4 c
EC (water, 1:2.5, w/v) dS/m 0.16 ± 0.27 a 0.09 ± 0.3 c 0.1 ± 0.56 b 0.11 ± 0.08 b 0.17 ± 0.06 ab

CEC (C mol kg−1) 8.22 ± 1.55 c 13.25 ± 4.22 b 18.39 ± 0.38 a 13.1 ± 0.27 b 5.22 ± 1.54 d
Moisture Content (%) 5.37 ± 5.35 d 8.14 ± 0.12 b 10.77 ± 0.28 a 7.29 ± 2.18 c 4.26 ± 2.6 d

Available-N (mg kg−1) 96 ± 8.34 cd 102 ± 5.87 b 105 ± 6.27 b 130 ± 5.22 a 58.72 ± 4.2 d

Available-P (mg kg−1) 3.82 ± 0.84 d 8.91 ± 1.12 b 10.18 ± 0.4 a 7.26 ± 0.87 bc 3.24 ± 1.3 d

Exchangeable K (mg kg−1) 55.22 ± 3.57 c 423.3 ± 35.11 a 456.66 ± 7.4 a 102.1 ± 5.22 b 30.56 ± 3.2 d

Corrected bulk density (Mg m−3) 0.71 ± 0.51 b 0.65 ± 0.58 c 0.63 ± 0.91 c 0.91 ± 0.85 ab 1.05 ± 0.10 a

SOC (Mg ha−1) 31.33 ± 0.75 c 41.29 ± 1.22 b 45.7 ± 1.89 b 72.11 ± 5.22 a 12.6 ± 0.32 d

Table 4. Effect of biochar application on carbon stocks of different landforms. Comparison of total C stock, CO2 sequestered,

Rate of C accumulation in 8 year old RMS (reclaimed mine spoil), BC30 (biochar @ 30 t ha−1), BC60 (biochar @ 60 t ha−1), RF

(reserve forest) and unreclaimed mine spoil (UMS).

Land use Country/Location Biochar Feedstock Results References

Sub-urban red soil Hangzhou, China
Oak wood,

bamboo

-Lability index increased by 4 and 6%,
respectively,

-The carbon management index (CMI)
increased by 50 to 286%.

[24]

Agricultural Soil
Pottawattamie
County, USA

Corn stover
Increase in soil inorganic carbon by

0.023–0.045 mg C kg−1 and organic carbon
by 0.001–0.0069 mg C kg−1.

[26]

Moso bamboo
forest

Zhejiang, China Bamboo leaf
5 and 15 Mg ha−1 increased the ecosystem

carbon stock by 1486.31% and 252.98%,
respectively.

[46]

Agricultural soil Atlantic, USA Wood
C stocks nearly twice (14.07 Mg soil C ha−1)
the amount of C added with biochar 6 years

earlier (7.25 Mg biochar C ha−1)
[47]

Fresh Coal Mine
spoil

Jharia, India Yard waste
Stable carbon pool in biochar amended mine
spoil was 0.873 g CO2–C kg−1 compared to

0.03 g CO2–C kg−1 in mine spoil
[45]

Copper Mine spoil Touro, Spain Holm oak wood
20–207 g C kg−1 for total soil carbon and

3–27 g C kg−1 for inorganic carbon by
biochar application rate of 20–100%

[43]

Damoda,
Eco-restoration,

Jharia, India

Calotropis procera

C stock
(Mg C ha−1)

CO2 sequestered
(Mg ha−1)

Present Study
RMS 30.98 ± 1.25 113.69 ± 3.5
BC30 41.34 ± 1.3 151.70 ± 5.31
BC60 45.84 ± 1.5 168.22 ± 4.25

RF 72.11 ± 3.2 264.64 ± 5.65
UMS 13.18 ± 0.87 48.37 ± 1.27
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Application of biochar increased the C-stock of RMS by 33%, and 47% at application
rates of 30 t ha−1 and 60 t ha−1, respectively. As mentioned earlier, recalcitrant fraction of
this C-stock is 44% and 49% of the biogenic carbon pool for BC30 and BC60, respectively.
Thus, it can be concluded that the increase in the C-pool in the 6 months of the study
was due to the labile fraction. The remaining 44% and 49% will remain in the form of
recalcitrant carbon in the RMS, and thus, will aid in achieving the climate action goals of
the SDG.

4. Future Recommendations

Through the course of this study, future goals and recommendations for continuing
research in this field are as follows:

(i) A biochar based chrono-sequence study in the RMS to study the trends in carbon
stock for a prolonged period of time.

(ii) Field based long term studies are needed to understand the behaviour of carbon that
is fixed in the soil by biochar application. Studies need to be done to ensure that the
carbon in the biochar is fixed in soil for a long period of time and not emitted into
the atmosphere.

(iii) Effect of biochar application on the existing humus of the RMS.
(iv) Conducting life cycle assessment (LCA) to confirm that net soil-ecosystem C pools is

increased by biochar application.
(v) Environmental cost benefit by biochar application should be carried out for the

applicability of biochar.
(vi) Developing techniques for the large-scale production of biochar in the field itself will

help reduce the transportation cost.

5. Conclusions

Plantation of hardy species in coal mine spoil restores the derelict ecosystem which
promotes natural colonization of indigenous species. In the current study, 8 year old
RMS effectively increased the biomass, litter and biogenic carbon stock in the soil. The
rate of C accumulation for 8 year old RMS was calculated to be 3.92 Mg C ha−1 year−1.
Application of C. procera biochar in the RMS improved the soil physio-chemical properties.
The inorganic and biogenic carbon pool, especially the recalcitrant pool, was improved
by biochar application, suggesting that biochar can be an effective mode of enhanced
carbon fixation in the spoil, along with plantation activities. A mere 6 month application
period increased the C-stock by 36–42%, thus its recalcitrant carbon content can be fixed
in the mine spoil for a longer period of time. This proves that biochar has tremendous
potential in fixing carbon, along with forestry based reclamation of coal mine spoil. Thus,
carbon stock increases with age of reclamation, and biochar application can increase the
carbon stock close to reference forest site level. As the biochar-plantation synergy can both
sequester carbon and also promote biodiversity, it can be an effective tool for achieving
United Nations SDG 13 and 15.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/land10111112/s1, Table S1. List of species recorded in quadrats of RMS sites showing some

biodiversity parameters.
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Abstract: This study aimed to respond to the national “carbon peak” mid-and long-term policy plan,

comprehensively promote energy conservation and emission reduction, and accurately manage and

predict carbon emissions. Firstly, the proposed method analyzes the Yangtze River Economic Belt as

well as its “carbon peak” and carbon emissions. Secondly, a support vector regression (SVR) machine

prediction model is proposed for the carbon emission information prediction of the Yangtze River

Economic Zone. This experiment uses a long short-term memory neural network (LSTM) to train the

model and realize the experiment’s prediction of carbon emissions. Finally, this study obtained the

fitting results of the prediction model and the training model, as well as the prediction results of the

prediction model. Information indicators such as the scale of industry investment, labor efficiency

output, and carbon emission intensity that affect carbon emissions in the “Yangtze River Economic

Belt” basin can be used to accurately predict the carbon emissions information under this model.

Therefore, the experiment shows that the SVR model for solving complex nonlinear problems can

achieve a relatively excellent prediction effect under the training of LSTM. The deep learning model

adopted herein realized the accurate prediction of carbon emission information in the Yangtze River

Economic Zone and expanded the application space of deep learning. It provides a reference for

the model in related fields of carbon emission information prediction, which has certain reference

significance.

Keywords: carbon emission; SVR; LSTM neural network; carbon emission prediction

1. Introduction

In recent years, with the frequent occurrence of extremely severe weather due to global
warming, countries around the world have begun to pay attention to the imbalance of
carbon emissions caused by the emissions of greenhouse gases such as carbon dioxide
(CO2) [1]. Excessive CO2 and other greenhouse gas emissions have caused irreparable
damage to the environment [2]. Meanwhile, the process of social development cannot avoid
the problem of carbon emissions, so the real-time prediction and monitoring of carbon
emissions information has become extremely crucial [3]. Many scholars have performed a
lot of research in the field of carbon emissions.

The earliest representative studies abroad mainly used the factor decomposition
method, index decomposition method, input–output method, and combination model
forecasting. Scholars have proposed an improved cuckoo optimization algorithm neural
network (COANN) artificial neural network structure, which is optimized by the cuckoo
algorithm (COA). The performance of COANN is evaluated by the mean square error
(MSE), root mean square error (RMSE), mean absolute error (MAE), and correlation coef-
ficient (CC) between the model output and the actual data set. The COANN prediction
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model can predict the world’s CO2 emissions by 2050 [4]. Some researchers proposed
a multi-objective predictive energy management strategy for residential grid-connected
hybrid energy systems via machine learning technology. The strategy proposed includes
three levels of control: 1—the logical level of management of computational load and
accuracy; 2—on the dual prediction model of the residual causal expansion convolutional
network, it is used for energy production and system power load; and 3—as well as
multi-objective optimization for effective transactions, to provide energy for the public
grid through battery charging scheduling [5]. It was proposed that energy efficiency on
non-intrusive load monitoring (NILM) can save electricity by improving the awareness
of behavior changes and reducing carbon dioxide emissions into the environment. In
the data published in Malaysia from 1996 to 2018, a predictive model was established
and scenario simulations were carried out. Malaysia’s public database was also sued for
predicting the impact of CO2 emissions and NILM on environmental degradation from
2019 to 2030 [6]. Some scholars have used Eviews software to analyze the carbon emission
data of Beijing, Henan, Guangdong, and Zhejiang from 1997 to 2017. They also used
differential stationary processing, moving average, and substituting strong impact points
for data preprocessing. Through model identification, parameter estimation, and model
testing, they established an integrated moving average autoregressive (ARIMA) models to
predict carbon emissions in four regions [7]. It is believed that it is important to objectively
evaluate the impact of relevant factors on carbon emissions. They proposed a modified pro-
duction theory decomposition analysis (PDA) model under the semi-disposable hypothesis,
and correspondingly decomposed the carbon emission changes of China’s thermal power
generation industry [8]. Some scholars have used the Lasso regression model to screen
out eight significant factors affecting carbon emissions, and used the BP neural network
model to predict the carbon emissions of Jiangsu Province from 2019 to 2030. They used
artificial neural networks (ANN) to develop carbon emission intensity prediction models
for Australia, Brazil, China, India, and the United States. Nine parameters that play an
important role in the intensity of carbon emissions were selected as input variables. After
many iterations, the best model was selected for each country by predefined criteria. They
used a 9–5–1 multilayer perceptron with a backpropagation algorithm to build, validate,
and train the model. The results of the verification model show that the error between the
predicted value and the actual value is approximately 0, and the proposed ANN model can
accurately predict carbon emissions [9,10]. Wang et al. (2021) used the random forest (RF)
machine learning algorithm to analyze the relationship between urban factors and carbon
emissions using real data from Chinese cities [11]. Yan et al. (2021) proposed a new inte-
grated inversion model. This model was used for the intelligent assessment and prediction
of water, carbon, and ecological footprint based on integrated multi-task machine learning
(MML) and multi-model stack (MMS) algorithms. The accuracy and generalization ability
of the model is further explained through the three largest urban agglomerations in the
middle reaches of the Yangtze River [12]. Huang et al. (2021) proposed a new method to
simulate the dual relationship between emission inventory and pollution concentration for
emission inventory estimation [13].

Deep learning has become the latest method and means of studying carbon emissions.
At present, most studies use one algorithm to study carbon emissions, and do not consider
the combination of multiple algorithms to study carbon emissions. Therefore, the prediction
accuracy of the established model is key to measuring whether the algorithm is suitable for
carbon emission prediction. Because the long short-term memory (LSTM) neural network is
very effective in predicting time-dependent problems, the time factor has a greater impact
on carbon emissions. In addition, the problem of carbon emissions is a complex non-linear
problem. Additionally, a large amount of data need to be classified and processed. Due
to the large error term in the LSTM prediction, slack variables are introduced into the
SVR model. Slack variables are introduced to correct the larger prediction errors in the
LSTM model, the LSTM-SVR hybrid model is established, and a better prediction effect
is achieved. The innovation lies in the indexing of “carbon emissions” information and
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expanding the area of data availability. Meanwhile, the LSTM is revised by introducing
slack variables into the SVR model. This research has a certain reference value for energy-
saving development entities in the Yangtze River Economic Zone to implement energy-
saving emission reduction and carbon emission refined control forecasts.

2. Related Concepts and Algorithm Analysis

2.1. Yangtze River Economic Belt

The Yangtze River Economic Belt comprises Guizhou, Sichuan, Yunnan, and Chongqing
in the western region, and Hubei, Hunan, and Jiangxi provinces in the central region, and
Anhui, Jiangsu, Zhejiang and Shanghai in the eastern region, with 11 provinces and cities.
The Yangtze River Economic Belt covers an area of approximately 2.05 million square
kilometers, has a total population of approximately 600 million, and represents 40% of
the country’s GDP. It is regarded as a dynamic economic belt, second only to the coastal
economic belt [14]. Its rapid economic development has been accompanied by increasingly
prominent ecological and environmental problems in the Yangtze River Basin, such as
soil erosion, floods, and ecological imbalances along the river. Due to the increasingly
prominent environmental resource problems of the Yangtze River, the protection of its
natural ecology has become ineffective, restricting the growth rate of the Yangtze River
Economic Belt [15]. Figure 1 shows a sketch of the regional locations of provinces and cities
in the Yangtze River Economic Belt.
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Figure 1. Sketch map of the geographic regions of provinces and cities in the Yangtze River Economic

Belt.

2.2. Definition and Analysis of Carbon Sources

2.2.1. Definition

The “source” of greenhouse gases, in layman’s terms, is the activity of emitting gases
into the atmosphere. “Greenhouse gases” can make the Earth’s surface temperature higher,
generally by absorbing and re-emitting infrared radiation to play a role [16]. Greenhouse
gases mainly include CO2, ozone (O3), and methane (CH4). In addition, this also includes
man-made greenhouse gases such as hydrofluorocarbons (HFCs) [17], of which CO2 has
the most obvious warming effect. The warming effects and life cycles of some greenhouse
gases are shown in Figure 2.
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Figure 2. Diagram of the warming effects and life cycles of some greenhouse gases.

2.2.2. Analysis

“Carbon source”, as the name implies, is a gas component that increases the amount
of CO2 in the Earth’s atmosphere [18]. These gas components enter the atmosphere from
the surface of the earth or are formed by the chemical conversion of CO2 in the atmosphere.
Corresponding to the “carbon source” is the “carbon sink”. Simply put, the “carbon sink”
refers to the mechanism of removing greenhouse gases from the atmosphere, such as by
means of the photosynthesis process of plants. From this point of view, the reduction
in “carbon sinks” will also lead to an increase in carbon emissions [19]. The specific
classification of “carbon sources” is shown in Figure 3.
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Figure 3. Schematic diagram of the classification of “carbon sources”.

2.2.3. Causes of Carbon Emissions

Carbon Emissions in the Process of Urbanization

The factors inducing high carbon emissions in the process of China’s urbanization can
be divided into two categories. The first is that of economic factors such as the expansion
of infrastructure construction, the growth of residents’ consumption, and the transforma-
tion of land use patterns. The other is the policy incentives that lead to phenomena such
as short-lived construction, major demolition, and construction, and low-density urban
sprawl. On the one hand, the new construction in the process of urbanization development
constitutes an incremental part of carbon emissions. On the other hand, repeated con-
struction and wasted building energy have aggravated high energy consumption and high
carbon emissions in the process of urbanization. The combination of economic factors and
policy factors in China’s urbanization has led to the phenomenon of high carbonization
becoming more and more obvious. Firstly, industrial production has brought about an
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increase in carbon emissions. Rapid industrial development is the main driving force for
China’s carbon emissions growth. In addition, the embodied carbon in China’s export
trade plays an important role in the rise of China’s carbon emissions. China’s exports
are dominated by processing trade, with high energy consumption, which is also one of
the important factors that constitute China’s energy demand growth. Secondly, carbon
emissions from the construction industry rapidly increased, and the increase in building
areas also brought more carbon emissions. Finally, transportation carbon emissions have
rapidly increased, and the increase in transportation demand has led to an upward trend
in the total energy consumption of transportation and its share. In recent years, there have
been significant changes in China’s transportation, road transportation infrastructure, and
residents’ travel. With the acceleration of urban logistics circulation, the freight capacity
of cities and towns has gradually strengthened. The urban expansion in the center will
increase the distance traveled by residents, and the level of urban motorization will thus
rapidly increase.

Carbon Emissions from Animals and Plants

The respiration of plants and animals produces CO2. CO2 generates organic matter
and oxygen through photosynthesis. Carbon exists in the form of CO2 in nature, and plant
straw is a biological resource produced in the process of crop production. Burning plant
straws will bring about a lot of carbon emissions.

2.3. Algorithmic Analysis of Carbon Emissions

Through the classification of “carbon sources”, it can be seen that CO2 emissions
involve a wide range and many uncertain factors. The amount of CO2 cannot be di-
rectly obtained through the monitoring instrument. It needs to be calculated by methods.
Common methods are subsequently explicated.

2.3.1. Oak Ridge National Laboratory (ORNL)

The Oak Ridge National Laboratory was established by the US Department of Energy
in 1943 and is the world’s largest scientific energy research laboratory. In 1990, members of
the laboratory proposed a method for CO2 emissions from fossil fuel combustion:

Carbon emissions from coal = coal consumption × 0.982 × 0.733
Fuel oil carbon emissions = standard coal equivalent × 0.982 × 0.733 × 0.813

Gas carbon emissions = standard coal equivalent × 0.982 × 0.733 × 0.561

In the equation, 0.982 is the effective oxidation fraction, 0.733 is the carbon content per
ton of standard coal, 0.813 means that under the premise of obtaining the same heat energy,
the CO2 released by fuel oil is 0.813 times the CO2 released by coal, and 0.561 represents
that when the same heat energy is obtained. The CO2 released by natural gas is 0.561 times
that of the CO2 released by coal [20].

2.3.2. Logistic Model

Most economic indicators are increasing functions that change over time. Conditions
such as the environment restrict their growth rate and will gradually slow down their
growth rate. Most economic indicators show changes in graphs that resemble a flattened
S-shaped curve (logistic curve). The relationship between carbon emissions and time is
closely resembles an S-shaped curve [21].

2.3.3. System Dynamics Model

The system dynamics Stella software is used to construct the energy consumption
model. The energy consumption model constructed by Stella software can obtain a sim-
ulation estimation model of energy consumption by inputting conditions such as GDP,
population, and the proportion of output value of each industry. This model can effectively
overcome errors caused by missing data [22].
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The model obtains carbon emissions according to the following equation: carbon
emissions = energy consumption x carbon emission factor × (1 − carbon sequestration
rate) × oxidation rate.

2.3.4. Input–Output Analysis (IOA)

IOA combines input–output tables and uses mathematical methods to build models.
IOA calculates carbon emissions by establishing relationships through models [23]. The
principle is as follows:

First: Calculate the carbon emissions of energy consumption in various sectors.

1. Calculate the direct carbon emission coefficient: cej(direct) = f j·ej, where the energy

carbon emission coefficient of the j sector is represented by f j as tCO2
tce , that is, the CO2

emission per ton of energy, and ej is the energy consumption intensity of the j sector
(10,000 tons of standard coal/CNY 10,000).

2. Calculate the indirect carbon emission coefficient: cej(indirect) = f j

(
n

∑
i=1

ajbij

)
, where

the complete consumption of the i-sector product caused by the unit product is

represented by bij.
n

∑
i=1

ajbij is the total indirect energy consumption of all n products

caused by the unit product of the j sector. The complete carbon emission coefficient
of energy consumption is equal to the sum of direct and indirect carbon emission
coefficients, expressed as Equation (1):

cej = f j·ej + f j·
(

n

∑
i=1

ajbij

)
(1)

Second: Calculate the embodied carbon emission coefficient in the production process.
First of all, a prerequisite must be met: the i-th sector’s products will produce CO2

during the production process; then, since the j-th sector consumes the i-th sector’s products,
it will cause the j-th sector to produce implicit carbon emissions during the production
process, which holds Equation (2):

{
i=j,cej=gj+gj ·bij

i 6=j,cej=gj ·bij
(2)

In gj = ωi ·Qi
Xi

, ωi represents the carbon emissions from the industrial production
process of the unit physical quantity product in the i sector (tons of CO2/ton of product),
and Qi represents the product output of the i sector (10,000 tons); Xi represents the total
output of the i sector (CNY 10,000). Combining the two equations yields cej = gj·cij.

Therefore, Equation (3) is the complete carbon emission coefficient of each sector:

cej(completely) = f j·
(

n

∑
i=1

ei·bij

)
+ gj·cij (3)

On Equation (3), the total carbon emissions in the air can be calculated, as shown in
Equation (4):

CE =
n

∑
j=1

cej·Yj (4)

(Yj is the final use of the department (CNY 10,000).)
The CO2 estimate provided in the IPCC National Greenhouse Gas Inventory Guide-

lines for energy-based CO2 is shown in Equation (5):

CO2 =
n

∑
i=1

CO2 =
n

∑
i=1

Ei × NCVi × CEFi × COFi × (44/12) (5)

80



Land 2021, 10, 1380

In Equation (5), CO2 is the estimated amount of CO2 emissions; i represents the
estimated i-th energy; Ei represents each energy consumption; NCVi is the average low
calorific value of each energy source; CEFi represents the carbon emission factor per calorific
value provided by the IPCC Greenhouse Gas Inventory; COFi stands for carbon oxidation
factor. The molecular coefficient is 44/12 units of CO2, which represents the amount of
CO2 that 1 unit of carbon element can be converted into [24].

2.4. Temporal and Spatial Characteristics of Carbon Emissions

According to relevant data, the industrial structure, population size, economic devel-
opment level, opening-up level, carbon emission intensity, etc. are all factors that affect
the scale of carbon emission [25]. Carbon emissions have formed a time–space effect along
with changes in time series and spatial sequences. When studying carbon emissions, it
is necessary to consider the following: 1—spatial connections and changes in different
economic regions; and 2—carbon emission prediction requires analysis and research on the
spatial characteristics of carbon emission.

2.5. Analysis of Deep Learning Algorithms

(1) Recurrent Neural Network (RNN)
RNN is a neural network with cyclic characteristics. It can perform calculations on the

characteristics of carbon emission time series data because it can continuously circulate
information and has a short-term information memory function [26]. The most basic RNN
network is composed of multiple neuron nodes, and each node has an activation function
with time as a variable to enhance adaptability. Meanwhile, all function parameters of the
node can be adjusted in real time. The expanded diagram of the RNN network structure is
shown in Figure 4.
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Figure 4. Expanded schematic diagram of an RNN network structure.

In Figure 4, ht represents the output of the hidden layer node at time t; ht−1 represents
the output at the previous moment; yt represents the output vector; xt represents the input
vector; hw, xw, and yw all represent the weight vector of the hidden layer neuron node and
the next hidden layer neuron node, respectively.

(2) Long Short-Term Memory (LSTM)
LSTM is a classic variant of RNN. LSTM has powerful classification and prediction

capabilities and can handle operations with relatively long-time intervals and delays. The
important thing is that LSTM can solve the problem of gradient disappearance and gradient
explosion during long-sequence training [27].

The LSTM neural network structure uses a gate control unit. The neuron of each cell
contains a forget gate, input gate, and output gate to strengthen the network structure, as
shown in Figure 5.
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Figure 5. Schematic diagram of an LSTM neural network structure.

In the network structure diagram of LSTM, the cell state similar to the conveyor belt
runs on the entire chain. If the cell state undergoes a slight linear operation, the information
flows through the entire chain and remains stable. The gate is a weight composed of
a sigmoid function, a tanh function, and a point multiplication operation to realize the
selection of information.

Demonstrate the operation according to the structure of Figure 5 LSTM.

1. Forgetting door calculation:

The forgetting door decides whether to leave the information, as shown in Equation (6).
In the information entry gate, the information status is read under sigmoid, and the output
is a value between 0 and 1—where 1 means complete retention and 0 means complete
deletion, as shown in Equation (7):

Ft = σ(wF[ht−1, xt] + bF) (6)

S(t) =
1

1 + e−t
(7)

2. Input gate calculation:

The input gate determines how much new information enters, as shown in Equa-
tion (8). There are two steps: the first step is to enter the gate to determine the new
information that is allowed to enter the cell; the second step is to obtain the candidate
information that needs to be remembered at tanh, as shown in Equation (9):

It = σ(wI ·[ht−1, xt] + bI) (8)

C̃t = tanh(wc·[ht−1, xt]) (9)

3. Cell status update:

The cell state that Ct−1 is updated to Ct is to multiply the last state value Ct−1 by
Ft, discard the unnecessary part, and add the value that allows it to be remembered and
multiplied by it. Finally, the information Ct that the update wants to add to the unit state is
obtained, as shown in Equation (10):

Ct = Ft ∗ Ct−1 + It
∗∼Ct | (10)

4. Output gate

The output gate determines the information to be output from the cell state, as shown
in Equation (11). By activating the sigmoid function, the cell state information output is
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determined. The tanh function is used to process the final output information ht of the cell
state at the last current moment, as shown in Equation (12):

Ot = σ(wO·[ht−1, xt] + bO) (11)

ht = Ot ∗ tanh(Ct) (12)

In Equations (11) and (12), Ft, It, and Ot represent the calculation of the forget gate,
input gate, and output gate at time t, respectively; Ct−1 represents the cell state at the
previous moment; Ct represents the cell state at time t; xt represents input information; ht−1

represents the output at the previous moment; wF, wI, and wO represent the weight vectors
of the forget gate, input gate, and output gate, respectively; bF, bI, and bO represent the bias
vectors of the forget gate, input gate, and output gate, respectively; σ (•) represents the
activation function sigmoid function. The entire forward calculation of the LSTM unit cell
is completed through three gates and one cell state.

3. Indicator Creation and Model Design

3.1. Creation of Carbon Emission Information Indicators

After analyzing the industry characteristics of the Yangtze River Economic Belt, the
proposed method derives key factors such as industry investment scale and labor output
efficiency, which affect carbon emissions in the “economic belt”. Then, the extensible
random environmental impact assessment (STIRPAT) model is optimized to determine the
information indicators:

(1) ZB1 is used to represent the total carbon emissions in the “Yangtze River Economic
Belt” basin, with a unit of 10,000 tons;

(2) ZB2 is used to represent the investment scale of the industry, combined with the
research, the sum of fixed assets, and the current assets of enterprises above the designated
size used as measurements, with a unit of CNY 100 million;

(3) ZB3 is used to represent industrial economic efficiency, and labor efficiency is used
as output as a measure;

(4) ZB4 is used to represent carbon emission intensity, that is, CO2 emissions per unit
of industrial added value;

(5) ZB5 is used to represent the scale of opening up to the outside world, and it is
measured by the proportion of the sum of investments from Hong Kong, Macao, and
Taiwan in addition to foreign investment in the industrial added value, and the unit is %;

(6) ZB6 is used to represent the intensity of environmental protection, and the invest-
ment in environmental pollution control is expressed as the proportion of industrial GDP,
for which the unit is % [28].

The expanded model indicator variable list is shown in Table 1.

Table 1. Carbon emission information forecast and expansion model indicators.

Indicator Definition Representative Symbol Index Quantification Unit

Total carbon emissions of provinces and
cities in the Yangtze River Economic Belt

ZB1 Ten thousand tons

Industry investment scale ZB2 CNY 100 million
Labor efficiency output ZB3 CNY 100 million /10,000 people

Carbon intensity ZB4 10,000 tons/10,000 people
Openness to the outside world ZB5 %

Environmental protection ZB6 %

3.2. Carbon Emission Modeling Process

The problem of carbon emission prediction is actually predicting carbon emission
information in the future based on the information of carbon emission indicators in the past.
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Therefore, this study is actually on the relationship between a set of time series containing
characteristic data to perform regression prediction on the target value.

Regardless of whether it is for regression algorithms or classification algorithms, data
need to be preprocessed before the model is built, especially for practical research on
multi-dimensional data. In response to the problem to be dealt with, in the selection of
data features, the six indicators in Table 1 are used to predict carbon emission information.
Because of the various characteristics of the original data in different dimensions, it needs
to perform standardized preprocessing operations on the data.

(1) Data normalization method:
The min–max standardization is also called the maximum value normalization, which

is a linear transformation of the original data, and the result value is mapped to between
[0,1]. The expression Equation of the normalization method of the data is as in Equa-
tion (13):

xscale =
x − xmin

xmax − xmin
(13)

Maximum normalization is to calculate the maximum and minimum values of each
dimension data and then convert the original data. However, maximum normalization
has its limitations. If the data change, their maximum and minimum values need to be
recalculated. In addition, the maximum normalization is extremely susceptible to extreme
values. Therefore, maximum normalization is more suitable for processing boundary
data [29].

(2) Normalization of mean variance:

xscale =
x − xmean

σ
(14)

Mean variance normalization is a common method for preprocessing data. The essence
of mean variance normalization is to calculate the mean and standard deviation of the data,
so that the original data obey a normal distribution with a mean value of 0 and a standard
deviation of 1 [30].

The focus of the evaluation model is to divide the data set that the research has col-
lected. The data can be divided into three sets: training set, validation set, and test set [31].
The training set is passed into the model for model fitting, and the model parameters are
optimized on the validation set, and then the model is evaluated. When the model works
well, this means that the experiment has found the best model parameters, and then uses
the test set for model testing.

Common indicators for evaluating the prediction accuracy of regression models are as
follows:

(a) The MSE is the sum of squares of the difference between the results of the original
feature data predicted by the model and the real results, but the sum of squares will
continue to accumulate as the number of samples increases. In order to eliminate the
influence of the number of samples, the mean value of the square error is calculated,
and the MSE is obtained, as shown in Equation (15):

MSE =
1

N

N

∑
i=1

∣∣yi − y′i
∣∣2 (15)

(b) The average absolute error (MAE) is the average of the absolute value of the difference
between the predicted value and the true value, as shown in Equation (16):

MAE =
1

N

N

∑
i=1

∣∣yi − y′i
∣∣2 (16)
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(c) RMSE is shown Equation (17):

RMSE =
√

MSE =

√√√√ 1

N

N

∑
i=1

∣∣yi − y′i
∣∣2 (17)

(d) The absolute error of the median, the absolute value of the difference between the
predicted value, and the true value are not averaged, but the median is taken, which
is MedAE, as shown in Equation (18):

MedAE = mediani=1,...,N

∣∣yi − y′i
∣∣ (18)

For the median absolute error index, because the expression contains the absolute
value, it is necessary to derive the loss function of the model, and the absolute value index
usually fails [32].

3.3. Data Source

The data of this experiment were obtained according to the online data query menu
system on the official website of the National Bureau of Statistics (https://data.stats.gov.cn)
(accessed on 11 December 2021). The database of the National Bureau of Statistics collected
data from 2018 to 2020, and the monitoring interval was monthly. The relevant index data
obtained are mainly data on the 11 provinces and cities in the Yangtze River Economic Belt.
The data collected from the official website of the National Bureau of Statistics were used
as the training set and test set of the carbon emission prediction model proposed; the data
collected by the official statistical bureaus of local provinces and cities were used as the
verification data set for demonstration applications.

Table 2 shows the descriptive data of carbon emissions in the Guizhou and Jiangsu
provinces from 2000 to 2020.

Table 2. Carbon emissions in the Jiangsu and Guizhou provinces during the period 2000–2020.

Guizhou Province Jiangsu Province

Year Carbon Emissions (×108 t) Year Year Carbon Emissions (×108 t)

2000 1.845820987 2000 5.521659376
2001 1.50698462 2001 5.864446639
2002 1.622689431 2002 5.866892432
2003 2.079300127 2003 7.11895019
2004 2.422275528 2004 7.12083157
2005 2.765439067 2005 7.123089224
2006 2.767320446 2006 7.352053055
2007 2.767320446 2007 7.581581299
2008 2.656319082 2008 8.038003857
2009 3.226565072 2009 8.494990828
2010 3.455905178 2010 9.065236819
2011 3.45759842 2011 9.521471238
2012 3.800573821 2012 9.410469874
2013 4.257184516 2013 8.957621937
2014 4.259254033 2014 8.846244297
2015 4.261135412 2015 9.18903156
2016 4.3772165 2016 9.532195099
2017 4.492545036 2017 9.8751705
2018 4.492921311 2018 11.467946
2019 4.608249847 2019 13.51563896
2020 4.950848972 2020 14.54004986
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3.4. SVR Machine Model Creation

Support vector machine (SVM) is a powerful machine learning algorithm [33]. SVM
can solve classification and regression problems at the same time. In addition, SVM can
handle both supervised learning target variables and unsupervised learning without target
variables. Additionally, its application scenarios are very rich, which can be used for binary
classification problems, multi-classification problems, linear and nonlinear problems, etc.

The problem being studied is essentially to predict the regression problem. The
application of SVM to regression is also called support vector regression (SVR) [34]. SVR
is achieved by adding an insensitive loss function to SVM. It extends the classification
problem to the regression problem, finds an error, and makes all the sample points as far as
possible within this error to achieve a prediction of the data.

SVR is an application of SVM in the field of regression. Its principle is to obtain a
regression model (Equation (20)) on the known sample set (Equation (19)):

D = {(x1, y1), (x2, y2), . . . , (xk, yk), xi ∈ Rn, yi ∈ R} (19)

f (x) = ωTx + b (20)

Make f (x) and y as close as possible. Among them, w and b are the parameters
to be determined in the model; w is the normal vector of the hyperplane; and b is the
displacement term. For general regression problems, only when f (x) and y are exactly
equal will the loss of the model be zero. In the SVR model, a certain degree of tolerance
deviation ε is given, so that if and only when the absolute value of the difference between
f (x) and y is greater than the tolerance deviation ε, it is considered as a loss. At this time, it
is equivalent to taking f (x) as the center to construct an isolation band with a width of 2ε,
as shown in Figure 6.
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Figure 6. Schematic diagram of SVR.

The problem of the SVR model can be transformed into:

min
w,b

1

2
‖ ω ‖2 +C

m

∑
i=1

ls( f (xi)− yi) (21)

lε =

{
0, if|z|≤ ε

|z|−ε, other
(22)
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where C is the regularization constant and lε is the ε-insensitive loss function in
Figure 6. With the introduction of relaxation factors ξ∨i and ξ∧i , Equations (21) and (22) can
be rewritten as

min
1

2
‖ ω ‖2 +C

N

∑
m−1

(
ξv

m + ξ∧m
)

(23)

s.t. − ε − ξ∨i ≤ yi − ω·φ(xi)− b ≤ ε + ξ∧i (24)

s.t.
f (xi)− yi ≤ ε + ξ∨i ,

yi − f (xi) ≤ ε + ξ∧i
ξ∨i ≥ 0, ξ∧i ≥ 0, i = 1, 2, . . . , m

(25)

SVM aims to solve two-classification problems. The actual problem is often a complex
nonlinear problem, and the “dimension increase” is used to deal with the nonlinearity
between data [35]. The dimensional data are converted and mapped to a high-dimensional
space, and then converted into a low-dimensional space after the high-dimensional space is
classified. The purpose of introducing the kernel function can solve this kind of conversion
operation. Using the SVR machine to make predictions, different kernel functions are
selected for modeling, and the differences between the kernel functions are compared. The
kernel function categories and characteristics are shown in Figure 7.
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Figure 7. Schematic diagram of kernel function names and characteristic parameters.

Using the duality principle [36] and introducing the kernel function, the SVR model is
obtained, as shown in Equation (26):

f (x) =
m

∑
i=1

(α̂i − αi)k(xi, x) + b (26)

3.5. LSTM-SVR Hybrid Model Construction

Carbon emission (CO2) concentration data have the characteristics of time series and
non-linearity. The LSTM-SVR hybrid model is proposed to improve the prediction accuracy
of CO2 concentration. Using the LSTM-SVR hybrid model to predict the CO2 concentration,
the specific steps are as follows:

(1) Acquisition of CO2 concentration data and meteorological factor data;
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(2) Preprocessing the acquired data to eliminate errors or abnormal factors in the data;
(3) Use the LSTM model to train and predict the processed data to generate a set of

corresponding prediction values D̃t;
(4) By making the difference between the processed data Dt and the predicted value

D̃t, the error value et at time t can be obtained;
(5) The SVR model is used to perform regression prediction on the error value et at

time t, and cross-validation and grid search algorithms are used to find the optimal kernel
function parameter g and penalty factor c of the SVR model; the predicted value is obtained,
that is, the error value et is corrected, and the corrected error value is êt;

(6) The corrected error value êt is combined with the predicted value D̃t of LSTM, and
finally the predicted value D∗

t , D∗
t = êt + D̃t of the mixed model is obtained. The model

framework is shown in Figure 8.

Raw data

Data preprocessing Dt

Predictive value tD

Error value et 

Corrected error value

Mixed model prediction

ˆ
t

e

*
t

D

LSTM

LSTM

related information of all provinces and cities in the “Yangtze River 
Economic Belt” b

–

Figure 8. LSTM-SVR hybrid model framework diagram.

4. Experimental Results and Analysis

4.1. SVR Model Fitting Results

The SVR model is used to perform non-linear regression classification and fitting on
the carbon emission-related information of all provinces and cities in the “Yangtze River
Economic Belt” basin. Under different kernel functions, the fitting results of the model are
shown in Figures 9–13.
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The experiment finally obtained the RMSE of the test set to be 0.715. This evaluation
index is the result of calculating the normalized data. The fitting result of the Gaussian
kernel function is shown in Figure 10.

Figure 11 indicates that the phenomenon of over-fitting is more serious, and the
function parameters need to be adjusted. After adjustment, the training set score of the
final model is 0.663, the test set score is 0.634, and the RMSE of the test set is 0.682.
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Figure 9. Schematic diagram of linear kernel function fitting results.
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Figure 10. Schematic diagram of the Gaussian kernel function fitting results.

Figure 11 reveals that the fitting effect of the sigmoid kernel function is relatively
poor, and the scores of the test set and the training set are both negative and relatively low.
Meanwhile, the experiment needs to adjust the parameters to achieve a reasonable fitting
result.

Figure 12 proves that the performances of the test set and the training set are different,
that the training set score is reasonable, and that the test set is low. In all the above figures,
the fitting results of the different kernel functions are different, and the specific function
fitting score and the RMSE comparison are shown in Figure 13.
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Figure 11. Schematic diagram of the sigmoid kernel function fitting results.
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Figure 12. Schematic diagram of the polynomial kernel function fitting results.

Figure 13 visually shows that the training performance scores of the four different
kernel functions of the model are relatively small. This is due to the constant use of network
search in the process of model training to adjust the parameters of the model.
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Figure 13. Comparison of the model performance of four types of kernel functions.

4.2. Deep Learning Network Model Training Results

This experiment used the LSTM neural network to train the model. After 60 iterations,
the loss of the model and its performance on the training and test sets were obtained—these
are shown in Figure 14.
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Figure 14. Comparison of the training and testing losses for multiple iterations of LSTM.

Figure 14 shows that the loss gradually stabilizes after multiple iterations. Figure 15
shows the fitting trend graph of the model trained by the LSTM neural network.
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Figure 15. Schematic diagram of the fitting trend results after LSTM training.

4.3. Carbon Emission Forecast Results

According to the SVR model and the LSTM training model, the experimental training
on the experimental data set, the comparison between the prediction curve of the carbon
emission information-related indicators in the Yangtze River Economic Belt and the real
curve is shown in Figures 16–18.–
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Figure 16. Schematic diagram of the comparison between the industry investment scale informa-

tion and “Yangtze River Economic Belt” carbon emission information prediction and the actual

comparison.
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Figure 17. Schematic diagram of the comparison between the labor efficiency output information and

carbon emission information prediction and the actual comparison of the “Yangtze River Economic

Belt”.
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Figure 18. A schematic diagram of the comparison between the scale of carbon emissions information

and the carbon emissions information prediction and the actual comparison of the “Yangtze River

Economic Belt”.

In Figure 16, the scale of the industry investment is used to predict carbon emissions.
There are consistent overall trends. This also reflects the fact that the economic development
and growth of the Yangtze River Economic Belt will inevitably increase carbon emissions.

Figure 17 suggests that the labor efficiency output information is not very accurate for
the prediction of information on carbon emissions, and that there are certain errors. The
reason for this is that the labor efficiency output has spatial lag.
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In Figure 18, the information on the scale of carbon emissions is more accurate in
predicting the trend of carbon emissions. In summary, in the combination of the SVR model
and the LSTM model proposed herein, the relevant index information for predicting carbon
emissions in the Yangtze River Economic Zone is relatively accurate. Meanwhile, the ZB1
and ZB2 indicator information play a key role in predicting carbon emissions.

4.4. Policy Recommendations

In response to the proposed factors influencing carbon emissions and the prediction
results of the carbon emissions model, the following policy recommendations are proposed
as follows, taking account of China’s specific national conditions.

1. Strengthen carbon market capacity building:

Chinese central state-owned enterprises have the responsibility and obligation to
implement and fulfill the state’s requirements in terms of corporate, political, and social
responsibility. Chinese central state-owned enterprises should actively implement the
national climate change policy requirements. They also should take the lead in promoting
research into carbon asset management, low-carbon development strategies and paths, and
complete the country’s binding targets for greenhouse gas emissions.

This requires Chinese central state-owned enterprises to interpret carbon emission
policies. Meanwhile, they also need to study the extent of their influence on the company’s
corporate development strategy selection, production decision making, technological
progress, energy conservation, and environmental protection. Furthermore, companies
should explore the impact of carbon emission policy structure on the behavior of industrial
enterprises, and study the relationship between carbon emission policy and corporate
competitiveness. Additionally, companies should also make full use of China’s carbon
emission policies to reduce the cost of reducing carbon emissions while creating a green
and clean energy company, effectively increasing the value of carbon assets, and preparing
for the cultivation of new industries in the future.

2. Strengthen corporate carbon asset management:

Only three (sub-)sectors are included in the first batch of the unified national carbon
market. The pilot carbon emission control companies that were previously included in
the pilot areas will also be included (including the Tianjin branch of CNOOC (China) Co.,
Ltd.).

With the improvement in the carbon market and the increasing pressures of the
conditions for implementing a carbon tax, no company will be beyond reducing its carbon
emissions. Therefore, it is particularly important to do a good job in terms of corporate
carbon asset management in advance. A company’s carbon emissions should be known
as soon as possible by utilizing inventory and verification. Companies should make
emission reduction or response measures as early as possible following relevant policies
and development trends to minimize the impact of carbon emissions on the company.
Companies with surplus carbon emission allowances can also strive for additional benefits
for these companies.

3. Properly assess the impact of new projects on carbon emissions:

Carbon emission assessment projects are a new assessment method that has been
gradually developed in recent years. Regardless of whether it is the carbon market or the
implementation of a carbon tax, for companies with high carbon emissions, it will affect
the production and operation of the company to a certain extent. For new or renovated
and expanded projects, it is recommended that carbon emission assessment is carried out
in the preliminary research stage of the project. The main purposes of the assessment are:
1—predict the carbon emission cost of investment projects and assess the degree of impact
of carbon emissions on the economics of the project; and 2—enable a better-informed choice
of measures and paths to meet carbon emission requirements through the assessment.
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4. Deploy large-scale carbon emission reduction technologies as early as possible:

CO2 emission reduction is a long-term and arduous task. Soon, work can be carried
out on energy optimization, production energy conservation, and the development and
utilization of clean energy by tapping the company’s internal emission reduction potential.
However, more CO2 emission reduction and utilization methods are needed to achieve
long-term and effective emission reduction, i.e., “post-processing” technology. Therefore, it
is necessary to deploy carbon emission reduction utilization technology research and devel-
opment as soon as possible, and make full preparations for emission reduction technologies
and programs. While fulfilling the goals required by the state, this will also enhance the
core competitiveness of the enterprise and promote its low-carbon transformation as well
as its sustainable development.

In summary, in the process of carbon emission management, due to the complexity
of the factors influencing carbon emission, it is a great challenge to carry out forecasting,
and it will also consume a lot of human effort and material resources. The use of deep
learning to build a carbon emission prediction model can predict the carbon emissions
of the Yangtze River Economic Zone with high accuracy, reduce the human and material
investment in carbon emission management, and provide a reference for carbon emission
management.

5. Conclusions

According to the model test results, the “Yangtze River Economic Belt” basin and
the industry investment scale, the labor efficiency output, carbon emission intensity, and
other indicators that affect carbon emissions are relatively accurate in the carbon emission
information forecast [37]. Therefore, the proposed method concludes that the SVR model
for solving complex nonlinear problems can achieve a relatively excellent prediction effect
under the training of LSTM. Due to the complexity of the “carbon sources” of the carbon
emissions of the research object, the information affecting carbon emissions has the charac-
teristics of diversity, dynamics, and big data. On the other hand, deep learning algorithms
have strong fusion and changeable algorithms. The use of a deep learning network to
process the information of the prediction model is complicated, which is main shortcoming
of this study [38]. Therefore, the study hereby puts forward expectations that the prediction
of carbon emission information is crucial to the country’s mid-to-long-term “carbon peak”
strategy. The deep learning network must be used to accurately predict carbon emissions
within a specific economic region, and then be promoted nationwide. This process requires
the concerted efforts of researchers from related fields to work together.
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Abstract: Landslides represent one of the world’s most dangerous and widespread risks, annually

causing thousands of deaths and billions of dollars worth of damage. Building on and around

hilly areas in many regions has increased, and it poses a severe threat to the physical infrastructure

and people living within such zones. Quantitative assessment of social vulnerability in Malaysia is

worrying because it has been given less attention than hazard-related studies. Therefore, this study’s

objective is to find out the indicators used for social vulnerability assessment in the context of a

landslide in Malaysia. The analysis is critical for understanding the measures of social vulnerability,

given that the incorporation of climate change and disaster risk mitigation issues in urban planning

and management are considered priorities in ensuring a stable population growth and avoiding

economic disruption. A systematic study on the Scopus and Web of Science repositories was

conducted based on the PRISMA Report analysis method. This article concluded that there are six

important indicators of social vulnerability in the context of landslide in Malaysia.

Keywords: social vulnerability assessment; landslide; social indicator; disaster risk reduction;

Malaysia

1. Introduction

In recent years, extreme events have increased in intensity and frequency globally,
leading to rising economic losses and casualties. It is believed that these events will con-
tinue to accelerate in future climate scenarios. An accurate understanding of the physical
and socioeconomic drivers of these extreme events is crucial and can ultimately enhance
adaptive strategies. The frequency and intensity of geophysical events is increasing. This is
the result of the interaction between humans and the environment. Climate change and
increasingly aggressive human activities contribute to the vulnerability of catastrophic haz-
ards to humans, their infrastructure, and the environment [1]. Faced with ever-increasing
societal impacts arising from such events, a wealth of research and analysis has focused on
understanding causal processes and outcomes [2]. Landslides are a type of geophysical
event that plays a significant role in the evolution of a landscape [3]. However, landslides
do pose a serious threat to local populations given that these events are being triggered in-
creasingly by a changing climate and more unpredictable weather patterns. In recent years,
it has become clear from previous research that the location, abundance, activity, frequency
of landslides as well as the social and economic consequences are increasing over time
and more people are exposed to the risks [4–10]. It was reported in [11] that geophysical
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disasters such as landslides are the deadliest. The presence of humans, infrastructure, and
other forms of vulnerabilities in one location will make things worse.

Historically, efforts to reduce landslides are physically oriented resulting in a pro-
liferation of technocratic approaches in the literature, while financial losses and social
vulnerability from the geophysical events continue to increase. Over time, this gave rise
to an alternative explanation that mounting losses are related less to the dynamics of
the events but more to the vulnerability of exposed human populations [2]. Although
assessing the magnitude and intensity of disasters is critical, the nature of population de-
mographics and various socioeconomic contexts may also lead to a greater risk of disasters.
Understanding the complexities of vulnerability to disasters, including those caused by
geophysical events, is at the heart of disaster risk reduction. Efforts to reduce disaster risk
involve various disciplines and should be viewed from numerous perspectives to provide
long-term benefits. A comprehensive disaster risk reduction strategy that incorporates
physical and socio-economic aspects is the key determinant of vulnerability.

In spite of very high importance of socioeconomic data to assess landslide vulner-
ability, there are lack of social data documented for analysis and mapping in Malaysia.
Therefore, the objective of this study is to find out the indicators that are used for social
vulnerability assessment in the context of landslides in Malaysia. The analysis is critical
for understanding the measures of social vulnerability, since the incorporation of climate
change and disaster risk mitigation issues in urban planning and management are a priority
for ensuring stable population growth and evading economic disruption.

2. Literature Review

The definition of vulnerability is “the quality of being vulnerable (able to be easily
hurt, influenced, or attacked), or something that is vulnerable” [12]. Vulnerability means
the risk of being vulnerable or easily hurt by something or someone. Vulnerability is a
concept that has being used over a long period of time, and it has been recognised in
much research covering various fields of endeavour [13], for instance, the social sciences,
economics, psychology, and engineering. It should be noted that there is no consensus
regarding how vulnerability is defined [14]. It has, in fact, been interpreted in many ways
according to the subject area being investigated.

According to [15], vulnerability refers to situations where individuals and societies
are exposed to social, economic, and cultural risks and in essence the dangers posed
by harm to them. All people and all communities at some point cannot avoid risk or
harm, so at best each individual needs to prepare for every situation. Moreover, stress
that social vulnerability is partly the result of social difference or social inequality, which
affects or forms the susceptibility of different groups to harm or at risk and regulates
their capacity to react to a certain situation [16]. There is inequality in every society
and the unequal distribution of wealth and resources is something that has permeated
all of human history. For instance, in a farmer’s perspective, inequality can take many
forms such as unequal distribution of wealth, water allocation, rights to land and water,
taxation inequity, economic poverty, land tenure issues, and much more. The definition
of climate vulnerability according to the Intergovernmental Panel on Climate Change
(IPCC) is “ . . . the degree to which geophysical, biological and socio-economic systems
are susceptible to, and unable to cope with, adverse impacts of climate change” [17]. The
concept of vulnerability has been refined over the decades so that people understand
the disasters and hazards that occur in communities susceptible to this kind of situation.
Vulnerability is something that can help people achieve a level of sustainable development
realistically. Economic development or progress should be engaged with as long as the
natural environment in which they occur can be sustained.

For this reason, vulnerability can be defined as individuals, households, or com-
munities that are dealing with external shock from the outside and are unexpected [18].
Vulnerability is present in both internal and external factors that influence the lives of indi-
viduals and communities. Furthermore, vulnerability can be understood as the capacity of
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individuals, groups or communities to reciprocate, cooperate, survive, and recover from
the impact of environmental events that have happened around them [19]. Landslides
are very indicative of how the characteristics of a social group can overcome this kind of
disaster but also reflect the harsh realities of social vulnerability to natural events.

2.1. Social Vulnerability to Disaster

Vulnerability is broadly defined as the potential to suffer loss or harm. The theory
includes structural vulnerability of buildings, physical exposure of people, and places to
natural events, while social vulnerability describes different kinds of susceptibility based
on social, economic, and political factors [20,21]. Vulnerability and exposure are dynamic,
varying in temporal and spatial scales, and depend on economic, social, geographical, de-
mographic, cultural, institutional, governance, and environmental variables [22]. Analyses
of vulnerability in the engineering context of landslide or slope (or any disaster) are quite
common [23,24]. The study by [25] has described vulnerability as the characteristic of a
person or group and their situation that influences their capacity to anticipate, cope with,
resist, and recover from the impact of a natural hazard (an extreme natural event or process).
Despite its importance in disaster risk reduction, there is still a lack of approaches that
contribute to a better understanding of social vulnerability hidden in dynamic contextual
conditions [26].

The definition of social vulnerability within the disaster framework was introduced in
the 1970s when researchers realised that exposure included socioeconomic factors affecting
group resilience [27,28]. Social vulnerability is useful as an indicator in determining the
differential recovery potential from disasters. Social vulnerability normally employed
individual characteristics of people such as age, race, health, income, type of dwelling unit,
and employment [29]. Social vulnerability is a concept that can explain social imbalances
that are happening in society in some parts of the world. It is one of the results of social
inequalities that occur in many communities. Factors affecting social disparities evident
in a society include: lack of resources such as information, knowledge, and technology;
limited access to political power or representation; social capital; social networks and
connections; beliefs and customs; building stock and age of infrastructure; and type and
density of infrastructure and lifelines [30]. Next, the 18 social vulnerability indicators
was introduced as follows: socioeconomic status (income, political power, and prestige),
gender, race and ethnicity, age, commercial and industrial development, employment loss,
rural/urban, residential property, infrastructure and lifelines, renters, occupation, family
structure, education, population growth, medical services, social dependence, and social
needs population [16].

The design of these indicators depends on their expected use, and it must be relevant to
the hazard context, methodologies, and data availability [31]. However, social vulnerability
exists based on the underlying characteristic of a population, and it does not rely on
the hazard or susceptibility of an area. Apart from indicators, numerous indices have
been developed in order to measure social vulnerability. Many pioneer researchers have
devoted much effort to formulating the concept of social vulnerability. Social Vulnerability
Index (SoVI) was introduced [32] to quantify social vulnerability through an empirical
basis to compare social differences within a community regarding social variables selected
to mitigate the disadvantageous effects of certain events. It was asserted that socially
vulnerable communities are more likely to be adversely affected in disaster events because
they are much less likely to recover from them and more likely to die [33]. Even though the
SoVI was devised with the United States in mind, many studies have adapted SoVI for a
variety of contexts, no matter the nature of the population or places being investigated.

2.2. Landslides: Malaysia’s Experience

Malaysia is located in the south-east of Asia. It is divided into two archipelagos,
Peninsular Malaysia and Borneo Island. Malaysia is a tropical country with a warm and
humid climate throughout the year. Over a recent 20-year period (1998–August 2018),
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Malaysia has witnessed 51 disaster events [34–43]. During that time, 281 people died,
more than 3 million people were affected, and disasters caused nearly US$2 billion in
damage [44]. Flood, landslides, drought, and forest fires are common in Malaysia, while
the annual rainfall is the main contributor due to two monsoon periods, i.e., South West
(SW) and North East (NE) occurring between April and October and from November to
March, respectively. These monsoons contribute to high annual rainfalls amounting to
2000–4000 mm with a maximum of about 200 rainy days [45]. The amount of rainfall
varies from one rainy day to the next [46]. The rain and consistently high temperatures
throughout the year lead to intensive and extensive weathering of features on the ground.
These combinations of climate and geological conditions together with other causative
factors such as slope angle, drainage conditions, geological boundaries, etc. [47] have led
to landslides becoming one of Malaysia’s most common natural disasters.

The most common trigger for landslides is heavy or prolonged rainfall, but seismicity,
river undercutting, freeze-thawing cycles, and human activity may also cause substantial
and destructive landslides. As reported [48], Malaysia recorded 171 landslides between
2007 and March 2016, according to data from the US National Aeronautics Space Ad-
ministration (NASA), making the country the world’s 10th highest in terms of landslide
frequencies. In recent years, Malaysia has experienced several landslides resulting from
extreme tropical rainfall. Landslides have occurred in several parts of the country, such as
Paya Terubong (Penang), Highland Towers (Kuala Lumpur), Hulu Langat, and Pos Dipang
(Perak). These landslides incur significant property loss and hundreds of lives. In 2017,
6000, people were severely affected by a flash flood and landslide in the Kundang, Selangor
area, which left many stretches of roads, infrastructure, and assets badly damaged [49].
When the population density of towns increases, highland or hilly terrain development
also increases and this puts more stress on the natural environment. Urban areas are then
exposed to a high risk of landslides [50]. Significant landslides in Malaysia were recorded
from 1993 to 2020 (see Table 1).

Table 1. Series of significant landslide occurrences in Malaysia.

No. Year Location Consequences

1 1993 Highland Tower, Ulu Klang, Selangor 48 deaths and 2 injuries. One building collapsed

2 1993 Pinggiran Bukit Segar, Kuala Lumpur One family evacuated their house

2 1993 Pantai Remis, Perak No record

4 1994 Taman Puchong Perdana, Puchong, Selangor 10 families evacuated

5 1995 Taman Keramat Permai, Ampang, Selangor No damage recorded

6 1995 Kuala Lumpur—Karak Highway 20 deaths, 22 injuries, and ten cars damaged

7 1996 North-South Expressway (NSE) near Gua Tempurung, Perak No record

8 1996 Pos Dipang, Kampar, Perak 44 people were killed

9 1996 Ampang Jaya, Selangor No record

10 1999 Puncak Athenaeum Condominium, Ampang, Selangor
Minor landslide, road access to the hilly residential area

affected

11 1999 Mutiara Condominium, Ampang, Selangor No record

12 1999 North-South Expressway, Kuang, Selangor Thousands of vehicles stranded. Road closure lasting one day

13 2000 Jalan Bukit Antarabangsa, Ampang, Selangor No record

14 2001 Kampung Sungai Chinchin, Gombak, Selangor A house partly destroyed

15 2002 Jalan Ipoh, Kuala Lumpur Covering three-lane road leading from Selayang to Rawang

16 2002 Taman Hillview, Ampang, Selangor Eight deaths and five injuries

17 2003 Taman Bukit Jaya, Ampang, Selangor No fatalities

18 2004 Taman Melati, Gombak, Selangor 1 death

19 2004 Jalan Seri Penchala 1, Kuala Lumpur 24 houses evacuated

20 2006 Taman Zooview, Ampang, Selangor Four deaths

21 2006 Taman Bukit Serdang, Seri Kembangan, Selangor Damaged section of the road measured 50 m × 25 m

22 2006 Bukit Tunku, Kuala Lumpur No record

23 2006 Taman Esplanad, Kuala Lumpur Two houses damaged

24 2008 Taman Bukit Mewah, Ampang, Selangor 4 deaths
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Table 1. Cont.

No. Year Location Consequences

25 2008 Ulu Kelang, Selangor Four deaths and 15 injuries

26 2008 Kuala Kubu Bharu, Batang Kali, Selangor Two sisters were buried alive when a landslide hit a
bungalow

27 2008 Kemensah Heights, Ampang, Selangor No fatalities

28 2008 Bukit Ceylon, Kuala Lumpur One worker killed

29 2008 Pantai Dalam, Kuala Lumpur One killed, 4 injured, and 19 families evacuated

30 2009 Taman Cheras Awana, Cheras, Selangor Destroyed 3 cars and a motorcycle, 10 families evacuated

31 2010 Ukay Perdana, Ampang, Selangor No fatalities

32 2010 Taman Bukit Mulia, Ampang, Selangor No fatalities

33 2011 Puncak Setiawangsa, Kuala Lumpur
88 residents of bungalows, shop houses, and double-storey

terrace houses ordered to move out

34 2011 Jalan Semantan, Kuala Lumpur Six cars were buried and five vehicles were damaged

35 2011 Pekan Batu 14 Hulu Langat, Selangor 16 deaths

36 2011 Kampung Tengah, Puchong, Selangor 5 houses affected

37 2012 Taman Desa Sentosa, Hulu Langat, Selangor
Endangered four occupants of the Perkid Welfare Home for

girls

38 2012 Taman Mulia Jaya, Ampang, Selangor Water seeped through the sewerage system.

39 2013 Putra Heights, Subang Jaya, Selangor Several vehicles submerged in mud

40 2015
KM 52.4 of the Kuala Lumpur-Karak Expressway between

Lentang and Bukit Tinggi, Pahang and Gombak-Bentong old
roads

Lentang-Bukit Tinggi stretch of the expressway was closed to
traffic

41 2016 Karak Highway
Blocked all lanes in both directions on the highway and four

vehicles were trapped in the landslide

42 2016 Bau-Puncak Borneo, Sarawak
Comprising mainly Bidayuh settlements and Padawan Ring

Road critically affected

43 2017 Tanjung Bungah, Penang Island Killed 11 construction workers

44 2018 Jalan Bukit Kukus, Georgetown, Penang Island Killed nine construction workers

45 2019 Taman Batu Permai No record

46 2019 Jalan Lee Woon, Ampang, Selangor A house evacuated

47 2019 Genting Highland, Pahang
Affected a portion of the Jalan Genting-Amber Court slip

road and no access to the resort

48 2020 Taman Kelab Ukay, Bukit Antarabangsa 40 residents were ordered to leave their homes

49 2020 Taman Silibin Indah, Ipoh Killed one construction worker

50 2020 Sungai Penchala, Kuala Lumpur 3 families ordered to leave their homes

51 2020 Jalan Gombak to Genting Highland The main road was closed for repairs

52 2020 Ulu Beram, Jalan Lapok Residents cut off due to damaged roads

53 2020 Tapah to Ringlet Fallen trees blocked the main road

54 2020 Tapah to Cameron Highland Fallen trees blocked the main road

55 2020 Jalan Simpang Pulai to Cameron Highland
The retaining wall suffered damage and part of the structure

collapsed

56 2020 The Banjaran Hotspring Retreat, Tambun Killed 2 guest house

57 2020 Jalan Lojing-Gua Musang Closed half of main road

58
2020 Jalan Keningau-Kimanis, Sabah Two houses were damaged and no casualties
2021 Jalan Raub-Bukit Fraser Road closed and 13 vehicles trapped

59 2021 Taman Bukit Kempas, Johor Tank water pipe broke, and 42 people vacated the residence

60 2021 Kemaman, Terengganu The restaurant was hit by a rock, no casualties

61 2021 Jalan raya Timur Barat, Ipoh One hallway closed

62 2021 Kampung Garong, Padawan, Sarawak
2 houses were damaged, and a house half buried in the

ground

63

64 2021 Kota Kinabalu
10 landslides were reported in seven villages, involving four

districts, namely, Kota Kinabalu, Kota Marudu, Pitas, and
Kudat. No casualties

Source: [51–60].
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In Malaysia, there have been numerous landslide events in the mountains, along
the valleys, rivers, and coastal regions [61,62] but the most massive have generally been
associated with rivers. Findings from the literature have shown that landslides occur
frequently along hilly areas in the rainy season. There is a strong correlation between
the density of drainage and distance to the river due to landslides in the mountainous
region being triggered by erosion-related phenomena [63]. Development on hilly areas in
Malaysia has increased the risk and likelihood of landslides [64]. Hilly areas are attractive
for building residential areas, hotels, or resorts. This poses a severe threat to the physical
infrastructure and population living within that area. This situation will lead to many
casualties and significant financial losses if these hilly regions are struck by landslides [65].

Global landslides cause billions of dollars’ worth of infrastructure damage and thou-
sands of deaths annually. The estimated number of deaths is 1000 per year and destruction
of property amounting to approximately US$4 billion [66]. Meanwhile, losses due to
landslides in Malaysia have cost more than US$1 billion since 1973 [67]. Emergency pre-
paredness plays a part in reducing the effects of disasters. The most effective preparedness
at the initial stage was to make the right decision to reduce the number of deaths and
damage to property in communities. The rescue team provided some emergency response
and preparedness training for each member of the community so that their reactions were
practical. In Malaysia, there are several agencies involved in dealing with landslides such
as Malaysia Civil Defence Force (MCDF), Fire and Rescue Department of Malaysia, Na-
tional Disaster Management Agency (NADMA), and others. Furthermore, the Ministry of
Housing and Local Government has issued a guideline for any physical development on
the hilly terrain area in Malaysia. Table 2 summarises the criteria of the biological effect
based on the slope gradient, slope classification for engineering work, and the description
of development activities.

Table 2. Malaysian Guideline on physical development in hilly terrains.

Slope Gradient (α)
Slope Classification For

Engineering Work
Description

Below 15◦ Class 1

Compliance with:

i. Development Guidelines in Hill Areas 1997 (issued by the
local government)

ii. Erosion and Dirt Control Guidelines, 1996 (issued by the
Department of Environment)

iii. Environmentally Friendly Drainage Manual 2000 (issued by
the Department of Irrigation and Drainage)

15–25◦ Class 2

EIA report prepared by EIA consultants registered with the
Department of Environment for development exceeding 50 ha. For
class 1 and II development projects only subject to section 34A, the

Environmental Quality Act 1974 must be provided EIA.

25–35◦ Class 3

Requires an additional environmental impact assessment study.
Proposes the conduct of landslide vulnerability assessment, which

may serve as an alternative tool to establish a sustainable
development environment.

Above 35◦ Class 4

Development projects within this area are not permitted at all,
except for road construction, which is inevitable. However, an

environmental impact assessment is required.
Proposes the conduct of landslide vulnerability assessment, which

may serve as an alternative tool to establish a sustainable
development environment data

Source: [68].

Malaysia has its share of landslides and most of the landslide studies conducted focus
on the engineering perspective. Socioeconomic aspects should be taken into account to
evaluate the vulnerability of the community, especially one at high risk of experiencing
such catastrophic effects, but previous research concentrated more on describing the
disaster types [61,69], susceptibility, and risk assessment [70,71]. The level of quantitative
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evaluation of social vulnerability in Malaysia is worrying due to the lack of social data
documented for analysis and mapping. Therefore, the objective of this study is to find out
indicators that are used for social vulnerability assessment in the context of a landslide in
Malaysia. The analysis is critical for understanding the measures of social vulnerability,
since the incorporation of climate change and disaster risk mitigation issues in urban
planning and management are a priority for ensuring stable population growth and evading
economic disruption.

The representativeness of Malaysia as an important case for research, though can be
critical in other cases, is not an issue for his study. What we are trying to demonstrate is that
in analysing landslide risk, the human part is an integral part and should be incorporated
as detailed in this study. The methodology used in this study is a pioneer for landslide risk
assessment. Assessing the landslide risk with the proposed methodology can be a crucial
tool for engineers and policy-makers in developing a site, particularly in hilly areas, for
population development. Thus, it must be done at its locality, per se, in order to assess
the real risk of landslide. More importantly this methodology can serve to highlight the
importance of public education to increase the level of knowledge of the population on
the hazard and mitigation of possible landslide events in their area. Limited literature
found on social vulnerability mapping to climate-driven disasters in the country. The
socio-economic aspect is the most apparent after disasters as different patterns of damages,
losses, and suffering maybe experience differently by certain groups of the population.

3. Materials and Methods

This section incorporates five significant sub-sections that explain the following:
PRISMA, resources, inclusion and exclusion criteria, systematic review procedure, and
data extraction and interpretation. The methodology technique to retrieved articles is the
one suggested by [72].

3.1. PRISMA

The systematic review in this article was guided by the PRISMA method, and this
abbreviation stands for “Preferred Reporting Items for Systematic Reviews and Meta-
Analyses.” PRISMA has mainly been utilised by healthcare personnel create systematic
reviews and meta-analyses. As well as the medical field, PRISMA has been employed by
environmental management experts to undertake systematic reviews.

3.2. Resources

This study used two primary journal databases, specifically Scopus and Web of Science
(WoS). Scopus is a bibliographic database for journal articles and consists of abstract and
citation sources. This database covers journals from scientific, technical, medical and
social sciences and currently has more than 5000 publishers worldwide and more than
22,000 titles. Web of Science (WoS) is a database producing Clarivate Analytics, which
includes articles from 256 disciplines such as science, social science, arts, humanities, etc.
WoS offers full-text articles, reviews, editorials, abstracts, proceedings and book chapters.
WoS includes more than 33,000 journals published from the year 1900 to the present day.
Other databases like JSTOR and Google Scholar were considered for this research.

3.3. Systematic Review Process

The systematic review process includes four main stages to acquire relevant: identifi-
cation, screening, eligibility, and data extraction.

3.3.1. Identification

The first process of undertaking systematic reviews is identification. Identification
means finding the most relevant studies, using keywords, dictionary terms, thesaurus,
encyclopaedias, etc. The keywords used help to build the “search string” for the research
(Table 3). Subsequently, 13 articles were found in JSTOR using the term “social vulnerability
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index.” From the Scopus database, in total, 147 articles related to the search string were
discovered while a total of 69 items emerged from Web of Science (WoS). Meanwhile,
29 studies were found in Google Scholar search engine, where the data covers a huge range
of subjects and is essentially a superset of WoS and Scopus [73].

Table 3. Search string.

Databases Keyword Used

Scopus
TITLE-ABS-KEY ((“socia* vulnerabilit* inde*” OR “soci* economi* vulnerabilit* inde*” OR “soci*
vulnerabilit* inde*” OR “socia* vulnerabilit*” OR “SoVI” OR “SeVI” OR “SVI”)) AND (landslid*

OR rockslid* OR earthfal*)

Web of Science (WoS)
TS = ((“socia* vulnerabilit* inde*” OR “soci* economi* vulnerabilit* inde*” OR “soci* vulnerabilit*
inde*” OR “socia* vulnerabilit*” OR “SoVI” OR “SeVI” OR “SVI”) AND (landslid* OR rockslid* OR

earthfal*))

JSTOR
(((((((“socia* vulnerabilit* inde*”) OR (“soci* economi* vulnerabilit* inde*”)) OR (“soci*

vulnerabilit* inde*”)) OR (“socia* vulnerabilit*”)) OR (“SoVI”)) OR (“SeVI”)) AND (“landslide”))

Google Scholar
(“social vulnerability”) (“social vulnerability index”) (“socio economic vulnerability index”)

(landslide)

3.3.2. Screening

The second part of the systematic review process is screening. Here, it is necessary
to gather all the articles related to the study topic and exclude all irrelevant items. Table 4
shows the inclusion and exclusion criteria that need to be followed in finding related
articles. The total of 258 articles was screened using the inclusion and exclusion criteria
including literature type, language, timeline, countries and territories, and the subject area.
For the first criterion of the literature type, this study decided to focus on journal research
articles and excluded papers resembling review articles, book chapters, and conference
proceedings. Meanwhile, for language, the chosen one was English, and all other non-
English articles were excluded. The criterion for publication was the period from 2010
to 2020 only, and the geographical criterion was Southeast Asia, Southwest Asia and
Europe. Lastly, for the subject area, this study only chooses articles from social sciences,
environmental science, science, and agriculture. From the inclusion and exclusion criteria,
the number of articles that have been excluded is 199, in total (Figure 1).

Table 4. Inclusion and Exclusion criteria.

Criterion Eligibility Exclusion

Literature type Journal (Research articles)
Journals (review article), book chapter,

conference proceeding
Language English Non- English
Timeline 2010 to 2020 <2010

Countries and territories
Southeast Asia, Southwest Asia and

Europe countries
Non-Southeast Asia, non-Southwest Asia

and Non-Europe country

Subject Area
Social Science, Environmental Science,

Agricultural
Other than Social Science, Environmental

Science, Agricultural
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Figure 1. Literature searches based on Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) is guidelines (adapted from [74]).

3.3.3. Eligibility

For the third stage eligibility, a total of 59 articles were used. Title, abstract, and the
content of each paper are important and need to be examined thoroughly to make sure it
fulfils the inclusion criteria and review objective. In total 50 articles have been excluded
because they did not fit this criterion. Therefore, the criteria of selected articles to be
analysed is focus on the social vulnerability study and the empirical articles. It is because
the purpose of this study is to define the indicators used to assess social vulnerability in
the context of landslides in Malaysia. The research is important for understanding social
vulnerability interventions, as the inclusion of climate change and disaster risk mitigation
problems in urban/rural planning and management. More specifically, this approach
will help to illustrate the value of public education in growing the population’s level of
awareness about the risk and mitigation of potential landslide events in their area. Even
though the occurrence of landslides is different due to the climatic conditions among the
countries for article analysis, however, due to the lack of research on the formation of
social vulnerability indicators in Southeast Asian countries, alternatively, this study has
expanded its study to Southwest Asian and European countries.

3.3.4. Data Extraction

After the remaining articles were assessed and analysed, the researcher started to
extract the data. First, this was done by reading the abstract of the article, and then the
researcher read the full text to start identifying themes and sub-themes related to the
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objective. After that, themes and sub-themes were organised to establish a typology for
the article.

4. Results

According to the results shown in Table 5, in total, 9 articles were chosen for this study.
The nine authors of the articles include [75–83] in this study. Besides, the selected articles
were published in the years ranging from 2011 to 2020. It aims to identify research trends
on social indicators that are constantly being studied and considered for the purpose of
forming a social vulnerability index for certain area and community. Next, with reference
to countries covered, two studies are from Nepal, and the rest are one study each from
Portugal, England, Italy, Pakistan, India, China, and Indonesia. It comprises the name of
authors, the country of studies, title of articles, and the objective of the studies by scholars.

Table 5. List of articles analysed for systematic review.

Author Country Year Title Objective

[75] Nepal 2020
A geospatial analysis of multi-hazard risk

in Dharan, Nepal

Produce individual hazard assessment
for the rapidly growing city of

Dharam city and calculate its level of
social vulnerability

[76] Nepal 2019
An analysis of social vulnerability to

natural hazards in Nepal using a modified
social vulnerability index

To quantify social exposure at the local
level using indicators relevant to

Nepal’s distinct social and physical
landscape

[77] Portugal 2015
Application of social vulnerability (SoVI)

and delineation of natural risk

To go further into the biological risk
analysis in the Greater Lisbon area

using a multi-hazard approach

[78] England 2019
Evaluation of social vulnerability to

natural hazards: A case of Barton on Sea,
England

The current study examines the social
vulnerability of Barton-on-Sea by

conducting a survey-based analysis

[79] Italy 2016
Mapping social vulnerability to natural
hazards in Italy: A suitable tool for risk

mitigation strategies

The study aims to define a social
vulnerability index (SVI) for Italy by

applying an inductive approach

[80] Pakistan 2018 Socioeconomic determinants of landslide
risk perception in Murree hills of Pakistan

The aim is to assess the determinants
of landslide risk perceptions in the

Murree Hills of Pakistan

[81] India 2020
Study of integrated social vulnerability

index SoVLint of the hilly region of
Uttarakhand, India

This study focuses on producing a
map for the hilly district of
Uttarakhand showing the

vulnerabilities measured by natural,
social, and economic indicators

[82] China 2011

Social vulnerability assessment of natural
hazards on county-scale using high

spatial resolutions satellite imagery: A
case study in the Luogang district of

Guangzhou, South China

This study examines the social
vulnerability assessment of natural

hazards on a county-scale using high
spatial resolutions satellite imagery

[83] Indonesia 2018

Quantitative assessment of social
vulnerability for landslide disaster risk

reduction using GIS approach (Case
study: Cilacap Regency, Province of

Central Java Indonesia)

To examine social exposure for
landslide disaster risk reduction using

a GIS approach

Sources: Author analysis, 2020.

4.1. Indicators Used to Measure Social Vulnerability in a Landslide

There are 14 indicators serving to measure social vulnerability when a landslide occurs.
Included here are age, gender, ethnicity, built environment, income, family structure,
education, employment, occupation, urban or rural, disability, migration, medical, and
population (Table 6).
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Table 6. List of indicators use as social vulnerability index.

Indicators Variables Reference

Age
The elderly population (>65 years), children under 5 years old,

dependency ratio, elderly index, resident population aged 5–14, resident
population aged 15–19, mean age (years) of the resident population

[77,79,80,82,83]

Gender
Females, a household that is run by a woman, a household with land

owned by females
[75,77]

Ethnicity Population by ethnic, minority population [75–77]

Built Environment
A household without piped water connection, electricity, reinforced

cement concrete (RCC) foundation, sewage water, and the population
lived in a home with quality external walls.

[76]

Income The income per capita, the ratio of high income to low income [80]

Family structure Female-headed household, the average number of people per household [75,78]

Education
People cannot read and write, high level of education, low level of

education
[76–81,83]

Employment
Female labour force employed, labour force employed,

unemployment rate
[78,81,83]

Occupation

Employed in agriculture, forestry, fishing, mining and quarrying;
employed in manufacturing and construction; employed in

transportation, communication and other public utilities; employed in
accommodation and food services

[75]

Urban/Rural Population density [77]

Special Needs Population

Population with disabled person (auditory, visual, motor, or mental
disability), the person who is disabled and/or unemployed or without
any economic activity, a person with disability that is more than 60%, a

person who is disabled, and under 4 or above 65 years of age,
permanently disabled and unable to work

[75–77]

Migration Foreign population, absentee population [77,81]

Health Medical services, health problems, distance from the hospital [77,81,82]

Population Population growth [79,83]

Sources: Author analysis, 2020.

In this study, there are five main indicators that are focused on, these being age,
ethnicity, education, disability, and health. These are the variables that most scholars
measure when investigating landslides. They are explained in more detail below.

4.1.1. Age

The first component that has been discussed in [77] is “urban, age (elderly), and
gender.” Variable for age includes the proportion of resident population aged 65 and
over, proportion of resident population aged 4 and younger, proportion of residents aged
5–14, and proportion of resident population aged 15–19. The study shows a negative
result for elderly people, which means they are more susceptible to vulnerability. There
was reported [79] that focuses more on four component indicators—age, employment,
population growth, and education. He also stated that aging index is one component that
represents the age indicator.

The variables include population of people aged 65 and above and those aged 15
and younger. The aging phenomenon that is very evident in Italy has resulted from the
depopulation of people in mountain areas, people leaving the land, migration, and the lure
of promising jobs in the industrial and service sectors. Italy’s people are generally living
longer and the average birth rate has declined. According to the study by [80] there are
five main indicators affecting the landslide risk perception: age, income, education level,
location, and experience. In addition, the study shows that age of respondent wields an
effect on the perception of landslides.
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4.1.2. Ethnicity

According to [76], the ethnicity indicators focus on the Dalit population and minority
population such as Muslims and Sikhs/Punjabis. They found that this group was less
than 5% of the total population in Nepal, and it is considering as disadvantage groups.
In [77], “nationality and ethnicity” is one of the five main indicators in that particular study.
The variables for ethnicity indicator include person of African origin living in the country,
foreign nationality, and resident who was born outside the country as a marginal group.
Like age, ethnicity can be an indicator in the social vulnerability index and help assess
what is happening in a given society.

4.1.3. Education

Education has always been regarded as one of the key vulnerabilities all communities
have to deal with. Educated people are more likely to have advantages in everything they
do compared to people without or with little education. There are three main variables
relating to education as follows [75]: percentage of the population who can read and
write, percentage who completed school certificate (SLC), and percentage who completed a
college or university degree. In the study by [77], one of the indicators “development and
education” included variables such as the proportion of illiterate people. The community
can be very vulnerable when the proportions of literate and illiterate are dangerously
disproportionate.

Furthermore, the level of education and qualification can affect vulnerability in one
community. The higher the qualification in education that someone has, the more unlikely it
is that they will experience vulnerability from any hazards. According to [78], an individual
who has enough education and knowledge regarding about a certain issue will generally
better understand the nature of a hazard and its likely effect on them. Not only can
education affect individuals’ knowledge of certain issues but it also helps to reduce poverty,
improve health, get more and better job opportunities, higher salaries, etc.

4.1.4. Special Need Population

The population with special needs is usually much more vulnerable than people
without a disability. Disability can be a huge factor for assessing vulnerabilities, especially
when disasters or hazards occur. As mentioned by [76], this factor is closely linked to
socioeconomic status, education and built environment, and ethnicity—all components of
vulnerability assessment. It is shown by the variance for socioeconomic status (45.12%),
education and built environment (19.74%), ethnicity (10.98%), and disability (10.78%).

4.1.5. Health

Health is one of the major indicators of this study. Variables such as medical services,
health problems, and distance from the hospital are important factors of measuring social
vulnerability as mentioned by [77,81,82]. Being healthy and having a good public healthcare
system is important for communities that are more vulnerable to a disaster or hazard. Poor
public health systems can simply make problems worse, and lead to more accidents
and disruptions.

5. Discussion

There are not many studies concerning the Social Vulnerability Index (SoVI) with
reference to landslides. Based on the research undertaken, articles regarding landslide in
the context of social vulnerability index usually consider other types of hazard or where
landslides are bracketed with other natural disasters. Articles based only on social vulnera-
bility and landslides are difficult to locate. Social vulnerability or the social vulnerability
index has many types—not only SoVI but also referred to as SEVI or SVI. Even though the
focus is only on SoVI in this paper, the researcher has taken note of other types of social
vulnerability index.
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There are 14 indicators that have been employed to measure social vulnerability in
the context of landslide including (see Table 5): age, gender, ethnicity, built environment,
income, family structure, education, employment, occupation, urban or rural, disability,
migration, medical, and population. Based on the analysis, the researcher only focuses
on five main indicators that have been used by many scholars: age, ethnicity, education,
special needs population, and health. These were chosen because they are very relevant
to the more vulnerable in society, especially where inequalities and imperiled areas are
very evident.

5.1. Education

There are a few factors that affect social vulnerability including lack of access to: re-
sources such as information, knowledge, and technology; social networks and connections
with other individuals; social capital; and infrastructure [83]. In this study, education
emerges as a major indicator employed in other studies regarding social vulnerability and
landslides. Education is a bridge to success for many people, and it can refer to both formal
and informal education. Education can also mean information, knowledge, and technology
regarding the scope of discussion. The importance of education is to help people achieve
more success and status in society, get a better job and understand the issues involved in a
hazard or disaster. Furthermore, it helps individuals to be prepared for any circumstances.
According to [84], people who have better response mechanisms, always prepare and
constantly recover from a disaster, and this is certainly the case for those individuals,
households, and societies with better and more widespread higher education outcomes
compared to others.

5.2. Age

Indicators such as age can also mean susceptibility to social vulnerability. Older and
very young people are more vulnerable to hazards and disasters than people in the middle.
A higher proportion of senior citizens means that a society is at greater risk of disaster and
the strategies needed to repair any given situation, simply because older people are more
vulnerable to hazards than other age groups. Older people normally need a lot of physical
and emotional care and support services. They can also be more disadvantaged compared
to other age groups. The indicators that have been collected from previous studies do not
represent the population or the place.

5.3. Ethnicity

Racism or ethnic discord is one of the factors of disaster risk, and especially for
minority groups such as migrants and/or non-residents in a given location [85]. They are
also known as marginalised groups, considered to be inferior in terms of their economic
status, health, social relationships, and environment. If this situation continues, it will
result in lasting social, political, and economic losses [86]. Although a mixture of socio-
spatial and biophysical influences forms people’s susceptibility to environmental hazards,
race/ethnicity, and class have been central to understanding social dynamics during hazard
events [87].

5.4. Special Needs Population

Special needs populations such as people with a disability are the most-at-risk persons
when a disaster occurs. Disability means that the person with a physical or mental condition
has limited movements, senses, or ability to participate in activities. Characteristics that are
considered to be a disability are deafness, blindness, diabetes, autism, epilepsy, depression,
and HIV. According to [88], disability emerges from the connection between people with
health problems, such as cerebral palsy, Down syndrome, depression, as well as personal
and environmental influences, including negative attitudes, limited transport facilities,
public service facilities, and insufficient social support systems. They are generally the first
victims of natural disasters. Indeed, early warning systems that alert the public may not
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actually reach the disabled individuals in time. The death toll from a disaster is two to four
times larger than for those who are not disabled [89].

5.5. Healthcare Accessibility

Those with health problems are particularly vulnerable to landslides. They require
constant attention and healthcare services to ensure their safety and good health. Therefore,
access to health services such as hospitals, healthcare clinics, and pharmacies is an impor-
tant need for this community. One of the principal components of emergency management
is healthcare management to cope with disasters [90]. In disaster prevention activities, well
targeted healthcare supply chain management can function effectively and efficiently. A
substantial number of disaster casualties or even fatalities could be absorbed as long as
healthcare services are up and running when a disaster occurs [91].

All the variables are listed above give an essential role in determining the security
of a community based on social inductors. However, the results of the author’s study
found that income indicators and social capital are less emphasised. Income indicators
referring to those with low incomes and belonging to the group below 40% of Malaysia’s
income are very vulnerable to disasters. For example, the floods that occur every year have
caused suffering because they cannot work, and the worst consequences, they will lose
their jobs. The study [92] found that the income sub-domain is the largest contributor and
gives high value to the index of endangered livelihoods of rural communities in Pahang
in 2014. Low-income conditions will also affect the period for them to recover after a
catastrophic event. The results of the author’s research found that there are no studies
that explore social asset indicators. Social assets carry meaning as resources available to
individuals and groups through membership in social networks. If the household has
a higher position in a group or social institution, he or she will produce higher social
strengths and resources [93]. Longer membership history as well as more participation
in other social groups make it easier for access to information, business opportunities,
social strength, and influence. The ability to access other assets is also simpler [94]. The
evolution of social capital through the interaction of relationships between people and
groups in community social networks [95,96]. Social networking means the interaction
of an individual with other individuals, organisations, and groups to obtain information
and assistance on something related to their livelihood [96,97]. The lack and absence of
these elements within the social life environment of an individual will contribute to their
vulnerability factors, as emphasised by [98,99]. Social capital influences, the sustainable
life they possess significantly to strengthen the ability to develop a network of cooperation
between groups both internally and externally and through enhancing the institutional
capacity of community groups to improve the well-being of society.

State government agencies, local governments, and community leaders are the most
familiar with the people in their communities. The social vulnerability index’s importance
is design to assist them in ensuring the security and well-being of their population. The
SVI components can help the state and local people involved in all phases of the disaster
sequence, in particular, landslides. Knowledge of locations and community information
that is vulnerable to landslides can help planners in identifying target groups and ac-
celerating assistance in efforts to reduce and impact property damage and loss of life,
as well as prepare for disaster events. The stakeholders and management planners can
setting the evacuation centre to places in secure condition to those are needs emergency
assistances such as elderly people, single mothers with kids and infants, no transportations
people and migrants whose are not influent in local language. In the recovery process,
local governments may recognise communities that may require additional funding for
human services or as a mitigation gauge to avoid a need for more costs due to the post
support [100]. The slower to recover are those with the socioeconomically low-income
community with hazardous areas of landslide occurrence. Therefore, the analysis results
show that there are seven indicators as outlined that should be used as a social vulnerability
index in measuring the level of susceptibility of landslides events. It consisted of education,
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age, ethnicity, special need population, healthcare accessibility, income, and social asset
indicators. Future research will examine how SoVI can be used in the planning and miti-
gation processes to help target disaster management interventions as part of the system.
Besides, the SoVI outcome can lead to geological mapping of disaster risk management in
Malaysia’s decision-making systems based on specific zones.

6. Conclusions

In this study, we have reviewed a selection of socioeconomic vulnerability components.
At the searching stage, 258 articles were found in key databases, and after inclusion and
exclusion criteria using the PRISMA guideline, only nine articles were chosen as being valid
to this research. Fourteen variables were listed, and five variables of social vulnerability,
which were typically used by scholars, proved to be relevant to Malaysia. Not all places or
locations have the same experiences of landslides, and so the level of social vulnerability
will differ and how these are measured. Although people may experience the same hazard
or disaster, it does not mean that all individuals go through the same processes of destruc-
tion, recovery, evaluation, etc., as others. There are individuals who experience much
higher social vulnerability than others, and it depends on which indicators are employed.
As a climatic condition and the landslides occurrences in Malaysian context, there are seven
indicators underlined which are education, age, ethnicity, special needs population, health
accessibility, income, and social capital. These are the important indicator to measure the
social vulnerability index to the high-risk communities towards landslide hazard. The
result of these indicator measurement should be useful to authorities to include it as a
complementary data to their geological mapping of disaster risk management based on
the location of the landslide events. Furthermore, that is why, this study is important for
understanding the social vulnerability index in the context of landslides in Malaysia.
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Abstract: In recent years, it has become common practice for Chinese local governments to inject land

assets into financing platform companies and use them as mortgage or credit guarantees to obtain

bank loans and issue urban investment bonds, which is known as “land financialization”. This study

investigates the impact and mechanism of land financialization on the uncoordinated development of

population urbanization and land urbanization in China. Theoretical analysis and empirical analysis

results based on the data of prefecture-level cities in China from 2006 to 2015 demonstrate that land

financialization by local governments is a significant cause of the uncoordinated development of

population urbanization and land urbanization, and the pressure of urban economic development

will strengthen this negative impact. Extended analysis further reveals that in areas where population

urbanization and land urbanization are uncoordinated, land financialization, while promoting urban

spatial expansion, will lower land use efficiency and have an inverted U-shaped influence on economic

growth due to a weak agglomeration effect. The above conclusion shows that urbanization driven by

debt-based investment is unsustainable. Efforts should be made to establish a financialization system

that propels sound urbanization and to build a stable input linkage between land financialization and

the supply of urban public service.

Keywords: land financialization; uncoordinated development of population urbanization and land

urbanization; pressure of urban economic development; land use efficiency; urban economic growth

1. Introduction

Urbanization is a vital symbol showcasing economic development in a country and is the universal

choice used by developing countries to promote economic development. Existing research shows that

urbanization can boost economic growth through promoting the accumulation of elements and the

spillover of knowledge, expanding consumption and investment and delivering an agglomeration

effect and economies of scale [1–3]. Further, it has become a critical issue facing countries across the

world to facilitate economic growth based on faster and better-quality urbanization.

As the largest developing country, China’s urbanization level has soared over the past 40 years,

with its urbanization rate growing from 17.92% in 1978, the fledgling years of China’s reform and opening

up, to 59.58% in 2018. The number of permanent residents in urban areas has reached 831.4 million

(China Statistical Yearbook, 2018). Urbanization has become a gigantic engine, after industrialization,

for China’s economic growth [4,5]. However, there is no denying that some contradictions and

problems appear along with China’s urbanization. The major problem is that population urbanization
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lags behind land urbanization [6,7] (China’s New Urbanization Plan (2014–2020), 2014). According to

the author’s estimation based on data from the China Urban Construction Statistical Yearbook, the pace

of urban land expansion in China measured by built-up area is 1.44 times that of the increase in

permanent residents from 1990 to 2000. The difference between the two from 2000 to 2015 further

expands to 1.94 times, far beyond the reasonable level of 1.12 [8]. Additionally, in terms of the annual

average growth rate, the difference between the annual average growth rate of urban built-up area in

China and that of urban population is 3.21% from 1990 to 2006. This figure climbs to 3.47% from 2006

to 2015. Meanwhile, among three regions in China, the difference between the increased rate of land

urbanization and population urbanization in the western area is the largest, followed by the central

and eastern area (see Figure A1).

Existing literature shows that the uncoordinated development of population urbanization and

land urbanization will result in a series of long-term negative effects on socioeconomic development,

such as an increasingly distorted economic structure [6,9] and a widening income gap among urban and

rural residents [10]. Ultimately, this uncoordinated development will obstruct urban-rural economic

sustainable development and the healthy development of the city [11,12]. The cases in point are

mushrooming “ghost cities”, “empty cities”, and the low occupancy rate in some development zones

in China [13]. Indeed, promoting the coordinated development of land urbanization and population

urbanization has become a critical issue in encouraging future urbanization in China. Resolving this

issue will require the examination of its internal logic.

What are the reasons for the uncoordinated development of population urbanization and land

urbanization in China? Existing literature has focused on the effect of some institutional factors,

including the hukou system’s obstruction of population urbanization in China [14,15], urban spatial

expansion facilitated by the land-dependent fiscal system [12,16], and land urbanization propelled

by regional competition under the fiscal decentralization system [17,18]. Moreover, the urbanization

model in China is different from those in Western countries, such as governance structures for farmland

conversion [19], the hukou system, internal migration, the taxation system, and the key role of local

government in development [20]. Therefore, the behavior and intention of local governments should be

considered in order to understand urbanization in China [21]. The above literature laid the foundation

for our analysis of the uncoordinated development of population urbanization and land urbanization,

but the impact of the land financialization mode, which local governments rely on, on the development

of urbanization has been, to some extent, ignored.

In actual fact, local governments in China have established a huge number of financing

platform companies in recent years, which directly or indirectly assume the functions of land reserve,

development, and transfer in various cities [22]. It has become common practice for Chinese local

governments to inject land assets into financing platform companies and use them as mortgage

or credit guarantees to obtain bank loans and issue urban investment bonds, which is known as

“land financialization”. This land financialization model greatly enhances the financing effect of land

transfer [23]. Although they take the same form as land capitalization, land financialization differs from

land transfer greatly, because the former is a borrowing behavior, which creates implicit debts, while the

latter is a one-time deal. According to the statistics for 84 major cities in China, the area and revenue

from land mortgages have continued to rise and gradually exceed those of land transfer since the

market-orientated reform of industrial land in 2006 (see Figure A2). Large-scale land financialization

provides funding support for urban construction and land development, forming a Chinese-style

urban construction investment and financialization model characterized by positive feedback between

land financialization and urban infrastructure investment [24].

Thus, the question must be asked, does land financialization by Chinese local governments affect

land urbanization and population urbanization? If the impact exists, does this kind of financialization

lead to the uncoordinated development of population urbanization and land urbanization? Moreover,

in what way does urbanization propelled through land financialization by local governments affect

urban economic growth? These answers are the mainly logic connection of this study.
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In effect, urbanization propelled via land financialization by Chinese local governments

is, in essence, designed to promote urban construction investment through borrowing.

Land financialization, while accelerating urban construction, generates huge debts for local

governments [25]. As of the end of 2017, the local debts released by the authority amounted to

16.47 trillion yuan. In addition, urban development in China follows a “supply-driven” model led

by local governments, where urban construction predates the agglomeration of industry and people.

This means that economic agglomeration and economies of scale will determine whether a city can

realize sustainable development. If local governments fail to attract enough people and companies

after the construction is completed, construction investment which relies on borrowing will not be

translated into an effective tax base and land tax revenue, which will probably trigger fiscal risks.

In particular, in cities where unbalanced development is noted, population urbanization which is

lagging behind reflects the insufficient spatial conglomeration of the population. The large-scale

“enclosure for cities” movement gives rise to a low efficiency in land use [26]. Economies of scale are

stunted, thus obstructing sustainable economic development in China.

This study focuses on the impact of land financialization by local governments on the uncoordinated

development of population urbanization and land urbanization in China and its underlying mechanism.

The contributions of this study mainly include: first, from the research perspective, previous research

proceeds from land financialization and examines its stimulating effect on urban spatial expansion,

while our study explores the uncoordinated development of population urbanization and land

urbanization during urban construction and land development funded by local governments’

debt-based financialization. This study also puts under the microscope the moderating effect of

urban development pressure on the uncoordinated development of population urbanization and

land urbanization caused by land financialization. Second, by combining the realistic background of

“debt-oriented” urbanization financing and “supply-oriented” urban construction, this study analyzes

the potential negative effect of land financialization on urban economic development and its working

mechanism. Lastly, as financing platform companies are the main carrier allowing local governments

to conduct land financialization, this study calculates the land financialization scale through the

interest-bearing debt of financing platform companies for empirical research. This constitutes a

beneficial attempt in the absence of relevant data.

2. Institutional Background and Hypotheses

2.1. The Formation and Evolution of the Financing of Urban Development in China

Local governments are major players in urban construction investment and public service supply

in China [27–29]. The fiscal revenue and spending caused by Chinese local governments have a huge

impact on urban development [30]. Since China’s tax-sharing reform in 1994, financial power has

been transferred to the central government, while responsibilities and spending have been laid on the

shoulders of local governments [31]. The budgetary fiscal deficit of local governments has grown with

each passing year, pushing local governments to expand extra budgetary sources of revenue. In the

meantime, the newly revised Land Management Law of 1998 made Chinese local governments the

only monopoly in land supply. While the market-orientated reform of urban housing in 2000 and the

“bidding, auction, and listing” land transfer system that started in 2002 have made market-orientated

land transfer possible in China. These reform measures have bred the commercial value of land,

which gradually rises as the important asset for local governments. In this stage, land-related fiscal

revenue for local governments mainly includes three components: land transfer fees, taxes related to the

construction industry and the real estate industry (including farmland occupancy tax, urban land use

tax, land appreciation tax, deed tax, and property tax), and land mortgage loans. Therefore, the fiscal

revenue of Chinese local governments and urban construction has become increasing dependent

on land.
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Originally, Chinese local governments mainly obtained land transfer revenue through selling land

use rights in primary markets. According to the China Land and Resources Statistical Yearbook 2001

to 2014, land transfer fees, known as “the secondary fiscal revenue”, soared to 4.37 trillion yuan in 2013

from 59.5 billion yuan in 2000. The share of land transfer revenue in local fiscal revenue has increased

from 9.3% to 63%. In some cities, such as Nanjing, Hefei, and Hangzhou, etc., the dependence on land

finance (the ratio of budget revenue to land transfer fees) even approaches 100%, and remains at that

level. Along with the development of the real estate market, the relevant tax revenue accordingly

increased rapidly. Land finance therefore came into place. While compensating for fund shortage

in local governments, the revenue also exerted far-reaching impacts on socioeconomic development

in China. Said revenue was utilized in urban infrastructure construction and provided a funding

guarantee for urbanization [32].

However, in China, along with deepening regulations in the real estate market and the growing

pressure on economic downturn, land transfer revenue and relevant tax fees could hardly keep up

with the substantial spending in urban construction, which ushered in the tipping point of land

finance. According to Research on Real Estate’s Contribution to Fiscal Revenue 20151, the tax revenue

in real estate in 2015, including property tax, urban land use tax, deed tax, farmland occupancy tax,

and land appreciation tax, amounted to around 1.3 trillion yuan, a decrease of 3.6% compared to

2014, the first-ever decline in the past 15 years. Land transfer fees in 2015 registered negative growth

for the fourth time in the past 15 years. The land revenue of local governments fell by nearly one

half. Against this backdrop, establishing a local financialization platform through mortgaging land to

financial institutions or using land transfer revenue as a guarantee to issue urban investment bonds has

become an alternative for local governments to obtain land financing. Since then, the financing of urban

development has transformed from land finance to land financialization in China. Particularly, after the

financial crisis in 2008, China encouraged the establishment of local financing platform companies in

order to raise supporting capital for the “funds for the “four-trillion stimulus plan”. The number of

local financing platform companies surged to 8221 at the end of 2009 from 3000 in the second half of

2008. In 2009 alone, more than 2000 new financing platform companies were added. These platform

companies raised 75% of the supporting capital [33]. Land, as the major asset, played a key role in

fund collecting.

Essentially, land and land-related revenue are deeply involved, from the establishment of local

financialization platforms and asset injection, guarantees, and mortgages in borrowing and issuing

bonds, to the repayment of principle and interest in the future. Extensive empirical research has verified

the guarantee function of land in the issuance of urban investment bonds and its mortgage function

in obtaining loans from banks. For example, the research of Shu, Xie, Jiang, and Chen (2018) [16]

and Zhong, Chen, and Huang (2016) [34] indicates that the greater the price of urban land transfer

or revenue, the higher the possibility of issuing urban investment bonds. The scale of the bonds

issued will also accordingly be larger. This is because land use rights are often used as the guarantee,

and land transfer revenues are promised to pay back debt during the issuance of urban investment

bonds. Zhang, Nian, and Liu (2018) [23] found that there was a significant positive relationship

between land transfer revenue and urban investment bonds. According to the debt auditing report

by the National Audit Office from 2011 to 2013, as of the end of 2010 the outstanding obligation

that local governments promised to pay through land transfer revenue stood at 2.547 trillion yuan,

amounting to 38% of the total liable debts. This figure grew to 3.49 trillion yuan at the end of 2012—an

increase of nearly 37% within two years. The outstanding obligation promised to be paid through

land transfer revenue is shown in Figure 1. We can find that, by the end of 2012, the proportion

1 Shanghai E-House Real Estate Research Institute, Local government’s dependence on Land Finance, 29 February 2016.
https://finance.sina.com.cn/roll/2016-02-29/doc-ifxpvzah8335807.shtml.
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of outstanding obligation promised to be paid through land transfer revenue in Zhejiang Province,

Tianjin Municipality, and Beijing Municipality exceeds 60%.
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Figure 1. Debts promised to be paid by land transfer revenue in Chinese provinces. Note: data were

retrieved from the Local Debts Audit Report of provinces in 2014.

The above evidence shows that large-scale urban land expansion and land transfer revenue

provide a credit basis for Chinese local governments to obtain debt financialization and thus play

a catalytic role in the expansion of local government debt [35,36]. Against the backdrop of severe

dependence on debt-based investment, local governments’ passion for “operating city” and “operating

land” will be galvanized through constructing various development zones, new areas, and new

cities, turning agricultural land into construction land and ultimately triggering precocious urban

construction. Following the ideas of Chang and Lu (2017) [37], as of early 2014, 272 out of 280

prefecture-level cities in China had new built-up cities. The number of cities with new cities under

construction accounts for 90% of all prefecture cities in China—the area of which amounts to 66,300 km2.

On the other hand, the employment of debt-based capital through land financialization by local

governments showcases an obvious orientation to land urbanization. The majority of the capital was

invested in areas related to land urbanization, such as municipal construction, land purchasing and

storage, and transportation, with a proportion of approximately 70.38%. Only 10.5% of the capital

was, however, invested in areas relevant to population urbanization, such as education, science,

culture, healthcare, and affordable housing (National Audit Report on Debt). This means that land

financialization does not promote population urbanization in the way that it does in facilitating

urban spatial expansion and “land urbanization”. On the contrary, the rapid rises in urban land

price and housing price caused by land financialization may even suppress population urbanization.

Research Group on China’s Economic Growth (2011) [38] points out that the land urbanization and

land-based urbanization financialization model led by local governments will accelerate land discount,

heightening issues such as soaring land prices and housing prices while also having a crowd-out effect

on the population and industries.
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Based on the above analysis, we propose the first hypothesis.

Hypothesis 1. The stimulating effect of land financialization activities by local governments on land urbanization

is stronger than that on population urbanization, resulting in the uncoordinated development of population

urbanization and land urbanization.

China’s special system of the political centralization of state power and the separation of economic

power effectively resolves the incentives for local governments [39,40]. However, it also brings

about “yardstick competition” among different regions [41,42]. An official government promotion

mechanism focusing on economic performance, which has been gradually formed since the 1980s,

leads to “competition for growth” among government officials at a local level. The competition

for promotion has been turned into competition in economic growth among various regions [43,44],

putting pressure on economic development. Li and Zhou (2005) [45] found, based on empirical

research, that local government officials with better economic performance to their credit during

their tenure do receive more promotion opportunities. Considering this, local governments tend to

realize more public spending related to economic development within a short period of time, such as

urban infrastructure construction and land development, to achieve excellent economic development

performance. This move has also significantly distorted the fiscal expenditure structure of local

governments, showcasing an emphasis on infrastructure and a neglect of human capital investment

and public service [46]. Similarly, in the supply of public goods, local governments are passionate

about providing public goods of an economic nature while overlooking those of a social nature [47]

The research of Caldeira (2012) [48] demonstrates that there is competition in investment among

prefecture-level cities in China. Large-scale infrastructure construction and government investment

require ample funding support. Extrabudgetary debt funds from land financialization simply loosen

budgetary constraints. Therefore, under the decentralized system and official government promotional

mechanism, “yardstick competition” emerges in land financialization among local governments,

which is indicated by greater passion about, and dependence on, land financialization in regions with

larger pressure on economic development.

In comparison, land urbanization relies on government investment and infrastructure construction,

while population urbanization is more dependent on the supply of public goods which are social in

nature. The biased public spending structure originating from promotional incentives for local

governments’ officials will indirectly strengthen land urbanization orientation in spending the

capital raised. A vicious cycle in the investment and financialization process centring on land

has been formed, augmenting the uncoordinated development of population urbanization and land

urbanization. Meanwhile, in cities with greater pressure on economic development, local governments

would have preferred to follow a spending structure orientated towards land urbanization to obtain

greater achievements.

Therefore, it can be inferred that, under the competition mechanism for the promotion of officials,

local governments under great development pressure are more dependent on land financialization

model to raise urban construction funds, and their expenditure is more inclined towards land

urbanization, thus heightening the uncoordinated development of population urbanization and land

urbanization. We therefore propose the second hypothesis.

Hypothesis 2. The stimulating effect of land financialization on the uncoordinated development of population

urbanization and land urbanization is more prominent in cities with greater pressure on economic development.
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2.2. Land Financialization, the Uncoordinated Development of Population Urbanization and Land
Urbanization, and Economic Growth

Although each city has formed its own features in the course of development, the urbanization

of these cities usually includes the continuous conglomeration of industries and populations,

which promotes economic growth in cities, increased job opportunities, the inflow of population,

and the expansion of urban land construction. We refer to this model as a market-led “demand-driven”

model. Under this model, land expansion in cities is based on industrial conglomeration and population

growth. Economies of scale can therefore be generated, realizing relatively high land use efficiency and

ensuring sustainable economic development. In other words, sustainable economic growth is based on

alternative and coordinated development between population urbanization and land urbanization.

However, in the government-led “supply-driven” urban development model in China, investment

and construction rely on land financialization. Companies and populations are then attracted

to the region through preferential policies on land and taxation [49]. This means that income

from investment based on land financialization is decided by the conglomeration effect of urban

construction on population and industry. However, when urban differentiation and regional difference

become increasingly prominent, not all cities are able to attract enough companies and labour to

the region. This is particularly true in areas where population urbanization and land urbanization

are uncoordinated. Lagging-behind population urbanization itself reflects inadequate population

conglomeration, ultimately resulting in a low land use efficiency [50,51]. In the meantime, land use

efficiency is critical to sustainable economic development [52]. If precocious land urbanization could not

deliver “increasing return to scale”, sustainable economic growth in cities would face severe challenges.

Additionally, in terms of the effect of the transmission mechanism of urbanization on promoting

economic development, population urbanization facilitates economic growth through population

agglomeration and increasing consumption, while land urbanization does so via increments of fixed

asset investments. In recent years, investments’ contribution to economic growth has continued to

decline during the adjustment of the economy structure. Increasing residential consumption is the

key to realizing sustainable economic development. If population urbanization lags behind land

urbanization over a long period of time, the effect of the demand structure, characterized by high

investment and low consumption, on economic structure will have a threshold value according to

the law of diminishing return on investment. The effect will shift from positive to negative once the

demand structure passes the threshold.

To summarize, urbanization lacking industrial and population support could be temporarily

sustained through government efforts and debt-based capital. Long-term economic growth relies on

the performance of economic conglomeration and population urbanization. Land financialization

leads to the uncoordinated development of population urbanization as well as land urbanization and

is detrimental to sustainable economic development. Therefore, we propose the third hypothesis.

Hypothesis 3. In areas with the uncoordinated development of population urbanization and land urbanization,

due to weak conglomeration, land financialization will, while promoting urban spatial expansion, lower land use

efficiency, generating an inverted U-shaped effect on economic performance.

3. Model, Data and Variable

3.1. Econometric Model

Based on previous literature concerning land financialization, population urbanization, and land

urbanization, this study constructs the following econometrics model to test the impact of land

financialization on the uncoordinated development of population urbanization and land urbanization:
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land_urbanit = α1 + β1land_ f inancializationit +
∑

γ1Xit + µi + δt + εit (1)

pop_urbanit = α2 + β2land_ f inancializationit +
∑

γ2Xit + µi + δt + εit (2)

unco_developmentit = α3 + β3land_ f inancializationit +
∑

γ3Xit + µi + δt + εit (3)

unco_developmentit = α4 + β4land_ f inancializationit + ϕpressureit+

ηland_ f inancializationit ∗ pressureit +
∑

γ4Xit + µi + δt + εit

(4)

where the dependent variable in model 1 is land_urbanit, representing the land urbanization in city i

at year t, which is measured by the logarithm of the urban built-up area. The dependent variable in

model 2 is pop_urbanit, representing the population urbanization in city i at year t, which is measured

by the logarithm of permanent residents in city districts. The dependent variable in models 3 and 4 is

unco_developmentit, indicating the dummy variable of the uncoordinated development of population

urbanization and land urbanization in city i at year t. The value 1 demonstrates the existence of the

uncoordinated development of population urbanization and land urbanization, or the value will be 0.

In models 1-4, the independent variable is land_ f inancializationit, representing land financialization

scale in city i at year t. The subscripts i and t represent the i-th city and the t-th year, respectively. Xit is

the set of control variables, as discussed above. Further, µi represents the municipal fixed-effects and is

used to control the unobservable but invariant characteristics of cities; δt represents the year fixed-effects,

and is used to control the systematic differences in cities over time. εit represents other city-level natural

endowments and socioeconomic factors that could potentially impact the uncoordinated development

of population urbanization and land urbanization.

In models 1–3, we focus on the coefficients of β1, β2, and β3, which represent the net effect of the land

financialization on land urbanization, population urbanization, and the uncoordinated development

of population urbanization and land urbanization, respectively. In model 4, the moderating variable is

pressureit, representing the pressure on urban economic development in city i at year t; we focus on

the coefficient of η, which represents the moderating effect of urban economic development pressure

on the uncoordinated development of population urbanization and land urbanization caused by

land financialization.

The fixed-effect (FE) panel data method is first used to control factors that do not vary with

time. However, there may be a reverse causality between land financialization and the uncoordinated

development of population urbanization and land urbanization. Land financialization offers funding

support for land development and spatial expansion and gives rise to the uncoordinated development

of population urbanization and land urbanization. Meanwhile, increases in construction land further

galvanize land-based mortgages and guarantees in cities with unbalanced development, adding fuel to

land financialization. The Generalized Method of Moments (GMM) and two stage least square (2SLS)

regression are therefore used to address this problem by introducing exogenous variables.

3.2. Data Source and Variable Selection

Our main data is drawn from the China Statistics Yearbook, the China Municipal Statistics

Yearbook, the China Population and Employment Statistics Yearbook, the China Urban Construction

Statistical Yearbook, and the China Land and Resources Statistical Yearbook between 2007 and 2016.

Samples of Tibet and some other autonomous prefectures are excluded. Data on local financialization

platforms comes from the Wind Economic Database (The Wind Economic Database pairs over 1.3 million

macroeconomic and industry time series with powerful graphics and data analysis tools to give financial

professionals the most comprehensive insights into China’s economy). Missing values are filled using

the interpolation method. It is important to note that, in the Chinese context, a city is often not a

municipal unit (i.e., a large continuous urban area), but rather an administrative unit that with hierarchy

ranking lower a province but higher a county in the Chinese administrative structure. A Chinese city
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usually comprises a main central urban area (with the same name as the “city”) and a much larger

surrounding rural area [53]. In this study, only the information regarding the city’s central urban

(municipal) area is used. Thus, our analysis is not very sensitive to changes in the city’s administrative

boundaries. The variable definitions and statistical descriptions of samples used in the analysis will be

recorded as shown below.

3.2.1. Dependent Variables

The key dependent variables include: ln land_urbanit, the logarithm of city-level built-up area,

which is the important index of land urbanization; ln pop_urbanit, the logarithm of city-level permanent

residents, which is the important index of population urbanization; unco_developmentit, the dummy

variable of the uncoordinated development of population urbanization and land urbanization.

In reference to the practice of Xie (2016) [54], this study employs the elastic coefficient of urban

built-up area growth (i.e., the growth rate of urban built-up area/the growth rate of permanent

residents in a municipal district) to measure the lagged-behind level of population urbanization

relative to land urbanization. Currently, the internationally recognized appropriate value for the

elastic coefficient is 1.12. Further, following the research of Gail (2003) [8], this study defines the

uncoordinated development of population urbanization and land urbanization as Equation (5) below.

When
growth rate o f urban built-up area

growth rate o f permanent residents in municipal district ≤ 1.12, unco_developmentit will equal 0, which means

that the land urbanization growth rate relative to the population urbanization growth rate is within

an appropriate range, and the uncoordinated development of population urbanization and land

urbanization does not exist. When
growth rate o f urban built-up area

growth rate o f permanent residents in municipal district > 1.12, unco_developmentit

will equal 1, which means that the population urbanization growth rate severely lags behind the land

urbanization growth rate, and the uncoordinated development of population urbanization and land

urbanization does exist. That is,

unco_developmentit =















0,
Growth rate o f urban built-up area

Growth rate o f permanent residents in municipal district ≤ 1.12

1,
Growth rate o f urban built-up area

Growth rate o f permanent residents in municipal district > 1.12
. (5)

We have drawn up a map related to the development of population urbanization and land

urbanization. This is shown as follows.

Figure 2 represent the lagged-behind level of population urbanization relative to the land

urbanization of Chinese cities in 2015. Coordinated urbanization represents that the land urbanization

growth rate relative to the population urbanization growth rate is within an appropriate range,

and the uncoordinated development of population urbanization and land urbanization does not

exist. Uncoordinated urbanization represents that the population urbanization growth rate severely

lags behind the land urbanization growth rate, and the uncoordinated development of population

urbanization and land urbanization does exist. We find that uncoordinated urbanization exists in most

cities in China.
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Figure 2. The uncoordinated development of population urbanization and land urbanization in

Chinese cities.

3.2.2. Independent Variable

The land financialization scale in prefecture-level cities is the key independent variable in this

study. In China, local governments have no right to issue government bonds to raise funds for

infrastructure construction and other public welfare projects, so local governments have built some

financing platform companies for financing. Further, local governments could rely on the financing

platform companies to obtain bank loans through land mortgages and to issue urban investment

bonds by taking land transfer revenue as a guarantee. Considering this, the present study selects the

interest-bearing debt of local financing platform companies, including current liability and long-term

liability, as the proxy variable for the land financialization scale. The specific calculation formula is

shown below.

Land f inancialization level = short term liability (short term borrowing + notes payable +

non current liabilities due within one year + other current liabilities +

short term bond payable)+

long term liability (long term borrowing long term bond payable)

(6)

3.2.3. Moderating Variable

Referring to the existing literature, this study utilizes economic development catch-up pressure

(including economic development level and fixed-assets investment etc.) to reflect the pressure of

urban economic development. The calculation formula is shown below.

Economic development catch up pressure =
economic indicators o f the pre f ecture level city which is one place ahead in ranking in the province

economic indicators in the respondent pre f ecture level city (7)

where economic indicators include GDP per capita and the total investment in fixed assets as the

proportion of GDP.
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3.2.4. Control Variables

Control variables in the study mainly include factors affecting land urbanization and population

urbanization, such as: (1) the economic development level (ln GDPit), which is measured by the

logarithm of GDP per capita [55]; (2) industrial structure (ind_2it and ind_3it), which is represented

by the ratio of the second and third industries’ added value in GDP [14]; (3) population density

(ln pop_densityit), which is measured by the logarithm of the city-level population density [53]; (4) fiscal

expenditure (ln Fis_expenditureit), which is represented by the logarithm of local public expenditure

per capita [56]; (5) economic openness (eco_opennessit), which is measured by the ratio of accumulated

foreign direct investment (FDI) in capital stock [57]; (6) fixed-asset investment (ln f ix_investmentit),

which is measured by the logarithm of fixed-asset investment per capita [58].

Descriptive statistics of the key variables are shown in Table 1.

Table 1. Descriptive statistics of the data for 277 Chinese cities during the period 2006–2015.

Variable Definition Obs Mean Standard Error Minimum Maximum

ln land_urbanit
Logarithm of city-level built-up

area
2770 9.544 0.405 8 11.27

ln pop_urbanit
Logarithm of city-level

permanent residents
2770 4.549 0.708 2.703 6.750

unco_developmentit

Dummy variable of the
uncoordinated development of
population urbanization and

land urbanization

2770 0.668 0.471 0 1

land_ f inancializationit
Interest-bearing debt of local

financing platform companies
2770 6.239 3.815 0 12.17

ln GDPit Logarithm of GDP per capita 2770 10.15 0.729 7.306 13.11

ind_2it
Ratio of the second and third

industries’ added value in GDP
2770 49.88 10.63 15.17 90.97

ind_3it
Ratio of the second and third

industries’ added value in GDP
2770 36.33 8.461 8.580 75.84

ln pop_densityit
Logarithm of city-level

population density
2770 422.2 309.8 4.700 2648

ln Fis_expenditureit
Logarithm of local public

expenditure per capita
2770 8.310 0.734 6.305 11.51

eco_opennessit

Ratio of accumulated foreign
direct investment (FDI) in

capital stock
2770 7.556 2.140 0 13.89

ln f ix_investmentit
Logarithm of fixed-assets

investment per capita
2770 9.767 0.869 6.883 12.30

ln roadit
Logarithm of road area per

capita
2770 2.202 0.599 0.157 4.686

ln con_landit
Amount of newly increased

construction land
2770 5.664 1.713 0 12.41

GDP_pressureit
Pressure of urban economic

development
2770 1.159 0.240 1 3.397

inv_pressureit Pressure of urban investment 2770 1.077 0.118 1 2.262

human_rateit Ratio of college students 2770 1.584 2.198 0 12.936

4. Measuring the Impact of Land Financialization on the Uncoordinated Development of
Population Urbanization and Land Urbanization

4.1. Benchmark Results

Table 2 presents the regression results regarding the impact of land financialization on land

urbanization and population urbanization. As can be seen, in models 1 and 2, land_ f inancializationit

is significantly and positively correlated with ln land_urbanit. This indicates that land urbanization

significantly facilitates land urbanization. Additionally, in models 3 and 4 land_ f inancializationit is

positively correlated with ln pop_urbanit, but this is not significant. This reveals that the impact of

land financialization on population urbanization is not significant. Therefore, land financialization by
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local governments may give rise to the uncoordinated development of population urbanization and

land urbanization.

Table 2. Estimation results for the impact of land financialization on land urbanization and

population urbanization.

Model 1 Model 2 Model 3 Model 4

FE GMM FE GMM

Variable ln land_urbanit ln pop_urbanit

land_ f inancializationit 0.006 ** 0.004 *** 0.001 −0.001
(0.003) (0.001) (0.003) (0.001)

ln GDPit 0.045 0.011 −0.105 ** 0.056 ***
(0.047) (0.022) (0.042) (0.015)

ln pop_densityit −0.000 *** −0.000 0.000 * 0.000
(0.000) (0.000) (0.000) (0.000)

ln Fis_expenditureit 0.022 0.111 *** 0.055 ** −0.091 **
(0.046) (0.037) (0.025) (0.038)

ln f ix_investmentit −0.026 0.005 −0.026 0.050
(0.037) (0.035) (0.026) (0.031)

ind_2it 0.007 *** −0.009 *** 0.002 −0.003
(0.003) (0.002) (0.003) (0.003)

ind_3it 0.004 −0.009 *** 0.002 0.004
(0.003) (0.002) (0.003) (0.003)

eco_opennessit 0.001 0.000 0.008 ** 0.019 ***
(0.006) (0.002) (0.003) (0.007)

Lag 0.894 *** 0.914 ***
(0.018) (0.023)

_cons 8.681 *** 0.668 *** 4.892 *** −0.072
(0.406) (0.212) (0.433) (0.231)

Time effect Y Y Y Y

Regional effect Y Y Y Y

Hansen p 0.907 0.304

Adjusted R2 0.291 0.182
N 2763 2491 2765 2493

Notes: figures in parentheses denote the standard errors of the respective coefficients, while ***/**/* indicate
significance at the 1%/5%/10% levels, respectively.

We further investigate the impact of land financialization on the uncoordinated development of

population urbanization and land urbanization. Table 3 presents the regression results using the linear

probability model (LPM), the probit analysis method (PROBIT), logistic regression analysis (LOGIT),

IV-PROBIT, and GMM. According to the results of models 1–3, land_ f inancializationit is significantly

and positively correlated with unco_developmentit. This implies that land financialization significantly

leads to the uncoordinated development of population urbanization and land urbanization in China.

Moreover, what can be seen from model 2 is that there exists a negative relation between population

density and the uncoordinated development of population urbanization and land urbanization,

thus demonstrating that increasing population density helps ease the uncoordinated development of

population urbanization and land urbanization. The relation between fiscal spending and the

uncoordinated development of population urbanization and land urbanization is positive and

significant, which is attributable to the economic development orientation of fiscal spending and the

urban construction model being dependent on government investment. Meanwhile, growth in the

proportion of secondary industry also fuels the uncoordinated development of population urbanization

and land urbanization, which is associated with the competition in attracting businesses and investments

among local governments and the construction of large-scale industrial parks.
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Table 3. Estimation results for the impact of land financialization on the uncoordinated development

of population urbanization and land urbanization.

Variable Model 1 Model 2 Model 3 Model 4 Model 5

LPM PROBIT LOGIT IV-PROBIT GMM

land_ f inancializationit 0.010 ** 0.041 ** 0.065 ** 0.251 ** 0.031 ***
(0.004) (0.017) (0.029) (0.113) (0.008)

ln GDPit 0.010 −0.079 −0.101 0.038 0.073
(0.048) (0.290) (0.498) (0.299) (0.239)

ln pop_densityit −0.001 −0.003 * −0.005 * −0.003 * 0.000
(0.000) (0.002) (0.003) (0.002) (0.000)

ln Fis_expenditureit 0.141 ** 0.655 ** 1.121 ** 0.508 * 0.174
(0.061) (0.285) (0.487) (0.306) (0.286)

ln f ix_investmentit 0.038 0.259 0.404 0.238 −0.351
(0.042) (0.185) (0.309) (0.192) (0.236)

ind_2it 0.011 ** 0.050 ** 0.088 ** 0.034 0.007
(0.004) (0.023) (0.038) (0.025) (0.014)

ind_3it 0.009 * 0.041 0.074 0.024 0.023
(0.005) (0.028) (0.046) (0.030) (0.019)

eco_opennessit −0.030 *** −0.135 *** −0.222 *** −0.119 *** 0.010
(0.009) (0.043) (0.073) (0.045) (0.036)

Lag 0.123 ***
(0.030)

_cons −1.603 ** −17.579 −13.567 * −7.690 * 0.339
(0.694) (170.690) (7.188) (4.316) (1.442)

Time effect Y Y Y Y Y
Regional effect Y Y Y Y Y

Hansen p 0.390 0.380 0.162

Adjusted R2 0.154
N 2770 2770 2770 2770 2493

Notes: figures in parentheses denote the standard errors of the respective coefficients, while ***/**/* indicate
significance at the 1%/5%/10% levels, respectively.

Considering the estimation bias induced by the reciprocal causation that land financialization and

the uncoordinated development of population urbanization and land urbanization always interact

with each other, the spatial lagged term of land financialization as the instrumental variable is

introduced, and the 2SLS method is employed to re-examine the relationships in our study. The result

in model 4 shows that the coefficient of land_ f inancializationit remains significantly positive. In addition,

considering institutional inertia and path dependence, this study introduces the one-phase lagged

term of unco_developmentit as the control variable. The Hansen test in model 5 demonstrates the efficacy

of the instrumental variables. The regression coefficient remains positive in model 5, verifying the

robustness of the result.

In summary, the above regression result corroborates hypothesis 1—that is, that the enabling

effect of land financialization by local governments on land urbanization is stronger than that on

population urbanization, which results in the uncoordinated development of population urbanization

and land urbanization. The reason for this is, as explained previously, that one of the features of land

financialization is that it binds government debts with land. Land transfer fees are not only the reference

of credit standing for local governments’ current borrowing, but a vital source of capital in repaying

local governments’ debt. Therefore, local governments are highly motivated to channel debt-based

capital into land reserve and development activities. This forms a continuous cycle which propels

the rapid expansion of urban space. However, local governments fail to establish a stable investment

linkage between public services in cities such as education, science, culture, healthcare, and land

financialization. Coupled with rising land and housing prices, the citizenization of rural-to-urban

migrants moves ahead slowly, leading to the uncoordinated development of population urbanization

and land urbanization.
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4.2. Robustness Checks

This study conducts robustness checks on benchmark regression results, including replacing

measurement indicators of land urbanization and population urbanization, changing sample range,

and increasing the number of control variables. First, this paper refers to the practice of Xiong and Gao

(2012) [59] and replaces the city district area, which represents land urbanization, with the urban road

area to calculate the uncoordinated development of population urbanization and land urbanization.

Detailed regression results are shown in model 1. Second, we replace the total population in urbanized

city districts, which denotes population urbanization, with non-agricultural population calculated

through household registration to obtain the uncoordinated development of population urbanization

and land urbanization. Detailed regression results are given in model 2. Third, this study excludes

58 cities which have undergone administrative upgrading from county to district so as to expel the

influence of administrative region adjustment. The regression results in Table 4 reveal that the impact

of land financialization on the uncoordinated development of population urbanization and land

urbanization is significantly positive, showcasing the robustness of the benchmark regression results.

Fourth, we only employ samples after 2008 for regression to avoid potential influence by the surge

of financialization platforms after the financial crisis in 2008. Results are shown in model 4. Finally,

this paper utilizes new land supply for construction (lnland) as a control variable. The expansion of

the urban built-up area is affected not only by factors from the demand side, such as population and

economy, but also factors from the supply side, such as land for construction. Of particular note is that

land for construction is determined by the administrative distribution of government in China and is

therefore of greater significance. The results of model 5 indicate robustness.

Table 4. Robustness checks on the impact of land financialization on the uncoordinated development

of population urbanization and land urbanization.

Model 1 Model 2 Model 3 Model 4 Model 5

land_ f inancializationit 0.046 ** 0.041 ** 0.038 ** 0.046 * 0.040 **
(0.018) (0.020) (0.018) (0.025) (0.017)

ln GDPit −0.060 −0.112 0.036 0.089 −0.080
(0.271) (0.354) (0.364) (0.285) (0.290)

ln pop_densityit −0.003 * −0.001 −0.002 −0.002 −0.003 *
(0.002) (0.001) (0.002) (0.002) (0.002)

ln Fis_expenditureit −0.378 −0.019 0.628 ** 1.063 *** 0.657 **
(0.248) (0.313) (0.290) (0.363) (0.285)

ln f ix_investmentit 0.082 0.182 0.176 0.309 0.252
(0.191) (0.204) (0.189) (0.233) (0.185)

ind_2it 0.012 −0.014 0.056 ** 0.053 0.050 **
(0.022) (0.026) (0.023) (0.039) (0.023)

ind_3it 0.005 −0.014 0.047 * 0.068 0.041
(0.028) (0.032) (0.028) (0.047) (0.028)

eco_opennessit −0.073 * −0.058 −0.120 *** −0.119 ** −0.135 ***
(0.041) (0.044) (0.044) (0.048) (0.043)

ln con_landit. 0.017
(0.026)

_cons −1.413 −8.447 −14.357 −15.958 *** −17.907
(606.945) (203.141) (701.848) (5.341) (269.780)

Time effect Y Y Y Y Y

Regional effect Y Y Y Y Y

N 2770 2770 2712 1939 2770

Notes: figures in parentheses denote the standard errors of the respective coefficients, while ***/**/* indicate
significance at the 1%/5%/10% levels, respectively.
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4.3. Moderating Effect of Urban Development Pressure on the Uncoordinated Development of Population
Urbanization and Land Urbanization Caused by Land Financialization

China has implemented an official selection mechanism focusing on officials’ achievements.

The indicator that can best reflect the achievement of an official is GDP per capita. Besides this,

investment currently remains the major “carriage” driving China’s economic growth. Under the

pressure of urban economic development, local governments have the impulse to boost investment

and regard it as a vital means to promote economic development. Therefore, this study takes

the backwardness of cities in terms of GDP per capita and fixed-asset investment relative to their

counterparts to measure development pressure.

Hypothesis 2 states that the stimulating effect of land financialization on the uncoordinated

development of population urbanization and land urbanization in cities with greater development

pressure is more prominent—i.e., the pressure of urban economic development regulates land

financialization’s stimulating effect on the uncoordinated development of population urbanization

and land urbanization. In order to test this hypothesis, the present study constructs Equation 3. If η,

the coefficient of interaction term between land financialization and development pressure, is positive,

the stimulating effect of land financialization on the uncoordinated development of population

urbanization and land urbanization will be more obvious in regions with greater development

pressure. Last, under the yardstick competition mechanism, there may be interaction on strategies

for land financing among different regions. Therefore, we constructed a Spatial Dubin Model (SDM)

to investigate the spillover effect of competition on land financing among different regions. Then,

we added the spatial lagged term of land financing size into the regression model to examine whether

competition on land financing among different regions affects urbanization unbalance. In terms of

weight matrix, we constructed an economic weight matrix based on the GDP per capita of cities from

the same province.

According to the result in Table 5, the coefficients of interaction terms are significantly positive in

five models. From this, development pressure is constructed based on the GDP per capita in models

1 and 2, while it is constructed based on the proportion of fixed-asset investment in models 3 and 4.

Development pressure caused by lagging-behind GDP or fixed-asset investment will intensify the

motivation and incentive of local governments to expand urban construction and land development

though land financialization. Hypothesis 2 is therefore proved. The regression results in Model 5 and 6

demonstrate emulation strategies for land financing among cities, which further aggravates the degree

of uncoordinated development of population urbanization and land urbanization.

Table 5. Estimation results for development pressure, land financialization, and the uncoordinated

development of population urbanization and land urbanization.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
LPM PROBIT LPM PROBIT SDM LPM

Catch-Up Pressure in GDP
Catch-Up Pressure in

Fixed-Assets Investment
Yardstick Competition

land_ financialization 0.010 ** 0.041 ** 0.011 ** 0.046 ***
(0.004) (0.017) (0.004) (0.018)

GDP_pressureit 0.065 0.193
(0.151) (0.647)

land_ financialization *
GDP_pressure

0.069 *** 0.363 ***
(0.025) (0.112)

inv_pressureit 0.199 ** 1.061 **
(0.090) (0.429)

land_ financialization *
inv_pressure

0.033 *
(0.018)

0.140 *
(0.081)

W * land_ financialization 1.617 *** 0.251 **
(0.225) (0.113)

_cons −1.574 ** −17.578 −2.007 *** −19.402 10.805 ** −9.981 **
(0.709) (169.466) (0.708) (169.248) (5.353) (4.322)
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Table 5. Cont.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
LPM PROBIT LPM PROBIT SDM LPM

Catch-Up Pressure in GDP
Catch-Up Pressure in

Fixed-Assets Investment
Yardstick Competition

Controls Y Y Y Y Y Y

Time effect Y Y Y Y Y Y
Regional effect Y Y Y Y Y Y

Adjusted R2 0.319 0.320 0.768 0.164
N 2770 2770 2770 2770 2770 2770

Notes: figures in parentheses denote the standard errors of the respective coefficients, while ***/**/* indicate
significance at the 1%/5%/10% levels, respectively.

5. Land Financialization, the Uncoordinated Development of Population Urbanization and Land
Urbanization, and Economic Growth

This section analyzes the potential impact of land financialization, which stimulates the

uncoordinated development of population urbanization and land urbanization, on urban economic

sustainable development to examine the hidden risks behind the development model characterized by

debt-based urbanization financialization and supply-driven urban construction.

The essence of urbanization driven by land financialization adopted by Chinese local governments

is debt-based urban construction investment (Pan et al., 2017) [18]. During this process, the investment

revenue for local governments comes mainly from economic growth due to population and industrial

conglomeration. Currently, economic growth is indicated by the added value of secondary and tertiary

industry. Therefore, this study, in reference to the practice of Lu (2011), divides the added value

of secondary industry and tertiary industry by built-up area to obtain the land use efficiency and

uses it to denote investment return on urban spatial expansion [50]. The basic logic here is that if

land financialization decreases the land use efficiency, debt-based urban spatial expansion could not

generate a scale effect and economic conglomeration. The return on investment is therefore insufficient.

This study divides samples into the unbalanced group and the balance group. If land financialization

causes a decline in land use efficiency in the unbalanced group compared to the balance group,

hypothesis 3 is corroborated. Furthermore, we test whether there exists a threshold value for the effect

of land financialization on economic growth—in other words, whether the effect of land financialization

on economic growth turns to an inverted U shape.

To test hypothesis 3, we construct the following regression model.

land_useit = α4 + β4land_ f inancializationit +
∑

γ4Xit + µi + δt + εit (8)

growthit = α5 + β5land_ f inancializationit + λ5land_ f inancializationit
2 +
∑

γ5Xit + µi + δt + εit (9)

where landuseit and growthit. denote the land use efficiency and growth rate of GDP per capita,

respectively. Control variables include city-level population density (ln pop_densityit), human capital

(human_rateit), economic openness (eco_opennessit), fiscal expenditure (ln Fis_expenditureit), fixed-asset

investment (ln f ix_investmentit), and industrial structure (ind_2it and ind_3it).

Table 6 displays the impact of geographical factors on land use efficiency and urban economic

growth. According to the regression result of model 1 in Table 6, land financialization lowers the

land use efficiency in cities with the uncoordinated development of population urbanization and land

urbanization. This might be because land financialization does not generate economic conglomeration

or increasing returns to scale. The return on investment is low. The regression results of model 3 indicate

that the first-order term of land financialization is significantly positive, while its second-order term is

significantly negative. This signifies that the effect of land financialization on economic growth in cities

with the uncoordinated development of population urbanization and land urbanization showcases an

inverted U shape. That is to say, after surpassing the threshold value, the effect of land financialization
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on economic growth will transit from a positive one to a negative one. These characteristics are not

found in cities with the coordinated development of population urbanization and land urbanization.

Table 6. Estimation results for land financialization, the uncoordinated development of population

urbanization and land urbanization, and sustainable development.

Model 1 Model 2 Model 3 Model 4

Variables Land use efficiency Economic growth rate
uncoordinated coordinated uncoordinated coordinated

land_ f inancializationit −0.006 * 0.005 5.612 ** 4.285
(0.003) (0.007) (2.223) (5.459)

land_ f inancializationitˆ2 −2.733 ** −2.062
0.020 0.160 (1.102) (2.727)

(0.056) (0.175)
ln pop_densityit 0.001 * 0.000

(0.000) (0.000)
ln Fis_expenditureit 0.080 * 0.185 ** 0.266 1.421

(0.047) (0.075) (1.459) (3.812)
ln f ix_investmentit 0.129 *** 0.101 4.801 *** 2.117

(0.034) (0.063) (1.213) (1.850)
ind_2it 0.021 *** 0.013

(0.004) (0.008)
ind_3it 0.019 *** 0.019 ** −0.079 −0.262

(0.005) (0.008) (0.078) (0.202)
eco_opennessit −0.003 0.010 0.928 *** 0.847 *

(0.007) (0.013) (0.268) (0.443)
ln land_urbanit 3.581 12.835 *

(4.519) (6.517)
human_rateit 1.138 *** 3.095 ***

(0.301) (0.919)
_cons 6.640 *** 4.995 *** −51.324 −85.826

(0.661) (1.434) (34.066) (62.265)

Adjusted R2 0.383 0.479 0.551 0.493
N 1850 920 1850 920

Notes: Figures in parentheses denote the standard errors of the respective coefficients, while ***/**/* indicate
significance at the 1%/5%/10% levels, respectively.

6. Conclusions and Discussion

Nobel Prize-winning economist David Stiglitz has said that two events of the 21st century will have

the greatest impact on the world: “America’s high-tech industry and China’s urbanization.” The rapid

development of urbanization in China cannot be separated from the promotion of local governments,

and land financialization is an important means for the government to lead the urbanization process.

For a long time, the gap between fiscal revenue and expenditure forces local governments to use land

to obtain as much extrabudgetary income as possible, and this gradually forms the fiscal situation of

relying on land. In recent years, the urbanization financing mode has been transformed from land

transfer to land financialization, which has resulted in huge local government debts. By the end of

2019, the local government debt ratio has risen to 24.3%. What impact does this have on the pattern

of urbanization?

In this paper, we investigate the effect and mechanisms of land financialization on the

uncoordinated development of population urbanization and land urbanization in China for 277

Chinese cities during the period spanning 2006 to 2015. Moreover, the pressure of urban economic

development is included as a mediation variable to measure how much it accounts for the effect of land

financialization on the uncoordinated development of population urbanization and land urbanization.

Finally, this paper examines the hidden risks behind the development model characterized by

debt-based urbanization financialization and supply-driven urban construction.
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The three main findings are that, first, land financialization significantly leads to the uncoordinated

development of population urbanization and land urbanization. On the one hand, Chinese local

governments’ dependence on land-based urbanization financialization will intensify their motivation

in land development and conveyance, leading to chaotic urban expansion. On the other hand,

the expenditure structure of debt-based capital financed through land showcases an obvious orientation

towards land urbanization and a weak “pushing” and “pulling” effect on the citizenization of

rural-to-urban migrants. Population urbanization is relatively slow.

Second, the pressure of urban economic development positively regulates the stimulating

effect of land financialization on the uncoordinated development of population urbanization and

land urbanization. In cities with greater development pressure, the stimulating effect of land

financialization on the uncoordinated development of population urbanization and land urbanization

is more prominent.

Third, urbanization propelled by land financialization is unsustainable, because in regions with the

uncoordinated development of population urbanization and land urbanization, land financialization,

while promoting urban spatial expansion, lowers the land use efficiency due to weak conglomeration

effect and exerts an inverted U-shaped influence on economic growth.

In the Chinese context, this finding is as expected. Since the financial crisis in 2008,

local governments of China have established a huge number of financing platform companies,

obtained bank loans and issued urban investment bonds through land mortgages or guarantees,

and created large-scale invisible local government debts. This debt capital is mainly invested in urban

public facilities and land development and becomes significant funding support for urbanization.

A unique urbanization financialization model with Chinese characteristics has been gradually formed.

This debt-based financialization model, which is highly reliant on land, further intensifies local

governments’ passion for “operating city” and “operating land”, leading to a large-scale movement

known as “enclosure for urbanization”. Constructions for development zones, new cities, and new

areas in various forms are fledgling. However, supply-driven urban construction without the due

consideration of demand factors is destined to cause the uncoordinated development of population

urbanization and land urbanization, which is unsustainable.

The conclusion of this study carries some policy implications. First, efforts should be made to

explore financialization systems that facilitate sound urban development. A local tax revenue system

with property tax being the main tax ought to be established during the early days to divert local

governments from blind passion about land development. Besides this, a stable input linkage between

land financialization and public service supply should be forged to deliver a pulling effect on the

citizenization of rural-to-urban migrants. Furthermore, land, population, and industry are the most

important elements in economic activities. Sustainable economic development can only be realized

when land supply matches the trend of population and industrial conglomeration. The government

should set up and improve cross-regional land resource regulating systems and land supply systems.

Last, efforts should be made to tighten the budgetary constraints on local governments and to improve

the utilization efficiency of debt capital and return on investment, while also establishing management

systems that guard against and resolve local debt risks. On the whole, the key to new urbanization

lies in population urbanization. The government should emphasize the quality of urbanization,

promote integration between cities and industry, and support population conglomeration through

enhanced public service to ensure the sustainable development of the urban economy.

Due to constraints in access to data, there are deficiencies in the research results which need

further consideration. (1) Limitations in the measurement of variables: The existing studies on land

financialization in China usually use urban investment bonds as a proxy variable, while we use the

liabilities of local financing vehicles to estimate the scale of land financialization for the first time.

There will still be a deviation from the real scale. In follow-up studies, additional micro-data of the

land mortgage of local financing vehicles need to be compiled for further analysis. (2) Not considering

the issue in an international context: It is a great challenge to define the boundaries of the urbanization
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process in the world, since we do not have the data on urbanization and land financialization in the

world. To clearly identify the boundaries of the urbanization process in the world needs a great deal of

theoretical analysis, logical deduction, and empirical evidence. We therefore chose to study the impact

and mechanism of land financialization by local governments on the uncoordinated development of

population urbanization and land urbanization in the context of China, following the practice in the

literature [4]. We also have added the Spatial Dubin Model (SDM) to investigate the spillover effect of

competition on land financing among different regions. Studying urbanization and financialization in

an international context needs to be explored and new solutions developed in follow-up research.
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Figure A1. The trends of urban population and built-up area.
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Figure A2. Land transfer and mortgage from 2007 to 2015. Note: data were retrieved from Report on

China’s Land Resources 2008–2016.
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Abstract: With the continued development of the economy, the income gap among Chinese rural

households continues to widen. The land system plays a decisive role in developing “agriculture,

rural areas and farmers” and land circulation is a factor in the increase in income inequality among

farm households. Based on the 2013 China Household Income Project (CHIP), this article used the

re-centered influence function (RIF) regression method to empirically test the impact of rural land

circulation on the income gap of rural households in China in three regions: the central, eastern and

western regions. The quantile regression tested the impact mechanism of income inequality of rural

households from the perspective of labor mobility and land circulation. The empirical results showed

that land circulation increases the income inequality of rural households. The theoretical mechanism

test proved that the dynamic relationship between land circulation and labor mobility increases

rural household income. However, this increase has a greater effect on rural households with a high

income and a small effect on rural households with a low income, resulting in a further widening of

the income gap. Therefore, while increasing the income of rural households through land circulation,

the government should also consider income equity. Finally, this article puts forward the policies and

opinions on land reform and provides a brief discussion on the future direction of development.

Keywords: land circulation; income gap; rural households income; re-centered influence function;

quantile regression

1. Introduction

Since the founding of New China, Chinese farmers have experienced changes in
farmland, agricultural management and farmland property rights systems. With the
implementation of the rural revitalization strategy, the development of urban and rural
areas has been coordinated, reforms have been comprehensively deepened, and farmers’
incomes have continued to increase. However, this increase in income has also been
accompanied by a continuous expansion of the income gap within rural areas. The “Report
on the Development of Rural Households in China (2018)” posited that rural household
income inequality is rising in China. The Gini coefficient increased from 0.45 in 2011 to
0.535 in 2017, significantly higher than the internationally recognized warning line of 0.4 [1].
Figure 1 shows the Gini coefficient and Theil index estimated from quintile data of the per
capita disposable income of rural households. These data came from the “China Yearbook
of Household Survey” from 2005–2019.
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Figure 1. The Gini Coefficient and Theil Index of Per Capita Disposable Income of Rural Households

in China from 2005 to 2019. Note: the data comes from the compilation and calculation of the Chinese

Household Survey Yearbook.

It can be seen from Figure 1 that the Gini coefficient of rural household income has
risen steadily, and the Gini coefficients calculated by quintile subgroups exceed 0.35, with a
higher rise in the Theil index. In 2019, the Gini coefficient and Theil index declined slightly.
China continues to explore a reform of the rural system, but the transformation of the
rural economy has taken too long to exceed people’s expectations. There have been twists,
stagnations, and even deviations in the reform process. Although this slow economic
transformation avoids the risk of economic and social disorder, it has also gained time for
the formation and growth of interest groups. With a lag of political reforms, economic
transformation has become the eternal theme of “always on the road”. This unbalanced
transformation path is fully reflected in the field of income distribution. Although the
income of rural households continues to increase, the income gap within rural areas
continues to widen, as does the income gap between urban and rural areas. There have been
strange phenomena such as the intertwining of reasonable and unreasonable income gaps
and the coexistence of open and transparent distribution models and hidden distribution
mechanisms. In contrast, inequality in rural areas restricts economic development, reduces
the welfare generated by increased incomes, and affects social stability.

There are many reasons for income inequality among rural households. Existing
research mainly explores the physical capital, human capital and social capital owned by
rural households. The land system plays a decisive role in the development of “agriculture,
rural areas and farmers”. The household contract responsibility system was implemented
at the beginning of the founding of New China. Although it has greatly increased the
enthusiasm of households’ production, the government strictly prohibits the sale of land
use rights. In recent years, the circulation system of land contract rights has become
increasingly stable, and the government has liberalized the land circulation system. The
process of urbanization and industrialization has accelerated, many rural laborers have
flowed into cities and towns, and the relationship between people and land has been
continuously adjusted. Figure 2 shows the change process of the land circulation scale in
China from 1984 to 2014.
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As shown in Figure 2, in 1984, the degree of land circulation was less than 1% in China.
In 2003, the “Contracting Law” clarified, for the first time, the specific measures for the
circulation of land management rights to protect said rights. This figure has grown rapidly,
and by 2012 this figure exceeded 10%. In 2014, the land circulation area was 403 million
mu. According to the published data in the “Statistical Annual Report on China’s Rural
Policies and Reforms (2019),” the area of rural land circulation accounted for 35.9% of the
total area of contracted land in China in 2019 [2]. The substantial increase in the area of
land circulation is reshaping the pattern of rural income. Households who have transferred
into land carry out large-scale production and reduce land fragmentation. The young
and middle-aged farmers who have transferred out their land choose non-agricultural
operations and migrant workers, and their income is also increasing. The increasing scale
of land circulation has reshaped the new pattern of rural man–land relationships, changed
the original distribution pattern of land, reconstructed farmers’ livelihood modes, and
directly affected the income distribution of rural households.

China is currently in the process of a “hidden agricultural revolution”. Population
pressure has caused the per capita arable land in rural areas to steadily decline, so that it
is difficult for farmers to maintain their livelihoods; as such, they must rely on auxiliary
labor to meet their normal living needs. The increase in non-agricultural employment in
rural areas is conducive to increasing the income of rural households. At the same time,
with the advancement of new urbanization, the scale of land circulation has become larger
and larger, which has promoted the large-scale development of agriculture. Therefore,
discussing the effects of land circulation and labor mobility on the income inequality of
rural households and comprehensively grasping the income distribution effects of land
system reform can help to better promote the integration of urban and rural areas and
realize the strategy of rural revitalization. This article attempts to answer two questions:
first, does land circulation further widen the income inequality of rural households? Second,
how does land circulation affect the income inequality of rural households?

The remainder of this paper is arranged as follows: Section 2 introduces the insti-
tutional background of land circulation and summarizes relevant literature; Section 3
discusses the impact mechanism of land circulation on the income inequality of rural
households; Section 4 uses the data from the 2013 China Household Income Project (CHIP)
to empirically analyze the impact of land circulation on the income gap of rural households,
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and to test its theoretical mechanism; Section 5 summarizes the conclusions and provides
recommendations, and looks forward to future research directions.

2. Institutional Background and Literature Review

2.1. Institutional Background

The prerequisite for land circulation is that rural households have the legal right
to transfer. Before China’s reform and opening up, a collectivized rural land system
was implemented, but this method greatly inhibited farmers’ enthusiasm for production,
resulting in extremely low agricultural productivity. After the reform and opening up
in 1978, China began to implement the household contract responsibility system, which
greatly increased the enthusiasm of farmers [3]. The property rights system of agricultural
land in China has realized the “separation of the two rights,” and the full collection of
land property rights has come under collective ownership. In the “Minutes of the National
Rural Work Conference” in 1982, the sale and lease of land was explicitly prohibited. In
1984, the national government proposed that “the right to land contracted management
remains unchanged for 15 years.” With the circulation of rural labor and the increase in
non-agricultural business practices, the separation of the contracting and management
rights of agricultural land became more serious. In 1993, the law began to recognize the
separation of land contracting and management rights, allowing the paid circulation of
land use rights. In 2003, the “Contracting Law” was introduced to clarify the specific
measures for the circulation of land management rights. By 2005, land circulation rights
accounted for 5%–6% of the contracted arable land area, and the figure even reached 8%–
10% in developed coastal areas. With the rapid development of China’s economy and the
acceleration of urbanization, many young and middle-aged people from rural areas flocked
to cities, further stimulating land circulation. According to statistics from the Ministry of
Agriculture, the total area of contracted arable land was 228 million mu in China in 2011,
accounting for 17.8% of the household contracted land area.

After preliminary exploration, the Ministry of Agriculture issued “Opinions” in 2011,
and gradually began a nationwide pilot project on land right confirmation and registration.
In 2014, China issued the document “Several Opinions of the State Council of the Central
Committee of the Communist Party of China on Comprehensively Deepening Rural Reform
and Accelerating the Advancement of Agricultural Modernization.” “Separating ownership
rights; contract rights; and the right to use contracted rural land” is the basic direction
of the reform of the agricultural land property rights system in the new era. Therefore,
this document has stabilized contract rights while allowing land management rights to be
mortgaged to financial institutions for financing. In 2016, the government further proposed
to equally protect the land management rights acquired by business entities following the
circulation contract. This has ensured stable land management activities and has initiated a
comprehensive reform of the “separating ownership rights; contract rights; and the right
to use contracted rural land.”

Land circulation can form a large-scale land operation, reduce the fragmented use
of land [4], liberate rural productivity, and support urbanization. Therefore, the main
purpose of the “separating ownership rights; contract rights; and the right to use contracted
rural land” reform is to promote land circulation, improve agricultural productivity and
competitiveness, and at the same time, to ensure the rights of operators. However, there are
still significant limitations in the circulation of rural land. First of all, the definition of land
property rights is unclear. The existing laws and regulations do not regulate the relationship
between land circulation and land contracts, which has led to an increasing number of
disputes about land contract rights, which virtually increases the cost of land circulation.
Second is the structural limitation of urban and rural areas in China. Migrant workers
and peasants who transfer out their land cannot obtain urban household registration and
cannot enjoy complete education and medical benefits. Therefore, they tend to keep their
land contract rights and entrust their relatives and friends to cultivate them instead. In
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addition, there are also other reasons, such as the reluctance of the elderly to leave their
homeland and their attachment to the land, which also restricts the land circulation.

2.2. Literature Review

The separation of the right to use and ownership of land generates land rent [5].
Moreover, with diminishing returns to land, the price of land circulation determines the
amount of land rent. The circulation period is short, so the price of land circulation depends
only on the average annual income of the land. At the same time, the conditions for the
generation of land rent are related to the price of agricultural products, the fertility of
the land, the geographical location and the relationship between supply and demand [6].
When the transaction cost is zero, market transactions can achieve an effective allocation of
land resources [7], so scholars cannot think that land rent is suppressed [8]. The generation
of land rent is the basis of land circulation. China has changed the land structure of
contracting production to households and liberalized land circulation, and land distribution
has changed from absolute equality to relative equality. The land was redistributed to
the peasants with higher productivity [9]. The land system has a profound effect on the
income distribution of rural households [10]. Before further reforming the land system,
it is essential for the government to carefully consider the impact of the reform on the
income of rural households and income inequality. Therefore, research on the impact of
land circulation on the income inequality of rural households has gradually become a
popular topic. The research mainly focuses on two aspects, namely the income effect of
land circulation and the distribution effect of land circulation.

2.2.1. Income Effect of the Land Circulation

The existing literature on land circulation and the income of rural households analyzes
the mean effect of the impact of land circulation on the income of rural households under
the framework of a linear model. There are two main points of view: first, the net income of
peasants before and after land circulation has not changed significantly. There is a two-way
causal relationship between the level of non-agricultural income of peasants and land
circulation. The impact of early land circulation on the non-agricultural income of peasants
is relatively weak [11]. Second, land circulation has generally increased the income of rural
households, created income for rural households, and reduced poverty. Scholars have
held this view in majority [12–14]. The land rent and income from migrant work brought
about by land circulation accounts for most of the income growth of rural households,
which is stable and sustainable [15,16]. The study by Xiao Han and Anlu Zhang [17] from
the perspective of land circulation found that land circulation has a positive effect on the
income of transfer-in rural households, but has no significant effect on the income of the
transfer-out rural household. Fei Chen and Weijuan Zhai [18] pointed out that renting out
land is beneficial for increasing the income of rural households and reducing the incidence
of poverty. However, the welfare effect is significantly different between different family
groups. Xiangyong Wang et al. [19] studied the changes in farmers’ income before and
after land circulation and found that land circulation increased farmers’ property income.

In addition, the income effect of land circulation needs to be considered from two
aspects. On the one hand, because of the characteristics and factor endowments of a rural
household, the benefits they receive from the land circulation market are different [20].
Land circulation generally increased the income of rural households, but this may be the
result of the pull of high-growth rural households, however, it exaggerates the role of
land circulation. The results of testing that land circulation does not affect the income
of rural households and may also be offset by increasing income and decreasing income.
On the other hand, there is the problem of the “selection bias” of the sample. Whether a
rural household participates in land circulation is a non-random “self-selection” behavior.
However, this self-selection bias has not been corrected when examining the income effect
of land circulation on the different types of rural households, which has also brought about
estimation problems.

145



Land 2021, 10, 781

2.2.2. Income Distribution Effect of the Land Circulation

An increase in the absolute income level does not imply that land circulation has a
positive effect on income distribution. There are two main views on the income distribution
effect of land circulation. First, land circulation has widened the income gap of rural house-
holds. Early research considered that land circulation was the choice and behavior of rural
households with a high income [21]. In other words, only the powerful class can receive
high returns on land circulation [22], while the interests of small farmers are sacrificed,
leading to further widening of the income gap [23]. The constraints of credit rationing make
it difficult for poor rural households to obtain benefits from the land rental market [24].
Möllers and Meyer used the PSM method to analyze the impact of labor migration on
income inequality and poverty in rural Kosovo [25]. In recent years, some scholars have
used quantile regression to analyze the effect of land circulation on the income gap of rural
households. For example, Junping Guo [26] used a quantile regression model to investigate
regional income, finding that the circulation of farmland has widened the income gap be-
tween rural households in the eastern and central regions. From the perspective of different
income classes, the transfer inflow of farmland has promoted an increase in the income of
poor and low-income households, resulting in some high-income households. Although
land transfer inflow and outflow can increase income, land circulation exacerbates income
inequality [27–29]. The research for Changliang Shi [30] found that the income-increasing
effect of land circulation is heterogeneous for rural households with different income levels.
Rural households with middle and high-income levels obtain greater benefits from land cir-
culation than rural households with a low income. Second, land circulation can narrow the
income gap between rural households [31]. Guanghua Wan [32] constructed a regression
decomposition framework using rural household data to study rural income inequality
in China, and found that the land circulation between poor rural households reduces
income inequality. Land circulation increases the income level of rural households with
low income and can alleviate the inequality caused by non-agricultural employment [33].
However, some scholars believe that the income distribution effect of land circulation has a
selection effect among heterogeneous rural households, and the mechanism of action for a
rural household in different income ranges is different [34]. The disadvantage is that most
studies only compare the income effects of rural households with different income levels
who participate in land circulation, and fail to answer quantitatively how land circulation
widens the income inequality of rural households.

In general, the existing literature agrees that land circulation can effectively increase
the income of rural households, but the perception of the income distribution effect of land
circulation is still ambiguous. Previous studies have made more use of quantile regression.
However, the data are too rough to infer any effect of land circulation on the income gap
of rural households by relying solely on the difference in the regression coefficients in
different quantiles. Moreover, this approach would ignore the internal mechanism of the
income distribution effect of land circulation and the mechanism of the effect of other
economic and social factors on the income distribution of rural households in the process
of land circulation. There is almost no literature involved in the research on its influence
mechanism and degree of influence. Shi, C.L., et al. [35] and Yang. Z et al. [36] estimate
the contribution of land circulation to the income gap of rural households using a Fields
decomposition. However, the decomposition method is strictly restricted by the form of the
income equation and the measurement index of the income gap, and the decomposition of
the constant term has not been well handled and explained. Liang Y et al. [37] discussed the
effects of labor mobility and land circulation on the income of rural households, respectively.
They use the propensity score matching (PSM) model to explore the effect of land circulation
on the income of rural households. This can effectively alleviate the bias problem caused
by the “self-selection” of the income effect, but it does not deeply explore the mechanism
of the dynamic relationship between labor mobility and land circulation on the income
distribution of rural households.
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Compared to previous literature, there are two possible contributions of this article:
first of all, it provides a new perspective to deepen the understanding of the impact of
land circulation. The existing literature studies focused on the effect of land circulation
on agricultural productivity and rural household income. There were not many studies
on income distribution and inequality. This article has supplemented this aspect. Second,
we analyze the causes of rural household income inequality from the perspective of labor
mobility, and provide new connotations for income distribution theory. Existing studies
rarely consider the impact of the dynamic relationship between labor mobility and land
circulation on the income inequality of rural households. However, the contradiction
between more people and less land has always been one of the main contradictions in
China’s agricultural development. The relationship between the two may have a more
profound impact on income distribution than traditional economic factors such as material
capital and family characteristics. Therefore, this article uses the form of interaction terms
to analyze the contribution rate of labor mobility and land circulation to different income
levels, to deconstruct the mechanism of land circulation on the income inequality of rural
households, to provide a theoretical basis and decision-making participation for broadening
farmers’ income increase channels.

3. Theoretical Mechanism

To analyze the theoretical mechanism of land circulation in the income gap of rural
households, it is necessary first to clarify peasants’ motivation to engage in land circulation.
The decision of land circulation is based on the “cost-benefit” principle. When non-
agricultural productivity is greater than agricultural productivity, a rural household will
choose to transfer the outflow of the land. When the benefits of land operation from rural
households exceeds the opportunity cost of farming the land, a rural household will choose
to transfer the inflow of the land and expand the production of land on a large scale. To
study the effect of land circulation on the income inequality of rural households, we can
start from the income function of rural households. Assuming that the income of a rural
household Y is completely determined by the scale of land circulation T, the size of the
non-agricultural labor force population S, and the family characteristics Z, then the income
of rural households can be expressed as:

Yi = f (T, S, Z) (1)

In order to obtain the income gap of rural households, now the variance of both sides
of the equation is calculated simultaneously, and we can obtain:

Var(Yi) = δ2Var(Ti, Si, Zi) (2)

Here, we fixed family characteristics, then δ in Equation (2) is the income effect of land
circulation and the non-labor scale. In theory, land endowments in a perfectly competitive
land market will not cause an income gap, and X is a constant at this time. However, in
reality, the land market is incomplete. At this time, δ will vary with region, rural family,
climate and time. δτ is the income effect variable of the interaction term of land circulation
and the non-labor scale. Assuming that the income effects of land scale, land circulation,
and the non-labor scale are independent of one another, then the income gap can be
expressed as:

µ2
δVar(Tiτ , Siτ , Ziτ) + µ2

τVar(δτ) + Var(Tiτ , Siτ , Ziτ) · Var(δτ) (3)

where µδ is the expected value of the income effect, and µτ is the expected value of the
interaction term between the scale of land circulation and the scale of non-agricultural labor.
From Equation (3), it can be seen that the income gap of rural households is not only related
to the expected values of both, but also depends on the scale of land circulation and the
scale of non-agricultural labor. When the expectation of the income effect is 0, the income
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gap of rural households is also 0. When the expectation and the income effect are not 0,
there will be an income gap in a rural household. Land circulation is the reallocation of land
resources based on market-oriented means, focusing more on efficiency rather than fairness.
Therefore, a rural household with different income levels faces unequal opportunities in
the land circulation market and different benefits from land circulation. Analyzing the
effect of land circulation from the perspective of non-agricultural labor mobility, the flow
of labor is oriented: it only flows from low-income regions to high-income regions. For
rural areas, the mobility of labor optimizes the allocation of resources and adjusts the
structure of the agricultural industry. However, the flow of labor from agriculture to
non-agricultural employment takes away the productivity of agricultural production, and
most of the labor flow out is more competitive. In particular, many of the migrant workers
who leave their hometowns are young and middle-aged. The elderly and children stay in
their hometowns, and the remaining family members cannot afford excessive agricultural
production. Therefore, rural households choose to transfer out their excess land to achieve
optimal allocation of their household resources. This shows that there is a dynamic
relationship between land circulation and labor mobility. When this dynamic relationship
is higher, the wider the peasants’ income channels, and the greater the impact on the
income of rural households. The income gap of rural households is determined by the
dynamic relationship between land circulation and labor mobility. From the characteristics
of rural households with different incomes, for low-income families, they can only choose to
cultivate the existing land, because they cannot afford to pay enough land rent and the cost
of non-agricultural operations or migrant workers. In addition, compared to high-income
households, low-income households are more dependent on land and are less willing to
lease out the rights of using contracted land. Therefore, low-income rural households
are easily excluded from the land circulation market. High-income rural households can
avoid land fragmentation through land inflow, and large-scale agricultural production
can further reduce costs and increase profits. As a result, the income of high-income
rural households is becoming higher and higher, while the income of low-income rural
households remains the same or rises slowly alongside economic development, meaning
the income gap between rural households is further widening. Analyzing this mechanism
specifically in terms of agricultural and non-agricultural operation productivity, it can
be divided into two parts: on the one hand, in terms of agricultural productivity, high-
income farmers are better able to afford the high cost of renting land and are more likely
to acquire new technologies in the process of agricultural production. Combining the
potential level of human capital and the ability to obtain market information, high-income
rural households have higher returns on agricultural production. On the other hand, from
the perspective of non-agricultural production activities, rural households with a low
income have relatively weak anti-risk capabilities and experience more restrictions on
employment in the non-agricultural market. For example, the education level of family
members with a low income may be lower than the average. Meanwhile, rural households
with a high income can integrate family resources through the land circulation to maximize
their comparative advantages in non-agricultural fields. Since the 21st century, the process
of urbanization has accelerated, the price of urban labor has become much higher than
the income of agricultural production, and rural households with a high income have
started moving to non-agricultural operations earlier. Therefore, although land circulation
has increased the income level of most rural households, it has also widened the income
inequality of rural households to a certain extent.

4. Empirical Research

4.1. Model Construction

The re-centered influence function (RIF) regression method proposed by Firpo [38] is
different from other regressions methods in terms of the explained variables in said RIF
regression. The explained variables in RIF regression can not only be the income level of
residents or other statistics, but must also be the statistics of income inequality such as the
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quantile, variance and Gini coefficient obtained based on the influence function. Therefore,
we can establish a direct relationship between the impact factors and the degree of income
inequality. This article used RIF regression to discuss the effect of rural household land
circulation on the rural household income gap. Considering that the Gini coefficient can
better describe the degree of income inequality, this article used the Gini coefficient to
measure the income gap in net income per capita of rural households. In the RIF regression
framework, the benchmark regression model is constructed as follows:

Gini(inco) = α0cland + α1X + ε (4)

where the explained variable inco is the per capita disposable income of rural households
and Gini (inco) is the Gini coefficient of the disposable income of rural households; the
explanatory variable cland is the land circulation area of rural households, which is the
sum of the area of land transfer outflow and inflow; X is the control variable, which is
used to mitigate the estimation error caused by the omitted variable(the selection of the
control variable will be described in detail later); and ε is the random error term. The
theoretical mechanism of land circulation affecting the income gap of rural households
has been discussed above. Next, this article used quantile regression estimation to test this
theoretical mechanism. Quantile regression was first proposed by Koenker and Bassett [39]
in their systematic study, and it can accurately describe the effect of explanatory variables
on the range of variation of the explained variables and the shape of the conditional
distribution. Therefore, this article used quantile regression and established the following
regression model:

Qτ [ln inco|Y ] = β0,τ + β1,τblab ∗ sland + ∑ βi,τCV + ωτ (5)

where the explained variable Qτ [ln inco|Y ] is the logarithm of the per capita annual dispos-
able income of rural households at the τ quantile. The explanatory variable is the product
of the proportion of household non-agricultural labor force bland and the land area sland
transfer out from rural households, which represents the dynamic relationship between
labor mobility and land circulation. CV refers to the other control variables, which are the
same as the control variables in Equation (4), and ω is a random disturbance term.

4.2. Data Source

The Chinese Household Income Project (CHIP) conducted five household surveys in
1989, 1996, 2003, 2008 and 2014, and collected data of the income and expenditure of urban
and rural households from 1988, 1995, 2002, 2007 and 2013, respectively. This article selected
the data from the 2013 CHIP, which covers 18,948 household samples and 64,777 individual
samples, selected from 234 counties and districts of 126 cities in 14 provinces, including
7175 urban household samples, 11,013 rural household samples, and 760 outdoor migrant
workers samples. According to the research content of this article, only the data of the
rural households in the questionnaire were retained, and missing values and unreasonable
data were excluded, thus, a total of 10,262 valid data were obtained. These valid data were
distributed across 14 provinces, namely, Shanxi, Henan, Anhui, Hubei, Hunan, Gansu,
Yunnan, Sichuan, Chongqing, Beijing, Liaoning, Jiangsu, Shandong and Guangzhou. After
sorting, we divided the data into the central, western, and eastern regions, with 3963, 2705,
and 3594 data, respectively.

4.3. Variables

Explained variable: per-capita annual disposable income of rural households (inco);
the unit is yuan/person. The CHIP data selected “2013 household disposable income”
divided by “total household population”. Disposable income mainly included wage
income, net operating income, property income and transfer income.

Explanatory variable: land circulation area (cland); the 1st unit is hm2. We used the
sum of the area of land transfer out (sland) and the area of land transfer in (tland) of rural
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households. From the CHIP data, we deleted the data of rural households who transferred
the outflow and inflow of land at the same time. In addition, rural households were the
only inflow and outflow of land.

The control variables mainly included two aspects, namely the characteristics of the
head of the rural household and the characteristics of the family. The characteristics of the
head of the household included:

1© Gender (gen): with gender as a dummy variable, a value of 1 was assigned to males
and 0 to females. Generally speaking, the income of male-headed rural households
is greater than that of female-headed households, especially for low- and middle-
income households.

2© Age (age): age inevitably affects the income gap of rural households, which shows
multiple effects.

3© Education level (edu): the highest educational level experienced by the head of the
household was used to measure education level. As dummy variables, no elementary
school was assigned a value of 1, elementary school a value of 2, junior high school a
value of 3, senior high school a value of 4, vocational/technical school a value of 5,
technical secondary school a value of 6, junior college a value of 7, undergraduate
university a value of 8, and postgraduate university and above a value of 9.

4© Being a member of the Communist Party of China (pol): a value of 1 was assigned
to being a member of the Communist Party of China (CPC), while a value of 0 was
assigned to not being a member of the Communist Party of China (CPC).

5© Being a village cadre (cad): being a village cadre was assigned a value of 1, while not
being a village cadre was assigned a value of 0.

6© Participation in a professional cooperative economic organization (org): participation
was assigned a value of 1, while no participation was assigned a value of 0.

7© Health status (hea): this indicator was self-evaluated by the respondent, and was also
used as a dummy variable and assigned the following values: 1 = very good; 2 = good;
3 = fair; 4 = bad; 5 = very bad.

Meanwhile, family characteristics included:

1© Family size (pop): the total family population represents the family size.
2© Non-agricultural labor force population (lab): the sum of non-agricultural business

population and migrant workers was regarded as the family non-agricultural labor
force population, and the proportion of the non-agricultural labor force (blab) was
used as the non-agricultural labor force population over the total family population.

3© The net value of agricultural operating fixed assets (agr): this is an operating asset,
presented in the CHIP data as the “estimated net value of agricultural operating fixed
assets at current prices at the end of 2013”.

4© Operating land area (land): refers to the area of land operated by a family. In addition,
this article divided the provinces into three regions based on their location. The
central region included the five provinces of Shanxi, Henan, Anhui, Hubei and
Hunan; the western region included the four provinces of Gansu, Yunnan, Sichuan
and Chongqing; the eastern region included the five provinces of Beijing, Liaoning,
Jiangsu, Shandong and Guangdong. The descriptive statistics of the variables are
shown in Table 1.
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Table 1. Definitions of variables and descriptive statistics.

Variable Variable Name Variable Definition and Assignment Mean Standard Deviation

Explained variable Household income per capita (inco )
Family annual total income/total population,

in yuan/person
13,259.9 14,039.9

Explanatory variables Land circulation area (cland )
Area of land transfer inflow plus the area of land

transfer outflow
(
hm2 )

1.3814 6.8296

Characteristics of the household head

Gender (gen ) 1 means male; 0 means female 0.9172 0.2756
Age (age ) Age of the household head 51.83 11.50

Education level (edu )

no elementary school as 1, elementary school as 2, junior
high school as 3, senior high school as 4,

vocational/technical school as 5, technical secondary
school as 6, junior college as 7, university undergraduate

as 8, and postgraduate and above as 9.

2.736 0.9729

State of health (hea ) 1 = very good, 2 = good, 3 = fair, 4 = bad, 5 = very bad 2.20 0.9482

Being a member of the CPC (pol )
1 means a member of CPC

0 means not a member of CPC
0.110 0.3129

Being a village cadre (cad ) 1 means yes; 0 means no 0.0492 0.2163
Participation in a profes-sional cooperative

eco-nomic organization (org )
1 representative to participation

0 representative not to participation
0.0341 0.1815

Family characteristics

Family size (pop ) Total family population 3.80 1.489

Number of families non-agricultural labor (lab )
The total number of households migrant workers and

non-agricultural production and operation
population (person)

0.9818 2.44

The net value of fixed as-sets of agricultural
opera-tions (agr)

The estimated net value of agricultural operating fixed
assets at the end of the year

6189.0 84,159.6

Family-owned land area (land) The total land area operated at the beginning of 2013 5.574 8.868

Region
Central Region Central region = 1, non-Central region = 0 0.3859 0.4868
Western Region Western region = 1, non-Western region = 0 0.2638 0.4407

East Region Eastern region = 1, non-Eastern region = 0 0.3503 0.4771
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4.4. Benchmark Regression Results

Table 2 shows the estimated results of the RIF regression benchmark for the impact of
land circulation on the income gap of rural households. The per capita annual disposable
income of rural households was used as the explained variable, and land circulation was
used as the explanatory variable. Columns (1)–(3) report the empirical results of the central,
western, and eastern regions, respectively. Column (4) shows the empirical results of the
national data without a fixed province effect, while Column (5) shows the empirical results
of the national data after fixing the province effect. Comparing the results from Columns
(1)–(6), it can be seen that the area of land circulation further widens the income gap of
rural households.

From Column (5), after controlling for the provincial factors that do not affect the
income gap of rural households over time, the larger the land circulation area in the country
as a whole, the bigger the income gap of rural households. Moreover, comparing Columns
(4) and (5), the coefficient increased from 0.0014 to 0.016 after controlling for the province.
The specific impact mechanism will be discussed in detail in the next section. Among
the control variables, the variables of whether to participate in a professional cooperative
economic organization, family size, the size of the non-agricultural labor force, and the
area of land operated by the family have a significant effect on the income gap of rural
households. Among them, the variable of participation in a professional cooperative eco-
nomic organization can widen the income gap of rural households. Meanwhile, the other
variables can narrow the income gap of rural households. Families participating in profes-
sional cooperative economic organizations can obtain certain advantages in agricultural
production, so this factor can widen the income gap of rural households. In the context
of the one-child policy, the family population is limited; a large family size and a large
non-agricultural labor force can narrow the income gap among rural households. The
contracted land area can also reduce the income gap between rural households; this is
because large-scale agricultural production reduces production costs. However, a rural
household with less land typically chooses non-agricultural management to realize the
optimal allocation of limited land resources, which increases the overall income level while
also reducing the income inequality of rural households.

The national data on rural households were divided into three regions. Comparing
Columns (1)–(3), it can be seen that the most significant effect of land circulation on the
income gap of rural households was in the central region. This is because Henan and
Hunan, the major grain-growing provinces, are in the central region. Before the emergence
of large-scale migrant workers, the main economic source of income for a rural household
was agricultural production. Cities in the eastern region are relatively more developed,
relying mainly on a non-agricultural economy to drive employment. In particular, the
eastern coastal cities have benefited from the reform and opening-up policy and no longer
rely on agricultural production. Meanwhile, the population in the western region is
relatively small, and the level of land rent is generally low; therefore, the ratio of land rent
to the total income of rural households is relatively low. Most rural households are unable
to achieve an increase in income in this way, so the effect of land circulation on income
inequality among rural households was shown to be non-significant.
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Table 2. Baseline estimation results of the impact of land circulation on the income gap of rural households.

Central Region (1) Western Region (2) East Region (3) Nationwide (4) Nationwide (5)

Land circulation area cland 0.0032 * (1.65) −0.00002 (−0.01) 0.0011 (1.38) 0.0014 * (1.70) 0.0160 ** (1.89)
Gender gen −0.032 (−1.25) −0.0113 (−0.39) −0.018 (−0.71) −0.0091 (−0.58) −0.0145 (−0.91)

Age (Logarithm) age 0.0491 ** (1.85) 0.0038 (0.11) 0.03224 (0.69) 0.0243 (1.08) 0.0279 (1.18)
Education level edu −0.008 (−1.44) 0.0041 (0.39) 0.0103 (1.16) 0.0053 (1.00) 0.0084 (1.57)
State of health hea 0.0089 (1.45) −0.0045 (−0.54) 0.0017 (0.22) 0.0038 (0.92) 0.0035 (0.80)

Being a member of the CPC pol 0.0246 (1.18) 0.006 (0.25) −0.0228 (−1.13) 0.003 (0.24) 0.0053 (0.42)
Being a village cadre cad −0.0112 (−0.47) 0.059 (1.21) 0.0439 (1.16) 0.025 (1.16) 0.023 (1.07)

Participation
in a professional cooperative economic organization org

−0.0446 * (−1.88) −0.0754 *** (−2.88) 0.1428 ** (2.02) 0.0958 ** (2.04) 0.1037 ** (2.36)

Family size pop −0.012 *** (−2.63) −0.0139 ** (−2.23) −0.0132 ** (−2.41) −0.0084 ** (−2.53) −0.009 ** (−2.35)
Number of family non-agricultural labor lab −0.0037 * (−1.89) −0.0036 ** (−2.52) −0.0003 (−0.16) −0.0028 *** (−3.10) −0.0023 *** (−2.58)

Net value of fixed assets of agricultural operations agr
(Logarithm)

0.0028 * (1.73) −0.002 (−1.08) 0.0016 (0.58) 0.0012 (0.93) 0.0004 (0.27)

Family-owned land area land (Logarithm) −0.008 (−0.89) −0.0165 ** (−1.77) −0.0042 (−0.43) −0.014 *** (−2.57) −0.0196 *** (−3.23)
Intercept term 0.2783 *** (2.56) 0.5084 *** (3.17) 0.3049 (1.52) 0.3527 *** (3.62) 0.3485 *** (3.45)

Province dummy variable No No No No Yes
F test Pass Pass Pass Pass Pass

Observations 3963 2705 3594 10262 10262

Note: t-values in parentheses, ***, **, and * represent 1%, 5%, and 10% significance levels, respectively.
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4.5. Robustness Test

The RIF regression program operates with robust standard errors by default; this can
effectively weaken the endogenous problems caused by the omission of variables, etc., and
avoid heteroscedasticity from interfering with the estimation results. In addition, the per
capita net income of rural households and the behavior of land outflow and land inflow
do not exist exactly in the same year. Therefore, the possibility of endogenous factors
between land circulation and the net income of rural households was relatively slight. This
paper uses a series of tests to confirm the robustness of the conclusions, such as changing
the income gap measurement indicators, replacing explanatory variables and explained
variables. The results are shown in Table 3.

Table 3. Robustness test results.

Explanatory Variables

Measuring Inequality
with Variance

Inequality Measured
by 80–20 Quantile
Distance Values

Replacement of
Explanatory Variables

Replacement of
Explanatory Variables

(1) (2) (3) (4)

Land circulation
area (cland )

0.0035 ***
(2.04)

0.0223 ***
(3.2)

—
0.007 *
(1.71)

Area of land
transferred to (tland )

— —
0.0014 *
(1.66)

—

Control variable Yes Yes Yes Yes

Intercept term
0.3102
(1.38)

0.2408
(0.23)

0.3483 ***
(3.44)

0.3814 ***
(3.3)

Province dummy
variables

Yes Yes Yes Yes

R2 0.0176 0.0191 0.0131 0.0124
Observations 10,262 10,262 10,262 10,262

Note: t-values are in parentheses, and *** and * represent 1% and 10% significance levels, respectively.

Inequality is measured by variance. Variance is a widely used indicator in the issue of
inequality, as well as the Gini coefficient. To verify the robustness of the empirical results,
this article uses the variance of the logarithm of household disposable income per capita to
replace the Gini coefficient. The regression results are shown in column (1) of Table 3. The
core explanatory variable land circulation is positive at the 1% significance level, which is
consistent with the result of the benchmark regression.

The income gap is measured using 80–20th quantile values. Quantile distance can
better test the income gap between the highest and the lowest income group. This article
uses the 80–20 quartiles to replace the Gini coefficient to test the robustness of the empirical
results. The regression results are shown in column (2) of Table 3. cland is significantly
positive at the 1% level, the coefficient of cland in the corresponding regression is 0.0223.
This shows that when the area of land transfer to all rural households in the sample
increases by 1 unit, the difference between the 80th quantile and the 10th quantile of the
per capita disposable income of rural households will increase by 0.0223, an increase of
2.2%. After the replacement of the inequality measurement indicators, they are consistent
with the benchmark results, indicating that the empirical conclusions of this article have
not changed due to different income gap indicators.

Replacement of explanatory variables. The area of land circulation is composed of
the area of land transfer outflow and inflow. After rural households have transferred
inflow land, they can expand the scale of agricultural production and increase their income,
which in theory can better reflect the further widening of the income gap. Therefore, this
article replaces the explanatory variable with the area of land transferred inflow by rural
households. The regression results are shown in Column (3) in Table 3. The estimated
results are positive at the 10% significance level, which is consistent with the benchmark
regression results.
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Replacement of the explained variable. Compared with income, consumption is more
stable and more reliable. It can better reflect the living conditions of rural households and
is a more accurate indicator of inequality. Therefore, this article replaces the explained
variable with the Gini coefficient of per capita consumption of rural households. The
regression results are shown in Column (4) in Table 3. The core explanatory variables are
significantly positive at the 10% level, which is consistent with the benchmark regression
results, indicating that the conclusions of this article are not affected by the metrics of the
explained variables.

4.6. Analysis of the Influence Mechanisms

The previous section mainly confirmed that land circulation increases the income gap
among rural households. This part mainly focuses on analyzing the mechanism of the
effect of land circulation. The government is continuing to further lift the restrictions on
non-agricultural employment, is continuously improving the non-agricultural employment
market, and is reducing the gap of registered residence between urban and rural areas,
thereby providing more employment opportunities for young migrants workers. With
the rapid economic development in developed cities, there is a greater labor shortage.
The income from migrant workers and non-agricultural business income is significantly
higher than that from agricultural production. More young and middle-aged laborers from
families with a low income choose to give up their farmland and switch to non-agricultural
operations or go out to work, which increases family income. Table 4 shows the regression
results of the dynamic relationship between labor mobility and land transfer out on the per
capita disposable income of rural households by region. The labor mobility indicator here
was the ratio of non-agricultural labor over the total household population, and the per
capita disposable income of rural households was processed in logarithm.

Column (1) in Table 4 shows the OLS estimation. Based on the results of this OLS
estimation, it can be seen that the coefficients of the interaction terms between labor
mobility and land outflow are significantly positive, and passed the 1% significance level
test for both the national region and the central, western, and eastern regions. This shows
that the interaction term of labor mobility and land outflow increases the income of rural
households. Moreover, the dynamic relationship in the eastern region is significantly higher
than that of the other two regions. This is because there are more developed cities and
more non-agricultural employment opportunities in the eastern region. The estimation
result of OLS was used to compare the result of the quantile regression. The quantile
regression results of the different quantile points are given in Columns (2)–(6), respectively,
which are the 10th, 30th, 50th, 70th, and 90th points. From the results of the quantile
regression, as the degree of dynamic relationship increased, the per capita disposable
income of rural households also increased. From the national data, it can be seen that the
interaction term has the greatest promotion effect on middle-income families. However,
the promotion effect of high-income households is significantly higher than that of low-
income households, which means that the benefits of “rich people” from land circulation
are significantly greater than those of “poor people”, which naturally further increases
the income gap. In addition, these estimated coefficients are significant in the different
quantiles, however the coefficients are not identical, indicating that rural households with
different income levels do not benefit equally from land circulation. Combining the results
of quantile regressions by regions, especially the western and eastern regions, the dynamic
relationship between high-income households with labor mobility and land outflow has
increased. The promotion effect on the per capita income of rural households is much
higher than that of low-income households, with the coefficient even exceeding 0.1 in the
highest quintile. Therefore, land circulation not only causes inequality in the allocation of
agricultural land resources in villages, but also further aggravates this inequality through
labor mobility, forming the “Matthew effect” where the rich get richer, leading to further
widening of the income gap among rural households.
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Table 4. Regression results of the dynamic relationship between labor mobility and land transfer outflow on the per capita disposable income of rural households by region.

Region Variable
Ols
(1)

Q10
(2)

Q30
(3)

Q50
(4)

Q70
(5)

Q90
(6)

Nationwide

Proportion of non-agricultural labor force *
land outflow

0.0686 ***
(5.69)

0.0486 **
(2.12)

0.0779 ***
(5.11)

0.0758 ***
(5.21)

0.0588 ***
(3.82)

0.065 ***
(2.95)

Other variables Already controlled

Constant term
9.541 ***
(61.66)

9.147 ***
(31.1)

10.031 ***
(48.33)

10.288 ***
(56.13)

10.459 ***
(55.09)

10.506 ***
(44.99)

Central Region

Proportion of non-agricultural labor force *
land outflow

0.0593 ***
(3.72)

0.0642 ***
(3.08)

0.0914 ***
(4.63)

0.0538 ***
(3.27)

0.0515 ***
(2.89)

−0.0004
(−0.02)

Other variables Already controlled

Constant term
9.97 ***
(40.32)

8.843 ***
(19.09)

10.31 ***
(30.3)

10.382 ***
(36.29)

10.543 ***
(37.29)

10.491 ***
(30.81)

Western Region

Proportion of non-agricultural labor force *
land outflow

0.060 **
(2.23)

0.0402
(1.10)

0.03182
(0.68)

0.0896 *
(1.76)

0.1003 **
(1.98)

0.0582
(1.2)

Other variables Already controlled

Constant term
9.497 ***
(34.12)

7.973 ***
(15.78)

9.071 ***
(25.3)

9.749 ***
(27.74)

10.367 ***
(28.61)

10.323 ***
(19.99)

Eastern Region

Proportion of non-agricultural labor force *
land outflow

0.107 ***
(4.52)

0.0818 **
(2.37)

0.0665 **
(2.15)

0.1037 ***
(3.60)

0.1127 ***
(3.63)

0.1288 ***
(2.79)

Other variables Already controlled

Constant term
10.157 ***

(38.24)
10.739 ***

(19.72)
10.156 ***

(27.36)
10.445 ***

(34.72)
10.354 ***

(35.35)
10.42 ***
(27.78)

Note: t-values in parentheses, ***, **, and * represent 1%, 5%, and 10% significance levels, respectively. The control variables are not listed due to space limitations.
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5. Conclusions and Recommendations

The main purpose of China’s current rural revitalization strategy is to promote rural
development, increase farmers’ income, and narrow the income gap of rural households.
Under the background of “separating ownership rights; contract rights; and the right to use
contracted rural land,” the scale of land circulation is getting larger and larger, and stable
land property rights are the foundation of rural development. Based on the 2013 China
Household Income Project (CHIP), this article used the re-centered influence function (RIF)
regression method to empirically test the impact of rural land circulation on the income
gap of rural households in China in three regions: the central, eastern, and western regions.
The final result were as follows.

First, as a result of the implementation of the “separating ownership rights; contract
rights; and the right to use contracted rural land” by the government, the legitimate
rights and interests of land operators are now protected. Land circulation has improved
agricultural production efficiency and has liberated labor productivity. Surplus peasants are
moving to cities to work and earn an income. Coupled with the acceleration of urbanization,
the overall income of rural households has improved. For example, rural households with a
low-income lack funds for agricultural production and have limited access to land, but have
a surplus of labor. Thus, young and middle-aged people of low-income rural households
choose to transfer out their land, and then go out for work or go into non-agricultural
employment, thereby greatly increasing the total family income. Rural households with a
high-income can increase their income by transferring in their land, expanding the scale
of agricultural production and reducing the marginal costs. Therefore, the continuous
increase in the scale of land circulation has greatly increased the income of rural households
as a whole.

Second, land circulation widens the income inequality of rural households. The
inequality of market opportunities leads to different amounts of land circulation by different
income groups, resulting in income inequality within groups. In addition, the differences
in the abilities and factor endowments between groups also leads to different income
returns in land circulation among different income groups. From the central, western, and
eastern regions, the region where land circulation has the most significant impact on the
income gap of rural households is in the central region. There are several large agricultural
provinces in the central region, where farmers are more dependent on land. The adjustment
of income distribution is also more sensitive to changes in the land system.

Third, from the perspective of labor mobility, the impact mechanism shows that the
interaction term of land outflow and the proportion of non-agricultural labor have a more
significant effect on the income growth effect of high-income rural households. The “rich”
gain from land circulation to a significantly greater extent than the “poor”. On the one
hand, the total value of agricultural output is limited, and the average income of each
farmer is very small. The surplus of rural laborers can only choose to work in cities.
However, farmers who originally owned land resources have expanded their production
scale through land circulation. The increase in income of rural household migrant workers
is smaller than that of rural households with large-scale production, which has led to a
gradual widening in the income gap between rural households. On the other hand, land
circulation not only causes inequality in the allocation of arable land resources, but also
further contributes to the widening of the income gap among rural households through
the “Matthew Effect” of the rich getting richer.

Land circulation has liberated rural surplus productivity, increased the scale of land
production, and enabled many young adults to engage in non-agricultural operations,
allowing effective allocation of land and human resources. Although land circulation has
led to the widening of income inequality for rural households, it is unnecessary to give
up land circulation. Instead, we should continue to promote land circulation and improve
the land system. Based on the previous analysis and the above conclusions, this article
proposes the following policy recommendations.

157



Land 2021, 10, 781

First, the government should further improve the land circulation market and the
efficiency of land circulation, reduce the transaction cost of land circulation, and clarify
land use rights. This requires establishing an information platform for the transfer market
with transparent and open information to solve the problem of information asymmetry. At
the same time, they should reduce the restrictions of non-market factors in land circulation
so that farmers can become the real beneficiaries of land circulation.

Second, we should provide certain policy preferences to low-income farmers who
do not have comparative advantages in land circulation, and we should strengthen the
investment and technical training of farmers so that they can improve their competitiveness
in non-agricultural employment. The overall education level of the labor force flowing
into the cities and towns from rural areas is relatively low, and most of them can only
perform simple labor with low wages. Therefore, the government needs to increase the
technical training and improve the cultural quality of farmers. In this way, although rural
households with a low-income lack the means of production, they can increase their income
and stability by relying on their technology and cultural literacy to work outside the home,
thereby increasing the income of the family. At the same time, the government should also
improve the welfare protection measures for rural non-agricultural operations, so that low-
income farmers can engage in non-agricultural operations without worries and can further
liberate productivity. For example, the government grants a quota of low-interest loans
to farmers who switch from agricultural production to self-employment, and provides a
series of policy supports such as tax cuts.

Third, the government should reform the household registration system and open
up the social security system. A certain percentage of migrant workers cannot enjoy
complete social security due to the restrictions of the household registration system. Thus,
they do not dare to transfer out all of their contracted lands, instead only letting their
relatives and friends cultivate or even abandon them. At the same time, household
registration restrictions have resulted in farmers lacking a sense of belonging to a city,
so land reform must also be coordinated with urban sector reforms. Cities and towns
have further improved their medical and educational systems, allowing residents who
work in said places to enjoy the same welfare protection as urban residents. In particular,
the schooling problem of enrolling the children of migrant workers needs to be solved
urgently, and the five social insurances and one housing fund should be fully implemented
as soon as possible for migrant workers. The government should eliminate the worries that
migrant workers have regarding having nowhere to stay in the city and should increase
their sense of belonging to said city, so that land resources can be better allocated.

Finally, the value of total agricultural output on the technical level should be increased.
Due to the scissors gap between the prices of industrial and agricultural products, the
increase in grain prices lags behind the increase in the prices of agricultural materials and
other industrial products, further shrinking the value of agricultural output. Therefore,
the government needs to increase its support for rural production technology, the value of
total agricultural output, and the capacity of the land for the strong rural labor force.

China is a largely agricultural country, and land policy involves all aspects. With
the progress of urbanization and industrialization, the proportion of non-agricultural
employment among farmers has gradually increased, as has the scale of land circulation.
The study of rural household income inequality from the perspective of land circulation
is only one aspect. After a significant increase in higher education, a new generation of
farmers began to experiment with more income options. Next, we should study whether
the combination of land circulation and education system affects agricultural productivity
and the income gap of rural households. In addition, we can also explore the improvement
of the land circulation market from the perspective of land circulation prices. Uncertainty
in the boundaries of land property rights affects farmers’ expectations of land use and
also restricts potential land transferees; land right confirmation can eliminate this type
of institutional risk. Limited by the availability and applicability of the data, this article
only used the 2013 CHIP data. These data only span some provinces, so the research in
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this article has certain limitations regarding depth and breadth. In future research, we will
continue to focus on the inequality of rural household income, and strive to find more
suitable data and methods to further improve this research.
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Abstract: Environmental regulation is an important means of restraining enterprises and protecting

the environment. Rationalization of environmental regulatory policies can promote high-quality

regional economic development. The optimization and upgrading of the industrial structure has

an intermediary effect on the impact of environmental regulations on the high-quality development

of the regional economy. After collating and analyzing previous research, this article proposes

to classify 30 Chinese provinces into regions with higher than the national average HDI (human

development index) and lower than the national average HDI based on the average HDI of Chinese

provinces. We explore the mediating effect of industrial structure on environmental regulation and

high-quality regional economic development. The model passed the full-sample robustness test

and the robustness test with GDP as the replacement variable. The empirical results show that

environmental regulations of different intensities have different effects on the quality of regional

economic development. The effect of environmental regulations on development quality is mainly

mediated through the transformation and upgrading of the industrial structure. Enterprises need

reasonable incentives from environmental regulations to transform and upgrade. The mediating effect

of the industrial structure on environmental regulations is greater in regions with below-average HDI

values than in regions with above-average HDI values, which shows that the industrial structure is

the mechanism underlying the effect of environmental regulations on the quality of regional economic

development. This result proves that adjusting environmental regulatory policies can effectively

promote the upgrading of industrial structure, thereby promoting high-quality regional economic

development. Based on this, the article puts forward several policy recommendations.

Keywords: environmental regulation; industrial structure; regional economy; high-quality

development; HDI zone

1. Introduction

In the report of the 19th National Congress of the Communist Party of China (CPC), General

Secretary Jinping-Xi pointed out that “China’s economy has shifted from a stage of high-speed growth

to a stage of high-quality development.” The traditional extensive development model has been

gradually abandoned in the “new era”, and maintaining high quality is being used as the foundation

of and key guiding ideology for economic development. After more than 40 years of being open,

China’s economy has grown at a high pace and has entered the stage of high-quality development.

The optimization and upgrading of the industrial structure is one of the main manifestations of
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high-quality development. Therefore, one of the goals of high-quality regional economic development

is to promote the optimization and upgrading of the industrial structure. It is a key path for coordinating

environmental regulations and high-quality regional economic development. While increasing the

proportion of knowledge-intensive and technology-intensive industries, it is also necessary to increase

the organic unity between rationality and industrial structure upgrades to promote green and

low-carbon development within the economy. Environmental regulation can significantly promote

economic growth, which is the claim of the famous Porter hypothesis. Environmental regulations

can also hinder economic growth if they are not cost-effective. That is, environmental regulations

increase the expenditure of enterprises on environmental protection and can crowd out investments

in production so that the innovativeness and profitability of new technologies and new products

are reduced. Tongbin-Zhang (2017) [1] combined Chinese provincial-level panel data from 1995

to 2013, and concluded that strong environmental regulations promote economic development

through an “innovation compensation” effect, while weak environmental regulations are ineffective.

The mechanism underlying the effect of environmental regulation on industrial restructuring involves

many factors. However, there is little in the literature that provides persuasive empirical evidence

based on actual conditions in China while incorporating the cost effect, the pollution refuge hypothesis,

and the Porter hypothesis into a unified analytical framework.

The structure of this article is as follows: Section 1 is the introduction; Section 2 describes the

literature review; Section 3 provides the theoretical mechanisms and discusses the classification of

environmental regulations and the analysis of the environmental regulation mechanism; Section 4

introduces the empirical model and results and discusses the data sources, variable selection, and data

processing; Section 5 presents the analysis of the results, including those from the HDI partition

analysis, and the robustness test; and Section 6 presents the research summary and recommendations.

2. Literature Review

Along with scientific and technological innovations and FDI (foreign direct investment),

environmental regulations can also affect the high-quality development of the regional economy through

industrial restructuring. The greater the extent of industrial structure optimization and upgrading,

the more positive the effect of environmental regulation on environmental quality. Environmental

regulations also impact the industrial structure [2,3]. There are two possible mechanisms underlying

the promotion of the optimization and upgrading of the industrial structure. First, environmental

regulations can act as a backward-looking mechanism driving the upgrading of the industrial structure.

The implementation of environmental regulations imposes a compulsory “deep cleaning” on industries

and enterprises. Environmental regulation achieves the optimization and upgrading of the industrial

structure and optimal allocation of resources through survival of the fittest, which in turn improves the

high-quality development of the regional economy. Second, environmental regulations form implicit

green barriers to entry.

(1) Environmental regulations

Environmental regulations are a series of related policies or measures adopted by the government

to protect the environment [4]. Environmental regulation is an essential part of the formal

Chinese environmental administration system. Environmental regulation is an essential part of

the formal Chinese environmental administration system [5,6]. Economic growth alone cannot

alleviate environmental pollution, so environmental regulation must be added. Under reasonable

environmental regulations, green innovation has been improved, and the industrial development model

has also changed. Currently, a large portion of the literature has explored the various relationships

between environmental regulations and green technology innovation, including linear and nonlinear

relationships. For example, Ling Li and Feng Tao (2012) [7] established a relationship between

environmental regulation and green total factor productivity using a panel data model, trying to find

the inflection point in the optimal environmental regulation strength for different industries with a

goal of promoting productivity. Fuxin Jiang showed that there is a dynamic U-shaped relationship
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between green technological innovation and the decline in environmental pollution. As the strength of

environmental regulation rises, the offset effect changes to the compensation effect. However, the above

literature does not effectively distinguish between the types of environmental regulations, so it is

impossible to discover the heterogeneous effects of different kinds of environmental regulations on the

efficiency of green technological innovation.

(2) Economic development

Economic growth can be defined as the increase in the inflation-adjusted market value of the

goods and services produced by an economy over time. High-quality development in the new era

must coordinate the relationship between development pace and quality. Quality must be put first and

given priority over efficiency. The key is to increase total factor productivity and replace old drivers

of growth with new drivers. Pearce and Turner (1990) [8] proposed that the relationship between

development and the environment gives rise to the concept of sustainable development. Papalia

and Bertarelli (2013) [9] established a model based on entropy calculations and found that there was

obvious convergence in the economic growth of some countries. Some scholars measured the quality

of economic growth, constructed an evaluation index for the modern economic system, adopted the

spatial Durbin estimation method, empirically analyzed how the modern economic system improves

total factor productivity, and considered how TFP affects the quality of economic development.

Some scholars have empirically found that environmental regulation improved industrial green

total factor productivity in Norway using data on industrial enterprises (Telle and Larsson, 2007) [10].

Other scholars have concluded that research and development subsidies and carbon taxes can effectively

improve green economic growth through the investigation of environmental regulations and the

efficiency of green innovation (Ploeg and Withagen, 2013) [11]. When carbon duty tariffs and support for

carbon release reduction reach a sufficient level, they promote innovation in green energy technologies,

thereby reducing environmental pollution caused by economic activities.

(3) Environmental regulation and economic growth

The relationship between environmental regulation and economic growth has always been a hot

topic in economics research. New classical economic theory holds that environmental regulation can

lead enterprises to internalize the social cost of their emissions. Therefore, increasing the intensity of

environmental governance increases the cost of pollution control and reduces enterprise performance.

Mainstream scholars, such as Porter, hold the opposite view. Such scholars believe that strict and

reasonable environmental regulation can stimulate enterprises to conduct technological innovation

activities and obtain compensation for product innovations. Some scholars also hold the view that

the effect of environmental regulation on enterprise performance is uncertain. They believe that only

appropriate and effective environmental regulation can stimulate or force enterprises to innovate.

Therefore, the effect of environmental regulation on enterprise performance is uncertain.

China’s government found that we have to protect the ecological environment, and made efforts

to reduce pollutant emission because it is unsustainable to obtain economic benefits that sacrifice the

environment (Shuai and Fan, 2020) [12]. The environmental regulation efficiency loss of local and

neighboring cities inhibits inclusive growth at both the national and regional levels (Ge, T., Qiu, W.,

Li, J., and Hao, X., 2020) [13]. The Inclusive Wealth Index provides important insights into long-term

economic growth and human well-being (Managi, S. and Kumar, P., 2018) [14]. Other research scholars

explored the determinants of inclusive growth, including technological innovation (George et al.,

2012) [15], economic growth (Vellala et al., 2014) [16], resource mobilization (Oyinlola et al., 2020) [17],

and trade openness (Jalles and Mello, 2019) [18]. Rajapaksa, D., Islam, M. and Managi, S. (2017) [19]

analyzed the impact of natural disasters on inclusive growth, trade openness, FDI, and GDP growth

rate, which are other important determinants of natural capital.

Presently, there have been many research results on the relationship between environmental

regulation, economic growth, and industrial structure. Most scholars believe that traditional industries

mainly achieve the purpose of upgrading the industrial structure and improving the quality of economic

development by the introduction and integration of green innovative technologies and resources.
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However, previous literature focused more on the threshold effect of environmental regulation, and

seldom incorporated environmental regulation and industrial structure into the study of high-quality

economic development, ignoring the role of industrial structure upgrading. China has stringent

requirements for high-quality economic development. The research on the impact of environmental

regulations on the quality of regional economic development is particularly important. Therefore,

this article uses data from 2006 to 2017, based on the mediating effect of industrial structure, to study

the impact of environmental regulations on the high-quality development of regional economies.

The article also innovatively uses HDI divisions to compare the intermediary effects of the industrial

structure between regions above the human development index and regions below the human

development index. This complements the important role of industrial structure in high-quality

economic development. Compared with the existing literature, the main contributions of this article

are as follows: (1) we explain the mechanism underlying the effect of environmental regulations on

high-quality economic development from a theoretical perspective; (2) through HDI zoning, we study

the differential impact of environmental regulations on the quality of regional economic development;

and (3) we provide relevant policy suggestions on how to improve the quality of regional economic

development and how to win the battle against pollution in the contemporary Chinese context.

3. Theoretical Mechanism

Countries around the world have been calling for the development of a low-carbon economy.

In this context, Grossman and Kreuger [20] pioneered the environmental Kuznets curve (EKC)

hypothesis, which focuses on the relationship between environmental quality and economic growth.

The environmental Kuznets curve refers to an inverted U curve relationship between environmental

quality or pollutant emission levels and per capita income. Research by the World Bank (1992) [21]

concluded that the critical point of pollution emissions is a per capita income of $8000. The EKC curve

is continuously verified. In the China Sustainable Development Strategy Report 2000, the Chinese

government proposed that the EKC curve can be used to scientifically set the critical point of

environmental pollution peaks and the length of time to reach this critical point, and form a reasonable

environmental regulatory policy based on that. The following paper introduces China’s current

environmental regulatory policies. Caruso, G., Di Battista., et.al (2020) [22] studied the past policy

approach and offered a potential pathway for academics to work with policymakers in moving

towards the realization of local growth policies. D’Adamo, et.al (2020) [23] proposed a new indicator,

the socioeconomic indicator for the bioeconomy (SEIB), to measure the socioeconomic performance of

bioeconomy sectors.

3.1. Classification of Environmental Regulations

Environmental regulation tools mainly include three types: command-and-control tools, market

incentive tools, and voluntary participation tools [24,25].

3.1.1. Command-and-Control Environmental Regulation

In reality, the most widely used tool is command-and-control environmental regulations. It refers

to the government, through legislation or formulating rules and regulations, to clarify the goals and

standards of environmental regulations, and at the same time punish enterprises that violate the

regulations to achieve the goal of protecting the environment [26]. The Environmental Protection Law

of the People’s Republic of China promulgated by China and relevant unit regulations are all typical

command-and-control tools. This type of tool is simple to operate and efficient, but the implementation

cost is high. If one wants to achieve the same effect as market incentive tools, the cost is often several

times higher than the latter [27]. The high cost of command-and-control tools is due to information

asymmetry. The collection of corporate information, corporate supervision, and punishment requires a

lot of manpower to execute, so command-and-control tools are weak in market supervision.
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3.1.2. Market Incentive Environmental Regulation

Market incentive tools do not constrain the behavior of polluters through norms or regulations;

instead, they use market signals to influence the behavioral decisions of enterprises [28], including

the imposition of sewage charge, permit systems, and government subsidies [29]. In 1972, the OECD

promulgated the “Polluter Pays Principle”. Since then, many countries have adopted this form of

sewage regulation. The theory behind market incentive tools is Pigou’s [30] theorem. The rational

polluter determines the amount of pollutant discharge based on the marginal pollution reduction cost

equal to the pollutant tax rate, and uses the different pollutant discharge costs of the enterprise to allow

polluters to allocate effective resources spontaneously, reducing the cost of information asymmetry

caused by the command-and-control tool. At the same time, companies can obtain additional profits by

using green technology for production. Therefore, this tool can provide incentives for green technology

for pollution reduction, allowing polluters to promote pollution reduction technology and choose a

more green and effective production model.

3.1.3. Voluntary Participation in Environmental Regulation

Voluntary participation tools refer to environmental protection proposals put forward by industry

associations, enterprises themselves, or other subjects, and necessitate higher requirements for

polluters. This category mainly includes environmental certification, environmental audits, eco-labels,

environmental agreements, etc. There are four ways to implement voluntary tools based on strong

environmental awareness. The first is the administrative form, which exerts pressure on the government

through non-governmental environmental protection organizations to supervise the work of the

government. The second is the economic form, raising private funds to finance some environmental

protection projects. The third is the legal form, which promotes environmental legislation and provides

environmental legal assistance to some organizations or institutions. The fourth is the way of education

to popularize the importance of protecting the environment.

Command-and-control, market incentives, and voluntary participation environmental tools are

the trinity of the government, market, and society to protect the ecological environment. In reality,

environmental policies not only select one tool, but in order to satisfy the principles of efficiency,

feasibility, and equity, two or even three types of environmental regulation tools are generally used

together. The government should implement the best environmental regulation according to the actual

situations [31].

China’s environmental regulation policies have gone from monetary incentives to non-monetary

incentives, from emphasizing government intervention to strengthening market incentives, and the

ultimate goal is actually the active participation of the public. Nowadays, in addition to the participation

of enterprises and governments, the public also plays an important role in environmental regulation.

With the continuous improvement of public awareness of environmental protection, environmental

regulations, and policies in the form of environmental certification, environmental hearings and

public participation have received increasing attention. The environment and health are linked,

and individuals are more concerned about the environment than the government and enterprises.

For example, the smog of Beijing in China once attracted the attention of all of the people in China.

They were willing and able to force companies to improve their technology and reduce pollution.

At this time, we need the proper guidance from the government, such as requiring companies to indicate

whether they use high-pollution emission technology on the product packaging, whether the packaging

bag is biodegradable, and so on. The modes of public participation in environmental governance are

diverse. For example, from the perspective of participating subjects, there are forms based on the

participation of individual citizens, participation based on non-profit organizations, and participation

based on media. It is precisely the diversity of public participation that makes up for the shortcomings

of monetary-based environmental regulatory policies. Such a wide range of roles can affect the various

subjects, processes, and specific instruments of environmental governance. The heightened public

awareness of environmental protection has been transformed into practical actions in many aspects,

165



Land 2020, 9, 517

prompting the government and enterprises to take effective environmental protection measures to

respond. Under the trinity of government, enterprises, and the public environmental regulation,

the adjustment of the industrial structure is the core intermediary factor of environmental regulation

that affects the high-quality economic development. Next, the specific mechanism of industrial

structure will be explained in detail.

3.2. Analysis of the Mechanisms by Which Environmental Regulations Drive Industrial Upgrading

In a low-level industrial structure, resources are tilted towards the primary and secondary

industries, and a capital investment model that focuses on scale, speed, and materials is implemented.

This extensive economic growth model has low resource utilization efficiency and serious environmental

pollution, and hinders high-quality economic development. Environmental regulations restrict the

behavior of polluters, and can lead to adjustments in the industrial structure through different channels

to promote high-quality economic development. Many factors affect the upgrading of the industrial

structure due to environmental regulation, and there is spatial heterogeneity in these factors [32].

The higher the intensity of environmental regulation, the better the upgrading of the industrial structure

relatedly, the more optimized the industrial structure, and the more positive the effect of environmental

regulation [33]. This article mainly discusses three theoretical mechanisms by which environmental

regulation drives the upgrading of the industrial structure.

3.2.1. Crowding Out Mechanism

Technological innovation is the largest driving force behind the upgrading of the industrial

structure. The speed of industrial structure upgrades depends on the intensity and speed of

technological innovation. Only continuous technological innovation can develop the industrial

structure from a low level to high level, and environmental regulations force the optimization and

upgrading of the industrial structure through technological progress. Environmental regulations

increase the price of production factors that generate pollution, and heavily polluting companies

will automatically withdraw from the market. The Porter hypothesis states that environmental

regulations promote technological progress in enterprises, and polluters must seek more efficient and

green production technologies in order to reduce their production costs. Increasing environmental

regulatory standards has eliminated low-end production technologies, and manufacturers using

low-end technologies have been crowded out of the market. Environmental regulations have increased

the production costs of heavily polluting industries, while clean technology industries are minimally

affected and the most concentrated in the tertiary industry. The development of the service industry

drives the industrial structure upgrades, helps optimize resource allocation, and improves the quality

of economic development.

3.2.2. Green Barriers to Entry

For potential entrants in an industry, investment in environmental regulation is a sunk cost on

non-production factors. Eventually, this increase in necessary investment capital and investment risk

forms an entry barrier in that industry. In addition, the reduction in environmental pollution increases

marginally. The larger the scale of the enterprise, the greater the cost of pollution. To improve the

efficiency of environmental protection, the government proposes higher environmental standards

for companies that are new entrants to the industry. Potential entrants are already burdened with

higher risks and higher production costs. Coupled with the cost of environmental regulations, new

entrants are in an extremely disadvantaged position, which increases the barriers to entry into the

industry. Environmental regulations have formed invisible barriers to entry in some industries,

and these barriers are aimed at promoting green production technologies. That is, the higher the

pollution intensity of an industry, the higher the invisible barriers to entry are, resulting in resources

being concentrated in clean technology industries. High-polluting industries are concentrated in the

secondary industry, and clean technology industries are concentrated in the tertiary industry, and so
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environmental regulations promote the upgrading of the industrial structure and have an impact on

high-quality economic development.

3.2.3. Openness to Trade

Openness to trade refers to the ratio of domestic prices to international prices for the same product.

The closer the ratio is to 1, the more open the product. The pollution sanctuary hypothesis argues that

firms in countries with stricter environmental regulations and a higher cost for discharging pollution

will move to other regions if they are in industries that are more pollution intensive. The transfer of

polluting industries from developed countries to developing countries has led to an increase in openness

to trade among products from industries with high levels of pollution intensity. To pursue high returns,

companies will expand their scale and increase their emissions to encourage the government to increase

the intensity of its environmental regulations. As a result, high-intensity environmental regulations

force some companies out of the market, surviving companies increase the price of their products and

reduce relative international competitiveness, and domestic high-polluting industries shrink. In the

context of international integration, the substitution effect due to environmental regulations and the

expansion effect due to international trade are mutually exclusive, which prevents developing countries

from becoming pollution refuges and leads industrial structure upgrades that improve high-quality

economic development.

Intense environmental regulation promotes industrial structure upgrading. Regional production

models within a reasonable industrial structure tend to intensify along with rapid scientific and

technological progress, high production efficiency, and an increase in the quality of production factors

and the capacity for optimal combination. The upgrading of the industrial structure has reduced the

scale of industries with high energy consumption and intensive pollution, and resources have been

tilted towards clean technology industries, further promoting the innovative development of clean

technology. The upgrading of the industrial structure is a key path through which the coordination of

sustainable economic development and ecological environment protection is promoted. This continuous

adjustment to the industrial structure has brought about high-quality economic development.

Based on the analysis of the mechanism of action, this article proposes the following hypotheses:

Hypothesis 1 (H1). When the pollution refuge effect caused by environmental regulation is greater than the

competition effect of the local government scale, environmental regulation policies can promote the optimization

and upgrading of the industrial structure.

Hypothesis 2 (H2). Environmental regulations force technological innovation, and high-quality economic

development is promoted through advanced and rationalized industrial structure.

Hypothesis 3 (H3). In regions with different economic development speeds, environmental regulations have

different impacts on the upgrading of the industrial structure.

4. Measurement Model Construction, Data Sources, and Variable Selection

4.1. Measurement Model Construction

This article mainly focuses on the impact of environmental regulations on the high-quality

development of the regional economy. To that end, the following regression model is constructed:

hqdi,t = α+ β+ eri,t +
k
∑

k=1

(

γ+ x
j

i,t

)

+ ui + λt + εi,t (1)

In the above equation, hqdi,t and eri,t represent the economic development quality and

environmental regulation, respectively, in province i and in year t, and x
j

i,t
represents the j other
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explanatory variables, namely industrial structure, human capital level, trade openness, and the

amount of investment in fixed assets; α is a constant, β and γ are the coefficients of each variable,

and ui,λt and ei,t represent unobservable individual effects, unobservable time effects, and specific

errors, respectively.

To study the mechanism underlying the effect of environmental regulation on the high-quality

development of the regional economy, cross-terms are introduced, and the following regression model

is constructed:

hqdi,t = α+ β× eri,t +
k
∑

k=1

(

γ× x
j

i,t

)

+
M
∑

m=1

(δ× eri,t ×Zi,t) + ui + λt + εi,t (2)

In the above equation, Zi,t represents the intermediary variable industrial structure, and δ is the

coefficient of that variable.

4.2. Data Sources

Based on the above theoretical analysis, this article uses panel data from 30 provinces (including

municipalities directly under the central government and autonomous regions) in China from 2006 to

2015, and uses a fixed effects (FE) model to analyze them. This choice is based on two considerations.

One is that the Hausman test rejects the random effects (RE) model, and the other is that unobservable

factors in each province may have different effects on the quality of economic development. In China,

regional endowments affect the quality of economic development. The data in this article come from

the China Statistical Yearbook, China Environmental Statistics Yearbook, China Industrial Economic

Statistics Yearbook, China Science and Technology Statistical Yearbook, the website of the National

Bureau of Statistics of China, and the China Economic and Social Development Statistics Database

from previous years. The HDI data for different regions are from the China Human Development

Report Special Edition (2017), which is based on cooperation between the Development Research

Center of the State Council of China and the United Nations Development Program. This paper uses

the national average HDI of 0.752 as a boundary to divide the 31 provinces in China into regions

with an HDI higher than the national average HDI (nine provinces) and lower than the national

average HDI (22 provinces). The regions with a higher than average HDI include Beijing, Shanghai,

Tianjin, Jiangsu, Zhejiang, Guangdong, Liaoning, Inner Mongolia, and Shandong. The regions with a

lower than average HDI include Jilin, Chongqing, Fujian, Hubei, Shaanxi, Hunan, Shanxi, Hainan,

Heilongjiang, Ningxia, Hebei, Xinjiang, Henan, Jiangxi, Guangxi, Anhui, Sichuan, Gansu, Qinghai,

Guizhou, Yunnan, and Tibet (since there are too many missing data on Tibet, this study does not

include Tibet). For individual missing data, the mean interpolation method is used to fill in the gap.

4.3. Variable Selection and Processing

This paper uses panel data from 30 provinces in China from 2006 to 2017, for a total of 1000

observations. The human development index (HDI), which covers life expectancy at birth, education

level, and quality of life, is used to designate zones that are considered when studying the effects of

environmental regulations on the regional economic development quality.

Explained variable: high-quality development in the regional economy (hqd). Baoping Ren

(2018) [34] defines the quality of economic development as the effectiveness of, adequacy of, coordination

in, level of innovation in, sustainability of, sharing of, and stability of economic development. Hong

Zhang (2015) [35] constructed an indicator system to measure economic development based on the five

dimensions of effectiveness, coordination, sharing, innovation, and sustainability. Thus, the quality of

economic development needs to be judged from a multidimensional perspective. In consideration

of the comparability, stability, and sustainability of the development of the regional economy, this

article determines six secondary indicators from these three dimensions: the economic development

level, the stability of economic development, and the sustainability of economic development. These
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indicators are used as proxy indicators for high-quality regional economic development. The details

are shown in Table 1.

Table 1. Selection of indicators for the high-quality development of the regional economy.

Explained
Variable

Level 1 Indicators Level 2 Indicators Unit
Indicator

Attributes

High-quality
development of

regional
economy (hqd)

Level of economic
development (le)

Logarithm of GDP per
capita (y1)

/ Positive index

Stability of
economic

development (st)

CPI (y2) % Reverse indicator

Urban registered
unemployment rate (y3)

% Reverse indicator

Sustainability of
economic

development (su)

Green coverage rate of
built-up area (y4)

% Positive index

Per capita public green
area (y5)

% Positive index

Pollution intensity (y6) M2/person Reverse indicator

The comprehensive indicator of the economic development quality is different from the sustainable

development index. The methods of evaluating the process of sustainable development in economic

theory mainly include green GDP accounting [36], the monetary value accounting of natural resource

depletion, the four-capital model, and the definition of strong sustainability and weak sustainability [37],

etc. The International Institute for Sustainable Development (IISD) has given out the seven principles

of the sustainable development indicator system: availability, comprehensibility, measurability,

significance, availability, comparability, and universality of indicators [38]. The sustainable

development indicator system proposed by China in 1999 is complicated to calculate. It uses 45

indexes, covering 208 indicators [39], and focuses more on humanities and society. The comprehensive

indicators of the economic development quality used in this article are mainly to evaluate the current

quality of economic development in China. The quality of economic development includes the increase

of quantity and the improvement of quality, which is the organic unity of quantity and quality. The level

of economic development is used to measure the level of output. The higher the output level, the more

prosperous the region, the higher the living standard of residents, and the higher the quality of

economic development accordingly. Sustainability development, GDP, natural resources, and foreign

direct investment have been added to the Section 2.

(1) Level of economic development (le): The article uses the logarithm of per capita GDP to measure

economic development, and per capita GDP is deflated to values for the year 2000.

(2) Stability of economic development (st): The stability of economic development means that the

speed of economic development fluctuates within a moderate range so that resources can be

fully utilized. According to the AS-AD model, if the economy grows too quickly and aggregate

demand is excessively high, it will usually lead to inflation; if the economy grows too slowly and

aggregate demand is insufficient, it will usually lead to unemployment. Therefore, the more stable

the economic development, the higher the quality of economic development. This article uses two

secondary indicators to measure stability, the CPI and the urban-registered unemployment rate.

(3) Sustainability of economic development (su): The sustainability of economic development is the

main factor that distinguishes the quality of economic development from the pattern of economic

growth. Economic development inevitably leads to environmental pollution. If economic

development cannot be sustained, it will inevitably cause serious damage to the ecological

environment, and these negative consequences will, in turn, hinder the quality of economic

development. This article uses three secondary indicators to measure this, which are the green

coverage of completed areas, per capita public area of green land, and pollution intensity. Pollution
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intensity is calculated by the entropy weighting method using three indicators: per capita volume

of industrial waste water discharged (su1), per capita volume of sulfur dioxide emissions by the

industry (su2), and per capita emission of industrial soot and dust (su3). The following describes

the specific steps followed in the entropy weighting method to calculate pollution intensity.

First, we sort the 30 provinces into 1, 2, 3 . . . 30, that is, i = 1, 2, 3 . . . 30, respectively. Then the

per capita volume of the industrial waste water discharged of the i-th province is sui1, the per capita

volume of sulfur dioxide emissions by the industry is sui2, and the per capita emission of industrial

soot and dust is sui3, where j = 1, 2, 3.

The first step is to calculate the proportion of the i-th indicator value in the j-th industry [40,41]:

Pi j = ri j/

m
∑

i=1

sui j (3)

The second step is to calculate the entropy value ej of the j-th indicator [42]:

e j = −k/

m
∑

i=1

Pi j · ln Pi j, k = 1/ln m (4)

The third step is to calculate the entropy weight wj of the j-th indicator [43,44]:

w j =
(

1− e j

)

/

n
∑

j=1

(

1− e j

)

(5)

where wj is the final weight coefficient for each indicator, and the weight coefficient obtained is

substituted into yi =
m
∑

wix
·

i j
. Then we can get the pollution intensity of each province.

The three emissions have different weights in different years. An area may have both high

pollution and high resource intensity, or it may have both high technology and high pollution intensity.

Under different environmental regulatory intensities, the innovation efficiency of pollution-intensive

or technology-intensive economic zones may be different [45].

Since the above six indicators have different dimensions, this article draws on the method of Bo-Shi

(2018) [46] to measure the quality of economic development. We first adopted the range standardization

method to process the original data underlying each indicator into nondimensional indicator values,

referred to the United Nations Human Development Index evaluation system, and finally used the

DEA-SBM method to calculate the quality of regional economic development. Table 2 shows the

high-quality development of the regional economy of different provinces in different years. The range

of the indicator is 0-1. The closer the value is to 1, the better the quality of economic development.

From the values of the quality of regional economic development given in Table 2, the quality of

regional economic development of more developed provinces in China is significantly higher than that

of other provinces. For example, Beijing, Zhejiang, Guangdong and other provinces and cities reached

the highest value 1 in 2017. The quality of regional economic development in the central and western

regions is lower than that in the eastern regions. The quality of regional economic development is

poor which is limited by geographical location and resource endowments, such as Qinghai, Ningxia,

Gansu and other provinces. However, in general, China has experienced ten years of development,

and the quality of economic development in all provinces has been steadily improving, especially in

Chongqing. These are basically consistent with the actual situation. This article uses the indicator data

in Table 3 as the empirical explained variable hqd.
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Table 2. The high-quality development of regional economic in China’s provinces from 2006 to 2017.

2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017

Beijing 0.68 0.63 0.67 0.89 0.86 0.91 1.00 0.95 0.97 1.00 1.00
Tianjin 0.23 0.23 0.24 0.26 0.28 0.30 0.30 0.32 0.35 0.39 0.44
Hebei 0.22 0.24 0.26 0.32 0.32 0.33 0.35 0.37 0.40 0.44 0.47
Shanxi 0.20 0.22 0.25 0.27 0.31 0.31 0.32 0.34 0.37 0.40 0.49

Inner Mongolia 0.24 0.26 0.27 0.33 0.34 0.39 0.39 0.43 0.45 0.49 0.51
Liaoning 0.31 0.36 0.40 0.46 0.45 0.50 0.52 0.52 0.53 0.51 0.56

Jilin 0.26 0.27 0.29 0.33 0.33 0.33 0.33 0.38 0.39 0.43 0.44
Heilongjiang 0.29 1.00 0.37 0.41 0.41 0.41 0.42 0.43 0.44 0.47 0.49

Shanghai 0.27 0.28 0.31 0.57 0.56 0.59 0.57 0.57 0.57 0.61 0.69
Jiangsu 0.43 0.48 0.50 0.55 0.57 0.59 0.62 0.64 0.65 0.67 1.00

Zhejiang 0.23 0.25 0.27 0.30 0.38 0.44 0.46 0.49 0.51 0.56 0.58
Anhui 0.35 0.33 0.35 0.40 0.42 0.44 0.46 0.48 0.50 0.53 0.57
Fujian 0.14 0.14 0.18 0.23 0.21 0.29 0.30 0.32 0.35 0.41 0.42
Jiangxi 0.19 0.22 0.24 0.30 0.32 0.34 0.34 0.36 0.34 0.34 0.47

Shandong 0.41 0.43 0.43 0.47 0.49 0.53 0.56 0.57 0.57 0.59 0.62
Henan 0.22 0.24 0.27 0.28 0.30 0.34 0.35 0.38 0.39 0.50 0.53
Hubei 0.23 0.24 0.27 0.30 0.30 0.36 0.38 0.42 0.46 0.52 0.53
Hunan 0.19 0.21 0.23 0.25 0.26 0.27 0.29 0.32 0.35 0.41 0.46

Guangdong 0.57 0.62 0.72 0.82 0.81 0.81 0.86 0.86 0.89 0.98 1.00
Guangxi 0.23 0.21 0.21 0.25 0.32 0.32 0.37 0.42 0.47 0.52 0.58
Hainan 0.17 0.83 0.86 1.00 0.87 0.72 0.45 0.33 0.43 0.64 1.00

Chongqing 0.11 0.17 0.21 0.32 0.38 0.42 0.19 0.42 0.43 0.47 0.51
Sichuan 0.25 0.25 0.26 0.35 0.39 0.43 0.17 0.43 0.44 0.49 0.53
Guizhou 0.32 0.33 0.34 0.34 0.32 0.34 0.18 0.34 0.36 0.44 0.46
Yunnan 0.15 0.18 0.21 0.29 0.27 0.31 0.31 0.33 0.33 0.35 0.44
Shanxi 0.20 0.20 0.20 0.24 0.27 0.32 0.35 0.36 0.44 0.46 0.49
Gansu 0.16 0.19 0.21 0.23 0.23 0.27 0.30 0.32 0.34 0.39 0.41

Qinghai 0.08 0.08 0.08 0.08 0.10 0.10 0.12 0.13 0.14 0.15 0.16
Ningxia 0.14 0.18 0.20 0.23 0.25 0.28 0.30 0.32 0.32 0.37 0.39
Xinjiang 0.24 0.33 0.33 0.37 0.39 0.40 0.41 0.44 0.47 0.57 0.59

Data source: Calculated based on data from the China Statistical Yearbook, China Environmental Statistical Yearbook,
China Environmental Yearbook, China Industrial Economic Statistical Yearbook, and China Science and Technology
Statistical Yearbook. Among them, per capita GDP, CPI, urban registered unemployment rate, green coverage rate
in built-up areas, and per capita public green area are derived from the yearbook, and the pollution intensity is
calculated by the entropy weight method.

Table 3. Descriptive statistical analysis.

Variables Sample Size Mean Standard Deviation Min. Value Max. Value

hqd 360 0.3996 0.193 0.0759 1
lner 360 5.004 0.9609 1.808 7.258
is 360 0.4255 0.0916 0.286 0.806
fa 360 9.04 0.9555 5.966 10.919

edu 360 8.696 0.9039 6.6 11.6
lnimex 360 5.792 1.6135 1.504 9.458

Explanatory variable: environmental regulation (er). There are no uniform standards in the

academic community for measuring the intensity of environmental regulations. Levinson (1996) [47]

measured the intensity of environmental regulations based on pollutant emissions. This article adopted

the same method as Yaobin Liu (2020) [48], measuring the intensity of environmental regulations based

on the logarithm of the total investment in regional industrial pollution control.

Intermediary variable: industrial structure (is). The upgrading of the industrial structure is

conducive to improvements in the quality of regional economic development, but the dilemma of

corporate governance can lead to the simplification of the industrial structure, thereby inhibiting

improvements in the quality of economic development. Considering that a change in the proportion

of the tertiary industry can reflect the optimization and upgrading of the industrial structure, this

article uses the proportion of output from the tertiary industry to GDP to measure the optimization

and upgrading of the industrial structure.
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Other control variables: (1) Human capital (edu). With an increase in educational attainment,

awareness of environmental protection should be gradually strengthened. An increase in the average

number of years of education per capita will fundamentally improve the quality of workers’ human

capital and simultaneously boost the effect of labor production, thus promoting the development of the

regional economy. This article draws on the calculation for average years of education. Human capital

is measured as the average years of education of the labor force in each province [49,50]. The formula

for years of education is as follows: years of education = proportion of elementary school students × 6

+ proportion of junior secondary school students × 9 + proportion of senior secondary school students

(including regular senior secondary school and secondary vocational school) × 12 + proportion of

university students (including college students, undergraduates, and graduate students) × 16, where

the proportion of the number of students in each grade = the number of students educated in that

grade/the total population in a given year. (2) Trade openness (imex). Trade openness refers to the

degree to which a country or a region’s import and export trade (including trade in goods and services)

is liberalized. This article uses the total number of goods in and out of warehouses by region and

the total import and export of goods according to the domestic destination and source of goods to

measure trade openness. (3) Amount of investment in fixed assets (fa). The amount of investment

in fixed assets refers to the funds of total investment in fixed assets in the whole country by region.

It represents the workload of the construction industry and the acquisition of fixed assets in currency.

It is a comprehensive indicator that reflects the scale, speed, proportional relationship, and direction of

the use of fixed asset investments.

To analyze the reliability of the above variables, Table 3 shows the descriptive statistical results.

The mean value of the explained variable (high-quality development of the regional economy) is 0.3996,

the maximum value is 1, and the minimum value is 0.0759, which indicates that the quality of economic

development varies greatly among different provinces. The standard deviation of the logarithmically

transformed core explanatory variable (environmental regulations) is 0.9609, the maximum value is

7.258, and the minimum value is 1.808, indicating that the intensity of environmental regulations varies

greatly in different provinces. The standard deviations of the other explanatory variables are all large,

indicating that different provinces have large differences in industrial structure, fixed asset investment,

human capital levels, and openness to trade.

5. Analysis of Results

5.1. HDI Partition Analysis and Characteristics

The human development index (HDI) is a comprehensive system of indicators proposed by

the United Nations Development Programme (UNDP) to measure the level of economic and social

development across countries. On the basis of the HDI for various regions in China in 2017, we used

ArcGIS to draw a map. As shown in Figure 1, the darker the color, the greater the HDI. Figure 1 reports

the 2017 HDI rankings for each region in mainland China. These HDI values are the comprehensive

result of environmental regulations and economic development over a total of 12 years from 2006

to 2017. We find that environmental regulations and the quality of regional economic development

are relatively high in regions with an HDI above the national average HDI, and the distribution

of HDI values across above average regions is more homogeneous. This may be due to a better

economic foundation in regions above the national average HDI. The competition between localities

indicates a benign competition model in which the environment is first and the economy is second.

Environmental protection and high-quality economic development can occur together in a win-win

situation. The environmental regulations and quality of regional economic development are relatively

low in regions below the national average HDI, and there are large deviations in HDI values across

regions. This may be due to the relative underdevelopment in regions below the national average

HDI, and there is wide variation in development between regions. The competition between localities

indicates a bottom-to-bottom competition model in which the economy is first and the environment is
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second. For example, Hebei Province and Henan Province have economies that are mainly driven by

polluting industries, which have a great impact on the environment, so the intensity of environmental

regulations is also greater. On the other hand, due to its geographical features, Tibet has fewer polluting

enterprises, a better ecological environment, and less investment in environmental governance, so the

level of intensity of its environmental regulations is relatively low.

Figure 1. HDI ranking of Chinese provinces in 2017.

5.1.1. Comparison Based on the HDI Partition

Before processing the panel data, the fundamental question is whether to use a fixed effects

model or a random effects model. First, we set the null hypothesis. According to the results of

Hausmann’s test, all of the data reject the null hypothesis, that is, the mean, reject random effects,

and accept fixed effects. In addition, the development of different regions in China is uneven. Due to

the different factor endowments in different regions, including the influence of other unobservable

factors, the quality of economic development varies greatly, which also shows that the fixed effects

model is more suitable. Therefore, we used the fixed effects model in the empirical evidence. Table 4

shows the impact of environmental regulations on the quality of economic development based on

different HDI zones. Columns 1–2 present the empirical results when the cross-term conditions are not

included, and columns 3–4 present the empirical results for the impact of environmental regulations

on the quality of economic development when the cross-term conditions of the industrial structure are

introduced. This paper proceeds to conduct a detailed analysis of the empirical results.

From the empirical results, we will find that the same intensity of environmental regulation is

more effective in regions lower than the national average HDI. Combined with the environmental

Kuznets curve (EKC), this shows that the current environmental regulation intensity has not reached

the critical point and needs to be further increased.
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Table 4. Estimation results for the effect of environmental regulations on the quality of economic

development based on HDI zones.

Independent
Variables

Dependent Variable (hqd)

No Cross Term
Introduced

No Cross Term
Introduced

Introduce Cross
Terms

Introduce Cross
Terms

Provinces with
Higher than the

National
Average HDI

Provinces with
Lower than the

National
Average HDI

Provinces with
Higher than the

National
Average HDI

Provinces with
Lower than the

National
Average HDI

lner
0.0171
(0.89)

0.0182
(0.39)

−0.1301 **
(−2.17)

−0.2125 **
(−2.56)

is
1.112 ***

(5.83)
0.4583 ***

(3.56)
−0.5109
(−0.88)

−2.393 *
(−1.74)

fa
0.328 **
(1.98)

−0.0413
(1.36)

0.0594 **
(1.99)

0.053 ***
(2.68)

edu
0.0267
(0.51)

−0.0345
(−0.77)

0.0182 ***
(3.33)

−0.0185
(−0.48)

lnimex
0.0796
(1.32)

0.0715 ***
(4.16)

0.0859
(1.37)

0.0616
(0.8)

lner×is - -
0.2798 ***

(2.95)
0.5647 **

(2.14)

Constant Term
−1.256 ***

(−6.12)
−0.3697
(−1.03)

−0.622 **
(−2.21)

0.6063
(0.87)

Sample Size 108 252 108 252

Province 9 21 9 21

Method FE FE FE FE

Adj R-sq 0.8754 0.3501 0.8841 0.3671

Note: *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively, with standard errors in parentheses.

5.1.2. Analysis of the Results for Provinces with HDI Values above the National Average

The adjusted goodness-of-fit (Adj R-sq) is a correlation coefficient that reflects the degree of model

fit, and deducts the influence of the number of included terms in the regression equation. From Table 4,

it can be seen that the degree of fit is better in regions with higher than the national HDI, with a value

of Adj R-sq close to 1. In comparison, the two models have a fair degree of fit in regions with lower

than the national average HDI. The first column in Table 4 shows that environmental regulations in

regions with an HDI above the national average HDI have a positive impact on the quality of regional

economic development, with a coefficient of 0.0171. This shows that in provinces with a higher than

average HDI, strengthening the intensity of environmental regulations can improve the quality of

regional economic development and that high-quality development and environmental protection

can coexist. However, this result is not statistically significant at the 10% level. This shows that

when no cross-term conditions are included, the effect of environmental regulations is relatively small.

This may be because the impact of environmental regulations on the quality of regional economic

development is mainly exerted through intermediary factors, such as the industrial structure and

foreign direct investment. The industrial structure has a positive effect on the quality of economic

development, with a coefficient of 1.112, and it is significant at the 1% level. This shows that the

industrial structure plays a significant role, and that optimizing and upgrading the industrial structure

can greatly increase the speed of economic development. Other explanatory variables—the amount of

fixed asset investment, the human capital level, and openness to trade—all have a positive impact on

the quality of regional economic development. The volume of fixed asset investment is significantly
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positive at the 5% level, with a coefficient of 0.328, which indicates that the volume of fixed asset

investment plays an important role in improving the quality of regional economic development. The

level of human capital and trade openness are insignificant at the 10% level. The levels of human capital

and trade openness in regions above the national average HDI have little impact on the high-quality

development of the regional economy.

The third column in Table 4 shows the impact of environmental regulation in regions with

HDI values above the national average on the quality of regional economic development estimated

with cross-terms included. The cross-term between environmental regulations and the industrial

structure has a negative effect on the quality of economic development in provinces with a higher than

average HDI, with a coefficient of −0.1301. This result is not statistically significant at the 10% level.

The reason may be that the intensity of environmental regulations is insufficient, which negatively

impacts economic development. However, the cross-term between environmental regulations and

the industrial structure has a positive impact on the quality of economic development in regions with

HDI values above the national average, with a coefficient of 0.2798. This is significant at the 5% level.

The reason is that environmental regulations affect the quality of economic development through the

industrial structure, mainly due to the crowding-out mechanism and the growth in green barriers

to entry. Environmental regulations have improved the efficiency of green innovation in industry,

leading to industrial structure upgrades and improvements in the quality of economic development.

Moreover, low efficiency and polluting enterprises are forced out of the industrial sector, and resources

are concentrated in clean technology industries. Therefore, the higher the intensity of environmental

regulation, the more obvious the positive effect of the cross-term between environmental regulation

and industrial structure on economic development.

5.1.3. Analysis of the Results for Provinces with HDI Values below the National Average

The second column in Table 4 shows the empirical results of the estimation of the impact of

environmental regulations on the quality of economic development in regions with an HDI below the

national average, without the inclusion of the cross-terms. The results show that in regions with below

average HDI values, environmental regulations have a positive impact on economic development,

with a coefficient of 0.0182. This result is insignificant at the 10% level. In regions with below average

HDI values, strengthening the intensity of environmental regulations does not improve the quality of

regional economic development. This may be because regions with an HDI below the national average

are relatively underdeveloped and there are large differences in regional development. In terms

of economic development, the governments in these areas have fallen victim to the misconception

of pollution first, treatment later. For the sake of economic growth, the government has sacrificed

the environment, resulting in the inability of environmental protection and high-quality economic

development to coexist. The amount of investment in fixed assets and the level of human capital have

little effect on economic development. The industrial structure and openness to trade in regions with

below average HDI values have a positive impact on economic development.

The fourth column in Table 4 shows empirical results of the estimation of the impact of

environmental regulations on the quality of economic development in regions with HDI values

that are below the national average, with cross-terms included. The results show that in regions

with below average HDI values, environmental regulations have a negative impact on economic

development, with an impact coefficient of −0.2125. This effect is greater in provinces with higher

than average HDI values, and is significant at the 5% level. The coefficient on the cross-term with

industrial structure is 0.5647, which is also significant at the 5% level. In addition, the cross-term has a

positive impact on economic development, which is consistent with, and even greater than, the results

for regions with an HDI above the national average.
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5.2. Robustness Test

To confirm the reliability of the empirical results obtained above, this article conducts robustness

tests both using the full sample and conducting the estimation with a substitute variable.

5.2.1. Full Sample Testing

Table 5 shows the results of the robustness test of the effect of environmental regulations on

economic development quality using the full sample. The first column in Table 5 presents the results

of the robustness test of the effect of environmental regulations on economic development quality

without including the cross-term conditions. The second column in Table 5 presents the results

of the robustness test of the effect of environmental regulations on economic development quality

including the cross-term conditions. The first column in Table 5 shows that the impact of environmental

regulations on the quality of economic development is not significant at the 10% level in the full sample,

with a coefficient of 0.021. This shows that environmental regulation does not have a significantly

positive effect on the quality of economic development, which is consistent with the empirical results

for provinces with higher than average HDI values and regions with below average HDI values.

Other explanatory variables, including industrial structure and trade openness, have a positive effect

on the quality of economic development. The effect of the industrial structure is significantly positive

at the 1% level, with a coefficient of 0.786, and that of human capital is significantly positive at the 1%

level, with a coefficient of 0.0738. This is consistent with the results from the first and second columns of

Table 4, which are for provinces with higher than average HDI values and provinces with below average

HDI values, respectively. These results show that environmental regulation has not played a role in the

governance of corporations, leading to insignificant optimization of the industrial structure. After the

introduction of the cross-terms in the second column of Table 5, the full-sample empirical results

show that environmental regulations have a negative impact on the quality of economic development.

The impact of the cross-term with the industrial structure is positive and significant at the 1% level,

which is consistent with the empirical results in the third and fourth columns in Table 4. The results

listed in Table 5 are consistent with the results in Table 4, indicating that the results in Table 4 are

highly robust.

Table 5. Estimated results for the effect of environmental regulation on the quality of economic

development (full sample robustness test).

Independent Variables
Dependent Variable (hqd)

No Cross-Term Introduced Introduce Cross-Terms

lner
0.021
(0.72)

−0.1796 ***
(−4.32)

is
0.786 ***

(5.57)
−1.594 **
(−2.52)

fa
0.0164
(0.71)

0.0546 ***
(3.64)

edu
0.0087
(0.26)

0.0007
(0.02)

lnimex
0.0738 ***

(4.00)
0.067 ***

(3.98)

lner×is -
0.4356 ***

(4.03)
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Table 5. Cont.

Independent Variables
Dependent Variable (hqd)

No Cross-Term Introduced Introduce Cross-Terms

Constant Term
−0.6911 ***

(−2.74)
0.1533
(0.4)

Sample Size 360 360

Province 30 30

Method FE FE

Note: **, and *** indicate the significance levels of 10%, 5%, and 1%, respectively, with standard errors in parentheses.

5.2.2. Substitute Variable Test (GDP)

This article draws on Shiyi-Chen (2018) [51], who adopted labor productivity (GDP) to measure

the quality of economic development. This provides an estimate of the effect of environmental

regulations on a substitute for the explained variable. Table 6 reports the robustness test results from

the estimation of the impact of environmental regulations on the quality of economic development as

measured by the substitute variable. Columns 1–2 of Table 6 present the robustness test for the effect of

environmental regulations on the quality of economic development when no cross-term is introduced

and the estimation is conducted at the HDI zone level. Columns 3–4 of Table 6 present the robustness

test results for the effect of environmental regulations on the quality of economic development when

the cross-terms are introduced and the estimation is conducted at the HDI zone level.

Table 6. Estimation results for the effect of environmental regulations on the quality of economic

development (robustness test with a substitute variable).

Independent
Variables

Replace Dependent Variable (hqd)

No Cross-Term
Introduced

No Cross-Term
Introduced

Introduce
Cross-Terms

Introduce
Cross-Terms

Provinces with
Higher than the

National
Average HDI

Provinces with
Lower than the

National
Average HDI

Provinces with
Higher than the

National
Average HDI

Provinces with
Lower than the

National
Average HDI

lner
−1.912
(−0.86)

2.72.4
(0.22)

−2.3776 **
(−2.24)

−1.0116 **
(−2.24)

is
8.5171 **

(3.30)
2.2220 ***

(2.67)
−1.55776
(−1.19)

−1.06194 **
(−1.97)

fa
1.0911 **

(2.20)
3.484 **
(2.00)

1.4871 ***
(3.77)

4.008 ***
(2.64)

edu
6.565
(1.01)

−1.854
(−0.88)

5.311
(0.98)

−1.133
(−0.54)

lnimex
7.136
(1.05)

5.953 ***
(4.39)

8.067
(1.60)

5.510 ***
(3.83)

lner×is - -
4.1542 *
(1.88)

2.5427 **
(2.34)

Constant Term
−2.19494 ***

(−4.47)
1.3546 ***
(−3.19)

−1.25338 **
(−2.42)

7.88.1
(0.04)

Sample Size 108 252 108 252

Province 9 21 9 21

Method FE FE FE FE

Note: *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively, with standard errors in parentheses.
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The first column of Table 6 shows that environmental regulations in regions with above average

HDI have a negative impact on the high-quality development of the regional economy, but this result

is not significant at the 10% level. After introducing the cross-term with industrial structure, the results

in the second column of Table 6 show that at the 5% level, the impact of environmental regulations on

the quality of economic development is negative, with a coefficient of −2.3776. This is consistent with

the results in Table 4, indicating that the model is robust.

The second column of Table 6 shows that environmental regulations in regions with below average

HDI have a positive impact on the quality of regional economic development, but the effect is not

significant. After introducing the cross-term with industrial structure, environmental regulation does

have a significant impact, with a coefficient of −1.0116. In columns 3–4 of Table 6, the impact of the

cross-term with industrial structure on the quality of economic development is significant and positive,

with a coefficient of 4.1542 for provinces with HDI values lower than the national average and with a

coefficient of 2.5427 for provinces with HDI values higher than the national average. This shows that

the mechanism of technological innovation induced by environmental regulations promotes industrial

upgrades, which in turn promotes high-quality regional economic development. This is consistent

with the empirical results in columns 3−4 of Table 4. The results presented in Table 6 are consistent

with the estimated results presented in Table 4, indicating that the results in Table 4 are highly robust.

6. Conclusions and Policy Recommendations

Based on theory and the institution of environmental regulations, this paper constructs a

comprehensive index of regional economic development quality using the three dimensions of the

economic development level, the stability of development, and the sustainability of development.

We used panel data from 30 provinces as our research sample, classified them into regions with HDI

values above the national average and regions with HDI values below the national average, and

conducted a comparative study of their regional differences. We draw the following conclusions.

(1) The same intensity of environmental regulations in regions with different HDI levels has different

effects on the quality of economic development. The development of different provinces in

China is extremely imbalanced. Limited by the influence of natural endowments and strategic

positions, the economic development of the central and western regions is not as high as that of the

eastern region. However, environmental regulations in provinces with above average HDI values

and below average HDI values show the same trend in the quality of economic development.

Moreover, the mediating effect of the industrial structure on environmental regulations is greater

in areas with below average HDI values.

(2) Environmental regulations in provinces with above average HDI values have a negative impact on

the quality of regional economic development. The cross-term between environmental regulations

and the industrial structure has a significantly positive impact on the quality of regional economic

development. The mechanism underlying the effect of environmental regulations on the quality

of economic development is mainly the transformation and upgrading of the industrial structure.

Reasonable environmental regulations can motivate enterprises to transform and upgrade. Highly

polluting enterprises are eliminated through the survival of the fittest mechanism, and social

resources are transferred to clean technology industries. This promotes the transfer of resources

from the primary and secondary industries to the tertiary industry, optimizes the industrial

structure, and promotes high-quality economic development.

(3) Environmental regulations in provinces with below average HDI values have a positive impact

on the quality of regional economic development, but the effect is not significant at the 10%

level. This shows that environmental regulations play a minor role in determining economic

development quality. After the introduction of the cross-terms, environmental regulations and

industrial structure are found to have a negative impact on the quality of regional economic

development. Cross-terms between environmental regulation and industrial structure have

a significantly positive impact on the quality of regional economic development. Moreover,
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the mediating effect of the industrial structure on environmental regulations is greater in low

HDI regions than in high HDI regions. This shows that the mechanism underlying the effect

of environmental regulations on high-quality economic development is the industrial structure.

In addition, the current intensity of environmental regulations is insufficient, and the intensity of

environmental regulations should be increased.

In the process of economic development, with the endless emergence of environmental problems,

the upgrading of the industrial structure has gradually become an effective means of coordinating

environmental protection and economic growth. This article discusses the intermediary role of industrial

upgrading in the impact of environmental regulations on the quality of economic development, and

proposes the following recommendations and policies based on this discussion.

(1) Increase the intensity of environmental regulations by industry. The interaction between

environmental regulation adjustment and industrial structure upgrading can promote high-quality

economic development. However, the development of different industries is uneven, and the

direction of industrial structure adjustment is also different. For example, the manufacturing

industry needs to be adjusted from an extensive labor force development to a technology-intensive

development. Therefore, policymakers are required to refine environmental regulations by

industry and adopt environmental regulations that are most suitable for the development of

the industry. In addition, some high-polluting industries should formulate more stringent

environmental regulations and policies to help the industry cross the inflection point of

the U-shaped curve as soon as possible to promote high-quality economic development by

optimization and upgrading of the industrial structure.

(2) Local governments need to grasp the positive effects of environmental regulations on the

upgrading of industrial structure, and guide healthy competition in environmental regulations

among regions. Regional development in China is uneven, especially the economic development

between the eastern and western parts of the country. Local governments must take into account

the actual local conditions when formulating environmental regulations and policies. Regions

above the national average HDI should sum up their experience, and regions below the national

average HDI should strengthen environmental regulations. The local government should adjust

measures to local conditions, tilt resources to green development industries, vigorously introduce

technical talents, and gradually adjust the structure of pollution-intensive industries.

(3) Actively play the role of green technological innovation in promoting the upgrading of industrial

structure. Talent is the foundation of innovation. The Chinese government should vigorously

cultivate high-level green innovative talents, continuously invest in green innovative technologies,

and accelerate the advancement and rationalization of the industrial structure.

(4) Improve public awareness of environmental protection. Environmental protection is not an

individual’s business. It requires the economic participation of all sectors of society, and ordinary

people are also an important part of that. As consumers, we resolutely refuse to purchase goods

produced by highly polluting technologies. This can fundamentally increase the enthusiasm of

enterprises and enhance their environmental responsibility. At the same time, the government

also encourages institutional and technological innovation and strengthens the role of enterprises

as the main body and main force of technological innovation.

This article only studies the mediating effect of the industrial structure. The mechanism of

environmental regulation in the high-quality development of regional economy is complex, and the

path is extensive. We only studied the mediating effect of industrial structure, which has certain

limitations. In addition to upgrading the industrial structure, the technology spillover effect of FDI

may also affect the high-quality development of the regional economy. In the future, we can study the

effects of environmental regulation on the high-quality development of the regional economy when

FDI, technological innovation, and other factors are used as intermediary variables at the same time.
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In addition, China’s digital economy has developed rapidly in recent years. For the next research

direction, we can also consider the digital economy as an explained variable or mediating variable in

the study of high-quality development of the regional economy.
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