
Edited by

Distributed Systems
and Mobile Computing

Giovanni Viglietta

Printed Edition of the Special Issue Published in Information

www.mdpi.com/journal/information

Distributed Systems and
Mobile Computing

Distributed Systems and
Mobile Computing

Editor

Giovanni Viglietta

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Giovanni Viglietta

Japan Advanced Institute of

Science and Technology (JAIST)

Japan

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Information (ISSN 2078-2489) (available at: https://www.mdpi.com/journal/information/special

issues/distributed systems mobile computing).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-2842-7 (Hbk)

ISBN 978-3-0365-2843-4 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Distributed Systems and Mobile Computing” . ix

Matthew Connor, Othon Michail and Paul Spirakis

On the Distributed Construction of Stable Networks in Polylogarithmic Parallel Time
Reprinted from: Information 2021, 12, 254, doi:10.3390/info12060254 1

Mohammed Saleh Ali Muthanna, Ping Wang, Min Wei, Ahsan Rafiq
and Nteziriza Nkerabahizi Josbert

Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks
Reprinted from: Information 2021, 12, 76, doi:10.3390/info12020076 13

Pavan Poudel and Gokarna Sharma

Time-Optimal Gathering under Limited Visibility with One-Axis Agreement
Reprinted from: Information 2021, 12, 448, doi:10.3390/info12110448 33

Khaled Jawhar and Evangelos Kranakis

Robot Evacuation on a Line Assisted by a Bike
Reprinted from: Information 2021, 12, 28, doi:10.3390/info12010028 59

Huda Chuangpishit, Konstantinos Georgiou and Preeti Sharma

A Multi-Objective Optimization Problem on Evacuating 2 Robots from the Disk in the
Face-to-Face Model; Trade-Offs between Worst-Case and Average-Case Analysis
Reprinted from: Information 2020, 11, 506, doi:10.3390/info11110506 79

v

About the Editor

Giovanni Viglietta has been an Assistant Professor in the School of Information Science at
the Japan Advanced Institute of Science and Technology (JAIST) since 2018. He completed his
PhD in Computer Science at the University of Pisa (Italy) in 2013, and he obtained postdoctoral
fellowships from the University of Ottawa (Canada) and ETH Zurich (Switzerland) in 2013–2018.
His research is at the interface between Mathematics and Theoretical Computer Science; his interests
include Distributed Computing, Discrete and Computational Geometry, and Combinatorial Game
Theory. Throughout his career, he has made contributions to several research areas, including motion
planning for mobile robots, population protocols, programmable matter, computer vision, polyhedral
combinatorics, the mathematical analysis of games and puzzles, etc. Dr. Viglietta has collaborated
with several research teams from USA, Canada, Japan, France, The Netherlands, Italy, Mexico,
etc., and has published two book chapters and over 50 peer-reviewed articles in international
journals and conferences. In 2015, he was a recipient of the Best Paper Award at the 17th
International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS ’15)
for a paper on population protocols. He has been a member of the IEICE since 2021; he has been in
the Program or Organizing Committees of 11 international conferences and workshops, and has
been a referee or sub-referee for over 40 international journals and conferences.

vii

Preface to ”Distributed Systems and

Mobile Computing”

Recent years have seen rapid development of the field of Distributed Computing, whose

interest is the study of systems of autonomous computational entities with limited communication

capabilities. Since its first appearances in the 1960s and 1970s, in the context of concurrent processes in

early operating systems, Distributed Computing has become a rich and diverse branch of theoretical

computer science. Current applications are no longer limited to message-passing in concurrent

processes, but extend to wireless computer and sensor networks, the Internet of Things (IoT),

autonomous intelligent vehicles, swarms of mobile robots, programmable matter, crawlers on the

Web, molecular interactions, etc. Research in Distributed Computing is now at the interface between

graph theory, computational geometry, combinatorics, and control theory.

This book is aimed at specialists in computer science, mathematics, and engineering who are

interested in current research developments in two topical areas of Distributed Computing: network

construction and analysis, and motion planning for mobile robots. The volume includes five research

papers authored by some established world-class experts in modern Distributed Computing.

The first article is about the recently introduced model of network constructors: groups of

anonymous agents that interact randomly and have the ability to form connections. This behavior

naturally emerges in situations where the environment exhibits passive or adversarial dynamics,

while agents can actively modify the network structure; examples are found in molecular interactions,

which occur in dynamic solutions where proteins are nonetheless able to form stable bonds. The

article investigates the fundamental question of which families of networks can be stably constructed

in polylogarithmic parallel time, assuming the presence of a unique leader in the system.

The second article is concerned with improving quality of service in IoT networks. While

long-range communication offers several advantages in terms of flexibility and cost, ultra-dense IoT

networks employing these technologies experience a significant increase in traffic intensity. This is

mitigated by subdividing the network into clusters and selecting a structure that maximizes quality of

service, as measured under some mathematical models. Typical metrics are throughput and channel

capacity. This article formulates a mathematical model to estimate the expected throughput capacity

of a given clustering choice. It also develops clustering methods, which depend on the distribution

of end devices, achieving near-optimal throughput capacity.

The subject of the last three articles are mobile robots, which are autonomous entities capable of

sensing and moving through the environment. Typically, such robots are modeled as points moving

within a continuous geometric space, such as a line or a surface. The first of the three articles studies

the classic gathering problem, in which all robots in a large swarm, initially scattered across a plane,

are tasked with meeting at a common location. Agreeing on a gathering point is an important part of

the problem; in fact, the robots do not have the ability to send messages to each other, and they do

not have an explicit way to communicate. Another complicating factor is that robots have limited

visibility, and only see other robots within a certain range. The article proposes a time-optimal

gathering algorithm, assuming that all robots have compasses pointing in the same direction.

The two final articles deal with the evacuation problem, where two robots must locate an

unknown exit point within a given region, and reach it in the shortest possible time. The first article

studies the evacuation problem on a line, introducing a novel mechanic: the two robots share a single

device, called ”bike”, that can be used by only one robot at a time to move at greater speed. Two

ix

models of communication are considered: face-to-face, in which the robots can communicate only

when they physically meet, and wireless, in which they can always communicate instantaneously

and at any distance. The article proposes several evacuation algorithms for both communication

models, comparing their efficiency, and also discusses lower bounds.

The last article studies the evacuation problem on a disk in the face-to-face communication

model, which is the most common setting for this problem. This article introduces a multi-objective

version of the classical problem, where the robots must evacuate the disk within a specified time

while minimizing the average evacuation time. The latter requirement is equivalent to designing

a randomized algorithm with an optimal expected evacuation time. In addition to providing

several algorithms that achieve different tradeoffs between the two objective functions, the authors

introduce a new systematic method for performing both worst-case and average-case analysis for any

evacuation algorithm that admits an analytic description. The method is then applied to previously

known algorithms, as well as to the new algorithms proposed in this article.

I would like to thank MDPI, especially in the person of Managing Editor Amanda Liu, for giving

me the opportunity to edit this book and for assisting me throughout the process.

Giovanni Viglietta

Editor

x

 information

Article

On the Distributed Construction of Stable Networks in
Polylogarithmic Parallel Time

Matthew Connor 1, Othon Michail 1 and Paul Spirakis 1,2,*

Citation: Connor, M.; Michail, O.;

Spirakis, P. On the Distributed

Construction of Stable Networks in

Polylogarithmic Parallel Time.

Information 2021, 12, 254. https://

doi.org/10.3390/info12060254

Academic Editor: Giovanni Viglietta

Received: 1 May 2021

Accepted: 15 June 2021

Published: 19 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK;
M.Connor3@liverpool.ac.uk (M.C.); Othon.Michail@liverpool.ac.uk (O.M.)

2 Computer Engineering and Informatics Department, University of Patras, 265 04 Patras, Greece
* Correspondence: P.Spirakis@liverpool.ac.uk

Abstract: We study the class of networks, which can be created in polylogarithmic parallel time by
network constructors: groups of anonymous agents that interact randomly under a uniform random
scheduler with the ability to form connections between each other. Starting from an empty network,
the goal is to construct a stable network that belongs to a given family. We prove that the class of
trees where each node has any k ≥ 2 children can be constructed in O(log n) parallel time with
high probability. We show that constructing networks that are k-regular is Ω(n) time, but a minimal
relaxation to (l, k)-regular networks, where l = k − 1, can be constructed in polylogarithmic parallel
time for any fixed k, where k > 2. We further demonstrate that when the finite-state assumption is
relaxed and k is allowed to grow with n, then k = log log n acts as a threshold above which network
construction is, again, polynomial time. We use this to provide a partial characterisation of the class
of polylogarithmic time network constructors.

Keywords: population protocol; distributed network construction; polylogarithmic time protocol;
spanning tree; regular network; partial characterisation

1. Introduction

Passively dynamic networks are an important type of dynamic network in which the
network dynamics are external to the algorithm and are a property of the environment in
which a given system operates. Wireless sensor networks in which individual sensors are
carried by autonomous entities, such as animals, or are deployed in a dynamic environment,
such as the flow of a river, are examples of passively dynamic networks. In terms of
modelling such systems, the network dynamics are usually assumed to be controlled by
an adversary scheduler who has exclusive control over the interaction or communication
sequence among the computational entities.

One line of research assumes the scheduler to be fair in the sense that it can forever
conceal potentially reachable configurations of the system. This sub-type of passively
dynamic networks are known as population protocols and were introduced in the seminal
paper of Angluin et al. [1]. A type of fair scheduler, which is typically assumed when the
running time of protocols is to be analysed, is the uniform random scheduler, which in every
discrete step, selects equiprobably a pair of entities to interact from all permissible pairs
of entities. Traditionally, the population protocols literature considers extremely weak
entities and the goal is to reveal the computational possibilities and limitations under such
a challenging interaction scheme. Recent progress has highlighted the interesting trade-offs
between local space of the entities and the running time of protocols, showing, among
other things that very fast running times (where fast is, here, considered to be anything
growing as polylog(n), n being the total number of entities in the system) can be achieved
for a wide range of basic distributed tasks if the entities are equipped with as few states as
polylog(n). Alistarh and Gelashvili [2] also proposed the first sub-linear leader election
protocol, which stabilises in O(log3 n) parallel time, assuming O(log3 n) states at each

Information 2021, 12, 254. https://doi.org/10.3390/info12060254 https://www.mdpi.com/journal/information

1

Information 2021, 12, 254

agent. Gasieniec and Stachowiak [3] designed a space optimal (O(log log n) states) leader
election protocol, which stabilises in O(log2 n) parallel time. General characterisations,
including upper and lower bounds of the trade-offs between time and space in population
protocols, are provided in [4]. Doty et al. [5] showed that a state count of O(n60) enables
fast and exact population counting.

Another line considers worst-case adversary schedulers, which may even be aware of
the protocol and try to optimise against it. There, the entities are typically assumed to be
powerful, such as processors of traditional distributed systems, and the only restrictions
imposed on the scheduler are instantaneous or temporal connectivity restrictions, which
essentially do not allow the scheduler to forever block communication between any two
parts of the system. This was initiated by O’Dell and Wattenhofer [6] for the asynchronous
case, and then the synchronous case was extensively studied in a series of papers by
Kuhn et al. [7]. Michail et al. [8] extended this to the case of possibly disconnected dynamic
networks in which connectivity is only guaranteed in a temporal sense.

The other main type of dynamic networks, with respect to who controls the changes
in the network topology, are actively dynamic networks. In such networks, the algorithm
is able to either implicitly change the sequence of interactions by controlling the mobility
of the entities or explicitly modify the network structure by creating and destroying
communication links at will. This is, for example, the subject of the area of overlay network
construction [9–12]; very recently, Michail et al. introduced a fully distributed model for
computation and reconfiguration in actively dynamic networks [13].

An interesting alternative family of dynamic networks rises when one considers a
mixture of the passive network dynamics of the environment and the active dynamics
resulting from an algorithm that can partially control the network changes or that can fix
network structures that the environment is unable to affect. This is naturally motivated
by molecular interactions where, for example, proteins can bind to each other, forming
structures and maintaining their stability despite the dynamicity of the solution in which
they reside. Michail and Spirakis [14] introduced and studied such an abstract model of
distributed network construction, called the network constructors model, where the network
dynamicity is the same as in population protocols but now the finite-state entities can
additionally activate and deactivate pairwise connections upon their interactions. It was
shown that very complex global networks can be formed stably, despite the dynamicity of
the environment. Then, Michail [15] studied a geometric variant of network constructors
in which the entities can only form geometrically constrained shapes in 2D or 3D space.
Another interesting hybrid dynamic network model is the one by Gmyr et al. [16] in which
the entities have partial control over the connections of an otherwise worst-case passively
dynamic network, following the model of Kuhn et al. [7].

Our Approach

We investigate which families of networks can be stably constructed by a distributed
computing system in polylogarithmic parallel time. To our knowledge, this is the first
attempt made to approach this task.

Our protocols assume the existence of a leader node. A node x is a leader node if in the
initial configuration, all u ∈ V \ {x}, where V is the set of all nodes, are in state q0 and x is
in state s �= q0.

We first study the k-children spanning tree problem, where the goal is to construct
a tree where each node has, at most k ≥ 2, children. We show that it is possible to
solve this problem for any k in O(log n) time with high probability. We then show that
network constructors which create k-regular graphs necessarily take Ω(n) time. However,
with minimal relaxation to (k, k − 1)-regular networks, the problem can be solved for
any constant k ≥ 2 in polylogarithmic time. We examine this as a special case of the
(l, k)-Regular Network problem, where the goal is to construct a spanning network in which
every node has at least l < k and at most k connections, where 2 < k < n. We then
transition to experimental analysis of the protocol, which not only provides evidence of the

2

Information 2021, 12, 254

sharp contrast of the minimal relaxation but also reveals a threshold value for k, beyond
which the problem reverts to polynomial time. We use this knowledge to propose a first
partial characterisation of the set of polylogarithmic time network constructors. We leave
providing formal bounds as an open problem.

In Section 2, we formally define the model of network constructors and the network
construction problems that are considered in this work. In Section 3, we study the k-
children spanning tree problem and provide the lower bound for k-regular networks.
We then present a protocol for the (l, k)-regular network problem and our experimental
analysis, culminating in partial characterisation. In Section 4, we conclude and give further
research directions that are opened by our work.

2. Materials and Methods

2.1. The Model

Definition 1. A Network Constructor (NET) is a distributed protocol defined by a 4-tuple
(Q, q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is the initial node-state, Qout ⊆ Q is
the set of output node-states, and δ : Q × Q × {0, 1} → Q × Q × {0, 1} is the transition function.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a transition (or rule) and we define
δ1(a, b, c) = a′, δ2(a, b, c) = b′, and δ3(a, b, c) = c′. A transition (a, b, c) → (a′, b′, c′) is called
effective if x �= x′ for at least one x ∈ {a, b, c} and ineffective otherwise. When we present
the transition function of a protocol, we only present the effective transitions. Additionally,
we agree that the size of a protocol is the number of its states, i.e., |Q|.

The system consists of a population VI of n distributed processes (called nodes for the
rest of this paper). In the generic case, there is an underlying interaction graph GI = (VI , EI)
specifying the permissible interactions between the nodes. Interactions in this model are
always pairwise. In this work, GI is a complete undirected interaction graph, i.e., EI = {uv :
u, v ∈ VIand u �= v}, where uv = {u, v}. Initially, all nodes in VI are in the initial node-state
q0. A central assumption of the model is that edges have binary states. An edge in state 0 is
said to be inactive while an edge in state 1 is said to be active. All edges are initially inactive.
Execution of the protocol proceeds in discrete steps. In every step, a pair of nodes uv from
EI is selected by an adversary scheduler and these nodes interact and update their states and
the state of the edge joining them, according to the transition function δ.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1} specifying the state of each
node and each edge of the interaction graph. Let C and C′ be configurations, and let
u, υ be distinct nodes. We say that C goes to C′ via encounter e = uυ, denoted C e−→ C′,
if (C′(u), C′(v), C′(e)) = δ(C(u), C(v), C(e)) or (C′(v), C′(u), C′(e)) = δ(C(v), C(u), C(e))
and C′(z) = C(z), for all z ∈ (VI \ {u, v})∪ (EI \ {e}). We say that C′ is reachable in one step
from C, denoted C → C′, if C e−→ C′ for some encounter e ∈ EI . We say that C′ is reachable
from C and write C � C′, if there is a sequence of configurations C = C0, C1, . . . , Ct = C′,
such that Ci → Ci+1 for all i, 0 ≤ i < t.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . . , where C0
is an initial configuration and Ci → Ci+1, for all i ≥ 0. A fairness condition is imposed on
the adversary to ensure that the protocol makes progress. An infinite execution is fair if
for every pair of configurations C and C′ such that C → C′, if C occurs infinitely often in
the execution then so does C′. In what follows, every execution of a NET is, by definition,
considered to be fair.

We define the output of a configuration C as the graph G(C) = (V, E) where V = {u ∈
VI : C(u) ∈ Qout} and E = {uv : u, v ∈ V, u �= v, and C(uv) = 1}. In words, the output
graph of a configuration consists of those nodes that are in output states and those edges
between them that are active, i.e., the active subgraph induced by the nodes that are in
output states. The output of an execution C0, C1, . . . is said to stabilize (or converge) to a
graph G if there exists some step t ≥ 0 such that (abbreviated “s.t.” in several places)
G(Ci) = G for all i ≥ t, i.e., from step t and onwards, the output graph remains unchanged.
Every such configuration Ci, for i ≥ t is called output stable. The running time (or time

3

Information 2021, 12, 254

to convergence) of an execution is defined as the minimum, such as t (or ∞ if no such t
exists). Throughout the paper, whenever we study the running time of a NET, we assume
that interactions are chosen by a uniform random scheduler, which, in every step, selects
independently and uniformly at random one of the |EI | = n(n − 1)/2 possible interactions.
In this case, the running time becomes a random variable (abbreviated “r.v.” throughout)
X and our goal is to obtain bounds on the expectation E[X] of X. Note that the uniform
random scheduler is fair with probability 1.

In this work, “time” is treated as sequential in our analyses, i.e., a time step consists
of a single interaction selected by the scheduler. Such a sequential estimate can be easily
translated to some estimate of parallel time. For example, assuming that Θ(n) interactions
occur in parallel in every step, one could obtain an estimation of parallel time by dividing
sequential time by n. All results are given in parallel time.

Definition 2. We say that an execution of a NET on n nodes constructs a graph (or network) G, if
its output stabilises to a graph isomorphic to G.

Definition 3. We say that a protocol P constructs a graph language L, if in every execution P
constructs a graph G ∈ L and for all G, there exists an execution of P, which constructs G.

2.2. Problem Definitions

Here, we provide formal definitions for all of the classes of networks considered in
this paper.

k-Children Spanning Tree: The goal is to construct a spanning tree where each individual
element has at most k ∈ N children.
(l, k)-Regular Network: A spanning network where for any l, k ∈ N where l < k, elements
with degree d < l form a clique and all others have a degree of at least l and at most k.

2.3. Experimental Setup

We performed experiments with the goal of guiding a proof of the running time
necessary to solve the (l, k)-regular network problem. We learned that a formal proof
would be difficult, due to the reliance of random variables on the values of other random
variables, so we left this as an open problem. We then experimented with different values
of k to see what the effect would be, and discovered a running time threshold in the process.
All were implemented using C and compiled with GCC. All tests were repeated at least
five times per the value of n and the average number of time steps were taken as the result.
To terminate our experiments, we designed special stabilisation conditions.

3. Results

3.1. Polylogarithmic Time Protocols for k-Children Spanning Trees

In this section, we study the complexity of the k-Children Spanning Tree problem. We
give a protocol (Algorithm 1) and show that it has a running time of O(log n) parallel time
with high probability.

Algorithm 1 k-Slot protocol

Q = {F, L0, L1, . . . , Lk, O0, O1, . . . , Ok}
δ:

(Lx, F, 0) → (Lx+1, O0, 1) for x < k
(Oy, F, 0) → (Oy+1, O0, 1) for y < k

In the above protocol, the F state corresponds to being a node, which is not a member
of the tree. Li corresponds to the leader node, which acts as the root of the tree, and Oi to
non-leader nodes in the tree, where i represents the number of children of a given node.

4

Information 2021, 12, 254

We assume that for every execution of Algorithm 1 on a population P of n nodes, n − 1
nodes initialise to the state F and one node initialises to the state L0.

We begin by proving that Algorithm 1 stably constructs the graph language
Tk = {G|G is a rooted tree and ∀u ∈ P =⇒ Δ+(u) ≤ k}, where Δ+(u) is defined as
the number of children of the node u and k ≥ 2. We then show that this is accomplished in
O(log n) parallel time. Then, we show that this bound holds with high probability.

Lemma 1. Under Algorithm 1, the connected component S, defined as the leader node and all
nodes connected to the leader either directly or indirectly through some other nodes, is eventually
spanning.

Proof. We observe that the number of open slots o is initially k. o is non-decreasing, as
every increase in Δ+(u) for some u necessarily increases |V(S)|. Since there are always
open slots available, every unconnected node is guaranteed to be able to connect to S at
some point. Therefore, when S stabilises, it contains all u ∈ P.

Lemma 2. For all executions of Algorithm 1 on the population P of n nodes, it stabilises to some
G ∈ Tk where |V(G)| = n.

Proof. We prove this via an induction on the connected component S. For the base case,
there is one node in the state L0. This is trivially a member of Tk, as no connections
have formed yet. We now assume that there is a connected component of size |S|. For a
connected component of size |S|+ 1, an unconnected node u ∈ V \ S in the state F must
connect to S at some node x ∈ S. By Lemma 1, such a node must exist. If the node x
has two children, it is in the state O2 or L2, as for all nodes in states Oi and Lj, the i and j
correspond to the number of children of those nodes. Since there are no defined transitions
from these states, no u can connect to x. Therefore, S remains a tree and G(S) ∈ Tk.

Lemma 3. For all G ∈ Tk, there is an execution of Algorithm 1, which stabilises on G when
starting on a population P of size n = |V(G)|.

Proof. We first set the value of k to the maximum number of connections in any node
in the tree. Let the leader node l in the population P correspond to the root r of G. If
r has i children, connect i nodes in the state F to l. For each child c of the leader node,
let it correspond to a child d of r. If d has j children, connect j nodes in the state F to c.
Continuing this process for all nodes u ∈ G, the result is a spanning tree where all nodes in
the tree are equivalent to some u ∈ G.

Theorem 1. Algorithm 1 stably constructs the graph language Tk in O(log n) time w.h.p.

Proof. By application of the Lemmas above.

We now show that Algorithm 1 constructs Tk in O(log n) time w.h.p by considering
executions where k = 2. Executions where k > 2 are necessarily faster, as they have more
open slots per node.

Lemma 4. Let G ∈ T2 of n nodes. The number of available nodes α(G) = �|G|/2
+ 1.

Proof. Observe that for G, every second node that connects to G keeps the number of
available nodes the same. This is because two new nodes must become children of the
same node, and the second new node takes the second slot. For the base case, n = 1 and
α = 0 + 1 = 1. We divide n = n + 1 into two cases: n is even and n is odd. If n is even, then
α = n/2 + 1. Then, for n = n + 1, α = �n + 1/2
+ 1 = n/2 + 1. This corresponds to the
observation earlier that every other node (i.e., n is odd) should not increase α. If n is odd,

5

Information 2021, 12, 254

then α = �n/2
+ 1 = (n − 1)/2 + 1. Then, for n = n + 1, α = �n + 1/2
+ 1 = n/2 + 1
as expected.

Remark 1. At any point during the execution of Algorithm 1, for the connected component S,
G(S) ∈ α(G).

Let the probablistic process P be an execution of Algorithm 1 for k = 2 with the
following scheduling restriction: If at any point during the execution of Algorithm 1 two
nodes x and y have exactly one child, disconnect that child of x or y, which is a leaf, and
connect it to the other node. If both are leaves, pick one at random.

Lemma 5. The expected time to convergence of the probabalistic process P is O(log n).

Proof. Let the r.v. X be the number of steps until convergence. A step is successful if any
unconnected node joins the connected component S. An epoch i is the period beginning
with the step following the (i − 1)st success and ending with the step at which the ith
success occurs. The r.v. Xi, 1 ≤ i ≤ n − 1 is the number of steps in epoch i. pi is the
probability of success at any step in epoch i. This is defined as pi =

2α(Ti)(n−i)
n(n−1) , where Ti is

the graph of the strongly connected component G(S) in epoch i.
It follows that E[Xi] = 1/pi =

n(n−1)
2α(Ti)(n−i) . By linearity of expectation we have the

following:

E[X] = E

[
n−1

∑
i=1

Xi

]
=

n−1

∑
i=1

E[Xi] =
n−1

∑
i=1

n(n − 1)
2α(Ti)(n − i)

=
n(n − 1)

2

n−1

∑
i=1

1
α(Ti)(n − i)

=
n(n − 1)

2

n−1

∑
i=1

1
(�i/2
+ 1)(n − i)

≤ n(n − 1)
2

n−1

∑
i=1

1
(i/2)(n − i)

= n(n − 1)
n−1

∑
i=1

1
i(n − i)

= n(n − 1)
n−1

∑
i=1

1
n

(
1
i
+

1
n − i

)

= (n − 1)

[
n−1

∑
i=1

1
i
+

n−1

∑
i=1

1
n − i

]
= (n − 1)2Hn−1 = 2(n − 1)[ln(n − 1) + O(1)]

= O(n log n)

Lemma 6. The running time of P is the worst case running time for Algorithm 1.

Proof. Assume that there is an execution of A, which has an slower running time than
P. Such an execution must have a lower number of available nodes at some point than
P. If the execution simulates the scheduling restriction of P, then it cannot be slower than
P. If the execution does not simulate the restriction, then at some point, two nodes have
two leaves and one is not shifted to the other. The number of available nodes is, therefore,
greater by one and the expected running time is faster than P. Therefore, any execution of
A must be at least as fast as P.

Theorem 2. The expected running time of Algorithm 1 is upper bounded by the O(log n) running
time of P.

Proof. By application of Lemmas 5 and 6.

Lemma 7. For each time step in Algorithm 1, the probability of any node in the set of unconnected
nodes U connecting to the tree is at least 2 |U|

n .

6

Information 2021, 12, 254

Proof. Assume that there are |S| nodes, which are connected to the tree. The probability of
a node x ∈ U connecting to the tree is |S||U|

n2 . If there are at least n/2 nodes connected to the

tree, then |S||U|
n2 ≥ 1/2|U|

n2 = 2 |U|
n . The case where there are less than n/2 nodes connected

to the tree is symmetrical, meaning that same process happens in reverse for 1 ≤ n ≤ n/2.
Therefore, 2 |U|

n is a lower bound of the probability of connecting to the tree.

Lemma 8. For Algorithm 1, the number of time steps until convergence is O(log n) w.h.p.

Proof. Consider the scenario where m balls are being thrown into n bins. If Z is the random
variable for the number of empty bins, then E[Z] = n(1 − 1/n)m. The probability of a ball
entering an empty bin is e/n; e is the number of empty bins. For our protocol scenario,
balls are time steps and bins are unconnected nodes. So m = an ln n is the number of
balls, and n is the number of bins. Since the probabilty of success in the balls and bins
scenario is lower than 2 |U|

n when |U| = e, we can use it as a bound for the probability of
success. Therefore, E[Z] = n(1 − 1/n)an ln n ≤ ne−an ln n = n1−a. Using Markov’s inequality,
E[Z ≥ 1] ≤ E[Z] = 1

na . Since a can be set arbitrarly high, convergence is O(log n) w.h.p.

Theorem 3. Algorithm 1 stably constructs the graph language Tk in O(log n) time w.h.p.

Proof. By application of Lemmas 7 and 8.

3.2. Time Thresholds for (l, k)-Regular Networks

In this section, we present our solution for the (l, k)-Regular Network problem for
l = k − 1, the Cross-edges Tree protocol. We first show that a k-regular network, defined
as a network where each node has a degree exactly equal to k, cannot be constructed in
polylogarithmic time. We then show via experimental analysis that this impossibility result
does not hold for the minimal relaxation of (l, k)-Regular Networks when k is a constant
and l = k − 1. Finally, we demonstrate that when k exceeds the threshold of log log n, the
protocol itself is no longer in the polylogarithmic time class. Note that from now on, k
refers to the degree of a node, not the number of children.

Theorem 4. Any protocol which constructs a k-regular network where k < n has a running time
of Ω(n).

Proof. Consider the population P of size n, using a generic k-regular network construction
protocol X. The number of connections is limited by k to kn

2 , as this is less than the n(n−1)
2

maximum for n nodes. The population initially has kn network connection entry points,
which can be used to make new connections and which decrease by 2 for every connection
made. Since (kn) ≤ n(n − 1), at some point in the execution, there must be two nodes with
1 unused entry point each. Using these points and stabilising the protocol means that both
nodes must be selected by the scheduler at the same time, an event with probability 1

n2 .
Since an event with probability 1

n2 is unavoidable, the protocol X must construct a network
in at least Ω(n2) interactions.

In light of the above impossiblity, we now give our protocol (Algorithm 2) for the
(l, k)-Regular Network problem when l = k − 1. Note that the leader node has at most
two connections; this is to guarantee that there is no scenario where a partial network with
unconnected nodes cannot connect to forms.

7

Information 2021, 12, 254

Algorithm 2 Cross-edges Tree

Q = {F, L0, L1, . . . , Lk, O0, O1, . . . , Ok}
δ:

(Lx, F, 0) → (Lx+1, O0, 1) for x < k
(Oy, F, 0) → (Oy+1, O0, 1) for y < k

(Lx, Oy, 0) → (Lx+1, Oy+1, 1) for x, y < (k − 1)

(Oy, Oz, 0) → (Oy+1, Oz+1, 1) for y, z < (k − 1)

The Cross-edges Tree protocol adds additional rules, allowing leaves within a tree to
connect to other nodes within the tree as though they are candidates for becoming children.

Stabilisation Conditions of the (l, k)-Regular Network

To implement a simulator that can provide results efficiently, we had to define and
prove conditions which, when fulfilled, ensure that the protocol is stable.

Lemma 9. For n > 3, protocol 2 stabilises with at least 1 node, which is not in the state of k in the
connected tree.

Proof. If all nodes in the connected tree are in the Ok state, then at some point, two Ok−1
nodes would have to change to the Ok state, which is against the rules of the protocol.

Corollary 1. Due to the presence of nodes in a state s �= Ok and the fairness condition, Algorithm 2
never stabilises with isolated nodes, defined as nodes which are not part of the main tree structure.

Lemma 10. For n > 3, protocol 2 stabilises with, at most, k − 2 nodes in the states {Ox|x < k − 1}.

Proof. Assume that there are k − 1 nodes in the states Ox. If this is the case, there must be
some node that is connected to the tree and every other node with any state Ox; otherwise,
the protocol is not stable. This node must have the state Ok−1, which is not in Ox. Therefore,
the number of nodes in Ox is, at most, k − 2.

Theorem 5. For n > k > 3, at most, n − k − 2 nodes have a degree of either k or k − 1 and
l ≤ k − 2 nodes are of a degree of at least 1 and at most k − 2.

Proof. All nodes with degree x < k − 1 must be members of a clique; otherwise, the
protocol is not stable. By Lemma 12, we know that there are no isolated nodes, or nodes
with degree d < 1. By Lemma 13, we know that there are, at most, k − 2 nodes of degree
less than k − 1, and that the maximum state within the clique is Ok−2. Therefore, the
theorem must hold.

We now provide the results of simulating the protocol for k = 3. We used the same
conditions as in the other running time experiments, executing the protocol 10 times for
each population size n, where n = 10 + 6t, where t is the test number from 0 to 199. The
results are given in Figure 1.

8

Information 2021, 12, 254

Figure 1. Running time of the protocol for k = 3, compared with a polylogarithmic function.

The running time is difficult to prove formally. This is because random variables
are used, which represent the number of nodes with a given degree in a given time step.
Their values depend on the values of all random variables in the previous time step. We,
therefore, turn our focus to experiments based on measuring the impact of the value of k
on the running time of the protocol.

We measured the running time of our Cross-edges Tree protocol for different network
sizes. The results below (Figure 2) show that a higher value of k has little effect on the
running time until k exceeds log log n.

Figure 2. The effect of k on the running time of the protocol.

To investigate why the protocol slows down dramatically after this point, we ran
experiments where we stored the number of nodes with specific degrees in each time step.
We executed the protocol with 200 nodes, and ran 10 iterations. These degrees were set to
0, 1, k/2, k − 1, and k. We collected results for k = log log n (Figure 3), k = log n (Figure 4),

9

Information 2021, 12, 254

and k =
√

n (Figure 5). The results show that the cause seems to be a large reduction in the
number of nodes, which are in the k − 1 state as k grows as a fraction of n. They suggest
that when the fraction of k − 1 nodes is below some fraction between 1/4 and 1/8 of the
total, the protocol slows down and enters the class of protocols with polynomial time.

Figure 3. The results for k = log log n. Note the difference in the axes labels.

Figure 4. The results for k = log n. Here, we see the beginning of a leftwards shift of the lines, and an
upwards shift in d = k.

10

Information 2021, 12, 254

Figure 5. The results for k =
√

n. Both shifts are more intense.

4. Conclusions

Population protocols have a history of being applied in the context of physical de-
vices [17]. However, to our knowledge, there has yet to be an attempt to apply the network
constructors model to such a setting. For a cluster of devices, as in an Internet of Things
style network [18], it may be desirable to form networks in order to solve problems in a
very time-sensitive and highly dynamic context. This should typically be achieved without
each device being aware of the size of the network or what specific devices the others are
connected to. Network constructors and, thus, the protocols presented in this work, may
be may be applicable to this, as they help define the class of networks which could be
constructed in such a context. Works on social networks and social communities are a pos-
sible application domain for our models (see, e.g., [19]). It would be interesting to further
investigate the potential applicability of population protocols and network constructors in
data streaming applications; a preliminary attempt to do this was attempted by [20].

There are a number of open problems to be addressed. The most important is to
develop an exact characterisation of the class of networks which can be constructed in
polylogarthimic parallel time. However, there are other, more immediate problems. For
example, we have yet to investigate the effect that widening the difference between k and
l will have on the protocol. We speculate that this will result in a faster running time in
exchange for less uniformity within the resulting spanning network. We also speculated
about the possibilities of using a leaderless version of our Cross-tree Protocol. We believe
that such a protocol may offer a trade off between the running time and the possibility of
forming networks, which are spanning, depending on the values of k and l.

Author Contributions: Conceptualization, O.M.; Data curation, M.C.; Formal analysis, M.C. and
O.M.; Investigation, M.C.; Methodology, O.M.; Software, M.C.; Supervision, O.M.; Writing—original
draft, M.C.; Writing—review and editing, M.C., O.M. and P.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by an EPSRC Doctoral Training Studentship.

Data Availability Statement: We did not use any real data from data sources.

Conflicts of Interest: The authors declare no conflict of interest.

11

Information 2021, 12, 254

References

1. Angluin, D.; Aspnes, J.; Diamadi, Z.; Fischer, M.J.; Peralta, R. Computation in networks of passively mobile finite-state sensors.
Distrib. Comput. 2006, 18, 235–253. [CrossRef]

2. Dan Alistarh, R.G. Polylogarithmic-time leader election in population protocols. In Proceedings of the 42nd International
Colloquium on Automata, Languages, and Programming (ICALP), Kyoto, Japan, 6–10 July 2015; pp. 479–491.

3. Gasieniec, L.; Stachowiak, G. Fast Space Optimal Leader Election in Population Protocols. In Proceedings of the 2018 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA18), New Orleans, LA, USA, 7–10 January 2018; pp. 2653–2667.

4. Alistarh, D.; Aspnes, J.; Eisenstat, D.; Gelashvili, R.; Rivest, R.L. Time-space trade-offs in population protocols. In Proceedings of
the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA17), Barcelona, Spain, 16–19 January 2017; pp. 2560–2579.

5. Doty, D.; Eftekhari, M.; Michail, O.; Spirakis, P.G.; Theofilatos, M. Brief Announcement: Exact Size Counting in Uniform Population
Protocols in Nearly Logarithmic Time. In Proceedings of the 32nd International Symposium on Distributed Computing (DISC),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, New Orleans, LA, USA, 15–19 October 2018; pp. 46:1–46:3. [CrossRef]

6. O’Dell, R.; Wattenhofer, R. Information dissemination in highly dynamic graphs. In Proceedings of the 2005 Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), Cologne, Germany, 2 September 2005; pp. 104–110. [CrossRef]

7. Kuhn, F.; Lynch, N.; Oshman, R. Distributed computation in dynamic networks. In Proceedings of the Forty-Second ACM
Symposium on Theory of Computing (STOC), Cambridge, MA, USA, 5–8 June 2010; pp. 513–522.

8. Michail, O.; Chatzigiannakis, I.; Spirakis, P.G. Causality, Influence, and Computation in Possibly Disconnected Synchronous
Dynamic Networks. In Proceedings of the 16th International Conference on Principles of Distributed Systems (OPODIS), Rome,
Italy, 18–20 December 2012; pp. 269–283.

9. Angluin, D.; Aspnes, J.; Chen, J.; Wu, Y.; Yin, Y. Fast Construction of Overlay Networks. In Proceedings of the 17th ACM
symposium on Parallelism in Algorithms and Architectures (SPAA), Las Vegas, NV, USA, 18–20 July 2005; pp. 145–154.

10. Aspnes, J.; Shah, G. Skip Graphs. ACM Trans. Algorithms (TALG) 2007, 3, 37. [CrossRef]
11. Aspnes, J.; Wu, Y. O(log n)-Time Overlay Network Construction from Graphs with Out-Degree 1. In Proceedings of the 11th

International Conference on Principles of Distributed Systems (OPODIS), Guadeloupe, France, 17–20 December 2007; pp. 286–300.
12. Götte, T.; Hinnenthal, K.; Scheideler, C. Faster Construction of Overlay Networks. In Proceedings of the 26th International

Colloquium on Structural Information and Communication Complexity (SIROCCO), L’Aquila, Italy, 1–4 July 2019; pp. 262–276.
13. Michail, O.; Skretas, G.; Spirakis, P.G. Distributed Computation and Reconfiguration in Actively Dynamic Networks. In

Proceedings of the 39th ACM Symposium on Principles of Distributed Computing (PODC), Virtual Event, Italy, 3–7 August 2020;
pp. 448–457.

14. Michail, O.; Spirakis, P.G. Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 2016,
29, 207–237. [CrossRef]

15. Michail, O. Terminating distributed construction of shapes and patterns in a fair solution of automata. Distrib. Comput. 2018,
31, 343–365. [CrossRef]

16. Gmyr, R.; Hinnenthal, K.; Scheideler, C.; Sohler, C. Distributed Monitoring of Network Properties: The Power of Hybrid
Networks. In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), Warsaw,
Poland, 10–14 July 2017; pp. 137:1–137:15.

17. Becchetti, L.; Bergamini, L.; Ficarola, F.; Salvatore, F.; Vitaletti, A. First Experiences with the Implementation and Evaluation of
Population Protocols on Physical Devices. In Proceedings of the 2012 IEEE International Conference on Green Computing and
Communications, Besancon, France, 20–23 November 2012; pp. 335–342. [CrossRef]

18. Atzori, L.; Lera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
19. Holub, S.; Khymytsia, N.; Holub, M.; Fedushko, S. The Intelligent Monitoring of Messages on Social Networks. CEUR Workshop

Proc. 2020, 2616, 308–317.
20. Àlvarez, C.; Chatzigiannakis, I.; Duch, A.; Gabarró, J.; Michail, O.; Serna, M.; Spirakis, P.G. Computational models for networks

of tiny artifacts: A survey. Comput. Sci. Rev. 2011, 5, 7–25. [CrossRef]

12

 information

Article

Clustering Optimization of LoRa Networks for Perturbed
Ultra-Dense IoT Networks

Mohammed Saleh Ali Muthanna 1,2, Ping Wang 3, Min Wei 3,*, Ahsan Rafiq 1 and Nteziriza Nkerabahizi Josbert 1

Citation: Muthanna, M.S.A.; Wang,

P.; Wei, M.; Rafiq, A.; Josbert, N.N.

Clustering Optimization of LoRa

Networks for Perturbed Ultra-Dense

IoT Networks. Information 2021, 12,

76. https://doi.org/10.3390/

info12020076

Academic Editor: Giovanni Viglietta

Received: 25 January 2021

Accepted: 8 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; muthanna@mail.ru (M.S.A.M.); L201710003@stu.cqupt.edu.cn (A.R.);
L201710007@stu.cqupt.edu.cn (N.N.J.)

2 Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”,
197022 Saint Petersburg, Russia

3 School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
wangping@cqupt.edu.cn

* Correspondence: weimin@cqupt.edu.cn

Abstract: Long Range (LoRa) communication is widely adapted in long-range Internet of Things
(IoT) applications. LoRa is one of the powerful technologies of Low Power Wide Area Networking
(LPWAN) standards designed for IoT applications. Enormous IoT applications lead to massive traffic
results, which affect the entire network’s operation by decreasing the quality of service (QoS) and
minimizing the throughput and capacity of the LoRa network. To this end, this paper proposes a
novel cluster throughput model of the throughput distribution function in a cluster to estimate the
expected value of the throughput capacity. This paper develops two main clustering algorithms
using dense LoRa-based IoT networks that allow clustering of end devices according to the criterion
of maximum served traffic. The algorithms are built based on two-common methods, K-means and
FOREL. In contrast to existing methods, the developed method provides the maximum value of
served traffic in a cluster. Results reveal that our proposed cluster throughput model obtained a
higher average throughput value by using a normal distribution than a uniform distribution.

Keywords: Internet of Things; dense networks; LPWAN; LoRa; clustering; throughput; capacity; QoS

1. Introduction

Currently, in the era of the IoT [1], communication technologies have significantly
expanded to reach a variety of industries. Consequently, providing low-power and long-
distance communication networks has become an essential component of many appli-
cations within smart cities, such as waste management [2], supply chain [3], Industrial
Internet of Things [4], smart metering [5], and traffic control. Low Power Wide Area
Networking (LPWAN) is an effective way for such applications to overcome these cost,
energy, and complexity challenges, especially when such applications require covering
large geographic areas. One of the attracted extensive attentions for LPWAN technologies
today is Long Range (LoRa) [6]. The communication model of LoRa can be considered a
better alternative for short-range and cellular communications in different applications and
will offer notable features, such as low data rates, long-range, and low power consumption.
The LoRa technology provides a high flexibility network by introducing long-range com-
munication at low cost and communication specifications (e.g., bit rate, throughput, and
delay). Network flexibility is an important issue that is related to LoRa network design [7].

However, a dense number of deployed devices in a large geographical area lead to
a significant increase in subscriber traffic intensity. The demand from large retailers is
growing to offer enhanced quality of services (QoS) and channel capacity, which is difficult
for network operators [8]. The main trends in the development of LoRa networks consist
of the rise of LoRa capacity and the number of users served.

Information 2021, 12, 76. https://doi.org/10.3390/info12020076 https://www.mdpi.com/journal/information

13

Information 2021, 12, 76

In some cases, these processes lead to a decrease in the QoS requirements. To ensure
the required QoS in LoRa networks’ design, it is necessary to resort to various methods
to guarantee the sufficiency of the relevant resources, such as reducing the service area of
LoRa gateways, increasing their number, and maximizing the throughput and capacity
of the LoRa networks [9]. It can be shown that the previous problems are highly related
and simultaneously affect QoS in LoRa networks performance. These problems should be
solved considering the peculiarities of the placement of end devices in the service area,
possibly considering their movements. When organizing LoRa end devices connection, it
is required to solve the problem of ensuring QoS traffic within the cluster and between
network elements and certain elements of clusters.

The clustering methods consist of selecting a certain number of clusters and selecting
a structure that provides the maximum possible traffic QoS. The clustering problem’s
solution is similar to the optimization problem’s solution in which a certain metric is
minimized (maximized). Such a metric may be throughput and channel capacity.

This paper analyzes the channel capacity between the cluster member (CM) and the
cluster head (CH). We develop a cluster throughput model to estimate the expected value
of the throughput capacity and develop clustering methods to make a rational choice of the
algorithm depending on the distribution of end devices, which allows obtaining a cluster
throughput capacity value close to the maximum. The main contributions of this paper are
summarized as follows:

• The channel capacity analysis between the CM and the CH showed its dependence on
the distribution of end devices. Remarkably, the results have shown that a larger average
throughput is achieved with a normal distribution than with a uniform distribution;

• A cluster throughput model has been developed to estimate the throughput capacity’s
expected value when forming the cluster of end devices, which allows using it in the
end devices’ clustering problems;

• Clustering methods have been developed to make a rational choice of the algorithm de-
pending on the distribution of end nodes, which allows obtaining a cluster throughput
capacity value close to the maximum.

The rest of the paper is presented in several sections: Section 2 presents the related
work and motivation. The LoRa technology overview is detailed in Section 3. Section 4
illustrates the problem statement. Section 5 presents the system description. Section 6
presents the clustering methods. Evaluation results based on two-common methods, K-
means and FOREL, are presented in Section 7. Section 8 offers the discussion, and lastly, in
Section 9, we make a conclusion and discuss future work.

2. Related Work and Motivation

Recent works on LoRa and Long Rang Wide Area Networking (LoRaWAN) have
mainly dealt with LoRa performance evaluation in terms of capability [10,11], perfor-
mance [12], lifetime [13], latency [14], and parameter setting [15,16] for industrial monitor-
ing applications. For example, in [7], a temperature monitoring application is proposed.
Dynamic Line Rating (DLR) for an Overhead Transmission Line (OTL) system is monitored
as it relies on the weather, temperature, and inclination measurements. Here, OTL moni-
toring is carried by a vision system, which is further transmitted by LoRa communication.
Communication is carried between the vision system and supervisory control and data
acquisition (SCADA) system. This paper illustrates that QoS has a vital function in the
received data reliability.

The paper in [17] aims to determine the scalability of the LoRa technology. For that,
a high density of sensors is deployed in IoT environments for smart city applications.
When the network scale is increased, the data transmission system has been affected.
This paper finalizes that the data transmission system can be improved by focusing on
optimal transmission policies, including the spreading factor (SF) allocation. Significantly,
SF allocation is affected by distance with gateway and other factors. With an increase in
network scale, a single gateway fails to ensure better data transmission efficiency.

14

Information 2021, 12, 76

The work in [18] constructs an infrastructure that is capable of tracking and moni-
toring the environmental system. LoRa technology is used for tracking applications to
overcome energy-related limitations. As this system is planned to be implemented in
coastal applications, multiple gateways are deployed. With the multiple gateways, this
work attains the required level of connectivity and coverage in the network. Received
signal strength indicator (RSSI) is considered for SF allocation, and the data is encrypted
for security reasons.

The paper in [19] proposed an adaptive data rate (ADR) algorithm for improving
error performance in rough channels resulting in extending the range of the network,
the problem addressed by this paper to enhance the scalability, robustness, and fairness
between nodes of the network by reducing the number of the data messages in the up-
link direction as well as the medium access control (MAC) command messages in the
down-link direction by using ADR algorithm. ADR algorithm in this paper is effective in
stable channel conditions with a small-scale network, but the main motive of LoRa is in
highly variable conditions. Thus, ADR algorithm in this work does not include in large
complex networks.

To improve QoS in LoRa, the authors in [20] first derived the IoT node’s mathematical
model. From the mathematical model, the closed-form formula is derived to characterize
the node performance. Then, the performance is maximized by optimizing the performance
of IoT nodes. For formulating nodes performance, the Markov chain model is utilized.
Then, the optimal transmission policy is derived based on the mathematical model of the
node. The work in [20] considered both types of data, including normal data and emergency
data. For both data, performance is optimized by a genetic algorithm (GA) and simulated
annealing (SA) algorithm. Although normal and emergency types are considered, the same
fitness function is formulated for both types. However, different types of data require
different QoS levels, which is not achieved in this work. GA and SA update the parameters.
GA is complex in nature and difficult to handle scalable problems, while SA is very slow
and sensitive to even small changes in the input values. Thus, the optimal parameter
assignment for all packets by GA and SA is relatively tricky. Parameters are updated by
clustering algorithms, which are efficient since it learns the environment continuously.

Complementary to the presented related works, this paper focuses particularly on
throughput capacity in LoRa networks and provides a solution to maximize throughput
capacity value and build solutions to achieve the QoS requirements by developing cluster-
ing algorithms for distributing and managing LoRa gateways for smart city application
and IoT dense networks.

3. LoRa Technology Overview

In [21], the proprietary LoRa physical layer (PHY) technique is possessed via Semtech
Corporation. In [22], LoRa Alliance has specified LoRaWAN as the medium access control
(MAC) layer protocol. This section described more specific details of LoRa technology,
LoRaWAN, and the main characteristics in the following subsection.

3.1. LoRa Physical Layer

The LoRa modulation has several parameters: (i) spreading factor (SF); (ii) bandwidth
(BW); (iii) chirp spread spectrum (CSS); code rate (CR) [23]. In LoRa modulation, informa-
tion is transmitted in symbols, the length of which Ts depends on using (SF). Each symbol
is a sinusoidal signal, the frequency of which is cyclically shifted within a bandwidth (BW).

In LoRa modulation, the symbol duration Ts and bit rate (Rb) can be calculated as
following [24]:

Rb = SF ∗ BW
2SF ∗ CR, (1)

Ts(s) =
2SF

bw
, (2)

15

Information 2021, 12, 76

where SF refers to the spreading factor, and BW is bandwidth. The transmitted symbol rate
Rs is calculated as Rs(Symbol/ sec) = 1

Ts = bw
2SF . Thus, the chip rate Rc can be defined as

Rc(chips/ sec) = Rs ∗ 2SF, since, as we previously stated, Rc = bw.
LoRa modulation also comprises a variable error correction scheme that enhances the

signal transmission robustness at the expense of redundancy. Therefore, the data nominal
bit rate, Rb, can be defined as the following [23]:

Rb(bps) =
SF ∗ bw

2SF

(
4

4 + CR

)
, (3)

where CR is for error correction and equal to 4/5, 4/6, 4/7, and 4/8.
Another critical parameter is the receiver sensitivity, which indicates the lowest power

level of the received LoRa signal that the receiver can detect and demodulate. Based on
the LoRa Semtech designer’s guide, the receiver sensitivity of LoRa can be calculated as
ρ(dBm) = −174 + 10logBW + NF + SNR.

Where ρ is the receiver sensitivity, NF is the receiver’s noise figure, and SNR is the
signal-to-noise ratio of the received signal. Table 1 indicates the nominal bit rate and the
receiver sensitivity for the bandwidth of 125 kHz. For the values in Table 1, the maximum
communication range of the LoRa is around 10 km.

Table 1. Transmission speed and receiver sensitivity from spreading factor (SF).

Bandwidth (kHz) SF Nominal Bit Rate Rb (bps) Sensitivity (ρ)(dBm)

125 6 9375 −118
125 7 5469 −123
125 8 3125 −126
125 9 1758 −129
125 10 977 −132
125 11 537 −134
125 12 293 −137

As a LoRa network operates at a frequency of 868 MHz, bandwidth of 125 kHz, the
payload of 8 bytes, and a preamble of 6, the payload of 8 bytes, and a preamble of 6, the
number of symbols in the physical layer data block can be specified as following [24]:

pqyloadSymNb = 8 + max
(

ceil
(

8PL − 4SF + 28 + 16CRC − 20H
4(SF − 2DE)

)
(CR + 4), 0

)
, (4)

where ceil (x) maps to the smallest integer that is greater than the value of x, SF is the
spreading factor, CRC is the cyclic redundancy check, H is the header mode, DE is the data
rate, CR is the coding rate, and PL is the number of payload bytes of the physical layer
block and can be determined based on the payload of the application layer FRM as

PL = 12 + FRM

where FRM is the payload of the application layer.
CRC denotes the payload’s existence, and it is fixed to either 0 or 1 to refer to the off

and on statuses. The header mode is also fixed to either 0 or 1; H = 0, when the explicit
header mode is utilized, and H = 1 when the implicit header mode is authorized.

The total duration of the LoRa frame Tframe can be calculated of the sum of the
transmission time of the preamble Tpreamble and the payload Tpayload as the following:

Tframe = Tpreamble + Tpayload. (5)

The preamble time can be calculated as follows:

Tpreamble =
(

npreamble + 4, 25
)
∗ Ts, (6)

16

Information 2021, 12, 76

where npreamble is the programmable length of modem registers.
The payload duration can be calculated as follows:

Tpayload = payloadSymNb ∗ Ts. (7)

Summing up, the total frame duration can be calculated by adding both
Equations (6) and (7).

Tframe =
(

npreamble + 4, 25
)
∗ Ts + payloadSymNb ∗ Ts. (8)

Thus, the value of the frame duration changes with the different values of the spread-
ing factor. Table 2 indicates the different values of the up-link frame duration time at the
different values of the SF used by LoRa systems. Furthermore, Table 3 shows the same for
one confirmatory frame.

Table 2. Values of up-link frame duration at various values of SF used by Long Range (LoRa).

SF
bw

(kHz)
Ts

(ms)
npreamble

FRM
(byte)

PL
(byte)

H CRC DE CR
Payload-
SymNb

Tpreamble

(ms)
Tpayload

(ms)
TULframe

(ms)

6 125 0.51 6 8 20 0 1 0 1 48 5.25 24.48 29.73
7 125 1.02 6 8 20 0 1 0 1 43 10.5 43.86 54.36
8 125 2.05 6 8 20 0 1 0 1 38 20.99 77.9 98.89
9 125 4.1 6 8 20 0 1 0 1 33 41.98 135.3 177.28
10 125 8.19 6 8 20 0 1 0 1 33 83.97 270.27 354.24
11 125 16.38 6 8 20 0 1 0 1 28 167.94 458.64 626.58
12 125 32.77 6 8 20 0 1 0 1 28 335.87 917.56 1253.43

Table 3. Calculation of the transmission time of one confirmatory frame.

SF
bw

(kHz)
Ts

(ms)
npreamble

FRM
(byte)

PL
(byte)

H CRC DE CR
Payload-
SymNb

Tpreamble

(ms)
Tpay-load

(ms)
TULframe

(ms)

6 125 0.51 6 0 12 1 1 0 1 28 5.25 14.28 19.53
7 125 1.02 6 0 12 1 1 0 1 28 10.5 28.56 39.06
8 125 2.05 6 0 12 1 1 0 1 23 20.99 47.15 68.14
9 125 4.1 6 0 12 1 1 0 1 23 41.98 94.3 136.28
10 125 8.19 6 0 12 1 1 0 1 18 83.97 147.42 231.39
11 125 16.38 6 0 12 1 1 0 1 18 167.94 294.84 462.78
12 125 32.77 6 0 12 1 1 0 1 18 335.87 589.86 925.73

3.2. LoRaWAN MAC Layer

LoRaWAN is a network protocol designed for many LPWAN applications that use
unlicensed frequency bands for transmission. Its standard was published in 2015 and
describes the data link layer protocol, while the physical layer protocol is proprietary and
belongs to the transmitter manufacturer. Figure 1 shows the defined protocol of LoRaWAN
via the LoRa Alliance [22].

LoRaWAN devices are categorized into three classes: A, B, and C. Class A is primary,
based on the “asynchronous ALOHA” [25] access method, and is required to be supported
by all devices. All LoRaWAN sensors, when turned on, work according to class A and can
switch to other classes if such a physical possibility is available and upon agreement with
the server. Class B is based on the periodic distribution of service information from the
server and access to the channel on a schedule. This assumes that devices can consume
more power than Class A devices, which will allow them to listen to periodic messages
from the server. Class C is based on constant listening of the channel by sensors.

17

Information 2021, 12, 76

Figure 1. LoRaWAN (Long Range Wide Area Network) stack.

A LoRaWAN network architecture contains end devices, network servers, and LoRa
gateways, as shown in Figure 2 [26]. The connection between the gateways and the server
is reliable and fast, and the gateways are connected to sensors wirelessly using LoRa
technology. The server is the coordinator of the network, and the gateways play the role
of repeaters between the sensors and the server—having received a frame via a wireless
connection, the gateway encapsulates the frame in an IP packet and transmits it to the
server and, similarly, transmits the packets from the server to the sensors.

Figure 2. LoRaWAN network architecture.

3.3. Calculation of Packet Arrival Rate

Packets from different end nodes arrive at the gateways in a Poisson process [27].
In turn, the gateway receives the packets and, as a response, transmits a confirmation
packet. Unconfirmed packets are re-transmitted, also forming a Poisson stream. Since a
huge number of nodes are located in the network, thus the probability that several nodes
transmit simultaneously is high. This probability can be calculated as follows:

The probability of the fact that during the transmission of one packet T in the air, there
are still k packets from other nodes is determined as

P(k) =
λkexp−λ

k!
, (9)

where P (k) is the probability of k packets in the air, transmitted in parallel, and λ is the
arrival rate of packets in time T. When the number of parallel packets on the air is zero, i.e.,
k = 0, there is no collision. The packet is successfully transmitted to the base station or the

18

Information 2021, 12, 76

gateway. In this case, the probability of successful transmission of a packet, Psuccessful, is
defined as

Psuccessful = exp−2λ. (10)

Therefore, the probability of unsuccessful transmission, which is indicated as the loss
probability, can be calculated as

Ploss(λ) = 1 − exp−2λ, (11)

where Ploss is the loss probability that also indicates the collision probability. The effect of
variations of the rate of arrival packets on the collision probability is illustrated in Figure 3.

(a) (b)

Figure 3. Dependence of (a) the average number of packets C that is successfully transmitted and (b) the probability of
losses from collisions P from the intensity λ.

Thus, the average number of packets that are successfully transmitted during a time T,
where the intensity λ can be determined as

Cpackets = λ ∗ Psuccessful = λ ∗ exp−2λ, (12)

where Cpackets refers to the average number of packets that are successfully transmitted.
Figure 3 shows the effect of packets’ arrival rate on the average number of successfully
transmitted packets.

3.4. Calculation Gateway Capacity

Consider a network LoRa operating at a frequency of 868 MHz and a bandwidth of
125 kHz. The number of radio-frequency channels Nf is equal to 8. It is assumed that
the nodes transmit a packet of 8 bytes of payload and a preamble with six symbols with
a transmission rate of two packets per hour. The admissible probability of loss due to
collisions is 2%. If two nodes or more transmit their packets simultaneously at the same SF
spreading factor, a collision is likely to occur.

The total transmission time of one packet can be calculated by adding the total up-link
and down-link times. The up-link time is the packet transmission time from the node to
the gateway, while the down-link time is the transmission time of the confirmation packet
from the gateway to the node. For a certain spreading factor, the total transmission time of
a packet, TSF, can be calculated as

TSF = TSF−UL−pack + TSF−DL−pack, (13)

19

Information 2021, 12, 76

where TSF-UL-pack is the total up-link time, and TSF-DL-pack is the total down-link time. The
LoRa gateway’s capacity can be defined as the total number of packets that the gateway
serves per day. This may be represented by the throughput and can be calculated as

Throughput = Nf ∗ ΣSFPSF ∗
NENpack ∗ 3600 ∗ λ2%

TSF
, (14)

where NENpack is the total number of packets transmitted by one end node per day, λ2% is
the rate of arrival of packets at a probability of packet loss Ploss of 2, Nf is the total number
of radio channels deployed by the LoRa network, and PSF is the of using certain SF. Based
on the results of Figure 3, the value of λ2% is equal to 0.01.

4. Problem Statement

More cluster members should be expected to result in more significant savings in end
devices’ network resources. However, the number of end devices in a cluster is limited
by the CH throughput and traffic generated and their physical location relative to the CH.
Due to the radio channel’s peculiarities, the channel resource between the cluster member
and the CH may be different for different members or CH and the characteristic of the
expected channel quality for the cluster members.

We assume different scenarios and selection criteria choices, both cluster members
and CH. For example, we can follow the maximum throughput, uniform distribution
among the cluster members or the maximum cluster members, and consider or predict
users’ traffic intensity. To choose one or another scenario, we need to know the resulting
solution’s characteristics.

We will characterize the cluster by the throughput between the cluster members
and CH and the achievable data transfer rate. We will analyze the throughput of cluster
members with different laws of end device distribution. Different clustering methods can
provide different solutions in terms of the distribution of end devices within the cluster.

5. System Description

Building IoT applications provide a high-quality environment due to the massive
amount of data collected through many sensors. Such sensors installed in monitoring sites
will collect and analyze information about the air level, soil and water pollution; noise level,
the level of reservoirs and rivers. All the information received from these heterogeneous
applications generates a single LoRa network to provide a high QoS for all traffic types
within the LoRa network. The QoS is measured as the packet reception ratio (PRR) function
and throughput of the LoRa network. Thus, we must characterize the throughput value
made in terms of the QoS. We will consider the throughput as an objective metric among
the network elements tij. In our study, we also considered the head node (HN) of the cluster
has already been determined without considering the clustering methods. We assumed the
HN communication zone is a disk with a radius R, centered at the CH location, as shown
in Figure 4.

Figure 4. Considered cluster model.

20

Information 2021, 12, 76

We considered LoRa technology as a communication method among end nodes. We
have to specify the nature of dependence tij on the network parameters. On the way
of signal propagation to the receiver from the transmitter occurs environmental energy
absorption, whereby the output signal at the receiver is significantly reduced, i.e., signal
attenuation occurs. There are different attenuation models, taking into account various
factors such as distance, carrier frequency, and obstacles in the path of signal propagation.
One common attenuation model is described as

A(d) := 20 log
(

λ

4πd

)
(dB). (15)

The signal strength depends on the power of the transmitter. The majority of LoRa
equipment has 25 mW transmitters. To describe the transmitter power, a relative value
(power level) is often used, with the power of 1 mW, in decibels, defined as

Ptx := 10 log 10
(

P
10−3

)
(dBm), (16)

where P is the transmitter power (W).
The signal power at the receiver input will be determined as follows:

Prx(d) = Ptx − A(d), (17)

where Prx is the transmitter output signal power, and A(d) is the signal loss from the
distance that can be calculated according to the formula (15). Using the data from Table 4
and Formula (17), we can plot a graph of the dependence of the data rate on the distance,
as shown in Figure 5. The signal/noise + noise (SINR) and SNR values are the dependent
data transmission rate on signal power.

Table 4. Dependence LoRa gateway’s range on the receiver’s sensitivity when using the ITU-RP.1238-
5 attenuation model [28].

SF 6 7 8 9 10 11 12

RSSI (dBm) −118 −123 −126 −129 −132 −134 −137
Bitrate (bit/s) 9375 5469 3125 1758 977 537 293
Distances (m) 270 333 410 506 623 716 824

Figure 5. The dependence between the data transmission rate and distance.

Every parameter determined above impacts the channel throughput and can be chosen
as a metric in a clustering task. In this work, we analyze throughput in a cluster.

21

Information 2021, 12, 76

In Figure 5, the throughput value depends on receiving and, in practice, has consider-
able dispersion.

In urban conditions for indoor application where there is a dense building, it is
possible to apply the decay model ITU-RP.1238-5 for premises:

L(d) = 20 log(f) + Nlog(d) + Lf(n)− 28, (18)

where d is the distance in (m); n = 33—remote power loss factor; f is the center frequency
of the signal (MHz); Lf (n) = 24 is the loss factor due to the passage of the signal through
the obstacle (dB).

Considering the attenuation model, we depict the throughput dependency on the
distance by the Gaussian function (Figure 5) [29].

t̂(d) = t̂(L(d)), (19)

t(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 d < 0

tmax exp− d2

2c2 0 ≤ d ≤ R

0 d > R

, bit/s, (20)

where d is the distance (m); tmax is the maximum data transmission rate (bit/s); c is the curve
half-width (m); R = arg{ t̂(d) = 0 } (m) is the radius from CH to HN communication zone.

Since the throughput, according to the given model, depends on the distance, which to
an arbitrarily chosen point should be considered as a random variable, then the throughput
is a distribution function t can be calculated as

F(t) =
�
Dt

f(x, y)dxdy, (21)

where f(x, y) refers to the users distribution function on a dick with radius R, Dt is the
range of t values.

The probability density t is defined as

f(t) =
dF(t)

dt
. (22)

The mathematical expected value t is

M(t) =
t0∫

0

t·f(t)dt. (23)

In our clustering model, we consider different types of user distributions, as discussed
in Sections 5.1 and 5.2.

5.1. Uniform Distribution

We will presume that end nodes’ uniform distribution is specified in the service area
with a circle S and radius R (S = πR2). Thus, end nodes are distributed over the interval
0 ≤ r ≤ R. The radius of the circle R can be defined as a solution to the following equation:

R = arg{ t̂(d) = 0 } (M). (24)

The probability density function f(r), in this case, is constant and will be close to the
uniform distribution for the distribution of end nodes inside the circle S:

f(r) =
1
S
=

1
πR2 . (25)

22

Information 2021, 12, 76

For the functional dependence of the throughput t on the distance between gateways
has the form (20), that is

t(d) = tmax exp− d2

2c2 . (26)

We can express from (20) d = c
√
−2 ln

(
t

tmax

)
(M).

According to (21), throughput distribution function F(t) on a circle with radius R will
be determined as

F(t) =
2π∫
0

R∫
c
√
−2 ln (t

tmax)

1
S rdrdθ = 1

2πR2 r2

∣∣∣∣∣∣
R

c
√
−2 ln

(
t

tmax

) · 2π =

= 1
R2

(
R2 + 2c2 ln

(
t

tmax

))
= 1 + 2c2

R2 ln
(

t
tmax

)
(27)

Based on (22), the probability density function of the throughput can be shown as

f(t) =
dFt(r)

dr
=

d
dr

(
1 +

2c2

R2 ln
(

t
tmax

))
=

2c2

R2t
. (28)

Probability density functions and throughput distribution are shown in Figure 6.

(a) (b)

Figure 6. Probability of throughput distribution function F(t) (a) and throughput probability density function f(t) (b) for
uniform distribution of nodes.

For the LoRa standard, the mathematical expectation of the throughput M (t) in the
communication zone between end nodes according to (23) will be calculated as

M(t) =
tmax∫

tmin

t · 2c2

R2t
dt = 2 · c2

R2 (tmax − tmin) bit/s. (29)

When approximating the throughput function on the distance by using a uniform
distribution of end nodes in the communication zone, the mathematical expectation of the
throughput for the LoRa standard is 2654 bit/s.

5.2. Normal Distribution

Assuming that end nodes are randomly distributed in the communication area, then
the distribution of end nodes over the communicated area is random, and a random value
can describe their coordinates in each point on the surface, i.e., such a distribution can be
given by a pair of random, independent coordinates x and y. Then the F(t) of the end nodes
distribution can be defined as the joint distribution function of the random values x and y.

23

Information 2021, 12, 76

In this case, we will consider the normal distribution of end nodes with a scattering center
at the center of the circle representing the communication area. Equation (30) defines the
density distribution in both coordinates (x and y):

f(x, y) =
1

2πσ2 exp− x2+y2

2σ2 , where
√

x2 + y2 = r, (30)

where σ is the standard deviation (RMS).
For throughput analysis, we will assume that the probability of a point falling inside

the circle of radius R is equal to 1, i.e., we will only consider users within the circle. The law
of normal distribution is unlimited in both coordinates x and y. This assumption introduces
a certain error; this error, a truncated normal distribution was used, which is bounded in
both coordinates by the radius R. This distribution cannot be normal since it is bounded.
The distribution of users within the communication area described by a circle S can be
described by the “truncated normal” distribution [29].

f(x, y) = K(σ, R) · 1
2πσ2 exp− x2+y2

2σ2 , (31)

where
K(σ, R) =

1
�
SR

1
2πσ2 · exp− x2+y2

2σ2 dxdy
. (32)

Here SR denotes the service area bounded by the circle with radius R.
Based on the obtained expressions, we find the F(t) inside the circle with radius R. For

this, from (19) and (20), we obtain d = c
√
−2 ln

(
t

tmax

)
.

Then from (20), according to (31) and (32), the throughput distribution function can
be determined as

F(t) = K(σ, R)
2π∫
0

R∫
c
√
−2 ln (t

tmax)

1
2πσ2 · exp− r2

2σ2 · r drdθ =

= K(σ, R) 1
2π · exp− r2

2σ2 2π

∣∣∣∣∣∣∣∣
R

c
√
−2 ln

(
t

tmax

) =

= K(σ, R)

((
t

tmax

) c2

σ2 − exp− R2

2σ2

)
.

(33)

Based on the obtained expression (33), the throughput probability density, according
to (34), will be determined as

f(t) = K(σ, R)
c2

σ2tmax

(
t

tmax

) c2

σ2 −1
. (34)

Figure 7 shows the probability density and throughput distribution function results.

24

Information 2021, 12, 76

(a) (b)

Figure 7. Probability distribution function F(t) (a) and probability density function f(t) (b) of the throughput (normal
distribution of users).

From the expression for the throughput probability density in (34), an expression for
the mathematical expectation of the throughput value can be defined as

M(t) =
t0∫

0

t · f(t)dt = K(σ, R)
c2

σ2 + c2

⎛
⎝tmax − tmin

(
tmin

tmax

) c2

σ2

⎞
⎠. (35)

For the LoRa standard, the value of M (t) at σ of RMS 100, 200, 250 m takes the values
of 8520, 6680, and 5750 bps, respectively.

6. Clustering Method Selection

We will consider a network of 20 thousand nodes in a field with 10 km sides. The
coordinates of the nodes are distributed randomly according to a uniform distribution
law. The maximum range of the lock is 824 m (from Table 4). We use two clustering
methods [30] to the specifics of the projected communication network described by radio
signal attenuation models and the distribution of subscriber traffic on the served area the
previous section. The formation of a cluster consists of choosing a group of end devices and
distributing their functionality within the cluster. The solution of the clustering problem
is similar to the solution of the optimization problem in which some metric d(m, pm) is
minimized (maximized), which characterizes the "distance" between a cluster member and
the cluster center pm = 1

|c| ∑
m∈c

m. Throughput, distance, and energy efficiency can act as

such a metric. A dynamic programming method is used for the solution, which minimizes
d2(m, pm) across all clusters.

C = min ∑
c∈C

∑
m∈c

d2(m, pm). (36)

For the formation, it is necessary to determine the method for finding an optimal
solution. The QoS for traffic within the cluster between the CH and the network depends
on the throughput of the channels between the cluster members and between the CH and
LoRa Gateway and the traffic intensity generated by end devices.

Clustering algorithms K-means Algorithm 1 and FOREL Algorithm 2 are used to
optimize communication network capacity.

{xi, yi} = argmin
xi,yi

k

∑
j=1

nj

∑
r=1

d
(
Cj, ej,r

)
, i = 1 . . . k, (37)

25

Information 2021, 12, 76

where d
(
Cj, ej,r

)
is the distance between the center of mass of the j-th cluster Cj and the r-th

element of the j-th cluster ej,r;
When interpreting K-means algorithm as an optimization problem, its objective func-

tion can be expressed as follows:

M =
k

∑
i=1

∑
xj∈Si

(
xj − μi

)2, (38)

where k is the number of clusters;
Si—defines a set of objects (elements) of the i-th cluster;
μi—point of the center of mass of the i-th cluster (coordinates of the point of the center

of mass);
xj—object of the j-th cluster (object coordinates).

Algorithm 1. K-means

Require: The k is a number of clusters, C1, C2,CK points that corresponds to the devices, CMJ
j = 1,...,k—centers of clusters (mass centers).
Input: Set K random points I = {I1, I2, . . . , In} Output: Centers (C1,CK) Clist List of Clusters.
Procedure: Mode selection and K-Means clustering Algorithm.
Choose K initial centers CM J =m1m2, . . . , mk.
For: CJ < = CMJ do

Set new centers of mass m̂1, m̂2, . . . , m̂k /*using Equations (39) or (40) */
If m̂1, m̂2, . . . , m̂k = m1m2, . . . , mk
Then

Set m1 is new centers of mass /*using Equations (39) or (40) */
Each object Xi is assigned to the nearest Ci; for the resulting groups, the centers of mass are
calculated.
Transition CM (CI = CM).
End for

fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster
End procedure.

Algorithm 2. FOREL

Require: The R is a communication rage (radius of the service area), the cluster number i = 1. C1,
C2,CK points that corresponds to the devices, CMJ j = 1, ..., k—centers of clusters (mass
centers).
Input: Set K random points I = {I1, I2, . . . , In}.
Output: Centers (C1, . . . CK) Clist List of Clusters.
Procedure: Mode selection and FOREL clustering Algorithm.
Choose K initial centers CM J = m1m2, . . . , mk.
For: True do

for all Xi points at a distance of CI < = R calculate the center of mass (CM)/*using equations (39)
or (40) */
while: Ci = CM
Transition CM (CI = CM).
End while

fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster
End for

End procedure

The difference
(
xj − μi

)
is the Euclidean distance between the cluster object and the

center of the given cluster’s mass.
When using K-means algorithm for two-dimensional space, i.e., when each of the

objects has two characteristics (x and y) coordinates, each object can be considered a point
on the flatness, characterized by its two coordinates (xj, yj).

26

Information 2021, 12, 76

The coordinates of the center mass of the j-th cluster is defined as the average value
for each of the coordinates:

Cj =
{

xj, yj

}
, xj =

1
nj

nj

∑
r=1

xj,r, yj =
1
nj

nj

∑
r=1

yj,r, (39)

where nj is the number of elements in the j-th cluster xj,r, yj,r are the coordinates of the r-th
element of the j-th cluster.

Along with coordinates, each object can be characterized by a certain numerical
parameter mj. Taking into account the last coordinates of the center mass of the cluster will
be defined as the coordinates of the center of mass of a flat figure as

x(μ)i =
1

m(Σ)
i

ni

∑
j=1

mjxj, y(μ)
i =

1

m(Σ)
i

ni

∑
j=1

mjyj, m(Σ)
i = ∑

j∈Si

mj. (40)

The fundamental difference between the FOREL method and the K-means method is
that the FOREL algorithm does not specify the number of clusters but assumes specifying
the cluster size R.

When using this algorithm, expression (37) is minimized. The coordinates of the
centers of mass of clusters are determined, which can be taken as positions for placing
gateways.

7. Evaluation Results

Using the FOREL and K-means clustering methods, a network consisting of 25 clusters
was obtained as a result of modeling. The simulation results for both clustering methods
are illustrated in Figure 8a FOREL and Figure 8b K-means.

(a) (b)

Figure 8. Simulation results for (a) FOREL and (b) K-means clustering methods.

To compare the two considered clustering methods for LoRa networks, we consider
the distribution of cluster members relative to the cluster’s center as the comparison
metric. Distribution is obtained by simulation modeling. For center-of-mass, we used the
following expression:

s = gmj − Cmi, i = 1 . . . |C|, j = 1 . . . ni, mj ∈ ci, (41)

27

Information 2021, 12, 76

where Cmi, is the center-of-mass coordinate of cluster i; gmj is the coordinate of mj element
of ci cluster; ci is the cluster i; gmj is the element j of cluster i; ni is the number of elements
within the cluster i, and |C| is the number of clusters.

It can be seen from the above results that the resulting clusters differ significantly in
shape and size. This solution is quite obvious since the clustering problem with a high
density of users was close to covering the service area with several circles (the minimum
number of circles). Naturally, suppose the circles have the same radius. In that case, it is
impossible to avoid their intersections, which ultimately leads to the formation of clusters
of different shapes with different numbers of elements.

Figure 9 shows the relative distribution of nodes in the considered cluster for both
considered clustering algorithms. The vertical axis in Figure 9 represents the number
of nodes, while the horizontal axis indicates the relative distance between nodes and
the cluster center. The negative value of the relative distance in Figure 9 shows that the
nodes are located at the right side of the cluster center. As indicated in Figure 9, the main
distribution of the nodes is located around the cluster center for both clustering methods.

(a) (b)

Figure 9. Relative distribution of nodes in the clusters for (a) FOREL clustering method and (b) K-mean clustering method.

Thus, it is possible to determine the average number of nodes in each SF zone; accord-
ing to Table 4, Figure 10 indicates the average number of nodes in each SF zone for various
clustering methods.

(a) (b)

Figure 10. The average number of nodes in different SF zones (in percent, %) for (a) K-mean clustering method and (b)
FOREL clustering method.

28

Information 2021, 12, 76

We calculate the capacity of the LoRa gateway for the two clustering methods dis-
cussed above, where the nodes are distributed differently by the area of the radio coverage
zones. For FOREL = {45.96%; 8.54%; 9.47%; 11%; 12.34%; 6.7%; 5.99%} and for K-means
{53.75%; 11.25%; 11.76%; 11.24%; 8.7%; 2.3%; 1.0%} as shown in Figure 11.

Figure 11. The average number of nodes in different SF zones for FOREL and K-means clustering methods (in percent, %).

The LoRa gateway’s capacity can be calculated for FOREL and K-means clustering
methods as shown in using Equation (14). Table 5 indicates this value and the total number
of nodes.

Table 5. Calculation of the capacity of the LoRa gateway.

Clustering
Method

NENpack (Per Day) λ2% Throughput

Number of
Connected

Devices to a
Gateway

FOREL 24 0.01 79.223 3300
K-means 24 0.01 92.292 3845

Thus, to build a LoRa network that handles 20,000 end devices with the above-
introduced characteristics, five to six gateways are needed to deploy the clustering algo-
rithm, either FOREL or K-means.

The experiments showed that with a huge number of clusters, the K-means method
allows obtaining results with a normal distribution of nodes across clusters and a higher
throughput than the FOREL method. The network nodes are uniformly distributed in the
service area.

By applying the above-proposed model, the average throughput value with a normal
distribution is 8520 bit/s and with a uniform distribution is 2654 bit/s. Thus, to further
assess the effectiveness of our solution, we compare our model with the literature. Table 6
describes a comparison of our proposed model with the literature for throughput values.

29

Information 2021, 12, 76

Table 6. Comparison of our proposed results with the literature for throughput values.

Existing Work
Throughput (t) bit/s Uniform

Distribution
Throughput (t) bit/s Normal

Distribution

[19] 2122 4522
[20] 2206 4653

[Proposed] 2654 8520

8. Discussion

Before obtaining the results achieved, clustering is to save network resources and
improve the QoS. In both cases, the criterion for forming the cluster should take into
account the available resources, transfer traffic from end nods, and QoS requirements.

The results presented in the previous section analysis of the channel capacity between
the CM and the CH showed its dependence on the distribution of end nodes. In particular,
the results showed that a larger average throughput value is achieved with a normal
distribution than with a uniform distribution.

Cluster analysis algorithms can be applied to find partial solutions to selecting the
coordinates of access points, considering the nature of the distribution of traffic sources
over the served territory and CH nodes’ choice.

Applying the algorithms of cluster analysis, necessary to the specifics of the projected
communication network, which is described by models of radio signal attenuation and the
model of distribution of subscriber traffic on the served area, thus the solutions, which are
obtained in the previous section as a result of cluster analysis application, are the partial
solutions of the optimization problem in communication network capacity.

Simulation of network clustering based on FOREL and K-means algorithm in the
above section showed that these algorithms allow forming clusters from local groups of
end nodes. The cluster size is given by the parameter R and the number of clusters selected,
taking into account the availability and quality of communication.

To form clusters of LoRa end devices based on the bandwidth of the channels between
the HN and CM can be used known methods of clustering objects. It is possible to use
clustering methods based on finding the centroid, evaluating connectivity, density.

Our simulation results of two centroid clustering methods showed that the law of
elements distribution in clusters depends on the number of clusters. With a relatively huge
number of clusters, the service area’s distribution elements are close to the normal law and
relatively small to the uniform law.

The clustering method and parameters’ choice is reflected in the distribution of cluster
elements and the throughput between cluster elements and HN.

9. Conclusions and Future Work

This paper proposed a novel cluster throughput model to estimate the expected
throughput value in clusters of end devices built using LoRa networks. In contrast to
known models, it allows for the description of the throughput distribution function in a
cluster of end devices.

We developed clustering algorithms using dense LoRa-based IoT networks that allow
clustering of end devices according to the criterion of maximum served traffic. The algo-
rithms are built based on two-common methods, K-means and Forel. In contrast to existing
methods, the developed method provides the maximum value of served traffic in a cluster.

Results highlight our solution’s effectiveness that our proposed model achieved a larger
average throughput value with a normal distribution than with a uniform distribution.

Future work shall consider a novel clustering algorithm for achieving a higher level of
flexibility so that the network will support the insertion and cutting of network devices and
shall consider more QoS metrics. Furthermore, the LoRa network will have the flexibility
level that enables the set-up of new applications.

30

Information 2021, 12, 76

Author Contributions: Conceptualization, M.S.A.M.; methodology, M.S.A.M., P.W. and M.W.; soft-
ware, P.W., M.W. and A.R.; validation, M.S.A.M.; formal analysis, A.R.; investigation, M.S.A.M.;
resources, P.W., M.W. and N.N.J.; data curation, M.S.A.M.; writing—original draft preparation,
M.S.A.M.; writing—review and editing, A.R. and N.N.J.; visualization, M.S.A.M.; supervision, P.W.
and M.W.; project administration, P.W. and M.W.; funding acquisition, P.W. and M.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by The National Key Research and Development Program of
China (2017YFE0123000).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions–privacy. The data pre-
sented in this study are available on request from the corresponding author.

Acknowledgments: Many thanks are due to Ammar Muthanna and Min Wei for the assistance in
the methodological work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rghioui, A.; Oumnad, A. Internet of things: Surveys for measuring human activities from everywhere. Int. J. Electr. Comput. Eng.
2017, 7, 2474–2482. [CrossRef]

2. Semtech, “Smart cities transformed using semtech’s LoRa technology,” July 2017, White Paper. Available online: https://info.
semtech.com/smart_city_white_paper_download (accessed on 22 December 2020).

3. Khan, P.W.; Byun, Y.C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced
Deep Learning. Sensors 2020, 20, 2990. [CrossRef] [PubMed]

4. Khan, P.W.; Byun, Y.A. Blockchain-Based Secure Image Encryption Scheme for the Industrial Internet of Things. Entropy 2020, 22,
175. [CrossRef] [PubMed]

5. Muthanna, M.S.A.; Lyachek, Y.T.; Musaeed, A.M.O.; Esmail, Y.A.H.; Adam, A.B.M. Smart system of a real-time pedestrian
detection for smart city. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering, Saint Petersburg and Moscow, Russia, 27–30 January 2020; pp. 45–50.

6. Semtech, LoRa Modulation Basics, AN1200.22 Revision 2. Semtech. 17 May 2015. Available online: https://www.semtech.com/
uploads/documents/an1200.22.pdf (accessed on 22 December 2020).

7. Wydra, M.; Kubaczynski, P.; Mazur, K.; Ksiezopolski, B. Time-Aware Monitoring of Overhead Transmission Line Sag and
Temperature with LoRa Communication. Energies 2019, 12, 505. [CrossRef]

8. Adil, N.; Khan, P.W.; Byun, Y.C. Performance Enhancement through Communication Offloading for Energy Efficiency on Mobile
Cloud Computation. Int. J. Sci. Technol.Res. 2020, 9, 186–194.

9. Muthanna, M.S.A.; Wang, P.; Wei, M.; Abuarqoubet, A.; Alzu’bi, A.; Gull, H. Cognitive control models of multiple access IoT
networks using LoRa technology. Cognitive Syst. Res. 2021, 65, 62–73. [CrossRef]

10. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; MeliaSegui, J.; Watteyne, T. Understanding the Limits of LoRaWAN.
IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]

11. Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, 13–17
November 2016; pp. 59–67.

12. Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range: Low Power Networks for the Internet of Things.
Sensors 2016, 16, 1466. [CrossRef] [PubMed]

13. Liando, J.C.; Gamage, A.; Tengourtius, A.W.; Li, M. Known and unknown facts of lora: Experiences from a large-scale measure-
ment study. ACM Transactions Sens. Netw. (TOSN) 2019, 15, 16. [CrossRef]

14. Muthanna, M.S.A.; Wang, P.; Wei, M.; Ateya, A.A.; Muthanna, A. Toward an Ultra-Low Latency and Energy Efficient LoRaWAN;
Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y., Eds.; NEW2AN/ruSMART-2019. LNCS; Springer: Cham, Switzerland,
2019; Volume 11660, pp. 233–242. [CrossRef]

15. Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wirel.
Commun. Mob. Comput. 2018, 2018, 1–11. [CrossRef]

16. Bor, M.; Roedig, U. LoRa Transmission Parameter Selection. In Proceedings of the 2017 13th International Conference on
Distributed Computing in Sensor Systems (DCOSS), Ottawa, ON, Canada, 5–7 June 2017; pp. 27–34.

17. Lavric, A. LoRa (Long-Range) High-Density Sensors for Internet of Things. Sensors 2019. [CrossRef]
18. Sanchez-Iborra, R.; Liaño, I.G.; Simões, C.; Couñago, E.; Skarmeta, A. Tracking and Monitoring System Based on LoRa Technology

for Lightweight Boats. Electronics 2018, 8, 15. [CrossRef]

31

Information 2021, 12, 76

19. Hauser, V.; Hégr, T. Proposal of Adaptive Data Rate Algorithm for LoRaWAN-Based Infrastructure. In Proceedings of the 2017
IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague, Czech Republic, 21–23 August
2017; pp. 85–90. [CrossRef]

20. Martinez-Sandoval, R.; García-Sánchez, A.; García-Haro, J. Performance optimization of LoRa nodes for the future smart
city/industry. EURASIP J. Wirel. Commun. Netw. 2019, 1–13. Available online: https://doi.org/10.1186/s13638-019-1522-1
(accessed on 22 December 2020).

21. AN1200.22 LoRaTM Modulation Basics, Revision 2, Semtech Corporation. May 2015. Available online: http://www.semtech.
com/images/datasheet/an1200.22.pdf (accessed on 15 August 2020).

22. LoRa Alliance. LoRaWAN Specification, V. 1.1; LoRa Alliance: Fremont, CA, USA, 2017. Available online: https://lora-alliance.
org/resource-hub/lorawanr-specification-v11 (accessed on 15 September 2019).

23. Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Process. Let. 2017, 24, 1818–1821. [CrossRef]
24. Semtech, SX1272/73 Low Power Long Range Transceive. Available online: https://www.semtech.com/uploads/documents/sx1

272.pdf (accessed on 22 December 2020).
25. Baccelli, F.; Blaszczyszyn, B.; Muhlethaler, P. An Aloha protocol for multihop mobile wireless networks. IEEE Trans. Inf. Theory

2006, 52, 421–436. [CrossRef]
26. Yasmin, R.; Petäjäjärvi, J.; Mikhaylov, K.; Pouttu, A. On the integration of LoRaWAN with the 5G test network. In Proceedings of

the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal,
QC, Canada, 8–13 October 2017; pp. 1–6.

27. Blaszczyszyn, B.; Muhlethaler, P. Stochastic analysis of nonslotted Aloha in wireless ad-hoc networks. In Proceedings of the IEEE
INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9.

28. ITU-R Recommendations. Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and Radio
Local Area Networks in the Frequency Range 900MHz to 100GHz, ITU-R P.1238-5; International Telecommunication Union: Geneva,
Switzerland, 2007.

29. Weisstein, E.W. Gaussian Function. Available online: https://mathworld.wolfram.com/ (accessed on 27 November 2002).
30. Boyinbode, O.; Le, H.; Mbogho, A.; Takizawa, M.; Poliah, R. A Survey on Clustering Algorithms for Wireless Sensor Networks.

In Proceedings of the 2010 13th International Conference on Network-Based Information Systems, Takayama, Japan, 14–16
September 2010; pp. 358–364. [CrossRef]

32

 information

Article

Time-Optimal Gathering under Limited Visibility with
One-Axis Agreement †

Pavan Poudel and Gokarna Sharma *

Citation: Poudel, P.; Sharma, G.

Time-Optimal Gathering under

Limited Visibility with One-Axis

Agreement. Information 2021, 12, 448.

https://doi.org/10.3390/info12110448

Academic Editor: Giovanni Viglietta

Received: 30 August 2021

Accepted: 24 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Kent State University, Kent, OH 44240, USA; ppoudel@cs.kent.edu
* Correspondence: sharma@cs.kent.edu
† A preliminary version of this article has been published in SSS’17 conference.

Abstract: We consider the distributed setting of N autonomous mobile robots that operate in Look-
Compute-Move (LCM) cycles following the well-celebrated classic oblivious robots model. We study
the fundamental problem of gathering N autonomous robots on a plane, which requires all robots to
meet at a single point (or to position within a small area) that is not known beforehand. We consider
limited visibility under which robots are only able to see other robots up to a constant Euclidean
distance and focus on the time complexity of gathering by robots under limited visibility. There
exists an O(DG) time algorithm for this problem in the fully synchronous setting, assuming that the
robots agree on one coordinate axis (say north), where DG is the diameter of the visibility graph of
the initial configuration. In this article, we provide the first O(DE) time algorithm for this problem in
the asynchronous setting under the same assumption of robots’ agreement with one coordinate axis,
where DE is the Euclidean distance between farthest-pair of robots in the initial configuration. The
runtime of our algorithm is a significant improvement since for any initial configuration of N ≥ 1
robots, DE ≤ DG, and there exist initial configurations for which DG can be quadratic on DE, i.e.,
DG = Θ(D2

E). Moreover, our algorithm is asymptotically time-optimal since the trivial time lower
bound for this problem is Ω(DE).

Keywords: distributed algorithms; mobile robots; classic oblivious robot model; gathering; time
complexity; visibility; connectivity

1. Introduction

In the classic model of distributed computation by mobile robots, also known as
the OBLOT model, each robot is modeled as a point in the plane [1,2]. The robots are
autonomous (no external control), anonymous (no unique identifiers), indistinguishable (no
external identifiers), disoriented (no agreement on local coordinate systems and units of
distance measures), oblivious (no memory of past computation), and silent (no direct com-
munication and actions are coordinated via only vision and mobility). They execute the
same algorithm. Each robot proceeds in Look-Compute-Move (LCM) cycles: when a robot
becomes active, it first obtains a snapshot of its surroundings (Look), then computes a desti-
nation based on the snapshot (Compute), and then finally moves towards the destination
(Move) [2].

We consider the gathering problem in the OBLOT model, where starting from any
arbitrary (yet connected) initial configuration, all robots are required to meet at a single
point (or to position within a small area) that is not known beforehand. Relaxing the
requirement to meet at a single point by positioning them within a small area is performed
to circumvent the impossibility result of gathering to a point in the asynchronous setting,
even for two robots [3]. In fact, the algorithm we designed in this article positions all robots
either at a single point not known beforehand or within a unit line segment not known
beforehand depending on different conditions. Gathering is one of the most fundamental
tasks and a central benchmark problem in distributed mobile robotics [4]. Early studies

Information 2021, 12, 448. https://doi.org/10.3390/info12110448 https://www.mdpi.com/journal/information

33

Information 2021, 12, 448

on gathering in the OBLOT model solved it under unlimited visibility, where each robot is
assumed to observe (the locations of) all other robots [5], and all the robots are connected
to each other. The viewing range defines the maximum possible distance up to which a
robot can observe other robots, and the connectivity range defines the maximum possible
distance between any two nodes to be connected (i.e., to have an edge between them).
Flocchini et al. [6] provided the first algorithm for gathering in the OBLOT model under
limited visibility, where each robot can observe (the locations of) other robots within a fixed
unit distance (viewing range), and each robot is connected to all other robots within that
fixed unit distance (connectivity range), i.e., the viewing and connectivity ranges are the
same. Subsequently, several algorithms were studied for this problem under different
constraints [2,7–10]. These studies proved the correctness of the algorithms but provided
no runtime analysis (except a proof of finite time termination).

The runtime analysis for gathering has been studied relatively recently [11–15]. De-
gener et al. [11] provided the first algorithm for this problem with runtime O(N2) in
expectation in the fully synchronous setting, where N is the total number of robots. De-
gener et al. [12] provided an O(N2)-time algorithm for this problem in a fully synchronous
setting. They also showed that, for some initial configurations, their algorithm is essentially
tight by providing a matching lower bound of Ω(N2). Kempkes et al. [13] provided an
O(OPT log OPT)-time algorithm for this problem under a slightly different continuous
time setting, where OPT is the runtime of an optimal algorithm. All the above algorithms
assume that both the viewing and connectivity ranges are of (fixed) radius 1. Recently,
Cord-Landwehr et al. [14] provided an O(N)-time algorithm for this problem for robots
positioned on a grid in a fully synchronous setting. In this algorithm, it is assumed that
robots have the viewing range of (distance) 20, i.e., each robot can observe other robots
within a fixed distance of 20, but the connectivity range is one, i.e., two robots are connected
if and only if they are vertical or horizontal neighbors on the grid. Moreover, each robot
is assumed to possess memory for remembering a constant number of previous cycles.
Recently, Fischer et al. [15] provided an O(N2)-time algorithm for gathering on a grid
in the fully synchronous setting, if the memory is not available, by using the improved
viewing range of 7.

The intriguing open question is whether a time-optimal algorithm can be designed
for gathering under limited visibility and if possible, under what conditions. We define
time optimality as follows: Let G be the visibility graph of an arbitrary initial configuration
I of N ≥ 1 robots in a plane. The robots in the system act as nodes of G. There is an
edge between any two nodes in G if the distance between these two nodes is at most
the connectivity range. Note that, according to the definitions above, the viewing and
connectivity ranges may or may not be the same. If each robot is connected to all robots
within its viewing range, then the viewing range also serves as the connectivity range;
otherwise, the connectivity range is different than the viewing range. In order to solve the
gathering problem, G must be connected [2]; G is connected if the robots (or nodes of G)
cannot be separated into two subsets such that no robot of the one subset is connected to
any robot of the other subset (and vice versa). For example, the authors in [14] used the
viewing range 20, but the robots in horizontal or vertical distance of one are connected.
Let DG be the diameter of G, which is the greatest distance between any pair of nodes in
G following the edges of G. Let DE be the diameter of the initial configuration I, which
is the greatest Euclidean distance between any pair of robots in I. Notice that for any I,
DE ≤ DG, and for some configurations the gap between DG and DE can be as much as
quadratic on DE, i.e., DG = Θ(D2

E). Figure 1 illustrates these ideas. Therefore, an O(DE)-
time algorithm would be time-optimal for gathering starting from any initial connected
configuration, since Ω(DE) is the trivial time lower bound for robots to meet at a single
point (or to position within a small area) starting from any arbitrary initial configuration.
Hence, the open question specifically is whether an O(DE)-time algorithm can be designed
for gathering for classic oblivious robots under limited visibility.

34

Information 2021, 12, 448

Figure 1. An illustration of two initial configuration dependent parameters, DE (the Euclidean
diameter) and DG (the visibility graph diameter), and the relation between them: (a) the diameter DE

for an initial arbitrary configuration, (b) the visibility graph G with diameter DG for the configuration
of the left, and (c) an initial configuration showing the quadratic difference between DE and DG with
DG = Θ(D2

E).

Recently, Izumi et al. [4] made progress towards addressing this open question.
Specifically, they presented an O(DG)-time algorithm for gathering on the plane in a
fully synchronous setting under limited visibility with the condition that robots agree
on one coordinate axis. They used viewing range of one with an assumption that the
visibility graph G remains connected even if the edges with the corresponding distance
of greater than 1 − 1√

2
are removed from it. The assumption on the visibility graph G in

Izumi et al. [4] essentially means that the connectivity range is of radius 1 − 1√
2

(different
and in fact smaller than the viewing range of one).

There is still a large gap between the O(DG) time bound of Izumi et al. [4] and the
asymptotically optimal O(DE) time bound, since DG can be quadratic on DE (Figure 1).
This work closes this gap under the same one axis agreement with a slightly modified
viewing range of

√
10 and the square connectivity range (if we do not explicitly write

“square”, then the viewing and connectivity ranges are circular) of
√

2 compared to the
viewing range of one and the (circular) connectivity range of 1 − 1√

2
in [4] (if we consider

the viewing range of one similar to [4], we need the square connectivity range of 1 −
√

2√
10

,
and our algorithm again achieves O(DE) runtime). Notice that the square connectivity range
of distance c means that a robot is connected to all other robots inside or on the boundary of
the (axis-aligned) square area with the (diagonal) distance from the robot to each corner of
the square c. Notice also that the square connectivity range of

√
2 for a robot is equivalent

to the L∞-distance of 1 around the robot. Therefore, if we have both the viewing and
connectivity ranges of c, then the area they enclose differs if the connectivity range is
“square”; otherwise, they enclose the same area. Moreover, in contrast to Izumi et al. [4],
which works in the fully synchronous setting, our algorithm works in the asynchronous
setting. The algorithm presented by Izumi et al. [4] follows the movements of robots in
one direction (either north or east) along DG in such a way that in each round, starting
from the southmost and westmost robots, each robot moves towards the farthest neighbor
within its connectivity range. In our algorithm, robots do not follow DG; instead, they
gather at a point (or within a small area) that is not known beforehand in O(DE) rounds.
Particularly, in our algorithm, all the robots gather at a single point not known beforehand
under both axis agreements and inside a horizontal line segment of length one that is not
known beforehand under one axis agreement. A preliminary version of this article has
been published in SSS’17 conference [16], and this article extends that version by including
many details and proofs that were missing in that version.

Contributions. We focus, in this article, on optimizing runtime for gathering under
limited visibility. We consider autonomous, anonymous, indistinguishable, oblivious, and

35

Information 2021, 12, 448

silent point robots (also called swarms) as in the classic OBLOT model [2]. Robots agree
on the unit of distance measure. The viewing range is

√
10—a robot can see all other

robots within the fixed radius of at most distance
√

10. The square connectivity range is√
2—a robot is connected to all other robots inside or on the boundary of the (axis-aligned)

2 × 2-sized square area for which its center is the position of the robot. In a LCM cycle,
a robot can move to any position inside or on the square area, including its four corners.
The challenge here is that robot movements must not harm swarm connectivity. As in
Izumi et al. [4], we assume that robots agree on one coordinate axis (say north), but they
may not agree on the other coordinate axis. Moreover, we assume that the robot setting is
asynchronous—there is no notion of common time, and robots perform their LCM cycles
arbitrarily. Furthermore, we assume that the robot moves are rigid—a robot in motion in
each cycle cannot be stopped (by an adversary) before it reaches its destination at that cycle.
Additionally, all previous algorithms assume that when two or more robots move to the
same location, they are merged and act as a single robot. In this article, we do not have that
assumption; in other words, even if robots are located at the same position and activated
at different time, the gathering progress is achieved through the (individual) moves of
those robots.

In this article, we prove the following result which, to our best knowledge, is the first
algorithm for gathering that is asymptotically time-optimal for classic oblivious robots
under limited visibility since the trivial time lower bound for gathering under limited
visibility starting from any initial configuration of N ≥ 1 robots is Ω(DE).

Theorem 1. For any initial connected configuration of N ≥ 1 robots with the viewing range of√
10 and the square connectivity range of

√
2 on a plane, gathering can be solved in O(DE) time

in the asynchronous setting, when robots agree on one coordinate axis.

Notice that, the visibility graph G must be connected, since gathering may not be
solvable under limited visibility if G is not connected [2,6]. Our selection of the viewing and
(square) connectivity ranges and the assumption of one-axis agreement play an important
role in proving Theorem 1. For both viewing and (circular or square) connectivity ranges of
one, we conjecture that there is no O(DE)-time algorithm for gathering of classic oblivious
robots in the asynchronous setting, even when robots agree on both coordinate axes. This
is because a robot cannot move more than distance one in each LCM cycle to preserve
connectivity, and only the end robots can move in each cycle. Therefore, if the robots are
connected as shown in Figure 1, O(DG) time is required to gather them since only end
robots can move and the rest cannot. For the viewing and (circular or square) connectivity
ranges of constant > 1, we conjecture that there is no O(DE)-time algorithm for gathering
of classic oblivious robots if the robots do not agree on any coordinate axis. This is because
the robots’ movements become arbitrary as there is no agreement on the coordinate axes.
Thus, robots can only gather if they move following the diameter DG, which only provides
an O(DG)-time algorithm.

Technique. Let L be the topmost horizontal line so that all the robots of any initial
configuration I are either on the positions of line L or south from L. Let L′ be the line
parallel to L at distance one south of L. The main idea behind the algorithm is to make
robots of I in the north of L′ move to the positions of L′ or south of L′ in O(1) epochs,
even under the asynchronous setting, where an epoch is the time interval for all N robots
to execute their LCM cycle at least once (the formal definition of epoch is in Section 2).
To accomplish this, we classify the moves of robots into three categories: diagonal hops,
horizontal hops, and vertical hops. We will show that if all the robots in the north of L′ make
diagonal or vertical hops, they reach L′ or south of L′ in one epoch. However, if some of
those robots make a horizontal hop, then in two epochs, they reach positions of L′ or south
of L′ through the subsequent vertical or diagonal hop. We also show that, if some robots in
the north of L′ do not move in the first epoch, then they reach positions of L′ or south of L′
through the vertical or diagonal hop by the next two epochs.

36

Information 2021, 12, 448

Similarly, let Lb be the bottommost horizontal line (parallel to L) so that the robots of I
are either on Lb or north of Lb. The main idea is to show that the robots on Lb do not move
south of Lb forever. Specifically, we show that robots on Lb wait for all the robots in the
north of Lb so that they meet at distance (at most) D south of Lb where D is proportional to
the horizontal diameter of the initial configuration I. This is achieved by asking robots not
to make any diagonal, horizontal, or vertical hops if they see at least a robot in the north at
vertical distance 1 (or more) from their positions (i.e., on or outside the connectivity range
of the corresponding robot).

Other Related Work. The classic oblivious robots model or the OBLOT model has
been considered heavily in order to solve a diverse set of problems, such as scattering,
gathering, convergence, circle formation, flocking, etc., in distributed mobile robotics. A
comprehensive description of the state-of-the-art research on distributed computing by
mobile robots can be found in these excellent books [2,17]. Much work on the classic model
on these problems does not provide runtime analysis, for example, see papers on gathering
in a non-predefined point [5–7,18,19]. Pagli et al. [20] considered gathering classic robots
to a small area by avoiding collisions between robots. However, they also do not provide
runtime analysis. Kirkpatrick et al. [19] studied gathering as a point convergence problem
where starting from an arbitrary initial configuration, robots move in such a manner that
they reach inside a circle of radius that is at most ε, ε > 0. They proposed an algorithm to
solve the problem in the k-asynchronous model (i.e., the degree of asynchrony is bounded
to k); however, they showed that point convergence is unsolvable in the fully asynchronous
model. In this article, we present an algorithm with runtime analysis to solve the gathering
problem in the fully asynchronous model by assuming robots agree on one coordinate axis.
Bhagat et al. [21] studied the limited visibility model for robots and presented different
geometric pattern formation problems under limited visibility.

Gathering on a predefined point has been studied in several papers [22–24]. These
papers studied gathering in the context of robots with an extent (i.e., fat robots). Apply-
ing these algorithms to the classic model solves gathering in O(D) time (provided that
gathering point is known to robots), where D is the largest distance from any robot to the
predefined gathering point. However, the runtime bound is provided only for the grid,
and the gathering point is known to robots a priori. Recently, Braun et al. [25] studied
the gathering problem in a three-dimensional Euclidean space under limited visibility
and presented O(n2)-time and O(DE · n

3
2)-time algorithms in the fully synchronous and

continuous time models, respectively.
The question of gathering on graphs instead of gathering in the plane was studied

in [26–28]. Di Stefano and Navarra [27] assumed unlimited visibility and an asynchronous
setting and proved the optimal bounds on the number of robot movements for special
graph topologies such as trees and rings. D’Angelo et al. [28] showed that gathering can be
solved in grids without multiplicity detection. Di Stefano and Navarra [26] extended the
results of [28] to infinite grids and bounded the total number of robot movements.

Gathering is solved by circumventing the impossibility of gathering at a single point
in some recent papers. The relaxation is on the gathering requirement: Gathering occurs
within a small area instead of at a point. A prominent paper that solves gathering in a small
area is written by Cord-Landwehr et al. [14] in which, starting from any arbitrary configu-
ration on a grid, robots gathered within a 2 × 2-sized grid area. Cord-Landwehr et al. [29]
provided an O(N)-time algorithm for the robot convergence problem (converging toward
a single not predefined point) [30].

Izumi et al. [31] considered the robot scattering problem (opposite of gathering) in
the semi-synchronous setting and provided an expected O(min{N, D2 + log N})-time
algorithm; here, D is the diameter of the initial configuration.

All the previous algorithms, including Izumi et al. [4], work in the fully synchronous
setting, except for [11] which works in the one-by-one activation setting (also known as
sequential activation). Our algorithm works in the asynchronous setting. Furthermore,
all previous algorithms assume that when two or more robots move to the same location,

37

Information 2021, 12, 448

they are merged as only one robot. Our algorithm does not merge robots; in other words,
even if robots located at the same position are activated at different times, the gathering
progress is achieved through the (individual) moves of those robots.

Roadmap. In Section 2, we detail the model and touch on some preliminaries. For
the sake of simplicity in discussion, we first provide an O(DE)-time algorithm for robots
on a grid agreeing on both the coordinate axes in Section 3. We then provide an O(DE)-
algorithm for robots on a plane agreeing on both the coordinate axes in Section 4. In
Section 5, we discuss how the algorithms of Sections 3 and 4 can be modified to solve
gathering when robots agree on only one axis. Finally, we provide concluding remarks in
Section 6 with a brief discussion.

2. Model and Preliminaries

Robots. We consider a distributed system of N robots (agents) from a set
Q = {r0, r1, · · · , rN−1}. Each robot is a (dimensionless) point that can move in an infinite
two-dimensional real space R2. Throughout this article, we will use a point to refer to a robot as
well as its position. We denote by dist(ri, rj) the distance between two robots ri, rj ∈ Q. Each
robot ri works under limited visibility and viewing range of each robot is

√
10, i.e., a robot ri can

see and be visible to another robot rj if and only if dist(ri, rj) ≤
√

10. For some cases, e.g., for grid,
the viewing range smaller than

√
10 is sufficient. We describe what exactly is the viewing range

when we describe algorithms in Sections 3 and 5. The connectivity range of each robot is
√

2
following square connectivity, i.e., two robots have an edge between them on G if one robot
is inside the (axis-aligned) 2 × 2-sized square area formed by the other robot being at its
center. The robots agree on the unit of distance measure, i.e., the viewing and connectivity
ranges of

√
10 and

√
2 are the same for each robot ri ∈ Q. The robots also agree on one

coordinate axis, north (the assumption of robots agreeing on east is analogous). For the
sake of simplicity in discussion, the algorithms in Sections 3 and 4 assume that robots agree
on both coordinate axes. The assumption on both axis agreement is lifted in Section 5.

Look-Compute-Move. Each robot ri is either active or inactive. When a robot ri
becomes active, it performs the “Look-Compute-Move” cycle as follows:

• Look: For each robot rj that is within the viewing range of ri, ri can observe the position
of rj on the plane. Robot ri also knows its own position;

• Compute: In any cycle, robot ri may perform an arbitrary computation using only the
positions observed during the “look” portion of that cycle. This includes determina-
tion of a (possibly) new position for ri for the start of next cycle;

• Move: At the end of the cycle, robot ri moves to its new position.

Robot Activation. In the fully synchronous setting (FSYNC), every robot is active
in every LCM cycle. In the semi-synchronous setting (SSYNC), at least one robot is active,
and over an infinite number of LCM cycles, every robot is often infinitely active. In the
asynchronous setting (ASYNC), there is no common notion of time, and no assumption
is made on the number and frequency of LCM cycles in which a robot can be active. The
only guarantee is that every robot is active infinitely often. Complying with the ASYNC
setting, we assume that a robot “wakes up” and performs its Look phase at an instant of
time. We also assume that during the Move phase, it moves in a straight line and stops only
after reaching its destination point; in other words, the moves are rigid [2].

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot in the
SSYNC and ASYNC settings could stay inactive for an indeterminate interval of time,
we bound a robot’s inactivity and use the standard notion of epoch to measure runtime.
An epoch is the smallest interval of time within which each robot is guaranteed to execute
its LCM cycle at least once. Therefore, for the FSYNC setting, a round is an epoch. We
will use the term “time” generally to mean rounds for the FSYNC setting and epochs for
the SSYNC and ASYNC settings.

Square Area. Let ri ∈ Q be a robot positioned at coordinate (xi, yi). Let Li, L′
i,

respectively, be the horizontal and vertical lines passing through ri. Since ri knows north,
ri can easily compute Li, L′

i. The square area for ri, denoted as SQ(ri), is an area of the plane

38

Information 2021, 12, 448

enclosed by four lines Li,t, Li,b, Li,l , Li,r with Li,t, Li,b being parallel to Li (perpendicular to
L′

i) and passes through coordinates (xi, yi + 1) and (xi, yi − 1), respectively, and Li,l , Li,r
is perpendicular to Li (parallel to L′

i) and passes through coordinates (xi − 1, yi) and
(xi + 1, yi), respectively. Notice that SQ(ri) is axis-aligned, and both the height and width
of it is two. We denote by ptl , pbl , pbr, ptr the intersection points of lines Li,t and Li,l , Li,b
and Li,l , Li,b and Li,r, and Li,t and Li,r, respectively. We can divide SQ(ri) to four quadrant
squares SQ1(ri), SQ2(ri), SQ3(ri), and SQ4(ri) with both heights and widths as one. Let
SQ1(ri) and SQ2(ri) be at the north of Li and SQ3(ri) and SQ4(ri) be at the south of Li.
Moreover, let SQ1(ri) and SQ3(ri) be at west of L′

i and SQ2(ri) and SQ4(ri) be at east of
L′

i. We say that the positions of Li in SQ(ri) belong to SQ3(ri) and SQ4(ri). Figure 2a
illustrates these ideas.

Figure 2. An illustration of (a) Square Area and (b) Unit Area.

Unit Area. Let rj, rk, respectively, be the topmost and leftmost robots among the robots
in SQ(ri). In some situations, both rj and rk may be the same robot, and this definition
is still valid. Let LT be the horizontal line passing through rj and LL be the vertical line
passing through rk. Let LB be the horizontal line parallel to LT , and it is at distance one
south of LT . Similarly, let LR be the vertical line parallel to LL and at a distance of one
east of LL. The unit area for ri, denoted as SQunit(ri), is an area of the plane inside SQ(ri)
enclosed by lines LL, LT , LR, and LB. Note that SQunit(ri) is an (axis-aligned) unit square
of both height and width one. We denote by pTL, pBL, pBR, and pTR the intersection points
of lines LT and LL, LB and LL, LB and LR, and LT and LR, respectively. Figure 2b illustrates
the idea of unit area computation.

Visibility Graph and Gathering Configuration. We define the visibility graph of any
initial configuration I and gathering configurations as follows.

Definition 1 (Initial Visibility Graph). The visibility graph G(I) = (Q, E) of any arbitrary
initial configuration I of robots is the graph such that, for any two distinct robots ri and rj,
(ri, rj) ∈ E where rj is positioned on or inside SQ(ri) (or vice-versa).

SQ(∗) provides connectivity for robots with square connectivity range
√

2. The
gathering problem may not be solvable under limited visibility if the initial visibility graph
G(I) is not connected [2,6]. Therefore, we assume that G(I) is connected at time t = 0.
Moreover, any algorithm for gathering must maintain the connectivity of G(I) during its
execution until a gathering configuration is reached. For the sake of clarity, we denote by
Gt(I) the visibility graph G(I) for any time t ≥ 0.

Definition 2 (Ideal Gathering Configuration). An ideal gathering configuration is one where
all robots are at a single point that is not known beforehand.

39

Information 2021, 12, 448

Definition 3 (Relaxed Gathering Configuration). A relaxed gathering configuration is one
where all robots are on a horizontal segment of length 1 unit that is not known beforehand.

The relaxed gathering configuration (Definition 3) is inspired from the recent work of
Cord-Landwehr et al. [14], where the authors modified the ideal gathering configuration
(Definition 2) to solve gathering on a grid by locating all robots within a 2 × 2-sized square
area that is not known beforehand. Additionally, Definition 3 helps us to circumvent the
impossibility results relative to gathering to a point in the ASYNC setting [3], even when
N = 2, by gathering the robots in a unit horizontal line segment. As an example, consider
two robots ri, rj at distance 1 apart on a horizontal line working under an ASYNC setting.
Let ri and rj activate at the same time and ri moves to the position of rj and rj moves to
the position of ri as both of them move in the horizontal line. This scenario may repeat
infinitely since ri and rj do not have common agreement on east or west under one-axis
agreement on north. By using our square connectivity range

√
2, the viewing range

√
10

and one-axis agreement, even when N = 2, the robots can reach a horizontal segment
of length one unit. The viewing range helps each robot ri to see whether there is a robot
outside SQ(ri) and decide whether Definition 3 is reached.

Under both axis agreement, our algorithm provides an ideal gathering configuration
(Definition 2). Under one-axis agreement, our algorithm provides a relaxed gathering
configuration (Definition 3). Since we focus on runtime, we do not explicitly characterize
the configurations that do not achieve Definition 2 under one-axis agreement, but we
simply prove that all the configurations (at least) attain Definition 3 in O(DE) time.

3. O(DE) Time Algorithm for the Grid

In this section, we define the grid model that is a restriction imposed on the Euclidean
plane. The motivation behind designing an algorithm for this model is that it is simple
to understand and easy to analyze. We design and analyze an algorithm without the
grid restriction in Section 4. In the grid model, a robot moves on a two-dimensional grid
and changes its position to one of its eight horizontal, vertical, or diagonal neighboring
grid points. Throughout this section, we assume that robots agree on both coordinate
axes, and each robot has the viewing range of two. Moreover, each robot has the square
connectivity range of

√
2. We say gathering is performed when the robot configuration

satisfies Definition 2.

3.1. The Algorithm

The pseudocode of the algorithm is given in Algorithm 1. Depending on the positions
of other robots within its viewing range, ri distinguishes diagonal, horizontal, and vertical
hops, which we discuss separately below. A robot ri hops on one of its neighboring grid
points based on the diagonal, horizontal, or vertical pattern that matches the snapshot it
takes in the Look phase. Notice that since robots agree on north, ri never hops on any of the
three neighboring grid points relative to north from its position, i.e., ri hops only to one of
its five neighboring grid points on the same horizontal line Li or south of Li. We will show
that this allows achieving a gathering progress in every epoch. Since robot moves are not
instantaneous due to the ASYNC setting, a robot ri also does not move if it observes at
least one robot in the north of Li inside or on SQ(ri). This is crucial for guaranteeing that
robots do not move south forever. Robot ri terminates when it sees no other robot inside or
on SQ(ri) other than its position.

Diagonal Hops. A diagonal hop takes a robot ri to one of the two diagonal neighbor-
ing grid points in the south (i.e., either pbr or pbl). Let Li be a horizontal line that passes
from the current position of a robot ri. Robot ri makes a diagonal hop when it sees no robot
in SQ(ri) at the north of Li (including the positions of Li) and either (i) ri sees no other
robot in SQ3(ri) (except at its position) and sees at least one robot on Li,r at the south of Li
or (ii) ri sees no other robot in SQ4(ri) (except at its position) and sees at least one robot on

40

Information 2021, 12, 448

Li,l at the south of Li. In case (i), ri hops on grid point pbr, whereas in case (ii), it hops on
grid point pbl .

In this hop, the robot moves diagonally at a distance of
√

2. Figure 3a,b illustrate
diagonal hops.

Algorithm 1: The algorithm for gathering on a grid (under both axis agreement)

/* In every LCM cycle, each robot ri does the following when it
activates: */

/* Look: */
1 (xi, yi) ← current position of robot ri in the grid graph G;
2 C(ri) ← snapshot of the positions of other robots within the viewing range of ri;
/* Compute: */

3 SQ(ri) ← square area for robot ri;
4 Li, L′

i ← horizontal and vertical lines passing through ri, respectively;
5 Li,t, Li,b ← horizontal lines parallel to Li and passing through (xi, yi + 1) and

(xi, yi − 1), respectively;
6 Li,r, Li,l ← vertical lines parallel to L′

i and passing through (xi + 1, yi) and
(xi − 1, yi), respectively;

7 di ← destination point for ri to move;
8 If ri sees no other robot in any of the neighboring grid points on SQ(ri) then
9 ri terminates;

10 Else if ri sees at least a robot in SQ(ri) in North of Li then
11 ri keeps waiting; di ← (xi, yi); // do nothing

/* Check the following two conditions for a diagonal hop. */
12 Else if ri sees no robot in SQ(ri) on or West of L′

i (except at its position), and sees
at least a robot on Li,r that is part of SQ(ri) in South of Li then // Figure 3a

13 di ← (xi + 1, yi − 1);
14 Else if ri sees no robot in SQ(ri) on or East of L′

i (except at its position), and sees
at least a robot on Li,l that is part of SQ(ri) in South of Li then // Figure 3b

15 di ← (xi − 1, yi − 1);
/* Check the following condition for a horizontal hop. */

16 Else if ri sees at least a robot on (xi + 1, yi) and sees no other robot in SQ(ri),
except on Li in the East then // Figure 3c

17 di ← (xi + 1, yi);
18 Else // Check either of the following two conditions for a vertical

hop.
19 If ri sees no robot in SQ(ri) in North of Li and sees at least a robot rj on L′

i in
South in SQ(ri) then // Figure 3d

20 di ← (xi, yi − 1);
21 Else if ri sees no robot in SQ(ri) in North of Li and sees at least one robot each

on two lines Li,l and Li,r on or South of Li in SQ(ri) then // Figure 3e
22 di ← (xi, yi − 1);

/* Move: */
23 ri moves to di;

/* Note: Each robot reaches a grid point after the completion of a
cycle. But a robot may not necessarily see other robot(s) (which
is/are moving) only at grid points since the robots may perform
their LCM cycles at arbitrary times due to the ASYNC setting.
*/

41

Information 2021, 12, 448

Figure 3. An illustration of moves made by a robot: (a,b) diagonal hops, (c) horizontal hop, and (d,e) vertical hops. The
blue shaded area along the grid lines represents that there is no robot in that area. The outer diamond represents the set of
grid points within the viewing range of ri in grid (i.e., 2).

Horizontal Hops. A horizontal hop takes ri to its neighboring grid point on Li in the
east. When a robot ri sees at least one robot rj at its horizontal neighboring grid point (and
possibly others on Li between ri and rj) and no other robot in SQ(ri), ri makes a horizontal
hop to the neighboring grid point in the east. Figure 3c illustrates the horizontal hop.

Vertical Hops. A vertical hop always takes ri to its neighboring grid point vertically
south from it. Robot ri makes a vertical hop if either (i) it sees a robot rj on L′

i at the south of
Li and no other robot in SQ(ri) at the north of Li or (ii) it sees at least one robot each on Li,l
and Li,r or south of Li and no other robot in SQ(ri) at the north of Li. Figure 3d illustrates
case (i) and Figure 3e illustrates case (ii).

3.2. Analysis of the Algorithm

We first prove the correctness of the algorithm in the sense that the visibility graph
Gt(I) remains connected during execution. We then prove the progress of the algorithm
such that after a finite number of epochs, any connected initial configuration converges to
an ideal gathering configuration (Definition 2). Let I be any arbitrary initial configuration
of robots in Q on a grid such that G0(I) is connected. Let SER(I) be the axis-aligned smallest
enclosing rectangle for the robots in I. Let DY and DX , respectively, be the height and width
of SER(I). Let LDY , LDY−1, . . . , L0 be the horizontal line segments of SER(I) at every 1 unit
vertical distance, with LDY being the topmost horizontal line segment and L0 being the
bottommost horizontal line segment. Similarly, let L′

DX
, L′

DX−1, . . . , L′
0 be the vertical line

segments of SER(I) at every one unit horizontal distance, with L′
DX

being the rightmost
vertical line segment and L′

0 being the leftmost vertical line segment. Let LS be the line
parallel to L0 at distance DX

2 south of L0. Figure 4 illustrates these definitions.

Figure 4. An illustration of an axis-aligned smallest enclosing rectangle SER(I) and the triangular
area south of it.

42

Information 2021, 12, 448

Lemma 1. Given any initial configuration I such that the visibility graph G0(I) is connected, the
graph Gt(I) at any time t > 0 remains connected.

Proof. For a robot ri, since G0(I) is connected, there are robots in at least two out of its
eight neighboring grid points, unless ri is a leaf node in G0(I) in which case there may be a
robot in only one out of its eight neighboring grid points. We will show that no matter the
moves of ri and the robots in its eight neighboring grid points, in the new configuration, ri
has robots in at least two out of its eight neighboring grid points (unless it is a leaf node
in G0(I) in which case there will be a robot in one of eight neighboring grid points). This
immediately proves this lemma from our definition of connectivity.

Notice that the movements of ri are either diagonal, horizontal, or vertical, and ri
never moves to its three neighboring grid points on SQ(ri) in the north of Li. Furthermore,
ri does not move when it sees at least one robot rj at the north of Li or inside SQ(ri).

A diagonal hop for ri is possible when ri sees other robot(s) rj only on one of its two
diagonal neighboring grid points on SQ3(ri) or SQ4(ri), and ri moves to the position of
rj (since rj does not move as rj sees ri at the north of Lj until ri reaches the position of rj).
Robot ri also makes a diagonal hop when it sees other robot(s) rj on either Li,l only or Li,r
only that is part of SQ(ri) in the south of Li. Since rj is at the south of Li, it must be in
transit to the neighboring diagonal grid point of ri and ri, and rj meet together when both
of them reach that grid point. If one reaches that grid point before, it waits for the other
since there will be at least one robot at the north of the horizontal line for the robot on that
grid point until ri and rj meet.

A horizontal hop for ri is possible only when ri sees rj in the east at the horizontal
neighboring grid point (and no other robot inside or on SQ(ri) except on Li in the east).
After the movement, ri either reaches the position of rj (if rj does not move) or ri and rj
will be at the two vertical neighboring grid points (if rj moves). That is, for rj to move, rj
has to see at least one other robot in addition to ri on Li or at the south. The connectivity is
maintained since ri is the endpoint robot (i.e., it has only one neighboring robot), and if rj
is also the endpoint robot, then there is no third robot in the system; otherwise, rj must see
a robot rk �= ri in one of its five neighboring grid points on Li or south of Li.

A vertical hop for ri is possible when it sees at least one other robot rj on the neighbor-
ing grid point that is vertically south of it (and possibly others between ri and rj), but no
robot is observed on or inside SQ(ri) in the north of Li. In this case, ri reaches the position
of rj since rj cannot move until there is ri in the north. ri performs a vertical hop also when
it sees at least one robot each on the two vertical lines Li,l and Li,r on or south of Li in SQ(ri)
and no robot in SQ(ri) in the north of Li. Suppose ri sees two robots rj and rk in SQ(ri)
on or south of Li such that rj ∈ Li,l and rk ∈ Li,r. After the movement, in this case, the
distance between ri and one of rj, rk is at most

√
2 as they will be (at most) at the diagonal

neighboring grid points from each other. The lemma is described as follows.

Lemma 2. Given any initial configuration I, if all the robots are not at one or two neighboring grid
positions on the same horizontal line, the robots on the line segment LDY of SER(I) move to the
line segment LDY−1 in at most two epochs.

Proof. Since LDY is the topmost horizontal line segment, there is no robot in the north
of LDY . Moreover, since robots agree on north, the robots at the grid points of LDY never
move north of LDY . Therefore, if all the robots at the grid points of LDY make diagonal or
vertical hops when they become active, then they will reach the positions of LDY−1; hence,
in at most one epoch, all robots on LDY will be at LDY−1, even in the ASYNC setting. Note
that in an epoch, each robot completes its LCM cycle at least once. This means that, in this
case, each activated robot at LDY completes its LCM cycle after moving to the position of
LDY−1. Therefore, a robot ri on LDY remains at a grid point on LDY if and only if it makes
a horizontal move in that epoch. We will show that ri either terminates or moves to a
position on LDY−1 in the next epoch.

43

Information 2021, 12, 448

Let rj be the robot at the horizontal neighboring grid point that ri sees on LDY when
it makes a horizontal hop. We have it that ri must not have seen any robot on its other
seven neighboring grid points or inside of SQ(ri) (except between ri and rj on the same
horizontal line). When ri moves to the position of rj, either rj is still on LDY or has moved
to LDY−1 in the neighboring grid point that is vertically south of rj. If rj has not moved
south, either the execution is still in the first epoch or rj does not see any other robot except
on or between the positions of ri and rj in the same horizontal line. If rj is still in the first
epoch, then ri reaches the position of rj, and either this horizontal moving scenario repeats
with execution still being in the first epoch or rj moves south. If rj does not see any other
robot except on or between the positions of ri and rj in the same horizontal line, ri (and all
other robots on Li up to rj) reaches the position of rj, and all of them terminate by achieving
the gathering configuration. If rj has moved to LDY−1 in the first epoch, ri moves to the
position of rj on LDY−1 when it becomes active next time since rj is in the neighboring grid
point of SQ(ri) that is vertically south of it. Therefore, in at most two epochs, all the robots
on LDY move to the positions of LDY−1.

The following observation is immediate for vertical hops since a vertical hop by a
robot takes it to its neighboring grid point vertically south of it. For a horizontal/diagonal
hop, this is also true since a robot performing a horizontal/diagonal hop never finds its
neighboring robot outside L′

DX
and L′

0.

Observation 1. No robot of SER(I) moves to the positions outside of lines L′
0 and L′

DX
during

the execution.

Lemma 3. No robot of SER(I) reaches the south of horizontal line LS (Figure 4) during the
execution.

Proof. Let X := {r0, . . . , rX} be the robots on L0 in the increasing order of their x-
coordinates (some of the grid points on L0 may be empty, and it does not impact our
analysis). If all robots r0, . . . , rX on set X have robots on or inside SQ(∗) at the north of L0,
they do not move until those robots at the north of L0 are moved to L0. Therefore, we first
assume that only r0 and rX have robots at the north of L0 inside or on SQ(r0) and SQ(rX),
respectively, and {r1, . . . , rX−1} have no such robots at the north of L0 inside or on their
respective SQ(∗). Robots r2, . . . , rX−2 can move to their neighboring grid points that are
vertically south of them in one epoch. This is because they do not see any robot at the north
of the horizontal line passing through their positions.

In the second epoch, r2 and rX−2 see r1 and rX−1, respectively, in the north on their
respective SQ(∗), and only the robots r3, . . . , rX−3 can move to the next line in the south
from their current horizontal line. This implies that each robot ri, 1 ≤ i ≤ X

2 waits for ri−1
since it sees ri−1 on the neighboring grid point in the north from their position, and this
is also the case for the robots from r X

2 +1 (from r X
2 +2 in the even DX case) to rX−1. The

scenario repeats until the middle robot of L0 reaches at most DX
2 − 1 distance south from

L0, if DX is an odd number). If DX is an even number, two robots r X
2

and r X
2 +1 of L0 reach

at most DX
2 − 2 distance south from L0.

Now consider the case where either r0 or rX has no robot on the neighboring grid
point that is vertically north from it in addition to r1, . . . , rX−1. Notice that at least one of
r0 or rX must have a robot at the north to maintain the connectivity of Gt(I). Let r0 be
that robot (the case of rX is analogous). If r0 moves first, it moves to the position of r1
in L0 performing a horizontal hop. If r1 moves first, r0 reaches r1 at the horizontal line
immediately below L0 performing a diagonal hop. By repeating this, the robots r0, . . . , r X

2 −1
may reach the position of r X

2
(the middle robot) at distance D X

2
south of L0 (i.e., LS). For

the remaining robots r X
2

, . . . , rX, each robot rX−i, 1 ≤ i ≤ X
2 sees rX−i+1 in the north on

44

Information 2021, 12, 448

respective SQ(∗); thus, the middle robot can reach at most D X
2

south of L0. Therefore, this
process again ends up at line LS in the worst-case.

During the execution, the robots at the north of L0 in SER(I) may visit the robots
south of L0. In that case, the robots at the south of L0 do not move until they see at least
one robot at the north of its position inside SQ(∗). If a robot does not see any robots at
the north of its position, then it either performs a diagonal hop which never takes it to the
south of LS or it performs a vertical hop. If it performs a vertical hop, it will perform a
horizontal hop in the next epoch, and this never takes it south of LS. Therefore, according
to the moves of the robots of L0, it is easy to see that all the robots in Q are within the
triangular area (as depicted in Figure 4).

Lemma 4. The viewings of two and the square connectivity range of
√

2 are sufficient for gathering
relative to a grid point (that is not known beforehand) on a grid under both axis agreements.

Proof. If a robot ri sees robots only at the south (vertically below or diagonal), it can simply
move towards the south, and when ri sees no robot in the south and no robot on horizontal
neighboring grid points, it can simply terminate. This is because if there is another robot
within its viewing range, ri must see it in one of its eight neighboring grid points in order
to satisfy connectivity for Gt(I), t > 0, (Lemma 1) since G0(t) satisfies this condition. If
ri sees a robot rj in either of its horizontal neighboring grid points, then ri moves to the
position of rj if rj is at its east, and rj simply waits for ri as it does not perform a horizontal
hop to the west or moves vertically south. Even in this case, ri sees rj. Therefore, if ri sees
no robot in SQ(ri), it can terminate. According to the definition of the connectivity range,
the viewing range of two is enough for ri to maintain connectivity with any of the eight
neighboring grid points.

The analysis of this section proves the following main result.

Theorem 2. Given any connected configuration of N ≥ 1 robots with the viewing range of two
and the square connectivity range of

√
2 on a grid, the robots can gather to a point in O(DE) epochs

in the ASYNC setting under both axis agreement.

Proof. We have from Lemma 1 that Gt(I) remains connected during the execution. We
have from Lemma 2 that all the robots at the topmost horizontal line LDY of SER(I)
move to LDY−1 in at most two epochs. Thus, after at most two epochs, Lemma 2 applies
again to the robots of LDY−1, which takes all the robots on LDY−1 to LDY−2 or south
in next two epochs. This process continues and all the robots in SER(I) move to line
L0 or south of it in at most 2 · DY epochs. These robots will be at one grid point in
at most the next DX epochs. This is because for every one unit of vertical hop of the
robots at the south of L0, the width of the positions of robots decreases by two. The
width of the positions of robots at L0 is at most DX. Thus, the width of the positions
of robots becomes zero at distance ≤ DX

2 south of L0. Again, from Lemma 2, it takes at
most two epochs to move all the robots one unit south; hence, to move all the robots at
DX
2 distance south of L0, it takes at most DX epochs. Therefore, the robots can gather

in O(DX + DY) epochs. We have that max{DX, DY} ≤ DE ≤ √
2 · max{DX, DY} for

SER(I) of any initial configuration I. Therefore, DX + DY ≤ 2 · max{DX, DY}; hence,
O(DX + DY) = O(2 · max{DX, DY}) = O(DE). The algorithm terminates (Lemma 4)
since if a robot ri sees no robot in SQ(ri) other than its current position, then all the robots
of Q must be gathered in the current position of ri (due to the connectivity guarantee of
Lemma 1).

4. O(DE) Time Algorithm for the Euclidean Plane

We discuss here how to solve gathering in a Euclidean plane by removing the restric-
tions on robot moves imposed on a grid. The viewing range is of

√
10, and the square

45

Information 2021, 12, 448

connectivity range is of
√

2 (both measured in Euclidean distance). The robots agree on
both coordinate axes.

We say gathering is performed when the robot configuration satisfies the ideal gather-
ing configuration (Definition 2).

4.1. The Algorithm

The pseudocode of the algorithm is provided in Algorithm 2. Depending on the
positions of other robots in its viewing range, a robot ri can decide to hop on the positions
of one of its neighboring quadrants SQ3(ri) or SQ4(ri); we do not allow ri to move to the
positions north of Li. In contrast to grid where robots always move in either unit distances
(horizontal and vertical hops) or distance

√
2 (diagonal hops), in the Euclidean plane, a

robot may move with varying distance of at most one for horizontal and vertical hops and
varying distance of at most

√
2 for diagonal hops. The main difference (with the grid) is on

how robots match patterns to perform diagonal, horizontal, and vertical hops. In contrast
to relatively simple matching patterns of robots on a grid, the matching patterns of robots
for the Euclidean plane are complex.

4.1.1. Overview of the Patterns

The idea is to resemble the patterns for the Euclidean plane to the respective patterns
for the grid. For this purpose, we ask each robot ri to compute unit area SQunit(ri) as
defined in Section 2. SQunit(ri) helps ri to decide whether to make a diagonal, horizontal,
or vertical hop. If ri sees itself or at least one robot in SQunit, (ri) is connected to a robot
at the north of LT , and it does not move. This guarantees that robots do not move south
forever. If the robots in SQunit(ri) are not connected to any other robot outside of SQunit(ri)
at the west of LR (or similarly at the east of LL), then ri makes a horizontal hop to the east
(or similarly to west). If ri satisfies the conditions for a horizontal hop, except that there
is a robot on point pBR (or similarly on pBL), and the robots in SQunit(ri) are in a single
diagonal line, then it makes a diagonal hop to pBR (or similarly to pBL). If the robots in
SQunit(ri) are not connected to any other robot outside of SQunit(ri) at the north of LB but
(at least) a robot in SQunit(ri) is connected to a robot on or south of LB and ri does not
satisfy a condition for a diagonal hop, then ri makes a vertical hop. Moreover, if ri sees at
least one robot on each of its two sides (east and west) at horizontal distance ≥ 2, then it
makes a vertical hop. The termination is guaranteed by asking ri to check, in every LCM
cycle, whether all robots in its viewing range are positioned in SQunit(ri) (that is, ri sees no
robot outside SQunit(ri)). When that is the case, ri and the remaining robots in SQunit(ri)
run a special procedure in order to reach a single point (Definition 2) and terminate their
computation. Reaching a single point is facilitated for robots by both axis agreement.

4.1.2. Detailed Description of the Patterns

We provide details of the patterns below. Robot ri terminates when it sees no other
robot in SQ(ri), except on its current position.

Horizontal Hops. Robot ri makes a horizontal hop in the following conditions:

• This case is similar to the grid. If ri sees a robot rj at its east at distance one on line
Li and there is no robot in SQ(ri), except the current position of ri and possibly on Li
from ri up to rj, ri hops to the position of rj (distance 1).

• Robot ri hops horizontally east on Li distance 1 − Lik (Lik is the distance between
ri and rk, the leftmost robot in SQ(ri)) if all the following conditions are satisfied
(Figure 5a illustrates this case for a horizontal hop):

– No robot in SQunit(ri) is connected to any other robot at the north of LT .
– No robot in SQunit(ri) is connected to any other robot at the west of LR, except

for the robots in SQunit(ri).
– There is no robot on LB of SQunit(ri).

46

Information 2021, 12, 448

Algorithm 2: The algorithm for gathering in the Euclidean plane
/* In every LCM cycle, each robot ri does the following when it becomes

activated: */
/* Look: */

1 (xi, yi) ← current position of robot ri in the plane;
2 C(ri) ← snapshot of the positions of other robots within the viewing range of ri;
/* Compute: */

3 SQ(ri) ← square area for robot ri;
4 SQunit(ri) ← unit area for ri;
5 Li, L′

i ← horizontal and vertical lines passing through ri, respectively;
6 Li,t, Li,b, Li,r, Li,l ← top, bottom, right and left boundary lines of SQ(ri), respectively;
7 LT , LB, LR, LL ← top, bottom, right and left boundary lines of SQunit(ri), respectively;
8 di ← destination point for ri to move;
9 If ri sees no robot outside SQunit(ri) then

10 execute the termination procedure;
11 If ri sees a robot rj in SQunit(ri) that is connected to other robot in North of Li,t (of SQ(ri))

then
12 ri does not move; di ← (xi, yi);

/* Conditions for horizontal hops */
13 Else if there is no robot on LB in the segment of SQunit(ri) ∧ no robot in SQunit(ri) is

connected to any other robot in West of LR except the robots in SQunit(ri) then
14 set the destination point di as a point at horizontal distance 1 − Lij in East (where Lij is

the horizontal distance from ri to the leftmost robot rj in SQunit(ri));
/* Note: If ri be the leftmost robot in SQunit(ri), then it moves

distance 1 horizontally in East. And, if the conditions satisfy
symmetrically, then ri sets as destination point to the position on
LL in West. */

/* Conditions for diagonal hops */
15 Else if ri sees at least a robot on the diagonal point pBR ∧ all the robots in SQunit(ri) are in

the diagonal line that passes through SQ4(ri) ∧ no robot in SQunit(ri) is connected to any
other robot in the West of LR, except the robots in SQunit(ri) then

16 set di as the diagonal point pBR at distance
√

2 − Lij (where Lij is the distance from ri to
rj, the topmost and leftmost robot in SQunit(ri));

/* Note: Here, pBR is the intersection point of LB and LR and SQ4(ri)
is the unit square quadrant of SQ(ri) in the South-West region. If ri
be the topmost (leftmost) robot in SQunit(ri), then it moves distance√

2 diagonally to pBR. Moreover, if the above conditions satisfy
symmetrically, then ri sets as destination point pBL (the
intersection point of LB and LL). */

17 Else // Conditions for vertical hops
18 SPunit(ri) ← unit area in West of Li,l and South of LB;
19 If ri sees a robot at the intersection point of lines L′

i and LB ∨ ri sees at least one robot
each in both sides (East and West) at horizontal distance ≥ 2 ∨ (ri sees a robot on LB of
SQunit(ri), no robot in SQunit(ri) is connected to other robot in North of LB and West of
LL) ∨ (ri sees at least one robot in SQunit(ri) that is connected to other robot in South of
LB in West of LR and no robot in SQunit(ri) is connected to other robot in North of LB
and West of LL) ∨ (ri sees at least a robot in SPunit(ri) and at least a robot in SQunit(ri)
is connected to a robot in North of LB and West of LL) then

20 set di as the point vertically South at distance 1 − Lij on LB of SQunit(ri) (where Lij
is the vertical distance from ri to LT);

/* Note: If ri be the topmost robot in SQunit(ri) then it moves
distance 1 vertically South. */

/* Move: */
21 ri moves to di;

Since we ask the robots to always move east in a horizontal hop, we do not have a
symmetric case for horizontal hops under both axis agreements.

47

Information 2021, 12, 448

Figure 5. An illustration of a horizontal hop (a) and diagonal hops (b,c).

Diagonal Hops. Robot ri makes a diagonal hop in either of the following conditions:

• This case is similar to grid. If ri sees no other robot in SQ(ri) except at least one robot
rj in SQ4(ri) on the diagonal corner point pbr, ri hops to pbr. Robot ri moves at a
distance of exactly

√
2 if it performs this hop.

• Robot ri hops diagonally at a distance of
√

2 − Lij (where Lij is the distance between
ri and rj, the topmost which is also the leftmost robot of SQunit(ri) at point pTL) to a
point in SQ4(ri), if the following conditions are satisfied:

– No robot in SQunit(ri) is connected to any other robot at the north of LT .
– No robot in SQunit(ri) is connected to any other robot at the west of LR, except

the robots in SQunit(ri).
– All robots in SQunit(ri) are in the diagonal line that passes through SQ4(ri).
– There is at least one robot on the diagonal point pBR of SQunit(ri).

Figure 5b illustrates this hop for ri. The symmetric diagonal case moves ri to point
pBL which is illustrated in Figure 5c.

Vertical Hops. If no robot in SQunit(ri) of a robot ri is connected to any other robot at
the north of Li,t (of SQ(ri)), ri makes a vertical hop of distance 1 − Lim (where Lim is the
vertical distance from ri to line LT) in either of the following conditions:

• Robot ri sees at least one robot at the intersection point of L′
i and LB.

• Robot ri sees at least one robot each at both the east and west at horizontal distance
≥ 2. Figure 6b illustrates this case.

• Robot ri sees at least one robot on LB of SQunit(ri), no robot in SQunit(ri) is connected
to any other robot at the north of LB and west of LL, and the conditions for a diagonal
hop are not satisfied for ri. Figure 6a illustrates this case.

• Robot ri sees at least one robot in SQunit(ri) that is connected to a robot at the south of
LB on or west of LR, and no robot in SQunit(ri) is connected to any other robot at the
north of LB and west of LL. Figure 6a also illustrates this case.

• Let SPunit(ri) be a unit area at the west of Li,l and south of LB with LB being the
topmost horizontal line LT of SPunit(ri) and Li,l being the rightmost vertical line LR
of SPunit(ri). Robot ri sees that at least one robot in SQunit(ri) is connected to a robot
at the north of LB and west of LL, ri sees at least one robot in SPunit(ri), and the
conditions for a horizontal hop are not satisfied. Figure 6c illustrates this case.

Remark 1. Robot ri also makes a vertical hop if the symmetric situations in the last three conditions
are satisfied. The above rules infer that the robots move only under certain situations. Robots do
not move in all the remaining situations. This process repeats until all robots of Q are inside an
(axis-aligned) 1 × 1-sized square area so that the special procedure for termination, as described in
the next paragraph, can be applied.

48

Information 2021, 12, 448

Figure 6. An illustration of vertical hops. (a) ri sees at least one robot on LB of SQunit(ri). (b) ri sees
at least one robot each in both sides east and west at horizontal distance ≥ 2. (c) ri does not see any
robot at horizontal distance ≥ 2 in both sides east and west, but at least one in the west of LL (or East
of LR) and is connected to other robot in the south of LB and west of Li,l (or East of Li,r).

4.1.3. The Termination Procedure

We will show in the analysis that the diagonal, horizontal, and vertical hops described
above position all robots in Q in an axis-aligned 1 × 1-sized square area, say SA. We
now discuss how the robots reach a point and terminate. Let rl , rb, and rr be the leftmost,
bottommost, and rightmost robots in SA. We have that the unit area SQunit(ri) of each
robot ri that is in SA overlaps. Therefore, if all the robots in SA are in a single diagonal
line, then rb does not move, and all other robots in SA make a diagonal hop with their
destination as the current position of rb. Otherwise, the robots first perform a horizontal
hop, as the destination points the positions on the right vertical line LR of SA. The robots
on LR do not move until all the robots in SA (the same for all robots) are positioned on LR.
After that, the robots (now on LR) perform a vertical hop to the destination, which is the
position of the bottom most robot on LR, which does not move. Now, since all the robots
reach the same position, they terminate in the next epoch.

We have the following immediate observation after all the robots in Q are positioned
in an axis-aligned 1 × 1-sized square area SA.

Observation 2. The robots within an axis-aligned 1 × 1-sized square area SA are positioned at a
single point in at most two epochs.

4.2. Analysis of the Algorithm

We first prove correctness and then progress to providing a guarantee of the algorithm.
We use SER(I) and other definitions as in Section 3 except LS. Here, we define LS as a
horizontal line parallel to L0 at distance DX south of L0. Figure 7 illustrates these definitions
for the algorithm in the Euclidean plane.

Based on the movement of robots in horizontal, diagonal, and vertical hops, the
following observation is immediately made. This is because the robots never make a
horizontal hop to the west, and the robots making the horizontal hops never reach east
of L′

DX
. In the diagonal hops, robots move to the diagonal position that is closer to the

other neighboring robots. Since all the robots are inside L′
0 and L′

DX
initially, there is no

neighboring robot outside of those lines; hence, the diagonal hops will also be inside L′
0

and L′
DX

. In the vertical hops, robots always move vertically south. Since no robot has
reached outside of L′

0 and L′
DX

with the horizontal as well as diagonal hops, this is true
with the vertical hop as well.

49

Information 2021, 12, 448

Figure 7. Illustration of SER(I) and the triangular area south of it in the Euclidean plane.

Observation 3. No robot of SER(I) moves outside of lines L′
0 and L′

DX
during the execution.

Lemma 5. Given that G0(I) is connected, the visibility graph Gt(I) at any time t > 0
remains connected.

Proof. We extend the proof of Lemma 1. Similarly to the grid, a robot ri either does not
move or performs either a diagonal, horizontal, or a vertical hop. Note also that ri never
moves to any position at the north of Li. Furthermore, ri does not move when it sees at
least one robot rj on line Li,t or at the north of Li,t.

First of all, if the robots move as in the grid case, Lemma 1 provides the connectivity
proof for Gt(I), t > 0, starting from connected G0(I). Therefore, we focus only on the cases
that are particularly relevant to the Euclidean plane.

A diagonal hop for ri is possible only when the robots in SQunit(ri) are in the diagonal
line that passes through SQ4(ri) and are not connected to any other robot at the west of LR
besides the robots in SQunit(ri) (the analogous case of SQ3(ri) can be handled similarly).
Moreover, there is at least one robot at point pBR. Robot ri then moves to pBR. This
preserves connectivity for Gt(I) since the robot at pBR must be connected to at least one
robot at the east of LR if all the robots of Q are not inside SQunit(ri). Due to the ASYNC
setting, the robot rj at pBR may perform its Look phase while ri is in transit to pBR. Let t′

be the time at which rj performs its Look. Let ri be at point p at distance
√

2 − x from pBR
at time t. Let SQp(ri) be SQ(ri) for ri when it is at position p. Even in this case, rj does
not move in a position outside of SQp(ri) regardless of whether it performs a horizontal,
vertical, or a diagonal hop, preserving connectivity.

A horizontal hop for ri is possible only when the robots in SQunit(ri) are not connected
to any other robot at the west of LR similarly to the diagonal hop case with only the
difference being that there is no robot on pBR so that even when all the robots in SQunit(ri)
are in a diagonal line, ri cannot perform a diagonal hop. Even in this case, connectivity is
preserved since, if the robots move at most the permitted distance, they would have moved
in the grid case.

50

Information 2021, 12, 448

Similarly, in the vertical hop of robot ri, if it sees no robot at the north in SQ(ri), it
moves vertically south on L′

i with a distance of exactly one. If ri sees at least one robot
rj at the north in SQ(ri) and satisfies the conditions for vertical hopping, it hops 1 − Lij
(where Lij is the vertical distance between ri and rj) distance south to a position on LB (of
SQunit(ri)). In both cases, by the end of first epoch, each robot moves at most a distance
of one toward the south, and the robots remain connected because ri reaches at most

√
2

distance away from the neighbor robot in SQ(ri) (if the neighbor robot does not move in
this epoch) and remains connected. Moreover, the robots connected to ri at the south of LB
do not move as they find ri at the north and the connectivity with them remains unaffected.
Thus, Gt(I), t > 0 remains connected with a vertical hop. Figure 8 illustrates the movement
of robots and how the connectivity is preserved. Note here that regardless of the grid
case where robots are positioned on the grid points, in the Euclidean plane, robots can be
positioned anywhere in the plane. The shaded regions in Figure 8 represent the arbitrary
positions of robots within the equivalent grid areas in the Euclidean plane.

Lemma 6. All the robots in at the north of LDY−1 in SER(I) move to the positions on LDY−1 or
south of LDY−1 in at most three epochs.

Proof. Since LDY is the topmost horizontal line segment of SER(I), there is no robot at the
north of LDY . Moreover, since robots agree on north, they never move to the north of the
horizontal line they are currently positioned. Consider the robots in the corridor area CA
of SER(I) formed by horizontal lines LDY and LDY−1, excluding the positions of LDY−1.
Note that in the grid case, the robots were either on LDY or on LDY−1, and we proved in
Lemma 2 that the robots on LDY reach LDY−1 or the south in at most two epochs.

Consider SQunit(ri) of any robot ri in CA. We will show that all the robots in SQunit(ri)
that are in CA reach LDY−1 or below in at most two epochs. Since these robots do not see
any robot on or north of LDY , they perform at least one kind of hop (vertical, horizontal,
or diagonal) in the first epoch except the robots positioned between L′

1 and L′
2 in the west

and L′
DX−2 and L′

DX−1 in the east in CA (Figure 8). The robots between L′
1 and L′

2 and
L′

DX−2 and L′
DX−1 may not satisfy any conditions for movement in the first epoch. If all the

robots in SQunit(ri) in CA perform either a diagonal or a vertical hop, they reach LDY−1 or
south in one epoch because, with both the diagonal and vertical hops, robots in SQunit(ri)
reach LB or below LB and LB is either LDY−1 or below. If some robots perform a horizontal
hop in the first epoch, we show that it performs either a vertical or a diagonal hop in the
second epoch.

A robot makes a horizontal hop if it sees no other robot at the west of LR, except
the robots in SQunit(ri), and there is no robot on LB of SQunit(ri). By the end of the first
epoch, all the robots in SQunit(ri) reach the positions on or east of LR if all of them make a
horizontal hop. In this case, the robots in CA between L′

1 and L′
2 do not move in the first

epoch. If some robots performed horizontal hops and the rest performed vertical/diagonal
hops, we only need to guarantee that the robots that performed a horizontal hop on the
first epoch reached LB or south of it in the second epoch performing a vertical or a diagonal
hop. Consider a robot ri that satisfies the conditions for a horizontal hop in the first epoch.
We have it that there is no robot on LB, and the robots in SQunit(ri) are connected to no
other robot besides the robots in SQunit(ri) at the west of LR. Let SQE

unit(ri) be a square
area adjacent to SQunit(ri) at the east between lines LT and LB. Let L′

B and L′
R be the

bottom horizontal and right vertical lines of SQE
unit(ri). If the robots in SQE

unit(ri) are not
on L′

B and not connected to any other robot below L′
B at the west of L′

R, they do not move
until all the robots in SQunit(ri) reach LR or east of LR in SQE

unit(ri). If there are robots on
L′

B, let x be the robot on L′
B that is the closest from LR. Let LV be a line parallel to LR at

some unit distance west of x. All the robots in SQunit(ri) at the west of LV perform one
horizontal move each in the first epoch. The robots on LV or east in SQunit(ri) perform a
vertical hop as there are robots on L′

B. The robots of SQunit(ri) that performed a horizontal
hop on the first epoch now observe robots on LB in the second epoch and make a vertical

51

Information 2021, 12, 448

move. Moreover, the robots in SQE
unit(ri), which were waiting for the robots in SQunit(ri)

to perform a horizontal hop in the first epoch, now see robots at their respective LB and,
hence, perform either a vertical or a diagonal hop to LB. This means that the robots in
CA between L′

0 and L′
2 also move to LDY−1 or south in two epochs. Arguing similarly, if

the robots in CA between L′
DX−2 and L′

DX−1 do not move in the first epoch, they also see
a robot on their respective LB in the second epoch since the robots at the west of L′

DX−2
have already moved south in the first epoch. Thus, these robots also move south in the
second epoch. In the same manner the remaining robots between L′

DX−1 and L′
DX

in CA
move to LDY−1 or move south in the third epoch as they can observe at least one robot on
their respective LB. Therefore, in three epochs, all the robots in CA reach LDY−1 or south.
The Lemma is described follows.

Figure 8. An illustration of movements of robots in the Euclidean plane below L0. The horizontal
and vertical lines are separated by 1 unit distance away, and the robots are positioned arbitrarily in
the shaded regions (i.e., they do not need to be necessarily always on the horizontal or vertical lines
as in the grid case). At every one unit south of L0, the width of the positions of robots decreases by 1
unit; hence, all the robots reach inside a unit square at most DX unit south of L0. (i) All the robots
reached South of L0. (ii)–(xi) Movements of robots in the South of L0 in each round. (xii) Robots
gathered inside a unit square area in the South of L0.

Lemma 7. No robots of SER(I) reaches south of LS during the execution.

Proof. We extend the proof of Lemma 3. Let X := {r0, . . . , rX} be the set of robots in
the increasing order of their x-coordinates in the corridor area CA between L1 and L0 of
SER(I). If the robots on set X see other robots at distance ≥ 1 north from their positions,
they do not move and wait until they do not see any robot at the north at a distance ≥ 1.
Therefore, similarly to Lemma 3, the robots in CA that do not see any robot in the north
at distance ≥ 1 proceed to move south. This will take those robots to the next corridor
CA′ adjacent to CA in the south. Suppose at some time t > 0, all the robots reach CA

52

Information 2021, 12, 448

between L0 and L1. Some robots might see no robots at the north at the distance ≥ 1 before
time t, and they can perform their moves earlier, which does not affect our argument.
Now, the robots in CA that are in a unit square area (i.e., between L′

0 and L′
1) in the east

perform horizontal moves, and the robots in the next unit square area (i.e., between L′
1

and L′
2) do not move in the first epoch. Similarly, the robots in CA that are in two unit

square areas in the west (i.e., between L′
DX−2 and L′

DX
) do not move in the first epoch. The

remaining robots in CA between L′
2 and L′

DX−2 move south. In the next epoch, the robots
in CA between L′

1 and L′
2 (including the robots that moved horizontally to this area in the

previous epoch) move south. The robots in CA between L′
DX−2 and L′

DX−1 also move south
in the this epoch whereas the robots in CA between L′

DX−1 and L′
DX

still do not move; they
move in the third epoch. The robots in CA′ between L2 and L4 and LDX−4 and LDX−2 do
not move first, and the other robots move south.

Following this, we can observe that as the robots move to the next corridor (of size one)
in the south of L0, the width of the positions of robots decreases by one. This is because,
at every corridor, the robots in the east most unit square area perform horizontal moves.
Therefore, all the robots in X will be within a single unit square area in the corridor at
distance DX south of L0 (at most). When all the robots are within a unit square area, they
follow the termination procedure and do not move further south.

Figure 8 illustrates how the robots move south of L0. The figure also shows how
the robot chains merge to eventually reach a unit square during execution so that the
termination procedure can be executed.

The following observation is also immediate.

Observation 4. For every one unit vertical hop of the robots in Q in the south of L0, the width of
the positions of robots decreases by (at least) one.

Lemma 8. The viewing range of
√

10 is sufficient for gathering to a point (that is not known
beforehand) on a plane under both axis agreements.

Proof. Let r be a robot in Q. SQunit(r) is computed based on the position of other robots
in SQ(r), which may lie anywhere within SQ(r). For r to decide whether it is connected to
other robots outside SQunit(r), it has to see other robots in both the horizontal and vertical
distance of at most one outside SQunit(r). Therefore, the maximum distance between r
and some other robot r′ in SQunit(r) (or SQ(r)) is

√
2 and r′ may be connected to a robot

at a distance of at most
√

2 away from r′. Therefore, r needs to see at most a distance
of

√
2 +

√
2 = 2

√
2 =

√
8 to find out whether there is a robot outside SQunit(r) or not.

When r sees that no robot in SQunit(r) is connected outside of SQunit(r), it can execute the
termination procedure.

Now, for the vertical hops, there is one condition that requires r to see at least one
robot each at horizontal distance ≥ 2 at both the east and west, within the corridor of LT
and LB. To guarantee whether there is a robot at horizontal distance ≥ 2 or not, r needs
to see up to a horizontal distance of < 3 and vertical distance of < 1. This is because if
there is any robot at horizontal distance > 2, it must be connected to a robot at horizontal
distance < 2. Therefore, r needs to see at most distance

√
32 + 12 =

√
10. Figure 9 (left)

illustrates this requirement.

The analysis of this section proves the following main result.

Theorem 3. Given any connected configuration of N ≥ 1 robots with the viewing range of
√

10
and the square connectivity range of

√
2 on a plane, the robots can gather to a point in O(DE)

epochs in the ASYNC setting under both axis agreements.

53

Information 2021, 12, 448

Figure 9. An illustration of the viewing range of
√

10.

Proof. We have from Lemma 5 that, given a connected G0(I), Gt(I), t > 0, remains con-
nected during the execution of the algorithm. We have from Lemma 6 that all the robots
at the topmost horizontal line LDY of SER(I) move to LDY−1 or south of LDY−1 in at most
two epochs. In other words, LDY−1 becomes LDY in at most two epochs and Lemma 6
applies again to LDY−1. Therefore, all the robots in SER(I) move to line L0 or south of it in
at most 2 · DY epochs. After that, we have it that, from Lemma 7, these robots will be inside
an axis-aligned unit area in at most next 2 · DX epochs, arguing similarly with respect to
Lemma 6. After all the robots of Q reach the insides of an unit square area, we have from
Observation 2 that they reach a single point in at most the next two epochs. Therefore, the
robots gather to a single point in 2 · DY + 2 · DX + 2 = O(DX + DY) = O(DE) epochs. The
algorithm terminates (Lemma 8).

5. Gathering under One-Axis Agreement

We discuss modifying the above algorithms when the robots agree on only one axis.

5.1. Grid

We first discuss changes in the model of Section 3. We say gathering is performed
when the robot configuration satisfies the relaxed gathering configuration (Definition 3).
We also relax the viewing range from 2 to 3.

We now discuss changes in Algorithm 1 (Section 3). The change is only on Rules
1 (termination) and 3 (horizontal hop). Regarding Rule 3, instead of ri moving only to
the east (Figure 3 (middle)), ri can also move to the west as well if it sees no robots on or
inside SQ(ri), except for the situation where there is exactly one robot rj on the neighboring
grid point on Li in the west. Regarding Rule 1, ri terminates if it sees all the robots at at
most one unit apart in a horizontal line (i.e., all the robots are positioned in two horizontal
neighboring grid points).

Lemma 9. The viewing range of three is sufficient for gathering on a grid with guaranteed termi-
nation under a one-axis agreement.

Proof. Notice that a robot ri terminates if it sees all the robots in Q are at most two neigh-
boring grid points (one is current position of ri and the other is either the left horizontal
grid point only or the right horizontal neighboring grid point only). For ri to make a
decision that the robots are not at any third grid point, it has to see all the neighboring
grid points of its two horizontal neighboring grid points as well. The distance from ri to

54

Information 2021, 12, 448

either of its horizontal neighboring grid point is one, and the distance of the neighboring
grid points of ri’s horizontal neighboring grid points is at most

√
2. Therefore, ri needs the

viewing range of (1 +
√

2) < 3. The connectivity range remains
√

2.

Having the viewing range of three, the analysis of the algorithm in Section 3 applies
directly to the modified algorithm for the grid under the one axis agreement. Therefore,
we summarize the main result in the following theorem.

Theorem 4. Given any connected configuration of N ≥ 1 robots with the viewing range of three
and the square connectivity range of

√
2 on a grid, the robots can gather in a unit length horizontal

line segment (that is not known beforehand) in O(DE) epochs in the ASYNC setting under a
one-axis agreement.

5.2. Euclidean Plane

We first discuss changes in the model of Section 4. We say gathering is performed
when the configuration satisfies the relaxed gathering configuration (Definition 3). The
viewing and square connectivity ranges remain the same as in Section 4.

We now discuss changes in the algorithm. The change is on horizontal and vertical
hops and on termination. Instead of computing SQunit(ri) using LL and LT as reference
lines, SQunit(ri) also needs to be computed by using LR and LT as references. When ri sees
no other robot on one side (say west) at a distance of >1 but does on the other side (east), it
takes the topmost robot rj and leftmost robot rk in SQ(ri) in order to compute SQunit(ri);
for the symmetric case, it takes the topmost and rightmost robots in SQ(ri) as a reference.
This allows the robots to make horizontal hops in both directions (not necessarily only
east under both axis agreement). Therefore, ri hops to the west of Li if the conditions for
horizontal hop defined in Section 4 are satisfied symmetrically. Regarding vertical hopping,
the following changes are made in the last three conditions:

– Robot ri sees at least one other robot each on both sides of L′
i on LB or south of LB,

which is connected to at least one robot of SQunit(ri).
– Robot ri sees at least one other robot on LB or south of LB (which is connected

SQunit(ri)) at one side of L′
i (say east) and at least one other robot at horizontal

distance ≥2 on the other side (west) (and vice-versa).
– Robot ri sees other robot(s) on LB (or connected to other robot(s) at the south of LB)

only at one side of L′
i, say east, then finds the leftmost robot rl on LB of SQunit(ri)

(or south of LB that is connected to SQunit(ri)) and sees that no robot in SQunit(ri) is
connected to another robot at its left (i.e., west) at a horizontal distance of ≥1 from rl
(and vice-versa).

Regarding termination, ri terminates if all the robots it sees within its viewing range
(including itself) are within a horizontal line segment of length 1. We will show in the
analysis that, with these changes, the algorithm positions the robots in Q inside an axis-
aligned 1 × 1-sized square area SA in O(DE) epochs.

We now discuss how the robots in SA reached a relaxed gathering configuration
(Definition 3). Let rb be the bottommost robot in SA (if more than one, pick one arbitrarily).
Let LB be the horizontal line passing through rb. The robots on LB (including rb) do not
move. The other robots move vertically to the positions of LB. The viewing range allows
the robots to decide whether there are robots outside SA or not.

Proof of Theorem 1: It is easy to see from the analysis of Section 4 that robots in Q reach
inside an axis-aligned unit square area in O(DE) epochs. The only change on the analysis
is on horizontal hops, which does not increase the number of epochs for the robots in Q
to reach the inside of the unit area. Finally, it takes at most one additional epoch for all
the robots that are in the unit square area to reach LB. The robots that are not on LB move
vertically to LB, and the robots on LB do not move. Therefore, the robots reach a relaxed
gathering configuration (Definition 3) in O(DE) epochs.

55

Information 2021, 12, 448

6. Concluding Remarks

We have presented, to the best of our knowledge, the first time-optimal O(DE)-epoch
algorithm for gathering N ≥ 1 classic oblivious robots in a plane in the ASYNC setting
under limited visibility, improving significantly on the previous O(DG)-round algorithm
of [4] that works in the FSYNC setting. Our result assumes the viewing range of

√
10,

the square connectivity range of
√

2, and the agreement on one axis. This is in contrast to
the viewing range of one and the (circular) connectivity range of 1 − 1√

2
in [4] under the

same one axis agreement. For future work, it will be interesting to relax our assumption of
rigid moves to accommodate non-rigid moves. It will also be interesting to reduce the gap
between the connectivity and viewing ranges without affecting time complexity.

Author Contributions: Conceptualization, G.S.; methodology, P.P. and G.S.; formal analysis, P.P.
and G.S.; investigation, P.P. and G.S.; resources, G.S.; writing—original draft preparation, P.P.;
writing—review and editing, G.S.; supervision, G.S.; project administration, G.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Acknowledgments: The authors thank Costas Busch for introducing this problem.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Suzuki, I.; Yamashita, M. Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Comput. 1999,
28, 1347–1363. [CrossRef]

2. Flocchini, P.; Prencipe, G.; Santoro, N. Distributed Computing by Oblivious Mobile Robots. Synth. Lect. Distrib. Comput. Theory
2012, 3, 1–185. [CrossRef]

3. Prencipe, G. Impossibility of Gathering by a Set of Autonomous Mobile Robots. Theor. Comput. Sci. 2007, 384, 222–231. [CrossRef]
4. Izumi, T.; Kawabata, Y.; Kitamura, N. Toward Time-Optimal Gathering for Limited Visibility Model. 2015. Available online:

https://sites.google.com/site/micromacfrance/abstract-tasuke (accessed on 18 October 2021).
5. Cieliebak, M.; Flocchini, P.; Prencipe, G.; Santoro, N. Solving the Robots Gathering Problem. In Proceedings of the 30th

International Colloquium on Automata, Languages, and Programming, Eindhoven, The Netherlands, 30 June–4 July 2003;
pp. 1181–1196.

6. Flocchini, P.; Prencipe, G.; Santoro, N.; Widmayer, P. Gathering of Asynchronous Robots with Limited Visibility. Theor. Comput.
Sci. 2005, 337, 147–168. [CrossRef]

7. Prencipe, G. Autonomous Mobile Robots: A Distributed Computing Perspective. In Proceedings of the 9th International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, Sophia Antipolis,
France, 5–6 September 2013; pp. 6–21.

8. Souissi, S.; Défago, X.; Yamashita, M. Gathering Asynchronous Mobile Robots with Inaccurate Compasses. In Proceedings of
10th on Principles of Distributed Systems, Bordeaux, France, 12–15 December 2006; pp. 333–349. [CrossRef]

9. Cieliebak, M.; Flocchini, P.; Prencipe, G.; Santoro, N. Distributed Computing by Mobile Robots: Gathering. SIAM J. Comput. 2012,
41, 829–879. [CrossRef]

10. Agathangelou, C.; Georgiou, C.; Mavronicolas, M. A Distributed Algorithm for Gathering Many Fat Mobile Robots in the Plane.
In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, Montréal, QC, Canada, 22–24 July 2013;
pp. 250–259.

11. Degener, B.; Kempkes, B.; Meyer auf der Heide, F. A Local O(n2) Gathering Algorithm. In Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and Architectures, Thira, Greece, 13–15 June 2010; pp. 217–223.

12. Degener, B.; Kempkes, B.; Langner, T.; Meyer auf der Heide, F.; Pietrzyk, P.; Wattenhofer, R. A Tight Runtime Bound for
Synchronous Gathering of Autonomous Robots with Limited Visibility. In Proceedings of the Twenty-Third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011; pp. 139–148.

13. Kempkes, B.; Kling, P.; Meyer auf der Heide, F. Optimal and Competitive Runtime Bounds for Continuous, Local Gathering of
Mobile Robots. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
Pittsburgh, PA, USA, 25–27 June 2012; pp. 18–26.

14. Cord-Landwehr, A.; Fischer, M.; Jung, D.; Meyer auf der Heide, F. Asymptotically Optimal Gathering on a Grid. In Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures, Pacific Grove, CA, USA, 11–13 July 2016; pp. 301–312.
[CrossRef]

15. Castenow, J.; Fischer, M.; Harbig, J.; Jung, D.; Meyer auf der Heide, F. Gathering Anonymous, Oblivious Robots on a Grid. Theor.
Comput. Sci. 2020, 815, 289–309. [CrossRef]

56

Information 2021, 12, 448

16. Poudel, P.; Sharma, G. Universally Optimal Gathering Under Limited Visibility; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2017; Volume 10616, pp. 323–340. [CrossRef]

17. Flocchini, P.; Prencipe, G.; Santoro, N. (Eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11340. [CrossRef]

18. Ando, H.; Suzuki, I.; Yamashita, M. Formation and Agreement Problems for Synchronous Mobile Robots with Limited Visibility.
In Proceedings of Tenth International Symposium on Intelligent Control, Monterey, CA, USA, 27–29 August 1995; pp. 453–460.
[CrossRef]

19. Kirkpatrick, D.; Kostitsyna, I.; Navarra, A.; Prencipe, G.; Santoro, N. Separating Bounded and Unbounded Asynchrony for
Autonomous Robots: Point Convergence with Limited Visibility. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing; ACM: New York, NY, USA, 2021; pp. 9–19. [CrossRef]

20. Pagli, L.; Prencipe, G.; Viglietta, G. Getting Close Without Touching: Near-gathering for Autonomous Mobile Robots. Distrib.
Comput. 2015, 28, 333–349. [CrossRef]

21. Bhagat, S.; Mukhopadhyaya, K.; Mukhopadhyaya, S. Computation Under Restricted Visibility. In Distributed Computing by Mobile
Entities: Current Research in Moving and Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 134–183.
[CrossRef]

22. Sharma, G.; Busch, C.; Mukhopadhyay, S.; Malveaux, C. Tight Analysis of a Collisionless Robot Gathering Algorithm. ACM
Trans. Auton. Adapt. Syst. 2017, 12, 3:1–3:20. [CrossRef]

23. Lukovszki, T.; auf der Heide, F.M. Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots. In Proceedings
of the 18th Principles of Distributed Systems, Cortina d’Ampezzo, Italy, 16–19 December 2014; pp. 248–262.

24. Cord-Landwehr, A.; Degener, B.; Fischer, M.; Hüllmann, M.; Kempkes, B.; Klaas, A.; Kling, P.; Kurras, S.; Märtens, M.; Meyer auf
der Heide, F.; et al. Collisionless Gathering of Robots with an Extent. In Proceedings of the 37th Conference on Current Trends in
Theory and Practice of Computer Science, Nový Smokovec, Slovakia, 22–28 January 2011; pp. 178–189.

25. Braun, M.; Castenow, J.; auf der Heide, F.M. Local Gathering of Mobile Robots in Three Dimensions. In SIROCCO; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12156, pp. 63–79. [CrossRef]

26. Di Stefano, G.; Navarra, A. Optimal Gathering on Infinite Grids. In Proceedings of the 16th Symposium on Self-Stabilizing
Systems, Paderborn, Germany, 28 September–1 October 2014; pp. 211–225.

27. Di Stefano, G.; Navarra, A. Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings.
Distrib. Comput. 2017, 30, 75–86. [CrossRef]

28. D’Angelo, G.; Stefano, G.D.; Klasing, R.; Navarra, A. Gathering of Robots on Anonymous Grids without Multiplicity Detection.
In Proceedings of the 19th International Colloquium on Structural Information and Communication Complexity, Reykjavik,
Iceland, 30 June–2 July 2012; pp. 327–338. [CrossRef]

29. Cord-Landwehr, A.; Degener, B.; Fischer, M.; Hüllmann, M.; Kempkes, B.; Klaas, A.; Kling, P.; Kurras, S.; Märtens, M.; Meyer
auf der Heide, F.; et al. A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In Proceedings of the
38th International Colloquium on Automata, Languages, and Programming, Zurich, Switzerland, 4–8 July 2011; pp. 650–661.
[CrossRef]

30. Cohen, R.; Peleg, D. Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM J. Comput.
2005, 34, 1516–1528. [CrossRef]

31. Izumi, T.; Potop-Butucaru, M.G.; Tixeuil, S. Connectivity-preserving Scattering of Mobile Robots with Limited Visibility. In
Proceedings of the 12th Symposium on Self-Stabilizing Systems, New York, NY, USA, 20–22 September 2010; pp. 319–331.

57

 information

Article

Robot Evacuation on a Line Assisted by a Bike

Khaled Jawhar 1 and Evangelos Kranakis 1,2,*

Citation: Jawhar, K.; Kranakis, E.

Robot Evacuation on a Line Assisted

by a Bike. Information 2021, 12, 28.

https://doi.org/10.3390/info12010028

Received: 10 November 2020

Accepted: 5 January 2021

Published: 12 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada;
KhaledJawhar@cmail.carleton.ca

2 Natural Sciences and Engineering Research Council of Canada Discovery Grant, Ottawa,
ON K1A 1H5, Canada

* Correspondence: kranakis@scs.carleton.ca

Abstract: Two robots and a bike are initially placed at the origin of an infinite line. The robots are
modelled as autonomous mobile agents whose communication capabilities are either in the wireless
or face-to-face model, while the bike neither can move nor communicate on its own. Thus, the bike is
not autonomous but rather requires one of the robots to ride it. An exit is placed on the line at distance
d from the origin; the distance and direction of the exit from the origin is unknown to the robots. Only
one robot may ride the bike at a time and the goal is to evacuate from the exit in the minimum time
possible as measured by the time it takes the last robot to exit. The robots can maintain a constant
walking speed of 1, but when riding the bike they can maintain a constant speed v > 1 (same for
both robots). We develop algorithms for the evacuation of the two robots from the unknown exit and
analyze the evacuation time defined as the time it takes the second robot to evacuate. In the wireless
model we present three algorithms: in the first the robots move in opposite direction with max speed,
in the second with a specially selected “optimal” speed, and in the third the robot imitates the biker
(i.e., robot riding the bike). We also give three algorithms in the Face-to-Face model: in the first
algorithm the robot pursues the biker, in the second the robot and the biker use zig-zag algorithms
with specially chosen expansion factors, and the third algorithm establishes a sequence of specially
constructed meeting points near the exit. In either case, the optimality of these algorithms depends
on v > 1. We also discuss lower bounds.

Keywords: arrival time; bike; evacuation; line; robots; search; speed; optimal trajectory

1. Introduction

Recent years have witnessed an explosive growth of research studies on search from
the perspective of mobile agent computing. One of the reasons is because one finds
countless natural applications of search and exploration in distributed systems in order
to facilitate information exchange between communicating entities. Moreover, there are
also applications in numerous other computing areas such as data mining, web crawlers,
monitoring and surveillance, just to mention a few.

Evacuation, which is the main theme of our present investigation, is related to search
in that one is also interested in searching and exploring a domain in order to find a target.
However evacuation usually involves many cooperating entities forming an ensemble
or group all of whose members are searching simultaneously by exchanging information
(according to a predefined communication model); and unlike search which typically
involves only one agent, it is aiming to optimize the arrival time of the last entity in the
ensemble. There are many factors that affect how linear search and evacuation problems
are solved. Let us assume that the exit is located on a line at a distance d from the origin
where the robot starts. The orientation represents the direction that the robot must proceed
to reach the exit. The simplest case would be if a robot moving with unit speed knows
the distance and the orientation and can thus reach the exit in time d. In this case, the
competitive ratio will be the time needed by the robot to reach the exit, which is d, divided

Information 2021, 12, 28. https://doi.org/10.3390/info12010028 https://www.mdpi.com/journal/information

59

Information 2021, 12, 28

by the time needed by the adversary to head to the exit directly, which is d as well. Thus
the competitive ratio will be 1. A more complicated case would be if the distance is known
and the orientation is not known. As a worst case scenario, it may take the robot 3d to find
the exit since the robot may move d in the wrong direction and thus it will need to switch
the direction and move back 2d to reach the exit. The competitive ratio in this case is 3. The
problem is even more complicated if both the distance and the orientation are not known.
The robot starts at the origin and can move with speed 1. The robot needs to explore both
directions in order to find the exit. The best way to achieve this goal is to select a direction
and move distance 1. If the exit is not found, the robot will reverse direction and move
double the previous distance up until the exit is found. The movement, which is repeated
periodically, and which uses a sequence of positive distances that specifies the turning
points, is called the Zig-Zag search algorithm. The competitive ratio for the Zig-Zag search
algorithm is known to be 9 [1]. Most of the linear search and evacuation problems in the
literature were studied using single or multiple robots. Introducing a tool such as a bike to
aid the robots was not considered before in any previous work. The study of this paper is
based on a new paradigm concerning two robots (also called hikers) aided by a bike and
searching for an unknown exit placed somewhere on an infinite line. More specifically, in
the “bike assisted evacuation” problem, the hikers and the bike all start at the origin and
want to evacuate from an exit placed at an unknown distance and direction (either left or
right from the origin) on the infinite line. Evacuation means that eventually both robots
must find the exit by reaching its exact location (not necessarily at the same time) on the
infinite line. The quality of an evacuation algorithm is measured by the time it takes the
second hiker to find the exit, which is also referred to as evacuation time of the ensemble.

1.1. Model and Notation

To analyze the problem proposed, first we describe details concerning mobility and
communication of the hikers and describe the role that the bike will play in improving the
overall evacuation time.

Mobility and Trajectories.The infinite line is the search domain. It is bidirectional in
that the hikers can move in either direction without this affecting their speeds. The hikers
can stop at any time and wait as long as they wish, can walk with maximum speed 1 or
may ride the bike with speed v > 1. An evacuation algorithm is a complete description
of the trajectories traced by the two hikers either waiting, walking or riding the bike until
they both find the exit. Throughout this paper we are interested in evacuation algorithms.

Sharing the bike. An interesting feature of our problem is the distinction between
the hikers and the bike. On the one hand, the hikers are autonomous mobile agents that
can move around on their own with speed 1 and communicate with each other. On the
other hand, the bike is not autonomous and cannot move and/or communicate on its own
and thus plays only the role of assistant in the search. The hiker using the bike has an
advantage in that it can move with speed v > 1 which is of course faster than its walking
speed 1. However, in our model the bike is also a limited resource in that it can be used by
only one hiker at a time. This creates an interesting trade off for the evacuation time. The
hikers would want to ride the bike to find the exit earlier. However, if the bike is not shared
the evacuation time may get worse as the hiker not using the bike may worsen the overall
evacuation time. This also implies that the hiker riding the bike has an advantage in sharing
the bike with the other hiker as this will ultimately improve the overall evacuation time.

Bike Switching. An important aspect in our algorithms will be “bike switching”,
by which we mean changing the rider of the bike. We will assume throughout the paper
that bike switching between hikers is instantaneous and at no time cost. Note that the
hikers may recognize the presence of the bike when they are at the same location as the
bike. From now on, to facilitate our discussions we will refer to the hiker riding the bike as
the biker, which may be either of the two hikers.

Communication. A designated point on the infinite line is the exit and can be
recognized as such by any of the hikers when they are at the same location as the exit.

60

Information 2021, 12, 28

The hikers may communicate throughout the execution of the algorithms. Two types of
communication will be studied, namely wireless (also known as wifi) and face-to-face. In
the former, the hikers can communicate instantaneously and at any distance, while in the
latter only when they are at the same location and at the same time. The fact that a hiker
is riding the bike does not diminish its ability to communicate. A typical communication
exchange may involve, e.g., “exit is found”, “bike released”, “switch bike”, etc. Note that
the hikers are endowed with pedometers and have computing abilities so that they can
deduce the location of the other hiker and/or the bike from relevant communications
exchanged and/or the protocols they execute.

Notation. Throughout the paper we will be using R1 and R2 to denote the two hikers
and B to denote the bike. The hikers are equipped with pedometers and are identical in
all their capabilities (locomotion and communication) and the subscripts i = 1, 2 in Ri do
not imply that the hikers have identifiers. The origin of the real line will be at the point
x = 0 on the x-axis and this will also be the starting location of the hikers and the bike.
The adversary may place the exit at either of the points ±d, where d > 0 will denote the
unknown distance of the exit from the origin. In addition, v > 1 will denote the speed that
a biker can attain when riding the bike.

1.2. Related Work

The continuous infinite line is a widely-used search domain. It is in this particular
domain that the first search problems in the literature were proposed in the seminal
papers [2,3] with a focus on stochastic search models and their analysis. Influential research
for deterministic search by a single robot in the infinite line was developed in the work of [1]
by proving that searching for a target has competitive ratio equal to 9, and for randomized
search on the star graph by [4].

Evacuation is a form of group search in which the robots need to cooperate so that
they all find the exit. It arises as a natural problem on the infinite line for the case of
robots with faults (crash and/or Byzantine). The two important papers are [5] for robots
with crash faults and [6] for robots with Byzantine faults. The study of evacuation in
distributed computing for a unit disk is also related and was initiated in the paper [7] for
both the wireless and face-to-face models. The reader can find additional related work on
the continuous search domain in the survey paper [8].

The addition of an immobile token to aid in the exploration has been considered in
the context of the rendezvous problem on a ring [9]. An extension of this work to mobile
tokens can be found in [10]. In both of these papers the token is passive and is merely being
used as a marker for the presence of the most recent “visit” of another agent. Similarly,
in [11] the authors consider searching for a non-adversarial, uncooperative agent, called
bus, which is moving with constant speed along the perimeter of a cycle. A different related
model was investigated in [12] in which during search a robot can encounter a point or a
sequence of points enabling faster and faster movement and the main goal is to adopt the
route which allows a robot to reach the destination as quickly as possible.

Two related papers are [13] and its followup journal version [14]. In the former paper
the authors introduce evacuation on an infinite line in the F2F model for two robots having
max speed 1 and prove that 9 is a tight bound for evacuation. In the followup paper [14]
tight bounds are shown for two robots with different speeds in the F2F model. In their
model the robots can vary their speed between the min and max value. However, unlike
our model, the slower robot is never able to move at the speed of the faster robot. As
a consequence in our model a “shared” bike has the effect of averaging the speeds and
improving the overall evacuation time of the ensemble. The main idea considered in the
present paper of bike assisted evacuation modelled as a passive agent that can enhance the
robots’ evacuation time has not been considered in the relevant literature on search and
evacuation before. (The present study is revised and updated from the first author’s MCS
Thesis [15]. A preliminary study without proofs in [16]).

61

Information 2021, 12, 28

It is also worth mentioning a different line of research that has evolved in recent
years, concerning bike sharing systems in complementing traditional public transporta-
tion to reduce traffic congestion and mitigate atmospheric pollution. As a consequence
bike-sharing has grown explosively everywhere [17]. This has led to extensive technical
literature on different aspects of the performance of bike based transportation systems. For
example, Ref. [18] addresses uncertainty in resource availability, Ref. [19] considers bike
utilization conflict, Ref. [20] studies system balance maintainance, Ref. [21] investigates the
efficient operation of shared mobility systems, Ref. [22] studies balancing, and [23] pro-
poses a spatio-temporal bicycle mobility model. Finally we mention the recent paper [24]
which gives a polynomial time algorithm for the Bike Sharing problem that produces an
arrival-time optimal schedule for bikers to travel across the interval.

1.3. Outline and Results of the Paper

Our main results in the Wireless model are presented in Section 3. We give three
algorithms: in the first the robots move in opposite direction with max speed, in the second
with a specially selected “optimal” speed, and in the third the hiker imitates the biker.
Results on the Face-to-Face model are presented in Section 4. We give three algorithms: in
the first algorithm the hiker pursues the biker, in the second the hiker and the biker use
zig-zag algorithms with specially chosen expansion factors, and in the third the algorithm
establishes a sequence of specially constructed meeting points near the exit. In either
communication model we conclude that the optimal algorithm depends on the speed v of
the bike which we also determine. Details of the results are in Table 1.

Table 1. Main algorithms presented in the paper in the WiFi (top three) and Face-to-Face (F2F)
(bottom three) models, the theorem where the analysis, and their corresponding evacuation time as a
function of the bike’s speed v, where v > 1.

Algorithm Theorem Evacuation Time

Algorithm 2 (WiFi) Theorem 1 max
{

2d + d
v , 2d

v + d
2 + d

2v2

}
Algorithm 3 (WiFi) Theorem 2 3d + 3vd + d

√
v2 + 26v + 9

4v

Algorithm 4 (WiFi) Theorem 3 9d
v + d

2 − d
2v2

Algorithm 5 (F2F) Theorem 4 9d
v + d − 5d

8v2

Algorithm 6 (F2F) Theorem 5 3dv3 + 63dv2 + 15dv − 9d
2v2(3v + 1)

Algorithm 7 (F2F) Theorem 6 3d − 5v2 − 12v − 1
2v(v − 1) d + 5v2 − 12v − 1

v(v − 1)(3v − 1) d if 1 < v ≤ 6 +
√

41
5

3d − 5v2 − 12v − 1
2v(v − 1) d + 4(5v2 − 12v − 1)

v(v − 1)(3v − 1) d if 6 +
√

41
5 ≤ v

We also establish lower bounds in Section 5. The competitive ratio of the algorithms
can be given by dividing by v+1

2v d, where d is the distance of the exit from the origin
(see Theorem 7). The main motivation of our current study on robot evacuation from an
unknown target is to better understand the effect that communication models (F2F and
Wireless) have on search and evacuation time for an autonomous mobile agent which is
aided by another mobile agent (bike) which has limited mobility capabilities.

2. Preliminaries

In this section we remind the reader that the competitive ratio for the Zig-Zag search
algorithm is known to be at most 9. A canonical Zig-Zag search algorithm is defined as
follows (Algorithm 1):

62

Information 2021, 12, 28

Algorithm 1: Zig-Zag Algorithm

Consider X as infinite sequence of distances 20,21,...;
for i ← 0 to ∞ do

if i is odd(resp.even) then

Move right (resp. left) a distance 2k unless the exit is found;
if exit is found then

Quit search
end
Turn; then move left (resp. right), return to origin

end

end

The competitive ratio for Algorithm 1 is calculated as follows:
Every time the robot changes direction and moves twice the previous distance. Thus,

if the exit is at distance d, then 2k < d ≤ 2k+2 for some k. Hence the search time T will be
calculated as follows:

T = 2 · 1 + 2 · 2 + · · ·+ 2 · 2k+1 + d

= 2 · (2k+2 − 1) + d = 23 · 2k − 2 + d ≤ 8d + d = 9d

Thus, the competitive ratio of this algorithm is 9d
d = 9. The lower bound proof can be

found in [1].

3. Evacuation in the Wireless (WiFi) Model

In this section we provide our main algorithms in the wireless communication model.
In this model the two hikers can communicate instantaneously at any distance. Three algo-
rithms will be considered and analyzed their evacuation time depends on the maximum
speed v of the biker.

3.1. Opposite Direction with Max Speed

In Algorithm 2, the hiker and the biker move in opposite directions with their max-
imum speed, assuming that the biker moves with speed v. The one which finds the exit
first will communicate with the other to proceed to the exit. Moreover, if it is the biker that
found the exit first it returns the bike to a suitable position and shares it with the hiker.
Details of the algorithm are as follows.

Algorithm 2: (OppDirectionWithMaxSpeedWiFi)
The hiker and the biker move in opposite directions.The one that finds the exit

first communicates it to the other;
if the hiker found the exit first then

the biker moves to the exit at full speed;
end
else if the biker found the exit first then

it returns and drops the bike off to an appropriately chosen position x and
shares the bike with the hiker;

end
Stop when they both arrive at the exit;

Theorem 1. The evacuation time for Algorithm 2 in the WiFi model is at most 2d + d
v .

Proof of Theorem 1. Without loss of generality assume the hiker moves in the leftward
and the biker in the rightward direction both starting from the origin. There are two cases
to consider depending on whether the hiker or the biker finds the exit first.

63

Information 2021, 12, 28

Case 1: The exit is found by the biker.

When the biker finds the exit, which is at distance d from the origin, it has spent time
d
v . The biker will communicate with the hiker, to come to the exit. Since the exit is found
by the biker first, the biker can help the hiker by returning and dropping off the bike at
some distance x away from the exit such that the hiker can pick it up and arrive to the exit
at the same time as the other robot. It is easy to see that to find the distance x where the
bike is dropped off, we need to solve the equation x

v + x = d + d
v − x + x

v . This leads to
the solution x = d

2 + d
2v . Hence the hiker which is at distance d

v when the biker reaches the
exit, will need d

v to reach the origin, in addition to d − x + x
v = d

2 + d
2v2 to reach the exit.

Therefore, the evacuation time will be 2d
v + d

2 + d
2v2 .

Case 2: The exit is found by the hiker.

When the hiker finds the exit which is at distance d to the left of the origin, the biker
will be at distance dv to the right of the origin. The hiker will communicate with the biker
to come to the exit. The biker turns back and goes to the exit which takes additional time
d + d

v . It follows that the evacuation time in this case will be d + d + d
v = 2d + d

v .
Therefore, by combining the two cases above, we conclude that the evacuation

time for this algorithm will be max
{

2d + d
v , 2d

v + d
2 + d

2v2

}
. This completes the proof of

Theorem 1.

3.2. Opposite Direction with Optimal Speed

Unlike Algorithm 2 in which the hiker and biker use their maximum speed, in the
next Algorithm 3 the biker will not use its maximum speed v. Instead it will move with
a specially chosen speed u which is less than v. The hiker or the biker which finds the
exit first will communicate with the other which will then move towards the exit with
its maximum speed. It turns out that the modified algorithm performs better than the
previous one and it is optimal up to a certain maximum speed v. Assuming that R1 is the
hiker and R2 is the biker, the algorithm will be as follows.

Algorithm 3: (OppDirectionWithOptimalSpeedWiFi)

R1 moves left with unit speed;
R2 moves right with speed u = 1

4 (−v − 1 +
√

v2 + 26v + 9);
if R1 reaches the exit then

Inform R2 about the location of the exit;
R2 moves toward the exit with its maximum speed v;

end
else if R2 reaches the exit then

Inform R1 about the location of the exit;
Drop-off the bike at distance d

2 + d
2u ;

R2 heads back toward the exit;
R1 reverses the direction back to the exit then picks up the bike and moves to
the exit with maximum speed v;

end

Theorem 2. The evacuation time for Algorithm 3 using the WiFi model is at most
3d + 3vd + d

√
v2 + 26v + 9

4v .

Proof of Theorem 2. Assume that R1 which is the hiker moves in the leftward direction
and R2, which is the biker, moves in the rightward direction. There are two cases to
consider depending on who reaches the exit first.

Case 1: Hiker reaches the exit first.

64

Information 2021, 12, 28

The time needed by R1 to reach the exit is d. At this point R2 will be at distance du
away from the origin since it is moving with speed u. As mentioned in the algorithm, R2
will use its maximum speed v on the way back. Thus, it needs du

v to reach the origin and it
will need additional time d

v to join R1 and reach the exit. Therefore, the evacuation time in
this case will be

T1 = d +
du
v

+
d
v
=

dv + du + d
v

Case 2: Biker reaches the exit first.

The time needed by R2 to reach the exit is d
u . As soon as R2 reaches the exit, it will

inform R1 immediately. At this point in time, R1 will be at distance d
u on the other side of

the origin since it is moving with unit speed. R2 will go back distance x to drop off the bike
for R1. The key point to find x is to have R2 drop off the bike in a way that R1 can pick
it up and arrive at the same time as R2. We know from Algorithm 2 that R2 will not use
its maximum speed and will move with speed u only until it reaches the exit. The only
reason for not using its maximum speed before reaching the exit is to avoid having R1 and
R2 farther apart from each other since this will increase the overall evacuation time. Thus
when R2 goes back to drop off the bike, it will use its maximum speed v. Based on that we
have the following equation.

x +
x
v
= d +

d
u
− x +

x
v

whose solution is x = d
2 + d

2u . Substituting x in order to calculate the evacuation time
T2 yields:

T2 =
d
u
+ x +

x
v

=
d
u
+

d
2
+

d
2u

+
d

2v
+

d
2uv

=
2dv + duv + dv + du + d

2uv

=
3dv + du + duv + d

2uv

In order to find the best evacuation time, we need to find the best value of u which
makes the maximum of T1 and T2 minimized given that 1 ≤ u ≤ v. This means that the
objective is to minimize the following quantity

max{T2, T2} = max
{

dv + du + d
v

,
3dv + du + duv + d

2uv

}
(1)

In order to find the solution for (1), we determine the point of intersection of the
evacuation time plots for T1 and T2. This will give the following:

u + v + 1
v

=
3v + u + uv + 1

2uv
=⇒ 2u2v + 2uv2 + 2uv = 3v2 + uv + uv2 + v

=⇒ 2u2v + (v2 + v)u − 3v2 − v = 0

The last equation will have two roots, and choosing the positive one gives the follow-
ing solution for u:

65

Information 2021, 12, 28

u =
1

4v
(−v2 − v +

√
v4 + 2v3 + v2 − 8v(−3v2 − v)))

=
1

4v
(−v2 − v +

√
v4 + 2v3 + v2 + 24v3 + 8v2)

=
1

4v
(−v2 − v +

√
v4 + 26v3 + 9v2)

=
1
4
(−v − 1 +

√
v2 + 26v + 9)

In order to get the evacuation time T, we can substitute u in T1 or T2, we get the
following:

T =
dv + du + d

v

=
1
v
(dv +

−dv − d + d
√

v2 + 26v + 9
4

+ d)

=
4dv − dv − d + d

√
v2 + 26v + 9 + 4d

4v

=
3d + 3dv + d

√
v2 + 26v + 9

4v
.

This completes the proof of Theorem 2.

3.3. Slower Imitates Faster

In the next Algorithm 4 the robots perform a “doubling zig-zag” strategy with different
parameters. The biker is using a doubling strategy to search for the exit and moves a
distance 2k during the k-th iteration. The hiker is also using a doubling strategy but since it
is moving with unit speed it will try to stay as close as possible to the biker. This can be
achieved by having the hiker move a distance 2k

v during the k-th iteration, since moving
any further will cause the hiker to be farther away from the biker during the (k + 1)-st
iteration. Assuming that robot R1 is the biker and robot R2 is the hiker, the algorithm will
be as follows.

Algorithm 4: (SlowerImitateFasterWiFi)

for k ← 1 to ∞ do
if k is odd (resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k

v ;
if exit is found by R1 then

Communicate with R2;
R1 moves back d

2 − d
2v to leave the bike for R2 and then returns to exit;

R2 continues toward the exit after picking up the bike left by R1;
Quit;

end
R1 turns; then moves left (resp. right), returns to the origin;
R2 turns; then moves left (resp. right), returns to the origin;

end

end

Theorem 3. The evacuation time for Algorithm 4 using the WiFi model is at most 9d
v + d

2 − d
2v2 .

66

Information 2021, 12, 28

Proof of Theorem 3. In this algorithm the biker uses a doubling strategy with maximum
speed v. The hiker will follow the biker but will move 2k

v in each iteration instead of 2k.
The biker will reach the exit first then will communicate with the hiker to proceed to the
exit. The biker will go back distance d

2 − d
2v to drop off the bike so that the hiker can pick it

up on its way to the exit. We will justify why biker R1 needs to move d
2 − d

2v after reaching
the exit to leave the bike for hiker R2.

After biker R1 reaches the exit, there is no benefit to stay at the exit with the bike since
hiker R2 which is moving with unit speed can benefit from the bike to reach the exit faster.
The key to find the distance x which is the distance between the exit and the point where
the bike is dropped off is to have biker R1, drop it off at a point such that when it goes back
to the exit it will reach the exit at the same time as hiker R2. If we consider that d is the
distance from the origin to the exit and x is the distance from the exit to the point where
biker R1 drops off the bike, then we have d − x + x

v = d
v + x

v + x which leads to x = d
2 − d

2v .
This will guarantee that when the biker drops off the bike at distance x, it will reach the exit
at the same time as the hiker. Hence we guarantee that the bike is not kept unnecessarily
with the robot which reaches the exit first.

Assume that the exit is found during the kth iteration, then 2k−2 < d ≤ 2k. We can
calculate the evacuation time as follows:

T =
2 · 20

v
+

2 · 21

v
+ · · ·+ 2 · 2k−1

v
+ d − x +

x
v

=
2(2k − 1)

v
+ d − x +

x
v

=
2k+1

v
− 2

v
+ d − d

2
+

d
2v

+
d

2v
− d

2v2

=
2k+1

v
− 2

v
+

d
2
+

d
v
− d

2v2

≤ 23.
2k−2

v
− 2

v
+

d
2
+

d
v
− d

2v2

≤ 8d
v

− 2
v
+

d
2
+

d
v
− d

2v2

≤ 9d
v

+
d
2
− d

2v2 − 2
v

≤ 9d
v

+
d
2
− d

2v2

This completes the proof of Theorem 3.

Figure 1 depicts and compares the performance of the three algorithms presented for
the WiFi model.

67

Information 2021, 12, 28

Figure 1. Graph for the three algorithms using the wi-fi model. On high speed, the evacuation time
for Algorithm 4 converges to d

2 versus 2d and d for Algorithms 2 and 3, respectively.

4. Evacuation in the Face-to-Face (F2F) Model

In this section we provide our main algorithms in the face-to-face communication
model. Recall that in this model the hikers can exchange messages only if they occupy the
same location at the same time.

4.1. Slower Pursues Faster

In the first Algorithm 5, we assume that the hiker will follow the biker. Since the biker
is using a “doubling zig-zag” strategy, during any iteration, let us say the k-th one, the
biker will reverse the direction after reaching 2k and will meet the hiker at some point Xk.
At the meeting point the hiker will reverse its direction. We notice from this that the hiker is
following a deterministic strategy specified through a sequence of points X1, X2, . . . , Xk, . . .
(to be defined later), where each Xk represents the meeting point for the hiker and the biker
during the k-th iteration. In other words, the biker will follow a doubling strategy with
factor 2k while the hiker will follow the sequence X1, X2, . . . , Xk, . . . above. When the biker
reaches the exit, it will go back a certain distance x, which will be determined later, to drop
off the bike and then will return back walking toward the exit.

In the algorithm below we use the parameters a := 1 − v
1 + v , b := 1

1 + v . Further, we
assume that R1 is the biker and R2 is the hiker.

Theorem 4. The evacuation time for Algorithm 5 using the F2F model is at most 9d
v + d − 5d

8v2 .

Proof of Theorem 4. In order to find the sequence {X1, X2 . . . Xk}, we argue as follows.
During the 1st iteration, in order to calculate X1, we know that the biker will move 20 to
reach the peak point and then will come back 20 − X1 with speed v to reach point X1 while
the hiker will move X1 with unit speed during the same time. Given that a = 1 − v

1 + v and
b = 1

1 + v , we have the following:

X1 =
20

v
+

20

v
− X1

v
=⇒ X1 =

2
1 + v

= 2 · b

68

Information 2021, 12, 28

Algorithm 5: (SlowerPursueFasterF2F)

for k ← 1 to ∞ do
if k is odd(resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2b(2k−ak)
2−a ;

if the exit is found by R1 then
Move back distance x to drop off the bike for R2 then switch direction
toward the exit ;

R2 picks up bike and moves toward the exit;
Quit;

end
R1 turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;

end

end

During the 2nd iteration we have the following:

X1 + X2 =
1
v
(X1 + 2 + 2 − X2)

=⇒ X2 =
4

1 + v
+

1 − v
1 + v

· X1 = a · X1 + 22 · b

Since X2 = a · X1 + 22 · b, then for the kth iteration we have:

Xk = a · Xk−1 + 2k · b

Replacing Xk−1 = a · Xk−2 + b · 2k−1 in the above equation gives

Xk = a(a · Xk−2 + b · 2k−1) + 2k · b

Similarly replacing Xk−2 = a · Xk−3 + b · 2k−2 gives

Xk = a3 · Xk−3 + a2 · 2k−2 · b + a · b · 2k−1 + 2k · b

Recursing down to X1 leads to the following calculation:

Xk = b · 2k
((a

2

)0
+ · · ·+

(a
2

)k−1
)

=
b · 2k(1 − (a

2)
k)

1 − a
2

=
2 · b(2k − ak)

2k(2 − a)
· 2k · b

=
2 · b(2k − ak)

2 − a

Assume that the exit is found during the kth iteration of the algorithm. Before writing
down the evacuation time, let us find the distance x away from the exit, where the bike
will be dropped off by the biker. We know that the biker and the hiker will meet at each
entry of the sequence and eventually they will meet at Xk−1.

• Define T1 to be the time needed by the biker to go to the exit from the point of
intersection between the the biker and the hiker at Xk−1 then to return distance x to

69

Information 2021, 12, 28

drop off the bike and subsequently go back to the exit. Thus T1 can be defined as
follows:

T1 =
1
v
(Xk−1 + x + d) + x.

• Define T2 to be the time needed by the hiker to go from the point of intersection
between the hiker and the biker at Xk−1 to the exit while picking up the bike on its
way. Thus T2 can be defined as follows:

T2 = Xk−1 + d − x +
x
v

.

The best thing that the biker can do is to drop off the bike and arrive at the same time
to the exit with the hiker who will pick up the bike on its way. This can be achieved by
having T1 = T2. In turn, this yields

1
v
(Xk−1 + x + d) + x = Xk−1 + d − x +

x
v

=⇒ x =
1
2
(Xk−1 + d)− 1

2v
(d + Xk−1)

Thus, the evacuation time T can be written as follows:

T =
1
v
(2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1) +

d
v
+

x
v
+ x

Replacing the value of x which was calculated above gives:

T =
2
v
(2k − 1)+

d
v
+

d
2v

− d
2v2 +

d
2
− d

2v
+

1
2v

Xk−1 − 1
2v

Xk−1 +
1
2

Xk−1 − 1
2v2 Xk−1

=
2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 +

(
1
2
− 1

2v2

)
Xk−1

Now recall that Xk−1 = 2b(2k−1−ak−1)
2−a , where a = 1−v

1+v and b = 1
1+v . Since −1 < a < 0

and 0 < b ≤ 1
2 it is obvious that Xk−1 ≤ 1

2 (2
k−1 + 1) = 2k−2 + 1

2 . Moreover, knowing that
2k−2 < d ≤ 2k, the evacuation time T can be simplified as follows:

T ≤ 2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 + (
1
2
− 1

2v2)(2
k−2 +

1
2
)

≤ 2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 + 2k−3 +
1
4
− 2k−2

2v2 − 1
4v2

≤ 8d
v

− 2
v
+

d
v
+

d
2
− d

2v2 +
d
2
+

1
4
− d

8v2 − 1
4v2

≤ 9d
v

+ d − 5d
8v2 − 1

4v2 +
1
4
− 2

v

≤ 9d
v

+ d − 5d
8v2

This completes the proof of Theorem 4.

4.2. Slower Evacuation Close to Exit without Aid

In the second Algorithm 6, the biker uses a “doubling zig-zag” strategy with its
maximum speed v, while the hiker will try to be as close as possible to the biker. In order to
achieve that, the hiker will use a doubling strategy as well but will use its own “expansion”
factor. The factor will be determined based on the fact that both the hiker and the biker
should meet at a specific point during each iteration. These meeting points will form a

70

Information 2021, 12, 28

sequence whose k-th element during iteration k is taken to be equal to 2k+2

3v+1 . During the last
iteration, when the biker finds the exit, the hiker will eventually reach the meeting point
and will not find the biker there. This will let it know that it should keep going toward
the exit. Assuming that initially R1 is the biker and R2 is the hiker, the algorithm will be
as follows:

Algorithm 6: (SlowerEvacuationCloseToExitWithoutAidF2F)

for k ← 1 to ∞ do
if k is odd (resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k+2

3v+1 ;
if k=1 then

R2 waits for R1;
end
if exit is found by R1 then

Move back distance d
2 − d

2v + 2k(v−1)
v(3v+1) to drop off the bike for R2 then

switch direction toward the exit;
R2 picks up bike and moves toward exit;
Quit;

end
R1turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;

end

end

Theorem 5. The evacuation time for Algorithm 6 using the F2F model is at most
3dv3 + 63dv2 + 15dv − 9d

2v2(3v + 1) .

Proof of Theorem 5. The biker is using a doubling strategy and is moving 2k during each
iteration k. The hiker will use a doubling strategy as well and it will follow the biker. In
order to keep the hiker as close as possible to the biker, we must find the sequence that the
hiker should follow. We assume that both the hiker and the biker meet at a certain point
Xk and that they are willing to meet at point Xk+1 at the same time without waiting for
one another, taking into consideration that Xk+1 = 2Xk. The sequence can be calculated
as follows:

Xk + Xk+1 =
1
v
(Xk + 2k+1 + 2k+1 − Xk+1)

=⇒ Xk + 2Xk =
1
v
(Xk + 2k+1 + 2k+1 − 2Xk)

=⇒ 3v + 1
v

Xk =
2k+2

v

=⇒ Xk =
2k+2

3v + 1

We have the sequence {X0, X1, . . . , Xk} given that Xk =
2k+2

3v+1 where k ≥ 1. Each of the
hiker and the biker will use its own doubling strategy. During each iteration, they will meet
on both sides at specific points which are elements of the above sequence. During the kth
iteration, when the biker reaches the exit, it will move back distance x to drop off the bike
such that the hiker can pick it up and reach the exit at the same time as itself. The distance
x can be calculated as follows: d

v + 1
v · Xk−1 +

x
v + x = d + Xk−1 − x + x

v . Substituting Xk−1

this becomes d
v + 2k+1

v(3v + 1) +
x
v + x = d + 2k+1

3v + 1 − x + x
v Solving for x, the last equation

71

Information 2021, 12, 28

yields x = d
2 − d

2v + 2k(v − 1)
v(3v + 1) . Assuming that 2k−2 < d ≤ 2k and replacing x which was

calculated above, the evacuation time T can be computed as follows:

T =
1
v
(2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1) +

d
v
+

x
v
+ x

=
2
v
(2k − 1) +

d
v
+

x
v
+ x

=
2k+1

v
− 2

v
+

d
v
+

x
v
+ x

=
2k+1

v
− 2

v
+

d
v
+

d
2v

− d
2v2 +

2k(v − 1)
v2(3v + 1)

+
d
2
− d

2v
+

2k(v − 1)
v(3v + 1)

≤ 16d
2v

− 2
v
+

d
v
+

d
2
− d

2v2 +
4d(v − 1)
v2(3v + 1)

+
4d(v − 1)
v(3v + 1)

≤ 18d
2v

+
d
2
− d

2v2 +
4d(v − 1)
v2(3v + 1)

+
4d(v − 1)
v(3v + 1)

− 2
v

≤ 54dv2 + 18dv + 3dv3 + dv2 − 3dv − d + 8vd − 8d + 8dv2 − 8dv
2v2(3v + 1)

− 2
v

≤ 3dv3 + 63dv2 + 15dv − 9d
2v2(3v + 1)

− 2
v

≤ 3dv3 + 63dv2 + 15dv − 9d
2v2(3v + 1)

This completes the proof of Theorem 5.

4.3. Nearest Meeting to Exit

In order to reduce the evacuation time, it is more suitable for the biker to search for
the exit while the hiker follows a “doubling zig-zag” strategy that will keep it as close as
possible to the biker and will expedite its travel time to the exit during the last iteration of
the evacuation algorithm. In order to achieve that, the purpose of the next algorithm will
be to find this deterministic doubling strategy that the hiker should follow. Assuming that
R1 is the biker and R2 is the hiker, Algorithm 7 will be as follows.

Algorithm 7: (EvacuatingWithBikeF2F)

for k ← 1 to ∞ do
if k is odd (resp.even) then

R1moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k+1

3v−1 ;
if k = 1 then

R2 waits for R1;

if exit is found by R1 then
R1switches direction to inform R2;

R1drops off the bike at distance x
2 ;

R2 picks up the bike and continues to the exit;
Quit;

if exit is found by R2 then
R2 waits till R1comes to the exit;

Break;

R1turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;

72

Information 2021, 12, 28

Theorem 6. The evacuation time for Algorithm 7 using the F2F model is upper bounded by

3d − 5v2 − 12v − 1
2v(v − 1)

d +
5v2 − 12v − 1

v(v − 1)(3v − 1)
d if 1 < v ≤ 6+

√
41

5

3d − 5v2 − 12v − 1
2v(v − 1)

d +
4(5v2 − 12v − 1)
v(v − 1)(3v − 1)

d if 6+
√

41
5 ≤ v

Proof of Theorem 6. Let us consider the sequence:X = {X1, X2, X3, . . . , Xk}, where
Xk = r · Xk−1. The purpose is to find the best value of r which is the factor related to
the doubling strategy that the hiker follows. Definitely the best meeting point would be
the peak point reached by the hiker during each iteration, since it will be the closest to the
exit. Assume that both the hiker and the biker meet at some point Xk−1 during the k − 1
iteration and they are willing to meet during the k-th iteration without waiting for one
another, then we have:

Xk−1 + Xk =
1
v
· (2k−1 − Xk−1) +

2k−1

v
+

Xk
v

and after substituting Xk

Xk−1 + r · Xk−1 =
1
v
· (2k−1 − Xk−1) +

2k−1

v
+

r
v
· Xk−1.

In turn, this implies

(r + 1) · Xk−1 =
2k

v
+

r − 1
v

· Xk−1

=⇒ r · v · Xk−1 + v · Xk−1 − r · Xk−1 + Xk−1 = 2k

=⇒ Xk−1 =
2k

r · v + v − r + 1

Similarly we have Xk = 2k+1

r·v + v − r + 1 . Consider Xk = r · Xk−1, then we can deduce

that r = 2. Substituting r = 2 gives Xk = 2k+1

3v − 1 . So we conclude that the hiker will use

doubling strategy and will follow the sequence X = { 4
3v − 1 , 8

3v − 1 , . . . , 2k+1

3v − 1}. Assume
that R1 is the biker which moves with speed v and R2 is the hiker which moves with unit
speed. Consider d = 2k+1

3v − 1 + e where e ≥ 0. Definitely R1 will reach the exit before R2.
Since the exit is at distance e from the meeting point, then from that point on, R1 needs
time e

v to reach the exit. During this time, R2 will be at distance e on the other side of the
meeting point. Therefore, when R1 reaches the exit, R2 will be at distance e + e

v = e v + 1
v

away from the exit. The distance z that hiker R2 moves from the point where R1 reaches
the exit till the point it meets R1 will be as follows:

z =
e(v + 1)

v2 +
z
v

=⇒ z(v − 1)
v

=
e(v + 1)

v2

=⇒ z =
v + 1
v − 1

· e
v

Therefore, when biker R1 reaches hiker R2 to inform it about the exit, R2 will be far
from the exit by a distance x = v + 1

v − 1 · e
v + e v + 1

v . Now it is required to find at what distance
y away from the exit should biker R1 drop off the bike so that hiker R2 can pick it up and
proceed to the exit and reach it at the same time as R1. After we find out the distance y, we

73

Information 2021, 12, 28

will go back to create the algorithm for the two hikers with a bike model. In order to find
out the distance y we have the following:

x
v
− y

v
+ y = x − y +

y
v

=⇒ x
v
− y

v
+ 2y = x +

y
v

=⇒ y(2v − 2) = x(v − 1)

=⇒ y =
x(v − 1)
2(v − 1)

=
x
2

The evacuation time T can be calculated as follows:

T =
2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1

v
+

d
v
+

x
v
+

y
v
+ y

=
2(2k − 1)

v
+

d
v
+

x
v
+

x
2v

+
x
2

=
2k+1

v
− 2

v
+

d
v
+

3
2v

(e +
e
v
+

v + 1
v − 1

· e
v
) +

1
2
(e +

e
v
+

v + 1
v − 1

· e
v
)

Since d = e + 2k+1

3v−1 , replacing 2k+1

v = 3d − 3e − d
v + e

v in the above equation gives the
following:

T = 3d − d
v
− 3e +

e
v
− 2

v
+

d
v
+

3e
2v

+
3e

2v2 +
3e(v + 1)

2v2(v − 1)
+

e
2
+

e
2v

+
e(v + 1)

2v(v − 1)

= 3d − 2
v
+

3e
v
− 5e

2
+

3e
2v2 +

3ev + 3e + ev2 + ev
2v2(v − 1)

= 3d − 2
v
+

3e
v
− 5e

2
+

3e
2v2 +

ev2 + 4ev + 3e
2v2(v − 1)

= 3d − 2
v
+ e · 6v2 − 6v − 5v3 + 5v2 + 3v − 3 + v2 + 4v + 3

2(v − 1)v2 =

= 3d − 2
v
− e · 5v2 − 12v − 1

2v(v − 1)

= 3d − 2
v
− 5v2 − 12v − 1

2v(v − 1)
(d − 2k+1

3v − 1
)

= 3d − d · 5v2 − 12v − 1
2v(v − 1)

+ 2k 5v2 − 12v − 1
v(v − 1)(3v − 1)

− 2
v

There are two cases to consider here:

Case 1: 1 < v ≤ 6+
√

41
5 .

Since 5v2 − 12v − 1 ≤ 0 and d ≤ 2k we have that

T ≤ 3d − 5v2 − 12v − 1
2v(v − 1)

d +
5v2 − 12v − 1

v(v − 1)(3v − 1)
d − 2

v

≤ 3d − 5v2 − 12v − 1
2v(v − 1)

d +
5v2 − 12v − 1

v(v − 1)(3v − 1)
d

Case 2: 6+
√

41
5 ≤ v.

74

Information 2021, 12, 28

Since 0 ≤ 5v2 − 12v − 1 and 2k−2 ≤ d we conclude that

T ≤ 3d − 5v2 − 12v − 1
2v(v − 1)

d +
5v2 − 12v − 1

v(v − 1)(3v − 1)
· 22 · 2k−2 − 2

v

≤ 3d − 5v2 − 12v − 1
2v(v − 1)

d +
4(5v2 − 12v − 1)
v(v − 1)(3v − 1)

d − 2
v

≤ 3d − 5v2 − 12v − 1
2v(v − 1)

d +
4(5v2 − 12v − 1)
v(v − 1)(3v − 1)

d

This completes the proof of Theorem 6.

Figure 2 depicts and compares the performance of the three algorithms presented for
the face-to-face model.

Figure 2. Graph for the three algorithms using the face-to-face model. On high speed, the evacuation
time for Algorithm 7 converges to d

2 . The same is for Algorithm 6 versus d for Algorithm 5.

5. Lower Bounds

In this section we establish lower bounds on the competitive ratio in the WiFi and F2F
models. Using bike sharing, first we prove a tight bound on the evacuation time when the
robots know in which direction from the origin the exit is. Note that Theorem 7 can readily
be used to compute the competitive ratio of the algorithms presented in Sections 3 and 4.

Theorem 7. If the direction of the exit is known to the robots then evacuation time is v + 1
2v · d and

this is optimal.

Proof of Theorem 7. Consider the algorithm whereby robot R1 rides the bike for a distance
x, releases the bike at x and continues by walking the remaining distance d − x, while robot
R2 walks for a distance x, picks up the bike at x and rides it for the remaining distance
d − x. Note that robot R1 reaches the exit at time x

v + d − x, while robot R2 reaches the
exit at time x + d − x

v . For the two robots to arrive at the same time it is required that
x
v + d − x = x + d − x

v , which solves for x = d
2 . Hence, the algorithm ensures that the two

robots evacuate in time 1
2 + 1

2v = v + 1
2v .

Next we prove that the evacuation time above is optimal. If the robots never share
the bike then the evacuation time will be d, which is also the arrival time of the slowest
robot. So we may assume the robots share the bike. Let ti be the termination time for robot

75

Information 2021, 12, 28

Ri in an optimal algorithm. Let xi be the distance that robot Ri rides the bike. Without
loss of generality let R1 be the robot that fetches the bike from the origin. Clearly, this
takes time x1

v + d − x1. Therefore t1 ≥ x1
v + d − x1. Similarly, for robot R2 we have that

t2 ≥ x2
v + d − x2. It follows that

max{t1, t2} ≥ 1
2

(x1

v
+ d − x1 +

x2

v
+ d − x2

)
= d − x1

2
− x2

2
+

x1

2v
+

x1

2v

= d − (x1 + x2)
v − 1

2v

≥ d − v − 1
2v

· d =
v + 1

2v
· d,

where in the last inequality we used the fact that x1 + x2 ≤ d, since by assumption only
one robot can ride the bike at a time. This completes the proof of Theorem 7.

Using Theorem 7 we can prove the following result.

Theorem 8. The evacuation time of any algorithm in either the WiFi or F2F model is bounded
from below by min

{
d
v + v + 1

2v · d, d + v + 1
v · d

}
.

Proof of Theorem 8. Assume the two robots are starting at the origin and that the exit is
placed at one of the two locations ±d which are unknown to the robots. Lets call the points
±d endpoints of the interval [−d,+d]. Without loss of generality assume that −d is the first
endpoint visited by a robot.There are two cases to consider depending on who is visiting
this endpoint first.

Case 1: The biker visits −d first.

To arrive at the endpoint −d the biker has already spent time at least d
v since he

travels with speed v. At the time the biker arrives at −d the hiker may be located either
in the subinterval [−d, 0] or in the subinterval [0,+d]. There are two subcases to consider
depending on which of the two subintervals the hiker is located

• If the hiker is located in the interval [−d, 0] then the adversary places the exit at +d in
which case by Theorem 7 the evacuation time will be at least d

v + v + 1
2v · d.

• If the hiker is located in the interval [0,+d] then the adversary places the exit at −d in
which case again by Theorem 7 the evacuation time will be at least d

v + v + 1
2v · d.

Therefore regardless of the position of the hiker the evacuation time in this case is at
least d

v + v + 1
2v · d.

Case 2: The hiker visits −d first.

To arrive at the endpoint −d the hiker has already spent time d since he travels with
speed v. As before, the adversary will place the exit at the other endpoint +d. Unaided
from the bike the hiker will take additional time 2d to arrive at the exit which is located at
+d. However, in the wireless model the hiker can announce the exit has been found and
therefore the two robots can share the bike to arrive at the exit +d. In view of Theorem 7
this takes additional time at least v+1

2v · 2d = v+1
v · d. Hence, in this case a lower bound on

the evacuation time is d + v+1
v · d.

Combining the two cases completes the proof of Theorem 8.

76

Information 2021, 12, 28

6. Conclusions

We proposed several evacuation algorithms in the wireless and face-to-face models.
For each communication model we presented three algorithms which take advantage of
the existence of the bike, a limited resource which can increase the search speed of the
system of two robots. The resulting trajectories of the robots are specially designed so as
to share the bike and ultimately reduce the overall evacuation time. We also discussed
lower bounds.

The problem investigated is of theoretical nature and helps illuminate the trade offs
between communication, and search time in search with mobile agents. Our study gives
rise to several challenging open problems. For two robots, one could consider the problem
when the speed of the bike depends on the hiker riding it. The case of multiple hikers
and multiple bikes (not necessarily the same number) has never been investigated before.
Additionally, one could also consider the case of faulty robots (crash or Byzantine). It
would also be interesting to investigate other search domains such as stars and cycles or
robots with reduced and/or enhanced capabilities.

Author Contributions: Conceptualization, K.J. and E.K.; methodology, K.J. and E.K.; resources, K.J.
and E.K.; data curation, K.J. and E.K.; writing—original draft preparation, K.J. and E.K.; writing—
review and editing, K.J. and E.K.; supervision, K.J. and E.K.; project administration, K.J. and E.K.;
funding acquisition, K.J. and E.K. All authors have read and agreed to the published version of
the manuscript.

Funding: Research of the second author was supported in part by NSERC Discovery grant.

Institutional Review Board Statement: Not applicanle.

Informed Consent Statement: Not applicanle.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baeza Yates, R.; Culberson, J.; Rawlins, G. Searching in the plane. Inf. Comput. 1993, 106, 234–252. [CrossRef]
2. Beck, A. On the linear search problem. Israel J. Math. 1964, 2, 221–228. [CrossRef]
3. Bellman, R. An optimal search. SIAM Rev. 1963, 5, 274. [CrossRef]
4. Kao, M.Y.; Reif, J.H.; Tate, S.R. Searching in an unknown environment: An optimal randomized algorithm for the cow-path

problem. Inf. Comput. 1996, 131, 63–79. [CrossRef]
5. Czyzowicz, J.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J. Search on a Line with Faulty Robots. In Proceedings of the

2016 ACM Symposium on Principles of Distributed Computing, Chicago, IL, USA, 25–28 July, 2016; pp. 405–414.
6. Czyzowicz, J.; Georgiou, K.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S. Search on a Line by Byzantine

Robots. arXiv 2016, arXiv:1611.08209.
7. Czyzowicz, J.; Gasieniec, L.; Gorry, T.; Kranakis, E.; Martin, R.; Pajak, D. Evacuating Robots via Unknown Exit in a Disk.

In Proceedings of the International Symposium on Distributed Computing, Austin, TX, USA, 12–15 October 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 122–136.

8. Czyzowicz, J.; Georgiou, K.; Kranakis, E. Group Search and Evacuation. In Distributed Computing by Mobile Entities, Current
Research in Moving and Computing; Springer: Cham, Switzerland, 2019; Volume 11340, pp. 335–370.

9. Kranakis, E.; Santoro, N.; Sawchuk, C.; Krizanc, D. Mobile agent rendezvous in a ring. In Proceedings of the IEEE 23rd
International Conference on Distributed Computing Systems, Providence, RI, USA, 19–22 May 2003; pp. 592–599.

10. Czyzowicz, J.; Dobrev, S.; Kranakis, E.; Krizanc, D. The power of tokens: Rendezvous and symmetry detection for two mobile
agents in a ring. In Proceedings of the International Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, 27–30 January 2019; Springer: Berlin/Heidelberg, Germany, 2008; pp. 234–246.

11. Czyzowicz, J.; Dobrev, S.; Godon, M.; Kranakis, E.; Sakai, T.; Urrutia, J. Searching for a Non-adversarial, Uncooperative Agent on
a Cycle. Theor. Comput. Sci. 2020, 806, 531–542. [CrossRef]

12. Gasieniec, L.; Kijima, S.; Min, J. Searching with increasing speeds. In Proceedings of the International Symposium on Stabilizing,
Safety, and Security of Distributed Systems, Tokyo, Japan, 4–7 November 2018, ; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 126–138.

13. Chrobak, M.; Gasieniec, L.; Gorry, T.; Martin, R. Group search on the line. In Proceedings of the International Conference on
Current Trends in Theory and Practice of Informatics, Harrachov, Czech Republic, 27 July 2015; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 164–176.

77

Information 2021, 12, 28

14. Bampas, E.; Czyzowicz, J.; Gasieniec, L.; Ilcinkas, D.; Klasing, R.; Kociumaka, T.; Pajak, D. Linear search by a pair of distinct-speed
robots. Algorithmica 2019, 81, 317–342. [CrossRef] [PubMed]

15. Jawhar, K. Bike Assisted Linear Search and Evacuation. Master’s Thesis, School of Computer Science, Carleton University,
Ottawa, ON, Canada, 2020.

16. Jawhar, K.; Kranakis, E. Bike Assisted Evacuation on a Line. In Proceedings of the SOFSEM (47th International Conference on Cur-
rent Trends in Theory and Practice of Computer Science), Bozen-Bolzano, Italy, 25–28 January 2021; Springer: Berlin/Heidelberg,
Germany, 2021.

17. Shaheen, S.A.; Guzman, S.; Zhang, H. Bikesharing in Europe, the Americas, and Asia: Past, present, and future. Transp. Res. Rec.
2010, 2143, 159–167. [CrossRef]

18. Chen, B.; Pinelli, F.; Sinn, M.; Botea, A.; Calabrese, F. Uncertainty in urban mobility: Predicting waiting times for shared bicycles
and parking lots. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013),
The Hague, The Netherlands, 6–9 October 2013; pp. 53–58.

19. Li, Z.; Zhang, J.; Gan, J.; Lu, P.; Gao, Z.; Kong, W. Large-scale trip planning for bike-sharing systems. Pervasive Mob. Comput.
2019, 54, 16–28. [CrossRef]

20. O’Mahony, E.; Shmoys, D.B. Data analysis and optimization for (citi) bike sharing. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

21. Pfrommer, J.; Warrington, J.; Schildbach, G.; Morari, M. Dynamic vehicle redistribution and online price incentives in shared
mobility systems. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1567–1578. [CrossRef]

22. Singla, A.; Santoni, M.; Bartók, G.; Mukerji, P.; Meenen, M.; Krause, A. Incentivizing users for balancing bike sharing systems. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

23. Yang, Z.; Hu, J.; Shu, Y.; Cheng, P.; Chen, J.; Moscibroda, T. Mobility modeling and prediction in bike-sharing systems. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, Singapore, 26–30 June
2016; pp. 165–178.

24. Czyzowicz, J.; Georgiou, K.; Killick, R.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Pankratov, D. The Bike Sharing
Problem. arXiv 2020, arXiv:2006.13241.

78

 information

Article

A Multi-Objective Optimization Problem on
Evacuating 2 Robots from the Disk in the
Face-to-Face Model; Trade-Offs between Worst-Case
and Average-Case Analysis †

Huda Chuangpishit, Konstantinos Georgiou * and Preeti Sharma

Department of Mathematics, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada;
h.chuang@ryerson.ca (H.C.); preeti.sharma@ryerson.ca (P.S.)
* Correspondence: konstantinos@ryerson.ca
† This paper is an extended version of our paper published in An extended abstract of this work appeared in the

proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks (ALGOSENSORS’18), Helsinki, Finland, 23–24 August 2018.

Received: 7 September 2020; Accepted: 26 October 2020; Published: 29 October 2020

Abstract: The problem of evacuating two robots from the disk in the face-to-face model was first
introduced by Czyzowicz et al. [DISC’2014], and has been extensively studied (along with many
variations) ever since with respect to worst-case analysis. We initiate the study of the same problem
with respect to average-case analysis, which is also equivalent to designing randomized algorithms
for the problem. In particular, we introduce constrained optimization problem 2EVACF2F, in which
one is trying to minimize the average-case cost of the evacuation algorithm given that the worst-case
cost does not exceed w. The problem is of special interest with respect to practical applications,
since a common objective in search-and-rescue operations is to minimize the average completion time,
given that a certain worst-case threshold is not exceeded, e.g., for safety or limited energy reasons.
Our main contribution is the design and analysis of families of new evacuation parameterized
algorithms which can solve 2EVACF2F, for every w for which the problem is feasible. Notably, the
worst-case analysis of the problem, since its introduction, has been relying on technical numerical,
computer-assisted calculations, following tedious robot trajectory analysis. Part of our contribution
is a novel systematic procedure, which given any evacuation algorithm, can derive its worst- and
average-case performance in a clean and unified way.

Keywords: evacuation; disk; face-to-face model; average-case analysis

1. Introduction

In search-type problems, several searchers (robots or mobile agents) are moving within a domain
with the objective to identify the location of a (hidden) item. Several variations have been introduced for
the problem that range among others with respect to the domain, to searcher specs, to the termination
criterion (definition of feasibility) and to the objective of the underlying optimization problem. When in
particular there are more than one searchers, and the termination criterion is that all searchers
reach the hidden item (also known as exit), then the search problem is usually referred to as an
evacuation-type problem. The term was introduced recently by Czyzowicz et al. in [1] who studied
the problem of locating a hidden item on the perimeter of the unit disk with at least two robots.
Once all searchers reach the hidden item (hence the name of the problem), the cost of the solution was
defined as the time that the last searcher reaches the item (The termination criterion should not be
confused with how the cost is quantified.). The problem was studied extensively also by subsequent
publications exclusively under the lens of worst-case (competitive) performance, i.e., with the objective

Information 2020, 11, 506; doi:10.3390/info11110506 www.mdpi.com/journal/information79

Information 2020, 11, 506

to minimize the worst-case (over all placements of the hidden item) time that the last searcher reaches
the exit. In contrast, real-life applications are usually concerned with minimizing the average-case
performance of an algorithm, especially if one must solve several instances of the problem. In our case,
evacuation-type problems resemble search-and-rescue operations where on one hand it is desirable to
minimize the average rescue time, but on the other hand one has to set hard thresholds regarding the
possible worst-case performance of the operations (for example, due to safety concerns of the missing
person/hidden item).

As a result, we are motivated to revisit existing evacuation-type problems in the realm of
average-case performance, where the feasibility criterion is altered so as to also comply with possible
bounds on the worst-case performance. Alternatively, one may think of an evacuation-type problem
(or even search-type problem) as the multi-objective problem of minimizing simultaneously the
worst-case and the average-case cost of feasible evacuation algorithm. In this direction, we study
the evacuation problem [1] under the lens of average-case analysis with hard constraints on
the worst-case performance, i.e., we study average-case worst-case trade-offs for the underlying
optimization problem. More specifically, we introduce new evacuation-type problem 2EVACw

F2F with
two searchers, in which the objective is to optimize the average-case evacuation time (or equivalently
to minimize the performance of a randomized algorithm with unbounded access to randomness)
condition on that the worst-case evacuation time does not exceed value w. The latter optimization
problem seems to be particularly challenging in light of all previous results for the problem that
relied on tedious calculations and/or on arguments tailored to the proposed algorithmic solutions.
In that direction, we rely on a simple, novel and systematic theoretical approach that allows us to
analyze the performance (both average-case and worst-case) of any evacuation algorithm based on
computer-assisted calculations. Taking advantage of this approach, we introduce new families of
algorithms for 2EVACw

F2F. Interestingly, their worst-case analysis can be done rigorously, giving this
way feasible evacuation protocols for the entire spectrum of values w. To motivate our results further,
we also investigate the performance of existing algorithms of 2EVACw

F2F, and we actually show that
our new algorithms indeed outperform them for many values of w.

1.1. Related Work

In search problems, robots (or commonly referred to as mobile agents or searchers) are equipped
with the task of efficiently locating a hidden item in a geometric domain. Studied in many variations
since the 1960s, see seminal results [2,3], search problems first focused on identifying optimal
probabilistic search and hiding strategies. Several subsequent studies of search-variations gave rise
to numerous publications, and eventually to surveys, e.g., [4,5], and books [6–9] that also coined the
umbrella term Search Theory. Over the years, search problems were also studied under the lens (i) of
exploration by single [10–13] or multiple robots [14–16], (ii) of terrain mapping [17–19] and (iii) of
hide-and-seek and pursuit-evasion objectives, e.g., see [20–23].

Although the first reference to a theoretical evacuation problem seems to date back to [24,25],
the problem we study follows the line of research of Czyzowicz et al. [1]. Among the many results
reported in [1], the one relevant to the current paper pertains to searching with two unit-speed robots
for an item/exit hidden at the perimeter of a unit circle. The two searchers operate in the so-called
face-to-face model that does not allow exchange of information from distance, and their goal is to
minimize the worst-case evacuation time, i.e., the worst-case (over all placements of the exit) time
that the last searcher reaches the exit. The first reported upper bound of 5.73906 [1] used a basic
evacuation algorithm, according to which robots choose an arbitrary point on the circle, search in
opposite directions, while the exit finder detours once the exit is found in order to catch and notify
her peer before the evacuate together from the exit. By analyzing the worst placement of the exit [26],
improved the upper bound to 5.628 by introducing a carefully chosen detour, before even the exit
was reported, that was meant to expedite the catching phase in case the exit was found in a critical
time window. The detour trajectory was later simplified and coupled with an elegant performance

80

Information 2020, 11, 506

analysis that resulted in a further improvement of 5.625 [27]. Only recently, [28] reported yet another
improvement of 5.6234, which was achieved by employing multiple detours. In contrast, the best
lower bound known of 5.255 is due to [26], and no improvement has been reported since.

Since the inception of 2EVACF2F in [1], numerous search and evacuation-type variants have
emerged that studied different robot specs and/or number of searchers, different communication
models, and different domains. Some notable examples include search and/or evacuation in the disk
with more than 1 exits [29,30], in triangles [31,32], on multiple rays [33], in graphs [34,35], on a line
with at least two robots [36,37] (generalizing the seminal result of [38]), with faulty robots [39–41] or
with probabilistically faulty robots [42], with advice (information) [43], with priority specification on
the searchers [44,45], with immobile agents [46,47], with time/energy trade-off requirements [48,49],
with speed bounds [50], and with terrain dependent speeds [51], just to name some. The interested
reader may also see the recent survey [52] that elaborates more on some selected topics.

In a different direction, Baeza-Yates et al. posed the question of minimizing the worst-case
trajectory of a single robot searching for a target point at an unknown location in the plane [38].
This was generalized to multiple robots in [53], and later has been studied in [54,55]. More recently,
Refs. [56,57] gave lower bounds for related problems. However, in these papers, the robots cannot
communicate, and moreover, the objective is for the first robot to find the target.

1.2. Discussion on Closely Related Literature and Improvements

The problem of evacuating robots from the disc was first introduced in [1]. Among the many
results reported in the latter paper, the one we expand upon is that of evacuating 2 robots in the
face-to-face model. The algorithmic analysis was done exclusively in the deterministic model,
and hence was worst-case. The reported upper bound of 5.628 was achieved by a simple algorithm,
call it A, that deploys both robots in an arbitrary point on the perimeter of the unit disc, and then
makes them search in different directions. When the exit is found, the finder follows the shortest
trajectory (straight line) in order to catch the non-finder in her trajectory so that together they return to
the exit.

The first improvement of [26] was motivated by the monotonicity of the cost of A as a function
of the time that the exit is found. A careful analysis shows that the cost function is concave,
with the maximizer corresponding to the placement of exit that induces the worst-case performance.
The weakness of the underlying communication model is that the (potential) non-finder, call it R1 has
no way to know whether her peer, R2 has found the exit. At the same time, if enough time has passed
and if R1 has not been caught (notified) by R2, then R1 can deduce that her peer might have found the
exit in the “dangerous” neighborhood of the placement inducing the worst-case cost, and hence R2

might be already moving toward R1 in order to notify her. As a result, R1 has the incentive to deviate
from searching the perimeter and to move toward the interior to expedite the (possible) rendezvous.
Such a detour needs to be carefully chosen so that it is long enough to save cost in case the exit was
indeed found in the dangerous neighborhood and short enough so that the detour does not add much
in the cost in case it did not. Overall, the time that the detour occurs together with the direction
and length of the detour give three degrees of freedom with an objective to optimize the cost in two
different cases; when the exit is found in the “dangerous neighborhood” and when it is not. Call this
(family of) algorithm(s) A0. The search space for choosing the three optimal parameters for A0 is
indeed enormous, and at a high level [26] considered only a restriction of the previous idea in which
robots agree on a forced meeting on the diameter of the circle, effectively reducing the degrees of
freedom of the algorithm but simplifying the already technical and theoretical analysis of its worst-case
cost, which eventually relied on numerical calculations.

The upper bound was later improved to 5.625 in [27]. The novelty of the latter work pertained
to the introduction of an elegant theoretical analysis of algorithms A0, which on one hand avoided
the forced meeting and on the other improved upon the bound of [26] by choosing optimally its three
parameters, which were eventually computed by numerical calculations. The authors of [27] further

81

Information 2020, 11, 506

mentioned that their results could potentially be improved by introducing, at a high level, a recursively
defined sequence of detour points aiming to address the reduction of the optimal worst-case cost,
should the detour points were one less (so the improvement of A to A0 can be thought as the basic
step in the inductive argument). Indeed, ref. [28] used exactly that idea and reported a new upper
bound of 5.6234.

Quite interestingly, all previous results pertaining to the worst-case analysis relied on arguments
that were somehow tailored to the aforementioned algorithms (robot trajectories). In contrast,
we provide a framework that allows us to compute, with computer-assisted calculations, the worst-case
cost of any evacuation algorithm, as long as robot trajectories are described by unit-speed-inducing
parameterized curves. It is the same framework that allows us also to also compute the average-case
cost for any such algorithm.

The main improvement upon the previously results of the same problem pertains to minimizing
the average-case cost. In one extreme, one can analyze the naive algorithm in which searchers always
stay together, inducing very low average-case cost, but very high worst-case cost. In the other extreme,
the optimal algorithm A0 of [27] has very low worst-case cost (nearly the best known) and, according
to our results, relatively high average-case cost. As a result, we are motivated to minimize the
average-case cost, subject to the worst-case cost ranges between the cost of the naive algorithm
that of the optimal A0 (or equivalently to consider the multi-objective optimization problem of
minimizing simultaneously the average-case cost and worst-case cost). Quite surprisingly, we verify,
using our technical framework, that among the family of algorithms A0, the one inducing the
minimum average-case cost is that of A. It is the latter observation that gives the main motivation for
introducing the three new parameterized families of evacuation algorithms that attempt to minimize
their average-case cost, inducing worst-case cost that range, continuously, over the two extreme
worst-case costs.

1.3. Outline of Our Results and Paper Organization

We introduce and study a multi-objective analog of the well-studied problem of evacuating
two robots from the disk, performing in the face-to-face communication mode. More specifically,
we introduce evacuation problem 2EVACw

F2F in which the two searchers need to evacuate in worst-case
time no more than w, while still minimizing their average-case performance. One of our main
contributions is a systematic method that allows us to perform both worst-case and average-case
analysis for any evacuation algorithm that admits an analytic description. We apply our method to
verify that previously known algorithms are not efficient (or not feasible) to 2EVACw

F2F, for certain values
of w. As a result, we also motivate the introduction of three new families of evacuation algorithms
that are feasible to 2EVACw

F2F for a wide spectrum of values w, and that induce a continuous bound for
the efficient (pareto) frontier for the underlying multi-objective optimization problem. For our results
we employ a rigorous analysis for the worst-case performance of the new algorithms, and we rely on
numerical computer-assisted calculations and on the aforementioned novel systematic method for
estimating their average-case performance.

The formal definition of our problem, along with a high-level exposition of our results appears in
Section 2.1. In Section 2.2 our cornerstone observation pertaining to a systematic process for computing
the average-case (and worst-case) performance of any evacuation algorithm that admits a convenient
representation (as described in Section 2.3). Then in Section 3 we analyze two basic (benchmark)
algorithms for 2EVACw

F2F. This allows us to motivate our problem for a range of w values that are
related to the benchmark algorithms. In the same section, we also show that the families of previously
proposed evacuation algorithms fail to be efficient for 2EVACw

F2F. In Section 4 we present new families
of evacuation algorithms, which is also one of our main contributions. For these algorithms we
give a rigorous worst-case performance analysis in Section 5, and computer-assisted average-case
performance analysis in Section 6, based upon our results in Section 2.2. The reader can also find in the

82

Information 2020, 11, 506

same section a formal quantification of our results for 2EVACw
F2F. Lastly, in Section 7 we conclude by

discussing our findings and propose some future directions.

2. Preliminaries

2.1. Problem Definition and Main Results

The geometric domain of 2EVACF2F is a unit disk, centered at the origin of the Cartesian plane.
Two unit-speed searchers, starting from the origin, can move anywhere in the disk, and aim to identify
a hidden object (exit) located at its perimeter (boundary). The object can be identified only by co-located
robot, i.e., a robot that passes over it.

The two robots search in parallel, and perform under a centralized setting, i.e., they know each
other’s trajectories under the assumption that no exit is found. The underlying communication model
is the so-called face-to-face that does not allow robots to exchange messages from distance, rather only
when they meet. A feasible evacuation algorithm is a pair of trajectories, one for each robot, in which for
every placement of the exit, both robots reach it eventually. For a technical reason, but also without
loss of generality, we also require that robots will eventually stay at the exit idle. Placements of the exit
i.e., instances to our problem, will be identified by cycle(x) := (cos (x) , sin (x)), where x ∈ [0, 2π).
The evacuation time (cost) C(x) of a feasible evacuation algorithm on instance cycle(x) is defined as
the first time until both robots reach the exit. t.

In this work we are concerned with determining trade-offs between the worst-case and the
average-case performance (of uniform placements of the exit) of evacuation algorithms for 2EVACF2F.
More specifically, we say that an evacuation algorithm A with evacuation cost C(x) on instance
cycle(x) is (a, w)-efficient if

Avg (A) := Ex∈[0,2π)[C(x)] ≤ a,

Wrs (A) := sup
x∈[0,2π)

{C(x)} ≤ w.

where the expectation is with respect to the uniform distribution over [0, 2π). Special to our problem is
that Avg (A) can also be interpreted as the expected performance of a randomized algorithm based on
A . Indeed, consider an algorithm which first performs a random rotation of the disk around the origin
of angle θ, where θ is chosen uniformly at random from [0, 2π), and then simulates A . Please note that
theoretically, this step requires infinitely many random bits, but one can simulate with any precision by
enough many random bits. This random step is equivalent to choosing a deployment point uniformly
at random on the disk. Due to the symmetry of the domain, it is irrelevant where the adversary
will place the unique exit, and hence the expected performance of this randomized algorithm equals
Avg (A).

For algorithms A (p) parameterized by parameter(s) p, the pair (Avg (A (p)) , Wrs (A (p))) will
correspond to a subset of R2 (and a curve if p is only one parameter) that we will refer to as the Efficient
Frontier. We also adopt an optimization perspective of the problem, and we introduce the following
optimization problem 2EVACw

F2F on parameter w:

min
1

2π

∫ 2π

0
C(x)dx (2EVACw

F2F)

s.t. C(x) ≤ w, ∀x ∈ [0, 2π).

Please note that the problem above is equivalent to the multi-objective optimization problem
min{Avg (A (p)) , Wrs (A (p))}, and the conversion to the constrained problem above is due to the
well-known ε-constraint method, e.g., see [58]. At the same time, no optimal lower bound is known for
the worst-case cost in the case of unconstrained average-case cost, not to mention that lower bounds
for similar problems are notoriously difficult. Consequently, under the current state-of-the-art it seems

83

Information 2020, 11, 506

particularly challenging to determine the pareto frontier of the multi-objective optimization problem.
Nevertheless, our arguments directly imply bounds for the pareto frontier.

As we show later, the values of w that make 2EVACw
F2F interesting lie between some special

values w1, w2. Values w1, w2 are associated with benchmark algorithms, B1, B2, where in particular
Wrs (B1) = w1 ≈ 5.739, Avg (B1) = a1 ≈ 5.1172, Wrs (B2) = w2 ≈ 7.283, Avg (B1) = a2 ≈ 7.28319.
As a result, the reader may think of B1 as being inefficient in average case and efficient in worst case.
Similarly, B2 is inefficient in worst case and efficient in average case.

As is the case for many variations of 2EVACF2F, the cost of best solutions known are computed
numerically. Our results pertain to upper bounds for a continuous spectrum of parameter w for
problem 2EVACw

F2F. In particular we propose families of algorithms A (over some parameters) so
that as their parameters vary, we obtain Wrs (A) = w and Avg (A) = g(w), for each w ∈ [w1, w2].
The curve (g(w), w) summarizing our results is depicted in Figure 1, and it is later quantified in
Theorem 7 (see Section 5).

Algorithm

Algorithm

Algorithm ,

Avg(), Wrs()

Avg(), Wrs()

Average Case Performance

W
or

st
 C

as
e

Pe
rfo

rm
an

ce

Figure 1. Illustration of the performance of our solution to 2EVACw
F2F, for every w ∈ [w1, w2].

Depicted curve corresponds to parametric curve (g(w), w), where w, g(w) are the worst-case
performance and average-case performance of three different families of evacuation algorithms
A1, A ′

2 , A2, discussed formally in Section 4. Please note that the magenta curve is not a straight
line and, as we show next, induces decreasing worst-case performance (as the average case performance
increases).

Please note that an (a, w)-efficient algorithm gives a solution of value a for 2EVACw
F2F.

Our approach to prove Theorem 7 is to define families of evacuation algorithms A (p) parameterized
by parameter(s) p. We will prove that these algorithms are (u(p), v(p))-efficient for some functions
u(p), v(p), and in particular the evaluation of the worst-case performance will be exact and monotone
in p, while the computation of v(p) will be computer-assisted. Then we will set p = v−1(w), and will
be able to describe the average-case performance as a function of w as g(w) := u(v−1(w)).

2.2. Computing Evacuation Times

For any feasible evacuation algorithm, we denote by S(x), the first time, after spending time 1
to reach the perimeter that cycle(x) is visited by any robot. In other words, S(x) is the time robots
spend searching till the exit is found for the first time, assuming that robots do not waste time in
the interior of the circle before they start searching. Clearly, when a robot, say R1, locates the exit at
cycle(x), it may attempt to catch R2 while moving along R2’s trajectory along the shortest line segment,
say of length E(x). Once robots meet, they return together to cycle(x), inducing total evacuation cost
C(x) = 1 + S(x) + 2E(x).

84

Information 2020, 11, 506

All existing results for 2EVACF2F, from a worst-case complexity perspective, rely on numerical
computer-assisted estimation of supx C(x), after identifying properties of the maximizer. In this section,
we elevate existing arguments, and we propose a generalized and unified approach for computing
C(x), for any x and for any robot trajectories. For the sake of formality, as well as for practical purposes,
robot trajectories will be defined by parametric functions F (t) = (f (t), g(t)), where f , g : R �→ R are
continuous and piecewise differentiable. In particular, search protocols for the two robots will be given
by trajectories R1(t), R2(t), where Ri(t) will denote the position of robot Ri at time t ≥ 0. Therefore,
any evacuation algorithm will be identified by a tuple (R1, R2). To simplify notation, we will only
determine the trajectories from the moment the two robots reach the perimeter of the circle, and until
the entire circle is searched (under the assumption that no exit is found), and we will silently assume
that robots stay put after exploration is over.

Lemma 1. Consider instance cycle(x) of 2EVACF2F, and suppose that for a feasible evacuation algorithm
(R1, R2), robot 1 is the first robot that finds the exit. Then E(x) = t̄ − S(x), where t̄ = t̄(x) is the smallest
root, no less than S(x), of function

hx(t) := ‖R2(t)−R1(S(x))‖ − t + S(x). (1)

Proof. The reader may consult Figure 2 that complements our argument.

cycle = ()
()

()
()

Figure 2. An abstract depiction of the trajectories of R1, R2, assuming that R1 is the finder of the
exit, located at cycle(x) at time S(x). Time t̄ is the time, after they start searching for the exit on the
perimeter that the two robots meet at R1(t̄) = R2(t̄).

First observe that hx(t) is continuous. If the robots find the exit together then result holds trivially.
So we may assume that that the two robots are not co-located when the exit is found, in which case we
have hx(S(x)) > 0. At the same time, since the evacuation algorithm is feasible, R2(t) is eventually a
constant, and hence for big enough t we have that hx(t) becomes eventually negative. By the mean
value theorem, there is t0 > 0 for which hx(t0) = 0.

Now consider the smallest positive root t̄ of hx, no less than S(x). At time t̄, R2 is located at point
R2(t̄), and it is ‖R2(t̄)−R1(S(x))‖ away from the location cycle(x) of the discovered exit. At the
same time, R1 moves with speed 1 along the shortest path to catch R2 in her trajectory. Hence it
takes R1 some t̄ − S(x) extra time from the moment the exit is found until she reaches point R2(t̄).
By definition we have R1(t̄) = R2(t̄), and therefore E(x) = t̄ − S(x) as claimed.

For some special trajectories, E(x) admits a simpler description that we describe next. Before that,
we introduce some notation pertaining to a function δ : [0, π] �→ R+, which we widely use in the
remaining of the paper:

δ(x) := unique non-negative root (regarding d) of “ 2 sin
(

x +
d
2

)
= d ”. (2)

To simplify notation, we will also abbreviate δ(x) by δx. To show that δx is well-defined, consider
function fx(d) = 2 sin

(
x + d

2

)
− d. The derivative of the function is f ′x(d) = cos x + d

2 − 1 ≤ 0.

85

Information 2020, 11, 506

Since f ′x(d) has also a unique root in [0, π], it follows that fx(d) is strictly decreasing. Observe now
that fx(0) = 2 sin (x) ≥ 0, while fx(2) = 2 sin (x + 1)− 2 ≤ 0. We conclude that due to the strict
monotonicity of fx(d), the latter function has indeed unique root in d ∈ [0, 2]. Finally, it is easy to see
that fx(d) < 0 when d > 2.

Lemma 2. For some instance cycle(x) of 2EVACF2F, suppose that for a feasible evacuation algorithm (R1, R2),
R1 is the finder of the exit, say at time t0 = S(x). Assume that both R1(t0), R2(t0) lie on the circle at arc
distance 2α, and suppose that R2’s movement is along the perimeter of the circle toward the complementary arc
of length 2π − α. Then, E(x) = δα.

Proof. The lemma follows by applying transformation t − S(x) = d in the definition of hx(t) in
Lemma 1, so that E(x) = t − S(x) = d.

We are ready to conclude with a corollary that will be handy for computing evacuation times
numerically, and without relying on excessive case analysis, as was the case before.

Corollary 1. Consider feasible evacuation algorithm (R1, R2) for 2EVACF2F. For any instance cycle(x) for
which R1 is the exit finder, the evacuation cost can be computed as C(x) = 1 + 2t̄ − S(x), where t̄ = t̄(x) is
the smallest root, at least S(x), of hx(t) := ‖R2(t)−R1(S(x))‖ − t + S(x).

2.3. Trajectory Description

Robot trajectories will be described in phases. We will always omit the “deployment phase”,
i.e., the movement from the circle center to its perimeter, and we will only describe the trajectories
from the moment robots start searching the circle. In each phase, robot R, will be moving between two
explicit points, either along an arc, or along a line segment (chord of an arc), see Observations 1 and 2
below. We will summarize robot trajectories in tables of the following format.

Robot Phase # Trajectory Duration

R 1 R(t) t1
2 R(t) t2
...

...

To ease notation, trajectory R(t) of phase i will be described with parametric equations as if the
time is reset to 0 after time t0 + t1 + t2 + . . . + ti−1, where t0 = 1 (this is the time that robots reach
the circle). The two fundamental trajectory components are movements along arcs and movements
along line segments.

Observation 1. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object moving at speed 1 on the
perimeter of a unit circle with initial location cycle(b) is given by the parametric equation cycle(σt + b) =
(cos (σt + b) , sin (σt + b)). If σ = 1 the movement is counterclockwise (ccw), and clockwise (cw) otherwise.

Proof. It is immediate that when t = 1, the object is located at cycle(b). Its speed is given by calculating∥∥∥ ∂
∂t cycle(σt + b)

∥∥∥. Indeed, we have

(
d
dt

cos (σt + b)
)2

+

(
d
dt

sin (σt + b)
)2

= σ2 (− sin (σt + b))2 + σ2 (cos (σt + b))2 = 1,

as wanted.

86

Information 2020, 11, 506

Observation 2. Consider distinct points A = (a1, a2), B = (b1, b2) in R2. The trajectory of a speed 1 object
moving along the line passing through A, B and with initial position A is given by the parametric equation

line(A, B, t) :=
(

b1 − a1

‖A − B‖ t + a1,
b2 − a2

‖A − B‖ t + a2

)
.

Proof. By definition, the parametric equation above corresponds to a line. Elementary calculations
show that line(A, B, 0) = A and line(A, B, ‖A − B‖) = B, that is the object starts at A, and that it
passes through B. Object speed is calculated as

∥∥∥ ∂
∂t line(A, B, t)

∥∥∥. In that direction we have

(
d
dt

(
b1 − a1

‖A − B‖ t + a1

))2
+

(
d
dt

(
b2 − a2

‖A − B‖ t + a2

))2
=

(
b1 − a1

‖A − B‖
)2

+

(
b2 − a2

‖A − B‖
)2

= 1

as promised.

Finally, the analysis of our algorithm trajectories will give rise to several constants. For the
reader’s convenience, we list here the numerical values of the most common constants that will be
encountered later. w1 ≈ 5.73906, w0 ≈ 6.11953, w′ ≈ 6.12851, w2 ≈ 7.28319, α′ ≈ 1.15468, ᾱ ≈ 1.54419,
β′ ≈ 0.0241653, β0 ≈ 0.04388.

All constants are formally defined when they are first introduced.

3. Two Benchmark Algorithms and Motivation

In this section, we describe two benchmark algorithms for 2EVACF2F, as well as perform
average-case analysis to algorithms previously proposed in the literature. The reader may consult
Figure 3 for the algorithms analyzed in this section.

Benchmark Algorithm Benchmark Algorithm

= ,
= ,

1-Detour Algorithm ,

Figure 3. Robot Trajectories for algorithms B1, B2, A0. The depicted trajectories show the search of the
circle, and not the evacuation step that is performed once the exit is found.

Czyzowicz et al. [1] were the first to introduce an evacuation algorithm for 2EVACF2F, which we
denote here by B1 (see Figure 3 on the left).

Definition 1 (Benchmark Algorithm B1). For all t ∈ [0, π], R1(t) = cycle(t) and R2(t) = cycle(−t).

Observation 3. Benchmark Algorithm B1 is (5.1172, 5.73906)-efficient.

Proof. Please note that it takes time π to search the entire circle, and that the two trajectories are
symmetric with respect to horizontal axis. Therefore, we may assume that the instance cycle(x)
satisfies x ∈ [0, π].

87

Information 2020, 11, 506

Clearly, for any such x, we have that S(x) = x. By Lemma 2, we have that C(x) = 1 + S(x) +
2E(x) = 1 + x + 2δx. Numerical calculations (software assisted) show that

Wrs (B1) = sup
x∈[0,π]

{C(x)} = sup
x∈[0,π]

{1 + x + 2δx} ≈ 5.73906,

Avg (B1) = Ex∈[0,π][C(x)] =
1
π

∫ π

x=0
(1 + x + 2δx) dx ≈ 5.1172.

B1 should be understood as being efficient in the worst case, but inefficient on average. The claim
becomes transparent by introducing the following naive algorithm for 2EVACF2F that we depict in the
middle of Figure 3.

Definition 2 (Benchmark Algorithm B2). For each t ∈ [0, 2π], R1(t) = R2(t) = cycle(t).

Observation 4. Benchmark Algorithm B2 is (1 + π, 1 + 2π)-efficient.

Proof. It is easy to see that for all x ∈ [0, 2π) we have t̄(x) = S(x) = x and E(x) = 0.
Therefore C(x) = 1 + x, and hence

Wrs (B2) = sup
x∈[0,2π)

{C(x)} = 1 + 2π,

Avg (B2) = Ex∈[0,2π)[C(x)] =
∫ 2π

x=0
(1 + x) dx = 1 + π.

B2 should be understood as highly efficient on average, but inefficient in the worst case. Moreover,
it should be clear that B1, B2 are feasible solutions to 2EVACw

F2F, for w = 5.1172 and w = 1 + 2π,
respectively. We conjecture that B1 is indeed the optimal evacuation algorithm among all algorithms
with worst-case performance no more than 1 + 2π. At the same time, below we show that B2

is the best algorithm for 2EVACw
F2F, when w = 5.1172, among those previously used to improve

upon the worst-case performance up to the third decimal. The importance of this observation is
two-fold; first we are motivated to study 2EVACw

F2F for the entire spectrum of w ∈ [Wrs (B1) , Wrs (B2)],
and second we deduce that in order to perform well on average, we need to devise and analyze new
evacuation algorithms.

Upper bounds for the worst-case performance of B1 were later improved first to 5.628 [26],
then to 5.625 [27], and then to 5.623 [28]. The main idea behind the improvement is to understand
the monoticity of C(x) for algorithm B1. Indeed, the following lemma was implicit in both [26,27],
and can be obtained numerically.

Lemma 3. There is α0, where α0 ≈ 0.96782, so that evacuation cost C(x) of B1 for 2EVACF2F on instance
cycle(x) is strictly increasing for x ∈ [0, α0], and strictly decreasing in x ∈ [α0, π]. In particular,
Wrs (B1) = C(α0) ≈ 5.73906.

Consider now an execution of B1 in which one of the robots, say R2 continues searching on
the circle and is close to approach a location that would be the meeting point if the instance was
cycle(α0). In an attempt to help expedite a potential meeting (in case R1 is approaching) and effectively
reducing the cost of the worst case, R2 would make a minor detour toward the interior of the disk,
before returning back to the exploration of the circle. This simple idea was explored in [26] and in [27]
where the following family of algorithms were introduced, parameterized by α ∈ [0, π] and point B
within the unit disk, see also right of Figure 3 (the simplified version presented here is due to [27]).

88

Information 2020, 11, 506

Definition 3 (1-Detour Algorithm A0(α, B)). For all t ∈ [0, π + 2 ‖cycle(α)− B‖], the trajectory of R1 is
defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), B, t) ‖cycle(α)− B‖
3 line(B, cycle(α), t) ‖cycle(α)− B‖
4 cycle(t + α) π − α

The trajectory of R2 is symmetric with respect to the horizontal axis.

The crux of the contribution of [26] was to prove that there exists α, B for which the worst-case
performance is no more than 5.644 (and a delicate refinement is needed to achieve 5.628). Notably, their
analysis is tedious and lengthy, whereas we can obtain the same result, relying again on numerical
calculations, with minimal effort. Then, [27] proposed variations of A0(α, B) in which each robot
performs more than 1 detours (see Phases 2,3 of A0(α, B)), giving rise to [28]. Hence, t-detour
algorithms are parameterized by a sequence α1, . . . , αt, where αi ≥ 0 and ∑i αi ≤ π, and points Bi in the
disk. Even 2-detour algorithms achieve worst-case performance 5.623, while for each t ≥ 2, t-detour
algorithms do induce strictly improved performance (for appropriate choices of the parameters) but
the improvement seems to be negligible.

Motivated by the results in [26,27], one is tempted to ask whether any algorithm in the family
A0(α, B) improves upon B1 with respect to the average-case analysis. The next claim is due to
exhaustive, computer-assisted numerical calculations, see also Figure 4.

Theorem 5. For every α ∈ [0, π) and for every B in the unit disk Avg (A0(α, B)) ≥ Avg (B1).

Theorem 5 provides strong motivation for studying problem 2EVACw
F2F, since it shows that in

order to establish good upper bounds, i.e., our main results depicted in Figure 1 and quantified
later in Theorem 7, one needs to employ new evacuation algorithms. Recall that even Wrs (B1) and
Wrs (A0(α, B)) were estimated with computer-assisted calculations. Due to the nature of the problem,
we are bound to rely on computer-assisted calculations as well. Notably, our much more intense
computational work is feasible only because we employ the new method for computing evacuation
times due to Corollary 1 and Definition 3 of A0(α, B) trajectories. Overall, to verify Theorem 5 we
compute pairs (Avg (A0(α, B)) , Wrs (A0(α, B))) for more than 500,000 different parameter values and
we depict them in Figure 4.

89

Information 2020, 11, 506

Figure 4. Performance analysis of A0(α, B) for various values of parameters α, B. Blue points
(a, w) correspond to (a, w)-efficient algorithms A0(α, B). The red point is (Avg (B1) , Wrs (B1)), i.e.,
the performance of B1 in the average-worst-case space. Please note that no algorithm A0 performs
better on average than B1, while all A0(t, cycle(t)) is exactly B1 for every point t ∈ [0, π]. Notably,
all points lie above the threshold of worst-case performance 5.625, and some are arbitrarily close to that
value (corresponding to choices of α, B that give the algorithm of [27]).

4. New Evacuation Algorithms

In this section, we propose families of evacuation algorithms for problem 2EVACw
F2F, for the entire

spectrum of w ∈ [Wrs (B1) , Wrs (B2)]. Our algorithms are summarized in Figure 5.

/

+ /
/

Algorithm

()/

++
()

/ ()/

/

/

Algorithm ,Algorithm

Figure 5. Robot Trajectories for algorithms A1, A2, A ′
2 . The depicted trajectories show the search of

the circle, and not the evacuation step that is performed once the exit is found. Arcs that are searched
by both robots are also searched simultaneously, i.e., robots are co-located and search together.

First we define families of evacuation algorithms that, as we show next, perform well for 2EVACw
F2F

in the “neighborhood of B1”, i.e., for w close to Wrs (B1). Our algorithms are parameterized by α,
and their circle exploration lasts 2π − α.

Definition 4 (Algorithm A1(α)). For all t ∈ [0, 2π − α], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle(−α − δα), t) δα

3 cycle(−α − δα − t) 2π − 2α − δα

where δa is defined in (2). The trajectory of R2 is defined as R2(t) = cycle(−t), for all t ∈ [0, 2π − α].

A1 is depicted in Figure 5 on the left. At a high level A1(α) is a modification of B1 that is based
on the following idea. The execution of A1(α) is the same as in B1 until each robot searches an arc of

90

Information 2020, 11, 506

length α (and hence A (π) coincides with B1). After time α, R1 abandons her trajectory and catches
R2, on the perimeter of the circle resembling a trajectory as if the exit was located at R1(α). It is not
difficult to see that the definition of δα above satisfies R1(α + δα) = R2(α + δα) = cycle(−α − δα).

Next we define a family of algorithms A2 which, as we show later, perform well in the
“neighborhood of B2”, i.e., for w close to Wrs (B2). For this recall definition (2) of δa. We let γ0 ≈ 2.2412
be the root of 2α + δα/2 = 2π. For every α ≤ γ0 we define a family of algorithms on parameter α

whose circle exploration lasts 2π − α.

Definition 5 (Algorithm A2(α)). For all t ∈ [0, 2π − α], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle(2α + δα/2), t) δα/2
3 cycle(2α + δα/2 + t) 2π − 2α − δα/2

The trajectory of R2 is defined as R2(t) = cycle(α + t), for all t ∈ [0, 2π − α].

A2 is depicted in the middle of Figure 5. The condition that α ≤ γ0 is added for simplicity to
ensure that the latest catching point occurs while the other robot is still searching, and is not mandatory.
At a high level A2(α) is a generalization of B2 (note that A2(0) = B2). For the first α time units, robots
search in the same direction until R1 arrives at the deployment point of R2. Then, R1 catches R2 on
the circle, as if the exit was located at R1(α) (which by Lemma 2 happens in δα/2 extra time).

Finally, we introduce a family of evacuation algorithms which will perform well for 2EVACw
F2F

for intermediate values of w ∈ [Wrs (B1) , Wrs (B2)]. For this we generalize family A2 so that the two
robots perform two alternating jumps, with parameters α, β satisfying 2α + 2β + δ(α+β)/2 + δβ/2 ≤ 2π,
see right of Figure 5.

Definition 6 (Algorithm A ′
2 (α, β)). For notational convenience, we set ζα,β := 2α + β + δ(α+β)/2. For all

t ∈ [0, 2π − α − β], the trajectories of R1, R2 are defined as follows

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle
(

ζα,β

)
, t) δ(α+β)/2

3 cycle
(

ζα,β + t
)

2π − 2α − β − δ(α+β)/2

R2 1 cycle(α + t) α + β + δ(α+β)/2

2 line(cycle
(

ζα,β

)
, cycle

(
ζα,β + δβ/2

)
, t) δβ/2

3 cycle
(

ζα,β + β + δβ/2 + t
)

2π − 2α − 2β − δ(α+β)/2 − δβ/2

Next we describe the meaning of parameters α, β of the Robot trajectories above. As in the family
of algorithms A2, parameter α represents the arc distance the two robots have before the one preceding
decides to jump ahead. In A2 the two robots meet again once the jumper reaches the perimeter of
the circle. In A ′

2 the jumper deploys a little further away on the circle so that when the other robot
reaches the deployment point of the jumper, the two robots are at arc distance β. As a result, the time it
takes both robots to complete searching the entire circle is 2π − α− β, as well as A2(α, 0) coincides with
A2(α). Finally, note that even though A ′

2 will be eventually invoked for seemingly restricted values of β

(β ≤ β0 ≈ 0.04388), the deviation in the performance will be significant enough (e.g., δβ0/2 ≈ 0.977997)
to account for its use in our upper bounds.

5. Worst-Case Performance Analysis

In this section, we perform worst-case analysis for all algorithmic families A1, A2, A ′
2 with respect

to their parameters. Notably, results in this section are quantified formally and exactly by closed

91

Information 2020, 11, 506

formulas. At a high level, each of A1, A2, A ′
2 will be invoked to solve 2EVACw

F2F for different values of
w ∈ [Wrs (B1) , Wrs (B2)], and each of them will have competitive average-case performance for the
corresponding worst-case performance w. As an easy warm-up, we analyze A1.

Lemma 4 (Worst-Case Analysis for A1). Let ᾱ = 1 + 2π − w1, where w1 = Wrs (B1). Then, for all
α ∈ [0, π], we have that

Wrs (A1(α)) =

{
1 + 2π − α , ∀α ∈ [0, ᾱ)

Wrs (B1) , ∀α ∈ [ᾱ, π]
.

Proof. First it is easy to show that the worst-case evacuation time is induced either when R1 finds the
exit while moving from cycle(0) to cycle(α), or while R1, R2 are exploring the circle together (after
having met). By Lemma 2, the cost in the first case would be

max
0≤x≤α

{1 + x + 2δx} =

{
1 + α + 2δα , if α ≤ α0

Wrs (B1) , otherwise

where the values of the piecewise function above follow from Lemma 3. In the other case, the worst
placement of exit is obtained using instances cycle(α + ε) for arbitrary small values of ε > 0 in which
case the evacuation cost becomes 1 + 2π − α.

Overall, is is easy to see that 1 + α0 + 2δα0 ≤ 1 + 2π − α0 showing that the dominant evacuation
cost when α ≤ ᾱ is 1 + 2π − α. For α > ᾱ the evacuation cost becomes equal to w1.

In a similar fashion, we can easily analyze A2.

Lemma 5 (Worst-Case Analysis for A2). For all α ≤ π − 2, we have Wrs (A2(α)) = 1 + 2π − α.

Proof. We distinguish three cases as to where the exit is. If x ∈ [0, α), then the worst instance cycle(x)
is when x = α − ε for arbitrarily small ε > 0, and the cost is 1 + α + 2δα/2. In the second case
x ∈ [α, 2α + δα/2) and it is not difficult to see that the worst-case induced cost in this case is not
more than that of the first case. Finally, in the third case x ∈ [2α + δα/2, 2π), and the two robots
move together, so the total cost, in the worst-case, is 1 + 2π − α, when x = 2π − ε for arbitrarily
small ε > 0. It is not difficult to see that the dominant case is actually the third one, and in fact
the two cases induce the same cost when π = α + δα/2. By the definition of δα/2 we know that

δα/2 = 2 sin
(

α+δα/2
2

)
= 2 sin (π/2) = 2. Hence, the costs become equal when α = π − 2.

Next, we analyze A ′
2 (α, β), which requires more technical arguments. For this we will invoke

A ′
2 only for special parameters, whose choice is motivated by the following observation pertaining

to the performance of A2 (whose generalization is A ′
2). From the proof of Lemma 5, it follows that

among all algorithms A2(α), where α ≤ γ0 (see discussion before Definition 5), the one with minimum
worst-case evacuation cost is A2(π − 2), and the cost becomes 3 + π. In fact, for all w ∈ [3 + π, 1 + 2π]

there are two different values of α for which Wrs (A2(α)) = w, and we restrict α ∈ [0, π − 2] so that
we obtain evacuation algorithms with minimum average-case cost. Moreover, α = π − 2 is the only
parameter for which Wrs (A2(α)) = 3 + π and as a byproduct, it is the algorithm in the family A2 that
minimizes the worst-case.

By Lemma 5 we know that as β → 0, the value of α that minimizes Wrs (A ′
2 (α, β)) approaches

π − 2. That value of α is what made the evacuation cost of A2(α) attain the same value in two different
(worst-case) exit placements. Motivated by this, and for values of β > 0 not too big, we still find the
optimal choices of α that minimize the worst-case performance.

Lemma 6 (Worst-Case Analysis for A ′
2). Let β0 = 0.0438855, and set αβ := π − β/2 − 2 cos (β/4).

Then for all β ∈ [0, β0] we have Wrs
(
A ′

2 (αβ, β)
)
= 1 + π − β/2 + 2 cos (β/4) .

92

Information 2020, 11, 506

Proof. Let w(β) = 1 + π − β/2 + 2 cos (β/4). First we show that w(β) is the worst-case performance
of A ′

2 (αβ, β) for two specific placements of the exit.
We proceed by describing evacuation cost C(x) assuming two arbitrary α, β for two different

instances cycle(x). Using Lemma 2, we see that

lim
ε→0+

C(α − ε) = 1 + lim
ε→0+

S(α − ε) + 2 lim
ε→0+

E(α − ε) = 1 + α + 2δα/2. (3)

Since the total search time is 2π − α − β, we also see that

lim
ε→0+

C(2π − ε) = 1 + 2π − α − β. (4)

Now we claim that (3), (4) are equal when α = αβ. Indeed, equating (3), (4) gives

a + δα/2 = π − β/2. (5)

However, then, using (2), we see that

δα/2 = 2 sin
(

α + δα/2

2

)
= 2 sin

(
π − β/2

2

)
= 2 cos (β/4) . (6)

Substituting (6) into (5), we see that the value of α for which (3), (4) are equal satisfies
α = π − β/2 − 2 cos (β/4), as promised. Substituting this special value of α = αβ either in (3) or
in (4) induces evacuation cost w(β) = 1 + π − β/2 + 2 cos (β/4).

Next we show that as long as β is not too big, w(β) is indeed the worst-case evacuation cost.
We consider the following cases x ∈ Ii, i = 1, . . . , 4 for possible instances cycle(x);

I1 :=[0, α),

I2 :=[α, 2α + β + δ(α+β)/2),

I3 :=[2α + β + δ(α+β)/2, 2α + 2β + δ(α+β)/2 + δβ/2),

I4 :=[2α + 2β + δ(α+β)/2 + δβ/2, 2π).

Clearly, (3), (4) demonstrate the worst-case evacuation costs for instances in I1, I4, respectively, and the
cost in both cases, for α = αβ is equal to w(β).

If x ∈ I2 then C(x) = 1 + S(x) + 2E(x). It is easy to see that both S(x), E(x) are monotone in I2,
so the worst-case evacuation in this case is

lim
ε→0+

C(2αβ + β + δ(αβ+β)/2 − ε) = 1 + αβ + β + δ(αβ+β)/2 + 2δβ/2. (7)

Denote δβ/2 satisfying (2) by δ′β. Using (2) and the definition of αβ, we see that

δ(αβ+β)/2 = 2 sin

(
αβ + β + δ(αβ+β)/2

2

)
= 2 cos

(
cos (β/4)− β/4 − δ(αβ+β)/2

)
.

For simplicity, we denote δ(αβ+β)/2 that satisfies the equation above by δ′′β . Then, continuing
from (7), the worst-case evacuation cost when x ∈ I2 becomes 1 + π + β/2 − 2 cos (β/4) + δ′′β + 2δ′β,
an expression that depends exclusively on β. The latter cost is no more than w(β) if and only if
4 cos (β/4) − β − δ′′β − 2δ′β ≥ 0, and numerically we verify that this is satisfied as long as β ≤ β0

(see also Figure 6).

93

Information 2020, 11, 506

0.02 0.04 0.06 0.08

0.5

1.0

1.5

2.0

2.5

Figure 6. The behavior of expression 4 cos (β/4)− β − δ′′β − 2δ′β, for β = 0, . . . , 0.8.

Finally, it is easy to verify that δβ/2 and |I4| are increasing and decreasing, respectively, for β ≤ β0,
and that δβ0/2 = 0.977997 ≤ 1.01099 = |I4| (for β = β0). As a result, the worst-case evacuation cost of
case x ∈ I3 cannot exceed that of case x ∈ I4, and hence the lemma follows.

It is important to note that the worst-case performance of A ′
2 (αβ, β) of Lemma 7 is decreasing in

β. Indeed, ∂
∂β Wrs

(
A ′

2 (αβ, β)
)
= 1

2 − 1
2 sin (β/4) < 0. For values of β close to 0, the derivative is nearly

a constant. This also explains why in Figure 1, the performance of algorithm A ′
2 seems to have nearly

invariant worst-case performance, which however is provably decreasing in β.

Lemma 7 (Worst-Case Analysis for A ′
2). Let β0 = 0.0438855, and set αβ := π − β/2 − 2 cos (β/4).

Then for all β ∈ [0, β0] we have Wrs
(
A ′

2 (αβ, β)
)
= 1 + π − β/2 + 2 cos (β/4) .

6. Average-Case Performance Analysis and the Efficient Frontier

In this section, we perform average-case analysis for all algorithmic families A1, A2, A ′
2 ,

with respect to their parameters. For the sake of exposition of our results, we set
w1 = Wrs (B1) ≈ 5.73906, w2 = Wrs (B2) = 1 + 2π ≈ 7.28319 and for β0 ≈ 0.04388, as in Lemma 7,
we set w0 := Wrs

(
A ′

2 (αβ0 , β0)
) ≈ 6.11953. We also recall ᾱ ≈ 1.54419 of Lemma 4. Finally, we set

v(α) := 1 + 2π − α

v2(β) := 1 + π − β/2 + 2 cos (β/4)

u1(α) := 0.00889α3 − 0.16944α2 + 0.71518α + 4.23089

u′
2(β) := 530.673β3 − 78.5498β2 + 7.36219β + 4.70493

u2(α) := 0.093056α2 + 0.346659α + 4.1719

Combined with our findings of Section 5, the main result of the current section is the following.

Theorem 6. For every w ∈ [w1, w2] there is algorithm A ∈ {A1, A ′
2 , A2} and unique parameter(s) p such

that Wrs (A (p)) = w. In particular,

- for all α ∈ [1, ᾱ], A1(α) is (u1(α), v(α))-efficient, and v([1, ᾱ]) = [w1, 2π],
- for all β ∈ [0, β0], A ′

2 (αβ, β) is (u′
2(β), v2(β))-efficient, and v2([0, β0]) = [w0, 3 + π],

- for all α ∈ [0, π − 2], A2(α) is (u2(α), v(α))-efficient, and v([0, π − 2]) = [3 + π, w2].

Proof. The claims for the worst-case performances of A1, A ′
2 , A2 follow directly from Lemmata 4, 7

and 5, respectively. Next we argue that as the parameters vary in their specified range, we obtain the
entire spectrum of w ∈ [w1, w2], and this for unique values of the parameters. For this, we will rely on
that for all evacuation algorithm families, the worst-case cost is monotone in the parameters.

94

Information 2020, 11, 506

First, we argue about A1. We observe that by the definition of ᾱ, Wrs (A1(ᾱ)) = w1,
and Wrs (A1(1)) = 1 + 2π − 1 = 2π. Together with the fact that v(α) is strictly decreasing, we see that
Wrs (A1(α)) is 1-1 and onto to [w1, 2π] as α ranges in [1, ᾱ].

Second, we study A ′
2 whose worst-case cost v2(β) is strictly decreasing in β. Moreover,

by definition of β0, we have Wrs
(
A2(αβ0 , β0)

)
= w0. Then we note that for β = 0, A2(αβ, β)

coincides with A2(π − 2), and in particular the induced worst-case cost becomes 3 + π. Therefore
Wrs

(
A ′

2 (αβ, β)
)

is 1-1 and onto to [w0, 3 + π] as β ranges in [0, β0].
Third, we study A2, for which we know that Wrs (A2(π − 2)) = 3 + π. Again, the worst-case

cost is monotone in α and A2(0) coincides with benchmark algorithm B2, which is Wrs (A2(0)) = w2.
Hence, Wrs (A2(α)) is 1-1 and onto to [3 + π, w2] as α ranges in [0, π − 2].

Finally, we argue that

Avg (A1(α)) ≤ u1(α), ∀α ∈ [1, ᾱ]

Avg
(
A ′

2 (αβ, β)
) ≤ u′

2(β), ∀β ∈ [0, β0]

Avg (A2(α)) ≤ u2(α), ∀α ∈ [0, π − 2]

For this, we numerically compute Avg (A1(α)) , Avg
(
A ′

2 (αβ, β)
)

, Avg (A2(α)) for various values
of parameters α, β, and we heuristically choose u1, u′

2, u2 so as to upper bound the average-case
performance of A1, A ′

2 , A2, effectively verifying our claim numerically. For each evacuation algorithm,
we use Corollary 1, which together with the analytic description of our evacuation algorithms
(see Definitions 4, 6, and 5) allow us to compute their average-case performance using
computer-assisted calculations. Our numerical calculations are depicted in Figure 7.

1.0 1.1 1.2 1.3 1.4 1.5

0.002105

0.002110

0.002115

0.002120

0.002125

0.002130

0.002135

0.01 0.02 0.03 0.04

0.002

0.004

0.006

0.008

0.0 0.2 0.4 0.6 0.8 5.0

0.001

0.050

0.051

Figure 7. On the right u1(α)− Avg (A1(α)), for α′ ≤ α ≤ ᾱ. In the middle, u′
2(β)− Avg

(
A ′

2 (αβ, β)
)

,

for 0 ≤ β ≤ β0. On the right u2(α)− Avg (A2(α)), for 0 ≤ α ≤ π − 2.

Finally, we aim to formally quantify the efficient frontier of our algorithms as depicted in Figure 1
(see Section 2.1). The parametric curves described in Theorem 6 provide, strictly speaking, an upper
bound for the parametric curve of Figure 1. Next, we compute g : R �→ R, so that the parametric
curves of Theorem 6 are written in the form {(g(w), w)}w∈[w1,w2]

. That would also imply that there is
a solution to 2EVACw

F2F of cost at most g(w).
In that direction, we study each evacuation algorithm family A (p) with worst-case performance,

say, v(p), and average-case upper bound, say, u(p). For each w ∈ [w1, w2] in the range of A (p), we set
p = v−1(w) so that the average-case performance achieved becomes u(v−1(w)).

Recall that Wrs (Ai(α)) = v(α), so that v−1(w) = 1+ 2π − w, and hence for algorithms Ai we can
easily compute ui(v−1(w)), i = 1, 2. For A ′

2 we recall that Avg
(
A ′

2 (αβ, β)
)

is decreasing in β. Since v−1
2

does not admit a closed form, we need to observe that 2.999 + π − β/2 ≤ v2(β) ≤ 3 + π − β/2 for all
β ∈ [0, β0] so that an upper bound for Avg

(
A ′

2 (αβ, β)
)

admitting worst-case performance w can be
computed by u′

2(12.2812 − 2w).
Now for each w ∈ [w1, w2] we need to specify which of the evacuation algorithms we will invoke.

Please note that in Theorem 6 we chose the range of α in A1 to start from 1 so that as to guarantee that
Wrs (A1(1)) ≥ w0. We note that u′

2(12.2812 − 2w) = u1(1 + 2π − w) for w′ ≈ 6.12851, so algorithm
A1 should be invoked for w ∈ [w1, w′] (and w′ is obtained for α′ := 1 + 2π − w′ ≈ 1.15468), then A ′

2

95

Information 2020, 11, 506

for w ∈ [w′, 3 + π] (and w′ is obtained for β′ so that v2(β′) = w′, where β′ ≈ 0.0241653), and A2 for
w ∈ [3 + π, w2]. We conclude with the next Theorem (for convenience, the values of all constants are
summarized at the end of Section 2.3).

Theorem 7. For every w ∈ [w1, w2], the optimal solution to 2EVACw
F2F is at most g(w), where

g(w) =

⎧⎪⎨
⎪⎩

−0.00889w3 + 0.0248026w2 + 0.338241w + 3.88629 , w ∈ [w1, w′] (A1(α), α ∈ [α′, ᾱ])

−4245.38w3 + 77893.3w2 − 476397.w + 971235 , w ∈ [w′, 3 + π] (A2(αβ, β), β ∈ [0, β′])
0.093056w2 − 1.70215w + 11.6328 , w ∈ [3 + π, w2] (A2(α), α ∈ [0, π − 2])

7. Conclusions and Open Problems

We offered a new perspective to the well-studied problem of evacuating two robots from
the disk, in the face-to-face model, first introduced in [1]. A series of results pertaining especially
to the same domain have focused exclusively on deterministic algorithms and their worst-case
(competitive) analyses. Our work can be understood as a first attempt to study the same problem
in the realm of randomized algorithms. More specifically, in light of known positive results for
the problem, we asked the question of minimizing the average-case performance of an evacuation
algorithm, condition on that the worst-case performance remains bounded. We allowed that latter
bound to range between the best known guarantee of a simple yet efficient evacuation algorithm (that
was introduced in [1]) and that of a naive algorithm that simulates the optimal solution of one searcher.
Our main contribution is the introduction of three new evacuation algorithms that perform well for
different values of the worst-case bound, inducing a continuous bound of the efficient (pareto) frontier
for the underlying multi-objective optimization problem (that of minimizing both the worst and the
average-case performance). We also motivated our results by verifying, somehow surprisingly, that
among the family of algorithms introduced in [27], which gave the second subsequent improvement
of the worst-case performance, none of them could improve the average-case performance of the
simple algorithm presented in [1]. In that sense our new algorithms outperform the best algorithms
known for the problem, but in the new multi-objective setting. Our findings give rise to several
open questions and directions that aim to better understand 2EVACw

F2F as well as multi-objective
optimization search-type problems.

Open questions specific to our problem 2EVACw
F2F are:

- Prove lower bounds for 2EVACw
F2F, for any w. Is any of our algorithms, for any w optimal?

- For the value w = Wrs (B1), we designed algorithm A1(α) for 2EVACw
F2Fwhich for a proper value

of a has worst-case performance exactly w, while its average-case performance is strictly less
than Avg (B1). Is it feasible to attain worst-case performance strictly less than w, while having
average-case performance at most Avg (B1)?

- The bound to the efficient (pareto) frontier we derived for problem 2EVACw
F2F is indeed continuous,

with respect to parameter w, but not differentiable. Is the optimal pareto frontier smooth, or is
there any other family of algorithms that improves upon our results and gives a smooth transition
between families of evacuation algorithms?

- The algorithmic families we derived for 2EVACw
F2F exhibit the following property. A2 is a natural

extension to B2. Similarly, A ′
2 is a natural extension to A2. Finally, A1 is a natural extension to B1.

However, A1 and A ′
2 have different behavior (there are no values of their parameters that induce

the same evacuation protocol), even though for a proper choice of their parameters, they induce
algorithms with the same worst-case and average-case performance.

- Observe that the average-case performance of B2 is 1 + π. All our evacuation algorithms induce
average cost at least 1 + π. We conjecture that even in the wireless model, as well as for any
number of robots, 1 + π is tight lower bound for the average performance of evacuation algorithm.

96

Information 2020, 11, 506

We conclude with some future directions that are inspired by our work and pertain to more
general problems:

- Our algorithms can also be interpreted as randomized algorithms that have access to infinitely
many bits (or enough many bits, in order to simulate a uniformly random deployment point on
the circle). What if the algorithm has access only to a limited number of random bits?

- To the best of our knowledge, the current paper is the first attempt to study multi-objective
optimization search-type problems. It was followed by [48,49] who considered time energy
trade-offs for a search problems on the line. This line of research admits many future
directions based on any combination of multiple objectives, e.g., worst-case, average-case and
competitive cost, time, energy and any other efficiency measure, or even trade-offs involving
number of faults or even complexity resources, e.g., memory, communication or randomness.

Author Contributions: Investigation, H.C. and P.S.; Supervision, K.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The second author and this research was supported in part by NSERC Discovery Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Czyzowicz, J.; Gasieniec, L.; Gorry, T.; Kranakis, E.; Martin, R.; Pajak, D. Evacuating Robots via Unknown
Exit in a Disk. In Proceedings of the DISC, Austin, TX, USA, 12–15 October 2014; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 122–136.

2. Beck, A. On the linear search problem. Isr. J. Math. 1964, 2, 221–228. [CrossRef]
3. Bellman, R. An optimal search. SIAM Rev. 1963, 5, 274–274. [CrossRef]
4. Dobbie, J. A survey of search theory. Oper. Res. 1968, 16, 525–537. [CrossRef]
5. Benkoski, S.; Monticino, M.; Weisinger, J. A survey of the search theory literature. Nav. Res. Logist. (NRL)

1991, 38, 469–494. [CrossRef]
6. Stone, L. Theory of Optimal Search; Academic Press: New York, NY, USA, 1975.
7. Ahlswede, R.; Wegener, I. Search Problems; Wiley-Interscience: New York, NY, USA, 1987.
8. Alpern, S.; Gal, S. The Theory of Search Games and Rendezvous; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 2002; Volume 55.
9. Alpern, S.; Fokkink, R.; Gasieniec, L.; Lindelauf, R.; Subrahmanian, V. (Eds.) Ten Open Problems in

Rendezvous Search. In Search Theory: A Game Theoretic Perspective; Springer: New York, NY, USA, 2013;
pp. 223–230.

10. Albers, S.; Henzinger, M.R. Exploring unknown environments. SIAM J. Comput. 2000, 29, 1164–1188.
[CrossRef]

11. Albers, S.; Kursawe, K.; Schuierer, S. Exploring unknown environments with obstacles. Algorithmica 2002,
32, 123–143. [CrossRef]

12. Deng, X.; Kameda, T.; Papadimitriou, C. How to learn an unknown environment. In Proceedings of the
32nd Annual Symposium of Foundations of Computer Science, San Juan, Puerto Rico, 1–4 October 1991;
pp. 298–303.

13. Hoffmann, F.; Icking, C.; Klein, R.; Kriegel, K. The polygon exploration problem. SIAM J. Comput. 2001,
31, 577–600. [CrossRef]

14. Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans. Robot.
2005, 21, 376–386. [CrossRef]

15. Thrun, S. A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 2001,
20, 335–363. [CrossRef]

16. Yamauchi, B. Frontier-based exploration using multiple robots. In Proceedings of the Second International
Conference on Autonomous Agents, Minneapolis, MI, USA, 9–13 May 1998; ACM: New York, NY, USA,
1998; pp. 47–53.

17. Kleinberg, J. On-line search in a simple polygon. In Proceedings of the SODA, Arlington, VA, USA,
23–25 January 1994; p. 8.

97

Information 2020, 11, 506

18. Mitchell, J.S. Geometric shortest paths and network optimization. Handb. Comput. Geom. 2000, 334, 633–702.
19. Papadimitriou, C.H.; Yannakakis, M. Shortest paths without a map. In ICALP; Springer: Berlin/Heidelberg,

Germany, 1989; pp. 610–620.
20. Chung, T.H.; Hollinger, G.A.; Isler, V. Search and pursuit-evasion in mobile robotics. Auton. Robot. 2011,

31, 299–316.
21. Fomin, F.V.; Thilikos, D.M. An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci.

2008, 399, 236–245.
22. Lidbetter, T. Hide-and-Seek and other Search Games. Ph.D. Thesis, The London School of Ecoomics and

Political Science (LSE), London, UK, 2013.
23. Nahin, P. Chases and Escapes: The Mathematics of Pursuit and Evasion; Princeton University Press: Princeton,

NJ, USA, 2012.
24. Baumann, N.; Skutella, M. Earliest arrival flows with multiple sources. Math. Oper. Res. 2009, 34, 499–512.
25. Fekete, S.; Gray, C.; Kröller, A. Evacuation of rectilinear polygons. In Combinatorial Optimization and

Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–30.
26. Czyzowicz, J.; Georgiou, K.; Kranakis, E.; Narayanan, L.; Opatrny, J.; Vogtenhuber, B. Evacuating Robots from

a Disc Using Face to Face Communication. In Proceedings of the CIAC 2015, Paris, France, 20–22 May 2015;
Springer: Berlin/Heidelberg, Germany, 2015.

27. Brandt, S.; Laufenberg, F.; Lv, Y.; Stolz, D.; Wattenhofer, R. Collaboration without Communication:
Evacuating Two Robots from a Disk. In Proceedings of the Algorithms and Complexity—10th International
Conference, CIAC, Athens, Greece, 24–26 May 2017; pp. 104–115.

28. Disser, Y.; Schmitt, S. Evacuating two robots from a disk: A second cut. In International Colloquium on
Structural Information and Communication Complexity; Lecture Notes in Computer Science; Censor-Hillel, K.,
Flammini, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11639, pp. 200–214.

29. Czyzowicz, J.; Dobrev, S.; Georgiou, K.; Kranakis, E.; MacQuarrie, F. Evacuating two robots from multiple
unknown exits in a circle. Theor. Comput. Sci. 2018, 709, 20–30.

30. Pattanayak, D.; Ramesh, H.; Mandal, P.S.; Schmid, S. Evacuating Two Robots from Two Unknown Exits on
the Perimeter of a Disk with Wireless Communication. In Proceedings of the 19th International Conference
on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018; Bellavista, P.,
Garg, V.K., Eds.; ACM: New York, NY, USA, 2018; pp. 20:1–20:4.

31. Chuangpishit, H.; Mehrabi, S.; Narayanan, L.; Opatrny, J. Evacuating equilateral triangles and squares in the
face-to-face model. Comput. Geom. 2020, 89, 101624.

32. Czyzowicz, J.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S. Wireless Autonomous
Robot Evacuation from Equilateral Triangles and Squares. In Proceedings of Ad-hoc, Mobile, and Wireless
Networks, ADHOC-NOW, Athens, Greece, 29 June–1 July 2015; pp. 181–194.

33. Brandt, S.; Foerster, K.T.; Richner, B.; Wattenhofer, R. Wireless evacuation on m rays with k searchers.
Theor. Comput. Sci. 2020, 811, 56–69.

34. Angelopoulos, S.; Dürr, C.; Lidbetter, T. The expanding search ratio of a graph. Discret. Appl. Math. 2019,
260, 51–65.

35. Borowiecki, P.; Das, D.; Dereniowski, D.; Kuszner, L. Distributed Evacuation in Graphs with Multiple Exits.
In Structural Information and Communication Complexity, Proceedings of the 23rd International Colloquium,
SIROCCO 2016, Helsinki, Finland, 19–21 July 2016; Revised Selected Papers, Lecture Notes in Computer
Science; Suomela, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9988, pp. 228–241.

36. Chrobak, M.; Gasieniec, L.T.G.; Martin, R. Group Search on the Line. In SOFSEM 2015; Springer:
Berlin/Heidelberg, Germany, 2015.

37. Georgiou, K.; Lucier, J. Weighted Group Search on a Line. In Proceedings of the 16th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS, Pisa, Italy,
7–11 September 2020.

38. Baeza Yates, R.; Culberson, J.; Rawlins, G. Searching in the plane. Inf. Comput. 1993, 106, 234–252.
39. Czyzowicz, J.; Georgiou, K.; Godon, M.; Kranakis, E.; Krizanc, D.; Rytter, W.; Włodarczyk, M. Evacuation

from a disc in the presence of a faulty robot. In International Colloquium on Structural Information and
Communication Complexity; Springer: Berlin/Heidelberg, Germany, 2017; pp. 158–173.

98

Information 2020, 11, 506

40. Georgiou, K.; Kranakis, E.; Leonardos, N.; Pagourtzis, A.; Papaioannou, I. Optimal Cycle Search Despite the
Presence of Faulty Robots. In Algorithms for Sensor Systems, Proceedings of the 15th International Symposium
on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2019, Munich, Germany, 12–13
September 2019; Revised Selected Papers, Lecture Notes in Computer Science; Dressler, F., Scheideler, C., Eds.;
Springer: Berlin/Heidelberg, Germany, 2019; Volume 11931, pp. 192–205.

41. Pattanayak, D.; Ramesh, H.; Mandal, P.S. Chauffeuring a Crashed Robot from a Disk. In Algorithms for
Sensor Systems, Proceedings of the 15th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks, ALGOSENSORS 2019, Munich, Germany, 12–13 September 2019; Revised Selected Papers, Lecture
Notes in Computer Science; Dressler, F., Scheideler, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 11931, pp. 177–191.

42. Bonato, A.; Georgiou, K.; MacRury, C.; Pralat, P. Probabilistically Faulty Searching on a Half-Line.
In Proceedings of the 14th Latin American Theoretical Informatics Sumposium, University of Sao Paulo,
Sao Paulo, Brazil, 25–29 May 2020.

43. Georgiou, K.; Kranakis, E.; Steau, A. Searching with Advice: Robot Fence-Jumping. J. Inf. Process. 2017,
25, 559–571.

44. Czyzowicz, J.; Georgiou, K.; Killick, R.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S.
Priority Evacuation from a Disk: The case of n ≥ 4. Theor. Comput. Sci. 2020, accepted.

45. Czyzowicz, J.; Georgiou, K.; Killick, R.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S.M.
Priority evacuation from a disk: The case of n = 1, 2, 3. Theor. Comput. Sci. 2020, 806, 595–616. [CrossRef]

46. Georgiou, K.; Karakostas, G.; Kranakis, E. Search-and-Fetch with One Robot on a Disk—(Track: Wireless and
Geometry). In Algorithms for Sensor Systems, Proceedings of the 12th International Symposium on Algorithms and
Experiments for Wireless Sensor Networks, ALGOSENSORS 2016, Aarhus, Denmark, 25–26 August 2016; Revised
Selected Papers; Springer: Berlin/Heidelberg, Germany, 2016; pp. 80–94.

47. Georgiou, K.; Karakostas, G.; Kranakis, E. Search-and-Fetch with 2 Robots on a Disk: Wireless and
Face-to-Face Communication Models. Discret. Math. Theor. Comput. Sci. 2019, 21. [CrossRef]

48. Czyzowicz, J.; Georgiou, K.; Killick, R.; Kranakis, E.; Krizanc, D.; Lafond, M.; Narayanan, L.; Opatrny, J.;
Shende, S. Energy Consumption of Group Search on a Line. In Leibniz International Proceedings in Informatics
(LIPIcs), Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), Patras, Greece, 8–12 July 2019; Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S., Eds.; Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2019; Volume 132, pp. 137:1–137:15.
[CrossRef]

49. Kranakis, E.J.; Krizanc, D.K.; Georgiou, M.L.; Killick, R.; Narayanan, L.; Opatrny, J.; Shende, S. Time-Energy
Tradeoffs for Evacuation by Two Robots in the Wireless Model. In Structural Information and Communication
Complexity, Proceedings of the 26th International Colloquium, SIROCCO 2019, L’Aquila, Italy, 1–4 July 2019;
Lecture Notes in Computer Science; Censor-Hillel, K., Flammini, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11639, pp. 185–199.

50. Lamprou, I.; Martin, R.; Schewe, S. Fast two-robot disk evacuation with wireless communication.
In Proceedings of the DISC, Paris, France, 27–29 September 2016; pp. 1–15.

51. Czyzowicz, J.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.; Shende, S.M. Linear Search with
Terrain-Dependent Speeds. In Algorithms and Complexity, Proceedings of the 10th International Conference,
CIAC 2017, Athens, Greece, 24–26 May 2017; Lecture Notes in Computer Science; Fotakis, D., Pagourtzis, A.,
Paschos, V.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10236, pp. 430–441.

52. Czyzowicz, J.; Georgiou, K.; Kranakis, E. Group Search and Evacuation. In Distributed Computing by Mobile
Entities; Current Research in Moving and Computing; Flocchini, P., Prencipe, G., Santoro, N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2019; Chapter 14, pp. 335–370.

53. López-Ortiz, A.; Sweet, G. Parallel searching on a lattice. In Proceedings of the CCCG, 13–15 August 2001;
pp. 125–128.

54. Emek, Y.; Langner, T.; Uitto, J.; Wattenhofer, R. Solving the ANTS Problem with Asynchronous Finite
State Machines. In Automata, Languages, and Programming, Proceedings of the 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, 8–11 July 2014; Lecture Notes in Computer Science, Part II; Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8573,
pp. 471–482.

99

Information 2020, 11, 506

55. Lenzen, C.; Lynch, N.; Newport, C.; Radeva, T. Trade-offs Between Selection Complexity and Performance
when Searching the Plane Without Communication. In ACM Symposium on Principles of Distributed Computing,
Proceedings of the PODC ’14, Paris, France, 15–18 July 2014; HalldÃ3rsson, M.M., Dolev, S., Eds.; ACM:
New York, NY, USA, 2014; pp. 252–261.

56. Acharjee, S.; Georgiou, K.; Kundu, S.; Srinivasan, A. Lower Bounds for Shoreline Searching With 2 or
More Robots. In Proceedings of the 23rd International Conference on Principles of Distributed Systems
(OPODIS’19), Neuchâtel, Switzerland, 17–19 December 2019; Felber, P., Friedman, R., Gilbert, S., Miller,
A., Eds.; Schloss Dagstuhl—Leibniz-Zentrum fur Informatik: Dagstuhl, Germany, 2019; Volume 153, pp.
26:1–26:11.

57. Dobrev, S.; Kralovic, R.; Pardubska, D. Improved Lower Bounds for Shoreline Search. In Structural
Information and Communication Complexity, Proceedings of the 27th International Colloquium, SIROCCO 2020,
Paderborn, Germany, 29 June–1 July 2020; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2020.

58. Miettinen, K. Nonlinear multiobjective optimization. In International Series in Operations Research and
Management Science; Kluwer: Dordrecht, The Netherlands, 1998; Volume 12, pp. 1–298.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

100

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Information Editorial Office
E-mail: information@mdpi.com

www.mdpi.com/journal/information

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-2843-4

	Distributed cover.pdf
	Distributed Systems and Mobile Computing.pdf
	Distributed cover
	空白页面

