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Alzheimer’s disease is a complex and multifactorial condition regulated by both
genetics and lifestyle, which ultimately results in the accumulation of β-amyloid (Aβ) and
tau proteins in the brain, loss of gray matter, and neuronal death. This Special Issue, entitled
“Genetics of Alzheimer’s Disease,” focuses on genetic contributions to this debilitating
disease that may lead to better targeted therapeutics and diagnostics. This issue contains
six original research articles and two review papers that further our collective knowledge
of Alzheimer’s disease etiology and genetic risk factors underlying the disease.

Ibanez, Cruchaga [1] present a snapshot of current work in Alzheimer’s disease genet-
ics by contextualizing recent advances targeting immune responses from CD33 and TREM2
with more contemporary approaches investigating the amyloid cascade hypothesis. They
conclude that the molecular mechanisms modulating Alzheimer’s disease pathogenesis
should be considered broadly, and identifying additional genetic predisposition variants
may lead to better treatment through early prediction and diagnosis. Shaw, Katsumata [2]
found that limitations inherent with stringent multiple testing correction may mask the
ability to detect Alzheimer’s disease risk from complex copy number variations and genes
with coupled expression within immunomodulatory tyrosine-phosphorylated inhibitory
motifs (ITIMs) or activation motifs (ITAMs). They show that protein quantitative trait loci
associate with Alzheimer’s disease more frequently for genes encoding ITIM/ITAM family
members than non-ITIM/ITAM genes. Additionally, mitochondrial dysfunction may play
a role in Alzheimer’s disease, and differential transcription of the Translocase of Outer
Mitochondria Membrane 40 (TOMM40) gene is associated with Alzheimer’s disease in
postmortem brains [3].

Data mining is often used to identify novel disease-associated genetic risk factors for
Alzheimer’s disease. Huckvale, Hodgman [4] describe challenges with data mining on data
from the Alzheimer’s Disease Neuroimaging Initiative that may cause issues with various
machine learning algorithms. They describe significant feature correlation, where >90% of
all biomarkers are significantly correlated with at least one other biomarker in that dataset.
They recommend removing highly correlated features before performing large-scale data
analyses. Carpanini, Harwood [5] performed a targeted analysis of Alzheimer’s disease-
associated genes within the complement system in the IGAP dataset, and they confirmed
genetic associations for both CLU and CR1, but C1S was not significantly associated with
Alzheimer’s disease. They conclude that larger genome-wide association datasets and
long-read sequencing technologies may help better characterize the complement system
genetic landscape and its role in Alzheimer’s disease risk.

Peripheral blood biomarkers offer a promising, non-intrusive mechanism for early
Alzheimer’s disease diagnosis. Garofalo, Pandini [6] explore how non-coding RNA
molecules longer than 200 nucleotides are differentially expressed in peripheral tissue
of Alzheimer’s disease patients and may lead to noninvasive confirmatory targets or prog-
nostic biomarkers. Specifically, plasma BACE1-AS levels are differentially expressed in
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the pre-symptomatic phase, indicating long non-coding RNA molecules may be a viable
pre-symptomatic diagnostic target. Patel, Zhang [7] demonstrate that rare genetic variants
significantly impact gene expression and gene co-expression in Alzheimer’s disease, indi-
cating that set-based gene analyses are necessary to fully capture gene dynamics related
to disease progression. Those pathway-level analyses confirmed substantial immune and
inflammatory expression quantitative trait loci associated with Alzheimer’s disease, as
suggested in the review published in this Special Issue [1]. An association between immune
markers and Alzheimer’s disease is also proposed by van der Linden, De Witte [8], who
drew a correlation between levels of blood cytokines and growth factors and Alzheimer’s
disease genetic risk factors. They found that eight immune markers (three growth factors
and five cytokines) were downregulated by Alzheimer’s disease genetic risk factors, while
seven immune markers (five growth factors and three cytokines) were upregulated in the
blood when Alzheimer’s disease genetic risk factors were present.

The articles included in this Special Issue cover a range of topics and provide compre-
hensive insights to direct future Alzheimer’s disease genetics research. The growing num-
ber of pathways, genes, proteins, and molecules that appear to be involved in Alzheimer’s
disease is of special interest, which highlights the importance of analyzing Alzheimer’s
disease as a systemic disease and not just a neurological disorder. Findings in the blood
may serve as not only potential biomarkers or potential drug targets, but also help decipher
the pathobiology of the disease. We anticipate that this Special Issue will help researchers
search for additional genetic associations that will help refine our understanding of the
etiology of this complex disease.
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Abstract: Alzheimer’s disease (AD) has become a common disease of the elderly for which no cure
currently exists. After over 30 years of intensive research, we have gained extensive knowledge of
the genetic and molecular factors involved and their interplay in disease. These findings suggest
that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant
cases differently from sporadic cases, but we could be observing different underlying pathological
mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent
pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these
scenarios, which are highly interconnected but can also point to the different subgroups of AD. The
identification of the pathologic triggers and order of events in the disease processes are key to the
design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a
single approach; different therapeutic strategies at specific disease stages may be appropriate. For
successful prevention and treatment, biomarker assays must be designed so that patients can be more
accurately monitored at specific points during the course of the disease and potential treatment. In
addition, to advance the development of therapeutic drugs, models that better mimic the complexity
of the human brain are needed; there have been several advances in this arena. Here, we review
significant, recent developments in genetics, omics, and molecular studies that have contributed to
the understanding of this disease. We also discuss the implications that these contributions have
on medicine.

Keywords: Alzheimer Disease; amyloidβ; tau; APOE; TREM2; neuroinflammation; OMICS; biomark-
ers; therapeutics

1. Introduction

Ever since Alois Alzheimer provided the first clinical and pathological description
of this disease in 1901, we have learned that Alzheimer’s disease (AD) is a complex and
multifactorial condition in which the interplay of both genetic (65%) and lifestyle (35%)
factors [1] is involved in the accumulation of protein aggregates of β-amyloid (Aβ) and
tau in the brain that ultimately causes neuronal death and loss of gray matter. AD has
had an estimated cost to the United States healthcare system of USD 290 billion. Disease
prevalence is expected to grow from 5.8 million in 2019 to 14 million by 2050 [2]; hence,
extensive international research efforts have been devoted to deciphering the causes of
disease and developing therapeutics that may alter the course of the disease. Results have
been elusive for several reasons.

There are three main etiological categories in AD: autosomal dominant AD (ADAD),
early onset AD (EOAD), and late-onset AD (LOAD). Mutations in one of the three genes
with Mendelian inheritance that cause disease (amyloid precursor protein (APP) and
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presenilin 1 and 2 (PSEN1, PSEN2)) are normally present in the ADAD form, with early
onset (before 65 years old) and rapid progression. This form is fairly rare, about 1% of cases,
but it has been instrumental for our initial understanding of the pathology of the disease,
the development of animal models, and the design of the first therapeutic treatments. APP,
PSEN1, and PSEN2 are members of the same Aβ processing pathway. The identification of
specific mutations directly related to the main pathological hallmark of AD, extracellular
aggregates of Aβ plaques, led to great advances in our understanding of the disease and to
the formulation of the amyloid cascade hypothesis [3]. The amyloid cascade hypothesis
states that a malfunction in the system causes an accumulation of Aβ in the brain that
triggers a cascade of events, ultimately resulting in cell death.

The remaining 99% of cases are largely classified into EOAD (~5%) or LOAD (~95%)
according to the age of disease onset, with a threshold arbitrarily established at 65 years
old. In addition, these can also be further categorized into sporadic AD (sAD) or familial
AD (fAD), depending on the incidence of cases within families. Unless specified, for the
remainder of the text, we will refer to the non-ADAD forms (EOAD, LOAD, sAD, and
fAD) as AD. The non-ADAD forms present a more complex genetic architecture, with
associations to over 29 genetic loci identified to date [4–7]. The loci identified through
genetic studies have suggested alternative pathways beyond those involved in Aβ accu-
mulation, such as tau aggregation, lipid metabolism, the innate immune response, and
endosomal vesicle recycling. It is not clear whether any of these pathways have a greater
role than the others. On top of this complexity, microglia are active players in the clearance
of Aβ plaques whose activation seems to be regulated by APOE; yet, hyper activation of
microglia is detrimental [8,9] (Figure 1).

This complexity raises questions for the “one-size-fits-all” approach. Critics of the
amyloid cascade hypothesis have stated that the failure of Aβ-targeted drugs is partly due
to the fact that ADAD may be different from AD. As such, a plethora of potential drug
targets have been envisioned, but most have been unsuccessful for various reasons. First,
it is unclear how and when the implicated genes and pathways interact and if they are
“active” in all individuals. Second, a definitive diagnosis of AD cannot be made without
confirmation by autopsy, so physicians and scientists have to rely on biomarkers (e.g., mea-
suring Aβ, tau, or p-tau in cerebrospinal fluid (CSF) or plasma, or Aβ deposition in the
brain using positron emission tomography (PET) imaging) to make diagnoses as accurate
as possible. However, these methods are either not fully implemented (plasma), invasive
(lumbar puncture for CSF), or expensive (CSF and imaging), which limits their generalized
use in screening of trial participants. These diagnostic challenges lead to a “contamination”
of clinical trials with non-AD cases, mostly with misdiagnosed frontotemporal dementia
(FTD) cases [10] and clinically diagnosed cases that were amyloid-negative by Pittsburgh
compound B (PIB) imaging or CSF ELISA (around 30% are amyloid-negative) [11]. Another
major problem is that pathological changes that underlie brain degeneration and cognitive
loss begin at least 10 to 20 years before dementia onset [12,13]. Most clinical trials so far
have focused on individuals with clinical symptoms, in which the neurodegeneration may
be too advanced for any therapeutic to reverse or stop deterioration [14]. Accordingly,
current clinical trials are trying to include mild cognitive impairment (MCI) cases, defined
as a transitional state between normal aging and dementia, although not all MCI patients
convert to AD. Hence, a critical goal of biomedical research is to identify biomarkers of AD
for these preclinical stages allowing for early diagnosis and intervention.

6



Genes 2021, 12, 1247
Genes 2021, 12, x FOR PEER REVIEW 3 of 25 
 

 
Figure 1. Schematic representation of the molecular interplay between neurons, astrocytes, microglia, and vasculature 
system in Alzheimer’s disease. Neurons produce the transmembrane amyloid precursor protein (APP). APP is cleaved by 
γ (γs) and β secretase (βs) into amyloid β (Aβ) units of different length aggregates extracellularly into plaques. Oligomeric 
Aβ promotes the generation of ROS that triggers the release of endothelin-1, causing perycite constriction, which decreases 
brain blood flow. Soluble Aβ blocks the reuptake of synaptically released glutamate by either N-methyl-D-aspartate re-
ceptor (NMDA) or by excitatory amino acid transporter (EAAT) receptors causing glutamate accumulation perisynapti-
cally (excitotoxicity), which increases depolarization and promotes hyperactivity. In microglia, Aβ binds to the toll-like 
receptor 4 (TLR4), which causes translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) from the cytosol to the nucleus, where it increases the transcription of NLRP3 and pro-IL-1β. In the cytoplasm, via 
activated caspase-1, the inflammasome promotes the maturation of IL-1β. Amyloid plaques stimulate the activation of 
p38MAPK (p38) in microglia, astrocyte, and neuron. In microglia, p38 activation results in upregulation of proinflamma-
tory cytokines, interleukin 1β (IL-1β) and tumor necrosis factor α (TNFα); IL-1β in turns activates p38 in astrocytes and 
neurons. In astrocytes, p38 activation causes increased expression of TNFα and nitric oxide (NO) and excitotoxicity. In 
neurons, p38 activation results in tau phosphorylation (Tau → p-Tau) and microtubule disassembly. APOE is mostly gen-
erated by astrocytes; free APOE can facilitate Aβ blood bran barrier (BBB) transit, but it can also accelerate aggregation 
and deposition of Aβ in an isoform-dependent manner. APOE can be lipidated by ABCA1 transporter-forming lipoprotein 
particles that bind soluble Aβ, which are then uptaken by neurons and glia via cell-surface receptors, including low-den-
sity lipoprotein receptor (LDLR) and low-density lipoprotein receptor-related protein (LRP1), and degraded at the lyso-
some. When free APOE binds to ApoE receptors in neurons, it can activate a non-canonical MAPK pathway, in an isoform-
dependent manner, that induces cFOS phosphorylation stimulating the transcription factor AP-1, which in turn enhances 
transcription of APP. The complex amyloid plaque lipidated APOE can stimulate microglia through transmembrane pro-
teins triggering receptor expressed on myeloid cells 2 (TREM2) and sialic acid-binding Ig-like lectin 3 (CD33). TREM2 
activation induces the association of TREM2 to DAP12, which gets phosphorylated and recruits spleen tyrosine kinase 
(SYK), which activates phosphoinositide 3-kinase (PI3K) that depends on DAP10. PI3K targets protein kinase B (AKT) and 
activates the mammalian target of rapamycin (mTOR), which activates glycolysis, the p38MAPK pathway, and inhibits 
autophagy. Instead, CD33 activation inhibits PI3K. The complement receptor 1 (CR1) is a receptor for the complement 
components C3b and C4b and promotes the phagocytosis of Aβ. 

Figure 1. Schematic representation of the molecular interplay between neurons, astrocytes, microglia, and vasculature
system in Alzheimer’s disease. Neurons produce the transmembrane amyloid precursor protein (APP). APP is cleaved
by γ (γs) and β secretase (βs) into amyloid β (Aβ) units of different length aggregates extracellularly into plaques.
Oligomeric Aβ promotes the generation of ROS that triggers the release of endothelin-1, causing perycite constriction,
which decreases brain blood flow. Soluble Aβ blocks the reuptake of synaptically released glutamate by either N-methyl-D-
aspartate receptor (NMDA) or by excitatory amino acid transporter (EAAT) receptors causing glutamate accumulation
perisynaptically (excitotoxicity), which increases depolarization and promotes hyperactivity. In microglia, Aβ binds to the
toll-like receptor 4 (TLR4), which causes translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) from the cytosol to the nucleus, where it increases the transcription of NLRP3 and pro-IL-1β. In the cytoplasm, via
activated caspase-1, the inflammasome promotes the maturation of IL-1β. Amyloid plaques stimulate the activation of
p38MAPK (p38) in microglia, astrocyte, and neuron. In microglia, p38 activation results in upregulation of proinflammatory
cytokines, interleukin 1β (IL-1β) and tumor necrosis factor α (TNFα); IL-1β in turns activates p38 in astrocytes and neurons.
In astrocytes, p38 activation causes increased expression of TNFα and nitric oxide (NO) and excitotoxicity. In neurons,
p38 activation results in tau phosphorylation (Tau→ p-Tau) and microtubule disassembly. APOE is mostly generated by
astrocytes; free APOE can facilitate Aβ blood bran barrier (BBB) transit, but it can also accelerate aggregation and deposition
of Aβ in an isoform-dependent manner. APOE can be lipidated by ABCA1 transporter-forming lipoprotein particles that
bind soluble Aβ, which are then uptaken by neurons and glia via cell-surface receptors, including low-density lipoprotein
receptor (LDLR) and low-density lipoprotein receptor-related protein (LRP1), and degraded at the lysosome. When free
APOE binds to ApoE receptors in neurons, it can activate a non-canonical MAPK pathway, in an isoform-dependent manner,
that induces cFOS phosphorylation stimulating the transcription factor AP-1, which in turn enhances transcription of
APP. The complex amyloid plaque lipidated APOE can stimulate microglia through transmembrane proteins triggering
receptor expressed on myeloid cells 2 (TREM2) and sialic acid-binding Ig-like lectin 3 (CD33). TREM2 activation induces
the association of TREM2 to DAP12, which gets phosphorylated and recruits spleen tyrosine kinase (SYK), which activates
phosphoinositide 3-kinase (PI3K) that depends on DAP10. PI3K targets protein kinase B (AKT) and activates the mammalian
target of rapamycin (mTOR), which activates glycolysis, the p38MAPK pathway, and inhibits autophagy. Instead, CD33
activation inhibits PI3K. The complement receptor 1 (CR1) is a receptor for the complement components C3b and C4b and
promotes the phagocytosis of Aβ.
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2. There Is More to Alzheimer’s Disease Than Amyloid
2.1. The Amyloid vs. Tau Hypotheses

The identification of mutations in the APP, PSEN1, and PSEN2 genes in families with
ADAD led to the formulation of the amyloid cascade hypothesis. The presenilin genes
encode secretases (α, β, and γ) that cleave APP, a transmembrane protein, into amyloid β
(Aβ) units of different lengths (from 36 to 43 amino acids in length) that are released to the
extracellular space. Neurons are the main producers of Aβ, and mutations in these genes
cause an overproduction of Aβ42 and its various toxic forms that accumulate into plaques.
Plaque formation may start a series of events involving synaptic dysfunction by interfering
with glutamatergic synapsis and inflammation by causing microglia hyperactivity, which
promotes hyperphosphorylation of tau. Tau hyperphosphorylation can lead to the gen-
eration of destabilized microtubules in the intracellular space that aggregate and form
neurofibrillary tangles (NFTs), leading to widespread neuronal dysfunction and death [15].
AD is a disease that starts with the accumulation of Aβ plaques followed by the formation
of NFTs, which would be more likely to cause the observed neuronal dysfunction and
degeneration [16,17] since the spreading of tau pathology is highly correlated with the
patterns of clinical symptoms and cognitive decline [18]. Nonetheless, a decrease in cere-
bral blood flow is one of the first changes in AD pathology and could reflect dysfunction
of contractile pericytes. Nortley et al. (2019) measured capillary diameters at positions
near pericytes in human brain biopsies from cognitively unimpaired individuals with Aβ
plaques, as well as in AD mice models (APPNL-G-F). They observed that capillaries were
constricted near pericytes and that this constriction was correlated with the severity of Aβ
deposition. In addition, oligomeric Aβ promotes the generation of reactive oxygen species
(ROS) (NOX4), which triggers the release of endothelin-1, which acts on ETA receptors to
induce pericyte contraction. However, it is not clear what damage to synapses and neurons
is due to the decrease in energy supply caused by Aβ-induced capillary constriction [19].

Another early feature of AD caused by Aβ depositions is neuronal hyperactivity.
Zoo et al. (2019) demonstrated that, given a neuron-specific baseline activity driven by
glutamatergic synapses, soluble Aβ blocks the reuptake of synaptically released gluta-
mate, causing presynaptic glutamate accumulation, which increases depolarization and
promotes hyperactivity [20]. Current AD treatment with memantine blocks the effects of
excess glutamate that inhibits signal detection by NMDA glutamate receptors. This study
suggests that targeting excitatory amino acid transporters (EAAT) may be a mechanism to
therapeutically target neuronal hyperactivation at the early stages of the disease.

Immune response and inflammation are other key features in the pathology of AD
(as later discussed in Section 2.3, “The underground of Alzheimer’s disease”). Upon
microglia activation by Aβ deposits, the NLRP3 inflammasome assembles and initiates
an inflammatory response, which contributes to the seeding and spreading of Aβ in AD
mouse models [21]. Ising et al. (2019) demonstrated that in the absence of the NLRP3
inflammasome, tau hyperphosphorylation and aggregation were reduced, suggesting that
tau pathology is a downstream process of the Aβ cascade and dependent on microglia
activation [22].

Critics of the amyloid cascade hypothesis suggest that amyloid could be a side-effect
of the disease [15] and that AD could be a disorder that is triggered by impairment of
APP metabolism but progresses through tau-related pathology rather than Aβ-related
pathology [16]. He et al. (2018) injected tau derived from human AD brains (AD-tau) into
AD transgenic mice, overexpressing pathogenic Aβ. Mice showed accumulation of AD-tau
seeds within dystrophic axons surrounding Aβ plaques; these seeds spread to neuronal
somas and dendrites to recruit endogenous soluble tau and form NFTs and neuropil threads
(NTs) [23]. Tau phosphorylation is mediated by neuronal p38 mitogen-activated protein
kinase (p38MAPK), which is activated by Aβ plaques and cytokines (IL-1β). There are
four isoforms of p38MAPK (α, β, δ, and γ), and each can phosphorylate tau at specific
sites. Maphis et al. (2016) found that selective suppression of the p38αMAPK rescued
late-stage tau pathology and improved working memory in 20 months old mice expressing
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human tau (hTau) [24]. On the other hand, Ittner et al. (2016) observed that depletion of
p38γMAPK in APP23 mice increased cognitive deficits whereas increased expression of
p38γMAPK (i.e., increased tau phosphorylation) abolished those deficits. In addition, they
observed that APP23.p38γ−/−.tau−/− mice did not present memory deficits, suggesting
that the effects of p38γ were tau-dependent [25]. While no mutations have been found
within the MAPK pathway that are associated with AD, somatic mutations in the BRAF
gene (which is part of the MAPK pathway) in the erythro-myeloid progenitor lineage in
mice may cause neurodegeneration [26].

Finally, Klein et al. (2019) studied the histone 3 lysine 9 acetylation (H3K9ac) mark
in 669 aged brains from the Religious Order Study (ROS) and the Rush Memory and
Aging Project (MAP) and correlated it to their Aβ and tau pathological signatures. Almost
23% of H3K9ac domains were associated with tau protein load, whereas only 2% were
associated with Aβ. The tau-associated domains clustered in large genomic regions within
gene promoter or enhancer regions and in open chromatin compartments. Using induced
pluripotent stem cell (iPSC)-derived neurons, they further showed that overexpression of
MAPT, without tangle formation, is enough to induce chromatin reorganization, suggesting
that the tau effects in epigenomic architecture are an early event in tau pathology [27].

2.2. Polyvalent APOE

ApoE is a protein that transports lipids from one tissue or cell to another. It is highly
expressed in the liver, adipose tissue, and artery wall, but it is also found in the central
nervous system (CNS), where it is mainly synthesized by astrocytes and microglia [28]. Two
SNPs (rs429358 and rs7412) within the APOE gene generate three major allelic variants (ε2,
ε3, and ε4), which have a worldwide frequency of 8.4%, 77.9%, and 13.7%, respectively [29].
These isoforms bind to lipids, receptors, and Aβwith varying efficiencies [28,30–32]. The
presence of the APOE ε4 allele has been associated with hyperlipidemia and hyperc-
holesterolemia [33,34]; one copy of ε4 increases risk for AD by ~3-fold and two copies
by ~12-fold [35], yet only 40% of sporadic AD and 60–70% of LOAD families carry this
allele [29]. In addition, having the ε4 allele correlates with an average of 2–5 years earlier
AAO, or up to 10 years if carrying two copies of the ε4 allele [36,37]. This risk not only
applies to sporadic or familial LOAD but also to ADAD [38]. The ε2 allele is considered pro-
tective and would delay the appearance of symptoms [36,39,40]. The ε3 allele has a neutral
effect, although rare mutations associated with this isoform (APOE3-Christchurch p.R136S)
confer protection against developing the disease when occurring in homozygosis [41].

It has been suggested that APOE contributes to AD pathology through both Aβ-
dependent and Aβ-independent pathways. In an isoform-dependent manner, free APOE
can influence Aβ deposition, but it can also help soluble Aβ to cross the blood-brain barrier
(BBB) [42–44]. Alternatively, lipidated APOE recruits soluble Aβ preventing Aβ plaque
formation, but also facilitates its cell-absorption by neprilysin, produced by microglia,
or by cell-surface receptors (LRP1, LDLR, and HSPG) where it is degraded at the lyso-
somes [45–47]. However, recent studies suggest that APOE secreted by glia stimulates APP
transcription and Aβ production in neurons in an isoform-dependent manner [48].

On the other hand, APOE has been associated with CSF tau levels [49–51]. iPSC-
derived neurons expressing ApoE ε4, but not ApoE ε3, had higher levels of tau phosphory-
lation [52]. Similarly, tau transgenic mice that express human APOE had higher tau levels
in the brain and a greater extent of somatodendritic tau redistribution compared to Apoe−/−

mice [52]. More importantly, through gene editing, Wang et al. [53] converted ApoE ε4 to
ApoE ε3 and was able to rescue the normal phenotype.

Finally, beyond its effect on amyloid and tau, ApoE also influences microglial activation,
the latter possibly through Trem2 interaction [54,55]. According to Krasemann et al. [55],
the transition of microglia from a homeostatic- to a disease-associated microglial (DAM)
phenotype would be dependent on ApoE. Supporting this, Ulrich et al. (2018) found that
Apoe deficient mice presented a significant reduction in fibrillar plaque-associated mi-
crogliosis and activated microglial gene expression [8]. Recently, Parhizkar et al. (2019)
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showed that amyloid plaque seeding is increased in the absence of functional Trem2 and
that this seeding goes along with decreased microglial clustering and reduced plaque-
associated ApoE [56]. Yet, it is uncertain how Trem2 interferes with microglial lipid
metabolism [57].

2.3. The Underground of Alzheimer’s Disease—The Immune System

Early genome-wide association studies (GWAs) were successful at identifying addi-
tional genetic risk factors for AD, such as CLU, PICALM, CR1, BIN1, and CD33 [4,58–60].
The immune pathway was seen as an important component of AD pathology since CLU,
CR1, and CD33 have putative functions in the immune system. More recent studies with
larger data sets identified additional genome-wide significant genes involved in the im-
mune pathway, including MS4A, CD2AP, EPHA1, and ABCA7 [61,62]. The later discovery
of loss-of-function variants in TREM2 provided scientists with particular targets to focus
on in the study of the immune response in AD pathology [63,64]. More recently, it was
found that the minor allele of rs1057233 (G), near the GWAS CELF1 risk locus [4], showed
an association with lower expression of SPI1 in monocytes and macrophages [65]. SPI1
encodes PU.1, a microglial transcription factor critical for myeloid cell development, which
regulates the expression of numerous AD risk genes (TREM2, TYROBP, CD33, MS4A
cluster genes, and ABCA7) [54,65]. Recent genome-wide meta-analyses of AD-by-proxy
individuals identified 29 risk loci that are strongly expressed in immune-related tissues
and cell types [6]. Two of these genes, ADAM10 and ACE, along with TREM2 and SPI1,
were found to have a genome-wide significant association in the largest known GWAS
that included around 95,000 people [7]. ADAM10 is the α-secretase for APP that pro-
duces a secreted ectodomain fragment (sAPPα) that has neuroprotective and neurotrophic
properties. In addition, ADAM10 cleaves Notch and various immune and growth factor
proteins [66]. ACE encodes an enzyme involved in the conversion of angiotensin I into a
physiologically active peptide, angiotensin II, a potent vasopressor. ACE is also involved
in Aβ degradation [67]. It is still unclear how mutations in these genes relate to microglial
dysfunction, but overexpression of ACE in microglia and macrophages in a double trans-
genic mice model for AD (APPswe/PS1dE9) substantially reduced cerebral soluble Aβ42,
vascular and parenchymal Aβ deposits, and astrocytosis [68].

Activation of p38MAPK signaling in microglia (due to Aβ plaques) releases proinflam-
matory cytokines in astrocytes and neurons, resulting in inflammation and tau phosphory-
lation [69]. Deficits in TREM2 have also been linked to dysregulation in PPARγ/p38MAPK
signaling. Microglia switch from using oxidative phosphorylation for energy production
to glycolysis in the presence of Aβ plaques. This metabolic reprogramming depends on
the mTOR-HIF-1α pathway [70]. Piers et al. (2019) observed that iPSC-derived microglia
from patients carrying pathogenic TREM2 mutations had trouble switching to glycolytic
metabolism, which ultimately was reflected by dysregulation of the PPARγ/p38MAPK
signaling [71].

Microglia are also stimulated by Aβ plaques through transmembrane proteins CD33
and TREM2. While CD33 activation dampens microglial phagocytosis by inhibiting
phosphatidylinositol-3 kinase (PI3K), TREM2 responds to ligand binding by activating
PI3K to increase phagocytosis [72]. Functional analysis suggests that downregulation of
CD33 may be beneficial to AD since amyloid levels were reduced in a mouse model of
AD (APPswe/PS1dE9) that were also CD33−/− [73,74]. However, the consequence of
regulating TREM2 expression is unclear. For example, higher soluble TREM2 (sTREM2)
in MCI or AD individuals was associated with reduced rates of cognitive decline and
clinical progression [75]. Trem2 knockout in a mouse model of tauopathy (PS19) resulted in
a reduction in neurodegeneration and inflammation [76]. However, loss of Trem2 function
increased the seeding and spread of neuritic plaque aggregates in mouse models of AD
(APPPS1-21) injected with human AD-tau [77]. In contrast, overexpression of TREM2 in
BV-2 cells (an immortalized murine microglial cell line) promoted clearance of Aβ prod-
ucts and mediated neuroinflammation by downregulating the expression of inflammatory
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factors [78]. These apparently conflicting roles for TREM2, protective vs. harmful, could be
due to the disease stage examined in each study [79].

Studies in 5XFAD mouse models indicate that TREM2 is essential for microglia to
acquire a DAM phenotype. However, in human AD, the DAM signature of microglia
seems to be conditioned by the expression of the IRF8 transcription factor. Loss-of-function
mutations in TREM2 promoted a less reactive phenotype of microglia [80], suggesting
that the risk-effect that TREM2 exerts on AD may be regulated by third parties. In fact,
recent studies suggest that TREM2 could be regulated indirectly through MS4A4A. A
common variant in the MS4A cluster (rs1582763) is associated with increased CSF sTREM2.
This study also demonstrated that TREM2 is implicated in disease in general and not
only in those individuals that carry TREM2 risk variants. Mendelian randomization
analyses demonstrated that high sTREM2 levels were protective. In addition, it was found
that MS4A4A and TREM2 co-localize intracellularly, suggesting MS4A4A as a potential
therapeutic target for AD [81]; Alector, Inc. is currently testing an antibody that mimics the
protective effect of the MS4A4A variant.

Finally, it seems that microglia and the autophagy pathway may interact in the pathol-
ogy of AD disease. Hung et al. (2018) described deficits in the lysosome and autophago-
some pathways using iPSC-derived neurons from individuals carrying pathogenic mu-
tations in PSEN1 and APP [82]. However, the disruption of these pathways seems to be
more pronounced in the LOAD forms, for which several genes have been associated [83]
and in relation to the expression decline of some proteins in the autophagy pathway
due to age, which is exacerbated in AD [84]. Since microglia are the main cells phagocy-
tizing Aβ plaques, Heckmann et al. (2019) hypothesized that defects in the autophagy
pathway could influence microglial behavior in AD [84]. Using the 5XFAD AD mouse
model, they identified that LC3 associated with endosomal membranes (LC3-associated
endocytosis—LANDO) supports the clearance of Aβ deposits and prevents microglia
activation. However, this process is dependent on the presence of several autophagy
regulators, including ATG5, whose expression decreases with age [84].

Another gene implicated in lysosome and autophagosome dysfunction and risk for
AD is TMEM106B. This gene has been reported to be associated with FTD in granulin (GRN)
mutation carriers [85] and with AD interacting with APOE. More recently, Li et al. used a
digital deconvolution [86] to estimate the brain cell-type proportion from multiple cohorts.
Genetic scans of neuronal proportion indicate that a variant located in the TMEM106B
gene is the major regulator of neuronal proportion in adults but not young individuals [87].
Impaired lysosomal function reduces lysosomal degradative efficiency, which leads to an
abnormal build-up of toxic components in the cell. An impaired lysosomal system has been
associated with normal aging and a broad range of neurodegenerative disorders, including
AD [87]. These findings suggest that TMEM106B could be a potential target for neuronal
protection therapies to ameliorate cognitive and functional deficits.

3. Unraveling the Molecular Mechanisms in AD Pathogenesis

Most of our knowledge of AD genetic risk factors originated from studying blood
samples; yet, the genome is transcribed and translated differentially across tissues in
response to different transcription factors, metabolic signals, and environmental responses.
Accordingly, in recent years there has been an effort to study different omic layers (genome,
transcriptome, proteome, metabolome, and epigenome) in different tissues affected by AD
(blood, plasma, CSF, and brain) and different cell types (macrophages, neurons, microglia,
astrocytes, and oligodendrocytes), whether it is in human samples, mouse models of AD,
or iPSCs. These studies have advanced our understanding of the roles of amyloid, tau,
APOE, and the immune system in identifying the pathological triggers and order of events
in pathogenesis. Recent studies suggest that DNA is not static during an individual’s
lifetime and is a feature of the aging brain. This DNA instability is worse in AD [88–90]. As
such, the existence of somatic genetic mosaicism was suggested after detecting increased
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APP copy number variants (CNV) in cortical neuronal nuclei of sporadic AD patients [91],
although this event would only contribute to a small percentage of sporadic AD cases [92].

Most of our current understanding of processes downstream of the genome comes
from the analysis of the RNA (in its multiple species), whether it comes from blood, bulk
brain tissue, or, more recently, from specific cell types. Using whole transcriptome profiling
of AD brains, over 2000 genes were found to be deregulated in AD cases [93], and most
of these were associated with functional pathways involved in the immune response,
apoptosis, cell proliferation, energy metabolism, and synaptic transmission, corroborating
findings from previous GWAs analyses [94,95]. Yet, this transcriptome profile may differ
depending on the main AD risk factor. Network analysis of transcriptomic data from
AD patients identified aging-associated processes (inflammation, oxidative stress, and
metabolic pathways) were differentially altered depending on APOE genotype (44 vs. 33).
Integration of these results with GWAs data indicated an epistatic interaction between
APOE and several genes in the Notch pathway, suggesting a possible link between APOE
and its role in inflammation and oxidation [96].

Integration of transcriptomic data with other phenotypes can also reveal important
aspects of the disease. Transcriptome-wide network analysis with longitudinal cognitive
data was used to identify a set of co-expressed genes that are related to both Aβ and
cognitive decline and are separate from those that cause AD pathology [97]. Using PET
imaging and brain transcriptomic data, Sepulcre et al. (2018) found an association between
gene expression profiles and Aβ and tau pathology progression across the cerebral cortex.
Aβ propagation was related to a dendrite-related genetic profile mostly driven by the CLU
gene; tau propagation was related to an axon-related genetic profile led by the MAPT gene.
This study helps to clarify the possible relationships between Aβ and tau pathology. For
example, BACE1, the gene that codifies for the β-secretase enzyme that cleaves APP, was
identified as one of the central genes in the tau-related interactome network. In addition, a
lipid metabolism category was identified as commonly involved in the propagation of both
Aβ and tau. APOE had a dominant role; participants who were APOE ε4+ had a linear
relationship between the propagation pattern for Aβ and tau compared to those who were
APOE ε4− [98]. This suggests that a person’s genetic profile may define whether the spread
of pathology is due to Aβ or tau.

Bioinformatic deconvolution approaches can untangle the transcriptomic signature of
bulk brain tissue and infer the relative contribution of different cell types to a particular cell
expression pattern [63]. These methods revealed that carriers of pathogenic mutations in
APP, PSEN1, PSEN2, or APOE presented with lower neuron and higher astrocyte propor-
tions compared to patients with sporadic AD, suggesting that the presence of AD genetic
risk factors affects the cellular composition of AD brains [86]. Technological advancements
have enabled the sequencing of individual cell nuclei, which allows for the identification
of cell-specific patterns. Pioneering studies using this technology in human AD brains
were capable of identifying cell-type-specific transcriptomic profiles [99]. This technology
also allows the mapping of specific cell profiles at certain points in time. It was found that
early in the pathology, the disease-associated transcriptional changes were highly cell-type-
specific, whereas, in later disease stages, the transcriptional signature of the disease was
common across cell types, mostly centered around global stress response [100]. Similarly,
these technologies reveal that human microglia have an AD-related gene signature that is
distinct from that described in mouse models [101], suggesting that mouse models of AD
may not be adequate in vivo systems to study all pathological aspects of the disease, as
discussed later in this section.

Circular RNA (circRNA) are formed by back-splicing (head-to-tail splicing) of mes-
senger RNAs during normal processing. They were first described in eukaryotic cells, and
later studies suggested that they were enriched in the synapse, acting as sponges of micro
RNA (miRNA). One of the events implicated in the pathophysiology of AD is synapse
loss [102]. CircRNAs were also found to be co-expressed with known causal AD genes,
such as APP and PSEN1, suggesting that some circRNA are also part of the causal AD path-
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way. CircRNA brain expression explained more about AD clinical manifestations than the
number of APOE ε4 alleles, suggesting that cirRNA could be used as biomarkers for AD.

Epigenetics can lead to changes that affect gene activity and expression but do not re-
quire changes of the nucleotide sequence. The main epigenetic marks are DNA methylation
and histone modifications. Pioneering epigenome-wide association studies (EWAs) of AD
examined the hypermethylation of CpG sites in the brain cortex of AD patients [103,104].
These studies identified methylation changes in the ANK1 gene. Cell-specific EWAs of
neuron and glia single nuclei validated and assigned methylation of ANK1 as specific to
glia [105]. More recently, Smith et al. (2019) performed a targeted methylation analysis
finding that differential ANK1 methylation is a common feature across the entorhinal brain
cortex of subjects with AD, Huntington’s disease (HD), or Parkinson’s disease (PD), but
not those with vascular dementia (VD) or dementia with Lewy bodies (DLB) unless these
individuals had co-existing AD pathology [106]. Other studies have looked at histone
acetylation marks, H4K16ac particularly, which is an epigenetic modification of the DNA
that serves to regulate chromatin compaction, gene expression, stress responses, and DNA
damage repair. H4K16ac marks are usually enriched with aging, but the exploration of
brain temporal lobe tissue from AD patients revealed losses of acetylated histone H4K16ac,
which was superior in the proximity of genes linked to aging and with previously identified
AD genetic loci [107].

Metabolic decline is one of the earliest symptoms detected in patients with MCI [108].
Hence, by identifying those metabolites that differ between MCI to AD patients, it is
possible to establish panels of time-specific metabolic biomarkers, which will help us un-
derstand the mechanisms of disease at different stages. Several metabolites, such as alanine,
aspartate, and glutamate, have been associated with AD and cognitive decline, whereas
unsaturated fatty acids have been associated with early memory impairment [109–111].
As such, the Alzheimer’s Disease Metabolomics Consortium observed that preclinical
AD cases were enriched in sphingomyelins and ether-containing phosphatidylcholines
compared to symptomatic AD cases in which acylcarnitines and several amines were the
most representative metabolomic groups [112]. Similarly, sphingolipids were found to
be the more distinct species between AD cases and controls and were associated with
the severity of AD pathology at autopsy and AD progression [113,114]. The correlation
between these metabolic signatures in the brain and peripheral tissues, as well as their
relationship with key AD pathological biomarkers, remains to be elucidated, but they are a
promising source of novel biomarkers.

Despite the potential of these novel technologies, a major challenge in advancing this
line of research is access to sufficient brain tissue from different stages of the disease to
explore pathology at different time points. iPSCs have become useful models to study
single-cell behavior in disease [115]. Similarly, monocyte-derived microglia-like (MDMi)
cells recapitulate key aspects of microglia phenotype and function, and their expression of
neurodegenerative disease-related genes is different from that of monocytes [116]. These
models have been useful for studying the effects of specific variants on cell phenotype, e.g.,
the study of ADAD mutations [117] and the effects of tau-related mutations in AD [118].
Most importantly, these studies help differentiate functional responses observed in mice
from those in human systems [119]. Transcriptomic analysis of 5XFAD mice and human
AD single nuclei brain cells revealed discordances in the transcriptomic signature of
oligodendrocytes, astrocytes, and microglia between these two systems [80].

Yet, the brain is a complex organ involving the interaction of multiple cell types, with
different proportions in different brain areas. In addition, AD pathogenesis is a combination
of Aβ accumulation, phosphorylated tau (p-tau) formation, hyperactivation of glial cells,
and neuronal loss. Therefore, iPSC or MDMi alone cannot be expected to model the
brain response to AD pathogenic events. A novel engineered model has been developed
that grows three-dimensionally interacting neurons, astrocytes, and microglia in order to
model AD pathogenesis [120]. This new 3D human AD triculture system mirrored the first
pathogenic AD stages, Aβ aggregation and p-tau formation, and the induction of microglia
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recruitment that leads to marked neuron and astrocyte loss [120]. More recently, several
groups have managed to incorporate the microvasculature into these organoids, providing
them with blood-brain barrier characteristics [121]. These models have the potential to
advance our understanding of AD in multiple ways. First, we can study the pathological
processes that occur in the brains of AD patients. By combining patient-specific iPSC with
triculture 3D technology, we could evaluate the differential activation of pathways in a
patient-specific manner. Subsequently, different drugs could be tested to evaluate the
efficacy and occurrence of side effects in a patient-specific and personalized manner.

4. Early Prediction and Diagnosis Are Key to Better Treatment

Current diagnostic tools for AD patients include neuropsychological tests to assess
memory and other cognitive abilities, whether it is Clinical Dementia Rating (CDR) [122],
Mini-Mental State Exam (MMSE) [123], Montreal Cognitive Assessment (MoCA) [124],
or Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [125] and mea-
surement of biomarkers in the brain, CSF, or blood. Biomarkers can be measured in the
brain using imaging techniques (MRI, CT, or PET) that inform us about metabolic changes
in the brain (glucose) or deposit of certain protein aggregates (Aβ, tau, and p-tau) or in
biofluids (blood and CSF). A definitive diagnosis of AD can only be made by pathological
exam of the brain postmortem. However, it is known that pathologic changes in the brain
occur years before a person starts showing signs of cognitive impairment [126]. A key
factor in the success of clinical trials and in the treatment of AD patients is the ability to
intervene before clinical symptoms appear. Thus, we are in urgent need of tools that can
identify individuals at risk and be applied at the population level in a fast and affordable
manner. The challenge remains in having access to well-characterized, large cohorts with a
longitudinal repository of body fluids in which sets of biomarkers can be investigated in a
retrospective manner. In addition, as we have reviewed in this manuscript, not only Aβ
and tau contribute to the pathogenesis of AD; there are many other pathways involved that
have the potential to provide accurate biomarkers to predict and follow disease progression
and response to potential treatments. Clinical trials for drug targets have mainly focused
on reducing the production of Aβ or trying to clear its deposits from the brain, mainly
based on the knowledge derived from ADAD patients. Yet, the pathological mechanisms
starting and driving ADAD, EOAD, and LOAD might differ, thus, different therapeutic
approaches that take into account the etiology and genetic background of each individual
should be investigated. In the next section we summarize the most recent papers on risk
prediction, detection, diagnosis, and treatment strategies (Table 1).

Table 1. Summary of selected recent studies of risk prediction, early diagnosis, and treatment.

Approaches to Risk Prediction

Ref. Approach Findings

[127] PRS EOAD, sLOAD, and fLOAD have different PRS profiles

[128] PRS + biomarker Prediction of conversion or AAO

[129] PRS + brain atrophy + MMSE score Better progression prediction

[130] PRS + brain atrophy + MMSE score +
CSF data

Individuals with high PRS and with amyloid and tau pathology showed
a faster rate of memory decline, even among APOE ε4 non-carriers

[131] PRS PRS differentiate AD, FTD, PD, and ALS

Biomarkers for Early Diagnosis

Ref. Target Localization Indicative Of Aβ-
Independent

Tau-
Independent

[132] sTREM2 CSF, plasma Onset and progression of tau
pathology Y N

[133] Nfl plasma, CSF Cytoskeleton protein released with
neuron death Y Y

[134] sPDGRβ blood Blood-brain barrier breakdown Y Y
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Table 1. Cont.

Possible Treatments and Clinical Trials

Clinical
Trial Ref. Target Mechanism Participants Goal Drug Status

NCT01677572

Amyloid β Monoclonal
antibodies

Mild AD and MCI

Clearance of Aβ
plaques

Aducanumab Approved to treat Alzheimer’s
disease

NCT02760602 Prodromal AD Solanezumab T—no evidence that prodromal
AD benefits from drug

NCT02008357 Older Individuals at
risk (APOE4+) Solanezumab P3—not recruiting

NCT01760005 DIAN-TU Solanezumab P3; H—no change in cognitive
performance

NCT01760005 DIAN-TU Gantereumab P3; H—no change in cognitive
performance

NCT01998841 Colombian family Crenezumab P3—not recruiting

NCT01661673 Y-secretase y-modulator Mild Cognitive
Impairment

Decrease production
of toxic Aβ EVP-0962 P2—completed

PRS—polygenic risk score; Nfl—Neurofilament Light; T—terminated; H—halted; P2—phase II; P3—phase III.

4.1. Risk Prediction and Prevention

Polygenic risk scores (PRS) aim to generate a genetic profile of an individual and to
predict this individual’s chances of developing a certain condition. The first PRS for AD
included all 21 variants identified by the IGAP consortia with a prediction accuracy of
78.2% [135], although its accuracy could reach 82% depending on the AD subtype [136]. In
fact, PRS calculated for stratified AD etiologies revealed an accuracy of 75% for fAD, 72%
for sAD, and 67% for AD [127]. Under the hypothesis that a pathway-specific PRS could be
more powerful at predicting certain pathological aspects of the disease, Darst et al. (2016)
clustered the SNPs for the AD PRS into the major AD pathways (Aβ clearance, cholesterol
metabolism, and immune response) and tested their association with cognition function
and AD-biomarkers (Aβ imaging, CSF Aβ, tau, and p-tau) [128]. Unfortunately, these
prediction values were no more accurate than models including all known disease vari-
ants, suggesting there is room for improvement of these predictors. Kauppi et al. (2018)
generated a PRS that predicted progression from MCI to AD over 120 months; when these
data were combined with baseline brain atrophy score and/or MMSE score, the prediction
model was significantly improved (AUC = 84%) compared to the use of the PRS alone [129].
Furthermore, adding biomarker data from CSF and imaging measurements, the same
group found that individuals with high PRS and with amyloid and tau pathology showed
a faster rate of cognitive decline, even among APOE ε4 non-carriers [130]. In a similar
study, it was found that adding imaging information of Aβ and tau deposition (PET) and
neurodegeneration (MRI) to a model that already included clinical and genetic information
improved the prediction accuracy of memory decline [137]. Despite the increase in predic-
tive ability, it is uncertain whether these improvements will be clinically relevant for the
daily practice of predicting people at risk. We are still in need of predictors that do not rely
on biomarkers of already occurring pathology.

4.2. Early Detection, Diagnosis, and Prognosis

In the search for biomarkers that can reflect what is occurring in the brain, CSF has
been the fluid of preference given its direct contact with the CNS. Aβ peptides and tau were
among the first proteins to be investigated in CSF for detection and diagnostic purposes.
This was followed by the investigation of VILIP-1 (marker of neuronal injury), YKL40
(marker of inflammation), neurogranin (NGRN—marker of synaptic function), and CLU
(an apoliprotein involved in several Aβ processes and a risk factor for AD). However, these
markers are not disease-specific (VILIP-1, YKL40 [138], NGRN [139]) or do not present
differently between cases and controls (e.g., CLU [140]). Therefore, there is still a need to
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identify biomarkers that (i) are AD-specific and can predict the onset of cognitive decline
and (ii) are independent of Aβ and tau metabolism so that disease progression can be
monitored in patients enrolled in clinical trials using drugs targeting Aβ or tau. Recently,
progress has been made in the analysis of Aβ in blood (plasma) in order to replace screening
in CSF and reduce its invasiveness and related expenses [75].

Soluble TREM2 (sTREM2) is detectable in CSF and serum. Its levels are elevated
in MCI-AD compared to AD or controls and correlate with those of tau and p-tau, but
not Aβ [132,141]. CSF sTREM2 levels increase before the onset of symptoms, but after
amyloidosis and neuronal injury have already begun [132,142,143], suggesting that TREM2
may play a critical role in the onset and progression of tau pathology and microglia
activation. In addition, a higher ratio of CSF sTREM2 to CSF p-tau181 concentrations
predicted slower conversion from cognitively normal to symptomatic stages or from MCI
to AD dementia [75]. sTREM2 can be generated by the proteolytic action of ADAM10
(an α-secretase also involved in the cleavage of APP), but missense mutations in the
immunoglobulin-like domain and stalk region have been found to interfere with the
cleavage site and shedding of sTREM in opposite directions [144]. In addition, there
are three alternative transcripts for TREM2. One lacks the transmembrane domain and
encodes only the sTREM2 form. Using bulk brain transcriptomic data from AD cases,
TREM2 carriers, and controls. del-Aguila et al. (2019) showed that up to 25% of sTREM2
may be translated from TREM2 isoforms that lack the transmembrane domain; in addition,
the expression of this particular isoform was significantly different in cases compared to
controls [145]. The role of sTREM2 in the cascade of pathologic events remains unclear, and
because of the lack of selective inflammatory markers, it is uncertain whether inflammation
and microglial activation or tau-related abnormalities occur first. Yet again, it may be that
the order of pathologic events may differ between ADAD cases and AD patients that do
not carry mutations on those genes [146].

Neurofilament light chain (NfL) is an intrinsic protein of the axonal cytoskeleton that
is released when neurons die. NfL was found in high concentrations in CSF and blood
among participants of the Dominantly Inherited Alzheimer’s Network (DIAN) ~6.8 years
before the onset of symptoms [133]. NfL is not an AD-exclusive biomarker, but since it is
Aβ- and tau-independent, it has the potential to be used as a proximity marker and as a
marker to monitor therapy response.

The contribution of neurovascular dysfunction and blood-brain barrier (BBB) break-
down to cognitive impairment is widely recognized. These both develop early in AD;
however, the relationship between vascular pathology and Aβ and tau is still unknown.
Nation et al. (2019) studied the CSF from cognitively normal individuals as well as from
individuals with early cognitive dysfunction who were CSF Aβ+, Aβ−, p-tau+, or p-tau−.
The soluble platelet-derived growth factor receptor-β (sPDGFRβ) is mainly expressed by
brain vascular mural cells but not by other cells of the CNS. Nation et al. (2019) found
that sPDGFRβ was increased in the CSF of individuals with advanced CDR regardless
of CSF Aβ of p-tau status, suggesting that biomarkers focused on the integrity of the
brain vasculature could be a novel source for biomarkers of cognitive dysfunction in both
individuals with and without AD [134].

Although most blood- and CSF-based biomarkers focus on protein levels, cell-free nu-
cleotides are also being investigated for use in diagnostic tests. Disease-specific cell-free RNA
transcripts have been found at increased levels in the blood of affected individuals [147,148].
Additionally, small non-coding miRNA were used to differentiate cases from controls across
different neurodegenerative diseases: AD, FTL, and ALS were differentiated from each
other with accuracy ranging from 0.77 to 0.93 [149]. These studies employed samples from
symptomatic patients only, so further studies are required in preclinical individuals to
confirm the potential of this miRNA-based approach as a diagnostic tool.
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4.3. Treatment

The majority of ongoing phase III clinical trials were developed under the umbrella of
the amyloid hypothesis and so are mainly focused on stopping the production of Aβ or
aimed at clearing Aβ plaques. A set of drugs have been designed to target the γ-secretase
complex with the aim to prevent the production of Aβ altogether. However, γ-secretase
cleaves not only APP but also up to another 50 transmembrane protein substrates, including
Notch receptors [150]. Recent studies have revealed that ADAD mutations destabilize the
intermediate enzyme-substrate complexes between APP and γ-secretase, promoting early
disassociation of γ-secretase from Aβ and thereby releasing longer and more amyloidogenic
Aβ peptides [151]. The second wave of current clinical trials use monoclonal antibodies
to promote Aβ clearance, have been designed for a very specific subset of the popula-
tion, and try to tackle the disease before symptoms appear. The Dominantly Inherited
Alzheimer’s Network Trials Unit (DIAN-TU) selects participants from families with autoso-
mal dominant mutations in either APP, PSEN1, or PSEN2 genes and treats them with either
Solanezumab, a monoclonal antibody that targets soluble Aβ, or Gantenerumab, a mono-
clonal antibody that interacts with Aβ plaques and activates microglia phagocytosis [152].
Similarly, the Alzheimer’s Prevention Initiative (API) ADAD trial is focused on a large
Colombian family with ADAD due to a pathogenic mutation in PSEN1 (p.E280A); members
of this family are treated with Crenezumab, a monoclonal antibody that recognizes multiple
Aβ forms and stimulates amyloid phagocytosis while limiting inflammation [153]. The API
also has two more trials: (i) CAD106, a vaccine that combines multiple Aβ forms and aims
to produce a strong antibody response while avoiding inflammatory T cell activation, and
(ii) Umibecestat, which seeks reduction Aβ production by inhibiting the BACE1 protease.
These trials are conducted with 60–75-year-old cognitively normal APOE ε4 homozygotes
and aim to prevent the appearance of disease [154]. However, the predictions for this trial
are not very promising, since Verubecestat, another drug aimed at inhibiting BACE1 to
block Aβ production, failed to improve the cognitive abilities of prodromal AD cases [155].
That is not the case for aducanumab (Aduhelm), a monoclonal antibody against aggre-
gated forms of Aβ approved by the FDA in June 2021 (https://www.fda.gov/drugs/news-
events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease (accessed
on 3 August 2021)). Even though it has proved effective in reducing the burden of Aβ
plaques, it is still not clear if it also reduces the symptomatology [156].

Despite some anti-Aβ therapeutic drugs look promising in phase III clinical trials,
recent data suggest that amyloid would be aside-effect of the brain’s response to stress
in sporadic AD, not a causative factor as in familial AD [157]. Cognitive decline and
pathogenic events are directly associated with the initiation of tau aggregation, hence an
interest in developing tau-related therapies [158]. Tau pathology in AD is characterized by a
disruption of 3R to 4R tau isoforms, resulting in an approximately 2:1 4R:3R ratio [159,160].
Tau expression could be reduced with small interfering RNA (siRNA) [161] or antisense
oligonucleotides (ASO) [162]. These mechanisms have not yet been tested in clinical trials
for AD or other tauopathies, but they have been used for cancer [163] and spinal muscular
atrophy [164].

APOE polymorphisms have been recognized to contribute to AD pathology by both
gain-of- and loss-of-function properties. This bi-directional effect must be taken into
account when designing therapies targeting ApoE [165]. On the one hand, mechanisms
that enhance ApoE quantity have been shown to promote Aβ clearance and synaptic
function in an isoform-dependent manner in murine models [166]. On the other hand,
reduction in ApoE levels in mice models using anti-Apoe ε4 monoclonal antibody seemed
to prevent cognitive impairment and brain hyperphosphorylation [167]. Recently, it was
found that an anti-human ApoE antibody specifically recognizes human ApoE ε4 and ApoE
ε3 and preferentially binds nonlipidated, aggregated ApoE in mouse models expressing
human ApoE and human Aβ [168]. Other therapeutic approaches look at modifying ApoE
properties through structural modification, an increase in ApoE lipidation, or blocking its
interaction. CRISPR/Cas9 has been used to transform ApoE ε4 into ApoE ε3 in mouse
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astrocytes [169,170]. Recently, Wang et al. (2018) was successful at converting ApoE
ε4 to ApoE ε3 in iPSC-derived neurons and proved that the introduction of ApoE ε4
recapitulated the pathogenic effects [53].

Given the importance of the immune response in the pathology of AD, therapies
targeting this process, mostly through CD33 and TREM2, are moving into the clinical trial
phase, as announced at the 14th International Conference on Alzheimer’s and Parkinson’s
Diseases, held 27–31 March in Lisbon, Portugal. In particular, two groups, the biotech
Alector, Inc. and the German Center for Neurodegenerative Diseases in Munich, have
developed antibodies that activate TREM2. These antibodies will trigger signaling through
its co-receptor DAP12 resulting in phosphorylation of Syk and the downstream activation
of microglia to remove amyloid. The Alector antibody (AL002) has moved into phase
I clinical study. Similarly, Alector has started its clinical trial of the anti-CD33 antibody
(AL003). Taking into account the time-specific protective vs. harmful effect that microglia
have in AD, if these antibodies work as expected, they would need to be administered at
very specific time points.

Finally, other features of age-related diseases are BBB integrity and the accumulation
of senescent cells. BBB integrity is essential for the (i) Aβ-clearance and (ii) lipid transport.
Docosahexaenoid acid (DHA) is a blood-based essential fatty acid for cognition, and cur-
rent clinical trials are looking at the cognitive benefits of taking DHA diet supplements.
Pan et al. (2016) showed reduced DHA levels and cognitive response in fatty acid-binding
protein 5 (FABP5) knockout mice, suggesting that FABP5 upregulation could be an alter-
native approach to improve DHA uptake and rescue cognitive function [171]. Zang et al.
(2019) studied the brains of patients with AD and the transgenic APP/PS1 mouse model
of AD. They observed that oligodendrocyte progenitor cells (OPC—brain cells mobilized
in response to neuronal injury and demyelination) accumulate around Aβ plaques and
acquire a senescent phenotype characterized by the upregulation of p21/CDKN1A and
p16/INK4/CDKN2A proteins and β-galactosidase activity. They observed that senolytic
treatment (dasatinib plus quercetin) improved APP/PS1 AD mouse model condition by
removing p16-expressing OPCs from Aβ plaques (after 9 days of treatment), reducing Aβ-
plaque-associated proinflammatory cytokines and microglial activation, and reducing lev-
els of inflammation and Aβ plaque size (after 11 weeks of treatment). Altogether, senolytic
treatment improved the hippocampus-dependent learning and memory capabilities of
APP/PS1 AD mice [172]. Quercetin is a flavonoid with antioxidant and anti-inflammatory
effects found in many plants and foods such as berries, green tea, and Ginko biloba,
among others; natural products have the benefit of being readily available, as such some
of them are being tested in animal models, for their neuroprotective, anti-inflammatory,
antioxidant, anti-amyloidogenic, anticholinesterase properties, as potential therapeutics
for AD [173,174].

5. Conclusions and Future Directions

The recent studies of the molecular mechanisms of AD have shown us that amyloid
accumulation does not only trigger tau hyperphosphorylation and immune response,
but it starts other series of events that contribute to increased stress in the brain—e.g.,
reduction in brain blood flow or increment of neuronal hyperactivity. In addition, Aβ
activates the inflammasome and p38MAPK pathway, which stimulates the production of
cytokines that promote tau hyperphosphorylation. Once the pathological environment
is started, APOE can exacerbate the situation, both through the Aβ and tau pathways
in an isoform-dependent manner, but APOE, in turn, seems to be regulated by TREM2.
All of the different molecular mechanisms are highly interconnected and participate in
AD pathogenesis at different time points. Therefore, future research should focus on
identifying the potential triggers for non-ADAD etiologies, whether it is searching for
additional rare coding variants in the many loci associated with the disease or exploring
the non-coding regions of the genome for downstream effects modifying gene expression.
Additionally, improvements are needed in the in vitro systems used to study the disease
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since we have seen that the response in mouse models differs from that of humans. By
better understanding the chain of pathologic events associated with different genetic risk
factors, we can potentially identify AD subtypes related to specific genetic architectures
allowing for personalized diagnosis and treatments. So far, our capacity to predict AD is
quite limited, with PRS having a prediction accuracy between 65% and 75%. Our tools for
early detection are limited as well since we cannot currently detect individuals at risk until
their Aβ and tau load has already built up. Ultimately, this is a detriment to developing
and testing novel therapies in the right groups of participants.

The progress we have made in recent years in the understanding of AD has been
monumental. Yet, there is still substantial work to do before we fully understand and
control this disease. The generation of larger genetic studies and incorporation of rare
variants in prediction models will facilitate the development of improved PRS for the
prediction of the baseline risk of developing AD and will also allow for the identification
of potential AD subtypes. In addition, the discovery of dynamic biomarkers will enable
the prediction of age at onset and the rate of progression of the disease. Omic approaches
can facilitate progress in this area by exploring changes in the proteomic and metabolomic
profiles of individuals at different time points. Finally, to improve and reach a personalized
medicine for AD, future studies need to incorporate ethnic diversity in the recruitment
process as modeling of this disease has, so far, been almost exclusively done with European
and American populations of Caucasian background.
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Abbreviations

5xFAD Transgenic mouse model carrying APP KM670/671NL (Swedish), APP I716V
(Florida), APP V717I (London), PSEN1 M146L (A>C), PSEN1 L286V mutations

AAO Age at onset
ABCA7 ATP-binding cassette subfamily A member 7
ACE Angiotensin I-converting enzyme
AD Alzheimer’s disease
ADAD Autosomal dominant Alzheimer’s disease
ADAM10 ADAM metallopeptidase domain 10
ALS Amyotrohpic lateral sclerosis
ANK1 Ankyrin 1
APOE Apolipoprotein E
APP Amyloid precursor protein
APPNL-G-F Knock-in mice model carrying the APP KM670/671NL (Swedish), APP I716F

(Iberian), APP E693G (Arctic) mutations
APPswe/PS1dE9 Transgenic mouse model carrying APP KM670/671NL (Swedish), PSEN1:

deltaE9 mutations
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APPPS1-21 Transgenic mouse model carrying APP KM670/671NL (Swedish), PSEN1 L166P
ASO Antisense oligonucleotides
Aβ Amyloid β
BACE β secretase, also known as β-site Amyloid precursor protein Ceaving Enzyme
BBB Blood-brain barrier
BV2 Immortalized murine microglial cell line
CD2AP CD2-associated protein
CD33 Myeloid cell surface antigen CD33
CDR Clinical dementia ratio
CE Cholesterol ester
CERAD Consortium to Establish a Registry for Alzheimer’s Disease
CELF1 CUGBP Elav-like family member 1
CLU Clusterin
CNS Central nervous system
CNV Copy number variant
CR1 Complement C3b/C4b receptor 1 (Knops blood group)
CSF Cerebrospinal fluid
CT Computerized tomography
DAM Disease-associated microglia
DIAN Dominantly inherited network
DLB Dementia with Levy bodies
EMP Erithro-myeloid progenitor
EAAT Excitatory amino acid-mediated transporters
EOAD Early onset Alzheimer’s disease
EPHA1 EPH receptor A1
ERK Extracellular signal-regulated kinase
ETA Endothelin A receptor
EWAs Epigenome-wide association studies
fAD Familial Alzheimer’s disease
fLOAD Familial late-onset Alzheimer’s disease
FDR False discovery rate
FTD Frontotemporal dementia
GWA Genome-wide association
H3K9ac Histone 3 lysine 9 acetylation
H4K16ac Histone 4 lysine 16 acetylation
HD Huntington’s disease
HSPG Heparan sulfate proteoglycan
iPSC Induced pluripotent stem cells
ITAM Immunoreceptor tyrosine-based activation motif
LDLR Low-density lipoprotein receptor
LOAD Late-onset Alzheimer’s disease
LRP1 LDL (low-density lipoprotein) receptor-related protein 1
MAP Memory and aging project
MAPK Mitogen-activated protein kinases (formerly known as ERK)
MAPT Microtubule-associated protein tau
MCI Mild cognitive impairment
MDMi Monocyte-derived microglia-like cells
MKK7 MAPK kinase 7
MMSE Mini-mental state examination
MOca Montreal Cognitive Assessment
MRI Magnetic resonance imaging
MS4A Membrane spanning 4
MS4A4A Membrane spanning 4-domains A4A
mTOR Mechanistic target of rapamycin
NfL Neurofilament Ligtht
NFTs Neuro fibrillary tangles
NGRN Neurogranin
NLRP3 Nucleotide-binding domain (NOD)-like receptor protein 3
NOX4 NADPH oxidase 4
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NT Neuropil threads
p38MAPK p38 mitogen-activated protein kinase
PD Parkinson’s disease
PET Positron emission tomography
PGRN Progranulin
PI3K Phosphatidylinositol-3-kinase
PIB Pittsburgh compound B
PICALM Phosphatidylinositol-binding clathrin assembly protein
PPAR Peroxisome proliferator-activated receptor
PRS Polygenic Risk Score
PS19 Transgenic mouse model carrying MAPT P301S mutation
PSEN1 Presenilin 1
PSEN2 Presenilin 2
ROS Religious Order Study
sAD Sporadic Alzheimer’s disease
sLOAD Sporadic late-onset Alzheimer’s disease
SNPs Single nucleotide polymorphism
sPDGFRβ Soluble platelet-derived growth factor receptor-β
SPI1 Spi-1 proto-oncogene
TLRs Toll-like receptors
TMEM106B Transmembrane protein 106B
TREM2 Triggering receptor expressed on myeloid cells 2
TWAs Transcriptome-wide association studies
TYROBP Transmembrane immune signaling adaptor TYROBP
VD Vascular dementia
VILIP1 Visinin-like 1
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Abstract: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient
measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from
Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning
algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential
to AD research, highly correlated input features can significantly decrease machine learning model
generalizability and performance. Additionally, redundant features unnecessarily increase computa-
tional time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers
and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine
the extent to which this issue might impact large scale analyses using these data. We found that
93.457% of biomarkers, 92.549% of the gene expression values, and 100% of MRI features were
strongly correlated with at least one other feature in ADNI based on our Bonferroni corrected α

(p-value ≤ 1.40754 × 10−13). We provide a comprehensive mapping of all ADNI biomarkers to
highly correlated features within the dataset. Additionally, we show that significant correlation
within the ADNI dataset should be resolved before performing bulk data analyses, and we provide
recommendations to address these issues. We anticipate that these recommendations and resources
will help guide researchers utilizing the ADNI dataset to increase model performance and reduce the
cost and complexity of their analyses.

Keywords: ADNI; pairwise feature correlation; feature reduction; machine learning; Alzheimer’s disease

1. Introduction

Researchers increasingly leverage big data techniques, such as machine learning, to
identify patterns indicative of disease trajectory to better understand, diagnose, and treat
Alzheimer’s disease (AD). This search for a cure has led to ever-expanding datasets that
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have increased in both size and complexity [1]. Although AD is a progressive neurodegen-
erative disorder characterized by the “A/T/N” system (i.e., β-amyloid biomarker buildup,
tau biomarker buildup, and neurodegeneration or neuronal injury) [2], heterogeneity in
disease manifestation and trajectory impact our ability to accurately diagnose or treat
AD [3,4]. However, since AD is the most common cause of dementia [5], and related
AD health-care costs are projected to exceed $1 trillion by 2050 [6], it is imperative to
leverage large biobanks to best define its etiology and search for a cure. Here, we utilize the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, which contains patient data
for AD cases and controls spanning 49,288 biomarkers and 1.2 terabytes of neuroimages.

While large biological datasets, such as the ADNI cohort, are crucial for developing
accurate models, an excessive number of features can cause algorithms to take more time to
compute [7–9], require significantly more computational resources [9–11], increase model
complexity [9], reduce model performance [12], and ultimately increase the costs of large-
scale analyses. These issues often make these types of analyses intractable for smaller
research labs with limited computational resources. Researchers typically sidestep the
issue by reducing their analyses to a pre-selected subset of features based on literature
searches or specific hypotheses, which limits the creative exploration of other features
included in the dataset. Programmatic solutions to feature selection also exist [13] but
require a pairwise correlation analysis to identify redundancy [14]. Pairwise correlation
analyses iteratively calculate the correlation between each feature and all other feature in
the dataset [15]. When multiple features are highly correlated with each other, one feature
can be used as representative of all other features, which effectively reduces the size of the
dataset for downstream analyses.

We assessed correlation within the ADNI dataset to determine the extent to which
machine learning might be impacted by correlated features. We performed a pairwise
correlation analysis of all 49,288 biomarkers and 793,600 extracted magnetic resonance
imaging (MRI) features (842,888 total features). We repeated the pairwise correlation
analysis using subsets stratified by sex and clinical dementia rating (CDR) to determine
if the correlated features should be interpreted broadly (i.e., across the dataset) or more
narrowly (e.g., only in females). We identified high feature redundancy that impacts
99.566% of all features, including 93.457% of the ADNIMERGE features and 92.549% of
the gene expression features. Additionally, we identified metadata in the ADNI tables
that were not programmatically distinguishable from biomarkers, and several duplicate
features with different column headers.

We propose that machine learning on the ADNI dataset should remove highly corre-
lated or duplicate features and metadata to increase model performance, decrease model
training time, and accelerate AD research toward improved understanding, diagnosis,
and treatment. We provide correlation tables to facilitate the identification and filtering of
highly correlated features within ADNI.

2. Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) on 15 November
2019. The ADNI was launched in 2003 as a public-private partnership, led by principal
investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org. ADNI researchers collect,
validate, and utilize data, including MRI and PET images, genetics, cognitive tests, CSF
and blood biomarkers as predictors of the disease.

We divided the ADNI data into three domains: the ADNIMERGE domain, which
contains features such as cerebral spinal fluid (CSF) biomarkers and cognitive function
test scores; the gene expression domain, which contains gene expression levels from
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blood microarrays [16]; and the MRI domain, which contains features we extracted from
MRIs using deep convolutional autoencoders. Step-by-step protocols for each domain are
included at https://github.com/jmillerlab/ADNI_Correlation and described below.

2.1. ADNIMERGE Domain

We constructed the ADNIMERGE domain using the R package, ADNIMERGE [17].
We retrieved the data from ADNIMERGE because it contains the ADNI tabular data in
the form of multiple individual tables conveniently stored within a single package. To effi-
ciently merge these data, we developed a custom method for combining the ADNIMERGE
tables into one table by joining each table by its patient ID and most recent measurement
(see Figure S1).

We preprocessed all tables in the ADNIMERGE domain before combining them. We
capitalized all headers to have consistent feature names across tables with overlapping
features. Columns with only one unique value were removed because features without
variation are uninformative in machine learning. Every feature table contained patient IDs
that we used as primary keys when combining tables. We removed the ‘Data Dictionary’
table from the domain because it contained only meta-data and no patient IDs. We recorded
the data type of each feature, whether nominal or numeric, to determine which statistical
tests to apply in downstream analysis. All features containing number values were marked
as numeric unless they contained fewer than ten unique values, in which case they were
considered nominal. Features containing text were marked as nominal. However, if those
values contained more than 20 unique values, they were removed from the ADNIMERGE
domain to eliminate features that were unique or almost unique for the individual, which
might occur when the features are unique identifiers or notes written by the data recorders.

We further cleaned the data so that every feature had a single value for each individual.
For features that contained longitudinal data, we selected the most recent value using its
recording date. If the recording dates were not available, we arbitrarily selected one value
for the person. If an individual did not have a value for a certain feature, we marked it as
unknown. We removed features that either contained only unknown values or only one
unique value because those features are uninformative in machine learning. The resulting
table contained rows corresponding to each person, and columns corresponding to each
ADNIMERGE feature.

Lastly, we resolved unknown values by either removing or imputing them. Features
with fewer than 80% known values were removed to ensure accuracy. Nominal features
with fewer than 20 patients in any of their categories were also removed as these features
did not meet the assumptions of our statistical tests. Numeric values were then imputed
using a Bayesian-ridge estimator [18] that predicts unknown values for numeric features
based on known values of other features. The random number generator for this stochas-
tic algorithm was seeded for reproducibility. A simple imputer was used for unknown
nominal values, which replaced unknown values with the most frequent known cate-
gory. These imputing algorithms were provided by the Scikit-learn Python package [19].
The completed ADNIMERGE data set contained 1131 features.

2.2. Gene Expression Domain

We downloaded the gene expression domain from ADNI, which contains a table of
gene expression profiles from blood RNA and has previously been explored using machine
learning [16]. All quality control and normalization were conducted by ADNI before its
inclusion in the dataset. We transposed the table so that feature columns corresponded
to the normalized gene expression levels for each patient. Any columns that contained
metadata or did not contain a header were removed. The resulting gene expression domain
contained a total of 48,157 genes.
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2.3. MRI Domain

The MRI domain contained features we extracted from MRIs using deep convolu-
tional autoencoders designed and trained using the PyTorch deep learning library [20].
All features in this dataset were numeric transformed pixel values. The image dataset
initially consisted of 1.2 terabytes of MRIs, but we used only MRIs that belonged to the 743
patients also found in both the ADNIMERGE and gene expression domains. We organized
these MRIs using the PyDicom Python package [21] so that each patient had a sequence of
MRI images scanned from one side of the skull to the other. We used the med2image [22]
Python package to convert the MRIs from DICOM format to PNG so that they could be
used in deep learning. All images were resized to 128 by 128 pixels using the OpenCV
Please confirm that the intended meaning has been retained.ython package [23]. Image
pixel values were then normalized using min-max normalization [24] to optimize them for
the deep learning model.

Each patient had a sequence of 124 sagittal MRI slices. Each of those two-dimensional
images were compressed to a one-dimensional latent space of 6,400 extracted features.
By storing images in one-dimensional arrays, the MRI domain could be tabular and
therefore merged with the other two domains. We trained separate autoencoders for
each of the 124 slice indices of the MRI sequences across all the patients using the Adam
optimizer for artificial neural networks [25] (See Figure S2). The 124 latent vectors for each
individual were concatenated for a total of 124 × 6400 = 793,600 extracted MRI features
per person. These concatenated MRI features acted as the rows in the MRI domain (see
Figure 1). We seeded all random number generators for reproducibility since the model
training algorithms are stochastic in nature.
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Figure 1. Creation of the MRI domain from the MRI slice sequences using the trained convolutional
autoencoders. A separate autoencoder was trained for each MRI slice, and the latent space was
concatenated for each person to create a row specific to that individual.

2.4. Combining All Domains

We merged the ADNIMERGE, gene expression, and MRI domains into a singular
dataset that we used for our correlation analysis. The combined dataset contained a total of
1131 ADNIMERGE features + 48,157 gene features + 793,600 MRI features = 842,888 features
for 743 individuals.

2.5. Correlation Analysis

We performed a pairwise correlation analysis where we compared every feature in our
dataset to every other feature. For each comparison, we chose a statistical test depending on
the data types of the two features as well as the normality of their distribution, if numeric
(See Table 1).
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Table 1. Statistical tests chosen for comparisons and their conditions.

Comparison Data Types Condition Statistical Test

Numeric and Numeric Both features follow a normal distribution Pearson correlation
Numeric and Numeric At least one of the features does not follow a

normal distribution Spearman correlation

Categorical and Categorical The contingency table contains at least one
frequency less than five N/A

Categorical and Categorical All frequencies in the contingency table are
greater than or equal to five Chi-squared

Numeric and Categorical All categories have a normal distribution ANOVA
Numeric and Categorical Not all categories have a normal distribution Kruskal-Wallis

For numeric features, depending on the normality of their distribution, we chose between a parametric (normal
distribution) or a non-parametric (non-normal distribution) statistical test. If both features were nominal, we used
the Chi-squared test unless the contingency table resulting from the two features did not each contain at least five
instances. In that case, the test was not performed.

The statistical tests and the test for normality [26] were conducted using the SciPy
Python package [27]. Because we analyzed all pairwise comparisons (excluding self-
comparisons) of m features across n individuals, the big-O time complexity of our algorithm
was O(n ∗ m2). However, we optimized performance by using parallel processing across
four processing cores. Because of the high number of comparisons (355,229,668,828), we
employed a Bonferroni corrected α value of α = 1.40754 × 10−13 (0.05/355,229,668,828).
Only feature comparisons with significant p-values were stored to save disk space.

2.6. Subset Stratification Analysis

Feature correlation within the entire dataset may occur if a subset of individuals
determine that correlation. Therefore, we determined if the significantly correlated fea-
tures were also correlated in different subsets stratified by sex (e.g., male or female) and
clinical dementia rating (CDR; e.g., 0, 0.5, ≥1) [28]. Sex-specific AD pathologies occur [29],
and pathologies vary based on cognitive status [29]. Additionally, if disease-modifying
treatments in AD cases affect feature correlation, the features would not be correlated in
all subsets. Therefore, if the features remain correlated in the complete dataset and each
stratified subtype, they can be considered redundant.

We created five subsets from the combined dataset: female patients, male patients,
cognitive normal controls where CDR = 0, patients with mild cognitive impairment where
CDR = 0.5, and patients with AD where CDR ≥ 1.0. Next, we identified correlations with
the highest possible significance (p-value ≤ 5 × 10−324, which is the smallest positive value
in Python 3.7) from the original analysis of the combined dataset. We reran those correlation
analyses within each of the five subsets to determine if certain stratifications affected the
correlation significance. We noted that significance will drop due to smaller sample size
in the comparison and some features were dropped from the analysis (e.g., features with
only one unique value in the subset). In practice, only the AD subset experienced loss of
significant comparisons as a result of sub-setting.

3. Results

We found that 839,226 ADNI features (99.566% of the total number of features) are sig-
nificantly correlated with at least one other feature (93.457% of the ADNIMERGE features,
92.549% of the gene expression features, and 100% of the MRI features). Table 2 shows a
subset of features that are correlated at the highest significance threshold with more than
one other feature, including patient sex, intra-cranial volume, various neuropsychological
batteries, ventral diencephalon volume, and cerebrospinal fluid (CSF) glucose levels.
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Table 2. ADNIMERGE Features that are Highly Correlated with other Features.

Feature Name ADNIMERGE
Frequency

Gene Expression
Frequency MRI Frequency Total Frequency

PTGENDER 207 281 145,780 146268
ICV 265 84 143,377 143,724

CLOCKNUM 199 0 97,725 97,924
COPYTIME 243 0 97,030 97,228
CLOCKSYM 216 0 96,307 96,523

ST65SV 191 46 81,250 81,487
GLUCOSE 155 0 81,245 81,400

Numbers of correlated features for seven example features in the ADNIMERGE domain. The ‘Feature Name’
is the column header as it appeared in our constructed tabular data set. The ‘ADNIMERGE Frequency’ is the
number of ADNIMERGE features that are highly correlated with the feature. For example, intra-cranial volume
(ICV) is correlated with 265 other ADNIMERGE features. It is likewise correlated with 84 gene expression levels
and 143,377 extracted MRI features. The ‘Total Frequency’ is the sum of the ‘ADNIMERGE Frequency’, ‘Gene
Expression Frequency’, and ‘MRI Frequency’. In other words, it is the total number of features that are highly
correlated with each row across the entire ADNI data set.

While Table 2 shows the numbers of correlated features for seven example features
from the ADNIMERGE domain, Table S1 shows the same but for all the ADNIMERGE
features. Both Table 2 and Table S1 show the numbers of correlated features based on our
Bonferroni corrected α (p-value ≤ 1.40754 × 10−13). However, Table S2 shows the numbers
of correlated features based on the maximally significant α (p-value ≤ 5 × 10−324). The
complete table (gene expression and MRI features included in addition to ADNIMERGE)
for the Bonferroni corrected α is available online at: https://github.com/jmillerlab/ADNI
_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv.

The complete table for the maximally significant α is available online at: https://github
.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv.

While the complete tables containing our results are available online, we provide
a summary of those results in Table 3 (Bonferroni corrected α) and Table 4 (maximally
significant α).

Table 3. Summarized correlated feature frequencies based on the Bonferroni corrected α.

A—ADNIMERGE Frequencies B—Gene Expression Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 129.49 88.06 1 346 ADNIMERGE 11.91 30.9 0 616
Gene

Expression 0.28 5.52 0 189 Gene
Expression 6139.72 6195.45 1 24,588

MRI 9.31 20.09 0 188 MRI 7.87 19.66 0 149
C—MRI Frequencies D—Total Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 6988.04 19,170.23 0 145,780 ADNIMERGE 7129.43 19,203.93 1 146,268
Gene

Expression 140.05 3642.09 0 119,556 Gene
Expression 6280.05 7096.48 1 120,141

MRI 141,348.57 69,866.96 81 347,944 MRI 141,365.75 69,873.31 81 347,955
Summary of the numbers of correlated features based on the Bonferroni corrected α. Sections A through D provide summary statistics for
the domain frequencies for ADNIMERGE, Gene Expression, MRI, and Total. For example, the meaning of the ‘Average’ column and ‘MRI’
row in table A is the average number of ADNIMERGE features with which the MRI features are strongly correlated. That row states that
the MRI features are strongly correlated with an average of 9.31 ADNIMERGE features with a standard deviation of 20.9 features. The 0 in
the ‘Minimum’ column indicates that at least one MRI feature is not correlated with any ADNIMERGE features. The 188 under ‘Maximum’
indicates that at least one MRI feature is correlated with 188 ADNIMERGE features when p-value ≤ 1.40754 × 10−13.
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Table 4. Summarized correlated feature frequencies based on the maximally significant α.

A—ADNIMERGE Frequencies B—Gene Expression Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 5.48 5.83 1 23 ADNIMERGE 0.0 0.0 0 0
Gene

Expression
0.0 0.0 0 0 Gene

Expression
1.55 0.94 1 7

MRI 0.0 0.0 0 0 MRI 0.0 0.0 0 0
C—MRI Frequencies D—Total Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 0.0 0.0 0 0 ADNIMERGE 5.48 5.83 1 23
Gene

Expression
0.0 0.0 0 0 Gene

Expression
1.55 0.94 1 7

MRI 2457.08 4397.99 1 11957 MRI 2457.08 4397.99 1 11,957
Summary of the numbers of correlated features based on the maximally significant comparisons (p-value ≤ 5 × 10−324). Interestingly, when
applying a maximally significant α, features were only strongly correlated with other features in their same domain.

3.1. Domain-Specific Correlation Analysis Results

First, we report the number of times ADNIMERGE features correlated with each
domain-specific feature in the dataset, after correcting for multiple testing using a Bonfer-
roni α value (Table 3A). Although many gene expression probes were not highly correlated
with ADNIMERGE features (mean = 0.28± 5.52), gene expression for ubiquitin specific pep-
tidase 9 Y-linked (USP9Y; probe set: 11725293_at) was correlated with the 189 ADNIMERGE
features. In contrast, many ADNIMERGE features were highly correlated with other AD-
NIMERGE features (mean = 129.49 ± 88.06 highly correlated comparisons per feature).
The volume (cortical parcellation) of right fusiform (ADNIMERGE header: ST85CV) was
correlated with 346 ADNIMERGE features, which was the highest frequency. Similarly, MRI
features displayed high correlation with many ADNIMERGE data (mean = 9.31 ± 20.09),
and one MRI feature was highly correlated with 188 ADNIMERGE features.

Next, we report how many gene expression features correlate with each domain-
specific feature using a Bonferroni corrected α (Table 3). For ADNIMERGE features, the
patient date of birth correlates with the most Affymetrix probes (616 gene probes), and the
mean number of significant comparisons per feature was 11.91 ± 30.9. The MRI dataset
also contained many significant correlations (mean = 7.87 ± 19.66), and one feature from
the MRI autoencoder correlated with 149 gene expression values. Gene expression features,
on average, strongly correlated with 6139.72 ± 6195.45 other gene expression probes.
The probe expression levels for adducin 2 (ADD3; probe set: 11721606_a_at) are strongly
correlated with the most other gene probes (24,588 probes), which consists of 51.058% of
the total number of probes in the dataset.

Finally, we report the number of significant correlations with the MRI-extracted
features from the autoencoder (Table 3). A single gene expression probe for the X-inactive
specific transcript (XIST) non-protein coding region (probe set: 11757857_s_at) was strongly
correlated with 119,556 MRI features, and gene probes, on average, were highly correlated
with 140.05 ± 3642.09 MRI features. The ADNIMERGE features were correlated with
6988.04 ± 19,170.23 MRI features and patient sex had the highest number of significant
correlations with MRI features (145,780 significant correlations). MRI to MRI feature
redundancy is even higher, with a single MRI feature being correlated with 347,944 other
MRI features, and each MRI feature had significant feature redundancy (minimum = 81;
mean = 141,348.57 ± 69,866.96).

Similar analyses were conducted on the total frequencies of feature redundancy
(Table 3) and using the maximum significance threshold (Table 4).

3.2. Subset Stratification Analysis Results

Tables S3–S7 contain the summary statistics for the five subsets. Differences in these
tables compared to Table 4 indicate that comparisons that were maximally significant using
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the entire data set (all 743 patients) were not maximally significant for a given subset. We
found that the male, female, and AD subsets each exhibited fewer maximally significant
feature comparisons than found in the complete correlation analysis (compare Tables S3,
S4, and S7 with Table 4). Features lost an average of 1391.485 ± 2835.093 features that they
were maximally correlated with (i.e., based on the maximally significant α of 5 × 10−324)
after correlation analysis on the stratified male subset. Likewise, features lost an average of
1323.918 ± 2694.103 maximally significant correlations after analysis on the female subset.
Finally, an average of 2343.442 ± 4325.865 correlations per feature were lost using the
AD subset. Conversely, for the healthy control and mild cognitive impairment subsets,
all feature comparisons maintained maximum significance (compare Tables S5 and S6 to
Table 4). While it is a small amount, some of the loss in the AD subset is attributed to the
sub-setting itself due to features in the subset no longer having more than one unique value
or no longer satisfying the assumptions of our statistical tests. Tables S8–S12 (where each
table represents a different subset) show that the sub-setting alone resulted in no loss of
maximally significant comparisons except in the AD subset since the AD subset table is
the only one with values that differ from Table 4. Specifically, features lost an average of
2.643 ± 0.005 correlations due to the AD subset stratification alone (i.e., the small sample
size resulted in fewer possible correlation comparisons).

3.3. Feature-Correlation Mappings

We created a mapping from each gene expression and ADNIMERGE feature to a list
of gene expression and ADNIMERGE features with which they are strongly correlated
(based on the Bonferroni corrected α). Table S13 shows the computational resources
used to conduct these comparisons. There were 1,214,628,828 comparisons (0.342% of all
comparisons) that involved only ADNIMERGE features or gene expression features and our
mapping took up 1.87 gigabytes of disk space. We excluded MRI features from the mapping
because autoencoder features do not have clear biological significance and filesharing size
restraints would preclude including those comparisons online (~550 gigabytes of disk
space). The ADNIMERGE and gene mappings are available as a downloadable Python
pickle file. We chose the pickle file format because it facilitates easy integration with Python
scripts and research pipelines. This file is available online at: https://drive.google.com/fil
e/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing.

4. Discussion

Our results demonstrate a high amount of feature redundancy in the ADNI dataset
that should be considered when using the dataset for machine learning. While we make
no claims about feature correlation in other large-scale databanks, the significant feature
correlation in ADNI suggests that this issue might be more widespread than previously
thought and should be considered before performing large-scale data mining. For example,
a single gene expression feature alone could replace more than half the gene expression
values because it is highly correlated with expression in each of those genes. Thousands
of MRI features can be replaced by ADNIMERGE or gene expression features, and the
MRI features themselves can be further reduced. A single MRI feature can replace up to
43.844% of the MRI domain, indicating that we could almost double the MRI compression
ratio. This redundancy may inhibit the types of analyses possible in research laboratories
with limited computational resources. Furthermore, laboratories using the ADNI features
for large-scale data analyses are likely to waste computational time and resources if they
do not properly deal with feature redundancy within the dataset. Beyond that, models
analyzing redundant ADNI data are expected to perform and generalize poorly because
of the curses of dimensionality [30] and overfitting [31]. To help alleviate these issues,
we provided future researchers with a mapping of highly correlated features within the
ADNIMERGE and gene expression domains. We recommend that researchers using the
ADNIMERGE and gene expression data download our mapping file, and we inform
researchers using the MRI features of their high redundancy. Future work can include
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further reducing the size of the MRI domain using a 1D autoencoder, as compared to the
2D autoencoder we used to perform the initial reduction. This architectural change would
likely be useful because while 2D convolutional autoencoders compress 2-dimensional
data (e.g., MRIs), 1D convolutional autoencoders compress 1-dimensional data (e.g., our
extracted MRI features).

Another benefit of our correlation analysis is that it shows the possibility of AD-
related features, which are more costly to collect, being replaced by less costly features. For
example, collecting CSF biomarkers requires intrusive lumbar punctures [32], and certain
cognitive tests (i.e., Mini-Mental State Examination, Alzheimer’s Disease Assessment Scale-
Cognitive Subscale, Frontal Assessment Battery, etc.) are time-intensive and can be stressful
for patients [33]. If such non-ideal features are strongly correlated with more palatable
features, they can be replaced by data that is easier to collect. Gene expression and MRI
features are strongly correlated with hundreds of ADNIMERGE features. There are varying
costs in obtaining these ADNIMERGE features (e.g., time, emotional toll, and money).
If such biomarkers or tests were more demanding than a relatively simple blood [14] test
or MRI scan, they could be replaced by other highly correlated features that are less costly.
Doing so may decrease the burden on both patients and caretakers by limiting the number
of tests performed or surveys taken, as well as the amount of paperwork that needs to be
completed. Additionally, this knowledge may decrease the overall costs of conducting a
clinical trial or establishing a cohort if a specific test is no longer required because it does
not provide additional data beyond other testing.

Furthermore, our analyses revealed issues with the ADNI data that obstruct data
analysis. First, there were several features we discovered to be highly correlated with
others but were merely meta-data. These features include the date a measurement was
recorded, the version of ADNI when the measurement took place, or identification numbers
such as bar-code, sample-identification, lonis ID, image UID etc. While these features serve
an important function in the data, they do not have biological or cognitive meaning.
We recommend that such features are labeled and distinguished, so that computational
researchers can programmatically identify them in their scripts and separate them from the
rest of the data. We recommend the same for columns in ADNI tables that appear to be
notes taken by the data recorders. ADNIMERGE could include a two-column table that
maps features to their designation (e.g., metadata, biomarker, MRI, etc.).

Another issue we identified was that certain features were maximally correlated with
other features that had only slight deviations in their names and are likely duplicates in
the dataset. For example, Table 5 shows that two features representing intracranial volume
had exactly equal results but different header names.

Table 5. Example of Features with Identical Results but Slightly Different Names.

Feature ADNIMERGE
Frequency

Gene Expression
Frequency MRI Frequency Total Frequency Domain

ICV 265 84 141,676 142,025 ADNIMERGE
ICV.BL 265 84 141,676 142,025 ADNIMERGE

We suspect that such features are equivalent, but they have different header names
when appearing in two different tables. If multiple tables contain columns with the same
features, we recommend that such columns are correctly labeled by having the exact same
header name across all tables in which they appear.

We recognize that the ADNI dataset contains longitudinal data that may result in
different levels of feature correlation at different time points. We chose the last recorded
time series datapoint for each feature to ensure that analyzed features were collected at
similar points in disease progression. Since we conducted subtype analyses that show
no difference in correlation between sex or cognitive decline, feature correlation can be
interpreted broadly at the population level. However, we recognize that certain limitations
in the ADNI dataset (e.g., age at first patient measurement, incomplete time series data, im-
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putation, etc.) may limit our ability to detect changes in feature correlation for individuals.
Additionally, deviations from feature correlation across a time series for an individual may
warrant further investigation for its disease association.

The loss of significant statistical tests performed on the subsets may be partially
a result of the reduced sample size. Patients with AD represent the smallest subset,
therefore having the lowest statistical power, which may explain why the AD subset had
the largest drop in significant tests. However, neither the healthy control subset nor the
mild cognitive impairment subset experienced any loss of significant comparisons despite
being smaller than the male subset, which did lose significant comparisons. This retention
of comparison frequencies suggests that other factors beyond sample size contribute to
the loss of statistically significant comparisons and that some feature comparisons lose
significance when stratified by sex. Similarly, our results show that comparisons become
less significant when stratified by CDR and performed on the AD subset, which does not
occur in the control or mild cognitive impairment subsets. The reduction in features that
are testable in each subset contributes slightly to this reduction in significant comparisons
but does not account for all differences (see Table S12). Therefore, not all strongly correlated
feature pairs remain correlated in each CDR subset.

5. Conclusions

Our analyses contribute significantly to future AD research by exploring feature
correlation within the ADNI dataset. We identified many non-ic ADNI features that are
highly correlated with each other and can be replaced when building large data models.
We provide a template for constructing a convolutional autoencoder capable of extracting
tabular features from MRIs and inform future researchers of the redundancy among these
MRI features. Additionally, we propose solutions to address feature redundancy within
the non-MRI features by downloading our feature redundancy tables. We validated these
correlations by sub-setting the ADNI dataset and found that most highly correlated features
remain highly correlated in each stratified subset. Additionally, we propose that researchers
who design clinical trials or testing for AD should be mindful of feature redundancy to
reduce the unnecessary testing burden on patients and caregivers when the tests do not
elicit additional information. We anticipate that this research will help guide researchers
using machine learning on the ADNI dataset to take into account feature redundancy in
the future.
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Abstract: The presence of complement activation products at sites of pathology in post-mortem
Alzheimer’s disease (AD) brains is well known. Recent evidence from genome-wide association
studies (GWAS), combined with the demonstration that complement activation is pivotal in synapse
loss in AD, strongly implicates complement in disease aetiology. Genetic variations in complement
genes are widespread. While most variants individually have only minor effects on complement
homeostasis, the combined effects of variants in multiple complement genes, referred to as the
“complotype”, can have major effects. In some diseases, the complotype highlights specific parts
of the complement pathway involved in disease, thereby pointing towards a mechanism; however,
this is not the case with AD. Here we review the complement GWAS hits; CR1 encoding comple-
ment receptor 1 (CR1), CLU encoding clusterin, and a suggestive association of C1S encoding the
enzyme C1s, and discuss difficulties in attributing the AD association in these genes to complement
function. A better understanding of complement genetics in AD might facilitate predictive genetic
screening tests and enable the development of simple diagnostic tools and guide the future use of
anti-complement drugs, of which several are currently in development for central nervous system
disorders.

Keywords: complement; complement receptor 1; clusterin; late-onset Alzheimer’s disease; genet-
ics; neuroinflammation

1. Alzheimer’s Disease, Inflammation, and Complement

Alzheimer’s disease (AD) is a common, chronic neurodegenerative disease. There
are currently over 50 million cases of AD worldwide, and with an increasingly ageing
population, this number will increase further [1]. AD is associated with a progressive
decline in cognitive function and memory and a reduced ability to carry out day-to-day
tasks, culminating in a complete loss of independence. Pathologically, AD is characterised
by a build-up of protein deposits (amyloid-β (Aβ) plaques and hyperphosphorylated tau
tangles) throughout the brain. Cognitive impairment is a consequence of regional neuronal
and synapse loss. These events are accompanied by an inflammatory response: astrocytes
and microglia, the innate immune cells of the brain, adopt a neurotoxic, phagocytic,
proinflammatory phenotype and interact with plaques, tangles, and damaged or dying
neurons [2]. It is increasingly apparent that the neuroinflammatory response is a driving
force in AD pathology rather than a bystander or consequence of disease; perhaps the
clearest evidence comes from genetic studies. Many of the genes most strongly associated
with AD risk are involved in inflammation and immunity [3,4]. These data make it
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imperative to better understand when, where and how inflammation occurs in the course
of AD in order to design better tests and novel drugs.

The complement system is an important component of the innate immune system
and a potent driver of inflammation; it is the first line of defence against invading microor-
ganisms and a key player in garbage disposal systems throughout the body. Through a
tightly coordinated cascade of events, complement mediates pathogen recognition and
destruction either via opsonisation followed by phagocytosis or by the formation of a
lytic pore, the membrane attack complex (MAC). These processes are accompanied by
the production of anaphylatoxins, C3a and C5a, which drive inflammation and facilitate
immune cell recruitment.

Complement can be activated through one of three pathways; classical (CP), lectin
(LP), or alternative (AP) (Figure 1). CP activation is initiated by binding of the C1q/r/s
complex to a surface either via surface-bound antibodies (IgG and IgM) or a variety
of self-molecules such as Aβ and apoptotic markers including phosphatidylserine and
extracellular DNA [5,6]; binding triggers activation of C1s, a serine protease that cleaves
C4 and C2 to produce the membrane-bound C3-convertase, C4b2a. The LP is activated by
mannose-binding lectin (MBL) or ficolin, these bind carbohydrate epitopes on surfaces.
MBL-associated serine proteases (MASPs) cleave C4 and C2 to generate C4b2a, as in the
CP. The AP is better considered as an amplification loop whereby either spontaneously
hydrolysed C3 (C3(H2O)) or C3b generated in the CP/LP, bind factor B (FB), catalysing
FB cleavage by factor D (FD) to form the AP C3-convertase (C3(H2O)Bb or C3bBb), which
cleaves more C3 to generate membrane-bound opsonin C3b. The AP loop is therefore
self-perpetuating and rapidly activating, critical for successful pathogen clearance, but
dysregulation can be extremely costly. The three pathways converge at the point of C3
cleavage; each C3-convertase cleaves multiple C3 molecules into C3a and C3b leading
to widespread complement deposition. C3b binding adjacent to C3-convertases creates
the C5-convertases C4b2a3b and C3bBb3b, which cleave C5 into C5a and C5b. C3a and
C5a are potent proinflammatory anaphylatoxins that recruit and activate immune cells
expressing C3a and C5a receptors. C5b sequentially recruits C6, C7, C8, and C9 to form
the membrane attack complex (MAC), which through a series of conformational changes,
punches through the cell membrane resulting in cell lysis or cell activation.

To avoid damage to self, complement is tightly controlled at every level of the pathway
by an array of regulators in fluids and on cell surfaces (Figure 1). Nevertheless, over-
activation or failure of complement regulators to keep the pathway in check can trigger
a vicious cycle of inflammation and tissue damage.
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Figure 1. The complement system. Three activation pathways converge on the central C3 molecule. The classical pathway 
is triggered by binding of antibody-antigen complexes to C1 via C1q subunits. C1r proteolytically activates C1s, which in 
turn cleaves C4 and C2 to form the classical C3 convertase C4b2a. The lectin pathway begins with recognition of pathogen 
surface carbohydrates by mannose-binding lectin (MBL) followed by activation of MBL-associated serine proteases 
(MASPs), which also cleave C4 and C2 to generate C4b2a. The alternative pathway is an amplification loop initiated by 
C3b generated in the above activation pathways or by spontaneous hydrolysis of C3 to C3(H20). Factor B (FB) then binds 
C3b/C3(H20), enabling its cleavage by Factor D (FD) to form the alternative pathway C3 convertase C3bBb/C3(H20)Bb; 
binding of properdin (P) stabilises the convertase. Both C3 convertases cleave C3 into C3a and C3b. The classical and lectin 
pathways are negatively regulated by C1-inhibitor (C1INH), which inhibits both C1s and MASPs, while the C3 convertases 
are regulated by C4b-binding protein (C4BP; specific for C4b2a), decay-accelerating factor (DAF; specific for C3bBb), com-
plement receptor 1 (CR1), and Factor H (FH), either directly through increasing decay or indirectly by catalysing cleavage 
of C4b by Factor I (FI). At the next stage of the pathway, C3b is incorporated into the C3 convertases to form the C5 
convertases C4b2a3b and C3bBbC3b(P). These are regulated in the same manner as the C3 convertases and cleave C5 into 
C5a and C5b to trigger the terminal pathway. C5b is sequentially bound by C6, C7, C8, and up to 18 C9 molecules to form 
the membrane attack complex (MAC); MAC assembly is inhibited by clusterin and vitronectin in the fluid phase and CD59 
on cells. Complement regulators are in red boxes, fluid-phase regulators are underlined. Solid, dotted, and blunt arrows 
indicate pathway progression, proteolytic cleavage, and direct inhibition, respectively. 

  

Figure 1. The complement system. Three activation pathways converge on the central C3 molecule. The classical pathway is
triggered by binding of antibody-antigen complexes to C1 via C1q subunits. C1r proteolytically activates C1s, which in turn
cleaves C4 and C2 to form the classical C3 convertase C4b2a. The lectin pathway begins with recognition of pathogen surface
carbohydrates by mannose-binding lectin (MBL) followed by activation of MBL-associated serine proteases (MASPs), which
also cleave C4 and C2 to generate C4b2a. The alternative pathway is an amplification loop initiated by C3b generated in the
above activation pathways or by spontaneous hydrolysis of C3 to C3(H2O). Factor B (FB) then binds C3b/C3(H2O), enabling
its cleavage by Factor D (FD) to form the alternative pathway C3 convertase C3bBb/C3(H2O)Bb; binding of properdin (P)
stabilises the convertase. Both C3 convertases cleave C3 into C3a and C3b. The classical and lectin pathways are negatively
regulated by C1-inhibitor (C1INH), which inhibits both C1s and MASPs, while the C3 convertases are regulated by C4b-
binding protein (C4BP; specific for C4b2a), decay-accelerating factor (DAF; specific for C3bBb), complement receptor 1
(CR1), and Factor H (FH), either directly through increasing decay or indirectly by catalysing cleavage of C4b by Factor I
(FI). At the next stage of the pathway, C3b is incorporated into the C3 convertases to form the C5 convertases C4b2a3b
and C3bBbC3b(P). These are regulated in the same manner as the C3 convertases and cleave C5 into C5a and C5b to
trigger the terminal pathway. C5b is sequentially bound by C6, C7, C8, and up to 18 C9 molecules to form the membrane
attack complex (MAC); MAC assembly is inhibited by clusterin and vitronectin in the fluid phase and CD59 on cells.
Complement regulators are in red boxes, fluid-phase regulators are underlined. Solid, dotted, and blunt arrows indicate
pathway progression, proteolytic cleavage, and direct inhibition, respectively.
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2. Genetics Implicate Inflammation, Immunity, and Complement in the Pathogenesis
of Late-Onset AD

Late-onset AD (LOAD), responsible for ~95% of AD cases, is a multifactorial disease
with a heritability of over 58% [7]. Since 2009, large genome-wide association studies
(GWAS) have identified over 75 independent genetic risk factors for LOAD [3,8–10]. In
silico pathway analyses have implicated amyloid and tau processing, lipid, and innate
immunity pathways [4]. Approximately 20% of LOAD risk loci encode proteins implicated
in immunity; many of these have roles in macrophage and microglial activation, an ob-
servation supported by recent single-cell expression enrichment analyses [8]. Among the
GWAS statistically significant (GWS) hits are two genes encoding proteins of the comple-
ment pathway; CR1 encoding the membrane protein complement receptor 1 (CR1) and
CLU encoding the plasma regulator clusterin. Additionally, C1S encoding the enzyme
C1s reaches near GWS in the most recent GWAS [8]. CR1 and CLU are among the most
significant GWAS hits, ranking high in the top 10. These strong associations provide the
impetus for this review of complement genetics in LOAD.

3. Complement Genetic Variation Impacts Risk of Inflammatory Disease

Genetic variations within complement genes are extremely widespread in the general
population; over the last 20 years, many common polymorphisms and rare mutations in
complement genes have been linked with diverse inflammatory and infectious diseases,
demonstrating the pivotal role of the complement pathway in determining disease risk
(Table 1). Occasionally, these genetic variants are the primary cause of a disease through
either causing deficiency or significant gain or loss of function changes in complement
components or regulators; more commonly, functional changes associated with variants are
subtle and exacerbate existing pathology by contributing to a vicious cycle of inflammation
and tissue damage.

Considering the common polymorphisms, individual variants usually have only
minor effects on protein function and complement homeostasis, but the additive effects of
combinations of variants in multiple complement genes can have major effects, tipping the
balance in favour of complement dysregulation and impacting disease predisposition. The
combination of common genetic variants in complement genes that defines the complement
genetic make-up of an individual is referred to as the “complotype” [11].

The complotype has been best studied in the context of age-related macular degen-
eration (AMD), progressive retinal disease, and the leading cause of blindness in the
developed world. Common variants in genes encoding the AP components C3 and FB and
the AP regulator FH are individually associated with higher C3 convertase activity and
increased AMD risk; a combination of risk variants in these three genes (C3 (rs2230199),
CFB (rs641153), and CFH (rs800292)) increased complement activity in plasma six-fold [12].
This complotype, and another CFB variant (rs4151667), were later associated with AMD
disease status and increased complement activation markers (C3d/C3 ratio) in AMD
plasma [13]. These variants were also associated with an increased risk of dense deposit
disease (DDD), a renal disease characterised by systemic AP activation and complement
deposition in the kidneys. In contrast, the AP gene variants conferring risk for AMD
and DDD were not risk variants for another renal disease associated with complement
dysregulation, atypical haemolytic uremic syndrome (aHUS), a disease characterised by
thrombocytopenia, microangiopathic haemolytic anaemia, and acute renal failure with
complement deposition in the kidney [14]. This lack of concordance of risk suggests that
the roles of complement are quite different in these superficially similar diseases; in support
of this, a common genetic variation that causes deletion of the genes encoding FH-related
proteins 1 and 3 (CFHR1/CFHR3) is protective for AMD but increases the risk of aHUS [14].
These findings demonstrate that the same complement gene variant, or set of variants, can
be involved in several diseases and that specific variants may have inverse effects on risk
in some apparently similar diseases. Better knowledge of the effects of these variants on
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complement regulation in plasma and in tissues will inform understanding of mechanisms
of disease.

Table 1. Complement gene variants and associated diseases.

Gene Variant Disease

C1q Deficiency
Polymorphism

Increased risk of lupus and glomerulonephritis
Arthritis, cancer, diabetes, schizophrenia

C1r/C1s
Deficiency
GOF
SNP

Autoimmunity, infections, glomerulonephritis,
Type I periodontal Ehlers-Danlos
Increased risk of AD

C1INH Deficiency Hereditary angioedema (types I and II)

C2 Deficiency
SNPs

Lupus, bacterial infections
Protective for AMD and PCVP

C3
GOF
Nonsynonymous
Coding variant

aHUS, C3G, and AMD

C4 Deficiency
CNV

Lupus
Schizophrenia

C5 Nonsense; hom or
Compound het C5 deficiency; neisserial infections

C6 Single bp deletion C6 deficiency; neisserial infections

C7 Nonsense: hom or compound het C7 deficiency; neisserial infections

C8α Nonsense: hom or compound het C8 deficiency, type I; neisserial infections; no C8α protein; free C8β

C8β Premature stop codon C8 deficiency, type II; neisserial infections; no C8β protein; free C8α

C9 Nonsense: hom or compound het
SNPs

C9 deficiency; neisserial infections
AMD; AD

MASP-1, collectins Hom/het deficiency Various developmental; Malpuech, Carnevale, Michels, and
Mingarelli syndrome

Ficolins SNPs Rheumatoid arthritis, leprosy, systemic inflammation,
bacterial infections

CFH Hom deficiency
SNPs and truncations

DDD; MPGN
C3G; acquired partial lipodystrophy; aHUS
AMD; AD;
Some protective against meningococcal disease, AMD, IgAN, or C3G

CFI Nonsense: hom, het or compound het AMD; C3G; aHUS; recurrent infections

MCP Hom/Het deletion/truncation
Missense SNP

Systemic sclerosis, miscarriage, HELLP syndrome, and C3G
Severe aHUS; linked to CVID

CFB
Nonsense: hom or compound het
Het GOF SNP
Other SNPs

Factor B deficiency; recurrent bacterial infections
aHUS
Protection against AMD

Properdin Nonsense/truncating mutations Properdin deficiency (X-linked); neisserial infections

DAF Nonsense: hom or compound het CHAPLE Syndrome; linked to Inab Cromer blood group

CD59 Nonsense: hom or compound het CD59 deficiency; PNH-like disease; Peripheral neuropathy; strokes

CFHR1/3 Combined gene deletion Risk for aHUS; protection from AMD

CFHR5 Gene duplication
SNPs

aHUS
C3G; poststreptococcal glomerulonephritis

Clu SNPs AD

CR1 SNPs AD

AD—Alzheimer’s disease, aHUS—atypical haemolytic uremic syndrome, AMD—age-related macular degeneration, bp—basepair,
C3G—complement 3 glomerulopathy, CHAPLE—complement hyperactivity, angiopathic thrombosis, and protein-losing enteropa-
thy, CNV—copy number variant, CVID—common variable immunodeficiency, DDD—dense deposit disease, GOF—gain of function,
het—heterozygous, hom—homozygous, MPGN—membranoproliferative glomerulonephritis, LOF—loss of function, PCVP—polypoidal
choroidal vasculopathy, PNH—paroxysmal nocturnal hemoglobinuria, SNP—single nucleotide polymorphism.
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4. Complement in LOAD

In post-mortem analyses of LOAD brain, complement components and activation
products, notably C1q, C4b, C3b/iC3b, and MAC, co-localise with amyloid plaques and
neurofibrillary tangles [5,15–17]. By default, these studies only address late/end-stage
disease and provide no clues as to how complement activation impacts the disease. Given
the role of complement in “taking out the trash”, one likely role of complement in LOAD is
in facilitating the removal of accumulated amyloid plaques and tangles, dead and dying
cells. Indeed, Aβ peptides, the precursors of amyloid, when exposed to serum, activate
both the CP and AP and are opsonised by C3b/iC3b fragments [18]; this would enable
recognition and phagocytosis by cells expressing complement receptor CR3, including
CNS resident microglia (Figure 2). Outside of the brain, C3b-opsonised Aβ aggregates can
bind CR1 on erythrocytes, a pathway for clearance in the liver [19]. These findings suggest
that complement activation may have a protective role in early disease, provoking local
phagocytosis of amyloid by resident cells and peripheral clearance; however, complement
is a double-edged sword, protective when properly regulated but with the potential to
cause damage when dysregulated. Dysregulated complement can then drive inflammation
and directly activate or damage self-cells. Importantly, complement activation has been
implicated in synapse pruning and loss, both physiological during brain development and
pathological in neurodegeneration [20–23]. C1 tags synapses destined for removal and
trigger CP activation leading to deposition of opsonic C3 fragments, signalling microglial
phagocytosis. The demonstration that mice deficient in C1q or C3 show reduced synapse
loss emphasises the importance of this process [23].
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Figure 2. The Janus-faced nature of complement in AD: (A) In the central nervous system complement components and
activation products (C1q/r/s and C3b) are deposited on amyloid plaques. C3b is converted to iC3b by Factor I (FI) with
cofactor activity from CR1, Factor H, or MCP. iC3b binds to phagocytic receptor CR3 (an integrin dimer comprising CD11b
and CD18 chains) on the surface of microglia, enabling plaque clearance. iC3b is further broken down by FI and CR1
into inactive C3dg. In the periphery, CR1 binds to C3b-opsonised amyloid aggregates and transports them to the liver
for destruction in a process called “immune complex clearance”. (B) Complement dysregulation tips the balance towards
destruction. In the absence of proper CR1 function, complement components accumulate, resulting in cell activation or
damage. Complement is also involved in pathological synapse loss in AD. C1 binds to a poorly defined receptor on synapses
and triggers classical pathway activation, resulting in C3b opsonisation and subsequent phagocytosis by activated microglia.

Whether complement activation is beneficial or detrimental for LOAD progression
depends on regulation. Inappropriate activation or dysregulation of complement will drive
pathological inflammation and has been implicated in inflammatory brain diseases such
as neuromyelitis optica and multiple sclerosis [24,25]. The strongest evidence implicating
complement in LOAD aetiology comes from genetic studies; genome-wide association
studies (GWAS) implicated CR1 and CLU, respectively encoding the complement receptor
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CR1 and the fluid-phase regulator clusterin [3,9,26]; the most recent LOAD GWAS reported
a novel suggestive association of C1S the gene encoding the critical CP enzyme C1s, with
risk [8]. Below we will briefly describe each of these complement hits, address the nature
of their LOAD associations and explore mechanisms.

5. CR1
5.1. Function

CR1 is a receptor for the complement activation products C3b and C4b and a number
of other ligands, detailed below. Once bound to CR1, C3b and C4b can be cleaved by
the plasma protease FI, with CR1 itself providing the essential cofactor activity. The
cleavage products (iC3b and C4c, respectively) have a minimal affinity for CR1; this
binding-cleavage-release cycle is critical for the role of CR1 in immune complex (IC)
handling [27]. C3b/C4b-coated ICs bind CR1 on erythrocytes in the circulation and are
ferried to the liver and spleen for transfer to tissue macrophages expressing CR3 (the
receptor for iC3b, now abundant on the IC) for phagocytic elimination. CR1 also has
decay-accelerating activity for the C3 and C5 convertases; it binds C4b displacing C2a and
binds C3b displacing Bb; this capacity to decay CP and AP convertases confers powerful
complement regulating activity, although this is likely of minor physiological importance.

5.2. Expression

CR1 is expressed on erythrocytes where it performs the critical IC transport role
described above; indeed, reduced CR1 levels on erythrocytes is strongly associated with
the immune complex disease systemic lupus erythematosus (SLE), although whether this
is cause or effect remains a subject of debate [28]. CR1 is also expressed on leukocytes in
blood (neutrophils, monocytes, B cells), on macrophages and dendritic cells in tissues, and
on podocytes in the kidney. In the brain, CR1 expression has been demonstrated in neurons
and astrocytes in post-mortem LOAD and multiple sclerosis brain tissue [29–31]. CR1
expression has also been reported in cultured primary human astrocytes and microglia,
and on human stem cell-derived microglia transplanted into mouse brain [31–33]; however,
there is a continuing debate with some suggesting that CR1 is not expressed in the brain
and that the impact of CR1 on AD is explained by its peripheral roles in IC handling [34].
A clear understanding of whether, where, and when CR1 is expressed in the brain is
essential for our understanding of how CR1 single nucleotide polymorphisms (SNPs)
might confer increased LOAD risk.

5.3. Structure and Genetic Variants

The CR1 gene is located on chromosome 1q32 within the regulators of complement
activation (RCA) gene cluster; like other members of this cluster, it is a highly repetitive gene
made up of repeating units with internal duplications that cause copy number variation
(CNV). CNV in CR1 generates four co-dominant alleles that encode CR1 proteins differing
in the number of long homologous repeats (LHRs) (Figure 3). CR1*1 (also called CR1-A or
CR1-F), a 190 kDa protein, is the most common variant with an allele frequency of 0.87; it
comprises four LHRs, each made up of seven short consensus repeats (SCRs; 60–70 amino
acid, internally disulphide-bonded structural units), an additional two membrane-proximal
SCRs, transmembrane and cytoplasmic regions. CR1*2 (also called CR1-B or CR1-S) has an
extra LHR, a duplication of SCR 3–9, yielding a 220 kDa protein; it has an allele frequency
of 0.11. The remaining alleles, CR1*3 (also called CR1-C or CR1-F’; 160 kDa) and CR1*4
(also called CR1-D; 250 kDa), are very rare [35,36]. CR1*2 increases risk of LOAD by
~30% [3,9,30,37]. The addition of an extra LHR in CR1*2 increases the number of C3b/C4b
binding sites, a theoretical gain of function (Figure 3) [38,39]. The increased risk associated
with a gain-of-function variant in a molecule essential for IC clearance is counter-intuitive;
one plausible explanation is that expression of the CR1*2 haplotype is reduced; indeed,
reduced CR1 expression on erythrocytes in CR1*2 carriers has been reported [40,41]. It has
been suggested that the expression of CR1*2 is reduced compared to CR1*1 because it is
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less efficiently trafficked to the membrane, remaining trapped in cytoplasmic vesicles [30].
Whether the CR1*2 allele is associated with a reduced expression on CNS resident immune
cells remains to be demonstrated.
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Figure 3. Representation of CR1 structure and ligand binding sites. CR1*1 comprises, from the amino terminus (NH2), four
long homologous repeats (LHRs A-D), each composed of seven short consensus repeats (SCRs) of 60–70 amino acids each,
two additional SCRs, a transmembrane segment (TM), and an intracytoplasmic carboxy-terminal domain (IC-COOH). Each
circular block represents an SCR (numbered 1–30). There are three C4b binding sites (SCR 1–3, 8–10, and 15–17) and two
C3b binding sites (SCR 8–10 and 15–17). SCRs 22–28 bind C1q, MBL, and ficolins. CR1*2 has an additional LHR domain
(LHR-S) inserted between LHRs A and B and consequently an extra C3b/C4b binding site. Schematic based on similar
figures in the work of [37,39,42].

The most recent meta-analysis of LOAD GWAS identified rs679515 as the most sig-
nificant CR1 risk SNP [8]. Prior to this, rs4844610 and rs6656401 were reported [3,9]. All
three SNPs are intronic, and all are in linkage disequilibrium. This SNP association marks
the CNV described above, providing a means of identifying risk CNV carriers and clues
to the mechanism [37,38]. A single rare coding variant, rs4844609, has been identified
that is associated with episodic memory [43]. This SNP causes a Ser1610Thr substitution
at a membrane-proximal site in LHR-D of CR1 previously implicated as a C1q binding
site [44]. One study reported that the risk variant at this SNP increased the binding affinity
of CR1 for C1q [31]; however, this was not replicated using recombinant CR1 LHR-D
containing this Ser/Thr substitution [44]. Others suggested that the Ser1610Thr change
altered susceptibility to enzymatic cleavage of CR1 and generation of soluble CR1 (sCR1),
a locally active, fluid-phase complement inhibitor that might impact dysregulation of
complement in the surrounding milieu. Indeed, increased plasma levels of sCR1 have
been associated with both rs4844609 and rs6656401 [31,40]. It was suggested that rs4844609
accounts for the known LOAD risk effect of rs6656401 [43]; however, this has been refuted
by others [45]. To date, the LOAD-associated SNPs in CR1 were identified from GWAS in
Caucasian populations [3,9,46–48]. The few analyses of non-European populations have
reported conflicting results, some reports showing association of these same variants in
CR1 with LOAD in, for example, Han Chinese populations [49,50], whereas others failed to
replicate the findings from Caucasian populations [51].

6. Clusterin
6.1. Function

Clusterin is a multifaceted protein; its many and diverse functions were discovered in-
dependently of each other; hence, clusterin has many names in the literature [52]. Clusterin
is a lipoprotein that, in addition to roles in lipid transport, is an extracellular chaperone with
roles in BAX-mediated apoptosis, PI3K pro-survival, and oxidative stress pathways [53–56].
Clusterin also contributes to the regulation of the complement system; it is a fluid-phase
inhibitor of the terminal complement pathway, binding MAC precursors in the fluid phase
to prevent membrane binding and pore formation [57,58].
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6.2. Expression

Clusterin is ubiquitously expressed in tissues. Alternative splicing generates three
forms of clusterin that are, respectively, nuclear, cytoplasmic, and secreted. The first two
are regulators of apoptosis and intracellular chaperones and are not discussed further here.
Secreted clusterin is present in plasma at a concentration of ~100 mg/L; a proportion of
this will be contained within lipoprotein particles. Clusterin is also present in cerebrospinal
fluid (CSF) and other biological fluids, notably at high levels in seminal plasma. Clusterin
is abundantly expressed in the CNS, predominantly by astrocytes with region-specific
expression in a subset of neurons [59,60]. In the healthy brain, astrocytes are responsible
for the production and secretion of clusterin into the extracellular space. Overexpression of
both neuronal and astrocytic clusterin has been reported in cases of inflammatory insult and
neurodegenerative disease, including traumatic brain injury and spinal cord injury [61–64].

A role for clusterin in LOAD was first reported over 30 years ago. Clusterin mRNA is
upregulated in AD tissue [65], and clusterin protein is abundant in the AD brain, where it
is found in a subset of plaques and co-localises with MAC-labelled dystrophic neurites,
neuropil threads, amyloid deposits, and intracellular neurofibrillary tangles [66,67]. Clus-
terin expression positively correlated with ApoE4 allele number [68]. Levels of clusterin
are elevated in the CSF and plasma of LOAD patients [69,70]; indeed, plasma clusterin has
been suggested as a biomarker for AD, correlating with disease severity and progression
from mild cognitive impairment (MCI) to AD in some studies [71–73]. Precisely how clus-
terin impacts the pathogenesis of LOAD remains unclear. In an in vitro acellular system,
clusterin prevented Aβ aggregation [74]. Clusterin and the Clu-receptor glycoprotein
330/megalin have been reported to complex with soluble Aβ (sAβ) in the brain in order
to facilitate the transport of sAβ across the blood-brain-barrier (BBB) [75]. Others have
shown that clusterin binds and sequesters Aβ1-40 aggregates in vitro [76]. In mouse models,
Clu−/−ApoE−/− double knockout mice showed markedly increased Aβ production and
amyloid deposition compared with either single knockout, suggesting cooperative effects
of these lipoproteins [77,78]. Recent studies have also suggested a role for clusterin at the
synapse with increased clusterin protein reported in synaptoneurosomes from AD patients
and in ApoE4 carriers [79].

6.3. Structure and Genetic Variants

Clusterin is a heavily glycosylated heterodimeric protein comprising α and β chains
each of ~40 kDa molecular weight, generated from an 80 kDa precursor protein and linked
by five disulphide bonds. The structure is poorly defined, in part because of its tendency to
aggregate; however, both chains contain stretches of amphipathic helix interspersed with
disordered regions. The resultant molecule is highly flexible, likely explaining its broad
range of binding partners. The gene encoding clusterin (CLU) is found on chromosome
8p21-12 and comprises nine exons. The primary transcript (NM_001831.3) encodes an
immature pre-pro-protein containing a 22 amino acid signal sequence for translocation to
the endoplasmic reticulum (ER). At the ER, immature clusterin is processed and cleaved to
yield the highly glycosylated, mature heterodimeric protein.

Rare nonsynonymous mutations in CLU have been reported in a subset of AD patients
and shown to result in intracellular accumulation of CLU in the ER and loss of secreted
clusterin at the Golgi apparatus [80]. Of more relevance, there is an abundance of genetic
evidence associating variants within the CLU gene with increased LOAD risk; indeed, CLU
is the third strongest genetic risk factor for LOAD to date. Independent studies have identi-
fied multiple SNPs in CLU, associated with increased LOAD risk (rs11136000, rs2279590,
rs9331888, rs9331896 and rs11787077) [8,9,26]. To date, there is no clear mechanism to
explain how these clusterin variants confer increased LOAD risk, a task that is greatly
complicated by the promiscuity of the protein. Whether and how SNPs in CLU affect
clusterin synthesis systemically and locally in the CNS remains to be determined.

All SNPs studied to date have been suggested to affect plasma clusterin levels [81–83].
The rs11136000 SNP is located in intron 3 of CLU; 88% of Caucasians carry the C allele,
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this increases LOAD risk 1.6-fold [9]. The C allele is also associated with the risk of mild
cognitive impairment (MCI) and progression from MCI to AD [83,84]. The minor T allele
shows a mild protective effect [85]; this SNP has also recently been shown to be associated
with cognitive decline in Parkinson’s disease patients [86]. The rs9331888 risk SNP has
been associated with low levels of plasma clusterin and linked to alternative splicing of the
CLU gene [82,87,88]. It should be stressed that CLU may impact LOAD risk independently
of complement regulation via its roles in lipid handling and Aβ clearance; this has been
expertly reviewed elsewhere [89].

7. C1S
7.1. Function

C1s is a single-chain glycoprotein, a highly specific serine protease, and a core com-
ponent of the C1 complex, the initiator of the classical complement pathway. C1q is the
recognition unit of the complex, binding antibody or other ligands; conformational changes
in C1q then activate the associated pro-enzyme C1r, which in turn proteolytically activates
pro-C1s. Activated C1s can then cleave C4 and C2 to form the C3 convertase C4b2a. Defi-
ciency of C1s (or any of the components of the C1 complex) is strongly associated with a
lupus-like immune complex disease reflecting loss of capacity to activate complement on
immune complexes.

7.2. Expression

The C1S gene is located on chromosome 12, where the C1R and C1S genes lie end to
end separated by 9.5 kb; they are derived from a common ancestral gene through gene
reduplication [90]. C1s are predominantly made in hepatocytes but are also produced
by activated macrophages and monocytes. Brain expression is low and predominantly
by microglia [91]. The plasma concentration of C1s is ~30 mg/L, the large bulk of this
incorporated in the C1 complex. C1s are also present in CSF, although absolute levels were
not obtained [92].

7.3. Genetic Variants

Complete C1s deficiency is associated with the immune complex disease as noted
below; partial deficiencies have been associated with Ehlers-Danlos syndrome though
the underlying mechanisms are unclear. Until very recently, no other disease-associated
variants in C1S were reported. The most recent GWAS identified a novel SNP 5Kb up-
stream of C1S, which showed suggestive association with increased LOAD risk (SNP
rs3919533) [8]. The mechanism of action of this SNP remains to be determined through
functional experiments; however, given the location of the SNP, it is likely to impact the
expression of the protein; indeed, C1s levels have previously been shown to be reduced in
the CSF of AD patients, though there is no evidence that this observation is related to the
C1S risk SNP [92].

8. Complement in LOAD: Smoking Gun or Red Herring?

In many chronic inflammatory and degenerative diseases, a role for complement
has been clearly demonstrated, often with evidence pinpointing the relevant parts of the
complement pathway involved in disease aetiology, for example, alternative pathway acti-
vation in AMD, and sometimes with proven efficacy of anti-complement drugs. Until very
recently, the situation for LOAD was very different; complement proteins and activation
products had been demonstrated in LOAD brains and biological fluids, but this “guilt-by-
association” was not supported by solid evidence. Two things have changed the situation;
first, the demonstration that complement activation at the synapse is a critical player in
synapse loss in the disease; second, the genetic evidence implicating complement sum-
marised above. The genetics tell us that CR1, CLU, and likely C1S are strongly implicated
in the disease process—although whether the clusterin association involves its complement
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roles is very unclear. While this provides strong evidence that complement dysregulation
is involved in LOAD, it does not point towards a specific pathway or mechanism.

Understanding how complement variants confer LOAD risk is further complicated
by several factors. Firstly, the majority of the LOAD-associated complement variants
identified to date are non-coding and likely confer risk by affecting cell and region-specific
expression levels. Unlike in other more accessible organs, the location and nature of the
brain make it impossible to assess longitudinal expression levels in the brain parenchyma,
and reliance on post-mortem evidence likely masks important early and progressive
changes. Second, LOAD-associated complement genes predispose individuals to LOAD,
but other risk factors (non-complement and non-genetic) are required to cause disease;
hence, functional studies of risk variants must be conducted in specific contexts to reveal
relevant mechanistic pathways of action. In vivo and in vitro studies, each with different
limitations must be used in conjunction to understand the role of complement at different
time points in disease. Third, there are many regions of the human genome, including some
important complement loci, which cannot be assembled or aligned using standard short-
read sequencing technologies, preventing the identification of disease-causing mutations
or variations [93,94]. These regions are referred to as “dark” or “camouflaged”; “dark”
regions are difficult to sequence due to, for example, high GC content, while “camouflaged”
regions of the genome are highly repetitive, making alignment of short reads difficult.
The complexity of complement genes is a consequence of gene reduplication events, so
many loci, notably the RCA cluster, are highly repetitive in nature and therefore likely well
camouflaged. For example, regarding CR1 in the RCA cluster, 26% of the protein-coding
region is hidden due to its highly repetitive nature so that significant variation may be
missed by standard sequencing in GWAS [94]. Indeed, this study, systematically targeting
“dark” genes relevant to LOAD risk, identified a novel 10-nucleotide frameshift mutation
in CR1 present in five cases but no controls.

Our recent study using available GWAS data identified no remaining complement
gene LOAD association when CLU and CR1 were removed from a complement geneset [95];
however, such analyses are limited by the data. Indeed, the recent GWAS identification of
a suggestive association of C1S with LOAD [8] highlights that larger data sets and newer
sequencing technologies may identify other complement genes that impact LOAD risk.

Often, by the time people with LOAD reach the clinic, they already have signifi-
cant irreversible pathology. Understanding of complement risk genes and the resultant
complotypes involved in LOAD might facilitate predictive genetic screening tests; if the
complotypes can be linked with complement levels in plasma, as seen in AMD, this
might enable the development of simple diagnostic tools and guide the future use of
anti-complement drugs in LOAD. There are a number of anti-complement therapeutics
currently in development for CNS disorders [96]; genetic and biomarker assays could be
used to stratify patients for anti-complement therapeutic interventions.
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Abstract: One of the most compelling needs in the study of Alzheimer’s disease (AD) is the char-
acterization of cognitive decline peripheral biomarkers. In this context, the theme of altered RNA
processing has emerged as a contributing factor to AD. In particular, the significant role of long
non-coding RNAs (lncRNAs) associated to AD is opening new perspectives in AD research. This class
of RNAs may offer numerous starting points for new investigations about pathogenic mechanisms
and, in particular, about peripheral biomarkers. Indeed, altered lncRNA signatures are emerging
as potential diagnostic biomarkers. In this review, we have collected and fully explored all the
presented data about lncRNAs and AD in the peripheral system to offer an overview about this class
of non-coding RNAs and their possible role in AD.

Keywords: long non-coding RNA; Alzheimer’s disease; biomarkers; peripheral system

1. RNA Metabolism in Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that leads to
intellectual functions’ impairment. AD is the most common type of dementia in aging
populations causing neuropathology in specific brain regions, including hippocampus,
amygdala, and frontal and temporal cortices. Complex multifactorial interactions among
genetic, epigenetic, and environmental components contribute to AD onset. Although
much emphasis has been placed on the role of protein aggregates (Aβ plaques and tau
tangles) in AD, recent multiple lines of evidence converge on altered RNA metabolism as a
contributing factor in the pathogenesis of this disorder. In particular, non-coding RNAs’
role is emerging as involved in pathogenesis, diagnosis and therapy of AD. For instance,
many microRNAs (miRNAs) have been identified as key elements for the regulation
of memory process and cognitive functions lost in AD [1]. They can act through the
regulation of activity-mediated protein synthesis at the synaptic level [2], the regulation
of Aβ production [3,4] and tau phosphorylation [3]. Circular RNAs (circRNAs), a type
of single-stranded RNA which forms a covalently closed continuous loop, can act as a
miRNA “sponge” to quench normal miRNA functions [5]. This mechanism has been
found also in AD, where the altered circRNA ciRS-7 sponging activity for miRNA-7 leads
to the lack of essential proteins for the clearance of amyloid peptides in AD brain [6].
Moreover, mounting evidence shows that long non-coding RNAs (lncRNAs) are aberrantly
expressed in AD progression and participate in the regulation of Aβ peptide [7,8] tau [9],
inflammation and cell death [10,11].
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2. Long Non-Coding RNAs

LncRNAs are defined as non-coding RNA molecules longer than 200 nucleotides.
Most of them are transcribed by RNA polymerase II and are often post transcriptionally
modified by splicing, 5′ 7-methylguanosine capping and a 3′ polyadenylation; however,
they lack coding capacity [12]. Human GENCODE suggests that the human genome
contains more than 16,000 lncRNA genes, but other estimates exceed 100,000 human
lncRNAs [13]. Despite not being translated into proteins, lncRNAs are functional molecules
with high heterogeneity and functional versatility that relies on their ability as long RNA
molecules to conform to different structures and molecular interactions. Indeed, lncRNAs
can regulate, among other things, transcriptional regulation in cis or trans, organization
of nuclear domains, and regulation of proteins or RNA molecules, affecting numerous
biological and pathological processes [14].

3. lncRNAs in AD Peripheral System
3.1. Blood

The discovery of peripheral biomarkers for neurodegenerative disease, such as AD, is
needed. LncRNAs may be a noninvasive target to confirm AD diagnosis and they can also
be used as prognostic biomarkers.

Different papers have investigated lncRNAs in blood for AD patients. Kurt and
collaborators [15] have investigated lncRNAs’ expression difference between AD patients
and controls in peripheral blood mononuclear cell (PBMC) by microarray analysis. Their
data showed that 34 lncRNAs have been found deregulated, in particular the most altered
lncRNA is an antisense transcript named TTC39C-AS1. This antisense is interesting since
its sense gene, TTC39C, is involved in neurogenic atrophy [16]. Next, another highly
deregulated lncRNA was LOC401557 that is an uncharacterized lncRNA very abundant
in the brain tissue [17]. Gene deregulation generally implicates changes in gene expres-
sion altering cell homeostasis, and its understanding may provide new insights into the
mechanisms involved in human diseases [18]. In general, different pathways in which
lncRNA may have a role have been identified, such as amyloidogenic and mTOR pathways.
For both, a deregulation of lncRNAs occurs as LINC01503 and LINC01420 are altered in
PBMCs and also in brain [19,20].

We previously demonstrated deregulated lncRNAs in PBMCs from AD patients by
RNA-seq. We compared the lncRNA profile of AD patients with two other neurodege-
narative diseases, Parkinson’s disease and amyotrophic lateral sclerosis [21]. The data
showed that CH507-513H4.4, CH507-513H4.6, CH507-513H4.3 lncRNAs are deregulated
in AD PBMC compared to controls. They are novel transcripts, similar to YY1 Associated
Myogenesis RNA 1 (YAM1), and they are reported as AD associated in the LncRNADisease
v2.0 Database [22]. These lncRNAs were specific for AD-in fact, no deregulation was
found in the other diseases. Moreover, lncRNA pathway analysis was performed using
the LncPath R package that showed an involvement of Mapk signaling, cytokine receptor
interaction, chemokine signaling, natural killer cell mediated cytotoxicity and regulation of
actin cytoskeleton.

3.2. Plasma

Two main plasma lncRNAs have been proposed as possible AD biomarkers: BACE1-
AS and 51A [23].

51A is the antisense transcript of SORL1 gene that was described as associated to AD
for the first time in 2004, but its role is not clear [24]. SORL1 is involved in APP processing
and trafficking. It may bind newly made Aβ in the neuron and steers it toward lysosomes,
where it is degraded [25,26]. Besides this, SORL1 as an ApoE receptor is likely to participate
in the lipid metabolism of AD genesis [27].

SORL1-AS (51A) expression leads to Aβ-42 accumulation, and it has been found
to be increased in plasma and brain of AD patients compared to controls [28]. Clinical

60



Genes 2021, 12, 1124

correlation showed that lncRNA 51A was negatively correlated with the Mini-Mental State
Examination (MMSE) scores in AD patients.

About LncRNA BACE1-AS, its plasma level in AD patients was significantly higher
compared to controls [29], while there was no correlation with MMSE scores. On the other
hand, it has recently been demonstrated that lncRNA BACE1-AS may discriminate between
full AD and controls but also between pre-AD and controls, suggesting that lncRNAs could
be a predictive biomarker [30]. BACE1-AS regulates BACE1 mRNA and protein expression
and may also increase BACE1 stability [8]. In fact, when BACE1-AS is silenced, the activity
of BACE1 mRNA is attenuated and the production of Aβ-42 oligomers is reduced [31].

3.3. Extracellular Vesicles (EVs)

The presence of lncRNAs is also observed in extracellular vesicles (EVs). EVs are
heterogenous lipid bound vesicles that are released and circulate in the extra-cellular
space [32]. The two main subtypes of EVs are microvesicles (MVs), mostly derived from
plasma membrane and 100–500 nm in diameter, and exosomes, generated through the
classical endosome-multivesicular body (MVB) pathway and 30–150 nm in diameter [33].
The International Society for Extracellular Vesicles (ISEV) has updated EVs’ nomenclature,
defining as small EVs (SEVs) particles that are <100 nm or <200 nm and large EVs (LEVs)
those that are >200 nm [33].

LncRNAs have mostly been observed packaged into SEVs [34,35]. SEVs can be
released by practically all eukaryotic cells [36]. We found two studies concerning lncRNAs
in AD in SEVs derived from plasma and cerebrospinal fluid (CSF).

BACE1-AS transcript was measured in plasma-derived SEVs from 72 AD and 62 con-
trols. The level of this transcript was different in the two groups, being significantly higher
in AD patients [37]. This result is in contrast with a previous study, that analyzed a smaller
cohort of subjects, where the level of BACE1-AS remained unchanged in AD plasma
SEVs [30].

BACE1-AS is able to influence the expression of Aβ and is described in AD pathogen-
esis [38]. Given the need of improving accuracy of AD diagnosis, Wang and collaborators
tried to link pathological changes in the brain and the altered expression of BACE1-AS.
However, they found no correlation between this lncRNA and Magnetic Resonance Imag-
ing (MRI) data. Nevertheless, they also performed a receiver operating characteristic (ROC)
curve analysis, which is a graphical approach for comparing the relative performance of
different classifiers and to determine whether a classifier performs better than random
guessing [39]. They demonstrated that when exosomal BACE1-AS levels are combined
with the volume and thickness of the right entorhinal cortex, specificity and sensitivity
were at high percentage, making these parameters potential biomarkers of AD [37].

The expression of two lncRNAs, RP11-462G22.1 and PCA3, was also evaluated in
CSF-derived SEVs from AD patients [40]. These two transcripts were found to be associated
with Parkinson’s disease (PD). These lncRNAs may not represent the perfect biomarkers for
discriminating AD and PD, due to the fact that they are deregulated in both conditions, but
they could rather be used as indicative molecules for neurodegeneration. RP11-462G22.1,
instead, was found to be highly expressed in AD and PD. It is a muscular dystrophy-
associated lncRNA that was predicted to be the target of 21 microRNAs, making it a
potential competing endogenous RNA (ceRNA) [41]. PCA3, another lncRNA up-regulated
in CSF-derived SEVs from AD patients, may be targeted by 14 microRNAs [42]. PCA3’s
biological function in neurodegenerative disorders is still unknown.

So far, the study of lncRNAs in EVs from AD patients is not sufficient for providing
informative evidence of their role in the pathogenesis of this disease. Nor has a relevant
screening of these molecules been published in order to highlight reliable biomarkers that
could be used in the diagnosis or prognosis of AD.
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3.4. Cerebrospinal Fluid (CSF)

The most instructive fluid in biomarker detection for neurodegeneration is cere-
brospinal Fluid (CSF) [43]. Thus, we explored literature in order to highlight the most
promising lncRNAs studied in CSF of AD patients.

MALAT1, a long intergenic non-coding RNA, regulates synaptogenesis and, in fact,
its expression is widely observed in neurons [44]. It may be used as a diagnostic biomarker
of AD in CSF, where it was found down-regulated [45]. The role of MALAT1 was initially
described in AD models where the expression of the transcript was both up and down-
regulated [11]. In this study, enhanced neuron apoptosis, repressed neurite outgrowth
and elevated inflammation-related molecules were observed where MALAT1 levels were
lower. Moreover, they found miR-125b, which induces the processes listed above, to be
negatively affected by MALAT1. Thus, low levels of lncRNA MALAT1 promote miR-
125b enrichment, which in turn increases prostaglandin-endoperoxide synthase 2 (PTGS2)
and cyclin-dependent kinase 5 (CDK5) expression levels and decreased forkhead box
Q1 (FQXQ1). Interestingly, the intercorrelation of MALAT1 and miR-125b with FOXQ1,
PTGS2 and CDK5 was also confirmed in CSF of AD patients [46]. In addition to functional
characterization, this lncRNA–miRNA axis in CSF was also used for predicting Mini-Mental
State Examination (MMSE) score decline at 1 year, 2 years and 3 years in AD patients.

Glial cell-derived neurotrophic factor (GDNF) is involved in neurite branching and
synaptic plasticity [47]. In CSF of AD patients, GDNF mRNA is highly up-regulated [48].
The identification of a cis-antisense non-coding RNA to GDNF (GDNF-AS1 or GDNFOS)
and its dependence to GDNF expression led Airavaara and collaborators to speculate that
GDNF-AS1 may also be involved in synaptic plasticity and that further studies are needed
to demonstrate the implication of this lncRNA in AD pathogenesis [47].

Long non-coding RNA activated by TGF-beta (lncRNA-ATB), firstly identified in
2014 [49], is abnormally expressed in central nervous system cancers [50]. Its expression
was also altered in CSF of AD patients, where it was highly increased [51]. For this reason,
deregulation of lncRNA-ATB may be used as a hallmark of disease rather than a specific
biomarker. Moreover, in a recent study adult malignant brain tumors and AD were found
to share some environmental risks [52]. LncRNA-ATB is indeed up-regulated both in AD
patients and in glioma tumors.

To study the effect of lncRNA-ATB up-regulation, Wang and collaborators used PC12
cells and discovered that miR-200 is negatively affected by this lncRNA. MiR-200 in turn
inversely regulates makorin ring finger protein 3 (MKRN3 or ZNF127), which is a 3-
ubiquitin ligase potentially affecting gene expression and targeted protein degradation [47].
The inhibition of miR-200 mediated by lncRNA-ATB overexpression aggravated PC12 cells
injury induced through Aβ25-35 [51]. However, the role of ZNF127 in neurodegeneration
remains unclear. Altogether, these results highlight the relevance of the lncRNA–ATB/miR-
200 axis in AD (Table 1).
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Table 1. Deregulated lncRNA in peripheral tissue of AD patients.

Deregulated
lncRNA in AD Trend Source Reference Tissue Expression

TTC39C-AS1 up-regulated Blood [1–6] adrenal; brain; breast; lymphnode;
testes; thyroid

LOC401557 up-regulated Blood [17]

adipose; adrenal; brain; breast; colon;
foreskin; heart; HLF; kidney; liver;
lung; lymphnode; ovary; placenta;

prostate; skeletal muscle; testes;
thyroid; WBC

CH507-513H4.4 up-regulated Blood [21] /

CH507-513H4.6 up-regulated Blood [21] /

CH507-513H4.3 up-regulated Blood [21] /

SORL1-AS (51A) up-regulated Plasma [28] /

BACE1-AS up-regulated Plasma [30] brain; ovary; testes; thyroid

BACE1-AS up-regulated Plasma SEVs [37] brain; ovary; testes; thyroid

RP11-462G22.1 up-regulated CSF SEVs [40]

adipose; adrenal; brain; breast; colon;
foreskin; heart; HLF; kidney; liver;
lung; lymphnode; ovary; placenta;

prostate; skeletal muscle; testes;
thyroid; WBC

PCA3 up-regulated CSF SEVs [40] brain; HLF; kidney; lymphnode;
ovary; prostate; testes

MALAT1 down-regulated CSF [45] adipose; brain; breast; lymphnode;
prostate; testes; thyroid

lncRNA-ATB up-regulated CSF [51] adrenal; brain; breast; heart; HLF;
liver; ovary; testes; thyroid

Deregulated lncRNAs in AD patients are reported together with their trend (up or down-regulated), their biofluid source and the
corresponding literature reference. Using NONCODE database (www.noncode.org), human tissue where relative lncRNA was detected is
reported. Human lung fibroblast (HLF); White blood cells (WBC).

4. Conclusions

In this review, we have explored literature classifying the current knowledge about
lncRNAs in peripheral tissue of Alzheimer’s disease patients. We found that several non-
coding transcripts have been identified as potential biomarkers of this disease. Moreover,
some studies have also highlighted the need to characterize the functional role of these
molecules in the pathogenesis of Alzheimer’s. In particular, the up-regulation of BACE1-AS
in different tissues from AD patients appears to be a promising lncRNA in the study of AD
due to its involvement in β-secretase regulation.

In conclusion, research concerning lncRNAs in neurodegenerative pathogenesis needs
to be implemented in the future, covering both their potential as biomarkers and as
therapeutic targets.
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Abstract: Genome-wide association studies (GWAS) have identified immune-related genes as risk
factors for Alzheimer’s disease (AD), including TREM2 and CD33, frequently passing a stringent
false-discovery rate. These genes either encode or signal through immunomodulatory tyrosine-
phosphorylated inhibitory motifs (ITIMs) or activation motifs (ITAMs) and govern processes critical
to AD pathology, such as inflammation and amyloid phagocytosis. To investigate whether additional
ITIM and ITAM-containing family members may contribute to AD risk and be overlooked due to the
stringent multiple testing in GWAS, we combined protein quantitative trait loci (pQTL) data from
a recent plasma proteomics study with AD associations in a recent GWAS. We found that pQTLs
for genes encoding ITIM/ITAM family members were more frequently associated with AD than
those for non-ITIM/ITAM genes. Further testing of one family member, SIGLEC14 which encodes
an ITAM, uncovered substantial copy number variations, identified an SNP as a proxy for gene
deletion, and found that gene expression correlates significantly with gene deletion. We also found
that SIGLEC14 deletion increases the expression of SIGLEC5, an ITIM. We conclude that many genes
in this ITIM/ITAM family likely impact AD risk, and that complex genetics including copy number
variation, opposing function of encoded proteins, and coupled gene expression may mask these AD
risk associations at the genome-wide level.

Keywords: ITIM; ITAM; SIGLEC14; SIGLEC5; copy number variation; CNV; GWAS

1. Introduction

Genome-wide association studies (GWAS) have identified a set of polymorphisms that
modulate the risk of Alzheimer’s disease (AD) [1–6]. The pathways implicated in this pro-
cess include innate immunity, cholesterol homeostasis, and protein trafficking [7–9]. Four of
these genes, TREM2, CD33, PILRA, and FCER1G, are members of the family of non-catalytic
tyrosine-phosphorylated receptors (NTRs), which function through immunomodulatory
tyrosine-phosphorylated activating motifs (ITAMs) or inhibitory motifs (ITIMs). The un-
derlying immunomodulatory pathway is further implicated by AD-associated variants
in phospholipase C (PLCG2) and INPP5D which encode proteins acting downstream of
these ITAM- and ITIM-containing proteins. Functional studies have informed the cur-
rent hypothesis that the variants associated with AD in the ITAM/ITIM family modulate
inflammation and phagocytosis [10–18].

The ITAM family, including TREM2, recruit kinases such as spleen tyrosine kinase
(Syk) and phosphoinositide 3-kinase (PI3K) to induce downstream signaling, while the
ITIM family, including CD33, recruit phosphatases such as SHP-1 to dephosphorylate Syk
and ITAMs, thereby counteracting ITAM activity [19]. These ITAM and ITIM proteins
are predominantly expressed in immune cells such as microglia. Overall, these and other
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studies have shown that microglia contribute to AD pathogenesis, a concept that has been
reviewed recently [20–22].

The critical barrier to progress in translating GWAS candidate genes to treatments
is elucidating the actions of the functional variant at the molecular level, i.e., splicing
(sQTL), gene expression (eQTL), or protein level (pQTL), to understand whether the
pathway affected is detrimental or beneficial to disease risk. GWAS single nucleotide
polymorphisms (SNPs) in AD are frequently identified as eQTLs in the brain [23]. Sun et al.
have used GWAS to identify pQTLs for the plasma proteome, including ITIM and ITAM-
containing proteins [24]. To investigate the hypothesis that these pQTLs may uncover
additional AD-related genes that may have been overlooked in AD GWAS because of their
stringent false-discovery rate controls, we examined the Sun et al. cis-pQTL data together
with the Jansen et al. AD GWAS results. Parsing the proteins from the genome-wide
significant cis-pQTL dataset by whether or not an ITIM/ITAM domain was present, and
then examining whether the associated SNP is nominally significant (p < 0.05) for AD
association, found a significant overrepresentation of ITIM/ITAM encoding genes with
nominal AD associations. Since one of these genes, SIGLEC14, has been reported to be
deleted in some individuals, we investigated further and found that the pQTL and AD
SNP, rs1106476, is a proxy for the previously identified deletion polymorphism [25]. We
defined this deletion further by identifying additional SIGLEC14 copy number variants
and by determining the effect of SIGLEC14 copy number on the expression of SIGLEC14
and the neighboring SIGLEC5. We conclude that variants in ITIM/ITAM family members,
including SIGLEC14, represent underappreciated potential genetic risk factors for AD.

2. Materials and Methods
2.1. Preparation of gDNA, RNA, and cDNA from Human Tissue

Human blood and anterior cingulate autopsy tissue from 61 donors were generously
provided by the Sanders-Brown Alzheimer’s disease center neuropathology core and
have been described elsewhere [26]. The matched brain and blood samples were from
deceased individuals with an average age at death of 82.4 ± 8.7 (mean ± SD) years for
non-AD and 81.7 ± 6.2 years for AD subjects. The average postmortem interval (PMI) for
non-AD and AD subjects was 2.8 ± 0.8 and 3.4 ± 0.6 h, respectively. Non-AD and AD
samples were comprised of 48% and 55% female subjects. MMSE scores were, on average,
28.4 ± 1.6 for non-AD subjects and 11.9 ± 8.0 for AD subjects. These samples were used
for genotyping and gene expression studies. Three additional blood samples matched to
whole-genome sequencing (WGS) data were obtained to confirm WGS observations of
additional SIGLEC14 copies. DNA from these patients was prepared using a QIAamp DNA
Blood Mini kit (Qiagen, Germantown, MD, USA) per the manufacturer’s instructions.

2.2. Genotyping and Copy Number Variant Assays

Copy number variation in SIGLEC14 was determined using a TaqMan-based copy
number variant (CNV) assay (Invitrogen, Waltham, MA, USA; Catalog number 4400291,
Assay number Hs03319513_cn) compared to RNAse P (Invitrogen, 4403326). Amplifica-
tion and quantitation were performed per manufacturer instructions. Genotyping the
rs1106476 was performed with a custom TaqMan assay (Invitrogen). This assay discrimi-
nates rs1106476 and rs872629, which are in perfect LD. As coinherited SNPs, this variant is
also known as rs35495434.

2.3. Gene Expression by qPCR

Gene expression was quantified by qPCR with PerfeCTa SYBR Green master mix as pre-
viously described [14]. SIGLEC14 was quantified with primers corresponding to a sequence
in exons 3 and 5: 5′-CAGGTGAAACGCCAAGGAG-3′ and 5′-GCGAGGAACAGGGA
CTGG-3′. SIGLEC5 was quantified with primers corresponding to sequences in exons 4 and
5: 5′-ACCATCTTCAGGAACGGCAT-3′ and 5′-GGGAGCATCACAGAGCAGC-3′. Cycling
conditions for all qPCRs were as follows: 95 ◦C, 2 min; 95 ◦C, 15 s, 60 ◦C, 15 s, 72 ◦C, 30 s,
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40 cycles. Copy numbers present in the cDNA were determined relative to standard curves
that were executed in parallel [19].

2.4. WGS Data Analysis

To investigate the frequency and range of SIGLEC14 CNV, we performed a read-depth
analysis for WGS data. We obtained compressed sequence alignment map (CRAM) files
from the AD sequencing project (ADSP) and AD Neuroimaging (ADNI). We extracted
paired-end reads mapped to the SIGLEC14-SIGLEC5 locus under Genome Reference Con-
sortium Human Build 38 (GRCh38/hg38), and then computed the depth at each position
using the samtools depth function [27].

2.5. Statistical Analyses

The association of cis-pQTL proteins containing ITIM/ITAM domains and AD-associated
SNPs was calculated using a simple chi-square test. Gene expression was analyzed by using
JMP14 Pro using one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc
multiple testing correction and graphed in GraphPad Prism 8.

3. Results
3.1. ITIM/ITAM pQTLs Are Overrepresented in AD GWAS Results

To evaluate whether pQTLs for ITIM or ITAM-containing proteins were associ-
ated with AD, we compiled a list of ITIM and ITAM-containing proteins from prior
reviews [28–31]. The resulting list contained 187 genes and is provided as Supplemental
Table S1. The cis-acting pQTLs from Sun et al. and AD associations from Jansen et al. were
then matched by chromosomal coordinates [2,24]. Both datasets were provided under
Genome Reference Consortium Human Build 37 (GRCh37/hg19). Genes were then subset
as either coding for an ITIM/ITAM gene or not and nominally significant (p < 0.05) for AD
association or not. The SNPs which are associated with both ITIM/ITAM protein levels
in plasma and AD risk are shown in Table 1. We found that pQTLs that affect ITIM or
ITAM genes were significantly overrepresented in nominally significant AD associations
(p = 6.51 × 10−5, χ2

1 = 15.95, Table 2).

Table 1. Genes that are nominally significant for AD association with strong pQTL signal.

Gene SNP P (pQTL) β
(pQTL) P (AD) β (AD) N (AD) ITIM/

ITAM

CD33 rs12459419 0 † −0.94 7.13 × 10−9 −0.01330 458,744 ITIM
FCGR3B rs10919543 3.20 × 10−67 0.44 0.000317 0.00806 445,293 ITAM
LILRA5 rs759819 2.50 × 10−111 −0.54 0.00186 0.00717 454,216 ITAM
LILRB2 rs373032 7.60 × 10−146 −0.72 0.00227 0.00763 463,880 ITIM

SIGLEC9 rs2075803 0 † −1.23 0.00703 0.00576 466,252 ITIM
SIRPB1 rs3848788 1.20 × 10−213 0.75 0.00942 0.00582 458,092 ITAM

COLEC12 rs2846667 9.30 × 10−12 0.20 0.0177 0.00586 449,987 ITAM
FCRL1 rs4971155 6.30 × 10−26 −0.26 0.0197 −0.00520 403,829 ITAM
NCR1 rs2278428 1.10 × 10−15 −0.36 0.0249 0.00815 466,252 ITAM

SIGLEC14 rs1106476 0 † −1.19 0.0284 0.00736 458,063 ITAM
FCRL3 rs7528684 1.40 × 10−112 0.53 0.04 −0.00434 458,744 Both
MRC2 rs146385050 1.30 × 10−11 −0.22 0.041 −0.00612 396,686 ITAM

SLAMF6 rs11291564 2.60 × 10−12 0.20 0.042 −0.02450 17,477 ITAM

† The p-value in the analyzed summary statistics was reported as exactly 0. This does not impact our analysis, as
our threshold was any cis-pQTL at p < 0.05.

Table 2. Overlap of pQTL and AD signals.

pQTLs ITIM/ITAM (%) Not ITIM/ITAM (%) Total

AD p < 0.05 13 (28) 54 (10) 67
AD p > 0.05 34 (72) 488 (90) 522

Total 47 (100) 542 (100) 589

69



Genes 2021, 12, 1008

3.2. SIGLEC14 pQTL Is a Proxy for the Deletion Polymorphism

Previous reports have identified a SIGLEC14 deletion [25]. Given the strong pQTL
signal from rs1106476 on SIGLEC14 reported by Sun et al., and the fact that rs1106476 is
within the neighboring SIGLEC5 gene, yet has a cis-pQTL effect on SIGLEC14, we hypoth-
esized that rs1106476 is a proxy for the SIGLEC14 deletion polymorphism. To test this
hypothesis, we genotyped a set of DNA samples for rs1106476 and quantified genomic
copy number variation (CNV). We found that the proxy SNP correlates with SIGLEC14
deletion well but not perfectly (p < 0.0001, χ2

2 = 38.40) (Table 3). To better understand this
deletion, we then sequenced the region containing the SIGLEC14-SIGLEC5 fusion in five
minor allele carriers (two homozygous for SIGLEC14 deletion and three heterozygous) [25].
Based on these sequencing data, relative to reference sequences, we found a 692 bp region
of complete identity between SIGLEC14 and SIGLEC5. Within this region, the deletion
polymorphism sequence corresponds to SIGLEC14 at the 5′ end, but SIGLEC5 on the 3′ end,
with respect to reference sequence data (Figure 1). Overall, this represents a 17 kb deletion.

Table 3. Evaluation of rs1106476 as a proxy for SIGLEC14 deletion.

SIGLEC14 Copies rs1106476 T/T rs1106476 A/T rs1106476 A/A Total
0 0 1 1 2
1 6 13 0 19
2 39 0 0 39
3 2 2 0 4

Total 47 16 1 64
Blue = predicted correlation of SIGLEC14 deletion vs. rs1106476. Each cell represents the number of DNA samples
with the indicated SIGLEC14 copy number and rs1106476 genotype.

Genes 2021, 12, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 1. Identification of the SIGLEC14 deletion site. Coordinates in both are for reference genome. 
Exons 1-3 of SIGLEC14 and SIGLEC5 are identical which confounds exact determination of the cross-
over event. The yellow region depicts SIGLEC14, the blue region depicts SIGLEC5, while the green 
region depicts the 692 bp region of complete identity where the crossover deletion occurs. 

3.3. SIGLEC14 CNV Is Not Fully Captured by rs1106476 
As noted in Table 3, we found some individuals that had three copies of SIGLEC14 

as detected by the CNV assay. To validate these findings, we leveraged the ADNI and 
ADSP WGS datasets and compared read depth in the SIGLEC14 locus with surrounding 
sequences (Figure 2). Both datasets contained individuals with SIGLEC14 copy numbers 
ranging from 0–3. The presence of three copies of SIGLEC14 was cross-validated between 
WGS data and CNV assay in three individuals. Further, the frequencies across popula-
tions are equivalent (Table 4; p = 6.76 × 10−12, χ2 = 69.30). Read depths for Caucasian, African 
American, and other populations are shown as Supplemental Figures S1–S3. 
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green region depicts the 692 bp region of complete identity where the crossover deletion occurs.
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3.3. SIGLEC14 CNV Is Not Fully Captured by rs1106476

As noted in Table 3, we found some individuals that had three copies of SIGLEC14
as detected by the CNV assay. To validate these findings, we leveraged the ADNI and
ADSP WGS datasets and compared read depth in the SIGLEC14 locus with surrounding
sequences (Figure 2). Both datasets contained individuals with SIGLEC14 copy numbers
ranging from 0–3. The presence of three copies of SIGLEC14 was cross-validated between
WGS data and CNV assay in three individuals. Further, the frequencies across populations
are equivalent (Table 4; p = 6.76 × 10−12, χ2 = 69.30). Read depths for Caucasian, African
American, and other populations are shown as Supplemental Figures S1–S3.
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Table 4. Summary of the SIGLEC14 CNV in the 3095 sample ADSP WGS dataset.

SIGLEC14 Copy Number Caucasian African American Other Total

0 24 74 44 142
1 304 348 316 968
2 692 522 652 1866
3 21 53 43 117
4 0 1 1 2

Total 1041 998 1056 3095

Deletion MAF 0.1691 0.2485 0.1913 0.2023

Addition MAF 0.0101 0.0276 0.0213 0.0195
MAF: Minor allele frequency.

3.4. SIGLEC14 Is Expressed in Human Brain, and CNV Correlates with Gene Expression

To test whether gene expression compensation may neutralize the effect of genomic
SIGLEC14 deletion, we quantified SIGLEC14 expression relative to SIGLEC14 gene copy
number in cDNA prepared from human brain samples. Consistent with RNAseq studies
that show SIGLEC14 is expressed in microglia, SIGLEC14 expression strongly correlated
with expression of the microglial gene AIF1 (p < 0.0001, r2 = 0.409, Figure 3A) [19,32].
When SIGLEC14 expression is normalized to AIF1 expression, SIGLEC14 expression
was dependent in a step-wise manner with SIGLEC14 CNV (p = 0.0002, F2,47 = 10.679,
Figure 3B). Strikingly, individuals with one copy of SIGLEC14 have a mean SIGLEC14 ex-
pression of 54.6% compared to individuals with two copies. We interpret this to mean that
there is no compensatory increase in SIGLEC14 expression in individuals heterozygous for
SIGLEC14 deletion.

Figure 3. SIGLEC14 expression correlates with microglial gene AIF1 and SIGLEC14 CNV. (A)
SIGLEC14 is expressed in microglia (p < 0.0001, F1,48 = 33.19, r2 = 0.409). (B) SIGLEC14 CNV strongly
correlates with SIGLEC14 gene expression (p = 0.0002, F2,47 = 10.679), Tukey’s post-hoc multiple
comparisons test. ** p < 0.01. We do not have statistical power to compare expression with CNV > 2,
given its low MAF.

3.5. SIGLEC14 Deletion Leads to Increased SIGLEC5 Expression

To test whether SIGLEC5 expression changed with respect to SIGLEC14 deletion,
we quantified SIGLEC5 expression relative to SIGLEC14 CNV in these same brain sam-
ples. Since SIGLEC5 does not have its own promoter and there are no H3K27 acetylation
peaks between SIGLEC14 and SIGLEC5, we hypothesized that an inverse relationship
exists between SIGLEC14 CNV and SIGLEC5 expression, where a SIGLEC14 deletion
brings SIGLEC5 closer to the promoter leading to increased transcription (Supplemental
Figure S4) [33–35]. We found that SIGLEC5 expression significantly increases with respect
to SIGLEC14 genomic deletions (Figure 4; p = 0.0220, F2,46 = 4.151).
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with fewer copies of SIGLEC14, presumably due to proximity to regulatory elements (p = 0.0220,
F2,46 = 4.151), Tukey’s post-hoc multiple comparisons test. * p = 0.0389.

4. Discussion

The primary finding of this paper is that pQTLs for ITIM and ITAM-containing
proteins are overrepresented as being nominally significant for AD risk, suggesting that
the ITIM and ITAM family of proteins may contribute to AD pathogenesis. This adds to
the current body of work which supports the hypothesis that AD is mediated, at least
in part, by immune cell dysfunction [1,4,5,36]. Indeed, transcriptomics and genomics
studies have frequently identified genes predominantly expressed in microglia within
the CNS as associated with AD risk [37–41]. Within a pQTL study, variants that affect
the expression of the ITIM/ITAM family of genes—which govern immune cell activation
state—are more commonly associated with AD risk than variants for genes, not in this
family (Table 2). Although we hypothesized that variants that enhanced ITAM levels or
decreased ITIM levels would be associated with reduced AD risk, this was not observed.
This likely indicates that while some of these pQTLs may reflect increased functional
signaling, others may involve alterations in splicing to generate soluble isoforms or may
increase susceptibility to cleavage from the cell surface. Hence, an SNP that associates with
increased plasma protein levels does not necessarily correlate with increased cell surface
expression and signaling.

SIGLEC14 was selected for further investigation based on its previously reported
deletion polymorphism and close relationship to another AD-associated gene, CD33 [2,25].
Since SNPs have previously been recognized as proxies for deletion of other genes [42–44],
and SIGLEC14 deletion has been previously reported [25], we hypothesized that the strong
pQTL signal from rs1106476 reported in Sun et al. [24] correlated with SIGLEC14 deletion.
Indeed, we found that rs1106476 is a proxy for SIGLEC14 deletion and the minor allele
count corresponds to the number of SIGLEC14 deletions in 89% of cases in our dataset
(Table 3).

This proxy variant does not, however, predict copy numbers greater than two. For
instance, we observed four individuals with three copies of SIGLEC14; two of these indi-
viduals were homozygous minor for rs1106476 and two were heterozygous for rs1106476
(Table 3). Additional copy number variation is also present in the ADSP and ADNI se-
quencing projects (Figure 2). These CNVs are equivalent across populations in these
datasets (Table 4, Supplemental Figures S1–S3). Based on these data and the recombination
peak which spans from upstream of SIGLEC14 through exon 8 of SIGLEC5 (Supplemental
Figure S5), we hypothesize that the additional copies integrate from a deletion event,
though far less frequently than the deletion itself [45]. Across the 3095 individual WGS
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dataset in ADSP, we found SIGLEC14 deletion has a minor allele frequency (MAF) of
0.2023, while insertion occurs at a MAF of only 0.0195, suggesting a 10-times lower rate of
integration than deletion (Table 4).

In the brain, SIGLEC14 is predominantly expressed in microglia, in keeping with
its putative role as an immune receptor (Figure 3A). The SIGLEC14 deletion polymor-
phism also strongly correlates with SIGLEC14 gene expression (Figure 3B). Due to the
low frequency of the additional copy integration, we do not have sufficient samples with
which to correlate SIGLEC14 expression to additional copy numbers, nor can we conclude
whether additional SIGLEC14 genomic copies are transcribed in frame and subsequently
produce protein.

We also find that SIGLEC14 deletion increases the expression of SIGLEC5 (Figure 4).
For individuals with at least one copy of SIGLEC14, the expression of SIGLEC14 is sub-
stantially higher than SIGLEC5. Coupled with the lack of an independent promoter or
H3K27 acetylation peaks between the two genes in GeneHancer or Encode, respectively,
we infer that expression of both genes is governed by a common promoter proximal to
SIGLEC14, that the integrity of this promoter is preserved after SIGLEC14 deletion, and that
SIGLEC14 deletion results in an increase in SIGLEC5 expression due to its closer proximity
to this common element. The SIGLEC family of receptors bind sialic acids as ligands to ini-
tiate their signaling cascades, and sialylated proteins, as well as gangliosides, are abundant
in amyloid plaques [46–48]. This decrease in expression of SIGLEC14, an ITAM-coupling
protein, and concomitant increase in expression of SIGLEC5, an ITIM-containing protein,
may lead to a dampened microglial activation state or proportion of activated microglia
in deletion carriers. We speculate that decreased SIGLEC14 expression and increased
SIGLEC5 expression may decrease the phagocytic capacity in AD. This is similar to the
inverse relationship between TREM2 and CD33, two well-known AD risk factors. Loss of
the ITAM-containing TREM2 decreases phagocytic capacity, while loss of CD33 increases
phagocytic capacity [11,13,49]. Since TREM2, which couples with DAP12, is critical for
the transition of microglia into a full disease-associated phenotype, SIGLEC14 may also
contribute to this transition [50]. Future studies could investigate whether at the single-cell
level SIGLEC14 CNV affects disease-associated microglial induction.

Copy number variation may represent a relatively unexplored source of genetic
variation in AD [51]. GWAS such as Jansen et al. rely on SNPs, which do not always
capture the full range of variation [2]. Additionally, “camouflaged” genes such as SIGLEC5
and SIGLEC14 with high sequence identity due to gene duplication are challenging for WGS
and WES technologies which rely on small fragments of DNA sequence, typically under
250 bp reads [51]. As such, variants which may have disease relevance and association
may be overlooked with current methods. SIGLEC14 is an example of one such possibly
overlooked risk contributor in AD. SIGLEC14 encodes an ITAM protein and signals through
DAP12 similar to TREM2, and deletion of SIGLEC14 is associated with increased AD risk,
also similar to SNPs that reduce TREM2 function [1,3–5]. Ligands for SIGLEC14, which
include sialylated proteins, are commonly found within amyloid plaques similar to ligands
for TREM2. We propose that the effect size and significance of association are masked
through copy number variation not accounted for using the proxy SNP alone, i.e., loss
of SIGLEC14 function likely increases risk, but the proxy SNP rs1106476 occasionally
also marks the individuals with an extra SIGLEC14 copy, thus reducing the power of
rs1106476 association with AD. We thus conclude that SIGLEC14 represents a potentially
overlooked AD genetic risk factor due to complex genetics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12071008/s1, Figure S1: Whole genome sequencing (WGS) read depth data from the
Alzheimer’s Disease Sequencing Project (ASDP) in Caucasian population, Figure S2: WGS read
depth data from the ASDP in African American population, Figure S3: WGS read depth data from
the ASDP in all other populations, Figure S4: The SIGLEC14 locus contains no H3K27Ac peaks nor
regulatory elements between SIGLEC14 and SIGLEC5. Expression of SIGLEC14 is approximately ten
times higher than SIGLEC5 in individuals with both copies of SIGLEC14, while SIGLEC5 expression
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is higher in individuals lacking SIGLEC14 copies, in keeping with a common promoter or enhancer
governing the single locus, Figure S5: SIGLEC5 and SIGLEC14 share a broad recombination peak
(gray line). Note that, since SIGLEC14 and SIGLEC5 are on the minus strand, these genes appear
inverted in this figure and read right-to-left, Table S1: List of ITIM/ITAM genes and their aliases.
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Abstract: Increasing evidence suggests that the Translocase of Outer Mitochondria Membrane 40
(TOMM40) gene may contribute to the risk of Alzheimer’s disease (AD). Currently, there is no
consensus as to whether TOMM40 expression is up- or down-regulated in AD brains, hindering
a clear interpretation of TOMM40’s role in this disease. The aim of this study was to determine if
TOMM40 RNA levels differ between AD and control brains. We applied RT-qPCR to study TOMM40
transcription in human postmortem brain (PMB) and assessed associations of these RNA levels with
genetic variants in APOE and TOMM40. We also compared TOMM40 RNA levels with mitochondrial
functions in human cell lines. Initially, we found that the human genome carries multiple TOMM40
pseudogenes capable of producing highly homologous RNAs that can obscure precise TOMM40
RNA measurements. To circumvent this obstacle, we developed a novel RNA expression assay
targeting the primary transcript of TOMM40. Using this assay, we showed that TOMM40 RNA
was upregulated in AD PMB. Additionally, elevated TOMM40 RNA levels were associated with
decreases in mitochondrial DNA copy number and mitochondrial membrane potential in oxidative
stress-challenged cells. Overall, differential transcription of TOMM40 RNA in the brain is associated
with AD and could be an indicator of mitochondrial dysfunction.

Keywords: TOMM40 gene; Alzheimer’s disease; RNA transcription; pseudogene; mitochondrial
dysfunction

1. Introduction

Understanding the role that genetics plays in the pathogenesis of AD has been a major
research focus for the past three decades. These collective efforts have provided valuable
insights into the molecular mechanisms associated with this disease. The advancement
of genome-wide approaches has led to the identification of more than 40 AD-associated
genetic loci. However, most of these loci have only moderate effect sizes with odds ratios
ranging from 1.1 to 1.5 (AlzGene), except for the apolipoprotein E gene (APOE) which has
an odds ratio of 3.7. The strength of the association between APOE and AD risk is orders
of magnitude larger than all other AD loci combined, suggesting that this locus is a major
biological contributor to the risk of AD. Therefore, deciphering the mechanistic role of the
APOE locus in AD should provide insight into the etiology of this devastating disease.

Besides APOE itself, the extended region surrounding APOE has also been consis-
tently identified by genome-wide association studies (GWAS) to strongly associate with
AD [1–4]. This extended region consists of at least three additional genes (i.e., NECTIN2,
TOMM40, and Apolipoprotein C1 (APOC1)), which carry out specific cellular functions
that may possibly intersect with AD pathophysiology. Because of the strong linkage dis-
equilibrium (LD) of these genes with APOE, researchers have always assumed that the
disease-associated genetic signals from these genes solely reflect their associations with
the APOE ε4 allele. However, increasing evidence points to a different interpretation. For
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example, a genome-wide linkage study of 71 Swedish late onset AD families found that the
strongest signal in a multipoint linkage analysis of APOE ε4-negative families still resided
in the APOE region [5]. Furthermore, multiple studies have shown that individuals who
carry an African ε4 haplotype of APOE have less risk of developing AD when compared
to those with a Caucasian ε4 haplotype [6–8]. These observations suggest the presence of
loci in this region, beyond APOE, that may influence AD risk. One strong candidate is the
TOMM40 gene.

TOMM40 encodes a mitochondrial channel protein TOM40, which is essential for
the formation of a translocase of the mitochondrial outer membrane (TOM) complex [9].
The TOM complex is involved in the recognition and import of nuclear-encoded proteins
into the mitochondria [10]. Alterations of mitochondrial metabolism have gradually
been accepted as prominent features in AD and mitochondrial dysfunction is a known
characteristic of the disease [11–14]. Mitochondrial degeneration has shown to be an early
sign of AD pathology, appearing even before neurofibrillary tangles (NFT) [15]. Damages to
both the components and structure of mitochondria are extensively reported in AD [16], and
the deficiency of several key antioxidant enzymes is a well-established hallmark of the AD
brain [17]. Thus, abnormal mitochondrial dynamics, including components, morphology,
membrane potential, and DNA copy number could contribute to AD risk [15,18].

TOMM40 has not only been genetically linked to AD risk but may also be functionally
connected with AD pathophysiology. In a Chinese cohort, SNPs in TOMM40 remained
statistically significantly associated with AD after adjusting for age, sex, and APOE ε4
status [19]. A deoxythymidine homopolymer (poly-T) at rs10524523 within intron 6 of
the TOMM40 has been associated with the risk and age at onset of AD [20–23]; and the
“VL” variant of this poly-T marker has been associated with increased mRNA expression
of both TOMM40 and APOE in APOE ε3/ε3 brain [24]. In addition, our own high-density
SNP association studies identified genetic variants in TOMM40 to be strongly associated
with AD in Caucasians, after controlling for the APOE ε2/ε3/ε4 alleles [25,26]. Our
quantitative trait loci studies showed that there is an association between TOMM40 SNPs
and apoE protein levels in both cerebrospinal fluid and PMB, suggesting that genetic
variation within TOMM40 may be associated with APOE and TOMM40 expression in
the human brain [27–29]. Furthermore, there is evidence supporting a direct connection
between TOMM40 and Aβ activity. For example, the Aβ peptide is imported into the
mitochondria via the TOM40 protein [30] and the amyloid precursor protein has been
reported to be associated with TOM40 in AD, but not controls [31]; Aβ peptides and
mis-directed amyloid precursor protein interfere with mitochondrial protein import and
disrupt mitochondrial function [31–33]; and the accumulation of Aβ in mitochondria leads
to the overproduction of reactive oxygen species [30,34]. Given that TOMM40 appears
to be involved in APP/Aβ translocation and metabolism as well as APOE regulation,
it is plausible that TOMM40 plays a role in AD via effects on mitochondrial function.
Consequently, TOMM40 expression levels may be impacting mitochondrial function and
contributing to AD risk.

Expression of TOMM40 has been investigated in peripheral blood. Numerous studies
consistently showed lower TOMM40 mRNA levels in AD blood samples compared to
controls [35–38], and a decrease in TOM40 protein level has also been observed in AD
blood [37]. However, studies using human PMB are scarce and have generated conflict-
ing results. For example, TOMM40 mRNA levels were reported as both increased and
decreased in the AD frontal cortex [39], or significantly increased in AD temporal and
occipital cortices [24]. Currently, there is no consensus as to whether TOMM40 gene ex-
pression is up- or down-regulated in AD brains, and this inconsistency hinders a unified
clear interpretation of TOMM40’s role in AD risk. The aim of this study was to definitively
determine if PMB TOMM40 mRNA levels differ between AD and control subjects.
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2. Materials and Methods
2.1. Human PMB and Cell Lines

This work used deidentified human biospecimens that have already been collected by
other established programs. Therefore, no consent was obtained for this work. Previously,
all human specimens were obtained from the University of Washington (UW) Alzheimer’s
Disease Research Center after approval by the institutional review board of the Veterans Af-
fairs Puget Sound Health Care System (MIRB# 00331). AD patient diagnosis was confirmed
postmortem by neuropathological analysis. Clinically normal subjects were volunteers
who were over 65 years of age, never diagnosed with AD, and lacked AD neuropathology
at autopsy. AD Brains exhibited Braak stages between V and VI, whereas control brains
exhibited Braak stages between I and III. Postmortem frontal lobe tissues were obtained
from the middle frontal gyrus tissues that had been rapidly frozen at autopsy (<10 h after
death) and stored at−80 ◦C until use. Demographics of the study sample are listed in Table
1. Hepatocytoma HepG2, glioblastoma U-87 MG and U-118 MG cells (ATCC) were grown
in 89% Dulbecco’s modified Eagle’s medium (DMEM) (Gibco); neuroblastoma SH-SY5Y
cells (ATCC) were grown in 89% DMEM with F12 (Gibco). Both media were supplemented
with 10% fetal bovine serum (FBS) (Gibco). Glioblastoma LN-229 cells (ATCC) were grown
in 94% DMEM supplemented with 5% FBS. All cell cultures were supplemented with 1%
penicillin/ streptomycin (Invitrogen) and cultured at 37 ◦C in a 5% CO2 atmosphere.

Table 1. Demographics of the PMB study samples.

Subjects AD Control

Sample number—n 47 20
Gender—n female (% female) 27 (57.4) 11 (55.0)

APOE ε4+—n (%) 29 (61.7) 3 (15.0)
Age at death—mean (SD) 87.9 (5.9) 88.3 (8.5)
Age at onset—mean (SD) 79.0 (8.0) N/A

Disease duration—mean years (SD) 9.0 (4.4) N/A
Postmortem interval—mean hours (SD) 5.0 (2.0) 4.9 (2.3)

CERAD Score
Absent 0 7
Sparse 0 7

Moderate 11 4
Frequent 36 2

Braak Stage
I 0 6
II 0 11
III 0 3
IV 0 0
V 15 0
VI 32 0

SD: standard deviation.

2.2. DNA/RNA Extraction and Genotyping

Genomic DNA and RNA were isolated from frozen PMB using the AllPrep DNA/RNA
Mini Kit (Qiagen). Nucleic acid concentrations were measured by NanoPhotometer (Im-
plen), and samples were stored at−20 ◦C prior to use. SNPs (assay #) were genotyped using
TaqMan allelic discrimination assays purchased from Thermo Fisher Scientific as follows:
rs429358 (C_3084793_20), rs7412 (C_904973_10), rs71352238 (C_98078714_10), rs2075650
(C_3084828_20), rs741780 (C_3084816_10), and rs10119 (C_8711595_10). All procedures
were performed according to the manufacturers’ protocols. For rs10524523 (poly-T) S/L/VL
typing, PCR was performed using primers chr19_50094846F (5′-cctccaaagcattgggatta) and
chr19_50095058R (5′-gggacagggaaagaaaacaa). The length of the amplicons was then deter-
mined using a QIAxcel Advanced system (Qiagen) based on a high-resolution capillary
electrophoresis. The expected amplicon size was calculated to be 179 bp + poly-T length in
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bp. The observed amplicon size was ≤198 bp for the S variant (poly-T ≤ 19); 199–208 bp
for the L variant (poly-T = 20–29); and ≥ 209 bp for the VL variant (poly-T ≥ 30).

2.3. Sequence Alignment and Phylogenetic Tree

The TOMM40 mRNA and TOMM40L transcript reference sequences were obtained
from NCBI Nucleotide database. All TOMM40 pseudogene sequences were extracted from
UCSC Genome Browser’s UCSC DAS server, using the genomic coordinates (version hg38)
obtained from NCBI Genes & Expression’s Gene database. The nucleotide sequences were
aligned using NIH’s BLAST blastn program. The query was optimized for highly similar
sequences (megablast). The extracted TOMM40 pseudogene sequences were blasted against
TOMM40 mRNA reference sequence to query for percent identity. The Phylogenetic Tree
was generated from Molecular Data with MEGA (https://doi.org/10.1093.molbev/mst012,
accessed on 22 March 2021). The bootstrap value (or node) was calculated from resampling
analysis as an indicator of good confidence in specific node. The substitution rate is defined
as the number of nucleotides that were substituted per site per unit time.

2.4. Conventional End-Point PCR and Gel Electrophoresis

Expression of pseudogene RNAs was examined by end-point PCR. Total RNAs were
extracted from cells and cDNA synthesis was performed using the PrimeScript RT Reagent
Kit (Takara Bio, Mountain View, CA, USA). Pseudogene-specific primer sets were used
to amplify each pseudogene template or cDNA. Information on the pseudogene-specific
primers is listed in Table S1. DNA fragment analysis of the amplification reactions was
performed in a QIAxcel (Qiagen).

2.5. Reverse Transcriptase (RT) Reaction and Quantitative PCR (qPCR) Assay

RT-qPCR assays were performed as previously reported [40]. Briefly, a fixed reverse-
transcribed cDNA input (5 ng) was amplified using TaqMan assays or SYBR PCR assays
in a QuantStudio 5 (Applied Biosystems, Thermo Fisher). The thermal cycling profile
consisted of 2 min at 50 ◦C, 10 min at 95 ◦C, and then 40 cycles of 15 s at 95 ◦C and 1 min at
60 ◦C. The amplification efficiency of both TaqMan and SYBR PCR assays were measured
by a standard curve method using serial dilutions in qPCR reactions and calculated using
[10(−1/slope)] -1. The calculated amplification efficiency is as follows: 0.92 (total TOMM40
mRNA); 0.90 (TOMM40 IVS9); 0.89 (pseudogene P1b/P2); 0.91 (total TOMM40 Ex4-Ex5).
For each sample, qPCR assays were performed in triplicate. Information on primers, probes,
and TaqMan assays is listed in Table S1. For TOMM40 RNA quantification, all reactions
were quantified by using a fixed threshold (0.15) in the linear range of amplification and
recording the number of cycles (cycle threshold, CT) required for the fluorescence signal to
cross the threshold. To control for the quantity of input RNA, we quantified ACTB mRNA
as an internal control for each sample and obtained a normalized ∆CT value: mean of
CT triplicate (target)–mean of the ACTB CT triplicate. In this setting, smaller ∆CT values
indicate higher RNA transcription levels. Additionally, fold change (FC) of TOMM40
transcription levels of AD to Control subjects was computed as FC (AD) = 2−∆∆Ct, where
∆∆CT = mean ∆CT (AD)– mean ∆CT (Control) [41].

2.6. Fraction Estimation of Pseudogene RNA and Surrogate RNA Using Digital PCR (dPCR)

The P1b/P2 primer set was used to measure levels of pseudogene RNAs and IVS9
primers were used to amplify TOMM40 surrogate RNA by qPCR. A primer set spanning
Ex4 and Ex5 was used for measuring levels of the total TOMM40 RNA pool. These primers
were also used for RT-qPCR (SYBR) assays as listed in Table S1. We performed absolute
quantification of RNA levels by QIAcuity dPCR (Qiagen). The QIAcuity carries out fully
automated processing including all necessary steps of plate priming, sealing of partitions,
thermocycling, and image analysis. We used the the QIAcuity Nanoplate 26K 24-well.
For each well, 40 µL reaction contained 13.3 µL of 3x EvaGreen PCR master mix (Qiagen),
0.4 µM of each forward and reverse primer, and a fixed concentration of cDNA template
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3 µL (15 ng). The thermal cycling program consisted of 2 min at 95 ◦C, 40 cycles of 15 s
at 95 ◦C, 20 s at 55 ◦C, and 1 min at 72 ◦C, and then 5 min at 40 ◦C. We computed the
fraction of target RNA (pseudogene RNA or surrogate IVS9 RNA) by dividing the number
of copies/µL of target RNA by the number of copies/µL of total TOMM40 RNA pool. For
the quality control of QIAcuity dPCR, we replicated the assay with different amounts of
template input and showed the reproducibility of the fraction of the target RNA in the total
TOMM40 RNA pool.

2.7. Hydorogen Peroxide Treatment

Twenty-four hours prior to treatment, the cells were seeded at a density of 70–80%.
For RNA transcription and mitochondrial DNA (MtDNA) copy number assays, cells
were seeded on a 6-well plate, whereas a 96-well plate was used for the mitochondrial
membrane potential assay. We searched the literature for the effects of hydrogen peroxide
on mitochondrial function. Based on previously published conditions, we tested multiple
concentrations (100 µM, 200 µM, 250 µM, 500 µM and 1 mM) of hydrogen peroxide in
the cell lines and selected 500 µM as an optimal concentration that maintained good cell
viability and had noticeable effects on mitochondrial function. The seeded cells were
then treated with 500 µM Hydrogen peroxide, H2O2, (Sigma) in growth media. For
controls, the same number of cells were plated and cultured without H2O2. Cells were
collected 24 h post-treatment, subjected to genomic DNA and total RNA isolation, followed
by measurement of MtDNA copy number and RNA transcription levels. Three to four
independent treatments with H2O2 were performed.

2.8. MtDNA Copy Number Assay

Reactions for MtDNA copy number count and single copy reference gene, HGB
(Hemoglobin), were run separately with 10 ng of DNA in a 384-well optical plate. Each
reaction was run in triplicate on QuantStudio 5 (Applied Biosystems, Thermo Fisher, Foster
City, CA, USA). The 10 µL reaction included 10 ng of DNA, 5 µL of 2x Power SYBR Green
PCR Master Mix (Applied Biosystems, Thermo Fisher), and 0.05 µM of each forward and
reverse primer. Thermal cycling profile consisted of 2 min at 50 ◦C, 10 min at 95 ◦C, and
then 40 cycles of 15 s at 95 ◦C, 60 s at 56 ◦C, and 60 s at 72 ◦C. The ∆CT method was used to
control for the quantity of input DNA for each sample by quantification of HGB DNA. The
normalized ∆CT value was calculated: mean of MtDNA CT triplicate– mean of the HGB CT
triplicate. The fold change (FC) of the MtDNA copy number isolated from H2O2-treated
cells to untreated cells was computed as FC (treated) = 2-∆∆C

T, where ∆∆CT = ∆CT (treated)
− ∆CT (untreated) [41].

2.9. Mitochondrial Membrane Potential (MMP) Assay

MMP of the human cell lines was analyzed using a MitoProbe JC-1 assay kit (Thermo
Fisher). The cationic dye, JC-1 (5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carboc-
yanine iodide), exhibits potential-dependent accumulation in mitochondria, which is indi-
cated by a fluorescence emission shift from monomeric green (529 nm) to JC-1 aggregates
red (590 nm). Consequently, MMP change in response to cellular stimuli is represented by
the ratio of red to green fluorescence intensity. The membrane potential disrupter, CCCP
(carbonyl cyanide 3-cholorophenylhydrazone), was included in all assays as a control to
confirm that the JC-1 response is sensitive to changes in membrane potential. Twenty-four
hours prior to the hydrogen peroxide treatment, cells were seeded at a density of 70–80%
on a black 96-well plate with a clear bottom. The seeded cells were treated with 500 µM
H2O2 for 24 h and then assayed for MMP measurements. A quantity of 2 µM JC-1 was
added and incubated at 37 ◦C, 5% CO2 for 30 min. The reaction plate was washed with
PBS and the fluorescence was measured with 488 nm excitation and green (529 nm) or red
(590 nm) emission using SpectraMax M2 plate reader (Molecular Devices). All procedures
were performed according to the manufacturers’ protocols. Fold change (FC) of membrane
potential of H2O2-treated cells to untreated cells was computed as FC (treated) = ratio of
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red to green (treated)/ratio of red to green (untreated). Three independent MMP assays
were performed for each H2O2 treatment for each cell type.

2.10. Statistical Analyses

The qPCR data is expressed as normalized ∆CT values and was calculated as follows,
∆CT value = mean of CT triplicate (target)–mean of the ACTB CT triplicate. Statistical
analyses were performed using independent samples t-test using the Statistical Package
for the Social Sciences (SPSS) version 19 (SPSS). The MtDNA copy number assay and
membrane potential assay were not performed in the same cell setting because the mem-
brane potential assay needs to be conducted on live cells. For this reason, data were not
statistically compared.

3. Results
3.1. Presence of Pseudogene RNAs Obscures Accurate Measurement of TOMM40 mRNA

The transcription levels of TOMM40 mRNA in human brain and its association with
AD risk have not been fully established. Studies have reported conflicting results of either
up- or down-regulated TOMM40 mRNA in AD brains. The measurement of a gene’s
mRNA levels should be a straightforward procedure unless other complications confound
this measurement; apparently, an unknown barrier exists in the measurement of TOMM40
mRNA. To expose this obstacle, we first inspected the specificity of TOMM40 cDNA by
aligning this sequence to the human genome (hg38) using the Blat tool in the UCSC genome
browser (http://genome.ucsc.edu/, accessed on 18 March 2021). Besides TOMM40 itself,
the alignment showed six additional hits, including one known gene (TOMM40L) with
moderate homology to TOMM40 and five loci with a high degree of sequence homology.
All five of these highly homologous loci contain a TOMM40 cDNA-like sequence lacking
either TOMM40 introns or a full open reading frame, classic characteristics of a pseudogene.
When queried the public databases, we found established pseudogene records for four
of the five loci in the HUGO gene database (https://www.genenames.org/, accessed on
18 March 2021) with the designated nomenclatures of TOMM40P1, P2, P3, and P4. We
designated the unnamed pseudogene “TOMM40P1b” due to its proximity to TOMM40P1.
The genomic location, span, and similarity to TOMM40 cDNA of these pseudogenes are
listed in Table 2. A phylogenetic tree analysis indicated that they are indeed closely related
to each other (Figure 1A).

Because a large portion of the human genome’s non-coding regions, including pseu-
dogenes, can produce RNA transcripts [42], we wondered whether these TOMM40 pseudo-
genes can be transcribed into RNA. To address this question, we developed new RT-PCR
assays designed to specifically amplify each pseudogene’s putative RNA transcripts and
generated pseudogene-specific DNA templates to serve as positive controls. To generate
pseudogene templates, we PCR amplified each pseudogene’s genomic region using primer
sets (Table S1) flanking immediate up- and down-stream segments of each pseudogene, and
then purified these PCR fragments using agarose gel electrophoresis. Each pseudogene tem-
plate contains the entire pseudogene sequence, thus mimicking its putative cDNA. Except
for TOMM40P1, which is flanked by heavy repetitive sequences and could not be amplified,
we successfully generated DNA templates for the remaining four pseudogenes (P1b, P2,
P3, and P4). Due to high homology between P1b and P2, as seen in the phylogenetic tree
(Figure 1A), we combined these two into a single template of P1b/P2. To design specific
primers for the TOMM40 pseudogene RNA assays, we first identified nucleotide variants
among sequences of TOMM40 cDNA and pseudogenes using Clustal Omega’s sequence
alignment (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 10 June 2019). We
then designed allele-specific PCR primers that carry the unique nucleotide(s) of each pseu-
dogene at the 3′-end of the primers (Table S1). We tested these primers’ specificities in our
collection of pseudogene templates using conventional end-point PCR and capillary gel
electrophoresis. The results showed a robust amplification by each specific primer set with
its own template, but they also showed various degrees of cross-amplifications with other
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pseudogene templates (Figure S1), implying that the allele-specific primers cannot fully
differentiate each pseudogene. Nevertheless, these primers provide a molecular tool that
makes detection of RNA transcripts of the TOMM40 pseudogenes feasible.

Table 2. Genomic locations and RNA transcripts of TOMM40-related genes and pseudogenes.

Gene/Pseudogene Genomic Sequence (hg38) RNA Sequence (RefSeq)

Coordinate Span (bp) Accession # Size (nt) BLASTn **

TOMM40 chr19: 44891220-44903689 12,470 NM_001128916 1676 -
TOMM40P1 chr14: 19266948-19268660 1713 NG_022836 1713 * 95.70%
TOMM40P1b chr14: 19131227-19133057 1831 N/A 1831 * 95.55%
TOMM40P2 chr22: 15853581-15855410 1830 NG_022885 1830 * 95.88%
TOMM40P3 chr5: 3501872-33503327 1456 NG_021878 1456 * 87.26%
TOMM40P4 chr2: 31723017-131724478 1462 NG_023610 1462 * 95.41%
TOMM40L chr1: 161226060-161230746 4687 NM_032174 2790 70.17%

*: Putative RNA size estimated from corresponding genomic locus. **: % identify when compared to TOMM40 mRNA.
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Using these pseudogene-specific primers, we tested whether putative RNAs of the
TOMM40 pseudogenes could be detected in human cell lines (HepG2, U-87, and SH-
SY5Y). Because the expected amplicons of pseudogene RNAs can also be generated from
pseudogenes’ corresponding genomic DNA, we performed DNase digestion for all RNA
isolations and included RT-negative controls for all experiments. In these experiments,
we also integrated a TOMM40 cDNA control that was RT-PCR generated using TOMM40
cDNA-specific primers. We then performed RT-PCR reactions using total RNA isolated
from these cells. The capillary gel electrophoresis showed that all pseudogenes-specific
amplicons were amplified in all cell lines tested, with no amplification from RT-negative
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controls (Figure 1B). None of the pseudogene primer sets amplified TOMM40 cDNA
except the primer set of P1 (Figure 1B, lane 2), which is likely due to the high homology
between TOMM40 cDNA and P1. The similarity of these two sequences in the phylogenetic
tree further supported this notion (Figure 1A). Together, these results indicated that all
TOMM40 pseudogenes can produce RNA transcripts and some of these transcripts closely
resemble TOMM40 mRNA.

We also attempted to generate TOMM40 cDNA-specific primers that could separate
TOMM40 mRNA from the pseudogene RNAs. The TOMM40 gene consists of 10 exons
and six mRNA transcripts (Figure 2A,B). We applied the same allele-specific primer design
method to integrate TOMM40 cDNA-specific nucleotide variants at the 3′-end of the
primers. Using this approach, we generated two TOMM40 cDNA assays that amplify
across the splicing junctions of exons 1–2 (Ex1-Ex2) and exons 3-4 (Ex3-Ex4) (Figure 2C).
When subjected to RT-PCR experiments, these two assays effectively amplified cDNA
templates of TOMM40; however, they also showed leaky attributes and cross-amplification
of all pseudogene templates (Figure S2). This result suggests that RNA transcripts of
TOMM40 and pseudogenes cannot be fully separated even with the meticulously designed
allele-specific primers.
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Learning from these observations, we suspected that the RNA transcription levels
determined by commonly used TOMM40 gene expression assays likely include both RNA
species of TOMM40 and its pseudogenes. We then designed experiments to further examine
this possibility. Because exact primer and probe sequences of the commercial assays are
not publicly available, we generated a TOMM40 cDNA assay that spans splice junctions of
exons 4-5 (Ex4-Ex5), the general area targeted by a popular TOMM40 TaqMan expression
assay (Thermo Fisher, assay Hs01587378_mH). When tested using end-point PCR, this assay
cross-amplified all pseudogene templates (Figure 3A). This result is further evidence that
conventional RT-PCR-based TOMM40 assays likely quantify transcription levels of the entire
TOMM40-related RNA pool, which consists of both TOMM40 mRNA and its pseudogenes’
RNAs. Such assays cannot provide accurate measurements of true TOMM40 mRNA.
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negative control.

3.2. Development of TOMM40-Specific RT-PCR Assays

To obtain authentic transcription levels of TOMM40 mRNA, one could apply a de-
duction method in which pseudogene transcription levels are subtracted from the total
TOMM40-related RNA pool. However, we found that most pseudogene-specific primer
sets could cross-amplify templates of other pseudogenes (Figure S1), which made the
precise measurement of each pseudogene RNA level unfeasible. Instead, we were only able
to estimate the fraction of RNA representing pseudogenes within the total TOMM40 RNA
pool. We reasoned that the P1b/P2 primer set can cross-amplify P3 and P4 in addition to its
own template (Figure S1); using this one primer set allows us to access the transcription
levels representing a large portion of the pseudogene RNAs while excluding amplification
of the true TOMM40 RNA. When they were compared with the results of the Ex4-Ex5 assay,
which represents a measurement of the total TOMM40-related RNA pool, we were able to
approximate the proportion of the pseudogene RNAs. We applied this strategy on total
RNA isolated from a subset of PMB tissues (AD n = 29 and control n = 16) and quantified
the cDNA targets using digital PCR (dPCR). From each subject, two amplicons (P1b/P2
and Ex4–Ex5) were quantified separately, and the absolute quantification count of P1b/P2
was then divided by the count of Ex4–Ex5 to generate the fraction. The result showed that
P1b/P2 RNA constituted around 10–18% of the total TOMM40-related RNA pool (Table S2).
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A detailed procedure for this comparison and calculation is listed in the methods sec-
tion. Provided that this estimation did not include P1 levels, the actual fraction of the
pseudogene RNAs in the total TOMM40-related RNA pool could be substantially higher.

The results described above prompted us to conclude that in order to eliminate
cross-amplification of TOMM40 pseudogene RNAs and accurately quantify TOMM40
transcription, there is a need to develop an unconventional RT-PCR assay. Accordingly,
we explored assays designed to target the primary RNA transcript of the TOMM40. We
reasoned that the main difference between TOMM40 mRNA and pseudogene RNAs lies in
its primary transcript—with pseudogenes lacking intronic sequences. While the primary
transcript (pre-mRNA) transcription level is expected to be only a fraction of the spliced
mRNA transcription level, this proportion is likely retained consistently across samples
obtained from same cell/tissue-types. Thus, an RT-PCR assay based on this principle could
provide an accurate surrogate measurement of the actual mRNA transcription level, which
can then be used to compare samples from human subjects.

Based on this rationale, we first inspected the RNA structure of TOMM40 using the
Ensembl RNA track in the UCSC genome browser. This track shows the presence of six
variants of TOMM40 RNA transcripts (Figure 2B). To cover the majority of these transcripts,
we designed two sets of TaqMan-based assays with one extending from exon 6 into intron
6 (Ex6-IVS6) and a second one extending within intron 9 (IVS9). Map locations of these
assays are shown in Figure 2C, and corresponding primers and probe sequences are shown
in Table S1. Initial conventional end-point PCR tests with their respective primers showed that
both assays amplified RNA samples isolated from all four human cell lines (HepG2, U-118, U-
87, and SH-SY5Y) with the expected amplicons. More importantly, no pseudogene amplicons
were amplified by these new assays (Figure 3B). We next evaluated these assays in PMB
tissues using a TaqMan (primers plus probe) setting in RT-qPCR. When these two assays were
compared side by side, they both showed consistent expression patterns (≈2 ∆CT difference)
between AD and control frontal lobes (Figure 4A). Between these two assays, the IVS9 assay
showed a higher sensitivity, as indicated by its lower ∆CT value; thus, we selected this assay
for our surrogate quantification of TOMM40 mRNA. We estimated that RNA levels measured
by the IVS9 surrogate assay represent approximately 7–20% of the total TOMM40-related
RNA pool levels using the same dPCR approach mentioned above (Table S2). We then
applied this IVS9 assay to quantify TOMM40 mRNA transcription levels in human PMB
samples and compared these levels to the ones generated from the commercial TaqMan assay
(Thermo Fisher, Hs01587378_mH). No differences in TOMM40 mRNA transcription levels
were observed between AD and control when the commercial assay was used. On the contrary,
TOMM40 mRNA showed significantly (p < 0.001, t-test) higher expression (≈2.5-fold) in AD
compared to control when the IVS9 assay was used (Figure 4B).

3.3. Effects of TOMM40 RNA Transcription Levels

With biologically meaningful RNA measurements in hand, we further examined
the relationship between TOMM40 RNA levels and some AD-associated genotypes in
human PMB. We first analyzed a set of genetic variants, including the APOE ε4-determing
SNP rs429358 and five SNPs (rs71352238, rs2075650, rs10524523, rs741780, and rs10119)
scattered across TOMM40 (Figure 2A). For rs10524523, we stratified the “S” and “VL”
variants only, excluding the third variant “L”, which is linked specifically with the ε4
variant of rs429358 that was analyzed separately. We then tested for associations between
stratified alleles and TOMM40 RNA levels quantified using our IVS9 assay. We observed
significant allelic differences in rs10524523 (p < 0.02, t-test) and in rs741780 (p < 0.01, t-test;
Figure 5). None of the other four SNPs showed any expression associations with their
alleles. Additionally, we performed ex vivo experiments to examine the relationship
between TOMM40 RNA levels and selected mitochondria functions. We induced oxidative
stress using H2O2 in human cell lines (HepG2, U-118, U-87, and LN-229) and compared
TOMM40 RNA levels, MtDNA copy number, and mitochondrial membrane potential. After
H2O2 treatment, TOMM40 surrogate RNA levels were increased (≈1.2–1.5-fold higher than
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the untreated one, which corresponded with a decreased DNA copy number (≈20–60% of
the untreated levels) and a decreased membrane potential (≈20–75% of the untreated one;
Figure 6). These findings indicate that upregulation of TOMM40 RNA levels corresponds
with mitochondrial dysfunction.
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Figure 6. Comparison of TOMM40 RNA levels with mitochondrial functions in human cell lines.
TOMM40 RNA levels were measured by the IVS9 assay and mitochondrial function assays including
MtDNA copy number and Mt membrane potential were performed. The fold change of H2O2-treated
cells was compared to the untreated cells (set as baseline of 1.0). Graph shows the relationship
between the three measurements in response to the oxidative stress. Standard deviation error bars
are shown.

4. Discussion

Brain mitochondrial function plays a crucial role in neural plasticity and cognition [43]
and is vital to many neural activities. Mitochondrial dysfunction occurs in a variety of
psychiatric and neurodegenerative disorders [44], and is a fundamental characteristic of
AD [11–14]. The TOMM40 gene encodes a mitochondrial outer membrane translocase,
which plays important roles in importing and sorting proteins for sub-mitochondrial
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locations. TOMM40 is an essential gene for mitochondrial maintenance, making it a
plausible candidate for influencing AD risk via mitochondrial dysfunction.

The possibility that TOMM40 plays a direct role in AD risk has always been overshad-
owed by APOE. Located 2.1 kb upstream of APOE, the genetic effects of these two genes
cannot easily be separated due to the strong LD structure between them [25,45]. Genetic
associated signals of TOMM40 in AD have traditionally been dismissed as surrogate signals
of APOE [46,47]; however, this viewpoint has gradually shifted to consider TOMM40 as
an independent contributor to AD risk and healthy aging. For example, genetic variants
in TOMM40 have been consistently linked to longevity and healthy aging [48–51]. The
SNP rs2075650 located in intron 2 of TOMM40 has been considered a proxy of the SNP
rs429358 that defines the ε4 allele of APOE [29]. The G allele of rs2075650 has been asso-
ciated with a range of phenotypes including reduced longevity [52], reduced BMI [53],
and increased low-density lipoprotein cholesterol [54,55], as well as an increased risk of
AD [56]. Evidence also suggested that the length of rs10524523 (poly-T) within intron 6 of
the TOMM40 is linked to different levels of risk and age of onset of cognitive decline [57].
Such epidemiological data strongly support the idea that TOMM40 plays a direct role in
cognition and healthy aging. Because age is the most important risk factor for AD, the
combined biological consequences of TOMM40 and APOE may represent a molecular
mechanism explaining the APOE locus’ strong genetic association with AD. Additionally,
the most recent human genome project has revealed that a large number of functional sites
in the genome are cis-regulated in nature. Thus, the unique genomic arrangement of the
TOMM40-APOE gene cluster raises a possibility that genetic variants of the APOE locus
could relate indirectly to mitochondrial function through LD with TOMM40. This concept
is also in line with current trending research on the co-regulation of local genes in gene
expression through the topological associating domain or 3D genome [58].

When the expression profile of a gene is altered in a disease, it provides credible
evidence supporting a direct connection between that gene and the disease. TOMM40
overexpression at both the transcriptional and translational levels in ovarian cancer has
been shown to correlate with increased cell proliferation, migration, and invasion [59,60].
TOM40 protein levels are significantly reduced in brains of Parkinson’s disease patients and
in α-Syn transgenic mice [61–63]. Significant changes were observed in the mRNA levels of
mitochondrial dynamic genes such as fission/fusion-related genes and mitophagy-related
genes in blood samples of AD patients [39,64]. However, the altered expression profiles
(both mRNA and protein) of TOMM40 in AD have not been clearly established. Whether
the expression level of TOMM40 is up- or down-regulated in AD brains has not been
consistently observed. In one study, TOMM40 mRNA was shown to be downregulated
in 6 of 14 AD frontal lobes but upregulated in the remaining eight [39]. Such conflicting
results suggest that the quantification of TOMM40 mRNA may not be straightforward and
may be complicated by other biological processes.

To determine the source of inconsistent TOMM40 transcription levels observed in
the human brain, we revisited the fundamental basics by examining the specificity of the
TOMM40 cDNA sequence. We were surprised to find that human genome carries five
TOMM40-related pseudogenes, which all share high homology (87–96%) with TOMM40
cDNA. We were even more surprised to find that all five pseudogenes produce RNA
transcripts in various human cell lines and PMB tissues. Currently, the biological functions
and/or consequences of these TOMM40 pseudogene RNAs are undefined. The TOMM40
pseudogenes are scattered across the human genome with unique flanking DNA sequences;
thus, each of them is likely independently regulated. It is plausible that some of these RNAs
can serve as templates to produce small peptides, but, to our knowledge, this has never been
investigated. Another potential function of these TOMM40 pseudogene RNAs is to regulate
the transcription of TOMM40. Carrying highly similar sequences, these RNAs could
compete with TOMM40 mRNA for binding to proteins in transcription or post-transcription
machineries. Potentially, these pseudogene RNAs could provide an RNA buffer in response
to various stress/stimuli, and this buffer effect might minimize severe fluctuations in
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TOMM40 RNA production. Indirect evidence supporting this concept comes from our
experiment of comparing TOMM40 cDNA assays. The commercial TOMM40 assay, which
measures both TOMM40 mRNA and pseudogene RNAs, has much tighter transcription
levels across the PMB samples when compared to the IVS9 assay that specifically measures
TOMM40 RNA only. One explanation is that this commercial assay congests all the
TOMM40-related RNAs together, which provide a cushion effect to reduce the variability
of single RNA measurement. The estimated fraction of pseudogene RNAs in the total
TOMM40-related RNA pool is approximately 10–18% using a single pseudogene assay
(P1b/P2) that cross-amplified four out of five pseudogenes. If the transcription levels of all
five pseudogenes can be precisely measured, the overall fraction is likely to be significantly
higher than this estimation. These results raise an interesting question: why does TOMM40
gene expression need to be rigorously regulated or guarded by such a complex system
from a whole genome setting?

Due to the cross-amplification of pseudogene RNAs, the conventional RT-PCR assays
cannot provide an accurate measurement of TOMM40 mRNA. This challenge prompted us
to develop an alternative approach, which targets the primary RNA transcript of TOMM40
and eliminates undesired co-measurement of pseudogene RNAs. The major difference
between the primary transcript and mRNA lies in the RNA splicing. The splicing efficiency
depends on the splicing kinetics, transcriptional and splicing regulators, transcription rate,
intron length, exon position, RNA structure, and chromatin signatures, including histone
marks and DNA methylation [65,66]. It has been shown that the splicing efficiency of pre-
mRNA varies greatly across genes [67,68]. Due to the splicing process, actual transcription
levels are not the same between the primary transcript and spliced mRNA. However, the
level of primary transcript can provide a surrogate measurement for mRNA. Surrogate
TOMM40 transcription levels, which were measured by the primary transcript-targeted
assays (Ex6-IVS6 and IVS9), had a similar profile with ≈2 ∆CT value separating AD
and control PMB samples. This result indicated that both measurements were consistent
across samples and were suitable to serve as surrogate measurements of TOMM40 mRNA.
Between the two assays, the IVS9 has higher transcription levels (lower ∆CT value) when
compared to Ex6-IVS6. This difference could be due to either the slower splicing kinetics of
IVS9, or simply the presence of a TOMM40 mRNA transcript (ENST592434) that retains
the entire intron 9 in its mRNA structure.

After resolving the complication of pseudogene RNAs co-measurement, we demon-
strated that the surrogate transcription level of TOMM40 RNA is roughly 2.5-fold higher
in AD compared to the control frontal lobe. Our results are opposite to prior published
studies showing that TOMM40 RNA is downregulated in AD blood [35–38]. Although
this opposition could reflect different TOMM40 regulatory pathways between blood and
the CNS, it also suggested that the transcription levels of TOMM40 pseudogene RNAs
could vary across different tissues. Increased TOMM40 RNA transcription in AD brains
could be a consequence of prolonged mitochondrial dysfunction, which triggers a feedback
response to upregulate structural proteins (e.g., TOM40) to compensate for the compro-
mised mitochondrial function. The upregulated TOMM40 RNA in AD brains has the same
trend as the upregulation of APOE mRNA in AD brains compared to control [40]. The
consistent upregulation of both TOMM40 and APOE in AD brains makes the concept of
co-regulation of these genes through the same topological associating domain even more
appealing. Whether the upregulation of TOMM40 RNA is truly associated with AD risk
remains to be further validated with a larger sample size and across different brain regions.
Nevertheless, this study provides a new molecular tool for measuring TOMM40 RNA,
making future expanded studies feasible.

Our genetic association analyses revealed no difference between TOMM40 RNA
transcription levels with either APOE rs429358 variants (C/ε4+ vs. C/ε4−) or TOMM40
rs2075650 variants (G+ vs. G−), two SNPs that have been consistently linked to AD
risk through GWAS studies. This lack of association suggested that these two genetic
variants may not have a direct impact on the increased TOMM40 RNA levels in AD.
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On the contrary, the SNPs rs10527523 and rs741780 showed significant allelic differences
associated with TOMM40 RNA transcription. Because these two SNPs are located between
introns 6 and 8 of the TOMM40 gene, this region of TOMM40 might contain functional
regulatory elements that influence the transcription of TOMM40. In the case of rs10524523,
we observed a higher transcription level (lower ∆CT value) of TOMM40 RNA in the “S”
variant when compared to the “VL” allele. This result is opposite to the study of Linnertz
et al., who showed TOMM40 mRNA levels were lower in “S” homozygotes compared with
“VL” homozygotes in the AD brain [24]. Again, the inclusion or exclusion of TOMM40
pseudogene RNAs transcription levels could account for these conflicting results.

Mitochondria are involved in several cellular functions and are essential for energy
production; they are the main organelles that provide energy for brain cells. Indeed, neu-
rons are particularly sensitive to changes in mitochondrial function [69], and mitochondrial
injury can have severe consequences for neuronal function and survival [70]. We studied
two mitochondrial function-related phenotypes (copy number and membrane potential)
and their associations with TOMM40 RNA transcription levels in human cell lines. MtDNA
copy number is a measure of the number of mitochondrial genomes per cell and is a proxy
for mitochondrial function [71–73]. Significant differences in this copy number have been
reported across different brain regions, and these variations were more pronounced in pa-
tients affected by neurodegenerative disorders [74]. Studies have also shown that MtDNA
levels were decreased by 30–50% in the frontal cortex of AD patients when compared
to controls [75,76]. Mitochondrial membrane potential, which is used by ATP synthase
to make ATP, serves as an intermediate form of energy storage for cells. Normally, cells
maintain stable levels of mitochondrial membrane potential to carry out various cellular
functions [77–79]. This membrane potential is altered due to physiological activity on
a transient basis, but a prolonged alteration could compromise the viability of the cells
and cause irreversible damage [80]. Our analyses showed that the increased TOMM40
RNA levels are associated with a lower MtDNA copy number and a lower mitochondrial
membrane potential, which together signified a decrease in mitochondrial function. This
observation could be explained by a feedback response to restore mitochondria function via
upregulation of TOMM40 mRNA. As a translocase of outer mitochondrial membrane [9,10],
TOM40 protein plays a role in importing proteins for the assembly of the mitochondrial
inner membrane respiratory chain and mitochondrial matrix proteins involved in oxidative
respiration. Increased TOMM40 RNA transcription associated with AD could lead to
changes in mitochondrial protein import, which might affect maintenance of mitochondrial
membrane potential and overall mitochondrial function.

5. Conclusions

Here, we developed a novel assay to measure true TOMM40 RNA transcription levels
with high specificity and sensitivity, circumventing the unintentional co-measurement of
TOMM40 pseudogene RNAs. This assay enabled us to accurately investigate the RNA
transcription profile of TOMM40 associated with AD. The PMB work showed that TOMM40
mRNA is upregulated in AD vs. control frontal lobe. The ex vivo cultured cell line
work showed that upregulation of TOMM40 RNA is likely associated with compromised
mitochondrial function. Although future work using a larger sample size is needed to
replicate these results, this work pioneers a valuable blueprint to assess APOE-independent
effects of TOMM40 in AD risk. Our findings define a new paradigm of TOMM40 gene
regulation and provide novel insight into the transcriptional pathway of TOMM40. This
pathway involves not only the production of multiple TOMM40 mRNA species, but also
a pseudogene-imparted transcriptional program. Many epidemiology studies strongly
support the idea that TOMM40 contributes to healthy aging. Because age is the most
important known risk factor for AD, it raises an interesting question: could the incidence
of AD be a byproduct of a compromised longevity pathway that is carefully guarded via
TOMM40-imparted mitochondrial function?
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amplify other pseudogenes. Figure S2: Conventional TOMM40 cDNA assays can cross-amplify
TOMM40 pseudogenes. Table S1. Primers, probes, and TaqMan assays. Table S2. Fractions of
TOMM40 pseudogene P1b/P2 RNAs and IVS9 RNA in total TOMM40-related RNA pool, measured
by dPCR.
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Abstract: Late-onset Alzheimer’s disease (AD) has a significant genetic and immunological com-
ponent, but the molecular mechanisms through which genetic and immunity-related risk factors
and their interplay contribute to AD pathogenesis are unclear. Therefore, we screened for genetic
sharing between AD and the blood levels of a set of cytokines and growth factors to elucidate how
the polygenic architecture of AD affects immune marker profiles. For this, we retrieved summary
statistics from Finnish genome-wide association studies of AD and 41 immune marker blood levels
and assessed for shared genetic etiology, using a polygenic risk score-based approach. For the blood
levels of 15 cytokines and growth factors, we identified genetic sharing with AD. We also found
positive and negative genetic concordances—implying that genetic risk factors for AD are associated
with higher and lower blood levels—for several immune markers and were able to relate some of
these results to the literature. Our results imply that genetic risk factors for AD also affect specific
immune marker levels, which may be leveraged to develop novel treatment strategies for AD.

Keywords: Alzheimer’s disease; cytokines and growth factors; genome-wide association study
(GWAS); Polygenic Risk Score (PRS)-based analysis

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes patients to
suffer from behavioral changes, a progressive decline in memory and cognitive function
due to brain atrophy resulting from neuronal loss of function and death [1]. While AD is
accountable for most dementia cases and affects millions of people worldwide, no disease-
modifying therapies are currently available [2]. The neuropathological hallmarks of AD
are extracellular plaques of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFT)
composed of excessively phosphorylated tau [3]. The heritability of AD is estimated at
60–80% [4]. Dominant mutations in APP, PSEN1 and PSEN2 cause rare familial forms of
AD characterized by an early onset (early-onset AD (EOAD) < 65 years) [4]. However, in
the vast majority of cases, AD symptoms only manifest later in life (late-onset AD (LOAD)
≥ 65 years) and multiple genetic risk factors with small effect sizes contribute to LOAD
development [4]. The strongest common genetic risk factor for LOAD is the ε4 allele of the
apolipoprotein E (APOE) gene (APOEε4) [4]. Furthermore, environmental risk factors con-
tribute to the multifactorial nature of AD. The mechanisms through which these risk factors
affect biological pathways that ultimately result in AD are largely unknown. Elucidating
the polygenic architecture of AD may therefore provide insights for the development of
disease-modifying therapies.

Many of the LOAD candidate genes that were identified through genome-wide asso-
ciation studies (GWASs) are thought to play a role in regulating immunity, through their
effect on microglial function [5–7]. Microglial cells are the resident macrophages of the
brain and in addition to Aβ plaques and tau tangles, increased microglial activity and
associated neuroinflammation has emerged as a third core pathology in AD [8]. Under
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physiological conditions, microglial cells survey the brain but only become activated and
cause inflammation upon recognizing threats, such as infection, toxins and injury [8]. Al-
though acute neuroinflammation could still serve as a defense mechanism against these
threats, chronic neuroinflammation by excessively active microglial cells and recruitment
of peripheral macrophages is detrimental to neuronal function [8]. The effects of peripheral
macrophages may be exacerbated by impaired function of the blood–brain barrier (BBB)
that separates the central nervous system from the rest of the body, and breakdown of the
BBB is often observed in AD [9]. Moreover, activated microglial cells contribute to these
detrimental effects by massively releasing inflammatory molecules and excessively pruning
synapses, leading to synaptic loss [10]. In this respect, AD patient brains contain higher
levels of activated, pro-inflammatory microglial cells [11,12]. In addition, the sustained ac-
tivation of microglia and other immune cells has been demonstrated to exacerbate both Aβ
and tau pathology [5,8]. Furthermore, genetic pleiotropy analyses have identified genetic
overlap between AD and immune-mediated diseases—i.e., Crohn’s disease, psoriasis, and
type 1 diabetes—indicating that aberrant immune processes influence AD pathogenesis
and progression [12]. Chronic neuroinflammation in AD can be caused by both overexpres-
sion of pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines
that neutralize the harmful effects of chronic exposure to pro-inflammatory cytokines
(reviewed in [13]). Moreover, the dysregulated immune system in AD is not limited to the
central nervous system, and there is ample evidence for systemic immune signals (originat-
ing from outside the brain) contributing to AD (reviewed in [14]). Although all these data
suggest a relationship between inflammation and AD, a (much) better understanding of
this relationship could have implications for treatment and prevention strategies.

In this study, we investigated whether there is overlap between genetic risk factors—
single nucleotide polymorphisms (SNPs)—for LOAD and SNPs contributing to the blood
levels of a set of immune markers (cytokines and growth factors, inflammatory regulators
that can be used as important intermediate phenotypes for inflammatory diseases [15]). To
this end, we deployed shared genetic etiology and SNP effect concordance analyses, using
publicly available GWAS results.

2. Materials and Methods
2.1. GWAS Summary Statistics for PRS-Based Analyses

For the polygenic risk score (PRS)-based analyses (see below), we used GWAS sum-
mary statistics from a Finnish AD cohort (1798 cases (diagnosed with ICD-10 code G301),
72,206 healthy controls) obtained through FinnGen (finngen_r4_AD_LO_EXMORE) as the
‘base’ sample. For the ‘target’ samples, we retrieved GWAS summary statistics for the
blood levels of 41 immune markers (cytokines and growth factors) that were measured
as a continuous phenotype in the general population from the study by Ahola-Olli et al.
(GWAS sizes ranging from 840 to 8293 subjects; Table 1) [15].

Table 1. GWAS summary statistics for the blood levels of 41 immune markers in the general population that were used in
this study were obtained from the study by Ahola-Olli et al.

Name Description Type N GWAS

CCL11 Eotaxin Cytokine 8153
CCL2 (MCP1) Monocyte chemotactic protein-1 Cytokine 8293

CCL27 (CTACK) Cutaneous T-cell attracting Cytokine 3631
CCL3 (MIP1α) Macrophage inflammatory protein-1α Cytokine 3522
CCL4 (MIP1β) Macrophage inflammatory protein-1β Cytokine 8243

CCL5 (RANTES) Regulated upon activation, normal T cell
expressed and secreted Cytokine 3421

CCL7 (MCP3) Monocyte specific chemokine 3 Cytokine 843
CXCL1 (GROa) Growth-regulated oncogene-α Cytokine 3505
CXCL10 (IP10) Interferon γ-induced protein 10 Cytokine 3685

CXCL12 (SDF1a) Stromal cell-derived factor-1 α Cytokine 5998
CXCL9 (MIG) Monokine induced by interferon-γ Cytokine 3685
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Table 1. Cont.

Name Description Type N GWAS

FGF2 (FGFBasic) Basic fibroblast growth factor Growth factor 7565
GCSF Granulocyte colony-stimulating factor Growth factor 7904
HGF Hepatocyte growth factor Growth factor 8292
IFNγ Interferon-γ Cytokine 7701
IL10 Interleukin-10 Cytokine 7681

IL12p70 Interleukin-12p70 Cytokine 8270
IL13 Interleukin-13 Cytokine 3557
IL16 Interleukin-16 Cytokine 3483
IL17 Interleukin-17 Cytokine 7760
IL18 Interleukin-18 Cytokine 3636
IL1b Interleukin-1-β Cytokine 3309
IL1ra Interleukin-1 receptor antagonist Cytokine 3638
IL2 Interleukin-2 Cytokine 3475

IL2ra Interleukin-2 receptor, α subunit Cytokine 3677
IL4 Interleukin-4 Cytokine 8124
IL5 Interleukin-5 Cytokine 3364
IL6 Interleukin-6 Cytokine 8189
IL7 Interleukin-7 Cytokine 3409

IL8 (CXCL8) Interleukin-8 Cytokine 3526
IL9 Interleukin-9 Cytokine 3634

MCSF Macrophage colony-stimulating factor Growth factor 840

MIF Macrophage migration inhibitory factor
(glycosylation-inhibiting factor) Growth factor 3494

PDGFbb Platelet-derived growth factor BB Growth factor 8293
SCF Stem cell factor Growth factor 8290

SCGFβ Stem cell growth factor β Growth factor 3682
TNFα Tumor necrosis factor-α Growth factor 3454
TNFβ Tumor necrosis factor-β Growth factor 1559
TRAIL TNF-related apoptosis-inducing ligand Cytokine 8186
VEGF Vascular endothelial growth factor Growth factor 7118
βNGF β nerve growth factor Growth factor 3531

NOTE: Alternative names are indicated between brackets. Abbreviation: GWAS, genome-wide association study.

2.2. PRS-Based Analyses

We performed PRS-based analyses with PRSice (v1.25), using the abovementioned
Finish GWAS summary statistics as ‘base’ and ‘target’ samples [16] to determine the level
of shared genetic etiology between AD and the blood levels of the 41 immune markers.
First, we performed clumping based on the p-values of SNPs in the ‘base sample’ to select
the most significant SNP among correlated SNPs that were in linkage disequilibrium (LD,
R2 > 0.25) within a window of 500 kb using PLINK (v1.90) [17,18]. With PRSice we then
calculated summary-level PRS by regressing the weights of selected AD risk SNPs (based
on their p-value in the AD GWAS) on to the calculated weighted multi-SNP risk scores
of immune marker blood levels, using the gtx package implemented in PRSice [16]. The
PRS-based analyses were performed for all SNPs that exceeded seven default p-value
thresholds (PT): 0.001, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. A correction for multiple testing was
then performed using a Bonferroni significance threshold < 0.05 (i.e., p < 0.05/287 tests
(=7 PTs × 41 phenotypes) = 1.74 × 10−4).

2.3. SNP Effect Concordance Analyses

Subsequently, for those immune markers that we found to have a shared genetic
etiology with AD, we performed SNP effect concordance analysis (SECA) to determine
the direction of the genetic overlap [19]. We used SECA to calculate empirical p-values
for the concordance between AD and immune marker blood levels, i.e., the agreement in
the direction of the SNP effect across two phenotypes. We then performed a Bonferroni
correction to account for the number of tests that we performed with SECA.
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3. Results
3.1. PRS-Based Analyses

After correcting for multiple testing, we identified genetic sharing between AD and
the blood levels of 15 out of the 41 immune markers (36.6%) for at least one of the seven
used p-value thresholds (PTs) (Table 2). A complete overview of the PRS-based analyses
including all PTs for all blood immune markers is provided in the Supplementary Materials
(Table S1). For the 15 significant immune markers, genetic variants associated with AD
also explained between 0.5 and 1.8% of the variation in their blood levels (Table 2).

Table 2. Fifteen immune markers for which we identified genetic sharing between AD and their
blood levels.

Immune Marker Best PT N SNPs Bonferroni
p-Value

Variance
Explained R2

Concordance
with AD

CCL4 (MIP1β) 0.001 2001 3.51 × 10−5 0.003227 +
FGF2 (FGFBasic) 0.5 497,296 7.18 × 10−7 0.004509 +

GCSF 0.2 236,031 3.45 × 10−3 0.002255 +
HGF 0.5 498,823 4.25 × 10−4 0.002631 +
IL10 0.5 497,485 1.38 × 10−7 0.004857 +

IL12p70 0.5 498,327 7.70 × 10−3 0.001971 +
SCF 0.5 498,841 3.14 × 10−3 0.002171 +

bNGF 0.001 1894 4.03 × 10−3 0.004956 -
CCL3 (MIP1α) 0.05 65,371 2.25 × 10−2 0.004048 -

CCL5 (RANTES) 0.3 310,864 2.45 × 10−8 0.011848 -
CXCL1 (GROα) 0.2 221,410 1.54 × 10−13 0.018177 -

IL8 0.2 220,931 9.84 × 10−5 0.006968 -
MIF 0.2 221,727 6.80 × 10−5 0.007234 -

SCGFβ 0.001 1927 1.54 × 10−4 0.006441 -
TRAIL 0.3 332,200 3.18 × 10−5 0.003273 -

Abbreviations: PT, p-value threshold; SNP, single nucleotide polymorphism.

3.2. SECA Analyses

SECA analyses showed a significant genetic concordance between AD and all
15 immune markers that emerged from our screening (Table S2). For the blood levels
of seven of the 15 immune markers, we identified a positive concordance with AD, in-
dicating that genetic risk factors associated with AD also contribute to increased blood
levels of these markers (Table 2). For the other eight immune markers, we found a negative
concordance with AD, implying that genetic risk factors for AD are also associated with
lower blood levels of these markers (Table 2).

4. Discussion

In this paper, we identified genetic sharing between AD and the blood levels of
15 immune markers. Through concordance analyses, we also determined that for eight
and seven of these markers, AD genetic risk factors contribute to increased and decreased
blood levels, respectively.

First, we will discuss the literature findings about those immune markers for which
we found a positive concordance between AD and their blood levels. Although no direct
links between the blood levels of basic fibroblast growth factor (bFGF; other name: FGF2)
have been reported, increased FGF2 levels were found in the brains of AD patients. In
these brains, FGF2 was found within the neuritic plaques and in association with the
neurofibrillary tangles that are characteristic of AD [20]. Further, FGF2 gene transfer
restores hippocampal functions in mouse models of AD and viral delivery of FGF2 in the
brain has been proposed as a therapeutic intervention for AD [21], further indicating an
important role for FGF2 in AD. Granulocyte colony-stimulating factor (GCSF) stimulates
the production and release of neutrophils in the blood and is also a neurotrophic factor [22].
In this respect, it is interesting that decreased GCSF blood levels have been reported in
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AD patients, although among these patients, higher GSCF blood levels associate with
increased disease severity [22]. However, while this latter finding is in keeping with the
positive genetic concordance between AD and blood GCSF levels that we observed, GCSF
treatment has also been shown to improve memory in an AD rat model [23]. In addition,
again in line with our findings, higher levels of hepatocyte growth factor (HGF)—which
regulates various brain functions, including axonal outgrowth, neuronal survival, and
synaptic plasticity—have been found in the blood, cerebrospinal fluid (CSF) and brains
of AD patients [24,25]. In this respect, increased HGF immunoreactivity within neurons,
astrocytes and microglial cells was also demonstrated to be an indicator of gliosis and
microglial proliferation that occurs around Aβ plaques in AD brains [25]. In contrast to the
results of our concordance analysis, decreased blood levels of stem cell factor (SCF) have
been described in AD patients, and these decreased levels are also associated with a higher
rate of cognitive decline [26].

In addition to the four abovementioned growth factors, we identified a positive genetic
concordance between AD and the blood levels of three cytokines: interleukin 10 (IL10),
IL12p70 and CCL4. As for IL10, this cytokine is a negative regulator of the innate immune
system and IL10 knockout in an AD mouse model resulted in increased Aβ clearance
by activated microglia and a partially rescued synaptic integrity in the brains of these
mice [27]. The negative role of IL10 in AD is corroborated by our finding that genetic
variants associated with AD also contribute to increased IL10 blood levels. Furthermore,
in the brains of AD patients, significantly increased levels of both the anti-inflammatory
IL10 and the pro-inflammatory IL12p70 have been reported, indicating that both anti-
and pro-inflammatory signaling can be activated simultaneously in AD [28]. In addition,
IL12p70 has been shown to reduce neuronal viability in cell culture experiments, both in
the presence or absence of Aβ [29]. Lastly, chronic inflammation leads to elevated CCL4
levels in AD brains [30], while CCL4 levels are also increased in microglia associated with
Aβ plaques [31].

For eight immune markers (three growth factors and five cytokines), we found a
negative concordance between AD and their blood levels. Firstly, nerve growth factor
(NGF) contributes to the survival, regeneration, and death of neurons during aging and in
neurodegenerative diseases such as AD [32]. Impaired NGF signaling has also been linked
to neurons losing their cholinergic phenotype in the AD basal forebrain [33] and brain
implants delivering NGF to the cholinergic basal forebrain are currently being tested as an
AD treatment in humans [34]. In this respect, it is interesting that we found that genetic
variants associated with AD contribute to decreased NGF levels in the blood, which may
reflect what is happening with NGF levels in the brain. Further, macrophage migration
inhibitory factor (MIF) levels have been found to be increased in the blood, CSF and brains
of AD patients [35]. Although the finding about MIF levels in the blood of AD patients is
opposite to the negative genetic concordance that we identified, MIF colocalizes with Aβ
plaques and increased MIF levels protect neuronal cells from Aβ-induced neurotoxicity [36].
Hence, MIF levels may be upregulated in the brain as a defense mechanism to compensate
for declined cognitive function in AD [36]. Moreover, although no direct links between
blood SCGFβ levels and AD have been reported, it is interesting that blood IL10 levels—
for which we found a positive concordance with AD—negatively predict blood SCGFβ
levels [37], which is in line with the negative concordance with AD that we observed.

As for the cytokines for which we found a negative concordance between AD and
their blood levels, microvessels from AD brains produce and release high levels of CCL3
compared to control brains, suggesting that the brain microvasculature contributes to the
inflammatory environment of the AD brain through upregulating CCL3 expression [38].
In addition, elevated levels of CCL5 in the cerebral microcirculation of AD patients were
reported, and CCL5 treatment of neurons increases cell survival, suggesting a neuroprotec-
tive role for CCL5 [39,40]. Moreover, monocytes from AD patients produce significantly
higher amounts of CXCL1 compared to age-matched controls, which causes these mono-
cytes to migrate from the blood to the brain [41]. In the brain, CXCL1 also promotes the
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cleavage of tau, which is considered an early event in AD development [42]. Taken together,
the literature findings on the relationship between AD and the brain levels of CCL3, CCL5
and CXCL1 are opposed to the negative concordance between AD and their blood levels
that we found. In this respect, there may be an inverse relationship between the blood
and brain levels of these cytokines, which we could speculate would, e.g., result from the
recruitment of cytokine-producing immune cells to the site of inflammation—i.e., from the
blood to the brain in the case of AD—that would in turn lead to a relative depletion of
the cytokines in the blood. Incidentally, this may also apply to the other immune markers
for which we found a discrepancy between the literature findings and the results from
our concordance analysis—such as SCF, see above—and in fact, a recent study found that
there were relatively few direct correlations between blood and CSF levels of cytokines
in multiple neuro-inflammatory diseases [43]. Further, TRAIL is specifically expressed
in the brains of AD patients and completely absent in the brains of healthy controls [44],
and anti-TRAIL antibodies reduce brain Aβ load and improve cognition in an AD mouse
model [45]. However, it was also reported that TRAIL blood levels do not differ between
AD patients and controls [46]. Lastly, blood IL8 levels were found to be decreased in
AD patients—consistent with the negative genetic concordance that we observed—while
both lower and higher IL8 levels have been reported in the CSF of AD patients [47,48].
In addition, IL8 promotes inflammation and cell death of cultured neurons [49] while, in
contrast, neurons also produce IL8 as a protection against Aβ-induced toxicity [50].

This study has two main limitations. First, genetic sharing between AD and blood
levels of immune markers does not necessarily mean higher or lower immune marker blood
levels are causative of AD. Second, as already indicated, blood levels may not reflect what
is happening in the brain directly and there may also be an inverse relationship between
the levels of immune markers in the blood and CSF, which warrants further investigation
using CSF and post-mortem brain samples. This being said, we can conclude that genetic
risk factors for AD also affect the blood levels of specific immune markers, suggesting that
systemic immune processes may influence AD pathogenesis and progression. Although
further studies are needed to confirm our findings, and depending on whether AD shows
genetic overlap with increased or decreased immune marker blood levels, novel treatment
strategies for AD could be developed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060865/s1, Table S1: Shared genetic etiology analyses between AD and the blood
levels of 41 immune markers across seven p-value inclusion thresholds (PTs) using a polygenic
risk score (PRS)-based approach, Table S2: SNP effect concordance (SECA) analyses on the genetic
concordance between AD and blood immune marker levels that were significant in the polygenic
risk score (PRS)-based analyses.
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Abstract: Late-onset Alzheimer’s disease (LOAD), the most common cause of dementia, and a
huge global health challenge, is a neurodegenerative disease of uncertain aetiology. To deliver
effective diagnostics and therapeutics, understanding the molecular basis of the disease is essential.
Contemporary large genome-wide association studies (GWAS) have identified over seventy novel
genetic susceptibility loci for LOAD. Most are implicated in microglial or inflammatory pathways,
bringing inflammation to the fore as a candidate pathological pathway. Among the most significant
GWAS hits are three complement genes: CLU, encoding the fluid-phase complement inhibitor
clusterin; CR1 encoding complement receptor 1 (CR1); and recently, C1S encoding the complement
enzyme C1s. Complement activation is a critical driver of inflammation; changes in complement
genes may impact risk by altering the inflammatory status in the brain. To assess complement gene
association with LOAD risk, we manually created a comprehensive complement gene list and tested
these in gene-set analysis with LOAD summary statistics. We confirmed associations of CLU and
CR1 genes with LOAD but showed no significant associations for the complement gene-set when
excluding CLU and CR1. No significant association with other complement genes, including C1S,
was seen in the IGAP dataset; however, these may emerge from larger datasets.

Keywords: complement; complement receptor 1; clusterin; late-onset Alzheimer’s disease; genet-
ics; neuroinflammation

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly.
Pathologically, AD is a chronic neurodegenerative disease underpinned by neuronal and
synaptic loss, the accumulation of amyloid-β plaques, and neurofibrillary tangles composed
of hyperphosphorylated tau. An important role for neuroinflammation has emerged in
recent years. Evidence includes the presence of activated microglia in the brain innate
immune cells, the presence of inflammatory markers, including complement proteins, in
the brain, cerebrospinal fluid (CSF) and plasma, and the demonstration that chronic use of
anti-inflammatory drugs may reduce disease incidence [1–3]. Perhaps the best evidence
that inflammation may be involved in AD aetiology comes from genome-wide association
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studies (GWAS); many of the genes most strongly associated with AD risk are involved in
inflammation and immunity.

The first causative mutations for AD, identified over 25 years ago in the rare early-
onset familial forms of AD, were in Amyloid precursor protein (APP), Presenilin 1 (PSEN1)
and Presenilin 2 (PSEN2) genes [4–6]. APP, encoded by the APP gene, a broadly expressed
transmembrane protein abundant in the brain, is sequentially cleaved by secretase enzymes.
The precise cleavage patterns determine its propensity to seed Aβ plaques. The presenilin
proteins PSEN1 and PSEN2 are both components of the γ-secretase complex and important
in the function of this enzyme; mutations in the genes encoding these proteins impact the
APP cleavage pathway. The identification of early-onset AD-associated mutations in these
three genes underpins the amyloid cascade hypothesis whereby abnormal APP processing
leading to Aβ plaque formation is considered the key underlying pathology associated
with AD [7]. However, it is important to stress that these mutations are only relevant to
early-onset familial AD which accounts for fewer than 1% of all AD cases. In late-onset
Alzheimer’s disease (LOAD), accounting for the large majority of AD cases, the strongest
genetic risk factor is the presence of the ε4 allele of the gene encoding Apolipoprotein E
(ApoE); ε4 confers increased risk, while the most common allele, ε3, is considered neutral
for AD, and ε2 has a minor protective effect [8–11]. Homozygosity for APOE ε4 confers
an ~11-fold increased risk of LOAD compared to ε3 homozygotes. Precisely how these
variants in APOE impact disease risk remains a subject of ongoing research. ApoE is a
lipoprotein present in biological fluids; therefore, roles in lipid transport and membrane
repair in the brain have been proposed [12].

Over the past decade, large GWAS have identified variants in more than 70 genetic
loci that are associated with LOAD, implicating multiple and diverse biological path-
ways [13–16]. Notably, ~20% of the genes in LOAD risk loci encode proteins with roles
in inflammation and immunity [14,17,18]; many of these are predominantly expressed in
microglia, notably TREM2, ABI3 and PLCG2 [15,19]. From GWAS, it has been shown that
three complement system genes are significantly associated with LOAD: CLU, CR1, and
recently, C1S encoding the classical pathway enzyme C1s was added to this list [13,16,20].
CLU encodes clusterin, a multifunctional plasma protein that regulates the complement
terminal pathway, and CR1 encodes complement receptor 1 (CR1), a receptor for comple-
ment fragments and regulator of activation. These are both regulators of the complement
cascade and provide the impetus for this analysis of complement genetics in LOAD. To
test whether complement genes beyond CLU and CR1 (both genome-wide significant
(GWS) in the International Genomics of Alzheimer’s Project (IGAP) dataset) influence the
risk of LOAD, we compiled a comprehensive complement gene-set containing only those
genes that encoded proteins directly involved in complement activation, regulation, or
recognition. Then, we undertook several methods of pathway analysis to test whether
additional genes within the complement gene-set were associated with LOAD risk.

2. Materials and Methods
2.1. Complement Genes and Gene Exclusion Analyses in LOAD

In order to understand the genetics of the complement pathway in AD, we compiled
a comprehensive gene-set comprising all complement genes and associated regulators and
receptors. Genes were selected for inclusion based upon known biological relevance to the
complement system rather than by using often inaccurate annotations in public databases.
The resultant complement gene-set contained 56 genes, subdivided into their relevant
functional groups (Table 1).
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Table 1. Complement gene list including all complement genes and associated regulators and receptors. Genes are sub-
divided according to pathway; either classical, lectin, amplification loop or terminal and whether they are complement
genes or associated regulators/receptors.

Pathway HGNC Gene Name Entrez Gene ID HGNC Full Gene Name

Classical C1QA 712 complement C1q A chain
Classical C1QB 713 complement C1q B chain
Classical C1QC 714 complement C1q C chain
Classical C1R 715 complement C1r
Classical C1S 716 complement C1s

Classical/Lectin C2 717 complement C2
Classical/Lectin C4A 720 complement C4A (Rodgers blood group)
Classical/Lectin C4B 721 complement C4B (Chido blood group)

Lectin FCN1 2219 ficolin 1
Lectin FCN2 2220 ficolin 2
Lectin FCN3 8547 ficolin 3
Lectin MASP1 5648 mannan binding lectin serine peptidase 1
Lectin MASP2 10747 mannan binding lectin serine peptidase 2
Lectin MBL2 4153 mannose binding lectin 2

Amplification loop CFB 629 complement factor B
Amplification loop CFD 1675 complement factor D
Classical/Lectin/

Amplification loop C3 718 complement C3

Terminal C5 727 complement C5
Terminal C6 729 complement C6
Terminal C7 730 complement C7
Terminal C8A 731 complement C8 α chain
Terminal C8B 732 complement C8 β chain
Terminal C8G 733 complement C8 γ chain
Terminal C9 735 complement C9

Regulator/Receptor C1QBP 708 complement C1q binding protein
Regulator/Receptor C3AR1 719 complement C3a receptor 1
Regulator/Receptor C4BPA 722 complement component 4 binding protein α
Regulator/Receptor C4BPB 725 complement component 4 binding protein β
Regulator/Receptor C5AR1 728 complement C5a receptor 1
Regulator/Receptor C5AR2 27202 complement component 5a receptor 2
Regulator/Receptor CD46 4179 CD46 molecule
Regulator/Receptor CD55 1604 CD55 molecule (Cromer blood group )
Regulator/Receptor CD59 966 CD59 molecule
Regulator/Receptor CFH 3075 complement factor H
Regulator/Receptor CFHR1 3078 complement factor H related 1
Regulator/Receptor CFHR2 3080 complement factor H related 2
Regulator/Receptor CFHR3 10878 complement factor H related 3
Regulator/Receptor CFHR4 10877 complement factor H related 4
Regulator/Receptor CFHR5 81494 complement factor H related 5
Regulator/Receptor CFI 3426 complement factor I
Regulator/Receptor CFP 5199 complement factor properdin
Regulator/Receptor CLU 1191 clusterin
Regulator/Receptor CR1 1378 complement C3b/C4b receptor 1 (Knops blood group)
Regulator/Receptor CR2 1380 complement C3d receptor 2
Regulator/Receptor CSMD1 64478 CUB and Sushi multiple domains 1
Regulator/Receptor ITGAM 3684 integrin subunit αM
Regulator/Receptor ITGAX 3687 integrin subunit α X
Regulator/Receptor SERPING1 710 serpin family G member 1
Regulator/Receptor VTN 7448 Vitronectin
Regulator/Receptor CD93 22918 C1q receptor phagocytosis

Complement-like C1QL1 10882 complement C1q-like 1
Complement-like C1QL2 165257 complement C1q-like 2
Complement-like C1QL3 389941 complement C1q-like 3
Complement-like C1QL4 338761 complement C1q-like 4
Complement-like C1RL 51279 complement C1r subcomponent-like
Complement-like CR1L 1379 complement C3b/C4b receptor 1-like

111



Genes 2021, 12, 443

2.2. AD Summary Statistics

This study utilised summary statistics from the International Genomics of Alzheimer’s
Project (IGAP). IGAP is a large three-stage study based upon GWAS on individuals of European
ancestry. In stage 1, IGAP used genotyped and imputed data on 11,480,632 single nucleotide
polymorphisms (SNPs) to meta-analyse GWAS datasets consisting of 21,982 Alzheimer’s disease
cases and 41,944 cognitively normal controls from four consortia: the Alzheimer Disease
Genetics Consortium (ADGC); the European Alzheimer’s disease Initiative (EADI); the
Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE);
and the Genetic and Environmental Risk in AD Consortium Genetic and Environmental
Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease
Consortium (GERAD/PERADES). In stage 2, 11,632 SNPs were genotyped and tested
for association in an independent set of 8362 Alzheimer’s disease cases and 10,483 con-
trols. Meta-analyses of variants selected for analysis in stage 3A (n = 11,666) or stage 3B
(n = 30,511) samples brought the final sample to 35,274 clinical and autopsy-documented
Alzheimer’s disease cases and 59,163 controls.

Gene-set analysis was performed using the complement gene-set and stage 1 summary
statistics from the International Genomics of Alzheimer’s Project [14]. The individual and
combined effects of the genome-wide significant (GWS) genes CLU and CR1 within the
complement gene-set were investigated by removing these genes individually and together.
We utilised the most up-to-date publicly available GWAS dataset at the time of writing [14],
and calculated the complement gene-set p-values when including and excluding those
loci that reached genome-wide significance in the IGAP dataset. The recently identified
LOAD-associated C1S variant [13] does not show genome-wide statistical significance in
the IGAP dataset; and therefore was not removed in the gene-set analysis. Complement
gene-sets were tested for enrichment using the IGAP stage 1 summary statistics [14]
in MAGMA version 1.06 [21]. Summary statistics were filtered for common variants
(MAF ≥ 0.01) and all indels and merged deletions were removed; 8,608,484 SNPs were
analysed. Genes were annotated using reference data files from the European population
of Phase 3 of 1000 Genomes, human genome Build 37 using a window of 35 kb upstream
and 10 kb downstream of each gene [22]. Ten thousand permutations were used to estimate
p-values, corrected for multiple testing using the family-wise error rate (FWER). Gene-sets
with a FWER-corrected p-value < 0.05 under the “mean” model for estimating gene-level
associations were reported as significant.

2.3. Complement Risk Score Analysis

A complement risk score combining the effects of all SNPs in the complement gene-set
was produced. POLARIS [23] was used to compute risk scores in GERAD-genotyped
data (3332 cases, 9832 controls) using SNP effect sizes from IGAP stage 1 summary statis-
tics [14,16,20] (excluding GERAD subjects). Linkage disequilibrium (LD) was estimated
from the GERAD data, and POLARIS was used to adjust the scores for LD between SNPs.
The overall association of the complement gene-set with LOAD was determined using a
logistic regression model, adjusting for population covariates, age, and sex. The logistic
regression model included the baseline polygenic risk scores for all SNPs in the model,
thereby testing for any association beyond the baseline polygenic effect.

Data used in the preparation of this article were obtained from the Genetic and En-
vironmental Risk for Alzheimer’s disease (GERAD) Consortium. The imputed GERAD
sample comprised 3177 AD cases and 7277 controls with available age and gender data.
Cases and elderly screened controls were recruited by the Medical Research Council (MRC)
Genetic Resource for AD (Cardiff University; Institute of Psychiatry, London; Cambridge
University; Trinity College Dublin), the Alzheimer’s Research UK (ARUK) Collabora-
tion (University of Nottingham; University of Manchester; University of Southampton;
University of Bristol; Queen’s University Belfast; the Oxford Project to Investigate Mem-
ory and Ageing (OPTIMA), Oxford University); Washington University, St Louis, United
States; MRC PRION Unit, University College London; London and the South East Region
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AD project (LASER-AD), University College London; Competence Network of Dementia
(CND) and Department of Psychiatry, University of Bonn, Germany; the National Institute
of Mental Health (NIMH) AD Genetics Initiative. A total of 6129 population controls were
drawn from large existing cohorts with available GWAS data, including the 1958 British
Birth Cohort (1958BC) (http://www.b58cgene.sgul.ac.uk, accessed on 15 March 2021),
the KORA F4 Study, and the Heinz Nixdorf Recall Study. All AD cases met criteria for
either probable (NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD. All elderly controls
were screened for dementia using the MMSE or ADAS-cog and were determined to be
free from dementia at neuropathological examination or had a Braak score of 2.5 or lower.
Genotypes from all cases and 4617 controls were previously included in the AD GWAS by
Harold and colleagues (2009) [20]. Genotypes for the remaining population controls were
obtained from WTCCC2. Imputation of the dataset was performed using IMPUTE2 and
the 1000 genomes (http://www.1000genomes.org/, accessed on 15 March 2021) Dec2010
reference panel (NCBI build 37.1).

2.4. Likelihood Ratio Analysis

A likelihood ratio test was used to estimate how much of the complement gene-set
effect on LOAD risk was contributed by CLU and CR1, and to test whether there were
residual polygenic effects of the remaining genes from the complement gene-set. The
effects of CLU and CR1 were estimated using a risk score combining all SNPs in the gene,
produced using POLARIS in order to correct for LD. Likelihood ratio tests were used to
compare individual models containing SNPs in CLU and CR1 and models containing the
combined risk conferred by SNPs in the rest of the complement gene-set.

3. Results
3.1. MAGMA Analysis Reveals the Impact of Individual Complement Genes

From the MAGMA gene-set analysis, the complement gene-set comprising all 56 genes
was significantly associated with LOAD (p = 0.011) (Table 2). When the GWAS-significant
genes CLU and CR1 were excluded individually from the gene-set, the complement-minus-
CLU gene-set was not significant (p = 0.057), while the complement-minus-CR1 gene-set
was significant (p = 0.048). As CR1 and CR1L are located next to each other on chromosome
1, and linkage disequilibrium extends between the two genes, we excluded the CR1/CR1L
locus from the gene-set. This gene-set was not significant (p = 0.082). The gene set in which
both CLU and CR1 were excluded from the complement gene-set was not significantly
associated with LOAD (p = 0.170). The signal in the gene-set where CR1L, CLU and CR1
were excluded was reduced compared with the signal derived from the gene-sets in which
CLU and CR1 were removed (Table 2). Taken together, these results suggest that the
LOAD association signal in the complement gene-set is predominantly driven by CLU
and CR1. Given the physical distance between CR1 and CR1L, the use of extended gene
boundaries and that linkage disequilibrium extends across both genes, we cannot resolve
the signal between these two genes in the gene set analysis. Hence, we cannot confirm any
independent contribution from CR1L.

Table 2. Complement gene-set analysis.

Gene-Set Ngenes OR 95% CI p p FWER

Complement Genes 56 1.402 [1.068, 1.841] 0.008 0.011
Complement Genes Minus CLU 55 1.278 [0.969, 1.684] 0.041 0.057
Complement Genes Minus CR1 55 1.288 [0.981, 1.691] 0.034 0.048

Complement Genes Minus CLU, CR1 54 1.172 [0.891, 1.542] 0.129 0.170
Complement Genes Minus CR1, CR1L 54 1.244 [0.943, 1.639] 0.061 0.082

Complement Genes Minus CLU, CR1, CR1L 53 1.127 [0.854, 1.489] 0.199 0.246

Table 2 displays the results from the MAGMA analysis. Gene-sets were corrected
for multiple testing using the family-wise error rate (FWER). The complement gene-set
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is significant (p = 0.011), but this effect is lost when CLU and CR1 are excluded from the
gene-set (p = 0.170). CLU has the largest impact in the complement set, and the association
with AD is predominantly driven by CLU and CR1.

3.2. Risk Score Analysis Supports the Impact of Complement Genes

To further explore the impact of complement genes on LOAD risk, we adopted a
polygenic approach. We first applied risk score analysis to the dataset, then used logistic
regression to explore the association between LOAD and complement gene-set risk scores in
GERAD individuals (Table 3). The complement gene-set as a whole was strongly associated
with AD in this analysis (p = 0.003). Removal of CLU from the gene-set caused the largest
reduction in significance (p = 0.003 vs. p = 0.053). Removal of CR1, or the CR1/CR1L locus
had minimal impact on the significance of association in the gene-set, although when CLU,
CR1 and CR1L were eliminated, the significance was further reduced compared to the
elimination of CLU alone (p = 0.148 vs. p = 0.053) (Table 3). These gene elimination analyses
demonstrated that CLU and CR1 were the major contributors to the risk of LOAD in the
complement gene-set; however, the polygenic approach revealed that CLU was by far
the more significant of these. In these data, the CLU gene shows a stronger association
compared to CR1 (p = 1.03 × 10−5 and p = 1.5 × 10−3, respectively). The joint association
of CLU and CR1 is stronger still (p = 3.88 × 10−7), showing that CLU and CR1 are both
independently associated with AD.

Table 3. Association between Alzheimer’s disease (AD) and complement gene-set risk score.

Gene-Set Ngenes OR 95% CI p

Complement Genes 56 1.090 [1.028, 1.156] 0.003
Complement Genes Minus CLU 55 1.059 [0.998, 1.123] 0.053
Complement Genes Minus CR1 55 1.089 [1.027, 1.155] 0.004

Complement Genes Minus CLU, CR1 54 1.058 [0.997, 1.122] 0.059
Complement Genes Minus CR1, CR1L 54 1.077 [1.015, 1.142] 0.013

Complement Genes Minus CLU, CR1, CR1L 53 1.044 [0.984, 1.107] 0.148

Table 3 displays the results from the risk score analysis; the overall complement risk
score shows an association with AD (p = 0.003). CLU explains the majority of this signal.

3.3. Likelihood Ratio Analysis Confirms No Significant Impact of Other Complement Genes

We next tested complement gene-set effects using likelihood ratio analyses. Models in
which CLU, CR1 and CR1/CR1L were removed individually, showed significant residual
impact in the gene-set (p = 0.0136; p = 0.0091; p = 0.0063 respectively); after removal of CR1
and CLU or CR1, CLU and CR1L, there was no significant residual impact in the gene-set,
demonstrating that there was no significant polygenic effect of the remaining complement
genes in the datasets used (Table 4). These results further support the conclusion that the
complement gene-set association with LOAD is driven predominantly by CLU and CR1,
but with no significant contribution from other complement gene-set members (p = 0.1457;
Table 4).

Table 4 shows the results from these likelihood ratio tests comparing models containing
SNPs in CLU, CR1 and CR1/CR1L only and models containing the combined risk in SNPs in
the remaining complement genes. The p-values demonstrate whether the remaining genes
in the complement explain any additional variation. These results further support the
conclusion that the complement gene-set impact on LOAD risk is predominantly driven by
CLU and CR1.

114



Genes 2021, 12, 443

Table 4. Likelihood ratio test (LRT) comparing gene-set risk scores.

Models Compared LRT p-Value

(1) CLU
(2) CLU + Complement_minus_CLU 0.0136

(1) CR1
(2) CR1 + Complement_minus_CR1 0.0091

(1) CLU + CR1
(2) CLU + CR1 + Complement_minus_CLU_CR1 0.1457

(1) CR1 + CR1L
(2) CR1 + CR1L + Complement_minus_CR1_CR1L 0.0063

(1) CLU + CR1 + CR1L
(2) CLU + CR1 + CR1L + Complement_minus_CLU_CR1_CR1L 0.1145

4. Discussion

The first evidence implicating the complement system in LOAD came from immunos-
taining of post-mortem brain tissue. Complement components and activation products,
notably C1q, C4b, C3b/iC3b and the membrane attack complex, were present and co-
localised with amyloid plaques and neurofibrillary tangles in the AD brain [24–27]. C3
fragments were shown to opsonise amyloid for phagocytosis by microglia in the brain and
facilitate transport on erythrocytes to the liver [28]. Complement activation is critically
involved in synaptic pruning both in development and in diseases such as AD [29–32]. In
AD mouse models, back-crossing to complement deficiencies has supported the critical role
of complements in neuroinflammation and synapse loss [30,33]. The presence of comple-
ment activation biomarkers in CSF and/or plasma in LOAD suggested that complement
dysregulation occurs early in the disease [2]. The demonstration that complement genes
associated with LOAD provided compelling evidence that the complement was a driver of
disease rather than a secondary event [13,14,16].

To further investigate the roles of complement genes in the risk of LOAD, we compiled
a comprehensive complement gene-set and used a polygenic approach to identify genes
contributing to AD risk. We have demonstrated that the signal for the association of the
complement gene-set with LOAD is explained by the GWS genes CLU and CR1, and not by
other complement genes tested here. This finding was unexpected. Based on knowledge
from other chronic inflammatory diseases, we had hypothesised that many complement
genes might influence LOAD risk. For example, in age-related macular degeneration
(AMD), a retinal disease clinically and pathologically linked to LOAD, genes encoding
complement components C2, C3, FB and C9, and regulators FH and FHR4, all contribute
to risk [34]. Indeed, the demonstration that multiple complement genes can collaborate
to cause dysregulation and disease informed the concept of the “complotype”, the set of
complement gene variants inherited by an individual that dictates complement activity
and disease risk [35]. The genetic associations in these other chronic inflammatory diseases
influence systemic or local complement regulation and/or amplification of activation; these
in turn cause complement dysregulation that drives inflammation. Our demonstration that
the complement genetic signature in LOAD is restricted to the genes encoding clusterin and
CR1 suggests that complement dysregulation is not critical in the disease process. However,
it should be noted that this finding is dependent on the dataset being investigated. At
the time of writing, we utilised the largest publicly available AD GWAS dataset [14].
A recent study by the European AD Biobank, currently a preprint, reported an LOAD
GWAS-significant association with the complement gene C1S [13]; this suggests that larger
datasets and different analytical methods may implicate other complement genes and
further elucidate roles of the complement system in LOAD. Additionally, because of the
highly repetitive nature of a number of the complement loci, for example, the regulators of
complement activation (RCA) clusters on chromosome 1 [36], many complement genes may
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be hidden from standard sequencing technologies; the application of emerging long-range
sequencing methods may reveal additional genetic variation in complement genes linked
to LOAD missed in current GWAS and whole exome/genome sequencing studies using
short read sequencing technologies [37].

Of the complement genes tested here, CLU and CR1 were significantly associated
with LOAD through multiple analytical approaches. Clusterin is a multi-functional plasma
protein; its role in the complement system is to restrict fluid-phase membrane attack
pathway activation [38]; however, beyond the complement system, clusterin functions as
an extracellular chaperone protein, is involved in oxidative stress and cell survival/cell
death pathways, and functions as an apolipoprotein in lipid transport [38–41]. Any one
or several of these functions might underpin the association with LOAD. Four SNPs in
CLU, all intronic and in LD, have been associated with increased LOAD risk (rs11136000,
rs2279590, rs9331888 and rs9331896) [16,20]; evidence to date suggests that these SNPs
impact clusterin synthesis, and hence, plasma clusterin levels. CR1 is a membrane-bound
receptor for complement components (C1q, MBL) and fragments (C3b, C4b). The primary
function of CR1 is as a receptor for C3b/C4b-opsonised immune complexes. CR1 on
erythrocytes sequesters immune complexes and transports them to disposal sites, while
CR1 on phagocytic cells binds opsonised immune complexes and processes them for
elimination via phagocytosis. This latter activity requires a second function of CR1, its
cofactor activity for factor I cleavage of C3b to iC3b the ligand for the phagocytic receptor
CR3. The biological relevance of the C1q/MBL binding functions of CR1 are unclear. The
human CR1 gene is located in the RCA gene cluster on chromosome 1 (1q32); duplications
and deletions in this highly repetitive gene generate multiple isoforms via copy number
variation (CNV). The most common variant, CR1*1 (allele frequency 0.87) comprises 30
tandem repeats of 60–70 amino acid units called short consensus repeats (SCRs), which
are in turn grouped in four homologous sets of seven termed long homologous repeats
(LHRs), each a separate C3b/C4b binding unit. The second most common variant CR1*2
(allele frequency 0.11) is identical to CR1*1 except for the acquisition of an additional LHR,
a “gain-of-function”; this variant increases risk for LOAD by up to 30%, although precisely
how is unclear [14,16,42–44]. It has been suggested that the CR1*2 variant is associated
with lower CR1 expression on erythrocytes, reducing the efficiency of peripheral immune
complex handling and impacting amyloid clearance from the brain [45,46].

Our original analysis suggested that some of the signal from the complement gene-set
might be attributable to the CR1L gene. However, CR1L is immediately adjacent to CR1 and
the SNP signals cannot be resolved, so it is not possible to ascribe an independent signal to
CR1L in this analysis. CR1L encodes a C4b-binding protein comprising 13 SCRs, expressed
predominantly in haematopoietic tissues [47,48]. Its physiological role is unknown, and
evidence mechanistically linking it to LOAD is absent.

5. Conclusions

Taken together, our findings confirm the strong genetic association of the complement
genes CR1 and CLU with LOAD and that there is no statistically significant association
signal for other complement genes apparent in the dataset used for the analysis. CR1
and clusterin are important regulators of the complement pathway, suggesting that its
dysregulation is important in LOAD. The recent GWAS association of C1S with LOAD
demonstrates the potential for missing associations in this complex gene-set and raises
the possibility that other loci may be missed by current large-scale genotyping and short-
read sequencing technologies. Application of long read sequencing technologies could
significantly alter the current landscape of complement system genetics in relation to
LOAD risk.
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Abstract: Because studies of rare variant effects on gene expression have limited power, we investi-
gated set-based methods to identify rare expression quantitative trait loci (eQTL) related to Alzheimer
disease (AD). Gene-level and pathway-level cis rare-eQTL mapping was performed genome-wide
using gene expression data derived from blood donated by 713 Alzheimer’s Disease Neuroimaging
Initiative participants and from brain tissues donated by 475 Religious Orders Study/Memory and
Aging Project participants. The association of gene or pathway expression with a set of all cis poten-
tially regulatory low-frequency and rare variants within 1 Mb of genes was evaluated using SKAT-O.
A total of 65 genes expressed in the brain were significant targets for rare expression single nucleotide
polymorphisms (eSNPs) among which 17% (11/65) included established AD genes HLA-DRB1 and
HLA-DRB5. In the blood, 307 genes were significant targets for rare eSNPs. In the blood and the brain,
GNMT, LDHC, RBPMS2, DUS2, and HP were targets for significant eSNPs. Pathway enrichment
analysis revealed significant pathways in the brain (n = 9) and blood (n = 16). Pathways for apoptosis
signaling, cholecystokinin receptor (CCKR) signaling, and inflammation mediated by chemokine and
cytokine signaling were common to both tissues. Significant rare eQTLs in inflammation pathways
included five genes in the blood (ALOX5AP, CXCR2, FPR2, GRB2, IFNAR1) that were previously
linked to AD. This study identified several significant gene- and pathway-level rare eQTLs, which
further confirmed the importance of the immune system and inflammation in AD and highlighted
the advantages of using a set-based eQTL approach for evaluating the effect of low-frequency and
rare variants on gene expression.

Keywords: Alzheimer disease; expression quantitative trait loci (eQTL); rare variants; set-based
eQTL; SKAT-O; pathways; immune system; inflammation; ROSMAP; ADNI

1. Introduction

Late-onset Alzheimer disease (AD) is the most common type of dementia that affects
an estimated 5.7 million individuals aged 65 years and older in the United States, with the
number projected to rise to 14 million by 2050 [1]. AD is highly heritable (h2 = 58–79%) [2],
but common variants explain only one-third of the genetic portion of AD risk [2]. Highly
penetrant rare variants may account for some of the missing heritability [3]. Whole-exome
sequencing studies have identified robust AD associations with rare missense variants in
TREM2, AKAP9, UNC5C, ZNF655, IGHG3, CASP7 and NOTCH3 [4–9], and it is expected
that more AD-related rare variants will be identified by whole-genome sequencing (WGS)
studies, because some rare variants, including those in non-coding regions, likely contribute
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to AD risk. However, identification of genes that are impacted by these rare variants, and
thus likely have a functional role in AD, remains challenging.

Some AD risk variants are associated with gene expression, as demonstrated by recent
expression quantitative trait locus (eQTL) studies [10,11]. Rare variants may contribute to
extreme gene expression within a single tissue or across multiple tissues [12–15]. However,
genome-wide studies of rare eQTLs are generally underpowered to obtain significant
results. Although gene-based tests, which test the aggregate effects of multiple variants,
are commonly used to evaluate the association of a disease with rare variants, only a few
studies have applied this approach to the analysis of rare eQTLs. Several eQTL studies
employed set-based approaches including testing gene expression with multiple single
nucleotide polymorphisms (SNPs) chosen by variable selection [16,17] using a gene-based
partial least-squares method to correlate multiple gene transcript probes with multiple
SNPs [18], and identifying variants associated with transcript and protein modules [19].
These applications were not focused on rare variants, but still afforded higher power with
a potential to find significant associations with low-frequency variants.

Few studies have applied a set-based eQTL method for rare variants. Recently, Lutz
et al. applied burden and set-based (sequence) kernel association (SKAT) tests to normalize
read counts in RNA-sequence (RNA-seq) studies [20]. In this study, we performed a
gene-based cis-eQTL analysis using expression data derived from human blood and brain
tissue to identify genes that contain a set of potentially regulatory low-frequency and
rare variants (minor allele frequency (MAF) < 0.05) that are significantly associated with
their expression. Although this design focused on rare variants, and thus has low power
to detect expression differences between AD cases and controls, the set-based method
can potentially discriminate AD-related targets among a group of genes located within
1 Mb from the expression single nucleotide polymorphisms (eSNPs) that were previously
associated with the risk of AD. We also applied a pathway-based approach to determine
which genes contribute most to the overall gene expression profile of a significant pathway
containing a set of co-expressed functionally related genes.

2. Materials and Methods
2.1. Study Cohorts

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite longitudinal
study that began enrolling subjects in 2004, and includes persons with AD, mild cognitive
impairment (MCI), and normal cognitive functioning [21]. Affymetrix Human Genome
U219 array gene expression data derived from whole blood, whole-genome sequence
(WGS) data, and phenotype data were downloaded from a public-access database (http:
//www.loni.usc.edu (accessed on 11 December 2018)). The portion of the sample included
in this study included 207 AD cases, 284 MCI cases, 194 controls, and 28 individuals with
missing dementia status.

The Religious Orders Study (ROS)/Memory and Aging Project (MAP) also contributed
to this research. ROS enrolled older nuns and priests from across the US without known
dementia for a longitudinal clinical analysis and brain donation. MAP enrolled older
subjects without dementia from retirement homes, who agreed to brain donation at the
time of death [22,23]. RNA-sequence data, including gene expression information derived
from dorsolateral prefrontal cortex area tissue donated by 475 participants (281 autopsy-
confirmed AD cases and 194 controls), as well as WGS data included in this study, were
obtained from the AMP-AD knowledge portal (https://www.synapse.org/#!Synapse:
syn3219045 (accessed on 1 July 2018)) [24]. Characteristics of subjects from both cohorts are
provided in Table 1.
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Table 1. Characteristics of subjects in the Religious Orders Study/Memory and Aging Project
(ROSMAP) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.

Dataset Race N AD Cases MCI Cases Controls Female Age *

ROSMAP
(Brain)

NHW
98%
AA
2%

Other
<0.01%

475 281 0 194 63% 85.9 (4.8)

ADNI
(Blood)

NHW
93%
AA
4%

Other
3%

713 207 284 222 44% 76.3 (8.1)

NHW—non-Hispanic white, AA—African American. * mean (standard deviation).

2.2. Data Processing

ADNI microarray gene expression data were normalized and log-transformed using
limma [25]. ROSMAP RNA-seq data were normalized and then log-transformed using
a previously described pipeline [26]. The log-transformed expression data were evalu-
ated using surrogate variable analysis (SVA) [27] to obtain surrogate variables for global
technical effects and hidden effects, which were included as covariates in the analysis
models for eQTL discovery. Additional filtering steps of GWAS and gene expression data
included eliminating 167 ROSMAP and 96 ADNI subjects with missing data (resulting in
the sample sizes reported in Table 1), restricting gene expression data to protein-coding
genes (12,971 genes in ROSMAP and 16,025 genes in ADNI), and selecting only bi-allelic
low-frequent and rare variants (MAF ≤ 0.05) with a variant call rate of >95%.

2.3. Functional Annotation of Variants

Variants in the ADNI and ROSMAP WGS datasets were annotated using CADD
v1.6 [28] and GWAVA v1.0 software [29]. Combined Annotation-Dependent Depletion
(CADD) scores prioritize functional, deleterious, and disease-causal coding and non-
coding variants by integrating multiple annotations into one score by contrasting variants
that survived natural selection with simulated mutations [28]. A scaled CADD score of
10 or greater indicates a raw score in the top 10% of all possible reference genome single
nucleotide variants (SNVs), and a score of 20 or greater indicates a raw score in the top
1% [28]. Genome-Wide Annotation of Variants (GWAVA) scores predict the functional
impact of non-coding genetic variants based on annotations of non-coding elements and
genome-wide properties, such as evolutionary conservation and GC-content, in the range
of 0–1 with mutations scored >0.5 identified as “functional” and those scored ≤0.5 as
“non-functional” [29]. Genomic coordinates of variants in the ADNI dataset that were
established using genome build GRCh38 were converted to build hg19 using liftOver
software (https://genome.ucsc.edu/cgi-bin/hgLiftOver (accessed on 3 November 2018)).
Both ADNI and ROSMAP WGS variants were matched by chromosome, position, reference,
and alternate alleles. Variants having a CADD score >15 or a GWAVA region score >0.5 were
annotated as having a potential regulatory function.

2.4. Set-Based eQTL Analysis

The sequence of steps to identify set-based eQTLs in the blood and brain is shown in
Figure 1.
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Next, pathway enrichment analysis was conducted using the Protein Analysis Through Evolutionary Relationships (PAN-
THER) tool to identify significantly enriched pathways in these gene modules, and pathway-level tests were then per-
formed on each enriched pathway, including the aggregated SNPs for each gene in the module. Results were considered 
significant (p < 0.05) after applying a Bonferroni correction. 
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with a frequency of <0.05 and located in or within 1 Mb of the gene. Gene-based tests were 
performed using the SKAT-O method, which combines the variance component (SKAT) 
approach and burden tests into one test with optimal power [30]. We implemented SKAT-
O tests for set-based eQTL analysis by considering the gene expression value as the out-
come, with the aggregated rare variant count as the predictor. The regression model for 
analyses of the ROSMAP data also included covariates for age, sex, post-mortem interval 
(PMI), study (ROS or MAP), and a term for a surrogate variable (SV1), derived from the 
gene expression data matrix to account for unmeasured/hidden technical effects on gene 
expression using surrogate variable analysis (SVA) [27]. Model covariates for analyses of 
the ADNI data included baseline age, sex, RNA integrity number (RIN), year of blood 
sample collection, and SV1. SKAT-O was implemented with group-wise tests using 
EPACTS software (https://genome.sph.umich.edu/wiki/EPACTS (accessed on 9 March 
2021)) with the following parameter specifications: epacts group —vcf [specific chr ge-
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Figure 1. Overview of set-based rare expression quantitative trait loci (eQTL) analysis. Gene-level tests were performed for
each protein-coding gene using an aggregate of all potentially regulatory single nucleotide polymorphisms (SNPs) with
minor allele frequency ≤0.05 within 1 Mb of each gene. Pathway-level analysis was carried out in two steps. First, the
weighted gene co-expression network analysis (WCGNA) method was applied to identify co-expressed gene modules. Next,
pathway enrichment analysis was conducted using the Protein Analysis Through Evolutionary Relationships (PANTHER)
tool to identify significantly enriched pathways in these gene modules, and pathway-level tests were then performed on
each enriched pathway, including the aggregated SNPs for each gene in the module. Results were considered significant
(p < 0.05) after applying a Bonferroni correction.

2.4.1. Gene-Level cis-eQTL Analysis

For common variants, eQTL analysis entails testing the association of expression
of one gene with one variant. Gene-level eQTL analysis was performed by testing the
association of expression of one gene with aggregated cis-regulatory variants, limited to
those with a frequency of <0.05 and located in or within 1 Mb of the gene. Gene-based
tests were performed using the SKAT-O method, which combines the variance component
(SKAT) approach and burden tests into one test with optimal power [30]. We implemented
SKAT-O tests for set-based eQTL analysis by considering the gene expression value as the
outcome, with the aggregated rare variant count as the predictor. The regression model for
analyses of the ROSMAP data also included covariates for age, sex, post-mortem interval
(PMI), study (ROS or MAP), and a term for a surrogate variable (SV1), derived from the
gene expression data matrix to account for unmeasured/hidden technical effects on gene
expression using surrogate variable analysis (SVA) [27]. Model covariates for analyses of the
ADNI data included baseline age, sex, RNA integrity number (RIN), year of blood sample
collection, and SV1. SKAT-O was implemented with group-wise tests using EPACTS
software (https://genome.sph.umich.edu/wiki/EPACTS (accessed on 9 March 2021)) with
the following parameter specifications: epacts group—vcf [specific chr genome vcf.gz
file]\—groupf [file of aggregated rare variants]—out [out file]\—ped [gene expression
file]—max-maf 0.05\—pheno $gene—cov Age_baseline—cov Sex—cov RIN—cov Year of
Collection—cov SV1—test skat—skat-o—run 8. The significance threshold after adjusting
for the number of genes tested was 3.86 × 10−6 (0.05/12,971) for analyses of the ROSMAP
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data and 3.12 × 10−6 (0.05/16,024) for analyses of the ADNI data (Figure 1). To identify
sentinel variants that contribute the majority of the evidence for significant gene-based
results, eQTL tests were performed for all significant genes and each individual potentially
regulatory rare variant (MAF ≤ 0.05) within 1Mb of the gene using linear regression
models with the above covariates in R [31] for each cis-regulatory variant. The significance
threshold after adjusting for the number of unique gene-SNP eQTLs was 1.83 × 10−6

(0.05/27,393) for analyses of the ROSMAP data and 1.17 × 10−7 (0.05/425,995) for analyses
of the ADNI data.

2.4.2. Pathway-Level cis-eQTL Analysis

Pathway-level eQTL analysis was employed to test the association of a pathway,
containing many genes, with sets of variants in each of the genes in the pathway one at
a time. First, modules of co-expressed genes were identified using the Weighted Gene
Co-expression Network Analysis (WGCNA) method implemented in R [32], including all
protein-coding genes that were expressed in the ADNI and ROSMAP datasets. Analyses
were conducted using the default parameters (soft-threshold power β = 6.00, deepSplit = 2
(medium sensitivity), a minimum module size of 20, and a merge cut height of 0.15) that
were recommended by the developers of the software [32] and applied in another AD
study [33]. Each gene module can be summarized quantitatively by a module eigengene
(ME) value derived from principal component analysis. The ME is considered to be repre-
sentative of gene expression profiles in a gene module. Next, gene-set pathway enrichment
analysis was performed using the Protein Analysis Through Evolutionary Relationships
(PANTHER) software tool [34] to determine which pathways were significantly enriched
in the gene modules identified from the WGCNA for pathway-level eQTL analysis. Sig-
nificance of the enriched pathways was determined by the Fisher’s Exact test with a false
discovery rate (FDR) of <0.05. Pathway-level eQTL analysis was performed for each signif-
icantly enriched pathway. The association of the ME value and each gene in the module
was tested individually using all potentially regulatory rare cis-SNPs (MAF < 0.05). Models
included the same covariates and parameter specifications as described for the gene-level
eQTL tests and were analyzed using the SKAT-O method implemented in EPACTS. A total
of 77 genes in 9 enriched pathways were evaluated in the ROSMAP dataset, and 100 genes
in 16 enriched pathways were evaluated in the ADNI dataset. After correction for the
number of genes that were tested, the thresholds for significant pathway-level rare eQTLs
were p < 6.49 × 10−4 in the ROSMAP dataset and p < 5.0 × 10−4 in the ADNI dataset
(Figure 1).

2.4.3. Comparison of Rare and Common eQTLs

To determine whether both common variants and gene-level aggregated rare/low-
frequency variants target expression of the same genes, we evaluated the overlap in
significant gene-based cis-eQTLs with those involving common variants (MAF > 0.05)
within 1 Mb of protein-coding genes that were obtained previously from the Framingham
Heart Study (blood) and ROSMAP (brain) gene expression datasets [26]. These comparisons
not only indicated which eGenes are regulated by rare and/or common variants, but also
determined whether multiple variants can separately up- or down-regulate expression of
the same gene.

3. Results
3.1. Gene-Level eQTL Associations

In the gene-level eQTL analysis, aggregating on average 416 unique low-frequency and
rare variants for each gene, 65 significant gene-level eQTLs (p < 3.86× 10−6) were identified
in the brain (Figure 1, Table S1). Eight of these genes, including established AD genes
HLA-DRB1 [35] and HLA-DRB5 [36], are located in or near the major histocompatibility
locus. By comparison, 307 significant gene-level eQTLs, with an average of 678 unique
variants, were observed in blood at p < 3.12× 10−6 (Figure 1, Table S2). Among these genes,
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ABCA7, ECHDC3, and MS4A6A are known AD loci [35,36]. The genes GNMT, LDHC,
RBPMS2, DUS2, and HP were significant in both the brain and blood (Table 2), noting
that the evidence for RBPMS2 was stronger in the blood (p = 1.69 × 10−36) than the brain
(p = 9.90 × 10−8).

Table 2. Significant gene-level eQTLs common to blood and brain.

Chr Begin
Position

End
Position Gene

Brain Blood

CVar + Unique Var ˆ p-Value CVar + Unique Var ˆ p-Value

6 41,942,338 43,929,364 GNMT 671 437 1.85 × 10−6 1006 640 2.87 × 10−7

11 17,434,230 19,468,040 LDHC 429 273 2.07 × 10−7 762 473 2.25 × 10−10

15 64,039,999 66,063,761 RBPMS2 404 249 9.90 × 10−8 648 417 1.69 × 10−36

16 67,034,867 69,106,452 DUS2 714 482 1.98 × 10−6 1085 723 6.41 × 10−08

16 71,090,452 73,094,829 HP 741 461 2.28 × 10−9 1206 750 2.43 × 10−11

+ Cumulative number of variants. ˆ Number of unique variants. Chromosome and map position according to GRCh37 assembly.

3.2. Variant-Level eQTL Associations

Examination of the variant-level eQTL associations for the 65 significant genes in
the brain identified 61 significant eGene-eSNP eQTL pairs, involving 22 unique eGenes
(Table S3). By a very wide margin, the most significant eQTL pair featured rs772849040
located in NFAT5, which targeted DDX19A-DDX19B (p ≤ 1.0 × 10−314). DDX19A-DDX19B
was also a significant eGene for rs17881635 located in COG4 (p = 6.26 × 10−23). COPZ1
and TMPRSS6 were both significant eGenes for seven eSNPs each. A much larger number
of eQTL pairs (n = 832) were significant in the blood, in which 185 eGenes were unique
(Table S4). Four of these genes had 20 or more significant eSNPs: KRT79 (n = 36), TAC3
(n = 32), CDK12 (n = 24), and SOS1 (n = 20). LDHC was a significant eGene for two eSNPs
in the blood (rs117652970, p = 1.12 × 10−21 and rs17579565, p = 8.26 × 10−21) and a third
eSNP in the brain rs773835421, p = 1.60 × 10−6). Adjacent genes DHRS4 and its homolog
DHRS4L2 were significant eGene targets for 17 eSNPs. Similarly, three SNPs were each
significant eQTLs paired with ATP6V0D1 and CMTM2, and four SNPs were each significant
eQTLs paired with IKZF3 and GSDMA. In the brain, rs1260874991 and rs1405001784 were
significant eSNPs for two zinc finger protein genes (ZNF101 and ZNF103).

3.3. Pathways Enriched in the Brain and Blood

Pathway enrichment analysis of each gene module revealed 9 significant enriched
pathways in the brain and 16 in the blood (Table 3). The apoptosis signaling, cholecys-
tokinin receptor (CCKR) signaling map, and inflammation mediated by chemokine and
cytokine signaling pathways were enriched in both the brain and blood. Focusing on genes
in the significantly enriched pathways in the brain, the aggregated rare variants in CCL7
and CCL8 were associated with the inflammation mediated by chemokine and cytokine
signaling pathway (p = 1.84 × 10−5 and p = 4.50 × 10−4, respectively, Table 4). In total, 6 of
the 22 genes that contained significant aggregated rare eQTLs associated with pathway
expression in the blood were members of the same inflammation pathway: ALOX5AP
(p = 1.26 × 10−4), CXCR2 (p = 1.53× 10−6), FPR2 (p = 1.25× 10−4), GRB2 (p = 6.04 × 10−7),
IFNAR1 (p = 1.98 × 10−5), and RAF1 (p = 2.11 × 10−5) (Table 4). Furthermore, CFLAR
(p = 2.42 × 10−4), TMBIM6 (p = 4.48 × 10−4), and TNFRSF10C (p = 8.77 × 10−5) were
significant rare variant eQTLs in apoptosis signaling pathways in the blood. Signifi-
cant aggregated rare variant eQTLs were observed with ALOX5AP in both gene-level
(p = 2.20 × 10−10) and pathway-level (p = 1.26 × 10−4) analyses (Table 4).
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3.4. Gene Targets of eQTLs in the Brain and Blood

Comparison of significant rare and common eQTLs in each tissue (Figure 2) revealed
203 genes in the blood and 40 genes in the brain that were targets of rare and common
eSNPs (Table S5), including 19 in the blood and 9 in the brain that have both been previously
implicated in AD (Table 5). Three genes (LDHC, RBPMS2, and HP) are targets that were
observed in significant rare and common eQTLs in the brain and the blood.
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Table 5. Genes previously implicated in AD whose expression is influenced by both rare and
common SNPs.

eQTLs in Blood eQTLs in Brain

eGene Reference eGene Reference

ABCA7 * [36] ACOT1 [37]
ADAMTSL4 [38] HLA-A [39]

ARRB2 [40] HLA-DOB * [26]
ATG7 [41] HLA-DRB1 * [35,41]
CD36 [42] HLA-DRB5 * [36]

CREB5 [43] HP [44]
CTNNAL1 [45] POMC [46]
ECHDC3 * [35] RNF39 [47,48]

HP [44] ZNF253 [49]
KF1B [50,51]

LRRC2 [52]
MS4A6A * [36]

PADI2 [53]
PDLIM5 [54]
S100A12 [55]
SPPL3 [56]

TMEM51 [57]
TREML4 [58]
UBE4B [59]

* AD locus established by GWAS.

4. Discussion

Our study demonstrates that low-frequency and rare variants have a significant impact
on both the expression of genes considered individually and the co-expression of genes
in pathways. Our study highlights the value of the set-based rare-eQTL method because,
similar to gene-based association tests, many novel significant genes we identified were not
detected by the analysis of rare variants individually, which requires a much larger sample
size. In addition, many of the most significant rare-variant findings involved genes with
prior connections to AD through case-control comparisons using GWAS, gene expression,
and functional studies.
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Several of the most significant gene-level eQTL findings in the blood have previ-
ously been implicated in AD. MS4A6A (p = 1.77 × 10−22) is among a family of genes
containing many SNPs that are associated with AD risk at the genome-wide level [35,36]).
A meta-analysis of gene expression studies found that NUMA1 (p = 6.01 × 10−76) was
significantly upregulated in the hippocampus of AD cases [60], and another study showed
that downregulation of GAD1 (p = 1.49 × 10−58) was associated with reduced neuronal
activity [61]. Follistatin, encoded by FST (p = 4.02 × 10−30), is a gonadal protein that in-
hibits the follicle-stimulating protein. The transmembrane protein, tomoregulin-2, contains
follistatin-like modules and is found extensively in amyloid plaques in AD brains [62].
KIF1B (p = 4.49 × 10−21) expression is significantly increased in AD and is associated
with accelerated progression in neurodegenerative diseases [50,51]. The established AD
gene ADAM10 [35] is downregulated by SFRP1 (p = 2.16 × 10−20), which is signifi-
cantly increased in the brain and cerebrospinal fluid (CSF) of AD patients [63]. EXOC2
(p = 6.19 × 10−9) was identified as an AD age-of-onset modifier [64] and contains a rare
missense variant that was observed in seven AD cases in an AD whole-exome sequencing
study [9].

Four of the five significant gene-level rare eQTLs in the brain and blood (Table 1) have
also been implicated in AD. GNMT expression has been detected in the hippocampus and
its deficiency results in reduced neurogenic capacity, spatial learning, and memory impair-
ment [65]. LDHC has differentially methylated regions in the blood in AD cases [66]. The
overexpression of DUS2 reduces Aβ42 toxicity [67]. The acute-phase protein haptoglobin,
encoded by HP, is significantly elevated among AD patients compared to healthy controls
in serum [44,68] and CSF [69] in Asians and persons of European ancestry. The HP 1/1
genotype was associated with poorer cognitive function and greater cognitive decline than
other HP genotypes in a sample of 466 African Americans with type 2 diabetes [70]. The
RNA-binding protein RBPMS2 has not been linked to AD but is a constituent of a leukocyte
signature for traumatic brain injury [71].

We identified several pathways that are significantly enriched with genes involved in
the CCKR signaling map, apoptosis signaling, and inflammation mediated by chemokine
and cytokine signaling pathways, all of which have been linked to AD [72–74]. Wnt signal-
ing, one of the significant pathways we observed in brain, suppresses tau phosphorylation
and Aβ production/aggregation, inhibits BACE1 expression, and promotes neuronal sur-
vival [75]. HSPA5 (p = 7.91 × 10−5), one of the significant pathway-level eQTL findings, is
involved in both amyloid precursor protein metabolism and neuronal death in AD [76].

Our rare-eQTL gene-level and pathway-level results confirm the substantial immune
and inflammatory component to AD. Significant gene-level rare eQTLs in the brain in-
cluded several HLA region loci linked to AD by GWAS (HLA-DRB1 and HLA-DRB5 [35,36])
and cell-type specific eQTL analysis (HLA-DOB [26]). IL27 (p = 1.69 × 10−30) is a cytokine,
and CARD17 (p = 6.73 × 10−13) encodes a regulatory protein of inflammasomes, which are
responsible for the activation of inflammatory responses [77]. Overall, 8 of the 21 significant
pathway-level rare eQTLs involved genes which have roles in the inflammation mediated
by the chemokine and cytokine signaling pathway. Chemokine levels were found to be
significantly increased in serum, CSF, and brain tissue from AD cases [78]. Chemokine
receptor CXCR2 induces Aβ peptides [79]. Another gene in this group, IFNAR1, encodes
the interferon α and β receptor subunit 1. Primary microglia isolated from the brains of
APP/PS1 mutant mice with ablated type-I interferon signaling have shown reduced levels
of Aβ1–42 [80]. In addition to being a significant pathway-level rare eQTL, FPR2 is also
very significant eQTL in the blood (p = 1.22 × 10−240), and more specifically, in interferon
and anti-bacterial cells (p = 3.81 × 10−17) [26]. It is involved in the uptake and clearance of
Aβ and contributes to innate immunity and inflammation [81]. ALOX5AP (a.k.a. FLAP)
is expressed in microglia and encodes a protein which, with 5-lipoxygenase, is required
for leukotriene synthesis. Leukotrienes are arachidonic acid metabolites which have been
implicated in neuroinflammatory and amyloidogenesis processes in AD [82]. Pharmaco-
logical inhibition of FLAP in Tg2576 mice significantly reduced tau phosphorylation at
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multiple sites and increased post-synaptic density protein-95 and microtubule-associated
protein 2 [83]. Growth factor receptor-bound protein 2, encoded by GRB2, is an adaptor
protein that is involved in the trafficking of Aβ [84]. Although the inflammation pathway
was implicated in the eQTL analysis in both the brain and blood, our results showed that
the genes significantly contributing to pathway expression differed between the tissues.
This suggests that AD-related inflammatory processes may differ in the blood and brain.

We observed significant eQTLs involving 27 target genes, previously implicated in
AD through genetic and experimental approaches, which were paired with rare variants
identified in this study and previously reported common variants [26] (Table 5). HP was
the only gene in this group whose expression was influenced by rare and common eSNPs
in both the blood and brain, and thus, it has notable potential as a blood-based biomarker
reflecting AD-related gene expression changes in brain.

Although the set-based rare-eQTL method employed in this study has multiple
strengths in comparison to the analysis of individual rare eQTLs (e.g., higher power,
reduced multiple testing burden, and ability to detect the effects of variants with lower
frequency), our results should be interpreted cautiously in light of several limitations.
Comparisons between the brain and blood were not conducted using data from the same
subjects, and thus may underestimate similarities across tissues. Also, brain expression
patterns may reflect post-mortem changes unrelated to disease or cell-type specific expres-
sion [85]. The set-based method using SKAT-O allows for opposite effect directions of the
constituent SNPs in the test; however, closer scrutiny of the individual SNPs is necessary
to draw conclusions about the collective influence of rare variants on expression, as well
as consistency of the effect direction across tissues. Our results, which were generated
from analyses at the tissue level, do not account for patterns that are cell-type specific
within the blood and brain, as we recently demonstrated for common individual variant
eQTLs in these datasets [26]. In addition, it is unclear whether the set-based eQTL method
applied in this study would behave similarly for rare (MAF < 0.01) and low-frequency
(0.01 < MAF < 0.05) variants analyzed separately. Finally, although this investigation was
conducted using tissue obtained from participants enrolled in studies of AD, the direct
testing of the relevance of findings from the set-based tests of rare variants to AD status
was not feasible, because the sample size was insufficient to have representation of the
sentinel variants in both the case and control groups. This limitation is analogous to the
difficulty encountered in the replication of the aggregated rare variant test findings in AD
genetic association studies [7,8]. Thus, further studies of some genes are needed to establish
their role in AD. Nonetheless, our study provided evidence favoring specific genes under
previously established AD-association peaks whose expression may be differentially or
concordantly regulated in the blood and brain (Table 5).

5. Conclusions

This study of gene-based and pathway-level rare eQTLs implicated novel genes that
may have important roles in AD, found additional evidence supporting the contribution of
immune/inflammatory pathways in AD, and demonstrated the utility of a set-based eQTL
approach for assessing the role of rare variants in molecular mechanisms underlying the
disease. The relevance of these findings to AD should be validated in larger samples with
sufficient power for comparing patterns between AD cases and controls, as well as with
functional experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/3/419/s1, Table S1: Gene-level rare cis-eQTLs in the brain (p < 3.86 × 10−6), Table S2:
Individual SNP eQTLs in the brain (p < 1.83 × 10−6), Table S3: Gene-level rare cis-eQTLs in the blood
(p < 3.12 × 10−6), Table S4: Individual SNP eQTLs in the blood (p < 1.17 × 10−7), Table S5: eGene
targets of both rare and common eQTLs in the blood and brain.
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