
Edited by

Theoretical and
Computational
Research in Various
Scheduling Models

Chin-Chia Wu and Win-Chin Lin

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Theoretical and Computational
Research in Various
Scheduling Models

Theoretical and Computational
Research in Various
Scheduling Models

Editors

Chin-Chia Wu

Win-Chin Lin

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Chin-Chia Wu

Feng Chia University

Taiwan

Win-Chin Lin

Feng Chia University

Taiwan

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Theor Comput Res Var Sched Model).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-3018-5 (Hbk)

ISBN 978-3-0365-3019-2 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Preface to ”Theoretical and Computational Research in Various Scheduling Models” ix

Ruyan He and Jinjiang Yuan

Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria
Reprinted from: Mathematics 2020, 8, 1517, doi:10.3390/math8091517 1

Yuan Zhang, Zhichao Geng and Jinjiang Yuan

Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total
Weighted Late Work
Reprinted from: Mathematics 2020, 8, 2070, doi:10.3390/math8112070 19

Dung-Ying Lin and Tzu-Yun Huang

A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem
Reprinted from: Mathematics 2021, 9, 768, doi:10.3390/math9070768 37

Chen-Yang Cheng, Shih-Wei Lin, Pourya Pourhejazy, Kuo-Ching Ying and Yu-Zhe Lin
No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved
Optimization Framework
Reprinted from: Mathematics 2021, 9, 1335, doi:10.3390/math9121335 57

Wen-Tso Huang, Cheng-Chang Lu and Jr-Fong Dang

Improving the Return Loading Rate Problem in Northwest China Based on the Theory
of Constraints
Reprinted from: Mathematics 2021, 9, 1397, doi:10.3390/math9121397 75

Alessio Angius, András Horváth and Marcello Urgo

A Kronecker Algebra Formulation for Markov Activity Networks with
Phase-Type Distributions
Reprinted from: Mathematics 2021, 9, 1404, doi:10.3390/math9121404 91

Ting-Chun Lo and Bertrand M. T. Lin

Relocation Scheduling in a Two-Machine Flow Shop with Resource Recycling Operations
Reprinted from: Mathematics 2021, 9, 1527, doi:10.3390/math9131527 113

Anna Antonova, Konstantin Aksyonov and Olga Aksyonova

An Imitation and Heuristic Method for Scheduling with Subcontracted Resources
Reprinted from: Mathematics 2021, 9, 2098, doi:10.3390/math9172098 149

Shu-Shun Liu, Agung Budiwirawan and Muhammad Faizal Ardhiansyah Arifin

Non-Sequential Linear Construction Project Scheduling Model for Minimizing Idle Equipment
Using Constraint Programming (CP)
Reprinted from: Mathematics 2021, 9, 2492, doi:10.3390/math9192492 171

v

About the Editors

Chin-Chia Wu is a Professor in the Department of Statistics, Feng Chia University, Taiwan.

He received his Doctoral Degree from the Graduate Institute of Management, School of Management,

at the National Taiwan University of Science and Technology, Taiwan, in 1997. His teaching and

research interests include applied statistics and operations research. He has published more than

180 papers in SCI/SSCI journals.

Win-Chin Lin is an associate professor in the Department of Statistics, Feng Chia University,

Taiwan. He received his doctoral degree from the Department of Statistics, Iowa State University,

USA, in 1998. His teaching and research interests include applied statistics, experimental designs,

and scheduling.

vii

Preface to ”Theoretical and Computational Research

in Various Scheduling Models”

The long-standing field of research with great practical value in operation research involves

designing effective methods to find the best solution to perform certain jobs or policies with

or without certain constraints. The literature shows that numerous papers have been written on

scheduling theory and its applications over a long time. To solve various scheduling problems

in different real-life environments, the literature also assesses many studies on developing exact

methods or approximate algorithms, through deriving computational complexity, or evaluating their

performance by using simulation results.

However, there are a lot of challenging scheduling problems in new application domains which

have yet to be further explored. Thus, scheduling issues have always been a popular field of research,

with many potential real-life applications including assignment, manufacturing, and logistics.

This Special Issue aims to provide a bridge to facilitate the interaction between the researcher

and the practitioner in scheduling questions. Although discrete mathematics is a common method

to solve scheduling problems, the further development of this method is limited due to the lack

of general principles, which poses a major challenge to this research field. Papers that have made

significant contributions to methodological progress or created model innovations to solve major and

well-documented scheduling problems are welcome. The studies can be theoretical, methodological,

computational, or application-oriented. In addition, relevant statistical applications in social systems

are also welcome. Potential topics include but are not limited to the following:

• Scheduling in flow shops, open shops, or job shops settings

• Scheduling on parallel machines or in assembly flow shop

• Scheduling in green manufacturing environment

• Scheduling with multiple competing agents

• Scheduling in intelligent logistics

• Scheduling in time-dependent processing times

• Statistical methods application to engineering or relevant disciplinary

Chin-Chia Wu, Win-Chin Lin

Editors

ix

mathematics

Article

Two-Agent Preemptive Pareto-Scheduling to
Minimize Late Work and Other Criteria

Ruyan He * and Jinjiang Yuan

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; yuanjj@zzu.edu.cn
* Correspondence: heruyan219@163.com or heruyan219@gs.zzu.edu.cn

Received: 12 August 2020; Accepted: 28 August 2020; Published: 5 September 2020

Abstract: In this paper, we consider three preemptive Pareto-scheduling problems with two
competing agents on a single machine. In each problem, the objective function of agent A is the total
completion time, the maximum lateness, or the total late work while the objective function of agent B
is the total late work. For each problem, we provide a polynomial-time algorithm to characterize the
trade-off curve of all Pareto-optimal points.

Keywords: two-agent; Pareto-scheduling; late work; trade-off curve; polynomial time

1. Introduction

In recent decades, scheduling with two competing agents and scheduling with late-work criterion
have been two hot topics in scheduling research. However, research for the combination of the two
topics has not been studied extensively. One reason for this phenomenon stems from the fact that
the single-machine scheduling problem for minimizing the total late work is already NP-hard when
preemption is not allowed. Given the polynomial solvability of the preemptive scheduling problem for
minimizing the total late work, we study the single-machine two-agent preemptive Pareto-scheduling
problems with the total late work being one of the criteria.

Problem Formulation: Consider two competing agents A and B. For each agent X ∈ {A, B}, let J X =

{JX
1 , JX

2 , . . . , JX
nX
} be the set of jobs of agent X, where J A ∩ J B = ∅ and the jobs in J X are called

the X-jobs. Each job JX
j has a processing time pX

j > 0 and a due date dX
j ≥ 0 which are integrally

valued. The n = nA + nB independent jobs in J A ∪ J B need to be preemptively processed on a single
machine. Let PX = ∑nX

j=1 pX
j and P = PA + PB. All jobs considered in this paper are available at time

zero. Our problems allow us to assume that the maximum due date of all jobs is at most P.

Let σ be a feasible schedule which assigns the jobs for processing in pieces in the interval [0,+∞).
To enhance the flexibility of analysis, we allow the existence of idle times in a feasible schedule.
The completion time of job JX

j in σ is denoted as CX
j (σ). The late work of JX

j in σ, denoted YX
j (σ), is the

amount of processing time of JX
j after its due date dX

j in σ. If YX
j (σ) = 0, JX

j is called early in σ.

If 0 < YX
j (σ) < pX

j , JX
j is called partially early in σ. If YX

j (σ) = pX
j , JX

j is called late in σ.

The scheduling criteria related to our research are given by ∑ CA
j = ∑nA

j=1 CA
j (σ) (the total

completion time of the A-jobs under schedule σ), LA
max = max{CA

j (σ) − dA
j : 1 ≤ j ≤ nA} (the

maximum lateness of the A-jobs in schedule σ), and ∑j YX
j = ∑nX

j=1 YX
j (σ) (the total late work of the X-jobs

under schedule σ). Then the three Pareto-scheduling problems studied in this paper are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
1|pmtn|#(∑ CA

j , ∑ YB
j),

1|pmtn|#(LA
max, ∑ YB

j),

1|pmtn|#(∑ YA
j , ∑ YB

j).

Mathematics 2020, 8, 1517; doi:10.3390/math8091517 www.mdpi.com/journal/mathematics1

Mathematics 2020, 8, 1517

For each of the above three problems, we aim to find all the Pareto-optimal points of the problem
and for each point a corresponding Pareto-optimal schedule. The formal definitions of Pareto-optimal
point and Pareto-optimal schedule can be found in T’kindt and Billaut [1]. In this paper, the set
of Pareto-optimal points forms a curve. Then we use the term trade-off curve to describe the set of
Pareto-optimal points.

Literature Review: There is a huge amount of literature in scheduling with two competing agents and
scheduling with late work criterion. Limited to the space of this paper, we only review some most
related results.

Two-agent scheduling was first introduced by Agnetis et al. [2]. The authors proposed two
important models for single-machine scheduling with two competing agents: constrained optimization
model and Pareto optimization model. They studied nine problems arising from the different
criteria combinations for the two agents and stated time complexity results for most of the resulting
cases, where the scheduling criteria include the maximum regular cost function, the total (weighted)
completion time and the number of tardy jobs. Early research on two-agent scheduling problems can
also be found in Cheng et al. [3,4], Lee et al. [5], Leung et al. [6], and Ng et al. [7]. Agnetis et al. [8]
applied the concept of price of fairness in resource allocation to two-agent single-machine scheduling
problems, in which one agent aims at minimizing the total completion time, while the other agent
wants to minimize the maximum tardiness with respect to a common due date. They further discussed
the problem in which both agents wish to minimize the total completion time of their own jobs.
Zhang et al. [9] studied the price of fairness in a two-agent single-machine scheduling problem in
which both agents A and B want to minimize their own total completion time, and agent B has exactly
two jobs.

There are few results on the two-agent scheduling problems with precedence constraints.
Agnetis et al. [2] considered the two-agent problem with precedence constraints on single machine,
i.e., 1|prec| f A

max : f B
max and solved this problem in polynomial time. Mor and Mosheiov [10] extended

a classical single-machine scheduling problem, where the objective is to minimize maximum cost,
given general job-dependent cost functions and general precedence constraints which was solved by
the well-known Lawler’s Algorithm. First, they allowed the option of job rejection. Then, they studied
the more general setting of two competing agents, where job rejection is allowed either for one agent
or for both. They showed that both extensions can be solved in polynomial time. Gao and Yuan [11]
considered the Pareto-scheduling with two agents A and B for minimizing the total completion time of
A-jobs and a maximum cost of B-jobs with precedence constraints. They showed that the problem can
be solved in polynomial time. More recent results on two-agent scheduling problems can be found in
Agnetis et al. [12], Liu et al. [13], Oron et al. [14], Perez-Gonzalez and Framinan [15], and Yuan [16,17].

Scheduling related to late-work criterion was first studied by Blazewicz and Finke [18]. Since then,
several research groups have focused on this performance measure, obtaining a set of interesting results.
Potts and Van Wassenhove [19] considered a single-machine scheduling problem where the goal is
minimizing the total amount of late work. They showed that the problem is NP-hard and presented a
pseudo-polynomial-time algorithm. Potts and Van Wassenhove [20] further proposed a branch-bound
algorithm for the same problem and presented two fully polynomial-time approximation schemes with
running times O(n2

ε) and O(n3

ε), respectively. Hariri et al. [21] considered a single-machine problem of
minimizing the total weighted late work. They presented an O(n log n) algorithm for the preemptive
total weighted late work problem. For papers that consider scheduling problem of minimizing other
total late-work criteria, the reader may refer to the survey paper of Sterna [22].

Up to now, people have done little research about the combination of two-agent scheduling with
late-work criterion. Wang et al. [23] addressed a two-agent scheduling problem where the objective is
to minimize the total late work of the first agent, with the restriction that the maximum lateness of the
second agent cannot exceed a given value. For small-scale problem instances, they established two
pseudo-polynomial dynamic programming algorithms. For medium- to large-scale problem instances,

2

Mathematics 2020, 8, 1517

they presented a branch-and-bound algorithm. Zhang and Wang [24] presented a two-agent scheduling
problem where the objective is to minimize the total weighted late work of agent A, while keeping
the maximum cost of agent B cannot exceed a given bound U. They addressed the complexity of
those problems, and presented the optimal polynomial-time algorithms or pseudo-polynomial-time
algorithm to solve the scheduling problems, respectively. Zhang and Yuan [25] considered the same
problem as above and further studied the three versions of the problem.

Our research also uses some results in the single-machine preemptive scheduling with forbidden
intervals (or maintenance activities), i.e., 1, hm|pmtn| f , where “1, hm” means that there are m forbidden
intervals on the single machine and “ f ” is the objective function to be minimized. Without reviewing
this scheduling topic in detail, we only state two known results used in our discussion. Lee [26]
showed that problem 1, hm|pmtn|∑ Cj can be solved by the preemptive SPT rule in O(m + n log n)
time and problem 1, hm|pmtn|Lmax can be solved by the preemptive EDD rule in O(m + n log n) time.

Our Contributions: In Section 2, we introduce some notations and definitions and present several
important lemmas. In Section 3, we show that the trade-off curve of problem 1|pmtn|#(∑ CA

j , ∑ YB
j)

can be determined in O(nnAnB) time. In Section 4, we show that the trade-off curve of problem
1|pmtn|#(LA

max, ∑ YB
j) can be determined in O(nnAnB) time. In Section 5, we show that the

trade-off curve of problem 1|pmtn|#(∑ YA
j , ∑ YB

j) can be determined in O(n log n) time. Finally,
some concluding remarks are given in Section 6.

2. Preliminaries

Let J A ∪ J B be the job instance to be preemptively scheduled on a single machine.
The preemption assumption allows us to schedule each job in pieces. For a piece JX

j′ of job JX
j ,

we use pX
j′ to denote the length (processing time) of JX

j′ and use CX
j′ (σ) to denote the completion time

of JX
j′ in schedule σ.

In the following, we consider the Pareto-scheduling problem 1|pmtn|#(f A, ∑ YB
j) on instance

J A ∪ J B, where f A is a regular objective function of the A-jobs or f A = ∑ YA
j . We use Ω(J A,J B) to

denote the set of all Pareto-optimal points of this problem.
In a schedule σ of J A ∪ J B, each B-job JB

j is partitioned into two parts: the early part JBE
j (σ)

and the late part JBY
j (σ), where JBE

j (σ) is processed before time dB
j in σ and JBY

j (σ) is processed after

time dB
j in σ. Moreover, pBE

j (σ) = pB
j − YB

j (σ) and pBY
j (σ) = YB

j (σ) are used to denote the lengths

(processing times) of JBE
j (σ) and JBY

j (σ), respectively. A part of length 0 is called a trivial part. We allow
the existence of trivial parts to enhance flexibility in analysis. Then we have

nB

∑
j=1

YB
j (σ) =

nB

∑
j=1

pBY
j (σ) = PB −

nB

∑
j=1

pBE
j (σ). (1)

For convenience, we renumber the B-jobs such that

dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

≤ P (2)

and keep this numbering throughout this paper. Let σB
0 = (JB

1 , JB
2 , . . . , JB

nB
) which schedules the B-jobs

in the EDD order described in (2). From Potts and Van Wassenhove [19], the optimal value of problem
1|pmtn|∑ Yj on instance J B is given by Tmax(σB

0). Then we have the following lemma.

Lemma 1. For each point (f ∗, Y∗) ∈ Ω(J A,J B), we have Tmax(σB
0) ≤ Y∗ ≤ PB.

To make our analysis operational, we now consider an integer Y∗ ∈ [Tmax(σB
0), PB] and present a

procedure to schedule the B-jobs preemptively with a particular structure. This procedure imitates the
algorithm in Hariri et al. [21] for solving problem 1|pmtn|∑ wjYj.

3

Mathematics 2020, 8, 1517

Algorithm 1: For scheduling the B-jobs according to the value of Y∗.

Input: The B-jobs J B with the EDD order in (2) and an integer Y∗ ∈ [Tmax(σB
0), PB].

Step 1: Determine the minimum index j∗ ∈ {1, 2, . . . , nB} such that pB
1 + pB

2 + · · ·+ pB
j∗ ≥ Y∗.

Then pB
1 + pB

2 + · · ·+ pB
j∗−1 < Y∗. Please note that if Y∗ = 0, then we have j∗ = 1. We call JB

j∗

the critical B-job corresponding to Y∗.
Step 2: Decompose the critical B-job JB

j∗ into two parts JBE
j∗ and JBY

j∗ such that

pBY
j∗ = Y∗ −

j∗−1

∑
j=1

pB
j and pBE

j∗ = pB
j∗ − pBY

j∗ =
j∗

∑
j=1

pB
j − Y∗.

We call JBE
j∗ and JBY

j∗ the early part and the late part of JB
j∗ , respectively, corresponding to Y∗.

Set J BE(Y∗) = {JBE
j∗ , JB

j∗+1, JB
j∗+2, . . . , JB

nB
} and J BY(Y∗) = {JB

1 , JB
2 , . . . , JB

j∗−1, JBY
j∗ }.

Step 3: Generate a schedule σB(Y∗) of the B-jobs J B = J BE(Y∗) ∪ J BY(Y∗) in the following
way:

(3.1) From time P∗ := P + 1, schedule the jobs (or pieces) in J BY(Y∗) consecutively in the
order JB

1 , JB
2 , . . . , JB

j∗−1, JBY
j∗ .

(3.2) Schedule the jobs (or pieces) in J BE(Y∗) by using the algorithm in Hariri et al. [21] for
solving problem 1|pmtn|∑ Yj on instance J BE(Y∗):

Beginning from time dB
nB

, schedule the jobs (or pieces) in J BE(Y∗) backwards in the order
JB
nB

, JB
nB−1, . . . , JB

j∗+1, JBE
j∗ such that each job (or piece) in J BE(Y∗) is scheduled as late as possible subject

to its due date.
Output: The schedule σB(Y∗) of the B-jobs.

It can be observed that Procedure(Y∗) runs in O(n) time. An objective function of the A-jobs,
denoted f A, is called regular if f A is nondecreasing in the completion times of the A-jobs. Please
note that ∑ CA

j and LA
max are regular, but ∑ YA

j is not regular since the preemptive assumption.
The following lemma is critical in our discussion.

Lemma 2. Consider problem 1|pmtn|#(f A, ∑ YB
j) on instance J A ∪ J B, where either f A = ∑ YA

j or f A is a

regular objective function of the A-jobs. Assume that (f ∗, Y∗) ∈ Ω(J A,J B) and let σB(Y∗) be the schedule of
J B generated by Procedure(Y∗). Then there exists a Pareto-optimal schedule π corresponding to (f ∗, Y∗) in
which the B-jobs are scheduled in the same manner as that in σB(Y∗). Such a Pareto-optimal schedule π is called
a Y∗-standard schedule in the sequel.

Proof. Let σ be a Pareto-optimal schedule corresponding to (f ∗, Y∗) such that Cmax(σ) is as small as
possible. Then no idle exists in σ, and so, Cmax(σ) = P.

The late parts of B-jobs can be scheduled arbitrarily late without affecting the objective values f A

and ∑ YB
j . Thus, by shifting the late parts of B-jobs in σ, we obtain a new Pareto-optimal schedule σ1

corresponding to (f ∗, Y∗) such that the following property (P1) holds for σ1.

(P1) The late parts of B-jobs are scheduled consecutively in the interval [P∗, P∗ + Y∗] in an arbitrary
order without idle time.

We next generate a Pareto-optimal schedule σ2 corresponding to (f ∗, Y∗) such that following
property (P2) holds for σ2.

(P2) For every nontrivial early part JBE
j (σ2) and every nontrivial late part JBY

k (σ2) among the B-jobs,
we have j ≥ k.

4

Mathematics 2020, 8, 1517

If σ1 has the property (P2), we just set σ2 = σ1. Otherwise, there are a nontrivial early part JBE
j (σ1)

and a nontrivial late part JBY
k (σ1) among the B-jobs, such that j < k. From (2), we have dB

j ≤ dB
k .

Let δ = min{pBE
j (σ1), pBY

k (σ1)}. By exchanging an amount of length δ between JBE
j (σ1) and JBY

k (σ1)

in σ1, we obtain a new schedule without changing the objective values but with improving in the
direction we need. Repeating this procedure, we eventually obtain a new Pareto-optimal schedule σ2

corresponding to (f ∗, Y∗) such that both properties (P1) and (P2) hold for σ2.
Let σ3 be the schedule obtained from σ2 by rescheduling (if necessary) the early parts of B-jobs in

the order JBE
1 (σ) ≺ JBE

2 (σ) ≺ · · · ≺ JBE
nB

(σ). Since the EDD property described in (2), the early parts of
B-jobs in σ2 are also early in σ3. Then σ3 is a Pareto-optimal schedule corresponding to (f ∗, Y∗) such
that properties (P1) and (P2), and additionally, the following property (P3), hold for σ3.

(P3) The early parts of B-jobs are scheduled in the order JBE
1 (σ3) ≺ JBE

2 (σ3) ≺ · · · ≺ JBE
nB

(σ3).

Please note that ∑nB
j=1 YB

j (σ3) = ∑nB
j=1 YB

j (σ
B(Y∗)) = Y∗. Since σ3 has the three properties (P1)–(P3),

from Procedure (Y∗) for generating σB(Y∗), we know that σ3 and σB(Y∗) have the same early parts
and late parts of B-jobs. Then, in both schedules, the early parts of B-jobs are given by J BE(Y∗) =
{JBE

j∗ , JB
j∗+1, JB

j∗+2, . . . , JB
nB
} and the late parts of B-jobs are given by J BY(Y∗) = {JB

1 , JB
2 , . . . , JB

j∗−1, JBY
j∗ },

as defined in Step 2 of Procedure(Y∗).
Now let π be the schedule obtained from σ3 by the following two actions: (i) from time P∗,

reschedule the late parts in J BY(Y∗) consecutively in the order JB
1 , JB

2 , . . . , JB
j∗−1, JBY

j∗ , and (ii) without
changing the processing order of A-jobs and the processing order of the early parts of B-jobs, reschedule
them such that the early parts of B-jobs are scheduled as late as possible subject to their due dates,
and then, the A-jobs are scheduled as early as possible.

Clearly, in schedule π, the B-jobs are scheduled in the same manner as that in σB(Y∗). Then we have
∑nB

j=1 YB
j (π) = Y∗. From the construction of π, we have f A(π) ≤ f A(σ3) = f ∗. The Pareto-optimality

of (f ∗, Y∗) further implies that (f A(π), ∑nB
j=1 YB

j (π)) = (f ∗, Y∗). Consequently, π is a required
Pareto-optimal schedule corresponding to (f ∗, Y∗). The lemma follows.

From Lemmas 1 and 2, the Pareto-scheduling problem 1|pmtn|#(f A, ∑ YB
j) on instance J A ∪ J B

can be solved by the following general approach:
For each value Y∗ ∈ [Tmax(σB

0), PB], run Procedure(Y∗) to obtain the schedule σB(Y∗) of the B-jobs.
Determine the intervals occupied by the B-jobs in σB(Y∗) and regards these intervals as forbidden
intervals. The intervals which are not occupied by the B-jobs in σB(Y∗) is called the free-time intervals.
Then solve problem 1, hm|pmtn| f A on instance J A to obtain a Y∗-standard schedule.

The above approach cannot be implemented in polynomial time since it enumerates all the
possible choices of Y∗. Therefore, in the next three sections, for f A ∈ {∑ CA

j , LA
max, ∑ YA

j }, we will
present polynomial-time algorithms, respectively, to characterize the trade-off curves.

To this end, we set Y(0) = Tmax(σB
0), and run Procedure(Y(0)) to obtain the schedule σB(Y(0)).

Assume that the intervals occupied by the B-jobs are given by h1, h2, . . . , hm, where hi = [τ
(i)
1 , τ

(i)
2] is

the i-th interval, i = 1, 2, . . . , m, such that

0 ≤ τ
(1)
1 < τ

(1)
2 < τ

(2)
1 < τ

(2)
2 < · · · < τ

(m)
1 < τ

(m)
2 . (3)

From the implementation of Procedure(Y(0)), we have

τ
(m)
1 = P∗ and τ

(m)
2 = P∗ + Y(0). (4)

For each Y∗ ∈ [Y(0), PB], we define i∗ to be the maximum index in {1, 2, . . . , m − 1} such that Y∗ −
Y(0) ≥ ∑i∗−1

i=1 (τ
(i)
2 − τ

(i)
1) and let τ∗ ∈ [τ

(i∗)
1 , τ

(i∗)
2) such that Y∗ −Y(0) = ∑i∗−1

i=1 (τ
(i)
2 − τ

(i)
1)+ (τ∗ − τ

(i∗)
1).

5

Mathematics 2020, 8, 1517

From the implementation of Procedure(Y∗) again, the set of time intervals occupied by the B-jobs in
schedule σB(Y∗), denoted by I(σB(Y∗)), is given by

I(σB(Y∗)) = {[τ∗, τ
(i∗)
2], [τ(i∗+1)

1 , τ
(i∗+1)
2], . . . , [τ(m−1)

1 , τ
(m−1)
2], [P∗, P∗ + Y∗]}. (5)

We will write hi∗ = [τ∗, τ
(i∗)
2], hi = [τ

(i)
1 , τ

(i)
2] for i = i∗ + 1, i∗ + 2, . . . , m − 1, and hm = [P∗, P∗ + Y∗].

The above discussion will help us to construct the trade-off curves easily.

3. The First Problem

In this section, we consider problem 1|pmtn|#(∑ CA
j , ∑ YB

j) on instance J A ∪ J B. By the
job-exchanging argument, we can verify that the A-jobs must be scheduled in the SPT order in
every Pareto-optimal schedule. Thus, in this section, we renumber the A-jobs by the SPT order such
that pA

1 ≤ pA
2 ≤ · · · ≤ pA

nA
. Then we only consider the schedules in which the A-jobs are scheduled in

the order JA
1 ≺ JA

2 ≺ · · · ≺ JA
nA

.
Given a point (C∗, Y∗) ∈ Ω(J A,J B), let σ be the Y∗-standard schedule of J A ∪ J B. Then the

set of forbidden intervals (occupied by the B-jobs) is given by (5) and the A-jobs are preemptively
scheduled in the order JA

1 ≺ JA
2 ≺ · · · ≺ JA

nA
from time 0 in the free-time intervals as early as

possible. Thus, there are m − i∗ + 1 forbidden intervals and the first forbidden interval in σ is given by
hi∗ = [τ∗, τ

(i∗)
2].

If PA ≤ τ∗, then all the A-jobs are scheduled before the first forbidden interval hi∗ in σ. In this
case, we have no further action.

In general, suppose that PA > τ∗. Then at least one A-job completes after hi∗ in σ. Let JA
k(σ) be the

first A-job which completes after hi∗ in σ. Then, there are totally nA − k(σ) + 1 A-jobs completing after
hi∗ in σ.

For each index j ∈ {k(σ), k(σ) + 1, . . . , nA}, we define i[j] to be the interval index such that JA
j

completes after interval hi[j] and before interval hi[j]+1 in σ, or equivalently, τ
(i[j])
2 < CA

j (σ) ≤ τ
(i[j]+1)
1 .

We further define
e(σ) = min{CA

j (σ)− τ
(i[j])
2 : j = k(σ), k(σ) + 1, . . . , nA}. (6)

An A-job JA
j with j ∈ {k(σ), k(σ) + 1, . . . , nA} is called a crucial A-job in σ if CA

j (σ)− τ
(i[j])
2 = e(σ).

Please note that if JA
j is a crucial A-job in σ, then the interval [τ(i[j])

2 , CA
j (σ)] is fully occupied by job JA

j

in σ, implying that JA
j is the first A-job completing after interval hi[j] in σ. In this case, we call interval

hi[j] the nearest forbidden interval corresponding to crucial A-job JA
j in σ.

Set δl(σ) = τ
(l)
2 − τ

(l)
1 (σ), i∗ ≤ l ≤ m, to be the length of the forbidden interval hl in σ.

In particular, if l = i∗, then τ
(l)
1 (σ) = τ∗. Let

θ(σ) = min{e(σ), δi∗(σ)}. (7)

Please note that when the schedule σ is given, the A-job index k(σ) can be determined in O(nA)

time, the interval indices i[j] for j ∈ {k(σ), k(σ) + 1, . . . , nA} can be determined in O(nA) time.
After that, the value e(σ) defined in (6) can be determined in O(nA) time. Finally, the value θ(σ)

can be determined by its definition in (7) in constant time. Then we have the following lemma.

Lemma 3. Given the Y∗-standard schedule σ in advance, the values k(σ) and θ(σ) can be determined in
O(nA) time.

For each Y ∈ [Y∗, Y∗ + θ(σ)], let σ′ be the Y-standard schedule. Then σ′ is obtained from σ

by shifting the first Y − Y∗ units of hi∗ to the last forbidden interval and then moving the A-jobs
in {JA

k(σ), JA
k(σ)+1, . . . , JnA} left to eliminate the idle times accordingly. This means that CA

j (σ
′) ≤

6

Mathematics 2020, 8, 1517

CA
j (σ)− (Y − Y∗) for j ∈ {k(σ), k(σ) + 1, . . . , nA}. Assume that the total completion time of A-jobs

in σ′ is C. According to Lemma 2, (C, Y) is a Pareto-optimal point. In the following, we consider the
trade-off curve between (C∗, Y∗) and (C, Y). For convenience, point (C, Y) is simply called point Y.

We will show that the trade-off curve for Y ∈ [Y∗, Y∗+ θ(σ)) is a line segment. However, the point
Y∗ + θ(σ) may have the singularity.

Lemma 4. For each point (C, Y) ∈ Ω(J A,J B) with Y ∈ [Y∗, Y∗ + θ(σ)), we have C−C∗
Y−Y∗ = −(nA − k(σ) +

1).

Proof. For each Y ∈ [Y∗, Y∗ + θ(σ)), we have Y − Y∗ < θ(σ) ≤ e(σ). When we change σ to σ′,
no crucial A-jobs are moved left across their corresponding nearest forbidden intervals in σ′. As a result,
compared with σ, each of the completion times of the nA − k(σ) + 1 A-jobs in {JA

k(σ), JA
k(σ)+1, . . . , JA

nA
}

has decreased Y −Y∗ units in σ′. Thus, we have C − C∗ = −(nA − k(σ) + 1)(Y −Y∗), as required.

Let J A
c (σ) be the set of crucial A-jobs in σ. We use Δ(σ) to denote the total length of all the

nearest forbidden intervals corresponding to the κ(σ) crucial A-jobs in σ, i.e.,

Δ(σ) = ∑{δi[j](σ) : JA
j ∈ J A

c (σ)}.

The following lemma is only used to display the singularity of point Y∗ + θ(σ).

Lemma 5. For the point (C, Y) ∈ Ω(J A,J B) with Y = Y∗ + θ(σ), we have the following three statements.

(i) If e(σ) > δi∗(σ), then C = C∗ − (nA − k(σ) + 1)θ(σ).
(ii) If e(σ) ≤ δi∗(σ) and the first crucial A-job is nearest to hi∗ in σ, then C = C∗ − Δ(σ) − (nA −

k(σ))θ(σ).
(iii) If e(σ) ≤ δi∗(σ) and no crucial A-job is nearest to hi∗ in σ, then C = C∗ − Δ(σ) − (nA − k(σ) +

1)θ(σ).

Proof. When σ changes to σ′, each of the nA − k(σ) + 1 A-jobs in {JA
k(σ), JA

k(σ)+1, . . . , JA
nA
} is moved

left θ(σ) units, and in the case that e(σ) = θ(σ), the crucial A-jobs are also moved left across their
corresponding nearest forbidden intervals in σ′. Thus, we have

C = C∗ − Δ∗(σ′)− (nA − k(σ) + 1)θ(σ), (8)

where Δ∗(σ′) = 0 if e(σ) > θ(σ) and Δ∗(σ′) = ∑{δi[j](σ
′) : JA

j ∈ J A
c (σ)} if e(σ) = θ(σ). The key

point is that δi∗(σ
′) = δi∗(σ)− θ(σ) and δl(σ

′) = δl(σ) for l = i∗ + 1, i∗ + 2, . . . , m.
Under the assumption of (i), we have Δ∗(σ′) = 0. From (8), we have C = C∗ − (nA − k(σ) + 1)θ(σ).
Under the assumption of (ii), we have Δ∗(σ′) = Δ(σ)− θ(σ). From (8), we have C = C∗ − Δ(σ)−

(nA − k(σ))θ(σ).
Under the assumption of (iii), we have Δ∗(σ′) = Δ(σ). From (8), we have C = C∗ − Δ(σ)− (nA −

k(σ) + 1)θ(σ). The lemma follows.

Theorem 1. Algorithm 2 generates the trade-off curve of 1|pmtn|#(∑ CA
j , ∑ YB

j) in O(nnAnB) time.

Proof. The correctness of Algorithm 2 is guaranteed by Lemmas 2 and 4. We estimate the time
complexity of the algorithm in the following.

The preprocessing procedure runs in O(nA log nA + nB log nB) time. Each of Steps (1.1) and (1.2)
runs in O(nB) time, so Step 1 runs in O(nB) time.

After Step 1, the algorithm has K iterations. In each iteration, either one forbidden interval is
eliminated or at least one A-job is moved left across its corresponding nearest forbidden interval.
Since m ≤ nB, we have K = O(nAnB).

7

Mathematics 2020, 8, 1517

At each iteration, Step 2 runs in O(nA + m) = O(n) time. From Lemma 3, Step (3.1) runs in O(nA)

time. Thus, each iteration runs in O(n) time.
The above discussion establishes the O(nnAnB)-time complexity of Algorithm 2.

Algorithm 2: Trade-off curve of problem 1|pmtn|#(∑ CA
j , ∑ YB

j).

Input: Instance J A ∪ J B.
Preprocessing: Renumber the A-jobs such that pA

1 ≤ pA
2 ≤ · · · ≤ pA

nA
and renumber the

B-jobs such that dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

.
Step 1: Do the following:
(1.1) Generate schedule σB

0 which schedules the B-jobs in the order JB
1 ≺ JB

2 ≺ · · · ≺ JB
nB

in the
interval [0, PB] without idle times. Then calculate the value Y(0) = Tmax(σB

0).

(1.2) Run Procedure(Y(0)) to obtain the schedule σB(Y(0)) of the B-jobs. Determine the intervals
occupied by the B-jobs in σB(Y(0)), say h1, h2, . . . , hm, where hi = [τ

(i)
1 , τ

(i)
2] is the i-th interval,

i = 1, 2, . . . , m, as described in (3). Then regard h1, h2, . . . , hm as forbidden intervals which
will be updated in the implementation of the algorithm. We take the convention that the
forbidden intervals are just occupied by the B-jobs.

(1.3) Set t0 := 1 and set i := 0.
Step 2: Do the following:
(2.1) Generate the Y(i)-standard schedule σi of J A ∪ J B in which hti , hti+1, . . . , hm are the

forbidden intervals and the A-jobs are preemptively scheduled in the order
JA
1 ≺ JA

2 ≺ · · · ≺ JA
nA

as early as possible. Determine the value C(i) = ∑nA
j=1 CA

j (σi).

(2.2) If JA
nA

(and so, every A-job) is scheduled before the first forbidden interval hti in σi,
then set K = i and go to Step 4. (In this case, we have obtained the whole trade-off curve.)

If JA
nA

completes after hti in σi, then go to Step 3. (In this case, we use Jk(σi)
to denote the first

A-job completing after hti in σi.)
Step 3: Do the following:
(3.1) Calculate the values k(σi) and θ(σi).
(3.2) Define a left closed right open segment Li in the interval [Y(i), Y(i) + θ(σi)) by the

following way:

Li :
C − C(i)

Y − Y(i)
= −(nA − k(σi) + 1), Y ∈ [Y(i), Y(i) + θ(σi)).

(3.3) Set Y(i+1) := Y(i) + θ(σi) and hm := [P∗, P∗ + Y(i+1)]. Moreover, if θ(σi) = δti (σi),

then set ti+1 := ti + 1; and if θ(σi) < δti (σi), then set ti+1 := ti and hti+1 := [τ
(ti)
1 + θ(σi), τ

(ti)
2]

(which is obtained from interval hti by deleting the first θ(σi) units.)
(3.4) Set i := i + 1. Go to Step 2.
Step 4: Output the trade-off curve Ω(J A,J B) = L0 ∪ L1 ∪ · · · ∪ LK−1 ∪ {(C(K), Y(K))}.

It can be observed that the total interruption time (i.e., the number of interruptions) of all the jobs
in each schedule generated by Algorithm 2 is upper bounded by 1 + m ≤ 1 + nB.

Let us consider the job instance I1 displayed in Table 1. The trade-off curve of problem
1|pmtn|#(∑ CA

j , ∑ YB
j) on instance I1 is shown in Figure 1.

Table 1. The job instance I1.

JX
i JA

1 JA
2 JA

3 JA
4 JB

1 JB
2 JB

3

pX
i 1 1 2 3 2 4 2

dX
i 0 0 0 0 3 4 8

8

Mathematics 2020, 8, 1517

Please note that P∗ = P + 1 = 16. Let Ω = Ω(J A,J B). The key steps in applying Algorithm 2 to
solve the instance I1 are as follows:

(i) Generate the schedule σB
0 = (JB

1 , JB
2 , JB

3) and calculate the Y-value Y(0) = Tmax(σB
0) = 2.

Then generate the schedule σB(Y(0)), and the forbidden interval set IB(Y(0)) = {h1, h2, h3} is
determined, where h1 = [0, 4], h2 = [6, 8], and h3 = [16, 18]. Then, for each y ∈ (Y(0), PB] = (2, 8],
σB(y) and IB(y) can be easily generated.

(ii) Generate the Y(0)-standard schedule σ0 of J A ∪J B in which h1, h2, h3 are the forbidden intervals
and the A-jobs are preemptively scheduled in the order JA

1 ≺ JA
2 ≺ JA

3 ≺ JA
4 as early as

possible. Determine the value C(0) = ∑nA
j=1 CA

j (σ0) = 34. Then σ0 is a Pareto-optimal schedule
corresponding to (34, 2) ∈ Ω.

(iii) Calculate the values k(σ0) = 1 and θ(σ0) = 1. Then line segment L0, which is the trade-off
curve in the interval [2, 3), satisfies C = −4Y + 42. Calculate Y(1) = Y(0) + θ(σ0) = 3 and the
forbidden interval set IB(Y(1)) = {h1, h2, h3}, where h1 = [1, 4], h2 = [6, 8], and h3 = [16, 19].
Generate σ1, and calculate C(1) = ∑nA

j=1 CA
j (σ1) = 27. Then the intermediate point (27, 3) ∈ Ω is

a jump discontinuity point and σ1 is a Pareto-optimal schedule corresponding to (27, 3).
(iv) Calculate the values k(σ1) = 2 and θ(σ1) = 1. Then the line segment L1, which is the trade-off

curve in the interval [3, 4), satisfies C = −3Y + 36. Calculate Y(2) = Y(1) + θ(σ1) = 4 and the
forbidden interval set IB(Y(2)) = {h1, h2, h3}, where h1 = [2, 4], h2 = [6, 8], and h3 = [16, 20].
Generate σ2, and calculate C(2) = ∑nA

j=1 CA
j (σ2) = 20. Then the intermediate point (20, 4) ∈ Ω is

a jump discontinuity point and σ2 is a Pareto-optimal schedule corresponding to (20, 4).
(v) Calculate the values k(σ2) = 3 and θ(σ2) = 2. Then the line segment L2, which is the trade-off

curve in the interval [4, 6), satisfies C = −2Y + 28. Calculate Y(3) = Y(2) + θ(σ2) = 6 and
the forbidden interval set IB(Y(3)) = {h2, h3}, where h2 = [6, 8] and h3 = [16, 22]. Generate σ3,
and calculate C(3) = ∑nA

j=1 CA
j (σ3) = 16. Then the intermediate point (16, 6) ∈ Ω is a break point

and σ3 is a Pareto-optimal schedule corresponding to (16, 6).
(vi) Calculate the values k(σ3) = 4 and θ(σ3) = 1. Then the line segment L3, which is the trade-off

curve in the interval [6, 7), satisfies C = −Y + 22. Calculate Y(4) = Y(3) + θ(σ3) = 7 and the
forbidden interval set IB(Y(4)) = {h2, h3}, where h2 = [7, 8] and h3 = [16, 23]. Generate σ4,
and calculate C(4) = ∑nA

j=1 CA
j (σ4) = 14. Then the intermediate point (14, 7) ∈ Ω is a jump

discontinuity point and σ4 is a Pareto-optimal schedule corresponding to (14, 7).
(vii) Finally, we conclude that Ω = {L0 ∪ L1 ∪ L2 ∪ L3 ∪ {(14, 7)}} as displayed in Figure 1.

Figure 1. Trade-off curve.

9

Mathematics 2020, 8, 1517

4. The Second Problem

In this section, we consider problem 1|pmtn|#(LA
max, ∑ YB

j) on instance J A ⋃J B. By the
job-shifting argument, we can verify that for each Pareto-optimal point, there is a corresponding
Pareto-optimal schedule in which the A-jobs are scheduled in the EDD order. Thus, in this section,
we renumber the A-jobs by the EDD order such that dA

1 ≤ dA
2 ≤ · · · ≤ dA

nA
. Then we only consider the

schedules in which the A-jobs are scheduled in the order JA
1 ≺ JA

2 ≺ · · · ≺ JA
nA

.
For a point (L∗, Y∗) ∈ Ω(J A,J B), let σ be a Y∗-standard schedule of J A ∪ J B. Then the set of

forbidden intervals (occupied by the B-jobs) is given by (5) and the A-jobs are preemptively scheduled
in the order JA

1 ≺ JA
2 ≺ · · · ≺ JA

nA
from time 0 in the free-time intervals. Thus, there are m − i∗ + 1

forbidden intervals and the first forbidden interval in σ is given by hi∗ = [τ∗, τ
(i∗)
2].

If PA ≤ τ∗, then all the A-jobs are scheduled before the first forbidden interval hi∗ in σ. In this
case, we have no further action.

In general, suppose that PA > τ∗. Then at least one A-job completing after hi∗ in σ. Let JA
k(σ) be

the first A-job which completes after hi∗ in σ. Then, there are totally nA − k(σ) + 1 A-jobs completing
after hi∗ in σ.

Let L∗ = LA
max(σ) be the maximum lateness of A-jobs in σ. An A-job JA

j with k(σ) ≤ j ≤ nA is

called critical in σ if LA
j (σ) = LA

max(σ). Again, we use J A
c (σ) to denote the set of all critical A-jobs.

Then J A
c (σ) = {JA

j : LA
j (σ) = L∗, k(σ) ≤ j ≤ nA}.

For each critical A-job JA
j , we define i[j] to be the interval index such that JA

j completes after

interval hi[j] and before interval hi[j]+1 in σ, or equivalently, τ
(i[j])
2 < CA

j (σ) ≤ τ
(i[j]+1)
1 . Define

λ(σ) = max{CA
j (σ)− τ

(i[j])
2 : JA

j ∈ J A
c (σ)}. (9)

A critical A-job JA
j is called a desired A-job in σ if CA

j (σ)− τ
(i[j])
2 = λ(σ). In this case, interval hi[j] is

called the nearest forbidden interval corresponding to desired A-job JA
j in σ. We further define

BL(σ) = max{LA
j (σ) : CA

j (σ) ≤ τ∗}, (10)

and
Δ(σ) = L∗ − BL(σ). (11)

In the case that no A-job completes before interval hi∗ , we define BL(σ) = −∞ and Δ(σ) = +∞.
Moreover, we define

ϑ(σ) = min{min{λ(σ), δi∗(σ)}, Δ(σ)}. (12)

Please note that when the schedule σ is given, the values CA
j (σ) and LA

j (σ), j = 1, 2, . . . , nA,

and L∗ can be determined in O(nA) time. Then the set J A
c (σ) and the interval indices i[j] for

JA
j ∈ J A

c (σ) can be determined in O(nA) time. After that, the value λ(σ), BL(σ) and Δ(σ) can be
determined in O(nA) time. Finally, the value ϑ(σ) can be determined by its definition in (12) in constant
time. Then we have the following lemma.

Lemma 6. Given the Y∗-standard schedule σ in advance, the values Δ(σ) and ϑ(σ) can be determined in
O(nA) time.

If Δ(σ) = 0, then BL(σ) = L∗. In this case, (L∗, Y∗) is the last Pareto-optimal point.
Suppose that Δ(σ) > 0. Then ϑ(σ) > 0. For each Y ∈ [Y∗, Y∗ + ϑ(σ)], let σ′ be the Y-standard

schedule. Then σ′ is obtained from σ by shifting Y − Y∗ units of hi∗ to the last forbidden interval
and then moving the A-jobs in {JA

k(σ), JA
k(σ)+1, . . . , JnA} left to eliminate the idle times accordingly.

This means that LA
j (σ

′) ≤ LA
j (σ) − (Y − Y∗) for j ∈ {k(σ), k(σ) + 1, . . . , nA}. Assume that the

10

Mathematics 2020, 8, 1517

maximum lateness of A-jobs in σ′ is L. According to Lemma 2, (L, Y) is a Pareto-optimal point. In the
following, we consider the trade-off curve between (L∗, Y∗) and (L, Y). For convenience, point (L, Y)
is simply called point Y.

We will show that the trade-off curve for Y ∈ [Y∗, Y∗ + ϑ(σ)) is a line segment. Discussion for
the singularity of the point Y∗ + ϑ(σ) will be omitted. This does not affect the characterization of the
trade-off curve.

Lemma 7. Suppose that Δ(σ) > 0. For each point (L, Y) ∈ Ω(J A,J B) with Y ∈ [Y∗, Y∗ + ϑ(σ)), we have
L−L∗
Y−Y∗ = −1.

Proof. For each Y ∈ [Y∗, Y∗ + ϑ(σ)), we have Y − Y∗ < ϑ(σ). When we change σ to σ′, no desired
A-jobs are moved left across their corresponding nearest forbidden intervals in σ′. As a result,
compared with σ, each desired job must move forward Y − Y∗ units and the other A-jobs move
forward at least Y − Y∗ units in σ′. Thus, the desired A-jobs in σ are also critical A-jobs in σ′. Then we
have L−L∗

Y−Y∗ = −1, as required.

Theorem 2. Algorithm 3 generates the trade-off curve of 1|pmtn|#(LA
max, ∑ YB

j) in O(nnAnB) time.

Algorithm 3: Trade-off curve of problem 1|pmtn|#(LA
max, ∑ YB

j).

Input: Instance J A ∪ J B.
Preprocessing: Renumber the A-jobs such that dA

1 ≤ dA
2 ≤ · · · ≤ dA

nA
and renumber the

B-jobs such that dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

.
Step 1: Do the following:
(1.1) Generate schedule σB

0 which schedules the B-jobs in the order JB
1 ≺ JB

2 ≺ · · · ≺ JB
nB

in the
interval [0, PB] without idle times. Then calculate the value Y(0) = Tmax(σB

0).

(1.2) Run Procedure(Y(0)) to obtain the schedule σB(Y(0)) of the B-jobs. Determine the intervals
occupied by the B-jobs in σB(Y(0)), say h1, h2, . . . , hm, where hi = [τ

(i)
1 , τ

(i)
2] is the i-th interval,

i = 1, 2, . . . , m, as described in (3). Then regard h1, h2, . . . , hm as forbidden intervals which
will be updated in the implementation of the algorithm. We take the convention that the
forbidden intervals are just occupied by the B-jobs.

(1.3) Set t0 := 1 and set i := 0.
Step 2: Do the following:
(2.1) Generate the Y(i)-standard schedule σi of J A ∪ J B in which hti , hti+1, . . . , hm are the

forbidden intervals and the A-jobs are preemptively scheduled in the order
JA
1 ≺ JA

2 ≺ · · · ≺ JA
nA

as early as possible. Determine the values L(i) = LA
max(σi).

(2.2) Determine the value Δ(σi). Moreover, if Δ(σi) > 0, determine the value ϑ(σi).
(2.3) If Δ(σi) = 0, then set K = i and go to Step 4. (In this case, we have obtained the whole

trade-off curve.)
If Δ(σi) > 0, then go to Step 3. (In this case, we have ϑ(σi) > 0.)
Step 3: Define a left closed right open segment Li in the interval [Y(i), Y(i) + ϑ(σi)) by the
following way:

Li :
L − L(i)

Y − Y(i)
= −1, Y ∈ [Y(i), Y(i) + ϑ(σi)).

(3.3) Set Y(i+1) := Y(i) + ϑ(σi) and hm := [P∗, P∗ + Y(i+1)]. Moreover, if ϑ(σi) = δti (σi), then

set ti+1 := ti + 1; and if ϑ(σi) < δti (σi), then set ti+1 := ti and hti+1 := [τ
(ti)
1 + ϑ(σi), τ

(ti)
2]

(which is obtained from interval hti by deleting the first ϑ(σi) units.)
(3.4) Set i := i + 1. Go to Step 2.
Step 4: Output the trade-off curve Ω(J A,J B) = L0 ∪ L1 ∪ · · · ∪ LK−1 ∪ {(L(K), Y(K))}.

11

Mathematics 2020, 8, 1517

Proof. Correctness of Algorithm 3 is guaranteed by Lemmas 2 and 7. The time complexity can be
estimated by the similar way of Theorem 1 by putting Lemma 6 in discussion.

It can be observed that the total interruption time (i.e., the number of interruptions) of all the jobs
in each schedule generated by Algorithm 3 is upper bounded by 1 + m ≤ 1 + nB.

Let us consider the job instance I2 displayed in Table 2. The trade-off curve of problem
1|pmtn|#(LA

max, ∑ YB
j) on instance I2 is shown in Figure 2.

Table 2. The instance I2.

JX
i JA

1 JA
2 JA

3 JB
1 JB

2 JB
3

pX
i 4 2 3 5 2 2

dX
i 4 7 11 3 7 12

Please note that P∗ = P + 1 = 19. Let Ω = Ω(J A,J B). The key steps in applying Algorithm 3 to
solve the instance I2 are as follows:

(i) Generate the schedule σB
0 = (JB

1 , JB
2 , JB

3) and calculate the Y-value Y(0) = Tmax(σB
0) = 2.

Then generate the schedule σB(Y(0)), and the forbidden interval set IB(Y(0)) = {h1, h2, h3, h4}
is determined, where h1 = [0, 3], h2 = [5, 7], h3 = [10, 12], and h4 = [19, 21]. Then, for each
y ∈ (Y(0), PB] = (2, 9], σB(y) and IB(y) can be easily generated.

(ii) Generate the Y(0)-standard schedule σ0 of J A ∪ J B in which h1, h2, h3, h4 are the forbidden
intervals and the A-jobs are preemptively scheduled in the order JA

1 ≺ JA
2 ≺ JA

3 as early as
possible. Determine the value L(0) = LA

max(σ0) = 6. Then σ0 is a Pareto-optimal schedule
corresponding to (6, 2) ∈ Ω.

(iii) Calculate the values Δ(σ0) = 6 > 0 and ϑ(σ0) = 1. Then the line segment L0, which is the
trade-off curve in the interval [2, 3), satisfies L = −Y + 8. Calculate Y(1) = Y(0) + ϑ(σ0) = 3 and
the forbidden interval set IB(Y(1)) = {h1, h2, h3, h4}, where h1 = [1, 3], h2 = [5, 7], h3 = [10, 12],
and h4 = [19, 22]. Generate σ1, and calculate L(1) = LA

max(σ1) = 4. Then the intermediate point
(4, 3) ∈ Ω is a jump discontinuity point and σ1 is a Pareto-optimal schedule corresponding
to (4, 3).

(iv) Calculate the values Δ(σ1) = 4 > 0 and ϑ(σ1) = 2. Then the line segment L1, which is the
trade-off curve in the interval [3, 5), satisfies L = −Y + 7. Calculate Y(2) = Y(1) + ϑ(σ1) = 5 and
the forbidden interval set IB(Y(2)) = {h2, h3, h4}, where h2 = [5, 7], h3 = [10, 12], and h4 = [19, 24].
Generate σ2, and calculate L(2) = LA

max(σ2) = 2. Then the intermediate point (2, 5) ∈ Ω is a
continuity point and σ2 is a Pareto-optimal schedule corresponding to (2, 5).

(v) Calculate the values Δ(σ2) = 2 > 0 and ϑ(σ2) = 1. Then the line segment L2, which is the
trade-off curve in the interval [5, 6), satisfies L = −Y + 7. Calculate Y(3) = Y(2) + ϑ(σ2) = 6 and
the forbidden interval set IB(Y(2)) = {h2, h3, h4}, where h2 = [6, 7], h3 = [10, 12], and h4 = [19, 25].
Generate σ3, and calculate L(3) = LA

max(σ3) = 0. Then the intermediate point (0, 6) ∈ Ω is a jump
discontinuity point and σ3 is a Pareto-optimal schedule corresponding to (0, 6).

(vi) Calculate the value Δ(σ3) = 0. Then, we conclude that Ω = {L0 ∪ L1 ∪ L2 ∪ {(0, 6)}} as
displayed in Figure 2.

12

Mathematics 2020, 8, 1517

Figure 2. Trade-off curve.

5. The Third Problem

In this section, we consider problem 1|pmtn|#(∑ YA
j , ∑ YB

j) on instance J A ∪ J B. We renumber

the A-jobs by the EDD order such that dA
1 ≤ dA

2 ≤ · · · ≤ dA
nA

.
For a point (YA, YB) ∈ Ω(J A,J B), a YB-standard schedule of J A ∪ J B corresponding to

(YA, YB) can be obtained in the following way in O(n) time: (i) Run Procedure(YB) to obtain the
schedule σB(YB) of the B-jobs, and (ii) run the algorithm in Hariri et al. [21] for solving problem
1|pmtn|∑ Yj to schedule the A-jobs in the free-time intervals not occupied by the B-jobs in σB(YB).
Thus, we only need to consider the trade-off curve of problem 1|pmtn|#(∑ YA

j , ∑ YB
j) on instance

J A ∪ J B. We first establish a nice property for problem 1|pmtn|∑ Yj in the following lemma.

Lemma 8. Let J = {J1, J2, . . . , Jn} be a job instance of problem 1|pmtn|∑ Yj. Let U be a subset of J such
that there is a schedule of instance J such that all the jobs in U are early. Then there is an optimal schedule of
problem 1|pmtn|∑ Yj on instance J such that all the jobs in U are early.

Proof. We first prove the result for problem 1|pmtn|∑ Yj without maintenance intervals by induction
on |U |. The result holds trivially if |U | = 0.

Inductively, suppose that |U | = k ≥ 1, U = {Jj1 , Jj2 , . . . , Jjk}, dj1 ≤ dj2 ≤ · · · ≤ djk , and there is
a feasible schedule of instance J such that all the jobs in U are early. Moreover, the result holds for
every proper subset of U (the induction hypothesis).

Since U \ {Jjk} is a proper subset of U , from the induction hypothesis, there is an optimal
schedule π of problem 1|pmtn|∑ Yj on instance J such that all the k − 1 jobs Jj1 , Jj2 , . . . , Jjk−1

are
early in π. Since all the jobs in U are early in some feasible schedule, we have pj1 + pj2 + · · ·+ pjk ≤
max{dj1 , dj2 , . . . , djk} = djk . This implies that all the k − 1 jobs Jj1 , Jj2 , . . . , Jjk−1

are completed by time djk
in π and at least pjk units of time in the interval [0, djk] are not occupied by the k − 1 jobs Jj1 , Jj2 , . . . , Jjk−1

.
If Cjk (π) ≤ djk , i.e., Jjk is early in π, then π is a required optimal schedule.
Suppose in the following that Cjk (π) > djk . Then there is a certain index i ∈ {0, 1, . . . , pjk} such

that for job Jjk , the first i unit pieces Jjk ,1(π), Jjk ,2(π), . . . , Jjk ,i(π) are early in π and the last pjk − i unit
pieces Jjk ,i+1(π), . . . , Jjk ,pjk

(π) are late in π. Let S be the time space which consists of the last pjk − i
units of time in the interval [0, djk] that are not occupied by the k − 1 jobs Jj1 , Jj2 , . . . , Jjk−1

and the i
unit pieces Jjk ,1(π), Jjk ,2(π), . . . , Jjk ,i(π) of Jjk . Let T be the time space which consists of the pjk − i

13

Mathematics 2020, 8, 1517

units of time that are occupied by the pjk − i unit pieces Jjk ,i+1(π), . . . , Jjk ,pjk
(π) of Jjk . Let σ be the

schedule of J obtained from π by exchanging the subschedules in S and in T . Then Jjk is early in σ.
Moreover, ∑ Yj(σ) ≤ ∑ Yj(π)− |T |+ |S| = ∑ Yj(π), implying that σ is also optimal. Now all the jobs
in U = {Jj1 , Jj2 , . . . , Jjk} are early in σ. Consequently, σ is an optimal schedule of problem 1|pmtn|∑ Yj
on instance J such that all the jobs in U are early. The result follows by the induction principle.

We next use Lemma 8 to prove the following useful lemma.

Lemma 9. Let J = {J1, J2, . . . , Jn} be a job instance of problem 1|pmtn|∑ Yj. Let π be a schedule of the jobs
in J . Then there is an optimal schedule σ of problem 1|pmtn|∑ Yj on instance J such that Yj(σ) ≤ Yj(π) for
j = 1, 2, . . . , n.

Proof. For each j ∈ {1, 2, . . . , n}, we partition Jj into two parts Jj′ and Jj′′ such that pj′ = pj − Yj(π)

is the early work of Jj in π, pj′′ = Yj(π) is the late work of Jj in π, and dj′ = dj′′ = dj. Let J ′ =
{Jj′ , Jj′′ : j = 1, 2, . . . , n}. Let π′ be the schedule of J ′ which is obtained from π by just regarding
the early part of Jj in π as job Jj′ and regarding the late part of Jj in π as job Jj′′ . Then all the
jobs in {Jj′ : j = 1, 2, . . . , n} are early in π′. According to Lemma 8, there is an optimal schedule
σ of problem 1|pmtn|∑ Yj on instance J ′ such that all the jobs in {Jj′ : j = 1, 2, . . . , n} are early.
Since the preemptive assumption, the two instances J and J ′ have no essential difference for problem
1|pmtn|∑ Yj, σ is an optimal schedule of problem 1|pmtn|∑ Yj on instance J . The result follows by
noting that Yj(σ) = Yj′′(σ) ≤ pj′′ = Yj(π) for j = 1, 2, . . . , n.

Let YAB be the optimal value of problem 1|pmtn|∑ Yj on instance J A ∪ J B. We have the
following lemma.

Lemma 10. For each point (YA, YB) ∈ Ω(J A,J B), we have YA + YB = YAB.

Proof. Let σ be a Pareto-optimal schedule of problem 1|pmtn|#(∑ YA
j , ∑ YB

j) on instance J A ∪J B such

that ∑ YA
j (σ) = YA and ∑ YB

j (σ) = YB. From Lemma 9, there is an optimal schedule σ′ of 1|pmtn|∑ Yj

on instance J A ∪ J B such that ∑ YA
j (σ′) ≤ ∑ YA

j (σ) and ∑ YB
j (σ

′) ≤ ∑ YB
j (σ). The optimality

of σ′ implies that ∑ Yj(σ
′) = YAB. From the property of Pareto-optimal point, we can obtain that

∑ YA
j (σ′) = ∑ YA

j (σ) and ∑ YB
j (σ

′) = ∑ YB
j (σ). Thus, we have YA +YB = YAB. The result follows.

Theorem 3. The trade-off curve of problem 1|pmtn|#(∑ YA
j , ∑ YB

j) on instance J A ∪ J B can be determined
in O(n log n) time.

Proof. Let Y(0)
A be the optimal value of problem 1|pmtn|YA

j on instance J A. Let Y(0)
B be the optimal

value of problem 1|pmtn|YB
j on instance J B. Recall that YAB is the optimal value of problem

1|pmtn|∑ Yj on instance J A ∪ J B. From Hariri et al. [21], Y(0)
A , Y(0)

B , and YAB can be determined in
O(nA log nA) time, O(nB log nB) time, and O(n log n) time, respectively.

Please note that Y(0)
A is the minimum total late work of A-jobs among all Pareto-optimal points and

Y(0)
B is the minimum total late work of B-jobs among all Pareto-optimal points. Thus, from Lemma 10,

the trade-off curve is the line segment

YA + YB = YAB, Y(0)
B ≤ YB ≤ YAB − Y(0)

A ,

connecting point (YAB − Y(0)
B , Y(0)

B) to point (Y(0)
A , YAB − Y(0)

A). So, the overall complexity to obtain
the trade-off curve is given by O(n log n).

It can be observed that the total interruption time (i.e., the number of interruptions) of all the jobs
in each Pareto-optimal schedule is upper bounded by max{nA, nB}+ 2.

14

Mathematics 2020, 8, 1517

Let us consider the job instance I3 displayed in Table 3. The trade-off curve of problem
1|pmtn|#(∑ YA

j , ∑ YB
j) on instance I3 is shown in Figure 3.

Table 3. The instance I3.

JX
i JA

1 JA
2 JA

3 JA
4 JA

5 JB
1 JB

2 JB
3

pX
i 4 2 3 2 2 3 3 3

dX
i 3 4 7 11 14 2 8 13

Please note that P∗ = P + 1 = 23. Let Ω = Ω(J A,J B). The key steps to solve the instance I3 are
as follows:

(i) Generate the schedule σB
0 = (JB

1 , JB
2 , JB

3) and calculate the YB-value Y(0) = Tmax(σB
0) = 1.

Then generate the schedule σB(Y(0)), and the forbidden interval set IB(Y(0)) = {h1, h2, h3, h4}
is determined, where h1 = [0, 2], h2 = [5, 8], h3 = [10, 13], and h4 = [23, 24]. Then, for each
y ∈ (Y(0), PB] = (1, 9], σB(y) and IB(y) can be easily generated.

(ii) Generate the Y(0)-standard schedule σ0 of J A ∪ J B in which h1, h2, h3, h4 are the forbidden
intervals and the A-jobs are preemptively scheduled by running the algorithm in Hariri et al. [21]
for solving problem 1|pmtn|∑ Yj in the free-time intervals not occupied by the B-jobs in

σB(Y0). Determine the value YA(σ0) = ∑ YA
j (σ0) = 7. Then σ0 is a Pareto-optimal schedule

corresponding to (7, 1) ∈ Ω.
(iii) By using the same method as (i) and (ii), we schedule A-jobs first. Generate the schedule

σA(Y(0)), where Y(0) = Tmax(σA
0) = 2. Generate the schedule σ1 of J A ∪ J B in which the

B-jobs are preemptively scheduled by running the algorithm in Hariri et al. [21] for solving
problem 1|pmtn|∑ Yj in the free-time intervals not occupied by the A-jobs in σA(Y(0)). Then σ1

is a Pareto-optimal schedule corresponding to (2, 6) ∈ Ω. From Lemma 10, σ1 is the final
Pareto-optimal schedule. Then the trade-off curve is just the line segment in the interval [1, 6],
which satisfies YA = −YB + 8 as displayed in Figure 3.

Figure 3. Trade-off curve.

15

Mathematics 2020, 8, 1517

6. Conclusions

This paper considers three preemptive Pareto-scheduling problems with two competing agents
on a single machine. Two agents compete to perform their respective jobs on a common single
machine and each agent has his own criterion to optimize. In each problem, the goal of agent A is
to minimize the total completion time, the maximum lateness, or the total late work while agent B
wants to minimize the total late work. For each problem, we provide a polynomial-time algorithm to
characterize the trade-off curve of all Pareto-optimal points.

Late-work criterion can be met in all cases where the penalty imposed on a solution depends on
the number of tardy units of jobs performed in a system. For example, in production planning where
the manufacturer is concerned with minimizing any order delays which cause financial loss, in control
systems where the accuracy of control procedures depends on the amount of information provided
as their input, in agriculture where performance measures based on due dates, and so on. In the
case where two criteria need to be minimized, the trade-off curve results an ideal solution. Once the
trade-off curve is characterized, decision makers can make decisions as needed.

For the future research, the trade-off curve of the problem 1|pmtn|#(∑ CA
j , ∑ wjYB

j) or

1|pmtn|#(LA
max, ∑ wjYB

j) is worthy of study. Since the existence of precedence constraints on scheduling
problems reflects real-life problems, it is also worthy to study the two-agent problems with precedence
constraints. Another interesting future research direction is to investigate fairness issues when the
total late work is one of the criteria in two-agent scheduling problems.

Author Contributions: Conceptualization, methodology, and writing—original manuscript: R.H.; project
management, supervision, and writing—review: J.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under grant numbers
11671368 and 11771406.

Acknowledgments: The authors would like to thank the Associate Editor and two anonymous referees for their
constructive comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. T’kindt, V.; Billaut, J.C. Multicriteria Scheduling: Theory, Models and Algorithms, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2006.

2. Agnetis, A.; Mirchandani, P.B.; Pacciareli, D.; Pacifici, A. Scheduling problems with two competing agents.
Oper. Res. 2004, 52, 229–242. [CrossRef]

3. Cheng, T.C.E.; Ng, C.T.; Yuan, J.J. Multi-agent scheduling on a single machine to minimize total weighted
number of tardy jobs. Theor. Comput. Sci. 2006, 362 , 273–281. [CrossRef]

4. Cheng, T.C.E.; Ng, C.T.; Yuan, J.J. Multi-agent scheduling on a single machine with max-form criteria. Eur. J.
Oper. Res. 2008, 188, 603–609. [CrossRef]

5. Lee, W.C.; Wang, W.J.; Shiau, Y.R.; Wu, C.C. A single-machine scheduling problem with two-agent and
deteriorating jobs. Appl. Math. Model. 2010, 34, 3098–3107. [CrossRef]

6. Leung, J.Y.T.; Pinedo, M.; Wan, G.H. Competitive two-agent scheduling and its applications. Oper. Res. 2010,
58, 458–469. [CrossRef]

7. Ng, C.T.; Cheng, T.C.E.; Yuan, J.J. A note on the complexity of the problem of two-agent scheduling on a
single machine. J. Comb. Optim. 2006, 12, 387–394. [CrossRef]

8. Agnetis, A.; Chen, B.; Nicosia, G.; Pacifici, A. Price of fairness in two-agent single-machine scheduling
problems. Eur. J. Oper. Res. 2019, 276, 79–87. [CrossRef]

9. Zhang, Y.B.; Zhang, Z.; Liu, Z.H. The price of fairness for a two-agent scheduling game mini-mizing total
completion time. J. Comb. Optim. 2020. [CrossRef]

10. Mor, B.; Mosheiov, G. Minimizing maximum cost on a single machine with two competing agents and job
rejection. J. Oper. Res. Soc. 2016, 67, 1524–1531. [CrossRef]

16

Mathematics 2020, 8, 1517

11. Gao, Y.; Yuan, J.J. Bi-criteria Pareto-scheduling on a single machine with due indices and precedence
constraints. Discret. Optim. 2017, 25, 105–119. [CrossRef]

12. Agnetis, A.; Billaut, J.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling-Models and
Algorithms; Springer: Berlin/Heidelberg, Germany, 2014.

13. Liu, P.; Gu, M.; Li, G.G. Two-agent scheduling on a single machine with release dates. Comput. Oper. Res.
2019, 111, 35–42. [CrossRef]

14. Oron, D.; Shabtay, D.; Steiner, G. Single machine scheduling with two competing agents and equal jobs
processing times. Eur. J. Oper. Res. 2015, 244, 86–99. [CrossRef]

15. Perez-Gonzalez, P.; Framinan, J. A common framework and taxonomy for multicriteria scheduling problem
with interfering and competing jobs: multi-agent scheduling problems. Eur. J. Oper. Res. 2014, 235, 1–16.
[CrossRef]

16. Yuan, J.J. Complexities of some problems on multi-agent scheduling on a single machine. J. Oper. Res.
Soc. China 2016, 4, 379–384. [CrossRef]

17. Yuan, J.J. Complexities of four problems on two-agent scheduling. Optim. Lett. 2018, 12, 763–780. [CrossRef]
18. Blazewicz, J.; Finke, G. Minimizing mean weighted execution time loss on identical and uniform processors.

Inform. Process. Lett. 1987, 24, 259–263. [CrossRef]
19. Potts, C.N.; Van Wassenhove, L.N. Single machine scheduling to minimize total late work. Oper. Res. 1992,

40, 586–595. [CrossRef]
20. Potts, C.N.; Van Wassenhove, L.N. Approximation algorithms for scheduling a single machine to minimize

total late work. Oper. Res. Lett. 1991, 11, 261–266. [CrossRef]
21. Hariri, A.M.A.; Potts, C.N.; Van Wassenhove, L.N. Single machine scheduling to minimize total weighted

late work. ORSA J. Comput. 1995, 7, 232. [CrossRef]
22. Sterna, M. A survey of scheduling problems with late work criteria. Omega 2011, 39, 120–129. [CrossRef]
23. Wang, D.J.; Kang, C.C.; Shiau, Y.R.; Wu, C.C. A two-agent single-machine scheduling problem with late

work criteria. Soft Comput. 2017, 21, 2015–2033. [CrossRef]
24. Zhang, X.G.; Wang, Y. Two-agent scheduling problems on a single-machine to minimize the total weighted

late work. J. Comb. Optim. 2017, 33, 945–955.
25. Zhang, Y.; Yuan, J.J. A note on a two-agent scheduling problem related to the total weighted late work.

J. Comb. Optim. 2019, 37, 989–999. [CrossRef]
26. Lee, C.Y. Machine scheduling with an availability constraints. J. Glob. Optim. 1996, 9, 395–416. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

17

mathematics

Article

Two-Agent Pareto-Scheduling of Minimizing Total
Weighted Completion Time and Total Weighted
Late Work

Yuan Zhang †, Zhichao Geng *,† and Jinjiang Yuan †

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
zy2020@gs.zzu.edu.cn (Y.Z.); yuanjj@zzu.edu.cn (J.Y.)
* Correspondence: zcgeng@zzu.edu.cn
† These authors contributed equally to this work.

Received: 26 October 2020; Accepted: 16 November 2020; Published: 20 November 2020

Abstract: We investigate the Pareto-scheduling problem with two competing agents on a single machine
to minimize the total weighted completion time of agent A’s jobs and the total weighted late work of agent
B’s jobs, the B-jobs having a common due date. Since this problem is known to be NP-hard, we present
two pseudo-polynomial-time exact algorithms to generate the Pareto frontier and an approximation
algorithm to generate a (1 + ε)-approximate Pareto frontier. In addition, some numerical tests are
undertaken to evaluate the effectiveness of our algorithms.

Keywords: scheduling; two agents; pareto frontier; approximation algorithms

1. Introduction

Problem description and motivation: Multi-agent scheduling has attracted an ever-increasing
research interest due to its extensive applications (see the book of Agnetis et al. [1]). Among the common
four problem-versions (including lexical-, positive-combination-, constrained-, and Pareto-scheduling,
as shown in Li and Yuan [2]) for a given group of criteria for multiple agents, Pareto-scheduling has the
most important practical value, since it reflects the effective tradeoff between the actual and (usually)
conflicting requirements of different agents.

Our considered problem is formally stated as follows. Assume that two agents (A and B) compete to
process their own sets of independent and non-preemptive jobs on a single machine. The set of the nX jobs
from agent X ∈ {A, B} is JX = {JX

1 , JX
2 , · · · , JX

nX
} with JA ∩ JB = φ. For convenience, we call a job from

agent X an X-job. All jobs are available at time zero, and are scheduled consecutively without idle time
due to the regularity of the objective functions as shown later. Each job JX

j has a processing time pX
j and a

weight wX
j . In addition, each B-job JB

j has also a common due date d. We assume that all parameters pX
j ,

wX
j and d are known integers.

Let σ be a schedule. We use CX
j (σ) to denote the completion time of job JX

j in σ. The objective function

of agent A is the total weighted completion time, denoted by ∑ wA
j CA

j (σ), while the objective function

Mathematics 2020, 8, 2070; doi:10.3390/math8112070 www.mdpi.com/journal/mathematics

19

Mathematics 2020, 8, 2070

of agent B is the total weighted late work, denoted by ∑ wB
j YB

j (σ). Here, the late work YB
j (σ) of job JB

j
indicates the amount processed after the due date d, specifically,

YB
j (σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Cj(σ) ≤ d,

CB
j (σ)− d, if d < CB

j (σ) ≤ d + pB
j ,

pB
j , if CB

j (σ) > d + pB
j .

(1)

Following Hariri et al. (1995) [3], job JB
j is said to be early, partially early, and late in σ, if YB

j (σ) = 0,

0 < YB
j (σ) < pB

j , and YB
j (σ) = pB

j , respectively.
Falling into the category of Pareto-scheduling, the problem studied in this paper aims at

generating all Pareto-optimal points (PoPs) and the corresponding Pareto-optimal schedules (PoSs)
(the definitions of PoPs and PoSs will be given in Section 2) of all jobs with regard to ∑ wA

j CA
j and

∑ wB
j YB

j). Using the notations in Agnetis et al. [1], our studied scheduling problem can be denoted by

1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j). For this problem, we will devise some efficient approximate algorithms.

Our considered scheduling model arises from many practical scenarios. For example, in a factory,
two‘concurrent projects (A and B), each containing a certain amount of activities with distinct importance,
have to share a limited resource. The former focuses on the mean completion time of its activities.
In contrast, the latter requires its activities to be completed before the due date as much as possible,
since, otherwise, the shortcomings of some key technical forces after the due date will occur and result
in irretrievable loss. It is necessary to model the goal of project B as the weighted late work, that is,
minimizing the parts left unprocessed before the due date. In addition, two projects naturally have to
negotiate to seek a trade-off method of utilizing the common resource.

For another example, in a distribution center, two categories (A- and B-) goods are stored in a
warehouse, in which the former comprises common goods and the latter comprises fresh goods with a
shelf life. It is hoped that the shipping preparations for the A-goods will be completed as soon as possible.
However, due to their limited shelf life, if they are transported after a certain time, the B-goods will not be
fresh enough when they reach the customers. Therefore, it is reasonable to respectively model the goals of
A-goods and B-goods by minimizing the total weighted completion time and the total weighted late work,
and seek an efficient transportation method.

Related works and our contribution: Numerous works have addressed multi-agent scheduling
problems in the literature. With the aim of this paper, we only summarize briefly some related results.
Wan et al. [4] provided a strongly polynomial-time algorithm for the two-agent Pareto-scheduling problem
on a single machine to minimize the number of the tardy A-jobs and the maximum cost of the B-jobs.
Later, Wan et al. [5] investigated two Pareto-scheduling problems on a single machine with two competing
agents and a linear-deterioration processing time: 1||#(EA

max, EB
max) and 1||#(∑ EA

j , EB
max), where ∑ EA

j is

the total earliness of the A-jobs and EX
max is the maximum earliness of the X-jobs. For these two problems,

they respectively proposed a polynomial-time algorithm. Gao and Yuan [6] showed that the following two
Pareto-scheduling problems with a positional due index and precedence constraints are both polynomially
solvable: 1||#(∑ CA

j , f B
max) and 1||#(f A

max, f B
max), where f X

max indicates the maximum cost of the X-jobs. He
et al. [7] extensively considered the versions of the problems in Gao and Yuan [6] with deteriorating
or shortening processing times and without positional due indices and precedence constraints, and
devised polynomial-time algorithms. Yuan et al. [8] showed the single-machine preemptive problem
1|rj, pmtn|#(La

max : Lb
max) can be solved in a polynomial time, where LX

max indicates the maximum lateness
of the X-jobs. Wan [9] investigated the single-machine two-agent scheduling problem to minimize the
maximum costs with position-dependent jobs, and developed a polynomial-time algorithm.

20

Mathematics 2020, 8, 2070

While most results on Pareto-scheduling concentrate on devising exact algorithms to obtain the
Pareto frontier, there are also some methods (such as [10–14]) of developing approximate algorithms
to generate the approximate Pareto frontier. Dabia et al. [10] adopted the trimming technique to derive
the approximate Pareto frontier for some multi-objective scheduling problems. Yin et al. [15] considered
two just-in-time (JIT) scheduling problems with two competing agents on unrelated parallel machines,
in which the one agent’s criterion is to maximize the weighted number of its JIT jobs, and another agent’s
criterion is either to maximize its maximum gains from its JIT jobs or to maximize the weighted number of
its JIT jobs. They showed that the two problems are both unary NP-hard when the machine number is not
fixed, and proposed either a polynomial-time algorithm or a fully polynomial-time approximation scheme
(FPTAS) when the machine number is a constant. Yin et al. [16] also considered similar problems in the
setting of a two-machine flow shop, and provided two pseudo-polynomial-time exact algorithms to find
the Pareto frontier. Chen et al. [17] studied a multi-agent Pareto-scheduling problem in a no-wait flow shop
setting, in which each agent’s criterion is to maximize its own weighted number of JIT jobs. They showed
that it is unary NP-hard when the number of agents is arbitrary, and presented pseudo-polynomial time
algorithms and an (1, 1 − ε, . . . , 1 − ε)-approximation algorithm when the number of agents is fixed.

From the perspective of methodology, as a type of optimization problem, the multi-agent scheduling
problem’s solution algorithms potentially allow for exploiting the optimal robot path planning by a
gravitational search algorithm (Purcaru et al. [18]) and optimization based on phylogram analysis
(Soares et al. [19]).

In the prophase work (Zhang and Yuan [20]), we proved that the constrained scheduling problem of
minimizing the total late work of agent A’s jobs with equal due dates subject to the makespan of agent
B’s jobs not exceeding a given upper bound, is NP-hard even if agent B has only one job. It implies
the NP-hardness of our considered problem in this paper. Thus we limit the investigation to devising
pseudo-polynomial-time exact algorithms and an approximation algorithm to generate the approximate
Pareto frontier.

In addition, in our recent work (Zhang et al. [21]), we considered several three-agent scheduling
problems under different constraints on a single machine, in which the three agents’ criteria are to minimize
the total weighted completion time, the weighted number of tardy jobs, and the total weighted late work.
Among those problems, there are two questions related to this paper: 1|pA

j ↑↓ wA
j |#(ΣwA

j CA
j , ΣwB

j YB
j),

which is solved in O(nAn2
BUAUB), and 1|pA

j ↑↓ wA
j , dB

j ↑↓ wB
j |#(ΣwA

j CA
j , ΣwB

j YB
j), which is solved in

O(nAnBUAUB). The notation pA
j ↑↓ wA

j represents that the jobs of the first agent have inversely agreeable
processing times and weights, i.e., the smaller the processing time for a job, the greater its weight,
and the notation dB

j ↑↓ wB
j represents that the jobs of agent B have inversely agreeable due dates and

weights. UA and UB are the upper bounds on the criteria ΣwA
j CA

j and ΣwB
j YB

j , respectively. In contrast to

Zhang et al. [21], in this article we remove the constraint pA
j ↑↓ wA

j and turn to the optimization problem
of B-jobs having a common due date.

The remainder of the paper is organized as follows. In Section 2, some preliminaries are provided.
In Sections 3 and 4, we present two dynamic programming algorithms and an FPTAS. In Section 5,
some numeral tests are undertaken to show the algorithms’ efficiency. Section 6 concludes the paper and
suggests the future research direction.

2. Preliminaries

For self-consistency, in this section we describe some notions and properties related to Pareto-scheduling,
and we present other useful notations in the description of the algorithms in the following sections.

Definition 1. Consider two m-vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm).

21

Mathematics 2020, 8, 2070

(i) We say that u dominates v, denoted by u � v, if ui ≤ vi for i = 1, 2, . . . , m.
(ii) We say that u strictly dominates v, denoted by u ≺ v, if u � v and u = v.
(iii) Given a constant ε > 0, we say that u ε-dominates v, denoted by u �ε v, if and only if ui ≤ (1 + ε)vi for
i = 1, 2, . . . , m.

Definition 2. Given two agents’ criteria γA(σ) and γB(σ), a feasible schedule σ is called Pareto-optimal and
the corresponding objective vector (γA(σ), γB(σ)) is called a Pareto-optimal point, if no other feasible schedule
π satisfies (γA(π), γB(π)) ≺ (γA(σ), γB(σ)). All the Pareto-optimal points form the Pareto frontier, denoted
by P.

Let R be the set of the objective vectors of all feasible schedules, and Q be a subset of R.

Definition 3. A vector u ∈ Q is called non-dominated in Q, if there exists no other vector v ∈ Q such that
v ≺ u.

It is not difficult to see that, for the above definitions, the latter is an extension of the former, and
especially when Q is exactly equal to R, all the non-dominated vectors in Q compose the Pareto-optimal
frontier. The following lemma establishes the relationship between sets P and a subset Q ⊆ R.

Lemma 1. For any set Q with P ⊆ Q ⊆ R, if O is the set including all the non-dominated vectors in Q,
then O = P.

Proof. By Definition 2, for each Pareto-optimal point u ∈ P, there is no other vector v ∈ R such that v ≺ u,
and naturally, such a fact also holds for the set Q, since Q ⊆ R. Then, it follows that P ⊆ O by the definition
of the set O. Next we show that O ⊆ P. If not, we pick up one vector w from O \ P. Again by Definition 2,
there is some vector w ∈ P such that w ≺ u. Nevertheless, this is impossible, since w ∈ P ⊆ Q leads to no
existence of such a vector w in Q by the assumption of w and Definition 3. Thus O = P.

From Lemma 1, to generate the Pareto frontier P, an alternative is to first determine a set Q with
P ⊆ Q ⊆ R, and then delete the dominated vectors in Q. Throughout the reminder of this paper, such a
subset Q is called an intermediate set. Obviously, R is also an intermediate set.

Definition 4. For a given constant ε > 0, a (1 + ε)-approximate Pareto frontier, denoted by Pε, is a
set of the objective vectors satisfying, for any (γA(σ), γB(σ)) ∈ P, there exists at least one objective vector
(γA(σ′), γB(σ′)) ∈ Pε such that (γA(σ′), γB(σ′)) �ε (γA(σ), γB(σ)).

Definition 5. A family of algorithms {Aε : ε > 0} is called a fully polynomial-time approximation scheme

(FPTAS) if, for each ε > 0, Aε generates a (1 + ε)-approximate Pareto frontier with a running time in the
polynomial in the instance size and 1/ε.

Besides those already mentioned in Section 1, the following notations will also be used later:

• J X
j : indicates the set of the first j jobs in J X , namely, J X

j = {JX
1 , JX

2 , · · · , JX
j }.

• JX
i ≺σ JX′

j indicates that job JX
i immediately precedes JX′

j in schedule σ, where X, X′ ∈ {A, B}.
• sX

j (σ) indicates the starting time of job JX
j in σ.

• PX
sum = ∑nX

j=1 pX
j indicates the total processing time of all X-jobs.

• Psum indicates the total processing time of all jobs, and Psum = PA
sum + PB

sum.
• WX

sum = ∑nX
j=1 wX

j indicates the total weight of all X-jobs.

22

Mathematics 2020, 8, 2070

• Wsum indicates the total weight of all jobs, and Wsum = WA
sum + WB

sum.
• pX

max indicates the maximum processing time of the X-jobs, namely, pX
max = max{pX

j : 1 ≤ j ≤ nX}.
• wX

max indicates the maximum weight of the X-jobs, namely, wX
max = max{wX

j : 1 ≤ j ≤ nX}.

3. An Exact Algorithm

In this section a dynamic programming algorithm for problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j) is

presented. For description convenience, for a given schedule σ, the job set J is divided into the following
four subsets: J A1(σ) = {JA

j : CA
j (σ) ≤ d}, J A2(σ) = {JA

j : CA
j (σ) > d}, J B1(σ) = {JB

j : sB
j (σ) < d},

and J B2(σ) = {JB
j : sB

j (σ) ≥ d}. Obviously, such a partition of the job set is well defined for a given
schedule.

The following lemma establishes the structural properties of the Pareto-optimal schedule.

Lemma 2. For each Pareto-optimal point (C, Y) of problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), there is a

Pareto-optimal schedule σ such that
(i) J A1(σ) ≺σ J B1(σ) ≺σ J A2(σ) ≺σ J B2(σ).
(ii) the jobs in J B1(σ) are sequenced in the non-increasing order of their weights and the jobs in J B2(σ) are
sequenced arbitrarily.
(iii) the jobs in J A1(σ) and J A2(σ) are sequenced according to the weighted shortest processing time (WSPT) rule.

Proof. In Lemma 2, statement (i) can easily be observed, since the jobs in J B2(σ) are late and this will not
result in any increase in their total late work when moving them to the end of the schedule, and as many
A-jobs as possible can be positioned before the B-jobs in J B1(σ), provided that the last job in J B1(σ) is not
late. The left two statements in Lemma 2 can easily be proved by an interchange argument and the detail
is omitted here.

Lemma 2 allows us only to consider the feasible schedules simultaneously satisfying the conditions
(i)-(iii). To this end, we re-number the nA jobs in J A in the WSPT order and the nB B-jobs in the maximum
weight first (MW) order so that

pA
1

wA
1

≤ pA
2

wA
2

≤ · · · ≤
pA

nA

wA
nA

. (2)

wB
1 ≥ wB

2 ≥ · · · ≥ wB
nB

. (3)

Such a sorting takes O(n log n) time.
According to Lemma 1, the algorithm to be described adopts the strategy of first finding the

intermediate set dynamically and then deleting the dominated points in it. It is necessary to mention that
in the proposed algorithm we appropriately relax the conditions to find a modestly larger intermediate set.
For briefly describing the dynamic programming algorithm, we introduce the following terminologies
and notations.

• an ABAB-schedule is defined to be a schedule π for I ⊆ J satisfying (i) π = π1 ≺ π2 ≺ π3 ≺ π4,
where among the four mutually disjointed subschedules π1, π2, π3, andπ4, the A-jobs are included
in π1 and π3, and the B-jobs are included in π2 and π4; (ii) no idle time exists between the jobs in
each subschedule, but this is not necessarily so between two subschedules. Moreover, the idle time
between π3 and π4 is supposed to be long enough; (iii) the jobs in each subschedule are sequenced in
the increasing order of their indices.

• an (−→x ,←−y)-schedule is defined to be an ABAB-schedule π for J A
x ∪ (J B \ J B

y−1) with no idle time
existing between subschedules π2 and π3, where x ∈ {1, 2, . . . , nA} and y ∈ {1, 2, . . . , nB}.

23

Mathematics 2020, 8, 2070

• a vector (t1, t2, t3, C, Y) is introduced to denote a state of (−→x ,←−y), in which t1, t2, t3, C, and Y,
respectively, stand for the end point of π1, the start point of π2, the end point of π3, the total
weighted completion time of the A-jobs of J A

x , and the total weighted late work of the B-jobs of
J B \ {J B

y−1}. Note that a state of (−→x ,←−y) at least corresponds to some (−→x ,←−y)-schedule.
• Γ(−→x ,←−y) denotes the set of all the states of (−→x ,←−y).
• Γ̃(−→x ,←−y) denotes the set obtained from Γ(−→x ,←−y) by deleting the vectors (t1, t2, t3, C, Y), for which

there is another vector (t1, t2, t3, C, Y) with t1 ≤ t1, t2 ≥ t2, t3 ≤ t3, C ≤ C, and Y ≤ Y.
• Let Q1 = {(C, Y) : (t1, t2, t3, C, Y) ∈ Γ̃(−→nA,

←−
1)}, and let Q̃1 be the set of the non-dominated vectors

in Q1.

To solve problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), we have to first compute Γ̃(−→nA,

←−
1) and then obtain

the Pareto-frontier Q̃1. This can be realized by dynamically computing the sets Γ(−→x ,←−y) for all the possible
choices of the tuple (x, y). Note that each (−→x ,←−y)-schedule can be obtained either by adding job JA

x to
some (

−−→
x − 1,←−y)-schedule, or by adding job JB

y to some (−→x ,
←−−
y + 1)-schedule. Therefore, we can informally

describe our dynamic programming algorithm as follows.
Initially, set Γ(

−→
0 ,

←−−−
nB + 1) = {(0, t0, t0, 0, 0) : d − pA

max + 1 ≤ t0 ≤ d + pB
max − 1} and Γ(−→x ,←−y) = ∅ if

(x, y) = (0, nB + 1). Then we recursively generate all the state sets Γ(−→x ,←−y) from the previously-generated
sets Γ(

−−→
x − 1,←−y) and Γ(−→x ,

←−−
y + 1). Specifically,

• For each state (t1, t2, t3, C, Y) ∈ Γ(
−−→
x − 1,←−y) with Γ(

−−→
x − 1,←−y) = φ, add two states (t′1, t′2, t′3, C′, Y′)

and (t′′1 , t′′2 , t′′3 , C′′, Y′′) to the set Γ(−→x ,←−y), with

(t′1, t′2, t′3, C′, Y′) = (t1 + pA
x , t2, t3, C + wA

x (t1 + pA
x), Y),

and
(t′′1 , t′′2 , t′′3 , C′′, Y′′) = (t1, t2, t3 + pA

x , C + wA
x (t3 + pA

x), Y).

These two states respectively correspond to the newly obtained (−→x ,←−y)-schedules by scheduling job
JA
x immediately following the subschedule π1 and immediately following the subschedule π3, in some
(
−−→
x − 1,←−y) schedule π that corresponds to the state (t1, t2, t3, C, Y). Note that the first case occurs only

when t1 + pA
x ≤ t2 is satisfied.

• For each state (t1, t2, t3, C, Y) ∈ Γ(−→x ,
←−−
y + 1), also add two two states (t′1, t′2, t′3, C′, Y′) and

(t′′1 , t′′2 , t′′3 , C′′, Y′′) to the set Γ(−→x ,←−y), with

(t′1, t′2, t′3, C′, Y′) = (t1, t2 − pB
y , t3, C, Y + wB

y max{t2 − dB, 0}),

and
(t′′1 , t′′2 , t′′3 , C′′, Y′′) = (t1, t2, t3, C, Y + wB

y pB
y).

These two states respectively correspond to the newly obtained (−→x ,←−y)-schedules by scheduling job
JB
y immediately preceding the subschedule π2 and immediately following the subschedule π4, in some

(−→x ,
←−−
y + 1) schedule π that corresponds to the state (t1, t2, t3, C, Y). Note that the first case occurs only

when t1 ≤ t2 − pB
y < dB is satisfied.

Note that, if in the above state-generation procedures we replace sets Γ(
−−→
x − 1,←−y) and Γ(−→x ,

←−−
y + 1)

with sets Γ̃(
−−→
x − 1,←−y) and Γ̃(−→x ,

←−−
y + 1), then the resulting set of new states, denoted by Γ′(−→x ,←−y), may be

different from Γ(−→x ,←−y). Recall that, when deleting those dominated vectors in the sets Γ(−→x ,←−y) and
Γ′(−→x ,←−y), the newly obtained sets are respectively denoted by Γ̃(−→x ,←−y) and Γ̃′(−→x ,←−y), which will be
shown to be identical in the following lemma.

24

Mathematics 2020, 8, 2070

Lemma 3. Γ̃(−→x ,←−y) = Γ̃′(−→x ,←−y).

Proof. Since Γ̃(
−−→
x − 1,←−y) ⊆ Γ(

−−→
x − 1,←−y) and Γ̃(−→x ,

←−−
y + 1) ⊆ Γ(−→x ,

←−−
y + 1), it follows that Γ′(−→x ,←−y) ⊆

Γ(−→x ,←−y) by the generation procedure of the new states as described previously. If Γ(−→x ,←−y) = Γ′(−→x ,←−y),
then naturally Γ̃(−→x ,←−y) = Γ̃′(−→x ,←−y). In the following, suppose that Γ(−→x ,←−y) \ Γ′(−→x ,←−y) = ∅. We next
show that each state (t′1, t′2, t′3, C′, Y′) ∈ Γ(−→x ,←−y) \ Γ′(−→x ,←−y) is dominated by a state (t1, t2, t3, C, Y) ∈
Γ′(−→x ,←−y), namely, t1 ≤ t′1, t2 ≥ t′2, t3 ≤ t′3, C ≤ C′, Y ≤ Y′.

Let π′ be an (−→x ,←−y)-schedule corresponding to (t′1, t′2, t′3, C′, Y′). According to the above discussion,
there are four possibilities of deriving π′ from some schedule π, which is assumed to correspond to the
state (t1, t2, t3, C, Y) in Γ(

−−→
x − 1,←−y) or Γ(−→x ,

←−−
y + 1).

Case 1. π′ is obtained from π by scheduling job JA
x directly after subschedule π1.

Then (t1, t2, t3, C, Y) ∈ Γ(
−−→
x − 1,←−y) with t1 + pA

x ≤ t2, and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(
−−→
x − 1,←−y)

such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C, and Ỹ ≤ Y. Let π̃ be an (
−−→
x − 1,←−y)-schedule corresponding to

(t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the (−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule

π̃1. Let (t1, t2, t3, C, Y) be the state corresponding to π. Note that the above operation to get π is feasible
since t̃1 + pA

x ≤ t1 + pA
x ≤ t2 ≤ t̃2. Then we have (t1, t2, t3, C, Y) = (t̃1 + pA

x , t̃2, t̃3, C̃ + wA
x (t̃1 + pA

x), Ỹ).
Combining with the fact that (t′1, t′2, t′3, C′, Y′) = (t1 + pA

x , t2, t3, C + wA
x (t1 + pA

x), Y), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = t̃1 + pA
x ≤ t1 + pA

x = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ + wA
x (t̃1 + pA

x) ≤ C + wA
x (t1 + pA

x) = C′,

Y = Ỹ ≤ Y = Y′.

(4)

Case 2. π′ is obtained from π by scheduling JA
x directly after schedule π3. Then (t1, t2, t3, C, Y) ∈

Γ(
−−→
x − 1,←−y), and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(

−−→
x − 1,←−y) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤

C, and Ỹ ≤ Y. Let π̃ be an (
−−→
x − 1,←−y)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the

(−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule π̃3. Let (t1, t2, t3, C, Y) be the

state corresponding to π. Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2, t̃3 + pA
x , C̃ + wA

x (t̃3 + pA
x), Ỹ). Combining

with the fact that (t′1, t′2, t′3, C′, Y′) = (t1, t2, t3 + pA
x , C + wA

x (t3 + pA
x), Y), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 + pA
x ≤ t3 + pA

x = t′3,

C = C̃ + wA
x (t̃3 + pA

x) ≤ C + wA
x (t3 + pA

x) = C′,

Y = Ỹ ≤ Y = Y′.

(5)

Case 3. π′ is obtained from π by scheduling JB
y directly before schedule π2. Note that in this case,

the condition t1 ≤ t2 − pB
y < dB must be satisfied. Then (t1, t2, t3, C, Y) ∈ Γ(−→x ,

←−−
y + 1), and there is a

state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(−→x ,
←−−
y + 1) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C, and Ỹ ≤ Y. Let π̃ be an

(−→x ,
←−−
y + 1)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the (−→x ,←−y)-schedule obtained from π̃

by scheduling JB
y directly before schedule π2. Let (t1, t2, t3, C, Y) be the state corresponding to π. The above

25

Mathematics 2020, 8, 2070

operation to obtain π is feasible. In fact, t̃1 ≤ t1 ≤ t2 − pB
y , which means there are enough spaces for JB

y to
be scheduled in. In the following we will illustrate that the condition t̃2 − pB

y < d is satisfied.
Claim 1. If t̃2 = t2, then t̃2 ≤ d.
Suppose to the contrary that t̃2 > d, then JB

y is partially early or late in π, implying
that JB

y+1, JB
y+2, . . . , JB

nB
are all late in π̃, i.e., there is no job in π̃2, which further suggests that

∑x
j=1 pA

j = t̃1 + t̃3 − t̃2. What is more, since Ỹ ≤ Y, the jobs JB
y+1, JB

y+2, . . . , JB
nB

are also late in π, which also

indicates that Ỹ = Y and ∑x
j=1 pA

j = t1 + t3 − t2. From t̃1 + t̃3 − t̃2 = t1 + t3 − t2, t̃1 ≤ t1, t̃2 ≥ t2, and

t̃3 ≤ t3 we know that t̃2 = t2 contradicts t̃2 = t2. Thus, t̃2 ≤ dB. Claim 1 follows.
If t̃2 − pB

y ≥ dB, then t̃2 = t2. From Claim 1 we have t̃2 ≤ d < d + pB
y , i.e., t̃2 − pB

y < d, which
is a contradiction. Thus the condition t̃2 − pB

y < dB is satisfied and the operation to get π is feasible.
Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2 − pB

y , t̃3, C̃, Ỹ + wB
y max{t̃2 − d, 0}). Combining with the fact that

(t′1, t′2, t′3, C′, Y′) = (t1, t2 − pB
y , t3, C, Y + wB

y max{t2 − d, 0}), we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 − pB
y ≥ t2 − pB

y = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ ≤ C = C′.

(6)

Next we prove that Y ≤ Y′. In fact, if t̃2 = t2, then Y = Ỹ + wB
y max{t̃2 − d, 0} ≤ Y + wB

y max{t2 −
d, 0} = Y′. If t̃2 = t2, then from Claim 1 we know that t̃2 ≤ d, and then t2 − d < 0. Thus we have
Y = Ỹ ≤ Y = Y′.

Case 4. π′ is obtained from π by scheduling JB
y directly after schedule π4. Then (t1, t2, t3, C, Y) ∈

Γ(−→x ,
←−−
y + 1), and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(−→x ,

←−−
y + 1) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C,

and Ỹ ≤ Y. Let π̃ be an (−→x ,
←−−
y + 1)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the

(−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule π̃3. Let (t1, t2, t3, C, Y) be

the state corresponding to π. Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2, t̃3, C̃, Ỹ + wB
y pB

y). Combining with the
fact that (t′1, t′2, t′3, C′, Y′) = (t1, t2, t3, C, Y + wB

y pB
y), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ ≤ C = C′,

Y = Ỹ + wB
y pB

y ≤ Y + wB
y pB

y = Y′.

(7)

The result follows.

Theorem 1. Algorithm 1 solves the Pareto-frontier scheduling problem 1|dB
j = d|#(ΣwA

j CA
j , ΣwB

j YB
j) in

O(nAnBdPsumUAUB) time.

26

Mathematics 2020, 8, 2070

Algorithm 1: For problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(
−→
0 ,

←−−−
nB + 1) = {(0, t0, t0, 0, 0) : d − pA

max + 1 ≤ t0 ≤ d + pB
max − 1} and set Γ(−→x ,←−y) = ∅ if

(x, y) = (0, nB + 1).
2 for x = 0, 1, . . . , nA, y = nB + 1, nB, . . . , 1, do

3 for each (t1, t2, t3, C, Y) ∈ Γ(
−−→
x − 1,←−y), do

4 if 0 < x ≤ nA, then

5 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2, t3 + pA
x , C + wA

x (t3 + pA
x), Y)

6 end

7 if 0 < x ≤ nA and t1 + pA
x ≤ t2, then

8 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1 + pA
x , t2, t3, C + wA

x (t1 + pA
x), Y)

9 end

10 end

11 for each (t1, t2, t3, C, Y) ∈ Γ(−→x ,
←−−
y + 1), do

12 if 1 ≤ y < nB + 1, then

13 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2, t3, C, Y + wB
y pB

y)

14 end

15 if 1 ≤ y < nB + 1 and t1 ≤ t2 − pB
y < d, then

16 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2 − pB
y , t3, C, Y + wB

y max{t2 − d, 0})
17 end

18 end

19 For each newly generated Γ(−→x ,←−y), set Γ(−→x ,←−y) := Γ̃(−→x ,←−y)

20 end

21 Generate Q̃1 and, for each state (C, Y) ∈ Q̃1, derive the corresponding optimal schedule by
backtracking.

Proof. The correctness of Algorithm 1 is guaranteed by Lemma 2, Lemma 1, and Lemma 3. Here we
only analyze its time complexity. The initialization step takes O(Psum + nAnB) time, which is dominated
by the final time complexity of Algorithm 1. In the implementation of Algorithm 1, we guarantee that
Γ(−→x ,←−y) = Γ̃(−→x ,←−y). Note that 0 ≤ t1 ≤ dB and dB − pA

max + 1 ≤ t3 ≤ Psum, then each state set Γ(−→x ,←−y)

contains O(dBPsumUAUB) states. Moreover, Γ(−→x ,←−y) is obtained by performing at most two (constant)
operations on the states in Γ(

−−→
x − 1,←−y)

⋃
Γ(−→x ,

←−−
y + 1) for x = 0, 1, . . . , nA, y = nB + 1, nB, . . . , 1. Note

that the upper bounds of ΣwA
j CA

j and ΣwB
j YB

j are given by UA = ∑nA
j=1 wA

j Psum and UB = ∑nB
j=1 wB

j pB
j ,

respectively. Thus, the overall running time of Algorithm 1 is O(nAnBdPsumUAUB).

4. An FPTAS

In this section, for problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), we first give another dynamic

programming algorithm, and then turn it into an FPTAS by the trimming technique. As for Algorithm 1,
we first introduce the following terminologies and notations.

• An (x, y)-schedule is defined to be an ABAB-schedule π for J A
x ∪ J B

y with no idle time existing
between subschedules π1, π2 and π3, where x ∈ {1, 2, . . . , nA} and y ∈ {1, 2, . . . , nB}.

• A vector (t1, t2, t3, W, k(π), C, Y) is introduced to denote a state of (x, y), in which t1, t2, t3, W, k, C
and Y, respectively, stand for the end point of π1, the end point of π2, the end point of π3, the total
weight of the jobs in π3, the index of the last B-job in π2, the total weighted completion time of the

27

Mathematics 2020, 8, 2070

A-jobs of J A
x , and the total weighted late work of the B-jobs of J B

y . Note that a state of (x, y) at least
corresponds to some (x, y)-schedule.

• Γ(x, y) denotes the set of all the states of (x, y).
• Γ̃(x, y) denotes the set obtained from Γ(x, y) by deleting the vectors (t1, t2, t3, W, k, C, Y), for which

there is another vector (t1, t2, t3, W, k, C, Y) with t1 ≤ t1, t2 ≤ t2, t3 ≤ t3, W ≤ W, C ≤ C, Y ≤ Y.
• Let Q2 = {(C, Y) : (t1, t2, t3, W, k, C, Y) ∈ Γ̃(nA, nB)}, and let Q̃2 be the set of the non-dominated

vectors in Q2.

Clearly, Q2 is an intermediate set. Similarly to the discussion for Algorithm 1, we can generate all the
Γ(x, y) for all the possible choices of the tuple (x, y) dynamically in the following way.

Initially, set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and Γ(x, y) = ∅ if (x, y) = (0, 0). Then we recursively
generate all the state sets Γ(x, y) from the previously generated sets Γ(x − 1, y) and Γ(x, y − 1). Specifically,

• For each state (t1, t2, t3, W, k, C, Y) ∈ Γ(x − 1, y) with Γ(x − 1, y) = ∅, add two states (t′1, t′2, t′3, W ′,
k′, C′, Y′) and (t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) to the set Γ(x, y), with

(t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1 + pA
x , t2 + pA

x , t3 + pA
x , W, k, C + wA

x (t1 + pA
x) + W pA

x , Y
+wB

k max{min{t2 + pA
x − dB, pA

x }, 0}), and(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′)
= (t1, t2, t3 + pA

x , W + wA
x , k, C + wA

x (t3 + pA
x), Y).

These two states respectively correspond to the newly obtained (x, y)-schedules by scheduling job
JA
x immediately following the subschedule π1 and immediately following the subschedule π3, in some
(x − 1, y) schedule π that corresponds to the state (t1, t2, t3, W, k, C, Y). Note that the first case occurs only
when t1 + pA

x ≤ t2 is satisfied.

• For each state (t1, t2, t3, W, k, C, Y) ∈ Γ(x, y − 1), also add two two states (t′1, t′2, t′3, W ′, k′, C′, Y′) and
(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) to the set Γ(x, y), with

(t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2 + pB
y , t3 + pB

y , W, y, C + W pB
y , Y + wB

y max{t2 + pB
y − dB, 0}),

and
(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) = (t1, t2, t3, W, k, C, Y + wB

y pB
y).

These two states respectively correspond to the newly obtained (x, y)-schedules by scheduling job JB
y

immediately after π2 and immediately following the subschedule π4, in some (x, y − 1) schedule π that
corresponds to the state (t1, t2, t3, W, k, C, Y). Note that the first case occurs only when t2 < dB is satisfied.

Note that, if in the above state-generation procedures we replace sets Γ(x − 1, y) and Γ(x, y − 1) with
sets Γ̃(x − 1, y) and Γ̃(x, y − 1), then the resulting set of new states, denoted by Γ′(x, y), may be different
from Γ(x, y). Recall that, when deleting those dominated vectors in the sets Γ(x, y) and Γ′(x, y), the newly
obtained sets are respectively denoted by Γ̃(x, y) and Γ̃′(x, y), which will be shown to be identical in the
following lemma, and its proof is similar to that of Lemma 3.

28

Mathematics 2020, 8, 2070

Lemma 4. Γ̃(x, y) = Γ̃′(x, y).

Theorem 2. Algorithm 2 solves 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j) in O(nAn2

BdPsumWA
sumUAUB) time.

Algorithm 2: For solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and set Γ(x, y) = ∅ if (x, y) = (0, 0).
2 for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB, do

3 for each (t1, t2, t3, W, k, C, Y) ∈ Γ(x − 1, y), do

4 if 0 < x ≤ nA, then

5 Γ(x, y) := Γ(x, y) ∪ (t1, t2, t3 + pA
x , W + wA

x , k, C + wA
x (t3 + pA

x), Y)
6 if k = 0 or (k = 0 and t2 + pA

x − dB < pB
k), then

7 Γ(x, y) := Γ(x, y) ∪ (t1 + pA
x , t2 + pA

x , t3 + pA
x , W, k, C + wA

x (t1 + pA
x) + W pA

x , Y +

wB
k max{min{t2 + pA

x − d, pA
x }, 0})

8 end

9 end

10 end

11 for each (t1, t2, t3, C, Y) ∈ Γ(x, y − 1), do

12 if 0 < y ≤ nB, then

13 Γ(x, y) := Γ(x, y) ∪ (t1, t2, t3, W, k, C, Y + wB
y pB

y)

14 if t2 < d, then

15 Γ(x, y) := Γ(x, y)∪ (t1, t2 + pB
y , t3 + pB

y , W, y, C +W pB
y , Y +wB

y max{t2 + pB
y − d, 0})

16 end

17 end

18 end

19 The elimination step: for each newly generated Γ(x, y), set Γ(x, y) := Γ̃(x, y)
20 end

21 Generate Q̃2 and, for each state (C, Y) ∈ Q̃2, derive the corresponding optimal schedule by
backtracking.

Proof. The correctness of Algorithm 2 is guaranteed by the discussion above. Next we only analyze
its time complexity. The initialization step takes O(nAnB) time, which is dominated by the final time
complexity of Algorithm 2. In the implementation of Algorithm 2, we guarantee thatΓ(x, y) = Γ̃(x, y).
Note that 0 ≤ t1 ≤ dB and d − pA

max + 1 ≤ t3 ≤ Psum, 0 ≤ k ≤ nB and 0 ≤ W ≤ WA
sum, then each state

set Γ(x, y) contains O(nBdPsumWA
sumUAUB) states. Moreover, Γ(x, y) is obtained by performing at most

two (constant) operations on the states in Γ(x − 1, y)
⋃

Γ(x, y − 1) for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB.
Thus, the overall running time of Algorithm 2 is O(nAn2

BdBPsumWA
sumUAUB).

Next we turn Algorithm 2 into an FPTAS in the following way. Set Δ = 1 + ε
2n , L1 = �logΔd�, L3 =

�logΔ(Psum)�, LW = �logΔ(WA
sum)�, LA = �logΔ(UA)� and LB = �logΔ(UB)�. Set I1

i = [Δ(i−1), Δi] for
i = 1, 2, . . . , L1, I3

i = [Δ(i−1), Δi] for i = 1, 2, . . . , L3, IW
i = [Δ(i−1), Δi] for i = 1, 2, . . . , LW , IA

i = [Δ(i−1), Δi]

for i = 1, 2, . . . , LA and IB
i = [Δ(i−1), Δi] for i = 1, 2, . . . , LB. For x = 0, 1, . . . , nA and y = 0, 1, . . . , nB,

Γ̂(x, y) is obtained from Γ(x, y) by the following operation: for any two states (t1, t2, t3, W, k, C, Y) and
(t1, t2, t3, W, k, C, Y) in Γ(x, y), if (t1, t3, W, C, Y) and (t1, t3, W, C, Y) fall into the same box I1

u × I3
v × IW

w ×
IA
p × IB

q for u = 1, 2, . . . , L1, v = 1, 2, . . . , L3, w = 1, 2, . . . , LW , p = 1, 2, . . . , LA and q = 1, 2, . . . , LB with

29

Mathematics 2020, 8, 2070

t2 ≤ t2, remaining the first one. Note that it takes O(L1L3LW LALB) time to partition the boxes. Moreover,
we define

Q3 = {(C, Y) : (t1, t2, t3, W, k, C, Y) ∈ Γ̂(nA, nB)} (8)

and let Q̃3 be the set of non-dominated vectors in Q3.

Theorem 3. Algorithm 3 is an FPTAS for solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j).

Algorithm 3: For solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and set Γ(x, y) = ∅ if (x, y) = (0, 0).
2 for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB, do

3 the same operations with Algorithm 2
4 The elimination step: for each newly generated Γ(x, y), set Γ(x, y) := Γ̂(x, y)
5 end

6 Generate Q̃3 and, for each state (C, Y) ∈ Q̃3, derive the corresponding optimal schedule by
backtracking.

Proof. By induction on z = x + y, We prove that, for any state (t′1, t′2, t′3, W ′, k′, C′, Y′) ∈ Γ(x, y), there
is a state (t1, t2, t3, W, k′, C, Y) ∈ Γ̂(x, y) such that t1 ≤ Δzt′1, t2 ≤ t′2, t3 ≤ Δzt′3, W ≤ ΔzW ′, C ≤ ΔzC′

and Y ≤ ΔzY′.
This is obviously true for z = 0. Inductively suppose that it holds up to z − 1. Next we show

that it also holds for z. Recall that each state (t′1, t′2, t′3, W ′, k′, C′, Y′) ∈ Γ(x, y) is derived from some
state (t1, t2, t3, W, k, C, Y) in Γ(x − 1, y) or Γ(x, y − 1). Let π′ be an (x, y)-schedule corresponding
to (t′1, t′2, t′3, W ′, k′, C′, Y′), and let π be a schedule corresponding to the state (t1, t2, t3, W, k, C, Y).
Using the induction hypothesis, there is a state (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ) in Γ̂(x − 1, y) or Γ̂(x, y − 1) such that
t̂1 ≤ Δz−1t1, t̂2 ≤ t2, t̂3 ≤ Δz−1t3, Ŵ ≤ Δz−1W, Ĉ ≤ Δz−1C, and Ŷ ≤ Δz−1Y. Let π̂ be an (x− 1, y)-schedule
or (x, y − 1)-schedule corresponding to (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ), and if it is feasible, let π̃ be the (x, y)-schedule
obtained from π̂ by performing the same operation that we perform on π to get π′. Let (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ)
be the state corresponding to π̃. Furthermore, there is a state (t1, t2, t3, W, k̃, C, Y) ∈ Γ̂(x, y) in the same box
with (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) such that t1 ≤ Δt̃1, t2 ≤ t̃2, t3 ≤ Δt̃3, W ≤ ΔW̃, C ≤ ΔC̃ and Y ≤ ΔỸ. There are
four possible ways to get π′ from π.

Case 1. π′ is obtained from π by scheduling JA
x directly after schedule π1. Note that in this

case, the condition t2 + pA
x − dB < pB

k must be satisfied. Then (t1, t2, t3, W, k, C, Y) ∈ Γ(x − 1, y),
and the operation to get π̃ is feasible since t̂2 + pA

x − dB ≤ t2 + pA
x − dB < pB

k . Then we have
(t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1 + pA

x , t̂2 + pA
x , t̂3 + pA

x , Ŵ, k, Ĉ + wA
x (t̂1 + pA

x) + Ŵ pA
x , Ŷ + wB

k max{min{t̂2 +

pA
x − dB, pA

x }, 0}). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1 + pA
x , t2 + pA

x , t3 +

pA
x , W, k, C + wA

x (t1 + pA
x) + W pA

x , Y + wB
k max{min{t2 + pA

x − dB, pA
x }, 0}), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 ≤ Δt̃1 = Δ(t̂1 + pA
x) ≤ Δz(t1 + pA

x) = Δzt′1,

t2 ≤ t̃2 = t̂2 + pA
x ≤ t2 + pA

x = t′2,

t3 ≤ Δt̃3 = Δ(t̂3 + pA
x) ≤ Δz(t3 + pA

x) = Δzt′3,

W ≤ ΔW̃ = ΔŴ ≤ ΔzW = ΔzW ′,

k̃ = k = k′,

C ≤ ΔC̃ = Δ(Ĉ + wA
x (t̂1 + pA

x) + Ŵ pA
x) ≤ Δz(C + wA

x (t1 + pA
x) + W pA

x) = ΔzC′,

Y ≤ ΔỸ = Δ(Ŷ + wB
k max{min{t̂2 + pA

x − dB, pA
x }, 0}) ≤ Δz(Y + wB

k max{min{t2 + pA
x − dB, pA

x }, 0}) = ΔzY.

(9)

30

Mathematics 2020, 8, 2070

Case 2. π′ is obtained from π by scheduling JA
x directly after schedule π3. Then (t1, t2, t3, W, k, C, Y) ∈

Γ(x − 1, y), and π̃ is clearly a feasible schedule. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2, t̂3 + pA
x , Ŵ +

wA
x , k, Ĉ + wA

x (t̂3 + pA
x), Ŷ). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2, t3 + pA

x , W +

wA
x , k, C + wA

x (t3 + pA
x), Y), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 ≤ Δt̃1 = Δt̂1 ≤ Δzt1 = Δzt′1,

t2 ≤ t̃2 = t̂2 ≤ t2 = t′2,

t3 ≤ Δt̃3 = Δ(t̂3 + pA
x) ≤ Δz(t3 + pA

x) = Δzt′3,

W ≤ ΔW̃ = Δ(Ŵ + wA
x) ≤ Δz(W + wA

x) = ΔzW ′,

k̃ = k = k′,

C ≤ ΔC̃ = Δ(Ĉ + wA
x (t̂3 + pA

x)) ≤ Δz(C + wA
x (t3 + pA

x)) = ΔzC′,

Y ≤ ΔỸ = ΔŶ ≤ ΔzY = ΔzY′.

(10)

Case 3. π′ is obtained from π by scheduling JB
y directly after schedule π2. Note that in this case,

the condition t2 < dB must be satisfied. Then (t1, t2, t3, W, k, C, Y) ∈ Γ(x, y − 1), and the operation to
get π̃ is feasible since t̂2 ≤ t2 < dB. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2 + pB

y , t̂3 + pB
y , Ŵ, y, Ĉ +

Ŵ pB
y , Ŷ+wB

y max{t̂2 + pB
y − dB, 0}). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2 + pB

y , t3 +

pB
y , W, y, C + W pB

y , Y + wB
y max{t2 + pB

y − dB, 0}), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 ≤ Δt̃1 = Δt̂1 ≤ Δzt1 = Δzt′1,

t2 ≤ t̃2 = t̂2 + pB
y ≤ t2 + pB

y = t′2,

t3 ≤ Δt̃3 = Δ(t̂3 + pB
y) ≤ Δz(t3 + pB

y) = Δzt′3,

W ≤ ΔW̃ = ΔŴ ≤ ΔzW = ΔzW ′,

k̃ = y = k′,

C ≤ ΔC̃ = Δ(Ĉ + Ŵ pB
y) ≤ Δz(C + W pB

y) = ΔzC′,

Y ≤ ΔỸ = Δ(Ŷ + wB
y max{t̂2 + pB

y − dB, 0}) ≤ Δz(Y + wB
y max{t2 + pB

y − dB, 0}) = ΔzY′.

(11)

Case 4. π′ is obtained from π by scheduling JB
y directly after schedule π4. Then (t1, t2, t3, W, k, C, Y) ∈

Γ(x, y − 1), and π̃ is clearly a feasible schedule. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ +

wB
y pB

y). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2, t3, W, k, C, Y + wB
y pB

y), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 ≤ Δt̃1 = Δt̂1 ≤ Δzt1 = Δzt′1,

t2 ≤ t̃2 = t̂2 ≤ t2 = t′2,

t3 ≤ Δt̃3 = Δt̂3 ≤ Δzt3 = Δzt′3,

W ≤ ΔW̃ = ΔŴ ≤ ΔzW = ΔzW ′,

k̃ = k = k′,

C ≤ ΔC̃ = ΔĈ ≤ ΔzC = ΔzC′,

Y ≤ ΔỸ = Δ(Ŷ + wB
y pB

y) ≤ Δz(Y + wB
y pB

y) = ΔzY′.

(12)

31

Mathematics 2020, 8, 2070

Thus, for each state (C′, Y′) in Q̃2, there is a state (C, Y) in Q3 such that C ≤ ΔnC′ ≤ (1 + ε)C′ and
Y ≤ ΔnY′ ≤ (1 + ε)Y′.

Next we analyze its time complexity. The initialization step takes O(nAnB) time, which is dominated
by the final time complexity of Algorithm 3. In the implementation of Algorithm 3, we guarantee that
Γ(x, y) = Γ̂(x, y). Note that there are O(L1L3LW LALB) distinct boxes and 0 ≤ k ≤ nB, then there are at
most O(nBL1L3LW LALB) different states (t1, t2, t3, W, k, C, Y) in Γ(x, y). Moreover, Γ(x, y) is obtained by
performing at most two (constant) operations on the states in Γ(x − 1, y)

⋃
Γ(x, y − 1) for x = 0, 1, . . . , nA,

y = 0, 1, . . . , nB. Thus, the overall running time of Algorithm 3 is O(nAn2
BL1L3LW LALB).

5. Numerical Results

In this section some numerical results are provided to show the efficiency of our proposed algorithms.
For running our optimization algorithms, we need to input the following parameters relative with the
job instances: the numbers of A-jobs and B-jobs, the processing times and weights of all the jobs, and the
common due date of B-jobs. By running Algorithms 1 and 2, we get the Pareto frontier. To use Algorithm 3,
we need to choose the value of ε (>0) to get a (1 + ε)-approximate Pareto frontier. Note that for the same
instance, the Pareto frontiers obtained by Algorithms 1 and 2 are the same, except that the running time
of Algorithm 1 is theoretically faster than that of Algorithm 2. The closer the (1 + ε)-approximate Pareto
frontier obtained by Algorithm 3 is to the curve obtained by Algorithms 1 and 2, the closer it is to the
optimal solution.

We randomly generate some job instances, in which the numbers of the jobs are set to be n = 4
(nA = nB = 2), n = 6 (nA = nB = 3), and n = 10 (nA = nB = 5). The processing times and the weights of
the jobs are randomly generated between 1 and 2. The common due date of B-jobs is set to be 5. What is
more, we set ε = 1. We ran our algorithms on these instances in a Matlab R2016b environment on an
Intel(R) Core(TM) CPU, 2.50 GHz, 4 GB of RAM computer. In fact, when the number of the jobs is small,
the Pareto frontier or the approximate Pareto frontier can be found relatively quickly, but when the number
of the jobs increases, the running time will increase hugely. The following three Figures 1–3 present the
Pareto frontier and (1 + ε)-approximate Pareto frontier generated by Algorithms 1–3. As can be seen from
the three figures, the results obtained by Algorithms 1 and 2 are exactly the same. The results of Algorithm 3
are consistent with those of Algorithms 1 and 2, which may be due to the coincidence caused by the
small size of the instance we chose and the few choices in the sizes of the jobs. In fact, considering that
the problem we studied is NP-hard, our algorithm can only reach pseudo-polynomial-time theoretically.
Therefore, our algorithm is theoretically more suitable for small-scale instances, where the sizes of the
jobs are relatively uniform, which fits with the nature of such problems in real life, such as in logistics
distribution centers where we use boxes of fixed sizes.

8 8.5 9 9.5 10 10.5 11

 wA
j
CA

j

0

1

2

3

 w
B j
Y

B j

n=4

Figure 1. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

32

Mathematics 2020, 8, 2070

9 10 11 12 13 14 15 16 17

wA
j
CA

j

0

2

4

6

8

w
B j
Y

B j

n=6

Figure 2. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

25 30 35 40 45 50 55 60 65

wA
j
CA

j

2

4

6

8

10

12

w
B j
Y

B j

n=10

Figure 3. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

6. Conclusions

In this paper we investigated a Pareto-optimal problem of scheduling two agents’ jobs on a single
machine to minimize one agent’s total weighted completion time and the other’s total weighted late work.
For this problem, we devised two dynamic programming algorithms to obtain the Pareto frontier, and an
FPTAS to generate an approximate Pareto frontier. Some numerical results were also provided. Compared
with the two problems 1|pA

j ↑↓ wA
j |#(ΣwA

j CA
j , ΣwB

j YB
j) and 1|pA

j ↑↓ wA
j , dB

j ↑↓ wB
j |#(ΣwA

j CA
j , ΣwB

j YB
j)

studied in Zhang et al. [20], the constraint pA
j ↑↓ wA

j was removed from the problem considered in this
paper and we turned to the optimization problem under the condition that B-jobs had a common due
date. Table 1 lists the computational complexity of the above three problems. As we can see from Table 1,
the condition pA

j ↑↓ wA
j seems to have a greater impact on the complexity result of the problem. In future

research, we can try to devise more efficient approximation algorithms for our considered problem with
a constant performance-ratio, and we can also study two-agent problems with other combinations of
objective functions.

Table 1. Complexity of three problems.

Problems Complexity Reference

1|pA
j ↑↓ wA

j |#(ΣwA
j CA

j , ΣwB
j YB

j) O(nAn2
BUAUB) Zhang et al. [20]

1|pA
j ↑↓ wA

j , dB
j ↑↓ wB

j |#(ΣwA
j CA

j , ΣwB
j YB

j) O(nAnBUAUB) Zhang et al. [20]
1|dB

j = d|#(ΣwA
j CA

j , ΣwB
j YB

j) O(nAnBdPsumUAUB) Theorem 1

33

Mathematics 2020, 8, 2070

Author Contributions: Supervision, J.Y.; writing–original draft, Y.Z.; writing–review and editing, Z.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the NSFC under grant numbers 12071442, 11671368 and 11771406.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

References

1. Agnetis, A.; Billaut, J.C.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling: Models and
Algorithms; Springer: Berlin/Heidelberg, Germany, 2014.

2. Li, S.S.; Yuan, J.J. Single-machine scheduling with multi-agents to minimize total weighted late work. J. Sched.
2020, 23, 497–512. [CrossRef]

3. Hariri, A.M.A.; Potts, C.N.; Van Wassenhove, L.N. Single machine scheduling to minimize total weighted late
work. ORSA J. Comput. 1995, 7, 232–242. [CrossRef]

4. Wan, L.; Yuan, J.J.; Wei, L.J. Pareto optimization scheduling with two competing agents to minimize the number
of tardy jobs and the maximum cost. Appl. Math. Comput. 2016, 273, 912–923. [CrossRef]

5. Wan, L.; Wei, L.J.; Xiong, N.X.; Yuan, J.J.; Xiong, J.C. Pareto optimization for the two-agent scheduling problems
with linear non-increasing deterioration based on Internet of Things. Future Gene. Comp. Syst. 2017, 76, 293–300.
[CrossRef]

6. Gao, Y.; Yuan, J.J. Bi-criteria Pareto-scheduling on a single machine with due indices and precedence constraints.
Discret. Optim. 2017, 25, 105–119. [CrossRef]

7. He, C.; Leung, J. Two-agent scheduling of time-dependent jobs. J. Comb. Optim. 2017, 34, 362–377. [CrossRef]
8. Yuan, J.J.; Ng, C.T.; Cheng, T.C.E. Two-agent single-machine scheduling with release dates and preemption to

minimize the maximum lateness. J. Sched. 2015, 18, 147–153. [CrossRef]
9. Wan, L. Two-Agent Scheduling to Minimize the Maximum Cost with Position-Dependent Jobs. Discrete Dyn.

Nat. Soc. 2015. [CrossRef]
10. Dabia, S.; Talbi, E.G.; Van Woensel, T.; De Kok, T. Approximating multi-objective scheduling problems. Comput.

Oper. Res. 2013, 40, 1165–1175. [CrossRef]
11. Lee, K.; Choi, B.C.; Leung, J.Y.T.; Pinedo, M.L. Approximation algorithms for multi-agent scheduling to minimize

total weighted completion time. Inf. Process. Lett. 2009, 109, 913–917. [CrossRef]
12. Legriel, J.; Guernic, C.L.; Cotton, S.; Maler, O. Approximating the pareto front of multi-criteria optimization

problems. In Proceedings of the 16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems held at the 13th Joint European Conferences on Theory and Practice of Software, Paphos,
Cyprus, 20–28 March 2010.

13. Marinescu, R. Efficient approximation algorithms for multi-objective constraint optimization. In Proceedings of
the 2nd International Conference on Algorithmic Decision Theory, Piscataway, NJ, USA, 26–28 October 2011.

14. Vassilvitskii, S.; Yannakakis, M. Efficiently computing succinct trade-off curves. Theor. Comput. Sci. 2005,
348, 334–356. [CrossRef]

15. Yin, Y.Q.; Cheng, S.R.; Cheng, T.C.E.; Wang, D.J.; Wu, C.C. Just-in-time scheduling with two competing agents on
unrelated parallel machines. Omega-Int. J. Manag. Sci. 2016, 63, 41–47. [CrossRef]

16. Yin, Y.Q.; Cheng, T.; Wang, D.J.; Wu, C.C. Two-agent flowshop scheduling to maximize the weighted number of
just-in-time jobs. J. Sched. 2017, 20, 313–335. [CrossRef]

34

Mathematics 2020, 8, 2070

17. Chen, R.X.; Li, S.S.; Li, W.J. Multi-agent scheduling in a no-wait flow shop system to maximize the weighted
number of just-in-time jobs. Eng. Optim. 2019, 51, 217–230. [CrossRef]

18. Purcaru, C.; Precup, R.E.; Iercan, D.; Fedorovici, L.O.; David, R.C.; Dragan, F. Optimal robot path planning using
gravitational search algorithm. Int. J. Artif. Intell. 2013, 10, 1–20.

19. Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl. 2017, 78, 32–50.
[CrossRef]

20. Zhang, Y.; Yuan, J.J. A note on a two-agent scheduling problem related to the total weighted late work.
J. Comb. Optim. 2019, 37, 989–999. [CrossRef]

21. Zhang, Y.; Yuan, J.J.; Ng, C.T.; Cheng, T.C.E. Pareto-optimization of three-agent scheduling to minimize the total
weighted completion time, weighted number of tardy jobs, and total weighted late work. Nav. Res. Logist. 2020,
in press.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

35

mathematics

Article

A Hybrid Metaheuristic for the Unrelated Parallel Machine
Scheduling Problem

Dung-Ying Lin * and Tzu-Yun Huang

Citation: Lin, D.-Y.; Huang, T.-Y. A

Hybrid Metaheuristic for the

Unrelated Parallel Machine

Scheduling Problem. Mathematics

2021, 9, 768. https://doi.org/

10.3390/math9070768

Academic Editor: Chin-Chia Wu

Received: 24 February 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industrial Engineering and Engineering Management, National Tsing Hua University,
Hsinchu 30013, Taiwan; zxcv6564@gmail.com
* Correspondence: dylin@ie.nthu.edu.tw; Tel.: +886-(03)-574-2694

Abstract: The unrelated parallel machine scheduling problem aims to assign jobs to independent
machines with sequence-dependent setup times so that the makespan is minimized. When many
practical considerations are introduced, solving the resulting problem is challenging, especially when
problems of realistic sizes are of interest. In this study, in addition to the conventional objective of
minimizing the makespan, we further consider the burn-in (B/I) procedure that is required in practice;
we need to ensure that the scheduling results satisfy the B/I ratio constrained by the equipment.
To solve the resulting complicated problem, we propose a population-based simulated annealing
algorithm embedded with a variable neighborhood descent technique. Empirical results show that
the proposed solution strategy outperforms a commonly used commercial optimization package;
it can obtain schedules that are better than the schedules used in practice, and it does so in a more
efficient manner.

Keywords: unrelated parallel machine scheduling; simulated annealing; variable neighborhood
descent; metaheuristic; production scheduling

1. Introduction

The unrelated parallel machine scheduling problem aims to assign a set of jobs to a
set of unrelated machines that can process the jobs in parallel without affecting each other.
Unrelated parallel machine scheduling problems are of significant practical relevance, and
they arise in many applications (i.e., the electronic assembly industry investigated in this
study). However, many constraints and additional considerations need to be addressed
in practice. For instance, jobs completed at machines need to go through a burn-in (B/I)
process prior to being placed in service. The B/I process forces certain manufacturing
failures to occur under supervised conditions so that the quality of the product can be
examined and ensured. However, as B/I equipment is expensive, many companies have
only a limited amount of this kind of equipment, and this becomes the bottleneck of this
type of scheduling problem. In this study, we investigate the unrelated parallel machine
scheduling problem that aims to minimize the makespan and maximize B/I equipment
utilization. As each job has its own suitable B/I equipment, the maximization of B/I
equipment utilization can be achieved by making the ratio of completed jobs match the
number of B/I equipment available. Other than this additional consideration, the conven-
tional constraints (i.e., sequence-dependent setup times) are also accommodated in the
study. As the unrelated parallel machine scheduling problem possesses non-deterministic
polynomial-time (NP)-hard complexity [1], solving problem instances with practical sizes
is a challenging task, especially when many practical constraints need to be considered. To
address this type of problem, we propose a population-based simulated annealing (PBSA)
method embedded with a variable neighborhood descent (VND) heuristic to solve it. The
proposed solution strategy is empirically applied to real-world problem instances. A com-
parison with a commercial optimization package demonstrates that the devised approach
can determine the optimal schedules in small problem instances. When the problem size

Mathematics 2021, 9, 768. https://doi.org/10.3390/math9070768 https://www.mdpi.com/journal/mathematics

37

Mathematics 2021, 9, 768

increases, we show that the designed approach can determine schedules that are better
than the schedules used in practice, and it does so in a much more efficient manner than
the commercial optimization package, which fails to obtain solutions.

The remainder of this paper is structured as follows. Section 2 critically overviews
the related work regarding production schedules. Section 3 presents the mathematical
formulation for the unrelated parallel machine scheduling problem considering various
practical constraints. The solution strategy tailored for solving the resulting program is
presented in Section 4. Empirical studies are summarized in Section 5 to demonstrate the
efficiency and effectiveness of the proposed solution strategies. The final section offers
conclusions and provides suggestions for future research.

2. Literature Review

In this section, we broadly categorize the production scheduling problem into single
and multiple operation problems according to the production process. In a single operation
problem, a job only needs to be processed/assembled once in a single and suitable machine
to complete its production procedure. In a multiple operation problem, a job needs to
go through various production/assembly steps. Each production/assembly step can
only be performed in a specific machine. Only when a job goes through all the required
steps is its production procedure completed in a multiple operation problem. Single
operation problems can be further classified into single and parallel machine problems.
Multiple operation problems can be further divided into flow shop, job shop and open
shop problems.

2.1. Single Operation

In single operation production, the problem is considered as a single machine schedul-
ing problem if all the jobs are completed by a single machine.

2.1.1. Single Machine Scheduling

Different research streams analyze single machine scheduling problems while con-
sidering various objective functions and constraints. Ref. [2] studied the single machine
scheduling problem that aims to minimize both energy consumption and maximum tar-
diness, and they proposed a mixed-integer linear programming model to formulate it. A
ε-constraint method that integrated local search, preprocessing, valid inequalities and solu-
tion space reduction techniques was developed to determine the Pareto optimal solution of
the two obtained compromised objective functions. Ref. [3] considered the minimization
of maximum costs, considering uncertain processing times. Various cost functions were
analyzed, and polynomial algorithms were devised to solve the resulting problem. Ref. [4]
investigated a single machine scheduling problem that takes release dates and inventory
constraints into consideration. With the predetermined processing time of each job and
each job’s known impact on the inventory level, the work aimed to determine the optimal
sequence of jobs such that the makespan was minimized. It was shown that the problem is
strongly NP-hard, and a series of algorithms were proposed to tackle it.

2.1.2. Parallel Machine Scheduling

When there are multiple machines with similar functionalities and these machines
can work simultaneously without affecting each other, the problem is considered a parallel
machine scheduling problem. Based on the features of the employed machines, parallel
machine scheduling can be further classified into identical and unrelated parallel machine
scheduling problems. The machines considered in identical parallel machine scheduling
problems are homogeneous, and the processing time of a job at any machine is identical.
The processing times of a job at the different machines considered in the unrelated parallel
machine scheduling problem, however, can be different, and the processing times at
different machines are not relevant.

38

Mathematics 2021, 9, 768

Identical Parallel Machines

Ref. [5] presented a mathematical model for an identical parallel machine scheduling
problem in which job splitting and sequence-dependent setup times were considered.
Simulated annealing and genetic algorithm metaheuristic-based approaches were proposed
with various encoding and decoding methods. The encoding effectively represented the
solutions compactly, while the decoding heuristically split jobs in a different manner. The
numerical results showed that the proposed approaches could determine solutions of good
quality. Ref. [6] investigated the parallel machine scheduling problem that takes job tooling
requirements and job-dependent setup times into consideration. A biased random-key
genetic algorithm integrated with a variable neighborhood descent-based local search was
proposed to solve the resulting NP-hard problem. Numerical results showed that the
proposed solution approach outperformed benchmark methods.

One variant of the identical parallel machine problem is the uniform parallel schedul-
ing problem. The processing times of a job at different machines considered in the uniform
parallel scheduling problem can vary. However, the processing times are proportional to
each other and are at a fixed rate. Ref. [7] examined a uniform parallel-machine scheduling
problem with the objective of minimizing the total resource consumption subject to a
bounded makespan. They developed a metaheuristic and showed that it could outperform
the particle swarm optimization heuristic and approximate the theoretical lower bound.

Unrelated Parallel Machines

For the unrelated parallel machine scheduling problem, the genetic algorithm (GA)
proposed by [8] is a popular solution method that has been employed in many past studies.
Compared to the situation with the conventional GA, many researchers have attempted to
incorporate various enhancements to solve unrelated parallel machine scheduling problems.
For instance, ref. [9] added a fast local search and local search-enhanced crossover operator
for the GA. Ref. [10] proposed a hybrid GA that integrates dispatching rules (i.e., processing
time-based, completion time-based and sequence-based rules) into the overall solution
framework. Ref. [11] studied the unrelated parallel machine scheduling problem and
derived a strategy to dynamically allocate jobs to dedicated machines so that the total
earliness and tardiness times could be minimized. A modified GA with a distributed
release time control mechanism was proposed and was shown to perform well. Ref. [12]
introduced new decoding methods developed for the total tardiness objective within a GA
solution framework, and they were able to improve the performance of the GA.

Based on simulated annealing (SA), ref. [13] introduced a sine cosine algorithm as a
local search method to improve algorithmic convergence when solving unrelated parallel
machine scheduling problems with sequence-dependent and machine-dependent setup
times. Ref. [14] evaluated the performances of four stochastic local search methods, namely,
simulated annealing, iterated local search, late acceptance hill-climbing, and step counting
hill-climbing, in solving unrelated parallel machine scheduling problems with sequence-
dependent setup times. These methods were compared together with the GA proposed
by [9] and the heuristic devised by [15]. Empirical results showed that SA performed
best in solving large problem instances. Ref. [16] targeted the unrelated parallel machine
scheduling problem with a random rework and presented two mixed-integer programs. As
the problem is strongly NP-hard, a genetic algorithm and a simulated annealing algorithm
that utilize aggregate task estimation techniques were proposed and were shown to be
effective in solving the problem. Additionally, it was reported that the simulated annealing
algorithm performed better than the genetic algorithm.

In the literature, local search (LS) has also been widely used or integrated with other
solution techniques in tackling production scheduling problems. The variable neighbor-
hood descent (VND) approach is the extension of LS. The VND method explores several
neighborhood structures sequentially (say, 1 to n structures) from an incumbent solution. If
an improved solution is identified, the search restarts from the first structure and explores
neighborhood solutions with these structures again until a prespecified stopping criterion

39

Mathematics 2021, 9, 768

is met [17]. Ref. [18] combined VND with mathematical programming techniques and
proposed a multi-start VND method for solving unrelated parallel machine problems.
The core concept was to decompose the given problem into job assignment and job se-
quencing subproblems. Numerical results showed that the proposed algorithm performed
well. Ref. [19] integrated variable neighborhood search and SA and proposed a two-stage
hybrid metaheuristic to solve the unrelated parallel machine scheduling problem. The
first stage determines an initial solution with the “earlier release date first” (ERD) rules,
while the second stage explores the neighborhood with various structures. It was shown
in the conducted numerical experiments that the proposed solution strategy outperforms
a commercial optimization package. Ref. [20] substituted local search with VND in the
iterated greedy search, artificial bee colony and genetic algorithms to evaluate whether the
substitution could improve the performances of these metaheuristics for solving unrelated
parallel machine scheduling problems. The Taguchi robust method was used to calibrate
the parameters used in the framework. Empirical results showed that replacing local search
with VND indeed increases the performance of all tested metaheuristics.

Aside from the above methods, many researchers have attempted various approaches
to address unrelated parallel machine scheduling problems. For instance, ref. [21] consid-
ered various practical resources in such problems and tried to solve the resulting problem
with the GA and an artificial immune system (AIS). After calibrating the parameters with
the Taguchi method, the AIS was shown to outperform the GA in solving large problem
instances. Ref. [22] addressed machine load minimization in the unrelated parallel ma-
chine scheduling problem. A hybrid particle swarm optimization (PSO) technique and a
GA were proposed, and the Taguchi method was used to calibrate the parameters. The
results showed that the hybrid approach performed better than the GA, PSO algorithm
or PSO algorithm with local search. Ref. [23] developed a two-stage heuristic to solve
unrelated parallel machine scheduling problems with more than two machines. In the
first stage, a mixed-integer linear programming model was solved to estimate the lower
bound. In the second stage, a constraint programming model was employed to schedule
jobs on machines.

Some past studies discussed B/I related issues (i.e., [24–28]). One of the most relevant
study is [27] which considered the B/I machines as the batch processing machines. In that
study, the aims were to minimize the maximum tardiness or to minimize the number of
tardy jobs while considering the processing time, due date and release time constraints.
Dynamic programming-based algorithms were developed to solve the resulting problems.
Similarly, ref. [28] proposed a mixed-integer linear programming model that formulates
the B/I requirement as a batch processing problem. Two solution heuristics, delay window-
time parallel saving algorithm (DWPSA) and delay window-time generalized saving
algorithm (DWGSA), were proposed to solve the proposed formulation.

2.2. Multiple Operation

There are three major types of problems in multiple production scheduling, namely,
flow shop, job shop and open shop problems. In a typical flow shop scheduling problem,
all jobs are required to complete an identical production process that can be processed at
different machines. Conventional job shop scheduling is similar to flow shop scheduling,
except that each job should complete the procedure in a specific order. In the open shop
scheduling problem, jobs can be completed in random order.

2.2.1. Flow Shop scheduling Problem

Ref. [29] developed a greedy algorithm to solve the flow shop scheduling problem
in two phases. The first phase, destruction, eliminates some jobs from the incumbent
solution, while the second phase, construction, heuristically reinserts the eliminated jobs
from the first phase into the sequence. It was shown that the greedy algorithm is easy
to implement and can outperform many benchmarks. Ref. [30] studied the flow shop
scheduling problem. First-in-first-out batch dispatching rules were designed to determine

40

Mathematics 2021, 9, 768

the initial solution, followed by mixed-integer program reoptimization techniques and
local search heuristics to improve the solution quality. Ref. [31] adopted artificial immune
system-based methods for solving a two-stage hybrid flow shop scheduling problem and
showed that the proposed methods outperformed the existing lower bounds. Ref. [32]
proposed a hybrid metaheuristic that integrated the GA and random sampling to solve
the sequence-dependent flow-shop scheduling problem. Ref. [33] solved the distributed
blocking flow shop scheduling problem with three hybrid iterative greedy algorithms.

2.2.2. Job Shop Scheduling Problem

Ref. [34] investigated the job shop scheduling problem to address the dynamic events
that are inevitable in production environments. A GA embedded with various heuristic
dispatching rules was devised to solve the problem. Ref. [35] studied the flexible job shop
scheduling problem (FJSP) that allows a job to be processed at any machine from a given
set. An algorithm that combines the advantages of the GA and tabu search was proposed
to tackle the FJSP and was demonstrated to be effective in solving it. Ref. [36] improved the
coding and decoding procedures in PSO and showed that the improvement was suitable
for practical job shop scheduling. Ref. [37] utilized the GA and decentralization scheme to
minimize the makespan in production scheduling. The proposed solution framework was
compared with a shortest processing time rule-based approach (SPT) and was shown to
outperform the SPT.

2.2.3. Open Shop Scheduling Problem

In solving the flexible open shop scheduling problem, ref. [38] proved the asymptotic
optimality of the general dense scheduling (GDS) algorithm and showed that the proposed
GDS-based heuristic could converge to good solutions in large problem instances. When
using the minimization of the total flow time as the objective function in the open shop
scheduling problem, ref. [39] adopted a GA and an ant colony optimization (ACO) method
to solve the problem. For cases when the minimization of the makespan is the objective
function, ref. [40] proposed using the GA to solve it.

2.3. Summary

In this work, the focus is on the unrelated parallel production scheduling problem.
We summarize the studies we have discussed above in Table 1 to highlight the contribution
of our work.

The obvious difference between the objective function in our work and those in past
studies is the B/I procedure considered in our formulation. The differences in constraints
can also be seen in the table. In terms of the solution approach, as suggested by [16],
SA is an ideal choice for solving this problem. However, as the problem investigated
in this work contains complicated constraints and objective functions, it is not rare to
have different solutions with identical objective values (or multiple optimal solutions).
As a standard SA needs the objective value to find the descent direction, having multiple
solutions with identical objective values makes it difficult to identify the direction based
on these values since they are all the same. To explore the neighborhood solutions in an
efficient manner, we decide to adopt the population-based simulated annealing (PBSA)
algorithm. Furthermore, as indicated by [20], replacing the local search process with VND
can potentially increase the performances of various metaheuristics. Therefore, we further
embed a VND procedure in the PBSA algorithm.

One of the most relevant studies in terms of the solution approach of our work is that
of [19], which integrated SA and VNS in solving unrelated parallel machine scheduling
problems. The primary difference between VNS and VND is that VNS introduces a shaking
procedure into the solution framework. However, as the constraints considered in our work
are rather complicated, so introducing a random shaking procedure can easily generate
an infeasible solution. From our preliminary experiments, we believe that VND is more
appropriate than VNS for solving our problem.

41

Mathematics 2021, 9, 768

Table 1. Literature comparison.

Study Objective Primary Constraints Solution Approach

[10] Minimizing the total
completion time

Setup time and
production availability GA

[21] Minimizing the
makespan

Resource constraints, sequence-dependent
setup times, different release dates, machine

eligibility and precedence constraints
GA and AIS

[22] Minimizing the total
machine load

Past sequence-dependent
setup times, release dates, deteriorating jobs

and learning effects
Integrated PSO and GA

[19] Minimizing the
makespan

Nonzero arbitrary release dates, limited
additional resources, and non-anticipatory

sequence-dependent setup times
Integrated SA and VNS

[16] Minimizing the total
weighted tardiness

Random rework and
due dates GA and SA

[20] Minimizing the total
weighted tardiness

Sequence- and machine-
dependent setup times VND

Current Study
Minimizing the

makespan and B/I
violations

Sequence-dependent setup times, different
work starting times, machine eligibility,
burn-in eligibility and work time limits

Integrated PBSA and VND

3. Mathematical Formulation

In this section, we formally define the problem under study, followed by the utilized
notations, resulting in a mathematical and detailed explanation.

In each planning horizon, as illustrated in Figure 1, the master production schedule
(MPS) outputs the jobs that need to be completed within the predefined time horizon.
The jobs completed in the production lines are then sent to B/I equipment to finalize the
manufacturing process. During the process, the daily production scheduling problem
(DPS) aims to assign jobs to appropriate production lines so that the makespan can be
minimized while meeting the B/I requirement as well as possible.

Figure 1. Illustration of the production process considered in this study.

The current study focuses on the DPS. To focus on the core issues of the problem, the
following assumptions are imposed.

1. Each job contains only one kind of product. The products that need to be assembled
in each job are provided by MPS.

42

Mathematics 2021, 9, 768

2. If two consecutive jobs processed in one production line are of different products,
setup time is required.

3. Each production line contains no job at the beginning of each day.
4. The process time of each job on each production line is given and fixed.
5. If a job begins in a production line, it will be completed without interruption.

The following practical constraints are considered in the mathematical formulation.

1. Each production line has its own maximum number of daily production hours.
2. Each product and its corresponding job have some production requirements and can

only be processed in the predetermined/specified production lines.
3. Each job has its own earliest starting time and can only start after that prespeci-

fied time.
4. Each job requires a specific level of B/I equipment.
5. There is an upper bound of the total production hours for all the production lines

considered together.

Notations

Based on the abovementioned statements and assumptions, the problem studied
corresponds to an unrelated parallel machine scheduling problem. The mathematical
formulation is revised from [9] with some modifications of the constraints to meet the
requirements imposed in practice.

Sets

N set of jobs

M set of production lines

BI set of burn-in levels

T set of the planning horizon

Parameters

Pij processing time of job j on production line i

Sijk

setup time between job j and job k on production line i. Sijk= setup time if two
consecutive jobs processed on production line i belong to different job types; Sijk = 0
if two consecutive jobs processed on production line i belong to identical job types.

capit maximum daily processing hours for production line i on day t.

TPt maximum daily processing hours for all the production lines considered together.

Q an extremely large number

Ut penalty parameter for burn/in ratio violations on day t

BI1, BI2, BI3

target ratio of jobs assigned to B/I levels 1, 2 and 3, respectively. Suppose that a
company hopes to maintain three B/I levels of 5:4:1; we can set BI1 = 5, BI2 = 4,
and BI3 = 1.

MNj
number of products that need to be assembled in each job j
As the B/I level violations are calculated based on MNj, this parameter is introduced.

43

Mathematics 2021, 9, 768

Decision Variables

Xijkt

Xijkt = 1 if job j is processed immediately before job k on production line i on day
t; Xijkt = 0 otherwise.
Note that if job j or k cannot be processed on production line i, then Xijkt = 0.

Bjbt
Bjbt = 1, if job j has a B/I level of b on day t;
Bjbt = 0 otherwise.

Cijt completion time of job j on production line i on day t

Fit complete time for each production line i on day t

Cmax,t maximum completion time on day t

Mathematical Formulation

Min ∑
t
(αCmax,t + βUt) (1)

Subject to

∑
t∈T

∑
i∈M

∑
j ∈ 0 ∪ N

j = k

Xijkt = 1 ∀k ∈ N
(2)

∑
t∈T

∑
i∈M

∑
k ∈ N
j = k

Xijkt ≤ 1 ∀j ∈ N
(3)

∑
k∈N

Xi0kt ≤ 1 ∀i ∈ M; ∀t ∈ T (4)

∑
h ∈ 0 ∪ N

h = k, h = j

Xihjt ≥ Xijkt ∀j, k ∈ N, j = k; ∀i ∈ M; ∀t ∈ T
(5)

Cikt ≥ Cijt + Sijk + Pik + Q·
(

Xijkt − 1
)

∀j, k ∈ N, j = k; ∀i ∈ M; ∀t ∈ T (6)

Fit ≥ Cijt ∀j ∈ N; ∀i ∈ M; ∀t ∈ T (7)

Fit ≤ capit ∀i ∈ M; ∀t ∈ T (8)

Cmax,t ≥ Fit ∀i ∈ M; ∀t ∈ T (9)

∑
i∈M

Fit ≤ TPt ∀t ∈ T (10)

∑
t∈T

∑
b∈BI

Bkbt ≤ 1 ∀k ∈ N (11)

∑
b∈BI

Bkbt = ∑
i∈M

∑
j∈{0}∪{N}

Xijkt ∀k ∈ N, j = k; ∀t ∈ T (12)∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
+

∣∣∣∣ ∑
k∈N

Bk2t·MNk − BI2
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
+

∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI2

∑
k∈N

Bk2t·MNk

∣∣∣∣
= Ut

(13)

Xijkt ∈ {0, 1} ∀j, k ∈ N, j = k; ∀i ∈ M; ∀t ∈ T (14)

Bjbt ∈ {0, 1} ∀j ∈ N; ∀b ∈ BI; ∀t ∈ T (15)

44

Mathematics 2021, 9, 768

The objective function (1) aims to minimize the makespan (Cmax,t) and the B/I level
violations (Ut). Parameters α and β are the weights of the corresponding terms, and these
will be calibrated in the numerical experiments.

Equation (2) ensures that each job is assigned to a production line i and that each job k
on this machine has only one preceding job j. Equation (3) is the constraint that each job j
has at most one succeeding job k. Each production line is assigned at most a dummy job 0
at the beginning that represents the first job of this production line. The design is described
in Equation (4). Equation (5) defines the job order. If job j is assigned to production line
i, there must be a preceding job h on this production line. If job j is the first job on this
production line, then h must be a dummy job. However, job j may not have a succeeding
job k.

Equation (6) defines the completion time Cikt of the jobs. As job k should be processed
after job j on production line i, the completion time of job k (Cikt) must be greater than the
completion time of job j (Cijt) plus the corresponding setup time Sijk and the processing
time of job k (Pik). If Xijkt = 0, which means that job k cannot be processed immediately
after job j on production line i, this constraint becomes a redundant constraint. Equation (7)
ensures that the completion time of each production line (Fit) is greater than or equal to the
completion time of any job in that production line (Cijt). Fit will be used to calculate the
objective value later.

Equation (8) sets the maximum number of processing hours capit for each production
line on each day t. Equation (9) calculates the maximum completion time Cmax,t according
to the statuses of all the jobs in all production lines. Equation (10) constrains the maximum
number of processing hours for all the production lines considered together.

The limitation that any job can be assigned to a B/I level is enforced in Equation (11).
Equation (12) establishes the relationship between a machine and the B/I level. Only if a job
is assigned (i.e., any Xijkt = 1) can a B/I level be assigned. The B/I ratio penalty Ut is calcu-

lated based on Equation (13). Let us use the first term
∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
in that equation as an example to illustrate the proposed design. This term is designed as
the absolute value of the number of products that need to be assembled in jobs that are
assigned to B/I level 1 (∑

k∈N
Bk1t·MNk) minus the ratio BI1

BI3
of the number of products that

need to be assembled in jobs that are assigned to B/I level 3 (∑
k∈N

Bk3t·MNk). If the result of

the first term is zero, then the ratio of the jobs assigned to levels 1 and 3 exactly matches

the prespecified ratio BI1
BI3

. Otherwise,
∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣ can serve as the

measure of how far away the assignment is from the desired value BI1
BI3

and can be used as
a penalty in the objective function to drive the assignment to match the desired value as
closely as possible. The second and third terms can be interpreted in a similar manner. Fi-
nally, Equations (14) and (15) state that the decision variable considered in the formulation
is of binary value.

As shown in [1], the unrelated parallel machine scheduling problem is an NP-hard
problem. The mathematical formulation presented in this section is a parallel machine
scheduling problem with additional side constraints. Therefore, it is at least of NP-hard
complexity. Solving such problems of practical sizes can be a challenging task. To address
this issue, we propose a metaheuristic-based solution approach in the following section.

4. Solution Approach

In this study, we propose population-based simulated annealing (PBSA), which is
an extension of SA [41,42]. SA is the search heuristic analogous to the process of solid
physical annealing. During the annealing process, a solid is heated and cooled down
slowly until it achieves the most likely crystal lattice configuration so that the resulting
solid has superior structural integrity. Similar to this process, SA compares the current
solution with its neighborhood solution and accepts an improved solution in each iteration.

45

Mathematics 2021, 9, 768

Inferior solutions can also be accepted with a limited probability so that the search process
can escape from local optima and finally approximate the global optimum. The probability
of accepting inferior solutions depends on a nonincreasing temperature parameter with
each iteration of the SA algorithm. In PBSA, instead of a single neighborhood solution, a
population of neighborhood solutions are generated during each iteration, and only the
best solution among them is used as the incumbent solution in the next iteration. With
this improvement, the search for a neighborhood solution can be highly effective. To
further enhance the performance of this approach, the traditional LS method employed
in SA is replaced by VND in the proposed PBSA method. We next detail our critical
algorithmic steps.

4.1. Initial Solution

The initialization step first sorts the jobs in descending order according to multiple
attributes, namely, the earliest starting time, the number of allowable production lines and
the total processing time. Then, the jobs are assigned according to the first-in-first-out
(FIFO) rule to different production lines while satisfying all the assignment rules. Some of
the jobs may be left unassigned after this procedure. However, the assigned and unassigned
jobs together form an initial feasible solution. Note that the initial solution is designed
to be the initial point for the following search procedure. The PBSA presented later can
always converge to a good final solution regardless of the initial solution.

4.2. Algorithm Steps

There are four primary steps in the proposed PBSA algorithm, namely, initialization,
neighborhood search, incumbent solution updating and termination.

4.2.1. Initialization

For ease of explanation, we introduce additional notations. We denote TH , T and TL
as the highest possible, current and lowest possible temperatures, respectively. We first
initialize the current temperature T as TH and reduce T over iterations to simulate the
“cooling down” process of solid physical annealing. The initial and incumbent solutions
are both initialized as ∞ in the beginning. Starting from the initial solution found in the
previous section, the PBSA algorithm enters the search procedure.

4.2.2. Neighborhood Search

In VND, three neighborhood search approaches/structures are employed in our
solution framework. The first is single job switching (Figure 2), which switches one
randomly selected job between two production lines (j1 and j4 in this illustrative example).
The second is moving jobs from one production line to another (illustrated in Figure 3).
A job (j2 in this example) from one production line is randomly selected and inserted at
the beginning of another production line. The final approach is one-to-two job switching
(illustrated in Figure 4), which switches one job in a production line with two consecutive
jobs in another production line. To reduce the number of setups, we sort the jobs so that
jobs with the same job type can be grouped together after any of the above changes occur
in any production line. Note that all the changes only take place when the scheduling rules
are not violated. In other words, we explore the neighborhood solutions within the feasible
region. As reported in the literature, there exist various alternative neighborhood search
procedures. However, from our preliminary experiments, these three procedures yield the
best performance and are incorporated in our solution framework.

46

Mathematics 2021, 9, 768

j1 j2 j3

j6j5j4

Figure 2. Single job switching.

j2j1 j3

j4 j5 j6

Figure 3. Job moving.

j1 j2 j3

j6j5j4 j1

j2 j3

j6

j5j4

Figure 4. One-to-two job switching.

In VND, we examine these three neighborhood structures sequentially. As we use the
PBSA framework, we generate 5 neighborhood solutions by examining each neighborhood
structure during each neighborhood search, and only the best solution is selected as a
candidate. If a solution that is better than the incumbent solution is identified, we restart
from the first structure and explore the neighborhood solutions with these structures again
until a stopping criterion is met.

Specifically, we first define a maximum number of neighborhood structures that can
be examined RLn. When the neighborhood search begins, we examine each neighborhood
structure sequentially, and a counter Rn is used to keep track of the number of times a
neighborhood structure is examined. If a superior solution is identified, we set Rn = 0 and
restart from the first neighborhood structure. If Rn = RLn when examining a neighborhood
structure, we examine the next neighborhood structure. If all the neighborhood structures
are examined, we continue to the next iteration of the PBSA algorithm.

Over the PBSA iterations, the probability of accepting inferior solutions decreases
due to the lowering temperature. Therefore, we increase RLn gradually to increase the
possibility of exploring a larger solution space. On the other hand, VND increases the
chance of finding a superior solution during each neighborhood search. Based on our
empirical experiment, the design balances the search procedure and is effective in solving
the overall problem.

4.2.3. Incumbent Solution Updating

When a neighborhood solution is superior to the incumbent solution, we update the
incumbent solution. To further improve the solution quality, after this update, we search
the unassigned jobs and examine whether the insertion of additional jobs into the solution
is possible. If yes, we insert the jobs and use the updated solution as the incumbent solution.
If insertion is not possible, the superior solution is used as the incumbent solution directly.

47

Mathematics 2021, 9, 768

Other than the above updating process, there is a limited probability (denoted as P in
this study) of allowing the search procedure to accept inferior solutions. This probability is
calculated based on the following modified Boltzmann function [41]:

P = min
{

1, e−
Δ
T

}
In the function, Δ = C(x′)− C(x) is the difference between the objective value of the

current solution (C(x′)) and that of the incumbent solution (C(x)). T denotes the current
temperature. If a randomly generated real number γ is greater than P, the current inferior
solution is accepted and becomes the incumbent solution in the next iteration. In this study,
we reduce the temperature T when the number of the searches for each neighborhood
structure reaches the prespecified limit. The reduction of T is controlled by:

T = T × Tscale

where Tscale is the rate at which the temperature decreases. The value of Tscale is set between
0 and 1, and this causes the value of T to decrease over multiple iterations. PBSA can
converge effectively with the above cooling mechanism.

4.2.4. Termination

As many companies need solutions periodically so that they can adjust their schedul-
ing results based on the current dynamic manufacturing environment, we terminate the
search procedure and report the incumbent solution when the maximum allowed compu-
tational time is reached.

4.3. Summary

Overall, the proposed PBSA can be summarized as in Figure 5. With the generated
initial solution and parameter settings, the search procedure examines the neighborhood
solution with VND, and controls the PBSA framework based on the obtained results until
the stopping criterion is met. Note that as VND is employed in the neighborhood search
procedure, the iteration counter Rn is reset to 0 only when the search procedure identifies a
solution that is superior to the incumbent solution or when each neighborhood structure
reaches the number of pre-specified limit. In other cases, Rn = Rn + 1.

48

Mathematics 2021, 9, 768

n

n n
Rn

n Rn

Rn Rn
n=0
Rn 0

Rn RLn

T=TH

T=T· Tscale

Figure 5. Algorithmic steps of the population-based simulated annealing (PBSA) approach.

5. Solution Approach

To validate the effectiveness of the proposed solution framework and evaluate its
performance, PBSA is empirically applied to problem instances of different sizes. In
the experiments, the solutions from a commercial optimization package Gurobi 9.1.0 are
used as the benchmark. Furthermore, we conduct a sensitivity analysis on the weights
imposed in the objective function to capture the impact of these parameters. The proposed
PBSA heuristic is implemented in the ANSI C++ programming language. The numerical
experiments for both Gurobi and our solution method are conducted on a Windows-based
machine with an Intel i7-8700 CPU at 3.20 GHz and 8 GB of memory. Note that the solutions
reported for the proposed PBSA algorithm are averaged over 10 runs as the search process
involves randomness.

49

Mathematics 2021, 9, 768

5.1. Parameter Calibration

We first perturb the parameters α and β to evaluate their impacts on the objective
value. The problem instance used contains 6 machines, 5 days for the planning horizon
and 150 jobs. The results are summarized in Table 2 and Figure 6.

Table 2. The impacts of α and β on the objective value.

α:β Cmax B/I Penalty

1:0.0001 43.26 1437.65
1:0.001 43.63 1357.95
1:0.01 44.48 1308.20
1:0.1 50.67 1303.20
1:1 57.93 1298.45

Figure 6. The tradeoff between Cmax and the burn-in (B/I) penalty.

As expected, given a fixed α, the result tends to improve the B/I penalty and worsen
Cmax simultaneously when β increases. We can see the apparent tradeoff between Cmax
and the B/I penalty in Figure 6. However, as α: β goes beyond 1:0.01, the improvement
in the B/I penalty is only marginal and almost ignorable. Therefore, we use α = 1 and
β = 0.01 in the rest of the experiments. Furthermore, we conduct preliminary experiments
with various parameter combinations of TH , TL, Tscale and RLn using datasets obtained in
practice and identify the parameter combination that performs best. The optimal values
are TH = 25, TL = 1, Tscale = 0.98 and RLn = 500. Note that the Taguchi-based method
may be used to calibrate the parameters [20–22]. However, we observe that no significant
improvement can be obtained by that method for our cases. Therefore, we adopt the above
parameters. For practical purposes, the maximum allowed computational time is limited
to 1200 s. These parameters are used throughout the remaining experiments.

5.2. Validation

For validation purposes, we compare our solutions with the Gurobi solutions, which
can be considered the optimal solutions. Note that Gurobi is used to solve the formulation
presented in Section 3 with the default settings. The comparison is summarized in Table 3.
As shown in the table, the proposed PBSA algorithm can determine the same optimal
solutions as those obtained by Gurobi, demonstrating the efficacy of the proposed solution

50

Mathematics 2021, 9, 768

method. When the problem size increases, Gurobi fails to obtain feasible solutions for
problem instances with more than 15 jobs. However, the proposed PBSA method can still
determine solutions, thereby demonstrating its scalability. Furthermore, it is noted that
PBSA with the two neighborhood structures explained in Figures 2 and 3 (PBSA with
2VND) has a higher probability of finding improved solutions than PBSA with all three
structures (PBSA with 3VND). It is suspected that the neighborhood structure depicted
in Figure 4 makes it difficult for the search process to converge to an improved solution
within the limited CPU time allowed. Let us depict the convergence of the proposed
algorithm using the case with L/T/N = 6/3/100 as an example in Figure 7 to further
discuss the results.

Table 3. Validation of the proposed PBSA algorithm.

L/T/N 1 Gurobi PBSA with 3VND 4 PBSA with 2VND 5

Objective
Value

CPU 2 (s)
Objective

Value
Cmax B/I Penalty

Objective
Value

Cmax B/I Penalty

3/2/10 23.59 1.47 23.59 14.44 915.50 23.59 14.44 915.50
3/2/15 31.74 3614.93 31.74 20.60 1113.75 31.74 20.60 1113.75
4/2/10 19.12 0.14 19.12 9.97 915.50 19.12 9.97 915.50
4/2/15 27.95 10,790.65 27.95 16.81 1113.75 27.95 16.81 1113.75
4/2/20 *3 * 30.01 20.22 978.75 30.00 20.22 978.75
4/2/50 * * 45.86 25.34 2052.25 45.60 25.23 2036.75
4/2/100 * * 58.62 36.52 2209.50 59.69 36.86 2283.75
4/3/100 * * 54.14 40.00 1414.00 54.05 39.91 1414.00
5/3/100 * * 48.34 34.18 1416.00 48.07 33.88 1418.50
6/3/150 * * 71.38 50.50 2088.00 70.57 50.24 2032.75
6/4/150 * * 79.33 54.67 2466.00 79.34 54.68 2466.00
6/3/200 * * 74.06 51.69 2236.50 68.49 49.70 1878.75
6/4/200 * * 90.95 65.84 2511.00 88.81 63.70 2511.00
6/5/200 * * 121.60 78.51 4308.75 122.23 78.62 4361.25

1 L: number of production lines; T: number of scheduling days in a week; N: number of jobs. 2 CPU: computational time. 3*: fails to
determine solutions within 8 h. 4 3VND: all three neighborhood structures explained in Figures 2–4. 5 2VND: the neighborhood structures
explained in Figures 2 and 3.

Figure 7. Convergence of the algorithm.

51

Mathematics 2021, 9, 768

As the computational time of each iteration required for PBSA with 3VND increases,
the number of iterations that can be performed within the limited CPU time decreases,
resulting in poor convergence when compared with that of PBSA with 2VND. Although
PBSA can potentially explore large solution spaces, we still recommend PBSA with 2VND
for practical purposes. As the actual production environment is rather dynamic, faster
convergence to an ideal solution seems to be the most attractive option for most of the
companies we encounter.

We next evaluate the impact of the numbers of production lines and scheduling days
on the performance of the proposed algorithm. As Gurobi failed to determine feasible
solutions in most of the cases, we only summarize our solutions in Figure 8.

Figure 8. Impacts of the numbers of production lines and scheduling days.

Nevertheless, PBSA with 2VND outperforms PBSA with 3VND in most cases. Note
that, contrary to the mathematical formulation that assumes all jobs should be assigned,
the proposed PBSA algorithm has the flexibility to allow for unscheduled jobs if some jobs
cannot be inserted into the production schedule. For this reason, the objective values do
not increase/decrease monotonically with increases in the numbers of production lines
and scheduling days.

5.3. Practical Application Scenarios

Using the proposed PBSA algorithm with 2VND, we experiment with three application
scenarios, namely, scenarios with various B/I ratios (summarized in Table 4), additional
constraints (summarized in Table 5) and superhot runs.

From Table 4, we can see that the B/I ratio of 5:5:0 dominates 5:4:1 and 6:3:1 in
terms of the objective values and number of scheduled jobs (NSJ) yielded. In the case
where L/T/N = 6/3/100, the B/I penalty can reach zero, indicating that the ratio perfectly
matches 5:5:0. In other words, it is possible to fully utilize the expensive B/I equipment,
should we adjust the ratio properly.

In real-world applications, many supervisors may ask for additional constraints based
on their past experiences, as they believe that the additional constraints can improve the
scheduling performance of the algorithm. In Table 5, we introduce the additional constraint
to fully utilize long production lines as much as possible, as many supervisors may think
continuous processing without interruption can reduce the setup times and can improve
the overall performance. However, the effect of this additional constraint drastically
reduces the number of jobs that can be scheduled with the same setup and contradicts

52

Mathematics 2021, 9, 768

their intuition. Therefore, it is suggested to consider only the necessary constraints for
practical purposes.

Table 4. The impacts of various B/I ratios.

5:4:1 6:3:1 5:5:0

L/T/N
Obj.

Value
Cmax

B/I
Penalty

NSJ 1 Obj.
Value

Cmax
B/I

Penalty
NSJ

Obj.
Value

Cmax
B/I

Penalty
NSJ

3/2/100 59.70 39.45 2025.00 75 66.89 39.44 2745.00 75 39.54 39.51 3.00 76
3/3/100 62.62 42.37 2025.00 76 69.88 42.43 2745.00 76 42.63 42.52 11.00 77
4/2/100 59.69 36.86 2283.75 63 62.28 37.23 2505.00 65 38.51 37.96 55.00 68
4/3/100 54.05 39.91 1414.00 99 62.11 39.19 2292.00 99 39.86 39.78 8.00 100
4/4/100 54.78 40.64 1414.00 100 62.47 39.55 2292.00 99 39.82 39.80 2.00 100
5/2/100 56.55 36.82 1973.25 64 65.94 38.12 2782.00 64 38.31 37.73 58.00 66
5/3/100 48.07 33.88 1418.50 100 55.28 32.36 2292.00 99 33.34 33.06 28.00 100
5/4/100 47.82 33.68 1414.00 100 55.35 32.43 2292.00 99 33.60 33.32 28.00 100
6/2/100 57.84 35.75 2209.25 62 63.05 35.87 2718.00 65 37.00 36.64 36.00 66
6/3/100 42.61 28.46 1415.50 100 51.47 28.55 2292.00 100 29.06 29.06 0.00 100

1 NSJ: number of scheduled jobs.

Table 5. Impacts of additional constraints.

Original Problem Problem with an Additional Constraint

L/T/N Obj. Value Cmax B/I Penalty NSJ Obj. Value Cmax B/I Penalty NSJ

3/2/100 59.70 39.45 2025.00 75 55.79 38.47 1732.50 57
3/3/100 62.62 42.37 2025.00 76 55.79 38.47 1732.50 57
4/2/100 59.69 36.86 2283.75 63 55.23 37.12 1811.25 58
4/3/100 54.05 39.91 1414.00 99 51.55 38.95 1260.00 88
4/4/100 54.78 40.64 1414.00 100 50.34 37.74 1260.00 88
5/2/100 56.55 36.82 1973.25 64 58.38 34.03 2434.25 59
5/3/100 48.07 33.88 1418.50 100 46.44 32.81 1363.00 97
5/4/100 47.82 33.68 1414.00 100 47.21 33.58 1363.50 97
6/2/100 57.84 35.75 2209.25 62 51.85 30.23 2161.50 60
6/3/100 42.61 28.46 1415.50 100 44.28 30.20 1408.50 99

To manufacture products with a sudden surge in demand, customers may place urgent
orders. For products such as this, the manufacturer may initiate a superhot run and charge
a higher price for manufacturing the product. For such urgent orders, we believe that the
proposed solution framework offers a possible pricing mechanism by charging based on
the impact of the order on the original schedule. We illustrate this concept by inserting
three urgent orders in the cases summarized in Table 6.

Table 6. The impact of superhot runs.

Original Order Original Order with Superhot Runs

L/T/N Obj. Value Cmax B/I Penalty NSJ 1 Obj. Value Cmax B/I Penalty NSJ

6/4/200 88.81 63.70 2511.00 164 89.16 62.16 2699.50 160
6/5/200 122.23 78.62 4361.25 184 137.09 83.96 5312.50 179

1 NSJ: number of scheduled jobs.

As seen from the cases, there are 4 and 5 jobs that cannot be completed within this
planning horizon due to the superhot runs. The impacts of the superhot runs on the rest of
the jobs are 2.5% and 2.7%, respectively, so this provides an ideal guide for pricing based
on superhot runs.

53

Mathematics 2021, 9, 768

6. Concluding Remarks

In this study, we developed a PBSA algorithm for the unrelated parallel machine
scheduling problem considering B/I constraints. The proposed PBSA algorithm integrates
the advantages of SA and VND and was implemented for practical applications. Numerical
results have shown that the proposed PBSA approach can solve the abovementioned
problem optimally for small problem instances and is scalable to solve problem instances
of realistic sizes. In practice, there are many industries that encounter the unrelated parallel
machine scheduling problem (i.e., the electronic assembly industry investigated in the
current study). For the unrelated parallel machine scheduling problem, we found that the
PBSA and VND can solve problems of various practical sizes efficiently.

Although encouraging results are obtained, this research can be extended in sev-
eral directions. First, it is apparent that this research can be extended to investigate the
multi-objective optimization problem since there are two objective functions considered.
Some practical techniques can be employed to approximate the Pareto-optimal solution
set (i.e., [43]). Second, as each job can be split into smaller jobs, we can find the optimal
splitting strategy for the jobs such that the overall scheduling performance can be improved.
Third, as the production environment is highly uncertain and stochastic, processing time
uncertainty can be incorporated in future research. Fourth, instead of minimizing the
deviation from the desired burn-in levels, future research can consider the optimal as-
signment of jobs to the exact grids in burn-in machines, which may potentially improve
the scheduling results further. Finally, as the production environment changes rapidly,
developing a system that can rapidly respond to the dynamic and changing environment
with the basis of this study can be another useful and interesting extension.

Author Contributions: Data curation, T.-Y.H.; Investigation, D.-Y.L.; Methodology, D.-Y.L. and T.-
Y.H.; Software, T.-Y.H.; Validation, D.-Y.L.; Writing—original draft, D.-Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by the Ministry of Science and Technology, Taiwan,
ROC grant number MOST 108-2410-H-007-097 -MY4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations

B/I burn-in
PBSA population-based simulated annealing
VND variable neighborhood descent
GA genetic algorithm
SA simulated annealing
LS local search
ERD earlier release date first
AIS artificial immune system
PSO particle swarm optimization
DWPSA delay window-time parallel saving algorithm
DWGSA delay window-time generalized saving algorithm
FJSP flexible job shop scheduling problem
GDS general dense scheduling
ACO colony optimization
SPT shortest processing time
MPS master production schedule
DPS daily production scheduling problem
NSJ number of scheduled jobs

54

Mathematics 2021, 9, 768

References

1. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Berlin/Heidelberg,
Germany, 1972; pp. 85–103.

2. Che, A.; Wu, X.Q.; Peng, J.; Yan, P.Y. Energy-efficient bi-objective single-machine scheduling with power-down mechanism.
Comput. Oper. Res. 2017, 85, 172–183. [CrossRef]

3. Fridman, I.; Pesch, E.; Shafransky, Y. Minimizing maximum cost for a single machine under uncertainty of processing times. Eur.
J. Oper. Res. 2020, 286, 444–457. [CrossRef]

4. Davari, M.; Ranjbar, M.; De Causmaecker, P.; Leus, R. Minimizing makespan on a single machine with release dates and inventory
constraints. Eur. J. Oper. Res. 2020, 286, 115–128. [CrossRef]

5. Kim, J.G.; Song, S.; Jeong, B. Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs
and sequence-dependent setup times. Int. J. Prod. Res. 2020, 58, 1628–1643. [CrossRef]

6. Soares, L.C.R.; Carvalho, M.A.M. Biased random-key genetic algorithm for scheduling identical parallel machines with tooling
constraints. Eur. J. Oper. Res. 2020, 285, 955–964. [CrossRef]

7. Lin, S.W.; Ying, K.C. Uniform Parallel-Machine Scheduling for Minimizing Total Resource Consumption With a Bounded
Makespan. IEEE Access 2017, 5, 15791–15799. [CrossRef]

8. Holland, J.H. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control and Artificial
Intelligence; ANAS: Roma, Italy, 1975.

9. Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup
times. Eur. J. Oper. Res. 2011, 211, 612–622. [CrossRef]

10. Joo, C.M.; Kim, B.S. Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time
and production availability. Comput. Ind. Eng. 2015, 85, 102–109. [CrossRef]

11. Cheng, C.Y.; Huang, L.W. Minimizing total earliness and tardiness through unrelated parallel machine scheduling using
distributed release time control. J. Manuf. Syst. 2017, 42, 1–10. [CrossRef]

12. Yu, C.L.; Semeraro, Q.; Matta, A. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine
eligibility. Comput. Oper. Res. 2018, 100, 211–229. [CrossRef]

13. Jouhari, H.; Lei, D.M.; Al-qaness, M.A.A.; Abd Elaziz, M.; Ewees, A.A.; Farouk, O. Sine-Cosine Algorithm to Enhance Simulated
Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics 2019, 7, 1120. [CrossRef]

14. Santos, H.G.; Toffolo, T.A.M.; Silva, C.; Vanden Berghe, G. Analysis of stochastic local search methods for the unrelated parallel
machine scheduling problem. Int. Trans. Oper. Res. 2019, 26, 707–724. [CrossRef]

15. Cota, L.P.; Haddad, M.N.; Souza, M.J.F.; Coelho, V.N. AIRP: A heuristic algorithm for solving the unrelated parallel machine
scheduling problem. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (Cec), Beijing, China, 6–11 July;
pp. 1855–1862.

16. Wang, X.M.; Li, Z.T.; Chen, Q.X.; Mao, N. Meta-heuristics for unrelated parallel machines scheduling with random rework to
minimize expected total weighted tardiness. Comput. Ind. Eng. 2020, 145, 106505. [CrossRef]

17. Hansen, P.; Mladenović, N. An introduction to variable neighborhood search. In Meta-Heuristics; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 433–458.

18. Fleszar, K.; Charalambous, C.; Hindi, K.S. A variable neighborhood descent heuristic for the problem of makespan minimisation
on unrelated parallel machines with setup times. J. Intell. Manuf. 2011, 23, 1949–1958. [CrossRef]

19. Al-Harkan, I.M.; Qamhan, A.A. Optimize Unrelated Parallel Machines Scheduling Problems With Multiple Limited Additional
Resources, Sequence-Dependent Setup Times and Release Date Constraints. IEEE Access 2019, 7, 171533–171547. [CrossRef]

20. Marinho Diana, R.O.; de Souza, S.R. Analysis of variable neighborhood descent as a local search operator for total weighted
tardiness problem on unrelated parallel machines. Comput. Oper. Res. 2020, 117. [CrossRef]

21. Afzalirad, M.; Rezaeian, J. Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup
times, precedence constraints and machine eligibility restrictions. Comput. Ind. Eng. 2016, 98, 40–52. [CrossRef]

22. Mir, M.S.S.; Rezaeian, J. A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the
total machine load on unrelated parallel machines. Appl. Soft. Comput. 2016, 41, 488–504. [CrossRef]

23. Fleszar, K.; Hindi, K.S. Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. Eur. J. Oper.
Res. 2018, 271, 839–848. [CrossRef]

24. He, Y.H.; Wang, L.B.; Wei, Y.; He, Z.Z. Optimisation of burn-in time considering the hidden loss of quality deviations in the
manufacturing process. Int. J. Prod. Res. 2017, 55, 2961–2977. [CrossRef]

25. Aghaee, N.; Peng, Z.B.; Eles, P. Temperature-Gradient-Based Burn-In and Test Scheduling for 3-D Stacked ICs. IEEE Trans. Very
Large Scale Integr. (VlSI) Syst. 2015, 23, 2992–3005. [CrossRef]

26. Kim, Y.D.; Kang, J.H.; Lee, G.E.; Lim, S.K. Scheduling Algorithms for Minimizing Tardiness of Orders at the Burn-in Workstation
in a Semiconductor Manufacturing System. IEEE Trans. Semicond. Manuf. 2011, 24, 14–26. [CrossRef]

27. Lee, C.Y.; Uzsoy, R.; Martinvega, L.A. Efficient Algorithms for Scheduling Semiconductor Burn-in Operations. Oper. Res. 1992,
40, 764–775. [CrossRef]

28. Pearn, W.L.; Hong, J.S.; Tai, Y.T. The burn-in test scheduling problem with batch dependent processing time and sequence
dependent setup time. Int. J. Prod. Res. 2013, 51, 1694–1706. [CrossRef]

55

Mathematics 2021, 9, 768

29. Ruiz, R.; Stutzle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

30. Wang, I.L.; Yang, T.H.; Chang, Y.B. Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine
eligibility constraints. J. Intell. Manuf. 2012, 23, 2271–2280. [CrossRef]

31. Komaki, G.M.; Teymourian, E.; Kayvanfar, V. Minimising makespan in the two-stage assembly hybrid flow shop scheduling
problem using artificial immune systems. Int. J. Prod. Res. 2016, 54, 963–983. [CrossRef]

32. Costa, A.; Cappadonna, F.A.; Fichera, S. A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent
group scheduling problem. J. Intell. Manuf. 2017, 28, 1269–1283. [CrossRef]

33. Ying, K.C.; Lin, S.W. Minimizing Makespan in Distributed Blocking Flowshops Using Hybrid Iterated Greedy Algorithms. IEEE
Access 2017, 5, 15694–15705. [CrossRef]

34. Kundakci, N.; Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput.
Ind. Eng. 2016, 96, 31–51. [CrossRef]

35. Li, X.Y.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ.
2016, 174, 93–110. [CrossRef]

36. Ding, H.J.; Gu, X.S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible
job shop scheduling problem. Comput. Oper. Res. 2020, 121, 15. [CrossRef]

37. Malega, P.; Rudy, V.; Kanasz, R.; Gazda, V. Decentralized optimization of the flexible production lines. Adv. Prod. Eng. Manag.
2020, 15, 267–276. [CrossRef]

38. Bai, D.Y.; Zhang, Z.H.; Zhang, Q. Flexible open shop scheduling problem to minimize makespan. Comput. Oper. Res. 2016, 67,
207–215. [CrossRef]

39. Ciro, G.C.; Dugardin, F.; Yalaoui, F.; Kelly, R. Open shop scheduling problem with a multi-skills resource constraint: A genetic
algorithm and an ant colony optimisation approach. Int. J. Prod. Res. 2016, 54, 4854–4881. [CrossRef]

40. Hosseinabadi, A.A.R.; Vahidi, J.; Saemi, B.; Sangaiah, A.K.; Elhoseny, M. Extended Genetic Algorithm for solving open-shop
scheduling problem. Soft Comput. 2019, 23, 5099–5116. [CrossRef]

41. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
42. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
43. Lin, D.Y.; Xie, C. The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate

Objectives. Netw Spat. Econ. 2011, 11, 727–751. [CrossRef]

56

mathematics

Article

No-Idle Flowshop Scheduling for Energy-Efficient Production:
An Improved Optimization Framework

Chen-Yang Cheng 1,†, Shih-Wei Lin 2,3,4,†, Pourya Pourhejazy 1,†, Kuo-Ching Ying 1,*,† and Yu-Zhe Lin 1,5

Citation: Cheng, C.-Y.; Lin, S.-W.;

Pourhejazy, P.; Ying, K.-C.; Lin, Y.-Z.

No-Idle Flowshop Scheduling for

Energy-Efficient Production: An

Improved Optimization Framework.

Mathematics 2021, 9, 1335. https://

doi.org/10.3390/math9121335

Academic Editors: Chin-Chia Wu and

Win-Chin Lin

Received: 4 May 2021

Accepted: 7 June 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering and Management, National Taipei University of Technology,
Taipei 106, Taiwan; cycheng@ntut.edu.tw (C.-Y.C.); pourya@ntut.edu.tw (P.P.);
s86445710993@gmail.com (Y.-Z.L.)

2 Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan;
swlin@mail.cgu.edu.tw

3 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
4 Department of Industrial Engineering and Management, Ming Chi University of Technology,

New Taipei 243, Taiwan
5 Taiwan Semiconductor Manufacturing Company Limited, Hsinchu Science Park, Hsinchu 30078, Taiwan
* Correspondence: kcying@ntut.edu.tw
† These authors contributed equally to this work; Shih-Wei Lin is the co-first author.

Abstract: Production environment in modern industries, like integrated circuits manufacturing, fiber-
glass processing, steelmaking, and ceramic frit, is characterized by zero idle-time between inbound
and outbound jobs on every machine; this technical requirement improves energy efficiency, hence,
has implications for cleaner production in other production situations. An exhaustive review of
literature is first conducted to shed light on the development of no-idle flowshops. Considering
the intractable nature of the problem, this research also develops an extended solution method
for optimizing the Bi-objective No-Idle Permutation Flowshop Scheduling Problem (BNIPFSP).
Extensive numerical tests and statistical analysis are conducted to evaluate the developed method,
comparing it with the best-performing algorithm developed to solve the BNIPFSP. Overall, the
proposed extension outperforms in terms of solution quality at the expense of a longer computa-
tional time. This research is concluded by providing suggestions for the future development of this
understudied scheduling extension.

Keywords: production management; energy-efficiency; scheduling; no-idle flowshop; metaheuristics

1. Introduction

Ecological restoration and reduced carbon emission have become major global priori-
ties [1]. Local governments have put forward regulatory measures and policies to enforce
energy-saving initiatives. These measures are predominantly formed around emission
taxation and trading of emission credits, which help bring the overall emissions below the
target baseline [2]. The Australian carbon reduction policy, the so-called safeguard mecha-
nism, and the EU Emission Trading System are prime examples of reducing the negative
impacts of business activities from electricity generation and mining to transportation,
construction, and manufacturing.

The manufacturing sector is one of the primary energy consumers and the largest
polluter with its share being more than 31 percent of the overall energy consumption and
36 percent of carbon dioxide emissions [3]. To address this issue, supply chain sustainability,
in particular, the green process design practices, has been mainly focused on reducing
energy consumption in logistics [4], production, and consumption phases as well as the use
of renewable energies [5]. Providing on-site energy production, like solar panels and biogas
fuel cells, reducing facilities’ carbon footprint by replacing lighting and energy control
systems, applying energy efficiency standards in the construction of new buildings, and

Mathematics 2021, 9, 1335. https://doi.org/10.3390/math9121335 https://www.mdpi.com/journal/mathematics

57

Mathematics 2021, 9, 1335

the installation of modern supplements for the use of sustainable resources is the primary
green practices reported in the literature [6].

Minimizing the costs associated with the machines’ energy consumption and the
resulting pollutants have been at the center of the green manufacturing studies. Consid-
ering non-processing and processing energy consumption in the production facilities [7],
energy-efficiency has been explored from the operational management perspective, i.e.,
how to cluster jobs to minimize non-value-adding operations [8] and when to turn on/off
to reduce machines idle-time, which speed level to operate, and how to plan peak and
off-peak production process to save energy [9]; Production scheduling as an operational
strategic tool is complex and requires additional measures to account for less tangible
operational aspects.

The operations-related performance measures, more particularly those pertinent to
processing energy consumption, have been the subject of many scheduling studies to
account for sustainability in the production management context. Piroozfard et al. [10]
introduced a multi-objective flexible job-shop scheduling problem, minimizing carbon foot-
print and the total late work criterion. Minimizing the makespan and total carbon emission
in production environments with unrelated parallel machines was examined by Zheng and
Wang [11]. Safarzadeh and Niaki [12] addressed the total green cost and the makespan find-
ing the Pareto optimal solutions in uniform parallel machine environments. The trade-off
between makespan and energy consumption in two-machine flowshop [13], hybrid flow-
shop [14], and unrelated parallel machine [15], and job-shop scheduling environments [16]
are among the other notable contributions at the intersection of energy-efficiency and
production schedule. These studies aimed to improve energy efficiency through a soft
optimization approach focusing on minimizing processing costs and energy consumption.
That is, a trade-off enables the decision-makers to choose between cost-effectiveness or
responsiveness and energy efficiency. Although such a flexible approach is suitable in
the current regulatory situation, plausibly more restricted regulations in the future urge
optimization approaches that minimize non-processing energy consumption considering
operational strategic measures and energy cost strategies [17]. Li et al. [18] suggested
defining a limitation on the energy consumption of each machine while minimizing the
makespan and the total completion time. Scheduling problems with the no-idle time
between the in-coming and out-going jobs on the machines is an alternative solution to
effectively reduce energy wastage in the production sector. On the other hand, the technical
characteristics of modern industries, like steelmaking [19], integrated circuits manufactur-
ing, fiberglass processing, and ceramic frit [20] require a no-idle situation. Given flowshop
production as the most common process model in the manufacturing sector [21] and the
significance of energy costs in the flowshops, no-idle flowshop scheduling has received
recent recognition among production management scholars.

The successful implementation of policy-driven mechanisms for mandating carbon
emissions depends on the effective consideration of the corporate priorities, like cost-
effectiveness and responsiveness, to ensure the firms’ competitiveness [22]. This situation
is of high significance to address conflicting operational objectives within the no-idle
production scheduling agenda that enforces maximal energy efficiency. To the best of
the author’s knowledge, no published journal papers have addressed the bi-objective
optimization of no-idle flowshops. This study extends the energy-efficient production
scheduling literature by a two-fold contribution. First, an exhaustive review of the no-
idle flowshop scheduling literature is conducted to explore the developments and gaps
in modern industry scheduling. Second, a Hybrid Iterated Greedy (HIG) algorithm is
developed to effectively solve the bi-objective variant of no-idle flowshops while ensuring
the robustness of the outcomes. The three-field α| β|γ notation of Graham et al. [23] is
used for referring to the Bi-objective No-Idle Permutation Flowshop Scheduling Problem
(BNIPFSP) as Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj in the remainder of this article. In this

notation system, Fm shows the flowshop production environment with the set of given jobs
being processed by a set of available machines in the same order. In the second part of

58

Mathematics 2021, 9, 1335

the notation, prmu determines the permutation setting to show that the sequence of jobs
is the same on all machines, and specifies that there is no idle time between inbound and
outbound jobs on every machine. Finally, α · Cmax + β · ∑ Fj determines the weighted sum
of makespan and total flowtime criteria.

The rest of this manuscript is organized into four sections. A comprehensive re-
view of the literature is provided in Section 2. The methodology, including the extended
mathematical formulation and the solution algorithm, is elaborated in Section 3. The
numerical analysis comes next, in Section 4, to analyze the effectiveness of the developed
solution approach. Finally, concluding remarks and directions for future research on no-idle
scheduling close this research work in Section 5.

2. Literature Review

Considering the recent surge in the number of articles, a comprehensive review on
no-idle flowshop scheduling and its solution methods is timely. This section reviews the
published works indexed in Google Scholar. For this purpose, searching the keywords
“no-idle” and “Flowshop” resulted in a total of 33 articles among which, 25 were perceived
as relevant; of the relevant items, five conference papers [24–28] and two theses [29,30]
were found. The journal articles are then analyzed considering the number of machines,
the studied performance indicator, and the proposed solution approach suggested by
Ribas et al. [31] and Neufeld et al. [32].

Computers and Operations Research and Expert Systems with Applications con-
tributed the most to this extension of scheduling problems with two published works.
With five contributions, Tasgetiren is the most prominent author, followed by Rossi with
three published works. Notably, half of the contributions in no-idle flowshop scheduling
are published in or after 2019, all of which are explored in the production context. A
summary of the published works is provided in Appendix A with the detailed review
elaborated below.

No-idle scheduling was the first time introduced by Cepek et al. [33,34] to minimize
total completion time in a two-machine flowshop production environment. This seminal
scheduling problem inspired more than 20 research contributions thus far, contributing to
solution algorithms and/or new mathematical extensions to No-Idle Permutation Flow-
shop Scheduling Problem (NIPFSP). Narain and Bagga [35] developed a Branch and Bound
solution method to minimize the average flowtime in a two-machine flowshop environ-
ment. Wang et al. [36] incorporated no-wait job-related constraints into the no-idle flexible
flowshops. Later studies were focused on flowshop settings with m machines. Tasge-
tiren et al. [37] and [38] developed Differential Evolution and Discrete Artificial Bee Colony
algorithms, respectively, to minimize total tardiness in NIPFSP. Tabu Search algorithm was
later adopted by Ren et al. [39] to minimize the maximum completion time (makespan).
Tasgetiren et al. [40] proposed a hybrid Differential Evolution and variable local search,
which improved the makespan values obtained by the earlier studies.

More recent studies are rather focused on proposing novel methods and variants
in the scheduling procedure. Lu [41] explored the time-dependent learning effect and
deteriorating jobs in NIPFSP, minimizing the makespan criterion. Pagnozzi and Stützle [42]
developed an automatic algorithm configuration approach for solving single-objective
permutation flowshops. The mixed-no-idle flowshop variant was introduced by Pan and
Ruiz [43] to minimize makespan using a basic Iterated Greedy (IG) algorithm. Rossi and
Nagano [44,45] explored the mixed-no-idle and sequence-dependent setup time settings
and minimized total flowtime using Beam Search algorithms. The same authors developed
a constructive heuristic for mixed-NIPFSP with sequence-dependent setup times [46]. In a
similar contribution, Nagano et al. [47] developed a constructive heuristic to solve the basic
NIPFSP considering total flowtime. Zhao et al. [48] and Riahi et al. [49] developed Discrete
Water Wave Optimization (DWWO) and IG, respectively, for minimizing total tardiness
in NIPFSP. Benders decomposition was also tested to solve mixed-no-idle flowshops
considering the makespan criterion [20]. Most recently, Zhao et al. [50] proposed a new

59

Mathematics 2021, 9, 1335

variant to the DWWO algorithm to solve distributed assembly no-idle flowshop scheduling
problems considering maximum assembly completion time. Despite its usefulness, no
published journal papers are found that addresses the bi-objective variant of NIPFSPs.
Motivated by this gap, we propose a new formulation and solution algorithm to contribute
to energy-efficient production scheduling using bi-objective no-idle flowshops.

3. Methods

3.1. Mathematical Formulation

This study extends the Mixed-Integer Programming (MIP) formulation developed
by Ruiz and Stützle [51] to account for two conflicting optimization objectives, i.e., max-
imum completion time (makespan) and total flowtime. The former is a measure to en-
hance resource utilization, while the latter measure minimizes work-in-process inventory.
The indices, parameters, and decision variables listed in Table 1 are used to model the
Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj scheduling problem.

Table 1. Mathematical notations.

Symbol Definition

n Number of jobs at hand
m Number of available machines
j, k Job tag and its position index in the sequence vector, i.e., π[j]; j, k ∈ {0, 1, 2, . . . , n}
i Machine tag; i ∈ {1, 2, . . . , m}

Pj,i Processing time of job j on machine i
Xj,k Binary decision variable, = 1 if job j is positioned at index k of the vector; = 0, otherwise
Ck,i Integer decision variable, the completion time of the job assigned to position k on machine i
Fj The total flowtime of job j

We now elaborate on the MIP formulation of the Fm
∣∣prmu, no − idle

∣∣α · Cmax + β · ∑ Fj
problem. The objective function in

Minimize z = α · Cmax + β ·
n

∑
j=0

Fj (1)

minimizes the weighted sum of the makespan and total flowtime values, which are com-
mensurable. The former part of the objective function, Cmax, will be calculated using the
no-idle calculation mechanism presented in the following sub-section, and the latter part,
∑n

j=0 Fj, is determined through the constraint calculations. The objective function is subject
to the constraints below. Binary decision variables are used in:

n

∑
k=1

Xj,k = 1, ∀j ∈ {1, 2, . . . , n} (2)

where index k represents π[j] for the sake of readability. This constraint is defined to restrict
the jobs from being assigned to more than one machine. Besides, each job should occupy
one and only one position in the job sequence, as demonstrated in:

n

∑
j=1

Xj,k = 1, ∀k ∈ {1, 2, . . . , n} (3)

The completion time of the job in position k on the machine i must be greater than
or equal to the completion time of the job on the previous machine, i.e., i − 1, plus the
processing time of the same job on the machine i. These are modeled in:

Ck,1 ≥
n

∑
j=1

Xj,k · Pj,1, ∀k ∈ {1, 2, . . . , n} (4)

60

Mathematics 2021, 9, 1335

Ck,i ≥ Ck,i−1 +
n

∑
j=1

Xj,k · Pj,i, ∀k ∈ {1, 2, . . . , n}, i ∈ {2, . . . , m} (5)

where the former equation refers to the first machine, and the latter equation is defined for
the rest of the machinery. Similarly, the completion time of a job should correspond to that
of the earlier job on the same machine in:

Ck,i ≥ Cl,i +
n

∑
j=1

Xj,k · Pj,i; i ∈ {1, 2, . . . , m}, ∀k ∈ {2, . . . , n}, ∀l ∈ {1, . . . , k − 1} (6)

where the time of the job placed at the position k of the job sequence vector on machine i
corresponds to that of its immediate earlier job at the position k − 1 on machine i. On this
basis, the completion time of the job processed on the last machine considering its flowtime
is defined in:

n

∑
k=1

Ck,i · Xj,k = Fj, ∀i = m, ∀j ∈ {1, 2, . . . , n} (7)

where the flowtime value in the objective function is defined. Finally, the variable types are
demonstrated in:

Xj,k ∈ {0, 1}, ∀j, k ∈ {1, 2, . . . , n}
Ck,i ≥ 0, ∀k ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . , m}

Fj ≥ 0, ∀j ∈ {1, 2, . . . , n}
(8)

where the completion and total flowtime variables cannot accept negative values, and the
job position variable only accepts binary values.

3.2. No-Idle Calculation Mechanism

To ensure that there is zero idle time throughout the production process, one should
regulate each machine’s first job’s commencement. For this purpose, each machine’s start
time, Si, is defined in:

Si = Si−1 + max
h=1:n

(
h

∑
j=1

Pπ[j],i−1−
h−1

∑
k=1

Pπ[j],i

)
, i ∈ {1, . . . , m}, S1 = 0 (9)

where Pπ[j],i represents the processing time of the job assigned to the position j of the
sequence vector π on machine i. Si−1 determines the start time on the previous machine.
Once the start time of every machine is known, the completion time of the first job on the
machine i can be calculated using:

Cπ[1],i = Si + Pπ[1],i, i ∈ {1, . . . , m} (10)

where it equals the summation of the corresponding start time of the machine i and the
processing time of the first job in the job sequence vector, Pπ[1],i. Next, the completion time
of the job assigned to the position j of the sequence vector π, which is processed on the
machine i, is defined in:

Cπ[j],i = Cπ[j−1],i + Pπ[j],i, j ∈ {2, . . . , n}, i ∈ {1, . . . , m} (11)

where Cπ[j],i is equal to the completion time of job position in j − 1 of job sequence vector
π on machine i, Cπ[j−1],i, plus the processing time of the job positioned in j, Pπ[j],i. Finally,
the makespan value is calculated using:

Cmax = Cπ[n],m (12)

where Cπ[n],m represents the completion time of the last job in sequence vector π, which is
processed on the last machine. Therefore, Cmax = Sm + ∑n

k=1 Pk,m. An illustrative example

61

Mathematics 2021, 9, 1335

is provided in Figure 1 to clarify the computational steps of calculating the completion
time in the no-idle flowshop.

Figure 1. Illustrative example on the calculation of the completion time in no-idle flowshops.

3.3. Solution Algorithm

The IG algorithm was introduced by Ruiz and Stützle [52] to solve permutation
flowshops. The computational procedure of IG is inspired by human behavior when
wanting a lot more of something in a greedy manner. The successful track record of
the IG algorithms in solving flowshop problems inspired us to extend it for solving the
Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj problem. The pseudocode of the HIG algorithm

is provided in Figure 2, followed by the details on the major computational elements.
It is worthwhile mentioning that the proposed modifications are adjustable and can be
effectively adapted for other application areas.

3.3.1. Solution Initialization and Decoding

Solutions are decoded as a permutation of n numbers, each of which represent a
job, with the processing sequence being similar on m machines. Taking the job sequence
3 − 6 − 2 − 4 − 5 − 1 as an example, the solution is symbolized by a vector, (3 6 2 4 5 1),
where six jobs should be processed following the specified order on every machine. To
generate the initial solution, the well-known constructive heuristic algorithm introduced
by Nawaz, Enscore, Ham (NEH; [53]), which is known as one of the best constructive
heuristics for solution initialization of the flowshop problems, is preferred to random
solution generation to ensure a better initial approximation. The NEH considers average
processing time as a priority rule for arranging the jobs. The destruction and construction
module presented in the next sub-section uses the outcomes of NEH to improve the
solution quality.

62

Mathematics 2021, 9, 1335

Figure 2. Pseudocode of the Hybrid Iterated Greedy.

3.3.2. Destruction and Construction Methods

This study applies a random destruction method with no limits to facilitate a greater
level of disturbance in the search procedure. The randomly extracted jobs, which equals
the destruction count (d), will then be saved in a separate array to be considered in the
construction procedure. A customized construction method for sorting and inserting the
removed jobs is developed to improve the effectiveness of the search procedure while
ensuring the feasibility of the resulting new solution. This approach is explained below
with an illustrative example of this procedure provided in Figure 3.

Step 1. Remove the last job from Π and name it a.
Step 2. Insert a into Π before the last job. Name the jobs before and after a as a − k and
a + k, respectively.
Step 3. Remove job a − k and rename it to b.
Step 4. Insert b next to the first job in a and name the jobs before and after b as b − k and
b + k, respectively.
Step 5. Insert b − k right before a.
Step 6. Select b + k and move it to the position before a − k.
Step 7. Select a + k and move it to the position after b.

63

Mathematics 2021, 9, 1335

Figure 3. The customized construction method for no-idle permutation flowshops considering k = 1.

3.3.3. Local Search Method

After a new solution has resulted from the iterative and greedy construction proce-
dure, a local search mechanism should be applied to search for further improvements.
For this purpose, a pre-determined number of non-repetitive random job extraction and
insertion, named as the local search count (γ), is used to find fitter solutions. If there is
an improvement as a result of applying the local search procedure, the procedure will be
continued; otherwise, it will be terminated. The pseudocode of the local search procedure
is provided in Figure 4.

3.3.4. Acceptance and Stopping Conditions

Once the current best solution (Πbest) and the new solution (Πnew) are known, the
search algorithm should determine if there is an improvement in the fitness value. If the
new solution is of better quality than the current best solution, i.e., a smaller weighted sum
of the total flowtime and makespan values f itness(Πnew) < f itness(Πbest) has resulted, the
new solution becomes the current-best solution, Πbest = Πnew. Otherwise, a mechanism is
required to decide whether or not to accept a new solution that is worse or similar to the
current best solution.

Inspired by the Simulated Annealing algorithm [54], the cooling mechanism is used
to regulate the acceptance condition. In the approach suggested by Ruiz and Stützle [52],
the fitness values associated with the current and best solutions are considered to calculate
the relative change in the solution quality, i.e., Δ = f itness(Πnew)− f itness(Πbest). Given
Δ and the initial temperature, T0, as the algorithm parameter, the current temperature T
decreases proportionately to the cooling coefficient, i.e., T ← δ × T , where 0 < δ < 1 is the
cooling rate. Finally, the acceptance probability, calculated using P = exp(−ΔE/T), should
be compared with a random number to determine whether to accept a poor-performing
solution. This mechanism is particularly useful to avoid premature convergence and

64

Mathematics 2021, 9, 1335

getting trapped in the local optima. Unchanged fitness value, i.e., Δ = 0, for a certain
number of iterations, signals the termination of the algorithm. The algorithm terminates
when the current best solution remains do not improve for a certain number of iterations.

Figure 4. Pseudocode of the local search procedure.

4. Results

This section begins with an elaboration on the configuration of the test bank and
the algorithm calibration experiment. Numerical results and statistical analysis are then
provided to compare the HIG performance with Hybrid Tabu Search (HTS; [25]). It consists
of short- and long-term phases, with the short-term phase focusing on a local search and
the long-term phase improving concentration and diversification and help escape the local
best solutions. HTS applies the NEH [53] for solution initialization, and the ‘swap’ and
‘insert’ moves as the disturbance mechanism. Besides, three other variants of IG, denoted
by the IG1, IG2, and IG3 algorithms, are included to enrich the numerical experiments
and provide insights into the impact of various computational elements in solving the
problem. It helps explore what element of the proposed extension contributes most to the
possible breakthrough. IG1 and IG2 apply the basic construction method, while IG3 uses
the customized construction method developed in our study. On the other hand, IG1 and
IG3 do not have a local search mechanism, while IG2 applies a perturbation mechanism
similar to HIG. All the algorithms are coded and compiled using a personal computer
with the following specs; Intel (R) Core (TM) i7 CPU 3.4 GHz, 8 GB RAM, and Windows 7
operating system.

The widely-used scheduling dataset developed by Tillard [55] is used to bench-
mark HIG against the best-performing algorithms in the literature developed to solve
the Fm

∣∣prmu, no − idle
∣∣α.Cmax + β.∑ Fj problem. This dataset consists of 12 job/machine

combinations considering three configuration groups: (1) n ∈ {20, 50, 100} jobs and
m ∈ {5, 10, 20} machines; (2) n = 200 jobs and m ∈ {10, 20} machines; (3) n = 500
jobs and m = 20 machines. Ten distinct instances for each combination make a total of
120 instances for the final experiments.

The calibration experiment is conducted in two phases using random test instances.
First, the best configuration is determined considering a limited set of alternatives. Next,
the set of parameters adjacent to the selected configuration in the first phase will be
explored to check if a better combination of parameters can be found. For this purpose, the
Relative Percentage Deviation (RPD) shown in Equation (13) is considered to compare the

65

Mathematics 2021, 9, 1335

resulting fitness values where smaller values are preferred, and RPD = 0 demonstrates the
best solution. In this equation, Fitness∗ refers to the fitness value obtained by each of the
solution algorithms and Fitnessbest is the best result.

RPD =
Fitnessbest − Fitness∗

Fitness∗
× 100 (13)

Random instances are used to determine the parameters of the IG1, IG2, IG3, and
HIG algorithms. The calibration test results are summarized in Table 2 for these algo-
rithms. On this basis, the algorithm parameters are set to d = 2, γ = 20, and δ = 0.9
to conduct the final experiments. To ensure a fair comparison, a termination condition
similar to that of the HTS algorithm, which is applied by Ren et al. [25], is considered.
That is, the algorithm terminates when the current best solution remains unchanged for
100 consecutive iterations.

Table 2. Calibration results analysis (best in bold).

Algorithm Parameter Phase I Phase II

IG1

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.56 1.35 1.61 0.78 2.78 1.26

IG2

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.48 0.65 0.78 0.68 0.90 1.15

IG3

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.32 0.99 1.02 0.38 3.92 0.88

HIG

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.33 0.48 0.87 0.44 4.99 0.49

Considering the calibrated parameter values and an equal importance weight
(α = β = 0.5) within a priori performance articulation scheme, the best-found solutions of
the instances solved using HTS [25] are compared to those of the HTS, IG1, IG2, and IG1
algorithms. The results are summarized in Tables 3 and 4. Except for the instance with
20 machines and 10 jobs (20 × 10), where HTS performs slightly better than HIG, the rest
of the best solutions are yielded by HIG.

We first analyze the results considering various workloads and operating scales.
Considering different numbers of jobs in the first set of instances, Table 3 shows that HIG
performs better than HTS. The difference in performance becomes more significant with an
increase in the workload. The IG2 algorithm is also superior to the HTS, considering the
first set of test instances, showing that integrating the local search mechanism contributes
significantly to the success of the developed algorithm. The solutions obtained by the IG1,
IG2, IG3, and HIG algorithms across all test instances are then compared separately in
Table 4, considering all test instances where HIG yields the best results in all cases.

66

Mathematics 2021, 9, 1335

Table 3. Best-found solutions considering the first set of test instances (best in bold).

Instance (m × n) HTS IG1 IG2 IG3 HIG

20 × 5 9437.0 9549.5 9401.0 9566.5 9324.5

20 × 10 17,456.0 17,716.5 17,616.5 17,539.0 17,472.5
20 × 20 29,319.0 29,412.5 29,149.5 29,724.5 29,148.5

50 × 5 47,719.0 46,597.0 46,717.5 47,199.5 45,895.5

50 × 10 58,610.0 61,247.0 58,375.5 58,445.0 57,582.5

50 × 20 107,007.0 110,308.0 105,657.0 108,775.5 105,555.0

100 × 5 160,401.5 162,367.0 157,927.0 158,705.5 155,420.0

100 × 10 214,438.5 206,815.5 202,818.0 207,382.5 201,117.5

100 × 20 337,888.5 335,717.0 330,472.0 330,243.5 324,920.5

200 × 10 685,369.5 690,565.5 657,372.5 671,582.5 656,480.0

200 × 20 1,003,945.5 1,006,795.0 991,009.0 1,011,902.5 989,277.5

500 × 20 4,456,166.0 4,540,516.5 4,449,380.0 4,494,197.5 4,448,496.5

Table 4. Best-found solutions across all test instances (updates in bold).

Instance (m × n) IG1 IG2 IG3 HIG

20 × 5 9239.05 9088.05 9111.90 9031.65

20 × 10 15,238.65 15,054.10 15,065.25 14,999.45

20 × 20 29,966.20 29,591.90 29,628.70 29,422.00

50 × 5 43,076.70 42,166.05 42,448.70 41,957.35

50 × 10 62,506.85 60,375.95 60,962.05 59,921.50

50 × 20 111,451.80 108,472.15 109,087.45 107,926.95

100 × 5 144,552.95 141,478.15 142,699.50 140,742.30

100 × 10 209,197.70 204,574.05 207,545.50 203,718.20

100 × 20 327,279.80 320,069.55 320,393.40 316,219.80

200 × 10 697,101.30 674,801.50 684,276.40 674,297.30

200 × 20 990,265.30 965,298.95 974,714.40 962,675.70

500 × 20 4,764,325.25 4,687,959.00 4,704,317.20 4,680,702.80

In an overall analysis, Tables 5 and 6 provide the Average Relative Percentage Devia-
tion (ARPD) values for different workloads and machines, respectively. The RPD analysis
shows the overall impact of the number of machinery and workload on the performance
of the algorithm. It is evident that HIG obtains meaningfully better solutions than the
HTS, IG1, IG2, and IG3 algorithms when solving the Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj

problem across different operational situations. Given the RPD analysis, it is expected
that HIG’s superiority to the current-best-performing algorithm, HTS, will be even more
significant for industry-scale applications.

A statistical test is conducted to check whether the resulting improvement in the
best-found solutions is significant. The null hypothesis is that the HIG algorithm does
not outperform the HTS algorithm when solving the Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj

problem. The t-test results are summarized in Table 7. Considering 120 test instances, the
p-value is supportive of rejecting the null hypothesis. That is, with 95 percent of confidence,
we can claim that HIG is superior to the current-best-performing algorithm in the literature
of BNIPFSP, i.e., the HTS algorithm. It is also observed that the proposed extension shows
a significant improvement in the performance of the algorithm when compared to all three
variants of the IGs.

67

Mathematics 2021, 9, 1335

Table 5. The Relative Performance Deviation considering various workloads (best in bold).

Workload (n) Machinery (m) HTS IG1 IG2 IG3 HIG

20

5 1.21 2.41 0.82 2.60 0.00
10 0.00 1.49 0.92 0.48 0.09
20 0.58 0.91 0.00 1.98 0.00

Overall 0.60 1.60 0.58 1.68 0.03

50

5 3.97 1.53 1.79 2.84 0.00
10 1.78 6.36 1.38 1.50 0.00
20 1.38 4.50 0.10 3.05 0.00

Overall 2.38 4.13 1.09 2.46 0.00

100

5 3.21 4.47 1.61 2.11 0.00
10 6.62 2.83 0.85 3.12 0.00
20 3.99 3.32 1.71 1.64 0.00

Overall 4.61 3.54 1.39 2.29 0.00

200
10 4.40 5.19 0.14 2.30 0.00
20 1.48 1.77 0.18 2.29 0.00

Overall 2.94 3.48 0.16 2.29 0.00

500 20 0.17 2.07 0.02 1.03 0.00

Table 6. Average Relative Performance Deviation considering operating scale (best in bold).

Machinery (m) Workload (n) HTS IG1 IG2 IG3 HIG

5

20 1.21 2.41 0.82 2.60 0.00
50 3.97 1.51 1.79 2.84 0.00

100 3.21 4.47 1.61 2.11 0.00

Overall 2.79 2.80 1.40 2.51 0.00

10

20 0.00 1.49 0.92 0.48 0.09
50 1.78 6.36 1.38 1.50 0.00

100 6.62 2.83 0.85 3.12 0.00
200 4.40 5.19 0.14 2.30 0.00

Overall 3.20 3.97 0.81 1.84 0.02

100

20 0.58 0.91 0.00 1.98 0.00
50 1.38 4.50 0.10 3.05 0.00

100 3.99 3.32 1.71 1.64 0.00
200 1.48 1.77 0.18 2.29 0.00
500 0.17 2.07 0.02 1.03 0.00

Overall 1.26 2.09 0.33 1.66 0.00

Table 7. Paired t-test analysis of the performance differences under 0.95 confidence interval.

Instance Average StD DoF T Stat
One-Tail Two-Tail

t-Critical p-Value t-Critical p-Value

HIG Vs. HTS 7255.58 8435.13 11 2.86 1.79 0.0078 2.20 0.0157

StD: Standard Deviation, S.E.: Standard Error of the Mean, DoF: Degree of Freedom.

As a final step to the numerical analysis, the best-found solutions to all 120 test
instances are recorded in Appendix B. The updated values are highlighted in bold font.
Notably, 119 out of 120 best-found solutions are yielded by the HIG algorithm. The resulting
values can be used in future studies to benchmark the prospect solution algorithms for
solving the Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj problem.

68

Mathematics 2021, 9, 1335

5. Conclusions

Energy efficiency in the production sector requires well-informed operations manage-
ment decisions in addition to the use of modern equipment, smart lighting and control
systems, and the standard construction of facilities. Production scheduling is a prime
example of planning tools that facilitate the successful implementation of green initia-
tives for reducing the carbon footprint. This study contributes to the energy-efficient
production scheduling literature developing a mathematical model and a solution algo-
rithm to address the gap identified in the comprehensive literature review. Extensive
numerical analysis using a well-known dataset showed that almost all of the best-found
solutions are yielded by the HIG algorithm. The statistical test of significance confirmed
that HIG performs significantly better than the benchmark algorithm when solving the
Fm

∣∣prmu, no − idle
∣∣α · Cmax + β · ∑ Fj problem.

Despite its effectiveness in solving the BNIPFSPs, the proposed solution algorithm is
limited in that it applies a priori preference articulation approach for reconciliation of the
makespan and total flowtime. To address this limitation, the following directions can be
pursued. First, one can extend the Iterated Greedy algorithm to work with the Pareto Front
approach to provide a comprehensive set of optimum solutions and trade-offs. Second,
other multi-objective optimization algorithms can be adapted to solve this intractable
scheduling extension. The third suggestion for future research includes adopting the
Concept of Stratification and Incremental Enlargement to solve the problem’s dynamic
variant. In doing so, one can also account for operational parameter uncertainties and
the possibility of rejecting a job or partially accepting a batch of jobs. Finally, the no-
idle setting needs more attention in other production settings to contribute to energy
efficiency literature.

Author Contributions: C.-Y.C.: Conceptualization, Methodology, Software. S.-W.L.: Conceptual-
ization, Methodology, Software, Funding acquisition. P.P.: Investigation, Writing—Original draft,
Writing—Revision. K.-C.Y.: Supervision, Conceptualization, Methodology. Y.-Z.L.: Formal analysis.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Ministry of Science and Technology, Taiwan,
under Grant MOST 109-2221-E-027-073/Most-109-2410-H-182-009-MY3, and in part by the Linkou
Chang Gung Memorial Hospital under Grant BMRPA19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary of the No-Idle Flowshop Scheduling Literature.

Title Authors (Year) Publication Scheduling Extension Objective Function

Note: On the Two-Machine
No-Idle Flowshop Problem Cepek et al. (2000) Naval Research

Logistics
No-idle permutation

flowshop Total completion time

Flowshop/no-idle
scheduling to minimize the

mean flowtime

Narain and Bagga
(2005)

Australia and New
Zealand Industrial

and Applied
Mathematics
(ANZIAM)

No-idle permutation
flowshop Average flowtime

No-wait flexible flowshop
scheduling with
no-idle machines

Wang et al. (2005) Operations Research
Letters

No-wait flexible
flowshop with no-idle

machines
Makespan

69

Mathematics 2021, 9, 1335

Table A1. Cont.

Title Authors (Year) Publication Scheduling Extension Objective Function

A differential evolution
algorithm for the no-idle

flowshop scheduling
problem with total
tardiness criterion

Tasgetiren et al.
(2011)

International Journal
of Production

Research

No-idle permutation
flowshop Total tardiness

Tabu search algorithm for
no-idle flowshop

scheduling problems
Ren et al. (2010)

Computer
Engineering and

Design

No-idle permutation
flowshop Makespan

A DE Based Variable
Iterated Greedy Algorithm

for the No-Idle
Permutation Flowshop

Scheduling Problem with
Total Flowtime Criterion

Tasgetiren et al.
(2011) Conference No-idle permutation

flowshop Total flowtime

Hybrid Tabu Search
Algorithm for bi-criteria
no-idle permutation flow
shop scheduling problem

Ren et al. (2011) Conference Bi-objective no-idle
permutation flowshop

Makespan and total
flowtime

A new heuristic method for
minimizing the makespan
in a no-idle permutation

flowshop

Nagano & Branco
(2012) Conference No-idle permutation

flowshop Makespan

A discrete artificial bee
colony algorithm for the

no-idle permutation
flowshop scheduling

problem with the total
tardiness criterion

Tasgetiren et al.
(2013b)

Applied Mathematical
Modelling

No-idle permutation
flowshop Total tardiness

A variable iterated greedy
algorithm with differential

evolution for the no-idle
permutation flowshop

scheduling problem

Tasgetiren et al.
(2013a)

Computers &
Operations Research

No-idle permutation
flowshop Makespan

Metaheuristics for the
no-idle permutation
flowshop scheduling

problem

Büyükdağlı (2013) Thesis No-idle permutation
flowshop -

An effective iterated
greedy algorithm for the

mixed no-idle permutation
flowshop scheduling

problem

Pan and Ruiz (2014) OMEGA Mixed no-idle
permutation flowshop Makespan

Research on no-idle
permutation flowshop

scheduling with
time-dependent learning
effect and deteriorating

jobs

Lu (2016) Applied Mathematical
Modelling

No-idle permutation
flowshop scheduling
with time-dependent

learning effect and
deteriorating jobs

Makespan

Heuristics for the mixed
no-idle flowshop with

sequence-dependent setup
times and total flowtime

criterion

Rossi and Nagano
(2019a)

Expert Systems with
Applications

Mixed no-idle
permutation flowshop

with SDST
Total flowtime

70

Mathematics 2021, 9, 1335

Table A1. Cont.

Title Authors (Year) Publication Scheduling Extension Objective Function

Heuristics for the mixed
no-idle flowshop with

sequence-dependent setup
times

Rossi and Nagano
(2019b)

Journal of the
Operational Research

Society

Mixed no-idle
permutation flowshop

with SDST
Makespan

High-performing heuristics
to minimize flowtime in

no-idle permutation
flowshop

Nagano et al. (2019) Engineering
Optimization

No-idle permutation
flowshop Total flowtime

A Variable Iterated Local
Search Algorithm for

Energy-Efficient No-idle
Flowshop Scheduling

Problem

Tasgetiren et al.
(2019) Conference Bi-objective no-idle

permutation flowshop
Makespan and total
energy consumption

A contribution for the
mixed no-idle flowshop

scheduling problem with
sequence-dependent setup

times: analysis and
solutions procedures

Rossi (2020) Thesis

Mixed no-idle
flowshop with

sequence-dependent
setup times

-

A hybrid discrete water
wave optimization

algorithm for the no-idle
flowshop scheduling
problem with total
tardiness criterion

Zhao et al. (2020) Expert Systems with
Applications

No-idle permutation
flowshop Total tardiness

A new iterated greedy
algorithm for no-idle

permutation flowshop
scheduling with the total

tardiness criterion

Riahi et al. (2020) Computers &
Operations Research

No-idle permutation
flowshop Total tardiness

Benders decomposition for
the mixed no-idle

permutation flowshop
scheduling problem

Bektaş et al. (2020) Journal of Scheduling Mixed no-idle
permutation flowshop Makespan

Heuristics and
metaheuristics for the

mixed no-idle flowshop
with sequence-dependent

setup times and total
tardiness minimization

Rossi and Nagano
(2020)

Swarm and
Evolutionary
Computation

Mixed no-idle
permutation flowshop

with
sequence-dependent

setup times

Total tardiness

A Novel General Variable
Neighborhood Search

through Q-Learning for
No-Idle Flowshop

Scheduling

Oztop et al. (2020) Conference No-idle permutation
flowshop Makespan

Automatic design of
hybrid stochastic local
search algorithms for

permutation flowshop
problems with additional

constraints

Pagnozzi and Stützle
(2021)

Operations Research
Perspectives

No-idle permutation
flowshop Makespan

A cooperative water wave
optimization algorithm

with reinforcement
learning for the distributed
assembly no-idle flowshop

scheduling problem

Zhao et al. (2021) Computers &
Industrial Engineering

Distributed assembly
no-idle flow-shop

scheduling problem

Maximum assembly
completion time

71

Mathematics 2021, 9, 1335

Appendix B

Table A2. Best-Found Solutions (BFS) across All Test Instances (Updates in Bold).

Inst.
(m×n)

BFS
Inst.

(m×n)
BFS

Inst.
(m×n)

BFS
Inst.

(m×n)
BFS

Inst.
(m×n)

BFS

1

20 × 5 9324.5

2

20 × 5 8768.5

3

20 × 5 9004.0

4

20 × 5 9201.0

5

20 × 5 9840.0

20 × 10 17,456.0 20 × 10 15,359.5 20 × 10 15,311.0 20 × 10 15,060.5 20 × 10 12,932.0

20 × 20 29,148.5 20 × 20 27,458.5 20 × 20 29,330.0 20 × 20 27,500.5 20 × 20 30,123.5

50 × 5 45,895.5 50 × 5 40,849.5 50 × 5 39,540.0 50 × 5 40,900.0 50 × 5 46,931.0

50 × 10 57,582.5 50 × 10 56,394.5 50 × 10 55,894.5 50 × 10 60,125.5 50 × 10 53,752.0

50 × 20 105,555.0 50 × 20 119,208.5 50 × 20 95984.5 50 × 20 113,445.5 50 × 20 97,119.0

100 × 5 155,420.0 100 × 5 134,879.0 100 × 5 133,638.0 100 × 5 133,875.5 100 × 5 147,159.0

100× 10 201,117.5 100× 10 178,403.0 100× 10 212,533.0 100 × 10 191,444.5 100 × 10 195,680.5

100× 20 324,920.5 100× 20 297,506.0 100× 20 310,170.5 100 × 20 345,987.0 100 × 20 355,364.0

200× 10 656,480.0 200× 10 752,145.0 200× 10 729,595.0 200 × 10 618,158.0 200 × 10 667,624.5

200× 20 989,277.5 200× 20 962,653.5 200× 20 944,299.5 200 × 20 903,733.0 200 × 20 987,579.5

500× 20 4,448,496.5 500× 20 4,550,718 500× 20 4,927,311 500 × 20 4,443,889 500 × 20 485,7293

6

20 × 5 9974.0

7

20 × 5 7746.5

8

20 × 5 8809.5

9

20 × 5 9435.5

10

20 × 5 8213.0

20 × 10 15,218.5 20 × 10 13,795.0 20 × 10 15,206.0 20 × 10 15,190.0 20 × 10 14,449.5

20 × 20 30,508.0 20 × 20 28,473.5 20 × 20 29,676.5 20 × 20 29,177.0 20 × 20 32,824.0

50 × 5 40,562.5 50 × 5 43,979.0 50 × 5 41,450.0 50 × 5 39,433.0 50 × 5 40,033.0

50 × 10 67,395.5 50 × 10 61,381.0 50 × 10 65,124.5 50 × 10 59,999.0 50 × 10 61,566.0

50 × 20 116,283.0 50 × 20 113,469.0 50 × 20 102,066.0 50 × 20 104,491.5 50 × 20 111,647.5

100 × 5 135,117.0 100 × 5 158,846.0 100 × 5 130,140.5 100 × 5 138,971.0 100 × 5 139,377.0

100× 10 198,459.5 100× 10 216,278.5 100× 10 214,725.5 100 × 10 21,8945.0 100 × 10 201,118.0

100× 20 294,212.0 100× 20 310,486.0 100× 20 300,453.0 100 × 20 321,981.0 100 × 20 301,118.0

200× 10 698,950.5 200× 10 6,123,41.5 200× 10 705,257.0 200 × 10 601,637.0 200 × 10 700,784.5

200× 20 976,708.0 200× 20 1,025,032 200× 20 1,003,762 200 × 20 919,347.5 200 × 20 914,365.5

500× 20 446,0524 500× 20 4,829,931 500× 20 4,979,367 500 × 20 4,414,894 500 × 20 489,4606

References

1. Zhu, Z.-S.; Liao, H.; Cao, H.-S.; Wang, L.; Wei, Y.-M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries
in recent three decades. Appl. Energy 2014, 113, 808–815. [CrossRef]

2. Sutherland, B.R. Tax Carbon Emissions and Credit Removal. Joule 2019, 3, 2071–2073. [CrossRef]
3. Agency, I.E. Tracking Industrial Energy Efficiency and CO2 Emissions; OECD: Paris, France, 2007; ISBN 9789264030169.
4. Pourhejazy, P.; Kwon, O.K.; Lim, H. Integrating Sustainability into the Optimization of Fuel Logistics Networks. KSCE J. Civ. Eng.

2019, 23, 1369–1383. [CrossRef]
5. Zhang, H.C.; Kuo, T.C.; Lu, H.; Huang, S.H. Environmentally conscious design and manufacturing: A state-of-the-art survey. J.

Manuf. Syst. 1997, 16, 352–371. [CrossRef]
6. Pourhejazy, P.; Kwon, O.K. A Practical Review of Green Supply Chain Management: Disciplines and Best Practices. J. Int. Logist.

Trade 2016, 14, 156–164. [CrossRef]
7. Peng, C.; Peng, T.; Zhang, Y.; Tang, R.; Hu, L. Minimising non-processing energy consumption and tardiness fines in a mixed-flow

shop. Energies 2018, 11, 3382. [CrossRef]
8. Cheng, C.-Y.; Pourhejazy, P.; Ying, K.-C.; Lin, C.-F. Unsupervised Learning-based Artificial Bee Colony for minimizing non-value-

adding operations. Appl. Soft Comput. 2021, 105, 107280. [CrossRef]
9. Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018,

172, 3249–3264. [CrossRef]
10. Piroozfard, H.; Wong, K.Y.; Wong, W.P. Minimizing total carbon footprint and total late work criterion in flexible job shop

scheduling by using an improved multi-objective genetic algorithm. Resour. Conserv. Recycl. 2018, 128, 267–283. [CrossRef]
11. Zheng, X.-L.; Wang, L. A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated

parallel machine green scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 790–800. [CrossRef]
12. Safarzadeh, H.; Niaki, S.T.A. Bi-objective green scheduling in uniform parallel machine environments. J. Clean. Prod. 2019,

217, 559–572. [CrossRef]
13. Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between makespan and energy

consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [CrossRef]
14. Zhang, B.; Pan, Q.; Gao, L.; Li, X.; Meng, L.; Peng, K. A multiobjective evolutionary algorithm based on decomposition for hybrid

flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [CrossRef]
15. Cota, L.P.; Coelho, V.N.; Guimarães, F.G.; Souza, M.J.F. Bi-criteria formulation for green scheduling with unrelated parallel

machines with sequence-dependent setup times. Int. Trans. Oper. Res. 2021, 28, 996–1017. [CrossRef]

72

Mathematics 2021, 9, 1335

16. Jiang, T.; Zhang, C.; Sun, Q.-M. Green job shop scheduling problem with discrete whale optimization algorithm. IEEE Access
2019, 7, 43153–43166. [CrossRef]

17. Aghelinejad, M.; Ouazene, Y.; Yalaoui, A. Complexity analysis of energy-efficient single machine scheduling problems. Oper. Res.
Perspect. 2019, 6, 100105. [CrossRef]

18. Li, K.; Zhang, X.; Leung, J.Y.-T.; Yang, S.-L. Parallel machine scheduling problems in green manufacturing industry. J. Manuf. Syst.
2016, 38, 98–106. [CrossRef]

19. Niu, S.; Song, S.; Chiong, R. A Distributionally Robust Scheduling Approach for Uncertain Steelmaking and Continuous Casting
Processes. IEEE Trans. Syst. Man Cybern. Syst. 2021. [CrossRef]

20. Bektaş, T.; Hamzadayı, A.; Ruiz, R. Benders decomposition for the mixed no-idle permutation flowshop scheduling problem. J.
Sched. 2020, 23, 513–523. [CrossRef]

21. Ding, J.-Y.; Song, S.; Gupta, J.N.D.; Wang, C.; Zhang, R.; Wu, C. New block properties for flowshop scheduling with blocking and
their application in an iterated greedy algorithm. Int. J. Prod. Res. 2016, 54, 4759–4772. [CrossRef]

22. Foumani, M.; Smith-Miles, K. The impact of various carbon reduction policies on green flowshop scheduling. Appl. Energy 2019,
249, 300–315. [CrossRef]

23. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.

24. Tasgetiren, M.F.; Pan, Q.-K.; Wang, L.; Chen, A.H.-L. A DE based variable iterated greedy algorithm for the no-idle permutation
flowshop scheduling problem with total flowtime criterion. In Proceedings of the International Conference on Intelligent
Computing, Zhengzhou, China, 11–14 August 2011; pp. 83–90.

25. Ren, W.-J.; Duan, J.-H.; Zhang, F.; Han, H.; Zhang, M. Hybrid Tabu Search Algorithm for bi-criteria No-idle permutation flow
shop scheduling problem. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25
May 2011; pp. 1699–1702.

26. Nagano, M.S.; Branco, F.J.C. A new heuristic method for minimizing the makespan in a no-idle permutation flowshop. In
Proceedings of the Simposio Brasileiro de Pesquisa Operacional, Rio de Janeiro, Brazil, 24–28 September 2012.

27. Fatih Tasgetiren, M.; Öztop, H.; Gao, L.; Pan, Q.K.; Li, X. A Variable Iterated Local Search Algorithm for Energy-Efficient No-idle
Flowshop Scheduling Problem. Procedia Manuf. 2019, 39, 1185–1193. [CrossRef]

28. Oztop, H.; Tasgetiren, M.F.; Kandiller, L.; Pan, Q.K. A Novel General Variable Neighborhood Search through Q-Learning for
No-Idle Flowshop Scheduling. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK,
19–24 July 2020. [CrossRef]

29. Rossi, F.L. A Contribution for the Mixed No-Idle Flowshop Scheduling Problem with Sequence-Dependent Setup Times: Analysis
and Solutions Procedures. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019.

30. Buyukdagli, O. Metaheuristics for the No-Idle Permutation Flowshop Scheduling Problem. Master Thesis, Yasar University,
Bornova, Turkey, 2013.

31. Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system
and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [CrossRef]

32. Neufeld, J.S.; Gupta, J.N.D.; Buscher, U. A comprehensive review of flowshop group scheduling literature. Comput. Oper. Res.
2016, 70, 56–74. [CrossRef]

33. Cepek, O.; Okada, M.; Vlach, M. Minimizing total completion time in a two-machine no-idle flowshop. Res. Rep. 1998, 98, 1–23.
34. Čepek, O.; Okada, M.; Vlach, M. Note: On the Two-Machine No-Idle Flowshop Problem. Nav. Res. Logist. 2000, 47, 353–358.

[CrossRef]
35. Narain, L.; Bagga, P.C. Flowshop/no-idle scheduling to minimise the mean flowtime. ANZIAM J. 2005, 47, 265–275. [CrossRef]
36. Wang, Z.; Xing, W.; Bai, F. No-wait flexible flowshop scheduling with no-idle machines. Oper. Res. Lett. 2005, 33, 609–614.

[CrossRef]
37. Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.N.; Jin Chua, T. A differential evolution algorithm for the no-idle flowshop scheduling

problem with total tardiness criterion. Int. J. Prod. Res. 2011, 49, 5033–5050. [CrossRef]
38. Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Oner, A. A discrete artificial bee colony algorithm for the no-idle permutation

flowshop scheduling problem with the total tardiness criterion. Appl. Math. Model. 2013, 37, 6758–6779. [CrossRef]
39. Ren, W.-J.; Pan, Q.-K.; Han, H.-Y. Tabu search algorithm for no-idle flowshop scheduling problems. Comput. Eng. Des. 2010,

31, 5071–5074.
40. Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Buyukdagli, O. A variable iterated greedy algorithm with differential evolution

for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 2013, 40, 1729–1743. [CrossRef]
41. Lu, Y.Y. Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs. Appl.

Math. Model. 2016, 40, 3447–3450. [CrossRef]
42. Pagnozzi, F.; Stützle, T. Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with

additional constraints. Oper. Res. Perspect. 2021, 8, 100180.
43. Pan, Q.-K.; Ruiz, R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem.

Omega 2014, 44, 41–50. [CrossRef]
44. Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times and total flowtime

criterion. Expert Syst. Appl. 2019, 125, 40–54. [CrossRef]

73

Mathematics 2021, 9, 1335

45. Rossi, F.L.; Nagano, M.S. Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times
and total tardiness minimisation. Swarm Evol. Comput. 2020, 55, 100689. [CrossRef]

46. Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times. J. Oper. Res. Soc.
2019, 1–27. [CrossRef]

47. Nagano, M.S.; Rossi, F.L.; Martarelli, N.J. High-performing heuristics to minimize flowtime in no-idle permutation flowshop.
Eng. Optim. 2019, 51, 185–198. [CrossRef]

48. Zhao, F.; Zhang, L.; Zhang, Y.; Ma, W.; Zhang, C.; Song, H. A hybrid discrete water wave optimization algorithm for the no-idle
flowshop scheduling problem with total tardiness criterion. Expert Syst. Appl. 2020, 146, 113166. [CrossRef]

49. Riahi, V.; Chiong, R.; Zhang, Y. A new iterated greedy algorithm for no-idle permutation flowshop scheduling with the total
tardiness criterion. Comput. Oper. Res. 2020, 117, 104839. [CrossRef]

50. Zhao, F.; Zhang, L.; Cao, J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the
distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [CrossRef]

51. Ruiz, R.; Vallada, E.; Fernandez-Martinez, C. Scheduling in flowshops with no-idle machines. In Computational Intelligence in Flow
Shop and Job Shop Scheduling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–51.

52. Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

53. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

54. Osman, I.; Potts, C. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [CrossRef]
55. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]

74

mathematics

Article

Improving the Return Loading Rate Problem in Northwest
China Based on the Theory of Constraints

Wen-Tso Huang 1, Cheng-Chang Lu 2 and Jr-Fong Dang 3,*

Citation: Huang, W.-T.; Lu, C.-C.;

Dang, J.-F. Improving the Return

Loading Rate Problem in Northwest

China Based on the Theory of

Constraints. Mathematics 2021, 9, 1397.

https://doi.org/10.3390/

math9121397

Academic Editor: Armin Fügenschuh

Received: 3 May 2021

Accepted: 13 June 2021

Published: 16 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Business Administration, Chung Yuan Christian University, Chung Li District,
Taoyuan City 320314, Taiwan; wthuang@cycu.edu.tw

2 Financial Management Programme, Beijing Institute of Technology, Zhuhai, College of Global Talents, No.6,
Jinfeng Rd., Tangjiawan, Zhuhai 519088, China; cheng-chang.lu@cgt.bitzh.edu.cn

3 Department of Industrial Engineering and Systems Management, Feng Chia University, 100 Wenhwa Road,
Taichung 407802, Taiwan

* Correspondence: jfdang@fcu.edu.tw

Abstract: This paper introduces how to improve the return loading rate problem by integrating the
Sub-Tour reversal approach with the method of the Theory of Constraints (TOC). The proposed
model generates the initial solution derived by the Sub-Tour reversal approach in phase 1 and then
applies TOC to obtain the optimal solution, meeting the goal of improving the return loading rate
to more than 50% and then lowering the total transportation distance in phase 2. To see our model
capability, this study establishes an original distribution layout to compare the performance of the
Sub-Tour reversal approach with our model, based on the simulation data generated by the Monte
Carlo simulation. We also conduct the pair t-test to verify our model performance. The results show
that our proposed model outperforms the Sub-Tour reversal approach in a significant manner. By
utilizing the available data, our model can be easily implemented in the real world and efficiently
seeks the optimal solutions.

Keywords: TOC; return loading rate; logistics; total transport distance; northwest China

1. Introduction

Northwest China is fruitful, and its agriculture is productive. Northwest China
includes the Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang provincial administrative
regions. According to the vast distances of these five provinces and the actual situation
regarding the demand for logistics and transport infrastructure, most companies face a
return loading rate problem. The problem results from the logistics constructions and
cold chain logistics lagging behind needs, restricting the development of agriculture in
the region. Most companies schedule the forward loading rate of transport vehicles ap-
proximating to 99% from supplier to customer to gain operational efficiency and corporate
profits. However, in reality, those companies cannot well schedule the backward loading
rate of the transport vehicles, due to the lack of needs from the customer returning to
supplier (Subulan et al. [1]; Soysal et al. [2]; Kim and Lee [3]; Konstantakopoulos et al. [4]).
This encouraged us to study the transport routes assisting enterprises in reducing logistics
costs, improving operational efficiency and ultimately maximizing corporate profits, espe-
cially logistics costs, accounting for a large proportion of a company’s total expenses. The
establishment of improving the backward loading rate of transport vehicles can benefit
industries and the northwest region. Thus, in this paper, we focus primarily on two factors:
the total transport distance and the return loading rate, both of which are determinants in
the design of transport routes. The total transport distance problem plays an important
role in transport optimization since the minimization of the total transportation distance
contributes to transport efficiency. In addition, the definition of return loading rate refers
to the proportion of unused load capacity to the total load rate. In reality, there are many

Mathematics 2021, 9, 1397. https://doi.org/10.3390/math9121397 https://www.mdpi.com/journal/mathematics

75

Mathematics 2021, 9, 1397

logistics operators whose side-pursuit is to shorten the delivery time; thus, the time for
transport vehicles to design return routes is limited, which causes vehicles to return with
no other goods, and leads to poor operational efficiency.

To solve the problem, we propose a two-phase solution procedure to derive the
optimal solution. In phase 1, we apply the Sub-Tour reversal approach to obtain the initial
solution based on Hillier and Lieberman [5]. By the available results, we further utilize the
method of the Theory of Constraints (TOC) in phase 2 to quickly and accurately find the
crux of the impact of the total transport distance and the return loading rate. To improve
the return loading rate, we relax the total transportation distance adjustment to achieve
optimization. The resulting outcome shows that the return loading rate is more than 50%,
which results from the actual needs of northern China. Furthermore, this paper utilizes the
simulation data to validate our model and adopts the Monte Carlo simulation method to
test the deriving solutions. The reason why we apply Monte Carlo simulation is because
Moroko and Caflisch [6] stated that numerically simulated stochastic processes can be
done well by discretizing the process into small time steps and applying pseudo-random
sequences to simulate the randomness. Huang et al. [7] indicated its efficiency and wide
scope of applicability. This encouraged us to apply the Monte Carlo simulation to derive
all simulation data throughout this paper. Based on the resulting outcomes, we know that
the TOC effectively obtains the best routes design, and the standard return loading rate
optimization objectives provide evidence of the superiority of the TOC method.

The remainder of this paper is organized as follows. In Section 2, a review of the
literature related to the Sub-Tour reversal method, the TOC method and their operational
performance measures is presented. Section 3 describes the Sub-Tour reversal model and
the TOC method applied in this study. Section 4 presents the return loading rate problem
in Northwest China and the simulation results. Finally, Section 5 concludes and points out
the directions for future research.

2. Literature Review

With respect to the subject of logistics, numerous related issues and areas have been
studied, such as route optimization, distribution center network layout and vehicle return
issues. Efficient logistics management can be achieved if there is an understanding of
the pros and cons of the concept. We systematically review the previous studies so as
to capture the academic perspectives. Among them, distance is a primary concern of
logistics. Daganzo [8] developed a simple formula to predict the distance traveled by fleets
of vehicles with respect to physical distribution problems involving a depot and its area
of influence. However, taking other factors into consideration, reverse logistics efficiency
perhaps provides a better solution. Subulan et al. [1] claimed that reverse logistics and
product recovery options, such as recycling, remanufacturing and reusing, are important
issues due to the environmental and economic issues as well as the legal regulations. Kim
and Lee [3] considered network design, capacity planning and vehicle routing for collection
systems in reverse logistics. Dobos [9] stated that the aim of a reverse logistics system is to
find optimal inventory policies with special structures, as they assumed that demand is a
known continuous function in a given planning horizon and that the return rate of used
items is a given function. Accordingly, they found that there is a constant delay between
use and return processes. Ljungberg and Gebresenbet [10] mapped out city-center goods
distribution in Uppsala and Sweden to see the possibility of reducing cost, congestion, and
environmental impact by coordinating good distribution. Qualitative and quantitative data
were collected via questionnaires, interviews and measurements at loading and unloading
zones of retail shops. Soysal et al. [2] developed a multi-objective linear programming
model for a generic beef logistics network problem. The objectives of the model are to
minimize the total logistics costs and the total amount of greenhouse gas emissions due
to transportation operations. Guo et al. [11] applied the Genetic Algorithm (GA) to solve
the route design problem of China. As we can see, there are lots of studies invested
into the logistics problems. One can refer to Konstantakopoulos et al. [4] for a detailed

76

Mathematics 2021, 9, 1397

literature review in this field. In addition, Wang et al. [12] stated that the importance of
logistics and supply chain has been amplified due to COVID-19. They proposed a hybrid
multi-criteria model to evaluate third-party logistics (3PL). Duan et al. [13] claimed that
agriculture decision support systems (DSSs) play an important role in improving agribusi-
ness productivity. Thus, they presented a multicriteria analysis approach for evaluating
and selecting the most appropriate agriculture DSS for sustainable agribusiness. Jiang
and Zhou [14] established a supply chain utility model and discussed three different situa-
tions of supply chain members since the reasonable distribution can be a vital part in the
supply chain. Paksoy et al. [15] developed a closed-loop supply chain model, describing
the trade-offs between various costs considering emissions and transportations. They
constructed the model in the form of linear programming formulations. Fahimnia et al. [16]
studied the cost implications and carbon reduction potentials of the carbon-pricing scheme
in Australia. A non-linear optimization model was constructed to depict the trade-off
between transportation costs and the costs of carbon emission and fuel consumption.
Özceylan et al. [17] integrated both strategic and tactical decisions among the closed-loop
supply chain. The strategic level decisions consider the amounts of goods flowing in the
supply chain, and tactical decisions concern balancing disassembly lines in the reverse
supply chain. Özceylan et al. [18] mentioned that the increasing worldwide environmen-
tal and social concerns motivate manufacturers and consumers to implement recycling
strategies. They proposed a linear programming to solve for the reverse material flows and
further integrated results to forward the supply chain. Çil et al. [19] developed a mixed-
model assembly line balancing (MMALB) problem with the collaboration between human
workers and robots. They formulated the problem as a mixed-integer linear programming
(MILP) model and further implemented the bee algorithm (BA) and artificial bee colony
(ABC) algorithm to derive the solutions to a large-scale problem. Miraç and Özceylan [20]
stated that the United Nations Humanitarian Response Depot UNHRD enables human-
itarian actors to pre-position and stockpile relief items and support equipment for swift
delivery in emergency situations. There are two different mathematical models to solve
the minimization distance and maximization of the users covered. We find that the pro of
these papers can be the optimal solution derived in an efficient manner, due to the single
objective. The con of these papers can be the lack of taking other factors into consideration
simultaneously. Therefore, the examination of previous studies indicates that there is a
need to develop a model investigating not only the costs, but also the loading rate to solve
the problem as mentioned earlier.

To define the result of the optimization, we introduce the loading rate of the vehicle
factor. Based on the duality of the distribution costs, profits of logistics and reverse logistics
to improve results, Ryu and Hyun [21] put forward an optimal modeling system that
uses the push system and grouping method of effective logistics cost. We note that the
TOC method can be utilized to solve the problem as mentioned, due to its efficiency.
Lee et al. [22] presented an alternative method that enhances the system performance by
the method of TOC. With the enhancement, they expected that the TOC methodology
can be adopted by more companies, especially those that have the same characteristics.
Chang and Huang [23] proposed an enhanced TOC for application in a re-entrant flow
shop in which job processing times are generated from a discrete uniform distribution
in which machine breakdowns are subject to an exponential distribution. As we can see,
the TOC is a proven, useful approach for problems related to logistics. In this study, we
consider two essential logistics factors, namely, the total transportation distance and the
loading rates of transport vehicles. This paper utilizes these factors to show that the TOC
further optimizes the results of the Sub-Tour reversal method and to determine the degree
of improvement resulted from TOC.

3. Methodology

This paper integrates the Sub-Tour reversal and the TOC methods to optimize the
logistics in improving the return loading rate problem. In phase 1, according to Hillier

77

Mathematics 2021, 9, 1397

and Lieberman’s [5] research, the Sub-Tour reversal algorithm is a useful algorithm for
finding the shortest distance. The Sub-Tour reversal algorithm selects the order of some
distribution centers of nodes, then reverses the visit orders and adjusts the visit orders
when visiting the cities. Then, it selects the maximum reduced distance and the smallest
value as the optimal solution for the ranking among the data. This Sub-Tour reversal
algorithm may consist of as few as two cities. In phase 2, the TOC is utilized to optimize the
return loading rate problem. The transportation performance assessment is then composed
of two major factors as the total transportation distance and the loading rates of transport
vehicles when returning to the initial distribution center. The TOC procedure applies only
the lowest return loading rate to select the capacity-constrained resource city with the
lowest return loading rate then replaces the non-capacity-constrained resource city with
the highest return loading rate as the optimal solution. The Sub-Tour reversal algorithm is
a common method for finding the shortest path because it can accurately and scientifically
find the shortest path of the total transportation distance between established demand
points. As such, it is an appropriate model for north China to apply to solve general logistics
network design issues in northwest China. The TOC, in phase 2, is a research method
based on bottleneck orientation. In the following, this study introduces the concept of a
capacity-constrained resource (CCR) oriented in the TOC and then further optimizes the
Sub-Tour reversal model results. Unlike the Sub-Tour reversal model, to find the shortest
path of the total transportation distance, the TOC considers the key effect of the CCR
orientation. It should be noted that it not only reduces the total transportation distance,
but also improves the return transport vehicle loading rate to more than 50% for the actual
goal of northern China.

3.1. Establishment of a Mathematical Model

The notations used in this paper are given as follows:

C :
The standard transport capacity for refrigerated vehicles assuming for 20 tons

per vehicle;
N : The number of distribution centers and demand cities;
an : The demands to be transported to the destination distribution center;
bn : The demands to be transported return to the starting distribution center;
Ln : The loading rate of a single demand city n;

M1,n :
Total forward path demand of overall cities located between starting distribution center

and transit distribution center;

M2,n :
Total return path demand of overall cities located between transit distribution center

and destination distribution;
NVm : Numbers of vehicles on route m;

τj : Single demand city j of the lowest loading rate Ln;

RLRm :
Return loading rates of refrigerated trucks driving route m returning to the starting

distribution center;

We first established a mathematical model to describe the return loading rate problem
as the following equation.

M1,n =
n

∑
1

an, (1)

where M1,n denotes the total forward path demands of demand points from a1 to an, located
between the starting distribution center and transit distribution center.

M2,n =
n

∑
1

bn, (2)

where M2,n denotes the total return path demands of demand points from b1 to bn located
between the transit distribution center and destination.

NVm =
M1,n

C
(3)

78

Mathematics 2021, 9, 1397

The total numbers of vehicles on route m can be obtained from the total forward path
demands divided by the standard transport capacity per vehicle.

NVm = �NVm� (4)

If the number of vehicles on route n is not an integer number, we use the ceiling
function maps NVm to the least integer greater than or equal to NVm.

RLRm= (1 − (NVm · C − M2,n)

(NVm · C)
) · 100% (5)

The RLRm of refrigerated trucks are the numbers of vehicles multiplied by the standard
transport capacity per vehicle minus the total return path demands and then divided by
the total capacity of vehicles.

3.2. Sub-Tour Reversal Model

The idea of the Sub-Tour reversal algorithm is to select the sub-sequence of some
visiting cities, then simply reverse the visit sub-sequence of the cities and adjust the total
visit sequence when lowering the total transportation distance of the visiting cities [5]. In
this paper, there are two phases involved in optimizing logistics routes. Phase 1 utilizes
the Sub-Tour reversal algorithm to find the shortest distance and then to calculate the
corresponding loading rate. Suppose that if the return loading rate of more than 50% is not
achieved, phase 2 applies the TOC to reach the optimal level.

After the initial mathematical model is obtained, we perform the following Sub-
Tour reversal algorithm to find the shortest path of the total transportation distance. The
concepts of the Sub-Tour reversal algorithm are as follows:

Step 1. Initialization: Select any feasible route as an initial solution. This initial
solution does not need to pass through all of the cities but must pass through at least N/2
demand cities.

Step 2. Repeated: For the present solution, consider all possible sub-path reverse
journeys that can be performed (except reversing the entire path) and then select the
maximum reduced distance as a new solution (in case of a tie, make an arbitrary decision).
Each execution is performed no more than three times, including initialization, repeated 1
and repeated 2.

Step 3. Stop rule: When there is no path to reverse to improve the current solution,
stop and accept the best answer. Stop after three executions and select the smallest value as
the optimal solution. Repeat up to three times. Choose the shortest route from the three
repeated executions as the current optimal solution.

3.3. TOC Model

Suppose that the resulting sub-sequencing outcomes derived in phase 1 cannot meet
the return loading rate by more than 50%. We perform the following TOC model to
optimize the return loading rate problem. The principle of the TOC is to find out the CCR
city embedded in the optimal transport route, and then the delivery vehicles substitute the
CCR city to pass through non-CCRs cities to optimize the return transport vehicle loading
rate. The CCR city in this study refers to the lowest return loading rate city among all of
the transport points, whereas the non-CCRs cities are those with higher return loading
rates. Accordingly, the non-CCRs cities can effectively replace a CCR city to optimize the
results. The ideal of the TOC is to remove the CCR city and to replace it with the higher
loading rate of the non-CCR cities. By doing so, we can quickly locate the CCR (i.e., lowest
loading rate) city and accurately find the limitations of the route. After some iteration via
replacing, the average loading rates of all cities can be balanced, achieving a return loading
rate of more than 50%. The specific steps of the TOC are as follows:

79

Mathematics 2021, 9, 1397

Step 1. Find the CCR city. In Equation (6), the Ln represents the single loading rate of
each demand city. The Ln of a single demand city can be obtained by 1 minus the standard
transport capacity per vehicle minus its demand for return path, bn, divided by the vehicle’s
capacity. The CCR city is the demand city with the lowest single return loading rate and
calculate by equation (7). The TOC intends to select the lowest return loading rate of the
demand cities from 1 to n and is assigned a CCR city.

Ln= [1 − (C − bn)

C
] · 100% (6)

τj= Min{L1, L2, L3, . . . , Ln}, ∀j (7)

Step 2. Avoid the CCR city by deleting the demand city with the lowest single return
loading rate in the current optimal solution.

Step 3. Successively replace CCRs cities having the lowest single return loading rate
with non-CCRs cities and assess to determine a feasible solution that leads to the highest
return loading rate and shortest route possible; substitute the CCR city with non-CCR cities
if necessary.

Step 4. Stop if the return loading rate is more than 50%. Otherwise, go to step 1.

4. Results and Discussions

4.1. Problem Description

As mentioned earlier, northwest China is fruitful, and its agriculture is productive.
Northwest China includes the Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang provincial
administrative regions. In Table 1, because of the cold chain logistics costs, we assume that
one can operate the routes as shown in Figure 1, where distribution of the distance of five
provinces in northwest China is on a scale of 1:80 km. In addition, the actual distance data
for cold chain logistics between 15 cities are measured from the Google map. We determine
three cities, 1, 7, and 13, as our distribution centers, marked as red circles in Figure 1.
Distribution centers 1 and 7 are located in the western region, and distribution center 13 is
closer to the eastern region. It is necessary to consider the proximity of three distribution
centers to other demands, and we mark the distribution centers with red circles in Figure 1.
Connections between any two of the distribution centers indicate that it is feasible for these
two distribution centers to connect to each other. Contrastingly, if there is no connection, it
means that it is not feasible for these two distribution centers to connect. Digitals on the
lines represent the distances between any two adjacent cities. To simplify the calculation,
the real distances are divided by 80, and the unit of measurement is kilometers (km). In
this study, we apply the Monte Carlo simulation to generate the demands of forward and
return for cold chain logistics, following the uniform distribution as shown in Table 2.
We further investigate the return loading rate problem in two manners, Long-Route and
Short-Route. Table 3 lists the Long-Route parameter setup derived by Table 2, and we
denote An as 10 demanding cities: 1, 4, 5, 6, 7, 8, 9, 10, 11, 13. The an and bn represent the
demands of the forward and return cities such that an represents the demand to unload
at this demand city; bn represents the demands to be returned to the starting distribution
center (node 1) and may also pass the interim distribution center (node 7). Ln represents
the single point loading rate of each demand city calculated by Equation (7).

80

Mathematics 2021, 9, 1397

Figure 1. The northwest regional distribution centers and cities’ distance (Km = 1:80).

4.2. Mathematical Modeling

In this section, we utilize two scenarios to illustrate our proposed model. The first one
is the Long-Route scenario, starting from city Wu-lu-mu-qi (city 1) to city Xi-an (end city 13)
and returning to city Wu-lu-mu-qi. The second one is the Short-Route scenario, starting
from city Lan-zhou (city 7) to city Xi-an (end city 13) and returning to city Lan-zhou.

4.2.1. The Illustrative Example of the Long-Route Scenario

Based on Equations (1)–(5), an initial mathematical model of return loading rate
problem can be obtained by using entries of columns (1) to (5) in Table 4. According to
the initialization in Figure 1, the initial solution is 1-6-4-7-8-13-10-11-9-1 in the Long-Route
scenario. In Table 4, due to the initial, random Long-Route pass through 10 cities, we
measure M1,10 = city 6 + city 4 + city 8 = 11 + 20 + 15 = 46, M2,10 = city 10 + city 11 + city
9 = 6 + 10 + 5 = 21, NV10 = 46/20 = 2.3 and maps NV10 to the least integer = 3. Finally,
RLR1 = [1 − (3 · 20 − 21)/(3 · 20)] · 100% = 35%. The initial distance from city 1 = 19 + 6 +
3 + 3 + 4 + 8 + 4 + 6 + 20 = 73 km and iteration 1 is completed.

Finally, we execute the step of the repeat and stop rule from the Sub-Tour reversal
algorithm until iteration 6 is completed to find the optimal solution. When there is no path
to reverse to improve the current solution in iteration 6 as 1-6-4-7-8-13-11-10-9-1, stopping
and accepting the best answer of the distance is 70 km, and RLR1 is 35% as the current
optimal solution. We detail all the iterations in Table 4. The current optimal Long-Route
in phase 1 is obtained; however, the return loading rate is not in excess of 50%. Then, we
perform the following TOC model to optimize the return loading rate problem. The TOC
finds the CCR city through the current, optimal Long-Route, where the demand city with
the lowest single return loading rate is. According to Equation (6), Ln can be calculated in
column 4 of Table 3. We get the following result:

τ10 = Min {-, 30%, 45%, -, 40%, -, 50%, 30%, 25%, -} = 25% = city 9.

In order to substitute CCR city, we use non-CCRs cities 4 and 5 successively to replace
CCR city 9 in iteration 6. Then, we obtain iteration 7 as 1-6-5-7-8-13-11-10-4-1. The solution
of the total transport distance is 72 km and the current best RLR7 is 60%, more than 50%.
Thus, we obtain the optimize solution as 1-6-5-7-8-13-11-10-4-1 from the initial solution as
shown in Figure 2.

81

Mathematics 2021, 9, 1397

Table 1. Distances distribution of five provinces in northwest China (km = 1:80).

Province City Node (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Xinjiang (1) 0 18 8 21 23 19 24 27 20 25 26 24 31 30 30
(2) 18 0 16 36 34 30 38 42 35 41 41 39 46 44 45
(3) 8 16 0 30 29 25 32 36 29 33 35 32 40 38 38

Qinghai (4) 21 36 30 0 2 6 3 6 5 8 7 8 10 8 11
(5) 23 34 29 2 0 4 4 8 4 9 8 7 12 10 13
(6) 19 30 25 6 4 0 9 12 9 14 13 12 16 14 17

Gansu (7) 24 38 32 3 4 9 0 3 4 5 4 4 8 6 8
(8) 27 42 36 6 8 12 3 0 7 7 3 6 4 2 7
(9) 20 35 29 5 4 9 4 7 0 6 6 4 11 9 9

Ningxia (10) 25 41 33 8 9 14 5 7 6 0 4 3 8 8 5
(11) 26 41 35 7 8 13 4 3 6 4 0 3 5 4 6
(12) 24 39 32 8 7 12 4 6 4 3 3 0 8 6 6

Shanxi (13) 31 46 40 10 12 16 8 4 11 8 5 8 0 2 4
(14) 30 44 38 8 10 14 6 2 9 8 4 6 2 0 3
(15) 30 45 38 11 13 17 8 7 9 5 6 6 4 3 0

Note (1): The 15 cities are (1) Wu-lu-mu-qi, (2) Ka-shi, (3) I-li, (4) Xi-ning, (5) Hai-nan, (6) Hai-xi,(7) Lan-zhou, (8) Tian-shui, (9) Wu-wei,
(10) Yin-chuan, (11) Gu-yuan, (12) Zhong-wei, (13) Xi-an, (14) Bao-ji, (15) Yan-an. Note (2): Nodes 1, 7, and 13 as our distribution centers.

Table 2. The demands of the forward and return cities of the uniform distribution in the Monte
Carlo simulation.

Demand Point (An) Forward Demands (an) Return Demands (bn)

[8,10] [10,20] [1,10]

Table 3. The demands of the forward and return cities of the Long-Route example in the Monte
Carlo simulation.

Demand Point (An) Forward Demands (an) Return Demands (bn) Load Rate (Ln) %

1 - - -
4 20 10 50%
5 12 7 35%
6 11 6 30%
7 - - -
8 15 8 40%
9 14 5 25%
10 10 6 30%
11 18 10 50%
13 - - -

Note: Exclusive of nodes 1, 7, and 13 as our distribution centers.

Figure 2. The optimizing solution of Long-Route scenario in TOC (Km = 1:80).

82

Mathematics 2021, 9, 1397

Table 4. The illustrative example of the Long-Route in TOC model.

Sub-Tour Reversal Model TOC Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Iterations Routes M1 M2 NVm
Distance

(km)
RLRm

(%)
Routes CCR

Distance
(km)

RLRm
(%)

1 1-6-4-7-8-13-10-11-9-1 46 21 3 73 35% - - - -
2 1-4-6-7-8-13-10-11-9-1 46 21 3 75 35% - - - -
3 1-4-6-7-8-13-11-10-9-1 46 21 3 72 35% - - - -
4 1-4-6-7-8-13-10-11-9-1 46 21 3 75 35% - - - -
5 1-4-6-7-8-13-11-10-9-1 46 21 3 72 35% - - - -

6 1-6-4-7-8-13-11-10-9-1 46 21 3 70 * 35% * 1-6-4-7-8-13-11-10-9-1 City 9
(25%) - -

7 - - - - 70 35% 1-6-5-7-8-13-11-10-4-1 City 4
(50%) 72 60% *

4.2.2. The Illustrative Example of the Short-Route Scenario

To introduce our proposed solution procedure, we demonstrate the Short-Route in
Table 5, where we denote An as 8 demanding cities: 4, 7, 9, 10, 11, 12, 13, 15. Now, suppose
that the initial solution is 7-9-10-15-12-11-13-7 in the Short-Route scenario. In Table 6, due
to the initial, random Short-Route pass through 8 cities, we measured M1,8 = city 9 + city
10 + city 15 + city 12 + city 11 = 80, M2,10 = city 7 = 0, NV8 = 80/20 = 4, and maps NV8
to the least integer 4. Finally, RLR1 = [1 − (4 · 20 − 0)/(4 · 20)] · 100% = 0%. The initial
distance from city 7 is 37 km, and iteration 1 is complete. Finally, we perform the Sub-Tour
reversal algorithm until iteration 5 is done to find the optimal solution. When there is
no path to reverse to improve the current solution in iteration 5 as 7-9-10-12-15-13-11-7,
stopping and accepting the best answer of the distance is 32 km, and RLR1 is 23.75% as
the current optimal solution. We present all the iterations in Table 6. The current optimal
Short-Route in phase 1 is obtained; however, the return loading rate of more than 50% is
not met. We perform the TOC model to optimize the return loading rate problem. The
TOC finds the CCR city through the current optimal Short-Route, where the demand city is
with the lowest single return loading rate in Table 5. Then, we get the following:

τ8 = Min {-, 15%, 25%, 30%, 35%, -, 35%, -} = 15% = city 9.

In order to avoid CCR cities, we use non-CCR city 4 to replace CCR city 9 in iteration 6.
We obtain iteration 6 as 7-4-10-13-15-12-11-7. The solution of the total transport distance is
36 km and the current best RLR6 is 47.5%, somehow less than 50%. Thus, we obtain the
optimal solution as 7-4-10-13-15-12-11-7 from the initial solution as shown in Figure 3.

Table 5. The demands of the forward and return cities of the Short-Route example in the Monte
Carlo simulation.

Demand Point (An) Forward Demands (an) Return Demands (bn) Load Rate (Ln) %

4 18 9 45%
7 - - -
9 13 3 15%
10 15 5 25%
11 19 7 35%
12 14 6 30%
13 - - -
15 19 7 35%

83

Mathematics 2021, 9, 1397

Table 6. The illustrative example of the Short-Route in the TOC model.

Sub-Tour Reversal Model TOC Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Iterations Routes M1 M2 NVm
Distance

(km)
RLRm

(%)
Routes CCR

Distance
(km)

RLRm
(%)

1 7-9-10-15-12-11-13-7 80 0 4 37 0% - - - -
2 7-9-10-12-15-11-13-7 80 0 4 37 0% - - - -
3 7-9-10-12-15-13-11-7 61 19 4 32 23.75% - - - -
4 7-9-10-15-12-13-11-7 61 19 4 32 23.75% - - - -

5 7-9-10-12-15-13-11-7 61 19 4 32 23.75% * 7-9-10-12-15-13-11-7 City 9
(15%) - -

6 - - - - 32 23.75% 7-4-10-13-15-12-11-7 City 4
(45%) 36 47.5% *

Figure 3. The optimizing solution of Short-Route scenario in TOC (km = 1:80).

4.2.3. Discussion

To solve the return loading rate problem, this study further investigates the Long-
Route and Short-Route scenarios. In the Long-Route scenario, Table 3 shows the demands
of the forward and return cities, adopting the Monte Carlo simulation. To substitute CCR
city 9, we use non-CCR city 4 with a loading rate of 50%, successively, to replace CCR city 9
with a loading rate of 25% and then determine a feasible solution that leads to the highest
return loading rate of 60%. In Table 4, after iteration 6 of the Long-Route, the current best
distance is 70 km, which is less than 73 km in the initial solution. This can be achieved by
using the Sub-Tour reversal model and indicates a 4.1% reduction from the initial solution.
However, the current best return loading rate (RLR6) remains the same as in the initial
solution, i.e., 35%. The expected goal of a return loading rate of more than 50% is not
achieved by using the Sub-Tour reversal model. Therefore, we introduce the TOC model
to optimize the return loading rate. By using the TOC model, we remove CCR city 9 and
replace it with the higher return loading rate, i.e., non-CCR city 4. The final results indicate
that as we consider the CCR city, the distance and its return loading rate are higher than
the initial solution and outperform the Sub-Tour reversal model. In Figure 2, we obtain
the optimal Long-Route, starting from Wu-lu-mu-qi (city 1) to Hai-xi (city 6), Hai-nan
(city 5), Lan-zhou (city 7), Tian-shui (city 8), Xi-an (city 13), Gu-yuan (city 11), Yin-chuan
(city 10), Xi-ning (city 4) and returning to Wu-lu-mu-qi (city 1). The optimal Long-Route
derives the total transport distance of 72 km with the best return loading rate of 60%. In
the Short-Route scenario, Table 5 shows the demands of the forward and return cities by
applying the Monte Carlo simulation. To substitute CCR city 9, we use non-CCR city 4
with a loading rate of 45%, successively, to replace the CCR city 9 with a loading rate of

84

Mathematics 2021, 9, 1397

15% and then determine a feasible solution that leads to the highest return loading rate
of 47.5%.

In Table 6, after iteration 1 of the Short-Route, the current best distance decreases
from the initial solution of 37 km to 32 km. The current best return loading rate increases
from the initial solution of 0% to 23.75%, for a 23.75% improvement via the Sub-Tour
reversal model. With the goal of improving the return loading rate to more than 50%, this
study achieves the goal by using the TOC model because of the final loading rate being
47.5%. The former route can be derived by the Sub-Tour reversal model but fails to meet
expectations according to the results of a distance of 32 km and a return loading rate of
23.75%. Accordingly, this study achieves its goal by using the TOC model such that the
final results can be a distance equal to 36 km and a return loading rate equal to 47.5%. In
Figure 3, we obtain the optimal Short-Route starting from Lan-zhou (city 7) to Xi-ning
(city 4), Yin-chuan (city 10), Xi-an (city 13), Yan-an (city 15), Zhong-wei (city 12), Gu-yuan
(city 11) and returning to Lan-zhou (city 7). The optimal Short-Route gets the total transport
distance of 36 km with the best return loading rate of 47.5%.

To see our model capability, this paper utilizes the simulation data to validate the TOC
model and adopts the Monte Carlo simulation method to test the deriving solutions. Based
on the resulting outcomes in Tables 7–9, the TOC model effectively obtains the best routes
design. Later, we discuss the simulation and its statistics in detail.

4.2.4. The Simulation and Its Statistics

Furthermore, this paper utilizes the simulation data to validate our model and adopts
the Monte Carlo simulation method, following the uniform distribution in Table 2 to test
the deriving solutions. It simulates 30 replications of datasets for certain demand cities (An)
10 and 8, forward (an) with a range between 10 and 20 tons and a return (bn) with a range
between 1 and 10 tons in Table 2. By our proposed model, we summarize our results as
shown in Tables 7 and 8.

We know that the average return loading rate derived by the Sub-Tour reversal model
is 24.07% and by TOC model, it is 67.33%, based on northwest China’s Long-Route scenario
shown in Table 7. This study further employs the pair t-test to see whether the mean
difference is significant or not. Based on the data, the t statistic is 18.3190 and the p value is
less than 0.05. It means that there exists a significant difference among the two models, and
our model leads to an improvement of 43.26% compared to that obtained by the Sub-Tour
reversal model. Following the same procedure, the TOC model results in an improvement
of 44.02%, comparing to that obtained by the Sub-Tour reversal model from the Short-Route
scenario in Table 8. The t statistic is 11.0204 and the p value is less than 0.05. Obviously,
our proposed solution procedure can be applied to solve the return loading rate problem
in an efficient manner. The resulting outcomes are arranged in Table 9. By the resulting
outcomes, our proposed solution procedure successfully integrates the Sub-Tour reversal
model and TOC. The results show the superiority of the TOC model in solving issues in
logistics and answering the question mentioned by previous studies (see Schragenheim
and Dettmer [24]; Lee et al. [13]; Chang and Huang [14]; Benavides and Landeghem [25];
Chakravorty and Hales [26]). The TOC model achieves the logistics goal for increasing the
return loading rate by increasing by more than 50%. Logistics companies would benefit
substantially from the application of the TOC model.

85

Mathematics 2021, 9, 1397

Table 7. The 30 replications simulation results of the Long-Route scenario in the Monte Carlo simulation.

Sub-Tour Reversal Model TOC Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Runs Routes M1 M2 NVm
Distance

(km)
RLRm

(%)
Routes CCR

Distance
(km)

RLRm
(%)

1 1-4-12-7-8-13-11-14-5-1 42 22 3 82 36.67% 1-10-6-7-5-13-11-4-12-1 City 10 106 72.5%
2 1-2-4-10-14-13-12-9-8-1 49 10 3 118 16.67% 1-2-6-10-7-13-12-11-4-1 City 2 114 72.5%
3 1-11-6-7-3-13-14-8-4-1 46 17 3 151 28.33% 1-11-6-7-2-13-12-4-10-1 City 2 148 57.5%
4 1-7-8-12-6-13-2-15-14-1 41 10 3 185 16.67% 1-7-15-6-8-13-4-11-12-1 City 8 109 72.5%
5 1-8-2-14-4-13-6-3-12-1 49 19 3 228 31.67% 1-8-2-7-6-13-4-11-12-1 City 8 176 72.5%
6 1-2-11-3-12-13-5-8-4-1 65 17 4 181 21.25% 1-2-5-7-6-13-11-12-4-1 City 2 118 72.5%
7 1-6-7-12-5-13-10-14-2-1 45 12 3 129 20% 1-10-7-6-5-13-12-11-4-1 City 10 94 72.5%
8 1-9-4-15-10-13-12-8-14-1 49 16 3 95 26.67% 1-6-7-15-10-13-12-11-4-1 City 10 88 72.5%
9 1-15-9-2-4-13-11-14-12-1 49 25 3 159 41.67% 1-7-9-2-6-13-11-4-12-1 City 9 153 72.5%

10 1-12-14-2-5-13-10-4-8-1 61 15 4 169 18.75% 1-10-7-2-5-13-12-4-11-1 City 2 163 72.5%
11 1-11-12-7-4-13-5-3-2-1 49 11 3 121 18.33% 1-5-2-7-6-13-11-12-4-1 City 2 157 72.5%
12 1-3-9-5-2-13-15-10-12-1 54 15 3 157 25% 1-7-9-5-2-13-4-11-12-1 City 9 156 72.5%
13 1-7-8-11-3-13-4-5-6-1 45 23 3 140 38.33% 1-7-5-6-2-13-4-11-12-1 City 2 152 72.5%
14 1-10-11-9-7-13-6-5-14-1 39 19 2 107 47.5% 1-10-11-9-7-13-12-5-4-1 City 9 85 62.5%
15 1-7-11-9-15-13-12-14-6-1 44 22 3 94 36.67% 1-7-2-9-15-13-12-14-4-1 City 9 153 62.5%
16 1-12-3-11-5-13-10-7-8-1 69 5 4 154 6.25% 1-7-2-10-5-13-11-12-4-1 City 2 161 72.5%
17 1-12-7-3-2-13-5-11-15-1 48 18 3 178 30% 1-5-7-8-2-13-12-11-4-1 City 8 157 72.5%
18 1-10-15-11-7-13-9-4-8-1 42 11 3 97 18.33% 1-10-15-8-7-13-11-4-12-1 City 8 92 72.5%
19 1-6-3-9-4-13-8-14-15-1 53 9 3 127 15% 1-6-7-9-8-13-4-11-12-1 City 9 87 72.5%
20 1-15-7-10-8-13-9-14-2-1 35 8 2 136 20% 1-15-7-10-8-13-12-11-2-1 City 8 124 52.50%
21 1-5-15-3-4-13-8-9-11-1 59 11 3 157 18.33% 1-5-6-2-7-13-12-4-11-1 City 2 152 72.5%
22 1-3-11-14-5-13-6-9-4-1 66 17 4 120 21.25% 1-3-2-7-5-13-12-11-4-1 City 2 117 72.5%
23 1-15-10-3-5-13-2-14-4-1 57 18 3 228 30% 1-15-10-2-7-13-11-14-4-1 City 15 160 65%
24 1-7-10-15-6-13-8-4-5-1 36 17 2 102 42.5% 1-7-10-15-6-13-12-4-5-1 City 15 99 62.5%
25 1-3-4-10-6-13-11-5-14-1 51 22 3 129 36.67% 1-7-4-10-6-13-11-5-14-1 City 10 118 55%
26 1-11-9-2-15-13-14-3-7-1 54 9 3 180 15% 1-7-9-2-15-13-11-3-4-1 City 9 203 57.5%
27 1-10-8-4-6-13-7-2-9-1 43 2 3 161 3.33% 1-10-8-7-6-13-12-2-4-1 City 8 164 52.5%
28 1-5-12-6-14-13-3-2-7-1 62 5 4 174 6.25% 1-5-7-6-2-13-3-4-12-1 City 2 214 55%
29 1-14-3-11-10-13-12-6-7-1 62 16 4 168 20% 1-7-3-2-10-13-12-6-11-1 City 2 180 65%
30 1-11-8-3-15-13-7-6-2-1 60 9 3 139 15% 1-7-8-2-15-13-11-6-4-1 City 8 163 67.5%

Avg. 145.53km 24.07% Avg. 138.77km 67.33%

Table 8. The 30 replications simulation results of the Short-Route scenario in the Monte Carlo simulation.

Sub-Tour Reversal Model TOC Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Runs Routes M1 M2 NVm
Distance

(km)
RLRm

(%)
Routes CCR

Distance
(km)

RLRm
(%)

1 7-15-8-12-13-14-10-7 45 10 3 44 16.67% 7-15-8-10-13-14-11-7 City 8 40 47.5%
2 7-12-14-10-13-15-11-7 47 12 3 40 20% 7-8-13-10-14-12-11-7 City 8 36 95%
3 7-14-15-12-13-10-11-7 52 14 3 39 23.33% 7-10-13-8-15-12-11-7 City 8 37 95%
4 7-11-8-9-13-14-10-7 39 10 2 40 16.67% 7-10-8-13-9-14-11-7 City 9 44 80%
5 7-8-9-12-13-11-15-7 42 12 3 41 20% 7-8-10-13-9-11-15-7 City 9 49 60%
6 7-10-12-9-13-8-11-7 42 11 3 34 18.33% 7-10-13-8-9-12-11-7 City 9 35 95%
7 7-8-12-14-13-11-9-7 47 10 3 32 16.67% 7-8-14-9-13-12-11-7 City 9 40 47.5%
8 7-9-11-8-13-10-12-7 39 13 2 32 32.5% 7-9-10-8-13-11-12-7 City 9 33 47.5%

86

Mathematics 2021, 9, 1397

Table 8. Cont.

Sub-Tour Reversal Model TOC Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Runs Routes M1 M2 NVm
Distance

(km)
RLRm

(%)
Routes CCR

Distance
(km)

RLRm
(%)

9 7-10-9-8-13-11-15-7 32 12 2 41 30% 7-10-13-8-9-11-12-7 City 9 37 95%
10 7-11-10-8-13-14-15-7 37 8 2 32 20% 7-14-10-8-13-11-12-7 City 8 37 47.5%
11 7-10-11-14-13-12-8-7 44 10 3 32 16.67% 7-10-8-13-14-12-11-7 City 8 31 95%
12 7-14-9-10-13-8-12-7 39 10 2 43 16.67% 7-14-8-10-13-11-12-7 City 8 35 47.5%
13 7-8-15-14-13-12-9-7 42 9 3 31 15% 7-8-10-13-14-12-11-7 City 8 33 95%
14 7-15-14-11-13-9-12-7 49 9 3 38 15% 7-15-9-13-14-12-11-7 City 9 43 47.5%
15 7-12-8-10-13-15-11-7 40 12 2 39 30% 7-8-13-10-15-11-12-7 City 8 33 95%
16 7-10-9-14-13-15-12-7 39 11 2 36 27.5% 7-10-9-8-13-11-12-7 City 9 34 47.5%
17 7-8-11-10-13-14-15-7 37 8 2 31 20% 7-8-13-10-15-14-11-7 City 8 31 80%
18 7-15-12-8-13-11-9-7 45 10 3 39 16.67% 7-15-8-9-13-12-11-7 City 9 48 47.5%
19 7-11-9-10-13-12-8-7 39 10 2 41 16.67% 7-8-13-10-9-12-11-7 City 9 32 95%
20 7-14-15-10-13-8-11-7 42 11 3 33 18.33% 7-10-8-13-14-11-15-7 City 8 36 60%
21 7-12-14-8-13-10-11-7 47 14 3 32 23.33% 7-10-13-8-14-12-11-7 City 8 32 95%
22 7-9-15-14-13-11-8-7 44 11 3 29 18.33% 7-9-15-13-14-11-12-7 City 9 30 47.5%
23 7-11-8-14-13-9-12-7 44 9 3 30 15% 7-9-8-14-13-11-12-7 City 9 27 47.5%
24 7-9-14-10-13-15-12-7 39 11 2 43 27.5% 7-9-14-10-13-11-12-7 City 9 41 47.5%
25 7-8-9-10-13-15-11-7 32 12 2 38 30% 7-8-13-10-9-15-11-7 City 9 40 60%
26 7-15-8-11-13-10-12-7 42 13 3 38 21.67% 7-15-8-10-13-11-12-7 City 8 42 47.5%
27 7-12-9-8-13-15-11-7 42 12 3 33 20% 7-9-15-8-13-11-12-7 City 9 36 47.5%
28 7-10-12-15-13-11-9-7 45 10 3 33 16.67% 7-10-9-15-13-11-12-7 City 9 36 47.5%
29 7-15-12-9-13-10-14-7 47 10 3 43 16.67% 7-15-10-9-13-12-14-7 City 9 50 37.5%
30 7-15-11-8-13-12-10-7 42 13 3 37 21.67% 7-15-10-8-13-12-11-7 City 8 39 47.5%

Avg. 36.47km 20.59% Avg. 37.23km 64.83%

Table 9. The pair t-test result.

Pair Difference
t Statistics p Value df

Mean Std. Deviation

(1) Long-Route scenario 0.4326 0.1294 18.3190 0.001 < 29
(2) Short-Route scenario 0.4425 0.2199 11.0203 0.001 < 29

5. Conclusions

This study intends to propose a solution procedure to reduce the total transportation
distance and to improve the return transportation vehicle loading rate by more than 50% in
northern China. Our research contributes to developing the model considering two factors:
the total transportation distance and the return loading rates of transport vehicles, which
are different from previous studies mainly focusing on minimizing total logistics costs. The
TOC model further optimizes the results of the Sub-Tour reversal method to determine the
degree of improvement resulted from the TOC model. Based on bottleneck orientation,
this paper broadens the view of the existing research field. We integrated the Sub-Tour
reversal model and the TOC methodology, as the two-phase solution procedure solves the
problem of the return loading rate. Usually, the Sub-Tour reversal model is applied to solve
the minimization transportation distance problem. Our model adopts the deriving results
of the Sub-Tour reversal model as the initial solution. Next, we applied the TOC model,
employing the CCR concept to further optimize the current solution since the TOC model
can quickly locate the CCR city (i.e., lowest return loading rate) and accurately find the
limitations of the route. It should be noted that to find the optimal solution by maximizing
the utility of the CCR in this study means replacing the CCR city with a non-CCR. In order
to demonstrate our model capability, we further utilized two scenarios and employed
the Monte Carlo simulation. In the northwest logistics network design, as presented in

87

Mathematics 2021, 9, 1397

Tables 7 and 8, the return loading rate is significantly improved by our proposed solution
procedure, and this shows that our proposed model outperforms the conventional Sub-
Tour reversal method. Note that our solution procedure can be implemented in real-world
situations in a simple manner. The limitations of the study are calculating the total logistics
costs of the optimized transportation distance. For future work, we suggest a number of
issues for future researchers. (1) Our research investigated the deterministic manner. For
future investigations, we may take uncertainty factors into account. (2) Our future model
would further consider other factors, such as environmental protection, carbon pricing or
emission. (3) In this research, we integrated the Sub-Tour reversal model with TOC. We
can employ other approaches in future research.

Author Contributions: W.-T.H. contributed to manuscript preparation, experiment planning, and
experiment measurements. C.-C.L. contributed to literature review and reviewer comments review.
J.-F.D. contributed to data analysis, review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan under
Grant 109-2222-E-035 -007-.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Subulan, K.; Baykasoğlu, A.; Saltabas, A. An improved decoding procedure and seeker optimization algorithm for reverse
logistics network design problem. J. Intell. Fuzzy Syst. 2014, 27, 2703–2714. [CrossRef]

2. Soysal, M.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G.A.J. Modelling food logistics networks with emission considerations: The
case of an international beef supply chain. Int. J. Prod. Econ. 2014, 152, 57–70. [CrossRef]

3. Kim, J.S.; Lee, D.L. An integrated approach for collection network design, capacity planning and vehicle routing in reverse
logistics. J. Oper. Res. Soc. 2015, 66, 76–85. [CrossRef]

4. Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution:
A literature review and classification. Oper. Res. 2020, 1–30. [CrossRef]

5. Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research; McGraw-Hill, Inc.: New York, NY, USA, 2006.
6. Moroko, W.; Caflisch, R. Quasi-Monte Carlo Simulation of Random Walks in Finance. In Athens Conference on Applied Probability

and Time Series Analysis; Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P., Eds.; Springer: New York, NY, USA, 1998;
Volume 127, pp. 340–352.

7. Huang, W.-T.; Chen, P.-S.; Liu, J.J.; Chen, Y.-R.; Chen, Y.-H. Dynamic configuration scheduling problem for stochastic medical
resources. J. Biomed. Inform. 2018, 80, 96–105. [CrossRef]

8. Daganzo, C.F. The distance traveled to visit n points with a maximum of c stops per vehicle: An analytic model and an application.
Transp. Sci. 1984, 18, 331–350. [CrossRef]

9. Dobos, I. Optimal production–inventory strategies for a HMMS-type reverse logistics system. Int. J. Prod. Econ. 2003, 81-82,
351–360. [CrossRef]

10. Ljungberg, D.; Gebresenbet, G. Mapping out the potential for coordinated goods distribution in city centres: The case of Uppsala.
Int. J. Transp. Manag. 2004, 2, 161–172. [CrossRef]

11. Guo, R.; Guan, W.; Zhang, W. Route design problem of customized buses: Mixed integer programming model and case study. J.
Transp. Eng. Part A Syst. 2018, 144, 04018069. [CrossRef]

12. Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T.; Lu, C.-M. A Compromised Decision-Making Approach to Third-Party Logistics
Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods. Mathematics 2021, 9, 886. [CrossRef]

13. Duan, S.X.; Wibowo, S.; Chong, J. A multicriteria analysis approach for evaluating the performance of agriculture decision
support systems for sustainable agribusiness. Mathematics 2021, 9, 884. [CrossRef]

14. Jiang, X.; Zhou, J. The Impact of Rebate Distribution on Fairness Concerns in Supply Chains. Mathematics 2021, 9, 778. [CrossRef]
15. Paksoy, T.; Bektaş, T.; Özceylan, E. Operational and environmental performance measures in a multi-product closed-loop supply

chain. Transp. Res. Part E: Logist. Transp. Rev. 2011, 47, 532–546. [CrossRef]
16. Fahimnia, B.; Reisi, M.; Paksoy, T.; Özceylan, E. The implications of carbon pricing in Australia: An industrial logistics planning

case study. Transp. Res. Part D: Transp. Environ. 2013, 18, 78–85. [CrossRef]
17. Özceylan, E.; Paksoy, T.; Bektas, T. Modeling and optimizing the integrated problem of closed-loop supply chain network design

and disassembly line balancing. Transp. Res. Part E Logist. Transp. Rev. 2014, 61, 142–164. [CrossRef]

88

Mathematics 2021, 9, 1397

18. Özceylan, E.; Demirel, N.; Çetinkaya, C.; Demirel, E. A closed-loop supply chain network design for automotive industry in
Turkey. Comput. Ind. Eng. 2017, 113, 727–745. [CrossRef]

19. Çil, Z.A.; Li, Z.; Mete, S.; Özceylan, E. Mathematical model and bee algorithms for mixed-model assembly line balancing problem
with physical human–robot collaboration. Appl. Soft Comput. 2020, 93, 106394. [CrossRef]

20. Miraç, E.; Özceylan, E. P-median and maximum coverage models for optimization of distribution plans: A case of United
Nations Humanitarian response depots. In Smart and Sustainable Supply Chain and Logistics—Trends, Challenges, Methods and Best
Practices; Golinska-Dawson, P., Tsai, K.M., Kosacka-Olejnik, M., Eds.; EcoProduction (Environmental Issues in Logistics and
Manufacturing); Springer: Cham, Switzerland, 2020.

21. Ryu, B.W.; Hyun, P.J. The study of logistics optimization model with empty transfer rate of reverse logistics. J. Korea Saf. Manag.
Sci. 2006, 8, 125–141.

22. Lee, J.-H.; Chang, J.-G.; Tsai, C.-H.; Li, R.-K. Research on enhancement of TOC Simplified Drum-Buffer-Rope system using novel
generic procedures. Expert Syst. Appl. 2010, 37, 3747–3754. [CrossRef]

23. Chang, Y.-C.; Huang, W.-T. An enhanced model for SDBR in a random reentrant flow shop environment. Int. J. Prod. Res. 2014,
52, 1808–1826. [CrossRef]

24. Schragenheim, E.; Dettmer, H.W. Manufacturing at Warp Speed: Optimizing Supply Chain Financial Performance; CRC Press: Boca
Raton, FL, USA, 2000.

25. Benavides, M.B.; Landeghem, H.V. Implementation of S-DBR in four manufacturing SMEs: A research case study. Prod. Plan.
Control 2015, 26, 1110–1127. [CrossRef]

26. Chakravorty, S.S.; Hales, D.N. Improving labor relations performance using a Simplified Drum Buffer Rope (S-DBR) technique.
Prod. Plan. Control 2016, 27, 102–113. [CrossRef]

89

mathematics

Article

A Kronecker Algebra Formulation for Markov Activity
Networks with Phase-Type Distributions

Alessio Angius 1, András Horváth 2,* and Marcello Urgo 3

Citation: Angius, A.; Horváth, A.;

Urgo, M. A Kronecker Algebra

Formulation for Markov Activity

Networks with Phase-Type

Distributions. Mathematics 2021, 9,

1404. https://doi.org/10.3390/

math9121404

Academic Editors: Chin-Chia Wu and

Win-Chin Lin

Received: 1 June 2021

Accepted: 12 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Enerbrain, 10132 Turin, Italy; alessio.angius.research@gmail.com
2 Computer Science Department, University of Turin, 10149 Turin, Italy
3 Mechanical Engineering Department, Polytechnic University of Milan, 20133 Milan, Italy;

marcello.urgo@polimi.it
* Correspondence: horvath@di.unito.it

Abstract: The application of theoretical scheduling approaches to the real world quite often crashes
into the need to cope with uncertain events and incomplete information. Stochastic scheduling
approaches exploiting Markov models have been proposed for this class of problems with the
limitation to exponential durations. Phase-type approximations provide a tool to overcome this
limitation. This paper proposes a general approach for using phase-type distributions to model the
execution of a network of activities with generally distributed durations through a Markov chain. An
analytical representation of the infinitesimal generator of the Markov chain in terms of Kronecker
algebra is proposed, providing a general formulation for this class of problems and supporting more
efficient computation methods. This entails the capability to address stochastic scheduling in terms of
the estimation of the distribution of common objective functions (i.e., makespan, lateness), enabling
the use of risk measures to address robustness.

Keywords: stochastic makespan; markov activity network; phase-type distribution

1. Introduction

In the application of scheduling to real planning problems, such as industrial pro-
duction, research and development, or software development, uncertainty or incomplete
information are inevitably present. Deviations from what was planned can be due to a
wide range of possible disturbances, both internal and external, affecting the execution of
the scheduled activities. Among the most common source of disturbances are activities
taking more or less than originally estimated, machine breakdowns, worker absenteeism,
delayed supplies of materials and/or components, and so forth. A disrupted schedule quite
often entails a cost due to missed due dates, resource idleness, a higher work-in-process
inventory, or scarce utilization of the available resources.

Scheduling approaches should be able to cope with this uncertainty, such as exploiting
stochastic models [1]. A specific class of approaches aims at providing a robust schedule,
such as a schedule incorporating a protection, at least to a certain extent, against the possible
occurrence of uncertain events. Robust scheduling approaches are based on a stochastic
model for the objective function to optimize, and quite often require the calculation of
the associated stochastic distribution. Nevertheless, this is a difficult problem to solve;
hence, many approaches have been proposed to provide exact estimations, approximations,
bounds or heuristic methods to cope with this problem. In this paper, grounded on the
results in [2], we exploit a Markov chain to model the execution of a stochastic program
evaluation and review technique (PERT) network; moreover, exploiting the approximation
of phase-type (PH) distributions, we extend this model to generally distributed durations of
the activity and general phase-type forms, thus generalizing the preliminary formalization
described in [3] through the Kronecker algebra. This formal approach allows significant

Mathematics 2021, 9, 1404. https://doi.org/10.3390/math9121404 https://www.mdpi.com/journal/mathematics

91

Mathematics 2021, 9, 1404

benefits in comparison with the existing approaches in the literature exploiting phase-
type approximations [3–6]. In fact, it allows the embedding of PH distributions that are
able to reach high/low coefficients of variations and higher-moment-matching with a
number of phases that are smaller, compared to other phase-type subclasses. In addition, it
provides a compact expression of the infinitesimal generator of the resulting continuous
time Markov chain (CTMC), exploiting Kronecker algebra, without the need of explicitly
enumerating all the possible states. Thank to this, it is possible to tackle the problem
avoiding an uncontrollable increase of the dimension of the state space governing the
Markov chain, which is typical when phase-type distributions are used to model multiple
activities executed in parallel. Moreover, this also supports the definition of efficient
and modular calculation strategies to solve the Markov chain and, hence, estimate the
distribution of its time to absorption, that is, the makespan of the PERT network [7–9]. A
test of the proposed approach and calculation method is provided, to assess the possibility
to use phase-type distributions to approximate generally distributed stochastic durations
with a reasonable number of phases.

The paper is organized as follows: Section 2 addresses the related literature, Section 3
describes Markov activity networks, while Sections 4 and 5 address phase-type distribu-
tions and their embedding in Markov activity networks, respectively. Section 6 shows how
to deal with phase-type distributions in Markov activity networks using Kronecker algebra,
and in Section 7 we report on several numerical experiments with the proposed approach.
The paper is concluded in Section 8.

2. State of the Art

The literature related to stochastic scheduling mostly addresses scheduling problems
where the duration of the jobs are modeled as random variables. A first class of approaches
focuses on analytical approaches, with the aim of developing proper scheduling policies.
To this aim, different classes of policies have been investigated together with their per-
formance in the stochastic version of the considered scheduling problem. With the aim
not to constrain the analysis to specific scheduling problems, we will address the project
scheduling approaches as a generalization of any schedule problem. A network of activities
with stochastic durations is often referred to as a stochastic PERT network. In this field, pres-
elective policies have been proposed in [10,11] and further developed in [12]. Based on these
theoretical results, specific dominance rules have been proposed by [12,13] and exploited
by [13] in branch-and-bound algorithms for the optimization of the expected makespan.

Although being a reasonable objective function, the expected value of the makespan,
as well as any other objective function addressed in terms of its expected value, does
not entirely model the stochastic nature of the problem. In fact, minimizing the expected
makespan aims at ensuring an average good performance, but does not protect against the
worst case scenario if their probability is low [14–17]. A balanced compromise between
values and the impact of rare but unfavourable events typically requires knowledge of the
distribution of the objective function under study.

However, this problem has been demonstrated to be hard to solve in general [18];
hence, numerous approaches have been proposed to provide proper bounds to the distri-
bution function [19,20]. For this reason, heuristics approaches for this class of problems
have been proposed by many authors, where some examples are [21,22].

Under the hypothesis that the durations are independent and exponentially dis-
tributed, ref. [2] developed an exact approach for the calculation of the distribution of the
makespan using a continuous-time Markov chain (CTMC) model. This approach has been
a starting point for the work of many authors [23,24] exploiting the exponential distribution
to support the analysis of the execution of the activities in the network in terms of net
present value (NPV).

A different approach is to include in the model phase-type (PH) distributions which
allow to approximate the behavior of general distributions by preserving the Markov
property. Their use to provide an approximation to generic distributed activity durations

92

Mathematics 2021, 9, 1404

in terms of a mixture of exponential distributions have been addressed by [25] and further
developed in [3], where a preliminary analytical formulation of the problem has been
provided for a generic network of activities. A further step to develop a framework
based on PH distributions was taken in [26], which is the starting point of this article.
Similar concepts have been used in [5,6] including resource constraints. Nevertheless, the
author limits the analysis to phase-type subclasses (i.e., Cox and Erlang). Although these
subclasses are capable of approximating a wide range of distributions, they cannot cope
with high/low coefficients of variations and higher-moment-matching with a limited
number of phases.

The use of PH distributions is interesting, since they allow the fitting of non-Markov
distributions by means of Markov chains. Hence, PH distributions can be used as build-
ing blocks for the construction of Markov processes that embed generally distributed
transitions instead of exponential only. Since PH distributions are fully described by a
Markov chain, they preserve the Markov property, although the model dynamics are not
memoryless anymore. As a consequence, the resulting model is able to match more realistic
cases, but can still be modeled and solved using numerical methods designed for Markov
chains whose performances are good from a computational point of view.

The class of PH distributions is dense in the field of distributions with a positive
domain, that is, any distribution in this class can be approximated by PH distributions with
any given accuracy, provided that a suitable number of phases is used. This fact, however,
does not directly provide a practical method to fit distributions by PH distributions. Several
authors proposed fitting methods, and most of these fall into two categories: maximum
likelihood (ML)-based estimation of the parameters and moment-matching techniques.

One of the first works on ML estimation considered acyclic PH distributions [27],
while an approach for the whole family, based on the expectation-maximization method, is
proposed in [28]. Since these early papers, many new methods and improvements have
been suggested for the whole PH family and for its sub-classes.

For what concerns moment-matching, for low-order (≤3) PH distributions, moment
bounds and moment-matching formulas are either known in an explicit form, or there exist
iterative numerical methods to check if given moments can be captured [29,30]. For higher-
order ones, there exist matching algorithms, but these often result in improper density
functions and the validity check is a non-trivial problem.

In [31], a simple method is provided that constructs a minimal-order acyclic PH
distribution given three moments. Tool support is available for the construction of PH and
ME distributions. Specifically, ML-based fitting is implemented in the software package
PhFit [32], and a set of moment-matching functions is provided in the software package
BuTools [33].

Although promising and useful in modeling general distributions for activity dura-
tions, the approximation through phase-types also has drawbacks. The main one is the
considerable increase in terms of number of phases and, consequently, in terms of the
states of the comprehensive Markov chain and the associated computational time. To cope
with this issue, the use of Kronecker algebra to formalize the Markov model allows the
exploitation of numerical methods able to operate the computation of the models without
the need to explicitly build the whole infinitesimal generator [7–9].

3. Markov Activity Networks

The presented formulation of the scheduling problem grounds on the the formal-
ization proposed in [2] to define a Markov activity network (MAN), that is, a Markov
model describing the execution of a set of different activities whose durations follow an
exponential distribution and are linked by precedence relations. Given that (i) the durations
of the activities are mutually independent and (ii) exponentially distributed, the execution
of the activity network can be represented through a CTMC.

The model is conveniently described by means of an Activity-on-Arc (AoA) network
(V , E) where V is a set of vertices describing the precedences and E is a set of edges

93

Mathematics 2021, 9, 1404

corresponding to the activities. The number of vertices is denoted with N, whereas K refers
to the number of edges. Since each edge corresponds to an activity, the total number of
activities composing the task is equal to K as well. Given a vertex v, A+

v and A−
v indicate

the set of incoming and outgoing edges, respectively.
The graph also contains one root vertex without ingoing arcs (A+

v1
= ∅) and one

termination vertex without outgoing arcs (A−
vN

= ∅). These two vertices are connected by
at least one path, while no cycle can exist in the whole network to guarantee the network
to be acyclic. In the following, the root vertex will be referred to as v1 and the termination
vertex as vN . The semantic of the model is such that:

1. A−
v1

contains those activities without dependencies that can start as soon as the
execution of the network begins;

2. The set of activities that departs from a vertex corresponds to A−
v , and they directly

depend on A+
v ;

3. Activities start as soon as all of the preceding activities are completed; this means that
there is no time span between the end of an activity and the start of its successors;

4. Activities are never preempted and there is no limit to the number of activities that
can be executed in parallel, that is, no resource constraint is enforced;

5. The duration of each activity i is modeled as a continuous distribution Xi.

To provide an example, let us consider the activity network in Figure 1 with four
vertices and five arcs, that is, modelling the processing of five activities. The execution of
the network starts with the parallel processing of activities 1 and 2, since they belong to A−

v1
.

As activity 1 is completed, activities 3 and 4 can start since vertex A+
v2

only contains activity
1. Activity 5 can start only if both 2 and 3 have been completed, because A+

v3
contains 2

and 3. Finally, when activities 4 and 5 are completed, the entire network is also completed
because vertex v4 does not have any outgoing arc.

v1

v3

v2

v4

1

2

3

4

5

Figure 1. An activity network.

Because of the assumptions described above, the dynamics of an activity network
can be described by a discrete-state stochastic process whose state corresponds to a vector
s = |s1, . . . , sK| where each entry si, 1 ≤ i ≤ K refers to an activity and can assume the
values Pending (P), Running (R), and Terminated (T). Entry si is equal to P if activity i is
waiting for its predecessors to complete and be allowed to start; it is equal to R if activity i
is being executed; finally, it is equal to T if activity i has been completed.

The execution of the activities in the network can be modeled through a sequence of
states whose transitions are triggered by the completion of a single activity and the number
of transitions that departs from a state s is always equal to the number of activities that are
running in s. Let f (s, s′, i) be an indicator function that is equal to one when a transition
between a state s and a state s′ is possible by means of the termination of the ith activity.
Then, we have:

f (s, s′, i) =

{
1 (si = R ∧ s′i = T)

∧
j =i

[
(sj = s′j) ∨ (sj = P ∧ s′j = R ∧ d(s, j) = {i})

]
0 otherwise;

(1)

where d(s, j) is a function that returns the set of activities that have to be completed to
start activity j but are not yet finished in state s. The condition in Equation (1) consists
of two terms. The first term, (si = R ∧ s′i = T), refers to the activity that causes the
transition, therefore activity i must be running in s and it must be finished in state s′.

94

Mathematics 2021, 9, 1404

The second term refers to all the other activities defining two possible compatible scenarios.
The first one, (sj = s′j), refers to activities not changing their status moving from s to
s′, that is, running activities keep running while completed activities remain completed.
Nevertheless, the start of some activities could be triggered by the completion of activity
i, hence, (sj = P ∧ s′j = R) ∧ d(s, j) = {i} states that there could be an activity j moving
from state P to R, but this is possible only if activity i was the only one blocking the start of
activity j.

The state transition graph of the stochastic process can be generated based on the
conditions in (1). Specifically, starting from an initial state where all the activities are
pending but those in A+

v1
, all the possible states can be generated enumerating the comple-

tion of each of the running activities, one at time. As all the states have been generated,
the procedure necessarily reaches the ending state where all activities are terminated
and stop.

Figure 2 provides an example of the state transition graph for the network in Figure 1.
Within each node, the status of the system is defined, for example, the node on the right
is the starting node where activities 1 and 2 are running, while the others are pending,
that is, |R, R, P, P, P|. The labels on the arcs indicate the activity, hence, the arc labeled
with 1 connects the state with the one representing the state of the system when activity
1 has been completed; that is, activity 4 and 5 can start and the new state is labeled as
|T, R, R, R, P|. The last state on the right is the absorbing one, where all the activities are
completed, |T, T, T, T, T|.

The state transition graph in Figure 2 has some properties: (i) it contains all the possible
paths between the initial state and an absorbing one where all the activities are completed;
(ii) the length of these paths is constant and equal to K because each of these paths represent
a different ordering for the completion of the activities in the network; (iii) the graph does
not contain cycles and all its states are transient, except for the absorbing one |T, T, . . . , T|.

R,R, P, P, P

R, T, P, P, P T, T,R,R, P T, T,R, T, P T, T, T,R, T

T,R,R, T, P T, T, T,R,R T, T, T, T, T

T,R,R,R, P T,R, T,R, P T,R, T, T, P T, T, T, T,R

1

1

2

2

4

3

2

4

3 4 2

4
3

5

4

3

2

5

Figure 2. State transition graph of the stochastic process for the network of activities in Figure 1.

As claimed at the beginning of the paragraph, under the assumption that the durations
of the activities are modelled with exponential distributions, that is, Xi ∼ exp(λi), 1 ≤
i ≤ K, where 1/λi is the average time of the activity and the activity network is a MAN.
The state transition graph in Figure 2 is the support for the definition of a CTMC whose
dynamics are described by a set of ordinary differential equations with cardinality equal to
the number of states composing the process.

Assuming π(s, t) to be the probability to find the process in state s at time t, each
equation has the following structure:

dπ(s, t)
dt

= − ∑
∀i: si=R

π(s, t)λi + ∑
∀s′ ,i: f (s,s′ ,i)=1

π(s′, t)λi. (2)

Assuming that all the state probabilities π(s, t) are collected in a vector π(t) and all
the transitions are grouped in an infinitesimal generator matrix Q, the solution of the
ODE system described in Equation (2) is given by π(t) = π(0) exp(tQ) and the entry of

95

Mathematics 2021, 9, 1404

π(t) that corresponds to π(|T, T, . . . , T|, t) contains the cumulative distribution of the time
to absorption of the CTMC, that is, the distribution of the makespan of the network of
activities. The term π(0) is the initial probability vector whose entries are all equal to zero,
but the one referring to the initial state whose probability is 1.0. The function exp(•) is the
matrix exponential, whose computation is a common problem whose solution can take
advantage of a wide range of efficient and numerically safe methods (e.g., [34]).

As an example, Table 1 reports the infinitesimal generator for the model in Figure 1.
The infinitesimal generator is a matrix describing the state transition graph in Figure 2.
For each possible transition from a state to another, the infinitesimal generator contains
the rate of the activity causing the transition. The values on the diagonal, on the contrary,
correspond to the sum of all the rates going out from the state called intensity. The initial
activities are 1 and 2, thus, the initial state is |R, R, P, P, P|, with π(|R, R, P, P, P|, 0) = 1,
since it is the only nonzero entry of π(0).

Table 1. Infinitesimal generator of the CTMC describing the execution of the activity network in Figure 1. Due to space
constraints, row labels have not been included (the order of the rows is the same as that of the columns). For the same
reason, commas have not been used to separate the entries of each state.

RRPPP TRRRP TRRTP TRTTP RTPPP TRTRP TTRRP TTRTP TTTTR TTTRR TTTRT TTTTT

−(λ1 +
λ2)

λ1 0 0 λ2 0 0 0 0 0 0 0

0
−(λ2 +

λ3 +
λ4)

λ4 0 0 λ3 λ2 0 0 0 0 0

0 0 −(λ2 +
λ3)

λ3 0 0 0 λ2 0 0 0 0

0 0 0 −λ2 0 0 0 0 λ3 0 0 0
0 0 0 0 −λ1 0 λ1 0 0 0 0 0

0 0 0 λ4 0 −(λ2 +
λ4)

0 0 0 λ2 0 0

0 0 0 0 0 0 −(λ3 +
λ4)

λ4 0 λ3 0 0

0 0 0 0 0 0 0 −λ3 λ3 0 0 0
0 0 0 0 0 0 0 0 −λ5 0 0 λ5

0 0 0 0 0 0 0 0 t4⊗ I5
−(λ4 +

λ5)
λ5 0

0 0 0 0 0 0 0 0 0 0 −λ4 λ4
0 0 0 0 0 0 0 0 0 0 0 0

Although it provides a considerable advantage in terms of computation, the restriction
to exponentially distributed activity durations represents a limiting hypothesis, specifically
in the application to real industrial processes and, hence, to scheduling.

In the following, we present an extension of a classical MAN taking advantage of
methods available for CTMCs by using a class of distributions able to approximate general
distributions with arbitrary accuracy.

4. Phase-Type Distributions

In the field of Markov models, phase-type (PH) distributions are widely used to pro-
vide an approximation of a general distribution. Basically, a set of inter-related exponential
delays are put together to approximate a general distribution. Formally, a continuous-time
PH distribution is the distribution of the time to absorption of a CTMC, and its order is
given by the number of the contained transient states. Consequently, the PH distribution is
defined through a vector β, providing the initial probabilities of the transient states and a
matrix T containing the intensities of the transitions among the transient states.

96

Mathematics 2021, 9, 1404

The cumulative distribution function is given by

F(x) = P{X ≤ x} = 1 − βeTx1I (3)

whereas the probability density function corresponds to

f (x) = βeTx(−T)1I. (4)

The i-th moment of a PH distribution is equal to

mi = i!β(−T)−i1I, (5)

where 1I denotes a column vector of ones of the same dimension of the T.
PH distributions provide a way to fit a general distribution with a certain degree of

accuracy. It must be noted that a MAN can be seen as a PH distribution; in fact, the time
to absorption in a MAN, usually not exponentially distributed, is represented through a
structure of exponential delays (the execution of each activity) with mutual interactions
(precedence relations among the activities).

As an example, let us consider the CTMC in Figure 3 with four states, three transient
and one absorbing, whose initial probabilities and infinitesimal generator are:

α = |0.5 0.2 0.3 0|, Q =

∣∣∣∣∣∣∣∣
−0.7 0.2 0.5 0
1.2 −2.95 1.5 0.25
2 1 −3.5 0.5
0 0 0 0

∣∣∣∣∣∣∣∣
The entries of α must sum up to one, while the sum of the elements in a row of Q

must be equal to zero. Thus, the representation (α, Q) for this PH distribution is redundant.
A non-redundant representation can be obtained by considering the transient states only,
resulting in:

β = |0.5 0.2 0.3|, T =

∣∣∣∣∣∣
−0.7 0.2 0.5
1.2 −2.95 1.5
2 1 −3.5

∣∣∣∣∣∣ (6)

The structure of the generator T determines the class of the PH distribution and its
capability to catch the moments of the distribution to approximate [35,36]. An exhaustive
description of the possible classes of PH distributions is beyond the scope of this paper.
Nevertheless, it is important to point out that the method presented in the next section
supports the use of any class PH distribution without limitations.

Figure 3. Graphical representation of an order of three PH distributions (left) and its probability
density function (right).

5. Markov Activity Networks Enhanced with PH Distributions

In this section, we extend the formalism of MAN to embed the use of PH distributions
and cope with non-exponential durations of the activities, while keeping the advantages
provided by a CTMC model. We assume that the processing time of an activity i is dis-

97

Mathematics 2021, 9, 1404

tributed according to a PH distribution with representation (βi, Ti), 1 ≤ i ≤ K. Additionally,
in this case we assume that durations of the activities are mutually independent.

Due to this hypothesis, the structure of the CTMC modeling the execution of the
activities is more complicated, because every state of the original model has to be expanded
to consider the sub-states related to the PH model, that is, the aging of the activities in
process. Thus, the execution of the activities progresses according to two levels: a macro
level characterized by the completion of the activities, triggering the start of the execution
of new ones; and the progress among the phases of the PH distribution of each activity
during its execution.

The dynamics of the process modeling the execution of the MAN is still governed by
an ODE system, but the probability of a single state evolves over time, according to the
following differential equation:

π(s, t)
dt

= π(s, t)D(s) + ∑
∀s′ ,i: f (s,s′ ,i)=1

π(s′, t)O(s′, s, i). (7)

where D(•) and O(•, •, •) are matrices describing the transitions within a single state and
between two states, respectively. In particular, D(s) describes the aging of the PH distribu-
tions within state s, that is, the parallel execution of activities that are being processed in s.
In more detail:

D(s) =
⊕

∀i:si=R

Ti

where
⊕

is the Kronecker sum operator. On the contrary, matrix O(s′, s, i) describes the
dynamics triggered by the completion of an activity i and the consequent transition from
state s′ to state s. Thus, the matrix embeds the dynamics related to:

1. The completion of the activity that caused the transition from s′ to s;
2. The memory of the states within the PH for the activities that were running in state s′

and will continue to run in s;
3. The start of activities triggered by the completion of activity i defined by prece-

dence relations.

In formulas, this corresponds to:

O(s′, s, i) =
⊗
∀j∈V

Rj with Rj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tj if j = i
β j if j = i ∧ s′j = P ∧ sj = R
Ij if j = i ∧ s′j = R ∧ sj = R
1 otherwise

(8)

In Equation (8),
⊗

denotes the Kronecker product operator iterated over all the
activities in V , and Ij is an identity matrix whose size is equal to the order of the PH
distribution associated with activity j, and tj = −Tj1I.

The value of Rj in Equation (8) is different according to the status of the considered
activity j in s′ and s. If j = i, then activity j is the one that has been completed, and Rj = tj
is a vector that contains the “finishing” intensities of the PH distribution associated to
activity j.

If activity j is starting later due to the completion of activity i, then Rj coincides with
the initial vector of the PH distribution (β j).

If activity j is running in both s′ and s, Rj is equal to the identity matrix Ij.
Finally, if activity j is not active in both s′ and s, Rj is equal to 1 and has no impact in

the Kronecker product.
The initial probability vector of the ODE system requires some reformulations. In fact,

it is now composed of multiple blocks corresponding to phases of the PH distributions,
and it must take into consideration the fact that each of them has its own initial vector.

98

Mathematics 2021, 9, 1404

Let us assume that s∗ is the initial state; then π(s∗, 0) is equal to
⊗

j:s∗j =R β j and

coincides with the nonzero entries of the initial vector π(0).
The infinitesimal generator for the network in Figure 1, where PH distributions are

used for all the activities, is reported in Table 2. The structure of the matrix is the same as
the exponential case (Table 1). However, the matrix contains sub-matrices instead of scalar
values. Matrices D are placed on the diagonal, since they describe the dynamics within a
given state, where one or more activities are in progress. Matrices O are placed out of the
diagonal, describing the dynamics of the transitions between states.

If we consider state |R, R, P, P, P|, D(|R, R, P, P, P|) = T1⊕T2, modeling the superposi-
tion of the PH distributions active in that state, that is, the ones associated to activities 1 and
2. Additionally, if we consider the transition between state |R, R, P, P, P| and |T, R, R, R, P|,
this is caused by the completion of activity 1, but it must also keep the memory of the PH
distribution of activity 2 (the associated sub-states remain the same during the transition).
Moreover, the completion of activity i also triggers the start of activities 3 and 4. Thus,
O(|R, R, P, P, P|, |T, R, R, R, P|, 1) = t1 ⊗ I2⊗β3⊗β4, with t1 containing the rates character-
izing the completion of activity 1, I2 keeps the memory of activity 2; β3 and β4 initialize
the PH distributions of activities 3 and 4. The initial activities for the whole network are
1 and 2, thus, π(|R, R, P, P, P|, 0) = β1 ⊗ β2. Finally, it is important to point out that the
Kronecker sum and the Kronecker product do not have the commutative property, hence,
the order of the operations must be preserved.

Table 2. Infinitesimal generator of the CTMC enhanced with PH distributions describing the model in Figure 1.

RRPPP TRRRP TRRTP TRTTP RTPPP TRTRP TTRRP TTRTP TTTTR TTTRR TTTRT TTTTT

T1⊕T2
t1⊗ I2⊗
β3⊗β4

0 0 I1⊗t2 0 0 0 0 0 0 0

0 T2⊕
T3⊕T4

I2⊗ I3⊗
t4

0 0 I2⊗t3⊗
I4

t2⊗ I3⊗
I4

0 0 0 0 0

0 0 T2⊕T3 I2⊗t3 0 0 0 t2⊗ I3 0 0 0 0
0 0 0 T2 0 0 0 0 t2⊗β5 0 0 0

0 0 0 0 T1 0 t1⊗
β3⊗β4

0 0 0 0 0

0 0 0 I2⊗t4 0 T2⊕T4 0 0 0 t2⊗ I4⊗
β5

0 0

0 0 0 0 0 0 T3⊕T4 I3⊗t4 0 t3⊗ I4⊗
β5

0 0

0 0 0 0 0 0 0 T3 t3⊗β5 0 0 0
0 0 0 0 0 0 0 0 T5 0 0 t5
0 0 0 0 0 0 0 0 t4⊗ I5 T4⊕T5 I4⊗t5 0
0 0 0 0 0 0 0 0 0 0 T4 t4
0 0 0 0 0 0 0 0 0 0 0 0

6. A Kroncker Algebra Approach for a Markov Activity Network with
PH Distributions

There are several reasons supporting the use of a structured approach based on
Kronecker algebra for the formal description of a Markov activity network enhanced
through PH distributions. The first one, as stated in [37] with respect to matrix-geometric
solutions for stochastic models, is to ensure that the models are in the best and most
natural form for numerical computation. For this reason, although unstructured ap-
proaches have been proposed to expand the state space of a CTMC with additional states
to mimic the behaviour of PH distributions [4,5], these are practicable only for a subset
of PH distributions having a simple structure, such as the Coxian, the Erlang, or the
Hyper-Exponential.

These approaches also quickly become unfeasible for certain classes of acyclic phase-
types as, for instance, the Hyper-Erlang, which corresponds to a mixture of Erlang distri-
butions having a different number of phases. Due to their structure, the Hyper-Erlang is

99

Mathematics 2021, 9, 1404

extremely sparse and the tracking of each chain of states is not straightforward, already
with a small number of phases. Despite this, their use is fundamental for the fitting of em-
pirical data which are often characterized by irregular shapes and multi-modalities. These
situations are often troublesome for the approaches based on moment-matching, because:
(i) the moments might not satisfy the bounds of the PH class; (ii) a proper characterization
of the shape of the distribution might be preferable to an exact estimation of the first N
moments (see [38] for a detailed description of these cases).

Although such cases may seem pure theoretical speculations, their relevance in the
modeling of real industrial cases is rather common. An example is manually executed
activities, whose duration, as long as the execution goes smoothly, can be easily modeled
through simple distributions. On the contrary, the occurrence of possible problems in
their execution causes the duration to increase, and the probability distribution fitting the
processing times is likely to be multi-modal. In such cases, simply fitting the first two (or
three) moments does not provide a reasonable approximation, and different classes of PH
distributions could be needed.

Figure 4 provides a graphical example of a case where moment-based approaches
exploiting an acyclic PH are outperformed by a different fitting approach, namely a Hyper-
Erlang distribution obtained through Hyper-* [39], a tool that couples clustering approaches
with methods for the fitting of phase-type distributions. Figure 4 shows how the moment-
based approaches fail in representing the bi-modality of the distribution, whereas the
Hyper-Erlang is able to approximate the original distribution with good accuracy. Moment-
based methods perform slightly better on the tail of the distribution where they are able
to outperform the Hyper-Erlang between 10 and 12. The matching of three moments
generates much smaller phase-types than the one provided by Hyper-* (in the case pre-
sented, 2 against 29 phases), but does not provide an adequate approximation. Specifically,
the phases of the Hyper-Erlang are organized in three Erlang distributions: the first is
made up of three phases, with λ = 2.301 and a probability to be chosen equal to ≈45%; the
second with a single phase, λ = 1.44 and probability ≈0.44%; and the last one composed
of 25 phases, with λ = 0.10 and probability ≈10%. Since with this class of fitting methods
(e.g., [39]) the structure of the Hyper-Erlang (in terms of number of branches and length
of each path) cannot be foreseen, it is not straightforward to enhance the Markov activity
network with these classes of PH distributions by simply expanding the state space of the
CTMC through unstructured approaches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

c.
d.

f.

Time

Original
PH - 2 mom.

PH - 3 mom..
PH - MLE, Hyper-Erl

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 10 11 12 13 14 15 16 17

c.
d.

f.

Time

Original
PH - 2 mom.

PH - 3 mom..
PH - MLE, Hyper-Erl

Figure 4. Comparison between an empirical distribution fitted by using both moment-based ap-
proaches and cluster-based fitting: cdf (left) and tail of the cdf (right).

In addition, unstructured approaches become even more impractical when coping with
cyclic distributions, that is, creating loops within the states of the CTMC. The use of cyclic
PH distributions in practical scheduling problems is justified by concrete requirements.
The first one is that, although the class of acyclic phase types is able to represent any cyclic
phase-type, there is no guarantee on the finiteness of the number of phases. Hence, a cyclic
phase-type might be able to approximate a distribution in a more compact way. This
applies for specific classes of distributions, for example, mixtures of monocyclic phase-

100

Mathematics 2021, 9, 1404

types (see [40]). Algorithms for the fitting of cyclic phase-types exist and are currently
being used; for example, the Butools library provides a method for the transformation of a
matrix exponential distribution in a monocyclic phase-type [33].

Another notable reason is that cyclic phase-types are massively used in the context of
fault tolerance systems, where mechanisms for restarting, rejuvenation, and check pointing
are implemented to model the execution of specific classes of processes often restarted by a
controller, when their duration exceeds a certain threshold, or when a risk of stalling [41]
arises. These models also allow the use of Kronecker algebra to combine two or more
simple dynamics to represent a more complex phenomenon, for example, the failure modes
of a machine tool in isolation together with the degradation of a machine tool during the
execution of a machining process [42].

Finally, the last argument supporting a structured approach based on Kronecker
algebra is that it decouples the exploration of the state space from the PH distribution of
each activity. Therefore, the selection of a proper PH approximation for certain activities
does not require the redefinition of the whole state space, but only involves those states
where the modifications have an impact.

In conclusion, the use of a structured approach to embed PH distributions into activity
networks is preferable to unstructured approaches imposing limitations on the class of
approximating distributions, as well as failing to provide support for efficient calculation.

7. Testing

This section provides a set of experiments to test the model described in Section 3, as
well as an assessment of the degree of approximation entailed by the use of PH distributions
with a limited number of phases. The goal is to demonstrate the accuracy achievable in
the estimation of the distribution of the makespan with generally distributed durations of
the activities modeled with PH distributions. In addition, results related to the required
computation time are reported.

The testing phase is organized in three parts. The first one focuses on the evaluation of
the impact of a single PH distribution in the activity network in Figure 1, by assessing the
accuracy of the fitting for a small activity network. The second one takes into consideration
a more general case, where all the activities are non-exponential and, thus, approximated
through PH distributions. The aim is to show how the errors associated to each activity
have an impact on the estimation of the makespan. Finally, the third part reports the results
obtained by using the proposed approach on a set of 150 networks, randomly selected
from the PSPLIB set of instances [43]. This part also reports a more detailed analysis of
the performance of the approach in terms of computational effort, with respect to the
number of states composing the underlying Markov chain. All the experiments have
been carried out using a JAVA code implementing both the numerical methods for the
analysis of the activity networks using PH approximations and a Monte Carlo simulator to
provide an exact estimation of the makespan distribution. The fitting of PH distributions
has been operated using the software packages Butools 2.0 [33] and Mathematica 11.0 (other
commercial tools like Matlab, and free software like Octave or Python could also be easily
used to develop the approach).

7.1. Activity Network with a Single PH Distributed Activity Duration

To analyze the impact of a single PH distribution in a network, we consider the one in
Figure 1. Three experiments have been carried out with different classes of distributions.
Each experiment is organized in two steps:

1. A PH distribution is fitted to approximate the general distribution;
2. The resulting PH distribution is plugged into the activity network.

The first step takes advantage of two fitting methods, although any fitting method able
to generate a PH distribution can be used. The first one, described in [36], is based on MLE
and takes as input a set of data-points and the desired number of phases. The data-points
are fitted into a PH distribution corresponding to a hyper-Erlang distribution having the

101

Mathematics 2021, 9, 1404

specified number of phases. The second method, described in ([31]), is based on moment-
matching. It considers up to three moments and returns a PH distribution with an arbitrary
number of phases matching the moments. Both the methods are available in the Butools
library. Alternative tools for the fitting of PH distributions are implemented in the software
packages PH-fit [32] and G-Fit [36].

The second step addresses the activity network in Figure 1, assuming that all the
activities but 3 are distributed according to the Erlang-5 distribution. Since this distribution
belongs to the family of PH distributions, its PH representation is exact. On the contrary,
the duration of activity 3 is assumed to be generally distributed and approximated through
the fitting of a PH distribution according to what is described for the first step. Hence,
the durations of activity 1, 2, 4 and 5 are modeled exactly, while an approximation can exist
for activity 3. This approximation is the only source of error.

The decision to perform the testing on activity 3 is aimed at stressing the accuracy of
the model. In fact, activity 3 connects the two paths 1–4 and 2–5 (1). To make the impact of
the activities on the makespan uniform, their mean duration was set to 5.

The experiments have been carried out considering three different classes of distribu-
tions for activity 3:

Normal: It represents the ideal scenario for PH approximation because it is continuous
and light-tailed on both sides;

Log-Normal: It is a more challenging scenario because of heavy tails;

Uniform: It represents the more difficult case, because PH distributions cannot model a
distribution with finite support. Hence, a higher number of phases will be needed to
reach a reasonable approximation.

Figure 5 provides a graphical representation of the differences between the distribu-
tions used in the three scenarios with each plot showing 1000 data-points. It is possible
to notice that points related to a normal distribution are centered around 5 and their fre-
quency decades with the distance from the average. On the contrary, points drawn from
the log-normal are sparser and can be found at high values, whereas those drawn from the
uniform distribution are equally distributed all along the interval.

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

T
im

e

Data point

Norm(5,1)
 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

T
im

e

Data point

Norm(5,1)
 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

T
im

e

Data point

Norm(5,1)

Figure 5. Scatter plots of the data-points used for the fitting of the Normal distribution (left), Log-Normal distribution
(center), and Uniform distribution (right).

For this set of experiments, both the Monte Carlo simulations and the CTMC calcula-
tions required less than a second to be performed. Confidence intervals are not provided
because more than 100,000 runs have been computed for the Monte Carlo approach; hence,
the intervals are tight enough not to be visualized.

7.1.1. PH Approximation for a Normally Distributed Activity

The first set of experiments addresses the use of PH to fit a normal distribution, with a
mean equal to 5 and a coefficient of variation equal to 0.2. A very small coefficient of
variation has been used to mimic an industrial scenario where activities have a high level
of formalization and, thus, are usually characterized by a small variation. This choice also

102

Mathematics 2021, 9, 1404

guarantees the absence of negative values, impossible for a time span, during the fitting
phase. Five different fitting approaches have been performed: the first three using the
MLE method with a number of phases equal to 5, 10, and 15, respectively; the fourth and
the fifth using the moment-based approach by matching the first two and the first three
moments. The PHs generated through the moment-based approach had orders equal to 25
and 28, respectively.

Figure 6 reports the comparison between the original normal distribution and the
fitted PH ones. It is possible to notice that only the distributions fitted using the moment-
matching method have a Gaussian-like shape, whereas the other PH distributions under-
estimate the peak and are far from being symmetric. This is a consequence of the small
coefficient of variation used, requiring a high number of phases to be fitted. Despite this,
observing the right tail of the distribution, it is possible to notice that the absolute error
for the 95th and 99th percentile, obtained using the PH approximation with 15 phases, is
rather small, that is, about 1 time unit.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12

P
.d

.f.

Time

Norm(5,1)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
.d

.f.

Time

Norm(5,1)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 6 7 8 9 10 11 12

C
.d

.f.

Time

Norm(5,1)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 6. Comparison between the normal distribution with mean 5 and coefficient of variation equal to 0.2 and its fitting
by means of PH distributions: pdf (left), cdf (center), and tail of the cdf (right).

Figure 7 reports the exact and PH-approximated distributions of the makespan for the
network of activities in Figure 1. It can be observed that all the approximated makespans
are able to provide a reasonable approximation. This is particularly evident by observing
the right tail of the distribution, where the absolute error remains below 3% in all the cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 22 24 26 28 30 32

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 22 24 26 28 30 32

A
bs

ol
ut

e
E

rr
or

Time

PH - MLE 5 ph.
PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 7. Makespan of the example activity network with the duration of activity 3 following a normal distribution with
mean 5 and coefficient of variation equal to 0.2; full (left), only the tail (center), and the tail approximation error (right).

7.1.2. PH Approximation for a Log-Normal-Distributed Activity

The second set of experiments considers a log-normal distribution with parameters
a = −0.804 and b = 1.268. This corresponds to a mean equal to 5 and coefficient of
variation of 2. The same fitting approaches of the previous case have been used and, in this
case, the moment-based approach was able to match the first three moments by using only
two phases.

Figure 8 reports the result of the fitting. It is possible to notice that the worst approx-
imation is provided by the PH distribution that matches three moments. This result is
counter-intuitive because, at least in principle, the distribution matching the first three

103

Mathematics 2021, 9, 1404

moments should provide a better approximation than the distribution that matches only
the first two.

However, this phenomenon might occur when using a fitting method that only con-
siders moment-matching, because it does not guarantee any accuracy with respect to the
shape of the distribution. Therefore, for heavy-tailed distributions, matching additional
moments is not likely to improve the accuracy of the fitting, particularly for small quantiles.
In fact, the fitting matching three moments in this case provides an accurate approximation
for extremely high values of the quantiles only.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20

P
.d

.f.

Time

LogNorm(0.8047,1.2686)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
.d

.f.

Time

LogNorm(0.8047,1.2686)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 20 40 60 80 100 120 140

C
.d

.f.

Time

LogNorm(0.8047,1.2686)
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 8. Comparison between the log-normal distribution with parameters a = −0.804 and b = 1.268 and its fitting by
means of PH distributions: pdf (left), cdf (center), and tail of the cdf (right).

Figure 9 reports the exact and PH-approximated distributions of the makespan for
the network of activities in Figure 1. The plots confirm the errors highlighted in Figure 8
for the fitting. Specifically, referring to the tail of the distribution of the makespan, this
was partly expected. The Erlang-5, the PH distributions obtained using five phases, has a
low coefficient of variation in comparison with the log-normal, therefore, the propagation
of the error significantly affects the accuracy in the estimation of the distribution of the
makespan. Despite this, the absolute error for all the approximated distributions of the
makespans stays below 2.5%, with respect to the tail of the distribution (Figure 8, right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 30 40 50 60 70 80 90 100 110 120

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 30 40 50 60 70 80 90 100 110 120

A
bs

ol
ut

e
E

rr
or

Time

PH - MLE 5 ph.
PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 9. Makespan of the example activity network with the duration of activity 3 following a log-normal distribution
with parameters a = −0.804 and b = 1.268; full (left), only the tail (center), and the tail approximation error (right).

7.1.3. PH Approximation for a Uniform Distribution

The third set of experiments considers a uniform distribution in the interval [2, 8].
In this case, there is no chance for a finite number of phases to be able to represent the
finite support of the uniform distribution. The moment-based approach requires nine
phases to match the first two moments and 12 to match the first three. The impact of this
limitation for PH distributions is clear by observing Figure 10 reporting the result of the
fitting. It is possible to notice that the pdf of the approximating PH distributions tends to be
bell-shaped and trespasses the limited domain of the uniform distribution both in the right
and left tails. Additionally, the shape of the tail is overestimated by all the approximating
PH distributions (Figure 10, right).

104

Mathematics 2021, 9, 1404

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14

P
.d

.f.

Time

Uniform[3,8]
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
.d

.f.
Time

Uniform[3,8]
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 6 8 10 12 14 16 18 20

C
.d

.f.

Time

Uniform[3,8]
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 10. Comparison between the uniform distribution in the interval [2, 8] and its fitting by means of PH distributions:
pdf (left), cdf (center), and tail of the cdf (right).

Figure 11 shows the comparison between the exact and approximated distribution of
the makespan of the activity network in Figure 1 showing that the overall error reduces in
comparison with the one related to activity 3 only. In particular, while the PH distribution
of order 5 demonstrates an error greater than 4% in the tail of the distribution, the other
approximating distributions have an error that stays below 2% and becomes almost zero
near the 99th percentile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 22 24 26 28 30 32 34

C
.d

.f.

Time

exact
PH - MLE 5 ph.

PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 22 24 26 28 30 32 34

A
bs

ol
ut

e
E

rr
or

Time

PH - MLE 5 ph.
PH - MLE 10 ph.
PH - MLE 15 ph.

PH - Mom 2
PH - Mom 3

Figure 11. Makespan of the example activity network with the duration of activity 3 following a uniform distribution in the
interval [2, 8]; full (left), only the tail (center), and the tail approximation error (right).

7.2. PH Approximation for All the Activities in the Network

In this section, we hypothesize a general distribution for all the activities in the
network, with the aim to show that the accuracy in the estimation of the makespan is
reasonable even with a large number of approximated distributions. For this test, we
used a 30-job instance from the PSPLIB set of instances [43]. Since the repository only
contains activity networks with deterministic durations, a distribution and a coefficient of
variation have been randomly sampled for each activity, whereas the mean value has been
set equal to the original deterministic duration. Two classes of distributions have been
considered: log-normal and half-normal, with each activity having the same probability
to be distributed as one or the other. The coefficients of variation have been assigned in a
similar way, by sampling among three possible values: 0.5, 1, and 1.5.

The 32 activities in the network, together with their distributions, have been fitted by
matching the first two moments. All the fittings required, at most, four phases to match the
moments. Then, three sub-models have been considered in order to analyze the approxima-
tion error as the number of approximated distributions increases. Specifically, within the
same network, subsets containing the first 5, 10, and 20 activities have been considered.

The structure of the network and its distributions are reported in Table 3. Horizontal
lines delimit the considered subsets.

105

Mathematics 2021, 9, 1404

Table 3. Activities in the network with the associated distributions. Horizontal lines indicate the
subsets that have been incrementally taken into consideration.

Activity Distribution Average CV Dependencies

1 L 1 0.5 -
2 H 8 1 1
3 H 9 1.5 1
4 H 1 1.5 1
5 L 4 0.5 3

6 H 4 1 2
7 L 8 1 3
8 L 3 0.5 7
9 H 3 1.5 6
10 L 9 0.5 8

11 H 6 1 9
12 H 3 1 5
13 H 5 1.5 9
14 H 4 1 12
15 H 9 1 8
16 H 5 1.5 7, 11, 13
17 H 9 1.5 6
18 H 9 1.5 4
19 H 7 1.5 12, 17
20 L 7 0.5 10, 14

21 L 8 1 16, 17, 20
22 H 6 1.5 10
23 H 10 1 13, 22
24 H 2 1.5 15, 21
25 H 1 1.5 13
26 L 9 0.5 19, 20, 23
27 H 3 1.5 14, 18
28 H 7 1.5 16
29 L 10 0.5 18
30 H 7 1.5 18, 24, 26
31 L 9 1 25, 27, 28
32 L 1 0.5 29, 30, 31

The four networks with an increasing number of activities have also been analyzed
using a Monte Carlo simulation, to provide a reference distribution to be considered as the
real one. Table 4 summarizes the experiments, showing that the state space of the CTMC
grows very fast and the number of transitions increases even faster. Despite this, for a
network consisting of up to 20 activities, the numerical solution requires less time than
performing 100,000 samples for the Monte Carlo simulation.

Table 4. Summary of the experiments.

Activities # States #Transitions Time Numerical Time Monte Carlo

5 13 77 0 s 15 s
10 73 1559 0 s 20 s
20 1351 60,710 6 s 22 s
32 6836 579,341 124 s 25 s

Figures 12–15 report the results of the calculation of the makespan for the four models
considered. All the comparisons show good accuracy and an error on the percentiles that
rarely exceeds 1%. Specifically, it is relevant to notice that the error does not increase with
the number of activities. Although there is no guarantee for these results to represent a gen-

106

Mathematics 2021, 9, 1404

eral behavior, it is important to point out that all the fittings have been done automatically,
without any specific selection or tuning of the fitting method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
.d

.f.

Time

exact
num. - PH

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 30 35 40 45 50

C
.d

.f.

Time

exact
num. - PH

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Time

5 Activities

Figure 12. Makespan of the five-activity subset within the network; full makespan (left), tail (center), and approximation
error on the tail (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
.d

.f.

Time

exact
num. - PH

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 50 60 70 80 90 100

C
.d

.f.

Time

exact
num. - PH

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 50 60 70 80 90 100

A
bs

ol
ut

e
E

rr
or

Time

10 Activities

Figure 13. Makespan of the 10-activity subset within the network; full makespan (left), tail (center), and approximation
error on the tail (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
.d

.f.

Time

exact
num. - PH

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 60 70 80 90 100 110 120 130 140 150

C
.d

.f.

Time

exact
num. - PH

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 60 70 80 90 100 110

A
bs

ol
ut

e
E

rr
or

Time

20 Activities

Figure 14. Makespan of the 20-activity subset within the network; full makespan (left), tail (center), and approximation
error on the tail (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
.d

.f.

Time

sim.
num. - PH

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100 120 140 160 180 200

C
.d

.f.

Time

sim.
num. - PH

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 100 110 120 130 140 150

A
bs

ol
ut

e
E

rr
or

Time

32 Activities

Figure 15. Makespan of the full 32-activity network; full makespan (left), tail (center), and approximation error on the
tail (right).

107

Mathematics 2021, 9, 1404

7.3. Test on a Set of Activity Networks

The described approach has been tested on multiple networks of activities obtained
by randomly selecting a set of 150 from the instances in the PSPLIB [43]. The structure
of the networks has been considered as given, while the randomness in the duration of
the activities has been introduced using the same approach described in Table 3. Hence,
a PH distribution has been fitted for each activity in the network by matching the first two
moments. The fitting of the activity distributions has been done in negligible time. In fact
each activity required 0.017 s, on average, to find the approximating PH type.

Figure 16 provides a quick glimpse of the heterogeneity of the networks considered
in the experiment, by showing a clear direct correlation between the overall number of
transitions and the number of states for each network.

Figure 16. Scatter plot of the number of states against the number of transitions composing the
CTMC of the networks.

However, the higher the number of states composing the CTMC, the more variable the
number of transitions in the model. This is due to the fact that the number of transitions
heavily depends on the level of concurrency in the network, that is, the number of activities
that are in execution in each state. A network having many activities and, consequently,
many states, has a higher probability of having multiple activities in execution at the same
time. If this number is high, the number of transitions is high as well. As a consequence,
the number of PH distributions enabled at the same time in the states, and the consequent
number of transitions, is less variable among the different instances. A summary of the
networks used for the experiments is reported in Table 5, providing information in terms of
the number of states composing the CTMC and the number of transitions. It is possible to
observe that the average number of states is equal to 2763.73, with a minimum of 779 states
and a maximum of 11,858. On the contrary, the average number of transitions is equal to
207,343.59, with a maximum of 935,440 and a minimum of 17,298.

Table 5. Summary of the networks under investigation.

Average St. Dev. Conf. Interval Min Max

States 2763.73 2037.00 (2335.28, 3192.16) 779 11,858
Transitions 207,343.59 237,726.36 (157,342.71, 257,344.45) 17,298 935,440

Entropy 0.0359 0.001 (0.03575, 0.0362) 0.0321 0.037

In order to quantify the error introduced by the approximation using PH distributions,
we consider the average Kullback–Leibler divergence (KL) of the network, also called
average entropy, defined as

KL =
∑K

i=1
∫ ∞

0 pi(x)log
(

pi(x)
qi(x)

)
dx

K
, (9)

where pi(x) is the probability density function (pdf) of the exact distribution for activity i,
qi(x) is the pdf of the approximated PH distribution, and K is the total number of activities

108

Mathematics 2021, 9, 1404

in the network and the integral is operated on the duration of each activity. If the durations
of the activities in the network are well-approximated by the PH distributions, KL is close
to zero.

Table 5 also reports the value of the average entropy corresponding to 0.0359. Being
the value rather close to zero, we can conclude that the PH distributions approximate the
general distributions with good accuracy, despite the fact that only the first two moments
are matched.

Table 6 compares the time required to compute the 99% quantile of the distribution
of the time to absorption of the CTMC with PH distributions, that is, the distribution
of the makespan for the network of activities. This performance is compared with the
one obtained executing a Monte Carlo simulation with one million samples from the
original distributions.

Table 6. Computation time for the 99% quantile of the distribution of the makespan for the experiments.

Approach # Average St. Dev. Conf. Interval Min Max

PH distributions 85.10 138.035 (56.07, 114.135) 2 610
Monte Carlo 20.81 4.0 (27.2, 28.9) 20 30

It is possible to observe that the Monte Carlo simulation is, on average, faster than the
numerical solution. The good performance of Monte Carlo simulation is due to:

• Large networks requiring a considerable amount of data to be stored in the RAM
and slowing down the computation due to the swapping between primary and
secondary memory;

• The calculation of the desired percentiles (performed with the bisection method) that
increases the computational effort.

To provide a clearer picture of the overall performance of the approach, Figure 17
shows the computation times for all the experiments in relation to the number of states of
the CTMC and the number of transitions. It is clear that the computation time increases
exponentially with the size of the problem. Indeed, the Monte Carlo simulation does not
suffer from this problem, since the overall complexity is bounded by (K × R), where R is
the number of simulation runs. Nevertheless, it is important to point out that:

• The CTMC can be solved using more advanced techniques able to reduce the compu-
tation time;

• The CTMC defines a model for the execution of the network of activities that can sup-
port decomposition approaches, for example, calculating subnets and incorporating
the obtained solution or estimation in the comprehensive network.

Figure 17. Time required to solve the networks with PH distributions as a function of the number of
states (left) and the number of transitions (right).

Finally, Table 7 reports the error in the estimation of the distribution of the makespan
using PH distributions for different percentiles. It is possible to notice that the error
increases with the considered percentile. At the 90th percentile, the error is, on average

109

Mathematics 2021, 9, 1404

1%, and the confidence interval is (1.47, 1.96), with a minimum of 0.017% and a maximum
of 3.46%, whereas at the 99th percentile, the error is, on average, 2.72% with a confidence
interval equal to (2.28, 3.15), a minimum of 0.04% and a maximum of 9.6%.

Table 7. Accuracy of the estimation of the makespan distribution for different percentiles.

Percentile # Average St. Dev. Conf. Interval Min Max

90 1.16 0.80 (0.99,1.33) 0.017 3.46

95 1.72 1.16 (1.47,1.96) 0.006 4.55

97 2.49 1.49 (2.17,2.79) 0.08 5.66

99 2.72 2.09 (2.28,3.15) 0.04 9.60

8. Conclusions

In this paper, a general approach has been proposed to exploit Markov chains and
phase-type distributions to model the execution of a stochastic PERT network with general
distributed processing times. A general and concise formulation has been proposed, based
on Kronecker algebra, to support the application without any constraint on the class of
phase-type distributions allowed.

The motivation for the approach stems from the need to fit real data and use this
information in the planning and scheduling of manufacturing operations, overcoming the
limitation of a large portion of the literature related to stochastic scheduling, requiring
strong hypotheses on the underlying distributions. Coping with real data, characterized
by asymmetry, multi-modality, and so forth, PH distributions are a very effective approxi-
mation approach also entailing the capability of using Markov activity networks and the
associated corpus of approaches.

The proposed formulation also allows to easily change and/or refine the fitting
according to the accuracy requirements to keep the computation time in line with the
specific needs and without the need of recomputing the whole model from zero.

An analytical description has been provided, as well as experiments on a wide range
of test instances. The testing demonstrated good performance both in terms of computa-
tion time and accuracy of the approximation, although the computational effort rapidly
increases with the dimension of the network and the number of phases used.

Moreover, the algebraic formulation also allows the use of more advanced numerical
methods able to evaluate the Markov activity network without the need to explicitly build the
whole infinitesimal generator, thus paving the way to more efficient calculation approaches.

Hence, modeling the execution of an activity network through a Markov process and
phase-type distributions provides a promising path towards embedding the proposed
estimation approach in scheduling algorithms to optimize a function of the makespan
distribution, such as an associated risk measure.

Further developments will address advanced calculation methods to speed up the com-
putation time, as well as the exploitation of this method to support stochastic
scheduling approaches.

Author Contributions: Conceptualization, M.U.; methodology, A.A., A.H. and M.U.; software,
A.A.; writing, A.A., A.H. and M.U. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

110

Mathematics 2021, 9, 1404

References

1. Malcolm, D.; Rosenbloom, J.; Clark, C.; Fazar, W. Application of a technique for research and development program evaluation.
Oper. Res. 1959, 7, 646–669. [CrossRef]

2. Kulkarni, V.; Adlakha, V. Markov and Markov-regenerative pert networks. Oper. Res. 1986, 34, 769–781. [CrossRef]
3. Urgo, M. Stochastic Scheduling with General Distributed Activity Durations Using Markov Activity Networks and Phase-Type

Distributions. In Sequencing and Scheduling with Inaccurate Data; Nova Publisher: Hauppauge, NY, USA, 2014.
4. Elmaghraby, S.; Benmansour, R.; Artiba, A.; Allaoui, H. On The Approximation of Arbitrary Distributions by Phase-Type

Distributions. In Proceedings of the 3rd International Conference on Information Systems, Logistics and Supply Chain,
Casablanca, Morocco, 13 April 2010.

5. Creemers, S. Minimizing the expected makespan of a project with stochastic activity durations under resource constraints. J.
Sched. 2015, 18, 263–273. [CrossRef]

6. Creemers, S. Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient
globally optimal solution procedure. Eur. J. Oper. Res. 2018, 267, 16–22. [CrossRef]

7. Buchholz, P. Structured analysis approaches for large Markov chains. Appl. Numer. Math. 1999, 31, 375–404. [CrossRef]
8. Buchholz, P.; Kemper, P. Kronecker Based Matrix Representations for Large Markov Models. In Validation of Stochastic Systems: A

Guide to Current Research; Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P., Siegle, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 256–295.

9. Ballarini, P.; Horváth, A. Memory Efficient Analysis for a Class of Large Structured Markov Chains: Work in Progress. In
Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, 20–22
October 2009; pp. 21:1–21:4.

10. Igelmund, G.; Radermacher, F.J. Preselective Strategies for the Optimization of Stochastic Project Networks under Resource
Constraints. Networks 1983, 13, 1–28. [CrossRef]

11. Igelmund, G.; Radermacher, F.J. Algorithmic Approaches to Preselective Strategies for Stochastic Scheduling Problems. Networks
1983, 13, 29–48. [CrossRef]

12. Radermacher, F.J. Scheduling of Project Networks. Ann. Oper. Res. 1985, 4, 227–252. [CrossRef]
13. Stork, F. Branch-and-Bound Algorithms for Stochastic Resource-Constrained Project Scheduling; Technical Report; Research Report No.

702/2000; Technische Universität Berlin: Berlin, Germany, 2000.
14. Tolio, T.; Urgo, M.; Váncza, J. Robust production control against propagation of disruptions. CIRP Ann. Manuf. Technol. 2011,

1, 489–492. [CrossRef]
15. Radke, A.M.; Tolio, T.; Tseng, M.M.; Urgo, M. A risk management-based evaluation of inventory allocations for make-to-order

production. CIRP Ann. Manuf. Technol. 2013, 1, 459–462. [CrossRef]
16. Urgo, M.; Buergin, J.; Tolio, T.; Lanza, G. Order allocation and sequencing with variable degree of uncertainty in aircraft

manufacturing. CIRP Ann. Manuf. Technol. 2018, 67, 431–436. [CrossRef]
17. Urgo, M.; Váncza, J. A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to

minimize the value-at-risk. Flex. Serv. Manuf. J. 2018, 31, 472–496. [CrossRef]
18. Hagstrom, J.N. Computational complexity of PERT problems. Networks 1988, 18, 139–147. [CrossRef]
19. Kleindorfer, G. Bounding distributions for a stochastic acyclic network. Oper. Res. 1971, 19, 586–601. [CrossRef]
20. Moehring, R. Scheduling under Uncertainty: Bounding the Makespan Distribution. In Computational Discrete Mathematics;

Springer: Berlin/Heidelberg, Germany, 2001; pp. 79–97.
21. Golenko-Ginsburg, D.; Gonik, A. Stochastic Network Project Scheduling with Non-Consumable Limited Resources. Int. J. Prod.

Econ. 1997, 48, 29–37. [CrossRef]
22. Tsai, Y.W.; Gemmill, D.D. Using Tabu Search to Schedule Activities of Stochastic Resource-Constrained Projects. Eur. J. Oper. Res.

1998, 111, 129–141. [CrossRef]
23. Buss, A.H.; Rosenblatt, M.J. Activity delay in stochastic project networks. Oper. Res. 1997, 45, 661–677. [CrossRef]
24. Sobel, M.; Szmerekovsky, J.; Tilson, V. Scheduling projects with stochastic activity duration to maximize expected net present

value. Eur. J. Oper. Res. 2009, 198, 697–705. [CrossRef]
25. Elmaghraby, S.E.; Ramachandra, G. Optimal Resource Allocation in Activity Networks: II. The Stochastic Case; Research Report;

NCSU: Raleigh, NC, USA, 2012.
26. Angius, A.; Horváth, A.; Urgo, M. Analysis of activity networks with phase type distributions by Kronecker algebra. In Proceed-

ings of the 14th International Conference on Project Management and Scheduling (PMS’14), Munich, Germany, 30 March–2 April
2014; pp. 1–5.

27. Bobbio, A.; Cumani, A. ML estimation of the parameters of a PH distribution in triangular canonical form. Comput. Perform. Eval.
1992, 22, 33–46.

28. Asmussen, S.; Nerman, O.; Olsson, M. Fitting Phase-Type Distributions via the EM Algorithm. Scand. J. Stat. 1996, 23, 419–441.
29. Telek, M.; Heindl, A. Matching moments for acyclic discrete and continuous phase-type distributions of second order. Int. J.

Simul. Syst. Sci. Technol. 2002, 3, 47–57.
30. Horváth, G.; Telek, M. A canonical representation of order 3 phase type distributions. Lect. Notes Theor. Comput. Sci. 2007,

4748, 48–62.

111

Mathematics 2021, 9, 1404

31. Bobbio, A.; Horváth, A.; Telek, M. Matching Three Moments with Minimal Acyclic Phase Type Distributions. Stoch. Model. 2005,
21, 303–326. [CrossRef]

32. Horváth, A.; Telek, M. PhFit: A General Phase-Type Fitting Tool. In Proceedings of the 12th Performance TOOLS, London, UK,
14–17 April 2002; Volume 2324.

33. BuTools 2.0. 2018. Website online: http://webspn.hit.bme.hu/~telek/tools/butools (accessed on 1 April 2021).
34. Moler, C.; Loan, C.V. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev. 2003,

45, 3–49. [CrossRef]
35. Horváth, A. Approximating Non-Markovian Behavior by Markovian Models. Ph.D. Thesis, Department of Telecommunications,

Budapest University of Technology and Economics, Budapest, Hungary, 2002.
36. Thummler, A.; Buchholz, P.; Telek, M. A Novel Approach for Phase-Type Fitting with the EM Algorithm. IEEE Trans. Dependable

Secur. Comput. 2006, 3, 245–258. [CrossRef]
37. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approachg; Dover: Mineola, NY, USA, 1981.
38. Angius, A.; Horvath, A.; Halawani, S.M.; Barukab, O.; Ahmad, A.R.; Balbo, G. Constructing Matrix Exponential Distributions by

Moments and Behavior around Zero. Math. Probl. Eng. 2014, 2014, 610907. [CrossRef]
39. Reinecke, P.; Krauß, T.; Wolter, K. Cluster-based fitting of phase-type distributions to empirical data. Comput. Math. Appl. 2012,

64, 3840–3851. [CrossRef]
40. Mocanu, S.; Commault, C. Sparse representations of phase-type distributions. Commun. Stat. Stoch. Model. 1999, 15, 759–778.

[CrossRef]
41. Wolter, K. Stochastic Models for Fault Tolerance-Restart, Rejuvenation and Checkpointing; Springer: Berlin/Heidelberg, Germany, 2010.

[CrossRef]
42. Angius, A.; Colledani, M.; Yemane, A. Impact of condition based maintenance policies on the service level of multi-stage

manufacturing systems. Control Eng. Pract. 2018, 76, 65–78. [CrossRef]
43. PSPLIB. 2018. Available online: http://www.om-db.wi.tum.de/psplib (accessed on 1 April 2021).

112

mathematics

Article

Relocation Scheduling in a Two-Machine Flow Shop with
Resource Recycling Operations

Ting-Chun Lo and Bertrand M. T. Lin *

Citation: Lo, T.-C.; Lin, B.M.T.

Relocation Scheduling in a

Two-Machine Flow Shop with

Resource Recycling Operations.

Mathematics 2021, 9, 1527. https://

doi.org/10.3390/math9131527

Academic Editors: Chin-Chia Wu and

Win-Chin Lin

Received: 23 May 2021

Accepted: 23 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Information Management, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
chunchun.mg08@nycu.edu.tw
* Correspondence: bmtlin@mail.nctu.edu.tw

Abstract: This paper considers a variant of the relocation problem, which is formulated from an urban
renewal project. There is a set of jobs to be processed in a two-machine flow shop subject to a given
initial resource level. Each job consumes some units of the resource to start its processing on machine
1 and will return some amount of the resource when it is completed on machine 2. The amount of
resource released by a job is not necessarily equal to the amount of resource acquired by the job for
starting the process. Subject to the resource constraint, the problem is to find a feasible schedule
whose makespan is minimum. In this paper, we first prove the NP-hardness of two special cases.
Two heuristic algorithms with different processing characteristics, permutation and non-permutation,
are designed to construct feasible schedules. Ant colony optimization (ACO) algorithms are also
proposed to produce approximate solutions. We design and conduct computational experiments to
appraise the performances of the proposed algorithms.

Keywords: resource-constrained scheduling; relocation problem; flow shop; resource recycling;
heuristic algorithms; ant colony optimization

1. Introduction

Scheduling is a decision-making process that allocates limited resources to tasks
in a given time period to optimize certain objectives in manufacturing as well as service
industries [1]. Usually, resources are considered as machines that process the assigned tasks
in manufacturing industries. In some scheduling contexts, there could be different extra
resources, like capital, crews and technicians, storage space, energy, computer memory, and
so on, that are required to support the execution of the tasks. Such scheduling problems
are known as resource-constrained scheduling. Resource-constrained project scheduling
problems (RCPSP) have received considerable attention for decades. Please refer to Brucker,
Drexl, Möhring, Neumann, and Pesch [2], Habibi, Barzinpour, and Sadjadi [3] Herroelen,
De Reyck, and Demeulemeester [4], Issa and Tu [5] for comprehensive reviews on RCPSP.
The resource constraint featured in the relocation problem is different traditional ones in
the sense that the amount of resource released by an activity is not necessarily the same as
that acquired for commencing the activity. This study investigates the relocation problem
in a two-machine flow shop with the specific feature of a resource recycling mechanism.

The construction industry have various optimization decisions to address in the project
course [6,7]. The relocation problem originated from the public house redevelopment
project in Boston [8,9]. The project had a set of buildings to be torn down and erected for
redevelopment. During the redevelopment process, current tenants of the buildings under
reconstruction needed to be relocated to temporary housing units. They could be assigned
to new housing units. It was not mandatory for tenants to reside at the same place they lived
before. Therefore, the authority had to determine a minimum budget of temporary housing
units such that all tenants could be successfully relocated. Kaplan [8] first formulated the
relocation problem of determining a feasible redevelopment sequence of the buildings with
the initial budget. In the view of optimization, this problem can also be described as finding

Mathematics 2021, 9, 1527. https://doi.org/10.3390/math9131527 https://www.mdpi.com/journal/mathematics

113

Mathematics 2021, 9, 1527

a feasible sequence of the redevelopment buildings that reflects the minimum initial budget.
Kaplan and Amir [10] showed that the relocation problem is mathematically equivalent to
the two-machine flow shop scheduling problem for minimizing makespan, implying that
the basic relocation problem can be solved by the classical Johnson’s algorithm [11].

Lin and Huang [12] first introduced the recycling operations for yielding the resource
into the study on the relocation problem. In previous studies on the relocation problem,
the resource is consumed when a job starts to process and returns immediately when it
is completed. However, the concept of the resource recycling is assumed that we need to
have a mechanism or procedure to recycle the resource before the resource can be used for
later jobs. Therefore, a job is divided into two separate parts on two dedicated machines:
one processed on machine 1 and the other for recycling the resource on machine 2. The
operations on machine 1 should have sufficient resource so that they can commence
the processing, and the operations on machine 2 should wait for the completion of its
corresponding counterpart operations jobs on machine 1. However, the job sequences on
the two machines are not necessarily the same. Cheng, Lin and Huang [13] presented an
integer linear program formulation for the permutation case, in which the job sequences on
all machines are the same. They also investigated the non-permutation case. We continue
to study this relocation problem and discuss more theoretical proofs. Then, we present
heuristic algorithms and ant colony optimization (ACO) algorithms for both permutation
and non-permutation sequences to find feasible schedules with resource constraints for
minimum makespan.

The rest of this paper is organised as follows. In Section 2, we present problem
statements and give a numerical example followed by a literature review. The complexity
results of two special cases are discussed in Section 3. In Sections 4 and 5, we present
heuristic algorithms and ant colony optimization algorithms for constructing approximate
schedules. Computational experiments and performance statics of the algorithms are given
in Section 6. We conclude this search and suggest research directions for future study in
Section 7.

2. Problem Definition

In this section, we first introduce the notation that will be used throughout our re-
search. Then, a formal problem formulation follows. An integer programming model is
also proposed. The notations are listed below:

Notation:

N = {1, 2, . . . , n} set of jobs to be processed;
p1,j processing time of job j on machine 1;
p2,j processing time of job j on machine 2;
αj resource requirement of job j;
β j amount of the resource returned by job j;
σ = (σ1, σ2, . . . , σn) a particular sequence of the jobs

(assumed for the case of permutation schedules);
v0 initial resource level;
vt resource level at time t ≥ 0;
Cm,j completion time of job j on machine m, m = 1, 2.

We formally state the problem as follows: From time zero onwards, a set of jobs
N = {1, 2, . . . , n} is available to be processed in a two-stage flow shop consisting of
machine 1 and machine 2. Initially, the common resource pool contains v0 units of a single
type of resource. Job j ∈ N can start processing only if machine 1 is not occupied and the
resource level is larger than or equal to αj. When job j starts processing, it immediately
consumes αj units of the resource and takes p1j units of time on machine 1. After the
operation on machine 1 is completed, p2j units of time are required to complete its resource

114

Mathematics 2021, 9, 1527

recycling operation on machine 2. When job j completes on machine 2, it produces and
returns β j units of the resource back to the resource pool. No preemption on either machine
is permitted. Note that there is no strict relation between αj and β j. That is, β j could be
smaller than, equal to, or larger than αj. The goal is to minimize the makespan. In other
words, we want to find a feasible schedule that completes all jobs in the shortest time.

To illustrate the problem definition, we consider an instance of four jobs with an initial
resource level v0 = 6. The parameters are shown below in Table 1. We construct two
example schedules.

Table 1. An example of four jobs.

p1,j p2,j αj βj

job 1 3 3 8 9
job 2 1 5 3 10
job 3 5 6 3 8
job 4 6 1 11 4

Figure 1 shows an optimal permutation solution with Cmax = 22, and Figure 2 shows
an optimal non-permutation solution with Cmax = 19. Both of them are feasible. In this
example, it is clear that the non-permutation solution can attain a better makespan than
the permutation one.

m = 1 J2 J3 J1 J4

m = 2 J2 J3 J1 J4

Cm,j 0 1 6 9 12 15 21 22

Figure 1. Permutation solution

m = 1 J2 J3 J1 J4

m = 2 J2 J1 J3 J4

Cm,j 0 1 6 9 12 18 19

Figure 2. Non-permutation solution

Literature Review

To describe our problem, we denote use the standard three-field notation F2|rp|Cmax,
proposed by Graham et al. [14]. The first field indicates the machine environment of a
two-machine flow shop, where the first machine is the operation of the building being
torn down and the second machine is about re-constructing buildings corresponding to
resource recycling operations. The second field indicates that the specific conditions for the
job characteristics, i.e., the relocation problem. The last field specifies the objective function
of makespan.

The study on the relocation problem was inaugurated by Kaplan [8] in 1986. The
fundamental purpose of the basic relocation problem is to minimize the initial budget
required for guaranteeing project feasibility. In Kaplan’s study, multiple working crews
were considered that if resources were sufficient, i.e., a number of buildings could be
simultaneously developed. Kaplan and Amir [10] formulated the application of relocation
problem as an integer program. They also noted the relationship between the minimum
budget in relocation feasibility and the minimum makespan of two-machine flow shop
scheduling, which is solvable in O(n log n) time [11]. To reflect real situations of the
housing redevelopment project in East Boston, Kaplan, and Berman [15] refined the integer
programming model and scheduling heuristics. Applications like the financial constraints
on single machine scheduling problems [16] which can be reduced to the two-machine flow

115

Mathematics 2021, 9, 1527

shop scheduling problem as a special case of the relocation problem. The relocation problem
is also related to the memory management issue in database system in practical term [17].
Amir and Kaplan [17] showed that minimizing the makespan on parallel machines is
NP-hard. Kononov and Lin [18] proved that parallel-machine setting is strongly NP-hard
even if there are only two working crews and all jobs have the same processing time. They
also designed approximation algorithms with performance ratio analysis for two special
cases.

Cheng and Lin [19] presented more proofs and proposed the concept of composite
jobs that can reduce the computational time for handling the relocation problem. Cheng
and Lin [20] also demonstrated the concept of relocation scheduling to give an economic
interpretation of Johnson’s algorithm. The concept can also simplify proofs and reduce
time complexity in some two-machine flow shop scheduling problems. There are other
extensions from the relocation problem. Lin and Tseng [21] considered the problem with
processing times and deadline constraints. Furthermore, they provided a complexity re-
sult and two polynomial algorithms to solve the restricted problems. Lin and Tseng [22]
proposed a branch-and-bound algorithm to maximize the resource level under a speci-
fied due date and considered the precedence constraints [23] that is NP-hard even if the
precedence constraints are specified by a bi-partite graph. Lin and Cheng [24] showed two
relocation problems of minimizing the maximum tardiness is strongly NP-hard and of
minimizing the number of tardy jobs under a due date is NP-hard even when all the jobs
have an equal tardy weight and resource requirement. Based on the generalized due dates
proposed by Hall [25], Lin and Liu [26] extended the scheduling problem and designed
a branch-and-bound algorithm to reduce the computational time required. Sevastyanov,
Lin and Huang [27] considered the relocation problem with arbitrary release dates. They
developed a multi-parametric dynamic programming algorithm to solve the case with a
fixed number if distinct due release dates and analyzed complexity of different problem
settings. Kononov and Lin [28] considered minimizing the total weighted completion time
and proved four special cases are strong NP-hardness. They established the equivalence
between the UET (unit-execution-time) case and the unit-weighted case and presented a
2-approximation algorithm for the restricted special cases.

As per the feature of resource recycling in the relocation problem, there are some
existing works. Lin and Huang [12] first introduced the concept of resource recycling. This
operation can be processed on a secondary recycling machine that the whole procession
can be described as a two-machine flow shop scheduling problem. In this paper, they
showed that it is NP-hard and designed three heuristic algorithms to compose approximate
schedules. Problem formulation and some complexity results were discussed in Cheng,
Lin and Huang [13]. They presented integer linear programming models for finding the
feasible permutation sequence and non-permutation sequence with minimum makespan.
Lin [29] considered the setting where processing and recycling are carried out on the same
single machine. The problem is a generalization of the knapsack problem. He designed
a pseudo-polynomial time dynamic programming algorithm and formulated an integer
program to solve this recycling problem that operations are processed on the same single
machine.

3. Complexity Analysis

This section is dedicated to discussion of the complexity results of the problem of
several special cases. First, let instance I contain n jobs with p1,j, p2,j, αj, and β j given for
each job j and an initial resource level v0. We create another instance Ī having n jobs with
p1,j = p2,j, p2,j = p1,j, αj = β j, and βj = αj that is symmetric to the instance I . Set the initial

resource level v0 = v0 − ∑
4q+1
j=1 (β j − αj). We claim that the two instances have the optimal

makespan. The concept follows the results of Kononov and Lin [28].

Theorem 1. (Mirror Property) Instance I and instance Ī have the optimal makespan.

116

Mathematics 2021, 9, 1527

Proof. Let σ = (σ(1), σ(2), . . . , σ(n)) be a feasible permutation of jobs in the given instance
I case. We show that σ = (σ(n), σ(n − 1), . . . , σ(1)) is feasible for Ī we created in the
above. Assume Vk is the resource level after the jobs σ(n), . . . , σ(k + 1) in σ complete. We
have Vk − ασ(k) = v0 + ∑n

j=k+1(βσ(j) − ασ(j))− ασ(k) = v0 + ∑k
j=1(βσ(j) − ασ(j))− βσ(k) =

v0 + ∑k−1
j=1 (βσ(j) − ασ(j))− ασ(k) ≥ 0. The last inequality is feasible with the schedule σ.

Therefore, we can get Vk ≥ ασ(k), which shows the schedule σ is feasible. As we know
the schedule σ and σ are two-stage flow shop, if their sequences are reversed, they have
same processing time. Therefore, we can construct another optimal schedule if we get an
optimal one.

For n jobs, there are (n!) possible sequences when the permutation schedules are
considered. If we consider the non-permutation variant, the number of schedules will
become O(n! × n!) because the permutations on the two machines could be different. For
technical constraints or dispatching fairness, say first comes first served, the processing
sequence could be given and fixed [30,31]. In view of implementations, if an optimal
schedule can be efficiently obtained from a given job sequence on either machine, we can
then reduce the decision tree size from O(n! × n!) to O(n!). This section will explore the
complexity status of the setting with a fixed job sequence.

First, we prove the problems that when the sequence of the jobs on machine 2 is given
and fixed, finding the optimal schedule is strongly NP-hard, even if all jobs have the same
processing time on machine 2. On the other hand, if the given and fixed sequence of the
jobs is on machine 1, we can get the same result that finding optimal schedules is also
strongly NP-hard. The proof is given in the following:

3-Partition: Given an integer B and a set A of 3q elements {1, 2, . . . , 3q}, each j ∈ A
has a size xj, B/4 < xj < B/2, such that ∑

3q
j=1 xj = qB, is there a partition A1, A2, . . . , Aq of

the set A such that ∑xj∈Al
xj = B, 1 ≤ l ≤ q?

Theorem 2. If a sequence of the jobs on machine 2 is given and fixed, then finding an optimal
schedule is strongly NP-hard, even if all jobs have the same processing time on machine 2.

Proof. Given an instance of 3-Partition, we create a corresponding set of 4q + 1 jobs
as follows:

Enforcer jobs: p1,j = 0, p2,j = B, αj = 2B, and β j = 3B, 1 ≤ j ≤ q;
Ordinary jobs: p1,j = xi, p2,j = B, αj = xi, and β j = 0, q + 1 ≤ j ≤ 4q;
Final job: p1,j = 3qB, p2,j = B, αj = 0, and β j = 0, j = 4q + 1.

The the initial resource level v0 = 3B. The jobs on machine 2 are sequenced in
increasing order of their indices. We claim that there is a 3-Partition if there is a feasible
schedule whose makespan is no greater than (4q + 1)B.

Assume that there exists a desired partition A1, A2, . . . , Aq of 3-Partition. Because the
total actual processing length on machine 2 is (4q + 1)B, we know that no idle time on
machine 2 is permitted. Then, we schedule the enforcer job 1 on machine one first followed
by the the ordinary jobs corresponding to the three elements of A1 and the resource level is
brought back to 3B. Repeat the dispatching pattern and then schedule the last job. It is to
see that the schedule is feasible and the makespan is exactly (4q + 1)B.

Assume that there is a feasible schedule whose makespan is no larger than (4q + 1)B.
The total actual processing length on machine 2 of all jobs is (4q + 1)B. There is no idle
time on machine 2. On the other hand, the total actual processing length on machine 1
is 4qB. Considering the subsequent operations on machine 2, no idle time is allowed on
machine 1. In other words, machine 1 and machine 2 cannot have any idle time in order to
attain the makespan (4q + 1)B. As given, machine 2 processes the enforcer jobs 1, 2, . . . , q
as in their indices. Since all enforcer jobs have the same parameter values, without loss
of generality we assume that the enforcer jobs also follow the same processing order on
machine 1.

117

Mathematics 2021, 9, 1527

We first note that job 1 should start first on machine 1 for otherwise non-zero idle time
will be incurred on machine 2. After completing job 1 on machine 1, the resource level
drops from 3B to B. To start the next enforcer job 2, machine 1 wait for the previous enforcer
job 1 to be completed to accumulate sufficient resources. To avoid the idle time between
the first and second enforcer jobs on machine 1, we assign ordinary jobs to fill up the idle
period. Let A1 be the set of elements defining these ordinary jobs. If ∑xj∈A1

xj < B, then
there is an idle time before job 2 on machine 1. On the other hand, if ∑xj∈A1

xj > B, then
the resource is insufficient and the completion time of some ordinary jobs are later than the
second enforcer job, leading to the idle time on machine two. As the result, ∑xj∈A1

xj = B
must hold. Continuing this process, we can find subsets A2, . . . , An with ∑xj∈Al

xj = B,
2 ≤ l ≤ q, satisfied for the 3-Partition problem. Figure 3 shows the sequence of the optimal
schedule: the purple blocks are enforcer jobs, the red ones are ordinary jobs, and the blue
ones are final job.

Figure 3. Given and fixed sequence on machine 2.

Theorems 1 and 2 together imply the following result.

Theorem 3. If a sequence of the jobs on machine 1 is given and fixed, then finding an optimal
schedule is strongly NP-hard, even if all jobs have the same processing time on machine 2.

Proof. Owing to Theorems 1 and 2, we can get the feasibility of a given and fixed sequence
of the jobs on machine 1 whose optimal schedule is strongly NP-hard. On the other hand,
the idle time before job 1 on machine 2 is inevitable and the total actual processing length
is (4q + 1)B. Furthermore, the sequence of Theorem 2 whose jobs on machine 2 is given
and fixed, if we reverse this two-stage flow shop sequence, we can get the given and fixed
sequence of the jobs on machine 1 which is equivalent to Theorem 3. It can seen that Figure
4 is derived form Figure 3 by reversing the Gantt chart from the right. As a result, the
sequences of Theorem 2 and Theorem 3 have same total processing time. Then, we get the
optimal schedule.

Figure 4. Given and fixed sequence on machine 1.

Theorem 4. If sequences of the jobs on machine 1 and machine 2 are given and fixed, then the
optimal schedule can be found in polynomial time.

Proof. Assume that there is a feasible schedule whose sequences of the jobs on machine
1 and machine 2 are given and fixed. We schedule the first job on machine 1 followed
by the first job on machine 2. If the resource of second job on machine 1 is insufficient,
it should wait for previous job which on machine 2 to return the resource. Otherwise, it
can be processed immediately when the previous job finished. Then, the job on machine 2
starts when the job on machine 1 completed. Continuing this process, we can schedule all
the jobs and the makespan is minimum. On the other hand, if the job on machine 2 return
resource is not enough for the next job to be processed, we can know that this sequence is

118

Mathematics 2021, 9, 1527

not feasible. As a result, we can get an optimal schedule if sequences of the jobs on machine
1 and machine 2 are given and fixed.

To simplify the problem, we consider the special case where processing sequences on
both machines are given. By problem definition, the two sequences are not necessarily the
same. For simplicity in presentation, we re-index the jobs to follow the natural sequence
π1 = (π1,1, π1,2, . . . , π1,n) on machine 1. Let π2 = (π2,1, π2,2, . . . , π2,n) denote the sequence
on machine 2 and v(t) the resource level at a specific time point t. Notations t1 and
t2 represent the current time points on machines 1 and 2. Note that if an operation
whichever finished on machine 1 or machine 2 and another operation starts on next
machine simultaneously at time t, we define v(t) as the resource level after the finished
operation on one machine and before the starting operation on the other machine. We will
use this method, outlined in Algorithm 1, to calculate makespan for the problem.

Algorithm 1: Two Sequences

1 Let π1 = (π1,1, π1,2, . . . , π1,n) and π2 = (π2,1, π2,2, . . . , π2,n) be the given
processing sequences;

2 t1,π1,1 = p1,π1,1 ; t1 = t1,π1,1 ;
3 v(t1) = v0 − απ1,1 ; t2 = 0;
4 i = 2; j = 1;
5 while i ≤ n and j ≤ n do

6 if v(t1) ≥ απ1,i then

7 t1,π1,i = max{t1, t2}+ p1,π1,i ;
8 t1 = t1,π1,i ;
9 v(t1) = v(t1)− απ1,i ;

10 i = i + 1;

11 else

12 if job π1,j is not yet scheduled on machine 1 then

13 Report “No feasible solution!";

14 else

15 t2 = max{t1,π1,j , t2}+ p2,π2,j ;
16 if t2 ≥ t1 then

17 t1 = t2;

18 v(t1) = v(t1) + βπ2,j ;
19 j = j + 1;

20 while j ≤ n do

21 t2 = max{t1,π2,j , t2}+ p2,j;
22 j = j + 1;

23 return t2.

In Algorithm 1, the first job of the sequence on machine 1 is processed first and
there should be sufficient resource for it to start. Therefore, the first time point t1,1 is the
processing time of job 1 on machine 1, which is also t1, and v(t1) is the resource level when
job 1 finishes. In Line 6 we check the resource if we can process the job i on machine 1
or not. If resource is insufficient for job i on machine 1, we execute Line 11 to Line 19
for processing some job j on machine 2 to collect more resource. In Line 12, we need to
check if job π1,j is scheduled first on machine 1 or not. Because we start to process jobs on
machine 2 when the resource is not enough for machine 1, there may be several candidate
jobs that can be processed on machine 2. Therefore, sometimes, t2 is less than t1 when the
resource level is sufficient for the next job. In Lines 16 to 17, if t2 is larger than t1, we need
to set t1 equal to t2, i.e., the next job on machine 1 should wait for the job on machine 2
to recycle its resource. When all the jobs on machine 1 finish, there are still some jobs on

119

Mathematics 2021, 9, 1527

machine 2 not yet processed. As a result, we process the remaining jobs on machine 2 in
the While loop of Line 20 to Line 22.

4. Heuristic Algorithms

Since the F2|rp|Cmax problem is computationally hard, it is hard to find optimal
solutions when the problem size is large. We therefore design heuristic algorithms to
produce approximate solutions in an acceptable time.

4.1. Permutation

We design two heuristic algorithms, using different sequences to construct feasible
schedules for F2|rp|Cmax problem. If the job of the sequence does not violate the resource
constraint, it must satisfy two conditions that the current resource level is sufficient for
it, and that after its processing the resource level is sufficient for all remaining jobs. We
denote the job sequence as σ and the remaining jobs sequenced by Johnson’s rule using
resource parameters α and β as σJR. Recall that v0 is the initial resource requirement using
Johnson’s rule, and Vneeded denotes the minimum resource requirement for the remaining
jobs that the sequence is the same as σJR excluding job j. If the job violates the constraints,
we will remove it. Then, we can get a set of feasible jobs which are the candidates to be
processed next. Algorithm 2 examines each of the remaining jobs to determine if they are
feasible candidates for the next position.

Algorithm 2: Check Resource

1 Function CheckResource(vnow, σ, σJR):
2 if σ.length = 1 then
3 return σ;

4 else
5 forall job j ∈ σJR do
6 if vnow − αj + β j < Vneeded or vnow ≺ αj then

7 σ.remove(job j);

8 return σ;

The first heuristic algorithm, JR-time Permutation Heuristic, is outlined in Algorithm 3.
We define σtime as the remaining jobs sequenced by Johnson’s rule using p1,i and p2,i and
σJR using αi and βi. Before a job is processed, we need to run CheckResource function for
checking whether the job can be processed or not. Then, we append the job to the partial
schedule σ. Repeat the same step until all the jobs are processed.

Algorithm 3: JR-time Permutation Heuristic

1 σ = [], v(ti) = v0;
2 i = 0;
3 while i ≤ n do
4 σ̄ = CheckResource(v(ti+1), σtime, σJR);
5 v(ti+1) = v(ti)− σ̄(α1) + σ̄(β1);
6 σ.append(σ̄(1));
7 σJR.remove(σ̄(1));
8 σ̄.remove(σ̄(1));

9 Stop.

The second heuristic, JR-resource Permutation Heuristic, is the same as the previous
one except that the job sequence is ordered by Johnson’s rule using αi and βi.

120

Mathematics 2021, 9, 1527

4.2. Non-Permutation

We design two heuristic algorithms that construct non-permutation schedules for
F2|rp|Cmax. Let σ1 be the sequence of the jobs processed on machine 1, and σ2 the job
sequence on machine 2. Let σ̂2 contain the jobs eligible for processing on machine 2.
Algorithm 4 processes the jobs on machine 1 first. If a job satisfies the two constraints, it
will be appended to the schedule. Since we want to construct a non-permutation schedule,
we create σ̂2 to collect the jobs which are finished on machine 1 but not yet on machine 2.
When the resource level is insufficient for the candidate job, we need to process the jobs on
machine 2 for acquiring more resource. Therefore, we choose the job that has the largest
β in σ̂2 to be processed first. However, this strategy may lead to an idle time when we
only process the selected job. To avoid this situation, we first find the arrival time of the
selected job that can be processed and we call it LargeBetaArrivalTime here. Then, check if
the completion time of any other job is earlier than LargeBetaArrivalTime. Furthermore,
we change the f raction such that 1 − f raction is the acceptable time range that exceeds
LargeBetaArrivalTime.

In Line 14, if the acceptable completion time is earlier than LargeBetaArrivalTime,
then it is appended to σ2 and removed form σ̂2. This process iterates until all the jobs of σ̂2
are checked. After that, the job having the largest β is appended to σ2 and removed form
σ̂2. We repeat the above steps until all the jobs be processed and then we get a feasible
non-permutation schedule.

The second heuristic, JR-time Non-Permutation Heuristic, is similar to the first one
except for using p1,i and p2,i to arrange the job sequence.

Algorithm 4: JR-resource Non-Permutation Heuristic

1 Order the jobs by Johnson’s rule using αi and βi.;
2 σ1 = [], σ2 = [], σ̂2 = ∅;
3 i = 0, j = 0, k = 0;
4 v(t1,i) = v0;
5 while i ≤ n do
6 σ̄ = CheckResource(v(t1,i), σori, σJR);
7 if v(t1,i) ≥ σ̄(α1) then
8 v(t1,i) = v(t1,i)− σ̄(α1);
9 σ1.append(σ̄(1));

10 σ̂2.append(σ̄(1));
11 i = i + 1;

12 else
13 forall job k ∈ σ̂2 do
14 if LargeBetaArrivalTime ≥ f raction ∗ t2,k then
15 σ2.append(job k);
16 v(t2,j) = v(t2,j) + βk;
17 σ̂2.remove(job k);
18 j = j + 1;

19 v(t2,j) = v(t2,j) + βLargeBeta;
20 σ2.append(J2,LargeBeta);
21 σ̂2.remove(J2,LargeBeta);
22 j = j + 1;

23 while len(σ̂2) ≤ n do
24 v(t2,j) = v(t2,j) + β j;
25 σ2.append(job2,j);
26 σ̂2.remove(job2,j);
27 j = j + 1;

28 Stop.

121

Mathematics 2021, 9, 1527

5. Ant Colony Optimization

In this section, we design an ACO algorithm to solve our problem. We will explain
the framework and strategies of the algorithm for producing the approximate sequence.

State transition rule: In the ACO search process, each ant selects the next node to
visit by calculating the preference for each path according to the pheromone intensity and
heuristic visibility. In the proposed ACO algorithm, the preference Pij of an ant, positioned
at node i, for selecting node j is defined as:

Pij =

⎧⎨⎩
τwτ

ij η
wη
ij

∑j∈I τwτ
ij η

wη
ij

, if j ∈ I;

0, otherwise,
(1)

where τij is the pheromone intensity on the link from node i to node j, and ηij the visibility
value from node i to node j, and I the set of remaining admissible jobs to be processed.
Parameters wτ and wη control the relative importance of τij and ηij. The greater a parameter
is, the more influence of it to the preference value. In our design, the visibility value ηij is
based on a greedy strategy. We prefer less processing times on both machines, less resource
requirement, and larger amount of the resource returned by job for priority selection.
Visibility value is defined as:

ηij =
β j

αj + p1j + p2j
. (2)

We use preference values Pij for our exploration strategy. This method is just like the
roulette wheel that every node, i.e., every job has their transition probability, based on
which we select the next job randomly. Every node has a chance to be selected, even the
probability is low.

Pheromone updating rule: After all the jobs are processed, we update the pheromone
tails so that the ants can select their future paths according to previous experience. The
trail intensity on link (i, j) is updated as below:

τij = (1 − ρ)× τij + Δτij, (3)

where ρ represents the pheromone evaporation rate, and Δτij the incremental pheromone
between nodes i and j given as:

Δτij =

{
Q
Ck

, if j ∈ I ;
0, otherwise.

(4)

In the above definition, Q is an adjustable parameter and Ck the completion time of
the last job on machine 2. This strategy is based on policy that the less Ck is, the more
pheromone on the path enhanced.

Stopping criterion: The proposed ACO algorithm assigns a colony of ants to probe
their own sequences and set a maximum number of iterations. When all the ants complete
their routes in one iteration, we select the minimum makespan, i.e., the elite, to be our
current best solution. Then, we iterate the process until reaching the maximum number
of iterations. If there is a better solution in iterations, this new solution will replace the
current best one.

Permutation: To take into account the resource constraints on two machines, we
only choose the job that would return the sufficient resource for the remaining jobs to be
successfully processed. Therefore, we use the function CheckResource before ants select
the next job and then enter the ACO algorithm to get the permutation sequence. This
method is similar to JR Permutation Heuristic except that we use ACO to choose the
job sequence.

Non-Permutation: For non-permutation sequences, we divide the algorithm into two
parts. In the first part, we use the ACO algorithm to obtain the sequence on machine 1,

122

Mathematics 2021, 9, 1527

similar as in Permutation. In second part, the difference form Permutation is when the
resource is insufficient for the next job, we use the same method LargeBetaArrivalTime in
JR-resource Non-Permutation Heuristic to select jobs to process on machine 2. Then,
we can get a complete sequence and we use it to update the ACO algorithm. As a result,
we can get the non-permutation sequence by ACO combined with the heuristic method on
machine 2.

6. Computational Experiments

In this section, we present computational experiments on the proposed methods
through test data to compare and analyze the performance of these algorithms. The
programs were coded in Python and executed on a personal computer with an Intel(R)
Core(TM) i7-8700K CPU running at 3.70 GHz with 32.0 GB RAM. The operating system is
Windows 10. We will describe how the test data sets were generated. Then, we present the
related parameter settings and discuss the experimental results.

Data generation schemes: In our experiments, all parameters are integer. Processing
times p1,j and p2,j of jobs on different machines were generated from the uniform distribu-
tion, [1, 10]. Resource parameters αj and β j were generated from the uniform distribution
[1, 20]. The initial resource level was considered based on 1.1 and 1.4 times the minimum
resource requirement that is at least how much the resource is needed for all the jobs of each
data set. Test data sets are categorized into 8 different job numbers n ∈ {10, 20, 30, . . . , 80}.
For each job number, 5 independent sets were generated. Each set also has different uni-
form distributions for processing times p1,j and p2,j, the resource parameters αj and β j,
and the initial resource requirement. That means that we have 40 different data sets in
all. On each data set, say 10 jobs, heuristic algorithms were run only once since they are
deterministic. For a specific setting, the values were averaged over 5 independent sets of
the same setting. The ACO algorithm, due to its randomness nature, was exercised 5 runs
on each data set to get its average performance.

6.1. Results of Heuristic Algorithms

In this experiment, we apply the four heuristic algorithms on different data sets. We
compare permutation solutions with non-permutation ones in two different methods,
namely JR-resource and JR-time. The initial resource level in all experiment results set by
multiplying the minimum resource requirement by 1.1. For each problem size, the average
objective value of derived solution (minimum makespan) are reported. Since the elapsed
execution times of four heuristic algorithms are almost negligible, we do not show the
execution time in the following tables. All detail experiment results of different data sets
are shown in Appendix A.

In Table 2, the makespan of permutation sequence of perm and non-permutation
is maxβ. It can be seen that the JR-resource algorithm can get better makespan than the
JR-time algorithm. Since the constraint is considered by resource, it is obviously that
when the jobs sequenced by processing time, the resource would insufficient and the jobs
should wait for the resource returned which lead to idle time. In most of the data sets,
the makespans of permutation heuristics are less than non-permutation ones (maxβ in
Table 2). However, sometimes, non-permutation can get a better solution that reported in
JR-resource with 10 jobs. We speculate that some jobs on machine 2 can fill up the idle time
and thus decrease the waiting time on machine 1.

In the experiment, there are different fractions of the bearable exceeding time, which
is the acceptable time length that exceeds LargeBetaArrivalTime, used in JR-resource and
JR-time Non-Permutation Heuristics. The fraction ranges from 5/10 to 10/10. Table 3 is
for JR-time Non-Permutation Heuristics focused on processing times, and Table 4 for the
heuristics focused on αi and βi. If we do not consider the bearable exceeding time, the
makespan would be more than others that bear the exceed time because there is longer idle
time in the sequences. It is clear that with the 10/10 fraction we get a longer makespan.
In most cases, the makespan is the same regardless of the fraction. However, sometimes

123

Mathematics 2021, 9, 1527

it is shown that if we bear too much exceeded time, we may get worse makespan with a
5/10 fraction of 20 jobs in JR-time and 5/10 to 6/10 fractions of 10 jobs in JR-resource. The
results of fractions are not better than permutation ones, so we do not have further test for
different fractions with 1.4 times the initial resource level.

Table 2. JR-resource and JR-time heuristics.

JR-Resource JR-Time

perm maxβ perm maxβ

Cmax

10 80 78 87 92
20 137 142 166 177
30 199 202 251 256
40 258 262 332 345
50 307 308 425 439
60 351 357 474 494
70 426 431 596 605
80 467 472 636 642

Table 3. Different fractions in JR-time Non-Permutation Heuristics.

Fraction of Exceeding Time

10/10 9/10 8/10 7/10 6/10 5/10

Cmax

10 92 88 87 87 86 86
20 177 169 166 166 166 167
30 256 252 252 252 252 252
40 345 332 332 333 333 332
50 439 424 424 425 425 425
60 494 475 475 475 475 475
70 605 595 597 597 597 597
80 642 638 638 637 637 637

6.2. Results of ACO Algorithms

We discuss the results of ACO algorithms with permutation and non-permutation
options. We tuned several parameter values in preliminary tests to determine the setting
for further experiments. We observed differences in the results, although not significant.
The parameter values leading to better results were adopted as the base setting for the final
computational tests. We set the two parameters wτ = 2 and wη = 3 that could get better
makespan in the experiment we tested before. The pheromone evaporation ρ is 0.95 to
avoid early convergence. Parameter Q is defined as the number of jobs divided by 10 and
multiplied by 50. Setting 100 epochs for a solution with the colony size the same as the
number of jobs. Then, we have each data set run this process 5 times to get an average
makespan and an average elapsed execution time. The time unit here is second and “-”
means that no feasible solution was found. All complete experiment results are shown in
Appendix A.

124

Mathematics 2021, 9, 1527

Table 4. Different fraction in JR-resource Non-Permutation Heuristics.

Fraction of Exceeding Time

10/10 9/10 8/10 7/10 6/10 5/10

Cmax

10 78 78 78 79 80 80
20 142 138 137 137 137 137
30 202 199 199 199 199 199
40 262 258 258 258 258 258
50 308 307 307 307 307 307
60 357 351 351 351 351 351
70 431 428 426 426 426 426
80 472 467 467 467 467 467

In Table 5, perm indicates the permutation method, and maxβ the non-permutation
method presented in Section 5. M2-enum is also non-permutation sequence that is different
from the method we used in maxβ. The difference between them is that when the resource is
insufficient on machine 1, M2-enum will enumerate all the possible sequences of candidate
jobs on machine 2 to find the minimum makespan and return resource. This procedure
is time-consuming because the number of possible sequences we need to compare is a
factorial of the number of candidate jobs on machine 2. Therefore, when the job number
is larger than 30, we cannot get a solution in 3600 s. We also experiment on the integer
programming method (IP) proposed by Cheng et al. [13] to solve the problem. The IP can
get the optimal solutions for data sets. However, when the number of jobs is over 10, it
cannot find any feasible solution in 3600 s for most data sets. Therefore, it is regarded as
no solution found. With the initial resource is multiplied by 1.1, it is clear that perm can
obtain a better makespan and the required run time of perm is also less than maxβ.

Table 5. Results of ACO algorithms and IP with 1.1 × initial resource levels.

#
perm maxβ M2-enum IP

Cmax Time Cmax Time Cmax Time Cmax Time

10 69 0.41 70 0.80 69 0.84 68 446.81
20 125 2.33 128 4.54 123 27.47 - -
30 184 8.24 187 13.46 184 3396.50 - -
40 239 22.09 242 36.99 - - - -
50 299 50.15 300 73.62 - - - -
60 339 97.24 344 139.03 - - - -
70 416 172.08 418 236.40 - - - -
80 456 279.78 459 352.56 - - - -

Table 6 indicates that with more initial resource a better makespan can be achieved, as
comapred with those in Table 5. Similarly, M2-enum and IP cannot get any solution when
job numbers are over 30 and 10, respectively, in 3600 s. It is also shown that when the initial
resource level is larger, for like 30 jobs, M2-enum will waste more time so that it cannot find
better solutions in 3600 s (Displayed in Table A18). Then, the permutation method can find
an approximate solution with less time. However, results of 1.1 and 1.4 times are within
spitting distance when the quantity of jobs increases. It is reckoned that the processing
times of the subsequent jobs on machine 2 are larger and the resource is sufficient for them,
so their starting times are later than their completion times on machine 1 and they keep
processing continuous without idle time. Therefore, the makespan of larger data sets are
not quite different when the initial resource increases.

125

Mathematics 2021, 9, 1527

Table 6. Results of ACO algorithms and IP with 1.4 × initial resource levels.

#
perm maxβ M2-enum IP

Cmax Time Cmax Time Cmax Time Cmax Time

10 66 0.42 67 0.79 69 0.84 65 187.72
20 125 2.44 127 4.44 124 470.49 - -
30 183 8.31 185 13.95 184 2967.66 - -
40 239 21.59 241 34.04 - - - -
50 299 49.88 300 69.53 - - - -
60 339 95.94 343 129.10 - - - -
70 416 160.34 418 226.25 - - - -
80 456 263.11 458 364.20 - - - -

Table 7 shows that different fractions of the bearable exceeding time used in ACO
Non-Permutation algorithms with different times of the initial resource. In most cases, it
would get less makespan with considering the bearable exceeding time. The makespan
resulted from fractions between 5/10 and 9/10 are not quite different. It is clearly shown
that the makespan of 10/10 fraction is longer than others. As a result, setting the bearable
exceeding time can achieve a better performance.

Table 7. Results of different fraction in maxβ of ACO with different initial resource levels.

Fraction of Exceeding Time with 1.1 × Initial Resource Levels

5/10 6/10 7/10 8/10 9/10 10/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 69 0.84 69 0.82 69 0.79 69 0.78 70 0.87 70 0.80
20 125 4.65 125 4.61 125 4.81 125 4.35 125 4.71 128 4.54
30 184 14.50 184 15.61 184 15.32 184 13.70 184 14.42 187 13.46
40 239 35.49 239 41.70 239 40.46 239 33.73 239 36.92 242 36.99
50 299 71.12 299 76.58 299 78.63 299 72.06 299 77.92 300 73.62
60 339 128.90 339 141.33 339 144.98 339 133.39 340 139.73 344 139.03
70 416 262.69 417 255.90 417 243.21 416 235.66 416 218.79 418 236.40
80 456 347.84 456 368.73 456 354.50 456 395.34 456 358.64 459 352.56

Fraction of Exceeding Time with 1.4 × Initial Resource Levels

5/10 6/10 7/10 8/10 9/10 10/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 66 0.77 66 0.78 66 0.79 66 0.82 66 0.79 67 0.79
20 125 4.52 124 4.51 124 4.56 125 4.49 124 4.54 127 4.44
30 183 13.99 183 13.85 183 13.80 183 13.98 183 13.94 185 13.95
40 239 33.55 239 33.85 239 33.83 239 34.28 239 34.18 241 34.04
50 299 70.50 298 75.06 299 71.54 299 69.69 299 70.03 300 69.53
60 339 132.19 339 130.84 339 130.32 339 130.71 340 129.45 343 129.10
70 417 214.20 416 209.34 417 242.51 416 230.94 417 224.80 418 226.25
80 456 359.57 456 359.48 456 369.24 456 379.99 456 359.53 458 364.20

6.3. Comparison between Heuristics and ACO Algorithms

We discuss the experiment results of the heuristic and the ACO algorithms with
special focus on permutation results of JR-time and JR-resource because the makespan of
permutation cases are less than other non-permutation heuristic algorithms. ACO-10/10 is
the 10/10 fraction of exceeding time bearable in the non-permutation ACO algorithm. We

126

Mathematics 2021, 9, 1527

also choose the 5/10 fraction (ACO-5/10) and the permutaion of ACO (ACO-perm) as the
control groups.

In Figures 5 and 6, both heuristic algorithms produced larger makespan no matter if
the initial resource is multiplied by 1.1 or 1.4, especially for the JR-time. However, there is
still some deviations in the ACO algorithms owing to the randomness nature. Except for
the above situation, 1.4 times are still better than 1.1 times in most cases with permutation
and non-permutation methods, especially JR-time. We reckon that with a higher initial
resource level, more jobs on machine 1 can keep continuous processing, thus reducing the
idle time waiting for resource return. Concerning the ACO algorithm, it is clear that that
the 5/10 fraction is better than the 10/10 case.

Figure 5. Bar chart of comparison with 1.1 × initial resource levels.

Figure 6. Bar chart of comparison with 1.4 × initial resource levels.

7. Conclusions and Future Works

In this paper, we considered the relocation problem in a two-machine flow shop
scheduling problem with the second machine introduced for recycling the resource returned
by jobs completed on the first machine. For this problem, we proved that given a sequence
of jobs on whichever machine, the problem is still strongly NP-hard. The case with two
fixed sequences of jobs on both machines can be solved in polynomial time. For the
computationally hard problem, we proposed two heuristic algorithms to construct feasible
schedules with permutation and non-permutation sequences. ACO algorithms were
designed to find processing sequences on the two machines. Computational experiments
indicates that JR-resource produced better makespan than JR-time, and both of their
permutation algorithms are better than the non-permutation ones. This result is similar
as in ACO algorithm that the makespan of permutation solutions are better. However,

127

Mathematics 2021, 9, 1527

when we considered the bearable exceeding time, non-permutation sequences can get
better solutions. Between heuristics and ACO algorithms, it is shown that ACO algorithms
yielded schedules with less makespan.

For further studies, there is room for further improvements of our proposed solution
methods by developing effective methods to arrange the job sequence on machine 2 to
mitigate the incurred idle time. Furthermore, we can also combine processing time and
resources as a control factor in the heuristic algorithms. It would be also interesting
to deploy machine learning and reinforcement learning approaches for finding better
parameter settings and updating strategies. We also note that to optimally solve the
problem is still limited to small-scale instances. For larger instances, we need tighter lower
bounds to facilitate the development of exact methods and provide a tight comparison
base for approximation methods. Another direction is identifying application contexts in
which the unique type of resource constraints, the amount of consumed resource and the
amount of returned resource could be different, is applicable.

Author Contributions: Conceptualization, T.-C.L. and B.M.T.L.; methodology, T.-C.L. and B.M.T.L.;
software, T.-C.L.; formal analysis, T.-C.L. and B.M.T.L.; writing—Original draft preparation, T.-C.L.
and B.M.T.L.; writing, T.-C.L. and B.M.T.L.; supervision, T.-C.L. and B.M.T.L.; project administration,
B.M.T.L.; funding acquisition, B.M.T.L. All authors have read and agreed to the published version of
the manuscript.

Funding: Lo and Lin were partially supported by the Ministry of Science and Technology of Taiwan
under the grant MOST-109-2410-H-009-029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets analyzed in this study can be found at http://cpanel-199-19
.nctu.edu.tw/~bmtlin/F2RP.zip (accessed on 29 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detail Experiment Results

All of the experiment results mentioned in Section 6 are summarized from the detail
information shown below. We show the makespan (Cmax) and execution time for each
data set followed by the average over five data sets in different job numbers. In the tables,
“perm” means permutation method, and “maxβ” non-permutation with a 10/10 fraction.
We also set the execution time to stop the program if it exceeds 3600 s. Therefore, if we
cannot obtain any solution in 3600 s, we indicate the situation by an “-” entry. In ACO,
owing to its randomness property, we run each data sets for five times which is “Run.” in
the tables. In Tables A18 and A19, when the numbers of jobs are over 30 and 10, we cannot
obtain solutions for most cases so that we do not experiment on the cases with more jobs. It
is clear that most results are associated with an “-”, indicating that no solutions were found
within 3600 s.

128

Mathematics 2021, 9, 1527

Table A1. JR-resource with 1.1 × initial resource levels.

Sets
perm maxβ 9/10 8/10 7/10 6/10 5/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10

1 78 0.00 78 0.00 78 0.00 78 0.00 78 0.00 78 0.00 78 0.00
2 95 0.00 90 0.00 90 0.00 90 0.00 90 0.00 95 0.00 95 0.00
3 82 0.00 81 0.00 81 0.00 81 0.00 82 0.00 82 0.00 82 0.00
4 72 0.00 72 0.00 72 0.00 72 0.00 72 0.00 72 0.00 72 0.00
5 71 0.00 71 0.00 71 0.00 71 0.00 71 0.00 71 0.00 71 0.00

Avg. 80 0.00 78 0.00 78 0.00 78 0.00 79 0.00 80 0.00 80 0.00

20

1 144 0.00 154 0.00 144 0.00 144 0.00 144 0.00 144 0.00 144 0.00
2 148 0.00 148 0.00 148 0.00 148 0.00 148 0.00 148 0.00 148 0.00
3 117 0.00 126 0.00 118 0.00 117 0.00 117 0.00 117 0.00 117 0.00
4 160 0.00 165 0.00 165 0.00 160 0.00 160 0.00 160 0.00 160 0.00
5 115 0.00 115 0.00 115 0.00 115 0.00 115 0.00 115 0.00 115 0.00

Avg. 137 0.00 142 0.00 138 0.00 137 0.00 137 0.00 137 0.00 137 0.00

30

1 196 0.00 196 0.00 196 0.00 196 0.00 196 0.00 196 0.00 196 0.00
2 209 0.00 209 0.00 209 0.00 209 0.00 209 0.00 209 0.00 209 0.00
3 194 0.00 194 0.00 194 0.00 194 0.00 194 0.00 194 0.00 194 0.00
4 201 0.00 211 0.00 201 0.00 201 0.00 201 0.00 201 0.00 201 0.00
5 193 0.00 200 0.00 193 0.02 193 0.00 193 0.00 193 0.00 193 0.00

Avg. 199 0.00 202 0.00 199 0.00 199 0.00 199 0.00 199 0.00 199 0.00

40

1 267 0.00 270 0.00 267 0.00 267 0.00 267 0.00 267 0.00 267 0.00
2 229 0.00 231 0.00 229 0.00 229 0.01 229 0.00 229 0.00 229 0.00
3 260 0.00 268 0.00 260 0.00 260 0.00 260 0.02 260 0.00 260 0.00
4 278 0.00 286 0.00 278 0.00 278 0.00 278 0.00 278 0.00 278 0.00
5 256 0.00 256 0.02 256 0.00 256 0.00 256 0.02 256 0.00 256 0.00

Avg. 258 0.00 262 0.00 258 0.00 258 0.00 258 0.01 258 0.00 258 0.00

50

1 310 0.00 311 0.00 310 0.00 310 0.00 310 0.00 310 0.00 310 0.01
2 324 0.00 324 0.02 324 0.00 324 0.00 324 0.02 324 0.00 324 0.00
3 285 0.00 288 0.00 285 0.00 285 0.00 285 0.00 285 0.00 285 0.00
4 307 0.00 307 0.02 307 0.00 307 0.00 307 0.02 307 0.00 307 0.00
5 309 0.00 309 0.00 309 0.02 309 0.00 309 0.00 309 0.01 309 0.00

Avg. 307 0.00 308 0.01 307 0.00 307 0.00 307 0.01 307 0.00 307 0.00

60

1 340 0.00 350 0.02 340 0.00 340 0.00 340 0.00 340 0.01 340 0.01
2 359 0.00 362 0.00 359 0.02 359 0.00 359 0.02 359 0.01 359 0.01
3 347 0.00 353 0.00 347 0.02 347 0.02 347 0.02 347 0.01 347 0.01
4 348 0.00 348 0.02 348 0.00 348 0.00 348 0.00 348 0.01 348 0.01
5 359 0.00 370 0.00 360 0.00 359 0.00 359 0.02 359 0.01 359 0.01

Avg. 351 0.00 357 0.01 351 0.01 351 0.00 351 0.01 351 0.01 351 0.01

129

Mathematics 2021, 9, 1527

Table A1. Cont.

Sets
perm maxβ 9/10 8/10 7/10 6/10 5/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

70

1 441 0.00 441 0.00 441 0.02 441 0.02 441 0.02 441 0.01 441 0.01
2 392 0.00 392 0.00 392 0.02 392 0.02 392 0.02 392 0.01 392 0.01
3 448 0.00 459 0.02 448 0.02 448 0.02 448 0.02 448 0.01 448 0.01
4 455 0.00 455 0.02 455 0.02 455 0.02 455 0.02 455 0.01 455 0.01
5 395 0.00 407 0.02 402 0.02 395 0.00 395 0.00 395 0.01 395 0.01

Avg. 426 0.00 431 0.01 428 0.02 426 0.01 426 0.01 426 0.01 426 0.01

80

1 505 0.00 505 0.02 505 0.02 505 0.02 505 0.02 505 0.01 505 0.01
2 466 0.00 473 0.02 466 0.02 466 0.02 466 0.02 466 0.01 466 0.01
3 479 0.00 483 0.02 479 0.02 479 0.02 479 0.02 479 0.01 479 0.01
4 438 0.00 441 0.02 438 0.02 438 0.02 438 0.02 438 0.01 438 0.01
5 449 0.00 457 0.02 449 0.02 449 0.02 449 0.02 449 0.01 449 0.01

Avg. 467 0.00 472 0.02 467 0.02 467 0.02 467 0.02 467 0.01 467 0.01

Table A2. JR-time with 1.1 × initial resource levels.

Sets
perm maxβ 9/10 8/10 7/10 6/10 5/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10

1 89 0.00 89 0.00 89 0.00 89 0.00 89 0.00 89 0.00 89 0.00
2 101 0.00 109 0.00 101 0.00 101 0.00 101 0.00 101 0.00 101 0.00
3 77 0.00 86 0.00 84 0.00 77 0.00 77 0.00 77 0.00 77 0.00
4 78 0.00 84 0.00 78 0.00 78 0.00 79 0.00 74 0.00 74 0.00
5 90 0.00 90 0.00 90 0.00 90 0.00 90 0.00 90 0.00 90 0.00

Avg. 87 0.00 92 0.00 88 0.00 87 0.00 87 0.00 86 0.00 86 0.00

20

1 151 0.00 154 0.00 157 0.00 152 0.00 152 0.00 152 0.00 152 0.00
2 211 0.00 236 0.00 216 0.00 212 0.00 212 0.00 212 0.00 212 0.00
3 158 0.00 163 0.02 158 0.00 158 0.02 158 0.02 158 0.00 158 0.00
4 197 0.00 219 0.00 203 0.00 197 0.00 197 0.00 197 0.00 197 0.00
5 115 0.00 113 0.00 110 0.00 110 0.00 111 0.00 111 0.00 115 0.00

Avg. 166 0.00 177 0.00 169 0.00 166 0.00 166 0.00 166 0.00 167 0.00

30

1 317 0.02 316 0.00 317 0.00 317 0.00 317 0.00 317 0.01 317 0.00
2 239 0.00 231 0.02 234 0.00 240 0.00 240 0.00 240 0.00 240 0.00
3 220 0.00 229 0.00 222 0.00 222 0.00 222 0.00 222 0.00 222 0.00
4 272 0.00 289 0.02 278 0.00 272 0.02 272 0.02 272 0.00 272 0.00
5 208 0.00 213 0.00 209 0.00 208 0.00 208 0.00 208 0.00 208 0.00

Avg. 251 0.00 256 0.01 252 0.00 252 0.00 252 0.00 252 0.00 252 0.00

130

Mathematics 2021, 9, 1527

Table A2. Cont.

Sets
perm maxβ 9/10 8/10 7/10 6/10 5/10

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

40

1 318 0.02 334 0.00 317 0.00 318 0.00 318 0.02 318 0.01 318 0.01
2 272 0.02 276 0.00 271 0.00 272 0.00 272 0.02 272 0.01 272 0.01
3 333 0.02 356 0.00 333 0.00 333 0.00 336 0.02 336 0.01 333 0.01
4 401 0.02 415 0.00 403 0.00 401 0.01 401 0.02 401 0.01 401 0.01
5 337 0.02 343 0.00 334 0.00 337 0.01 337 0.02 337 0.01 337 0.01

Avg. 332 0.02 345 0.00 332 0.00 332 0.00 333 0.02 333 0.01 332 0.01

50

1 443 0.00 446 0.02 442 0.02 443 0.02 443 0.02 443 0.02 443 0.02
2 400 0.02 404 0.02 398 0.00 400 0.02 400 0.02 400 0.01 400 0.01
3 416 0.00 441 0.02 417 0.02 414 0.02 418 0.02 418 0.02 418 0.01
4 464 0.00 475 0.02 462 0.02 465 0.02 464 0.02 464 0.02 464 0.02
5 402 0.00 431 0.02 402 0.02 400 0.02 400 0.02 402 0.02 402 0.02

Avg. 425 0.00 439 0.02 424 0.01 424 0.02 425 0.02 425 0.02 425 0.02

60

1 583 0.02 596 0.03 588 0.03 585 0.03 585 0.02 583 0.03 583 0.03
2 510 0.02 564 0.03 514 0.03 512 0.03 512 0.03 512 0.03 512 0.02
3 448 0.02 455 0.02 450 0.04 448 0.02 448 0.03 448 0.03 448 0.03
4 391 0.00 385 0.03 382 0.02 392 0.02 392 0.03 392 0.02 391 0.02
5 440 0.02 471 0.03 440 0.02 440 0.03 440 0.02 440 0.02 440 0.03

Avg. 474 0.01 494 0.03 475 0.03 475 0.02 475 0.02 475 0.03 475 0.03

70

1 490 0.02 501 0.05 490 0.03 490 0.03 490 0.03 490 0.03 490 0.03
2 614 0.02 625 0.03 615 0.04 615 0.03 615 0.05 615 0.03 615 0.04
3 741 0.03 748 0.05 741 0.05 741 0.05 741 0.03 741 0.04 741 0.04
4 506 0.03 498 0.05 495 0.03 505 0.03 506 0.02 506 0.03 506 0.03
5 631 0.02 654 0.06 634 0.03 634 0.05 633 0.05 632 0.04 631 0.04

Avg. 596 0.02 605 0.05 595 0.04 597 0.04 597 0.03 597 0.04 597 0.04

80

1 578 0.02 583 0.06 578 0.05 578 0.06 579 0.05 578 0.05 578 0.05
2 615 0.03 639 0.06 615 0.06 615 0.06 615 0.06 615 0.06 615 0.06
3 824 0.03 831 0.06 827 0.08 827 0.06 824 0.05 824 0.06 824 0.06
4 514 0.03 496 0.05 517 0.03 517 0.06 517 0.03 517 0.04 517 0.04
5 649 0.02 659 0.06 652 0.06 651 0.05 651 0.05 651 0.05 649 0.05

Avg. 636 0.02 642 0.06 638 0.06 638 0.06 637 0.05 637 0.05 637 0.05

131

Mathematics 2021, 9, 1527

Table A3. JR-resource and JR-time with 1.4 × initial resource levels.

Sets

JR-Resource JR-Time

perm maxβ perm maxβ

Cmax Time Cmax Time Cmax Time Cmax Time

10

1 69 0.00 69 0.00 91 0.00 91 0.00
2 95 0.00 90 0.00 101 0.00 109 0.00
3 73 0.00 75 0.00 77 0.00 85 0.00
4 70 0.00 70 0.00 63 0.00 64 0.00
5 71 0.00 71 0.00 90 0.00 90 0.00

Avg. 76 0.00 75 0.00 84 0.00 88 0.00

20

1 136 0.00 145 0.00 141 0.00 149 0.00
2 141 0.00 141 0.00 189 0.00 189 0.00
3 117 0.00 126 0.00 158 0.00 163 0.00
4 160 0.00 165 0.00 197 0.00 219 0.00
5 111 0.00 111 0.00 107 0.00 107 0.00

Avg. 133 0.00 137.6 0.00 158 0.00 165 0.00

30

1 191 0.00 191 0.00 316 0.00 321 0.01
2 209 0.00 209 0.00 216 0.00 213 0.00
3 194 0.00 194 0.00 197 0.00 207 0.01
4 201 0.00 211 0.00 272 0.00 289 0.00
5 187 0.00 194 0.00 188 0.00 186 0.00

Avg. 196 0.00 199.8 0.00 238 0.00 243 0.00

40

1 267 0.00 270 0.00 318 0.00 334 0.01
2 229 0.00 231 0.00 238 0.00 240 0.01
3 260 0.00 268 0.00 299 0.00 307 0.01
4 278 0.00 286 0.00 401 0.00 415 0.01
5 256 0.00 256 0.00 327 0.00 332 0.01

average 258 0.00 262.2 0.00 317 0.00 326 0.01

50

1 310 0.00 311 0.00 443 0.01 446 0.02
2 324 0.00 324 0.00 344 0.01 337 0.01
3 285 0.00 288 0.00 358 0.01 371 0.01
4 307 0.00 307 0.00 462 0.01 464 0.02
5 309 0.00 309 0.00 402 0.01 431 0.02

Avg. 307 0.00 307.8 0.00 402 0.01 410 0.02

60

1 340 0.00 350 0.01 589 0.01 604 0.03
2 359 0.00 362 0.01 502 0.01 524 0.03
3 347 0.00 353 0.01 448 0.01 455 0.03
4 348 0.00 348 0.01 347 0.01 352 0.02
5 359 0.00 370 0.01 440 0.01 471 0.03

Avg. 351 0.00 356.6 0.01 465 0.01 481 0.03

132

Mathematics 2021, 9, 1527

Table A3. Cont.

Sets

JR-Resource JR-Time

perm maxβ perm maxβ

Cmax Time Cmax Time Cmax Time Cmax Time

70

1 441 0.00 441 0.01 490 0.02 501 0.03
2 392 0.00 392 0.01 569 0.02 587 0.04
3 448 0.00 459 0.01 680 0.02 699 0.04
4 455 0.00 455 0.01 479 0.02 459 0.03
5 395 0.00 407 0.01 603 0.02 621 0.04

Avg. 426 0.00 430.8 0.01 564 0.02 573 0.04

80

1 505 0.00 505 0.01 550 0.03 521 0.05
2 466 0.00 473 0.01 615 0.02 639 0.06
3 478 0.00 482 0.01 817 0.02 824 0.06
4 438 0.00 441 0.01 481 0.03 446 0.04
5 449 0.00 457 0.01 591 0.03 610 0.05

Avg. 467 0.00 471.6 0.01 611 0.03 608 0.05

Table A4. ACO Permutation with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.41 82 0.41 73 0.41 61 0.39 64 0.40 303 48.86 321 50.82 277 49.20 294 51.35 300 50.37
2 66 0.41 82 0.41 73 0.41 61 0.41 64 0.41 303 49.31 321 50.27 277 49.09 294 50.77 300 50.55
3 68 0.41 83 0.41 73 0.41 61 0.41 64 0.41 303 49.18 321 50.91 279 50.17 294 50.99 300 50.57
4 66 0.41 82 0.41 73 0.41 60 0.41 64 0.41 303 48.76 321 49.94 277 50.67 294 50.63 298 51.03
5 66 0.41 82 0.42 73 0.39 61 0.41 64 0.39 303 48.91 320 49.75 278 50.36 294 50.90 301 50.48

Avg. 66 0.41 82 0.41 73 0.40 61 0.40 64 0.40 303 49.00 321 50.34 278 49.90 294 50.93 300 50.60

20 60

1 122 2.37 134 2.32 109 2.31 155 2.34 108 2.31 325 91.75 337 92.80 339 103.47 346 97.93 349 97.29
2 123 2.34 134 2.32 109 2.32 153 2.39 108 2.33 325 92.25 337 93.09 339 100.06 346 101.74 349 98.19
3 122 2.31 134 2.30 111 2.31 154 2.36 108 2.31 325 92.80 337 101.40 339 95.92 343 98.36 349 99.48
4 122 2.30 134 2.32 109 2.31 153 2.38 108 2.31 324 93.05 337 102.11 339 96.97 346 95.87 349 98.85
5 122 2.30 134 2.33 108 2.33 155 2.38 108 2.31 325 93.06 337 101.48 339 98.08 346 95.88 349 99.10

Avg. 122 2.33 134 2.32 109 2.32 154 2.37 108 2.32 325 92.58 337 98.18 339 98.90 345 97.96 349 98.58

30 70

1 181 8.22 199 8.24 187 8.08 183 8.26 172 8.28 427 237.11 382 232.36 437 243.98 446 232.11 396 244.93
2 178 8.32 199 8.23 185 8.30 187 8.19 172 8.33 426 231.01 383 231.93 436 240.15 446 233.42 396 236.99
3 179 8.34 199 8.02 187 8.15 186 8.34 172 8.19 426 231.26 383 232.20 437 242.17 446 235.37 397 240.01
4 178 8.27 199 8.31 187 8.16 186 8.19 172 8.19 428 233.16 384 235.12 438 243.92 446 228.57 396 235.52
5 180 8.35 199 8.07 187 8.26 185 8.35 172 8.24 426 231.87 382 234.44 437 242.01 446 235.86 395 244.66

Avg. 179 8.30 199 8.18 187 8.19 185 8.27 172 8.25 427 232.88 383 233.21 437 242.45 446 233.06 396 240.42

133

Mathematics 2021, 9, 1527

Table A4. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

40 80

1 234 22.94 226 22.26 237 22.21 244 21.88 255 21.37 493 262.88 459 272.06 474 280.10 429 286.30 426 290.69
2 234 22.34 225 22.15 237 22.17 244 22.18 255 21.70 494 264.76 457 268.81 476 301.40 429 282.64 426 279.41
3 234 22.39 225 22.12 237 22.22 244 21.97 255 21.79 491 269.19 459 274.39 476 289.93 429 286.31 427 279.23
4 234 22.23 226 22.42 237 23.49 244 21.46 255 21.92 491 267.44 459 274.37 476 290.52 429 286.06 426 283.96
5 234 22.20 226 22.37 237 21.27 244 21.66 255 21.58 491 261.35 460 274.82 476 287.02 429 292.30 428 288.61

Avg. 234 22.42 226 22.26 237 22.27 244 21.83 255 21.67 492 265.12 459 272.89 476 289.80 429 286.72 427 284.38

Table A5. 10/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.80 83 0.82 76 0.80 61 0.77 64 0.78 304 73.59 322 72.11 281 74.46 295 76.75 298 75.98
2 66 0.81 83 0.84 76 0.81 61 0.77 64 0.78 304 73.20 323 71.61 284 74.40 295 76.59 300 74.93
3 66 0.80 83 0.82 76 0.81 61 0.77 64 0.77 305 72.03 320 72.18 281 74.08 294 76.54 301 73.19
4 66 0.80 83 0.81 76 0.81 61 0.77 64 0.77 305 70.09 321 72.05 281 73.93 294 75.74 300 71.40
5 66 0.81 82 0.83 76 0.81 62 0.78 64 0.77 303 72.64 321 72.12 282 73.60 294 76.02 300 71.38

Avg. 66 0.80 83 0.82 76 0.81 61 0.77 64 0.77 304 72.31 321 72.02 282 74.09 294 76.33 300 73.38

20 60

1 125 4.45 134 4.35 109 4.52 165 4.84 108 4.34 335 133.58 342 139.84 345 137.31 346 137.39 353 138.52
2 125 4.47 137 4.33 110 4.50 159 4.92 108 4.36 335 141.68 343 140.46 343 137.01 346 140.27 353 140.43
3 124 4.56 137 4.48 111 4.58 162 4.95 108 4.38 334 139.79 341 138.67 343 140.84 346 136.81 353 142.69
4 125 4.58 135 4.49 110 4.51 162 4.84 108 4.35 333 141.93 341 138.21 345 140.37 346 136.16 352 138.97
5 124 4.44 137 4.59 110 4.56 163 4.86 108 4.34 332 143.57 341 134.99 344 139.70 346 136.96 354 139.60

Avg. 125 4.50 136 4.45 110 4.53 162 4.88 108 4.36 334 140.11 342 138.43 344 139.05 346 137.52 353 140.04

30 70

1 183 13.86 199 12.84 187 13.31 189 13.47 173 13.65 427 237.11 382 232.36 437 243.98 446 232.11 396 244.93
2 184 13.72 199 12.80 188 13.28 190 13.20 172 13.71 426 231.01 383 231.93 436 240.15 446 233.42 396 236.99
3 185 13.77 199 12.80 187 13.64 189 13.39 173 13.54 426 231.26 383 232.20 437 242.17 446 235.37 397 240.01
4 184 13.71 199 12.85 187 13.79 190 13.70 174 13.81 428 233.16 384 235.12 438 243.92 446 228.57 396 235.52
5 184 13.82 199 12.84 187 13.63 189 13.80 174 13.64 426 231.87 382 234.44 437 242.01 446 235.86 395 244.66

Avg. 184 13.77 199 12.83 187 13.53 189 13.51 173 13.67 427 232.88 383 233.21 437 242.45 446 233.06 396 240.42

40 80

1 240 38.52 226 38.32 242 36.42 249 35.61 255 36.54 492 375.78 462 349.85 477 360.96 431 352.80 432 347.36
2 238 38.52 226 38.49 241 36.89 251 35.49 255 36.70 491 370.97 461 351.44 476 354.39 432 341.28 432 343.65
3 239 37.96 226 39.25 243 37.06 250 35.57 255 36.49 491 346.62 461 353.05 476 371.67 432 346.74 432 346.67
4 237 38.03 227 38.29 241 35.97 253 35.50 255 36.04 491 346.77 462 370.16 476 355.03 432 347.73 433 343.81
5 238 39.12 226 36.22 242 35.79 249 35.57 255 36.28 492 338.27 462 349.98 477 352.28 432 350.91 432 345.74

Avg. 238 38.43 226 38.11 242 36.43 250 35.55 255 36.41 491 355.68 462 354.90 476 358.87 432 347.89 432 345.45

134

Mathematics 2021, 9, 1527

Table A6. 9/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.86 82 0.90 75 0.88 61 0.83 64 0.85 303 77.82 321 74.82 278 80.54 294 81.34 300 75.74
2 66 0.91 82 0.91 75 0.88 61 0.83 64 0.85 303 77.56 320 71.95 279 82.37 294 80.57 300 74.94
3 64 0.89 82 0.90 76 0.88 61 0.85 64 0.85 303 76.57 320 74.97 277 80.30 294 80.34 296 75.27
4 67 0.91 82 0.91 75 0.89 62 0.83 64 0.86 303 76.99 321 77.19 279 79.90 294 80.85 300 75.89
5 64 0.89 82 0.91 74 0.89 61 0.84 64 0.85 303 77.53 321 78.59 278 76.85 294 83.66 300 75.41

Avg. 65 0.89 82 0.91 75 0.88 61 0.84 64 0.85 303 77.30 321 75.50 278 79.99 294 81.35 299 75.45

20 60

1 123 4.71 134 4.64 109 4.68 153 4.95 108 4.51 327 141.19 337 136.65 339 138.21 346 138.00 349 141.32
2 122 4.72 134 4.63 108 4.66 154 5.01 108 4.50 328 139.83 337 137.01 339 138.86 346 141.57 349 140.31
3 122 4.70 134 4.65 107 4.67 152 4.96 108 4.54 325 135.63 337 136.45 339 138.58 346 141.70 349 143.52
4 123 4.72 134 4.65 110 4.70 155 4.98 108 4.53 326 133.17 337 137.07 339 142.03 346 140.06 349 145.28
5 122 4.72 134 4.64 110 4.70 153 4.95 108 4.52 328 138.14 338 138.98 339 143.39 346 140.57 349 145.65

Avg. 122 4.71 134 4.64 109 4.68 153 4.97 108 4.52 327 137.59 337 137.23 339 140.21 346 140.38 349 143.21

30 70
1 180 14.65 199 13.82 187 14.55 183 14.10 172 14.36 426 226.28 382 221.02 435 219.65 445 221.61 394 223.12
2 179 14.66 199 14.17 187 14.45 185 14.62 172 14.47 426 222.66 382 212.25 435 220.95 446 215.60 394 217.91
3 179 14.91 199 14.14 187 14.30 185 14.25 172 14.38 426 217.61 382 213.16 435 220.95 446 217.37 394 218.23
4 178 14.69 199 13.99 187 14.70 185 14.13 172 14.42 426 218.11 382 215.98 435 219.74 445 218.73 394 218.14
5 178 15.52 199 14.08 187 14.17 184 14.47 172 14.43 426 221.69 382 215.92 435 219.88 445 215.06 394 218.20

Avg. 179 14.89 199 14.04 187 14.43 184 14.31 172 14.41 426 221.27 382 215.66 435 220.23 445 217.67 394 219.12

40 80

1 234 35.61 226 34.97 237 37.93 245 38.02 255 36.98 492 375.78 462 349.85 477 360.96 431 352.80 432 347.36
2 234 35.83 226 35.40 237 37.82 245 38.44 253 37.02 491 370.97 461 351.44 476 354.39 432 341.28 432 343.65
3 234 35.44 225 34.85 237 37.90 246 38.10 253 36.78 491 346.62 461 353.05 476 371.67 432 346.74 432 346.67
4 234 36.39 226 35.38 237 38.30 245 38.07 255 36.94 491 346.77 462 370.16 476 355.03 432 347.73 433 343.81
5 234 36.14 226 36.89 237 38.16 244 38.38 254 37.28 492 338.27 462 349.98 477 352.28 432 350.91 432 345.74

Avg. 234 35.88 226 35.50 237 38.02 245 38.20 254 37.00 491 355.68 462 354.90 476 358.87 432 347.89 432 345.45

Table A7. 8/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.83 82 0.80 74 0.78 60 0.74 64 0.77 303 75.91 320 68.71 278 71.71 294 73.90 300 72.48
2 64 0.81 82 0.80 75 0.78 61 0.73 64 0.75 303 71.79 320 70.20 278 71.97 294 73.30 300 71.27
3 66 0.80 82 0.80 73 0.77 61 0.73 64 0.77 303 71.89 320 71.23 277 71.16 294 75.10 300 71.72
4 66 0.81 82 0.80 74 0.78 61 0.75 64 0.75 303 73.03 320 69.73 277 71.86 294 73.61 300 71.68
5 64 0.80 82 0.80 75 0.78 61 0.73 64 0.75 303 71.47 320 69.86 277 72.09 294 73.92 300 71.85

Avg. 65 0.81 82 0.80 74.2 0.78 61 0.74 64 0.76 303 72.82 320 69.95 277 71.76 294 73.97 300 71.80

135

Mathematics 2021, 9, 1527

Table A7. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

20 60

1 121 4.43 134 4.24 110 4.31 151 4.61 108 4.14 326 139.02 337 135.00 339 135.43 346 133.79 349 130.65
2 121 4.34 134 4.30 109 4.44 153 4.59 108 4.14 325 138.47 337 136.73 339 129.84 346 130.84 349 128.93
3 121 4.39 134 4.33 109 4.30 154 4.58 108 4.14 327 138.06 337 137.37 339 129.56 343 130.46 349 127.88
4 122 4.36 134 4.27 109 4.38 154 4.56 108 4.09 325 139.67 337 134.98 339 131.12 346 133.02 349 128.04
5 123 4.39 134 4.28 109 4.37 155 4.53 108 4.17 327 135.08 337 134.00 339 138.65 343 130.87 349 127.35

Avg. 122 4.38 134 4.28 109 4.36 153 4.57 108 4.14 326 138.06 337 135.62 339 132.92 345 131.80 349 128.57

30 70
1 180 14.04 199 13.41 187 13.70 184 13.45 172 13.86 426 241.06 382 221.76 435 234.29 446 231.74 394 231.07
2 178 13.89 199 13.31 187 13.64 184 13.43 172 14.02 426 250.99 382 228.99 435 238.28 446 231.08 394 246.31
3 179 14.05 198 13.30 187 13.73 184 13.71 172 14.00 426 252.71 382 230.86 435 239.93 445 221.51 394 238.70
4 180 14.11 199 13.36 187 13.56 186 13.86 172 13.94 426 232.75 381 228.95 435 239.59 445 226.95 394 239.24
5 179 14.10 199 12.98 187 13.58 184 13.51 172 13.93 426 225.05 382 248.09 435 240.17 445 235.00 394 236.33

Avg. 179 14.04 199 13.27 187 13.64 184 13.59 172 13.95 426 240.51 382 231.73 435 238.45 445 229.25 394 238.33

40 80

1 234 33.57 226 33.11 237 33.34 244 33.83 255 34.57 492 390.40 456 392.66 476 397.85 429 389.19 428 388.73
2 234 33.64 226 33.13 237 33.66 244 34.47 255 34.15 491 401.52 459 392.01 476 410.50 429 395.19 427 395.45
3 234 33.27 226 33.00 237 33.73 244 34.18 253 34.07 492 386.09 459 403.42 476 408.59 429 386.62 426 391.20
4 234 33.92 226 32.90 237 33.51 244 34.04 255 34.22 491 392.32 461 393.11 476 406.42 429 388.55 426 390.01
5 234 33.55 226 32.66 237 33.83 244 34.17 253 34.72 491 394.83 459 398.15 476 406.28 429 383.86 425 400.62

Avg. 234 33.59 226 32.96 237 33.61 244 34.14 254.2 34.35 491 393.03 459 395.87 476 405.93 429 388.68 426 393.20

Table A8. 7/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.80 82 0.81 76 0.78 61 0.75 64 0.78 303 81.13 320 76.29 279 78.45 294 80.38 300 78.42
2 64 0.82 82 0.81 73 0.80 61 0.75 64 0.77 303 81.72 319 77.53 278 76.26 294 81.02 300 78.29
3 64 0.80 82 0.83 74 0.78 61 0.78 64 0.77 303 82.78 320 75.95 278 76.19 294 81.27 300 77.83
4 66 0.81 82 0.83 74 0.80 61 0.77 64 0.77 303 80.47 319 75.51 278 76.16 294 81.51 300 77.96
5 66 0.80 82 0.80 74 0.78 60 0.77 64 0.78 303 79.49 320 74.80 277 76.11 294 81.57 300 78.58

Avg. 65 0.81 82 0.82 74.2 0.79 61 0.76 64 0.77 303 81.12 320 76.02 278 76.64 294 81.15 300 78.22

20 60

1 122 4.75 134 4.78 109 4.94 155 5.00 108 4.66 325 145.04 337 144.45 339 145.83 346 144.10 349 146.28
2 122 4.76 134 4.73 110 4.94 153 4.98 108 4.58 326 147.64 337 142.39 339 144.15 346 140.60 349 144.70
3 123 4.75 134 4.70 110 4.94 152 5.11 108 4.58 325 151.54 337 144.42 339 146.35 346 140.53 349 145.21
4 123 4.67 134 4.84 110 4.89 153 5.20 108 4.64 325 149.09 337 145.36 339 145.84 344 140.23 349 144.35
5 121 4.72 134 4.88 110 4.75 152 5.00 108 4.59 324 148.09 337 145.79 339 146.22 346 141.77 349 144.56

Avg. 122 4.73 134 4.78 110 4.89 153 5.06 108 4.61 325 148.28 337 144.48 339 145.68 346 141.44 349 145.02

136

Mathematics 2021, 9, 1527

Table A8. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

30 70

1 178 15.69 199 14.88 187 15.30 184 15.28 172 15.81 427 239.67 382 226.74 435 240.19 446 243.32 394 253.61
2 179 15.70 199 14.66 187 15.30 185 15.49 172 15.47 426 243.98 382 231.35 435 247.64 445 261.67 394 252.07
3 178 15.63 199 14.66 187 15.20 183 15.28 172 15.72 426 241.49 382 232.59 435 250.78 446 256.78 394 249.48
4 178 15.54 199 14.82 187 15.15 185 15.36 172 15.56 426 234.57 381 234.01 435 241.50 446 250.07 394 254.81
5 177 15.86 199 14.87 187 15.11 185 15.11 172 15.59 427 226.02 382 238.63 435 229.16 445 246.84 394 253.42

Avg. 178 15.68 199 14.78 187 15.21 184 15.30 172 15.63 426 237.15 382 232.66 435 241.85 446 251.74 394 252.68

40 80

1 234 36.13 226 40.48 237 41.07 244 40.77 255 39.08 491 352.66 457 372.15 476 364.67 429 347.80 425 350.14
2 234 41.42 226 40.43 237 41.15 244 40.58 253 39.08 491 362.31 460 359.62 476 356.04 429 353.10 426 350.78
3 234 41.59 226 40.43 237 40.66 244 40.61 255 40.77 491 357.62 457 356.03 476 362.06 429 340.50 427 352.36
4 234 41.07 226 41.04 237 40.04 244 40.48 254 41.65 492 349.59 460 355.83 476 362.85 429 341.16 426 351.01
5 234 41.35 226 40.95 237 40.07 244 38.95 255 41.56 491 350.00 459 363.36 476 358.65 429 340.25 428 352.00

Avg. 234 40.32 226 40.67 237 40.60 244 40.28 254.4 40.43 491 354.44 459 361.40 476 360.85 429 344.56 426 351.26

Table A9. 6/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.82 82 0.87 75 0.84 61 0.77 64 0.80 303 84.10 320 71.40 277 76.13 294 79.02 300 75.71
2 64 0.82 82 0.85 74 0.80 60 0.77 64 0.79 303 78.00 321 73.81 277 75.54 294 80.19 299 76.62
3 66 0.80 82 0.87 74 0.82 61 0.78 64 0.80 303 74.56 321 76.09 277 77.72 294 78.72 300 76.84
4 66 0.81 82 0.86 74 0.83 61 0.80 64 0.78 303 73.70 319 74.11 278 76.30 294 79.37 300 77.50
5 66 0.82 82 0.86 75 0.85 61 0.78 64 0.79 303 73.27 321 74.28 278 74.55 294 79.70 300 77.19

Avg. 66 0.82 82 0.86 74.4 0.83 61 0.78 64 0.79 303 76.73 320 73.94 277 76.05 294 79.40 300 76.77

20 60

1 121 4.60 134 4.50 109 4.50 153 4.85 108 4.56 327 141.96 337 142.32 339 142.07 346 138.16 349 141.01
2 121 4.66 134 4.48 107 4.60 153 4.88 108 4.56 326 141.70 337 140.15 339 145.36 346 138.41 349 138.29
3 123 4.65 134 4.55 110 4.62 153 4.83 108 4.46 326 144.69 337 137.77 339 144.49 342 138.68 349 140.56
4 122 4.59 134 4.56 107 4.60 154 4.82 108 4.47 326 148.28 337 138.50 339 144.32 346 139.33 349 141.35
5 122 4.63 134 4.50 109 4.57 154 4.87 108 4.38 326 144.58 337 138.47 339 144.73 346 137.57 349 140.42

Avg. 122 4.63 134 4.52 108 4.58 153 4.85 108 4.49 326 144.24 337 139.44 339 144.20 345 138.43 349 140.33

30 70

1 179 14.79 199 15.13 187 15.93 185 15.89 172 16.42 426 250.03 382 255.22 435 253.63 446 249.17 394 263.45
2 178 14.66 199 14.95 187 15.75 185 15.90 172 16.94 427 248.29 382 252.99 435 264.60 445 248.31 394 258.80
3 179 14.74 199 14.91 187 15.78 185 16.66 172 14.83 426 260.56 382 253.93 435 266.52 445 244.39 394 255.52
4 178 15.47 199 15.02 187 15.88 185 16.33 172 15.14 426 257.73 382 259.06 435 258.85 446 250.25 394 262.16
5 178 16.22 199 15.01 187 15.75 183 16.55 172 15.51 426 261.93 382 251.41 435 260.53 446 248.11 394 262.06

Avg. 178 15.18 199 15.01 187 15.82 185 16.26 172 15.77 426 255.71 382 254.52 435 260.82 446 248.05 394 260.40

137

Mathematics 2021, 9, 1527

Table A9. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

40 80

1 234 40.62 226 39.70 237 42.47 244 42.91 254 43.84 491 345.15 459 363.19 476 405.04 429 371.25 427 395.82
2 234 40.83 226 40.25 237 41.81 244 43.00 255 42.47 491 349.86 459 362.35 476 401.10 429 408.69 427 400.23
3 235 40.70 224 40.67 237 42.36 244 42.46 253 43.08 491 363.31 459 380.68 476 406.06 429 396.13 427 398.01
4 234 40.81 226 40.62 237 42.19 244 42.81 254 41.81 491 355.77 459 410.13 476 407.89 429 399.04 426 400.03
5 234 40.64 226 41.40 237 42.97 245 43.13 254 39.00 491 353.87 460 400.75 476 409.60 429 396.60 426 396.07

Avg. 234 40.72 226 40.53 237 42.36 244 42.86 254 42.04 491 353.59 459 383.42 476 405.94 429 394.34 427 398.03

Table A10. 5/10 fraction in maxβ of ACO with 1.1 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 66 0.81 82 0.87 73 0.80 61 0.80 64 0.89 303 72.07 320 69.82 277 70.59 294 73.93 300 70.89
2 66 0.80 82 0.84 74 0.84 60 0.80 64 0.97 303 71.26 321 68.68 279 69.98 294 73.50 300 70.51
3 66 0.81 82 0.84 73 0.84 60 0.86 64 0.85 303 71.84 321 68.00 277 70.00 294 73.57 300 71.20
4 66 0.82 82 0.83 73 0.83 60 0.80 64 0.89 303 71.96 321 69.43 277 70.30 294 73.22 300 70.50
5 66 0.81 82 0.83 74 0.82 60 0.84 64 0.84 303 71.82 320 69.12 279 70.78 294 73.73 300 71.41

Avg. 66 0.81 82 0.85 73.4 0.83 60 0.82 64 0.89 303 71.79 321 69.01 278 70.33 294 73.59 300 70.90

20 60

1 122 4.50 134 4.48 109 4.71 154 4.92 108 4.42 326 129.69 337 134.31 339 128.27 346 125.95 349 127.23
2 122 4.55 134 4.51 111 4.76 153 4.94 108 4.43 326 128.17 337 128.05 339 128.40 346 125.94 349 130.87
3 122 4.51 134 4.55 108 4.86 155 4.94 108 4.52 326 131.61 337 127.31 339 128.30 346 125.48 349 130.67
4 121 4.47 134 4.57 110 4.70 153 5.12 108 4.45 325 133.03 337 126.95 339 128.40 346 125.64 349 131.79
5 122 4.49 134 4.66 108 4.56 153 4.90 108 4.66 325 132.79 337 127.01 339 128.45 346 125.79 349 132.32

Avg. 122 4.50 134 4.55 109 4.72 154 4.97 108 4.49 326 131.06 337 128.73 339 128.36 346 125.76 349 130.58

30 70

1 179 14.93 199 14.20 187 14.44 185 14.93 172 14.59 426 238.87 382 257.53 435 271.36 445 269.61 394 276.76
2 179 14.57 199 13.86 187 14.38 185 14.70 172 14.62 426 223.68 382 270.23 435 279.23 445 267.17 394 254.83
3 178 14.58 198 13.98 187 14.72 185 14.65 172 14.50 426 244.73 382 277.17 435 269.71 446 268.80 394 267.50
4 179 14.68 199 13.87 187 14.32 185 14.69 172 14.59 426 242.79 382 270.89 435 270.17 445 268.87 394 276.46
5 179 14.61 199 14.01 187 14.87 185 14.52 172 14.56 426 234.45 382 269.20 435 274.05 446 267.15 394 256.08

Avg. 179 14.68 199 13.98 187 14.55 185 14.70 172 14.57 426 236.90 382 269.00 435 272.90 445 268.32 394 266.33

40 80

1 234 35.81 224 35.41 237 35.25 244 35.76 253 36.26 491 349.43 458 347.66 476 355.28 429 336.65 427 345.07
2 234 35.10 226 35.36 237 35.29 244 35.63 253 37.32 492 348.48 460 346.87 476 356.84 429 340.46 426 347.93
3 234 35.50 226 34.47 237 35.36 244 35.61 255 35.52 493 360.13 460 345.98 476 358.21 429 341.88 426 344.11
4 234 35.01 226 34.38 237 35.33 244 35.16 255 35.23 491 348.64 459 350.96 474 352.55 429 340.05 425 344.19
5 234 36.18 226 35.07 237 35.31 244 35.82 254 36.18 491 346.19 460 346.46 476 353.20 429 342.86 427 345.99

Avg. 234 35.52 226 34.94 237 35.31 244 35.60 254 36.10 492 350.57 459 347.59 476 355.22 429 340.38 426 345.46

138

Mathematics 2021, 9, 1527

Table A11. ACO Permutation with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 60 0.40 82 0.42 65 0.43 59 0.42 64 0.47 303 44.12 319 52.14 277 51.69 293 48.35 299 49.90
2 60 0.41 82 0.41 65 0.42 59 0.40 64 0.43 303 44.19 321 51.98 278 51.82 293 49.51 300 50.13
3 60 0.41 82 0.42 65 0.41 59 0.41 64 0.43 303 46.80 321 51.32 277 51.86 293 48.41 300 47.95
4 59 0.41 82 0.42 65 0.42 59 0.45 64 0.44 303 48.62 321 54.77 277 51.95 293 48.42 300 48.78
5 59 0.42 83 0.41 65 0.41 59 0.46 64 0.44 303 50.69 321 53.74 279 50.94 292 48.92 300 49.98

Avg. 60 0.41 82 0.42 65 0.42 59 0.43 64 0.44 303 46.88 321 52.79 278 51.65 293 48.72 300 49.35

20 60

1 119 2.36 132 2.37 111 2.75 154 2.43 108 2.38 325 94.56 337 94.70 339 96.27 346 98.59 349 96.67
2 119 2.44 132 2.35 111 2.38 156 2.43 108 2.39 326 93.79 337 94.69 339 95.27 346 101.80 349 96.86
3 119 2.40 132 2.33 108 2.39 152 2.44 108 2.37 325 94.10 337 95.00 339 90.30 344 99.10 349 102.86
4 119 2.70 132 2.41 110 2.42 154 2.45 108 2.37 325 94.11 337 95.32 339 97.20 346 96.52 349 96.35
5 119 2.64 132 2.62 110 2.38 154 2.44 108 2.41 324 95.23 337 95.11 339 98.55 341 98.13 349 87.34

Avg. 119 2.51 132 2.41 110 2.46 154 2.44 108 2.38 325 94.36 337 94.96 339 95.52 345 98.83 349 96.02

30 70

1 175 8.19 199 8.52 187 8.52 186 8.18 171 8.23 426 151.96 382 155.61 435 161.65 445 164.42 394 166.58
2 174 8.66 199 8.36 187 8.57 187 8.11 171 8.22 427 153.84 382 158.69 435 161.05 446 160.26 394 159.41
3 176 8.29 199 8.24 187 8.20 185 8.37 171 8.09 427 161.72 382 160.61 435 162.51 446 158.98 394 165.49
4 174 8.06 199 8.62 187 8.38 184 8.42 171 8.04 426 156.67 381 156.82 435 161.68 445 166.21 394 165.23
5 173 8.33 199 8.25 187 8.48 187 8.20 171 8.10 426 155.25 380 154.27 435 159.76 446 167.91 394 161.85

Avg. 174 8.31 199 8.40 187 8.43 186 8.26 171 8.14 426 155.89 381 157.20 435 161.33 446 163.56 394 163.72

40 80

1 234 22.11 226 21.04 237 21.19 244 21.40 252 21.31 491 267.29 459 262.07 475 257.31 429 264.95 425 257.91
2 234 22.67 226 22.56 237 21.92 244 21.51 252 21.08 491 271.28 458 261.66 474 260.63 429 271.69 425 251.82
3 234 21.59 226 22.20 237 21.26 244 21.36 252 21.49 491 266.73 459 259.88 474 262.55 429 267.61 425 269.71
4 234 21.46 226 21.55 237 21.93 244 22.19 252 20.70 491 261.10 459 258.10 474 264.23 429 269.63 425 255.35
5 234 21.87 226 21.41 237 21.49 244 21.70 252 20.79 491 267.99 458 255.27 474 270.05 429 263.06 425 259.92

Avg. 234 21.94 226 21.75 237 21.56 244 21.63 252 21.07 491 266.88 459 259.39 474 262.96 429 267.39 425 258.94

Table A12. 10/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 60 0.82 83 0.83 69 0.79 59 0.75 64 0.80 304 70.10 321 69.38 281 68.83 294 71.00 300 71.04
2 61 0.81 83 0.81 65 0.79 59 0.74 64 0.80 305 70.57 321 66.71 281 67.84 294 70.75 300 71.30
3 59 0.80 83 0.83 68 0.78 59 0.72 64 0.81 304 70.14 321 66.19 280 67.47 293 70.70 300 71.48
4 60 0.78 83 0.85 68 0.78 59 0.74 64 0.78 303 70.10 321 67.39 281 68.16 292 71.29 300 70.54
5 59 0.80 83 0.82 68 0.79 59 0.73 64 0.81 306 70.25 321 66.72 281 68.49 293 70.75 300 70.94

Avg. 60 0.80 83 0.83 68 0.79 59 0.74 64 0.80 304 70.23 321 67.28 281 68.16 293 70.90 300 71.06

139

Mathematics 2021, 9, 1527

Table A12. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

20 60

1 119 4.38 134 4.40 111 4.49 160 4.71 108 4.12 331 132.65 341 133.61 343 130.06 346 125.04 351 131.37
2 119 4.53 133 4.51 111 4.48 157 4.76 108 4.01 333 132.66 339 126.78 340 127.96 346 130.12 353 130.25
3 119 4.51 134 4.34 111 4.46 162 4.72 108 4.13 333 129.97 339 127.06 345 127.95 346 128.06 354 130.49
4 119 4.62 133 4.29 111 4.45 163 4.78 108 4.05 334 128.33 338 126.99 344 127.21 346 127.61 353 131.08
5 119 4.39 134 4.38 112 4.47 162 4.78 108 4.22 335 128.70 341 127.05 342 127.76 346 126.90 351 131.90

Avg. 119 4.49 134 4.38 111 4.47 161 4.75 108 4.11 333 130.46 340 128.30 343 128.19 346 127.54 352.4 131.02

30 70
1 180 14.53 199 13.45 187 13.63 190 14.18 172 13.97 426 223.65 383 224.15 438 224.10 446 225.36 396 228.87
2 181 14.39 199 13.33 187 13.95 189 14.19 172 13.97 427 221.73 383 225.46 437 224.98 446 218.05 395 234.39
3 180 14.48 199 13.20 187 13.84 189 14.35 171 14.08 427 221.17 382 220.01 437 235.77 445 219.83 394 240.44
4 180 14.65 199 13.10 187 13.77 190 14.22 172 14.04 427 222.83 383 219.55 438 235.66 446 219.19 396 234.23
5 179 14.58 199 12.99 187 13.62 188 14.24 172 14.06 428 230.13 383 218.47 436 242.94 446 212.65 395 232.63

Avg. 180 14.52 199 13.21 187 13.76 189 14.23 171.8 14.02 427 223.90 383 221.53 437 232.69 446 219.01 395.2 234.11

40 80

1 238 34.79 226 32.29 241 33.85 248 34.13 252 34.58 491 361.10 461 365.65 476 367.03 432 356.03 432 374.91
2 237 33.80 226 32.30 240 34.02 250 34.71 252 35.05 491 351.14 460 379.02 476 384.25 432 358.12 432 361.36
3 238 34.36 226 33.10 241 33.96 250 34.79 252 35.29 492 351.12 461 365.51 476 389.75 431 361.65 431 364.59
4 239 33.40 226 32.46 241 33.98 248 34.44 252 35.94 493 352.39 461 365.27 476 375.20 430 354.07 432 362.76
5 241 33.58 226 32.41 242 33.93 249 34.47 252 35.30 492 349.35 461 358.78 476 370.01 430 359.80 428 366.10

Avg. 239 33.99 226 32.51 241 33.95 249 34.51 252 35.23 492 353.02 461 366.84 476 377.25 431 357.93 431 365.94

Table A13. 9/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 59 0.79 82 0.83 65 0.78 59 0.74 64 0.80 303 70.98 320 67.09 279 70.00 293 72.83 299 70.42
2 60 0.79 82 0.88 68 0.77 59 0.73 64 0.81 303 71.25 320 67.34 277 69.35 292 72.52 300 70.00
3 60 0.78 82 0.84 68 0.81 59 0.76 64 0.80 303 70.85 321 67.20 277 70.08 293 72.78 300 68.74
4 60 0.76 82 0.85 68 0.80 59 0.79 64 0.80 303 70.94 320 67.33 277 69.82 292 72.58 300 68.60
5 59 0.78 82 0.82 68 0.81 59 0.77 64 0.79 303 70.49 321 67.69 278 69.74 292 72.73 300 69.49

Avg. 60 0.78 82 0.85 67 0.79 59 0.76 64 0.80 303 70.90 320 67.33 278 69.80 292 72.69 300 69.45

20 60

1 119 4.43 132 4.53 109 4.58 152 4.81 108 4.27 327 129.64 337 130.01 339 132.17 346 125.70 349 129.38
2 119 4.60 132 4.57 110 4.57 152 4.88 108 4.42 325 129.85 337 127.65 339 131.66 346 125.47 349 130.15
3 119 4.58 132 4.58 107 4.58 155 4.85 108 4.23 328 131.25 337 130.42 339 131.22 346 127.41 349 131.58
4 119 4.47 132 4.51 110 4.62 155 4.80 108 4.16 326 130.20 337 128.24 339 130.18 346 126.64 349 130.51
5 119 4.63 132 4.48 108 4.54 155 4.84 108 4.06 327 130.41 337 129.65 339 131.22 346 125.51 349 130.05

Avg. 119 4.54 132 4.53 109 4.58 154 4.84 108 4.23 327 130.27 337 129.19 339 131.29 346 126.15 349 130.33

140

Mathematics 2021, 9, 1527

Table A13. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

30 70
1 175 14.43 199 13.19 187 13.89 185 14.45 171 13.45 427 244.28 382 224.02 435 226.72 445 227.96 394 226.79
2 175 14.16 199 12.87 187 13.80 184 14.65 171 13.96 427 228.50 382 223.32 435 225.61 445 227.60 394 222.79
3 177 14.13 199 12.90 187 13.97 184 14.19 171 14.14 428 223.29 382 222.66 435 227.02 445 216.39 394 221.29
4 175 14.98 199 12.96 187 14.08 185 13.91 171 13.99 426 222.01 382 219.02 435 228.56 446 215.56 394 221.98
5 173 14.69 199 13.36 187 13.87 185 14.24 171 14.31 427 222.75 382 223.12 435 236.94 445 218.18 394 223.71

Avg. 175 14.48 199 13.05 187 13.92 185 14.29 171 13.97 427 228.17 382 222.43 435 228.97 445 221.14 394 223.31

40 80

1 234 33.55 225 32.81 237 33.76 246 35.03 252 37.16 491 349.76 459 351.18 474 359.25 429 339.20 425 361.69
2 234 33.77 226 32.87 237 33.90 246 35.67 252 34.21 491 351.63 460 349.46 476 368.82 429 348.57 425 361.43
3 234 34.07 226 32.98 237 33.99 245 34.85 252 34.40 491 352.73 458 358.00 476 368.09 429 337.87 426 372.25
4 234 33.95 226 32.42 237 33.81 244 35.01 250 34.63 491 351.55 458 364.62 476 362.86 429 345.34 426 363.50
5 235 33.87 226 32.38 237 34.32 244 36.21 252 34.89 491 348.60 460 362.70 476 367.12 429 353.93 427 438.14

Avg. 234 33.84 226 32.69 237 33.95 245 35.36 252 35.06 491 350.85 459 357.19 476 365.23 429 344.98 426 379.40

Table A14. 8/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 60 0.80 82 0.92 65 0.81 59 0.75 64 0.82 303 69.44 321 65.64 277 67.94 293 73.12 300 70.41
2 58 0.79 82 0.92 65 0.83 59 0.78 64 0.80 303 69.44 321 66.30 277 69.99 293 73.27 300 70.45
3 59 0.80 82 0.91 67 0.84 59 0.76 64 0.79 303 68.72 321 65.93 279 69.78 293 73.30 300 71.13
4 60 0.87 82 0.93 66 0.82 59 0.75 64 0.79 303 69.31 321 65.67 279 69.48 292 73.22 298 72.03
5 60 0.85 82 0.88 65 0.80 59 0.74 64 0.79 303 68.95 321 65.64 278 69.60 293 73.21 300 70.32

Avg. 59 0.82 82 0.91 66 0.82 59 0.76 64 0.80 303 69.17 321 65.84 278 69.36 293 73.22 300 70.87

20 60

1 119 4.37 132 4.36 109 4.37 154 4.97 108 4.06 326 129.48 337 128.02 339 132.21 346 127.52 349 131.45
2 119 4.39 132 4.56 111 4.39 155 5.05 108 4.08 326 130.63 337 132.50 339 135.24 346 132.26 349 131.68
3 119 4.40 132 4.60 110 4.60 156 4.96 108 4.23 328 128.73 337 131.23 339 133.96 346 128.72 349 131.43
4 119 4.27 132 4.54 110 4.64 153 4.82 108 4.24 326 130.76 337 130.80 339 132.43 346 127.90 349 131.03
5 119 4.33 132 4.45 110 4.70 153 4.72 108 4.21 326 130.31 337 127.97 339 131.18 343 127.68 349 132.76

Avg. 119 4.35 132 4.50 110 4.54 154 4.90 108 4.16 326 129.98 337 130.10 339 133.01 345 128.82 349 131.67

30 70

1 174 14.53 198 13.46 187 13.70 184 14.11 171 13.83 426 231.32 382 229.68 435 237.95 445 225.90 394 235.27
2 174 14.44 199 13.21 187 14.41 185 14.15 171 13.76 426 232.78 382 226.54 435 237.43 445 231.07 394 235.68
3 174 14.69 199 13.29 185 13.84 185 14.29 171 14.22 427 226.33 382 231.25 435 228.80 446 224.58 394 233.44
4 175 14.55 198 12.96 187 14.01 184 14.24 171 14.79 426 228.31 381 228.21 435 235.13 445 224.31 394 233.68
5 175 14.10 199 13.03 187 13.75 185 14.10 171 14.16 427 229.95 382 230.07 435 232.42 445 222.44 394 240.95

Avg. 174 14.46 199 13.19 187 13.94 185 14.18 171 14.15 426 229.74 382 229.15 435 234.35 445 225.66 394 235.81

141

Mathematics 2021, 9, 1527

Table A14. Cont.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

40 80

1 234 33.74 226 32.75 237 34.00 244 34.79 252 35.40 491 372.89 459 371.61 476 378.11 429 431.14 427 367.77
2 234 35.39 226 33.79 237 34.33 244 34.56 252 35.25 491 385.00 457 376.62 476 386.75 429 437.42 425 355.19
3 234 34.76 226 32.94 237 33.78 244 35.11 252 35.64 491 367.65 459 379.97 476 380.16 429 433.80 425 366.88
4 234 34.00 226 32.51 237 33.50 244 35.07 252 35.27 491 369.67 459 371.16 474 378.50 429 375.88 424 375.39
5 234 34.47 226 32.77 237 33.62 244 35.29 252 34.29 491 366.16 458 369.34 476 373.08 429 365.21 425 364.34

Avg. 234 34.47 226 32.95 237 33.85 244 34.96 252 35.17 491 372.27 458 373.74 476 379.32 429 408.69 425 365.92

Table A15. 7/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 60 0.76 82 0.84 65 0.76 59 0.72 64 0.79 303 80.16 321 69.24 277 70.24 292 74.02 300 71.51
2 60 0.78 82 0.81 65 0.77 59 0.74 64 0.82 303 73.05 321 65.99 277 70.62 293 73.80 300 71.51
3 60 0.80 82 0.81 65 0.84 59 0.75 64 0.83 303 72.41 321 66.72 279 70.26 292 74.34 300 72.53
4 61 0.79 82 0.81 65 0.83 59 0.75 64 0.87 302 73.04 321 67.55 277 70.30 293 74.22 300 71.41
5 60 0.77 82 0.86 65 0.78 59 0.73 64 0.83 303 71.77 321 67.53 277 71.02 292 73.75 300 71.42

Avg. 60 0.78 82 0.83 65 0.80 59 0.74 64 0.83 303 74.09 321 67.41 277 70.49 292 74.03 300 71.68

20 60

1 119 4.39 132 4.46 108 4.78 153 4.89 108 4.26 326 128.65 337 129.66 339 134.27 346 130.59 349 128.63
2 119 4.26 132 4.51 110 4.65 152 4.76 108 4.38 326 128.75 337 127.03 339 133.06 346 127.68 349 129.51
3 119 4.32 132 4.59 109 4.71 153 4.80 108 4.29 325 128.42 337 128.60 339 135.36 346 127.38 349 130.51
4 119 4.27 132 4.48 109 5.00 154 4.79 108 4.48 324 129.78 337 128.45 339 136.13 346 128.11 349 132.49
5 119 4.67 132 4.49 109 4.83 156 4.76 108 4.26 326 129.25 337 132.78 339 133.66 346 126.74 349 132.60

Avg. 119 4.38 132 4.51 109 4.79 154 4.80 108 4.33 325 128.97 337 129.30 339 134.50 346 128.10 349 130.75

30 70

1 174 14.30 199 13.06 187 13.64 186 13.73 171 13.66 427 239.39 382 235.44 435 246.05 445 236.55 394 255.11
2 177 14.71 199 13.04 187 13.63 184 13.88 171 14.31 426 242.99 382 234.77 435 238.37 445 243.76 394 245.57
3 174 14.45 199 12.97 187 13.72 185 13.93 171 13.86 426 240.07 382 232.38 435 253.19 446 241.68 394 244.85
4 174 14.69 199 13.12 187 13.55 183 14.08 171 13.99 428 236.13 382 238.29 435 251.76 445 237.30 394 248.74
5 174 14.42 199 13.07 185 13.60 185 13.97 171 13.73 427 237.71 382 239.42 435 256.39 445 243.75 394 243.09

Avg. 175 14.52 199 13.05 187 13.63 185 13.92 171 13.91 427 239.26 382 236.06 435 249.15 445 240.61 394 247.47

40 80

1 234 34.18 226 32.34 237 33.47 244 34.39 252 34.75 491 355.44 459 387.20 476 367.73 429 348.69 425 361.64
2 234 34.21 226 32.27 237 33.84 244 34.22 252 34.78 491 358.90 458 452.33 476 357.15 429 352.06 425 364.45
3 234 33.97 225 32.37 237 33.51 244 34.47 252 34.77 491 352.64 460 446.64 476 365.63 429 341.14 425 367.49
4 234 34.10 226 32.39 237 33.53 244 34.46 252 34.69 491 354.75 460 411.01 473 375.85 429 343.29 425 358.24
5 234 34.00 225 32.48 237 33.61 244 34.21 252 34.71 491 350.60 459 371.80 475 370.45 429 349.52 425 366.38

Avg. 234 34.09 226 32.37 237 33.59 244 34.35 252 34.74 491 354.47 459 413.79 475 367.36 429 346.94 425 363.64

142

Mathematics 2021, 9, 1527

Table A16. 6/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 59 0.77 82 0.84 65 0.77 59 0.71 64 0.76 303 70.78 320 67.86 278 69.21 293 88.11 300 77.73
2 60 0.75 82 0.85 65 0.76 59 0.73 64 0.80 303 70.28 321 69.51 277 69.30 292 87.96 298 77.74
3 60 0.75 82 0.85 65 0.77 59 0.74 64 0.79 303 70.48 320 68.20 277 69.85 292 92.54 300 75.20
4 59 0.78 82 0.85 65 0.76 59 0.80 64 0.78 303 71.06 319 67.40 277 69.75 293 90.99 300 74.56
5 60 0.77 82 0.85 65 0.78 59 0.78 64 0.80 303 71.99 320 69.42 277 75.94 293 83.33 300 77.39

Avg. 60 0.77 82 0.85 65 0.77 59 0.75 64 0.79 303 70.92 320 68.48 277 70.81 293 88.59 300 76.52

20 60

1 119 4.49 132 4.56 109 4.53 153 4.75 108 4.29 327 129.50 337 129.90 339 131.28 346 128.13 349 132.61
2 119 4.46 132 4.45 108 4.54 154 5.02 108 4.33 326 131.09 337 129.46 339 130.31 346 127.91 349 133.17
3 119 4.33 132 4.51 109 4.44 152 4.72 108 4.27 326 131.82 337 131.52 339 132.01 346 128.22 349 132.52
4 119 4.33 132 4.50 109 4.40 155 4.67 108 4.28 324 131.20 337 128.93 339 132.86 346 129.25 349 132.61
5 119 4.52 132 4.61 110 4.44 152 5.05 108 4.31 325 129.73 337 129.75 339 133.50 346 130.48 349 133.23

Avg. 119 4.43 132 4.53 109 4.47 153 4.84 108 4.29 326 130.67 337 129.91 339 131.99 346 128.80 349 132.83

30 70

1 173 14.08 199 12.86 187 13.64 185 13.96 171 14.39 426 215.26 381 218.51 435 216.39 446 198.86 394 206.93
2 176 14.11 199 12.90 187 13.64 185 14.32 171 14.08 426 215.64 382 207.97 435 208.71 445 197.88 394 207.29
3 175 14.23 199 12.98 187 13.72 185 14.33 171 13.91 427 208.16 382 212.68 435 212.47 446 197.33 394 206.72
4 173 14.35 199 13.02 187 13.68 185 14.70 171 14.08 426 226.05 382 202.80 435 209.57 445 197.59 394 207.20
5 174 14.38 199 12.88 187 13.64 185 14.43 171 13.96 426 230.31 382 216.97 435 205.56 445 198.29 394 208.30

Avg. 174 14.23 199 12.93 187 13.66 185 14.35 171 14.08 426 219.08 382 211.79 435 210.54 445 197.99 394 207.29

40 80

1 234 34.21 226 32.54 237 33.76 244 34.32 252 34.62 491 348.91 460 365.14 474 376.18 429 345.95 425 366.90
2 234 34.15 226 32.60 237 33.57 244 34.47 252 34.72 491 356.95 460 366.77 475 368.62 429 343.70 425 364.87
3 234 34.26 226 32.66 237 33.57 244 34.58 252 34.80 493 355.42 459 357.71 476 362.79 429 345.14 426 360.93
4 234 33.85 226 32.45 237 33.87 244 34.23 252 34.14 491 361.16 458 365.88 476 375.33 429 344.93 425 358.11
5 234 34.10 226 32.57 237 33.72 244 34.49 252 33.89 491 355.63 456 366.90 475 369.19 429 346.99 425 357.00

Avg. 234 34.11 226 32.57 237 33.70 244 34.42 252 34.43 491 355.61 459 364.48 475 370.42 429 345.34 425 361.56

143

Mathematics 2021, 9, 1527

Table A17. 5/10 fraction in maxβ of ACO with 1.4 × initial resource levels.

Run

Sets of Job

1 2 3 4 5 1 2 3 4 5

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

10 50

1 58 0.80 82 0.80 65 0.75 59 0.72 64 0.77 303 70.50 319 68.01 279 69.68 292 74.77 300 71.71
2 60 0.79 82 0.82 65 0.74 59 0.71 64 0.78 303 70.92 321 66.38 277 69.63 292 74.27 300 72.12
3 60 0.79 82 0.83 65 0.76 59 0.70 64 0.77 303 70.80 320 65.30 278 69.15 293 74.18 300 71.46
4 60 0.79 82 0.82 65 0.76 59 0.70 64 0.78 303 70.82 320 65.58 277 70.80 292 73.60 298 70.41
5 60 0.76 82 0.82 65 0.76 59 0.70 64 0.77 302 71.10 320 65.66 279 70.27 292 74.84 300 70.52

Avg. 60 0.79 82 0.82 65 0.75 59 0.70 64 0.77 303 70.83 320 66.19 278 69.91 292 74.33 300 71.24

20 60

1 119 4.27 132 4.40 110 4.68 155 4.87 108 4.26 324 134.13 337 131.51 339 134.55 346 129.39 349 135.28
2 119 4.53 132 4.63 110 4.62 154 4.90 108 4.19 325 132.49 337 130.62 339 134.62 346 128.56 349 133.57
3 119 4.48 132 4.51 110 4.62 152 4.84 108 4.23 326 133.00 337 131.47 339 130.36 346 127.61 349 134.02
4 119 4.44 132 4.49 109 4.63 154 4.86 108 4.12 325 136.22 337 131.36 339 129.65 344 128.76 349 134.32
5 119 4.34 132 4.47 111 4.67 155 4.86 108 4.15 325 138.10 337 130.66 339 131.27 346 132.26 349 131.01

Avg. 119 4.41 132 4.50 110 4.64 154 4.87 108 4.19 325 134.79 337 131.12 339 132.09 346 129.31 349 133.64

30 70

1 176 14.57 199 13.36 187 13.96 185 14.06 171 13.99 426 213.89 382 210.60 435 212.37 446 203.49 394 219.23
2 175 14.69 199 13.09 187 13.81 185 14.10 171 14.01 426 212.78 382 211.25 435 213.80 446 204.17 394 228.61
3 175 14.95 199 13.29 187 13.72 186 14.26 171 14.13 427 212.19 382 211.88 435 214.04 446 208.09 394 239.13
4 173 14.50 199 13.33 187 13.84 185 14.12 171 13.87 426 211.30 382 208.96 435 212.23 446 208.38 394 230.80
5 174 14.70 199 13.21 187 14.10 185 14.25 171 13.75 427 215.19 382 209.14 435 212.17 445 208.73 394 222.70

Avg. 175 14.68 199 13.26 187 13.89 185 14.16 171 13.95 426 213.07 382 210.37 435 212.92 446 206.57 394 228.09

40 80

1 234 34.42 225 32.72 237 33.05 244 34.08 252 34.27 492 353.73 458 366.59 476 367.47 429 341.96 425 354.92
2 234 34.92 226 31.71 237 32.88 244 33.96 252 34.55 491 353.13 460 361.57 474 371.96 429 345.05 425 356.15
3 234 34.76 226 31.76 237 32.93 244 34.09 251 34.17 491 352.95 459 362.61 476 366.73 429 349.67 425 359.46
4 234 34.30 226 32.02 237 33.52 244 33.71 252 33.99 491 373.47 459 353.15 476 376.03 429 347.99 425 370.89
5 234 34.11 226 31.76 237 33.01 244 34.12 252 34.05 491 370.20 459 355.60 476 368.67 429 343.99 425 365.23

Avg. 234 34.50 226 31.99 237 33.08 244 33.99 252 34.21 491 360.70 459 359.90 476 370.17 429 345.73 425 361.33

144

Mathematics 2021, 9, 1527

T
a

b
le

A
1

8
.

Ex
pe

ri
m

en
tr

es
ul

ts
of

A
C

O
M

2-
en

um
.

S
e

ts
o

f
Jo

b

R
u

n
1

2
3

4
5

1
2

3
4

5

C
m

a
x

T
im

e
C

m
a

x
T

im
e

C
m

a
x

T
im

e
C

m
a

x
T

im
e

C
m

a
x

T
im

e
C

m
a

x
T

im
e

C
m

a
x

T
im

e
C

m
a

x
T

im
e

C
m

a
x

T
im

e
C

m
a

x
T

im
e

1
0

jo
b

s
w

it
h

1
.1
×

in
it

ia
l

re
so

u
rc

e
1

0
jo

b
s

w
it

h
1

.4
×

in
it

ia
l

re
so

u
rc

e

1
64

0.
86

82
0.

84
73

0.
83

61
0.

84
64

0.
83

59
0.

87
82

0.
87

65
0.

86
59

1.
12

64
0.

86
2

66
0.

84
82

0.
83

73
0.

83
60

0.
86

64
0.

84
59

0.
85

82
0.

87
65

0.
87

59
1.

22
64

0.
87

3
66

0.
84

82
0.

84
73

0.
83

60
0.

86
64

0.
83

60
0.

88
82

0.
87

65
0.

86
59

1.
16

64
0.

86
4

66
0.

81
82

0.
86

73
0.

84
61

0.
86

64
0.

83
60

0.
92

82
0.

87
65

0.
88

59
1.

17
64

0.
86

5
64

0.
83

82
0.

86
74

0.
84

60
0.

86
64

0.
83

59
0.

86
82

0.
86

65
0.

85
59

1.
20

64
0.

86

A
v

g
.

65
0.

84
82

0.
85

73
0.

83
60

0.
86

64
0.

83
59

0.
87

82
0.

87
65

0.
86

59
1.

17
64

0.
86

2
0

jo
b

s
w

it
h

1
.1
×

in
it

ia
l

re
so

u
rc

e
2

0
jo

b
s

w
it

h
1

.4
×

in
it

ia
l

re
so

u
rc

e

1
12

2
8.

27
13

4
17

.4
3

10
9

7.
01

15
4

5.
14

10
8

10
6.

89
11

9
14

.5
9

13
2

35
.6

2
10

9
6.

65
15

3
5.

09
10

8
18

64
.1

1
2

12
1

8.
00

13
4

17
.7

4
11

0
6.

98
15

3
5.

19
10

8
10

5.
95

11
9

13
.1

3
13

2
37

.4
9

10
7

6.
65

15
3

5.
03

10
8

20
62

.5
2

3
12

1
8.

33
13

4
18

.4
4

10
8

6.
85

15
5

5.
34

10
8

96
.2

8
11

9
15

.0
1

13
2

39
.9

5
10

8
6.

69
15

4
5.

08
10

8
23

13
.2

9
4

12
2

8.
39

13
4

18
.1

9
11

0
6.

91
15

3
5.

22
10

8
92

.6
9

11
9

14
.4

6
13

2
41

.7
7

10
7

6.
70

15
3

5.
03

10
8

23
76

.4
0

5
12

1
8.

42
13

4
18

.1
9

10
9

6.
96

15
5

5.
26

10
8

92
.6

7
11

9
14

.2
2

13
2

40
.3

1
11

0
6.

66
15

3
5.

05
10

8
28

20
.8

5

A
v

g
.

12
1

8.
28

13
4

18
.0

0
10

9
6.

94
15

4
5.

23
10

8
98

.9
0

11
9

14
.2

8
13

2
39

.0
3

10
8

6.
67

15
3

5.
05

10
8

22
87

.4
3

3
0

jo
b

s
w

it
h

1
.1
×

in
it

ia
l

re
so

u
rc

e
3

0
jo

b
s

w
it

h
1

.4
×

in
it

ia
l

re
so

u
rc

e

1
17

9
13

63
.2

6
20

0
-

18
7

-
18

3
23

79
.6

5
17

2
-

17
4

14
50

.2
2

20
0

-
18

7
-

18
5

25
86

.2
6

17
2

-
2

17
7

13
50

.6
9

20
0

-
18

7
-

18
4

30
20

.9
2

17
2

-
17

4
10

56
.2

3
20

0
-

18
7

-
18

5
27

00
.0

9
17

2
-

3
17

8
16

49
.9

6
20

0
-

18
7

-
18

4
26

96
.2

7
17

2
-

17
3

16
99

.8
1

20
0

-
18

7
-

18
4

20
49

.8
6

17
2

-
4

17
7

12
82

.7
8

20
0

-
18

7
-

18
4

-
17

2
-

17
5

14
41

.6
4

20
0

-
18

7
-

18
5

23
85

.1
9

17
2

-
5

18
0

10
84

.2
2

20
0

-
18

7
-

18
4

-
17

2
-

17
5

12
18

.1
9

20
0

-
18

7
-

18
5

36
04

.1
2

17
2

-

A
v

g
.

17
8

13
46

.1
8

20
0

36
00

.0
0

18
7

36
00

.0
0

18
4

30
59

.3
7

17
2

36
00

.0
0

17
4

13
73

.2
2

20
0

36
00

.0
0

18
7

36
00

.0
0

18
5

26
65

.1
0

17
2

36
00

.0
0

145

Mathematics 2021, 9, 1527

Table A19. Experiment results of IP.

IP Times of Initial Resource

Sets
1.1 1.4

Cmax Time Cmax Time

10

1 64 1518.71 56 344.81
2 81 59.93 81 62.71
3 73 110.96 65 23.72
4 59 74.42 59 15.25
5 64 470.02 64 492.10

Avg. 68 446.81 65 187.72

20

1 123 3600.11 119 2864.56
2 - 3600.00 132 1233.87
3 - 3600.27 - 3600.20
4 - 3600.32 x 3600.61
5 - 3600.47 107 366.97

Avg. - - - -

References

1. Pinedo, M. Scheduling; Springer: New York, NY, USA, 2016; Volume 29.
2. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling: Notation, classification,

models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]
3. Habibi, F.; Barzinpour, F.; Sadjadi, S. Resource-constrained project scheduling problem: Review of past and recent developments.

J. Proj. Manag. 2018, 3, 55–88. [CrossRef]
4. Herroelen, W.; Reyck, B.D.; Demeulemeester, E. Resource-constrained project scheduling: A survey of recent developments.

Comput. Oper. Res. 1998, 25, 279–302. [CrossRef]
5. Issa, S.; Tu, Y. A survey in the resource-constrained project and multi-project scheduling problems. J. Proj. Manag. 2020, 5, 117–138.

[CrossRef]
6. Ibadov, N.; Kulejewski, J.; Krzemiński, M. Fuzzy ordering of the factors affecting the implementation of construction projects in

Poland. AIP Conf. Proc. 2013, 1558, 1298–1301.
7. Krzemiński, M. KASS v. 2.2. scheduling software for construction with optimization criteria description. Acta Phys. Pol. A 2016,

130, 1439–1442. [CrossRef]
8. Kaplan, E.H. Relocation models for public housing redevelopment programs. Environ. Plan. B Plan. Des. 1986, 13, 5–19. [CrossRef]
9. PHRG. New Lives for Old Buildings: Revitalizing Public Housing Project; Public Housing Group, Department of Urban Studies and

Planning, MIT: Cambridge, MA, USA, 1986.
10. Kaplan, E.H.; Amir, A. A fast feasibility test for relocation problems. Eur. J. Oper. Res. 1988, 35, 201–206. [CrossRef]
11. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.

[CrossRef]
12. Lin, B.M.T.; Huang, H.L. On the relocation problem with a second working crew for resource recycling. Int. J. Syst. Sci. 2006, 37,

27–34. [CrossRef]
13. Cheng, T.C.E.; Lin, B.M.T.; Huang, H.L. Resource-constrained flowshop scheduling with separate resource recycling operations.

Comput. Oper. Res. 2012, 39, 1206–1212. [CrossRef]
14. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. Ann. Discret. Math. 1979, 5, 287–326.
15. Kaplan, E.H.; Berman, O. OR hits the heights: Relocation planning at the orient heights housing project. Interfaces 1988, 18, 14–22.

[CrossRef]
16. Xie, J. Polynomial algorithms for single machine scheduling problems with financial constraints. Oper. Res. Lett. 1997, 21, 39–42.

[CrossRef]
17. Amir, A.; Kaplan, E.H. Relocation problems are hard. Int. J. Comput. Math. 1988, 25, 101–110. [CrossRef]
18. Kononov, A.V.; Lin, B.M.T. On relocation problems with multiple identical working crews. Discret. Optim. 2006, 3, 366–381.

[CrossRef]

146

Mathematics 2021, 9, 1527

19. Cheng, T.C.E.; Lin, B.M.T. Johnson’s rule, composite jobs and the relocation problem. Eur. J. Oper. Res. 2009, 192, 1008–1013.
[CrossRef]

20. Cheng, T.C.E.; Lin, B.M.T. Demonstrating Johnson’s algorithm via resource-constrained scheduling. Int. J. Prod. Res. 2017, 55,
3326–3330. [CrossRef]

21. Lin, B.M.T.; Tseng, S.S. Some results of the relocation problems with processing times and deadlines. Int. J. Comput. Math. 1991,
40, 1–15. [CrossRef]

22. Lin, B.M.T.; Tseng, S.S. Relocation problems of maximizing new capacities under a common due date. Int. J. Syst. Sci. 1992, 23,
1433–1448. [CrossRef]

23. Lin, B.M.T.; Tseng, S.S. Resource-requirement minimization in relocation problems with precedence constraints. In Proceedings of
the ICCI ‘92: Fourth International Conference on Computing and Information, Toronto, ON, Canada, 28–30 May 1992; pp. 26–29.

24. Lin, B.M.T.; Cheng, T.C.E. Minimizing the weighted number of tardy jobs and maximum tardiness in relocation problem. Eur. J.
Oper. Res. 1999, 116, 183–193. [CrossRef]

25. Hall, N.G. Scheduling problems with generalized due dates. IIE Trans. 1986, 18, 220–222. [CrossRef]
26. Lin, B.M.T.; Liu, S.T. Maximizing the reward in relocation problems with generalized due dates. Int. J. Prod. Econ. 2008, 115,

55–63. [CrossRef]
27. Sevastyanov, S.V.; Lin, B.M.T.; Huang, H.-L. Tight complexity analysis of the relocation problem with arbitrary release dates.

Theor. Comput. Sci. 2011, 412, 4536–4544. [CrossRef]
28. Kononov, A.V.; Lin, B.M.T. Minimizing the total weighted completion time in the relocation problem. J. Sched. 2010, 13, 123–129.

[CrossRef]
29. Lin, B.M.T. Resource-constrained scheduling with optional recycling operations. Comput. Ind. Eng. 2015, 90, 39–45. [CrossRef]
30. Shafransky, Y.M.; Strusevich, V.A. The open shop scheduling problem with a given sequence of jobs on one machine. Nav. Res.

Logist. 1998 45, 705–773 . [CrossRef]
31. Lin, B.M.T.; Hwang, F.J.; Kononov, A.V. Relocation scheduling subject to fixed processing sequences. J. Sched. 2016, 19, 153–163.

[CrossRef]

147

mathematics

Article

An Imitation and Heuristic Method for Scheduling with
Subcontracted Resources

Anna Antonova *, Konstantin Aksyonov and Olga Aksyonova

Citation: Antonova, A.; Aksyonov,

K.; Aksyonova, O. An Imitation and

Heuristic Method for Scheduling

with Subcontracted Resources.

Mathematics 2021, 9, 2098. https://

doi.org/10.3390/math9172098

Academic Editors: Chin-Chia Wu and

Frank Werner

Received: 26 July 2021

Accepted: 27 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Information Technology and Automatics, Ural Federal University, 620002 Ekaterinburg, Russia;
k.a.aksyonov@urfu.ru (K.A.); wiper99@mail.ru (O.A.)
* Correspondence: a.s.antonova@urfu.ru

Abstract: A scheduling problem with subcontracted resources is widely spread and is associated
with the distribution of limited renewable and non-renewable resources, both own and subcontracted
ones based on the work’s due dates and the earliest start time. Scheduling’s goal is to reduce the
cost of the subcontracted resources. In the paper, application of a few scheduling methods based
on scheduling theory and the optimization algorithm is considered; limitations of these methods’
application are highlighted. It is shown that the use of simulation modeling with heuristic rules
for allocation of the renewable resources makes it possible to overcome the identified limitations.
A new imitation and heuristic method for solving the assigned scheduling problem is proposed.
The comparison of the new method with existing ones in terms of the quality of the found solution
and performance of the methods is carried out. A case study is presented that allowed a four-fold
reduction of the overall subcontracted resources cost in a real project portfolio.

Keywords: scheduling theory; operations research; subcontracted resources; scheduling on parallel
machines; renewable and non-renewable resources; heuristic methods

1. Introduction

The problem of business processes and project works scheduling is one of the key
problems of organizational system control. Organizational systems are widely spread:
examples are enterprises of various industries, multiservice communication networks, and
project organizations.

To date, some methods to solve the scheduling problem with resource constraints have
been developed depending on the problem statement, restrictions, and objective function.
These are scheduling theory and network methods [1–5], simulation and multi-agent
modelling methods [6,7], heuristic methods [8,9], and methods based on the application of
commercially available solvers [10–14].

According to the machine environment, scheduling problems can be divided into the
main following types with the type notation in brackets [15]: identical parallel machines
(Pm) where work can be performed at any of the machines [1–5,8,9,12,14]; Job shop (Jm)
where each work has to be processed on each of the machines and all works have different
routes [6,7,11,13]; Open shop (Om) where each work has to be processed on each of the
machines and some of this processing time may be zero [10].

According to the processing restrictions, there are several main constraints specified:
release dates (rj), where work j cannot start its processing before its release date [3–5];
precedence constraints (prec), where one or more works have to be completed before
execution of a certain consequent work is allowed [1–9,12–14]; batch processing (batch(b)),
where a machine may be able to process a number of b works simultaneously [11,12]; and
breakdowns (brkdwn), where a machine may not be permanently available [3,5].

The main objective functions of the scheduling problem are: Makespan minimization
(Cmax) is a minimization of the last work’s completion time to leave the system [1–4,6–9];

Mathematics 2021, 9, 2098. https://doi.org/10.3390/math9172098 https://www.mdpi.com/journal/mathematics

149

Mathematics 2021, 9, 2098

and the weighted number of tardy jobs minimization (∑ ωjUj) [5,11–14], throughput
maximization [10].

In general, the scheduling problem is a problem of work’s sequence definition satis-
fying the given restrictions and minimizing makespan. A schedule, or calendar plan, is a
set of work start dates. Commonly, researchers have investigated the renewable restricted
resources that are occupied while a work is being performed and released when the work is
over, as in [1,2,4–6,8–12,14]. Examples of the renewable resources are personnel, aggregates,
vehicles, and other. At the same time, there is an urgent problem to consider non-renewable
resources’ distribution, as in [3,7,13]. The non-renewable resources are consumed at the
work input and produced at the work output. Examples are raw materials, fuel, finance,
and goods.

We consider the scheduling problem on parallel machines in the presence of the
orders’ earliest start times and due dates. We have extended the problem by using subcon-
tracted resources’ cost optimization and accounting for restricted non-renewable resources.
The optimization of subcontracted resources is relevant either for enterprises with a rel-
atively small set of their own resources, or for enterprises with resources of constrained
competence. These enterprises flexibly respond to demand fluctuations in products man-
ufactured or services provided and attract subcontracted resources when it is necessary.
Examples are construction companies and project organizations. They need to reduce the
engaged subcontractors’ cost while keeping with existing time restrictions to reduce the
company’s waste.

The rest of the paper is organized as follows. In Section 2, a literature overview is
presented. Notations used are presented in Section 3. In Section 4, a scheduling problem is
formulated considering own and subcontracted renewable and non-renewable resources.
Application of the scheduling methods to the trial problem and their shortcomings are
given in Section 5. In Section 6, we propose an imitation and heuristic method for the
problem considered. In Sections 7 and 8, a case study is presented providing a comparison
of the application results of the methods considered. We conclude this research and propose
directions for the further work in Section 9.

2. Literature Overview

Network methods for the scheduling problem are introduced in [1,2]. They are
intended to determine a critical path and backup time for a work. A PERT method [1] is
used when works have a probabilistic duration with due dates. A GERT method [2] extends
the PERT method by considering the probabilities of individual works’ implementation.
The methods are very useful in the case of precedence relation occurrence. Network
methods do not support non-renewable resources’ implementation and restrictions on the
works’ earliest start time.

An approximate algorithm proposed in [3] is intended to solve the scheduling problem
with restricted renewable and non-renewable resources in the presence of a deadline and
restrictions on the earliest start time for a work. The algorithm has two stages. At the
first stage, a feasible schedule is calculated based on an assumption that all resources are
non-renewable. At the second stage, the renewable resources’ constraints are added to the
schedule found and then works are packed to satisfy all resource constraints and minimize
the execution time. A disadvantage of the algorithm is that the arrangement solution is
excluded from consideration if contradictions arise between the resource constraints and
work deadlines. For example, excess availability of the own renewable resources for works
on the critical path can exist. In this case, companies can use subcontracted renewable
resources, the cost of which needs to be optimized.

For a scheduling optimization problem in a parallel system with identical non-
renewable resources and orders’ earliest start dates, two algorithms of the scheduling
theory are presented in [4,5]. The algorithms are discussed in detail in Section 5.

A decentralized scheduling approach applied to a job-shop scheduling problem via
agent-based simulation is presented in [6,7]. Multi-agent simulation is a popular technique

150

Mathematics 2021, 9, 2098

intended to represent decision makers as a community of interacting agents [16]. In this
case, each renewable resource and each single work is represented by an agent. The agents
interact with each other and allocate the resources to the works by mean of negotiations.
In [6], a new control algorithm based on dispatching rules is described. This algorithm is
used to assign a score to each agent-resource proposal to agent-work, then the agent-work
chooses the highest scored one. The resource score depends on the work’s minimum
processing time provided by the current resource compared to all the available alternatives,
and the average cycle time of the system. An advantage of the algorithm is simultaneous
multi-objective optimization of the system’s throughput and cycle time, with weighted
linear convolution of the two into a single objective function. In [7], the schedule is built
via self-organization of software agents forming two networks of demands and resources,
competing and cooperating on a virtual market. Agents of the basic types are the agents
of orders (works), tasks (operations), resources (renewable resources), products (non-
renewable resources), as well as the scene agent. Each agent has its own objective function
named the satisfaction function, which is a weighted sum of components that meet various
criteria. The value of the system’s objective function is refined through the normalized
sum of the agents’ objective functions. The scheduling algorithm given in [7] includes
a negotiation stage used by agents to build a set of conflicting orders for the resources
and a conflict resolution stage, which recursively search for placement options taking into
account existing limitations. The main advantages of the agent-based scheduling approach
proposed in [7] are the agent’s knowledge base of preferences when assigning resources
to operations and the ability to reschedule in real time if the list of available resources or
works has changed.

Heuristic scheduling algorithms based on a genetic algorithm are presented in [8,9].
The genetic algorithm (GA) is a popular optimization technique applicable to various
application fields proposed by Goldberg [17]. In [8,9], a sequence of works is encoded
into a chromosome, a population of the chromosomes is formed to represent a project,
and then the population is transformed via genetic operators. Each of the investigations
proposes a fitness function of the total project duration that is to be minimized. In [8], the
authors introduce a dense gene concept, which is a fixed chromosome section that encodes
a sequence of works that uses the available renewable resources in the most optimal
way, providing the smallest remainder of free resources. The scarcity of the renewable
resource is determined by solving the simplified scheduling problem with assumption
that all the resources are non-renewable and calculating the remaining free resources.
In [9], a scheduling problem of prefabricated buildings is considered. The authors consider
both renewable resources and prefabricated blocks, or non-renewable resources, and their
supplies. The GA consists of two stages: first, a schedule is formed with the assumption
that the non-renewable resources are in shortage; second, the non-renewable resource
supply’s time constraints are added to the schedule and a new search is performed. The
advantage of the algorithm presented in [9] is the use of heuristics to generate an initial
population that allows a reduction in the number of unfeasible solutions produced by GA.

Commercial solvers were applied to the scheduling problem in [10–14].
OptQuest optimizer is a software that incorporates a combination of metaheuristics,

such as scatter search, tabu search, and neural networks [18]. As a part of the AnyLogic
modeling system [19], OptQuest is used to solve the multi-objective scheduling problem
in [10,11]. A simulation model is used as an objective function for the optimization, which
in return determines an optimal configuration of input parameters for the simulation model.
Two algorithms of the renewable resources’ allocation based on dispatching rules or on
agent negotiation are compared using the OptQuest optimizer in [10]. Controlled variables
are the assignment of resources to works, and the objective function is a multi-object func-
tion that estimates the total delay of the works and the total consumption of the renewable
resources. The authors concluded that the use of the multi-agent approach decreases the
resource waiting time for works but does not increase the throughput. The advantage of the
study [11] is that energy consumption is considered as a part of the objective function. The

151

Mathematics 2021, 9, 2098

author searches for an effective batch size using OptQuest optimizer and then improves
the resources’ utilization within the obtained schedule. It is concluded that batch size has a
greater impact on the total delay rather than on the energy consumption.

A GA-based solver is embedded into the Tecnomatix Plant Simulation software pack-
age [20]. An application of this solver to the scheduling problem is presented in [12,13].
In [12], a flow shop problem is considered with a multi-objective function minimizing the
mean flow time and total setup time. The solver optimizes the batch size and sequence of
the product batches entering the system. In [13], a real-time job shop scheduling problem
is considered with restricted renewable and non-renewable resources and works’ due
dates. A simulation model is used to assess the idling of processing equipment and the
efficiency of the workshop in terms of throughput. The GA solver is used to allocate
the renewable and non-renewable resources to the works. Advantages of the study are
consideration of both types of resources and the integration of the scheduling phase into a
cloud manufacturing system.

Subcontracted renewable resources are considered in [14]. The authors optimize the
schedule cost by allocation of own and subcontracted resources taking into account a
time-cost contradiction. The method is discussed in detail in Section 5.

We consider the scheduling problem optimizing not only own renewable resources
but also subcontracted ones. The problem’s objective function is cost minimization of
the engaged subcontracted resources. The problem restrictions include the time frame
of the earliest and latest work start date and a limited amount of the non-renewable
resources available.

The goal of the present paper is to develop and assess an imitation and heuristic
(IH) method for the scheduling problem with subcontracted resources. We considered
two scheduling theory methods of scheduling on parallel machines by V. S. Tanaev and
Y. A. Mezentsev to be most suitable for solving the given problem. We also considered
application of a commercial solver to the given problem. Use of simulation and heuristics
together allows us to overcome the revealed disadvantages of the considered methods. The
developed IH method was applied for schedule search in a project company.

3. Notations

3.1. Indices

We consider the following indices:

• g is an index of the renewable resource of the allocated competence, g = 1, Qr;
• i is an index of the operation or order contained in the project p, i = 1, Np;
• j is an index of the operation or order that cannot be executed at the same time with

the order i because they are to be processed by a single machine g, j = 1, Np;
• k is an index of the time interval specified by the time constraints in the V.C. Tanaev

method, k = 1, β, β ≤ 2Np − 1;
• L is an index of the order that can be processed during Ek time interval in the V.C.

Tanaev method, L = 1, n(k);
• p is an index of the project contained in the portfolio, p = 1, P;
• r is an index of the renewable resource’s competence, r = 1, R;
• st is an index of the dynamic programming stage of the Y.A. Mezentsev algorithm,

st = 1, Np;
• t is an index of the day, t = τ, T;
• v is an index of the non-renewable resource, v = 1, V;
• η is an index of the iteration stage of the IH algorithm, η = 1, Ψ.

3.2. Sets

We consider the following sets:

• e1 < e2 < . . . < ek+1 is a set of the variables τ0
i and dli values in the V.C. Tanaev method;

152

Mathematics 2021, 9, 2098

• Nk =
{

ik,1, ik,2, . . . , ik,n(k)

}
is a set of orders that can be processed during Ek interval

with index L in the V.C. Tanaev method;
• Prp is a set of operations in the project p;
• Rown is a set of own renewable resources;
• Rsc is a set of subcontracted renewable resources;
• Z(t, r) is a set of indices for operations performed at time t ≥ τ using own or subcon-

tracted renewable resource r;
• Z(t, v) is a set of indices for operations performed at time t ≥ τ using non-renewable

resource v;
• Θ(t, r) is a set of indices for operations performed at time t ≥ τ using own resource r;
• Y(t, r) is a set of indices for operations performed at time t ≥ τ using subcontracted

renewable resource r.

3.3. Parameters

We identified the following parameters:

• cp,i,r is a duration of the time interval Mp,i,r(η) in the IH algorithm;
• di > 0 is an operation duration in case of one project in the portfolio, i.e., P = 1;
• dli > 0 is a deadline for processing the order i; it can be calculated as: dli = τ1

i + di;
• dp,i > 0 is a duration of the operation i of the project p;
• Ek = (ek; ek+1] is a time interval specified by time constraints in the V.C. Tanaev

method, Ek ⊆
(
τ0

i , dli
]
;

• fg,st
(
τ0

st, dst, yg,st
)

is a completion time of the order i processed via the machine or
renewable resource g at the stage st in the Y.A. Mezentsev algorithm;

• Ft is a total cost of the subcontracted renewable resources;
• H and K′ are parameters of the Y.A. Mezentsev algorithm, they are intended to drop

out some feasible solutions at each search stage to decrease the searching time;
• Kres is a total cost of the used resources, own and subcontracted ones;
• Ksc is a predefined limit of the cost of subcontracted renewable resources;
• M = max

k
n(k) is a quantity of machines or renewable resources, both own and

subcontracted, required to process orders in the V.C. Tanaev method, n(k) ≤ M;
• M′ is the quantity of the needed subcontracted resources in the V.C. Tanaev method,

M′ ≤ (M − Qr);
• ML is an arbitrarily assumed, sufficiently large constant in the Lingo method;
• N is the number of operations of the project portfolio;
• Nst is the current amount of the developed schedules at the stage st in the Y.A. Mezent-

sev algorithm;
• n(k) is the quantity of all the orders constituting the Nk set in the V.C. Tanaev method;
• Qr is the available quantity of the own renewable resource with competence r;
• Qt,v is the current quantity of each non-renewable resource v at time t;
• qp,i,r ≥ 0 is the required amount of renewable resources of allocated competence r to

perform the operation i of the project p; qp,i,r = 0 when the renewable resource r is not
required to process the operation i of the project p;

• q−p,i,v ≤ 0 and q+p,i,v ≥ 0 are the amounts of non-renewable resource v consumed
when the operation i of the project p starts and produced when the operation i ends,
respectively; q−p,i,v = 0 when the non-renewable resource v is not required to start the

operation i of the project p; the variable q+p,i,v = 0 when the non-renewable resource v
is not produced as an outcome of the operation i of the project p;

• SCp,t,r is a cost of the subcontracted resource of allocated competence r engaged in the
project p at the time t;

• sri,r is the daily cost of performing the operation i using a unit quantity of the renew-
able resource r in case of one project in the portfolio, i.e., P = 1;

• srp,i,r ≥ 0 is the daily cost of performing the operation i of the project p using a unit
quantity of the renewable resource of allocated competence r;

153

Mathematics 2021, 9, 2098

• sr′p,i,r ≥ 0 is the total cost of performing the operation i of the project p using a
subcontracted renewable resource r;

• Tdl is the global project’s deadline that must not be exceeded, Tdl = max
i

dli;

• Up,t,r is the percentage utilization of the renewable resource r engaged in the project p
at the time t.

• U0
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δp,i,r(η) in the IH algorithm;
• U−

p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ−p,i,r(η) in the IH algorithm;

• U+
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ+p,i,r(η) in the IH algorithm;

• Δk = ek+1− ek is the duration of the time interval Ek in the V.C. Tanaev method;
• δp,i,r(η) is the time interval where the utilization percentage of the renewable resource

r for the operation i of the project p is equal to 100%, U0
p,i,r(η) = 100%, in the IH

algorithm;
• δ−p,i,r(η) is the time interval δp,i,r(η) shifted to the left on the time axis in the IH

algorithm;
• δ+p,i,r(η) is the time interval δp,i,r(η) shifted to the right on the time axis in the IH

algorithm;
• λg,i is the cost of processing the order i by the resource g;
• μg(t) is a function that shows the presence of subcontracted resources g at the time t,

g = Qr, M;
• ξp,i,r is a threshold of the sr′p,i,r total cost of performing the operation i of the project p

using a subcontracted renewable resource r.
• σ(t) is a function of orders allocated to machines or renewable resources in the V.C.

Tanaev method;
• τ0

p,i ≥ τ and τ1
p,i ≥ τ are the earliest and latest possible start times given for the

operation i of the project p; τ0
p,i = τ1

p,i = τ if the operation i is only allowed to start at
the time τ;

• τ0
i and τ1

i are orders’ earliest and latest possible start times in case of one project in
the portfolio, P = 1;

• τ̂g,i is the actual delay between start of the i-th order on the g-th machine upon the
previous order completion in the Y.A. Mezentsev algorithm;

• ϕg,st
(
τ0

i , di, yg,i
)
, i = 1, st is the completion time by the resource g for all the orders

that exist at the stages from the first to the st-th in the Y.A. Mezentsev algorithm;
• ϕst

(
τ0

i , di, yg,i
)
, i = 1, st is the minimal completion time for all the orders existing at

the stages from the first to the st-th in the Y.A. Mezentsev algorithm;
• ω is the cost of processing the order per time unit in conventional units;
• Ψ is the predefined maximum number of the IH algorithm steps.

3.4. Decision Variables

The decision variables may vary regarding the different scheduling problem state-
ments. We identify the following decision variables connected with the problem:

• Sk,g(t) are integer variables of a sequence of orders to perform by each renewable
resource g at each time interval Ek for the scheduling problem given in Section 5.2;

• xp,i ∈ {τ, . . . , T} are integer variables of the operation start times for the scheduling
problem given in Section 4;

• xi ∈ {τ, . . . , T} are integer variables of the operation start times given in Section 5.3 in
case of one project in the portfolio, i.e., P = 1;

• yg,i are Boolean variables for allocating the order i to the machine g for the problems
given in Sections 5.1–5.3. The variable assumes a value of 1 if the order i is to be

154

Mathematics 2021, 9, 2098

executed by the machine g; otherwise, it equals 0. In Section 5.3, we assume that the
machine g can be an own or subcontracted one;

• εi,j are binary variables for the scheduling problem given in Section 5.3. The variable
indicates orders that cannot be executed at the same time because they are to be
processed by a single machine g. The variable εi,j equals 1 if the order i is to be
completed before the order j; otherwise, it equals 0; (i, j) ∈ Prp.

4. Scheduling Problem Statement

The scheduling problem statement is given by the authors in [21]. Below are the key
points. The notations are presented in Section 3.

We assume that a set of operations in each project p appears in order of increasing of
the operation’s cost srp,i,r; srp,i,r = 0 if the subcontracted resource r is not required by the
operation i of the project p.

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the renewable resource r as follows:

Z(t, r) =
{

i ∈
[
1, Np

]
xp,i ≤ t < xp,i + dp,i & qp,i,r = 0 & p ∈ [1, P]

}
(1)

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the non-renewable resource v as follows:

Z(t, v) =
{

i ∈
[
1, Np

]
xp,i ≤ t < xp,i + dp,i & q−p,i,v = 0 & p ∈ [1, P]

}
. (2)

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the own renewable resource r within the available amount Qr:

Θ(t, r) = {i ∈ Z(t, r) ∑p∈[1,P] ∑i qp,i,r ≤ Qr}. (3)

The set of indices for the operations performed at the time t ≥ τ utilizing the subcon-
tract resource r is defined as follows:

Y(t, r) = Z(t, r)\Θ(t, r) =
{

i ∈
[
1, Np

]
i ∈ Z(t, r) & i /∈ Θ(t, r)

}
. (4)

The percentage utilization of the resource r engaged in the project p at the time t is
defined as follows:

Up,t,r =

{ (
∑i∈Θ(t,r) qp,i,r/Qr

)
·100%, i ∈ Θ(t, r),

100%, i ∈ Y(t, r).
(5)

The cost of the subcontract resource of an allocated competence r involved in the
project p at the time t is defined by the formula:

SCp,t,r = ∑i∈Y(t,r) srp,i,r · qp,i,r. (6)

The current volume of the non-renewable resource v at the time t is defined as:

Qt,v = Qτ,v + ∑t
α=τ ∑P

p=1 ∑ i ∈ Prp

∧α = xp,i

q−p,i,v + ∑t
α=τ ∑P

p=1 ∑ i ∈ Prp

∧α = xp,i + dp,i

q+p,i,v. (7)

The scheduling problem can be formalized as follows:

Ft = ∑P
p=1 ∑T

t=τ ∑R
r=1 SCp,t,r → min, (8)

∑P
p=1 ∑ i ∈ Z(t, v)

∧t = xp,i

∣∣∣q−p,i,v

∣∣∣ ≤ Qt,v, ∀ t = τ, T, ∀ v = 1, V, (9)

155

Mathematics 2021, 9, 2098

τ0
p,i ≤ xp,i ≤ τ1

p,i, ∀ p = 1, P, ∀ i = 1, Np. (10)

The objective function (8) minimizes the total cost of the subcontracted resources in
the case of exceeding the availability of the own ones. The constraint (9) ensures availability
of the required amount of non-renewable resources at the time of the operation start. The
constraint (10) imposes a time frame on the start dates of the operations.

5. Scheduling Methods Application

We consider the schedule optimization problem for the parallel system having iden-
tical machines in the presence of delays processing the orders. The problem is one of
the closest problems studied by the scheduling theory. According to [15], the problem
is formalized as follows: Pm/rj/Cmax. For the problem, a parametric algorithm of dy-
namic programming with an alternative dropout option was proposed by Y. A. Mezentsev
et al. [4].

Another closest problem studied by the scheduling theory is a parallel system schedule
optimization using identical machines in the presence of orders’ due dates. The problem is
formalized as follows: Pm/brkdwn, rj/ ∑ ωjUj. As a solution to the problem, a schedule
construction algorithm using the given due dates is proposed by V. S. Tanaev et al. [5].

We also considered Lingo commercial solver’s application to the scheduling prob-
lem according to the scheme given in [14]. Here, the problem is modelled as a mixed
binary linear program that minimizes the project cost, including subcontracted and own
resources cost.

We applied the considered algorithms to solve a trial small-scale scheduling problem
using two own renewable resources Q1 = 2 of the same competence R = 1, and one
project P = 1 with the number of the operations N1 = 7. Seven orders, or operations, are
fed at a different time into a parallel system with two identical machines, or renewable
resources. Table 1 contains the initial information about the operation’s duration and time
frame between order processing’s earliest possible start and latest finish. We assume the
operations are ordered by the earliest start time.

Table 1. Initial information of the trial scheduling problem.

Order Number, i Order Duration, di Earliest Start Time, τ0
i Deadline, dli

1 2 0 3
2 3 0 4
3 2 1 4
4 4 2 7
5 3 3 7
6 2 5 8
7 4 5 10

The progress of solving the problem is given below.

5.1. Method Developed by Y. A. Mezentsev

We applied a parametric dynamic programming algorithm with the optional exclusion
of the found alternatives to the considered scheduling problem. The notations are given
in Section 3. The decision variables are Boolean variables yg,i allocating the order i to the
machine g.

The dynamic algorithm variables can be calculated as given in the study [4]:

fg,st

(
τ0

st, dst, yg,st

)
= max

{
0,
[
τ0

styg,st − ϕg,st−1

(
τ0

st−1, di, yg,i

)]}
+ dstyg,st, (11)

ϕg,st

(
τ0

i , di, yg,i

)
=

{
fg,st

(
τ0

st, dst, yg,st

)
+ ϕg,st−1

(
τ0

i , di, yg,i

)}
, i = 1, st − 1, (12)

ϕst

(
τ0

i , di, yg,i

)
= max

g

{
ϕg,st

(
τ0

st, di, yg,i

)}
, i = 1, st. (13)

156

Mathematics 2021, 9, 2098

The parametric algorithm includes the following stages:

1. Input of the initial data
(
τ0

i , di, dli
)
, i = 1, Np and H, K′, Qr, and Np parameters. Set

ϕg,0
(
τ0

0 , di, yg,i
)
= 0, st = 0;

2. st = st + 1;
3. If st > Np then go to Point 7;
4. Generate all the feasible schedules and calculate fg,st

(
τ0

st, dst, yg,st
)

and the schedule
length ϕg,st

(
τ0

i , di, yg,i
)
;

5. Check the number of the generated schedules Nst. If Nst ≤ K′ then go to Point 2;
otherwise, go to Point 6;

6. Discard Qr
H−1 out of the schedules generated at Point 4 with the maximum schedule

length ϕg,st
(
τ0

i , di, yg,i
)
. Go to Point 2;

7. Choose the schedules with the minimum makespan. Determine the calendar plan by
reverse dynamic programming.

We consider application of the parametric algorithm to the trial scheduling problem
given in Table 1. Examples of the calculated algorithm characteristics are given in Tables 2
and 3 for the first and last algorithm stages. We set H = 2, K′ = 22 = 4.

Table 2. Results of the first algorithm stage completion.

Stage 1 x1,1 x2,1 fg,1 ϕg,1 = fg,1, ϕ1 = max
g

{ϕg,1}

Order 1
1 0 (max{0,0-0} + 2,0) = (2,0) ϕ1 = max{2,0} = 2

0 1 (0,max{0,0-0} + 2) = (0,2) ϕ1 = max{0,2} = 2

Table 3 contains the dark filled cells connected to the schedules providing the mini-
mum local makespan on the given stage.

Table 4 contains the four schedules identified as the solutions of the given small-scale
scheduling problem.

Since the machines are identical, schedule 1 is equal to schedule 4 and schedule 2 is
equal to schedule 3. Schedules 1 and 2 differ by two last orders allocated to the opposite
machines. All of the schedules reveal deadline violation on orders 6 and 7.

The obtained schedules are shown in Figure 1 in the form of a Gantt chart.

157

Mathematics 2021, 9, 2098

T
a

b
le

3
.

R
es

ul
ts

of
th

e
la

st
al

go
ri

th
m

st
ag

e
co

m
pl

et
io

n.

S
ta

g
e

7
x 1

,1
x 2

,1
x 1

,2
x 2

,2
x 1

,3
x 2

,3
x 1

,4
x 2

,4
x 1

,5
x 2

,5
x 1

,6
x 2

,6
x 1

,7
x 2

,7
f g,

7
ϕ

g,
7

=
{f

g,
7+

ϕ
g,

6}
,

ϕ
7

=
m

a
x

g
{ϕ

g,
7}

O
rd

er
1+

O
rd

er
2+

O
rd

er
3+

O
rd

er
4+

O
rd

er
5+

O
rd

er
6+

O
rd

er
7

1
0

0
1

1
0

0
1

1
0

0
1

1
0

(m
ax

{0
,5

-8
}+

4,
0)

=
(4

,0
)

m
ax

{2
+

3
+

0
+

0
+

3
+

0
+

4,
0

+
0

+
3

+
4

+
0

+
2

+
0}

=
12

1
0

0
1

1
0

0
1

1
0

0
1

0
1

(0
,m

ax
{0

,5
-9

}+
4)

=
(0

,4
)

m
ax

{2
+

3
+

0
+

0
+

3
+

0
+

0,
0

+
0

+
3

+
4

+
0

+
2

+
4}

=
13

1
0

0
1

1
0

0
1

1
0

1
0

1
0

(m
ax

{0
,5

-9
}+

4,
0)

=
(4

,0
)

m
ax

{2
+

0
+

2
+

0
+

3
+

2
+

4,
0

+
3

+
0

+
4

+
0

+
0

+
0}

=
13

1
0

0
1

1
0

0
1

1
0

1
0

0
1

(0
,m

ax
{0

,5
-7

}+
4)

=
(0

,4
)

m
ax

{2
+

0
+

2
+

0
+

3
+

2
+

0,
0

+
3

+
0

+
4

+
0

+
0

+
4}

=
11

1
0

0
1

1
1

0
0

1
0

0
1

1
0

(m
ax

{0
,5

-7
}+

4,
0)

=
(4

,0
)

m
ax

{2
+

0
+

2
+

0
+

3
+

0
+

4,
0

+
3

+
0

+
4

+
0

+
2

+
0}

=
11

0
1

1
0

0
1

1
0

1
0

0
1

0
1

(0
,m

ax
{0

,5
-9

}+
4)

=
(0

,4
)

m
ax

{2
+

0
+

2
+

0
+

3
+

0
+

0,
0

+
3

+
0

+
4

+
0

+
2

+
4}

=
13

0
1

1
0

0
1

1
0

0
1

1
0

1
0

(m
ax

{0
,5

-9
}+

4,
0)

=
(4

,0
)

m
ax

{0
+

3
+

0
+

4
+

0
+

2
+

4,
2

+
0

+
2

+
0

+
3

+
0

+
0}

=
13

0
1

1
0

0
1

1
0

0
1

1
0

0
1

(0
,m

ax
{0

,5
-7

}+
4)

=
(0

,4
)

m
ax

{0
+

3
+

0
+

4
+

0
+

2
+

0,
2

+
0

+
2

+
0

+
3

+
0

+
4}

=
11

0
1

1
0

0
1

1
0

0
1

0
1

1
0

(m
ax

{0
,5

-7
}+

4,
0)

=
(4

,0
)

m
ax

{0
+

3
+

0
+

4
+

0
+

0
+

4,
2

+
0

+
2

+
0

+
3

+
2

+
0}

=
11

0
1

1
0

0
1

1
0

0
1

0
1

0
1

(0
,m

ax
{0

,5
-9

}+
4)

=
(0

,4
)

m
ax

{0
+

3
+

0
+

4
+

0
+

0
+

0,
2

+
0

+
2

+
0

+
3

+
2

+
4}

=
13

0
1

1
0

0
1

1
0

0
1

1
0

1
0

(m
ax

{0
,5

-9
}+

4,
0)

=
(4

,0
)

m
ax

{0
+

0
+

3
+

4
+

0
+

2
+

4,
2

+
3

+
0

+
0

+
3

+
0

+
0}

=
13

0
1

1
0

0
1

1
0

1
0

0
1

0
1

(0
,m

ax
{0

,5
-9

}+
4)

=
(0

,4
)

m
ax

{2
+

3
+

0
+

0
+

3
+

0
+

0,
0

+
0

+
3

+
4

+
0

+
2

+
4}

=
13

158

Mathematics 2021, 9, 2098

Table 4. Schedules with minimal makespan.

Schedule x1,1 x2,1 x1,2 x2,2 x1,3 x2,3 x1,4 x2,4 x1,5 x2,5 x1,6 x2,6 x1,7 x2,7 ϕ7

1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 11
2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 11
3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 11
4 0 1 1 0 0 1 1 0 0 1 0 1 1 0 11

Figure 1. Schedules received by the Y. A. Mezentsev method with the minimum makespan.

As we can see, the schedules found by the Y. A. Mezentsev method for a parallel
system with identical machines and orders’ earliest start time do not support the orders’
due date. Subcontracted resources are not considered by the method. Thus, Ft = 0 for the
schedule found by Y. A. Mezentsev.

5.2. Method Developed by V. C. Tanaev

We considered an algorithm implemented by V. C. Tanaev. The notations used are
given in Section 3.

The decision variables are schedules Sk,g(t) for each resource g at each time interval
Ek. These are integer type variables.

Two cases can occur: (1) M ≤ Qr if the existing machines are enough to process all
the orders within time intervals Ek; (2) M > Qr if the existing machines are not enough
to process all the orders at the Ek time intervals and it is necessary to attract an amount
M′ ≤ (M − Qr) of subcontracted machines.

An algorithm is given in [5] and contains the following stages. We modified the
algorithm by adding the stages 4 to 7 to reduce the number of interruptions:

1. k = 0;
2. The next index of the time interval: k = k + 1. If k > β then go to Point 9; otherwise,

perform the following actions. Form a set of orders Nk =
{

ik,1, ik,2, . . . , ik,n(k)

}
, which

can be processed at the Ek interval. The orders are sorted by descending the cost of
the processing per time unit;

3. If min
i∈Nk

{di} < Δk then go to Point 8; otherwise, go to Point 4;

4. Start to browse a set of machines with given competence: g = 0;
5. The next index of the machine: g = g + 1. If (g > M) OR (Nk = ∅), then go to Point 2;

otherwise, start to browse the set of orders from the beginning Nk: L = 0;

159

Mathematics 2021, 9, 2098

6. The next index of the order: L = L + 1. If L > n(k), then go to Point 5; otherwise, go
to Point 7;

7. Assign the machine g to the order ik,L ∈ Nk and form the schedule Sk,g(t) at the Ek
time interval:

a. If (k = 1) OR (k = 1 AND the order ik,L at the previous time interval Ek−1 has
not been assigned to the machine g′ = g) OR (k = 1 AND the order ik,L at the
previous time interval Ek−1 has been assigned to the machine g′ = g, g′ > Qr
AND n(k) ≤ Qr), then assign the machine g to the order ik,L:

i. di = di − Δk, Sk,g(t) = ik,L, where t = (ek; ek+1];
ii. Eliminate the order ik,L from the set Nk. Go to Point 5;

b. If (k = 1 AND the order ik,L at the previous time interval Ek−1 has been assigned
to the machine g′ = g, g′ ≤ Qr) OR (k = 1 AND the order ik,L at the previous
time interval Ek−1 has been assigned to the machine g′ = g and g′ > Qr AND
n(k) > Qr), then go to Point 6;

8. Calculate the processing duration of all the orders constituting the Nk set according

to the formula: di
′
{

di, di < Δk
Δk, di ≥ Δk

, i ∈ Nk. Apply a packing algorithm intended to

assign the Nk set orders having di
′ durations to the set M machines for the Ek time

interval. At this stage, we consider the following statements are true: di
′ ≤ Δk, i ∈ Nk

and ∑i∈Nk
di

′ ≤ MΔk:

a. Calculate at the time interval (ek; ek + MΔk] a function σ(t), where:

σ(t) = ik,1 at the time interval (ek; ek + di,k,1];
σ(t) = ik,α at the time interval (ek + ∑A−1

α=1 di,k,α; ek + ∑A
α=1 di,k,α],A = 2, n(k);

if ∑i∈Nk
di < MΔk, then σ(t) = 0 at the time interval

(ek + ∑i∈Nk
di; ek + MΔk];

b. Form the schedule Sk,g(t) = σ(t + (g − 1)Δk), g = 1, M;
c. di = di − di

′, i ∈ Nk. Go to Point 2;

9. The end of the algorithm.

We used the algorithm to solve the scheduling problem given in Table 1. We sorted
the set Np orders according to the information given in Table 1.

We allocated time marks
{

eβ+1
}

, β + 1 = 9 to form a set of time intervals {Ek}, where
k = 1, 8 (Figure 2).

Figure 2. Time intervals of orders’ processing for the trial problem.

Results of the method’s execution upon the trial problem are given in Table 5.
Since max

k
n(k) = 4, the number of machines is defined as four. However, the maximum

number of the machines used simultaneously turned out to be three as two orders were
assigned to the machine r1 at the time interval E6 during schedule searching. Hence, we
set M = 3, Qr = 2, and M′ = 1.

The schedule formed by the V. S. Tanaev method is shown in Figure 3.

160

Mathematics 2021, 9, 2098

Table 5. Schedule search with orders’ due date by the V. S. Tanaev method.

Interval Ek and Its
Length Δk

Set Nk Schedule Sk,g, g = 1,M
Duration di,

i ∈ Nk

Function σ(t)
Where min

i ∈ Nk
{di} < Δk

E1 = (0;1]
Δ1 = 1 N1 = {i1, i2}

S1,1(t) = i1
S1,2(t) = i2
S1,3(t) = 0

t1 = 2 − 1 = 1
t2 = 3 − 1 = 2

E2 = (1;2]
Δ2 = 1 N2 = {i1, i2, i3}

S2,1(t) = i1
S2,2(t) = i2
S2,3(t) = i3

t1 = 1 − 1 = 0
t2 = 2 − 1 = 1
t3 = 2 − 1 = 1

E3 = (4;5]
Δ3 = 1 N3 = {i2, i3, i4}

S3,1(t) = i4
S3,2(t) = i2
S3,3(t) = i3

t4 = 4 − 1 = 3
t2 = 1 − 1 = 0
t3 = 1 − 1 = 0

E4 = (3;4]
Δ4 = 1 N4 = {i4, i5}

S4,1(t) = i4
S4,2(t) = i5
S4,3(t) = 0

t4 = 3 − 1 = 2
t5 = 3 − 1 = 2

E5 = (4;5]
Δ5 = 1 N5 = {i4, i5}

S5,1(t) = i4
S5,2(t) = i5
S5,3(t) = 0

t4 = 2 − 1 = 1
t5 = 2 − 1 = 1

E6 = (5;7]
Δ6 = 2 N6 = {i4, i5, i6, i7}

S6,1(t) =
{

i4 i f t ∈ (5; 6]
i5 i f t ∈ (6; 7]

S6,2(t) = i6
S6,3(t) = i7

t4 = 1 − 1 = 0
t5 = 1 − 1 = 0
t6 = 2 − 2 = 0
t7 = 4 − 2 = 2

σ(t) =

⎧⎪⎪⎨⎪⎪⎩
i4 i f t ∈ (5; 6]
i5 i f t ∈ (6; 7]

i6 i f t ∈ (7; 9]
i7 i f t ∈ (9; 11]

E7 = (7;8]
Δ7 = 1 N7 = {i7}

S7,1(t) = i7
S7,2(t) = 0
S7,3(t) = 0

t7 = 2 − 1 = 1

E8 = (8;10]
Δ8 = 2 N8 = {i7}

S8,1(t) =
{

i7 i f t ∈ (8; 9]
0 i f t ∈ (9; 10]

S8,2(t) = 0
S8,3(t) = 0

t7 = 1 − 1 = 0 σ(t) =
{

i7 i f t ∈ (8; 9]
0 i f t ∈ (9; 10]

Figure 3. Schedule provided by the V. S. Tanaev method.

We introduce a function μg(t) for subcontracted resources g = Qr, M and define it as

follows: μg(t) =
{

1, i f Sk,g = 0, t ∈ Ek
0, else

. We calculate the subcontracted resources cost

according to the formula:

Ft = ω

eβ+1

∑
t=1

M

∑
g=Qr

μg(t) (14)

For the schedule found by the V. S. Tanaev method, the cost of the subcontracted
resources is Ft = 4ω.

161

Mathematics 2021, 9, 2098

The schedule found is not optimal according to the objective function (8). An example
of a more effective schedule satisfying all the requirements (9)–(10) is shown in Figure 4;
the subcontracted resources cost is Ft = 2ω.

Figure 4. Schedule with the most effective resource allocation.

Without loss of generality, let us identify ω = 100. Then, Ft = 400 for the schedule
found by the V. C. Tanaev method.

5.3. Method Based on the Commercial Solver Application

We applied a method based on a Lingo solver [22] to the trial scheduling problem. We
reduced our mathematical model into a model suitable for linear programming [14].

The decision variables are the following:

• xi are integer variables indicating the start times of the orders, i ∈ Prp;
• yg,i are binary variables indicating what renewable resource g, either own or subcon-

tracted, is allocated to a particular order i;
• εi,j are binary variables indicating orders that cannot be executed at the same time

because they are to be processed by a single resource g.

The mathematical model of this problem applied to a project is described as follows:

Kres = ∑
g∈Rown∪Rsc

∑
i∈Prp

λg,i · yg,i → min, (15)

∑
g∈Rown∪Rsc

yg,i = 1, ∀ i ∈ Prp, (16)

xi + di ≤ xj + ML ·
(
1 − εi,j

)
+ ML ·

(
2 − yg,i − yg,j

)
, ∀(i, j) ∈ Prp, ∀g ∈ Rown∪Rsc, (17)

xj + dj ≤ xi + ML · εi,j + ML ·
(
2 − yg,i − yg,j

)
, ∀(i, j) ∈ Prp, ∀g ∈ Rown ∪ Rsc, (18)

xNp + dNp ≤ Tdl, (19)

Ft = ∑
g∈Rsc

∑
i∈Prp

λg,i · yg,i ≤ Ksc, (20)

xi ≥ τ, ∀i ∈ Prp, (21)

yg,i ∈ {0, 1}, ∀g ∈ Rown ∪ Rsc, ∀ i ∈ Prp, (22)

εi,j ∈ {0, 1}, ∀(i, j) ∈ Prp. (23)

For the problem given in Table 1, the following variable values are set:

• The number of projects is P = 1;
• The cardinality of the Rown set is |Rown| = 2;
• The cardinality of the Rsc set is |Rsc| = 7, where 7 is the number of orders that can be

processed simultaneously;
• The cardinality of the Prp set is

∣∣Prp
∣∣ = 7;

162

Mathematics 2021, 9, 2098

• Ksc = 400 that is limited by the maximum value of the subcontracted resources cost
found by the V. S. Tanaev and Y. A. Mezentzev methods;

• ML = 10000;
• Tdl = 10 days according to the dli values from Table 1;

• λg,i =

{
1, i f g ∈ Rown
100, i f g ∈ Rsc

∀ i ∈ Prp; we assume that the operation cost should be

much lower when processed by the own resource comparing to the subcontracted.

It is defined for this problem that limited non-renewable resources are not considered
while they are being introduced in the Formulation (8)–(10).

As a result of Lingo execution upon the linear programming problem (15)–(23), a
set of alternative optimal schedules was formed providing the same minimum total used
resources cost Kres = 7. Two optimal schedules are presented in Figure 5.

Figure 5. Two optimal schedules provided by the commercial solver.

As we can see, the commercial solver was able to reach subcontracting cost Ft = 0
for the schedules found, but there are violations of the deadline and the orders’ earliest
start time.

Thus, application of the commercial solver method leads to violation of the restrictions
(9) and (10) of the problem considered.

6. Imitation and Heuristic Method

A key concept of the imitation and heuristic algorithm is integration of processes’
imitation and some heuristic rules to improve the initial schedule. The IH method algorithm
is based on an application of a multi-agent resource conversion process (MRCP) model [23].
The MRCP model is intended to describe discrete processes converting input non-renewable
resources into output ones using renewable resources, or machines, throughout a given
time interval.

An agent of the MRCP model is a decision maker model having formalized knowledge
about resources’ allocation using production rules. The MRCP model also includes a
logistics agent. The logistics agent controls the current value and lifetime of the non-
renewable resources and ensures fulfillment of the restriction (9) by launching the purchase
or production process of the non-renewable resource required in case its current volume is
decreased to a critical value or the resource’s lifetime is exceeded.

The IH algorithm is a cycle with alternating stages of imitation and application of
heuristic rules to improve the schedule. During the imitation stage, the schedule is fed
to the MRCP model input, and the model evaluates the subcontracted resources cost
according to the Formula (8). During the heuristic stage, the algorithm shifts the start days
for the operations, where the subcontracted resources cost exceeds the given threshold.
During shifting, the restriction (10) is ensured. The algorithm stops either in the absence of
exceeding the threshold of the subcontracted resources cost, or in case a certain number of
cycles is reached.

163

Mathematics 2021, 9, 2098

Let us consider the algorithm of the IH method used the MRCP model. The notations
are given in Section 3.

The algorithm variables are calculated using the following formulas:

• δp,i,r(η) = [a; b] is a time interval where the utilization percentage of the renewable
resource r for the operation i is equal to 100%, U0

p,i,r(η) = 100%;

• cp,i,r = b − a is the duration of the time interval δp,i,r(η);
• δ−p,i,r(η) =

[(
a − (η + 1)·cp,i,r

)
;
(
a − η·cp,i,r

)]
is the time interval δp,i,r(η) shifted on the

(η + 1)·cp,i,r days to the left on the time axis and satisfying the request: U−
p,i,r(η) =

U0
p,i,r(η);

• U−
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ−p,i,r(η):

U−
p,i,r(η) =

a−η·cp,i,r

∑
t=a−(η+1)·cp,i,r

Up,t,r/cp,i,r; (24)

• δ+p,i,r(η) =
[(

b + η·cp,i,r
)
;
(
b + (η + 1)·cp,i,r

)]
is the time interval δp,i,r(η) shifted on

the (η + 1)·cp,i,r days to the right on the time axis satisfying the request: U+
p,i,r(η) = =

U0
p,i,r(η);

• U+
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ+p,i,r(η):

U+
p,i,r(η) =

b+(η+1)·c(p,i,r)

∑
t=b+η·c(p,i,r)

Up,t,r/cp,i,r. (25)

The algorithm of the IH method includes the following stages:

1. Conduct experiments with the MRCP model, the input to which are the start dates of
operations xp,i. Form output model parameters: for each moment t and each project
p, define a set of operations Opi ∈ Prp with indexes i ∈ Y(t, r) using the subcontract
renewable resource r to define the subcontracted resources cost sr′p,i,r = srp,i,r · qp,i,r
for each operation; define the utilization Up,t,r for each renewable resource r used for
the project p; define a function of the current resource volume Qt,v dependence on
the time t for each non-renewable resource v. Set p = 1;

2. For the project p, define the operations with index i = 1, .., N′, N′ ≤ Np, where the
subcontracted resources cost sr′p,i,r exceeds the given critical value ξp,i,r. If N′ = 0,
then set i = 1, η = 1 and go to Point 3; otherwise, go to Point 6;

3. Define the competence of the resource r for the operation i of the project p. Highlight
a time interval

[
xp,i; xp,i + dp,i

]
with a duration cp,i,r;

4. If the interval δp,i,r(η) exists, then go to Point 7; otherwise, go to Point 5;
5. If (i + 1) ≤ N′, then set i = i + 1 and go to Point 3; otherwise, go to Point 6;
6. If (p + 1) ≤ P then set p = p + 1 and go to Point 2; otherwise, go to Point 14;
7. Calculate the utilizations U−

p,i,r(η) and U+
p,i,r(η) for the intervals δ−p,i,r(η) and δ+p,i,r(η);

8. If U−
p,i,r(η) < U+

p,i,r(η), then go to Point 9; otherwise, go to Point 10;

9. If τ0
p,i ≤

(
xp,i − cp,i,r·(η + 1)

)
–constraint (10) check–then shift the operation’s start as

follows:

xp,i = xp,i − cp,i,r·(η + 1)–and go to Point 1; otherwise, go to Point 5;

10. If U−
p,i,r(η) > U+

p,i,r(η), then go to Point 11; otherwise, go to Point 12;

11. If
(

xp,i + cp,i,r·(η + 1)
)
≤ τ1

p,i, then shift the operation’s start as follows:

xp,i = xp,i + cp,i,r·(η + 1)–and go to Point 1; otherwise, go to Point 5;

164

Mathematics 2021, 9, 2098

12. If U−
p,i,r(η) = U+

p,i,r(η) and U−
p,i,r(η) = U0

p,i,r(η), then go to Point 9; otherwise, go to
Point 13;

13. If (η + 1) ≤ Ψ, then set η = η + 1 and go to Point 7; otherwise, go to Point 5;
14. The end of the algorithm.

We assess the number of iterations of the IH algorithm.
The number Ψ of search steps is a parameter of the algorithm. For each step, the

algorithm sequentially bypasses all operations of the project portfolio to identify bottlenecks
and eliminate them.

The number of operations of the project portfolio is calculated as follows: N = ∑P
p=1 Np.

Thus, the complexity of the proposed IH algorithm linearly depends on the number of
operations in the project portfolio according to the formula: Ψ·N. The quality of the
schedule found is defined based on the value of the function (8) when restrictions (9)–(10)
are fulfilled.

7. Case Study Results

The modified IH scheduling method was implemented in the BPsim software package
including the BPsim simulation system and BPsim decision support system [24] with a
common database.

The BPsim simulation system is used to develop and simulate the MRCP model of the
processes under investigation. The system supports graphical MRCP notation, where a
user can identify the types of nodes, i.e., operations and agents, logical links between them,
and list the available non-renewable and renewable resources.

The following parameters can be assigned to each operation: the duration, start
condition, amount of non-renewable and renewable resources required to complete the
operation, and amount of produced non-renewable resources. To each agent, the behavior
rules can be described in a form of if-then rules and assigned. The agents can affect the
amount of resources and operations’ start conditions.

The BPsim decision support system includes decision search diagrams based on
the same resources used to build the simulation model. Development of the diagrams
is based on the UML sequence diagrams [25] and Transact-SQL database management
language [26]. The decision search diagrams are used to provide a visual comparison
for multiple alternative decisions utilizing implemented user rules. The diagrams were
applied to implement the algorithm of the IH scheduling method.

A case study was used to assess the subcontracted resources cost depending on the
current schedule of 10 projects with 35 operations in a project company. The company has
its own renewable resources, i.e., a staff of eight people with different skills (competencies).
The following competencies of the staff were defined: documentation design (three people),
carrying out an installation work (four people), and material supply (one person). The non-
renewable resources of the company are the construction objects. The operation duration
varied from 6 days to 90 days depending on the type of operation. The scheduling time
interval was 430 days.

Following the proposed IH scheduling method, a simulation model was developed
in the BPsim simulation system. The model’s inputs are the labor costs and the agreed
start dates for each operation, as well as the schedule. Assessment of the subcontracted
resources cost was produced by the model.

For the initial schedule, the model outcome is presented in Figure 6a. For the schedule
provided by the IH method, the model outcome is presented in Figure 6b.

The figures contain the percentage utilization of the three own resources with different
competence marked with the red, blue, and green lines. When the blue and red resources
utilization reaches the 100% level, it means the subcontracted resources with the matched
competence are used during this time. The green resource utilization does not exceed 30%
in both figures, so subcontracted resources with the same competence are not required.

165

Mathematics 2021, 9, 2098

(a) (b)

Figure 6. Percentage utilization U of own resources iRes performing the project’s portfolio depending on time: (a) Initial
schedule; (b) Schedule provided by the IH method. Here, iRes2 is a resource with the documentation design competence,
iRes3 is a resource with the competence to carry out installation works, and iRes4 is a resource with material supply
competence.

The initial and the final schedules coincide up to 110 days due to the low resource
utilization at the initial schedule during these days. Therefore, the IH algorithm has not
shifted the operations’ start day during the first 110 days in the final schedule.

Table 6 contains allocation of the subcontracted resources’ cost in rubles and man per
day (m/d) on the project’s operations for the initial schedule.

Table 6. Subcontracted resources’ cost allocation for the initial schedule.

Operation Name Project 1 Project 3 Project 4 Project 5 Project 9

Development of technical specification
in man per day (m/d) 3.9 m/d 1.68 m/d

Installation and commissioning work
(telemechanics) in m/d 2.45 m/d

Installation and commissioning work
(energy accounting) in m/d 11.54 m/d 8.53 m/d

Installation and commissioning work
(telecommunications) in m/d 13.88 m/d

Overall subcontract cost of the project in man per day 3.9 m/d 11.54 m/d 16.33 m/d 1.68 m/d 8.53 m/d

Overall subcontract cost of the project in rubles 10 249 95 990 65 998 6 746 70 953

Overall subcontract cost of the portfolio in m/d 41.98 man per day

Overall subcontract cost of the portfolio in rubles 249,936 rubles

For the initial schedule, the subcontracted resources are required for the projects 1, 3,
4, 5, and 9. The IH method allowed us to highlight several operations with a subcontracted
resources cost exceeding the critical value equal to 60,000 rubles. The ones are installation
works for projects 3 and 9 (95,990 and 70,953 rubles accordingly), and all operations for
project 4 (65,998 rubles).

Table 7 contains allocation of the subcontracted resources’ cost in rubles and m/d on
the project’s operations for the schedule provided by the IH method.

The IH method is proposed resource allocation and shifting of the operations’ start date
within a given timeframe. Although, the makespan of the found schedule was increased
compared with the initial schedule, all operations and project deadlines were met.

It should be noted that the objective function considered is related to minimization of
the subcontracted resources’ cost while meeting restrictions. As a result, the subcontracted
resources’ cost of the schedule found was reduced compared with the initial schedule in
terms of man per day from 42 m/d to 9 m/d and in terms of rubles from 249,936 rubles to
53,453 rubles for half a year, i.e., more than four times for both outcomes.

166

Mathematics 2021, 9, 2098

Table 7. Subcontracted resources’ cost allocation for the schedule provided by the IH method.

Operation Name Project 1 Project 3 Project 4 Project 5 Project 9

Development of technical specification
in man per day (m/d) 1.68 m/d

Installation and commissioning work
(energy accounting) in m/d 4.04 m/d

Installation and commissioning work
(telecommunications) in m/d 2 m/d

Customer training in m/d 0.36 m/d 0.46 m/d

Overall subcontract cost of the project in man per day 0.36 m/d 0.46 m/d 2 m/d 1.68 m/d 4.04 m/d

Overall subcontract cost of the project in rubles 946 3826 8330 6746 33,605

Overall subcontract cost of the portfolio in m/d 8.54 man per day

Overall subcontract cost of the portfolio in rubles 53,453 rubles

8. Discussions

The results of the scheduling methods’ comparison are shown in Table 8.

Table 8. The results of the scheduling method comparison.

Method
Subcontracted

Resources
Accounting

Subcontracted
Cost

Optimization, (8)

Non-Renewable
Resources

Accounting, (9)

Deadlines
Accounting

(10)

Earliest Start
Time

Accounting (10)

Multi-Objective
Optimization

Y. A. Mezentsev method [4] No No No No Yes No

V. S. Tanaev method [5] Yes No No Yes No No

Lingo based method [14] Yes Yes No No No No

Agent-based method [7] Yes No Yes Yes Yes Yes

GA-based method [9] No No Yes No No No

OptQuest based method [11] No No No Yes No Yes

Plant Simulation method [13] No No Yes Yes No Yes

IH method Yes Yes Yes Yes Yes No

As we can see from Table 8, all the methods have disadvantages when solving the
project scheduling problem considered. The problem has the following features: search
for a solution with the minimum subcontracted resources cost, large dimension of the
search space, presence of the operations start time interval, and allocation of renewable
and non-renewable resources with a restricted non-renewable resources lifetime. These
features restrain the application of the scheduling theory methods considered. The Y. A.
Mezentsev and V. S. Tanaev methods solve the scheduling problem while minimizing
the makespan by tight packing of operations in compliance with part of the restrictions.
However, the issues of attracting and optimizing the subcontracted resources cost are not
given due attention. The Lingo-based method deals with subcontracting cost optimization,
but the schedule found does not satisfy any constraint. The agent-based method lacks
subcontracted resource optimization but considers all the restrictions, including the non-
renewable resources one. The GA-based method and the commercial solver-based methods,
OptQuest and GA of the Plant Simulation, do not consider the subcontracted resources
and orders’ earliest start times while the GA-based method accounts for restricted non-
renewable resources.

Application of simulation multi-agent modeling with heuristic rules of the resource’s
allocation allows us to consider all features of the scheduling problem except multi-objective
optimization. The HI method optimizes the subcontracted resources cost taking into
account restricted renewable and non-renewable resources and orders’ earliest start times.
At the same time, a project duration may increase wherein the orders deadlines are met.

167

Mathematics 2021, 9, 2098

For the scheduling problem with 35 operations, eight renewable resources and one
type of non-renewable resource, the running time of the HI algorithm is estimated at 6 min.
This time is comparable to the running time of the methods based on agents, OptQuest,
and Plant Simulation application. The HI algorithm running time is much more than the
one of the methods proposed by Y. A. Mezentsev and V. S. Tanaev as well as the Lingo- and
GA-based ones, estimated at tens of seconds. It should be noted that the search time for
the simulation-based methods is always more than the search time for the methods based
on the optimization algorithms. When simulating, a time for conducting one experiment
varies from a few seconds to several minutes depending on the model dimension and
simulation tool used. In case of solving the optimization problem, it is necessary to search
for solutions in a search space while the alternative solution is estimated by conducting
an experiment with the model; therefore, the total search time increases to tens or even
hundreds of minutes. Nevertheless, simulation-based methods have the advantage of
being able to determine the objective function and the constraints required without a
reduction to a specific mathematical model used in optimization algorithms.

We also applied the HI algorithm to the scheduling problem with a large data set.
A construction holding was considered with 302 building operations, 119 renewable
resources or construction machinery, and 161 types of non-renewable resources or construc-
tion material. The detailed holding description is given in [27]. For the problem with a
large data set, the running time of the HI algorithm is estimated at one hour and 38 min.
The given duration of the algorithm operation is rather long compared to the obtained
one for the small dimension problem but is acceptable for decision making that is not in
real time.

9. Conclusions

The scheduling problem was formulated with the objective function of minimization of
the subcontracted resources cost, presence of restrictions on non-renewable resources, and
operations’ earliest start time and due dates. Analysis of the different scheduling methods
based on the scheduling theory, optimization algorithms, and agent-based simulation was
conducted. The analysis revealed factors preventing application of the methods to the
problem under consideration. The factors include lack of a search for the optimal allocation
of renewable resources on operations in terms of minimizing the subcontracted resources’
cost and lack of accounting for limited non-renewable resources. The given factors indicate
the relevance of the development of the hybrid scheduling method based on integration of
simulation and heuristic modeling.

The IH method algorithm was developed based on the multi-agent simulation model
of the resource’s allocation with operations performing and heuristic rules of the operations
start days shifting. The IH method is used to search the schedule that meets the time and
resources restrictions and has a minimum subcontracted resources cost.

A case study was conducted to assess the subcontracted resources cost for the real
scheduling problem of a project company. Application of the IH method allowed us to
compose a schedule that reduced the company’s waste on subcontracted resources by more
than four-fold for half a year compared with the schedule provided by decision makers
based on their knowledge and experience.

Comparison of the IH method and the other scheduling heuristic methods was per-
formed. The conditions were identified, under which the new IH method is more effective
than the other ones. The conditions include a focus on optimizing the project portfolio
cost with a fixed portfolio duration. In future, the authors plan to refine the IH method
for solving the multicriteria problem of finding a schedule that is optimal in terms of the
makespan and the renewable resources cost.

Author Contributions: Conceptualization, A.A. and K.A.; Methodology, A.A.; Software, K.A. and
O.A.; Validation, O.A.; Formal Analysis, K.A.; Investigation, A.A. and O.A.; Writing—Original Draft
Preparation, A.A.; Writing—Review and Editing, A.A.; Visualization, O.A.; Supervision, K.A.; Project

168

Mathematics 2021, 9, 2098

Administration, O.A.; Funding Acquisition, K.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Act 211 Government of the Russian Federation, contract no.
02.A03.21.0006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clark, C.E. The PERT model for distribution of an activity time. Oper. Res. 1962, 10, 405–406. [CrossRef]
2. Kannan, R. Graphical evaluation and review technique (GERT): The panorama in the computation and visualization of network-

based project management. Adv. Secur. Comput. Internet Serv. Appl. 2014, 9, 165–179. [CrossRef]
3. Gimadi, E.K.; Goncharov, E.N.; Mishin, D.V. On some implementations of solving the resource constrained project scheduling

problems. Yugosl. J. Oper. Res. 2019, 29, 31–42. [CrossRef]
4. Mezentsev, Y.A.; Estraykh, I.V.; Chubko, N.Y. Implementation of an efficient parametric algorithm for optimal scheduling on

parallel machines with release dates. J. Phys. Conf. Ser. Inf. Technol. Bus. Ind. 2019, 1333, 022002. [CrossRef]
5. Tanaev, V.S.; Shkurba, V.V. Introduction to the Scheduling Theory; Science: Moscow, Russia, 1975.
6. Guizzi, G.; Vespoli, S.; Grassi, A.; Carmela Santillo, L. Simulation-based performance assessment of a new job-shop dispatching

rule for the semi-heterarchical industry 4.0 architecture. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando,
FL, USA, 14–18 December 2020; pp. 1664–1675. [CrossRef]

7. Skobelev, P.; Zhilyaev, A.; Larukhin, V.; Grachev, S.; Simonova, E. Ontology-based open multi-agent systems for adaptive resource
management. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Valletta, Malta, 22–24
February 2020; pp. 127–135. [CrossRef]

8. Goncharov, E.; Leonov, V. Genetic algorithm for the resource-constrained project scheduling problem. Autom. Remote Control
2017, 78, 1101–1114. [CrossRef]

9. Xie, L.; Chen, Y.; Chang, R. Scheduling optimization of prefabricated construction projects by genetic algorithm. Appl. Sci. 2021,
11, 5531. [CrossRef]

10. Guizzi, G.; Revetria, R.; Vanacore, G.; Vespoli, S. On the open job-shop scheduling problem: A decentralized multi-agent approach
for the manufacturing system performance optimization. In Proceedings of the 12th CIRP Conference on Intelligent Computation
in Manufacturing Engineering, Gulf of Naples, Italy, 18–20 July 2018; pp. 192–197. [CrossRef]

11. Alvandi, S. Energy efficiency improvement through optimal batch sizing in job shop. Mod. Appl. Sci. 2020, 14, 6–19. [CrossRef]
12. Ištoković, D.; Perinić, M.; Doboviček, S.; Bazina, T. Simulation framework for determining the order and size of the product

batches in the flow shop: A case study. Adv. Prod. Eng. Manag. 2019, 14, 166–176. [CrossRef]
13. Yu, H.; Han, S.; Yang, D.; Wang, Z.; Feng, W. Job shop scheduling based on digital twin technology: A survey and an intelligent

platform. Hindawi Complex. 2021, 1–12. [CrossRef]
14. Biruk, S.; Jaśkowski, P.; Czarnigowska, A. Minimizing project cost by integrating subcontractor selection decisions with scheduling.

IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072007. [CrossRef]
15. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems Development; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]
16. Wooldridge, M.; Jennings, N. Intelligent agent: Theory and practice. Knowl. Eng. Rev. 1995, 10, 115–152. [CrossRef]
17. Goldberg, D.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
18. OptQuest, the Official Web Site. Available online: https://www.opttek.com/products/optquest/ (accessed on 19 August 2021).
19. Anylogic Simulation Software, the Official Web Site. Available online: https://www.anylogic.com/ (accessed on 19 August 2021).
20. Optimize Production Logistics & Material Flow. Siemens Tecnomatix Plant Simulation, the Official Web Site. Available online:

https://www.plm.automation.siemens.com/global/en/products/tecnomatix/logistics-material-flow-simulation.html (accessed
on 19 August 2021).

21. Antonova, A.S.; Aksyonov, K.A. Analysis of the methods for accounting the renewable and non-renewable resources in scheduling.
In Proceedings of the 7th ITTCS International Young Scientists Conference on Information Technology, Telecommunications and
Control Systems, Innopolis, Russia, 17–18 December 2020. [CrossRef]

22. LINGO 19.0—Optimization Modeling Software for Linear, Nonlinear, and Integer Programming. Available online: https:
//www.lindo.com/index.php/products/lingo-and-optimization-modeling (accessed on 19 August 2021).

23. Aksyonov, K.; Bykov, E.; Aksyonova, O.; Goncharova, N.; Nevolina, A. The architecture of the multi-agent resource conversion
processes. In Proceedings of the UKSim 11th European Modelling Symposium on Mathematical Modelling and Computer
Simulation, Manchester, UK, 20–21 November 2017; pp. 61–64. [CrossRef]

169

Mathematics 2021, 9, 2098

24. Aksyonov, K.; Aksyonova, O.; Antonova, A.; Aksyonova, E.; Ziomkovskaya, P. Development of cloud-based microservices to
decision support system. In Proceedings of the International Conference on Open Source Systems, OSS 2020, Innopolis, Russia,
12–14 May 2020; pp. 87–97. [CrossRef]

25. The official UML Web Site. Available online: http://www.uml.org (accessed on 19 August 2021).
26. SQL Server language reference. Available online: https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005

/ms189826(v=sql.90) (accessed on 19 August 2021).
27. Aksyonov, K.A.; Bykov, E.A.; Aksyonova, O.P.; Wang, K. Application of BPsim.DSS system for decision support in a construction

corporation. Appl. Mech. Mater. 2013, 256–259, 2886–2889. [CrossRef]

170

mathematics

Article

Non-Sequential Linear Construction Project Scheduling Model
for Minimizing Idle Equipment Using Constraint
Programming (CP)

Shu-Shun Liu 1,*, Agung Budiwirawan 2,3 and Muhammad Faizal Ardhiansyah Arifin 2,3

Citation: Liu, S.-S.; Budiwirawan, A.;

Arifin, M.F.A. Non-Sequential Linear

Construction Project Scheduling

Model for Minimizing Idle

Equipment Using Constraint

Programming (CP). Mathematics 2021,

9, 2492. https://doi.org/10.3390/

math9192492

Academic Editors: Frank Werner and

Armin Fügenschuh

Received: 18 August 2021

Accepted: 28 September 2021

Published: 5 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil and Construction Engineering, National Yunlin University of Science & Technology,
Yunlin 640, Taiwan

2 Graduate School of Engineering Science and Technology, National Yunlin University of Science & Technology,
Yunlin 640, Taiwan; d10210034@yuntech.org.tw (A.B.); d10610211@gemail.yuntech.edu.tw (M.F.A.A.)

3 Department of Civil Engineering, Universitas Negeri Semarang, Semarang 50229, Indonesia
* Correspondence: liuss@yuntech.edu.tw; Tel.: +886-908-073-815

Abstract: Over the last several decades, the scheduling of linear construction projects (LCPs) has
been explored extensively by experts. The linear scheduling method (LSM), which focuses on work
rate and work continuity, has the advantage of tackling LCPs’ scheduling problems. The traditional
LSM uses work continuity to monitor resource allocation continuity on the premise that activities
with the same type of work use the same crew. However, some LCPs require a combination of
different types of equipment to comprise the crew. Sometimes, parts of different crews require the
same types of equipment, and sometimes, the same crew requires different equipment configurations.
This causes the pattern of work continuity to be different from the pattern of resource allocation
continuity. Therefore, we propose an optimization model of the LSM to minimize idle equipment
on a non-sequential linear construction project—i.e., a road network maintenance project. This
model is intended to minimize the number of idle equipment and their idle time to achieve more
efficient scheduling for linear construction projects. This model offers novel details of resource
allocation continuity assessment by taking into account equipment combination and configuration
(ECC). Therefore, the scheduling concept used by the proposed model is named the linear scheduling
model with ECC (LSM–ECC). The model was developed using constraint programming (CP), as CP
has good performance and robustness in the optimization field. The model was implemented to a
representation of a road network maintenance project and has satisfactory results.

Keywords: linear project; linear scheduling method; equipment idleness; constraint programming;
equipment combination and configuration

1. Introduction

1.1. Background

A construction project consists of a set of activities related to each other to achieve the
project’s objectives [1]. Achieving the project’s objectives in the life cycle of the construction
project often faces many management problems. One of the prevalent problems is resource
availability. Resources are often limited and expensive. Thus, resource management plays
an essential factor in project scheduling [2]. Managing resources—equipment, materials,
and crews—efficiently in satisfying all project activities becomes an inevitable aspect for
construction managers in controlling the project schedule to achieve the project’s goals.

The efficiency of resource management is not only just ensuring resources in satisfy-
ing all the activities, but also optimizing the resource usages. Meanwhile, ensuring the
project running on schedule with limited resources makes resource management more
difficult. Therefore, a detailed and thorough resource scheduling that aligns with the
activity schedule is a crucial necessity in construction project scheduling [3,4].

Mathematics 2021, 9, 2492. https://doi.org/10.3390/math9192492 https://www.mdpi.com/journal/mathematics

171

Mathematics 2021, 9, 2492

A linear construction project (LCP) is a challenge for a project manager to schedule
efficiently. This type of project shares the resources in different spaces either in a sequential
or parallel manner. The manager needs to allocate enough resources for maintaining work
continuity in various locations of a project, minimizing idle resources, and finishing the
project within contract duration [5,6]. Sometimes a conflict of resource usage occurs during
the execution of LCPs because the movement of activities’ resources is not well planned
upon limited shared space [3,7]. Consequently, the schedule developed for LCPs not only
accounts for precedence constraints of activities but also considers the space and time
constraints of the movement of the activity resource [8]. The critical path method (CPM)
emphasizes scheduling based on precedence relationships between activities [9] and is less
able to provide monitoring of work continuity for LCPs. On the other hand, the linear
scheduling method (LSM) can provide good monitoring of work continuity, so that the
LSM is more suitable for scheduling linear construction projects.

One way to achieve the desired scheduling efficiency is to minimize idle resources. Idle
resources are defined as resources that have been mobilized but not utilized. Idle resources
are unproductive resources, but these idle resources still incur costs, e.g., maintenance
costs, rent, and depreciation. By minimizing the amount and time of idle resources, it will
minimize unproductive costs which ultimately results in more efficient scheduling.

A road network maintenance project consists of the same type of road maintenance
being applied to several road sections. This characteristic includes the road network mainte-
nance project as an LCP. Therefore, an LSM is suitable to be applied as a scheduling method.
However, road network maintenance projects have different characteristics compared with
regular LCPs to be handled by traditional LSM.

Traditional LSM uses crews as resources used to complete works. The efficiency of
linear construction project scheduling is seen from the continuity of work by assuming
that the same type of work uses the same crew, while different types of work use differ-
ent crews. This cannot be applied to road network maintenance projects, which use a
combination of heavy equipment as resources to complete their activities. Using the term
crew from traditional LSM, the crew used to complete an activity is a set of equipment
consisting of several types of equipment as sub-crew and divided into main equipment
and supporting equipment. Sometimes, the supporting equipment needed to complete one
type of activity is also needed as support equipment to complete another type of activity.
Therefore, the profile of work continuity becomes different from the profile of equipment
allocation continuity. Based on this condition, we propose a concept of resource allocation
dividing the crew into smaller units—sub-crew—which is called equipment combination
and configuration (ECC). A more in-depth explanation of ECC is in Section 3.1. Based
on the linear scheduling method with ECC concept (LSM–ECC), the authors propose an
optimization model for linear construction project scheduling by minimizing idle resources
at the sub-crew level, i.e., equipment.

From the point of view of the execution sequence of the repetitive units, traditional
LSM requires engineers to define the execution sequence of the repetitive units of an LCP.
For sequential/serial linear construction projects, engineers do not have much trouble
deciding which repetitive units to begin with. However, the sequence of maintenance
work on each road segment of a road network maintenance project is flexible because
usually, each road segment has almost the same accessibility. Therefore, engineers have to
think about which road segment to work on first to achieve an efficient schedule. To solve
this problem, an optimization model that can provide engineers with suggestions for the
execution sequence of each road segment to obtain efficient scheduling is needed, even
suggestions for non-sequential/parallel execution if possible.

1.2. Objectives

Based on the aforementioned conditions, the authors propose an optimization model
to minimize idle equipment for non-sequential linear construction projects. This model

172

Mathematics 2021, 9, 2492

is expected to monitor the continuity of resource allocation at the sub-crew level, i.e.,
equipment, and minimize the equipment idleness.

This study aims to develop an optimization model of a non-sequential linear con-
struction project to minimize idle equipment using constraint programming (CP). This
optimization model is expected to be able to: (1) monitor the mobilization and allocation
of equipment; (2) minimize idle equipment in quantity and time; (3) provide the engineer
with suggestions on the work sequence of the project’s repetitive unit.

Constraint programming (CP) was used to build this model because CP has several
advantages, namely: CP defines a model built using objective functions and a set of con-
straints without having to define procedures and calculation steps; and logical constraints
in CP are easy to define with the help of an optimization programming language (OPL)
compared to ordinary mathematical models.

1.3. Paper Structure

The remainder of this paper is structured as follows: Section 2 discusses some previous
studies related to scheduling theory, non-sequential linear scheduling, as well as resource
allocation and resource-leveling. Section 3 presents the material and method conducted in
this study. Section 4 discusses the result of the proposed model applied in three different
scenarios. Lastly, Section 5 presents the general conclusion and the opportunity for future
research related to this study.

2. Literature Review

There are two main categories of construction projects, namely repetitive and non-
repetitive construction projects. A repetitive project consists of multiple repetitive units
and requires timely movement of construction resources from one unit to the next unit
to repeat the same activities [5]. Repetitive projects can also be classified as typical and
non-typical. Activities in a typical repetitive project have the same crew productivity rates
that are repeated on different repetitive units. Most of the real construction projects are
adjacent to non-typical repetitive projects, which have different repeated productivity rates
on different repetitive units [10]. Breaking the continuity of the same activities between
repetitive units creates work gaps that cause idle resources and bring additional costs [11].
Hence, maintaining the work continuity in repetitive projects then will ensure constant
usage of construction resources and minimizing equipment idle time [10].

Repetitive projects can be divided into linear and non-linear projects according to the
linear geometric pattern [12]. In terms of linear projects, this type has repetitive units—a
sequence of construction activities [13]. Linear construction projects include characteristics
as a series of linear repetitive activities, such as railways, highways, pipelines, and tunnels,
while high-rise buildings with typical floors and typical housing projects are considered
non-linear repetitive projects [12].

One of the methods that is often used in scheduling is the network-based scheduling
method. Critical path method (CPM) and project evaluation and review technique (PERT)
are examples of network-based methods [14]. The network-based scheduling method
focuses on scheduling based on the precedence relationship between activities. Because
this method has a strong definition of the precedence relationship between activities, the
schedule of activity—i.e., start time, finish time, etc.—could be calculated easily, and this
method is suitable for automatic schedule calculation, such as using computer programs.
However, this method does not show the work rate and work continuity of activities. The
resource-driven scheduling method focuses on work performance and continuity. Line of
balance (LOB) and the linear scheduling method (LSM) are examples of resource-driven
scheduling methods.

In construction projects, resources are divided into two main categories, namely
renewable resources and non-renewable resources. A renewable resource is a resource
that can be repeatedly utilized without replenishment, and a non-renewable resource is a
one-time consumable resource and the usage of this resource cannot be repeated [15]. This

173

Mathematics 2021, 9, 2492

study is focused on managing renewable resources, especially construction equipment at
a project level. Based on these resource management problems and the crucial resource
management role, this study attempts to overcome these challenges from the perspective
of the repetitive linear construction project.

The main reason this study utilized LSM is that the network-based scheduling method
has great drawbacks in the application of linear construction projects since the network
planning methods is difficult in ensuring the work continuity of a linear construction
project and leads to a greater risk of idle time of the renewable resource [16]. In the
network planning method, more repetitive activities will lead the network growth and
make scheduling visualization intricate [17]. Additionally, network schedules are only able
to provide a one-dimensional graph in terms of their informational content, which solely
shows how sequentially connection activities occur upon a time [18].

LSM depicts the construction schedule of a linear construction project by a rectan-
gular coordinate according to the characteristics of a linear construction project with the
horizontal and vertical axes representing the spatial position and schedule of a project,
respectively [19]. The two-dimensional coordinate system in LSM broadens the scope
of information that can be communicated including the key elements inside the system,
for instance, activities, rate of activities, and buffer between activities are employed for
illustrating the project schedule then the LSM diagram will be formed [14].

According to the spatial location of the activity, a linear-type activity can be catego-
rized into two types, namely full-span and partial-span linear activity [20]. The major
characteristic of a linear type activity in LSM is a rate concept that denotes the spatial
progress of the linear activity in unit time, and this concept becomes a differentiation
feature compare to the critical path method (CPM) [21]. The slope of a linear-type activity
in the LSM diagram indicates the rate of that activity. The slope of linear-type activity can
be varied in proportion, depending on the resource usage of the activity. Thus, the accuracy
in developing a linear schedule is extremely dependent on the capacity production of the
activity resources [22].

The distance between two activities in the horizontal and vertical directions in the
LSM diagram is, respectively, named as the distance and time buffer [23]. The buffer in the
LSM concept depends on the technical constraints, managerial policy, or other conditions.
Furthermore, the minimum/maximum time buffer is defined as the minimum/maximum
time between two activities; similarly, the minimum/maximum distance buffer is defined
as the minimum/maximum distance between two activities. Commonly the minimum
buffer is easy to fulfill; however, in some cases, a maximum buffer needs to interrupt the
activity or adjusting its productivity [14].

LSM has a similar concept for controlling activity path (CAP), such as a critical path
in a network-based scheduling method. The float activities in the network scheduling
method exist in the non-critical path after the critical path is calculated. A similar concept
in LSM called the rate float for the float of non-controlling activities or non-controlling
segments of activities in the schedule created by LSM appeared while the CAP has been
established [2,24]. The number of possible changes in the production rate for a non-
controlling linear activity can be specified by the rate float before the non-controlling linear
activity becomes a controlling activity. In other words, the rate float is also defined as
“the difference between the planned production rate of an activity and the lowest possible
production rate without interfering in the buffer” [24]. By shifting non-controlling activities
on the available rate float, the LSM model can adjust resource allocation and minimize
resource fluctuations to obtain the resource leveling model without changing the original
duration schedule [19,25].

Among those aforementioned examples of linear construction projects and challenges
of resource management in linear construction projects, this study is focused on scheduling
equipment in road network maintenance projects. There are only a few studies that
discuss road network maintenance at the project level with detailed renewable resource
scheduling. Mizutani et al. [26] proposed an optimal solution for pavement repair that

174

Mathematics 2021, 9, 2492

considers work zone policies at the highway network level. Huang and Lin [27] proposed
an arc routing problem approach to solve construction machinery schedules for road
maintenance. Aarabi and Batta [28] proposed scheduling for pothole repair using a vehicle
routing problem without focusing on machine management scheduling. Research focused
on using the linear scheduling method (LSM) for highway construction projects has been
performed in prior studies [5,20,29–34]. However, none of those studies have discussed
the detail of equipment scheduling, considering equipment idleness in the concept of
equipment combination and configuration, as well as mobilization and demobilization of
the machinery.

Two leading concepts are associated with how to manage project resources, namely
resource allocation and resource leveling [2,35]. The concept of resource allocation is to
reschedule the project activity to efficiently manage the limited resources by allowing
to exceed project duration planning as minimum as possible [36]. While the concept of
resource leveling is to make the resource usage curve during the construction project as
flat as possible so it can assist in avoiding short-term peaks and troughs, reduce resource
costs and management costs, as well as avert needless losses by keeping the original
project duration [36–38]. Accordingly, both of these concepts deal with two dissimilar
resource sub-problems that can solely be utilized to a project one after the other rather
than simultaneously.

Refering to the basic concept of resource leveling, in smoothing the histogram of
resource profile to be as flat as possible, it brings an exact deployment of resources within a
project that can minimize renewable resource cost [39]. However, considering the complex
mixture of activity relationships in the scheduling, the objective function on resource
leveling can be nonlinear and makes the graph that represents the resource profiles become
extremely discontinuous. Thus, a small change in resource consumption on activity may
create a vast change in the resource profile. According to these advantages of the resource
leveling concept and the challenge to solve resource leveling problems, some previous
studies have applied various approaches to solving resource leveling problems on the
network schedules or linear schedules. Using the definition of buffer and the concept
of rate float in the LSM schedule, some previous studies have attempted to resolve the
problem of resource leveling in construction projects. Lucko [39] utilized a singularity
function in LSM to optimize the resource leveling profile while considering the resource
rate changes. Tang et al. [38] present linear scheduling of a railway construction project to
level the resource profile for optimum resource usage. Tang et al. [19], proposed a two-stage
scheduling system model and algorithm for linear construction project resource leveling
to automatically generate a linear schedule including the resource leveling; this study
performs according to the example data of highway construction project conducted by
Matilla and Abraham [24]. Su and Lucko [17] proposed a combination of LSM and LOB to
optimize multiple crew scheduling within and between repetitive activities with singularity
functions. By employing new constraints in LSM, namely total resource constraint, resource
utilization constraint, and construction mileage constraints, Wang et al. [40] strove to
maximize the space–time flexibility of construction activities and optimize the LCP’s
resource-leveling. Esfahan et al. [21] considered equipment congestion in road construction
proposed a space–time float concept for optimizing the resource scheduling of an LCP.
Damci et al. [2], in the framework of LOB, present multi-resource leveling optimization
with the principle of optimum crew size and natural rhythm. Ipsilandis [11] adopted
the resource leveling concept to minimize project duration or to minimize resource work
breaks in linear repetitive projects.

Sometimes a resource allocation problem can be called a resource-constrained project
scheduling problem (RCPSP), since the main concept of the resource allocation model is
developed to solving resource conflicts by rescheduling activities while minimizing the
additional project duration [41]. The main consideration of traditional RCPSP is how to
deal with a set of n activities needed to schedule and to minimize a project’s completion
time and meet two main constraints: (1) the precedence constraint, and (2) the limited

175

Mathematics 2021, 9, 2492

availability of resources [13]. RCPSP and its variants have been extensively investigated
by researchers during the last several decades, since the pioneering work of experts [6–8]
about mathematical programming formulations of scheduling problems.

Traditional RCPSP uses given and normally constant resource allocations throughout
each activity. Different from the traditional RCPSP, Fündeling and Trautmann [42] proposed
a model in which resource requirements and resource allocations must be determined. This
resulted in a different “work profile”, which was not limited to a rectangular shape as the
traditional RCPSP has been, and “work content”, which was defined as the total amount
of resource required to finish an activity. For more general uses, “resource profile” and
“resource requirement” are used instead of “work profile” and “work content”, respectively,
since resources are not restricted only to human resources.

Recent computer technology has opened many opportunities in solving large-scale
and difficult mathematical models efficiently. Taking advantage of this condition, new
mathematical models for RCPSP have been formulated and extensively compared by
experts [25–27]. Naber and Kolisch [43] proposed four discrete-time model formulations of
a resource-constrained project scheduling problem with flexible resource profiles (FRCPSP)
and compared the model efficiency in terms of solution quality and computational time.
These models used decision variables based on previous research [26,28–31] to achieve the
shortest project completion time. Leu and Hwang [44] consider using resource sharing in
repetitive precast production proposed optimization schedule based on the LOB method.
Liu and Wang [45] proposed a resource allocation optimization model in an LCP by
employed constraint programming (CP). Zhang et al. [46], in the framework of the line of
balance (LOB) method, focus on the learning effect to minimize total resource usage while
satisfied all of the demands of work continuity and the target deadline of every activity.
Hyari and El-Rayes [5] simultaneously minimize project duration and maximize crew work
continuity in bridge construction utilizing the LSM method by considering typical and
non-typical repetitive activities. Kong and Dou [47] solve resource-constrained project
scheduling problems under multiple time constraints that include a duration constraint of
activity, temporal constraint, and resource calendar constraint.

By the nature of resource leveling characteristics, this type of resource management
concept is more relevant to linear scheduling. Nevertheless, some previous research has al-
ready attempted to combine the resource-leveling concept and resource allocation concept
in one single scheduling optimization model. For example, Hegazy employed a genetic
algorithm (GA) technique [36], Jun and El-Rayes [41] developed a multi-objective optimiza-
tion model based on a GA module, Koulinas and Anagnostopoulos utilized bi-objective
models [35], Francis Siu et al. applied an integer linear programming technique [48],
and Khanzadi et al. [49] utilized a colliding body optimization (CBO) algorithm and
charged system search (CSS) technique. Tang et al. [50] solve scheduling optimization prob-
lems in transportation-type linear construction projects using a constraint programming
(CP) technique.

Total project duration in this study after the optimization process should be the same
as with the original duration or can be shorter than the original duration. Thus, this char-
acteristic makes this study adopt the properties of resource-leveling concepts. Moreover,
minimizing equipment idleness has a similar concept to make resource usage histogram
as flat as possible. However, on the other side, the objective of minimizing equipment
resource idleness must also consider the available number of the items of equipment, where
this condition has similar properties with resource allocation concepts. Therefore, this
study simultaneously utilized both the concept of resource leveling and resource allocation
to solve equipment management problems on a road network maintenance project.

This study applied a combination of different types of equipment in one single work
crew to serve several activities. Therefore, the resource allocation problem in this study
will also adopt the resource sharing concept to maximize the available resource, because,
in construction projects, the concept of resource sharing is suitable when meeting the

176

Mathematics 2021, 9, 2492

condition of resource shortage [51]. The concept of resource sharing means to work with
greater efficiency or produce extra benefits by using finite resources [52].

Although those previous studies perform a combination concept of resource leveling
and resource allocation, none of those previous studies consider the work zone safety
during the highway network maintenance by minimizing the lag time between activities
and utilizing flexible resource profile in the framework of non-sequential LSM to solve
resource idleness problems. Furthermore, none of those studies were able to provide a
single group crew (equipment fleet) that combine two different types of equipment, called
main equipment and supporting equipment. The supporting equipment will be applied as
resource sharing to serve two activities. These will be the key techniques of this study in
solving management renewables resource problems on a highway maintenance project.

Table 1 denotes the most relevant research prior to the proposed model.

Table 1. List of the most relevant researches prior to this proposed model.

Research Objective Resource Activity Duration Method

[2] Resource leveling Multiple types of resource.

Production rate and
duration are based on the
resource which requires
longest time.

Genetic algorithm (GA)

[44]

Multi objective
(production duration,
resource amount,
minimum makespan)

Multiple types of
resources.

Activity duration is
based resource allocation. Genetic algorithm (GA)

[38] Resource leveling
The type resource is
implicitly represented by
the type of work.

Duration is based on
resource’s production
rate.

Constraint programming
(CP)

[40] Resource leveling Multiple types of resources
used by an activity.

Duration is based on
resource’s production
rate.

Quantum-behaved particle
swarm optimization
(QPSO)

[50] Resource leveling
The type resource is
implicitly represented by
the type of work.

Duration is based on
resource’s production
rate.

Constraint programming
(CP)

Proposed model Resource idleness
minimization

Multiple types of resources
used by an activity.

Activity duration is
based resource allocation
and equipment
combination and
configuration (ECC).

Constraint programming
(CP)

LSM, work continuity, and resource allocation have been studied extensively by
experts in recent decades. However, as far as the author knows, to obtain the efficiency of
resource allocation as an objective function, previous studies have always used the concept
of resource leveling, which minimizes the deviation of resource allocation from a certain
reference line or minimizes daily resource allocation changes. In contrast, the proposed
model does not use the traditional resource leveling concept. Alternatively, to achieve
resource allocation efficiency, the proposed model minimizes the deviation of resource
allocation with mobilized resources, as indicated in Figure 1. In addition, this model also
introduces the concept of equipment combination and configuration (ECC), which, to some
degree, is almost the same as the concept of shareable resources. The concept of ECC will
be discussed in the ECC section.

177

Mathematics 2021, 9, 2492

Figure 1. Idle equipment definition.

3. Materials and Methods

3.1. Model Concept

The optimization model of linear scheduling for minimizing idle equipment was
developed based on a road-network maintenance project, hereinafter referred to as the
project. A representation of a road-network maintenance project—the object of this study—
consists of five repetitive units (road segments). Each road segment consists of asphalt
stripping activity, asphalt resurfacing activity, and road marking activity (Figure 2).

Figure 2. Road-network maintenance project.

3.1.1. Project Characteristics

A road-network maintenance project relies on heavy equipment to finish its activities.
For example, an asphalt stripping activity uses an asphalt-milling machine (AM) to grind
and strip the existing asphalt layer. Thus, in this optimization model, the schedule of
activities is represented as the schedule of the main equipment used by related activity, and
vice versa. Table 2 denotes the main equipment used by each activity type in the project.

Table 2. Main equipment used by activities.

Activity Name Main Equipment

Asphalt stripping Asphalt milling machine (AM)
Asphalt resurfacing Asphalt finisher machine (AF)

Road marking Road marking machine (ME)

3.1.2. Equipment Combination and Configuration (ECC)

Traditional LSM uses the term ‘crew’ to describe the resources used to do work.
Therefore, in traditional LSM, the continuity of resource allocation can be represented as
a continuity of work, and vice versa. However, at the project site, the crew consists of
several types of interdependent resources, hereinafter referred to as sub-crew, so that the

178

Mathematics 2021, 9, 2492

continuity of one type of work is not always the same as the allocation continuity of the
related sub-crew.

In the road network maintenance project, a crew needed to finish a work consists of
several sub-crews—i.e., equipment. The main equipment requires supporting equipment
to work properly. Asphalt stripping activity requires AM as the main item of equipment to
peel off the existing road surface. The material resulting from the peeling of the road surface
must be disposed of using dump trucks (DT). Because the capacity and duty cycle between
AM and DT are different, each unit of AM requires several units of DTs; in this case, for
example, one unit of AM requires five units of DTs. Such an arrangement is proposed by
this study as equipment combination and configuration (ECC). Table 3 denotes the ECC
applied to this project.

Table 3. Equipment combination and configuration (ECC) for each crew.

Activity Name Crew Main Equipment Supporting Equipment

Asphalt stripping 1 Asphalt milling machine (AM) 5 Dump trucks (DT)
Asphalt resurfacing 2 Asphalt finisher machine (AF) 4 Dump trucks (DT),

2 pneumatic rollers (PR)
Road marking 3 Road marking machine (ME) -

ECC creates a different situation compared to traditional LSM, which uses work
continuity to assess scheduling efficiency. Figures 3 and 4 depict the ECC schema and the
resource allocation monitoring scheme, respectively.

Dump trucks serve as supporting equipment for Crew 1 for asphalt stripping activity
and also as supporting equipment for Crew 2 for asphalt overlaying activity (Figure 3).
From a traditional LSM perspective, asphalt stripping activity and asphalt overlaying
activity use different resources, namely Crew 1 and Crew 2, so that the continuity of the
allocation of Crew 1 and Crew 2 is in line with the continuity of asphalt stripping activity
and asphalt overlaying activity, respectively. However, from the ECC perspective, dump
trucks are allocated to asphalt stripping activity and asphalt overlaying activity, so that the
continuity of dump truck allocation follows the scheduling of these two types of activities
(Figure 4).

Figure 3. Equipment combination and configuration (ECC) schema.

179

Mathematics 2021, 9, 2492

Figure 4. Equipment allocation continuity schema.

3.1.3. Model Features

This optimization model proposed two features to improve the practicality and effi-
ciency of equipment allocation. Those features are (1) resource dependency between main
equipment and supporting equipment, and (2) flexible resource profile.

Resource dependency in this model is defined as the dependency between main
equipment and supporting equipment. The traditional linear scheduling method (LSM)
applies the term crew as a resource of activities. One type of crew is allocated to a particular
type of activity and shared among the same type of activities. The proposed model
divides the crew into equipment. In this model, the crew consists of some main equipment
and supporting equipment. Therefore, shared resources in the proposed model are not
at the crew level but the equipment level instead. This opens possibilities of shared
equipment between different types of work. Figure 5 shows crew allocation to activities
in a traditional way and the addition of the resource dependency concept. Besides the
main equipment used to finish an activity, this model also considers supporting equipment,
which is important in maintaining the work performance of the main equipment. Asphalt
stripping activity needs an asphalt milling machine (AM) as the main equipment. However,
an asphalt milling machine needs dump trucks (DT) to take the product of the asphalt
stripping process to the dumping area. The number of dump trucks supporting the asphalt
milling machine is important to match both types of equipment’s work rates. Besides the
asphalt milling machine, the asphalt finisher machine—the main equipment of asphalt
overlaying activity—also needs dump trucks to support its work. This model also tackles
the condition where some main items of equipment of several activities need the support
of one type of supporting equipment. This condition became a challenge especially when
there is a shortage of resource availability.

180

Mathematics 2021, 9, 2492

Figure 5. Resource allocation in traditional LSM and proposed resource dependency concept.

Each road segment of this project consists of three serial activities, which are (1) asphalt
stripping, (2) asphalt resurfacing, and (3) road marking. Asphalt stripping starts the works
on every segment. Asphalt milling machines (AM) act as the main equipment for this
activity. The asphalt milling machine is supported by dump trucks (DT) to collect and
take the product of the asphalt milling machine to the dumping area. In this model, some
dump trucks (DT) are assigned to one asphalt milling machine (AM) to match the work
rate between the asphalt milling machine and the dump trucks to achieve the most efficient
work rate. The unmatched work rate of either the main equipment or the supporting
equipment would result in lower overall work performance. Asphalt resurfacing is the
succeeding activity of the asphalt stripping activity. Asphalt finishers (AF), pneumatic
rollers (PR), and dump trucks (DT) are used in this asphalt resurfacing activity. Asphalt
finishers are the main equipment used to resurface the road segment supported by several
pneumatic rollers and dump trucks. Pneumatic rollers compact the new pavement surface,
and dump trucks supply hot-mixed asphalt from an asphalt mixing plant to the asphalt
finisher. Several pneumatic rollers and dump trucks are assigned to one asphalt finisher to
match the work rate among the equipment to achieve the most efficient work performance.
Road marking is the last activity to execute on each road segment. Road marking is
the succeeding activity of asphalt resurfacing activity. Road marking machines (ME) are
assigned to this road marking work as the main equipment. Figure 3 shows the schema of
main and supporting equipment allocation for this model.

Flexible resource profiles are the second feature of the proposed model as an addition
to the linear scheduling method. In the traditional linear scheduling method, the resource
allocation profile commonly has a constant rate; thus, it makes the shape of a bar. As
mentioned above, for road safety reasons, this model omits time floating buffer, which
causes a disadvantage in minimizing idle equipment. To deal with this problem, this model
implements flexible shapes of resource allocation profiles to provide a different allocation
of equipment during the transition between the same type of activities on different road
segments. However, it is not an easy task to move equipment between activities or between
repetitive units. Thus, this model limits the shape of the resource profile only as a bar or
trapezoid shape.

3.1.4. Model Objective

The objective of this model is to minimize equipment idleness caused by valleys of
equipment allocation profile (Figure 1). Idle equipment is not calculated by the difference
between maximum available equipment and allocated equipment at a time, but the dif-

181

Mathematics 2021, 9, 2492

ference between mobilized equipment and allocated equipment at a time. The proposed
model achieves the objective by eliminating these valleys.

3.2. Model Formulation

The optimization model for minimizing idle equipment of road network maintenance
project was developed following the model development workflow (Figure 6) and using
constraint programming engine of IBM ILOG CPLEX Optimization Studio version 12.10
and OPL modeling language.

Figure 6. Optimization model development workflow.

This model binds activities to the allocation of their main equipment. Therefore, the
proposed scheduling model schedules activities as the main equipment scheduling. The
precedence relationships between activities are implemented as precedence relationships
between main items of equipment.

This model consists of five parts, which are: (1) input data; (2) decision variable;
(3) decision expression; (4) objective function; and (5) constraints.

3.2.1. Input Data

Input data are parameters set before the optimization process started. These data are
not changed during the optimization process. Input data are expressed by input variables
and structured using indices. Tables 4 and 5 denote indices and input variables used by the
proposed model, respectively.

Table 4. Indices used by variables of the proposed model.

Index Description Range

i, m Index of equipment type 1 ... number of equipment types
j Index of a road segment 1 ... number of road segments
k Index of time (day) 1 ... contract period

182

Mathematics 2021, 9, 2492

Table 5. Input variables used by the proposed model.

Variable Description

u Number of equipment types
r Number of road segments
d Contract period

prjim

Precedence relationship between main items of equipment. This variable holds
the precedence relationship data between predecessor m and successor i in road
segment j. It contains values of zero and one. For example, pr123 = 1 means on
the road segment 3, main equipment 1 is the predecessor of main equipment 2.

PErij

The number of main items of equipment required to finish an activity.
This variable holds the number of main items of equipment i required on the
road segment j. PEr12 = 4 means 4 unit-day of main equipment type 1 is
required to finish the related activity on road segment 2. If one unit of main
equipment type 1 is allocated, the activity will be finished in four days, or if two
units of main equipment 1 are allocated, the activity is finished in two days, etc.

Rjim

The ratio between supporting equipment and main equipment.
This variable describes the relationship between supporting equipment i and
main equipment m on the road segment j. R241 = 5 means that, on the road
segment 2, equipment 4 is the supporting equipment of equipment 1, with a
ratio of 5:1.

Avi
The number of available items of equipment.
This variable holds the number of available items of equipment i.

3.2.2. Decision Variables

Decision variables are the objects of the optimization process. The optimization
algorithm searches the optimized values of the decision variables to achieve the objective
function. The values of these variables are changed during the optimization process until
they reach the considered optimum values based on the objective function.

PEijk is used as the decision variables of this model. PEijk is the number of allocated
main items of equipment, i, on the road segment j on day k. PE123 = 2 means 2 units of
main equipment type 1 are allocated on road segment 2 on day 3.

3.2.3. Decision Expressions

CPLEX constraint programming and OPL programming language allow the user to
use decision expressions. Decision expressions are mathematical expressions for variables
that are not the target of the optimization algorithm. For example, a mathematical ex-
pression b = a + 2, a is the decision variable; therefore, the value of a is based on the
optimization algorithm. However, b is not the target of the optimization algorithm. The
value of b only follows the value of a; thus, to define the value of b, a decision expression
is used.

Eijk is the allocation of equipment i of road segment j on day k. Equipment allocation
is the total allocation of the equipment as main equipment and supporting equipment;
thus, it is the sum of the allocation number as main equipment and the allocation number
of supported main equipment multiplied by the ratio of supporting equipment to main
equipment (Equation (1)).

Eijk = MEijk + ∑
m

SMratiojim × MEmjk (1)

Ereqij is the required allocation of equipment i on the road segment j. The required
equipment allocation is the sum of the allocation as main equipment and as supporting
equipment. This variable acts as a control variable whether the allocation of particular
equipment has reached the required allocation or not (Equation (2)).

Ereqij = MEreqij + ∑
m

SMratiojim × MEreqmj (2)

183

Mathematics 2021, 9, 2492

Equation (3) defines variable Edik as the total allocation of equipment i on day k of all
road segments. This variable is used in a constraint to limit the equipment allocation to the
available equipment on one day.

Edik = ∑
j

Eijk (3)

Erij is the total allocation of equipment i of road segment j. This expression (Equation
(4)) defines this variable, which is used to track the total allocation of particular items of
equipment on a road segment. Combined with variable Ereqij, this variable is used to check
if the allocation of a particular item of equipment has met the requirement.

Erij = ∑
k

Eijk (4)

Equation (5) defines variable Etotijk, which tracks the total allocation of equipment i
of road segment j from day 1 to day k. This variable is used to track whether an activity has
finished or not.

MEtotijk =
k

∑
n=1

MEijn (5)

Variable Fijk, defined by Equation (6), identifies whether equipment i of road segment
j has finished on day k. It has the value of zero and one. The value of zero means the
equipment i of road segment j has not been completely allocated on day k. The value of
one means it has been allocated completely.

Fijk =

{
1 ⇔ MEtotij,k−1 = MEreqij
0 ⇔ MEtotij,k−1 = MEreqij

(6)

Equation (7) defines variable precPassjimk, which is the indicator if equipment m as
the predecessor of equipment i of road segment j has finished on day k. If precPassjimk
has the value of zero, it means equipment m of road segment j is not considered finished.
Equipment m is considered finished if equipment m is not the predecessor of equipment i,
or equipment m has been allocated as required.

precPassjimk =

⎧⎨⎩ 1 ⇔
(

precjim = 0
)
∨
(

precjim = 1 ∧ Fmjk = 1
)

0 ⇔ ¬
[(

precjim = 0
)
∨
(

precjim = 1 ∧ Fmjk = 1
)] (7)

Equations (8) and (9) define variables Ebmaxik and Eamaxik, which are the maximum
daily allocation of equipment i from day 1 to day k and the maximum daily allocation
of equipment i from day k to the last day, respectively. These variables are used as the
benchmark for idle equipment calculation.

Ebmaxik = max
m∈1..k

Edim (8)

Eamaxik = max
m∈k..d

Edim (9)

Variables ebik and eaik, defined by Equations (10) and (11), are the number of idle items
of equipment based on maximum daily allocation benchmark before day k and after day k,
respectively. The value of these variables would be assessed by Equation (12) to determine
the value of idle equipment. Variable eik, defined by Equation (12), is the number of idle
items of equipment on day k.

ebik =

{
Ebmaxi,k−1 − Edik ⇔ Edik < Ebmaxi,k−1

0 ⇔ Edik ≥ Ebmaxi,k−1
(10)

eaik =

{
Eamaxi,k+1 − Edik ⇔ Edik < Eamaxi,k+1

0 ⇔ Edik ≥ Eamaxi,k+1
(11)

184

Mathematics 2021, 9, 2492

eik =

⎧⎨⎩
ebik ⇔ ebik ≤ eaik ∧ (ebik > 0 ∧ eaik > 0)
eaik ⇔ ebik > eaik ∧ (ebik > 0 ∧ eaik > 0)

0 ⇔ ¬(ebik > 0 and eaik > 0)
(12)

Variables ETik and Tik, defined by Equations (13) and (14), are variables for identifying
whether equipment i and any equipment is allocated on day k. Variable Tk is also used to
count the duration of the project.

ETik =

{
1 ⇔ Edik > 0
0 ⇔ Edik ≤ 0

(13)

Tk =

⎧⎨⎩
1 ⇔ ∑

i
ETik > 0

0 ⇔ ∑
i

ETik ≤ 0
(14)

3.2.4. Objective Function

The objective of this optimization model is to minimize idle equipment of a road-
network maintenance project. Variable eik, which is defined by Equation (12), is used to
define the objective function of this model. The objective function (Equation (15)) is the
sum of variable eik for all items of equipment i and day k.

∑
x

∑
k

eik (15)

3.2.5. Constraints

Equations (16)–(24) are constraints regulating the precedence relationship between
main items of equipment. These equations are expressed using the syntax OPL program-
ming language used by IBM ILOG CPLEX CP engine. These constraints are defined using
conditional assessment; thus, OPL implication syntax is used for these definitions.

Equations (16)–(19) regulate the precedence relationship for main equipment, which
do not have other items of equipment as their predecessors. These constraints are started
by a conditional assessment of whether a particular item of equipment has other items of
equipment as its predecessor, shown by the expression of ∑

m
precjim = 0. If the assessment

results in a true value, it means equipment i does not have any predecessors. Equation
(16) defines that, if equipment i of road segment j does not have any predecessors, then
equipment i could be allocated on day k.

∑
m

precjim = 0 ⇒ Eijk ≥ 0 (16)

Constraints defined by Equations (17) and (18) state that if equipment i of road segment
j does not have any predecessors allocated on the previous days, and it has not reached the
number required allocation, it needs to be allocated on day k.

∑
m

precjim = 0 ∧ Eij,k−1 > 0 ∧ Etotij,k−1 < Ereqij ⇒ Eijk ≥ 0 (17)

∑
m

precjim = 0 ∧ Eij,k−1 > 0 ∧ Etotij,k−1 < Ereqij ⇒ Eijk

≤ Ereqij − Etotij,k−1
(18)

Equation (19) defines that, if equipment i of road segment j has reached the number of
required allocations, it is not allowed to be allocated anymore.

∑
m

precjim = 0 ∧ Etotij,k−1 = Ereqij ⇒ Eijk = 0 (19)

Equations (20)–(24) regulate the precedence relationship for the main items of equip-
ment, which have other items of equipment as their predecessors. These constraints are

185

Mathematics 2021, 9, 2492

started by a conditional assessment of whether particular items of equipment have other
items of equipment as their predecessors, shown by the expression of ∑

m
precjim > 0. If

the assessment results in a true value, it means the items of equipment i have some pre-
decessors. Equation (20) defines that, if equipment i of road segment j does not have any
predecessors, then equipment i could be allocated on day k.

Equation (20) defines that, if the items of equipment i of road segment j have prede-
cessors, they are not allowed to be allocated on day 1.

∑
m

precjim > 0 ⇒ Eij1 = 0 (20)

If item of equipment i of road segment j on day k has not had all its predecessors con-
sidered finished, it is not allowed to be allocated. This condition is defined by Equation (21).
The expression ∑

m
precPassjimk < u shows that the number of items of equipment consid-

ered finished on day k is smaller than the registered equipment; thus, it means some of the
predecessors are still not finished.

∑
m

precjim > 0 ∧ ∑
m

precPassjimk < u ⇒ Eijk = 0 (21)

The expression ∑
m

precPassjimk = u of Equations (22) and (23) shows that all registered

equipment is considered finished on day k; thus, it means all predecessors of equipment i
have been finished. This condition allows for equipment i to be allocated on day k.

∑
m

precjim > 0 ∧ ∑
m

precPassjimk = u ∧ Etotij,k−1 < Ereqij ⇒ Eijk > 0 (22)

∑
m

precjim > 0 ∧ ∑
m

precPassjimk = u ∧ Etotij,k−1 < Ereqij ⇒ Eijk

≤ Ereqij − Etotij,k−1
(23)

Equation (24) defines that, if item of equipment i of road segment j on day k − 1 has
been allocated as required, equipment i is not allowed to be allocated anymore.

∑
m

precjim > 0 ∧ ∑
m

precPassjimk = u ∧ Etotij,k−1 = Ereqij ⇒ Eijk = 0 (24)

Constraints expressed by Equations (25) and (26) limit the maximum daily allocation
of each item of equipment to the number of available items of equipment and reach the
required allocation on each road segment, respectively.

Edik ≤ Eavaili (25)

Erij = Ereqij (26)

The constraint defined by Equation (27) makes sure that the project is started on day 1.

T1 = 1 (27)

3.2.6. Model Implementation Scenario

The road-network maintenance project scheduling—termed as the scheduling problem
for the rest of this paper—was solved by three scenarios. The first scenario solves the
scheduling problem by traditional LSM. This scenario acts as a benchmark for comparison
to other scenarios. The second scenario solves the scheduling problem using the proposed
model with the limitation of rectangular resource profiles. The third scenario solves the
scheduling problem using the proposed model utilizing flexible resource profiles. Table 6
shows the comparison of the scenarios.

186

Mathematics 2021, 9, 2492

Table 6. Comparison of scenarios.

No. Aspect Scenario 1 Scenario 2 Scenario 3

1 Solving method Traditional LSM Proposed model Proposed model
2 Execution order predetermined Not predetermined Not predetermined

3 Execution
sequence Serial Parallel Parallel

4 Resource profile Rectangular Rectangular Trapezoidal

5 Resource Crew Main and supporting
equipment

Main and supporting
equipment

The scheduling problem solved has similar data for each scenario, except precedence
relationship between road segments and type of resource used by activities. Tables 5 and 6
show resource requirements and resource availability for the project scheduling problem,
respectively. The precedence relationship of Scenario 1 is different from that of the other two
scenarios. Since it has a predetermined execution sequence, Scenario 1 has an additional
precedence relationship of asphalt milling machine allocation between road segments.
It is set that road segment 1 is executed the first time and road segment 5 is executed
the last. Figure 7 shows the precedence relationship used by Scenario 1. Scenario 1 also
has a different type of resource. It does not have equipment dependency; thus, it uses
the more traditional sharing, that is, ‘crew’ level resource sharing. In this scenario, the
crew is the main equipment of the particular activity without dependency on supporting
equipment—as shown in Figure 8. Scenarios 2 and 3 use precedence relationship and
equipment allocation schema, as shown Figures 1 and 3, respectively.

Figure 7. Precedence relationship of scenario 1.

Figure 8. Equipment allocation schema for Scenario 1.

4. Result and Discussion

Road network maintenance project scheduling problem was solved in three scenarios.
Scenario 1 used the traditional linear scheduling method (LSM) to solve the scheduling
problem. Repetitive units—road segment works—were executed sequentially using a
predetermined sequence. Scheduling began with the execution of road segment 1 and

187

Mathematics 2021, 9, 2492

ended with road segment 5. When an activity is completed on a road segment, the crew
will carry out the same type of activity on the next road segment without having to wait
for the entire sequence of activities on the previous road segment to complete. Rectangular
or uniform resource profiles were applied in this scenario. This scenario served as a
comparison reference for the other two scenarios, i.e., Scenario 2 and Scenario 3.

Scenario 2 and Scenario 3 applied the proposed model for minimizing idle equipment.
Road segments’ execution does not have to be sequential. In addition to sequential exe-
cution, road segments could be carried out in parallel as long as the required equipment
is still available. If road segments are carried out sequentially, the order in which the
work is undertaken is not predetermined. This optimization model would determine the
sequence of road segments’ execution to achieve the model’s objectives. Scenario 2 and
Scenario 3 utilized rectangular and flexible resource profiles to solve the scheduling model,
respectively. These scenarios—Scenario 2 and Scenario 3—were compared to Scenario 1 to
show the advantages offered by the proposed model. The result of Scenario 2 would also
be further compared to the result of Scenario 3 to show the difference caused by flexible
resource profiles.

The model was run on the Intel Xeon Silver 4112 platform with 16 GB of RAM. The
time needed to complete one scenario was about 20 min.

4.1. Scenario 1: Traditional LSM

The traditional linear scheduling method (LSM) was used to solve the scheduling
problem as Scenario 1. Tables 7 and 8 show resource requirements and resource availability
of this scenario, respectively. The road segment execution had a predetermined sequence,
starting from road segment 1 and ending by road segment 5—as shown by Figure 7, and
followed by a serial execution order. Resource allocation for this scenario was limited
to a rectangular resource profile and did not implement the relationship between main
equipment and supporting equipment. The resource allocation schema used by this
scenario is shown in Figure 8. While most of the characteristics of this scenario follow
traditional LSM, this scenario limits the schedule not to have a lag time between activities
in one road segment, and once an activity is started, it has to be continuously executed
until the activity is finished.

Table 7. Resource requirements.

Road
No.

Pavement Stripping Pavement Overlaying
Road

Marking

AM
(Unit-Day)

DT
(Unit-Day)

AF
(Unit-Day)

DT
(Unit-Day)

PR
(Unit-Day)

ME
(Unit-Day)

1 2 10 5 20 10 2
2 5 25 13 52 26 5
3 3 15 7 28 14 3
4 2 10 6 24 12 2
5 3 15 7 28 14 3

Table 8. Available resource.

No. Equipment Type Amount

1 Asphalt stripping equipment (AM) 3 unit
2 Asphalt finishing equipment (AF) 3 unit
3 Marking equipment (ME) 1 unit
4 Dump truck (DT) 14 unit
5 Pneumatic roller (PR) 6 unit

The road segment execution follows a serial sequence. When asphalt stripping activity
in one segment finished, it was followed by its succeeding activity—asphalt spreading

188

Mathematics 2021, 9, 2492

activity. At the same time, asphalt stripping activity on the next road segment was allowed
to start. Asphalt stripping activity of the next road segment could start when it met other
constraints, such as to ensure that it could be followed by its succeeding activities without
lag time. Schedule and equipment allocation is shown in Figure 9.

Figure 9. Schedule and equipment allocation of Scenario 1.

The schedule resulted in Scenario 1 having a project execution duration of 28 days and
87 units of idle equipment. Idle equipment resulted from this scenario is caused by the lack
of resource availability and time buffer. The number of resources available in this scenario
did not have enough amount to apply different work rates to the activities. Combined with
the lack of time buffer, this scenario could not shorten or lengthen each activity’s duration
and it could not offset the activity’s execution timing.

189

Mathematics 2021, 9, 2492

4.2. Scenario 2: Proposed Model with the Rectangular Resource Profile

Scenario 2 used the proposed model to solve the scheduling problem with a limitation
of rectangular resource profile. This scenario has the same resource requirement and
resource availability as Scenario 1—shown in Tables 7 and 8.

This scenario opens the possibilities of executing repetitive units by serial or parallel
sequence. All supporting equipment availability are set to a high enough amount that
these supporting items of equipment can support the main items of equipment that need
them, even in parallel execution.

The result of the linear schedule of this scenario is shown in Figure 10. Asphalt strip-
ping and asphalt spreading activities were executed in parallel at some span of duration,
while road marking activities were executed in serial sequence. Figure 10 also shows the
equipment allocation schedule. Some idle equipment happened at the total allocation of
asphalt milling machine, road marking machine, and dump truck.

Figure 10. Schedule and equipment allocation of Scenario 2.

190

Mathematics 2021, 9, 2492

The optimization model results project execution duration of 29 days and nine units
of idle equipment. The ability to execute activities in parallel applied in this scenario
allowed the model to flatten the resource allocation profile and reduced a significant
amount of idle equipment compared to the traditional LSM. However, this model is limited
to a rectangular resource profile; thus, it could not apply a gradual increase in resource
allocation at the beginning and a gradual decrease in resource allocation at the end of an
activity’s execution.

4.3. Scenario 3: Proposed Model with the Flexible Resource Profile

The proposed model with a flexible resource profile was applied to the scheduling
problem as Scenario 3. This scenario opens the alternatives of executing repetitive units by
serial or parallel sequence and allocating main equipment using flexible resource profiles
to minimize idle equipment. Tables 7 and 8 show resource requirements and resource
availability of this scenario, respectively. All supporting equipment availability is set to a
high enough amount that these supporting items of equipment can support the main items
of equipment that need them, even in parallel execution.

Figure 11 shows the schedule and equipment allocation of Scenario 3. Asphalt strip-
ping and asphalt spreading activities were executed in parallel at some span of duration,
while road marking activities were executed in serial sequence. Since this scenario allowed
the implementation of flexible resource profiles, the main equipment allocations of each
road segment were shaped into trapezoids. Thus, the model could apply a gradual increase
and gradual decrease in resource allocation at the beginning and the end of the activity’s
execution duration.

The optimization model results project execution duration of 25 days and nine units of
idle equipment. The ability to execute repetitive units—road segments—in fully or partially
parallel execution and the implementation of flexible resource profile could decrease a
significant amount of idle equipment compared to the traditional LSM and result in a
shorter duration compared to the second scenario.

4.4. Comparison

This model was intended to minimize idle equipment in a non-sequential linear con-
struction project, i.e., a road-network maintenance project. This model proposed several
improvements compared to previous models, which are: (1) non-predetermined road
segment execution sequence; (2) serial and parallel execution alternatives; (3) dependency
between main equipment and supporting equipment; and (4) application of flexible re-
source profile. Thus, this model was implemented into three scenarios to prove that
the model could handle the proposed improvements. The first scenario uses traditional
LSM to solve the scheduling problem and acts as the basis for comparison to the other
scenarios. The second scenario applies the proposed model with the limitation of rectan-
gular resource profiles and has abundant supporting equipment availability. The third
scenario implements the proposed model with flexible resource profiles. The second and
third scenario was intended to show the advantage of the proposed model compared to
the traditional LSM. Table 9 shows the comparison of the optimization results among
implemented scenarios.

191

Mathematics 2021, 9, 2492

Figure 11. Schedule and equipment allocation of Scenario 3.

Table 9. Comparison of the optimization results.

No. Aspect Scenario 1 Scenario 2 Scenario 3

1 Idle equipment 87 unit-day 9 unit-day 9 unit-day
2 Duration 28 days 29 days 25 days
3 Execution order predetermined Not predetermined Not predetermined
4 Execution sequence Serial Parallel Parallel
5 Resource profile Rectangle Rectangle Trapezoid
6 AM utilization 2 2 2
7 AF utilization 2 3 3
8 ME utilization 2 1 2

192

Mathematics 2021, 9, 2492

Table 9. Cont.

No. Aspect Scenario 1 Scenario 2 Scenario 3

9 DT utilization 14 14 24
10 PR utilization 4 6 6

The proposed model proved to be able to implement the proposed improvement men-
tioned above. Scenario 1, implementing traditional LSM, assigned repetitive units—road
segments—by serial predetermined execution order. The equipment allocation schedule
(Figure 9) shows some idle equipment happened because there is not any possibility to
float a particular activity to meet work continuity.

The result of Scenario 2 and Scenario 3 shows that the proposed model was able to
implement parallel execution for the project’s repetitive units as long as it met the constraint
of resource availability. In addition to the ability of parallel execution, Scenario 3 also
shows the advantage of flexible resource profile to rectangular resource profile. The flexible
resource profile allowed the implementation of a gradual increase and gradual decrease in
resource profile at the beginning and the end of an activity execution duration, respectively.
Scenario 2 and Scenario 3 have nine unit-days of idle equipment compared to 87 unit-days
of idle equipment in Scenario 1. In addition to the minimization of idle equipment, Scenario
3 also has 25 days of project duration, which is shorter than in other scenarios.

5. Conclusions

The proposed model has succeeded in achieving its objectives from several points of
view, namely project characteristics, model features, and model objectives. From the point
of view of project characteristics, this model successfully accommodates the characteristics
of a road network maintenance project, which are: (1) non-predetermined sequence of
repetitive unit’s execution, (2) serial or parallel execution of repetitive units, (3) zero lag
time between activities inside a repetitive unit, and (4) non-preemptive execution of each
activity (shown by the Gantt charts of Figures 10 and 11).

The proposed model succeeded to implement the features offered by this model.
Resource dependency between main equipment and supporting equipment opens a new
sight of resource allocation continuity. The crew consists of main equipment and supporting
equipment and the number of equipment assigned to the crew. Compared to traditional
LSM, which considers resource sharing at the crew level, this model shares resources at
the equipment level. Thus, resource allocation continuity is observed by the allocation of a
particular type of equipment, whether that particular equipment is assigned to the same
type or a different type of crew.

The next feature of the proposed model is the implementation of flexible resource
profiles. This model proved to obtain shorter project duration by the implementation of
flexible resource profiles compared to the more traditional resource profiles—rectangular
resource profiles.

From an optimization objective point of view, the proposed model has succeeded to
minimize idle equipment of a non-sequential linear construction project by using constraint
programming. This model calculated idle equipment based on the difference between
actual mobilized equipment and the actual allocated equipment at a particular time. This
calculation is more realistic than the usage of maximum mobilized equipment or possible
available equipment as the reference value of the idle equipment calculation.

From several points of view mentioned above, it could be concluded that compared
to the traditional linear scheduling method, this model has achieved several advantages,
which are: (1) this model could schedule linear construction project without predeter-
mined execution order; (2) this model could execute repetitive units in a serial or parallel
way; (3) this model included a dependency between main equipment and supporting equip-
ment, compared to traditional LSM which consider this resource as crew; (4) this model

193

Mathematics 2021, 9, 2492

presented the alternative of using flexible resource profile; and (5) this model could mini-
mize idle equipment, and thus this model could deliver equipment allocation continuity.

This model has several branches as future works. From the concept of resource alloca-
tion, this model applied the concept of dependency between main equipment and support-
ing equipment, which are renewable resources. This concept of dependency between renew-
able resources could be further explored to the concept of dependency between unrenew-
able resources and the procurement schedule of renewable and unrenewable redsources.

This research is applied to a case of a road network maintenance project. To further
ensure that this resource allocation optimization model can be applied to general cases
of road network maintenance projects, it is necessary to apply this model to other similar
projects as further research.

Author Contributions: Conceptualization, S.-S.L., A.B. and M.F.A.A.; formal analysis, S.-S.L., A.B.
and M.F.A.A.; investigation, S.-S.L., A.B. and M.F.A.A.; methodology, S.-S.L.; writing—original draft
preparation, A.B. and M.F.A.A.; writing—review and editing, S.-S.L.; visualization, A.B. and M.F.A.A.;
supervision, S.-S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems, 4th ed.; Springer: New York, NY, USA, 2012; Volume 4.
2. Damci, A.; Arditi, D.; Polat, G. Multiresource leveling in line-of-balance scheduling. J. Constr. Eng. Manag. 2013, 139,

1108–1116. [CrossRef]
3. Tao, S.; Wu, C.; Sheng, Z.; Wang, X. Space-time repetitive project scheduling considering location and congestion. J. Comput. Civ.

Eng. 2018, 32. [CrossRef]
4. Wu, C.; Wang, X.; Lin, J. Optimizations in project scheduling: A state-of-art survey. In Optimization and Control Methods in

Industrial Engineering and Construction; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–177.
5. Hyari, K.; El-Rayes, K. Optimal planning and scheduling for repetitive construction projects. J. Manag. Eng. 2006, 22,

11–19. [CrossRef]
6. Zhang, L.; Dai, G.; Zou, X.; Qi, J. Robustness-based multi-objective optimization for repetitive projects under work continuity

uncertainty. Eng. Constr. Archit. Manag. 2020. [CrossRef]
7. Esfahan, N.R.; Razavi, S. Uncertainty-aware linear schedule optimization: A space-time constraint-satisfaction approach. J. Constr.

Eng. Manag. 2017, 143. [CrossRef]
8. Moselhi, O.; Hassanein, A. Optimized scheduling of linear projects. J. Constr. Eng. Manag. 2003, 129, 664–673. [CrossRef]
9. Adeli, H.; Karim, A. Construction Scheduling, Cost Optimization and Management; CRC Press: Boca Raton, FL, USA,

2001; ISBN 0429076770.
10. Bakry, I.; Moselhi, O.; Zayed, T. Optimized acceleration of repetitive construction projects. Autom. Constr. 2014, 39,

145–151. [CrossRef]
11. Ipsilandis, P.G. Multiobjective linear programming model for scheduling linear repetitive projects. J. Constr. Eng. Manag. 2007,

133, 417–424. [CrossRef]
12. Roghabadi, M.A.; Moselhi, O. Optimized crew selection for scheduling of repetitive projects. Eng. Constr. Archit. Manag. 2020, 28,

1517–1540. [CrossRef]
13. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling: Notation, classification,

models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]
14. Lucko, G.; Araújo, L.G.; Cates, G.R. Slip chart–inspired project schedule diagramming: Origins, buffers, and extension to linear

schedules. J. Constr. Eng. Manag. 2016, 142, 4015101. [CrossRef]
15. Liu, S.S.; Budiwirawan, A.; Arifin, M.F.A.; Chen, W.T.; Huang, Y.H. Optimization model for the pavement pothole repair problem

considering consumable resources. Symmetry 2021, 13, 364. [CrossRef]
16. Katsuragawa, C.M.; Lucko, G.; Isaac, S.; Su, Y. Fuzzy linear and repetitive scheduling for construction projects. J. Constr. Eng.

Manag. 2021, 147. [CrossRef]
17. Su, Y.; Lucko, G. Linear scheduling with multiple crews based on line-of-balance and productivity scheduling method with

singularity functions. Autom. Constr. 2016, 70, 38–50. [CrossRef]

194

Mathematics 2021, 9, 2492

18. Lucko, G.; Gattei, G. Line-of-balance against linear scheduling: Critical comparison. Proc. Inst. Civ. Eng. Manag. Procure. Law
2016, 169, 26–44. [CrossRef]

19. Tang, Y.; Liu, R.; Sun, Q. Two-stage scheduling model for resource leveling of linear projects. J. Constr. Eng. Manag. 2014, 140,
4014022. [CrossRef]

20. Harmelink, D.J.; Rowings, J. Linear scheduling model: Development of controlling activity path. J. Constr. Eng. Manag. 1998, 124,
263–268. [CrossRef]

21. Roofigari-Esfahan, N.; Paez, A.; N. Razavi, S. Location-aware scheduling and control of linear projects: Introducing space-time
float prisms. J. Constr. Eng. Manag. 2015, 141, 06014008. [CrossRef]

22. Duffy, G.A.; Oberlender, G.D.; Seok Jeong, D.H. Linear scheduling model with varying production rates. J. Constr. Eng. Manag.
2011, 137, 574–582. [CrossRef]

23. Harmelink, D.J. Linear scheduling model: Float characteristics. J. Constr. Eng. Manag. 2001, 127, 255–260. [CrossRef]
24. Mattila, K.; Abraham, D. Resource leveling of linear schedules using integer linear programming. J. Constr. Eng. Manag. 1998,

124, 232–244. [CrossRef]
25. El-Rayes, K.; Jun, D.H. Optimizing resource leveling in construction projects. J. Constr. Eng. Manag. 2009, 135,

1172–1180. [CrossRef]
26. Mizutani, D.; Nakazato, Y.; Lee, J. Network-level synchronized pavement repair and work zone policies: Optimal solution and

rule-based approximation. Transp. Res. Part C Emerg. Technol. 2020, 120, 102797. [CrossRef]
27. Huang, S.-H.; Lin, P.-C. Multi-treatment capacitated arc routing of construction machinery in Taiwan’s smooth road project.

Autom. Constr. 2012, 21, 210–218. [CrossRef]
28. Aarabi, F.; Batta, R. Scheduling spatially distributed jobs with degradation: Application to pothole repair. Socioecon. Plann. Sci.

2020, 72, 100904. [CrossRef]
29. Georgy, M.E. Evolutionary resource scheduler for linear projects. Autom. Constr. 2008, 17, 573–583. [CrossRef]
30. Tang, Y.; Liu, R.; Wang, F.; Sun, Q.; Kandil, A.A. Scheduling optimization of linear schedule with constraint programming.

Comput. Civ. Infrastruct. Eng. 2018, 33, 124–151. [CrossRef]
31. Hojjat, A.; Samanwoy, G.-D. Mesoscopic-wavelet freeway work zone flow and congestion feature extraction model. J. Transp. Eng.

2004, 130, 94–103. [CrossRef]
32. Adeli, H.; Karim, A. Scheduling/cost optimization and neural dynamics model for construction. J. Constr. Eng. Manag. 1997, 123,

450–458. [CrossRef]
33. Xiaomo, J.; Hojjat, A. Freeway work zone traffic delay and cost optimization model. J. Transp. Eng. 2003, 129, 230–241. [CrossRef]
34. Shayanfar, E.; Schonfeld, P. Selecting and scheduling interrelated road projects with uncertain demand. Transp. A Transp. Sci.

2019, 15, 1712–1733. [CrossRef]
35. Koulinas, G.K.; Anagnostopoulos, K.P. Construction resource allocation and leveling using a threshold accepting–based hyper-

heuristic algorithm. J. Constr. Eng. Manag. 2012, 138, 854–863. [CrossRef]
36. Hegazy, T. Optimization of resource allocation and leveling using genetic algorithms. J. Constr. Eng. Manag. 1999, 125,

167–175. [CrossRef]
37. Moselhi, O.; Lorterapong, P. least impact algorithm for resource allocation. Can. J. Civ. Eng. 1993, 20, 180–188. [CrossRef]
38. Tang, Y.; Liu, R.; Sun, Q. Schedule control model for linear projects based on linear scheduling method and constraint program-

ming. Autom. Constr. 2014, 37, 22–37. [CrossRef]
39. Lucko, G. Integrating efficient resource optimization and linear schedule analysis with singularity functions. J. Constr. Eng.

Manag. 2011, 137, 45–55. [CrossRef]
40. Wang, Z.; Hu, Z.; Tang, Y. Float-based resource leveling optimization of linear projects. IEEE Access 2020, 8, 176997–177020.

[CrossRef]
41. Heon Jun, D.; El-Rayes, K. Multiobjective optimization of resource leveling and allocation during construction scheduling. J.

Constr. Eng. Manag. 2011, 137, 1080–1088. [CrossRef]
42. Fündeling, C.-U.; Trautmann, N. A Priority-rule method for project scheduling with work-content constraints. Eur. J. Oper. Res.

2010, 203, 568–574. [CrossRef]
43. Naber, A.; Kolisch, R. MIP Models for resource-constrained project scheduling with flexible resource profiles. Eur. J. Oper. Res.

2014, 239, 335–348. [CrossRef]
44. Leu, S.-S.; Hwang, S.-T. Optimal repetitive scheduling model with shareable resource constraint. J. Constr. Eng. Manag. 2001, 127,

270–280. [CrossRef]
45. Liu, S.S.; Wang, C.J. Optimization model for resource assignment problems of linear construction projects. Autom. Constr. 2007,

16, 460–473. [CrossRef]
46. Zhang, L.; Zou, X.; Kan, Z. Improved strategy for resource allocation in repetitive projects considering the learning effect. J.

Constr. Eng. Manag. 2014, 140, 4014053. [CrossRef]
47. Kong, F.; Dou, D. Resource-constrained project scheduling problem under multiple time constraints. J. Constr. Eng. Manag. 2021,

147. [CrossRef]
48. Siu, M.-F.F.; Lu, M.; AbouRizk, S. Resource supply-demand matching scheduling approach for construction workface planning. J.

Constr. Eng. Manag. 2016, 142, 4015048. [CrossRef]

195

Mathematics 2021, 9, 2492

49. Khanzadi, M.; Kaveh, A.; Alipour, M.; Aghmiuni, H.K. Application of CBO and CSS for resource allocation and resource leveling
problem. Iran. J. Sci. Technol. Trans. Civ. Eng. 2016, 40, 1–10. [CrossRef]

50. Tang, Y.; Sun, Q.; Liu, R.; Wang, F. Resource leveling based on line of balance and constraint programming. Comput. Civ.
Infrastruct. Eng. 2018, 33, 864–884. [CrossRef]

51. Bendoly, E.; Perry-Smith, J.E.; Bachrach, D.G. The perception of difficulty in project-work planning and its impact on resource
sharing. J. Oper. Manag. 2010, 28, 385–397. [CrossRef]

52. Xu, J.; Meng, J.; Zeng, Z.; Wu, S.; Shen, M. Resource sharing-based multiobjective multistage construction equipment allocation
under fuzzy environment. J. Constr. Eng. Manag. 2013, 139, 161–173. [CrossRef]

196

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3019-2

	Theoretical cover
	Mathematics-Theoretical and Computational Research in Various Scheduling Models.pdf
	Theoretical cover.pdf
	空白页面

