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1. Introduction

The value chain of metal production consists of a number of processing steps that
result in obtaining the final metal product from the given raw material. Each stage, from
mining through to mineral processing and metallurgical treatment, is equally crucial and
indispensable and performs a specific role in the entire mining and processing system.
Mechanical processing is a step within the mineral processing stage. Its main duty is to
provide material of a sufficient size, and thus generate an acceptable level of useful mineral
liberation. This allows the required results to be achieved in downstream beneficiation
operations, which are measured through the recovery of useful metals and the level of
pay metal loss in tails. The primary technological operations associated with mechanical
processing are comminution and classification. The aim of mechanical processing is,
therefore, to provide a sufficient size reduction in material by dividing it into particles or
fragments, which are measured using the comminution ratio level. All of these operations
aim to remove impurities and other unwanted fractions from the feed, which is then mainly
applied to the aggregate production sector. However, these operations are often treated
as supplementary, since their incorporation into the technological circuit mostly depends
on the qualitative characteristics and the contained impurities of the feed, which consists
mostly of clayish and dusty fine fractions.

The mechanical processing stage is a relatively simple step and numerous investiga-
tions found in the literature recognised its technological solutions. However, despite its
apparent simplicity, multistage crushing and grinding operations, including its separation
and classification, make this processing stage more complicated than initially realised. The
problem lies in the huge potential of its steering and control arrangement, as well as the
variety of changeable operational parameters in the circuit. In light of this, three major
groups of operational variables can be distinguished:

• Operational parameters of crushing and classifying devices;
• Physical and mechanical characteristics of the feed material;
• Technological regime and the manner of carrying out a specific operation.

The efficient operation of mechanical processing in technological circuits can be
analysed from several points of view:

• Achieving the required technological outputs measured through the obtained size
reduction in the feed material and specific particle size composition;

• Economical assessment of the real and potential effects through the analysis of the
relationship between costs and benefits;

• Environmental and social aspects resulting from a general negative impact of mining
on the environment and society;

• Application of optimization approaches and methods, together with simulation mod-
els based on theories of mathematical and statistical modelling;

• Other approaches not listed above or a combination of several scopes.

1
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2. Methodology and Results

The assessment of the impact of a specific topic can be evaluated on the basis of a
number of scientific publications concerning the issue. Bibliometric analysis is a good
example of this approach, and by using this tool it is possible to perform qualitative and
quantitative analyses of scientific publications registered in databases to obtain interesting
results. In general, there are a relatively high number of publications concerning raw
material treatment at the stage of mechanical treatment/processing but, to verify this, a
detailed analysis must be performed, based on the records registered in the Web of Science
(WoS) database. In the WoS Core Collection, the all fields option for searched documents was
chosen, and the analysed period was All years (1900–2021). The search was performed on
24 November 2021. The obtained search results (732,139 records) were then refined using
the research area Mining and mineral processing in Web of Science Categories. As a result,
4285 records were obtained. The obtained records were analysed according to the year of
publication, region/country, source of publication (journal name), research area, scientific
institution, and the keywords. An analysis according to the keywords was performed
separately for author words and for editor words. The CiteSpace application was used as
a tool for obtaining the data and visualization. The number of publications registered in
WoS database across individual years is presented in Figure 1.
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Figure 1. Number of publications issued yearly that concern mechanical processing of raw materials
for the period 1977–2021.

As shown, two primary periods can be distinguished in a general trend:

• In the period between 1977 and 2005, the increase in the number of publications in
consecutive years is very low; therefore, the trend can be determined as a constant
(solid line in Figure 1);

• Since the year 2006, a regular increase in publication numbers can be observed for each
consecutive calendar year. This trend can be approximated using a linear function
(dashed line in Figure 1).

The above results demonstrate that problems concerning the mechanical process-
ing of raw material generated significant interest, especially in the last decade. Next,
an analysis of publications regarding regions and countries is presented. The number
of publications according to specific countries are presented in Table 1, where the top
10 countriers with the most publications are shown. The results show that nearly 30% of
the world’s publications regarding mechanical processing technology of raw materials
originate from China. The USA is the second country with the most publications, totalling
around 17%, with 741 papers. Australia is the next country, with its share of publica-
tions exceeding 7%, closely followed by Germany and Russia, who produced 254 and
237 publications, respectively.
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Table 1. Top 10 countries with the highest number of publications in Web of Science database.

Country Number of Publications Percentage Share

China 1226 28.638
USA 741 17.309

Australia 313 7.311
Germany 254 5.933

Russia 237 5.536
Canada 203 4.742
Poland 200 4.672
India 164 3.831
Iran 156 3.644

England 113 2.640

Publications grouped according to research areas are presented in Table 2. All records
are within the main research area, i.e., Mining and mineral processing, but most publications
have more than one assigned research area. The three most popular areas with more
than one thousand publications are Metallurgy, Metallurgical Engineering, Mineralogy and
Materials Science Multidisciplinary. It is worth mentioning that a single record (publication)
can be assigned to several areas; therefore, the cumulative percentage share in Table 2 is
higher than 100%. This is clearly visible based on the three mentioned categories. The
reason for this is that the cumulative percentage share for them only exceeds 100 percent;
many publications concerning the problems of mechanical processing must be associated
with at least two of the top three areas.

Table 2. Most frequent research areas associated with the publications concerning the issue.

Research Area Number of Publications Percentage Share

Metallurgy Metallurgical
Engineering 1739 40.583

Mineralogy 1631 38.063
Materials Science
Multidisciplinary 1567 36.569

Engineering Geological 575 13.419
Engineering Chemical 534 12.462

Geosciences Multidisciplinary 220 5.134
Geochemistry Geophysics 203 4.737

Energy Fuels 75 1.750
Chemistry Physical 65 1.517

Environmental Sciences 63 1.470

An analysis of obtained records from the WoS database, grouped according to journals,
is presented in Table 3, including the top 20 journals with the highest number of publications
related to mechanical processing. The top journal on this list, JOM, has an almost 20% share
of the number of published articles, and a significant gap can be observed between the first
and second position on the list.

An analysis of the impact factor value shows that the number of publications in a
specific journal is, to some extent, correlated with IF. However, this link is not very strong
and is influenced by several factors, mostly by the assignation of individual titles to
different disciplines and categories. If there is an asterisk at the value of an individual IF, it
denotes that this value is older than the year 2020. Table 3 also presents the positions of a
specific journal determined by the number of quartiles in the Mining and mineral processing
category. From this, two conclusions can be drawn. First, detailed profiles of journals
differ and second, not all the journals are equally interested in problems concerning the
mechanical aspects of mineral processing. In turn, the number of publications according to
individual scientific institutions is presented in Table 4. The results show that among the
five topmost publishing institutions, three are located in China, with almost a 12% share.

3
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Table 3. Top 20 journals with the highest number of publications concerning mechanical processing.
*: the value of an individual IF; -: this value is older than the year 2020.

Title of Journal Number of
Publications

Percentage
Share IF Quartile

JOM 798 18.641 2.474 2
International Journal of Rock

Mechanics and Mining Sciences 398 9.297 7.135 1

International Journal of Minerals
Metallurgy and Materials 319 7.452 2.232 3

Minerals Engineering 289 6.751 4.765 1
International Journal of Mineral

Processing 229 5.349 2.688 * -

Minerals 133 3.107 2.644 2
JOM Journal of The Minerals Metals

Materials Society 115 2.686 - -

Journal of University of Science and
Technology Beijing 106 2.476 0.919 * -

International Journal of Mining
Science and Technology 76 1.775 4.084 1

Archives of Mining Sciences 64 1.495 1.127 4
Physicochemical Problems of Mineral

Processing 64 1.495 1.213 4

Advanced Materials Research 60 1.402 - -
Journal of Mining Institute 57 1.331 - -

Minerals Metals Materials Series 55 1.285 - -
Mining of Mineral Deposits 55 1.285 - -

Acta Geodynamica et Geomaterialia 49 1.145 1.176 4
Acta Montanistica Slovaca 48 1.121 1.413 3

Journal of The South. African Institute
of Mining and Metallurgy 48 1.121 0.807 4

Journal of Mining Science 44 1.028 0.456 4
Mineral Processing and Extractive

Metallurgy Review 44 1.028 5.283 1

Table 4. Top 10 publishing institutes.

Research Area Number of Publications Percentage Share

University of Science
Technology Beijing 228 5.326

China University of Mining
Technology 184 4.298

United States Department of
Energy Doe 129 3.013

Russian Academy of Sciences 94 2.196
Chinese Academy of Sciences 93 2.172

Northeastern University
China 88 2.056

Central South University 79 1.845
University of Queensland 69 1.612

Helmholtz Association 68 1.588
AGH University of Science

Technology 60 1.402

3. Qualitative Analysis of the Content and Discussion

The analysis below concerns the quality of content in articles connected with the
mechanical processing of raw materials. The analysis was performed both on the basis of
keywords included in the articles that were connected with mechanical processing and
indexed in the WoS database, and through a content review of the papers published within

4
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this Special Issue. Two types of keywords were analysed: author keywords, and editorial
keywords, i.e., phrases added by the editorial boards of the journal.

3.1. Keywords Analysis

An analysis of author keywords indicated that the top ten most used keywords
constituted almost one-third of records (Table 5). It can also be seen that a majority of these
keywords were associated with environmental aspects.

Table 5. Top 10 author and editor keywords, common phrases in bold font.

Author Keywords Percentage
Share

Number
of Cases Editor Keywords Percentage

Share
Number
of Cases

air pollution 11.67 3088 particulate matter 2.93 3336
particulate matter 10.01 2648 pm10 2.91 3312

air quality 3.75 993 air pollution 2.66 3036
source

apportionment 1.49 394 pm2.5 2.44 2780

air pollutant 1.41 373 pollution 2.03 2316
indoor air quality 1.22 322 particle 1.87 2129

heavy metal 0.98 258 exposure 1.82 2069
nitrogen dioxide 0.70 184 aerosol 1.61 1837

chemical
composition 0.70 184 mortality 1.53 1748

size distribution 0.60 160 emission 1.30 1480

Two phrases are predominant regarding the number of cases; their share exceeds
20%, and both of them are connected with environmental problems. However, this only
confirms a global trend observed in the mineral processing sector, which aims to pay more
attention to environmental aspects. Phrases strictly typical to mineral processing are also
on the top 10 list, but they are located at the end of the list. An analysis of editor keywords
indicated the likelihood that, in the case of the author keywords, the share of individual
phrases was more equally distributed, and it was not possible to clearly distinguish a
single predominant word. However, similar to the author keywords, editor keywords were
mostly related to environmental problems, only confirming that the greatest concern of
the raw material sector is its impact on the environment. More detailed visualizations are
shown in Figures 2 and 3.

3.2. Content Analysis

An analysis of SI content suggested that the dominating topic was technology. A
detailed analysis of the content shows that the majority of papers concern various methods
of classification and separation: from screening classification [1,2] and sorting [3], to jig [4]
and flotational [5] beneficiation, with one publication related to crushing [6]. Authors ap-
plied various methods to monitor the obtained qualitative characteristics [1,3] and utilized
simulation and modelling tools [2,5,7] in order to evaluate the operation effectiveness of
individual separation techniques. Technological aspects were also underlined in a review
of recent directions of comminution technology development [8]. It is accepted that the
mechanical processing stage predetermines the efficiency of downstream separation opera-
tions, especially in the technological circuits of ore beneficiation. For industries associated
with the processing of rock materials, mechanical processing, in turn, directly influences
the characteristics of final products in terms of size and shape [9]. This was the subject of
investigations in papers by Saramak, and Gawenda et al. [4,8].

5
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Screening technology was the scope in works of N. Duda-Mróz et. al. And C. Yu et.
al. [1,2]. In the work [1] focuses on development of diagnostic procedures and monitoring of
screening device, particularly its spring, to estimate the time needed for the safe operation of
the device and early damage detection. One approach consisted of an analysis of vibration
data registered for the specific components of the device, i.e., springs and bearings, and
identification of disturbances by means of calculated techniques of wavelet filtering. The
second paper, concerning size classification [2], focuses on the screening of high-viscosity,

6



Minerals 2021, 11, 1428

fine, cohesive particles. The authors analysed the achieved screening efficiency from the
scope of the device operation (different sections of the mat surface) and surface energy of
particles. The authors also utilized the DEM modelling technique to simulate the behaviour
of material on the screen. They also concluded that the service energy level of the particles
regarding adhesion was inversely proportional to the screening efficiency. The study
of [3] concerns the sorting technology and investigates the system of Dual-Energy X-ray
(DE-XRT) and its ability to distinguish sulphides from non-sulphides. For this type of
material, it was possible to achieve a very high accuracy and the system appeared to
be an effective sensor that could be used to differentiate sulphides from waste material.
The issues presented in this work have an advantage over recent achievements in the
development of visual methods and the increasing sensitivity and accuracy of detecting
tools [10]. These methods are significant from the scope of the proper characterization of
granular material, especially in its description according to particle size, but also for other
features, such as the density, porosity, or content of different types of materials. These issues
can be found in paper [7], where problems concerning granular material segmentation
during transportation are analysed. The practical aspects of this work seem to be significant
due to the possibility of online monitoring and the early detection of improper or undesired
states. The application of neural networks algorithms makes the system more effective.
This is especially significant from the scope of material characterization and helps to select
and optimize the downstream separation techniques of granular material. Similar aspects
were included in the work of [1]. Optimizational models were also developed in the work
of Niedoba et al. [5], which applied copper ore flotation. A mathematical model based
on taxonomic methodology was developed, as well as the adopted functions enabling
the determination of the optimal technological parameters of flotation, depending on the
material characteristics and process regime. This approach is in line with the popular
direction of modelling in mineral processing; assuming the binding of parameters in
theoretical models or functions with a material, device, and process course [2,8,9,11].

Rock materials enrichment is also present in studies concerning the beneficiation of
aggregates in a jig device [4]. This problem is common for a wide group of rock materials,
confirming the opinion expressed in other papers of this Special Issue: that the proper
characterization of granular material is of key significance in the effective separation of
rock materials. The utilization of a patented system of material classification, upstream to
the beneficiation, significantly improves separation according to size and shape, but the
selection of operational parameters for this system is possible due to the knowledge on the
size and shape characteristics of the processed material.

One paper is strictly related to comminution [7], concerning the problem of material
breakage in dynamic conditions. Due to the complexity of this process, resulting from
a series of interactions occurring both in space and time, this problem is under constant
investigation. This paper’s findings are interesting as they concern the general problem of
raw materials breakage, namely the low effective utilization of energy for breakage and
high energy-consumption. The results can contribute to a better understanding of selected
mechanisms relating to dynamic breakage, such as the probabilities of establishing the
given size of particles and their location within the crushed product.

4. Conclusions

Papers included in this Special Issue of Minerals, entitled “Advanced Techniques and
Efficiency Assessment of Mechanical Processing” addressed significant problems related to
the processing of raw materials that can be grouped into the following categories:

• Methods and techniques of monitoring and the visual characterization of granular materials;
• Modelling and optimization of process effectiveness, using advanced computational

tools and algorithms;
• Efficiency assessment of selected operations that are crucial in the mineral processing

industry, and can be performed from a technological or economic point of view.

7
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Several aspects of this Special Issue were found to be related to environmental prob-
lems, especially in papers concerning the treatment of rock materials. An analysis of
keywords in articles registered in the WoS database indicated that issues concerning the
environment are of key significance. Its role in scientific research is therefore becoming
increasingly important.
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Abstract: This paper concerns problems related to the mechanical processing of mineral raw materials.
The aspects explored were limited to the analysis of comminution technologies in terms of their
effectiveness and energy consumption, modeling and simulation approaches, the assessment of
crushing results, and environmental aspects. This article includes investigation of new technologies
of comminution, comparing HPGR, high-voltage pulses, and electromagnetic mills. In the area of
modeling and optimization, special attention was paid to the approximation of the particle size
distribution of crushing products by means of Weibull, log-normal, and logistic functions. Crushing
products with an increased content of fines were well characterized by Weibull’s distribution, while
log-normal function adequately described HPGR products with a relatively low content of fines.

Keywords: raw materials; mineral processing; enrichment; comminution; HPGR; approximation of
particle size

1. Introduction

The processing technology used for mineral raw materials is crucial in terms of the
production of numerous metals and non-metallic products sourced and extracted by means
of mining techniques. Though the entire value chain of metal production includes a
number of steps (from geology, through to mining, metallurgy, and manufacturing), the
mineral processing stage, to some extent, influences the quality of the final product and
the effectiveness of the entire process of commercial product manufacturing. Despite its
complexity and the application of many physical, mechanical, chemical, and other types of
separation processes and operations, ore mineral processing can generally be divided into
two overarching stages:

(a) reduction in the size of the feed material;
(b) separation of useful mineral from the gangue.

The primary purpose of the size reduction stage is the liberation of useful mineral
in a way that allows for proper separation in the downstream separation stage. This
process for the case of ores is presented in Figure 1. The ROM (run-of-mine) material is
a mix of compounds of ferrous or non-ferrous metals and gangue. Useful elements and
compounds (black color on Figure 1) are “locked” among the gangue material in the ROM.
In such a form, it is rather difficult to separate them from the gangue with high efficiency.
Through the application of comminution operations, the size of individual particles can
be made finer and thus the liberation of useful compound is more intense compared to
the ROM material (center of Figure 1). Compared to non-crushed ores, the separation of
such materials can be carried out in a less complicated manner and higher recoveries can
be achieved. The separation product contains a significant amount of useful compounds
(lower part of Figure 1). This situation applies to ore enrichment, which are generally
divided into ferrous and non-ferrous minerals (i.e., cupriferous, gold or silver-bearing, and
other metals except for iron).
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In both aggregates production and the processing of rock materials, (such as crushing
stones, sands, and gravels), the stage of size reduction (comminution) constitutes the
primary step. This directly influences the qualitative parameters of final products in
terms of size and shape (aggregate production sector) or specific surface (cement clinker
industry) [1].

Considering previous text, the mechanical processing of raw materials is a crucial
stage in the technology of both ore processing and the aggregate production sector. Proper
passage through this stage initially influences the potential effectiveness of the core benefici-
ation operations of minerals from the scope of useful mineral recovery, and much research
has been carried out in this area. Current trends in these investigations mainly include:

• development of new comminution technologies;
• optimizing the performance of recent applications;
• modeling, simulation, and performance optimization of mechanical processing circuits.

Recently, environmental aspects have been gaining greater attention, especially in
terms of decreasing the negative impact of mechanical processing operations on the en-
vironment and society; in particular, attention has been paid to harmful and annoying
emissions of dusts, gases, heat, and noise. Operations of industrial comminution account
for as much as 3% to 5% of the total usage of electric energy in the world [2]. Despite this,
their performance effectiveness is relatively low and has an inverse relationship to the size
of the crushed material. For example, the energetic efficiency of tumble mill operation is
estimated to be around 15%. Meanwhile, the production efficiency of some types of very
fine grinding products can be as low as 1% [3]. Comminution energy utilization is higher
in crushers, particularly in impact crushers. However, it is dependent on the type of raw
material used and the crushing stage within the technological circuit [4]. Research generally
confirms that crushing uses between 0.5 and 1 kWh/Mg, and that crushing devices using
attrition and shear forces consume between 40% and 80% more comminution energy than
machines based on impact forces [5]. Compression and impact forces techniques in material
disintegration save the most energy. However, the low energy utilization for a breakage
mechanism in conventional crushing and grinding equipment leads to the development of
innovative comminution technologies [6].
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2. Development in Crushing and Grinding Technology
2.1. HPGR Technology

HPGR devices are considered one of the most energy-efficient comminution machines.
However, despite their lengthy existence in industrial mineral processing circuits, there
have been many research projects aimed at improving their operational performance. While
HPGRs indisputable energetic benefits have been largely proven in the literature [7,8],
results from more recent investigations show room for improvement in both separation
in flotation and leaching processes [9–11], mostly due to the intense liberation of useful
mineral [12].

The average unit energy consumption for HPGR devices varies between 2 and
3–4 kWh/Mg; however, this depends on the mechanical properties of the material, the
equipment size, and the recirculation scheme of the HPGR feed and product. Industrial
practice shows that in calculations the value of 2.5 kWh/Mg is quite often accepted. Com-
pared to tertiary crushing devices, applying HPGR to the comminution circuits of ore
lowers grinding energy by 20–30% in downstream operations.

In the SAG-based grinding circuit, the ball mill grinding energy consumption is
comparable to the grinding energy used in mills following the HPGR. However, the overall
energy reduction in a HPGR-mill configuration can be greater than 30%. The benefits
of HPGR in mineral beneficiation are visible at the level of useful mineral liberation.
Microscopic analysis has found [12] values of 75 to 95% for copper minerals liberated from
sulfide ores, depending on the operating pressure value. Copper recovery in downstream
flotation varies from 80 to 85%, while the same value for ore that has been conventionally
crushed (i.e. without using of high-pressure technology) is 80%. HPGR is beneficial in the
recovery of minerals, as well as in leaching and cyaniding operations. Copper extraction
from sulfide ores was 2 to 8% higher when leaching from HPGR-based circuit products, and
kinetic readings of the process were more favorable [13]. Comparable effects are evident
when heap leaching other minerals from upstream ores treated by HPGR. The metal
extraction rate for HPGR is 10–15% higher than that of conventional crushing devices [14].

2.2. High Voltage Breakage

Investigations into improving the efficiency of breakage energy led to the development
of other innovative techniques of comminution. High-voltage electrical pulse technology
helps to achieve more intense liberation in ore comminution. The efficiency of this technique
greatly depends on the regime of pulsation, as well as the texture and mechanical and
electrical properties of the ore material. The optimization of pulse parameters is considered
a very significant issue; however, it also creates problems, and a pulse generator dedicated
especially to mineral liberation should be used [15]. Laboratory practice shows that if
electric pulses are not adjusted to the material properties, there is no improvement in the
effectiveness of liberation compared to using mechanical comminution techniques. In
one example, gold ore which had been treated upstream by electric pulses did not record
significantly improved extraction compared to mechanical breakage. However, after the
optimization of the pulsating regime, the gold recovery was 35% higher due to the more
intense liberation [16].

Gold recovery in cyanidation can be 15–50% higher than in that in ores that have been
mechanically ground; however, this depends on the material’s properties. In some cases, a
60–70% recovery can be observed.

Lower rates of metal recovery in flotation can be found; however, some results show
that up to a 20% higher concentration of metal can be obtained in tail flotation following
high-voltage pulses. Estimates of the unit energy consumption for the high-voltage pulse
technique show that it varies from 3 to 5 kWh/Mg. There are relatively few publications in
world scientific databases concerning investigations on the using of high-voltage pulses
in comminution. The bibliometric analysis of the Core collection of Web Science database
searching for the terms “high voltage pulses” and “comminution” or “liberation” shows
that 100 publications have been published on this topic since 2012.
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2.3. Electromagnetic Mills

The grinding technology used in electromagnetic mills is a novel method of material
disintegration that utilizes rotating electromagnetic fields [17]. Fast-moving grinding media
in the shape of short rods, made of ferromagnetic material, cause material breakage in
the working chamber. Laboratory tests confirm the very short duration of the process;
it requires from several to few tenths of seconds to prepare a 500 g sample for flotation
operation. In terms of comminution ratio, the achieved results are very good compared
to those achieved using conventional tumbling mills, thus the level of liberation is also
higher. The technology is relatively new; only 50 publications can be found in international
scientific databases, with nearly 75% issued within the last 5 years. Similarly to high-voltage
pulses, the main issue is the lack of full-scale plant installation. However, in this case a
quarter-scale machine is available. No test results for ore beneficiation in hydrometallurgy
operations for electromagnetic mill products have been obtained so far; however, the results
of flotational separation for sulfide copper ore show copper recovery increased by about
10–15% compared to conventional crushing and grinding devices. It is, however, difficult to
find indisputable evidence for overall separation improvement, especially at the semi-plant
and plant scale; however, it seems that for some specific purposes, the technology may
bring be beneficial.

Table 1 summarizes the three characterized technologies for raw material comminution
in terms of their capacity, energy consumption, and technological effectiveness.

Table 1. Summary of the benefits of HPGR, electric pulse breakage, and electromagnetic mills.

Type of Benefit Unit
Type of Comminution Technology

HPGR Electromagnetic Mill Electric Pulses

Unit energy consumption kWh/Mg 2–4 50–150 3–5
Benefits in mineral liberation compared to

conventional crushing % 10–20 10–15 10–15

Benefits in useful mineral recovery
compared to conventional
crushing: hydrometallurgy

% 2–8 No data 15–70

Benefits in useful mineral recovery
compared to conventional

crushing: flotation
% 1–4 5–20 up to 20

Plant-scale operation of the technology - Yes No No
Energy savings compared to conventional

crushing circuit % Up to 30 No data No data

Capacity increases compared to
conventional crushing circuit % 0–15 No data No data

3. Circuits Layout and Optimization
3.1. Design Assumptions

A suitable circuit layout, with properly designed material flows among specific opera-
tions, including recycle streams, is of great significance in optimizing feed disintegration
processes. Following the one overarching principle of mechanical processing: “do not crush
unnecessarily”, special attention is (or, at least, should be) paid to the by-passing of fully
or sufficiently liberated particles [18]. This is especially true for comminution techniques
that cause greater generation of micro-cracks during grain disintegration processes which
may contribute to higher liberation. Such materials are proceeded to pre-concentration,
where some share of useful minerals can be quickly recovered. Such an approach can be
characterized by the following effects:

• A reduction in the capacity requirements of downstream grinding stage(s), which
allows the installation of smaller grinding devices. More intense disintegration occurs
in upstream crushing processes, which requires much less energy than grinding
operations (Figure 2). The Figure gives a general idea of relationship between the size
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of treated material and the required energy for comminution. An exponential increase
in the grinding energy can be observed, together with further decreasing the size of
already fine material;

• The optional application of separation within comminution circuits, especially devices
based on physical separation, such as jigs [19]. Jig separation has a long history of
existence in technological circuits of mechanical processing or raw materials; how-
ever, many investigations aiming to improve the process for specific conditions and
individual materials have been carried out [20,21]. This cost-efficient technology may
give favorable results in the extraction of useful mineral amongst certain particle size
fractions. Available results also confirm the potential for the separation of materials
with relatively low differences in densities, provided specially designed devices are
used [22].

• Decrease in the grinding energy consumption, which decreases the overall energy
consumption of the circuit operational costs.
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Economic benefits include a reduction in CAPEX due to the possibility of the installa-
tion of smaller size devices, as well as contributing to the reduction in a major component
of OPEX.

Such non-conventional layouts—i.e., where the breakage is more intensive on earlier
comminution stages—are popular, especially in HPGR-based circuits. The relative energy
savings in such configurations may reach 25% [23].

3.2. Simulation in Mineral Processing

Nowadays, many techniques and methods supporting the design, efficient opera-
tion, and performance assessment of mechanical processing are used in investigations.
Among the most significant characteristics determining the effectiveness of comminution
operations are particle breakage intensity and size reduction ratio, the size distribution of
products, productivity, energy consumption, wear of liners, and movable parts of machines
and others [24,25]. These can be distinguished following major directions in the modeling
of mineral processing:

• Simulation tools and techniques showing models of behavior of grained material
during the specific process, operation of a device, interactions amongst particles of
the material, and interactions between the material and device. Various numerical
techniques can be used in these simulations. The Discrete Element Method (DEM) is
an especially popular technique used for this process, as well as in other disciplines
outside mineral processing.
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• Models capable of predicting the specific results of process performance. These in-
clude the approximation of particle size of comminution product, screening efficiency,
comminution ratio, volume of material recycle, and others. These models are either
based on theoretical distributions of random variables with confirmed applications in
mineral processing or utilize principles of mathematical modeling.

• Optimization tools and applications based on the principles of mathematical and
statistical modeling [26–28].

Modeling and simulation techniques for mapping the behavior of discrete mediums,
such as grained materials, have become useful and powerful tools as the computational
power and potentials of dedicated hardware accelerated in the last few decades. As a
result, it is now possible to carry out very large numbers of calculations in very short
time sequences for each modeled element. It is also now possible to characterize short-
distance interactions (i.e., particle–particle, particle–device) as well as long-range impacts,
(i.e., gravity, electrostatic, magnetic, or other forces). The mentioned DEM method gained
significant popularity in the modeling of various enrichment processes, and many examples
concerning this issue are present in the literature.

The mineral processing constitutes only a fraction of the wide practical usage of this
simulation technique, but some significant aspects of mineral processing were covered to
some extent:

• Description of granular material flow in comminution processes;
• Potential prediction of particle size distribution for selected crushing products;
• Equipment design on the basis of analyzed process behavior;
• Simulation of conveyor transportation operations;
• Description of motion of particles in selected processes of gravitational separation.

There are, however, gaps and challenges for this method, especially in the simulation
of fine and very fine particle motion, (i.e., in fine grinding processes). The problem is
that a number of particles in simulation is limited, what requires the use of a method of
extrapolation, especially for finer sizes.

4. Modeling Approach

The use of the correct modeling approach assists in the description of an operation,
as well as the results achieved for specific operations in mineral processing. These have
significant cognitive meaning, especially for conditions beyond the operational regime,
such as an increased throughput, exceeded values of operational parameters of devices
(i.e., increased Fsp in HPGR, higher rotational speed of shaft in impactors, higher/lower
amplitude/frequency of vibration screen), and others. These situations, however, are
undesirable and efforts have been made to eliminate them or at least to limit their impact
on the process course. The issue of greater significance is the possibility of the assessment
results of mechanical processing proceeded through specific operation. Comminution
results seem to be the most important among them, and the most popular approach
consists in approximation of PSD of crushing products [29]. The second significant issue
seems to be assessment of the useful mineral liberation degree, but nowadays it appears
that only analytical methods utilizing scanning electron microscopy (SEM), such as MLA,
can be effective. The PSD approximation method is not new and has been present in
mineral processing investigations for decades. It consists of the assumption that the
act of particle breakage is a kind of probability, especially concerning the size of newly
created particles in the crushing product [30,31]. The approximation of crushing results
technically utilize the Least Squares method (LS) and can be performed by means of
various mathematical functions (distributions). Most of these have a confirmed application
into a specific type and size of feed material and crushing device [32]. For example, the
Weibull (or RRB) distribution was introduced into mineral processing in the 1930s [33]
for the assessment of the particle size of crushing products. Log-norm distribution, in
turn, has found application for the approximation of fine crushing (grinding) products [34].
In recent decades, functions previously used in other disciplines have also been used in
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mineral processing. The logistic distribution could be such an example. Approximation
functions used in the estimation of particle size distribution of crushing products usually
have two parameters, denoted as shape and scale parameters. It is worth mentioning
that the application of theoretical distributions with a greater number of parameters may
improve the modeling results; however, problems can appear in the interpretation of
results, especially when the model is used in more general cases. So-called “censored
distributions”, (i.e., theoretical distributions with additional parameters that limits the
particle size of the product by introducing minimum or maximum particle (dmin or dmax))
can be more efficient in some cases [35].

The fitting accuracy can be assessed through the estimation error sr, which is defined
through Formula (1).

sr =

√√√√∑n
i=1

(
yiemp − yimod

)2

n − 2
, (1)

where yiemp , empirical data; yimod , modeling data; n, number of data points.
An exemplary approximation of the particle size distribution of a HPGR product was

performed using three approximation functions, as presented in Table 2.

Table 2. Approximation functions used in fitting and the obtained results.

Approximation Function Approximation Formula

Weibull’s distribution F(d) = 1 − exp
(
− d

d0

)n

Log-norm distribution F(d) = 1
2π

∫ t
−∝ exp

(
− t2

2

)
dt, t =

ln
(

d
d0

)

σ

Logistic distribution F(d) = 1
1+b·exp(−c×d)

The testing program included the crushing of feed material in the laboratory HPGR
device under two values of operational pressing forces F: 15 and 10 kN. The width of rolls
L = 100 mm, diameter D = 300 mm. Three samples of the same feed material with a similar
particle size distribution were crushed in the HPGR press device under various conditions
in order to obtain products with diverse particle size distributions:

• product 1: the material with increased content of fines, the feed was crushed twice
under base pressing force (15 kN);

• product 2: the material with relatively lower content of fines—crushed under lower
pressing force (10 kN);

• product 3: the material with balanced content of individual particle size
fractions—crushed once under base pressing force (15 kN).

The PSD of all products, along with fittings with three functions, are presented in
Figures 3–5.

The test results clearly show that the results of comminution depend on the manner of
crushing device operation. However, it is also evident that the results of the comminution
in each case can be approximated with different effects depending on the function used
in calculations. It appears evident that crushing products with an increased content of
fines can be described well through the use of Weibull’s formula. The HPGR crushing
product obtained for average crushing force turned out to be very well characterized by
logistic distribution.

When the feed material was crushed under a lower pressing force, the particle size
composition of the obtained product could be adequately described with the use of a
log-normal distribution. Detailed characteristics of the approximation in terms of fitting
error values are given in Table 3.
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Table 3. Values of fitting errors for individual crushing products.

Approximation Function
Approximation Error

Product 1 Product 2 Product 3

Weibull’s distribution 1.67 7.78 15.25
Log-norm distribution 4.59 3.79 12.92
Logistic distribution 10.26 17.06 2.05

5. Environmental Issues

As previously mentioned, negative impacts of mineral processing (and mining in
general) are evident in various aspects. One of the most commonly described seems
to be the dust pollution. A wide range of investigations in this area can be found in
the literature, particularly those concerning the operation of the mining industry. These
include investigations into dust emissions directly from the open pit mines or quarries
resulting from their routine operation [36–39], emissions from tailing deposits [40] or
transport of run-of-mine and aggregate products, including loading and unloading of
material [41]. Operations of mechanical processing are characterized by various rates
of dust emission, depending on the size of particle, type of device and its productivity,
and crushing stage [42]. Typical relationships between the size of handling material and
the total amount of dust generated are described by means of exponential function with
negative relationships between the size of the particle and emission volume (Formula (2)):

ETSP =
A
dB (2)

where ETSP, total emission of dust particles (mg/m3); d, particle size (mm); A, B, coefficients.
Selected values of total dust emissions according to different sources are presented in
Table 4.

Table 4. The TSP emission of selected devices according to various investigations.

Processing Stage Relative Emission
(Primary Crushing = 1) [43] Total Emission [mg/m3] [44]

Primary crushing 1 2.8
Secondary crushing 3 [45] 3.2

Tertiary crushing 51 (dry), 2 (wet) 30
Screening (dry) 214 No data
Screening (wet) 12 No data

The dust emission is often described as TSP or total suspended particulates. It denotes
particles with a diameter smaller than 20 µm, as larger grains usually fall to the ground
quickly and do not constitute the air contaminants.

To overcome this negative impact, many models which determine and predict the
volume of dust emissions have been developed. These models consider the general
principles [46,47] and are built on empirical data relating to the specific site [48,49]. The
formulas were devised on the bases of empirical data, the specific location of a mine, and
atmospheric conditions. Parameters characterizing properties of the material (such as
moisture and silt contents) were taken into account.

Noise emission is another important factor that affects the life of local society around
the mineral processing plant, as well the working conditions at the site [50]. The limitation
of this source of pollution seems to be relatively less complex technically than in the case of
dust, and typically involves building suitable soundproof and sound-absorbing screens
and walls.
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6. Summary

Mining and mineral processing are relevant for numerous disciplines and have sig-
nificant impacts on the operation of various sectors of the economy, especially in raw
material management within the metal value chain production. An increasing number of
mining companies are facing problem concerning decreases in orebody grades and finer
mineralization due to the depletion of deposits. At such a time, the idea of zero-waste
economy gains importance and popularity. These aspects give rise to the development of
mineral processing technology and the more efficient utilization of raw material. Efforts
are focusing more on the effective utilization of recent techniques in mechanical processing
than on the introduction of brand new feed material treatment technology. This article
presented select problems that are especially popular in contemporary mineral processing
at the stage of mechanical processing. The increased effectiveness of specific operations can
be observed from different scopes, but energy efficiency and useful mineral loss seem to be
of major importance. The development of computational techniques and new methods of
material analysis will undoubtedly create new opportunities and potential improvements
of operation effectiveness.

Not all directions of development have been covered, and the visual analysis and
characterization of grained materials are only mentioned. Nevertheless, the results of many
investigations and the operational practice of mineral processing plants, show that the
stage of the mechanical processing of raw materials preliminarily impacts the potential of
effective separation and useful metal recovery.

It is also necessary to highlight major critical aspects and gaps that should be the
objects of investigations both in the near future and from a longer-term perspective. There
is some consensus that the high energy consumption of comminution processes stands
among the most significant issues within the field. However, the problem lies in the more
efficient utilization of energy for the breakage and limitation of losses, particularly in fine
grinding operations. This is connected to the need for handling the fine mineralized feed
material. The scale problem also needs to be solved in electromagnetic grinding, as well
as in high-voltage pulse breakage. To some extent, this is also valid for other operations
of mechanical processing, such as vibrating mills, SAG and AG grinding, and HPGR. It
is also necessary to remember that, when facing the depletion of deposits, (Table 5) it is
harder to maintain the overarching aim of mineral processing: achieving a high level of
useful mineral recovery.

Table 5. World average grades of selected ore minerals [51,52].

Type of Ore Unit Average Grade in 80’s Current Average Grade

Copper % 1.5 0.62
Lead + Zinc % 8 6.05

Nickel % 4 1
Gold (surface mining) g/Mg 3.5 2
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Abbreviations
HPGR high-pressure grinding rolls
ROM run-of-mine
CAPEX capital expenditure
OPEX operational expenditure
DEM discrete element method
WOS Web of Science (database)
PSD particle size distribution
SEM scanning electron microscopy
MLA mineral liberation analyzer
LS least squares (method)
RRB Rosin–Rammler–Bennett (distribution)
TSP total suspended particulates
SAG semi-autogenous grinding
AG autogenous grinding
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rozdrabniania w prasach walcowych. Ann. Set Environ. Prot. 2013, 15, 1580–1593.
19. Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a

novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and
“entanglement factor”. Min. Eng. 2018, 129, 54–62. [CrossRef]

20. Ambrós, W.M. Jigging: A Review of Fundamentals and Future Directions. Minerals 2020, 10, 998. [CrossRef]
21. Stempkowska, A.; Gawenda, T.; Naziemiec, Z.; Ostrowski, K.; Saramak, D.; Surowiak, A. Impact of the geometrical parameters of

dolomite coarse aggregate on the thermal and mechanic properties of preplaced aggregate concrete. Materials 2020, 13, 4358.
[CrossRef] [PubMed]
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Abstract: The main task of mineral processing plants is to further process the raw material extracted
in the mining faces into a concentrate with the highest possible concentration of the final product.
In practice, it is a complex process in which several stages can be distinguished. After the ore has
been transported to the surface by the skip shaft, one of the first steps is sieving the ore, which is
typically performed using vibrating mining screens. In a typical Ore Enrichment Plant, the screening
process is carried out by several such machines. This is a typical bottleneck in the technological
chain. For this reason, the main challenge for users is to achieve the highest reliability and efficiency
of these technical facilities. The solution is to focus on predictive maintenance strategies based on
the development of monitoring and advanced diagnostic procedures capable of estimating the time
of safe operation. This work was developed as part of an advanced diagnostic system ensuring
comprehensive technical conditioning and early fault detection of components such as the engine,
transmission, bearings, springs, and screen. This article focuses on vibration data. The problem of
damage detection in the presence of periodically impulsive components resulting from falling feed
material on the screen and its further screening process has been considered. These disturbances are
of a non-Gaussian noise nature, the elimination of which is essential to extract the fault-related signal
of interest. One solution may be to properly smooth and filter the raw signal. In this article, a wavelet
filtering technique is applied. First, the wavelet filtering procedure is described. In the next step,
the performance of a wavelet filter is investigated depending on its parameters. Then, the results
of wavelet filtering are compared with such methods as low-pass filtering and smoothing using a
moving average. Finally, the impact of wavelet filtering on the calculation of screen trajectories is
investigated.

Keywords: mineral processing; sieving screen; diagnostics; predictive maintenance; wavelet transformation

1. Introduction

Currently, in the mining sector, there is a rapid development of technology ensuring
operational supervision of processes and technical facilities based on online monitoring. A
typical mining enterprise wishing to remain competitive in the mineral resources market
must plan the production process, maintenance, and materials management in advance
based on real data. If we look at machinery systems as a network of interconnected vessels,
the bottlenecks are one of the most critical. In order to avoid downtime and to carry out
maintenance works in a controlled manner, it is crucial to develop advanced diagnostic
systems [1]. The key is to provide appropriate sensors that significantly exceed the human
senses but also to develop advanced procedures for the extraction of fault-oriented features,
procedures for inferencing the diagnostic state of individual components, and procedures
for estimating the residual lifetime. Currently, predictive maintenance is developed strongly
based on the assumptions of the Industrial Internet of Things technologies, in which the
sensed objects are connected to the Internet and can communicate with each other and the
superior system [2–7].
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In this article, one of the critical technical objects of the Ore Enrichment Plant—the
vibrating screen used for the sieving process—is considered. The main purpose of sieving
is to separate the fine fraction (suitable for milling) from the coarse fraction (requiring
crushing). The horizontal schema of the vibrating screen is shown in Figure 1.
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This process is the first stage to which the ore is subjected after direct transport
to the surface, precisely before crushing and milling. At this stage, most of the metal
components (e.g., anchors) are also captured using an electromagnet. The research was
conducted in one of the Polish underground copper ore mines of KGHM, where the
vibrating screens are located close to a mine shaft. Depending on the mining plant, the
mesh size in the screen ranges from 20 to 40 mm. In all mines, the number of these objects
is very limited (Polkowice—3, Lubin—3, Rudna—6); therefore, the vibrating screen is one
of the typical bottlenecks in the entire processing plant. In practice, there are various types
of vibrating screens. We can distinguish, among others, rotating vertical cylindrical screens
and vibrating horizontal linear screens. The ore separation process in terms of grain size is
based on induced vibrations. These vibrations are generated by one or two rotating shafts
of unbalanced masses driven by drive units with belt transmission. A standard multi-deck
vibrating screen is made of the main box and side plates which are connected by transverse
reinforcing beams, upper and lower sieving decks, a deck under the screen, and multiple
springs as supports. The feed is transferred to the plates by the conveyor and a dispenser
located above the screen (Figure 2) [8].

The current demands of users of these devices are related to the development of
monitoring systems and early response tools to the development of damage to components
such as the engine, transmission, bearings, springs, or the screen itself [9]. Analyzing the
literature, you can find many monitoring systems available on the market designed for
processing machines; some of them are strictly dedicated to vibrating screens. Most of
the commercial solutions [10–14] concern rolling bearings diagnostics based on vibration
signals. Leading manufacturers also offer the expansion of the system with additional
temperature sensors and lubrication oil particle (i.e., wear debris) counters. This device is
exceptionally specific from a diagnostic point of view due to non-stationary operating con-
ditions but also due to the presence of random high-impulse disturbances resulting from
the grains bumping into the screen structure. If we do not separate the non-informative im-
pulses from the informative pulses, the further diagnostic process will not be reliable. This
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issue has been strongly developed as a part of the project financed from EU funds under the
acronym OPMO (Operation monitoring of mineral crushing machinery, [15]), which aims
to build an advanced diagnostic system for selected mineral processing assets [16]. In this
article, we will focus on the problem of diagnosing supporting springs that play a key role
in the sieving process. Critical is their stiffness, which determines the effective operation
of the entire screen. In the case of steel springs, a linear deformation characteristic up
to a certain degree of deformation is observed. As the time of operation progresses, the
stiffness of the springs is lost, which affects the amplitude and frequency of vibrations.
Over time, they break as a result of high-cycle fatigue (HCF). Due to their complicated
geometry and continuous movement during the screen operation, the number of possible
diagnostic methods is limited. The optimal source of data can be vibration data, not only
for the diagnosis of flexible springs but also for rolling bearings. One approach may be to
plot orbits from two orthogonal vibration signals. Given this representation of the spring
motion, it is possible to identify anomalous spring behavior with the knowledge of the
correct operating parameters. In [8], the authors presented the main assumptions of such
an approach. They described the dynamic model of the vibrating screen and paid special
attention to the stochastic influence of the feed on the disturbance of the vibration signal,
especially impacts from material falling on the upper deck and impacts from the material
inside the screen. They also proposed a spring failure simulation procedure. The method
was further developed in [17]. In the case of diagnosing the vibrating screen state, the key
is to take into account two phenomena: time-varying load (due to the variable amount
of feed on decks) as well as impulsive load considered to be impulsive background noise.
In this article, we focus on the problem of signal denoising from these non-informative
components. So far, this problem has been solved mainly in the field of diagnostics of
rolling bearings, where the important issue is the detection of the cyclic impulse signal in
the presence of non-cyclic impulse noise [18–21].
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In this article, a wavelet filtering technique [22–37] was applied to vibrational signals
collected in the ore processing plant from a mining screen. The main purpose was to
compare the results of wavelet filtering to simple smoothing and filtering techniques,
paying special attention to the difference in trajectory calculations. The structure of the
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article is as follows: In Section 2, the input data and the methods used for signal processing
are described. In Section 3, all the main results are presented. First, the wavelet filtering is
compared to moving-average and low-pass filters on raw signals. Then, the trajectory of
the screen is calculated for the raw signal, low-pass-filtered signal, and wavelet-filtered
signal. In Section 4, the obtained results are discussed, and our conclusions are drawn.

2. Materials and Methods
2.1. Input Data Description

An overall description of the diagnostic system installed on the investigated mining
screen can be found in [18]. The vibrational data from the accelerometers were recorded
with a sampling frequency of 16 or 48 kHz. There were 16 accelerometers, one vertical
and one horizontal, for each of four bearings and four spring sets. In order to reduce the
amount of stored data, a 1 min recording was taken every 15 min. An example of raw
data is shown in Figure 3. Based on these data, the trajectory of the screen, which is a key
characteristic for screen diagnostics and maintenance, as well as other diagnostic features,
can be calculated.

Figure 3. Vibrational signal recorded from a single accelerometer installed on the vibrating screen during (a) one-minute-
long measurement session (b) and a close-up look.

On the left plot, one can see the whole signal recorded during a single measurement.
Some significant excitation is observed around the fifteenth second of the measurement,
which probably corresponds to a large piece of ore falling onto the screen. Such rocks can
be detected using computer vision and audio processing technics based on recorded video
signals of the incoming ore flow [22]. Based on the results of this detection, such excitation
can be filtered out, which is planned in the future but has not been performed in this article
due to the unavailability of video data for the studied period. On the right, a closer look at
the same signal is shown, on which natural vibrations of the screen are visible.

The first step of data processing was the transformation of electric signals from the
accelerometers into SI units (m/s2). The following formulas were used for springs:

a =
0.1733·L

S·g (1)

where L is the measured value from the accelerometer, S is the sensitivity of the accelerom-
eter (S = 100mV/g), and g = 9.81 m/s2 is the standard gravity.

The Fourier transformation of the signal for a spring set is shown in Figure 4. In
Plot (a), the whole spectrum is shown. There is one dominating frequency of about 15 Hz,
which corresponds to the rotation frequency of the shafts. Besides, some excitations are
observed in the frequency range of 150–10,000 Hz, which are visible clearly in Plot (c).
Generally, the amplitude of these excitations is much lower than the amplitude of the
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screen’s working frequency. For frequencies higher than 10 kHz, almost no excitations are
observed, although this range could be important for bearings diagnostics.
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2.2. Wavelet Denoising Procedure

In this subsection, the procedure of wavelet filtering is described. The wavelet denois-
ing procedure consists of three main steps (for more detail, read [23–38]):

• Multilevel wavelet decomposition.
• Finding thresholds for detail coefficients.
• Reconstruction of the signal.

Wavelet transform is a tool that cuts up the signal into detail coefficients (CD), ap-
proximation coefficients (CA), and downsamples (Figure 5). The detail coefficients can be

defined as high-frequency coefficients yhigh[n] =
∞
∑

i=−∞
s[i]h[2n− i], and the approximation

coefficients can be defined as low-frequency coefficients ylow[n] =
∞
∑

i=−∞
s[i]g[2n− i], where

i is a sampling data point, n is the size of the sampling data, s[i] is the raw signal, and
g[2n− i] and h[2n− i] are low-pass and high-pass filters. The wavelet function is composed
of the scaled and translated copies of the scaling function φ(x) = ∑

n
h(n)
√

2φ(2x− n) and

the mother wavelet function ψ(x) = ∑
n

g(n)
√

2φ(2x− n).
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After signal decomposition into detail and approximation coefficients, it is necessary
to threshold detail coefficients. One of the methods is hard thresholding, described by
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equation hλ(x) = x× 1{|x|>λ}. The signal x remains unchanged if its values are lower than
–λ or greater than threshold λ; otherwise, the values are replaced with zeros. Another
method is soft thresholding sλ(x) = sign(x) ×max(|x| − λ, 0). Here, values greater in
magnitude than the threshold are shrunk towards zero by subtracting the threshold from it.
The method that is the combination of both methods explained is semi-soft thresholding,
described by the equation below:

cλ(x) =





x, |x| > λ2,

sign(x)× λ2(|x|−λ1)
λ2−λ1

, λ1 ≤ |x| ≤ λ2,

0, |x| < λ1.

Thresholds are calculated for each detail coefficient dj (i.e., noise). A common thresh-
old choice is, for example, universal threshold λ = σ

√
2 log n, where n is the length of noise

and σ is the median of absolute values from noise divided by 0.6745 [39]. Our threshold
choice was λ1 = µ + 2σ2 and λ2 = µ + 3σ2, where µ is the mean and σ2 is the variance of
the detail coefficient (Figure 6).
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Other more widely used thresholding methods are adaptive threshold selection, using
the principle of Stein’s Unbiased Risk Estimate (SURE) [40], and the minimax threshold [40].
(For more about thresholding, read [40–42].)

After thresholding, the signal can be reconstructed by inverse multilevel wavelet
transform. The noise is the difference between the raw signal and the denoised signal.

2.3. Trajectory Calculation Procedure

One of the most important diagnostic characteristics of the mining screen is its trajec-
tory (also referred to as orbit). The trajectory of the mining screen can be determined by
double integration of the original acceleration signal in vertical and horizontal directions.
The processing steps for the vertical vibrations and the horizontal vibrations are shown in
Figure 7. At the start, the input is the acceleration of the horizontal or vertical vibrations.
The algorithm must be used separately for both directions. Next, outputs must be merged
by time vectors to find trajectory.
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or vertical).

The first step was denoising the signal. On the schema, the wavelet denoising is sug-
gested, but some other methods and calculations without filtering at all will be compared
later in this article. After wavelet denoising, the signal was integrated with the use of the
Euler method, and the velocity was obtained. Then, the velocity values were filtered by a
10-order high-pass Butterworth filter to remove slowly changing trends in data, such as
gravity. Significant outliers may appear due to possible breaks in the recorded acceleration
signal. This is why Tukey’s fences technique [37] was applied to remove outliers. The
signal was integrated once more with the use of the Euler method, and the coordinates of
the screen were obtained. The trend and outliers in the coordinates were removed in the
same way as in velocity signals.

After all the horizontal and vertical coordinates are connected by time vectors, the 2D
vector of the position changed in time can be obtained for any period of time. The expected
trajectory of the screen is an ellipse. For long-term trajectory analysis, the calculation
of some key parameters of the ellipse can be useful. In order to achieve this, an ellipse
equation was fitted to the trajectories obtained numerically. The following total least
squares estimator for 2D ellipses was used:

{
xt = xc + a cos θ cos t− b sin θ sin t
yt = yc + a sin θ cos t + b cos θ sin t

(2)

d =

√
(x− xt)

2 + (y− yt)
2, (3)

where (xt, yt) is the closest point on the ellipse to (x, y). Thus, d is the shortest distance
from the point to the ellipse. By minimizing d, the parameters of the elliptical trajectory
can be calculated.

3. Results

In this section, the main results are shown. The results are presented for a selected
spring set of a sieving screen.

The mother wavelet and level of decomposition were selected based on the Pear-
son correlation coefficient between the raw and denoised signals. The different meth-
ods of thresholding have been checked. Satisfactory results have been obtained for the
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biorthogonal 2.2 wavelet (bior2.2) with the sixth level of decomposition and the semi-soft
thresholding method.

First, an example of filtering is shown, then the wavelet filtering is compared to some
other method, and finally, the orbit calculation results are compared. In this article, we
focus on the signals for springs, although similar analyses could be carried out for bearings.
(See [26] for an interesting approach for bearings.) The wavelet filter was applied to the
vibrational signal from the spring set of the sieving screen. In Figure 8, the signals before
and after the wavelet denoising, as well as the noise, are presented.
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Figure 8. Wavelet denoising of the vibrational signal recorded on the spring.

In the first step of wavelet denoising, the acceleration signal was put into cascaded
filters (see Figure 5) with the biorthogonal 2.2 wave. The bior2.2 wave is symmetric, not
orthogonal, and biorthogonal. Next, for each detail coefficient, the semi-soft thresholding
method was applied (Figure 6).

A key parameter that affects the performance of the wavelet filtering is the level of the
filter, i.e., how many steps are performed in the procedure, shown in Figure 5. In Figure 8,
a denoise level equal to 6 was chosen. In Figure 9, the denoising results obtained with
different levels of wavelet decomposition are compared. As seen for lower values (n = 3), a
significant amount of noise is present in the filtered signal. On the other hand, for higher
values, either some details of the original signal are lost (n = 9), or the signal is distorted
completely (n = 12). We have chosen an intermediate value (n = 6), which gives a smooth
enough signal but does not distort it at the same time.

Next, the results of the wavelet filtering are compared with some other techniques of
signal processing. In Figure 10, the wavelet denoising is compared with a moving-average
filter (AVG), which is one of the obvious choices for smoothing data. The window size of
the moving average was equal to 150 observations, which correspond to 0.003125 s. In
general, wavelet filtering improves the signal-to-noise ratio of the original signal. It usually
fits within the range of the original signal and, at the same time, provides a rather smooth
line without small excitations. Slower changes in the signal are caught, while the faster
excitations are filtered out. Although the output of the moving-average filter is also very
smooth, it does not fit the original signal as well as the wavelet signal. In the case of larger
excitations observed in the original signal, some major deviations between the original
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signal and the moving-average signal are observed. Those deviations seem to be small,
but during further processing steps (for example, orbit calculations), such small errors can
accumulate and lead to distorted results and inappropriate screen diagnostics.
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Next, we compared the results of wavelet filtering with a low-pass filter. The original
signal contains very slow excitation, corresponding to the movement of the whole screen
with a frequency of 15 Hz. An obvious way to isolate these vibrations is to apply a low-pass
filter. The results of the comparison are shown in Figure 11. The wavelet denoising is
compared to a two-order low-pass Butterworth filter with a cutoff frequency equal to 18 Hz.
The filter must be applied twice: once forward and once backward. The combined filter
has a zero phase and a filter order twice that of the original. First of all, the results obtained
by applying the low-pass filter are very smooth because, basically, it is a single harmonic
excitation. On the other hand, the amplitude of the signal after low-pass filtering is lower,
which can result in appropriate screen diagnostics. The wavelet results can be improved by
smoothing or adaptive changing of the level or types of the wave.
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Finally, the results obtained by filtering the original signal using different techniques
were used to calculate the trajectory of the sieving screen. The trajectory was calculated
using the procedure described before in Figure 6 using the raw signal, the signal processed
by low-pass filtering, and the signal processed by wavelet filtering. The results are shown
in Figure 12. The trajectory calculated on the raw signal is shown in blue, the one calculated
after low-pass filtering in orange, and the one filtered by wavelets in red. Although the
results are similar, some major differences may be observed. The main issue with the
trajectory calculated based on the raw signal is the fact that it is diverging fast. The
difference between the two rotations is significant, and it increases further with time. It
is even more visible on a magnified plot. This can be explained by the accumulation of
errors during the integration of the original signal. Both filtering techniques deal with this
issue well: the divergence is much lower for both the low-pass and wavelet filters. Lower
divergence of the trajectory will allow the use of longer parts of the signal for trajectory
calculation, which will allow for the calculation of the parameters of a trajectory in a more
reliable way.
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When it comes to a comparison between the results of the low-pass filter and the
wavelet filter, the main difference is the magnitude of the trajectory. The length of the
trajectory in the case of low-pass filtering is significantly lower than in the case of wavelet
filtering. This fact can lead to inappropriate diagnostics of the screen. Many methods
for predictive maintenance rely on setting the alarm threshold for such parameters as the
length of the trajectory. In the case of calculations using the low-pass filter, the measured
parameters of the orbit may be lowered, which can potentially lead to unexpected failures
due to the fact that the maximum safe magnitude was exceeded.

4. Discussion and Conclusions

In this paper, a novel procedure for technical condition monitoring of a vibrating
screen in the presence of impulsive noise has been presented. The methods found in the
literature are mainly dedicated to noise reduction for the purpose of detecting local damage
to rolling bearings. In this paper, we have focused on springs. One of the popular methods
of assessing the technical condition of springs is to analyze the trajectory of their movement.
In order to estimate orbits, it is necessary to have access to two orthogonal vibration signals.
Unfortunately, the presence of impulsive background noise due to large pieces of ore falling
down distorts these estimates. One solution may be to properly smooth and filter the raw
signal.

In this article, a wavelet filtering technique is applied for this purpose. The filtering
procedure, as well as the procedures for orbit calculation and parametrization, were
described. Then, these procedures were applied to vibrational data collected in an ore
processing plant from a machine operating in industrial conditions. The results of wavelet
filtering are compared with other methods, such as moving-average filtering and low-pass
filtering. Next, the trajectory was calculated using different preprocessing techniques, and
the results were compared.

Wavelet filtering has shown some improvement compared to both moving-average
and low-pass filtering. When compared with the moving-average filter, the wavelet filtering
better represents the original signal. The moving average was very sensitive to outliers in
the original signal, while the wavelet-filtered signal was, in most cases, within the original
signal. Compared to the low-pass filter, the wavelet filter better conserves the magnitude
of the original signal.
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When it comes to trajectory calculation, preprocessing using wavelet filtering also gave
some advantages. Compared to the calculation based on unfiltered data, better convergence
of the trajectory was obtained. It will allow for the use of more data for parametrization
of the trajectory (fitting and calculation of an ellipse equation to numerically calculated
trajectory), which will give more reliable results. On the other hand, compared to low-
pass filtering, the magnitude of the orbit calculated using wavelet filtering is closer to
the original one, which may allow one to avoid exceeding the working parameters of the
screen.

Of course, wavelet filtering has some downsides. First of all, an appropriate decompo-
sition scaling function and the level of the filter need to be chosen properly, which can be
time-consuming. However, after optimization of these parameters, wavelet filtering gives
good results compared to some other smoothing and filtering techniques. In the future, it
is planned to compare the results with some more sophisticated filtering techniques.
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Abstract: Vibrating flip-flow screens (VFFS) are widely used to separate high-viscosity and fine
materials. The most remarkable characteristic is that the vibration intensity of the screen frame is only
2–3 g (g represents the gravitational acceleration), while the vibration intensity of the screen surface
can reach 30–50 g. This effectively solves the problem of the blocking screen aperture in the screening
process of moist particles. In this paper, the approximate state of motion of the sieve mat is realized
by setting the discrete rigid motion at multiple points on the elastic sieve mat of the VFFS. The effects
of surface energy levels between particles separated via screening performance were compared and
analyzed. The results show that the flow characteristics of particles have a great influence on the
separation performance. For 8 mm particle screening, the particle’s velocity dominates its movement
and screening behavior in the range of 0–8 J/m2 surface energy. In the feeding end region (Sections
1 and 2), with the increase in the surface energy, the particle’s velocity decreases, and the contact
time between the particles and the screen surface increases, and so the passage increases. When the
surface energy level continues to increase, the particles agglomerate together due to the effect of the
cohesive force, and the effect of the particle’s agglomeration is greater than the particle velocity. Due
to the agglomeration of particles, the difficulty of particles passing through the screen increases, and
the yields of various size fractions in the feeding end decrease to some extent. In the transporting
process, the agglomerated particles need to travel a certain distance before depolymerization, and the
stronger the adhesive force between particles, the larger the depolymerization distance. Therefore,
for the case of higher surface energy, the screening percentage near the discharging end (Sections
3 and 4) is greater. The above research is helpful to better understand and optimize the screening
process of VFFS.

Keywords: vibrating flip-flow screen; DEM; wet stick material; JKR model; separation performance

1. Introduction

Flip-flow screening technology is a new concept of screening technology that has been
widely used and promoted in recent years. The VFFS has a wide range of applications
in many fields, such as the fine coal screening process, cyclic screening of ore grinding
products by high-pressure roller mill, and resource utilization of building solid waste [1,2].
Compared to traditional vibrating screens, such as linear vibrating screens and circular
vibrating screens, the VFFS has the following advantage: small vibration intensity of
main screen frame (2–3 g), therefore the dynamic load on the foundation is small; high
vibration intensity of the sieve mat (up to 30–50 g). Furthermore, the VFFS is extremely
friendly to the screening of viscous and wet fine-grained material, and it is not easy to block
apertures on the screen surface while ensuring high screening efficiency and processing
capacity. Due to the existence of water content between viscous and wet particles, there is a
liquid bridge force between particles; particles will gather into clusters when the cohesion
between particles is strong enough. When using traditional vibrating screens to process
the wet and fine particles, the vibration intensity is not enough to make the agglomerated
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particles depolymerized, and the screens are extremely prone to blockage, adhesion, and
compaction, which deteriorates the screening process [3]. The vibration frequency of VFFS
is generally lower than a traditional screen, but through the large deformation of the elastic
sieve mat, the peak acceleration is easy to produce. The vibration response of the sieve mat
agitates the particle bed to deagglomerate the agglomerated particles. This drives the fine
particles to flow down the bed and then pass through the screen to become the undersized
product. The elastic sieve mat agitates the bed to depolymerize the agglomerated particles.

Standish constructed a single-particle model to investigate particle motion base on
the reaction kinetics and probability theory. However, the collision between particles is
not considered [4,5]. Soldinger developed a semi-mechanical phenomenological model of
a linear vibrating screen, taking into account the stratification and passage [6]. Soldinger
further extended the model after considering the material loading effect and the screening
efficiency of different size particles [7]. The actual screening process is very complicated,
and particle movement is affected by many conditions. At present, the discrete element
method (DEM) simulation is an effective method for the simulation of granular systems,
which has been used in various industrial processes. Cleary et al. quantitatively investi-
gated the particle flow and screening performance of an industrial double-deck banana
screen with different accelerations based on DEM simulation [8,9]. Davoodi et al. reported
the effect of the aperture shape and the material on the particle flow and sieving perfor-
mance [10]. Dong et al. simulated the screening process with the discrete element method
and studied the influence of rectangular aperture shapes, with different aspect ratios, on
material movement and screening efficiency [11]. Zhao et al. studied the influence of the
motion parameters of the linear and circular vibration screens on the screening perfor-
mance [12]. Wang et al. used the discrete element and the finite element methods to study
the influence of vibration parameters on the screening efficiency of the vibrating screen. In
addition, the distribution of stress and deformation on the screen surface under different
vibration conditions has also been reported [13].

The above studies are mostly focusing on dry particulate systems, which are based
on the Hertz–Mindlin model. In the actual screening process, due to the small particle
size, large specific surface area, and external moisture, the fine particles easily agglomerate
with each other to form large-size particles. The particles agglomerate together and move
as a whole, making the screening process difficult. Limtrakul et al. reported that fine
particles in a fluidized bed have particle agglomeration and stagnation regions due to
high cohesion and confirmed the influence of vibration on improving fluidization through
experiments [14]. Yang et al. investigated the influence of surface energy on the transition
behavior of Geldart A-type particles from a fixed bed to a bubbling bed through a two-
dimensional DEM-CFD simulation [15]. Cleary et al. reported the effect of cohesion
between particles on particle flow over a double-deck banana screen [16]. At present, there
are few numerical simulation studies on the movement and separation of viscous and wet
material on VFFS.

In this study, the elastic sieve mat of the VFFS is discretized into multiple units by
testing the movement of each unit body. According to the phase relationship of the unit
body, it can describe the kinematics of the entire elastic sieve mat. The motion of each point
on the sieve mat can be transformed into a function form by the Fourier series, which is
used as the basis for setting the motion of the VFFS model. The effects of different adhesion
levels on particle flow and screening performance on VFFS were compared and analyzed,
which is helpful to better understand and optimize the screening process of the VFFS.

2. Simulation Methods
2.1. Contact Model of Particles

Due to clay and water present on the particle surface, there is a cohesive force between
particles. The commonly used Hertz–Mindlin contact model struggles to comprehensively
analyze the mechanical behavior between wet particles and between particles and the
screen surface. The Hertz–Mindlin with JKR contact model, which considers the cohesive
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force, can better simulate the behavior of viscous and wet particles. Taking into account
the effect of the surface energy (adhesion force) between the particles on the movement
and screen penetration, the calculation of the normal elastic contact force is based on the
Johnson–Kendall–Roberts theory [17,18].

Figure 1 shows the contact process of two cohesive particles. R1 and R2 represent the
radius of Particle 1 and 2, respectively (mm). a stands for the contact radius between the
particles (mm), and a0 is the radius of the contact surface considering the adhesion (mm).
δn is the amount of normal overlap (mm). Due to the cohesive force on the contact surface,
the contact radius of these two particles extends from a to a0.
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The cohesive force between the wet and viscous particles is set as W(J/m2), which can
be obtained by Equation (1).

W = γ1 + γ2 + γ12 (1)

where γ1 is the surface energy of Particle 1 (J/m2); γ2 is the surface energy of Particle
2 (J/m2); γ12 stands for the interface energy between Particles 1 and 2 (J/m2). When
the material of the particles is the same, the interface energy is 0 J/m2, that is, γ12 = 0,
γ1 = γ2 = γ, therefore, W = 2γ.

a =
√

δnR∗ (2)

δn =
a2

0
R∗ −

√
4πγa0

E∗ (3)

1
R∗ =

1
R1

+
1

R2
(4)

1
E∗ =

1 − υ2
1

E1
+

1 − υ2
2

E2
(5)

Here γ is the surface energy between wet particles (J/m2); R∗ is the equivalent contact
radius (mm); E∗ is the equivalent elastic modulus (N/m2); E1, E2 represent the elastic
modulus of Particle 1 and 2, respectively (N/m2); υ1 υ2 are the Poisson’s ratio of these two
particles, respectively (-).

Then, the normal elastic contact force FJKR(N) between the wet particles can be calcu-
lated by Equation (6):

FJKR = −2
√

2πWE∗a3
0 +

4E∗a3
0

3R∗ (6)

When the surface energy of the viscous particle is 0 J/m2, the model FJKR is simplified
to the contact force FHertz.
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2.2. The DEM Model Setting of VFFS

The structures of the VFFS and elastic sieve mat are presented in Figure 2. Different
from the traditional vibrating screens, the VFFS consists of two vibrating frames, including
the main screen frame and the floating screen frame. The beams of the two frames are
arranged in a staggered layout. When the exciter mounted on the main screen frame is
operated, both the screen frames move relative to each other through the effect of rubber
shear springs. The elastic sieve mats are periodically stretched and slackened to generate
peak acceleration, typically 30–50 times gravity.
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Figure 2. Structures of the VFFS and elastic sieve mat.

For traditional screening equipment such as circular vibrating screens and linear
vibrating screens, the vibration parameters of the screen surface are consistent with the
vibration response of the screen frame. Therefore, it is relatively easy to set the model of
the traditional vibrating screen in the discrete element simulation. Many scholars have
already done many in-depth studies in these fields [19–21]. For the VFFS, the vibration
response of each position on the elastic sieve mat is different. The accelerometer is used to
test the amplitude response at different positions on the elastic sieve mat. Figure 3 shows
the measuring displacement of the midpoint of the sieve mat.
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The displacement signal of the measuring point on the screen surface is not a regular
simple harmonic function but periodic. Fortunately, any periodic function of time can
be represented by the Fourier series as an infinite sum of sine and cosine terms [22]. Its
Fourier series representation is given by Equation (7).

(t) = α +
∞

∑
n=1

[ancos(nωt) + bnsin(nωt)] (7)

38



Minerals 2021, 11, 631

α =
2
τ

∫ τ

0
x(t)dt

an =
2
τ

∫ τ

0
x(t)cos(nωt)dt

bn =
2
τ

∫ τ

0
x(t)sin(nωt)dt

where ω = 2π/τ is called the fundamental frequency (rad/s) and α, a1, a2, . . . , b1, b2, . . .
are constant coefficients (-). The M (intercepted order of Fourier series) has a direct impact
on the accuracy of the calculation results. The larger the M, the closer the analysis result
is to the accurate value [23], but it will also affect the solution efficiency. Then, we take
the amplitude of the midpoint as an example for the Fourier analysis. Within a motion
cycle, the peak value of the amplitude is 30.27 mm. In contrast to the signals analyzed by
the Fourier series with the measured values, the results are shown in Figure 3. The mean
square error (MSE) of a period and the relative error (RE) of maximum amplitude in the
time domain are used to evaluate the change between the measured amplitude and the
Fourier series analysis result. The results are shown in Table 1.

Table 1. Measured amplitude and analyzed amplitude by Fourier series on the midpoint.

Intercepted Order M M = 1 M = 2 M = 3 M = 4 M = 5

Maximum amplitude (mm) 23.23 28.10 28.79 29.37 29.88
RE (%) 17.19 2.63 2.0 1.57 1.10
MSE 13.06 0.99 0.59 0.40 0.20

When the M is equal to one, the MSE is 13.06. When the M is equal to five, the MSE
reduces to 0.2. Meanwhile, the RE is only 1.1%. Therefore, in this paper, the intercepted
order of all amplitudes analyzed by the Fourier series is taken as five. The testing vibration
amplitudes of each point on the elastic sieve mat are shown in Figure 4. It can be seen
that the vibration amplitudes on the elastic sieve mat are symmetrically distributed, the
midpoint has a large amplitude, and the edge measuring point has a relatively small
amplitude. The movement of each point can be transformed into a function by the above-
mentioned Fourier analysis method.
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Further, the sieve mat is discretized into multiple units, and the simulation of the
approximate continuous flexible motion is realized through the setting of multi-point rigid
motion, as shown in Figure 5.
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Figure 5. DEM model of the elastic sieve mat.

2.3. Simulation Conditions

Figure 6a shows the DEM modeling schematic of the VFFS system. The VFFS used
in the simulation process is specifically composed of eight elastic sieve mats, each with
a size of 328 mm × 650 mm. The screen aperture is 8 mm × 25 mm, and the inclination
angle of the screen is 15◦. In the simulation, the undersized product is divided into four
parts equally by using 633.6 mm as the length interval unit, namely Sections 1–4. Section
5 is used to collect the oversized product. The feeding system is composed of a silo and
a vibrating feeder. The material properties are shown in Figure 6b, and the simulation
parameters in the DEM are shown in Table 2 [24,25]. It is worth noting that the impact of
particle shape on the screening process is not considered in this study. The particles used
in this simulation are all homogeneous spherical particles.
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Table 2. Modeling condition in EDEM.

Material Property Poisson’s Ratio (-) Shear Modulus (Pa) Density (kg/m3)

Particle 0.250 2.200 × 108 2456
Polyrethane 0.499 1.157 × 106 1200

Steel 0.300 7.692 × 1010 7850

Collision property Coefficient of restitution Coefficient of static friction Coefficient of rolling friction

Particle-particle 0.50 0.154 0.10
Particle-polyrethane 0.25 0.500 0.01

Particle-steel 0.30 0.154 0.01

VFFS parameters

Vibration parameter The vibration frequency of 776 r/min, screen inclination of 15◦

Screen parameters Screen length and width with 2624 and 650 mm, respectively
Material properties The total mass of 5.81 kg

3. Effect of Surface Energy Level on Separation Performance

During the screening process, there are always some fine particles existing in the
oversized products and some coarse particles in the undersized products. The screening
efficiency and total misplaced material were used to assess the screening performance in
this paper. The calculation formulas are as follows [26,27]:

η = Ec + E f − 100
Ec =

γo×Oc
Fr

c
× 100

E f =
Fr

f −γo×O f

Fr
f

× 100
(8)

Mo = Mc + M f
Mc = 100 × γuUc
M f = 100 × γoO f

(9)

where the η is the screening efficiency (%), Ec and E f stand for the effective placement
efficiency of the coarse particles (%) and the effective placement efficiency of fine particles
(%), respectively. The Mo is the total misplaced material (%), Mc and M f are the misplaced
material of coarse particles (%) and the misplaced material of fine particles (%), respectively.
The γo represents the yield of oversized product (%), γu is the yield of undersized product
(%), O f is the ratio of fine particles in the oversized product (%), Oc is the ratio of coarse
particles in the oversized product (%), Fr

c is the ratio of coarse particles in the feeding (%),
and Fr

f is the ratio of fine particles in the feeding (%).
Figure 7 shows the flow characteristics of material on VFFS with three surface energy

levels (4, 20, and 36 J/m2). In the case of the surface energy of 4 J/m2, when the particles
enter the screen, the vibration of the sieve mat quickly enables the material to spread on
the screen surface. A larger amount of material pass through the screen in Section 1. As the
screening process progresses along the direction of material flow, the amount of penetration
in other sections gradually decreases. When the surface energy is 20 J/m2, compared to the
case of 4 J/m2, the yield of material in Section 1 is reduced. This section mainly promotes
the depolymerization of agglomerated particles. Meanwhile, the yield of material in Section
2 is increased. When the surface energy is 36 J/m2, there is a great cohesion force between
the particles, and the agglomerated particles need a longer movement distance to complete
the depolymerization process. In Sections 1 and 2, which near the feeding end, the yield
of the undersized product is low, and more particles are concentrated in Sections 3 and 4,
near the discharging end. To further deepen the understanding of the screening process of
VFFS, quantitative analysis was carried out on the products of each section.
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3.1. The Yield of Each Section of VFFS

Figure 8a shows the distribution of product yields between undersized and oversized
products with different surface energy levels, where the distribution is related to the surface
energy between particles. With the increase in the surface energy level between particles,
the yield of the undersized product first increased and then decreased, and at the same
time, the yield of oversized products decreased and then increased. This means that for
each surface energy level, the sum of the undersized and oversized product is 100%. In the
case of the surface energy level of 0–8 J/m2, the particle movement speed dominates the
movement and separation behavior of the particles. With the increase in the surface energy
level within the range of 0–8 J/m2, the particle movement speed decreases, increasing the
contact time between the particle and the screen surface. Therefore, the amount of material
passing through the screen increases. When the cohesive force continues to increase to a
certain level, the particles agglomerate together, and the impact of particle agglomeration
is greater than the particle movement speed. As more fine particles agglomerate together,
their size increases to greater than the aperture size, and the material screening percentages
decreases. The stronger the surface energy between the particles, the longer the distance
the agglomerated particles need to deagglomerate. More fine particles finally enter the
oversized products, so the yield of undersized products drops again. When the surface
energy level is 36 J/m2, around 70% of the material enters the oversized product.
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The yield of each section of the undersized product is further analyzed, and the results
are shown in Figure 8b. It can be seen that with the increase of the surface energy level,
the yield of the undersized product in Section 1 shows a trend of increasing and then
decreasing. When the surface energy is 8 J/m2, the yield in Section 1 is the largest, which is
17.91%. When the surface energy of particles continues to increase, the yield of Section 1
will gradually decrease. For the yield of Section 2, with the increase of the surface energy,
it also shows the law of first increasing and then decreasing. However, the maximum
yield appears at the surface energy of 24 J/m2. With the increase of the surface energy, the
yield in Section 3 first decreases and then increases to a maximum value when the surface
energy is 32 J/m2 and then decreases again. The yield in Section 4 first decreases and then
increases. For the surface energy levels of 0, 4, 8, 12 and 16 J/m2, the undersized product
yield of each section gradually decreases along the direction of the material flow, and
Section 1 accounts for the largest proportion. When the surface energy is 20 J/m2, the yield
in Section 2 is greater than the yield of Section 1. When the surface energy level continues
to increase to 32 J/m2, the yield of Section 3 is greater than the products of Sections 1 and 2.
In Section 1, less than 4% of the particles pass through the screen. As the surface energy
increases, the section with the maximum yield moves toward the discharging end. That is,
the higher the adhesion, the longer the distance required for the depolymerization of the
agglomerated particles.

3.2. The Yield Accounted for Size Fraction in Different Sections

Figure 9 shows the yield accounted for different size fractions in different sections,
during the screening process of the VFFS. For 8 mm particle screening and different surface
energy levels, the 10 mm particles are the oversized product and are all concentrated in
Section 5. When the surface energy is 0, 4, and 8 J/m2, the 4 and 5 mm particles are mainly
concentrated in Section 1, accounting for about 50% of this size fraction. With the increase
of particle size, the yield accounts for this size fraction in Section 1 gradually decreases.
For the 8 mm particles, the yields of this size fraction are 16.59%, 18.41%, and 19.80%,
respectively. In addition, for the case of these surface energy levels, as the surface energy
between particles increases, the yield of each size fraction also increases. This is because
the increase in the level of adhesion reduces the speed of particle movement. The contact
time between the particles and the screen surface is increased, increasing the yield of the
particles of each size fraction. For the cases of the surface energy of 12, 16, and 20 J/m2, the
yield of each size fraction in Section 1 gradually decreased, and the yield of 4 and 5 mm
particles decreased to 51.93%, 44.50%, 36.63% and 47.98%, 38.87%, 35.40%, respectively. For
the case of the surface energy levels of 24, 28, and 32 J/m2, in the product of Section 1, the
yield accounted for the size fraction of each sized particle further decreases. Meanwhile, it
is worth noting that the yield of 4 mm particles in Section 1 is slightly smaller than that of
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5 mm particles, which is due to the surface energy of particles having a greater influence
on fine ones.
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The yield of each sized particle in Section 2 was observed. For the case of 0, 4, and
8 J/m2 surface energy, the yield of the undersized product in Section 2 was significantly
lower than Section 1. Within the range of 0–8 J/m2, as the surface energy increased,
the yield of fine particles increased, and this phenomenon was more obvious when the
adhesion level was higher. When the surface energy was 24 J/m2, the yields of each size
fraction in Section 2 begin to exceed those in Section 1. The yields of large-sized materials
in Sections 3 and 4 are generally higher than in small-sized materials. As the surface energy
increases, more fine particles are deagglomerated under the movement of the sieve mat
in Sections 3 and 4, and the yield of fine particles in the product begins to exceed that of
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coarse particles, becoming the dominant product in Sections 3 and 4. For particles with
a higher level of adhesion, a longer movement distance, that is, a higher external energy
supplement, is required to complete the depolymerization of agglomerated particles. The
higher the adhesive force level, the closer the maximum yield section in the undersized
product is to the discharging end. Moreover, the smaller the particle size, the more obvious
this phenomenon.

3.3. The Screening Percentage of Different Size Fractions of Different Sections

The screening percentages of various size fractions in different Sections of VFFS with
different surface energy levels are shown in Figure 10. In the products of Section 1, for
the particles at the surface energy of 24, 28, 32 J/m2, and 36 J/m2, it can be seen that the
screening percentages of various size fractions are significantly lower than that of other
surface energy levels. Taking 4 mm particles as an example, the screening percentages
of 4 mm particles are 21.93%, 15.41%, 9.00%, and 7.10%, respectively. The main effect of
Section 1 is to promote the depolymerization of agglomerated particles. The longer the
transporting distance of agglomerated particles, the better the depolymerization effect.
It can be observed that for 4 mm particles under the case of the surface energy level of
20 J/m2, the screening percentage in Section 1 is 36.63%, in Section 2 increases to 54.89%,
and the screening percentages in Sections 3 and 4 are 52.45% and 50.74%, respectively.
When the cohesive force level continues to increase to 28 J/m2, the screening percentage in
Section 1 is 15.41%, in Section 2 it is 38.08%, and increases to 48.23% and 48.89% in Sections
3 and 4, respectively. When the surface energy is 36 J/m2, the screening percentage in
Section 1 is only 7.10%, and further increases to 18.19%, 32.24%, and 41.55%, respectively.
Compared with the coarse particles, the surface energy level has a more significant effect
on fine particles. After the depolymerization of fine particles, the screening percentage of
fine particles will be significantly improved.
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3.4. The Screening Performance of Various Size Fractions in Different Sections and Screen Length

Figures 11 and 12 show the screening efficiency and misplaced material of various
size fractions in different sections and screen lengths of the VFFS with different surface
energy levels. The particles shape in the simulation are spherical, so in the actual simula-
tion process, no coarse particles enter the undersized products. The effective placement
efficiency of the coarse particles is 100%, and the misplaced material of coarse particles
is 0%. Therefore, the screening efficiency is equal to the effective placement efficiency
of fine particles, and the total misplaced material is equal to the misplaced material of
fine particles. For 8 mm particle screening, when the surface energy between particles is
0 J/m2, the screening efficiency in Section 1 reaches the maximum of 29.15%, and the total
misplaced material is 39.50%. With the flow of material, the screening efficiency in Sections
1–4 decreases gradually. When the surface energy increases to 5 and 8 J/m2, the screening
efficiency increases in Sections 1 and 2, and the total misplaced material decreases, which
is mainly due to the surface energy between particles reducing the movement speed of
particles and increasing the residence time of particles on the screen surface, thus increas-
ing the screening efficiency. After the surface energy of 16 J/m2, the influence of particle
agglomeration begins to be greater than particle velocity, and the screening efficiency starts
to decrease. The screening efficiency of Section 2 begins to be greater than that of Section
1. In addition, the screening efficiency of Sections 3 and 4 are higher than those of the
levels 0, 5, 8, and 12 J/m2. For the case of 24 J/m2, the maximum screening efficiency
appears in Section 3, which is 30.54%. When the surface energy increases to 32 J/m2, the
screening efficiency of Section 4 is the highest, which is 27.88%. For different surface energy
levels, the screening efficiency of particles increased with the increase in screening length.
When the surface energy is 8 J/m2, the screening efficiency of VFFS is the highest, which is
72.52%, and the total misplaced material is 23.81%.
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4. Conclusions

The following conclusions can be drawn from the above research.
(1) Due to the amplitude at each point on the sieve mat changing periodically, the

motion can be transformed into a function form by the Fourier series. The DEM simulation
of VFFS is realized by setting the multi-point rigid motion of the sieve mat.

(2) When the surface energy level is in the range of 0 to 8 J/m2, the particle velocity in
the feeding end region (Sections 1 and 2) dominates the movement behavior of particles
passing through the screen. In Sections 1 and 2, the particle movement speed decreases,
which increases the contact time between the particles and the screen surface, increasing
the screening percentages. When the level of surface energy continues to increase, more
fine particles are agglomerated together, which increases the screening difficulty. The effect
of particle agglomeration in the feeding end is greater than its movement speed, and the
screening percentages of each particle size in the feeding end have been reduced. Agglom-
erated particles need a certain transporting distance to deagglomerate. The stronger the
surface energy between particles, the greater the distance the particles need to deagglomer-
ate. Therefore, for the case of a higher surface energy level, close to the discharging end
(Sections 3 and 4), the screening percentages of the material are greater.

(3) The screening efficiency increases with the increase in screen length for different
surface energy levels. When the surface energy is 8 J/m2, the screening performance
of VFFS is better, with a screening efficiency of 72.52% and a total misplaced material
of 23.81%.

Since the shape of the screen apertures of the elastic sieve mat is a straight slot, in the
actual screening process, there is a situation that the strip particles pass through the screen.
In future work, the influence of the shape characteristics of the particles on their movement
and screening performance should be considered. Furthermore, we still need to carry out
some full-scale screening experiments of wet particles based on the experimental VFFS.
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Abstract: Article concerns problem of jig beneficiation of mineral aggregates and focuses especially
on problem of separation of hard-enrichable materials. Investigative programme covered tests
in laboratory and semi-plant scale and material with different content of regular and irregular
particles, along with various particle size fractions, was under analysis. Two patented solutions were
utilized as methodological approach and densities and absorbabilities of individual products were
determined and major novelty of approach consist in separate beneficiation of regular and irregular
particles. Results of laboratory investigations showed that more favorable separation effectiveness
was observed for the narrow particle size fractions of feed material. In terms of absorbability
difference between separation products from I and IV layer was 0.4–0.5% higher for regular particles,
and up to 0.5% higher for irregular grains. Differences in densities of respective products were
0.1% higher for regular particles. Results of semi-plant tests confirmed the outcomes achieved in
laboratory scale. The qualitative characteristics of separation products in terms of micro-Deval and
LA comminution resistance indices were one category higher for regular particles, and two categories
higher for irregular grains, comparing to the raw material.

Keywords: aggregates; jig beneficiation; mineral processing; raw materials; separation

1. Introduction

Jig beneficiation is a simple and economical method of raw materials enrichment.
It is especially efficient for separation of minerals with relatively high differences of their
densities. The environmental footprint of jig beneficiation is also low, especially in terms
of dust and noise pollution but also due to relatively low water and energy consumption,
comparing to flotational separation or chemical beneficiation, and also selected operations
of mechanical enrichment [1–3].

An up to date review of the jigging operation fundamentals and outlines of directions
for future research and developments were presented in [4]. The configuration, opera-
tional principles, and main applications of different jig types have been comprehensively
reviewed. A description of the main theoretical approaches was also presented, with high-
lighting of strengths and weaknesses of operations. Gravity separation is, in general,
quite simple method of raw material beneficiation and quite well documented in literature.
This method is economically efficient and does not require an intensive consumption of
energy and other media [5,6].

Jig beneficiation is most commonly used for coal preparation, where the difference
in densities of coal and the waste rock are high [7,8]. In rock materials processing, the ef-
fectiveness of separation process might be lower, but it greatly depends on the degree of
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useful mineral liberation and the difference in densities of the material being separated.
However it appears that apart from density several other features of the feed material are
influential, like particle size and the shape of individual particles [9,10]. Results of various
investigation show that after suitable preparation of the feed material i.e., separation of
entire feed into narrow particle size fractions, together with distinction of regular and
irregular particles, may significantly increase the effect of jig process beneficiation. The jig
enrichment technology can also be used in the processing of other mineral resources, espe-
cially in removing of impurities at initial stages of aggregates, sand or gravel treatment [11].
It is also possible to recover in jigs building materials from demolition debris and road
materials [12], electronic waste or plastic [13,14].

Industrial practice shows that jigs are common in plant operation, however not in
all sectors of mining and mineral processing industry. Beneficiation of raw materials
with relatively high differences of densities are not problematic, but in some aspects,
especially when the difference between the density of useful mineral (i.e., than can be
used effectively in further production) and the gangue, or between the two product to be
separated, is lower, application of jigs is an issue [4].

There are relatively low number of publications concerning applications of jigging
processes into aggregate enrichment. More results can be found in concrete separation
especially the materials from demolition of building constructions [15,16]. Despite of that
the problem of aggregate segregation is significant, because it influences improvement of
qualitative characteristics of final products, through elimination of weaker and partially
damaged particles, as well as weathered grains [17,18].

2. Materials and Methods
2.1. Research Significance

There has been done a significant development in the design of settling machines in
recent years, resulted from a high demand for good quality aggregates [4,19,20]. An ap-
plication of density separation methods into aggregate production can be used more
effectively in industry due to the different lithological and physical properties of the sepa-
ration products and variations in values of strength and absorbability parameters [21,22].
These applications are suitable for natural, recycled and anthropogenic aggregates [15,16]
The article presents results of tests on a prototype and unique SET device (a separator for
hard-enrichable particles), constructed especially for research purposes according to the
patented concept (Patent PL 233318B1). The main and innovative idea presented in the
paper concerns running the jig beneficiation process in more narrow particle size fraction,
and separately for regular and irregular particles. Such an approach was not presented
in literature.

2.2. Methodology

The enrichment process in a jig takes place as a result of the separation of the feed into
fractions according to the selected physical feature, i.e., the density [23]. It can be effective
in the air, water or other liquid medium lighter than the components of the enriched
material. Rock materials with different densities can be characterized by different settling
velocities when they are subjected to a vertical pulsating motion in a specific medium (i.e.,
water). The theoretical bases of separation in jigs have been described by Newton-Rittinger
law. According to this law, the description of particle movement in a liquid under the
influence of pulsation takes into account the limiting settling velocity in a situation in which
the geometric sum of gravity and hydrostatic buoyancy forces, as well as the medium
resistance that act on a single particle, equals zero. It is assumed that when the material
layer in the jig loosens, each particle moves freely, regardless the presence of surrounding
particles. The free settling ratio (Equation (1)) can be helpful in assessing the separability
of the material under treatment.

e =
d1

d2
=

ρ2 − ρo

ρ1 − ρo
(1)
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where: index 1—particles of lower density; index 2—particles of higher density; d—particle
diameter, [mm]; e—free settling ratio; ρ1, ρ2,—particle densities, [g/cm3]; ρo—liquid density,
[g/cm3].

The free settling ratio, e, gives an indication of the scope of the feed material preparation
needed for enrichment in jigs and defines the following natural limitations for the process,
which, if not taken into account, can significantly reduce the efficiency of separation:

− feed should contain a minimum of equally settling particles i.e., differentiated in terms
of densimetric and granulometric properties,

− the material must be homogeneous in terms of density distribution,
− the feed material should be proceeded into narrow granular classes.

Two most common efficiency indicators used in assessment of jigs performance are
the probable error (Ep) and imperfection (I) [24]. The regularity and irregularity of particles
can be measured by means of the Schultz caliper or on a bar slotted screen. The obtained
values of shape and flatness coefficients indicate whether the particle can be regarded
as a regularly shaped or not. The general principle is that if the shortest dimension of a
particle is more than two time smaller than its longest dimension, the particle is regarded
as irregular in shape. Also, particles that are porous have a natural ability to absorb a
significant amount of water. Porosity was determined indirectly by determining the volume
of water retained within an individual particle. The effectiveness of jig beneficiation was
also analyzed in terms of a particle’s water absorption properties or ‘absorbability’—an
index determined by measuring the amount of water absorbed by the particle immersed
in water.

Primary aim of application of jigs in raw materials enrichment is a feed separation into
products according to density of individual particles, but the material can be also separated
according to the shape. Particle settling velocity is determined by density, size and shape
of a particle and can be calculated on the bases of Formula (2), derived from heuristic
considerations [25]:

v = 5.33
√

x
√

dp

√(
k1

k2

)
(2)

where: x = (ρ − ρ0)/ρ—density of reduced particle, ρ—density of particle, ρ0—density
of the liquid, dp—projection diameter of particle, k1—volumetric shape coefficient, k2—
dynamic shape coefficient.

On the basis of work [18,26] there can be noticed differences in settling velocities of
regular and irregular particles (Table 1), while the greatest variations can be observed in
upper product (layer IV).

Table 1. Settling velocities for regular and irregular particles in individual layers (jig products).

Number of Layer
(Product) in the Jig

Settling Velocity, [m/s]

For Regular Particles For Irregular Particles Difference

I 0.21 0.18 0.03
II 0.20 0.16 0.04
III 0.19 0.14 0.05
IV 0.22 0.16 0.06

It can be also noticed that regular particles have higher values of settling velocities,
due to lower resistance of their round edges. It is then possible to obtain a more effective
separation process of regular and irregular particles in enrichment of a materials with
narrow particle size fraction. This has been investigated in a semi-plant tests within the
paper. The entire research program includes laboratory and semi-plant tests and in semi-
plant scale the jig constructed especially for purposes of investigations, according to the
concept of a patented invention (PL 233318B1), was used. Variables in laboratory tests
were selected considering qualitative criteria (content of regular or irregular particles),
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and technological aspects of aggregate production (fine or coarse products). These variables
entirely determine value of obtained products, thus control of these parameters may
influence the economic effectiveness of a mineral aggregate production plant. Different
levels of variables in experiments, in turn, were adopted on the bases of characteristics of
typical commercial aggregate products.

3. Experimental
3.1. Characteristics of Testing Device

An innovative approach presented in the paper consists in a separate enrichment
of regular and irregular particles. Narrow particle size fractions were divided from the
material prior to the jigging process. The reason of applying the above procedure was that
properties of particles in specific size fractions are more homogenous, and variations in
values of individual features (i.e., density, absorbability, porosity) could be more visible.
In the first stage of investigations laboratory scale experiments were performed, and then
semi-plant tests were carried out. Preparation of feed for laboratory tests was possible
thanks to the application of a patented solution (Figure 1) for production of regular and
irregular aggregates (Patent PL233689). The solution has not been used in aggregate
production so far, and the findings of the paper show that its application is justified and
may give measurable effects.
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The circuit designed according to the innovative idea, can produce a final aggregate
product with irregular particle contents as low as 2–3%. It requires only the application
of quadratic and slotted mesh sieves, cooperating with the crusher working in a closed
circuit, either operating on a first or second stage. The obtained irregular particles can
be comminuted in the same crusher or in a secondary stage of crushing, for example in
an impact crusher (cubiser) what can additionally improve the quality of the product.
The contents of irregular particles in final products depends on capacity of the screen with
slotted sieve and especially on the relation between the narrow particle fraction range and
size of the slot in sieve. This sieve should be selected according to “dmax/2” principle, i.e.,
half of the maximum size of the particle fraction. For the reason that content of irregular
particles is lower for coarser particle fractions and the screening efficiency for coarser
particles is better, screening of irregular particles in coarser fractions will be easier and
more efficient.

Laboratory scale tests were carried out in a jig, in which the regular and irregular
particles were enriched separately. The height of the working chamber of the device was
400 mm, the inner diameter of the rings: 100 mm, the height of the ring: 25 mm. The pulse
frequency was 90 cycles per minute. Each product layer consisted of two rings: the two
lowest rings constituted layer I (the bottom one), while the seventh and eighth rings were
layer IV (the upper layer). Additionally, for comparison, enrichment tests were carried out
for the material with natural content of regular and irregular particles. Experiments were
carried out for various particle size fraction of material and various content of regular and
irregular particles.

The second stage of experiments—semi-plant tests—were conducted for the feed
prepared according to the patented technology for production of aggregates based on
separation of narrow particle size fractions according to size and shape, and downstream
densimetric enrichment of particles. The hard-enrichable particles separator (SET) is a
device that utilizes water as a working medium for separation of the aggregate feed into two
fractions differing from each other in terms of density and other physical and mechanical
properties (Figure 2). The degree of aggregate separation is variable and depends on
the amount of water used and an amount of individual size fractions of the aggregate.
Primary operational characteristics of the separator parameters are presented in Table 2.
Operational throughput of device was 2500 kg/h, and tests were conducted at high (serie I)
and low (serie II) height of the separation threshold. In the serie I the position of the
threshold in separator allowed for obtaining 75% of lower (heavier) and 25% of upper
product. In the serie II of semi-plant investigations the share in separation products was
reverse, i.e., 25% of lower product and 75% of upper one.

3.2. Research Programme and Scope of Analyses

The scheme of research programmes both in laboratory and in semi-plant scale is
presented in Figure 3. The regular and irregular particles in each narrow size fraction
were separated by classifying on a screen with slotted apertures, according to the standard
PN-EN 933-3:2012. The prepared narrow size fractions were enriched in a jig and the idea of
operation of such circuit was to eliminate equally settling particles prior to the gravitational
separation process, which would have a negative effect on the separation sharpness in
the jig. Detailed characteristics of the feed material for laboratory tests is presented in
Table 3. Separation products were subjected to density, absorbability and porosity analyses.
Density was determined with using of Archimedes law, while absorbability was established
by weighing of wet and dry product and performing suitable calculations.

Separation products were subjected to density, absorbability and porosity analyses.
Density was determined with using of Archimedes law, while absorbability was established
by weighing of wet and dry product and performing suitable calculations. It is worth to
mention here, that obtained absorbability values do not determine the real absorbability
indices that can be determined according to relevant standards. In this case we rather mean
the “processing” or “operational” absorbability, that is an amount of water that individual
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particle can absorb while it is in the jig during the process. The porosity, in turn, was deter-
mined manually, i.e., each particle was inspected and it was classified as a “porous particle”
when pores and irregularities covered more than 50% of its surface. This porosity deter-
mined in this way can be rather understood as an external one, because this technique does
not allow for determination of internal structure of individual particle.
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Table 3. Summary characteristics of individual tests.

Test Number Type of Material Particle Size, [mm] Regular Particles
Content in Feed, [%]

Irregular Particles
Content in Feed,

[%]

I gravel 8–16 89 11
II gravel 8–16 100 0
III gravel 8–10 0 100
IV gravel 8–10 100 0
V gravel 6.3–8 0 100
VI gravel 6.3–8 100 0

4. Results and Discussion
4.1. Laboratory Scale Tests

Each jig enrichment product in laboratory scale was assessed in terms of its water
absorption and density and results are presented in Tables 4 and 5.

Table 4. Summary results of separation achieved in laboratory tests-density.

Test Number
Density, [g/cm3]

Number of Layer in the Jig
I II III IV

I 2.67 2.66 2.66 2.63
II 2.66 2.67 2.69 2.68
III 2.64 2.64 2.63 2.61
IV 2.74 2.66 2.65 2.62
V 2.64 2.62 2.60 2.60
VI 2.73 2.66 2.66 2.61

Table 5. Summary results of separation achieved in laboratory tests-absorbability.

Test Number
Absorbablity, [%]

Number of Layer in the Jig
I II III IV

I 1.03 1.52 1.54 2.08
II 1.27 1.71 1.74 1.91
III 2.95 4.09 4.46 4.75
IV 2.55 3.34 3.54 3.96
V 2.97 3.21 3.47 4.05
VI 0.97 1.85 2.22 2.51

Analysis of results obtained for tests I and II (coarse aggregate in wide particle size
fraction 8–16 mm) shows that absorbability achieved for the bottom layer I was the lowest.
For consecutive higher layers it was increased; in total the difference between layers I and
IV was over 1% for natural feed (containing 11% of irregular particles). For feed with
regular particles, the respective difference was smaller, achieving approximately 0.8%. It is
evident that the properties of individual layers are different when the feeds have 0 or 11%
irregular particles, but the differences are relatively low, and don’t exceed 0.5%. The values
of densities in individual enrichment products are relatively small, however the upper
layer (IV) demonstrates the highest difference between regular and irregular products of
jig enrichment.

Analysis of specific enrichment products in narrow particle size fractions show that
the achieved values of densities are much higher, both for coarse and fine particles, than in
tests on a feed with a natural particle size composition. Differences in absorbability for
two upper layer exceeds 1.5% which is approximately 5 to 6 times higher, comparing the
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results obtained for wide particle size fraction 8–16 mm. Differences in absorbability for
the two upper layer exceeds 1.5% which is approximately 5 to 6 times higher, compared to
the results obtained for a wide particle size fraction 8–16 mm. Differences in densities are
also higher in enrichment products treated in narrow particle size fractions. The highest
difference, as high as 0.1%, was observed for the lowest layer I. The differences in densities
for products from layers 2 to 4 from tests III and IV were as much as two times greater
compared to analogous products from a feed with a particle size range of 8–16 mm.

Results of tests V and VI show that processing absorbability of regular particles was
significantly lower than for irregular particles. In the case of density it can be observed
that lower products contain the highest number of particles with highest density value.
Together with increasing the number of separation product its density decreases. This phe-
nomenon of density segregation is presented in Figure 4. Product from layer I with regular
particles (left) had the highest content of quartz particles comparing to the other products,
especially to irregular particles (test V), where a sandstone predominated.
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Figure 4. Separation products: regular particles (a) (Test VI), irregular particles (b) (Test V).

Calculated averaged values of absorbability and density are presented in Table 6.
Inspecting the table it can be seen that there is little difference between the values for
irregular and regular products (tests I and II) when the material has a natural particle size
composition. However, for material with a narrow particle size range (tests III and IV)
the absorbability is much greater in material consisting of irregular particles than it is in
material consisting of regular particles. This indicates that the application of the patented
solution for improving the quality of beneficiated material—by splitting the feed into
narrow size classes—is justified. No significant improvement in variation of density was
observed. Summary of percentage contents of porous particles in each layer of enrichment
were presented in Figure 5.

Table 6. Average values of absorbability and density for individual tests.

Test Number Average Absorbability,
[%] Average Density, [g/cm3]

I 1.54 2.64
II 1.65 2.68
III 3.09 2.63
IV 1.38 2.67
V 3.38 2.61
VI 1.80 2.67
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Figure 5. Characteristics of porosity of individual enrichment products for all laboratory tests.

The obtained results show that for tests I, III and V the highest percentage content of
porous particles was observed in layer 2 and 3. It appears that this is valid for irregular
particles products, regardless of the size range of the material. For tests V and VI, in turn,
the content of irregular particle is the lowest for the bottom layer 1. It was caused through
accumulation of the highest number of quartz particles with low porosity. It is also worth to
mention that accumulation of porous particles in layer I was the lowest in all tests I–VI. It is
also correlated with their density and absorbability. In layers 3 and 4, in turn, the highest
content of porous particles can be observed.

Comparing the obtained results it can be concluded that the classification of the feed
material into narrow particle size fractions and dividing them according to the shape brings
better results in the jig enrichment process, due to the narrowing of the parameters of the
aggregates and the elimination of equally settling particles.

Modeling results show that relationships between the number of separation product
and its selected feature is in correlation, to some extent. Relationships between den-
sity/absorbability and number of the separation product (specific layer in the jig) do not
show significant correlation for the entire set of data. There can be observed hyperbolic
relationship, indeed, but statistical significance of this model is rather low (Figure 6).
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Figure 6. Model of separation for density (a) and absorbability (b).

More precise modeling results can be obtained when enrichment products obtained
from regular and irregular feed material will be analyzed separately. Results for density
was presented in Figure 7, while models for absorbability in Figure 8. Relationship between
density and number of enrichment product for regular particles shows high level of
accuracy (R2 = 0.935) and is statistically significant. Lower statistical significance shows
model for irregular particles but it is also significant on the probability level 95%. In the
case of absorbability (Figure 6b) the model is statistically significant only for irregular
particles. However both models show the similar type of relationship. Tendency in
density decreasing together with increasing the number of layer describes well a hyperbola,
while absorbability can be characterized through exponential model, with the power at x
less than one.
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Figure 7. Model of separation density calculated separately for regular and irregular particles.

Density models show that for regular particles the power at x is greater in absolute
numbers, but the second coefficient shows no impact on the shape of particles. Models of
absorbability show that power at x is also greater for regular particles. In this case this value
is greater than zero. Higher impact of the second coefficient can be observed, and it is higher
for irregular particles (2.9632) than for regular ones (1.4325). In general, the modeling
results justify the approach consisting in run of jig beneficiation process separately for
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regular and irregular particles. Achieved accuracies of fitting to operational data were
higher both for density and absorbability. It could be then easier to predict the outcomes
for such processes, not to mention the main achievement–improvement of qualitative
characteristics for products enriched in such a manner.
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Figure 8. Model of separation density calculated separately for regular and irregular particles.

4.2. Semi-Plant Scale Tests

Results of tests conducted in semi-plant scale are presented in Tables 7 and 8. The test
series with a high threshold level shows that differentiation of products both in terms of
absorbability and density is not very significant. It is probably due to relatively wide range
of particle size (10–16 mm) of the feed material.

It has turned out that preparation of the aggregate for narrower particle size fractions
by screening and size separating gave more favorable enrichment results. It was confirmed
in results of tests III-VI, especially for aggregates with irregular particles (tests III and V).
Enrichment products, depending the number of a layer, were also differentiated in terms
of density.

Table 7. Summary characteristics of individual tests in separator SET (high threshold).

Test Number Layer of Product Absorbability, [%] Density, [g/cm3]

I lower
upper

1.32
1.71

2.66
2.63

II lower
upper

1.49
1.83

2.69
2.68

III lower
upper

3.58
4.51

2.64
2.61

IV lower
upper

3.18
3.81

2.68
2.62

V
VI

lower
upper
lower
upper

2.26
3.67
1.26
2.20

2.63
2.61
2.70
2.61

Results of experiments conducted at low threshold also showed no significant dif-
ferences in terms of density. There were observable significant variations in enrichment
of narrow particle size fractions, especially fo regular particles (test IV and VI), in turn.
These results confirm the purposefulness of suitable preparation of the feed material for
enrichment process, it is expected to obtain an appropriate differentiation of products in
terms of water absorption and density. On the example of test I (Table 7) it can be noticed
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that about 65% of flat particles were accumulated on the surface (Figure 9), while the
remaining of irregular particles were allocated deeper in both layers. The height of the
upper layer was 20 mm.

Table 8. Summary characteristics of individual tests in separator SET (low threshold).

Test Number Layer of Product Absorbability, [%] Density, [g/cm3]

I lower
upper

1.11
1.93

2.67
2.65

II lower
upper

1.29
1.91

2.66
2.68

III lower
upper

3.05
4.66

2.65
2.62

IV lower
upper

2.49
3.88

2.75
2.66

V
VI

lower
upper
lower
upper

2.89
3.49
0.68
2.12

2.66
2.60
2.73
2.65
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Shape investigations of separation products were carried out by means of 3D Keyence
VHX-7000 microscope. The figures map the profiles of the projection surface (base of
particle) in space after transformation of an image into 3D by the computer (Figure 10).
A particle is considered irregular if a profile of the length of its base is three times larger than
the profile of its width or height. The analysis proves that more flat particles accumulate in
the top layer.

Further investigations included comparative analysis of enrichment products obtained
in the serie II (low threshold) with typical aggregates before enrichment process in SET
device. Grinding resistance (Los Angeles) according to the standard PN-EN 1097-2, as well
as micro-Deval (PN-EN 1097-1), were determined. Results are presented in Table 9.

Analysis of results presented in Table 9 indicates that the raw aggregate with 11% of
irregular particles is characterized by the least favorable parameters (LA = 40, MDE = 30).
The most favorable parameters, in turn, were obtained for enrichment product of the
SET device, achieving LA = 30 and MDE = 10. Application of enrichment process makes

60



Minerals 2021, 11, 777

it possible to increase significantly quality of physical and mechanical parameters of
products, and at the same time increases potential commercial and industrial utilization of
such products. It is especially significant in exploitation of poor or lower quality deposits
or utilization of aggregates from recycling or tailings.
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Table 9. Results of Los Angeles and micro-Deval indices for a gravel aggregate in particle size fraction 10–14 mm at different
stages of enrichment.

Gravel Aggregate 10–14 mm Los Angeles Index, LA [%] Micro-Devala Index, MDE [%]

Raw material (typical) with 11% of
irregular particles content

36.7
category LA40

29.8
category MDE 30

Raw material without irregular particles 31.9
category LA35

17.6
category MDE 20

Product enriched in SET device,
without regular particles (low threshold)

29.5
category LA30

9.8
category MDE 10

5. Conclusions

The aim of the paper was to demonstrate how the efficiency of a jig separation
process for aggregate minerals could be improved. Thanks to the application of a patented
classification circuit prior to jigging, the absorbability and density of individual products in
specific layers in the jig were diverse on average for 0.8 and 0.5% respectively, comparing to
values achieved for material without prior pretreatment.

In terms of water absorption, very favorable results (significant diversification of
results) were obtained especially for narrow particle size fractions of separation products,
where the difference between individual layers was greater than 2% (laboratory tests V
and VI). Similar differences were observed for the density. The particles with the highest
density have accumulated in the lower layers, which was due to the fact that in this layer
the majority of quartz particles of low porosity was also present. It is also worth noting
that in all tests, the least porous particles accumulated in layer 1, which also correlates with
the density of these grains and their water absorption.

It should be noted, however, that greater differentiation between the enrichment
products was obtained for using of a laboratory ring jig in comparison with the semi-plant
SET device. This difference mainly results from the number of layers and the longer
duration of enrichment process (5 min) in laboratory jig. In the SET device, in turn,
the material has been enriching for several dozen seconds. It should be also taken into
account that the SET device is a prototype that operates together with a set of screens
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separating the aggregates into narrow particle fractions according to size and shape,
constituting the patented invention number PL 233318B1.

Considering the obtained results, it can be concluded that screening of feed material
into narrow particle size fractions and the separation of these fractions also in terms of
shape brings more favorable results of jig aggregate enrichment, due to the narrowing of
the parameters of the aggregates and the elimination of equally settling particles.

The obtained results of the investigations show that jig beneficiation of aggregates
in the proposed circuit may result in more efficient process performance, and also leads
to more efficient use of raw materials and less waste production. It needs to be pointed
out that the obtained differences in density and absorbability are not very large. However,
a suitable design of the circuit and process operation may be effective in producing a
more homogenous aggregate product in terms of their physical and mechanical properties.
An application of jig beneficiation in the mineral aggregates production industry may
help both in efficient separation of the final products and in elimination of fractions of
particles with an abnormal density and/or absorbability from the final products, as well
as decreasing the content of irregular particles. An overarching aim of the approach is
increasing the strength properties of aggregate products, which attracts a higher value in
many sectors of the building industry. A good example can be results of comminution
resistance (Los Angeles index) and micro-Deval abrasion resistance. The raw aggregate
with natural content of irregular particles (app. 11%) was accounted to lower categories
according to LA and MDE. After enrichment process the product was characterized by
higher categories, at the same time gaining the higher quality.
Patents: Two patents granted in Poland were utilized in the paper:
Author: Gawenda T. Title: Układ urządzeń do produkcji kruszyw foremnych, AGH
w Krakowie.
Patent No. PL233689 granted on 8.07.2019.
Authors: Gawenda T., Saramak D., Naziemiec Z. Title: Układ urządzeń do produkcji kruszyw
oraz sposób produkcji kruszyw. AGH w Krakowie, Patent No. PL 233318B1 granted on 7. 06.
2019.
Norms and standards: PN-EN 933-3:2012. Badania geometrycznych właściwości kruszyw-część
3: Oznaczanie kształtu ziaren za pomocą wskaźnika płaskości.
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Multidimensional Optimization of

the Copper Flotation in a Jameson

Cell by Means of Taxonomic Methods.

Minerals 2021, 11, 385. https://

doi.org/10.3390/min11040385

Academic Editor: Dave Deglon

Received: 16 February 2021

Accepted: 31 March 2021

Published: 3 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental Engineering, Faculty of Mining and Geoengineering,
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; asur@agh.edu.pl

2 JSW Innowacje S.A., ul. Paderewskiego 41, 40-282 Katowice, Poland; ppieta@jswinnowacje.pl
3 Faculty of Engineering, Kütahya Dumlupinar University, Evliya Çelebi Yerleşkesi Tavşanlı Yolu 10.km,
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Abstract: Three factors were measured in the flotation process of copper ore: the copper grade in
a concentrate (β), the copper grade in tailings (ϑ), and the recovery of copper in a concentrate (ε).
The experiment was conducted by means of a Jameson cell. The factors influencing the quality of
the process were the particle size (d), the flotation time (t), the type of collector (k), and the dosage
of the collector (s). The considered vector function is then (β(d, t, k, s), ϑ(d, t, k, s), ε(d, t, k, s)). In
this work, the optimization was based on determining the values of the adjustable factors (d, t, k, s).
The goal was to obtain the possibly highest values of the functions β and ε (maximum) with the
possibly lowest values of the function ϑ (minimum). To this end, taxonomic methods were applied.
Thanks to the applied method, the optimum—with the adopted assumptions—was found. The
presented methodology can be successfully applied in the search for the optima in a variety of
technological processes.

Keywords: flotation; copper ore; lithology; flotation agents; particle size distribution; taxonomic methods

1. Introduction

The main operation of copper ore beneficiation, after its preparation in the processes
of fragmentation and classification, consists in the application of the flotation process in
the multi-stage final grinding and cleaning systems. Polish copper ore is characterized
by three main lithological fractions which require a different way of beneficiation, with
flotation as the second stage of the process. The main lithological fractions are presented
in Table 1 showing the characteristics of the feed entering the technological system. The
percentage shares of all lithological types vary depending on the region of occurrence. The
content of copper in the ore used as feed for the process of beneficiation in processing
plants changes depending on the lithological content of the feed, which is closely related
to its region of occurrence. Therefore, the technology of copper ore beneficiation depends
on its lithological composition. For this reason, the general ore processing variant cannot
be used as its mineralogical and qualitative composition changes in the same way as
mining and geological conditions of ore occurrence change. Apart from copper, the feed for
beneficiation contains associated elements, i.e., silver, gold, platinum, and others, which
also occur in varying amounts and are associated with the lithological type. The occurrence
of three lithological types of Polish copper ore depostis significantly hinders the process
of output beneficiation due to the diversity of their mineralogical and physico-chemical
properties. The decrease in the size of ore-bearing particles observed in recent years makes
it necessary to perform the grinding in finer size particle distributions with the aim to
release copper-bearing particles. However, flotation of very fine particles is difficult to
perform in efficient way [1]. Therefore, it is necessary to use a new generation of machines
with adequately selected bubble size distribution, which enable the adhesion of extremely
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fine particles [2]. In general, the processing of ore and the production of a concentrate
for metallurgical processes of suitable quality requires that the process of beneficiation
is conducted with utmost care in order to ensure optimal quantitative and qualitative
parameters of the produced feed for metallurgy [1]. From the perspective of the assessment
of the processing plant’s final product, the most important assessment indicators comprise
the content of copper in the concentrate, the waste, as well as the yield of copper in the
concentrate. The process of mineral flotation depends on many factors, i.e., the minerals’
nature and structure (mineralogy, morphology, and particle size), water chemistry, bubble
size and velocity, flotation time, hydrodynamic properties, pulp potential and pH, pulp
density, air flow rate, as well as reagent types and dosages [1–5]. To achieve the best
possible indicators, the process of flotation is conducted with the optimization of some
technical and technological parameters.

Table 1. Mineralogical composition of lithological types of Polish copper ores [6].

Lithological Type of
Copper Ore

Content of Selected Metals in
Lithological Types Prevalent Copper-Bearing Minerals

carbonates
Cu (%) 1.69 chalcocite in combination with digenite, bornite,

covellite and chalcopyriteAg (g/t) 54

shales
Cu (%) 6.02 chalcocite-bornite and bornite-chalcopyrite minerals

Ag (g/t) 188

sandstones
Cu (%) 1.29 bornite-chalcopyrite and chalcocite-bornite minerals

Ag (g/t) 30

Many studies on ore flotation are available in the literature. Most of them deal with
various optimization issues. With regard to copper ores, many papers discuss the problem
of selecting appropriate reagents and their dosages. The use and selection of new kinds
of reagents for the process was the topic of the studies presented in [7–11]. The intro-
duction of seawater was presented in [12]. The effect of desliming on flotation efficiency
was investigated by [13]. Podariu et al. discussed the role of metallic electrodes in the
process [14]. The problem of bubble size distribution as well air rate and froth depth were
the object of interest in [2,15]. The application of ultrasound at various stages of the copper
flotation process was discussed in [16]. One of the main factors for evaluating the quality
of the process is the selectivity index. A study on the impact of the process parameter
modification was presented in [17,18]. The surface oxidation level was investigated in [19].
Furthermore, various attempts in the modeling of the whole process or parts of it, intro-
ducing different types of algorithms, were presented in many papers [20–26]. We have also
conducted many studies on copper ore processing and its optimization. Many different
methods were applied for this purpose. A parametric optimization in mixed copper ores
flotation was presented in [27]. A geometrical approach was the subject presented in [28].
A combined approach consisting of neural networks and evolutionary algorithms was
shown in [29]. Non-classical statistical methods, such as kernel methods, Fourier series
method, or non-parametric statistical methods were introduced in [30]. Applications of
ANOVA (Analysis of Variance) in mineral processing, including also copper flotation were
discussed in [31]. The initial studies of the copper flotation process conducted in a Jameson
cell was the subject presented in [32]. To this end, we used taxonomic methods, which are
an innovative approach to optimize the process. Copper grade in concentrate (β), copper
grade in tailings (ϑ), and copper recovery in a concentrate (ε) were selected as factors for the
evaluation of the flotation performance (performance indicators). In this study, adjustable
factors that influence flotation quality are the particle size (d), the separation time (t), the
collector type (k), and the collector dosage (s).
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2. Experiment
2.1. Laboratory Investigation

The experimental research was conducted through a Jameson cell. It is a pneumatic
flotation device in which pressurized, naturally aspirated air is dispersed. It is responsible
for the mixing of the suspension. The device consists of two main parts, which are the
downcomer and the separation tank. Conditioned particles are pumped to the nozzle at
the top of the downcomer to create a high-pressure water jet, and the air is sucked into
the downcomer. This water jet is responsible for producing a high-intensity mixing and
fine bubbles. Thus, the downcomer becomes the first contact point of particles and air
bubbles. Micro-events of flotation occur in the downcomer, and hydrophobic particles
become attached to air bubbles. A bubbly mixture is discharged to the separation tank from
the downcomer. The separation tank provides a suitable environment for the separation
of hydrophilic particles from the particle-laden bubbles. Hydrophobic particles–bubbles
aggregates are raised to the froth zone. There is a water washing system, which positively
impacts the selectivity of the process [33–38].

During this operation, fine bubbles increase the collision between bubbles and particles
and improve the flotation kinetics. This characteristic lowers the requirements regarding
particle retention time and makes it possible to decrease the Jameson cell height compared
to traditional flotation columns [39–42].

The investigated material was Polish carbonate copper ore. The initial copper grade
in the feed equaled 1.5%. From the lithological point of view, it contained minerals, such as
carbonates (dolomite, calcite)—about 72%, shale minerals—about 16%, sulfates (gypsum,
anhydrite)—5%, quartz—3%, copper sulfides—3% and organic substance—0.5%. The
Jameson cell scheme is presented in Figure 1.
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Figure 1. Scheme of a Jameson cell [39].

The parameters of the flotation machine were the following:

• separation tank diameter and height 200 mm and 900 mm, respectively;
• downcomer diameter and length: 0.020 m and 1.8 m, respectively;
• nozzle diameter 0.005 m;
• conditioning tank volume: 0.1 m3;
• downcomer plunging length that is the depth to which the end of the downcomer is

immersed in the separation tank: 0.5 m;
• feed rate and air rate: 100 cm3/s.

The investigation was based on the changes in the course of the process, caused
by the changes in the individual factors (adjustable variables). Particle fractions −20,
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20–40, and 40–71 µm were prepared for the tests. For each level of the experiment, it was
necessary to repeat the process in order to verify the adequacy of the results. The results
of the laboratory experiments were significant and the values of errors did not exceed
the acceptable limits (<5%) which were evaluated using the standard deviation. It was
assumed that the maximum time of flotation would amount to 30 min. The concentrate
was collected selectively after 1, 2, 4, 6, 9, 12, 17, 22, and 30 min. As a result, it was possible
to analyze the kinetics of the separation as well as the influence of time on the effects of
beneficiation. The solids grade in the Jameson cell was maintained at a constant level of 2%.
The Nasfroth frother was added to the amount of 50 g/t. The final stage was to determine
the copper content in the separation products with the use of the XRF methodology, which
made it possible to calculate process factors, such as the copper grade in the concentrate β,
the copper grade in the tailings ϑ, and the copper recovery in the concentrate ε.

The variables were selected on the basis of previous experiments which showed that
these factors are strongly related to the efficiency of the flotation process [34,35]. The values
of these adjustable factors are outlined in Table 2.

Table 2. Characteristics of adjustable factors.

Particle Size Fraction d (µm) Collector Type k Collector Dosage s (g/t) Time t (min)

0–20
20–40
40–71

Aqueous solution of ethyl
sodium xanthate—E

Aqueous solution of isobutyl
sodium xanthate—I

100
150

1, 2, 4
6, 9, 12

17, 22, 30

For each determined value of the adjustable parameters (d, t, k, s) five measurements
of researched flotation factors were performed, which results in a vector (β, ϑ, ε).

The averaged results of measurements and calculations are presented in Tables 3–5.

Table 3. Results of measurements for particle size fraction 0–20 (µm).

Time t
(min)

E I
100 (g/t) 150 (g/t) 100 (g/t) 150 (g/t)

β ϑ ε β ϑ ε β ϑ ε β ϑ ε

1 0.145 0.024 0.068 0.113 0.018 0.152 0.166 0.026 0.152 0.171 0.023 0.122
2 0.171 0.017 0.356 0.121 0.013 0.402 0.184 0.019 0.416 0.157 0.018 0.359
4 0.160 0.012 0.572 0.113 0.010 0.594 0.175 0.013 0.613 0.150 0.014 0.562
6 0.141 0.008 0.709 0.102 0.007 0.706 0.156 0.009 0.737 0.137 0.009 0.706
9 0.126 0.006 0.782 0.092 0.006 0.772 0.142 0.007 0.811 0.124 0.007 0.785
12 0.115 0.006 0.802 0.086 0.005 0.798 0.131 0.006 0.833 0.115 0.006 0.809
17 0.108 0.005 0.832 0.081 0.004 0.830 0.123 0.006 0.856 0.107 0.005 0.835
22 0.104 0.005 0.858 0.077 0.004 0.839 0.119 0.005 0.882 0.103 0.005 0.856
30 0.097 0.004 0.876 0.072 0.004 0.856 0.112 0.004 0.895 0.097 0.004 0.870

Table 4. Results of measurements for particle size fraction 20–40 (µm).

Time t
(min)

E I
100 (g/t) 150 (g/t) 100 (g/t) 150 (g/t)

β ϑ ε β ϑ ε β ϑ ε β ϑ ε

1 0.076 0.024 0.065 0.065 0.026 0.017 0.063 0.018 0.049 0.167 0.021 0.137
2 0.076 0.021 0.188 0.081 0.023 0.148 0.075 0.016 0.220 0.135 0.013 0.336
4 0.077 0.019 0.301 0.078 0.021 0.256 0.082 0.013 0.403 0.121 0.013 0.505
6 0.075 0.017 0.414 0.079 0.019 0.372 0.074 0.011 0.509 0.114 0.010 0.633
9 0.076 0.015 0.506 0.077 0.017 0.453 0.068 0.010 0.569 0.105 0.009 0.706
12 0.073 0.014 0.545 0.076 0.016 0.501 0.063 0.010 0.589 0.097 0.008 0.733
17 0.073 0.012 0.602 0.073 0.015 0.538 0.059 0.009 0.615 0.091 0.008 0.754
22 0.074 0.011 0.645 0.073 0.014 0.577 0.058 0.009 0.639 0.088 0.007 0.777
30 0.071 0.011 0.677 0.071 0.013 0.610 0.055 0.009 0.658 0.083 0.007 0.796
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Table 5. Results of measurements for particle size fraction 40–71 µm.

Time t
(min)

E I
100 (g/t) 150 (g/t) 100 (g/t) 150 (g/t)

β ϑ ε β ϑ ε β ϑ ε β ϑ ε

1 0.075 0.019 0.032 0.064 0.020 0.065 0.092 0.024 0.024 0.075 0.025 0.041
2 0.057 0.017 0.142 0.065 0.018 0.193 0.068 0.022 0.132 0.068 0.023 0.144
4 0.057 0.016 0.253 0.068 0.016 0.326 0.068 0.020 0.238 0.063 0.022 0.226
6 0.057 0.014 0.372 0.072 0.013 0.467 0.065 0.019 0.328 0.060 0.021 0.299
9 0.058 0.013 0.462 0.069 0.011 0.548 0.062 0.018 0.386 0.056 0.020 0.348
12 0.058 0.012 0.515 0.067 0.010 0.592 0.059 0.017 0.413 0.055 0.020 0.382
17 0.056 0.011 0.546 0.065 0.010 0.630 0.057 0.017 0.446 0.055 0.019 0.419
22 0.055 0.011 0.580 0.064 0.009 0.667 0.056 0.016 0.468 0.055 0.018 0.443
30 0.054 0.010 0.613 0.062 0.008 0.700 0.053 0.016 0.488 0.052 0.018 0.463

Table 3 presents the results experimentally obtained for the particle size fraction
−20 µm for both reagent types (E, I) at doses of 100 and 150 (g/t), depending on the
flotation time.

Table 4 shows analogous results, but for the fraction 20-40 µm. Similarly, as in the case
of the finest size fraction, it is also difficult to determine the optimal point of the process in
this case, taking into consideration the values of all three technological indicators.

Table 5 shows the results obtained for the fraction 40–71 µm. The conclusions are
similar. Multivariate statistical methods must be used in order to determine the optimal
conditions. This paper proposes the application of taxonomic methods, whose use is
innovative in the context of problems related to the the processing of raw materials.

2.2. Methodology of Taxonomic Methods
2.2.1. Theoretical Background

The selected taxonomical methods found wide application in various scientific disci-
plines [43–46], because their major advantages are universality, simplicity of calculations,
and simple interpretation of the results. The taxonomic factors allow to replace the de-
scription of the considered multi-feature object by means of one synthetic variable. The
complex structure of the flotation process as well as the changeability of the investigated
copper ore make it necessary to apply multidimensional methods for data analysis [47–50].
The basis to conduct the multidimensional comparison analysis is a matrix of diagnostic
features X (1), which is then standardized and transformed into a synthetical factor Z (2).
All considered situations are put in order in a linear way with consideration of the positive
influence (stimulants) and the negative influence (destimulants) on the researched phe-
nomenon. Then the surrogate variable is introduced as the distance between the objects
which allow to evaluate the phenomenon. The development of the taxonomy caused the
introduction of various factors and methods of variable normalization [51].

X =




x11 x12 . . . x1l
x21 x22 . . . x2l
. . .
. . .
xn1

. . .

. . .
xn2

. . .

. . .

. . .

. . .

. . .
xnl




(1)

Z =




z11 z12 . . . z1l
z21 z22 . . . z2l
. . .
. . .
zn1

. . .

. . .
zn2

. . .

. . .

. . .

. . .

. . .
znl




(2)
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Among the taxonomical methods many factors can be used. In this work, the Eu-
clidean distance ej was used, whose general formula is presented by Equation (3).

ei =

√√√√
l

∑
j=1

(
1 − zij

)2 for i = 1, . . . , n. (3)

where:

i—number of the row;
j—number of the column;
n—number of investigated variables (flotation tests);
l—number of variables (process evaluation factors);

zij =
xij

xjmax
, xjmax = max

i

(
xij
)
standardized value. (4)

For such determined values of zij the values e1, e2, . . . , en were calculated by means
of Equation (3). The smallest value allowed us to determine the optimal values of the
considered factors.

The precise description of how to conduct the investigation by means of taxonomic
methods can be found in [45,47,51].

2.2.2. Application

The multidimensional projection considered in this work takes the following form:

f : (d, t, k, s)(β(d, t, k, s), ϑ(d, t, k, s), ε(d, t, k, s)) (5)

where values of variables (d, t, k, s) are accepted in accordance with the values proposed in
Table 2.

Next, the optimization of the flotation process is performed. It is based on the determi-
nation of such values of adjustable factors (d, t, k, s) for which the functions β and ε assume
simultaneously the biggest values and the function ϑ the smallest one.

Because of the fact that it is required that the variables β and ε reach the highest
possible values in order to be qualified as flotation process stimulants, while the variable ϑ
is treated as a destimulant. According to the taxonomic methods, destimulants should be
transferred to become stimulants. That is why a new variable, 1

ϑi
, is introduced instead of

the variable ϑ.
In order to enable the comparison of various values, they need to be normalized first.

It can be done by the introduction of new variables, according to Equations (6)–(8).

ε̃i =
εi

max
j
εj

(6)

β̃i =
βi

max
j
βj

(7)

ϑ̃i =
1
ϑi

max
j

1
ϑj

(8)

Selection of the optimal adjustable variables is performed using the function of minimization

F(β(d, t, k, s), ϑ(d, t, k, s), ε(d, t, k, s)) (9)

where

F(βi, ϑi, εi) =

√
(1 − ε̃i)

2 +
(

1 − β̃i

)2
+
(

1 − ϑ̃i

)2
(10)
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where ε̃i, β̃i, ϑ̃i are provided by Equations (6)–(8).

3. Results and Discussion

The optimization of the function F was carried out with the use of the determined
particle size fractions, the type of collector and its dosage. At the second stage, the optimal
values were obtained with the use of the determined particle size fraction and the type of
collector; finally, it was carried out only with the use of the assumed particle size fraction.
The obtained results are shown in Tables 6–8.

Table 6. The optimal values obtained by assumed particle size fraction, collector type, and its dosage.

Assumed Values Optimal Values
Particle Size d (µm) Type of Collector k Dosage of Collector s (g/t) t (min) β ϑ ε

0–20 E 100 17 0.108 0.005 0.832
0–20 E 150 17 0.081 0.004 0.839
0–20 I 100 22 0.119 0.005 0.882
0–20 I 150 22 0.103 0.005 0.870

20–40 E 100 3 0.071 0.001 0.677
20–40 E 150 30 0.071 0.013 0.610
20–40 I 100 12 0.063 0.010 0.589
20–40 I 150 12 0.010 0.009 0.706
40–71 E 100 22 0.055 0.011 0.580
40–71 E 150 30 0.062 0.008 0.700
40–71 I 100 17 0.057 0.017 0.446
40–71 I 150 22 0.055 0.019 0.473

Table 7. Optimal values obtained by assumed particle size fraction and type of collector.

Assumed Values Optimal Values
Particle Size d (µm) Type of Collector k Dosage of Collector s (g/T) t (min) β ϑ ε

0–20 E 100 22 0.104 0.005 0.858
0–20 I 150 22 0.119 0.005 0.882

20–40 E 100 30 0.071 0.011 0.677
20–40 I 150 12 0.105 0.009 0.709
40–71 E 100 22 0.064 0.009 0.667
40–71 E 150 17 0.057 0.017 0.446

Table 8. Optimal values obtained by the assumed particle size fraction.

Assumed Values Optimal Values
Particle Size d (µm) Type of Collector k Dosage of Collector s (g/T) t (min) β ϑ ε

0–20 I 100 22 0.119 0.005 0.882
20–40 I 150 12 0.105 0.009 0.706
40–71 E 150 22 0.064 0.009 0.667

Table 6 shows the calculated indices of optimal values for the sought indices β, ϑ and
ε for the assumed particle fractions, the collector type and the dosage. The analysis of
the obtained results made it possible to observe that the best quality concentrate, with a
copper content amounting to 11.9% for the type 1 collector in the amount of 100 g/t, for the
finest particle fraction, within 22 min, was obtained for the finest particle fraction −20 µm.
Satisfactory copper recovery in an 88.2% concentrate and copper content in tailings of
0.5% were also obtained in these conditions of the flotation process. For particles of an
average size, floating in the Jameson cell 20–40 µm, the taxonomic analysis showed that at
a lower dosage of both types of reagents, comparable results −7.1% and 6.3%, respectively,
were obtained with regard to β. On the other hand, much better optimal conditions of
recovery ε = 67.7% and copper content in tailings ϑ = 0.1% were obtained for type E
reagents in the first three minutes of flotation. Together with an increase in the dosage of
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type I reagent to 150 g/t, the recovery increases to approx. 70%, but has a negative impact
on β and ϑ. In the case of the coarsest floating particle fraction 40–71 µm, the optimal β,
ϑ, and ε indices, calculated according to the presented method, in each case reached the
lowest values.

Table 7 shows the calculated indices of optimal values for the searched β, ϑ, and ε
indices, for the assumed particle fractions and collector types. It is worth noting that with
the use of the type 1 collector for the finest particle fraction, better optimal results are
obtained with a higher dosage within the same time. Similarly, in the case of a medium
size fraction, higher optimal indices were obtained for a higher collector dosage 150 g/t of
type 1, β = 10.5%, ϑ = 0.9%, and ε = 70.9% within less than 12 min. For the coarse particle
fraction, the optimal β, ϑ, and ε values were obtained for the type E collector, 100 g/t of
dosage, but within a longer time.

Table 8 shows indices of optimal values for the sought β, ϑ, and ε indices for the
assumed particle fractions. The best optimum rates were obtained for the finest particle
fraction with the use of the type I collector, a dosage of 100g/t and during a 22-min flotation.

The next stage was to perform the optimization within the assumed time. The results
of this stage are presented in Table 9. If we take into account the flotation type, the best
optimum rates were obtained for the finest particle size fraction −20 µm. In this case, the
highest β value was determined at the level of 17.5% after 4 min of flotation time. The
highest values of the indicators, ϑ = 0.4% and ε = 89.5%, were obtained after 30 min of
flotation. Hence, the conclusion is that the longer the time of flotation, the higher is the
recovery and the lower the copper content in the waste in the given process conditions for
the finest particles.

Table 9. Optimal values obtained by assumed time.

Assumed Values Optimal Values
t (min) Particle Size d (µm) Type of Collector k Dosage of Collector s (g/t) β ϑ ε

1 20–40 I 150 0.167 0.021 0.137
2 0–20 E 150 0.121 0.013 0.402
4 0–20 I 100 0.175 0.013 0.613
6 0–20 I 100 0.156 0.009 0.737
9 0–20 I 100 0.142 0.007 0.833

12 0–20 I 100 0.123 0.006 0.856
22 0–20 I 100 0.119 0.005 0.882
30 0–20 I 100 0.112 0.004 0.895

The relations between the optimal values of β, ϑ, ε, and time t are presented in
Figures 2–4.
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The last stage concerned the optimization in a set of considered values of adjustable
variables (Table 2) and the solution is presented in Table 10. Therefore, the optimum
conditions of the process were found.

Table 10. The optimal values by values of adjustable variables presented in Table 2.

Particle Size d (µm) Type of Collector k Collector Dosage s (g/T) t (min) β ϑ ε Fopt

0–20 I 100 22 0.119 0.005 0.882 0.376

On the basis of the results, it can be said that the best particle size fraction for the
process is 0–20 µm with Aqueous solution of isobutyl sodium xanthate in a dosage of
100 g/t. The optimal time of flotation is 22 minutes. Therefore, the optimal value of the
function F is equal to 0.376; it is related to the values of β, ϑ, and ε as 11.9%, 0.5%, and
88.2%, respectively.

The Jameson cell has problematic behavior in coarse particle flotation. Sahbaz et al. [40]
proved that the maximum size of floating particles having different hydrophobicity degree
in various hydrodynamic regions can differ. The results presented in this paper were based
on the flotation tests performed in a Jameson cell of the same geometrical properties as
was used in [40]. Experiments and literature findings indicate that the turbulence is the
most significant parameter in the coarse particle flotation. The stability of the aggregate
starts to decrease as the particle size increases, meaning that the detachment force starts to
overwhelm the attachment force [38,52–54]. Furthermore, the finer fraction accumulates the
biggest amount of copper. This is the reason why this particle size fraction has the biggest
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potential of copper particle recovery in special conditions. The Jameson cell serves best for
this purpose because of its construction and characteristic air bubbles size distribution [55].
The Jameson cell has significant potential to separate fine particle due to very fine bubble
production [56,57]. In this test, the results for fine particles are quite good due to these
characteristics. In addition, the liberation degree of the sample is higher for the finer size
fraction [58]. A conventional cell shows problematic flotation for finer particles due to
coarse bubble size causing low collision probability [37,38].

4. Conclusions

The methodology of the optimization of copper flotation results, consisting in the
use of the taxonomic method with regard to the beneficiation in a Jameson cell made
it possible to determine the optimal conditions of its operation, depending on variable
factors, namely the size of particles, the type and dosage of reagent, flotation type for
the evaluation indicators of key processes, commonly used in raw material processing.
Analyzing the obtained results, it can be observed that for almost all values of time (except
t = 1 min and t = 2 min) the best type of the collector was an Aqueous solution of isobutyl
sodium xanthate. It is worth noticing that the best dosage of the collector for the time
t ≥ 4 (min) was a dosage of 100 g/t, while for the time t < 4 min it was a dosage of 150 g/t.
For smaller particle size fractions (0–20 and 20–40 µm), the Aqueous solution of isobutyl
sodium xanthate was a better type of collector, while for the bigger one (40–71 µm) it was
xanthate. Analyzing the process depending on particle size, it can be noticed that the best
results were obtained definitely for the particle size fraction 0–20. The optimal time in
individual cases varied from 12 min to 30 min, but the most suitable time was 22 min.
In addition, if the considered indicators are differed in terms of their relevance (if, for
example, the economic factors were taken into account), appropriate weights, w1, w2, w3,
can be entered into the optimization function. In such a case, particular components of the
F function should be multiplied by w1, w2, w3, respectively, where 0 < w1 < 1, 0 < w2 < 1,
0 < w3 < 1 and w1 + w2 + w3 = 1. The presented methodology can be used efficiently in the
evaluation of all kinds of processes and when combined with modeling methods, it can be
used as an algorithm of process quality monitoring.
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6. Piestrzyński, A. Monograph KGHM Polska Miedź S.A.; Part 2, Geology, 2.19. Litology; CBPM Cuprum: Lubin, Poland, 1996.
7. Dhar, P.; Thornhill, M.; Rao Kota, H. Investigation of Copper Recovery from a New Copper Ore Deposit (Nussir) in Northern

Norway: Dithiophosphates and Xanthate-Dithiophosphate Blend as Collectors. Minerals 2019, 9, 146. [CrossRef]
8. Dhar, P.; Thornhill, M.; Rao Kota, H. Investigation of Copper Recovery from a New Copper Deposit (Nussir) in Northern-Norway:

Thionocarbamates and Xanthate-Thionocarbamate Blend as Collectors. Minerals 2019, 9, 118. [CrossRef]

74



Minerals 2021, 11, 385

9. Filip, G.; Podariu, M. Advanced Recovery of Complex Ores using Emulsions of Non-polar Reagents. Sci. Bull. Ser. D 2010, 24,
53–56.

10. Zhu, R.; Gu, G.; Chen, Z.; Wang, Y.; Song, S. A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged
Flotation. Minerals 2019, 9, 595. [CrossRef]

11. Ziyadanogullari, R.; Aydin, F. A New Application For Flotation Of Oxidized Copper Ore. J. Miner. Mater. Charact. Eng. 2005, 4,
67–73. [CrossRef]

12. Gutierrez, L.; Betancourt, F.; Uribe, L.; Maldonado, M. Influence of Seawater on the Degree of Entrainment in the Flotation of a
Synthetic Copper Ore. Minerals 2020, 10, 615. [CrossRef]

13. Phiri, T.; Tepa, C.; Nyati, R. Effect of Desliming on Flotation Response of Kansanshi Mixed Copper Ore. J. Miner. Mater. Charact.
Eng. 2019, 7, 193–212. [CrossRef]

14. Podariu, M.; Ilie, P.; Filip, G. Role of Metallic Electrodes in Flotation Activation Phenomena. Sci. Bull. Ser. D 2009, 23, 121–124.
15. Han, Y.; Zhu, J.; Shen, L.; Zhou, W.; Ling, Y.; Yang, X.; Wang, S.; Dong, Q. Bubble Size Distribution Characteristics of a Jet-Stirring

Coupling Flotation Device. Minerals 2019, 9, 369. [CrossRef]
16. Hassanzadeh, A.; Sajjady, S.A.; Gholami, H.; Amini, S.; Özkan, S.G. An Improvement on Selective Separation by Applying

Ultrasound to Rougher and Re-Cleaner Stages of Copper Flotation. Minerals 2020, 10, 619. [CrossRef]
17. Azizi, A. A study on the modified flotation parameters and selectivity index in copper flotation. Part. Sci. Technol. 2017, 35, 38–44.

[CrossRef]
18. Azizi, A. Optimization of rougher flotation parameters of the Sarcheshmeh copper ore using a statistical technique. J. Dispers. Sci.

Technol. 2015, 36, 1066–1072. [CrossRef]
19. Moimane, T.; Plackowski, C.; Peng, Y. The critical degree of mineral surface oxidation in copper sulphide flotation. Miner. Eng.

2020, 145, 106075. [CrossRef]
20. Matsuoka, H.; Mitsuhashi, K.; Kawata, M.; Tokoro, C. Derivation of Flotation Kinetic Model for Activated and Depressed Copper

Sulfide Minerals. Minerals 2020, 10, 1027. [CrossRef]
21. Wang, S.; Li, Y.; Zhai, X.; Guan, W. A Recognition Method based on Improved Watershed Segmentation Algorithm or Copper

Flotation Conditions. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019;
pp. 224–231.

22. Wang, Z.; He, D.; Li, B. Clustering of Copper Flotation Process Based on the AP-GMM Algorithm. IEEE Access 2019, 7,
160650–160659. [CrossRef]

23. Ghodrati, S.; Nakhaei, F.; VandGhorbany, O.; Hekmati, M. Modeling and optimization of chemical reagents to improve copper
flotation performance using response surface methodology. Energy Sour. Part A 2020, 42, 1633–1648. [CrossRef]

24. Bahrami, A.; Ghorbani, Y.; Hosseini, M.R.; Kazemi, F.; Abdollahi, M.; Danesh, A. Combined Effect of Operating Parameters on
Separation Efficiency and Kinetics of Copper Flotation. Min. Metall. Explor. 2019, 36, 409–421. [CrossRef]

25. Hassanzadeh, A.; Firouzi, M.; Albijanic, B.; Celik, M.S. A view on determination of particle–bubble encounter using analytical,
experimental and numerical methods. Miner. Eng. 2018, 122, 296–311. [CrossRef]

26. Saramak, D.; Tumidajski, T.; Skorupska, B. Technological and economic strategies for the optimization of Polish electrolytic
copper production plants. Miner. Eng. 2010, 23, 757–764. [CrossRef]

27. Azizi, A.; Masdarian, M.; Hassanzadeh, A.; Bahri, Z.; Niedoba, T.; Surowiak, A. Parametric optimization in rougher flotation
performance of a sulfidized mixed copper ore. Minerals 2020, 10, 660. [CrossRef]

28. Foszcz, D.; Niedoba, T.; Tumidajski, T. A geometric approach to evaluating the results of Polish copper ores beneficiation. Gospod.
Surowcami Min. 2018, 34, 55–66.
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Abstract: Profound knowledge of the movement characteristics and spatial distribution of the particles
under compression during the crushing of rocks and ores is essential to further understanding
kinetic energy release law. Various experimental methods such as high-speed camera technology,
the coordinate method, and the color tracking method were adopted to improve the understanding
of particles’ movement characteristics and spatial distribution in rock comminution. The average
horizontal velocities of the four size particles α, β, γ, and δ are statistically calculated. The descending
order of the particles’ average velocity is γ, β, α, and δ. In comparison, the descending order of the
particles’ kinetic energy is α, β, γ, and δ. Moreover, the contribution of α particles to the total kinetic
energy exceeds 70%. The spatial distribution characteristics of coarse and fine particles show different
results. The probability of fine particles appearing in the range closer to the center area is greater,
while the position of large particles appears to be more random. The color tracking results show
that super-large particles generated by crushing are on the specimen’s surface, while small particles
are generally produced from inside. The above results indicate a connection between the particle
generation mechanism, movement characteristics, and spatial distribution in the comminution process.

Keywords: brittle materials; uniaxial compression; comminution; particle size; movement character-
istics; particle velocity; kinetic energy; spatial distribution

1. Introduction

The problem of dynamic fragmentation is a scientific field that has been unresolved for
a long time. Compared with the quasi-static fracture of plastic materials, a dynamic fracture
is more difficult to understand [1–3]. Dynamic fracture is challenging to study because
this process involves complex interactions over an extensive period and space. The main
hazard of dynamic fracture is the kinetic energy carried by the ejected fragments during
the occurrence. The speed of the destruction of the block sometimes even exceeds 1000
m/s, which is extremely harmful to human activities and the natural environment. [4–6].
The compression and fragmentation of brittle materials are not limited to impact loading.
Under the action of the quasi-static compression load, ceramic specimens can still undergo
“explosive” damage [7]. Since the research by Mott [8], the dynamic fracture and fragmen-
tation of solids have been a hot research topic. The dynamic fracture of brittle materials can
be studied by the uniaxial compression test [9,10], conventional triaxial unloading test [11],
true triaxial rock-burst test [12,13], and high-speed impact test [14,15]. Among them, the
traditional uniaxial compression and triaxial tests have lower loading rates, which are
generally considered to be quasi-static loading, while split Hopkinson pressure bar (SHPB)
loading and high-speed impact tests are dynamic loadings [10,16]. Except for conventional
triaxial tests restricted by hydraulic cylinders, dynamic fragmentation can be observed in
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other loading conditions. The most commonly used observation instrument is a high-speed
camera that can track particle trajectories and speed measurement [17].

The particle tracking dynamic system can realize the movement tracking of complex
and large numbers of particles. This technology is mainly used in high-speed impact
tests [18]. The laboratory conducts dynamic fracture experiments of brittle materials to
study phenomena such as rock bursts, volcanic eruptions, earthquakes, and planetary
collisions. Commonly used experimental materials are basalt [19], quartz [20,21], sand-
stone, etc. [18]. The research focuses on the particle velocity distribution after dynamic
fracture [15], fragment size [10], rebound angle [14], etc.

Energy evolution is a common method for studying dynamic fracture. The quasi-static
loading method calculates the input energy through the load-displacement curve [22], and
the SHPB loading calculates the absorbed energy of the specimen through the incident and
transmitted waves [23]. The high-speed dynamic experiment considers that the kinetic
energy of the bullet is input energy [14].

The speed of broken particles can be measured by image tracking technology, and the
kinetic energy can be calculated by weighing the particles. Based on the law of conservation
of energy, the dissipative heat energy generated by the force-heat coupling process can be
studied [24]. Xie [22,25,26] found that studying the energy dissipation and energy release
of rock mass structures from the perspective of macroscopic energy conservation can be
used to estimate the splash velocity of fragmented rock blocks. Li et al. [10] used SHPB to
study the dynamic crushing particle size characteristics, fragment distribution and crushing
laws of rock materials. Rait et al. [27] used the discrete element method to study the effect
of the loading rate on static fracture and dynamic fracture and analyzed the relationship
between the kinetic energy and frictional energy dissipation during the comminution
process. Wang et al. [28] studied the energy distribution during the quasi-static confined
comminution of granular materials. Xiao et al. [29] analyzed and compared the energy
dissipation law of carbonate sand quasi-static and dynamic compression. Zhang [30] studied
the average fragmentation and velocity of the debris under a quasi-static load of brittle
materials, which agree with the theoretical calculations. The above research mainly focused
on the average particle size and velocity and did not involve the velocity and kinetic energy
distribution of the characteristic particle size. Exploring the dynamic fracture mechanism of
brittle materials requires in-depth research on the speed, kinetic energy, and temporal and
spatial distribution characteristics of particles of different sizes produced by crushing.

In response to the above problems, this paper uses high-speed camera technology and
digital image motion analysis software to study the velocity–size relationship of particles
produced by uniaxial compression crushing of granite and the contribution of products
of different sizes to kinetic energy. The coordinate method is used to study the spatial
characteristics of fragment distribution at different scales. The color tracking method is used
to study the relationship between the spatial characteristics of the fragment distribution
and the generation location. The research methods and results have positive significance
for describing the splash particles’ temporal and spatial characteristics and revealing the
kinetic energy release law of the dynamic fracture of brittle materials. At the same time, it
is of positive significance for the quantitative calculation of dissipative heat energy and the
study of energy evolution in the comminution process.

2. Materials and Methods
2.1. Experimental Materials

The granite was selected from Queshan County, Zhumadian, and all samples were
cut and processed from a relatively complete ore body. Firstly, a cylindrical core with a
diameter of 50 mm was drilled, and then a cylindrical specimen with a height of 100 mm
was cut. A total of 15 granite specimens were prepared in this experiment, as shown in
Figure 1. The stone grinder and sandpapers were used to grind both ends of the test piece
carefully so that the parallelism of the upper and lower surfaces was within 0.05 mm, and
the surface flatness was within 0.02 mm. The samples had good integrity and uniformity,
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and the average uniaxial compressive strength was 110 MPa. The X-ray fluorescence (XRF)
test shows that SiO2 has the highest content in granite, and the detailed content of other
substances is shown in Table 1.
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Figure 1. Granite specimens.

Table 1. Granite mineral content.

SiO2% Al2O3% Na2O% K2O% CaO% Fe2O3% MgO% TiO2%

67.75 15.66 4.81 3.84 2.73 2.49 1.41 0.318

2.2. Experimental System

The uniaxial compression test of granite specimens was carried out using the method
of force loading. The experimental loading rates were 1, 2, 3, 4, 5 kN/s, with five loading
rates and three tests for each loading rate. The unloading process had the same rates as
the loading process. This test uses the TAW-3000 hydraulic servo test system (Changchun
City Chaoyang Test Instrument CO., LTD., Changchun, China) (as shown in Figure 2a).
The testing machine has a portal frame with a stiffness greater than 5 GN/m, which can
provide an axial force of 3000 kN and a resolution of 20 N. The resolution of the axial
deformation of the specimen is 0.5 µm. The high-speed camera used in this experiment has
a shooting frequency of 800 Hz and a shooting area of 400 mm × 500 mm, which is used to
record the horizontal velocity of the broken particles’ movement. The focal length of the
lens used in this experiment was 50 mm.
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3. Results and Discussion
3.1. Force-Displacement Relationship of Uniaxial Compression

In the process of the uniaxial compression of the specimen, the displacement of the
indenter changed with the load. This change process is usually divided into four stages [31]:
the crack compaction stage, elastic stage, microcrack stable-growth stage, and the unstable
cracking stage. The accelerated expansion phase and the post-peak segment are shown
in Figure 3a. At the same time, energy accumulates, dissipates, and releases inside the
specimen. Regardless of the heat exchange between the specimen and the environment, the
relationship between input energy, elastic energy, and dissipation energy is as follows [32]:

U = Ud + Ue (1)

where U is the work done by the external force on the rock, i.e., the energy absorbed by the
rock; Ud is the energy dissipated by the rock during the loading process, which is mainly
used for the internal damage and plastic deformation of the rock; and Ue is the elastic strain
energy stored in the rock. The value of elastic energy can be determined by the area of the
unloading curve and the coordinate axis, as shown in Figure 3b. According to the above
calculation method, the input energy of specimen 11 before failure is 47.16 J, of which the
elastic energy accounts for 24.43 J, with a compression displacement of 0.302 mm.
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3.2. Characteristics of Uniaxial Compression Failure Fragments

In order to facilitate the analysis and study of the movement characteristics of different
sizes of uniaxial destruction fragments (at the same time limited by the camera resolution),
the fragments obtained after the uniaxial compression experiment were divided into four
groups according to the particle size, namely α particles, β particles, γ particles and
δ particles [33]. The size of the fragments were divided into +13 mm, 6–13 mm, 3–6 mm,
and −3 mm, as shown in Figure 4. Since the fragments were often irregular, the sieving
result was used as the measurement and calculation standard during measurement.

The following information can be obtained through observation and analysis of high-
speed photography images (Figure 5). In the early stage of macro-destruction, the smaller
particles (γ particle) were ejected from the surface of the specimen first. Such particles are
located at the front of the detrital cluster and move extremely fast. In the early stage of
macro-destruction, the largest particles (α particle) peeled off the surface of the specimen.
These particles are located in the front and middle part of the detrital cluster and move
faster. In the middle stage of the macro destruction, the larger particles (β particle) peeled
off from the surface of the specimen. Such particles are located in the middle of the detrital
cluster and move slowly. At the end of macro destruction, the smallest particles (δ particle)
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were produced, which are located at the back of the detrital cluster and move very slowly.
The generation time, spatial location and movement characteristics of the four types of
particles were summarized in Table 2.
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Table 2. Temporal and spatial position and movement characteristics of fragments particles.

Particle Type Size/mm Generation Time Spatial Location Movement Characteristics

α +13 Early stage of macro
destruction Front middle of the detrital cluster Surface peeling, ejection, Roll

along the length

β 6–13 Early and mid-term
macro destruction Middle of detrital cluster Surface peeling, rotating

γ 3–6 Early stage of macro
destruction Forward of the detrital cluster [34] Ejection, extremely fast

δ −3 Mid- to late period of
macro destruction The tail of the detrital cluster Friction occurs, slower

3.3. Fragments Velocity Characteristics

According to the classification characteristics of Section 3.2, the tracking function of
high-speed photography is used to count the horizontal velocity of each sample produced
by the representative α, β, γ, and δ particles. In each specimen, about 10 particles were
selected as representatives for each of the four particle types. (the super-large particles may
be less than 10). The particle size in high-speed photography is measured by the calibration
function in the video viewing software. The velocity of the four types of particles in
specimen 11 is shown in Table 3. As shown in Table 4, in terms of the average velocity, the
descending order is vAγ, vAβ, vAα, and vAδ.

Table 3. Four types of particle velocity of specimen 11.

Serial Number
The Velocity of Particles m/s

α Particle β Particle γ Particle δ Particle

1 14.75 8.11 13.28 2.23
2 4.86 8.25 15.08 1.94
3 8.58 6.55 14.97 2.39
4 4.33 8.44 12.15 2.42
5 3.78 8.59 13.09 1.64
6 6.77 6.58 7.63 1.74
7 6.13 7.59 7.71 1.83
8 6.11 7.91 6.63 1.92
9 7.27 6.83 6.40 2.56
10 6.42 7.09 7.90 1.70
vA 6.900 7.594 10.483 2.036

STD. 2.943 0.740 3.358 0.317
Note: STD. is the abbreviation of standard error values.
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Table 4. Four types of particle velocities in different specimens.

Specimen
Number

The Average Velocity of Particles m/s

α Particle β Particle γ Particle δ Particle

1 3.052 5.827 9.913 1.403
2 4.945 5.151 8.009 2.826
3 2.480 2.825 4.972 1.278
4 2.111 2.104 8.797 1.476
5 4.194 4.052 7.821 3.583
6 2.950 4.864 7.263 2.074
7 4.238 4.856 8.206 2.634
8 2.015 3.604 5.530 1.313
9 3.154 3.160 6.511 1.718
10 6.017 6.357 18.094 2.830
11 6.900 7.594 10.483 2.036
12 5.163 6.834 9.829 2.162
13 6.519 5.434 10.068 2.489
14 2.404 4.109 7.228 1.050
15 2.254 4.909 8.749 1.822
vA 3.893 4.779 8.765 2.046

STD. 1.615 1.467 2.949 0.691

3.4. Mass Distribution of Fragments

The average value of the horizontal velocity of the four types of particles in 15 groups
of specimens is taken as the velocity benchmark for calculating the kinetic energy. The key
to calculating kinetic energy is to establish the corresponding relationship between speed
and mass. Due to the limited field of view of high-speed photography, it is impossible to
match the particles flying on the screen with the particles still in the tray. Therefore, it can
only be analyzed by collecting the speed of particles of different characteristic sizes flying
through the field of view to form statistical data. The mass of particles with characteristic
sizes can be obtained by sieving. Figure 6 shows the sieving data of the four areas—I, II, III,
and IV—of specimen 11. The positions of the four zones are shown in Figure 7.
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Figure 7. Division of the spatial distribution of fragments.

Theoretically, the distribution of fragments in the four areas after the uniaxial compres-
sion failure of homogeneous materials is the same. However, due to the differences in the
internal cracks of the materials, the mass distribution of different specimens after crushing
is random. Figure 8 shows the proportion of fragments in each area after crushing the five
groups of specimens. In most cases, the central area accounts for the largest proportion,
with an average mass proportion of 45%. The loading rate variation range of the center area
mass between 1–4 kN shows a decreasing trend with the loading rate increase. The mass
proportions of the remaining four regions show strong randomness in a single experiment,
with an average mass proportion of 10 to 20%. If the four peripheral areas are regarded as
a whole, it is opposite to the changing trend of the mass of the central area, and its total
mass shows a law of increasing with the increase of loading rate.
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3.5. Kinetic Energy of Single-Axis Destruction Fragments

According to the average velocity of the four types of particles and the size distribution
of the fragments in each area, the total kinetic energy of each specimen was calculated by
using Equation (2):

Ek =
1
2

(
∑ mαv2

Aα + ∑ mβv2
Aβ + ∑ mγv2

Aγ + ∑ mδv2
Aδ

)
(2)
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where ∑ mα is the sum mass of α particles, vAα is the average velocity values of the α
particles. Correspondingly, other symbols indicate the total mass and average velocity of
various particles of β, γ, δ.

Table 5 shows the kinetic energy released by each area in the crushing process and
the proportion of kinetic energy corresponding to various particles. Sum the total kinetic
energy of each area to obtain the total kinetic energy of 5.184 J released by the crushing of
specimen 11. Similarly, the kinetic energy released by the crushing of other specimens can
be calculated. According to the calculation method described in 3.1, the input energy and
elastic energy data of each test piece are calculated, as shown in Table 6. For specimen 11,
the ratio of input energy into kinetic energy is 10.79%, and the ratio of elastic energy into
kinetic energy is 20.84%. The average of the ratio of kinetic energy to elastic energy of all
specimens is 16.03%, and the average of the ratio of kinetic energy to input energy is 7.92%.

Table 5. Fragments kinetic energy in different areas of specimen 11.

Particle
Type

I Area II Area III Area IV Area

Ek/mJ PCT.% Ek/mJ PCT.% Ek/mJ PCT.% Ek/mJ PCT.%

α 927.51 73.99 993.57 64.76 818.92 62.35 945.77 87.28
β 167.85 13.39 249.76 16.28 235.87 17.96 38.06 3.51
γ 150.28 11.99 276.82 18.04 244.18 18.59 92.59 8.54
δ 7.94 0.63 14.13 0.92 14.49 1.10 7.15 0.66

Total Ek 1253.58 100 1534.29 100 1313.45 100 1083.57 100

Note: PCT. is the abbreviation of percent.

Table 6. Input energy, elastic energy and kinetic energy of different specimens.

Specimen Number U Ue J Ek mJ Ek/Ue % Ek/U %

1 56.21 30.87 1435.36 5.21 2.55
2 40.53 23.09 2414.18 13.36 5.96
3 25.39 12.53 626.53 5.85 2.47
4 33.78 15.88 1073.90 6.21 3.18
5 27.65 12.36 2281.99 18.50 8.25
6 44.28 25.69 1441.39 6.11 3.25
7 23.72 8.38 3481.25 30.44 14.68
8 25.98 14.05 823.46 5.98 3.17
9 26.09 10.62 1793.53 16.06 6.88
10 41.20 20.98 4369.55 25.84 10.61
11 47.16 24.43 5184.90 21.22 10.99
12 21.01 8.56 2542.20 30.55 12.10
13 27.90 11.87 7289.66 54.95 26.13
14 30.01 13.75 1557.10 9.01 5.19
15 41.37 20.81 1383.43 7.87 3.34

Average 34.15 16.25 2604.32 16.03% 7.92%

As there are few studies on the kinetic energy calculation of the rock fragmentation
under uniaxial compression, the author has not found convincing data to verify it. However,
in similar destruction modes, the proportion of kinetic energy can be used as evidence. For
example, the impact of spherical particles [35], rock blasting [36] and the ratio of kinetic
energy to input energy are approximately 3% and 3–21%, respectively. In the true triaxial
failure of brittle rocks [37], the ratio of kinetic energy to elastic energy ranges from 8 to 50%.
In dynamic fracture of pre-cracked rock specimens, the SHPB system was used, and the
ratio of kinetic energy to input energy ranges from 22 to 59% [38].

The kinetic energy of the four kinds of particles generated by the crushing of the
specimen at different loading rates is shown in Figure 9. It can be seen that the total kinetic
energy increases with the increase of the loading rate within the range of loading rate of
1–4 kN/s. Furthermore, the main factor affecting the total kinetic energy is the kinetic
energy of α particles. The relationship between the kinetic energy of other types of particles
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and the loading rate is not obvious. When the loading rate is 5 kN/s, the total kinetic energy
decreases, which is mainly affected by the decrease of the kinetic energy of α particles.
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The proportion of kinetic energy of various particles in specimen 11 can be obtained
by summarizing the data in Table 5. The distribution law of kinetic energy can be seen in
Figure 10; the kinetic energy proportions of the four types of particles are ranked from high
to low as EKα > EKγ > EKβ > EKδ. The kinetic energy of α particles accounts for about 70%,
the kinetic energy of γ particles accounts for close to 20%, the kinetic energy of β particles
accounts for close to 10%, and the kinetic energy of δ particles accounts for about 1.5%.
Comparing the average values of specimen 11 and specimens 1 to 15 shows that the kinetic
energy distribution of various particles of a single specimen is not significantly different
from the overall distribution. The two indicators that affect the magnitude of kinetic energy
are speed and quality. The α-type particles have the largest mass, and the γ particles have
the largest velocity. Since the mass of alpha particles is more than an order of magnitude
higher than that of gamma particles, the speed of γ particles is several times that of alpha
particles. This has led to massive particles becoming the main contributor to kinetic energy.
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3.6. Spatial Distribution of Fragments

With a diameter of 6 mm as the standard, the fragments were divided into large
particles and fine particles. The masses of the fragments in the I area and the extended
area along the radial direction were counted after crushing. Figure 11a shows the spatial
distribution of fine particles generated by the crushing of as there are few studies on the
all specimens. The density of the data points represents the possibility of corresponding
mass fine particles in the corresponding area. The blank area near the center area indicates
that the mass of fine particles produced in the inner circle is more considerable, generally
above 0.1 g. The closer to the center area, the more fine particles. Figure 11b shows the
changing trend of the total mass of fine particles of specimens 1 to 15 in the range of
60 to 200 mm, which confirms this rule. Figure 11b shows that the particle mass has a
maximum value at 300 mm. This aggregation phenomenon reflects the fine particle velocity
distribution characteristics, which represents the intersection of the γ and δ particles. After
the maximum point, the mass of fine particles decreases as the distance increases, and the
decreasing trend gradually slows down. In the area larger than 1000 mm, the particle mass
tends to increase again, mainly because the collection trough restricts fragment movement.
The loading rate has no significant effect on the spatial distribution of fine particles.
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The spatial distribution of large particles shows strong randomness, and the proba-
bility of super large particles is small. It can be seen from Figure 12a that there are only
four particles larger than 70 g in all of the data, but they contribute most of the mass of
the inner circle and the middle circle. Among more than 300 sets of data, there were only
16 sets of super-large particles with a mass greater than 20 g. There were only four groups
of super large particles in the outer circle, and the mass was less than 50 g. From the
spatial distribution of large particles, it can be seen that the input energy of this uniaxial
compression and crushing is limited, which is not enough to push the super large particles
to a more distant area. The input energy may be related to the material properties and
loading rate, and it is worthy of further exploration. For 15 sets of experiments, larger
loading rates are more likely to produce large splashing particles. As shown in Figure 12b,
the mass of large particles produced by specimens 10–15 (loading rate 4–5 kN/s) is larger
than that of specimens 1–9 (loading rate 1–3 kN/s).
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3.7. Location of Fragments

The surface of the specimen was painted. The debris larger than 6 mm can be divided
into surface particles and internal particles according to whether there is a color on the
surface. The mass of the two types of particles in area I along the radial direction is counted.
On the whole, there is no apparent difference between Figures 12 and 13, which indicates
that most of the particles larger than 6mm are surface particles; that is, at least one surface
is the surface of the test specimen. On the contrary, it is easier to compare the difference
between Figures 12 and 13 from the spatial mass distribution of the internal particles. That
is to say, the mass of the particles at each distance in Figure 14b is the difference between
the mass of the particles at the corresponding distance in Figures 12 and 13. Therefore,
although Figures 12b and 13b are relatively close in morphology, there are differences in
the number and mass of particles.
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This part of the difference represents the particles generated from the inside of the
specimen. From the mass distribution, it can be found that the mass of the internal particles
in this part is small, and the distribution characteristics are similar to the mass-spatial
distribution of fine particles in Figure 11. The mass spatial distribution of internal particles
presents the following law as a whole: the mass near the center is large, the mass decreases
rapidly as the distance increases, and the rate of decrease gradually decreases. Simultane-
ously, such particles’ appearance will still show a certain degree of randomness, and there

88



Minerals 2021, 11, 217

may even be no particles in some areas. All in all, the spatial distribution characteristics of
particles larger than 6 mm generated inside have a part of the characteristics correspond-
ing to particles smaller than 3 mm and particles larger than 6 mm on the surface of the
specimen, which belong to the transition type between the two.

Minerals 2021, 11, x FOR PEER REVIEW 13 of 15 
 

 

This part of the difference represents the particles generated from the inside of the 
specimen. From the mass distribution, it can be found that the mass of the internal parti-
cles in this part is small, and the distribution characteristics are similar to the mass-spatial 
distribution of fine particles in Figure 11. The mass spatial distribution of internal particles 
presents the following law as a whole: the mass near the center is large, the mass decreases 
rapidly as the distance increases, and the rate of decrease gradually decreases. Simultane-
ously, such particles’ appearance will still show a certain degree of randomness, and there 
may even be no particles in some areas. All in all, the spatial distribution characteristics 
of particles larger than 6 mm generated inside have a part of the characteristics corre-
sponding to particles smaller than 3 mm and particles larger than 6 mm on the surface of 
the specimen, which belong to the transition type between the two. 

 
Figure 13. Spatial distribution characteristics of surface particles. (a) Scatter plot of particle spatial 
distribution (b) Summary of particle spatial distribution of each group  

 
Figure 14. Spatial distribution characteristics of internal particles. (a) Scatter plot of particle spatial 
distribution (b) Summary of particle spatial distribution of each group  

4. Conclusions 
The fragments are divided into four types of particles according to the particle size. 
The average horizontal velocities of the four size particles α, β, γ, and δ are statisti-

cally calculated. The descending order of the particles’ average velocity is γ, β, α, and δ. 
Since the mass difference of different types of particles is greater than the influence of the 
velocity difference on kinetic energy, the descending order of the particles’ kinetic energy 
is α, β, γ, and δ. Among them, the contribution of alpha particles to the total kinetic energy 
exceeds 70%. The loading rate has little effect on the particle velocity. When the loading 
rate is higher, more alpha particles leave the central area, resulting in more input energy 

Figure 14. Spatial distribution characteristics of internal particles. (a) Scatter plot of particle spatial distribution (b) Summary
of particle spatial distribution of each group

4. Conclusions

The fragments are divided into four types of particles according to the particle size.
The average horizontal velocities of the four size particles α, β, γ, and δ are statistically

calculated. The descending order of the particles’ average velocity is γ, β, α, and δ. Since
the mass difference of different types of particles is greater than the influence of the velocity
difference on kinetic energy, the descending order of the particles’ kinetic energy is α, β, γ,
and δ. Among them, the contribution of alpha particles to the total kinetic energy exceeds
70%. The loading rate has little effect on the particle velocity. When the loading rate is
higher, more alpha particles leave the central area, resulting in more input energy being
converted into kinetic energy. The percentage of input energy converted into kinetic energy
of specimen 11 is 5.9% during the crushing process.

The spatial distribution characteristics of large particles and fine particles were an-
alyzed by the coordinate method. As a result, it was found that there was a greater
probability of fine particles appearing in the range closer to the central area; this reflects
that most of the fine particles have a lower velocity. The maximum value of the fine
particles’ mass appears in the middle circle, which indicates that there are also particles
with higher speed in the fine particles, namely γ particles. These kinds of particles overlap
with the slower particles, causing the phenomenon of mass maximum. The locations of
large particles are random, but they are more likely to appear within the middle circle. A
larger loading rate can produce more large splashing particles, which is consistent with the
kinetic energy characteristics of the loading rate.

The color tracking method was used to study the location of particles larger than
6 mm in the specimen. It was found that at least one surface of the super large particles
produced by crushing was the surface of the test specimen. Those particles produced
entirely from the inside of the specimen are relatively small and have similar spatial
distribution characteristics to fine particles. Therefore, it can be judged that fine particles
and particles of smaller size are generally generated by friction between the cross-sections
of the specimen when the specimen is broken. The speed of such particles is generally low.
Most of the large particles and a few small particles are directly peeled off the surface of
the broken specimen and have a higher splash speed.
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Abstract: In the field of mineral processing, an accurate image segmentation method is crucial for
measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based
measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper,
a new belt ore image segmentation method was proposed based on a convolutional neural network
and image processing technology. It consisted of a classification model and two segmentation
algorithms. A total of 2880 images were collected as an original dataset from the process control
system (PCS). The test images were processed using the proposed method, the PCS system, the coarse
image segmentation (CIS) algorithm, and the fine image segmentation (FIS) algorithm, respectively.
The segmentation results of each algorithm were compared with those of the manual segmentation.
All empty belt images in the test images were accurately identified by our method. The maximum
error between the segmentation results of our method and the results of manual segmentation is
5.61%. The proposed method can accurately identify the empty belt images and segment the coarse
material images and mixed material images with high accuracy. Notably, it can be used as a brand
new algorithm for belt ore image processing.

Keywords: belt ore measurement; convolutional neural network; image processing; contour
detection; OpenCV

1. Introduction

The particle size distribution of run-of-mine ore exhibits a great influence on the grinding process.
Variations in the particle size distribution directly affect the throughput and power consumption of
mills, especially autogenous (AG) and semi-autogenous (SAG) grinding mills [1]. Therefore, it is
critical to evaluate the size distribution of run-of-mine ore on the conveyor belts in real time [2,3].
The measurement of the particle size distribution by sampling and sieving is considered a common and
time-consuming method. The analysis method based on machine vision is considered a non-invasive,
fast, and inexpensive technique for rock size measurement [4]. Since the 1980s, many studies have
been conducted to evaluate the particle size distribution of materials on a conveyor belt based on
machine vision and image processing technology [2,5,6]. Scholars have mainly followed three aspects
of exploration. The first aspect includes accurate ore contour detection algorithms. The second
aspect is the reasonable evaluation model which is used to convert two-dimensional information
of ore into three-dimensional information, and then evaluating energy consumption or particle size
distribution. The third aspect is new technology including neural networks, deep learning, and genetic
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algorithms, etc. In 1988, Lange developed an on-line, real-time system which can capture images of
rocks on conveyor belts, and process images to get the chord-length distributions, and then transform
chord-length distributions to equivalent sieve sizes. Lange offered a method to distinguish belt ores of
different size distributions [2]. Lin and Miller developed an image-based system which used image
processing technology to get the chord-length of rocks, and used two kernel functions to calculate the
cumulative chord-length distributions of regularly and irregular shaped particles, respectively. The last
step was to transform the chord-length distributions into size distributions by the transformation
Equation [5]. In 1997, Yen and co-workers used an empirical correction function to solve the coarse
particle overlap problem [7]. Before 2000, limited by hardware technology, it was difficult to get sharp
images and many algorithms that consumed too much computer performance could not be adopted.
The scholars mainly researched the image-based system software and hardware framework, contour
detection, reasonable measurement parameters and size transformation functions.

After 2000, with the rapid development of computer hardware and new technologies,
the image-based, online, and real-time particle size measurement development made much progress.
Singh and Mohan Rao extracted RGB color information, visual texture of particles, and developed a
system based on a radial basis neural network. The system was used for ore classification and ore
sorting [8]. Al-Thyabat and co-workers evaluated ore image segmentation results by means of Feret’s
diameter and equivalent area diameter, and experimented and discussed the effect of camera positions [9].
Levner offered a classification-driven watershed segmentation to segment belt ore images, and adopted
machine learning to produce markers and identify ore edges [10]. Outal et al. provided a calibration
method for evaluating 3D size distribution, according to the 2D segmentation results [11]. Andersson
evaluated the size distribution of particles using ordinal logistic regression [12]. Hamzeloo et al.
used different particle equivalent models to evaluate 3D size distribution. These equivalent models
included the equivalent area circle, best-fit rectangle, Feret diameter, and maximum inscribed disk [4].
In addition, the impact of the shape of the particles on the product properties was also researched
extensively [13–16]. Until now, many image-based analysis methods have been successfully applied
to evaluate the particle size distribution [17–19], however there are still three unresolved problems
regarding the image-based, on-line particle size analysis methods.

One is that there is no research focus on the problem of empty belt identification. In the course
of production, we should not turn on or switch to the empty conveyor belts. Therefore, the accurate
recognition of the empty belt is necessary to realize the automatic control and switching of conveyor
belts. The second problem is the accurate belt ore image segmentation method, especially for the
coarse-fine images. According to the experimental results of previous researches, it cannot be concluded
that the proposed method can accurately segment both coarse and fine materials. An accurate image
segmentation method is the basis of a particle size distribution measurement system. Although there
is a method which uses machine learning to identify the pixels of ore edges, the contour detection
based on image segmentation is more stable, accurate, and adaptable. In the future, the ore image
segmentation method based on deep learning will be an expected practice. The third problem is related
to the overlapping of particles. Even though many studies have been conducted in order to find viable
solutions to these problems, most of them rely on empirical correction [4,7,20]. Dynamic image analysis
(DIA) is a feasible method to solve the overlap problem [15].

Traditional rock image analysis methods cannot distinguish different types of images, such as
empty belt images, mixed material images, and coarse material images, which are distinct. The mixed
materials include coarse-fine materials and fine materials. It is difficult to accurately process all three
types of belt ore images with an image segmentation algorithm; therefore, our analysis method should
be able to accurately classify the images we obtain. In recent years, with the rapid development of
computer hardware and deep learning theory, the convolutional neural networks (CNNs) have shown
great progress in the field of image recognition and classification [21,22]. Krizhevsky et al. developed
AlexNet, which can reach 83.6% top-5 accuracy for the ImageNet dataset [23]. At present, the top-5
accuracy of many convolutional neural networks in image recognition tasks can reach more than 90%
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for the ImageNet dataset [24–26]. Many research studies on rock image recognition and classification
based on deep learning have achieved high accuracy [8,27,28].

In this research, the method based on the deep learning method and the image processing
technology was developed in order to accurately segment the belt ore images. The strategy was to
classify the belt ore images into empty belt, mixed materials and coarse materials first and then use
different algorithms for processing mixed materials and coarse materials. We focused on the accuracy
of belt ore image segmentation and empty belt identification. Both the conversion model for converting
two-dimensional information of ore into three-dimensional information and the impact of the shape of
the particles on the product properties are beyond the scope of this article.

2. Details of the Method

The proposed method is divided into three layers. The first layer is a classifier based on a
convolutional neural network. The second layer consists of two image processing algorithms based on
the OpenCV library. The two algorithms are used to process coarse material images and mixed material
images, respectively. The third layer is the statistics layer. The classifier divides the raw images into
the empty belt, coarse materials, and mixed materials. If the belt is empty, it gives an alarm; otherwise,
it uses the coarse image segmentation (CIS) algorithm to process coarse material images and uses
the fine image segmentation (FIS) algorithm to process mixed material images, respectively. Finally,
the cumulative area distribution is calculated following the counting segmentation area information.
The technical roadmap is shown in Figure 1.
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2.1. The Convolutional Neural Network Classifier

2.1.1. The Dataset Preparation

The size of the dataset is considered crucial for evaluating the performance of the trained model.
An insufficient dataset causes a low recognition accuracy of the trained model. The dataset used
in this study consisted of 2880 images collected from the process control system (PCS) system of a
mineral-processing plant in the Yunnan Province, China. The images were taken by eight cameras
installed on eight feeding belts with a collection rate of eight photos per minute for each camera.
AXIS P3227-LVE cameras from AXIS are used, as well as LED PCS6-LED80 W lamps from Woodgrove.
Two belt ore images are taken by each camera continuously every 15 s. The PCS system stores the
latest 100 pictures from each camera; therefore, the images in the PCS system are completely updated
every 12.5 min. We wrote a Python script to transfer the pictures from the storage folders to specified
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folders, and the transfer was executed every 13 min, lasting for a week. In the image transfer stage,
the goal is to obtain sufficient belt ore images. It is efficient and economical to directly transfer images
saved by the PCS system. At the same time, only two feeding belts are in running; therefore, there are
a lot of duplicate images in the specified folders. All of the images have a size of 2304 × 1728 px
(JPEG file). We planned to select about 3000 sharp, non-repetitive, and representative belt ore images
as the original dataset. The 982 empty belt images were picked out including empty belts with water
stains, empty belts with small particles, images taken by telephoto lens, and images taken by short
focal length lens. We divided the belt ore images with fine content less than 30% into coarse material
images. The features of coarse material images are obvious and similar; therefore, the number of
coarse material images can be reduced appropriately. The 841 coarse material images were selected.
The 1057 mixed material images were selected according to the proportion of fine material. The mixed
material images were selected consisting of 100%, 90%, 70%, and 50% fine material. All images were
taken from an industrial site and were not created; therefore, the proportion of fine material was an
estimation and not an exact value. The 2880 high-quality, representative images were selected from the
saved images as the original dataset. After physical verification, 522 px in each image was found to be
equal to 30 cm. Several examples of the images are shown in Figure 2.
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2.1.2. Model Training

The design of our network is shown in Figure 3. The network consists of two convolution layers,
two maxpool layers, two fully connected layers, and three ReLU activation functions. The DELL R730
server was used to train the model. The Windows Server 2012 was used as the operating system.
The Intel E5–2609V4 was used as the CPU with a RAM of 32 GB, and the Nvidia P2000 (5 GB) was
used as the GPU.

The original dataset was used as the raw data. The input images consisted of three channels,
which were resized to 500× 500× 3. All input images were required to undergo a two-step pretreatment
process. In the first step, the value range of pixels was changed from 0–255 to 0–1. In the second
step, the image was normalized by using the empirical mean vector and the empirical std vector.
The normalization is described as follows:

mean = [0.485, 0.456, 0.406] (1)

std = [0.229, 0.224, 0.225] (2)
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result = (image−mean)/std (3)

The original dataset was completely shuffled: 20% of the images assigned to the test set, 20% of
the images assigned to the validation set, and 60% of the images used as the training set. The processed
images were input into the neural network for model training. The epoch value was set to 10, the batch
size was set to 32, the learning rate was set to 0.001, and the cross-entropy was used to evaluate
the training loss. The prediction result was compared with the true label in order to calculate the
training accuracy and the validation accuracy of every epoch. The training accuracy and validation
accuracy were used to update the weights in the model [29]. The training process is shown in Figure 4.
The training accuracy was 99.48%, the validation accuracy was 100%, and the training cross-entropy
equaled 0.0146 when the epoch equaled 10. The model was tested with the test set, and the prediction
accuracy was 100%.
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2.2. CIS and FIS Algorithms

2.2.1. CIS Algorithm

The CIS algorithm processes images classified by the classifier as coarse materials. The CIS
algorithm is based on the Python OpenCV library (version 4.1.1). The uneven color distribution on the
surface of the coarse ores and the coarse ores covered by fine particles led to the region of coarse ores
in the image being divided into many small regions. Therefore, the CIS algorithm should be able to
remove features that are similar to the ore edge on the surface of the coarse ore. The CIS algorithm is
described in Figure 5.
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Figure 5. Block diagram of the coarse image segmentation (CIS) algorithm.

The CIS algorithm follows five steps. In the first step, the input image is processed using the
bilateralFilter function. The setting value of the diameter of each pixel neighborhood equals 25,
the sigma parameter of the color space equals 100, and the sigma parameter of the coordinate space
equals 25. The purpose of bilateral filtering is to blur the surface of coarse materials while preserving
the edge. The parameters of the bilateralFilter function were chosen according to experience and
practice; for example, 25, 50, 75, 100. After bilateral filtering, the noise, details, and small color blocks
on the surface of the ore are blurred, and the edge of the ore is preserved [30,31]. In the second step,
the operations include graying [32], adaptive thresholding [33], and median filtering [34,35]. The setting
kernel of the median filter equals 3. The kernel of the median filter should not be too high, to prevent
edge interruption. After several tries, the results processed using the kernel with a value of 3 was more
suitable for subsequent processing than 5 or 7. After the second step, the color image is binarized and
denoised. In the third step, the image is processed using the findContours and drawContours functions.
After these operations, the interconnected areas are closed. In the fourth step, the image is processed
using the erode and morphologyEx functions [36–38]. The setting kernel is a 3 × 3 morph ellipse.
The iterations parameter of the erode function is 10 and the iterations parameter of the morphologyEx
function is 4. The target of erosion and open operation is to extract markers. The iterations parameters
are sensitive, and are chosen by experience and trials. Finally, the watershed transformation is
performed based on markers, and the watershed lines are drawn [10,39,40]. For instance, Figure 6
shows how the CIS algorithm processes a coarse material image.
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2.2.2. FIS Algorithm

The FIS algorithm processes the images classified by the classifier as mixed materials. The FIS
algorithm is based on the Python OpenCV library (version 4.1.1). Both fine and coarse-fine materials
are mixed materials. The edge of fine materials is weak; therefore, excessive blurring causes the
under-segmentation of fine material images, and insufficient blurring causes the over-segmentation of
coarse material images. The FIS algorithm must remove the edge-like features on the surface of coarse
ores as much as possible while retaining the outlines of granular particles and fine material. The FIS
algorithm is described in Figure 7.
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Figure 7. Block diagram of the fine image segmentation (FIS) algorithm.

The FIS algorithm follows four steps. In the first step, the input image is processed using the
bilateralFilter function. Due to the need to deal with the coarse ores which are contained in the mixed
materials, it is necessary to use bilateral filtering. Parameter settings are found to be the same as the CIS
algorithm [30,31]. In the second step, the operations include graying [32], adaptive thresholding [33],
and two median filterings [34,35]. The setting kernels of the median filters equal 3. After the second
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step, the color image is binarized and denoised. In the third step, the image is processed using the erode
function and median filtering. The setting kernel of the median filter equals 9 and the kernel of the erosion
operation is a 5 × 5 morph ellipse [38]. Due to the edge of fine materials being weak, we should not adopt
strong morphological operations. Therefore, the iterations were set to one. To ensure complete separation
among markers, the kernel of the median filter in the third step was set to 9. Finally, the watershed
transformation was performed based on markers and the watershed lines were drawn [10,40]. A mixed
material image was processed using the FIS algorithm as shown in Figure 8.
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mixed material image, and one coarse material image in each group. In order to compare the 
segmentation results of the different algorithms, the designated region of raw images was processed 
by using different algorithms. The size of the designated region was 1202 × 631 (JPEG file). Manual 
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Figure 8. Original (a), after the first step (b), after the second step (c), after the erosion operation (d),
after the third step (e), and after the fourth step (f).

3. Experimental Details

3.1. Image Acquisition and Classification

The experimental dataset covers 12 representative images which consist of four empty belt images
labelled as one, four mixed material images labelled as two, and four coarse material images labelled
as zero. All images were taken from the PCS system at different times. We selected four empty belt
images including an empty belt with water stains, an empty belt with small particles, an image taken
by a telephoto lens, and an image taken by a short focal length lens. The features of coarse material
images are obvious and similar. The four coarse material images were selected randomly. The four
mixed material images were selected consisting of 100%, 90%, 70%, and 50% fine material. The raw
images were divided into the following four groups: one empty belt image, one mixed material image,
and one coarse material image in each group. In order to compare the segmentation results of the
different algorithms, the designated region of raw images was processed by using different algorithms.
The size of the designated region was 1202 × 631 (JPEG file). Manual segmentation was used to obtain
accurate segmentation images. Images from group one (as shown in Figure 9a) were processed using
PCS, CIS, and FIS, respectively, for evaluating each algorithm. Other images were processed and
evaluated by using our method.
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Figure 9. The segmentation results processed by different algorithms: the original images (a), manual
segmentation (b), process control system (PCS) (c), CIS (d), and FIS (e).

3.2. Estimation of Segmentation Accuracy

The area (px) of the regions surrounded by contours in the segmented images were counted,
and the cumulative area distribution was calculated. Suppose x1, x2, . . . , xn are areas of the regions
enclosed by the particle segmentation contours in a processed image. Among x1, x2, . . . , xn, areas
of the regions that are smaller than the specified values are y1, y2, . . . , ym. The cumulative area
distribution (C) is computed using the following equation:

C =

m∑
i=1

yi

n∑
j=1

x j

(m ≤ n) (4)

We use the cumulative area distribution to evaluate the segmentation accuracy of algorithms.
The specified value used to calculate the cumulative area distribution is called the area filter (px). If the
number of pixels in the region surrounded by the contour is less than the area filter, the region can pass
the area filter; otherwise, the region cannot pass. The contourArea function from the Python OpenCV
library (version 4.1.1) was adopted to get the number of pixels in the region surrounded by the contour.
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The cumulative area distributions of the segmentation results of the empty belt image, mixed material
image, and coarse material image are quite different; therefore, different area filters were used for
calculating the cumulative area distribution of the segmented images. The empty belt images were
evaluated using 2000, 4000, 8000, 10,000, 20,000, 40,000, 80,000, and 100,000 px area filters. The mixed
material images were evaluated using 2000, 4000, 6000, 8000, 10,000, 20,000, 30,000, and 40,000 px area
filters. The coarse material images were evaluated using 5000, 10,000, 15,000, 20,000, 25,000, 30,000,
35,000, and 40,000 px area filters. The cumulative area distribution and the number of segmentation
contours of the image segmented by the PCS system, CIS, and FIS, respectively, were compared with
the segmentation result of the manual segmentation image. The segmentation result of the algorithm,
which was close to the manual segmentation result, was evaluated as accurate.

4. Experimental Results and Discussions

4.1. The Segmentation Result Analysis of Different Algorithms

Images in Figure 9a were segmented using manual segmentation, PCS, CIS, and FIS, respectively,
providing results as shown in Figure 9b–e. By counting the number of segmentation contours in the
segmented images, the results are shown in Table 1. By calculating the cumulative area distribution of
the segmented images, the results are shown in Figure 10. Table 1 shows that the segmentation contour
counts of the empty belt image by the PCS system, CIS algorithm and FIS algorithm, respectively,
are 371, 51, 92. Figure 10a and Table 1 demonstrate that no algorithm can accurately segment the empty
belt images. Due to many disturbing factors such as small particles, dirt, and water on the surface of
the empty belts, the segmentation algorithms always segments the empty belt images. We only require
to recognize and need not segment the empty belt images. Table 2 shows our method alarms all three
empty belt images from groups 2 to 4. Table 2 indicates that using the training model based on the
convolutional neural network to process the empty belt images shows better performance and accuracy.
From Figure 10c and Table 1, it is observed that the PCS system shows serious over-segmentation in
processing the coarse material images, and the segmentation accuracy of the FIS algorithm is found
to be between that of the CIS algorithm and the PCS system. The outlines of massive rocks are
obvious as compared to those of granular particles and fine material. Many disturbing factors, such as
edges and corners, uneven color distribution, shadow, and so on, are found on the surface of massive
rocks. An algorithm that can accurately segment the coarse material images must overcome the above
interferences, however, the blur and denoise operations used cannot weaken the outlines of coarse
ores too much. Figure 9 shows that the CIS algorithm has obvious advantages for segmenting the
coarse material images. The blur, denoise, and smooth operations of the CIS algorithm weaken the
outlines of ores; therefore, there is a serious under-segmentation in processing mixed material images,
especially the fine material images (see Figures 9 and 10b). We classified the images in the original
dataset, which are neither coarse material images nor empty belt images, as mixed material images.

Table 1. The segmentation contour count of various algorithms.

Classification
Segmentation Contour Count

Manual PCS CIS FIS

Empty belt 0 371 51 92
Mixed materials 885 942 123 955
Coarse materials 101 408 91 280

Table 2. The results of empty belt images from groups 2 to 4, as processed by our method.

Groups Status

2 Alarm
3 Alarm
4 Alarm
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Figure 10. The results of raw images by segmenting group 1 using manual segmentation, PCS, CIS,
and FIS, respectively: empty belt (a), mixed materials (b), and coarse materials (c).

As the number of images in the original dataset is very high, it is not feasible to count the particle
size distribution of materials on conveyor belts. The method of distinguishing empty, mixed materials,
and coarse materials is based on artificial classification. An image that is full of massive ores is classified
as a coarse material image. The accurate segmentation of mixed material images is most difficult to
achieve. The massive ores show a greater impact on the grinding process. The results calculated by
the under-segmentation of fine material images are found to be much coarser than the actual results.
Fewer morphological operations enable the FIS algorithm to retain the outlines of granular particles
and fine materials. More denoise operations enable the FIS algorithm to remove the interferences on
the surface of the massive ores as much as possible. Figure 10b shows that the FIS algorithm shows
accurate segmentation in processing mixed material images, especially the fine material images. As the
FIS algorithm cannot remove the large non-edge features on the surface of massive rocks such as edges,
corners, and color blocks, the FIS algorithm does not show as accurate results as the CIS algorithm in
processing the coarse material images (see Figure 10c and Table 1). It is more accurate and reasonable
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to classify images first and then use different algorithms for processing rather than to process all images
with the same algorithm.

4.2. The Processing Result Analysis of Our Method

Images from groups 2 to 4 were processed by using both our method and manual segmentation.
Three mixed material images include one fine material image from group 2 and two mixed material
images from groups 3 and 4. The results of the three processed empty belt images are shown in Table 2.
The results of the three processed mixed material images are shown in Table 3. The results of the
three processed coarse material images are shown in Table 4. The cumulative area distribution of one
fine material image from group 2, one mixed material image from group 3, and one coarse material
image from group 2, which were processed by our method, are shown in Figure 11. The column
headers in Tables 3 and 4 (5000, 10,000, etc.) indicate area filters. Table 2 shows that three empty belt
images used for testing were alarmed. Our method is found to be accurate and reliable for empty belt
identification. From Table 3, it is observed that the maximum error of the cumulative area distribution
calculated by using different area filters is 2.71% for fine material, 4.65% for mixed materials from
group 3, and 5.02% for mixed materials from group 4. From Table 3, the average error of the cumulative
area distribution calculated by using different area filters is 1.07% for fine material, 2.27% for mixed
materials from group 3, and 2.89% for mixed materials from group 4. From Table 4, it is observed
that the maximum error of the cumulative area distribution calculated by using different area filters is
3.51%, 5.61%, 3.83%, respectively, for coarse materials from groups 2 to 4. From Table 4, the average
error of the cumulative area distribution calculated by using different area filters is 1.30%, 3.30%, 2.59%,
respectively, for coarse materials from groups 2 to 4. Tables 3 and 4 indicate that our method can
segment both mixed material images and coarse material images with high precision. Our method is
considered useful for identifying and segmenting the images taken on industrial conveyor belts.

Table 3. The results of mixed material images from groups 2 to 4, processed by our method.

Groups Methods
Cumulative Area Distribution (%)

2000 4000 6000 8000 10,000 20,000 30,000 40,000

2 (F) Our method 55.59 85.64 96.82 100 100 100 100 100
Manual 58.06 87.6 94.11 98.61 100 100 100 100

3 (M) Our method 16.44 36.67 50.89 62.29 69.54 89.07 92.08 92.08
Manual 18 38.09 55.54 66.82 73.67 89.49 92.8 92.8

4 (M) Our method 26.4 50.64 67.1 77.11 90.78 95.17 100 100
Manual 28.09 55.66 71.1 80.66 94.77 100 100 100

F: fine material; M: mixed materials.

Table 4. The results of coarse material images from groups 2 to 4, processed by our method.

Groups Methods
Cumulative Area Distribution (%)

5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

2
Our method 8.86 26 41.58 56.73 63.02 72.61 79.91 85.05

Manual 10.43 29.51 41.94 57.48 64.07 74.07 80.65 85.99

3
Our method 6 15.38 25.81 40.83 57.06 64.08 79.86 84.57

Manual 7.34 18.55 31.42 43.26 61.66 67.26 85.26 85.26

4
Our method 8.49 22.74 33.68 43.76 51.15 66.5 71 74.34

Manual 6.92 25.5 37.02 46.46 53.02 63.73 72.86 78.17
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Figure 11. The results of the specified images processed by our method: fine material (a), mixed
materials (b), and coarse materials (c).

5. Conclusions

The objective of this study is to develop a method that can accurately segment belt ore images.
The accurate image segmentation method is considered important for estimating the size distribution of
mineral materials on industrial conveyor belts. For that purpose, 2880 images collected from a process
control system on the industrial site were processed as the original dataset. Deep learning and image
processing techniques were integrated with the image segmentation method. From the perspective of
an application, the accurate recognition of the empty belts is necessary to realize the automatic switch
of conveyor belts. The new method can identify the empty belt images with high precision. Moreover,
it is difficult for an image segmentation algorithm to achieve accurate segmentation of both coarse
materials and mixed materials. This study adopted the convolutional neural network model to solve
the automatic classification of belt ore images, and then used the CIS algorithm and the FIS algorithm to
accurately segment coarse material images and mixed material images, respectively. The new method
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makes it feasible and efficient to accurately process various belt ore images. Notably, it can be used as
a brand new algorithm for belt ore image processing. The main novelties are as follows:

• This study used a convolutional neural network to identify empty belts.
• The new method adopted the strategy which is to classify the belt ore images first and then use

different algorithms for processing different kinds of images.
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Abstract: In hard rock mining, sensor-based sorting can be applied as a pre-concentration method
before the material enters the mill. X-ray transmission sensors have been explored in mining since
1972. Sorting ore of acceptable grade and waste material before processing at the mill can reduce
the amount of tailings per unit of valuable metal in the mining operation and have many economic
benefits. Ore samples used in this paper are from a polymetallic carbonate replacement deposit (gold-
silver-lead-zinc sulphide) in Southeast Europe. This paper focuses on how the Dual-Energy X-ray
Transmission (DE-XRT) data is generated and used for ore characterization and sortability for this
sulphide ore. The method used in the DE-XRT analysis in this project is based on the dual-material
decomposition method, which is used in the medical industry for radiology. This technique can
distinguish sulphides from non-sulphides. However, the correlation developed between the DE-XRT
response and the metal content is lacking. As a result, the DE-XRT response can only classify the
material effectively but cannot reliably predict the metal content.

Keywords: Dual-Energy X-ray Transmission (DE-XRT); sulphide; polymetallic

1. Introduction

Ore sorting is a sensor-based sorting and pre-concentration technology that is imple-
mented before the processing stage and used to reduce the amount of low-grade ore and
waste reporting to the mill feed. X-ray transmission sensors have been explored in mining
since 1972, as described by Jenkinson et al. [1] This technology is widely used at airports for
baggage inspection and the basic principles have been adopted as a sorting technique [2]
This technology can also be utilized to recover ore from previously uneconomic waste and
reduce the mill energy and reagent consumption by reducing the mass of ore being pro-
cessed by the mill [3]. In greenfield projects, sensor-based sorting can further provide value
by lowering processing capital costs [4]. The decline of available high-grade orebodies and
decreasing head grades has further increased the attractiveness of pre-concentration, and,
subsequently, ore sorting [5].

A critical parameter in obtaining the DE-XRT result is developing the H-L (High
and Low energy) curves that determine the relative density of a given pixel based on
its X-ray attenuation. In this paper, a dual-material decomposition method will be used
to determine the sulphide material from the waste material. This study aims to assess
the effectiveness of DE-XRT to sort the sulphides from the non-sulphides. Since the ore
is very heterogeneous, different rock types were identified to account for the mineral
composition of various pieces of rock. Hence, the test work was designed to assess each
rock representing different mineralogy or rock type. Density measurements using DE-XRT
were used to determine average atomic density by measuring the X-ray attenuation for
each specimen used in the study, respectively. Both silver and gold assays are determined
by the fire assay method, and the rest of the elements are determined by the Induction
Coupled Plasma Method (ICP).
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In this study, the equivalent gold grade is used to assess the value of the sample since
it is a polymetallic deposit. The equivalent gold grade is calculated by summarizing the
dollar value of gold, silver, zinc, and lead, divided by the price of gold. The commodity
price used in this study to calculate equivalent gold grade is 1300 $/oz of Au, 17.5 $/oz of
Ag, 5 $/lb of Mo, 1.25 $/lb of Zn and 1.05 $/lb of Pb.

2. Materials and Methods

Three main parameters were recorded for each rock specimen in this experiment: rock
classification, DE-XRT output, and assays. It is critical to ensure that the same sample is
assessed for each parameter to obtain correct data for correlation analysis. Five hundred
rock specimens were used in this study, and the particle size ranged between +50 mm to
100 mm. The initial sample consisted of run-of-mine (ROM) material, which included fines
and coarse particles not suitable for particle sorting. The ROM material was screened to
the desired particle size between 50 mm and 100 mm and washed where the five hundred
representative samples were selected.

2.1. Material Classification

Individual rock specimen has been classified into two classes based on visual obser-
vations of mineralization. When classifying rock types into the two classes, two factors
are considered for this ore deposit. Initially, visual parameters are considered where rock
specimens are observed showing mineralization; those with silver or golden tints are con-
sidered sulphides, while the dull and whitish-looking rocks are considered non-sulphides
(mostly carbonates in this case). Also, the density of the samples aids the classification,
where the heavier sample of the same rock size is classified as a sulphide. Examples of
sulphide and non-sulphide specimens are illustrated in Figure 1.
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2.2. Dual-Energy X-ray Transmission (DE-XRT)

The Dual-Energy X-ray Transmission (DE-XRT) technology measures the X-ray at-
tenuation according to Beer’s Law for monochromatic narrow X-ray beams [6], which is
expressed in the equation below. The final µ coefficient will be a function of radiation
energy in addition to the properties like material density and thickness [7].

H = e−µH t (1)

L = e−µLt (2)

µ H : Mass attenuation coefficient for High Energy (cm2/g)
µ L : Mass attenuation coefficient for Low Energy (cm2/g)
t : Mass thickness (g/cm2)
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The relationship between the high- and low-energy X-ray attenuation can be expressed
by rearranging Equations (1) and (2), which is the basis of H-L curve generation:

H = L
µH
µL (3)

In this experiment, COMEX’s MSX-400-VL-XR system installed at the University of
British Columbia (UBC) was used and illustrated in Figure 2. The equipment has an X-ray
sensor with a 1.5 mm resolution and a belt width of 51 cm travelling at a speed of 0.5 m/s.
In order to minimize the error from equipment malfunction such as miscalibrated detectors,
the machine is maintained regularly and necessary repair would need to be completed [8].

Minerals 2021, 11, 490 3 of 10 
 

 

𝒕: Mass thickness (𝑔/𝑐𝑚ଶ) 
The relationship between the high- and low-energy X-ray attenuation can be ex-

pressed by rearranging Equations (1) and (2), which is the basis of H-L curve generation: 𝐻 = 𝐿ఓಹఓಽ  (3) 

In this experiment, COMEX’s MSX-400-VL-XR system installed at the University of 
British Columbia (UBC) was used and illustrated in Figure 2. The equipment has an X-ray 
sensor with a 1.5 mm resolution and a belt width of 51 cm travelling at a speed of 0.5 m/s. 
In order to minimize the error from equipment malfunction such as miscalibrated detec-
tors, the machine is maintained regularly and necessary repair would need to be com-
pleted [8]. 

 
Figure 2. COMEX’s MSX-400-VL-XR System in UBC’s Coal and Mineral Processing Laboratory. 

Using the COMEX MSX-400-VL-XR system, H-L curves are generated. The low-en-
ergy X-ray response represents the x-axis, and the high-energy X-ray response represents 
the y-axis. To use the dual-material decomposition method, two distinct material types 
were chosen. Figure 3 illustrates a visual representation of the dual-material decomposi-
tion method where Material 1 and Material 2 are vectors and where material can be rep-
resented as a sum of Material 1 and Material 2. 

 
Figure 3. The material decomposition method using vector addition [9]. 

Figure 2. COMEX’s MSX-400-VL-XR System in UBC’s Coal and Mineral Processing Laboratory.

Using the COMEX MSX-400-VL-XR system, H-L curves are generated. The low-energy
X-ray response represents the x-axis, and the high-energy X-ray response represents the
y-axis. To use the dual-material decomposition method, two distinct material types were
chosen. Figure 3 illustrates a visual representation of the dual-material decomposition
method where Material 1 and Material 2 are vectors and where material can be represented
as a sum of Material 1 and Material 2.

→
M =

→
A +

→
B (4)

where
→
M is unknown material→

A is Material Type 1
→
B is Material Type 2

In this study, the two types of material chosen for validation were dictated by the
amount of equivalent gold content in the specimen. The rock with an equivalent gold
grade in the top fifth percentile (sulphide) and the bottom fifth percentile (non-sulphide)
was chosen to generate the characteristic function in the H-L plot. The average grade of
the entire sample was 13.47 g/t gold, 80.32 g/t silver, 2.58% lead, and 2.66% zinc. The unit
of 1 g/t was equivalent to 1 ppm since there are one million grams in one metric ton. The
rocks classified in the top fifth percentile of metal content can have gold grades as high as
60 g/t, silver grades of 200 g/t, lead grades of 7%, or zinc grades of 4%.
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The relative density number for each pixel is determined by finding the magnitude
of each vector from sulphides and non-sulphides. The relative density value, in this case,
represents the percentage of being rock referred to as Material type 1, which is expressed
in the equation below.

Relative Density =
Magnitude of

→
A

Magnitude of
→
A + Magnitude of

→
B

(5)

→
A = Material Type 1
→
B = Material Type 2

2.3. Assays

Upon completion of the XRT tests, the rocks were then sent for assaying. The assay
determined the amount of valuable metals present in every rock using 30 g of a sample
for fire assay. Additionally, a 33-element Inductively Coupled Plasma Atomic Emission
Spectroscopy (ICP-AES, MS Analytical, Lanley, B.C., Canada was conducted on the indi-
vidual samples.

3. Results and Discussion

In this sample, the ore and waste have been determined by the amount of particular
mineralization visible macroscopically (by the naked eye). Of the five hundred rock speci-
mens, 218 (43.6%) samples were visually classified as non-sulphides, and the remaining
282 (46.4%) samples were sulphides.

Figure 4 illustrates the distribution of six different assays for all samples, with rock
types differentiated by colour (orange sulphides; blue non-sulphides). The histograms
show that sulphide material tends to have a much higher grade for gold, silver, zinc, and
lead, while non-sulphide materials tend to have much higher calcium content.

As illustrated in Figure 5, there are two distinct sets of materials. Sulphides (orange
dots) have high equivalent gold grades as well as high sulphur content, while the non-
sulphides have low equivalent gold grades and low sulphur content. This infers that there
are distinct characteristics between the sulphide material and non-sulphide material.
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3.1. DE-XRT Image Processing

Based on the H-L curve generated using the top and bottom 5 % of the samples with
the highest equivalent gold grade, each specimen produced an image with relative density
values representing each pixel. Three samples selected in Table 1 illustrate the difference
between high, medium and low sulphur content samples (indicating sulphide content).
The pixel values range from 0 to 1, where 0 is represented as blue, and 1 is represented
as yellow.

In Table 1, there are distinct characteristics between these three samples. The colours
represent each pixel’s relative density, ranging from 0 (dark blue) to 1 (yellow). The high
relative density indicates that the sample is more likely to be a sulphide material. Valuable
metals, iron, and sulphur are proportionally correlated, while the calcium content is in-
versely correlated. The high calcium content indicates that the waste material is composed
of carbonates, while the sulphides have high iron, sulphur, and valuable metal content.

It is easy to distinguish the high sulphur samples from the low sulphur samples based
on the relative XRT density distribution as illustrated in Figure 6. This suggests that taking
an average value of the relative density of an entire sample can be effective in separating
the sulphide from the non-sulphide rocks.
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Table 1. Comparison of three different specimens with low, medium, and high sulphur content.

Sample Number 260 493 459

Images
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Au Assay (g/t) 0.34 6.93 41.19
Ag Assay (g/t) 0.50 40.00 347.00
Pb Assay (%) 0.12 1.32 10.01
Zn Assay (%) 0.22 3.68 6.05

Eq. Au Assay (g/t) 0.55 10.62 55.39

As ICP (%) 0.21 7.92 10.00
Ca ICP (%) 27.09 8.87 0.09
Fe ICP (%) 0.72 7.37 23.86
Mg ICP (%) 1.65 4.54 0.03
Mn ICP (%) 2.25 1.40 0.10

S ICP (%) 0.53 4.60 10.00

Average Relative Density 0.52 0.54 0.91
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Figure 6. Histogram of relative XRT-generated density for high, medium and low sulphur samples.

Figure 7 illustrates the top and bottom 10% of the samples based on equivalent gold
grade. It is apparent that below 0.6 relative density, samples have significantly lower grade
value. Also, there are two very distinct clusters of points that are distinguished by the
rock type.
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Figure 8 plots all samples where similar characteristics can be observed, as illustrated
in Figure 7. The distribution of the y-axis shown on the right side of the graph demon-
strates the potential for removing more than 90% of the non-sulphide material below a
0.6 average relative density. However, when using the logarithmic scale to visualize the
trends (Figure 8) when the relative density is below 0.6, there is no correlation between
relative density and equivalent Au. This makes grade prediction difficult by using XRT.
The tentative range of grades can be estimated from the scatter plot of equivalent gold assay
average as shown in Figure 7, but this is not accurate enough for proper grades prediction.
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3.2. Sortability Analysis

To assess the sortability, the average relative density value for each rock is put in order
from the highest value to the lowest value. The metal recovery can then be calculated at a
given mass yield. The mass is assumed to be equal for all particles in this analysis.

To plot a sortability curve derived from DE-XRT, each specimen is ranked by the
lowest average relative density and the highest relative density. Then, the recovery curve is
generated using the modelled metal grade of each rock specimen, as illustrated in Figure 8.
The line graphs represent the cumulative mass yield and cumulative metal recovery (y-axis
on the right side), while the bar graph represents the individual equivalent gold grade
based on the descending order of average relative density for each particle.

As shown in Figure 9, 90% of sulphides can be recovered in approximately 55% of
the mass. Furthermore, more than 95% of equivalent gold can be recovered in the same
amount of mass. It is also important to note that at a 55% mass yield, the rate of calcium
recovery almost doubles. This concludes that more carbonates are starting to be recovered
when the 55% mass of rocks is being collected into the concentrate.
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Figure 9. Scatter plot of equivalent gold assay versus average relative density.

4. Conclusions

In this study, the effectiveness of DE-XRT in characterizing material type for sensor-
based sorting was explored. The new to mineral processing approach of a dual-material
decomposition method was used to the DE-XRT image analysis.

For the studied ore, it was shown that DE-XRT sorting technology can recover 90%
of the sulphides with a 55% mass yield. Although the DE-XRT was unable to accurately
predict the grade of the rock based on the average relative density of the sample, it was
able to separate sulphides from non-sulphides effectively. There is potential for applying
regression methods for the sulphide rocks since there is a linear correlation between
equivalent gold assay and average relative atomic density above 0.6, shown in Figure 7.

In this work, the dual-material decomposition method using linear components has
been discussed, where the individual pixel’s relative density is averaged for the entire
sample. However, rather than averaging all the pixels within each sample, clustering
methods can evaluate for nuggety mineralization. The clustering method can identify a
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cluster of pixels that share similar characteristics. For example, a quartz vein hosts a gold
deposit where the amount of quartz vein in the sample can indicate the concentration of
gold. An example of characterization criteria is that if more than fifty pixels of the nearest
neighbour have a relative density value greater than 100, the sample can be characterized as
an ore specimen. Furthermore, machine learning applications such as supervised learning
can be used to train the classification of rock types based on a much larger set of samples.

In summary, the DE-XRT is an effective sensor that can be used to differentiate
sulphides from waste. The dual-material decomposition method made it possible to use
the characteristics of the sulphide materials and the non-sulphide materials to determine
the composition of the sulphide.
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