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Monitoring Physical Activity with a Wearable Sensor in Patients with COPD during In-Hospital
Pulmonary Rehabilitation Program: A Pilot Study
Reprinted from: Sensors 2021, 21, 2742, doi:10.3390/s21082742 . . . . . . . . . . . . . . . . . . . . 97

Kayisan M. Dalmeida and Giovanni L. Masala

HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices
Reprinted from: Sensors 2021, 21, 2873, doi:10.3390/s21082873 . . . . . . . . . . . . . . . . . . . . 111

Cristina dos Santos, Mark A. Jones and Ricardo Matias

Short- and Long-Term Effects of a Scapular-Focused Exercise Protocol for Patients with
Shoulder Dysfunctions—A Prospective Cohort
Reprinted from: Sensors 2021, 21, 2888, doi:10.3390/s21082888 . . . . . . . . . . . . . . . . . . . . 129

Joshua Di Tocco, Luigi Raiano, Riccardo Sabbadini, Carlo Massaroni, Domenico Formica and

Emiliano Schena

A Wearable System with Embedded Conductive Textiles and an IMU for Unobtrusive
Cardio-Respiratory Monitoring
Reprinted from: Sensors 2021, 21, 3018, doi:10.3390/s21093018 . . . . . . . . . . . . . . . . . . . . 149

Lucian Bezuidenhout, Charlotte Thurston, Maria Hagströmer and 
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1. Introduction

The demographic shift of the population toward an increased number of elder citizens,
together with the sedentary lifestyle we are adopting, is reflected in the increasingly
debilitated physical health of the population. The resulting physical impairments require
rehabilitation therapies that may be assisted by the use of wearable sensors or body area
network sensors (BANs). The use of novel technology for medical therapies can also
contribute to reducing the cost of healthcare systems and decrease the patient overflow in
medical centers. Sensors are the primary enablers of any wearable medical device, with a
central role in eHealth architectures. The accuracy of the acquired data relies on the sensors;
hence, when considering wearable and BAN sensing integration, they must prove to be
accurate and reliable solutions.

This Special Issue (SI) focuses on the current state-of-the-art BANs and wearable
sensing devices for the physical rehabilitation of impaired or debilitated citizens. Both
original research papers and review articles describing the current state-of-the-art were
considered for publication. We believe that this SI will provide the reader with an overview
of the present status and a future outlook of the aforementioned topics.

The contributions to this SI resulted in a collection of 10 published manuscripts
reporting on the advances in research related to different sensing technologies (optical
or electronic) and body area network sensors (BANs); their design and implementation;
advanced signal processing techniques and the application of these technologies in areas
such as physical rehabilitation, robotics, medical diagnostics and therapy.

A short overview of the collection of papers accepted for publication in this SI is
presented in Section 2.

The guest editors would like to show their token of appreciation to all the authors
that contributed to the success of this SI, by providing a set of original papers with a
comprehensive and up-to-date overview of a variety of topics, under the umbrella of
“Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures”.

Furthermore, the work and support of the academic editors and reviewers is highly
appreciated. They were a key factor to guarantee the high quality and the scientific rigor of
the published manuscripts and, consequently, of this Special Issue.

2. Contributed Papers

The manuscripts accepted for publication in this SI mirror the relevance of the topic
for the research community, and the vast field of research that still exists to be explored
to enhance the wearable and BAN solutions for physical rehabilitation applications and
eHealth architectures.

The authors of [1] presented the design and study of different mobility aids (smart
walker) configurations, targeting the population who suffers from visual and mobility

Sensors 2021, 21, 8509. https://doi.org/10.3390/s21248509 https://www.mdpi.com/journal/sensors
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impairments. In this study, the authors explored different technologies and software config-
urations to evaluate the performance of the different solutions and reach the conclusion that
there is not one configuration that will be suitable for all. Instead, they found that multiple
and different choices of sensors can provide a similar user experience. Nevertheless, em-
phasis should be given to the fact that active sensors (ultrasonic distance sensors or infrared
depth cameras) provide a better accuracy for the localization of objects/obstacles [1]. The
authors also reach the conclusion that it is necessary to perform a holistic evaluation of
the walker in terms of its end-to-end performance, and that the user interface is of big
importance to the overall performance of a smart walker [1].

Bezuidenhout et al. presented a study on the reliability of Actigraph GT3X+ (AG)
accelerometers to detect gait parameters. The devices were worn on the hip and on the
ankle by thirty healthy individuals walking in a straight line and turning at different speeds.
As a reference, a Stepwatch (SW) activity monitor was used, which was attached to the right
ankle [2]. The authors found that the AG placed on the ankle provided the best accuracy
for the detection of steps at speeds less than 0.6 m/s, and for speeds above this value, the
detection of steps was only possible by applying a low frequency extension filter (LFEF).
The hip worn AG presented accuracy above 87% for gait speeds <0.1 m/s, which was
considerably degraded with an increase in the gait speed. The authors’ findings suggest
that the location where the sensor is placed, together with the type of data filters used, are
key factors that influence the accuracy of the step counts [2].

In the third contribution to this SI, the authors Di Tocco et al. presented their study on
the development of wearable solutions for unobtrusive cardio-respiratory monitoring [3].
The proposed solution is based on four conductive textiles sensors, which are placed on the
user’s chest. The deformation induced on the sensors, by the expansion and contraction
of the rib cage due to the respiratory cycle, provides reliable information, from which
the users breathing activity can be inferred [3]. As for the heart rate, the authors used an
IMU placed on the left-hand side of the chest. In the trials performed with the wearable
system based on a multi-sensor configuration, the authors found that it provided consistent
measures for the respiratory and heart rate for all the subjects and scenarios tested [3].

The authors from [4] presented a study on the long- and short-term effects of a scapular
exercise on the function and pain in individuals with rotator-cuff-related pain syndrome
(RCS) and anterior shoulder in-stability (ASI) [4]. The results presented were the outcome of
a study performed in one hundred and eighty-three patients, from which 171 suffered from
RCS and 66 from ASI. The assessment of the shoulder pain and function was performed
during the implantation of the structure exercise protocol at its beginning, 4th week and
at the 2-year follow up [4]. The authors found a substantial improvement in the 4-week
assessment, and not a major difference between the 4th week and the 2nd year follow up,
which is a valuable indicator of the positive impact of the exercise protocol implemented in
the short and long term [4].

The authors of [5] presented a study on the physiological parameters (with particular
focus on the heart rate variability (HRV)) that can be extracted from wearable devices
to detect stress levels in car drivers. The authors developed a predictive model based
on different machine learning (ML) methodologies such as K-Nearest Neighbor (KNN),
Random Forest (RF), among others that is able to classify the stress level extracted from
ECG-derived HRV features [5]. The techniques proposed by the authors show that the HRV
features can act as markers for stress level detection, achieving a recall of 80% with the ML
models proposed [5].

The contribution by Rutkowski et al., a study focusing on the use of physical activity
sensors (such as the SenseWear armband) in patients with chronic obstructive pulmonary
disease (COPD), was presented to monitor their activity level in day-to-day life and for
the duration and intensity of physical activity. The approach implemented by the authors
allowed them to understand the daily activity of the patients and if they undertake the
prescribed unsupervised physical activity, and additionally, to understand the strengths
and weaknesses of the selected type of sensors [6]. Based on the sensors’ feedback, in terms
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of resting time, number of steps, physical activity level and energy expenditure (kcal), the
authors did not find a significant difference (statistically) between the non-supervised and
supervised physical activity days. Furthermore, the authors found that the use of this type
of sensor may improve the patient’s self-esteem and motivate them to continue physical
activity and, in that way, improve their health condition [6].

Another work devoted to the human activity recognition (HAR), using smartwatch
inertial sensors, was presented by the authors of [7]. The authors study the performance
of three algorithms for the out-of-distribution (OOD) detection of activity classes data
that are not present in the training data of the ML [7]. The authors collected a new data
set (SPARS9x) from inertial smartwatch sensors worn by 20 volunteers, first performing
supervised physical exercises and, after, performing other unrelated physical movements
(OOD). From this analysis, the authors showed that traditional algorithms outperform deep
learning algorithms for this particular case of OOD detection for HAR [7].

The valuable contribution by Liu et al., for the success of this SI, was also focused
on the use of wearable inertial sensors, but for the ambulatory detection of the human
gait phase [8]. The analysis of gait parameters, such as its phase, is of extreme importance
in the diagnose of diseases (e.g., Alzheimer’s, Parkinson’s) or post-surgery rehabilitation
evolution. The authors proposed a methodology to infer the gait phase, based on the
angular velocity provided by inertial sensors, associated to a Hidden Markov Model
(HMM) used to segment the gait phases. The outcome of the experiments implemented
by the authors demonstrate that their model is able to accurately recognize the gait phase
segmentation [8].

The authors of [9] presented their study on the use of multiple sensing technology
(mostly miniature wearable inertial sensor nodes) allied to the extended Kalman filter
(EKF) method, to evaluate the training performance (stroke posture, rhythm) of kayakers.
The authors, based on the kinematic information retrieved by the sensors, resort to ML
algorithms to distinguish the stroke cycle phases, providing a comprehensive evaluation of
the kayaker’s motion on a real scenario, with a stroke phase match of up to 98% (validated
by videography) [9]. The techniques, proposed by these authors, can supply the needed
quantitative data for coaches and athletes to improve their physical performance [9].

The review paper presented by Vilela et al. discusses the innovative and relevant
topic of fog-computing in the area of eHealth [10]. The authors present a review of eHealth
applications using fog-computing. The paper focuses on the existing solutions in the
literature that use fog-cloud computing with very tight requirements in terms of latency,
security and energy efficiency. An architectural overview of communication technologies
is elaborated. The paper concentrates on highlighting the gains in the performance of fog
networking, in terms of delay and the amount of data. Finally, the authors shed light on
challenges in the area for future research efforts [10].

3. Outlook and Prospects

The set of papers published in this SI is just a small representation of the current
research interest regarding the use of wearable and BAN sensors for physical rehabilitation
and activity monitoring. As the field for wearable sensors evolves, improving its range of
detection, resolution and accuracy, new applications and higher accuracy detection levels
can be achieved by widening the application of these technologies even more. When allied
to ML algorithms, other emerging fields of applications can be sought, such as the digital
twin features, where there is a vast area of research still to be pursued.

Author Contributions: Writing—original draft preparation, M.F.D.; writing—review and editing,
M.F.D., A.S. and A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by FCT/MCTES through national funds and when applicable co-
founded by EU funds under the UIDB/50008/2020-UIDP/50008/2020. This work is also funded by
FCT/MEC through national funds and when applicable co-funded by the FEDER-PT2020 partnership
agreement under the project UID/EEA/50008/2019.
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Abstract: Fog computing is a distributed infrastructure where specific resources are managed at the
network border using cloud computing principles and technologies. In contrast to traditional cloud
computing, fog computing supports latency-sensitive applications with less energy consumption and a
reduced amount of data traffic. A fog device is placed at the network border, allowing data collection and
processing to be physically close to their end-users. This characteristic is essential for applications that can
benefit from improved latency and response time. In particular, in the e-Health field, many solutions rely
on real-time data to monitor environments, patients, and/or medical staff, aiming at improving processes
and safety. Therefore, fog computing can play an important role in such environments, providing a
low latency infrastructure. The main goal of the current research is to present fog computing strategies
focused on electronic-Health (e-Health) applications. To the best of our knowledge, this article is the first
to propose a review in the scope of applications and challenges of e-Health fog computing. We introduce
some of the available e-Health solutions in the literature that focus on latency, security, privacy, energy
efficiency, and resource management techniques. Additionally, we discuss communication protocols
and technologies, detailing both in an architectural overview from the edge devices up to the cloud.
Differently from traditional cloud computing, the fog concept demonstrates better performance in terms
of time-sensitive requirements and network data traffic. Finally, based on the evaluation of the current
technologies for e-Health, open research issues and challenges are identified, and further research
directions are proposed.

Keywords: fog computing; cloud computing; e-health; healthcare; Internet of Things

1. Introduction

During the past few years, the healthcare industry noticed the potential of how Internet services
could help to enhance the patient’s life quality by offering analysis and processing of data in real-time.
An efficient model able to provide storage and application processing over the Internet is the concept
of cloud computing [1]. This model can be described as a service provided by large data centers that

Sensors 2020, 20, 2553; doi:10.3390/s20092553 www.mdpi.com/journal/sensors
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offer part of their infrastructure—both hardware and software—to third parties (corporations and/or
individuals) and public organizations. Once these clients adhere to this type of service, they will have
computational resources with increasing capacity without the need for significant investments of financial
capital for the acquisition, maintenance, and management of such resources [2,3].

Complementing this concept, fog computing expands the services offered by the traditional cloud
model to the network boundary [4]. Fog computing has as its main characteristics low latency, the greater
geographic distribution of data, mobility, large numbers of nodes in the network, predominantly wireless
access, execution of real-time applications, and device heterogeneity [4–6]. Its purpose is to enhance
efficiency, performance, and reduce the volume of data sent to the cloud for processing, analysis,
and storage. Nonetheless, the data collected by the sensors is gathered, processed, and stored in a
temporary database instead of handing it to the cloud, thus avoiding round-trip delays and network traffic.
This feature is particularly crucial for electronic-Health (e-Health) applications that transmit data over the
Internet for remote real-time processing, such as remote ECG monitoring [7]. Such applications aim to
monitor patients and/or processes actively [8], thus producing valuable information for decision making.

One of the reasons for the emergence and implementation of fog computing was the need to create a
platform that would support the recent paradigm inherited from ubiquitous computing, the Internet of
Things (IoT) [9], where any object may act as a sensor node and offer a particular service, such as data
processing. In this context, CISCO [10] predicts that in 2020 the volume of data generated by IoT devices
may reach six hundred zeta bytes per year. This scenario implies significant challenges to how data is
exchanged among devices and the cloud, due to the high demand for bandwidth and network latency.
In the context of e-Health, such issues pose some challenges regarding how to handle an increasing amount
of data to maintain low latency for real-time applications. Although cloud and fog computing offer similar
services, there are differences when considering the context of fog computing. With the massive amount of
data arising from the end-devices, using remote cloud networks to transport data may become impractical
or resource-prohibitive [11,12].

E-Health applications are a group of software and services focused on the acquisition and transmission
of medical information used to deliver healthcare services [13,14]. Typically, these applications require
higher levels of security and quality of service (QoS) from the system infrastructure. Currently, a few
studies focus on presenting literature surveys and reviews in the scope of fog computing and e-Health
applications [15–20]. However, they focus mostly either on presenting characteristics of strategies and
challenges that might be a target for future research, or specific health scenarios, such as smart homes [20].
These studies do not describe a comprehensive taxonomy regarding the main characteristics of e-Health
applications employing fog computing, and also do not perform an analysis considering a comparison
between cloud and fog environments. With that in mind, the main objective of this paper is to update the
current state-of-the-art on fog computing, focusing our discussions and contributions on the application
requirements, their challenges, and open gaps still existing in the literature.

In this context, the current research presents details of fog computing and e-Health applications,
analyzing the main strategies present in the literature. Based on these papers, we propose a taxonomy
for the joint combination of e-Health and fog computing, thus defining the characteristics of the main
applications encountered in fog computing deployments. The most relevant contributions of this study
are listed as follows:

(i) An analysis of how e-Health applications benefit from the fog computing architecture in terms of
deployment, communication protocols, data security, and infrastructure details;

(ii) A mapping regarding the focus of e-Health systems employing the concept of fog computing from
the point of view of application requirements and main tasks;
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(iii) A definition of the concerns and challenges regarding the joint combination of e-Health and fog
computing, also giving directions for further research and developments.

The remainder of this paper is organized as follows. Section 2 introduces relevant concepts addressed
in the paper. Section 3 presents a short overview of research initiatives related to the current research.
Section 4 describes the method followed to perform the study. Section 5 presents the results of the survey;
in particular, Section 5.1 describes the main architecture used in e-Health applications and identifies
the most relevant fog computing features, Section 5.2 outlines the most relevant e-Health scenarios and
applications under use, and Section 5.3 discusses lessons that emerged during this study. Finally, Section 6
presents the final considerations, again highlighting our contributions.

2. Background

This section presents the current state of e-Health applications regarding the fog computing concept,
describes the practical approaches already under use and explains the need for a new architectural model
to deal with the massive amount of generated data, especially by IoT smart devices. The focus of this
section is to depict the healthcare scenario involving the IoT environment and outline its major application
scenarios. It also presents the definition of some computing paradigms, such as cloud and fog computing,
and compares them in terms of their computational capacity and critical network metrics.

2.1. E-Health Scenarios

Many countries are facing a considerable challenge to manage a rapidly growing aging population
and the increase in chronic diseases [21,22]. The demand for medical care has risen in recent years due
to the popularization of IoT smart devices, which opens a field of study for new models of delivering
medical services that improve the way health information is handled. Currently, the conventional method
consists of patients visiting their doctors only when they fall sick. To check their health conditions, they
frequently visit hospitals or clinics to meet their physicians. As a consequence, most of the time, health
parameters are manually monitored and transferred to healthcare systems, which leads to inefficient
use of resources, and sometimes to higher costs. With the employment of e-Health smart sensors and
medical devices, many manual tasks could be released from caregivers, since patients’ conditions can
be automatically monitored and analyzed remotely [23]. This new technique may revolutionize the way
diagnostics and treatments are performed. Another important fact is the possibility to use healthcare
systems for patients’ health monitoring to keep them out of hospitals and, thus, improve hospital resource
management. Furthermore, employing IoT devices for monitoring patients remotely enables them to
receive medical care ubiquitously [24]. By analyzing the e-Health scenarios, we can affirm that each one
can be enclosed in at least one of the goals: (i) mobility support [25]; (ii) ambient assisted living (AAL) [26];
and (iii) in-hospital treatment [8].

For the first group, with the popularization of the Internet in mobile devices, a new paradigm of
e-Health has emerged: mobile-Health (m-Health) [25]. Although there is no standard definition for this
concept yet, according to the World Health Organization (WHO) [27], m-Health may be understood as the
offering of medical services through mobile devices such as mobile phones, sensors, and other wearable
devices. This scenario also encompasses the connectivity in an ambulance or any medical air transport.
In turn, the concept of AAL, as stated in [26], intends to link the usage of biomedical system monitoring
with other environmental smart device sensors to provide more efficient assistance to people who live
alone or have a particular disability/chronic disease. For that means, AAL performs a fundamental role
in healthcare by detecting possible accidents or indicating evidence of abnormality, which helps people
with their daily routine and, at the same time, helps to reduce government spending on elderly healthcare.
Finally, in-hospital treatment encompasses all medical equipment used to monitor and analyze vital sign
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parameters from patients within hospital care [8]. Compared to the scenarios mentioned above, the devices
in this context are more complex and are usually owned and maintained by the hospital itself.

2.2. Cloud Computing

Cloud computing, as stated in [28], is a prominent concept of delivering computational and storage
as a service to a shared pool of selectable resources. Users can request and/or decline any computational
processing or storage they may require automatically. Differently from traditional services, this approach
enables the development of elastic applications that are charged accordingly to their use. As the authors
in [29] mention,one of the attributes of cloud computing applied to healthcare is the possibility to consume
resources from the cloud whenever needed and pay only for the used resources. Another great advantage
is the capability of sharing information among health professionals, caregivers, and patients in a more
structured way, reducing the risks of losing documents such as exams and medical records. However,
the majority of the cloud data centers are geographically centralized and located far from its end-users.
In that event, real-time applications sensitive to delays suffer from some issues, such as high round-trip
delay and network congestion.

2.3. Fog Computing

With the arrival of the IoT, much has been planned on how to execute all information processing
brought about by smart devices correctly, and that is precisely what the concept of fog computing tries
to solve. Its purpose is to make the processing of generated data occur directly at the device, or next
to it, at the network boundary, in more powerful equipment, with no need to send it to the cloud [30].
The term “fog computing” was first introduced by CISCO, and it is defined as an architecture that extends
the computational and storage capacity of the cloud to the edge of the network [29]. In other words, it is
a cloud infrastructure closer to its end-users. Consequently, it allows data to be collected and processed
locally, reducing network latency as well as bandwidth usage. The main benefits brought by the fog
computing paradigm found in the literature are: (i) reduced latency [31,32]; (ii) enhanced privacy [33];
(iii) lower need of bandwidth [10]; (iv) dependability [34]; (v) energy efficiency [35]; and (vi) data security.

First, handling data at the network’s border reduces the latency when compared to other cloud-based
architectures, since the physical distance is shorter. Therefore, potential data center delays may be avoided.
Another advantage brought by the fog computing concept is the possibility to move computation-intensive
tasks from devices with limited resources to a more powerful node [31,32]. Second, differently from the
cloud model, the privacy of user data may be enhanced once the fog approach enables the analysis and
processing of data on a local gateway, instead of sending the information to the cloud [33]. In other words,
the number of hops that the user’s data are transmitted over the network is smaller, reducing the data’s
exposure to external routers and networks. Third, since the fog model enables the data to be collected and
processed closer to end-users, the volume of data transferred to the cloud is reduced, avoiding network
traffic expenditures. This is possible because only a small part of the data is sent to a remote cloud data
center for storage, whereas the rest of the data is analyzed and processed at the user location [10]. Fourth,
the fog paradigm can improve the system’s dependability by sharing the same functionality among the
many different fog nodes. Thus, it enhances data redundancy. Further, since the computational resources
are placed closer to end-users, the system may be less dependent on network connection availability [34].
Finally, energy is a primordial item that must be carefully analyzed in the IoT environment. When talking
about sensor devices, reducing energy consumption is very important, since most of the sensors are
battery-driven. In such cases, the overall energy efficiency can be improved by employing fog nodes
acting as gateways. Such gateways can handle requests or update processes while the sensor is in a sleep
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state. Whenever it wakes up, it takes control of the whole application. Additionally, tasks requiring more
intensive power processing can be offloaded from energy-constrained devices to nearby gateways [35].

3. Related Work and Motivation

This section presents current studies that present surveys or review articles in the scope of fog
computing and healthcare in the last few years. More precisely, this section aims to demonstrate related
research with this article in a way that it is possible to demonstrate its contributions compared to current
research. In the fog and health scope, a few articles propose systematic literature reviews employing
different methodologies [15–18,20,36]. In [18], the authors present a literature review on pervasive health
applications, focusing on identifying characteristics of such applications that might benefit from fog
computing environments. The authors discuss which computational tasks from e-Health sensors can be
moved to fog computing infrastructures and where these tasks can be executed. Combined with this,
the authors examine the trade-off of placing the identified computational tasks in the network. The study
consists of a systematic literature review based on three research questions. Although the article focuses
specifically on fog computing, their inclusion criteria consider a broad set of terms from the wireless sensor
networks field. However, this broad set of articles is used to extract possible environments in which fog
computing might play an important role. The authors identified in the literature five deployment scenarios
that can benefit from fog computing: mobile, home, hospital, non-hospital, and transport. With a different
scope, in [36], the authors perform a systematic literature review in the context of resource management in
fog environments answering six research questions. Their inclusion criteria consider articles a set of words
related to resource management plus fog or edge computing. They reviewed a group of 100 articles with
publishing years ranging from 2014 to 2018. One of the main outcomes of their study regards a taxonomy
of resource management approaches with the respective article for each topic.

The authors in [17] performed a literature review to summarize the main domains and issues related
to fog computing and healthcare. Their primary focus was to provide an overview of fog issues tackled by
the literature versus the application domain. Their method consisted of employing a systematic literature
review to answer three research questions in the specific field of fog-health: the statistical publication trends
according to publisher and date; the application domains; and the most discussed issues. For the first issue,
they organized the articles to demonstrate the research interest in the subject in the previous few years.
Their main contribution relies on an evaluation of the relationship between domains and issues in this
specific research field. From their literature corpus, they found that data analysis and response time issues
for remote health monitoring are the main studied characteristics. By analyzing the literature, the authors
demonstrated that many applications present strategies regarding time-delay in the health scenario due
to its critical importance for the treatment of patients. Silva and Júnior [16] presented a literature review
on fog computing for healthcare, focusing on the state-of-the-art and challenges in this field. The paper
seeks to answer what are the types of applications used, the aimed-at diseases, the characteristics of the
fog solutions, the reasons for each research, and what are the main challenges. Among the authors’ main
findings, the most important regards the lack of a well-defined fog architecture in the context of healthcare.
The search strategy employed by the authors considered studies that use fog computing in healthcare
scenarios to answer six research questions. Although the authors did not define specific years for the
studied articles, their strategy resulted in a short year range (2015–2018) that considers less than four
years since the research was done in early 2018. From the resulting corpus, for each research question,
the authors classified the articles according to their focus.

In [15], the authors presented a systematic literature review of healthcare IoT applications employing
fog computing with shared resources. The article performed a systematic literature review with main
inclusion criteria that encapsulate cloud computing, fog computing, and edge computing. Their focus
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was to present the current literature research status in fog computing in the healthcare applications field,
show the performance evaluation objectives of the state-of-the-art, define the main methods they employ,
and find some future directions in this research topic. From the resulting corpus, the authors focused
specifically on technical details from strategies of fog computing in healthcare IoT systems. This literature
strategy resulted in a broad set of articles that the authors classified within their three-category taxonomy:
methods, system development, and review and survey. According to the authors, these categories were
derived from previous studies and aimed to cover articles that focus on models, implemented architectures,
and literature reviews. In [20], the authors presented a literature review focused on fog computing for
smart home scenarios. The authors’ strategy consisted of a systematic literature review that seeks to
answer six research questions regarding fog-based smart home applications. To do so, their inclusion
criteria considered the terms “fog” and “smart” combined to a set of words referring to building and
homes. Based on the reviewed articles, the authors proposed a taxonomy categorizing the solutions that
are focused on resource management or service management. Differently from the other studies, In [19],
the authors did not employ a systematic literature review in their research process. Instead, they discussed
characteristics of edge and fog computing environments and how they can be applied for healthcare
applications. The authors aimed at describing the principal concepts of edge and fog computing that
are important in the context of healthcare. Their main contributions focus on presenting strategies for
how to combine such technologies to distribute computing tasks that are currently performed in the
cloud computing layer. The authors presented an analysis of health IoT applications integrating the
fog computing layer between the hospital infrastructure and the cloud environment. This layer allows
applications to respond quickly in case of a medical crisis, since the fog processing capabilities are closer
than the cloud.

Table 1 summarizes the six related works presented in this section. Half of the articles focus only
on fog computing as technology, while the other half also include at least one more technology in their
evaluation. Considering if they present a taxonomy in their research or not, the last three articles propose
a taxonomy with their findings [15,20,36]. On the one hand, the authors in [15] presented a taxonomy
dividing the strategies into three categories in which they classified if the articles present methods or
systems, or perform literature reviews. On the other hand, in [20], the authors built a taxonomy dividing
the articles into two categories that classify the articles according to whether they are service-based or
resource-based. Besides them, the authors in [36] presented a taxonomy focusing specifically on resource
management approaches and the respective articles tackling each category. The current related work
demonstrates that the studies focus mainly on presenting fog computing as a new layer between the
end-users and cloud infrastructures. Additionally, the studies present some contributions by defining
the main characteristics of solutions employing fog computing to healthcare scenarios. Considering all
the studies presented in this section, they fall into at least one of the following affirmations: (i) papers
do not describe a comprehensive taxonomy regarding the main characteristics of healthcare applications
employing fog computing; and (ii) articles do not perform an analysis considering a comparison between
cloud and fog environments. The next sections of the current article focus on exploring these issues.
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Table 1. Summary of surveys and reviews related to the current research. IoT: Internet of things; WSN:
wireless sensor networks.

Paper Year Technologies Range Taxonomy Description

[18] 2017 Fog, IoT, WSN 2005–2016 -
Systematic review of wireless sensor networks
applications that might benefit from fog
computing in healthcare.

[16] 2018 Fog 2015–2018 -
Review classifying articles according to
applications, diseases, research, characteristics,
motivations, and challenges.

[17] 2018 Fog 2010–2018 - Systematic review of fog computing issues for the
applications domain in the healthcare scenario.

[19] 2019 Fog, Edge - -
Description of the edge and fog concepts, and
proposal of an architecture that combines them for
healthcare applications.

[15] 2019 Fog, IoT 2007–2017 � Review of methods, systems, and surveys on
IoT-based healthcare applications.

[36] 2020 Fog, IoT 2014–2018 � Systematic literature review of resource
management strategies in fog environments.

[20] 2020 Fog 2016–2019 � Systematic literature review of fog computing
applications for smart homes.

4. Literature Review Methodology

This study presents a literature review based on the principles of systematic literature reviews [37]
in order to make it reproducible and achieve high-quality results. This section outlines the research
methodology, presenting the strategy used for the collection and selection of the most appropriate
contributions and corresponding papers. The goal of this research is to summarize and update the
current state-of-the-art of e-Health applications employing the concept of fog computing and present its
major characteristics in terms of its computing tasks. Therefore, Table 2 defines a set of research questions
(RQ) that guide the review process of this study. The importance of the research questions is to provide
a better understanding of the impact of fog computing on e-Health applications. Furthermore, it helps
to identify the major characteristics of systems that have already deployed the fog concept concerning
architectural models, network metrics for performance evaluation, security issues, and so on.

Table 2. Research questions (RQs).

ID Question

RQ1 How do e-Health applications benefit from the fog computing architecture?
RQ2 What is the focus of e-Health systems employing the concept of fog computing?
RQ3 What are the current issues related to fog computing on e-Health?

The literature selection was based on journal and conference papers with the aid of electronic
database resources . The following databases were queried: the Institute of Electrical and Electronics
Engineers (IEEE) IEEExplore digital library (https://ieeexplore.ieee.org/); the Elsevier journal directory
(https://www.elsevier.com/); and ResearchGate social networking (https://www.researchgate.net/).
The inclusion criteria consisted of querying these databases with different keywords to collect the raw
literature corpus. In each database, the following set of keywords was applied in the search string: “fog
computing”, “edge computing”, “fog-based system”, “fog-health”, and “fog-cloud computing”. Figure 1
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presents the whole process of collecting and selecting the candidate articles for the review. The resulting
raw corpus of articles contained 18,490 articles, to which a title analysis was applied as a first filter to
decrease the number of candidates. This process resulted in 1314 articles that were joined for the last filter
phase, which consisted of exclusion criteria.

“fog computing”
OR

“edge computing”
OR

“fog-based system”
OR

“fog-health”
OR

“fog-cloud computing”

Figure 1. Summary of the systematic literature review process.

The exclusion criteria process was employed through a first reading phase in order to filter the most
relevant research to be included in this study. The exclusion consisted of the following removal steps:
(i) removal of papers written in languages other than English; (ii) removal of redundant and/or unwanted
papers that are not related to fog computing or e-Health applications; (iii) removal of books, manuals,
theses, and papers not related to fog computing; and (iv) removal of papers mentioning fog computing
but not applied to healthcare. Finally, at the end of the process, 48 articles were selected to be reviewed
and included in this study. This resulting corpus of studies was carefully analyzed to identify their main
aspects. The next three sections are organized in a way to reflect the three research questions, and the
articles are reviewed in them aiming at answering the RQs presented in Table 2.

5. Results

This section presents the answers for the three questions detailed in Table 2.

5.1. RQ1: How Do E-Health Applications Benefit from the Fog Computing Architecture?

To answer that question, it is first necessary to understand the main characteristics of fog computing
deployments present in the literature. Therefore, Sections 5.1.1–5.1.4 present the main characteristics of
such deployments present in the literature regarding architectural model, communication, infrastructure,
and security, respectively. Then, Section 5.1.5 discusses the most important details and presents a resulting
taxonomy that depicts the main findings regarding fog computing in the scope of health applications.

5.1.1. Architecture Model

As a new approach for computation, fog computing supplements the classic cloud computing and
its services closer to its end-users. For this purpose, it is capable of providing computation and storage
resources in a decentralized model. The main concept of fog computing architecture is a promising
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subject in the telecommunication research field. Recently, many architectures for fog computing have
been presented, where the three-tier architecture is considered to be the most predominant structure [4].
The basic architecture deployed in the fog computing paradigm is illustrated in Figure 2 and is composed of
the following layers: edge, fog, and cloud. The edge (device) layer is the closest layer to end-users/devices.
It consists of several devices, such as sensors and mobile phones. The devices in this layer are responsible
for collecting data from physical objects and sending them to the upper layer through short-range radio
frequency technologies. Located at the edge of the network, the fog layer is comprised of network devices,
such as routers, gateways, and base stations, among several others. Such devices/nodes are responsible for
tasks such as scheduling, storing, and managing distributed computation. The third layer is the tier with
sufficient storage and computational resources, responsible for extensive data analysis and permanent
storage. Different from traditional cloud architectures, this layer accesses the cloud core network in a
periodical and controlled way, improving the utilization of available resources [38].

Figure 2. Illustration of a basic three-tier fog architecture presenting some sensors, devices, and communication
protocols present in the model.

In [39], the authors present an architectural design for IoT systems. In this design, the cloud works as
an extension of the fog layer in an assistive way. The fog gateway is placed between the cloud and the user
devices, such as sensors and actuators, to meet network requirements as well as to manage and provide
resources to several distributed fog nodes. According to [40], offering computation and storage at the
edge of the network also helps to reduce bandwidth usage and mitigates security and privacy concerns.
Several approaches place their computation task on a single node of a personal area network (PAN) or
local area network (LAN) [41,42]. The data collected at this level are processed and sent to the upper level
and, sometimes, to the cloud. Other approaches employ two or more fog nodes linked between the device
sensing and the cloud access points [43,44].
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5.1.2. Communication Protocols

IoT protocols are very relevant when performance and energy efficiency are required. In the study
presented in [34], a detailed research was carried out for evaluating some of the most important protocols
applied to the e-Health system, in terms of performance and energy consumption. The main protocols
used in e-Health applications can be classified into three groups: (i) constrained application protocol
(CoAP); (ii) Internet protocol version 6 over low power wireless personal area network (6LoWPAN); and
(iii) message queuing telemetry transport (MQTT). CoAP is an Internet application protocol defined by the
RFC 7252 [45] that is designed for resource-constrained sensor devices [46]. It is most explored in wireless
sensor networks (WSN) in which devices have energy constraints and need a lightweight communication
protocol to perform their operations. It implements methods similar to hypertext transfer protocol (HTTP),
where data is encoded in a simple binary format, often based on JavaScript object notation (JSON). CoAP
uses the representational state transfer (REST) style to make the resources available over the user datagram
protocol (UDP) [42,46–48]. One of the the main ideas behind CoAP is to allow machine-to-machine (M2M)
communication while keeping the message overhead small to avoid packet fragmentation, thus increasing
the packet probability delivery [45]. WSNs are typically deployed in e-Health systems for data collection.
By this means, according to [47], the utilization of lightweight protocols helps to speed up the response
time once the amount of data exchanged from the application and the back-end system is smaller.

6LoWPAN is a protocol that allows data transmission between low power devices over IEEE 802.15.4
networks [49]. The IEEE 802.15.4 is a communication standard that aims devices with low-data-rate and
low-power capabilities, allowing them short-range radio frequency transmissions in low-rate wireless
personal area networks (WPANs) [50]. 6LoWPAN is designed on top of this standard to provide such
devices with the ability to use the Internet protocol capabilities. Its specifications can be found in different
RFC definitions, since each one deals with specific subjects: RFC 4919 [51], RFC 4944 [52], RFC 6282 [53],
RFC 6775 [54], and RFC 7668 [55].

Finally, MQTT is a very common protocol, defined by the ISO/IEC 20922 [56], present in IoT
environments [46]. Its main goal is to provide M2M communication through the exchange of bi-directional
messages so that remote nodes can communicate using the MQTT infrastructure. It is an extremely
lightweight and simple protocol designed to operate in hardware-constrained devices and offer low
bandwidth consumption. MQTT architecture is based on transmission control protocol/internet protocol
(TCP/IP), and its messages are exchanged through the publish/subscribe paradigm. Such a paradigm is
composed of a component called a broker, which is responsible for receiving, queuing, and dispatching
messages from publishers to subscribers [41,46,57].

5.1.3. Infrastructure Technologies

Infrastructure details involve both communication and hardware technologies used to set up fog
environments in the health scope. E-Health systems typically employ a combination of networks to
interconnect medical devices to the cloud. Among several networks, some commonly appear in the literature:
wireless body area networks (WBANs), WPANs, LANs, and wide area networks (WANs). Using a particular
technology for radio frequency, WBANs and WPANs can be seen as networks that enable the connection
of devices acquiring personal information close to the patients. While WBAN refers to wearable sensors
attached to patients [58], WPANs offer a higher layer on top of WBAN, allowing sensors and devices to
communicate among themselves and to access local networks [59]. On the other hand, LAN and WAN are
the already-spread networks for local and long-range communication. In a mobile scenario, the majority of
sensors are connected to an Internet access point via Wi-Fi communication [60,61]. Another way to connect
sensors is through wireless sensor and actuator networks (WSANs), which consist of a group of sensors and
actuators wirelessly connected that perform distributed sensing and actuating tasks. A fog-based gateway
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architecture for WSAN is presented in [62], where the vitalized model is a joining of a gateway and a micro
server connected via Ethernet. The communication of the interface between the gateway nodes may be
wired (e.g., Ethernet) or wireless, such as third generation (3G), and long term evolution (LTE).

Regarding hardware technologies, there are several development platforms found in the literature for
both research and commercial purposes. Such platforms are based on mobile computer boards that allow
programmers to develop and quickly prototype their systems. The Arduino is one of the most popular
platforms used in many applications due to its ease of programming and its low cost. It is a printed
circuit board consisting of ATMEL microcontroller input/output circuits, which can be easily connected
to a computer and programmed in the Assembly, C, and C++ languages [63]. Intel Galileo is a 32-bit
open-source development board specially designed for IoT applications. It is compatible with Arduino and
its respective shields. The board supports blacktooth, Wi-Fi, radio frequency, and Ethernet communication.
Additionally, Intel Galileo supports a variety of sensors, such as temperature, electrocardiography, and
oxygen concentration, among many others [64]. Another development board is the Raspberry Pi, which
is a complete plug-and-play computer with an integrated processor and random access memory (RAM)
chips used for IoT development. Despite its higher cost compared to the others, the small device is trendy
because of its massive number of open-source packages and libraries, which can be easily implemented
using Python, for instance. Besides, the board can be equipped with Ethernet, Wi-Fi, or blacktooth
interfaces [65]. Finally, Pandaboard is based on a small advanced RISC machine (ARM) computer from
Texas Instruments. It is commonly used for research development purposes because of its minimal energy
consumption as well as its low cost. It works with several network standards, such as Wi-Fi, blacktooth,
and Ethernet [66].

The literature does not only include physical development platforms but also simulation tools that
permit researches to evaluate the effect of their software solutions. An evaluation environment for real-time
applications employing fog computing is necessary to enhance the innovation and development of new
technologies. As testbeds in the real world are, most of the time, very expensive, the development of
software for simulations proves to be an efficient tool to address these problems. Focusing on cloud
computing environments, the authors in [67] proposed a framework called cloudSim for the simulation
of public/private cloud environments. The platform allows the user to model its cloud environment to
perform several tests and evaluate its performance before deploying a production environment. In the fog
scenario, in [68] the authors proposed a platform called ifogSim, which is a toolkit for the modeling and
simulation of resource management written in JAVA that intends to minimize latency, energy consumption,
bandwidth usage and operational costs. Currently available in the cloud, ifogSim provides a simulation
environment in which it is possible to model and test massive scenarios of IoT and fog environments.

5.1.4. Security Issues

IoT applications in healthcare must be able to keep medical data private and safe from unauthorized
access. Any part of the system exposed to a hacker or malicious software may cause critical consequences.
Many researchers are concerned about how to solve security issues in IoT systems since security cannot be
100% guaranteed. Thus, health professionals and caregivers must define an acceptable risk limit of IoT
applications. An evaluation of the kind of data that is being processed is a critical task. Depending on its
purpose, failures may have a huge impact on the patient’s life. Hence, it is an essential requirement that
needs to be considered to keep the system resilient against security threats. The literature presents some
studies that address different security aspects: (i) authentication [69]; (ii) privacy [43,70–73]; and (iii) data
encryption [9]. Because of the huge amount of devices within a fog environment, user authentication plays
an important role in keeping the system safe from unwanted access to healthcare services. On the other
hand, privacy is one attribute of extreme importance in e-Health applications. Patients expect their private
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information to be kept confidential. However, IoT health systems must allow information sharing, which is
necessary for delivering high-quality care and at the same time ensure its privacy. Policies and techniques
must be improved to share health data with authorized users only. In addition to the first two security
issues, data encryption is also necessary, since it does not matter for the infrastructure. Patients’ data
are very sensitive to leaks. Although fog computing normally processes data locally, on some occasions
data must be forwarded to the cloud. Therefore, fog nodes must guarantee that those data are adequately
encrypted before sending them to remote environments.

In [69], the authors propose a security policy management approach to address the major challenges
that are important to keep data sharing and its collaboration secure within a fog computing environment.
Furthermore, the authors in [43] reinforce that risk management with all stakeholders is key for achieving
optimal safety and performance of medical devices. Currently, there are a few legal commitments to
preserve private data in medical applications employing IoT smart devices. In [70,71], some of these
legal obligations are presented. In [72], the authors present an architecture for autonomic security
management that can assess risks in healthcare information systems applying a cost-efficient self-protecting
approach with little or no human intervention at all. This framework also offers prevention mechanisms
for monitoring and management solutions helping decision making actions based on security issues.
The authors in [73] came up with a framework concerning how to keep private health information safe
from eavesdropping or malicious manipulation. Based on this framework, the authors developed a
medical expert system to tackle low effectiveness due to manual operations and privacy breaches caused
by the participation of doctors in the medical information process. With encryption in mind, in [9] an
encryption layer is implemented in the proposed fog architecture.

5.1.5. Discussion

In the field of healthcare, one of the most critical metrics to handle critical situations is time.
Considering the health status of patients, quickly diagnosing anomalies in health parameters may improve
the physicians’ time response to it and, consequently, save lives. One of the main characteristics of fog
computing is the new layer between health sensors and the cloud data centers that process data [4].
This new layer is designed to be physically close to the sensors, and it also provides processing of data
for quick responses. From the network point of view, this infrastructure closer to sensors allows data
communication over the network to have lower latency levels. Consequently, by inserting this new feature
to the e-Health application infrastructure, it is possible to decrease the time response of the system and
gain time, which, as mentioned before, is important with regards to patients’ health. Therefore, the main
contribution fog computing provides for e-Health applications is this improved network infrastructure for
rapid data transfer and processing.

Figure 3 depicts the proposed taxonomy showing the primary architecture model employed in the
fog computing concept. It also presents the most used light-weighted protocols and platforms used in the
development of medical applications in the current literature. Security and privacy issues are presented in
terms of how the fog concept can enhance the privacy breaches of health information in the current model
due to the vast exchange of data among IoT sensors and the cloud.
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Figure 3. Proposal of a fog computing taxonomy in the scope of e-Health applications.

5.2. RQ2: What Is the Focus of E-Health Systems Employing the Concept of Fog Computing?

To answer the above question, this section describes the e-Health applications published in the current
literature related to the fog computing paradigm. Such applications are classified in groups accordingly to
their main computing task: data collection, data processing, critical data analysis, and real-time feedback.
The next four sections individually describe articles that fall into these classifications. Then, Section 5.2.5
discusses the main findings, also presenting a comparison between all article reviews for each class.

5.2.1. Data Collection

As more and more IoT devices are connected to the Internet, the huge volume of data generated will
require real-time responses. Therefore, this amount of data implies high bandwidth costs. If false data
is introduced in these IoT devices, besides compromising the accuracy of the data, it may increase the
use of communication resources. Some studies focus on data collection strategies in order to decrease
bandwidth needs and improve response time. Among different strategies, these studies fall in at least
one of the following: (i) remote monitoring [74,75]; (ii) pre-processing [76]; (iii) compression [77]; and
(iv) filtering and aggregation [76–78]. Remote monitoring systems focus on tracking the health conditions
of patients outside health environments. In [74], the authors propose the eWall project, which is a system
to monitor and supervise patients with mild dementia and chronic obstructive pulmonary disease (COPD)
at home. The fog concept applied to this project aims at speeding up data processing in real-time for
emergencies. Additionally, in the remote monitoring scope, the authors in [75] proposed an evaluation of
a fog-based smart monitoring system using long-range (LoRa) radio communication in remote locations
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where there is no Internet connectivity. The suggested system helps minimize the power consumption
with the implementation of a network using long-range wireless radio communication.

Despite remote monitoring strategies, the other strategy employs transformations to the data to
improve its transmission performance. Pre-processing solutions offer some intelligence locally to process
the data and extract higher levels of information. For instance, in [76], the authors proposed a three-tier
structure for a real-time epileptic seizure detection system that contains a mobile device placed in the
middle layer responsible for filtering, pre-processing, and extracting the electroencephalogram (EEG)
characteristics. Filtering and aggregation strategies combine multiple samples of data to avoid sending
redundant information. In this scope, the authors in [78] presented an aggregation scheme of lightweight
privacy-preserving data. The researchers performed several experiments showing that by applying new
filters at the edge of the network, communication resources are saved, avoiding false data injection. In turn,
compression, as the name suggests, consists of shrinking the amount of data to be transmitted. Employing
compression strategies, the authors in [77] demonstrated a medical processing system, which is responsible
for inter-device communication and interpreting many wireless protocols used in e-Health applications.
The system has a gateway node able to process data locally by applying data compression or fusion, and it
also offers customized filtering and local storage.

5.2.2. Data Processing

Differently from data collection strategies, some studies present strategies that focus on methods
to process collected data. Such studies aim at the processing level layer in the fog architecture in which
data is analyzed before transmission to remote locations. In the literature, articles focusing on this issue
range between different e-Health applications. However, most of them concentrate efforts to develop
health monitoring systems [79–82]. In this context, the authors in [79] come up with a new architecture
model to minimize dependency on cloud storage and analytics for e-Health remote monitoring. The model
resulted in a better system responsiveness and a lower bandwidth requirement due to the shorter distance
between the data acquisition and data processing modules. In turn, in [80], the authors presented a
fog-based monitoring system focusing on the detection and prevention of mosquito-borne diseases.
The goal of the system is to analyze the physical sensed data and diagnose/differentiate the several
types of mosquito-borne diseases at an early stage. In [81], the authors presented a robust infrastructure
for electrocardiogram (ECG) monitoring applications, where primary and backup servers responsible
for processing data are placed at the edge of the network. They proposed a processing architecture for
optimizing the placement of server nodes to reduce energy consumption and networking equipment.
The authors in [82] suggested an innovative framework based on IPv6 as a means of mitigating the difficulty
of medical applications requiring low response time through the implementation of resource scheduling
techniques. Such techniques were developed in a three-layer architecture, where the physiological data is
collected at the body sensing layer and transferred to the fog layer for real-time processing.

Although health monitoring catches the attention of many studies, there are also some studies
that focus on different aspects. Fog nodes are composed of hundreds of fog devices that can handle
storage and small computational processes. Nonetheless, reaching the resource capacity offered by the
conventional cloud is still a very tough challenge. For that reason, efficient management of resources is
essential for fog environment operation. In this scope, in [83], the authors proposed a dynamic resource
management solution for fog environments. The main goal of their strategy is to verify parameters from
the active IoT devices and then estimate the best amount of resources required by a particular node,
consequently avoiding the waste of resources. In the context of AAL, the authors in [84] proposed an
AAL fog architecture containing a gateway node in charge of processing speech data from patients with
Parkinson’s disease. The node works as an interface that processes the raw data collected by a smartwatch
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and sends it to the cloud infrastructure. Finally, the authors in [71] presented a study of the IoT paradigm
for e-Health applications, in which they focus on the Network of Things concept. They introduced a
framework for describing such environments for designing and implementing IoT solutions in healthcare.

5.2.3. Critical Data Analysis

A group of articles focuses on the critical data analysis class, which considers strategies in which
the main focus is to analyze data from critical conditions. In this scope, the authors in [85] demonstrated
concerns regarding the security of patients data. They designed a fog-enabled architecture for healthcare
services with a focus on risk assessment and information sharing. Additionally, the cooperation with
the fog device enhances the privacy of medical data due to the implementation of robust operations of
cryptography. Differently, other articles vary their strategies between ECG monitoring [86] to activity
recognition for e-Health services [87]. Related to the first topic, the authors in [86] proposed an IoT-based
application architecture that benefits from fog to enhance the quality of service of medical systems for
local and remote patients. Instead of replacing the cloud infrastructure, a fog gateway is placed at the
edge of the network to collaborate with the cloud, sharing the weight of handling all information from
biosensors. In turn, related to the second topic, in [87], the authors presented a blockchain fog computing
scheme for human activity recognition regarding e-Health services. The use of local servers placed at the
network border adds preliminary data filtering, which improves the performance of complex operations
and provides faster responses to relevant events.

For fog architectures that collect sensitive data, maintaining performance and decreasing costs are
a key point for such systems. Although energy is consumed during the sensing procedure, the majority
of energy consumption is related to computational tasks and data transmission. In order to quantify the
effect of a great volume of data in mobile applications, the study in [44] demonstrated a systematic method
based on whether offloading to the fog is better than to the cloud. In their approach, two concepts of
applications were studied regarding latency and energy utilization. In addition, they focused on data
transmission over WiFi and 4G LTE networks, which are common for mobile devices such as smartphones.
Also focusing on efficiency, the authors in [42] considered task scheduling as a way of offloading traffic
from the network core by strategically allocating services among fog nodes while minimizing the cost
of resources. A three-layer hierarchy system is able to manage available resources located at both cloud
and fog nodes and provide the most appropriate scheduling for the workflow. Finally, in the same
direction, the authors in [31] investigated a resource management fog computing strategy applied to
medical cyber-physical systems. The authors focused on the challenging environment for these systems
that suffer from transmission instabilities between medical devices and the cloud data center. The model
presented helps to share the burden of offloading traffic from the core network by distributing tasks
through base station association, where virtual machines are deployed.

5.2.4. Real-Time Feedback

Fog computing may benefit applications that need to detect unwanted events in real-time and respond
to that event quickly. The real-time feedback class encompasses solutions that aim at providing quick
responses to critical situations in healthcare environments. Several articles target the most variate set
of applications in that scope: (i) critical event detection [61,88]; (ii) warning systems [89]; (iii) security
issues [49,90]; and (iv) breath support systems [91]; In the first topic, in [88], the authors implemented a
real-time signal processing algorithm for fall detection, which is able to deliver information to caregivers.
These algorithms are executed at the network’s border by fog servers, which collect and process all health
information. Similarly, ref. [61] suggested a solution to cerebrovascular accident mitigation , where the
authors created a real-time analytic system for monitoring falls caused by strokes. The fall detection
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allocates tasks among smart devices and the cloud in a collaborative way. In the scope of the second topic,
the authors in [89] presented a remote medical monitoring system as a reliable and efficient IoT-based
approach that combines both machine learning algorithms and automated management components
to provide monitoring and notification services. The system is responsible for deciding whether the
information goes to the cloud when processing power is needed or to the local gateway, helping in
decision making.

Although IoT devices play an important role in delivering services more efficiently in the health
environment, many open issues related to privacy and security are still not addressed in the literature.
In this context, the authors of [90] conceived a protection framework for medical applications based
on fog computing able to detect privacy leakages. The advantage of this method is the capability to
analyze data closer to the source of information instead of forwarding it to the cloud for processing.
In such a case, the detection and blockage of privacy leakages become a lot faster than the currently used
models. Likewise, in [49], the authors defined a new scheme applying fog computing that addresses
the distribution of digital certificates in the IoT environment. The new scheme approach ensures that
the revoked certificates can be immediately sent to the fog nodes, mitigating the risk of accepting a
revoked certificate. Finally, regarding the last topic, the authors of [91] analyzed the effects caused by the
implementation of fog-to-cloud computing models in health services. To exemplify the scenario, they
proposed a breath support system for patients with pulmonary problems.

5.2.5. Discussion

Current studies employ concepts of fog computing for e-Health applications with different goals.
Table 3 summarizes and classifies these research initiatives according to their main tasks, which are:
(i) data collection [74–78]; (ii) data processing [71,79–84]; (iii) critical data analysis [31,42,44,85–87]; and
(iv) real-time feedback [49,61,88–91]. Such functionalities in medical services focus on the enhancements of
the security and privacy of sensitive information. The studies are concentrated in fog-based architectures
to enable faster response times for real-time applications or resource scheduling techniques to minimize the
total network bandwidth usage and consequently energy consumption. Data collection covers strategies
that aim at acquiring data from health sensors quickly. In turn, data processing can be seen as the next level
of data collection in which strategies focus on processing data acquired from health sensors. This process
results in significant information that can be monitored in real-time. On the other hand, critical data
analysis comprises studies focused on improving the healthcare processes by defining new architectures
for such systems. More specifically, these solutions are concentrated on critical patients’ data from both
the health and security points of view. Finally, real-time feedback is composed of solutions that monitor
real-time data from patients focusing on diagnosing critical situations. In particular, this last group contains
initiatives that provide real-time feedback for critical situations, helping physicians to improve response
times for such situations. Figure 4 depicts the number of papers that focus on each one of these issues.
The figure demonstrates that there is a high concentration of papers dealing with cost, latency, and data
offloading. This indicates that most of the strategies are focused on improving healthcare services by
focusing on data transfer but also by paying attention to costs reduction. Besides that, the figure also
demonstrates that some studies focus on managing computational resources, which benefits not only the
system performance but also energy efficiency. By improving energy efficiency it is possible to reduce
costs at the same time.
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Table 3. Reviewed e-Health applications.
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Figure 4. Amount of studies that focus on each issue.

5.3. RQ3: What Are the Current Open Issues Related to the Fog Computing on e-Health?

The fog computing approach plays an important role in healthcare by enabling applications to have
fast data processing with low latency. Additionally, it addresses the security and confidentiality issues
required by medical systems. Additionally, as fog nodes are closer to their end-users, fog computing helps
to reduce bandwidth usage by offloading data traffic from the network core. In terms of e-Health systems,
the concept of fog computing enhances data security and privacy, since all information is handled by fog
devices and kept within the local network. It also helps to minimize medical expenses by reducing the
amount of data exchanged between a particular health application and the cloud infrastructure. In addition,
as the resources are placed closer to end-users, fog computing is able to provide instant responses for
applications requiring real-time control. Although fog computing demonstrates better performance, it
cannot totally replace cloud computing. Nonetheless, fog and cloud architectures will coexist while
keeping their own advantages.

5.3.1. Fog versus Cloud

Apart from the similarity between fog and cloud computing, there are many differences between
the two architecture models. Applications hosted in the cloud are scalable and cheaper than in the fog
model, due to the cloud’s huge storage capacity and hardware abstraction. Such abstraction is hard
to be achieved in a fog network, since the edge devices must be acquired by the network owner. As a
result of the heterogeneous nature of fog networks, a particular resource cannot be guaranteed in all fog
devices [92]. Thus, keeping the system reliable requires a lot more effort, regarding complexity and cost, in
fog when compared to the traditional cloud model. Ensuring a minimum of privacy and security in the
fog model is a lot harder than in the cloud, since fog devices are normally maintained by many different
service providers [93]. A single breach in a particular fog node may cause the system to operate incorrectly.
In terms of connectivity in the fog environment, despite having hardware in full operation, if a single node
loses access to the network, the entire system may be put at risk. Because fog is a decentralized model,
ordinary hardware checks are much more complex and costly than in cloud infrastructures.

Nowadays, with the adoption of the IoT paradigm, current architectural approaches are unsustainable
to provide services to the massive number of applications being developed. Many IoT devices are facing
challenges related to latency, network bandwidth, dependability, privacy, and security, which cannot be
handled in a cloud computing model. As a result, a fog computing approach has been presented as a
propitious architecture to tackle these issues. The concept of fog computing is an extension of the cloud
computing model to the network border. Both of them provide computational resources, storage, and
network services to their end-users. Nonetheless, the fog paradigm differs from the cloud model in terms
of network type, computing capacity, storage, physical location, and so on. As a new architecture, fog
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computing suggests several features that make it more complex than cloud [94]. According to [95–98],
a comparison between these two models is presented in Table 4.

Table 4. Fog computing vs. cloud computing.

Requirements Fog Computing Cloud Computing

Geographical distribution Distributed Centralised
Location of server At the edge of network Within the Internet
Distance between client and server Close (one hop) Far (several hops)
Coverage Extensive Global
Latency Low High
Bandwidth Low High
Response time short long
Hardware Limited resources Scalable resources
Data storage Temporary Permanent
Flexibility High Limited

5.3.2. Trends, Future Directions, and Open Issues

The emergence of the fog computing paradigm is relatively new when comparing to other
well-established technologies such as cloud and IoT. Therefore, there is enough space for future
developments and the integration of this paradigm into the e-Health scenario and other technologies.
Some of the challenges faced by e-Health systems that can be addressed by fog computing can be classified
in three groups of interest: (i) latency; (ii) power consumption; and (iii) heterogeneity and interoperability.

As some applications are commonly sensitive to delay, fog networks must guarantee that the response
time of a certain request is within a limit. In other words, the fog system must employ mechanisms to
verify if a specific task can be concluded or not regarding its defined metrics. In case a fog device is
not able to deliver the service based on that metric, the service request must be rejected or forwarded
to the cloud. With that in mind, defining a proper task allocation is of extreme importance. This scope
encompasses a variety of application fields that can benefit from delay improvements, such as medical
cyber-physical systems, ultra low latency applications, and tactile internet. In medical cyber-physical
systems, devices monitoring physical parameters from both the environment and patients are integrated
through the network [99]. Traditionally, medical devices produce data that must be transmitted to remote
stations that process these data (for instance in the cloud). In such environments, the transmission of
sensitive data among nodes with proper delay is crucial to improve the quality of medical services. From
the ultra-low latency applications point of view, there are almost no initiatives that focus on applications
that require constant low delay communication [100]. In such a context, ultra-low-latency networks are
optimized to process a very high volume of data with a low tolerance for delay. These networks are
designed to support real-time applications and react quickly to changes in the data streams. In addition,
recent studies are focusing on the new tactile internet paradigm [101,102]. The goal is to bring the internet
to a lower level of granularity: the human senses, such as touch. This will produce a new level of data
generation that might scale rapidly. Therefore, collecting and transmitting this amount of data may be
challenging, requiring communication infrastructures capable of handling it with low delay.

Unlike cloud systems, fog networks are composed of several decentralized fog devices commonly
connected by battery or through inefficient communication interfaces. Defining a more efficient protocol
to deal with resource allocation within the fog network may help to minimize the energy consumption
in the fog environment. In that context, WSNs environments are promising, since in such architectures,
the devices are characterized by low energy consumption [103]. WSNs are composed of a set of small nodes
that employ low-energy protocols for communication and data exchange. In particular, combining fog and
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WSN has been explored by some researches in the literature; however there is still space for developing
new strategies in this context. In the context of heterogeneity and interoperability, systems must inter-operate
among several types of devices and vendors. Standards that ensure interoperability among such devices
have not yet been addressed in the literature. For instance, it is possible to explore web services interfaces to
allow data exchange between different modules and systems [104]. REST APIs (application programming
interfaces) [105] can be used as a way of providing data for different systems in fog environments. Additionally,
the development of new techniques for the announcements of available resources among fog devices as well
as their communication protocols is fundamental to enable heterogeneous network interconnection.

6. Conclusions

In the present study, a comprehensive review of the fog computing framework was conducted,
highlighting its major characteristics, such as its main architecture model, used network technologies,
platforms for development, simulation tools, and its main security issues. To achieve this, a systematic
literature review was performed that resulted in 48 articles analyzed carefully in this paper. Several application
deployment cases regarding data collection and analysis were introduced before explaining the fog computing
approach in the context of healthcare. Fog computing can be analyzed in the context of healthcare from two
different points of view. The first one regards the fog infrastructure itself. Currently, studies agree that fog
is a new layer between sensor devices and traditional cloud infrastructure. Such a model comprises some
specific communication protocols and also several communication technologies, ranging from WPANs to LTE
channels. This demonstrates that this new paradigm is used as an extension of current platforms using current
technologies. The other point of view is the e-Health landscape, which comprises the use of computational
applications to provide better healthcare services. Current studies focus on several issues that can affect the
performance of systems and applications. In fact, one of the main issues these strategies target is cost and
latency. On the one hand, cost reduction is one issue that is targeted in several areas and this is no different in
healthcare scenarios. On the other hand, latency has a direct relation with time, which is a very important
parameter in healthcare. Studies propose monitoring systems for data collection and processing that generate
valuable feedback regarding patients’ health parameters. Fog computing can improve the time it takes to
reach these results, since its hardware infrastructure is closer to the users.

The main contribution of the current research has two points of view. From the technical point
of view, the article presented the main characteristics of fog computing architectures focused on the
health scenario. In addition, the study defined the main tasks applications perform when employing
such solutions. From the society point of view, the study demonstrated some possible paths for study
combining fog and healthcare. More specifically, it demonstrated how future research might explore this
field to provide solutions for healthcare applications in order to increase patients’ safety and security.
Finally, considering future research, the topics include applying the research methodology from this survey
to different paper databases. In the future, it is also possible to consider different areas and compare how
fog computing is employed in each one of them. Additionally, the current research focused specifically on
e-Health applications.
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Abstract: Proper stroke posture and rhythm are crucial for kayakers to achieve perfect performance
and avoid the occurrence of sport injuries. The traditional video-based analysis method has numerous
limitations (e.g., site and occlusion). In this study, we propose a systematic approach for evaluating
the training performance of kayakers based on the multiple sensors fusion technology. Kayakers’
motion information is collected by miniature inertial sensor nodes attached on the body. The extend
Kalman filter (EKF) method is used for data fusion and updating human posture. After sensor
calibration, the kayakers’ actions are reconstructed by rigid-body model. The quantitative kinematic
analysis is carried out based on joint angles. Machine learning algorithms are used for differentiating
the stroke cycle into different phases, including entry, pull, exit and recovery. The experiment shows
that our method can provide comprehensive motion evaluation information under real on-water
scenario, and the phase identification of kayaker’s motions is up to 98% validated by videography
method. The proposed approach can provide quantitative information for coaches and athletes,
which can be used to improve the training effects.

Keywords: paddle stroke analysis; motion reconstruction; inertial sensor; data fusion

1. Introduction

As a multi-cycle high-intensity water sports project, kayak includes single boat, double
boat, four-person boat and obstacle slalom formats. The athlete sits in the boat, facing
forward, holding the paddle with oar handle on the middle position, relying on the feet to
steer the rudder to control the course. kayaking is closely related to athletes’ professional
skills, physical fitness, psychological state and other aspects, and the key to win in the
competition is to complete the paddling movement efficiently and without any mistakes
under tense conditions. Professional teams and amateur clubs are constantly looking for
advanced methods to help athletes improve their athletic performance [1–3].

Several different methods have been used for rowing technique testing. Video-based
analysis by researchers to quantify the stroke performance of rowers is one of them [4], but
this approach is restricted by the experimental site, which suffers from visual blind field,
and it does not observe the behavior accurately. Other studies have been devoted to the
creation of instrumented boats to assess rowers’ performance by measuring oar’s power
and motion [5]. Franz Gravenhorst et al. assessed rowing technology by continuously
monitoring rowers’ seat positions [6]. Henry et al. used strain gauges and potentiometers
to measure the forces on the oars and their angular positions to assess rowing performance
by power output [7]. Although boat speed, stroke frequency, stroke force and power output
of athletes are evaluated, the standardization and normalization of rowing motion are not
studied to fundamentally improve the kayaker’s technique.

Sensors 2021, 21, 914. https://doi.org/10.3390/s21030914 https://www.mdpi.com/journal/sensors

31



Sensors 2021, 21, 914

All the above studies are to test kayaking equipment by instruments, so as to study
the rowing performance. However, kayaking is a cooperative movement of athletes’ arms,
torso, upper limbs and body along a certain movement track, which is a combination of
factors of athletes’ muscle activity, joint flexion/extension angle and limbs activity [8,9].
Therefore, wearable sensors can evaluate the skills of rowing sports based on athletes’
movements capture. At present, it is a new trend to use inertial sensors on evaluating
rowing performance [10,11]. M.Tesconi et al. developed a tight wearable sensor system,
but it is only tested in the laboratory without extensive practical testing. In fact, the effort of
balance control in on-water scenario results in clumsiness and change in the motor part of
the action, and further leads to discredit on the simulated indoor experiments [12]. Rachel
C. King et al. introduced a kinematic monitoring system which combines inertial sensors
and other body sensor network nodes. However, the rotation of the back and femur in the
sagittal plane is mainly monitored, and the flexion and extension of the upper limbs are
not studied. The rowing action consists of shoulder abduction/adduction and elbow flex-
ion/extension, and a lack of analysis in coronal plane is worth consideration [13]. Ruffaldi
et al. put forward a sensor fusion model which integrates wearable inertial measurement
with physiological sensors and marks the buttocks, sternum, acromion, outside humerus,
medial epicondyle, ulna and radial styloid process. This method can support the human
motion tracking of rowing in indoor and outdoor environments. However, the experimen-
tal results and discussions are defined within the indoor training, and the absence of real
rowing data is a major barrier for true evaluation [14]. Taken together, the quantitative
analysis of kayaking athletes’ movement in the above research is relatively incomplete, and
there is limited research on monitoring and analyzing athletes’ whole-body movement [15].

To improve athletes’ rowing skills and provide the comprehensive technical guidance
of kayaking sprint, we put forward a method of motion reconstruction and analysis based
on inertial measurement units (IMUs). In our study, the athlete body is regarded as a set of
rigid models, including several segments with self-defined length, and each body segment
is modeled as a line which is connected by the friction-free joints. The attitude information
is described by means of quaternions. Based on the quaternion-driven rotation, the joint
angle of flexion and extension movement of each human body part is fully described.

The main contributions of this work are as follows:

• We use extend Kalman filter to fuse inertial sensor data and reconstruct real-time
postures of kayakers in different paddling positions and capture the movements of
single kayakers under realistic conditions.

• The validity and accuracy of the proposed posture estimation algorithm is verified
using an optical motion capture system.

• Stroke quality of single kayaker is analyzed based on joint angles obtained from
motion reconstruction.

• We use machine learning algorithms for phase partitioning of a stroke cycle.

The article is structured as follows. Section 2 introduces the hardware and software
platform. The experimental methodology is described in Section 3. The results of this study
is described are Section 4. Finally, discussions and conclusions are given in Section 5 and
Section 6, respectively.

2. Systematic Data Collection and Participants

2.1. System Platform

The IMUs-based motion tracking system used to obtain attitude of rowers was self-
designed in our lab. The total system consists of several tiny inertial measurement units, a
transceiver and a set of self-designed software. The physical device is shown in Figure 1.
Each inertial measurement unit contains a triaxial accelerometer, a triaxial gyroscope and a
triaxial magnetometer to measure the three-shaft acceleration, three-shaft angular velocity,
and three-shaft magnetic field intensity. The detailed specifications are shown in Table 1.
We used an STM32 as the micro control unit to record information from the inertial sensor
units and store the raw data in a TransFlash card. The motion captured process by IMUs is
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controlled wirelessly by the Lora signal sent by the computer. In every sensor node, there
is a miniature Lora wireless module soldered to the printed circuit board of the slave node.
The main controller communicates with the RF module via SPI interface, and it is always
waiting for an interrupt to start acquisition of inertial measurement. Once the master
transceiver connected to the computer by USB interface receives the “START” signal from
the self-made software, it delivers in the broadcasting signal. Upon receiving the public
signal, the slave receivers start to collect data simultaneously. In addition, after the initial
stage is completed, the participants are required to perform specific movements (stomp
and shake hands) for synchronization of different sensor nodes. The system acquires
the raw data at a sampling rate of 400 Hz. When the operation of the capture process is
completed, the data stored in the memory card are exported for subsequent kinematic data
analysis. A 3.7 V (400 mAh) battery is selected to power the whole system. At the end
of each experiment, the collected data are immediately copied to the personal computer.
The apparatus is preceded by practice trials, and the test battery lasted approximately 2 h.
Each experiment period is about 10 min per volunteer. The composition of motion capture
system is depicted in Figure 2.

Figure 1. Diagram of apparatus components.

Figure 2. Schematic illustration of the self-designed motion capture system structure.

Table 1. Sensor detailed Specifications.

Unit Accelerometer Gyroscope Magnetometer

Dimensions 3 axis 3 axis 3 axis
Sensitivity(/LSB) 0.833 mg 0.04 deg/s 142.9 uguass
Dynamic Range ±18 g ±1200 deg/s ±1.9 gauss

−3 dB Bandwidth(Hz) 330 330 25
Nonlinearity(%FS) 0.2 ±0.1 0.1
Misalignment(deg) 0.2 0.05 0.25

2.2. Participants and Experimental Sites

Six kayakers recruited from the provincial sprint team participates in the preliminary
study. The training duration for each participant is approximately more that three years.
The participants train six times per week, with daily training sessions of 5–6 h. They have
an average weight of 72.4 ± 6.4 kg and height of 1.76 ± 0.33 m. They are all female athletes.
All participants had their height and weight recorded, and they were fully informed and
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consent was obtained. The experiment was conducted at the Sports Training Center in
Dalian, Liaoning Province, China (latitude 121°15.194′ N and longitude 38°55.467′ E).

3. Methods

3.1. Rigid Body Model

In the kinematic analysis of this paper, the body is defined as a rigid structure, and
the skeletal structural model of the rower can be defined by 17 rigid segments (feet, calves,
thighs, pelvis, waist, chest, arms, thighs and head), as shown in Figure 3a. The kayaker’s
pelvis is set as the zero point. The length of each segment is approximately proportionally
determined by the height of the athlete. As the line segments are connected by joint,
if the orientation described by Euler angle or quaternion of each segment is obtained,
the positions of the other lines can be determined by the length of the skeletal vector in
the attitude in Figure 3a by iterative calculation [16]. To capture the limbs kinematical
information, the nine-axis inertial measurement is placed on each of the back, waist, thigh,
arm, calf and the limb segments, which is used to obtain raw acceleration, angular velocity
and magnetometer information during the acquisition process. The placements of inertial
sensors are shown in Figure 3b. The collection of kinematic data from head and feet was
not the focus of this research, and the sensor nodes for head and feet motion capture were
removed. The solutions of motion reconstruction data are replaced by the neighboring
nodes. Thus, capturing full-body human motion needs 10 sensor nodes, as depicted in
Figure 3b, and only six sensor nodes are required for capturing upper limbs.

(a) (b)

Figure 3. Schematic of the whole body structure definition with rigid body model and the distributed
representation of the sensor’s location: (a) a rigid-body model with 17 human body segments
connected via revolute joints, and the segment number can be adjusted according to the specific
situation; and (b) the location and method of fixation for the sensors.

The joint angles are defined as the angle between the vectors connecting adjacent body
segments. The changes in posture of kayakers corresponds to the flexion and extension
angle of each joint. The joint angles are depicted in Figure 4. The kayaking movement
referred to the athlete who sits in the kayak and the paddling movement is primarily
achieved by the upper limbs, so the flexion/extension of the shoulder joint (SF) and
flexion/extension of the elbow joint (EF) are the main aspects of our approach [17].
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Figure 4. The definition of body joint angle.

3.2. Precondition of Rehabilitation Motion Design

As shown in Figure 5, the whole motion capture system contains three coordinate
systems, and each three-dimensional coordinate system is based on the standard right-
handed 3D cartesian coordinate system. During the experiment, the inertial sensors are
secured to each body segment by Velcro straps to acquire information related to the bodily
motions of the participants.

Figure 5. Definition of the coordinate systems used in this work, and including Earth Coordinate
System (ECS), Body Coordinate System (BCS) and Sensor Coordinate System (SCS).

The sensor returns signal in local coordinates, which is called Sensor Coordinate
System (SCS). It is defined as the coordinates of a sensor node placed on the human body.
However, the motion is observed in the Earth Coordinate System (ECS). The trajectories of
each body segment and joint are measured with respect to the ECS, as opposed to the Body
Coordinate System (BCS). Therefore, the raw inertial data time series are each transformed
from SCS to ECS using the rotation matrix.

The x and y axes are not aligned to Earth coordinate system since magnetometer
data are always disturbed by metal constructions in experimental environment facilities,
which further affects the accuracy of motion tracking. To correct the magnetometer offset,
sensitivity and axis-misalignment, some researches put forward calibration methods [14].
The ellipsoid fitting based on least square method is adopted in this paper for magnetometer
calibration with data recorded on-site the day of the event [18]. The remaining angular
velocity and acceleration signals are also filtered using second-order digital filter with
cut-off frequency at 100 Hz [19]. At the end of signal preprocessing of magnetometer,
accelerometer and gyroscope, the data fusion algorithm is used to estimate accurate pose
of all human body segment.
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3.3. Motion Reconstruction Based on Quaternion

Taking into account the gimbal locking problem of Euler angle and its computational
complexity of the rotation matrix, the final posture parameters are obtained by fusing accel-
eration, angular velocity and magnetometer measurement data with the quaternion-based
interpretation of body segments rotations [20]. The quaternion is defined by Equation (1).

q = q0 + q1i + q2j + q3k (1)

with the three imaginary units i,j,k, which satisfy the equation i2 = j2 = k2 = ijk = −1 [21].
In the initial state, the athlete is asked to face north and stand with his arms down for a few
seconds, and the sensor nodes are fixed with a belt on the surface of the body. The initial
Euler angles of each sensors nodes are obtained by using Equations (2)–(6). Herein, φ, θ and
ϕ, respectively, represent pitch, roll and yaw angle. ax, ay and az are the linear acceleration
of the device in three directions, while mb

x and mb
y are the local magnetic intensity around

the test sites after calibration. The rotation quaternion e
sq(0) between SCS and ECS at the

initial state is also obtained by using Equation (7) [22].
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In the initial state, the rotation quaternion b
s q(0) between SCS and BCS is equal to e

sq(0)
because the BCS and ECS overlap, and, since the sensors are placed at fixed position, b

s q(t)
is always equal to e

sq(0) throughout the measurement. The main purpose of the project is
to analyze the movement of kayak in terms of the Earth coordinate system. The rotation
quaternion of each limb from BCS to ECS can be calculated by Equation (8):

e
bq(t) =e

s q(t)⊗s
b q(t) (8)

where s
bq(t) is the conjugate of b

s q(t) and e
sq(t) is constantly updated with data fusion

algorithm over time. In this paper, the bar-shaped human body model conformed to the
rigid body model is defined for representing the human pose. The participant’s pelvis in
the ECS is set as the initial position; the posture of each segment is obtained by the iteration
of the relationship.

Taking the adjacent segment of the upper limb as an example to explain how we
iteratively compute the attitude of human body, the upper arm and forearm body segments
are modeled as two segments in the elbow joint, as illustrated in Figure 6. Su1(t) and
S f 1(t) are the end position of two segments, while Su0(t) and S f 0(t) are the start position
of two segments. The length vectors of the upper arm and forearm are du(t) and d f (t).
Thus, the position of each segment is obtained from Equations (9) and (10). When all
segments’ postures of the rigid body model are obtained from the relative skeletal segment
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iteration calculation, the flexion and extension joint angle can also be solved by inverse
cosine between two adjacent skeletal segment vectors.

Su1(t) = Su0(t) + (e
b,uq(t))⊗ [0du(t)]⊗ (e

b,uq(t))∗ (9)

S f 1(t) = S f 0(t) + (e
b, f q(t))⊗ [0d f (t)]⊗ (e

b, f q(t))∗ (10)

Figure 6. Skeleton structure of upper limb.

3.4. Data Fusion Algorithm

There are many data fusion algorithms for reconstructing human motion, such as
complementary filter (CF) [23], gradient descent method (GD) [24] and extended Kalman
filter (EKF) [25]. In this article, the EKF method is used for multi-sensor data fusion. The
EKF model adopted in this paper is depicted in Equations (11) and (12).

x(t) = f (x(t − 1), u, t − 1) + w(t − 1) (11)

z(t) = h(x(t), t) + v(t) (12)

where x(t) stands for state vector at time t; z(t) represents the observation vector at time t; u
indicates the measured values of gyroscope; w(t) and v(t) are the process noise of the state
variable and system measured noise; and Q(t) and R(t) denote their covariance matrices,
respectively. The state variables are defined as follows, where q =

[
q0 q1 q2 q3

]T

represents the pose quaternions and bω =
[

bωx bωv bωz
]T are the measurements biases

of the gyroscope. The state variable vector is written in Equation (13).

X =
[

q0 q1 q2 q3 bωx bωy bωz
]T (13)

The updated pose quaternions can be solved by differential equations, which are expressed
as Equations (14) and (15).

q̇ =
1
2

q̂ ⊗ ω (14)

w =

⎡
⎢⎢⎣

0 −wx −wy −wz
wx 0 wz −wy
wy −wz 0 wx
wz wy −wx 0

⎤
⎥⎥⎦ (15)

Furthermore, the state transition matrix is obtained by Equations (16)–(18), where T denotes
the sample periods.
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F(t|t − 1) =
[

Fq
q Fq

ω

O3×4 O3×3

]
(18)

Then, the state transition function is obtained after model linearizing, as shown in Equation (19),

Φ(t | t − 1) = I7×7 + F(t | t − 1)× T. (19)

Here, let W(t) = [Wω(t), Wbias(t)]
T be the vector composed of the noise of gyroscope and

the gyroscope bias migration noise. We then proceed to obtain the expressions of the
derivatives of two variables. We get Q(t) = W(t − 1) × T × Qw × T × WT(t − 1). The
covariance matrix Qw is defined in Equation (20).

Qw =

[
I3×3σω O3×3
O3×3 I3×3σωb

]
(20)

where σω and σωb are the initial value of bias and migration noise of gyroscope. Then, the
prior state estimate can be calculated from state transition function (Equation (21)):

P(t | t − 1) = Φ(t | t − 1)P(t − 1 | t − 1)ΦT(t | t − 1) + Q(t) (21)

In this paper, the acceleration vector and magnetic field vector are selected as the
observation variables, which are defined as Equation (22), where ax, ay and az are the
measurements of three-axis accelerations and mx, my and mz represent the measurements
of three-axis magnetometer on the horizontal plane.

Z =
[

ax ay az mx my mz
]T (22)

The observation matrix of the accelerometer Ha is calculated on the projection of the
gravitation on the carrier coordinate system by Equation (23).

Ha =
b
e R

⎡
⎣ 0

0
−g

⎤
⎦ =

⎡
⎣ −2g(q1q3 − q0q2)

−2g(q2q3 + q0q1)
−g

(
q2

0 − q2
1 − q2

2 + q2
3
)

⎤
⎦ (23)

where b
e R indicates the rotation matrix between SCS and ECS. The observation matrix

Hmag is computed in the same fashion as Ha, and the magnetic field values
[

hx 0 hz
]T

also need to be projected into the carrier coordinate system. The observation matrix H is
calculated by Equation (24).

H =

[
Hmag 03×3

Ha 03×3

]
(24)

Therefore, the state gain matrix can be expressed as Equation (25).

K(t) = P(t | t − 1)HT(t)
[

H(t)P(t | t − 1)HT(t) + R(t)
]−1

(25)

38



Sensors 2021, 21, 914

Thus, the estimate value of the state vector at time t can be calculated from Equation (26),
and the state error covariance matrix is updated by Equation (26). K(t) represents the gain
factor, X(t | t) is the posteriori state estimate and P(t) is the posterior covariance matrix, as
shown in Equation (27).

X(t | t) = X(t − 1 | t) + K(t)[Z(t)− h(X(t | t − 1))] (26)

P(t) = [I − K(t)H(t)]P(t | t − 1) (27)

3.5. Evaluation Method for Sprint Kayak Technique

The kayakers under different competitive levels vary substantially in trunk rotation,
leg motion, stroke width, stroke rate, overall motion of the kayak, blade and water-contact
time and other factors [26]. From these important factors, the most influential is the stroke
frequency, stroke phases and stroke variation. After motion reconstruction, the details
about the action implementation are also captured despite the visual occlusion conditions.
The joint angles were estimated by computing the reverse cosine of the angle between the
adjacent segment vectors. Then, the motion information is retained for further analysis.

There are many parametric ways to estimate the technical level of athlete based on the
joint angles series. To achieve the best performance, the efficient and consistent stroke cycle
is deemed necessary. The information about stroke rhythm can be calculated by searching
the joint angle signal peak values. The consistency and variation are also identified by
the movement range of joint at the extremities. In addition to these, the stroke phase
is a more practical indicator used by coaches. A stroke cycle is defined as the periodic
movement. When analyzing rowing technique, the stroke cycle is usually broken down
into 2–4 phases, and there are many observational models to distinguish movement phases.
In this paper, the model adopted for the categorization and analysis of kayaking movement
is shown in Figure 7. The first-level phase is defined as the period of the whole stroke cycle,
which corresponds to before and after the same-side paddle blade enteris the water. For
detailed division of the stroke cycle, the propulsion phase is separated based on water
contact of the paddle, which is considered for the greater visibility of the position. The
four sub-phases are defined by the instant of the blade catching, immersing, extracting
and releasing from the water. The sub-phases are divided into paddle entry, pull phase,
paddle exit and recovery phase within a larger phase. The duration of pull phase and the
ratio of propulsion duration to recovery duration have significant effects on the rowing
performance [27].

Figure 7. The model for kayak motion analysis including two levels: phases and sub-phases. The phases defining positions
are entry, pull, exit and return. R, right side; L, left side.

3.6. Feature Extraction Method

To make predictions on the joint angle sequence data based on the phase partitioning
method described above, the present study proposes several machine learning models
to predict the movement phases (entry, pull, exit and recovery) based on the feature
matrix of upper limbs joint angles. Statistical descriptive feature extraction is a widely
used method to calculate the statistical features on the sample record [28]. However, the
duration, amplitude and orientation vary among athletes. To obtain more comprehensive
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information for further phase recognition, the wavelet scattering transform is proposed in
this paper for feature extraction [29]. Its algorithm principle is as follows.

The input signal x = [x1, x2, . . . , xn] is a n-dimensional vector whose length is the
number of joint angle series under analysis. ψ(x) is the chosen wavelet mother function,
which is used for multiscale and oriented filter bank. The definition is described as follows.

ψλi (x) = 2−2ji ψ(λix) (28)

where θ ∈ R represents the rotation matrix in the finite, discrete rotation group R and
λi = 2−ji θi, i = 1, . . . , m represents the joint scaling and rotation operators. φ(x) is denoted
as the low-pass filter, and its definitions is described as follows.

φJ(x) = 2−2Jφ
(

2−J x
)

(29)

In the rest of this paper, j and J are integers within j ≤ J, and j is the level of scattering. The
wavelet scattering transform has important advantages of invariant, stable and informative
signal feature representation. The following methods is used to recover the information by
the operation of the invariant modulus part. We denote Six, i = 1, 2, . . . , m as the wavelet
scattering coefficients of each layer. The output of each layer is written by the function of
the modulus, and the low-pass averaging function is described as follows:

S0x = x ∗ φJ(x) (30)

S1x(x, λ) = |x ∗ ψλ| ∗ φJ(x) (31)

Smx(x, λ1, . . . , λm) = | . . . |x ∗ ψλ1 |. . . ∗ ψλm | ∗ φJ(x) (32)

The final wavelet scattering coefficients are the whole output of the transform from the 0th
to mth order, as expressed in Equation (33).

Sx = {S0x, S1x, . . . Smx} (33)

When the scattering transform of all slide-windowed joint angle record are obtained, the
feature matrixes based on wavelet scattering transform are fed into machine learning model
for training and predicting movement phases.

4. Results

4.1. Performance Comparison between Self-Made System and Standard Optical System

To verify the performance of the self-made inertial motion capture system (IMC), we
set a contrast experiment with the commercial optical motion capture system (OMC). The
OMC is mainly considered as the reference standard tool for dynamic measurement of
upper and lower limb joint angles. The experimental arrangement is schematically shown
in Figure 8. The participant was instructed to wear inertial sensor nodes and the markers
of OMC simultaneously and make stretching exercises of the trunk and extremities. Due to
the limitations of OMC, the participants wore tight-fighting shorts for the data collection to
avoid occlusions. The whole-body movements were recorded using the 3D optical motion
capture system (OptiTrack, American) and inertial sensor nodes. The experiment were
approved by The University of Dalian Technology at LiaoNing province China and all
participants provided written informed consent.

The coordinate system between the OMC and IMC is inconsistent, thus the raw data
of OMC need to be converted. The results of comparison between OMC and IMC are
presented as follows. Figure 9 shows a comparison graph of the elbow flexion extension
for the two systems. First, consider the situation in the left half of Figure 9. The IMC
can trace the motion curve accurately compared to OMC. The corresponding correlation
coefficients are 0.995 and 0.996 of the two curves, respectively. The measured values of the
optical system are used as a standard reference. The descriptive statistical histograms of
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the relative errors are also calculated for the right half of Figure 9, and the measurement
errors are well controlled. All results show that the device we developed is reliable [30].

Figure 8. Inertial motion capture (IMC) sensor and optical motion capture (OMC) marker setup
shown in the room.

Figure 9. Contrast curve of elbow flexion and extension angle and error statistics.

4.2. Kinematic Statistical Analysis after Motion Reconstruction

The kayaker sprint involves the motion of the whole body. The paddling movement
involves arm and trunk muscles, but it needs to activate the bilateral extensors and flexors
of the hips and knees to simultaneously twist the body. Only in this way, the power
output will be increased, and a higher velocity is obtained. Thus, the motion of whole
body was captured in our experiments. All experiments were repeated at least three times
for lengths of 200 m each time. At the same time, the entire process as recorded with a
motion camera from coronal plane at 240 frame rate. Figure 10 shows the results of motion
reconstruction using IMC equipment. To guarantee safe conditions, the observation of
camera-based motion capture maintained constant viewing distance. It is inevitable that
the vision of lower extremities is occluded by the hull and sometimes the upper limbs are
occluded by the paddle. However, the details of motion expression are captured by the
IMC, which is proven to be an efficient method to overcome the difficulty caused by the
visual method [24].

The elbow and shoulder joint angle curves of a stroke cycle are shown in Figures 11 and 12,
where the blue solid lines represent the time-normalized group mean and the black dotted
lines represent the time-normalized maximum (MAX) and minimum mean (MIN). The gray
shaded area represents the range of motion (ROM) between MAX and MIN. The mean value
and standard deviation of MAX, MIN and ROM of elbow and shoulders are also calculated,
and the results are shown in Table 1. A stroke cycle is completed in two stages of right-side
and left-side stroke. During the two sub-phases, the paddlers try to maintain similar extremity
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rotation and flexion angles. It can be seen in the graph that joint angles of elbow and shoulder
in right-side stroke is the opposite of the extremities movements in left-side stroke. This also
accounts for the similarity between EFl in Figure 11 and EFr in Figure 12, and the same applies
for EFr, SFr and SFl.

Figure 10. The result of motion reconstruction using the proposed method.

Figure 11. Joint angle transform curves of elbow and shoulder during right-side stroke cycle.

Figure 12. Joint angle transform curves of elbow and shoulder during left-side stroke cycle.
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During the stroke, the draw elbow is extended, while the draw shoulder is flexed in
an attempt to place the blade paddle in the water as far as toward the boat as possible. To
maintain the optimal stroke performance, the kayakers alter shoulder and arm musculature
to resist the external forces. Because the upper limbs movements accounted for approxi-
mately half of the stroke cycle, shoulder injuries are always observed in elite kayakers [31].
Besides the kinematic asymmetries of the whole-body during paddling, the MAX, MIN
and ROM of elbow and shoulder flexion are important reasons for muscle strain [32]. As
shown in Figures 11 and 12 and Table 2, the MEAN, MAX and MIN values of elbow are
larger than those of shoulder. However, the ROM of shoulder is much larger than that of
elbow. The maximal shoulder angle of dominant limb appears at around 80% into the cycle.
The peak of shoulder extension occurs during the abductor movement of the recovery
phase in a stroke cycle. These observed results are similar to previous studies [31,33]. This
illustrates that the power output for rowing is mainly completed by the upper arm and
shoulder muscles. According to the above analysis, the potential for shoulder and scapular
injury is monitored and avoided as much as possible.

The proficient stroke would ideally be symmetrical on both sides in order to propel
the kayak straight and distribute forces equally on the body. The elite kayakers always use
a similar, consistent rowing technique. The body motion and posture do not change during
the whole process. In this study, all athletes could be regard as junior rowers. Based on the
time-normalized group joint angles series, the correlations on opposite curves of both sides
are 0.8045, 0.7607, 0.9326 and 0.8548, respectively. These parameters represent the degree
of proficiency, which is the kinematic difference among elite, junior and beginner kayakers,
where elites have a perfect pattern of symmetry between the left to right, which are also
the inadequacies for beginners to improve themselves.

Obviously, this above kinematic statistical analysis is comprehensible and intuitive,
and it can assist coaches to draw up the training program and avoid sport injury. Different
from the in-house analysis based on the training equipment, the real on-water movement
analysis is more responsive and makes the results more pertinent.

Table 2. Summary statistics of joint angle sequencing data.

MEAN ± SD (deg) ROM MAX MIN MEAN

Left Side

EFl 21.9 ± 3.1 167.0 ± 2.1 145.2 ± 1.6 156.4 ± 1.5
EFr 37.6 ± 6.4 158.3 ± 5.9 120.6 ± 1.6 129.0 ± 1.6
SFl 74.1 ± 2.0 99.9 ± 1.9 25.8 ± 1.6 58.9 ± 1.3
SFr 60.2 ± 4.5 103.1 ± 3.4 41.0 ± 1.7 63.9 ± 2.0

Right Side

EFl 20.3 ± 1.9 147.7 ± 3.8 127.5 ± 1.9 132.5 ± 1.9
EFr 36.9 ± 4.9 174.9 ± 3.4 138.0 ± 2.9 155.8 ± 2.2
SFl 29.6 ± 2.4 94.6 ± 2.3 65.0 ± 1.4 75.5 ± 1.4
SFr 88.6 ± 2.6 110.0 ± 2.0 21.5 ± 2.2 62.3 ± 1.5

4.3. Phase Partition Based on the Joint Angles Series

Phases are always described in the stroke quality analysis [34]. The two-phase model
including propulsion and recovery phase is a widely used indicator. For more detailed
analysis on the premise of not disrupting the two-phase model, the sub-phase model
including entry, pull, exit and return can be used. In this study, to predict the phase of
motion process automatically, machine learning algorithms were used to classify the phase
based on the wavelet scattering feature matrix of four joint angles series, and the durations
of each phase were obtained.

High speed motion camera was used to capture the kayaker’s movement at the
recording rate of 240 frames per second, and, then, the four joint angle series were annotated
with video images as the comparator groups. Next, the sliding window of 20 data points
with 50% overlap was applied for the different phase series. We ended up with a dataset
of 11,851 pieces of labeled sequences. Because the energy of wavelet scattering decreases
rapidly as the layer level increases, and almost 99% of the energy is contained in the first two
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layers, we focused on the first two layer scattering coefficients [35], and then the features
extracted from the labeled records using wavelet scattering were combined to predict the
class membership of data. Movement recognition consists of identifying special actions and
the stage at which the object is currently at. Fine-grained movement recognition is focuses
on distinguishing different actions between subtle changes. We try to propose sensor-based
recognition and evaluation models based on joint angle series. Because the number of
scattering features is large, several simple classifiers including Support Vector Machine
(SVM), Logistic Regression, Decision Tree, K-Nearest Neighbor (KNN) and Random Forest
were considered, and we compared their performance. The whole feature dataset was
divided into training (80%) and test sets (20%). The training dataset as used to train the
models and the remaining dataset was used for predicting. Standard measurements were
used to evaluate the performance of each selected model: classification accuracy, precision,
recall and F1-score. The receiver operating characteristic curve (ROC) was obtained from
the false positive rate against the true positive rate under the different thresholds. The
precision–recall curve (PRC) was derived from the relationship between precision and
recall with the different thresholds. The corresponding areas under the curves (AUC) of
ROC and PRC were also calculated to assess the prediction performance. The model with a
higher area (between 0 and 1) value gives a better predictive performance. The specific
details for recognition performance are listed in Table 3.

Table 3. Prediction performance comparison.

Evaluation Metrics
Machine Learning Algorithm

Decision Tree KNN SVM Logistic Regression Random Forest

Accuracy 0.9827 0.9898 0.9898 0.9789 0.9856
Precision 0.9826 0.9900 0.9898 0.9787 0.9856

Recall 0.9827 0.9899 0.9899 0.9789 0.9857
F1-score 0.9826 0.9899 0.9898 0.9788 0.9855

AUC of ROC 0.9834 0.9993 0.9999 0.9990 0.9992
AUC of PRC 0.9679 0.9984 0.9996 0.9976 0.9981

The trained model was used to predict the phase position of the new motion sequences
collected from the participants. Next, we calculated the duration of each sub-phase of
all participants. The result is shown in Table 4. As described in a previous paper [36],
experienced kayakers have lower standard deviation (SD) values than novices, and SD can
be regarded as an indicator of the joint angle consistency of the kayakers. Table 4 shows
that the third and fourth athletes present relatively small standard deviations. The results
reflect that they have achieved better performance over the experiment time.

Table 4. The duration of sub-phases during one round trip.

MEAN ± SD (ms)
Left Side Right Side

Entry Pull Exit Recovery Entry Pull Exit Recovery

Subject 1 124 ± 13 396 ± 28 116 ± 15 388 ± 22 144 ± 15 299 ± 23 95 ± 16 371 ± 28
Subject 2 120 ± 14 414 ± 14 118 ± 17 385 ± 24 152 ± 14 301 ± 22 100 ± 14 385 ± 32
Subject 3 121 ± 6 354 ± 19 86 ± 12 319 ± 18 129 ± 10 297 ± 16 96 ± 12 337 ± 14
Subject 4 132 ± 8 369 ± 17 96 ± 11 328 ± 22 131 ± 9 300 ± 16 96 ± 9 343 ± 15
Subject 5 131 ± 10 435 ± 32 105 ± 13 370 ± 19 133 ± 7 333 ± 20 101 ± 12 405 ± 22
Subject 6 127 ± 9 428 ± 27 103 ± 14 361 ± 21 127 ± 9 340 ± 23 91 ± 18 393 ± 26

The duration ratio of different phase on both sides towards all participant was also
calculated, as plotted in Figure 13. The acceleration procedure of kayak is mainly completed
during the propulsion phase. More precisely, the entry and pull phase complete most of
the work. As shown in Figure 13, the ratio between propulsion and recovery phase of all
experimenters in this study is close to 60%. For many elite athletes, efforts are made to
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minimize the duration of recovery process and increase the duration of the propulsion
phase, and this is more effective than enhancing the stroke rate for increasing the boat
velocity [37,38]. On the other hand, it can be seen that the symmetry between left side and
right side is imperfect. Asymmetry has been related to injuries in kayakers during the
paddle stroke [33].

By the above quantitative analysis of the stroke cycle, the stroke quality of kayakers
can be evaluated from different perspectives. The coach will be able to provide specific
recommendations to the athletes, and the performance of kayakers can be improved.

Figure 13. The ratio of different phase duration to total time in a stroke cycle.

5. Discussion

The whole-body posture is important to the paddling technique [39], and rowing
technique is largely composed of posture and timing. This work tries to explore these
aspects further. We used inertial sensors to acquire kayakers’ motion kinematic information
during rowing, which is powerful and permits more precise and specific correlations
between performance and proficient level. All sequence data of whole-body activity
obtained in this study are available under real on-water environment. The experimental
results, including duration of stroke cycle, stroke frequency, ROM of limbs movement,
similarity of both sides, rate of propulsion/recovery phase, etc. are consistent with previous
study [2,3,31,36,40].

Although the satisfactory results are also seen in the comparison and prediction of
the follow-up experimental arrangement, indeed, the performance of the athletes could
be influenced by many factors. The distinct differences are also show in only short time
period even for the same individual. Consequently, the timeliness of provided information
obtained by the proposed method is important for communication between coaches and
athletes. On the other hand, wearing multiple sensors have resulted in bodily discomfort
and further it would affect the coordination between the limbs and the spine. Therefore,
it is necessary to minimize the number of wearable devices or significantly decrease the
size and weight of sensors nodes. Besides, we next set out to optimize the rigid model,
including decreasing the number of degrees of freedom, and so on. After adjusting the
above possible factors, a more comprehensive water sport athlete monitoring system will
be established in the future.

6. Conclusions

In this work, we present a systematic method for athlete’s motion capture and kine-
matic analysis. The customizable rigid model is used to demonstrate the kayaker’s posture,
and each segment attitude of the whole-body is iteratively calculated by the quaternization
vector multiplication. The contrast test indicates that the proposed approach has com-
parable accuracy to the standard commercial optical motion capture system. This paper
highlights the range of motion of the extremities, which is essential for preventing sports
injury, and the duration of motion phases, which is the import index for competitive level.
The detailed kinematic analysis based on the field on-water experiments could be provided,
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and this enable coaches to give targeted feedback and guidance based on the participant’s
activities in real scenario.
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Abbreviations

The following abbreviations are used in this manuscript:

IMUs Inertial Measurement Units
ECS Earth Coordinate System
SCS Sensor Coordinate System
BCS Body Coordinate System
SF Shoulder Flexion Angle
EF Elbow Flexion Angle
KF Knee flexion Angle
FF Foot Flexion Angle
SFl Left Shoulder Flexion Angle
SFr Right Shoulder Flexion Angle
EFl Left Elbow Flexion Angle
EFr Right Elbow Flexion Angle
CF Complementary Filter
GD Gradient Descent
EKF Externed Kalman Filter
IMC Inertial Motion Capture System
OMC Optical Motion Capture System
SVM Support Vector Machine
KNN K-Nearest Neighbor
ROM Range of Motion
MAX Maximum Value
MIN Minimum Value
MEAN Mean Value
SD Standard Deviation
ROC Receiver Operating Characteristic
PRC Precision Recall Curve
AUC Area Under the Curve
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Abstract: Gait analysis, as a common inspection method for human gait, can provide a series of
kinematics, dynamics and other parameters through instrumental measurement. In recent years, gait
analysis has been gradually applied to the diagnosis of diseases, the evaluation of orthopedic surgery
and rehabilitation progress, especially, gait phase abnormality can be used as a clinical diagnostic
indicator of Alzheimer Disease and Parkinson Disease, which usually show varying degrees of gait
phase abnormality. This research proposed an inertial sensor based gait analysis method. Smoothed
and filtered angular velocity signal was chosen as the input data of the 15-dimensional temporal
characteristic feature. Hidden Markov Model and parameter adaptive model are used to segment gait
phases. Experimental results show that the proposed model based on HMM and parameter adaptation
achieves good recognition rate in gait phases segmentation compared to other classification models,
and the recognition results of gait phase are consistent with ground truth. The proposed wearable
device used for data collection can be embedded on the shoe, which can not only collect patients’ gait
data stably and reliably, ensuring the integrity and objectivity of gait data, but also collect data in daily
scene and ambulatory outdoor environment.

Keywords: body sensor network; gait analysis; gyroscope; information fusion; hidden Markov model

1. Introduction

Walking is one of the most common physical activities for humans and plays an
important role in our daily activities. It can be performed in a variety of ways and directions,
and is also an energy efficient method of mobility. For most people, walking is completely
subconscious. In patients with neurological conditions such as stroke, this can be altered by
gait abnormalities, which are usually caused by motor or sensory disorder. It is necessary
to conduct specific rehabilitation exercise to deal with gait abnormalities, and the detection
and tracking of gait can be of great help to patient recovery. Gait characterization and phase
classification are widely used in the field of medical diagnosis to assess and detect the
balance ability, which can be used for gait-based identification, robot control for artificial
limbs and humanoid robots [1–8]. Researches about Micro-Electro-Mechanical Systems
(MEMS) have developed rapidly over the past decade, enabling the development of
computer communication devices, high-performance physical sensors, and especially
inertial sensors. These sensors are characterized by their large memory capacity, small size
and low cost, and it is due to these characteristics that they are widely used in various
areas [9–22].
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2. Related Works

According to the situation of foot contact with the ground, gait phase can be divided
into two stages: support phase(ST) and swing phase(SW). SW and ST phases can also be
divided into several subphases. The result is a model with three to eight phases. The four-
stage division subdivides the support phase into four stages: Heel-strike (HS), Foot-flat
(FF), Heel-off (HO) and Toe-off (TO). The time occupied by each stage is as follows: (1) HS
to full FF, accounts for approximately 10% of the gait cycle. (2) Plantar Fascia FF to heel-
to-ground (HF), accounts for approximately 35% of the gait cycle. (3) HF to toe-off (TF),
accounts for approximately 15% of the gait cycle. (4) TO to HS in the next cycle, which
accounts for about 40% of the gait cycle.

The hidden Markov model is a model of statistical analysis [23–25], which is used to
describe Markov processes containing hidden parameters. Hidden Markov, as a typical
statistical analysis model, is outstanding in solving problems in time series. Therefore, it
has been widely studied in many areas of time series problem solving, and hidden Markov
models are very useful in the analysis and processing of modeling problems. It has great
advantages in modeling, such as modeling in the spatial direction. It also has advantages in
the analysis of modeling directions, such as in solving the problem of modeling and analysis
of non-stationary waveforms. The normal gait behavior of the human body is cyclical not
only in time but also in space. It is because of the hidden Markov’s outstanding advantage
in resolving cyclic information and the cyclic and regular nature of the human gait that
both the relationship is a high match between the method and the problem, so in this paper
we decided to adopt this model to solve the problem of gait stage division. The stages of
gait behavior can be treated as the state of a Markov chain, and the data obtained by the
acquisition device is extracted to obtain the eigenvalues by feature extraction, putting these
eigenvalues correspond to the output observations of the Markov model.

Since human gait has a certain regularity and periodicity, many researchers have
started to use hidden Markov models for gait behavior recognition (e.g., gait used to
distinguish actions under different behaviors, gait used to identify different people for
identification, and determining pathological gait) [26–31].

After the success of gait behavior recognition, some researchers began to study the
hidden Markov model for gait stage delineation. On the issue of gait stage classification,
the different problems solved by the researchers and the different types of gait data collected
(including the collection of different data locations and different acquisition devices) make
many differences in the problem of gait stage classification.

In this paper, it is hoped that a single inertial sensor can be used to obtain gait phase
recognition with higher accuracy. Figure 1a presents the correlation between the gait stage
and the Markov chain and Figure 1b divides a complete period of gait into four stages
based on the angular velocity signal from compact inertial sensor.

The division of gait phases in this paper is based on the angular velocity collected at the
toe and divides a complete gait cycle into four stages. The transitions between these four
stages are carried out from left to right, and there is no jump transition, the gait stage in this
paper with a Markov chain representation containing four states. The states corresponding to
the four stages of the locomotor gait cannot be directly observed and are directly obtained as
the angular velocity measured by the sensor, so we map of states to outputs can be achieved
with the help of Gaussian probability or Gaussian mixed probability models to achieve gait
stage division.

Wearable device-based gait phase segmentation and adaptive recognition have become
a useful tool for quantitative medical diagnosis and patient recovery evaluation [15,32–34].
Human gait behavior shows regularity and periodicity, at the same time, since different
individuals, environments, and individual states result in gait diversity, which brings a
great deal of uncertainty. Researchers have been committed to accurately describing gait
and improving the adaptability of the proposed gait analysis model [33,35–41]. In this
paper, we mainly focus on the identification of the different phases of a single gait cycle,
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and the various phases of human gait reflect the individual health issues, which makes it
useful in the field of diagnosis and guidance for medical rehabilitation.

(a) (b)

Figure 1. Traditional gait analysis methods (a) Correspondence between gait phases and Markov chain state (b) Correspon-
dence between angular velocity and gait phases.

The rest of this paper is summarized as follows: Section 3 analyzes the hidden Markov
model. Section 4 describes the proposed wearable sensor system and the gait phase seg-
mentation methodology. Experimental results are shown in Section 5. Section 6 discusses
the proposed hidden Markov model and summarizes this paper.

3. Analysis of Hidden Markov Model

3.1. Analysis of HMM Theory

HMM usually consists of five parts: hidden state, model output value, initial state
probability, transition probability between States and output probability distribution.
The hidden state is usually represented by S, which is the actual requirement of the model,
and usually can not be obtained by direct observation; the observable output is represented
by O, which is the observed output of the model, and associated with the hidden state, can
be regarded as the external performance of the hidden state; the probability matrix π of the
initial state represents the probability of each state at the initial time; the transition between
the hidden states The probability A is the transition probability between the hidden states,
and the output probability matrix B is the probability that the corresponding output of one
of the hidden states is an observed output. HMM is usually represented by θ = (π, A, B).

The specific hidden Markov model can be described by five parts of the model:

(1) N: The number of states contained in a model is usually determined before the model
is built. Suppose that the state at time t is qt, then qt ∈ {s1, s2, · · · , sN}.

(2) M: The number of observation values corresponding to each state in the model (when
the output observation value is discrete value), if the observation value of the model
at time t is ot, then ot ∈ {v1, v2, · · · , vM}.

(3) A: The state transition probability matrix of the model is A =
(
aij

)
N×N . If the

state of the model at time t is qt = si, the transition probability can be expressed as
P
(
qt+1 = sj|qt = si

)
= aij, and the state at time t + 1 is qt+1 = sj, where 1 � t � T,

T is the length of the model output observation value and 1 � i, j � N. Meanwhile,
the state transition matrix A satisfies ∑N

j=1 aij = 1, 1 � i, j � N.
(4) B =

(
bj(k)

)
N×M: If the state of the model at a certain time is qt = sj and the output

observation value is ot = vk, the relationship between the state and the observation
value can be expressed as P

(
ot = vk|qt = sj

)
= bj(ok), 1 � j � N, 1 � k � M, and the

observation value probability matrix needs to meet bj(k) = 1, 1 � k � M.
(5) π: The probability of occurrence of each state in HMM model at the first time, π =

(π1, π2, · · · , πN), when the initial state is si, can be expressed as p(q1 = si) = πi, 1 �
i � N. The initial state probability needs to satisfy ∑N

i=1 πi = 1.

HMM contains two stochastic processes. The first process is Markov chain, which
contains the initial state probability π and the state transition probability matrix A of HMM,
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and describes the state persistence and transition process, which is implicit. The second
stochastic process describes the corresponding statistical relationship between the output
state of Markov chain and the output of HMM model, which is described by the output
probability matrix B.

There are two presuppositions to use HMM: homogeneous Markov hypothesis and
independent observation hypothesis. In the homogeneous Markov hypothesis, the state
of any time is only related to the state of the previous time of the current time, and has
nothing to do with the state and output of other times. In the observation independence
hypothesis, the corresponding output value at any time is only related to the state at the
current time, and has nothing to do with the state and observation value at other times.
The three problems of HMM and the corresponding algorithms are carried out under the
premise of these two assumptions.

3.2. Implementation of EM Algorithm

In the parameter solving problem of HMM, the model parameters are unknown
and the output sequence is o. the model parameters that can make the probability of
output sequence o maximum are obtained. If the variables in the probability model can
be directly observed, the maximum likelihood estimation (MLE) method or Bayesian
estimation method is usually used to calculate from the given data. Because HMM model
contains hidden variables, we can not use these two methods directly. EM algorithm keeps
approaching the optimal solution through iteration. It uses maximum likelihood estimation
to solve the parameters of the model with hidden variables. Each iteration of EM algorithm
consists of two steps. The first step is to find the expected joint probability expectation
e, and the second step is to find the model parameters when the expectation reaches the
maximum value, which is called the expected maximum algorithm. Figure 2 present the
flow chart of the proposed EM algorithm.

Figure 2. EM algorithm flow chart.
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The first step is usually to find the Q function, and the form of Q function is different
according to the distribution of output sequence. The general formula of Q is:

Q
(

θ, θold
)
= ∑

I
p
(

I, O|θold
)

ln p(I, O|θ) (1)

When the output observations are discrete distribution B = {vi}, 1 � i � M, where
M is the number of discrete observations; when the output observations obey Gaussian
distribution B = {μi, ∑ i}, i = 1, · · · , N; when the output observations obey Gaussian
mixture distribution, B =

{
Bij,μij, ∑ ij

}
, 1 � i � N; 1 � j � M, where M is used to

represent the number of Gaussian distributions corresponding to the Gaussian mixture
model corresponding to each state.

If the output distribution of HMM is discrete, the Q function of the model can be
decomposed into three parts, each part is only related to a single model parameter.

Q
(

θ, θold
)
=

N

∑
i=1

p
(

q1 = si, O|θold
)

ln πk

+
T−1

∑
t=1

N

∑
i=1

N

∑
j=1

p
(

qt = si, qt+1 = sj, O|θold
)

ln ajk

+
T

∑
t=1

N

∑
i=1

p
(

qt = si, O|θold
)

ln p(ot|qt = si,θ)

(2)

In order to simplify the calculation process, variables are introduced:

γt(i) =
αt(i)βt(i)

P(O|θ) =
αt(i)βt(i)

∑N
i=1 ∑N

j=1 αt(j)βt(j)
(3)

Let
ξt(i, j) = p

(
qt = si, qt+1 = sj|O, θ

)
(1 � t � T, 1 � i, j � N) (4)

The expression can also be deduced by forward backward algorithm:

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

∑N
i=1 ∑N

j=1 αt(i)aijbj(ot+1)βt+1(j)
(5)

The second step is to find the hidden Markov model parameter θ when the Q function
is maximized, and to solve the three model parameters by maximum likelihood method
for the three terms of Equation (2). The parameterπ of probability model are known by
solving the first term.

K

∑
j=1

πi = 1 (6)

Then we can get the Lagrange function of the first term as follows:

L1

(
π, θold, λ

)
=

N

∑
i=1

p(q1 = si, O) ln πi + λ

(
K

∑
j=1

πi − 1

)
(7)

The partial derivative of πi is calculated and set to 0, we can be concluded that:

πi = γ1(i), i = 1, · · · , N (8)
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According to the second term, the parameter state transition matrix A of probability
model is solved, the known state transition matrix satisfies:

N

∑
j=1

aij = 1, j = 1, · · · , N (9)

Then the Lagrange function of the second term is:

L2

(
A, θold, λ1, · · · λN

)
=

T−1

∑
t=1

N

∑
i=1

N

∑
j=1

p
(

qt = si, qt+1 = sj, O|θold
)

ln
(

ajk

)
+

N

∑
j=1

λj

(
M

∑
k=1

bj(k)− 1

)
(10)

In the same way, the partial derivatives of each term of the state transition matrix are
calculated and set to 0, we can get that:

aij =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 γt(i)

i, j = 1, · · · , N (11)

The third term of Equation (2) has different forms of solution according to the dis-
tribution of output sequence. When the output sequence obeys the discrete distribution,
the Lagrange function is:

L3

(
B, θold, λ1, · · · , λN

)
=

T

∑
t=1

N

∑
i=1

p
(

qt = si, O|θold
)

ln bj(ot) +
N

∑
j=1

λj

(
M

∑
k=1

bj(k)− 1

)
(12)

The partial derivative of the function to B is juxtaposed to 0, we can get that:

bj(k) =
∑T

t=1,or=vk
γt(j)

∑T
i=1 γt(j)

(13)

If the output observations corresponding to HMM states obey Gaussian distribution
B = {μi, ∑ i}, i = 1, · · · , N, assume that each state corresponds to a Gaussian distribution,
and n is the dimension of the output observations, then the number of output distributions
and states is the same as N. The Lagrange function is written as:

L3

(
B, θold

)
= −1

2

T

∑
t=1

N

∑
i=1

p
(

qt = si, O|θold
)
[n ln(2π) + ln |Σi|+ (ot − μi)] (14)

We can get the partial derivative of function to μi and ∑ i and make the partial derivative 0:

μi =
∑T

t=1 γi(t)ot

∑T
n=1 γi(t)

i = 1, · · · , N (15)

∑ i = ∑T
t=1 γi(t)(ot − μi)(ot − μi)

T

∑N
n=1 γi(t)

i = 1, · · · , N (16)

If the output sequence corresponding to the state of HMM model is represented
by Gaussian mixture model distribution, B = {Bkm, μkm, ∑ km}, N are the number of
States, and M is the number of Gaussian distributions contained in the Gaussian mixture
model corresponding to the output sequence in each state. Then the probability of output
corresponding to state j can be expressed as:

B = {Bkm, μkm, Σkm} (17)

Here we introduce the intermediate variable v and satisfy the following conditions:
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p(vm|qi) = Bim, 1 � i � N; 1 � m � M (18)

vj(ot) = N
(
ot|μjm, Σjm

)
(19)

The constraint condition is as follows:

M

∑
m=1

Bjm = 1, · · · , N (20)

Finally, the likelihood function can be written as:

L3

(
B, θold, λ1, · · · , λN

)
=

T

∑
t=1

N

∑
j=1

M

∑
m=1

p
(

vt = vm, qt = sj, O|θold
)

[
ln Bjm − n

2
ln(2π)− 1

2
ln |Σjm| − 1

2
(
ot − μjm

)T
−1

∑
jm

(
ot − μjm

)]

+
N

∑
j=1

λj

(
M

∑
m=1

Bjm − 1

)
(21)

Because of the introduction of intermediate variables, the forward and backward
algorithms including implicit variables are redefined:

αt(im) = p(νt = vm, qt = si, o1, · · · , ot|B) (22)

βt(im) =
N

∑
j=1

M

∑
l=1

aijBjl N
(

ot+1|μjl , Σjl

)
βt+1(jl) (23)

ηt(im) = p(vt = υm, qt = si|O, θ) (24)

Similarly, let the likelihood function calculate the partial derivative for each member
of B = {Bkm, μkm, Σkm} and set it to 0 to obtain the extreme value, and finally get that:

Bjm =
∑T

t=1 ηt(jm)

∑T
t=1 ∑M

m=1 ηt(jm)
j = 1, · · · , N; m = 1, · · · , M (25)

μjm =
∑T

t=1 ηt(jm)ot

∑T
t=1 ηt(jm)

j = 1, · · · , N; m = 1, · · · , M (26)

Σjm =
∑T

t=1 ηt(jm)
(
ot − μjm

)(
ot − μjm

)T

∑T
t=1 ηt(jm)

j = 1, · · · , N; m = 1, · · · , M (27)

In this paper, the gait phase is divided into four phases based on the angular velocity
collected at the ankle. In the process of the four stages transition, the states are from left
to right in turn, and there is no jump transition. In this paper, the four gait stages are
represented by the four states of Markov chain in HMM. The corresponding states of the
four stages of gait can not be directly observed, but the angular velocity measured by the
sensor. So in this paper, Gaussian distribution or Gaussian mixture distribution is used to
realize the mapping relationship between the state and the output, and realize the division
of gait stages.

4. Materials and Methods

Based on the data acquisition system, this section gives the overall scheme of gait
phase recognition based on inertial sensors. The sensor data acquisition, feature extraction
and gait phase division of the system are described.
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4.1. Gait Data Collection

As shown in Figure 3, the data acquisition part consists of a minimum system com-
posed of a main control chip and peripheral circuits, an inertial sensor module for gait
signal sensing, a wireless signal transmission module and a data receiving device.

Figure 3. Data Acquisition System.

4.1.1. Data Acquisition Hardware Platform

The selection criteria of data acquisition system usually include sensor accuracy,
sensor drift and sampling frequency. With regards to the transmission module, it is always
necessary to consider the transmission speed and transmission reliability as well as the
convenience of practical use, and the gait behavior recognition acquisition system needs to
meet the characteristics of small size and low power consumption of wearable devices as
far as possible. Compared with image acquisition, the acquisition of angular velocity by
inertial sensors is convenient and easy to operate, and due to the development of MEMS
technology, the use of inertial sensors now has a low power consumption, small size,
and lightweight and other superior performance. The sensor module is manufactured by
Invensense (Sunnyvale, CA, USA). The accelerometer sensitivity is ±4800 LSB/g, and the
range of accelerometer can be set as ±2, ±4, ±8, ±16 g. According to the needs of this
research, the measuring range of the gyroscope range is set at ±2000◦ and the sampling
frequency is 100 Hz. The developed system hardware is shown in Figure 4.

Figure 4. System hardware.

Human gait signal collected by the system can be stored directly by adding memory
in the system, or by wired and wireless communication mode. Each of these methods
has its advantages and disadvantages. The advantages of wired mode are fast storage
speed and low packet loss rate, the disadvantage is that the process of data storage is not
observable and may be lost. Wired transmission is rarely used in practice, although it can
have both fast transmission and real-time data visualization. The wireless transmission
uses electromagnetic waves to send and receive signals for communication. For example,
researchers usually use data collected simultaneously from the waist, thighs, calves, instep,
toes and ankles or multiple parts to identify the gait stage. In this paper, a bandage is
used to attach a wearable sensor to the human toe (as shown in Figure 5a) to capture the
angular velocity generated by the human gait behavior, which is passed through Wi-Fi to
the mobile phone.
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4.1.2. Software Platform

The data collected by the hardware circuit will be sent to the mobile phone through
wireless transmission. Therefore, Wi-Fi wireless communication software based on the
Android operating system is compiled. As shown in Figure 5b, the software can receive
the data collected by the Wi-Fi signal transmitter in real-time during normal operation,
and save the received data to a file. The data can be read to the computer through a USB
serial port to facilitate the subsequent algorithm research, and the received signal change
curve is displayed on the mobile phone. The collected original 3D angular velocity signal
is shown in Figure 5c.

(a) (b) (c)

Figure 5. Data acquisition and software interface (a) Sensor placement (b) Raw data (c) Raw data curve.

4.2. Gait Data Preprocessing

Smoothing and de-noising the collected raw data is an indispensable step in the data
processing process. Human gait behavior is low-frequency motion, in this case, it is necessary
to filter the mixed high-frequency noise. The ways of generating these noises are noise caused
by relative movement between acquisition equipment and the human body; there will also
be noise interference in the process of digital signal conversion; electromagnetic interference
introduced in the process of data transmission from acquisition equipment to receiving equip-
ment; noise generated by power supply circuit of acquisition equipment [42–44]. Most of the
noise can be eliminated by preprocessing original data. The common data preprocessing
methods include signal denoising, smoothing, and normalization. Data preprocessing can
be done by using a filter circuit in the data acquisition system or by the software program.
Butterworth filter, FIR low-pass filter, moving average filter, median filter, Wiener filter,
and wavelet filter software filtering methods are commonly used.

The common data smoothing methods include moving average filtering, median
filtering, three-point linear smoothing filtering, and five point linear smoothing filtering.
The selection of filtering methods is often related to the similarity of the signals before and
after filtering. It is more likely to judge which filtering method to use by observing the
dynamic perception and identification of subjective factors of human motion imbalance
state. The filtering method selected in this way can have a better effect, but it may not be
the best method. Based on information theory, this paper proposes a selective filtering
method by analyzing information contained in the signal. By comparing the signal-to-noise
ratio (SNR) and root mean square error (RMSE), the optimal filtering method is selected by
comparing the moving average filtering, median filtering, and five point cubic filtering.
The effect of sliding filtering is related to the size of the sliding window, too large windows
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will lead to serious signal distortion and signal delay. By comparing the window size to
15, as shown in Figure 6a,b, the changing trend of angular velocity signal after filtering is
more smooth, which can reduce most of the interference.

(a) (b)

Figure 6. Angular velocity signal (a) Before preprocessing (b) After preprocessing.

4.3. Window Segmentation for Gait Data

Window segmentation is the process of cutting a set of gait data according to the actual
requirements and then extracting features from the data within the window as a recognition
algorithm. The window is used as the basic unit of data in the feature extraction and gait phase
identification process. There are three popular window classification methods: behavior-
based window, event-based window, and sliding-based window [45–49]. The behavior-based
window determines the location of the window segmentation in the raw data based mainly
on the behavior change in the data; the event-based window determines the location of the
window segmentation in the raw data through the specific events in the data; the sliding-
based window segmentation method is similar to the previous two methods of determining
the location of window segmentation, however, unlike the original data, the sliding-based
window is not directly related to the raw data and it uses an equidistant window to partition
the data.

Among the three window segmentation methods, the sliding-based window is well
adapted to the periodic, stable, and some sporadically distributed behaviors [50]. Because
the threshold of behavior-based and event-based segmentation needs to be set and adjusted
according to different curves. As well as the interference signal will affect the threshold
judgment and the gait changes periodically, the use of behavior-based and event-based
window segmentation methods is not as effective as the sliding-based window segmenta-
tion method. In this paper, the sliding-based window segmentation method is used for
both feature extraction and gait event recognition, and we test the number of overlaps
of adjacent window. The size of the window needs to be determined based on factors
such as the actual data type and sampling frequency, the larger the window size, the more
pronounced the feature differences are, and the more latency is exhibited. The window
size defined in this paper does not exceed the state that occupies the smallest percentage
of the gait phase, to avoid a window of data containing multiple gaits states which leads
to reduced stage recognition. A window which is too small extracts features that are not
representative of the gait stage. The choice of the gait stage window size is a process of
balancing recognition speed and recognition accuracy. The data segmentation method
based on the sliding window is shown in Figure 7.
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As mentioned previously, the principles and feasibility of the hidden Markov model
for gait recognition were introduced, and the model was analyzed in the context of gait
stage recognition. Different gait stage divisions and different sources of gait data make the
structure of the Hidden Markov model different. A complete gait cycle can be divided into
multiple gait stages according to practical requirements, and the states corresponding to
the gait stages have Markov property, so the hidden Markov model is widely used in the
field of gait stage classification and gait recognition.

Figure 7. Using sliding window to split gait data.

Since the actual situation is far more complex than the ideal situation, there are many
problems when using the hidden Markov model to solve the gait stage recognition problem,
the main problem is that the three parameters of the hidden Markov model are fixed, and
there is no way to adaptively handle the specific use case.

The gait motion signal is quasi-periodic, and although the motion gait is periodic,
the length of the gait period, the length of a complete cycle factor such as the percentage of
each stage, and the variation in data magnitude can be greatly disturbed in actual scene.
At the same time, gait behavior is arbitrary and variable due to individual and environ-
mental diversity, making gait signals (through various gait information acquisition devices
to obtain kinematic, kinetic, and physiological information about gait) exhibit periodicity
as well as uncertainty and nonlinearities, and complex and non-unique correlations, which
add to the importance of period determination, phase delineation, similarities in gait stage
analysis and identification.

Usually, the process of gait stage segmentation by hidden Markov models is to firstly
estimate the parameters using certain data and then the parameters are brought into the
model and the state sequence is then computed using the Vibbit algorithm, i.e., the trained
model is used to identify the gait data of others. Good results can be obtained when gait
data used for recognition and training are not very different. If the difference between the
recognition data and the training data is large, the actual recognition accuracy will become
very low. A simpler approach is to use a larger training data set to allow the model to cover
a wider gait space. Although it may reduce the effect of the difference between the data
used for training and the data used for recognition, it makes the gait phase recognition of
the parameters widely distributed, which makes the performance of model recognition
degrade. Another approach is to calculate a specific model based on a specific situation and
select a specific model based on the actual situation during the use of the identification. This
approach is also problematic in that gait staging based on a particular situation requires
extensive analysis of movement data to do so; there is no explicit method to determine
the gait for different situations, which in turn poses a more complex problem for gait
stage identification.

It would be an interesting direction of research to start with the problem of gait mod-
eling itself to determine a universally applicable method. Due to the quasi-periodic nature
of human gait and the variability of human gait in different situations, a better approach
is to use adaptive techniques. Adaptive approaches have been widely studied and used
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in solving speech recognition problems using hidden Markov models, and this research
expects to put this technology applied in gait stage recognition, motion gait adaptation
required correcting the model parameters with some of the gait data used for recognition.
This makes the model parameters more suitable for gait recognition, to improve the ac-
curacy and recognition rate of the hidden Markov model. The analysis from the model
perspective enables the adaptive motion gait technology to realize the self-adaptive motion
behavior of different individual in different environments with different movements.

Adaptive methods for models can be generally divided into two categories: feature
layer-based adaptive methods and model layer-based adaptive methods. Adaptive meth-
ods based on the feature layer from the acquisition system to get the gait signal in different
cases independent of the differences between the different cases of the feature extraction
ensemble, i.e., the extracted features are not correlated with the factors causing the differ-
ences. The model layer-based adaptive method modifies the model parameters based on
the differences between the actual measurements and the trained model so that they can be
better used in the current identification and classification of actual data.

As shown in Figure 8, the model layer-based adaptive approach is based on modifying
the model parameters according to the actual gait signal to be identified. The gait stage
recognition hidden Markov model parameters is calculated from the training data. After the
parameter training is completed, if the parameters remain unchanged, since the model
parameters are collected by a specific individual under specific conditions, so that during
the recognition phase the results may vary considerably for different individuals under
different conditions. To counteract the effect of the differences, one way is to use a large
number of gait data collected from different individuals under different conditions at the
same time during the training phase. The data is used to target train multiple gait stage
recognition models, and the recognition stage selects the appropriate model from these
models, or firstly using a small amount of data to substitute all models to select models
with high recognition rates for gait stage recognition; the other way is to take these model
parameters to generate new model parameters by linear combination, an approach that
simply sums up the set of parameters in various cases, and failure to consider special
cases can make the model parameters become too widely distributed rather than sharply
distributed, so the recognition effect is neither too high nor too low.

Figure 8. Flow chart of adaptive algorithm based on model layer.

The model-layer based adaptive approach is based on modifying the model parame-
ters according to the actual gait signal to be identified. The model layer-based adaptation
can be broadly divided into two categories depending on the algorithm: direct model
adaptation algorithms (Direct Model Adaptation) and transform-based model adaptation
methods (Transform-based Model Adaptation). Typical direct model adaptation algorithms
have a Maximum a Posteriori (MAP), Minimum Classification Error (MCE), and Structural
Maximum a Posteriori (SMAP), et al.

60



Sensors 2021, 21, 1347

The model adaptive algorithms that directly adjust parameters can adjust those param-
eters for which there is a distribution of observed output in the adaptive data. More data is
often required to achieve better adaptive results. Transform-based adaptive algorithms are
maximum likelihood linear regression, maximum a posteriori linear regression, minimum
classification error linear regression, etc. The conversion-based model adaptive algorithm
obtains a series of linear transformations based on the differences between the source
model and the target model to achieve a good adaptive effect on the model and can adjust
all distribution parameters in the model. The adaptive algorithm can get better results with
a small amount of data compared to the direct adjustment of the model parameters.

In this paper, MAP and MLLR are selected to adjust the parameters of the hidden
Markov model for the human gait stage division. Bayesian theory, which combines a priori
information about the data being adapted and the model parameters so that the model’s
posterior probability is maximized. MLLR with transformation mechanism is used to
transform the parameters of the model into a feature space that is close to the adapted data.

5. Experimental Results

In the previous sections, we have analyzed the algorithm principle and feasibility of
the hidden Markov model in gait stage recognition and the process of solving the model
parameters, as well as two common methods of adjusting the model parameters, which
will be tested and verified in this section.

5.1. Experimental Data Source
5.1.1. Data Collection Object

It is common for researchers to use, for example, the waist, thighs, calves, backs of
feet, toes, ankles, or multiple sites to collect data simultaneously to perform gait phase
recognition [16,51–58]. In this paper, a bandage is used to attach a wearable sensor to the
human toe to capture the angular velocity generated by the human gait behavior, which is
passed through Wi-fi to the mobile phone.

There were sixteen volunteers involved in the experimental data collection, eleven
males and five females, ranging in age from 30 to 60 years old, height from 1.59 to 1.84 m,
and weight from 49 to 88 kg. The data collection sensors were fixed on the both toes, and the
angular velocity of gait during walking of normal volunteers was collected during the
experiment. These volunteers were quite different in age and fluctuated in weight, which
can be used to compare model accuracy before adaptation and after parameter adaptation.

5.1.2. Gait Data Collection

During the collection of data from the inertial sensors that embody gait behavior,
the angular velocity signals of eight volunteers during normal walking were collected,
and each of the volunteers walked on level ground with their customary walking habits,
and inertial data were collected twice for each volunteer, with the distance walked each
time 11 m, removing the first and the last cycle that differs significantly from normal
gait data during model training and gait phase identification gait signal. The sampling
frequency of the data acquisition device is 100 Hz, the normal human walking speed is
around 1 m/s, and the distance between each step is about 60∼75 cm, so the gait frequency
is approximately one and a half steps per second, so the set sampling frequency can capture
a complete sample of each gait phase.

5.2. Model Performance Evaluation Metrics

When evaluating the effectiveness of an analytical model for gait recognition, com-
paring the accuracy alone is not sufficient to fully evaluate the performance of the model.
The problem of gait phase recognition in this paper can be seen as a binary classification
problem, including both correct and incorrect recognition. Usually, dichotomous problems
are classified by Precision (P), Recall (R), Sensitivity (True Positive Rate, TPR), Specificity
(False Positive Rate, FPR), and F-Measure, which are evaluated by the confusion matrix.
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The horizontal coordinate of the P-R curve is the recall rate, and the vertical coordinate is
the precision rate, and the ROC(Receiver Operator Characteristic) curve with specificity as
the horizontal coordinate and sensitivity as the vertical coordinate. When the numbers of
positive and negative samples in the data tested are similar, both ROC and P-R have good
performances. However, if the negative sample number is larger, the ROC curve effect can
still maintain the trend, while the effect on the PR curve is poor. The uesd Performance
evaluation indicators are shown in Table 1.

Table 1. Performance evaluation indicators.

Index Formulation Definition

Accuracy rate (A) A = TP+TN
TP+FP+TN+FN

The percentage of samples correctly identified as a percentage of the samples
used for testing indicates the overall identification rate of the system.

Recalling rate (R) R = TP
TP+FN

The ratio of correctly identified positive samples in all positive, indicating the
identification rate ofindividual states of the HMM model.

Precision ratio (P) P = TP
TP+FP

The proportion of correctly identified positive samples in all positive samples,
showing the effect of sample distribution on recognition rate.

F1 value F1 = 2TP
2TP+FP+FN The reconciled mean of P and R was combined to evaluate P and R.

Sensitivity (TPR) TPR = R Sensitivity is the same as recalling rate.

False accuracy (TPR) FPR = FP
FP+TN TPR is predicted to be the ratio of the positive sample to the negative sample.

ROC Curve Not applicable The larger the area enclosed by the curve, the higher the classification rate.

The classes used for identification are usually called positive classes, denoted by 1,
while the others are negative classes, denoted by 0. Four scenarios will emerge from the
classification model’s identification of test data.

TP: The model identifies a positive sample as a positive sample.
FN: The model identifies a positive sample as a negative sample.
FP: The model identifies a negative sample as a positive sample.
TN: The model identifies a negative sample as a negative sample.

5.3. Analysis of Results Based on Hidden Markov Models and Improved Models

In previous sections, we have analyzed the algorithm principle and feasibility of the hid-
den Markov model in gait stage recognition and the process of solving the model parameters,
as well as two common methods of adjusting the model parameters, which will be tested
and verified in this section.

Since the information collected by the acquisition device is continuously changing, so
the output signal of the hidden Markov model for human gait stage recognition is contin-
uous, and the output corresponding distribution needs to be described by a continuous
function, so this paper will verify the model performance when the corresponding output
signal of the gait stage obeys two distributions respectively, i.e., the Gaussian and Gaussian
mixed distribution.

5.3.1. Recognition Results of HMM with Gaussian Distribution

The appropriate size of the sliding window for each feature was first tested separately,
and Figure 9 gives the values of some features. The recognition rate of the sliding window
varies with the sliding window size. The size of the overlapping portion between adjacent
sliding windows is taken to be half the size of the sliding window. The curve in Figure 9
lists the five eigenvalues: mean, variance, root mean square, mean gradient, waveform
factor recognition rates and window size relationship, it can be seen that each feature takes
the optimal value in the sliding window size range of 5 to 15 when combining multiple
eigenvalues for gait stage recognition. One may use this range as a reference to find the
most appropriate window within the range size which can shorten the time it takes to find
a model.
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Figure 9. Change of eigenvalue recognition rate with sliding window size.

In Figure 10, the recognition rates of 15 common time-domain features are shown with
the sliding window size set to 10, from which all the mean value of raw value, root mean
square (RMS), and absolute mean reach the recognition rate of 70% and above. When using
multidimensional features for gait stage recognition, these features should be given priority.

Figure 10. Recognition rate of eigenvalues with sliding window size of 10.

Previously, features of individual dimensions were analyzed for gait stage recognition
rates for different size windows and different features, and Figure 11 draws the trend of
recognition rate with the sliding window size after combining multiple features into a mul-
tidimensional feature. The recognition rate of the eigenvalues in Figure 9 is selected from
the largest to the smallest. For example, the 3D features selected in the figure are the mean,
the raw data sampling values, the average of the absolute values, the five-dimensional and
seven-dimensional features are also selected according to this rule. The optimal sliding
window size for gait stage recognition using 3D features is 14 and the recognition rate is
85.82%; four-dimensional features had an optimal recognition rate of 84.59% at a sliding
window size of 12. Seven-dimensional features have the best recognition rate of 86.86% at
a window size of 14; When the feature size is increased to 15, the best sliding window is 9,
corresponding to the gait phase recognition rate of 89.54%.
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Figure 11. The recognition rate of different feature dimensions under different sliding windows.

5.3.2. Recognition Results of HMM with Gaussian Mixed Distribution

The Gaussian mixed distribution is more likely to contain the distribution of the output
of the corresponding state of the gait phase than the distribution whose output is Gaussian.
When the hybrid Gaussian model is used as the output distribution of the hidden Markov
model identified by the gait stage, assuming that each state corresponds to the mixed
Gaussian model and contains the same number of Gaussian distributions, assuming it was
found previously that when the feature dimension is 15, the highest gait stage recognition
rate can be obtained, and therefore no longer uses unidimensional features as observations
for the gait stage recognition model in this section.

Figure 12 shows the recognition rate of the gait stage recognition model with a sliding
window size in the range of 5 to 15 when M is taken at different values. Each curve in the
figure corresponds to the recognition rate trend, which firstly goes up and then goes down,
the appropriate window range is roughly between 9 and 15. It can be seen from the figure
that the trend of the recognition rate increases gradually as the value of M increases to the
highest recognition rate. Considering the influence of model parameter complexity on the
time complexity of the subsequent state sequence calculations, the Gaussian hybrid model
is used when the output distribution of the stage is distributed, we selected the recognition
effect of the model when M is 5 and the sliding window size is 12 for comparison.

Figure 12. Change rate of recognition rate with sliding window under different M.

5.4. Identification Results after Model Parameter Adaptation
5.4.1. Performance Analysis of Gaussian HMM after Parameter Adaptation

It can be seen from Figure 10 that the highest recognition rate is onbtained when the
unidimensional feature is the mean. Taking the mean as an example, it is meaningful to
analyze maximum likelihood linearity regression estimation and maximum a posteriori
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probability estimation of the effect of parameter adaptation of the model on recognition
rates. Table 2 presents the parameters before and after model adaptation. Since this paper
assumes sequential transitions between gait stages, the initial state probabilities will no
longer be included in the table, and the parameters used in this paper are obtained from
the adaptation algorithm by adjusting the mean and variance, and the table shows the
mean and variance of the parameters before and after adaptation.

Table 2. Comparison of performance indicators.

Parameters Mean Value Variance

HMM [−2.6518 3.7528 −1.0578 −0.1528 ] [3.9164 2.4664 0.7880 0.0146]
MLLR [−2.4168 3.6096 −1.3194 −0.2117] [3.0880 2.2895 0.8294 0.0184]
MAP [−2.3472 3.5249 −1.5249 −0.2398] [2.7750 2.2851 0.7171 0.0192]

The state transfer matrix A is a 4 by 4 square with the same state transfer matrix for
all three models as shown in the following equation.

A =

⎡
⎢⎢⎣

0.8460 0.1540 0 0
0 0.8253 0.1747 0
0 0 0.7395 0.2605

0.1649 0 0 0.8351

⎤
⎥⎥⎦

The experiments in this paper all based on the assumption that each experiment starts
from a state where the heel is off the ground, so the initial probability matrix is shown as:

π =
[
1 0 0 0

]
From Figure 13, it can be seen that the number of correctly recognized state sequences

for states S1, S2, and S4 has increased considerably. There is a smaller decrease in the num-
ber of correct identifications for state S3, but the overall identification rate has increased.

(a) (b) (c)

Figure 13. Confusion matrix for model recognition (a) HMM (b) MLLR (c) MAP.

5.4.2. Performance Analysis of Gaussian Mixed HMM with Adaptive Parameters

After obtaining the effect of the number of Gaussian distributions M and the size of
the sliding window on the recognition rate in the Gaussian mixed model. The Gaussian
distribution can be viewed as a special case of mixed Gaussian distributions, the discussion
of parameter adaptation model in this section is based on the output of the gait stage
recognition model which obeys the basis of the hybrid Gaussian model.

This section presents the MAP and MLLR based algorithm. The results after parameter
adaptation are compared with the identification model of the gait stage with unadjusted
parameters merely using the correct identification state. The ratio of the number of states to
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the total number of states used for identification is not comprehensive enough to evaluate
the model, so this section evaluates the gait stage model by using the confusion matrix.
The model before and after parameter adaptation is compared, as shown in Figure 14,
with the horizontal axis in the confusion matrix indicating the original state of the data and
the vertical coordinate indicates the identified state.

(a) (b) (c)

Figure 14. Confusion matrix of the model before and after parameter adaptation (a) HMM (b) MLLR (c) MAP.

As shown in the data in Figure 14a,b, the number of correct identifications of states
S1 and S4 by maximum likelihood linear regression is greater than the number of states
corresponding to correct recognition when the model is not adapted, and the opposite is
true for states S2 and S3, where the number of states corresponding to correct recognition is
less than the number of states corresponding to correct recognition when the model is not
adapted. The confusion matrix of Figure 14c results from parameter revaluation using the
maximum posterior probability estimated a priori information about the model parameters,
so this paper adjusts the maximum a posteriori estimation by the maximum likelihood
linear regression method of the mean and variance obtained which are used as a priori
information. The maximum a posteriori probability estimate combined with the model
identification information obtained from the maximum likelihood linear regression can be
seen summarized as follows: the number of correct identifications for S1 is higher than the
first two methods; the number of correct identifications for states S2 to S4 is intermediate
between the first two methods position, as the maximum, a posteriori estimate combines the
original model with the parameters of the adapted maximum likelihood linear regression
in the form of weights. It is theoretically normal that the iterative result does not exceed
the highest of the two.

From the performance metrics in Table 3, it can be seen that when the output of the
gait stage recognition model is Gaussian mixed distribution, relative to the single Gaussian
distribution univariate and the recognition rate is improved when multidimensional fea-
tures are present. When the output signal features of the model obey a Gaussian mixed
distribution, maximum likelihood linearity when comparing the accuracy of the model
before and after parameter adaptation and the parameter adjustment scheme combining
regression and maximum a posteriori probability estimation results in an increase in the
overall identification rate, and for the lower correct identification in the original model
state, the recognition rate increases after parameter adjustment; meanwhile, the recognition
rate is close to unadjusted after parameter adjustment with higher correct identification in
the original model state.
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Table 3. Comparison of performance using different methods.

Performance Index Without Parameter Adaptive MLLR MAP

Accuracy rate (A) 91.59% 91.16% 91.88%
Precision ratio (P) 0.8876, 0.9303, 0.9234, 0.9146 0.8885, 0.9383, 0.9268, 0.8869 0.8938, 0.9386, 0.9196, 0.9111
Recalling rate (R) 91.59% 91.16% 91.88%
Precision ratio (P) 0.8910, 0.9578, 0.8368, 0.9251 0.8986, 0.9453, 0.7917, 0.9469 0.9176, 0.9497, 0.8142, 0.9386

F1 value 0.8893, 0.9439, 0.8780, 0.9198 0.8935, 0.9418, 0.8539, 0.9160 0.9056, 0.9441, 0.8637, 0.9247
Sensitivity (TPR) 0.0308, 0.0424, 0.0127, 0.0307 0.0309, 0.0363, 0.0113, 0.0437 0.0300, 0.0364, 0.0129, 0.0327

The ROC curves in Figure 15 for the three models show that the parameters of the
maximum likelihood linear regression are used as the maximum posterior probability esti-
mates to obtain the overall performance that is higher than when no parameter adaptation
and maximum likelihood linear regression estimation are performed. As shown in the data
in Table 3, the highest recognition accuracy of the gait stage model based on the angular
velocity signal is around 92%, and the performance is not significantly higher after the
adaptation of the model parameters.

(a) (b) (c)

Figure 15. ROC curve of HMM parameters before and after adaptation (a) HMM (b) MLLR (c) MAP.

The possible reasons for the lift of the gait phase are: first, overlapping data between
adjacent windows at the time of feature extraction, close to the moment of gait phase
transition stage judgments will be subject to errors; second, the hidden Markov model
may be used for parameter adjustment schemes and there are differences in the speech
recognition domain and gait stage recognition.

5.5. Comparison with Other Algorithms

In order to test the advantages of HMM and the improved algorithm, this paper uses
other six commonly used algorithms as a comparison: K-Nearest Neighbor(KNN), Logistic
Regression(LR), Linear Discriminant Analysis(LDA), Random Forest(RF), Naive Bayesian
Model(NBM) and SVM. The experimental results are shown in Figure 16. The resolution of
the classification method is between 80% and 92%, which is close to the recognition rate of
the HMM model. If only from the perspective of recognition rate, KNN, LR, and SVM can
replace HMM as a model of gait cycle stage division. However, the gait phase division not
only identifies specific stages but also needs to consider the transition relationship between
states on time series. As a comparison, the six algorithms do not consider the transition
between states, which may lead to state transition sequence errors, and then judge the
number of cycles and the proportion of each state in each cycle proportion. The recognition
rates of these six algorithms are shown in Figure 16.
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Figure 16. Comparison of recognition rates of different classification algorithms.

Figure 17a,b show the state sequence recognition diagram of the improved HMM
model and KNN respectively. The red solid line in the figures is the state sequence as the
control, and the blue dotted line is the time series actually recognized by the model. It can
be seen from the figures that the recognition error state mainly occurs near state transition
time. In Figure 17a, the recognition error of the improved HMM model is to identify the
state as the previous or the next state of the current state, which is determined by the
state transition matrix. Therefore, there is almost no error in judging the number of cycles
contained in a complete gait cycle. The length of the recognition error is about five time
points, which is close to the coincidence length of two adjacent windows. The HMM result
is acceptable because the minimum unit to distinguish the state of the HMM model is the
length of a sliding window and adjacent windows. In addition, there will be errors in the
state sequence compared with the state recognition, so the recognition error of the HMM
model is inevitable. In Figure 17b, state S1 occurs in the process of state S3 and S4 transition,
which has an impact on the number of cycles, cycle length, and the proportion of each stage.
The same phenomenon also occurs in the other five algorithms during algorithm testing.

(a) (b)

Figure 17. State sequence (a) Recognized by HMM (b) Recognition sequence of KNN.

5.6. Analysis of Human Balance Ability by Gait Parameters

The swing phase of normal people accounts for about 40% of the whole gait cycle.
Patients with abnormal gait usually have shorter support phase and longer swing phase.
The swing phase in the gait cycle corresponds to the state S2 of the HMM model in this
paper. The red and blue histograms in Figure 18 show the proportion of the swing phase
recognized by the control group and HMM models in the complete cycle, and the green
curve represents the error between them. The maximum error accounts for 3.97% of the
complete cycle and the average value is 2.02%, which proves the feasibility of HMM when
dealing with gait cycle analysis.

68



Sensors 2021, 21, 1347

Figure 18. The ratio of the swing phase to the complete cycle.

Table 4 shows the spatiotemporal parameters related to human balance of the left and
right lower limbs(LLL,RLL) of a normal person. The recognition results of HMM are very
close to the control group results, and the left-right ratio of swing time, stance time to gait
cycle reach 0.9453, 0.9241 and 0.9936 and 1.0000, respectively, indicating that the subject
maintained good balance, which is similar to the control group results.

Table 4. Comparison of gait spatiotemporal parameters.

Reference Value of LLL Reference Value of RLL Recognition Value of LLL Recognition Value of RLL

Swing time (s) 0.5879 ± 0.0321 0.5954 ± 0.0446 0.5864 ± 0.0536 0.5543 ± 0.0857
Standing time (s) 0.4093 ± 0.0807 0.3977 ± 0.0423 0.4079 ± 0.0182 0.4414 ± 0.0129

Gait cycle (s) 1.5636 ± 0.1064 1.5746 ± 0.3254 1.5607 ± 0.1993 1.5707 ± 0.3293

5.7. Experimental Conclusions

In this section, the actual effects of gait phase recognition models are compared. Firstly,
the data source and data acquisition scheme are introduced; secondly, the indexes and
curves for evaluating the algorithm are introduced; then, the overall recognition rate of
single dimensional and multi-dimensional features before and after the model parameters
are adapted and the recognition rate when the output is subject to different distribution are
analyzed; compared with the recognition rate of the model before and after the parameter
adjustment, the model parameters result in better perforamance. The recognition rate of the
model is 91.88%, even though the age, height, and weight of the participants are different.
At the end of this chapter, the gait parameters related to the balance ability of the human
body are analyzed. The gait comparison parameters calculated according to the gait stages
are consistent with the reference values. The limitations of the previous proposed Hidden
Markov Model-based method mainly lie in that HMM depends only on each state and
its corresponding observer. HMM models are memoryless and cannot take advantage of
contextual information. Because it’s only related to the previous state, if we want to take
advantage of more known information, we must build a high-level HMM model. We have
been trying to address this recognized issue in this research, though much work remains.

6. Discussions and Conclusions

Gait analysis has been widely used in disease diagnosis, orthopedic surgery, and reha-
bilitation training in recent years, so it is more and more important to establish an accurate
and effective walking model. One of the technical challenges in our previous work is the
overflow problem of algorithm recursion, so we normalized the eigenvalues. Secondly,
we have screened to extract the characteristic signal, and marked the phase division effect
on some data. When the angular velocity signal has interference, the effect of maintain-
ing regularity is better. In this paper, the data source and data acquisition scheme based
on the inertial sensors are proposed, and the index of the evaluation algorithm is given.
The segmentation of gait with the hidden Markov Model(HMM) is used to analyze the
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global recognition rate of single dimension and multi-dimension features before and after
the model parameters are adaptive. Through analysis and comparison, the method has
a high recognition rate, ensures the integrity and objectivity of gait data, and provides a
new theoretical basis for medical diagnosis. This research tested different methods and
the experimental results showed that MAP and MLLR achieved best performance with
regard to parameter adaptation. In future work, we plan to conduct more comparative
trials and try to find the deep mechanism of what kind of factors affect the performance of
parameter adaptation. Deep learning models including CNN and RNN have been applied
to clinical gait analysis applications, however, these methods require a lot of computation
and the Real-time monitoring cannot be guaranteed. We will try to address this issue in
future work.
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Abstract: Out-of-distribution (OOD) in the context of Human Activity Recognition (HAR) refers
to data from activity classes that are not represented in the training data of a Machine Learning
(ML) algorithm. OOD data are a challenge to classify accurately for most ML algorithms, especially
deep learning models that are prone to overconfident predictions based on in-distribution (IIN)
classes. To simulate the OOD problem in physiotherapy, our team collected a new dataset (SPARS9x)
consisting of inertial data captured by smartwatches worn by 20 healthy subjects as they performed
supervised physiotherapy exercises (IIN), followed by a minimum 3 h of data captured for each
subject as they engaged in unrelated and unstructured activities (OOD). In this paper, we experiment
with three traditional algorithms for OOD-detection using engineered statistical features, deep
learning-generated features, and several popular deep learning approaches on SPARS9x and two
other publicly-available human activity datasets (MHEALTH and SPARS). We demonstrate that,
while deep learning algorithms perform better than simple traditional algorithms such as KNN with
engineered features for in-distribution classification, traditional algorithms outperform deep learning
approaches for OOD detection for these HAR time series datasets.

Keywords: human activity recognition; out of distribution; anomaly detection; open set classification;
physiotherapy; inertial sensors; smart watch; rehabilitation; machine learning

1. Introduction

Human activity recognition (HAR) constitutes automatic characterization of activity
and movement through intelligent “learning” algorithms. Under the HAR umbrella lies the
detection and identification of such varied tasks as hand gestures [1], walking up stairs [2],
commuting [3], detecting falls [4], and even smoking [5], with applications in a growing
number of fields, including physiotherapy [6]. HAR can be accomplished via a variety of
strategies, including machine vision technology [7–9] or analysis of inertial data. Inertial
measurement units (IMUs) are embedded in many widely available commercial devices,
including smart phones [10,11], and smartwatches [6,12]. IMUs enable data capture in
natural (home or varied) settings without any need to perform actions in front of a fixed
camera or other apparatus. The analysis of inertial data via machine learning (ML) has
been demonstrated to yield robust HAR [6].

In attempting to track specific human activities in unsupervised environments, sub-
jects may perform unexpected, unknown, or unrelated activities. This presents a challenge
to the use of ML based classifiers as training a ML algorithm on all possible human actions
for activity recognition is impractical, and supervised ML algorithms may not accurately
classify such out-of-distribution (OOD) activities. In the context of identifying at-home
physiotherapy exercises with a smartwatch, subjects may be instructed to only wear a
watch while performing their exercises. However, even in this case, subjects may perform
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other activities between exercises—such as getting a drink of water—or may forget to
remove their smartwatch entirely after completing their exercise routines and go about
other daily activities. A classification process for at-home physiotherapy exercises that
does not include OOD detection risks detecting these activities as exercises, and thereby
reporting incorrect estimations of physiotherapy participation and adherence.

Methods to address the OOD problem exist for image classification but have been
less widely applied in the context of time series activity recognition. In this paper, we
experiment with several methods commonly used in the image domain to address the
OOD problem in the context of shoulder physiotherapy activity recognition. We test three
traditional algorithms for OOD-detection on engineered statistical features (One-Class
State Vector Machine (OCSVM) [13,14], K-Nearest Neighbor (KNN) [15], and Kmeans [16]),
KNN with deep feature embeddings generated by two neural network models, and well-
known methods in the image domain based on deep learning: thresholding Softmax
confidence [17], confidence calibration via entropy regularization [18], confidence cali-
bration via temperature scaling and input perturbations (ODIN) [19], and extending the
Softmax layer to allow prediction of an unknown class (OpenMax) [20]. We evaluate these
techniques on a novel physiotherapy exercise dataset we collected (SPARS9x) as well as on
two publicly-available activity datasets (MHEALTH [21] and SPARS [6]).

Contributions of this study include:

• A new physiotherapy activity dataset SPARS9x (DOI: 10.21227/cx5v-vw46), with
additional inertial data captured from the smartwatch of each subject while they
performed activities of daily living. We believe this study is unique in its approach
of capturing a dataset that explicitly simulates the distinction between known target
human activities and unknown a priori OOD activities.

• Evaluation of methods of OOD detection from the image domain as applied to phys-
iotherapy inertial data captured by smartwatches, in comparison to traditional al-
gorithms using both hand-crafted engineered statistical features and deep learning
model-derived features.

This paper is organized as follows. In Section 2, we include a brief synopsis of OOD
detection methods and other background important to this study. Section 3 provides
an overview of the OOD detection methods that are explored and the datasets used as
well as details related to the setup of the analyses, including model architectures and
evaluation methods used. Section 4 presents the results of the analyses and Section 5 the
discussion. Section 6 proposes potential future work, Section 7 details the study limitations,
and Section 8 provides a summary and concluding remarks.

2. Background and Related Work

2.1. Human Activity Recognition with Machine Learning of Inertial Data

There is a large body of research on the use of IMUs and the inertial data they collect
for HAR [22–24], with a considerable subset evaluating the practical applications of these
technologies in the health domain [25]. In particular, gait assessment [26,27] and fall
prediction [28,29] have garnered significant attention, likely due in large part to their
immediate clinical need. More recently, researchers have also begun applying these same
methodologies to physiotherapy and rehabilitation [6,30–32] where unique challenges may
be encountered. The focus of these studies has typically been the exploration of techniques
for improving the accuracy of correctly identifying physiotherapy exercises. Less effort has
been spent on identifying when subjects are performing the exercises that are within the
scope of activities represented in the training dataset.

In a closed-set classification problem, an ML model is tasked with predicting the
class that a sample belongs to from within a set of classes that the ML model was trained
on. However, input samples may deviate from these classes, often into classes that are
both previously unknown and unforeseen. The challenge of accurately identifying such
samples is known as the out-of-distribution (OOD) or open set classification problem (for a
review of OOD detection methodologies, see [33]). It is worth noting that OOD detection is
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often conflated with novelty, anomaly, or outlier detection in the literature [34]. However,
predictions in the case of novelty or outlier detection in time series data often implies
identifying deviation from an expected input based on a chosen error metric [35–40].

OOD detection methods are commonly employed in the image domain, but many
of these solutions have largely remained untested in the HAR time series domain. The
following sections provide a short summary of OOD detection methods of interest to
this study.

2.2. Out-of-Distribution Detection Techniques

Scheirer et al. formalized the definition of the open set classification problem and
identified a binary SVM method to separate open set inputs from the closed set with
a linear kernel [41]. This method was then extended by Scheirer et al. with Compact
Ablating Probability (CAP) to identify unknown class samples and Extreme Value Theory
(EVT) to calibrate prediction results using a Weibull distribution [42]. Many techniques
have been proposed for OOD detection based on traditional classification algorithms,
such as OCSVM [41,43–45], KNN [15], and Kmeans [16]. Recently, deep learning-based
OOD-detection techniques have been proposed [17,19,20,26–35,46–55], some of which we
now highlight.

In deep neural network classifiers with multi-class outputs, the final layer commonly
performs a Softmax operation on the output from the previous layers (the “core”), which
transforms input values into probabilities estimates between 0 and 1, the total of which
sum to 1. The Softmax layer is typically used in deep learning classifier models to assign
probability estimates or activations for input samples to known classes. One weakness of
the Softmax layer is that all predictions must be assigned to one of a range of predetermined
classes. To detect OOD samples, the activation, or “confidence”, of the Softmax prediction
may be evaluated against a threshold, whereby input data that elicit a maximum Softmax
output below the threshold may be designated as out-of-distribution [17]. However,
Softmax outputs are prone to overconfident predictions, which may impact the accuracy of
this approach [56]. Other methods have been proposed to ameliorate the overconfidence
issue, including temperature scaling [19,56] and entropy regularization [18]. Alternatively,
one may reformulate the Softmax layer to predict an unknown class, such as with the
OpenMax technique [20]. Traditional and deep learning algorithms may be used together,
such as using an OCSVM to detect anomalous motion (e.g., jumping and walking) with
features extracted from accelerometer and gyroscopic data by a convolutional neural
network [57].

Generative adversarial networks (GANs) have also been explored for the OOD prob-
lem [58]. GANs are generally incorporated into an open set discriminative framework by
training a GAN on the known input dataset and converting the trained discriminator into
an OOD classifier [46,59]. Alternatively, the generator used to synthesize samples may
designate them as from an OOD class, and then add them to the full training set used to
train a classifier [47–50]. However, such GAN augmentation techniques may produce sam-
ples that do not adequately cover the entirety of in-distribution (IIN) decision boundaries,
resulting in non-optimal OOD classifiers [60]. Searching a trained generator’s latent space
for a close match to an input is another approach [61]. Autoencoders or similar compact
representation models may also be used to detect OOD-samples based on high input
reconstruction error [51–54], or in adversarial frameworks with clustering methods [55].
Recently, generative likelihood ratio methods for OOD detection have been proposed,
including that of Ren et al. for genomics data with application to the image domain [62].

2.3. OOD Detection with Inertial Data

Studies on OOD detection in the context of HAR inertial data are less common
than those in the image domain. In the recent HAR time series outlier-detection work
by Organero, a model is trained on a particular activity for each user and the Pearson
correlation coefficient is used to identify deviation of real data from predicted data [36].
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Omae et al. deployed a convolutional neural network to perform feature extraction of
accelerometer and gyroscopic data from the swimming activity, and an OCSVM is used
to detect anomalous motion (e.g., jumping and walking) based on extracted features in
consideration of an individualized optimization algorithm [57]. It is notable that each
of these studies either approach the problem in terms of anomaly detection, and/or use
“traditional” algorithms such as OCSVM to identify OOD data. To our knowledge, the
selection of solutions in the image domain for OOD detection presented in this study (i.e.,
Softmax Thresholding [17], ODIN [19], and OpenMax [20]) have not yet been applied
to the domain of HAR time series inertial data, nor has a direct comparison of these to
methodologies using traditional algorithms using engineered or deep learning features
been performed.

3. Materials and Methods

3.1. Out-of-Distribution Detection

In this section, an overview of methods considered for OOD detection on HAR
time series datasets is presented. The deep learning approaches are well-known in the
image domain.

3.1.1. One Class State Vector Machines (OCSVMs)

One class state vector machines (OCSVMs) test whether an input sample is a member
of a single class of interest. For the OOD problem, this one class would correspond to
all classes of IIN data. Using the approach described by Schölkopf et al. [13], data are
cordoned off from the origin with a hyperplane, and data beyond this plane are classified
as OOD.

3.1.2. K-Nearest Neighbor (KNN)

The K-Nearest Neighbor (KNN) algorithm finds the (Euclidean) distance between
inputs. For classification, KNN typically uses a voting mechanism based on the closest
N-neighbors to the location in space of an input to be tested. OOD classes can be identified
when the distance to the closest N-neighbors exceeds a given threshold.

3.1.3. Kmeans

Kmeans is an unsupervised algorithm that uses an iterative updating process to assign
similar data to clusters. OOD data can be detected by comparing the distance to the center
of the cluster assigned to an input against a threshold value.

3.1.4. Deep Feature Embedding

Deep features refer to the outputs of layers immediately preceding the dense/Softmax
layers of fully trained deep neural network models, effectively embedding test data into
the feature space of each core model. This deep feature representation may be used
with traditional algorithms that require vectorized input data (e.g., KNN). We use an L2
normalization layer in our deep models to produce an embedding with consistent scale in
the feature space.

3.1.5. Softmax Thresholding

It is common practice in deep learning classification algorithms to base predictions
on the maximum output of a Softmax layer [17]. The output of the Softmax layer is often
interpreted as the confidence of a model in its prediction that the sample is from a particular
class [56]. If the Softmax output is used as a confidence metric, samples that fail to meet
that threshold may be classified as OOD.

3.1.6. Entropy Regularization

Softmax predictions in deep learning models are prone to overconfidence [63] and
may be adjusted through confidence calibration techniques. Entropy-regularization accom-

76



Sensors 2021, 21, 1669

plishes this by penalizing the negative log-loss with the addition of a negative entropy
term that effectively regularizes the loss to prevent overconfident predictions. This has
been shown to be an effective technique on several diverse datasets with models incorpo-
rating dense, convolutional (CNN), and long-short term memory (LSTM) layers [18]. The
intuition behind this technique for OOD detection is that reducing overconfidence may
allow for better discrimination of the more confident Softmax predictions of IIN activities
from the less confident predictions of OOD activities.

3.1.7. ODIN

The out-of-Distribution detector for neural networks (ODIN) is a two-part method for
OOD detection, performed post-process during prediction by a trained network [19]. In
temperature scaling, the logits (the output of the final output layer of a model) of the classi-
fier are scaled by a scalar value called the “temperature” (T) prior to performing Softmax.

The input data are then perturbed by a fixed amount, which has a greater effect on the
IIN data than the OOD data, increasing their separation. The input perturbations are based
on the directionality of input gradients, obtained by backpropagating the inputs through
the network once. The absolute magnitudes of the inputs are perturbed by an epsilon
value opposite the gradient direction. The perturbed and temperature-scaled inputs are
run through the classifier, and OOD samples are detected as those falling beneath a learned
threshold of Softmax.

3.1.8. OpenMax

OpenMax [20] is a model layer that assigns a probability to an unknown class. It is a
replacement for the Softmax layer. Its core concept is to reject inputs that are “far” from the
training data distribution in feature space. Each class is represented as a point with the
mean calculated from the correctly classified training examples. A Weibull distribution is
fitted on the largest distances between all correctly identified training samples of a class
and the mean. The result is a probability that an input is from this class, and a set threshold
is used to determine OOD.

Unlike Softmax, the OpenMax layer does not restrict probabilities to sum to 1. Instead,
a pseudo-activation (of the logits, also termed the activation vector) is calculated for
an OOD class by using the Weibull distribution to redistribute activations to include
an unknown class. This can be used to identify OOD data if this class has the highest
probability output from the OpenMax layer.

3.2. Experimental Setup
3.2.1. Experimental Datasets

This study considers two publicly available inertial sensor datasets, MHEALTH (Mo-
bile Health) [21] and SPAR (Supervised Physiotherapy Activity Recognition) [6], and a
novel dataset (SPARS9x) we collected specifically to assess OOD detection. The prop-
erties of these datasets are summarized in Table 1. Only the data from inertial devices
attached to one wrist from each study subject in MHEALTH are used, effectively simulating
smartwatch IMUs.

The new inertial dataset, SPARS9x (Smart Physiotherapy Activity Recognition System
9-axis), was captured from 20 healthy subjects (8 male, 12 female, median age 25). Super-
vised physiotherapy exercises, followed by a minimum 3 h of data from unrelated and
unstructured activities (OOD data), were captured from a smartwatch with a 9-axis IMU
(accelerometer, gyroscope and magnetometer). This study was approved by the Research
Ethics Board of Sunnybrook Health Sciences Centre.
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Table 1. Dataset Characteristics.

Dataset Ns Ne Type Sensors fz [Hz] Time [h]

SPARS 20 7 Shoulder Physiotherapy Wrist 6-axis IMU 50 3.4
SPARS9x a 20 6 Shoulder Physiotherapy Wrist 9-axis IMU 50 95.4

MHealth b 10 12 General Fitness Wrist 9-axis IMU 50 1.9
Ns, number of subjects; Ne, number of exercises; fs, sampling frequency. a Four isometric exercises are included
in the SPARS9x dataset, but these are excluded for this study. b Only the data corresponding to the wrist-IMU of
MHEALTH are used.

Shoulder physiotherapy exercises in SPARS9x were selected from the Basic Shoulder
Rehabilitation Program provided by the Sunnybrook Holland Orthopaedic & Arthritic Cen-
tre. Exercises were selected to include both concentric (muscle activation with shortening –
shown in Figure 1) and isometric (muscle activation without length change) types. Exer-
cises were performed with a resistance band when needed. Concentric exercises included:
active flexion, cross chest adduction, shoulder girdle stabilization with elevation, biceps
muscle strengthening, triceps pull downs, and external rotation in 90-degree abduction
in the scapular plane. Isometric exercises included external rotation, internal rotation,
abduction, and extension.

 

Figure 1. SPARS9x concentric exercises: (a) active flexion; (b) cross chest adduction; (c) shoulder
girdle stabilization with elevation; (d) biceps muscle strengthening; (e) triceps pull downs; and (f)
external rotation in 90-degree abduction in the scapular plane. Black arrows indicate direction of
motion or tension.

3.2.2. Data Transformation Pipeline

The raw time series inertial data were split into equally-sized windows, with constant
step size of 1 s, using the Seglearn package for time series machine learning [64]. Samples
counts at 10s window size for each dataset were 24,004 for SPARS9x, 9527 for SPARS, and
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5676 for MHealth. Artifacts in SPARS were located and removed based on sampling rate
and duplicate time stamp checks. For SPARS9x, each record was plotted and visually
inspected for artifacts immediately after each subject’s session, and records that contained
artifacts were either truncated or sessions were re-recorded.

Inputs to traditional models are often generated based on statistics describing the
raw data, such as the mean and kurtosis of each input channel [1]. The statistical features
engineered for input to the traditional algorithms in this analysis are median, absolute
energy (root mean squared), standard deviation, variance, minimum, maximum, skewness,
kurtosis, mean spectral energy, and mean crossings. These are also generated by the
Seglearn Python package.

For the purposes of this study, we define OOD activities as any activity performed by a
subject that is not in the list of labeled activities available to a classifier during training. The
activities performed in SPAR [6] and MHEALTH [21] are described elsewhere. However,
it is especially important to note which classes of these datasets are to be designated as
OOD for reproducibility of these experiments since activities similar to IIN classes may
be more difficult to detect as OOD. Highly confused classes were those identified through
in-distribution classification, corresponding to activities of similar motion that produce
patterns in the data that are difficult to discriminate between by machine learning classifiers
(e.g., jogging and running in MHEALTH). In general, highly confused classes in supervised
classification were kept together in IIN for these experiments. Beyond that, OOD classes
were simply selected as the final two and three activities in the order of activities for SPARS
and MHEALTH respectively. Lower trapezius row with resistance band and bent over
row with 3 lb. dumbbell are selected as OOD classes for SPARS. Frontal elevation of arms,
cycling, and jump front and back are selected as OOD activities for MHEALTH. MHEALTH
null class (Class 0) is not used for this analysis as it is unclear how much overlap there is
between those data and the in-distribution activities (e.g., walking or standing), potentially
skewing results. Only concentric exercises from SPARS9x are used for this analysis.

Since the recording time of OOD data for each subject significantly exceeds that of
their physiotherapy exercises, for this study, the length of each OOD record in SPARS9x
was cut to match the length of time spent performing target exercises. Magnetometer data
are excluded for these experiments from SPARS9x.

3.2.3. Model Architecture

Two separate deep neural networks were tested as core architectures in the analysis.
The first core is a convolutional recurrent neural network (CRNN), which was found

in our previous study to perform well on classification tasks [6]. In the particular case
of time series data, temporal relationships may be captured by recurrent neural network
(RNN) layers [65]. This model consists of two convolutional layers with 128 filters and
kernel size of 2, followed by RELU and Maxpooling layers. Next, the outputs of the
convolutional layers are passed into two LSTM layers of 100 units each and dropout of 0.1.
This is consistent with findings in literature that suggest that two sequential LSTM layers
may be beneficial when processing time series data [66].

The second core is a fully convolutional neural network (FCN) used for time series
classification [67], which we have previously shown to be effective in a personalized activity
recognition approach [68].

A final dense layer outputs the logits for each class (prior to Softmax, method depend-
ing). Hyperparameters of each core were grid-searched for their optimal values in our
previous works [6]. The deep learning models were developed in PyTorch. The traditional
models were implemented using packages from the scikit-learn Python library.

3.2.4. In-Distribution Classification Experiments

Supervised classification of in-distribution activities is performed to validate the
performance of the core models with each of the three datasets.

We compare performance of:
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• KNN with engineered statistical features
• KNN with deep features (CRNN/FCN)
• CRNN and FCN Cores

3.2.5. Out-of-Distribution Prediction Experiments

We compare the following methods for OOD detection:

• Traditional algorithms: KNN, OCSVM, and Kmeans with engineered features
• KNN with deep features (CRNN/FCN)
• Deep learning methods: SoftMax threshold, entropy regularization, ODIN, and OpenMax

3.2.6. Class Removal Experiments

The lowest confidence classes (or those with the lowest mean activations or greatest
overlap with OOD) in the OOD detection experiments according to SoftMax prediction con-
fidence (i.e., potentially the most likely to be confused with OOD classes) are identified in
the SPARS9x and MHEALTH datasets and either removed from the experiments (SPARS9x)
or moved into the IIN training set (MHEALTH). OOD experiments are then repeated for
these two datasets at a segment length of 10s to evaluate impact on OOD detection. These
experiments are performed to analyze the effect that removing or re-designating highly
confused classes (in terms of OOD detection) has on OOD prediction performance.

3.2.7. Training and Validation

A grid search is performed on segment length for each experiment, with segment sizes
from 2 to 10 s at 2 s intervals. A 5-fold cross-validation strategy is used with equal-sized
folds for each experiment. Each deep learning model uses a batch size of 256 and is run for
100 epochs. Testing was performed on a system with an NVidia GTX1080 GPU with 8 GB
on-board memory, an Intel Core i7-6700 CPU (@3.4 GHz), and 16.0 GB of RAM.

3.2.8. Evaluation Metrics

For the in-distribution classification tasks, an accuracy metric was used, as these
datasets demonstrated approximate equal class balance. In the OOD problem, we are
concerned with how well a method is able to differentiate between distributions, which
can be measured by the area under the receiver operating curve (AUROC) metric. The
AUROC can be interpreted as a measure of how separable the IIN and OOD data are under
the model.

4. Results

4.1. In-Distribution Classification

Table 2 presents the in-distribution supervised classification experiment results. Deep
learning methods or KNN with deep features consistently outperformed KNN with engi-
neered features.

Figure 2 shows the confusion matrices for each of the three datasets for classification
using a KNN with deep learning features as input generated by the FCN architecture at 10s
segment size. As reflected in Table 2, the KNN algorithm is able to classify SPARS9x with
near perfect accuracy, whereas there are pairs of highly confused classes for both SPARS
(Internal Rotation/External Rotation) and MHEALTH (Jogging/Running).
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Table 2. In-Distribution Classification Results.

Accuracy % (Confidence Interval)
MHEALTH

Segment Length
SPARS

Segment Length
SPARS9x

Segment Length

Method 2.0s 4.0s 6. 0s 8.0s 10.0s 2.0s 4.0s 6. 0s 8.0s 10.0s 2.0s 4.0s 6. 0s 8.0s 10.0s

KNN 88.0
(3.0)

87.7
(2.3)

86.5
(2.2)

87.7
(2.4)

87.1
(1.5)

81.0
(1.7)

82.3
(2.6)

82.9
(0.83)

81.4
(2.8)

82.2
(1.8)

96.4
(0.67)

97.6
(0.78)

97.8
(0.71)

97.7
(0.80)

97.7
(0.77)

KNN (CRNN
Deep Features)

95.2
(1.4)

94.1
(2.3)

94.8
(1.3)

96.0
(1.1)

92.7
(1.4)

87.7
(0.86)

67.5
(4.7)

81.2
(1.0)

78.7
(1.7)

75.6
(1.2)

97.6
(0.41)

96.6
(0.76)

96.8
(0.92)

95.5
(0.57)

94.8
(0.61)

KNN (FCN
Deep Features)

93.1
(0.8)

93.7
(2.3)

93.3
(1.7)

92.8
(1.7)

93.1
(1.8)

89.9
(0.98)

92.5
(1.2)

92.2
(1.1)

93.1
(1.4)

92.1
(1.5)

98.9
(0.19)

99.8
(0.12)

99.7
(0.14)

99.9
(0.066)

99.4
(0.43)

CRNN 94.8
(1.3)

93.8
(2.3)

94.6
(1.4)

95.9
(1.2)

90.0
(2.2)

87.6
(0.87)

67.4
(5.1)

80.8
(1.3)

76.2
(1.7)

72.9
(0.76)

97.7
(0.46)

96.6
(0.76)

96.7
(0.94)

95.4
(0.53)

94.7
(0.64)

FCN 94.2
(1.6)

94.8
(1.6)

93.0
(0.79)

93.5
(1.4)

95.3
(1.3)

87.9
(1.4)

86.4
(1.6)

87.1
(1.6)

87.9
(1.2)

88.0
(2.4)

98.5
(0.38)

99.7
(0.19)

99.6
(0.20)

99.9
(0.066)

98.1
(1.7)

Figure 2. In-distribution classification confusion matrices with KNN with FCN Deep Features at 10 s segment size for: (a)
MHEALTH; (b) SPARS; and (c) SPARS9x.

4.2. Out-of-Distribution Detection

Table 3 presents the results of the OOD experiments. Each reported accuracy results in-
cludes the standard error of five folds for the grid search of optimal hyperparameter settings.

81



Sensors 2021, 21, 1669

T
a

b
le

3
.

O
ut

-o
f-

D
is

tr
ib

ut
io

n
D

et
ec

ti
on

R
es

ul
ts

.

A
U

R
O

C
(C

o
n

fi
d

e
n

ce
In

te
rv

a
l)

M
H

E
A

L
T

H
S

e
g

m
e

n
t

L
e

n
g

th
S

P
A

R
S

S
e

g
m

e
n

t
L

e
n

g
th

S
P

A
R

S
9

x
S

e
g

m
e

n
t

L
e

n
g

th

M
et

ho
d

2.
0s

4.
0s

6.
0s

8.
0s

10
.0

s
2.

0s
4.

0s
6.

0s
8.

0s
10

.0
s

2.
0s

4.
0s

6.
0s

8.
0s

10
.0

s

T
ra

d
it

io
n

a
l

M
e

th
o

d
s

–
E

n
g

in
e

e
re

d
S

ta
ti

st
ic

a
l

F
e

a
tu

re
s

K
N

N
0.

90
3

(0
.0

26
)

0.
90

2
(0

.0
19

)
0

.9
0

5
(0

.0
1

8
)

0.
90

4
(0

.0
17

)
0.

89
8

(0
.0

14
)

0.
86

5
(0

.0
27

)
0.

91
2

(0
.0

21
)

0.
92

0
(0

.0
19

)
0.

92
7

(0
.0

18
)

0.
93

4
(0

.0
17

)
0.

91
8

(0
.0

02
8)

0.
96

3
(0

.0
03

3)
0.

97
5

(0
.0

02
9)

0.
98

0
(0

.0
01

9)
0

.9
8

2
(0

.0
0

2
1

)

K
m

ea
ns

0.
88

1
(0

.0
20

)
0.

88
7

(0
.0

15
)

0.
88

6
(0

.0
10

)
0.

88
4

(0
.0

14
)

0.
87

8
(0

.0
06

4)
0.

84
2

(0
.0

21
)

0.
89

2
(0

.0
24

)
0.

90
3

(0
.0

19
)

0.
91

3
(0

.0
18

)
0.

91
7

(0
.0

17
)

0.
87

2
(0

.0
11

)
0.

93
7

(0
.0

05
9)

0.
95

5
(0

.0
04

6)
0.

96
4

(0
.0

04
3)

0.
96

9
(0

.0
04

2)
O

C
SV

M
0.

79
6

(0
.0

19
)

0.
79

6
(0

.0
27

)
0.

78
4

(0
.0

22
)

0.
77

6
(0

.0
23

)
0.

75
9

(0
.0

15
)

0.
80

2
(0

.0
27

)
0.

86
3

(0
.0

29
)

0.
87

1
(0

.0
28

)
0.

88
3

(0
.0

27
)

0.
88

7
(0

.0
27

)
0.

80
4

(0
.0

17
)

0.
89

6
(0

.0
10

)
0.

92
7

(0
.0

08
0)

0.
94

0
(0

.0
00

79
)

0.
94

9
(0

.0
07

4)
K

N
N

–
D

e
e

p
F

e
a

tu
re

E
m

b
e

d
d

in
g

C
R

N
N

Fe
at

ur
es

0.
85

2
(0

.0
17

)
0.

83
9

(0
.0

24
)

0.
79

1
(0

.0
55

)
0.

83
9

(0
.0

31
)

0.
83

7
(0

.0
47

)
0.

90
3

(0
.0

23
)

0.
85

8
(0

.0
20

)
0.

85
9

(0
.0

29
)

0.
82

9
(0

.0
52

)
0.

87
7

(0
.0

29
)

0.
75

4
(0

.0
17

)
0.

81
9

(0
.0

07
4)

0.
79

4
(0

.0
11

)
0.

78
8

(0
.0

05
3)

0.
77

4
(0

.0
20

)
FC

N
Fe

at
ur

es
0.

85
4

(0
.0

23
)

0.
88

3
(0

.0
24

)
0.

87
4

(0
.0

14
)

0.
87

7
(0

.0
17

)
0.

89
1

(0
.0

28
)

0.
96

9
(0

.0
08

0)
0.

97
6

(0
.0

07
3)

0.
97

1
(0

.0
06

4)
0.

97
4

(0
.0

08
2)

0
.9

7
8

(0
.0

0
5

8
)

0.
92

1
(0

.0
11

)
0.

96
0

(0
.0

05
3)

0.
96

7
(0

.0
07

6)
0.

96
5

(0
.0

06
2)

0.
96

5
(0

.0
06

0)
C

R
N

N
C

o
re

M
o

d
e

l

So
ft

m
ax

Th
re

sh
ol

d
0.

61
1

(0
.0

48
)

0.
60

9
(0

.0
47

)
0.

55
3

(0
.0

57
)

0.
65

6
(0

.0
38

)
0.

57
8

(0
.0

68
)

0.
77

7
(0

.0
36

)
0.

81
9

(0
.0

14
)

0.
84

0
(0

.0
20

)
0.

78
8

(0
.0

26
)

0.
83

9
(0

.0
24

)
0.

70
0

(0
.0

16
)

0.
71

8
(0

.0
13

)
0.

68
0

(0
.0

14
)

0.
66

9
(0

.0
25

)
0.

63
4

(0
.0

31
)

En
tr

op
y

R
eg

ul
ar

iz
at

io
n

0.
73

6
(0

.0
15

)
0.

73
1

(0
.0

32
)

0.
68

0
(0

.0
64

)
0.

70
5

(0
.0

35
)

0.
64

4
(0

.0
67

)
0.

91
1

(0
.0

08
0)

0.
91

7
(0

.0
09

1)
0.

92
8

(0
.0

12
)

0.
90

3
(0

.0
19

)
0.

93
0

(0
.0

08
7)

0.
69

1
(0

.0
21

)
0.

68
9

(0
.0

24
)

0.
70

8
(0

.0
15

)
0.

69
0

(0
.0

23
)

0.
63

6
(0

.0
39

)
O

D
IN

0.
63

3
(0

.0
36

)
0.

66
4

(0
.0

50
)

0.
59

7
(0

.0
60

)
0.

54
6

(0
.0

82
)

0.
51

2
(0

.0
36

)
0.

86
0

(0
.0

08
6)

0.
86

0
(0

.0
20

)
0.

84
6

(0
.0

29
)

0.
85

5
(0

.0
10

)
0.

81
5

(0
.0

32
)

0.
69

2
(0

.0
17

)
0.

69
8

(0
.0

17
)

0.
63

6
(0

.0
37

)
0.

66
8

(0
.0

29
)

0.
59

5
(0

.0
30

)
O

pe
nM

ax
0.

66
1

(0
.0

50
)

0.
61

4
(0

.0
76

)
0.

69
3

(0
.0

53
)

0.
70

7
(0

.0
55

)
0.

58
9

(0
.0

59
)

0.
84

0
(0

.0
34

)
0.

86
3

(0
.0

03
6)

0.
87

3
(0

.0
24

)
0.

85
1

(0
.0

37
)

0.
83

8
(0

.0
36

)
0.

77
6

(0
.0

19
)

0.
69

4
(0

.0
58

)
0.

68
9

(0
.0

35
)

0.
68

2
(0

.0
66

)
0.

75
8

(0
.0

36
)

F
C

N
C

o
re

M
o

d
e

l

So
ft

m
ax

Th
re

sh
ol

d
0.

73
1

(0
.0

16
)

0.
62

2
(0

.0
39

)
0.

68
0

(0
.0

55
)

0.
60

0
(0

.0
31

)
0.

59
7

(0
.0

17
)

0.
77

9
(0

.0
24

)
0.

81
2

(0
.0

18
)

0.
78

3
(0

.0
42

)
0.

79
9

(0
.0

34
)

0.
79

5
(0

.0
34

)
0.

75
6

(0
.0

14
)

0.
75

2
(0

.0
12

)
0.

75
9

(0
.0

17
)

0.
76

4
(0

.0
08

2)
0.

77
1

(0
.0

05
8)

En
tr

op
y

R
eg

ul
ar

iz
at

io
n

0.
75

2
(0

.0
18

)
0.

63
7

(0
.0

39
)

0.
66

6
(0

.0
62

)
0.

61
0

(0
.0

39
)

0.
67

2
(0

.0
23

)
0.

79
2

(0
.0

27
)

0.
81

5
(0

.0
24

)
0.

79
1

(0
.0

37
)

0.
78

1
(0

.0
37

)
0.

80
7

(0
.0

34
)

0.
74

7
(0

.0
15

)
0.

75
2

(0
.0

11
)

0.
76

2
(0

.0
21

)
0.

74
3

(0
.0

17
)

0.
77

2
(0

.0
14

)
O

D
IN

0.
69

9
(0

.0
22

)
0.

60
1

(0
.0

30
)

0.
64

9
(0

.0
26

)
0.

64
5

(0
.0

35
)

0.
67

3
(0

.0
46

)
0.

82
0

(0
.0

22
)

0.
81

6
(0

.0
23

)
0.

82
6

(0
.0

31
)

0.
84

9
(0

.0
20

)
0.

82
1

(0
.0

16
)

0.
74

3
(0

.0
17

)
0.

75
2

(0
.0

12
)

0.
74

7
(0

.0
25

)
0.

73
5

(0
.0

20
)

0.
74

9
(0

.0
09

5)
O

pe
nM

ax
0.

79
4

(0
.0

36
)

0.
64

5
(0

.0
43

)
0.

73
4

(0
.0

54
)

0.
71

4
(0

.0
69

)
0.

70
8

(0
.0

14
)

0.
84

5
(0

.0
21

)
0.

85
6

(0
.0

13
)

0.
85

5
(0

.0
17

)
0.

87
5

(0
.0

21
)

0.
85

0
(0

.0
30

)
0.

91
0

(0
.0

11
)

0.
89

7
(0

.0
20

)
0.

91
6

(0
.0

11
)

0.
91

5
(0

.0
20

)
0.

92
2

(0
.0

19
)

82



Sensors 2021, 21, 1669

Traditional algorithms performed better than the deep learning-based models. The
KNN method in particular achieved superior results. Among the deep learning algo-
rithms, Softmax thresholding without any other intervention was particularly ineffective,
while OpenMax generally performed best. Deep feature embedding with KNN yielded
competitive results compared to the deep learning methods.

Figure 3 illustrates the results of a segment length grid search for each of the algorithms
on SPARS9x. Increasing segment length consistently improved accuracy for the traditional
algorithms but not for the deep learning algorithms.

Figure 3. OOD-Detection AUROC for SPARS9x for each method by segment length. Traditional algorithms with engineered
features are shown in red (1–3), deep features in yellow (4 and 5), deep learning approaches with FCN in blue (6–9), and
deep learning approaches with CRNN in green (10–13).
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4.3. Class Removal Experiments

The distributions of activations for the four deep learning algorithms for SPARS9x
with the CRNN core are shown in Figure 4. Distributions in vanilla Softmax in Figure 4a are
clustered near to the maximum of 1.0, whereas the other algorithms appear to be effective
at reducing overconfidence judging by their improved spread. Mean activations with the
FCN core of the four deep learning algorithms for each activity of SPARS9x are shown in
Figure 4. This figure illustrates a similar reduction in overconfidence for the FCN, but it is
important to note that there is still significant overlap in activations between the OOD and
IIN classes for each.

Figure 4. Distributions of activations of SPARS9x prediction with CRNN core: (a) Softmax activation; and (b–d) activation
post-processing with ODIN, entropy regularization, and OpenMax respectively. Activations are scaled to between 0 and 1
for each method for illustrative purposes.

The boxplots in Figure 5a demonstrate the lower range of mean Softmax activations for
the shoulder girdle stabilization activity with the FCN model for SPARS9x. Removal of this
activity class from the experiments results in less overlap of Softmax confidence with the
OOD data, but also results in altering the confidence in predicting every remaining class.
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g

Figure 5. Mean activations for each method by ground truth class labels for SPARS9x prediction with FCN core: (a) Softmax
activation; and (b–d) activation post-processing with ODIN, entropy regularization, and OpenMax respectively. Activations
are scaled to between 0 and 1 for each method for illustrative purposes.

The KNN nearest neighbor distance predictions for SPARS9x are shown in Figure 6b,
where the OOD class samples would appear to already be easily separable from the IIN
samples with an appropriately chosen distance threshold. Indeed, it appears that not much
is gained in terms of separability with removal of the Shoulder Girdle Stabilization class,
and this is reflected in the results shown in Figure 7b, where AUROC of the KNN algorithm
remains stable.

Figure 8 illustrates the effect on Softmax activation from re-designating the cycling
activity of MHealth from OOD to IIN. As expected, there is a significant increase in the
prediction confidence for cycling (because there are now samples of this activity in the
training data), but the important takeaway from this figure is that the activations of each of
the other activities are affected as well.

The effects of class removal or re-designation on each dataset for a selection of methods
are shown in Figure 7. Figure 7a illustrates that moving the cycling activity of MHEALTH
from OOD to IIN improves OOD detection for each algorithm, especially in the case of
the deep learning algorithms. KNN using FCN features for cycling IIN now performs
better than the KNN algorithm using engineered features. For SPARS9x, removal of the
shoulder girdle stabilization activity, as shown in Figure 7b, yields little improvement,
and the KNN algorithm with engineered statistical features still performs better than the
other algorithms.

85



Sensors 2021, 21, 1669

4.4. Train and Prediction Time

Mean prediction times of the models are shown in Table 4. Softmax thresholding and
entropy regularization had the shortest prediction times. OpenMax was found to require
the longest computation times for OOD prediction. The training times of the base models
shown in Table 5 illustrate the longer training times required for deep learning methods.

Figure 6. Effect on shoulder girdle stabilization exercise inclusion/exclusion from training data for OOD detection of the
SPARS9x dataset on: (a) FCN Softmax activation; and (b) normalized KNN nearest neighbor distance. This figure highlights
the resiliency to changes in training class inclusion/exclusion of the KNN algorithm compared to deep learning algorithms
for detecting OOD data with this dataset. Note that, even though the mean Softmax activation decreases for the OOD data
and increases for the in-distribution classes with shoulder girdle stabilization removed, there is still a slight decrease in
AUROC (see Softmax Threshold of Figure 7b).

Figure 7. Effect on OOD Detection AUROC of selected algorithms by: (a) moving MHEALTH “cycling” class from OOD
to IIN; and (b) removing the “Shoulder Girdle Stabilization” exercise from SPARS9x. FCN core is used for the deep
learning methods.
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Figure 8. Effect on FCN Softmax activation for each activity in MHEALTH when cycling activity is in OOD and when
cycling activity is IIN.

Table 4. Out-of-Distribution Prediction Time.

Method
Prediction Time (s)

MHEALTH SPAR SPARS9x

Traditional Methods—Engineered Statistical Features

KNN 0.66 (0.002) 0.37 (0.005) 2.47 (0.03)
Kmeans 0.47 (0.001) 0.32 (0.007) 1.46 (0.02)
OCSVM 0.52 (0.002) 0.35 (0.005) 2.11 (0.03)

KNN—Deep Feature Embedding

CRNN Features 0.10 (0.0008) 0.15 (0.006) 0.93 (0.05)
FCN Features 0.16 (0.0009) 0.30 (0.01) 2.00 (0.03)

CRNN Core Model

Softmax Threshold 0.066 (0.002) 0.082 (0.004) 0.41 (0.005)
Entropy Regularization 0.059 (0.0003) 0.084 (0.004) 0.41 (0.005)

ODIN 0.22 (0.0003) 0.34 (0.02) 1.66 (0.02)
OpenMax 3.39 (0.08) 0.93 (0.02) 5.41 (0.06)

FCN Core Model

Softmax Threshold 0.099 (0.0004) 0.22 (0.007) 1.09 (0.01)
Entropy Regularization 0.14 (0.0008) 0.21 (0.003) 0.84 (0.03)

ODIN 0.43 (0.001) 0.69 (0.002) 3.16 (0.10)
OpenMax 3.64 (0.09) 1.04 (0.02) 6.04 (0.06)

Table 5. Training Time.

Model
Training Time (s)

MHEALTH SPAR SPARS9x

KNN 3.08 (0.009) 4.69 (0.02) 5.58 (0.02)
Kmeans 1.98 (0.06) 3.03 (0.03) 3.50 (0.07)
OCSVM 2.43 (0.06) 4.40 (0.03) 5.74 (0.05)

CRNN core 81.2 (0.05) 124 (0.7) 144 (1.0)
FCN core 164 (6.0) 261 (7.4) 317 (1.0)
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5. Discussion

In this paper, we address the OOD problem in the context of shoulder physiotherapy
activity recognition using traditional algorithms on engineered statistical features, deep
feature embeddings generated by two neural network models, as well as deep learning
approaches. We evaluated these techniques on a novel physiotherapy exercise dataset
(SPARS9x) that may best reflect the clinical use case for OOD of physiotherapy data as
well as on two publicly-available activity datasets (MHEALTH [21] and SPARS [6]). Deep
learning performance was superior to traditional algorithms (i.e., KNN) with engineered
features for in-distribution classification; however, surprisingly, the opposite is true for
OOD detection of SPARS9x in particular. Since the KNN algorithm also performs worse
with deep features for SPARS9x, this would suggest the answer lies in the features generated
by the deep learning models themselves. This may be an indication that the deep learning
models are learning representations of the data that do not generalize as well to data
distributions outside of their training experience for human activity inertial datasets such
as SPARS9x. These deep learning models may be learning complex relationships in the data
in order to discriminate between in-distribution classes. Due to the inscrutable nature of the
models and even the inertial data themselves, it is difficult to describe or understand exactly
what the learned deep features represent. In future work, it would be very interesting
to identify what aspects of the data the neural network models in this study are using
to discriminate classes, and why these are not as effective as using simple engineered
features for OOD detection with a dataset such as SPARS9x that explicitly simulates OOD
activity data.

HAR classification research involving IMU sensors embedded in wearables is fairly
common given the ubiquity of these devices, including those using smartphones [2,10,22,69,70]
and smartwatches [5,6,12,71]. Studies examining feature extraction techniques have previ-
ously been performed for time series [72–74]. However, in this paper, we are interested
in the impact of engineered versus deep learning-generated features on HAR inertial
data for OOD detection in particular. Numerous human activity inertial datasets exist,
with notable examples including MHEALTH [21], PAMAP2 [75], and the recent WISDM
gesture-recognition dataset [76]. While these datasets often have an intermediary “null”
class between exercises (e.g., MHEALTH), this is often restricted. For example, in the
gesture recognition study by Bulling et al. [1], participants were asked not to engage in any
other activities between target activities. Classification of repetitive exercises, as in the case
of physiotherapy inertial data, add an additional nuance to the analysis. OOD activities
may resemble IIN activities, but IIN activities may be distinct in their repetitive nature
(e.g., reaching for a mug versus lifting an arm to perform a physiotherapy exercise for
several repetitions in a short time frame). We believe this study is unique in its approach of
capturing a dataset that explicitly simulates the distinction between known target human
activities and unknown a priori OOD activities.

Table 4 where samples in the test set are bucketed according to activation for SPARS9x
with a CRNN core. The other deep learning methods, ODIN, entropy regularization, and
OpenMax, appear to be effective at reducing this overconfidence for HAR inertial data,
judging by the improved spread in the distributions. However, when using confidence
to threshold between IIN and OOD classes, relative confidence between classes is more
important than absolute confidence. The activations in Figure 5 have been normalized to
illustrate this point. Of particular interest in this figure is that some degree of overlap is
present for each of the algorithms between the OOD classes and the IIN activities. For every
model other than OpenMax (which does not use this information directly for OOD class
prediction), this means that thresholding based on activation will be little more accurate
than thresholding Softmax, an observation that is borne out in the results of Table 3.

As shown in Figure 7, moving the cycling class of MHEALTH from OOD to INN dra-
matically increases OOD detection accuracy for deep learning approaches. The algorithms
are able to accurately discriminate this class in supervised IIN classification with near
perfect accuracy, just as with the other two chosen OOD classes, however, the cycling class
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in particular is wrongly overconfident. Moving a class that causes confusion as measured
by Softmax confidence increases AUROC for Softmax Thresholding, but it also increases
KNN prediction AUROC. This is seen as designating the cycling activity as IIN increased
the AUROC of Softmax Thresholding from 0.60 to 0.86, but also increased KNN from 0.90
to 0.92. Conversely, in Figure 7b, the KNN algorithm has no such issue with the shoulder
girdle stabilization activity, so the advantage that the traditional algorithms have over
Softmax cannot be explained by class confusion alone.

Removing or adding a class to a deep learning model’s training set impacts both the
difficulty of the OOD task and also alters the learned feature representation. As shown
in Figure 6a, removing a low-confidence class did not greatly improve OOD prediction
accuracy. Removing this class alters the model’s parameters which may have decreased
generalizability to the test and OOD set. With the case of shoulder girdle stabilization of
SPARS9x and cycling in MHEALTH, other classes may become less or more confident as
a result. This may explain why removing the shoulder girdle stabilization activity from
SPARS9x did not result in a dramatic change as in the case of moving the cycling class to
IIN in the MHEALTH dataset.

This is illustrative of some major pitfalls in using activation threshold-based techniques
for OOD-detection, including entropy regularization and ODIN: some classes may have
more variance than others in how they are performed, and in-distribution classes may share
similarities to one another. Either of these issues would reduce confidence in predicting
these classes. This spread of confidence explains why Softmax thresholding without any
other intervention was found to be a particularly ineffective method, as there is activation
overlap between samples from less confident in-distribution classes and OOD samples. This
is in contrast to the traditional algorithms such as KNN that did not exhibit this overlap—
while discriminating between in-distribution classes were generally less accurate than
deep learning methods, the activation (i.e., distance) spreads were still far removed from
those of the OOD data. Further investigation reveals that while each of the deep learning
methods appear effective at reducing Softmax overconfidence (i.e., entropy regularization,
ODIN, and OpenMax), the relative overlap of confidence spread between the IIN and OOD
classes appears to differ little from vanilla Softmax. For every model other than OpenMax
(which does not use this information directly for OOD class prediction), this means that
thresholding based on activation will be little more accurate than thresholding Softmax, an
observation that is borne out in the results of Table 3.

Table 3 demonstrates that choice of segment length may cause large variance in
AUROC. This is another advantage that traditional algorithms have over deep learning
methods in these experiments—one can set a relatively high segment length of 10s and
be confident that this is a reasonable choice that will result in near-optimal prediction
accuracy. For deep learning algorithms, optimization of segment length is important to
achieve optimal performance of the classification pipeline, and this likely reflects a tradeoff
between the model size and number of training samples versus the amount of information
available in each individual segment.

While several methods exist to perform activity segmentation or windowing for
time series data, for this analysis, we focus on the sliding window technique due to the
periodicity of physiotherapy exercises. Analyses have been performed on the impact
of sliding window size for HAR inertial data [77], including adaptive sliding window
segmentation techniques [78–80]. To our knowledge, an analysis of impact of window size
for OOD-detection with HAR inertial data has yet to be performed.

This analysis evaluated the effect of fixed window size on OOD detection. While
setting a fixed window size or including that parameter in a hyperparameter grid search
is not optimal, to our knowledge existing adaptive window algorithms that have been
proposed for inertial data are not easily extensible to the OOD problem as they rely on
first predicting the class the segment belongs to. As an example, the adaptive window
size algorithms as proposed by Noor et al. [78] increases window size based on increasing
probability that a segment is from a particular predicted activity, activity information which
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would not be available in the OOD case. While an adaptive sliding window algorithm such
as this may help differentiate between IIN activities, it is unclear if it would be beneficial in
identifying OOD activities. This point is made clearer when examining the OOD detection
in Table 3, where larger window sizes generally increased detection accuracy, versus IIN
classification in Table 2, where highest detection accuracies are obtained in the mid-sized
windows. This implies that the optimal window size for OOD detection accuracy is
dependent on the entirety of the dataset, not just the in-distribution ones.

While confidence trends are similar overall, the CRNN model exhibited much higher
Softmax confidence in its predictions than the FCN model (i.e., exhibiting much more of
the overconfidence that neural network models are known for). This may be an indication
of why the FCN model performs better in most supervised learning scenarios.

The ODIN method was developed for OOD detection on image datasets (as were many
of the other methods tested here), rather than time series datasets. There are manipulations
that make sense in the image domain but may be less applicable in the time domain.
For example, while it might be reasonable to flip an image as an augmentation method,
performing an activity in reverse is not a valid example of that same activity. This argument
also applies to input perturbations of ODIN. In the original study by Liang et al. [19],
increasing perturbations improved DenseNet results, but significantly negatively impacted
Wide ResNet results, where AUROC decreased from 0.93–0.95 to 0.80–0.85. This suggests
that the success of this approach at improving OOD detection depends heavily on the
model architecture, but the type of dataset is also likely a factor.

The OpenMax results presented in the work of Bendale and Boult are generated
by models trained on ImageNet [20] using AlexNet as a feature extractor [81]. To our
knowledge, no such large dataset exists for physiotherapy time series data. In this research,
we trained with a significantly smaller dataset in a completely separate domain (i.e., inertial
time series data). There are also some conceptual concerns with the OpenMax approach.
Specifically, as indicated by the range of OpenMax activations we found, this approach may
be impacted in a similar fashion to the other methods by the wide variation in activations
for some IIN classes. Since the OOD decision in OpenMax is based on the distance from
the mean activation vector, and the Weibull distribution is fit to the largest deviations in
the correct training samples per class from each mean activation, this method will still
make inaccurate predictions if there is significant activation overlap between IIN and
OOD activations. Distance from the MAV may be too simplified of an approach in this
case. A different distance measure and/or loss function may be needed, such as the il-loss
proposed by Hassen and Chan [82], while retaining the remainder of the unknown class
approach of OpenMax. A GAN-augmented approach may also be used to ameliorate these
issues, but as noted previously, generated samples are unlikely to fully encapsulate the IIN
decision-boundary, so such a classifier is unlikely to be an optimal detector [60]. However,
as seen in the work by Ge et al., GAN augmentation may still improve results [47].

Traditional algorithms tended to have the lengthiest prediction time requirements,
but OpenMax required the longest time to run. As implemented in these experiments,
OpenMax uses a costly sample-by-sample approach in generating the final activation vector.
Unlike ODIN and OpenMax, entropy regularization only requires a change to the model
loss function compared to standard supervised learning and does not require additional
costly processing steps in the prediction phase, shortening its prediction time. The increase
in prediction times for MHEALTH versus SPARS for traditional algorithms and OpenMax
may be partly explained by the greater number of IIN classes in the MHEALTH dataset.

6. Future Work

Regardless of approach, we suggest that future work should attempt to resolve and
explain the apparent decrease in generalizability of deep learning features compared
to engineered features towards OOD detection with time series human activity inertial
datasets similar to SPARS9x. Identifying patterns in the data that are key to discriminating
between in-distribution classes by these deep learning models may assist in this process.
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The present work focuses on purely discriminative methods rather than delving into
the myriad of generative options available. These generative models may also be combined
with traditional algorithms. An adversarial autoencoder method, such as that presented by
Pidhorskyi et al. [83], may also be a promising future approach to explore, or one based on
likelihood ratios [62].

This work evaluated IIN classification and OOD detection accuracy using a range
of fixed window sizes. While this study found that larger window sizes increased OOD
detection accuracy, this may not always be the case. A new algorithm for adaptive sliding
window segmentation for this kind of periodic HAR data specifically accounting for the
potential for either periodic or non-periodic OOD data would be ideal.

7. Limitations

The SPARS9x dataset was captured in laboratory conditions with healthy subjects. We
expect that performance of exercises by injured patients in the home setting to exhibit more
variance in motion than those present in the SPARS9x dataset.

Only the lower arm sensor in the MHEALTH dataset is used, essentially simulat-
ing inertial data captured by a smartwatch. Including data from other sensors in this
dataset would likely improve classification and detection accuracy, but we limited the data
to align with the proposed clinical solution to tracking shoulder physiotherapy with a
smartwatch alone.

Only concentric exercises from SPARS9x were used in this analysis. Isometric exer-
cises in SPARS9x were found to be too highly confused with OOD data in preliminary
classification validation experiments to be viable for use in the OOD detection analysis.

Magnetometer data were excluded from SPARS9x for these analyses as their inclusion
was not found to improve classification accuracy when combined with data from the
accelerometer and gyroscope in preliminary experiments.

This paper applies a selection of well-known OOD detection techniques from the
image domain to HAR time series inertial datasets. There are many other OOD detection
methods in use in the image domain and elsewhere, and those tested in this paper represent
only a selection of those most widely cited. However, these results are likely reflective of
most discriminative models that base prediction on Softmax activation, whether explicitly
or implicitly.

8. Conclusions

In this paper, we present a novel physiotherapy inertial dataset captured specifically
for the analysis of the out-of-distribution problem in HAR and tested a range of OOD
detection methods common in the image domain. Our results indicate that simple and
rapid OOD detection techniques based on traditional algorithms such as KNN using
engineered statistical features outperform sophisticated deep learning techniques on some
HAR time series datasets.
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Abstract: Accelerometers have become a standard method of monitoring physical activity in everyday
life by measuring acceleration in one, two, or three axes. These devices provide reliable and objective
measurements of the duration and intensity of physical activity. We aimed to investigate whether
patients undertake physical activity during non-supervised days during stationary rehabilitation
and whether patients adhere to the rigor of 24 h monitoring. The second objective was to analyze
the strengths and weaknesses of such kinds of sensors. The research enrolled 13 randomly selected
patients, qualified for in-patient, 3 week, high-intensity, 5 times a week pulmonary rehabilitation.
The SenseWear armband was used for the assessment of physical activity. Participants wore the
device 24 h a day for the next 4 days (Friday–Monday). The analysis of the number of steps per day,
the time spent lying as well as undertaking moderate or vigorous physical activity (>3 metabolic
equivalents of task (METs)), and the energy expenditure expressed in kcal showed no statistically
significant difference between the training days and the days off. It seems beneficial to use available
physical activity sensors in patients with chronic obstructive pulmonary disease (COPD); measurable
parameters provide feedback that may increase the patient’s motivation to be active to achieve
health benefits.

Keywords: COPD; wearable sensors; SenseWear Armband; physical activity; weekday-to-weekend;
energy expenditure

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive disease that limits
airflow through the respiratory tract. It is estimated that the disease affects 210 million
people worldwide [1]. COPD is a leading cause of morbidity and mortality worldwide
and will become the fourth leading cause of death by 2030. The Global Initiative for
Chronic Obstructive Lung Disease (GOLD) defines COPD as a disease state characterized
by airflow limitation, causing shortness of breath and significant systemic effects involving
the lung and likewise causing extrapulmonary adverse reactions, with a high disease rate,
high disability rate, high mortality rate, and a long course of disease [2]. The occurrence
of pain in the cervical and thoracic spine region is very common, this probably leads
to changes in the muscle tone [3]. COPD has also been shown to impair coordination
and reduce balance and agility. In comparison to healthy people, patients with COPD
demonstrate significant deficiencies in performing motor tasks, as well as in postural
balance [4]. COPD is characterized not only by shortness of breath, dyspnea, chronic
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cough, and sputum production but also by fatigue and reductions in both physical capacity
and physical activity [5,6]. A study by Theander and Unosson reported that patients
with COPD perceived significantly greater functional limitations in cognitive, physical,
and psychosocial functioning due to fatigue compared to those in a control group [7].
The prevalence of the symptom is high; in a study concerning the severity of fatigue in
patients with stable, moderate-to-severe COPD, it was shown that almost half of all patients
experienced abnormal fatigue: 23% mild fatigue and 24% severe fatigue [8]. Fatigue affected
even greater proportions of patients than either depression or anxiety [9]. The negative
effect of fatigue on the patient’s daily life is manifested in many aspects. Individuals
indicated that physical limitations were mainly focused on walking and moving and
performing homework, and personal hygiene was sometimes too physically demanding.
All these symptoms cause a limitation of the level of physical activity, which in turn causes
deterioration of physical health.

The level of physical activity in patients with COPD is, therefore, lower than that in
healthy individuals with respect to age [10,11] and lower than that in individuals with
other chronic conditions, including cardiovascular disease, diabetes [12], and rheumatoid
arthritis [13]. Low levels of physical activity can already be observed in the early stages
of the disease [14]. Furthermore, patients with COPD generally walk slower than healthy
age-matched controls and are more sedentary [15,16]. The amount and duration of physical
activity bouts to perform daily activities decreases with increasing disease severity [17].
Nevertheless, the importance of adequate physical activity levels in patients with COPD
cannot be overestimated. A low physical activity level is a strong predictor of poor quality
of life and high mortality [14,15]. Consequently, regular physical activity has been shown
to reduce the risk of hospital admissions and mortality in patients with COPD [18]. It has
also been shown that patients who decreased their activity level had an increased risk of
mortality and showed faster disease progression [19]. A recent meta-analysis revealed that
any level of physical activity or a reduction of sedentary time is associated with a lower
risk of premature mortality in middle-aged and older adults [20].

The characteristic airflow limitation and associated dyspnea of patients with COPD
can limit their daily physical activities. This can subsequently lead to physical decondition-
ing and a further decline in lung function, which can be the start of a deleterious vicious
circle of deconditioning [21]. However, the reduced physical activity levels in patients with
COPD are not determined by impaired respiratory function alone; other factors such as
age, peripheral muscle weakness, hyperinflation, and dyspnea also affect physical activity
levels [22]. Alternatively, dog walking and grandparenting have been associated with
higher amounts and intensities of physical activity in patients with COPD [23].

All these elements highlight the importance of increasing physical activity levels in
patients with COPD. One way of accomplishing this is through comprehensive pulmonary
rehabilitation. Rehabilitation belongs to the essential management components in COPD
and applied at an early stage of the disease, plays a very important role. A comprehensive
rehabilitation program, beyond the physical training components, also includes patient
education components on self-management. Patient awareness of current symptom level
(either the COPD Assessment Test (CAT) or Modified Medical Research Council (mMRC)
scores) and exacerbation frequency assessment have also been found to be very important.
Due to the chronic nature of the disease, systematic physical activity, i.e., fitness training
on a cycle ergometer or treadmill at a specific intensity, is a key approach to slow down
disease progression. Many studies and systematic literature reviews show the beneficial
effect of pulmonary rehabilitation in patients with chronic respiratory diseases on exercise
capacity [24], lung function [25], respiratory muscle strength [26], and quality of life [27].
The adopted models of pulmonary rehabilitation vary in terms of intensity, duration, and
the form of physical activity taken by the patients. Many authors have decided to assess the
effect of home rehabilitation, while others have analyzed the impact of early rehabilitation
on the hospitalization rate in the next months [28–30].
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In recent years, increasing attention has been given to evaluating physical activity level
as an outcome in patients with COPD [21]. Mantoani et al. carried out a systematic review
of 60 intervention studies that evaluated physical activity as an outcome in patients with
COPD [31]. The authors concluded that programs combined with coaching interventions
and pulmonary rehabilitation programs lasting >12 weeks have the greatest potential
to modify physical activity behaviors. Furthermore, it was observed that pulmonary
rehabilitation programs do not lead to improved physical activity levels after completion
of the program. The majority of patients were unable to maintain an active lifestyle after a
rapid increase in exposure to planned supervised physical activity during the rehabilitation
program. Thus, it seems that during rehabilitation programs, the focus is mainly on
increasing functional exercise capacity and improving symptoms rather than on improving
physical activity [6,32].

Besides the increased recognition of the health effects associated with physical (in)activity
and the high prevalence of physical inactivity in patients with COPD, the development of
technologies and devices that enable objective physical activity assessment in a patient-
friendly manner also contributed to the increased interest in physical-activity-related
research. Although subjective methods (such as questionnaires) have practical value,
wearable accelerometers are likely to provide more accurate information about daily phys-
ical activity levels [33]. These devices provide reliable and objective measurements of
the duration and intensity of physical activity [34,35]. A combination of subjective and
objective methods has also been proposed to obtain a broader assessment of physical
activity levels [36]. Wearable accelerometers have, thus, become a standard method of
monitoring physical activity in everyday life by measuring acceleration in one, two, or
three axes. Triaxial accelerometers have been increasingly used over the years, as they
are considered superior to uniaxial accelerometers [37]. Wearable sensors providing user
feedback have also been used as a treatment component in numerous physical activity
counseling interventions [6]. Additionally, they have been used to assess energy expendi-
ture during walking tests of patients with COPD, where their accuracy of assessment has
been positively evaluated [38].

Despite the increased interest in physical-activity-related research, we found a scarcity
of literature evaluating physical activity during supervised (weekdays) and non-supervised
(weekend) days of a pulmonary rehabilitation program. Therefore, this study used a wear-
able sensor (SenseWear Armband) to assess physical activity levels during four consecutive
days (Friday–Monday) of a 3 week, in-hospital, pulmonary rehabilitation program. We
aimed to investigate whether patients have similar physical activity levels during super-
vised and non-supervised days of a stationary rehabilitation program and whether patients
adhere to the rigor of 24 h monitoring. The second objective was to analyze the strengths
and weaknesses of such kinds of sensors. We hypothesize that patients present lower
physical activity levels during non-supervised days compared to supervised training days.

2. Materials and Methods

2.1. Participants

The study was conducted among patients who participated in pulmonary rehabilita-
tion at the Specialist Hospital in Glucholazy (Poland). The research enrolled 15 randomly
selected patients aged 50–80 years old who met the inclusion criteria. The inclusion criteria
were COPD as the main diagnosis and written consent to participate in the study. The
exclusion criteria were a main diagnosis other than COPD; pneumonia, tuberculosis, or
another respiratory inflammatory disease in all stages and forms; condition after a heart
attack; diabetes; state after thoracic and cardiac surgery; heart failure (stage III, IV New
York Heart Association (NYHA)); advanced hypertension; diseases and injuries that can
impair the function of the musculoskeletal system of transportation; disturbances of con-
sciousness; and psychotic symptoms or other serious psychiatric disorders. The main
group characteristics are presented in Table 1. The study adhered to the Declaration of
Helsinki [39], and ethical approval was obtained from the Bioethics Committee of the
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Opole Chamber of Physicians based on Resolution No. 199 of 07 February 2013, and the
study was registered in ClinicalTrials.gov (NCT04726384).

Table 1. Group characteristic.

Variables Mean (SD)

Age (years), mean (SD) 63.8 (9.1)
Female, n (%) 7 (54%)

Height (cm), mean (SD) 168 (9.3)
Weight (kg), mean (SD) 79.7 (15.6)

BMI (kg/m2), mean (SD) 28.1 (4.3)
Smokers, n (%) 2 (15%)

FEV1 (%), means (SD) 78.2 (14.9)
FEV1: forced expiratory volume for 1 second, SD: standard deviation, BMI: body mass index.

2.2. Pulmonary Rehabilitation Program

Patients included in the study were qualified for in-patient, 3 week, high-intensity,
pulmonary rehabilitation 5 times a week (Monday–Friday, supervised days). During
the weekend, patients were encouraged to go for walks and engage in minor physical
activity on their own, but during this time they did not take advantage of the organized
rehabilitation (non-supervised days). This program has been found to exhibit clinically
meaningful improvements in exercise capacity, dyspnea, quality of life, and lung function
in patients with COPD [40,41] or lung cancer [42,43]. All procedures were performed
under the supervision of a specialist with an M.Phty. degree. The pulmonary rehabilitation
program consisted of the following components performed once a day, each for 20–30 min
(depending on the task):

• Endurance exercise training on a cycle ergometer to obtain a training heart rate (HR),
which was calculated as follows: HR ((max HR − resting HR) × 60%) + resting HR
through the use of the results of the 6 min walk test [44], or Borg-rated dyspnea or a
fatigue score 4 to 6 (moderate to severe).

• Fitness exercises, coordination, balance exercises, and stretching exercises. Exercises
were performed in the following positions: standing; on the knees; and lying on the
side, abdomen, and back.

• Specific respiratory exercises: relaxation exercises for breathing muscles, strengthen-
ing exercises of the diaphragm with resistance, exercises to increase costal or chest
breathing, prolonged exhalation exercise, and chest percussion.

• Inhalation with a 3% NaCl isotonic solution administered with an ultrasonic device.

The rehabilitation program was provided from 8 a.m. to 3 p.m. with a one hour
lunch break between 12:30 and 1:30 p.m. During leisure time (after 3 p.m.), patients were
encouraged to undertake any physical activity, however, without access to the rehabilitation
unit and equipment.

2.3. Measurement

The SenseWear armband (Body Media Inc., Pittsburgh, PA, USA) was used to assess
physical activity. The device allows for measuring physiological parameters and motion
status by using built-in sensors, including the three-axis accelerometer for measuring
the number of steps. Using algorithms developed by the producer, the device computes
the level of energy expenditure defined in metabolic equivalents of task (METs) and
calories during physical activity and rest periods, as well as the total energy expenditure.
Additionally, the device counts the total time (min) during lying and during being active
(measured when energy expenditure > 3 METs). The device has been considered a reliable
source for assessing the physical activity level [45].

The group was informed of the purpose of the study and asked to wear the device 24 h
a day for the next 4 days (Friday–Monday) excluding bath time, no more than 30 min [46]
(Figure 1). Patients received the device on Thursday afternoon and returned it on Tuesday.
Patients were also asked to indicate their subjective observations when returning the device
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at the end of the experiment. For this purpose, we did not use any standardized satisfaction
scale; we wanted to explore the strengths and weaknesses of the patients’ feelings.

Figure 1. Study flow chart of physical activity assessment.

2.4. Statistical Analysis

The sample size was calculated based on the recommendation of the pilot study
sample size in the medical field, according to Julious [47] and van Belle [48]: 12 participants
were suggested. Considering a 20% drop-out rate, 15 patients were included in the study.
Categorical variables were presented as numeric values and percentages, continuous
variables as mean ± standard deviation (SD) or median and interquartile range [IQR],
where appropriate, according to the Kolmogorov–Smirnov normality test. Differences in
the energy expenditure between training days and off days were compared using Mann–
Whitney U test or Student’s paired t-test. Differences between consecutive days were
assessed with Friedman’s ANOVA. All statistical analyses were performed using Statistica
13 software (StatSoft, Cracow, Poland). The statistical significance level was set at α = 0.05.

3. Results

The analyzed data were obtained from 13 patients; data from two patients were
excluded due to failure to meet recommendations for wearing the armband for 95% of the
day (armband off for no more than 30 min a day). We noted that both patients did not
meet the requirements to wear the device during non-supervised days. In both cases, the
armband was worn around 60% of the time. Results are presented as median [IQR] and
mean (±SD).

The analysis of the number of steps per day, the time spent lying as well as undertaking
moderate or vigorous physical activity (>3 METs), and the energy expenditure expressed

101



Sensors 2021, 21, 2742

in kcal showed no statistically significant difference between the supervised training days
and the non-supervised days off (Table 2).

Table 2. Results of the study.

Variable Training Days (n = 26) Off Days (n = 26) p

Steps (n) Median [IQR] 9153 [7744–12,524] 8421 [5668–12,552]
0.57 *Mean (SD) 10,428 (3323) 9859 (5287)

Active time (min)
Median [IQR] 110 [76–128] 119 [65–140]

0.75 *Mean (SD) 112 (64) 117 (76)

Time lying (min) Median [IQR] 492 [444–526] 480 [449–547]
0.77 **Mean (SD) 490 (63) 486 (76)

Energy
expenditure (kcal)

Median [IQR] 2616 [2089–2899] 2491 [2011–2812]
0.58 **Mean (SD) 2517 (455) 2560 (646)

* According to Wilcoxon test, ** according to t-Student test. IQR: interquartile range.

The mean duration of physical activity > 3 METs was 112 min, which corresponds
to the protocol of physical activity during supervised training days. Physical activity on
non-supervised days must, therefore, have been generated by physical activities generating
an energy expenditure greater than a leisurely walk.

Analysis of the results showed no statistically significant differences between the
consecutive days of the study for all variables (Figure 2).

Figure 2. Examined parameters on consecutive days of the study.
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4. Discussion

This study aimed to investigate the level of physical activity during four days of
participation in the pulmonary rehabilitation program of patients with COPD and to
compare non-supervised days (weekend) with supervised training days (weekdays). We
hypothesized that the patients on non-supervised days will engage in less physical activity.
The results showed no significant differences in physical activity levels between supervised
and non-supervised days, expressed in energy expenditure (kcal), as well as time spent in
moderate physical activity (>3 METs) or spent in a lying position. Thus, the results do not
support the hypothesis. Moreover, there were no significant differences in the number of
steps between supervised and non-supervised days. These results indicate similar levels of
physical activity both on the weekdays and on the weekend. This type of control allows
us to assess the involvement of people undergoing rehabilitation at a time when no one
supervises them, which in turn is important in the context of the effectiveness of the entire
treatment process. Thus, our results are of great clinical importance, it has been shown
that modifications to patient behavior that enhance adherence to health-enhancing patient
behavior and increase activity levels in everyday life [49] are key factors to maintaining the
improved physical capacity achieved through participation in pulmonary rehabilitation. To
our best knowledge, to date, this is the first study evaluating energy expenditure during two
distinct activities: supervised activity during the pulmonary program and non-supervised
days in patients with COPD during a 3 week, in-hospital, rehabilitation program.

Lahham et al. compared levels of physical activity during center- and home-based
pulmonary rehabilitation in people with COPD using the SenseWear Armband device [50].
Differences in time spent in total physical activity (≥1.5 METs), time spent in moderate
to vigorous–intensity physical activity (≥3 METs), and steps were compared. Home
rehabilitation participants engaged in a mean of 310 (199–328) min per day of physical
activity (29% moderate- to high-intensity physical activity) when compared to center-based
rehabilitation participants who spent a mean of 300 (204–370) min per day (28% moderate-
to high-intensity physical activity, p = 0.98). The daily number of steps did not differ
between groups; home rehabilitation: 5232 [2067–7718], while for in-center rehabilitation,
it was 4049 [1983–6040], p = 0.66). In our study, we noted a higher number of steps taken
by patients. However, it is difficult to compare the time spent on physical activity because
we assumed different levels of minimum energy expenditure, in our study ≥3 METs, while
Lahham et al. [50] used ≥1.5 METs.

Ward et al. utilized a different type of activity monitor in their study, i.e., the Fitbit
Zip. It was used in the study to measure the number of steps during a 6 week pulmonary
rehabilitation intervention. The number of total steps taken per day between week 1 and
week 6 of the intervention increased by 20% (week 1: 3565 [95% confidence interval (CI)
2779–4351] vs. week 6: 4447 [95% CI 3333–5561] steps/day, p = 0.036), whereas the number
of steps taken during the recommended pulmonary rehabilitation exercise increased by 56%
(week 1: 595 [95% CI 397–793] week 6: 927 [95% CI 599–1256] steps per day, p = 0.009) [51].
Geidl et al. analyzed a sample of 326 patients with COPD and their level of physical activity
and time spent sitting during the 8 days before the pulmonary rehabilitation program
using the ActiGraph wGT3X device [52]. The study group was divided into four subgroups
based on time spent sitting and physical activity intensity. The daily step counts in that
study ranged from 2749 (sedentary non-movers) to 5649 (sedentary occasional movers), to
7866 (sedentary movers), to 11,045 (sedentary exercisers). All four subgroups had a long
sedentary daily routine (7.5–10.75 h). The mean age of the study group was 58 years, and
most of the subjects were professionally active, most probably because of this, the daily
step count results met the recommendations for patients with COPD who need to achieve
>4580 steps per day [53] to avoid severe physical inactivity. The results show that patients
with COPD have different levels of physical activity in free-living conditions. However,
most patients with COPD spend a significant and unhealthy portion of their daily lives
engaging in sedentary behavior.
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A non-supervised method for stimulating patients with COPD to increase their physi-
cal activity levels in free-living conditions was presented by the Urban Training™ Study
Group [23,54,55]. First, urban walking trails of different intensities and in different types of
public spaces (e.g., beach or park) were designed and validated [54]. Afterward, a random-
ized controlled trial of 407 patients with COPD was performed, in which the intervention
group was advised to walk on the developed urban trails but without any supervision.
These patients furthermore received a pedometer and personalized calendar to monitor
their physical activity, in combination with other behavioral strategies for increasing their
physical activity levels (i.e., physical activity brochure, website, phone text messages, walk-
ing groups, and a phone number). This intervention was implemented for 12 months and
proved to be efficacious in increasing physical activity levels, quantified by the amount of
steps per day over the course of a week, in patients with COPD [55].

Based on the above-mentioned studies, the first attempts have already been made
to assess the accurate estimation of physical activity levels of patients with COPD in
either a supervised or non-supervised setting. However, another aspect seems to be the
development of technology for this kind of study. Regarding the second objective of the
study, i.e., the strengths and weaknesses of such kinds of sensors, the subjective acceptance
by patients of such a monitoring system was noted. Patients indicated in their final reports
that they were unaware of wearing the sensor, except when they over-tightened the device
on the attachment strap after bathing. However, the authors noted a high frequency of
returning dirty devices. In our opinion, this indicates that patients did not wash the devices,
although at the beginning of the study participants were informed about the possibility of
washing with warm water the part of the sensors that are directly attached to the skin.

McNamara et al. evaluated the comfort of the SenseWear armband on a group of
patients with COPD [35]. Results indicate that adverse effects may occur during the
use of the device, most commonly in the form of skin itching, redness, and bruising.
Moreover, 17% reported that the device was uncomfortable to wear at night, and 11%
reported that it was uncomfortable to wear during the day. Despite this, compliance in
wearing the SenseWear armband over 7 days was very high in this study (92%). Similarly,
a one week observational study of patients with COPD reported no issues with using the
SenseWear armband to provide contextual information about physical activity and sleep
over the course of 7 days [56]. In a prospective study at three Northern European sites, the
SenseWear armband was used to assess physical activity levels over 6 consecutive days in
134 patients with COPD and 46 controls. The authors defined a valid measurement period
as a wearing time higher than 22 h per day, on at least 5 days. Excellent compliance with
wearing the SenseWear armband was reported, with at least 94% of the patients in the three
different sites having a valid measurement period [57].

An international team of investigators sought to validate six physical activity monitors
in patients with COPD against a gold standard of indirect calorimetry in the form of oxygen
uptake data from a portable metabolic system. The study used single-axis accelerometers:
Kenz Lifecorder Plus and Actiwatch, and triaxial accelerometers: RT3, ActiGraph GT3X,
DynaPort® MiniMod, and SenseWear Armband. The study concluded that triaxial activity
monitors were the best monitors to assess intensity physical activity for patients with
COPD [58]. Patel et al. suggest that the SenseWear Pro armband may be a useful tool for
assessing physical activity levels during therapeutic interventions [38]. Cavalheri et al.
found it useful for assessing total energy expenditure during activities of daily living
in patients with COPD [59]. Our observations support this conclusion. We noted 87%
adherence to the study, where it was possible to obtain more than 95% of patient monitoring
on 4 consecutive days. The individuals who were lost returned the device within the
designated timeframe, but the device wear rate was below the accepted threshold. Visual
assessment of the charts of these individuals indicated that the device was usually left in
place for several hours, usually the evening hours (5–10 pm). In the authors’ speculations,
it seems possible that these actions were intentional, as there were pieces of information to
hospital staff that patients attended “informal” evening meetings. As an alternative to the
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SenseWear armband, the Polar A300™ can be worn as a wrist device similar to a watch.
Boeselt et al. compared the two devices in regards to the number of steps, burned calories,
daily activity time, and metabolic equivalents in patients with COPD over 3 days of daily
life [60]. Data analysis over 3 days showed that 90% of the steps (95% CI over/under
the means between Polar A300™ and SWA −4223–1887), 100% of the calories (95% CI
−2798–1887), 90% of the daily activity data (95% CI −12.32–4065), and 95% of the MET
(95% CI −3.11–2.75) were within the limits of agreement. The A300™ device is no worse
at assessing physical activity time, step count, and calorie consumption in patients with
COPD compared to SenseWear Armband.

Technological advances have, furthermore, allowed the combination of measurements
of physical activity with other (physiological) measurements, such as heart rate. Joosen et al.
implemented such a mobile health system, consisting of a smartphone and heart rate
monitor, in a care home setting for 10 weeks [61]. Triaxial accelerometry data from the
smartphone were converted into interpretable activity (e.g., steps per hour, time walking,
walking distance) and stride (e.g., stride duration, stride speed, stride displacement)
features, while heart rate measurements were converted into interpretable heart rate
features (e.g., median heart rate, minimal heart rate, time constant of heart rate increase).
Participants received weekly feedback about their activity and heart rate features. The
implementation of this mobile health system was associated with increased physical activity
levels during the first 5 weeks of the study, after which physical activity levels starting
declining again. In addition, the calculated features were converted into a fitness score,
which could predict the outcome of more labor-intensive exercise tests.

More recently, the combination of physical activity and heart rate measurements has
been used to address the current COVID-19 pandemic. Quer et al. were able to discriminate
between COVID-19 symptomatic positive and negative cases (area under the curve of 0.80)
by combining self-reported symptoms with measurements of physical activity, sleep and
heart rate [62]. Natarajan et al. obtained an area under the curve of 0.77 for the prediction of
illness on a specific day, based on measurements with a Fitbit for that day and the preceding
4 days [63]. Mishra et al. observed that 26 out of 32 individuals who were infected with
COVID-19 had alterations in their daily steps, time asleep, or heart rate [64]. These studies
show that measurements with wearable sensors could be used for the early detection of
COVID-19.

To the best of our knowledge, our study is the first to explore the weekday-to-weekend
physical activity level among patients with COPD during in-hospital pulmonary rehabilita-
tion. Although this study provides encouraging results, we recognize that some limitations
should be considered. Firstly, the research included a small study group. Secondly, the
number of observation days could be extended. Investigating only one weekend may intro-
duce bias in the results since physical activity may have been influenced by, for example,
good weather conditions. Finally, energy expenditure was assessed using a commercial
activity monitor and stimulated estimation of energy expenditure using machine learning
on multimodal data. To accurately measure the energy expenditure, there are methods such
as doubly labeled water and direct and indirect calorimetry, but their cost and practical
limitations make them suitable only for stationary research and professional sports.

5. Conclusions

Interest in objective measures of physical activity in patients with COPD due to the
close relationship between physical activity levels and exercise tolerance, disease symptoms,
disability incidence, and mortality continues to rise. Therefore, it seems beneficial to use
available physical activity monitors in patients with COPD, as measurable parameters
provide feedback that may increase the patient’s motivation to be active to achieve health
benefits. Portable, lightweight, skin sensors mounted on the arm or wrist appear to provide
adequate comfort and meaningful measurements to monitor and modify patient behavior
to enhance adherence to health-enhancing patient behavior and increase activity level in
everyday life.

105



Sensors 2021, 21, 2742

Author Contributions: Conceptualization, S.R.; methodology, S.R.; formal analysis, S.R., J.B., and
B.C.; investigation, A.R.; resources, J.S.; writing—original draft preparation, S.R.; writing—review
and editing, S.R., J.B., A.R., B.C., and J.S.; supervision, J.S.; project administration, S.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by Bioethics Committee of the Opole Chamber of Physicians
on the basis of Resolution No. 199 of 07 February 2013.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: J.B. reports grants from the European Respiratory Society (ERS Long-Term
Research Fellowship 2020) and other support from the Spanish Ministry of Science and Innovation
through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S) and the
Generalitat de Catalunya through the CERCA program, during the conduct of the study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alfarroba, S.; Rodrigues, F.; Papoila, A.L.; Santos, A.F.; Morais, L. Pulmonary Rehabilitation in COPD According to Global
Initiative for Chronic Obstructive Lung Disease Categories. Respir. Care 2016, 61, 1331–1340. [CrossRef]

2. Jobst, B.J.; Owsijewitsch, M.; Kauczor, H.U.; Biederer, J.; Ley, S.; Becker, N.; Kopp-Schneider, A.; Delorme, S.; Heussel, C.P.;
Puderbach, M.; et al. GOLD stage predicts thoracic aortic calcifications in patients with COPD. Exp. Ther. Med. 2019, 17, 967–973.
[CrossRef]

3. Bentsen, S.B.; Rustoen, T.; Miaskowski, C. Prevalence and characteristics of pain in patients with chronic obstructive pulmonary
disease compared to the Norwegian general population. J. Pain 2011, 12, 539–545. [CrossRef] [PubMed]

4. Butcher, S.J.; Meshke, J.M.; Sheppard, M.S. Reductions in functional balance, coordination, and mobility measures among patients
with stable chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. 2004, 24, 274–280. [CrossRef] [PubMed]

5. Al-Shair, K.; Kolsum, U.; Singh, D.; Vestbo, J. The Effect of Fatigue and Fatigue Intensity on Exercise Tolerance in Moderate COPD.
Lung 2016, 194, 889–895. [CrossRef]

6. Langer, D.; Demeyer, H. Interventions to modify physical activity in patients with COPD: Where do we go from here? Eur. Respir.
J. 2016, 48, 14–17. [CrossRef] [PubMed]

7. Theander, K.; Unosson, M. Fatigue in patients with chronic obstructive pulmonary disease. J. Adv. Nurs. 2004, 45, 172–177.
[CrossRef]

8. Peters, J.B.; Heijdra, Y.F.; Daudey, L.; Boer, L.M.; Molema, J.; Dekhuijzen, P.N.; Schermer, T.R.; Vercoulen, J.H. Course of normal
and abnormal fatigue in patients with chronic obstructive pulmonary disease, and its relationship with domains of health status.
Patient Educ. Couns. 2011, 85, 281–285. [CrossRef]

9. Wong, C.J.; Goodridge, D.; Marciniuk, D.D.; Rennie, D. Fatigue in patients with COPD participating in a pulmonary rehabilitation
program. Int. J. Chron. Obstruct Pulmon. Dis. 2010, 5, 319–326. [CrossRef]

10. Troosters, T.; Sciurba, F.; Battaglia, S.; Langer, D.; Valluri, S.R.; Martino, L.; Benzo, R.; Andre, D.; Weisman, I.; Decramer, M.
Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir. Med. 2010, 104, 1005–1011. [CrossRef]

11. Watz, H.; Waschki, B.; Meyer, T.; Magnussen, H. Physical activity in patients with COPD. Eur. Respir. J. 2009, 33, 262–272.
[CrossRef]

12. Tudor-Locke, C.; Hart, T.L.; Washington, T.L. Expected values for pedometer-determined physical activity in older populations.
Int. J. Behav. Nutr. Phys. Act. 2009, 6, 59. [CrossRef]

13. Arne, M.; Janson, C.; Janson, S.; Boman, G.; Lindqvist, U.; Berne, C.; Emtner, M. Physical activity and quality of life in subjects
with chronic disease: Chronic obstructive pulmonary disease compared with rheumatoid arthritis and diabetes mellitus. Scand. J.
Prim. Health Care 2009, 27, 141–147. [CrossRef] [PubMed]

14. van Helvoort, H.A.; Willems, L.M.; Dekhuijzen, P.R.; van Hees, H.W.; Heijdra, Y.F. Respiratory constraints during activities in
daily life and the impact on health status in patients with early-stage COPD: A cross-sectional study. NPJ Prim. Care Respir. Med.
2016, 26, 16054. [CrossRef] [PubMed]

15. Pitta, F.; Troosters, T.; Spruit, M.A.; Probst, V.S.; Decramer, M.; Gosselink, R. Characteristics of physical activities in daily life in
chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005, 171, 972–977. [CrossRef] [PubMed]

16. Park, S.K.; Richardson, C.R.; Holleman, R.G.; Larson, J.L. Physical activity in people with COPD, using the National Health and
Nutrition Evaluation Survey dataset (2003–2006). Heart Lung 2013, 42, 235–240. [CrossRef]

106



Sensors 2021, 21, 2742

17. Donaire-Gonzalez, D.; Gimeno-Santos, E.; Balcells, E.; Rodriguez, D.A.; Farrero, E.; de Batlle, J.; Benet, M.; Ferrer, A.; Barbera, J.A.;
Gea, J.; et al. Physical activity in COPD patients: Patterns and bouts. Eur. Respir. J. 2013, 42, 993–1002. [CrossRef] [PubMed]

18. Garcia-Aymerich, J.; Lange, P.; Benet, M.; Schnohr, P.; Anto, J.M. Regular physical activity reduces hospital admission and
mortality in chronic obstructive pulmonary disease: A population based cohort study. Thorax 2006, 61, 772–778. [CrossRef]
[PubMed]

19. Vaes, A.W.; Garcia-Aymerich, J.; Marott, J.L.; Benet, M.; Groenen, M.T.; Schnohr, P.; Franssen, F.M.; Vestbo, J.; Wouters, E.F.; Lange,
P.; et al. Changes in physical activity and all-cause mortality in COPD. Eur. Respir. J. 2014, 44, 1199–1209. [CrossRef] [PubMed]

20. Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.;
Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all
cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [CrossRef]

21. Watz, H.; Pitta, F.; Rochester, C.L.; Garcia-Aymerich, J.; ZuWallack, R.; Troosters, T.; Vaes, A.W.; Puhan, M.A.; Jehn, M.;
Polkey, M.I.; et al. An official European Respiratory Society statement on physical activity in COPD. Eur. Respir. J. 2014, 44,
1521–1537. [CrossRef]

22. Gimeno-Santos, E.; Frei, A.; Steurer-Stey, C.; de Batlle, J.; Rabinovich, R.A.; Raste, Y.; Hopkinson, N.S.; Polkey, M.I.;
van Remoortel, H.; Troosters, T.; et al. Determinants and outcomes of physical activity in patients with COPD: A systematic
review. Thorax 2014, 69, 731–739. [CrossRef]

23. Arbillaga-Etxarri, A.; Gimeno-Santos, E.; Barberan-Garcia, A.; Benet, M.; Borrell, E.; Dadvand, P.; Foraster, M.; Marin, A.;
Monteagudo, M.; Rodriguez-Roisin, R.; et al. Socio-environmental correlates of physical activity in patients with chronic
obstructive pulmonary disease (COPD). Thorax 2017, 72, 796–802. [CrossRef] [PubMed]

24. Li, W.; Pu, Y.; Meng, A.; Zhi, X.; Xu, G. Effectiveness of pulmonary rehabilitation in elderly patients with COPD: A systematic
review and meta-analysis of randomized controlled trials. Int. J. Nurs. Pract. 2019, 25, e12745. [CrossRef]

25. Salcedo, P.A.; Lindheimer, J.B.; Klein-Adams, J.C.; Sotolongo, A.M.; Falvo, M.J. Effects of Exercise Training on Pulmonary Function
in Adults with Chronic Lung Disease: A Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2018, 99,
2561–2569.e2567. [CrossRef]

26. Neves, L.F.; Reis, M.H.; Plentz, R.D.; Matte, D.L.; Coronel, C.C.; Sbruzzi, G. Expiratory and expiratory plus inspiratory muscle
training improves respiratory muscle strength in subjects with COPD: Systematic review. Respir. Care 2014, 59, 1381–1388.
[CrossRef]

27. Liao, W.H.; Chen, J.W.; Chen, X.; Lin, L.; Yan, H.Y.; Zhou, Y.Q.; Chen, R. Impact of Resistance Training in Subjects With COPD: A
Systematic Review and Meta-Analysis. Respir. Care 2015, 60, 1130–1145. [CrossRef]

28. Ko, F.W.; Dai, D.L.; Ngai, J.; Tung, A.; Ng, S.; Lai, K.; Fong, R.; Lau, H.; Tam, W.; Hui, D.S. Effect of early pulmonary rehabilitation
on health care utilization and health status in patients hospitalized with acute exacerbations of COPD. Respirology 2011, 16,
617–624. [CrossRef]

29. Revitt, O.; Sewell, L.; Morgan, M.D.; Steiner, M.; Singh, S. Short outpatient pulmonary rehabilitation programme reduces
readmission following a hospitalization for an exacerbation of chronic obstructive pulmonary disease. Respirology 2013, 18,
1063–1068. [CrossRef]

30. Jacome, C.; Marques, A. Short- and Long-term Effects of Pulmonary Rehabilitation in Patients with Mild COPD: A Comparison
with Patients With Moderate to Severe Copd. J. Cardiopulm. Rehabil. Prev. 2016, 36, 445–453. [CrossRef]

31. Mantoani, L.C.; Rubio, N.; McKinstry, B.; MacNee, W.; Rabinovich, R.A. Interventions to modify physical activity in patients with
COPD: A systematic review. Eur. Respir. J. 2016, 48, 69–81. [CrossRef]

32. Troosters, T.; van der Molen, T.; Polkey, M.; Rabinovich, R.A.; Vogiatzis, I.; Weisman, I.; Kulich, K. Improving physical activity in
COPD: Towards a new paradigm. Respir. Res. 2013, 14, 115. [CrossRef]

33. Pitta, F.; Troosters, T.; Probst, V.S.; Spruit, M.A.; Decramer, M.; Gosselink, R. Quantifying physical activity in daily life with
questionnaires and motion sensors in COPD. Eur. Respir. J. 2006, 27, 1040–1055. [CrossRef]

34. Fruin, M.L.; Rankin, J.W. Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med. Sci. Sports
Exerc. 2004, 36, 1063–1069. [CrossRef]

35. McNamara, R.J.; Tsai, L.L.; Wootton, S.L.; Ng, L.W.; Dale, M.T.; McKeough, Z.J.; Alison, J.A. Measurement of daily physical
activity using the SenseWear Armband: Compliance, comfort, adverse side effects and usability. Chron. Respir. Dis. 2016, 13,
144–154. [CrossRef]

36. Laeremans, M.; Dons, E.; Avila-Palencia, I.; Carrasco-Turigas, G.; Orjuela, J.P.; Anaya, E.; Brand, C.; Cole-Hunter, T.; de Nazelle,
A.; Gotschi, T.; et al. Physical activity and sedentary behaviour in daily life: A comparative analysis of the Global Physical
Activity Questionnaire (GPAQ) and the SenseWear armband. PLoS ONE 2017, 12, e0177765. [CrossRef]

37. Plasqui, G.; Joosen, A.M.; Kester, A.D.; Goris, A.H.; Westerterp, K.R. Measuring free-living energy expenditure and physical
activity with triaxial accelerometry. Obes. Res. 2005, 13, 1363–1369. [CrossRef]

38. Patel, S.A.; Benzo, R.P.; Slivka, W.A.; Sciurba, F.C. Activity monitoring and energy expenditure in COPD patients: A validation
study. COPD 2007, 4, 107–112. [CrossRef]

39. World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human
subjects. JAMA 2013, 310, 2191–2194. [CrossRef]

107



Sensors 2021, 21, 2742

40. Greulich, T.; Koczulla, A.R.; Nell, C.; Kehr, K.; Vogelmeier, C.F.; Stojanovic, D.; Wittmann, M.; Schultz, K. Effect of a Three-Week
Inpatient Rehabilitation Program on 544 Consecutive Patients with Very Severe COPD: A Retrospective Analysis. Respiration
2015, 90, 287–292. [CrossRef]

41. Rutkowski, S.; Rutkowska, A.; Jastrzebski, D.; Racheniuk, H.; Pawelczyk, W.; Szczegielniak, J. Effect of Virtual Reality-Based
Rehabilitation on Physical Fitness in Patients with Chronic Obstructive Pulmonary Disease. J. Hum. Kinet 2019, 69, 149–157.
[CrossRef]

42. Rutkowska, A.; Jastrzebski, D.; Rutkowski, S.; Zebrowska, A.; Stanula, A.; Szczegielniak, J.; Ziora, D.; Casaburi, R. Exercise
Training in Patients With Non-Small Cell Lung Cancer During In-Hospital Chemotherapy Treatment: A RANDOMIZED
CONTROLLED TRIAL. J. Cardiopulm. Rehabil. Prev. 2019, 39, 127–133. [CrossRef] [PubMed]

43. Jastrzebski, D.; Zebrowska, A.; Rutkowski, S.; Rutkowska, A.; Warzecha, J.; Ziaja, B.; Palka, A.; Czyzewska, B.; Czyzewski, D.;
Ziora, D. Pulmonary Rehabilitation with a Stabilometric Platform after Thoracic Surgery: A Preliminary Report. J. Hum. Kinet.
2018, 65, 79–87. [CrossRef] [PubMed]

44. Szczegielniak, J.; Latawiec, K.J.; Luniewski, J.; Stanislawski, R.; Bogacz, K.; Krajczy, M.; Rydel, M. A study on nonlinear estimation
of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation. PLoS ONE
2018, 13, e0191875. [CrossRef] [PubMed]

45. Johannsen, D.L.; Calabro, M.A.; Stewart, J.; Franke, W.; Rood, J.C.; Welk, G.J. Accuracy of armband monitors for measuring daily
energy expenditure in healthy adults. Med. Sci. Sports Exerc. 2010, 42, 2134–2140. [CrossRef] [PubMed]

46. Demeyer, H.; Burtin, C.; Van Remoortel, H.; Hornikx, M.; Langer, D.; Decramer, M.; Gosselink, R.; Janssens, W.; Troosters, T.
Standardizing the analysis of physical activity in patients with COPD following a pulmonary rehabilitation program. Chest 2014,
146, 318–327. [CrossRef] [PubMed]

47. Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [CrossRef]
48. Van Belle, G. Statistical Rules of Thumb. 2008. Willey. Available online: https://www.wiley.com/en-us/Statistical+Rules+of+

Thumb%2C+2nd+Edition-p-9780470144480 (accessed on 26 February 2021).
49. Cruz, J.; Brooks, D.; Marques, A. Walk2Bactive: A randomised controlled trial of a physical activity-focused behavioural

intervention beyond pulmonary rehabilitation in chronic obstructive pulmonary disease. Chron. Respir. Dis. 2016, 13, 57–66.
[CrossRef] [PubMed]

50. Lahham, A.; McDonald, C.F.; Mahal, A.; Lee, A.L.; Hill, C.J.; Burge, A.T.; Cox, N.S.; Moore, R.; Nicolson, C.; O’Halloran, P.; et al.
Participation in Physical Activity During Center and Home-Based Pulmonary Rehabilitation for People With COPD: A Secondary
Analysis of a Randomized Controlled Trial. J. Cardiopulm. Rehabil. Prev. 2019, 39, E1–E4. [CrossRef]

51. Ward, S.; Orme, M.; Zatloukal, J.; Singh, S. Adherence to walking exercise prescription during pulmonary rehabilitation in COPD
with a commercial activity monitor: A feasibility trial. BMC Pulm. Med. 2021, 21, 30. [CrossRef]

52. Geidl, W.; Carl, J.; Cassar, S.; Lehbert, N.; Mino, E.; Wittmann, M.; Wagner, R.; Schultz, K.; Pfeifer, K. Physical Activity and
Sedentary Behaviour Patterns in 326 Persons with COPD before Starting a Pulmonary Rehabilitation: A Cluster Analysis. J. Clin.
Med. 2019, 8, 1346. [CrossRef]

53. Depew, Z.S.; Novotny, P.J.; Benzo, R.P. How many steps are enough to avoid severe physical inactivity in patients with chronic
obstructive pulmonary disease? Respirology 2012, 17, 1026–1027. [CrossRef]

54. Arbillaga-Etxarri, A.; Torrent-Pallicer, J.; Gimeno-Santos, E.; Barberan-Garcia, A.; Delgado, A.; Balcells, E.; Rodriguez, D.A.;
Vilaro, J.; Vall-Casas, P.; Irurtia, A.; et al. Validation of Walking Trails for the Urban Training of Chronic Obstructive Pulmonary
Disease Patients. PLoS ONE 2016, 11, e0146705. [CrossRef]

55. Arbillaga-Etxarri, A.; Gimeno-Santos, E.; Barberan-Garcia, A.; Balcells, E.; Benet, M.; Borrell, E.; Celorrio, N.; Delgado, A.; Jane, C.;
Marin, A.; et al. Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban
Training) to increase physical activity in patients with COPD: A randomised controlled trial. Eur. Respir. J. 2018, 52, 1800063.
[CrossRef]

56. Buekers, J.; Theunis, J.; De Boever, P.; Vaes, A.W.; Koopman, M.; Janssen, E.V.; Wouters, E.F.; Spruit, M.A.; Aerts, J.M. Wearable
Finger Pulse Oximetry for Continuous Oxygen Saturation Measurements During Daily Home Routines of Patients With Chronic
Obstructive Pulmonary Disease (COPD) Over One Week: Observational Study. JMIR Mhealth Uhealth 2019, 7, e12866. [CrossRef]
[PubMed]

57. Waschki, B.; Spruit, M.A.; Watz, H.; Albert, P.S.; Shrikrishna, D.; Groenen, M.; Smith, C.; Man, W.D.; Tal-Singer, R.; Edwards, L.D.;
et al. Physical activity monitoring in COPD: Compliance and associations with clinical characteristics in a multicenter study.
Respir. Med. 2012, 106, 522–530. [CrossRef] [PubMed]

58. Van Remoortel, H.; Raste, Y.; Louvaris, Z.; Giavedoni, S.; Burtin, C.; Langer, D.; Wilson, F.; Rabinovich, R.; Vogiatzis, I.; Hopkinson,
N.S.; et al. Validity of six activity monitors in chronic obstructive pulmonary disease: A comparison with indirect calorimetry.
PLoS ONE 2012, 7, e39198. [CrossRef]

59. Cavalheri, V.; Donaria, L.; Ferreira, T.; Finatti, M.; Camillo, C.A.; Cipulo Ramos, E.M.; Pitta, F. Energy expenditure during daily
activities as measured by two motion sensors in patients with COPD. Respir. Med. 2011, 105, 922–929. [CrossRef] [PubMed]

60. Boeselt, T.; Spielmanns, M.; Nell, C.; Storre, J.H.; Windisch, W.; Magerhans, L.; Beutel, B.; Kenn, K.; Greulich, T.; Alter, P.; et al.
Validity and Usability of Physical Activity Monitoring in Patients with Chronic Obstructive Pulmonary Disease (COPD). PLoS
ONE 2016, 11, e0157229. [CrossRef]

108



Sensors 2021, 21, 2742

61. Joosen, P.; Piette, D.; Buekers, J.; Taelman, J.; Berckmans, D.; De Boever, P. A smartphone-based solution to monitor daily physical
activity in a care home. J. Telemed. Telecare 2019, 25, 611–622. [CrossRef] [PubMed]

62. Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable
sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2021, 27, 73–77. [CrossRef]

63. Natarajan, A.; Su, H.W.; Heneghan, C. Assessment of physiological signs associated with COVID-19 measured using wearable
devices. NPJ Digit. Med. 2020, 3, 156. [CrossRef]

64. Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.;
et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [CrossRef]

109





sensors

Article

HRV Features as Viable Physiological Markers for Stress
Detection Using Wearable Devices

Kayisan M. Dalmeida and Giovanni L. Masala *

Citation: Dalmeida, K.M.; Masala,

G.L. HRV Features as Viable

Physiological Markers for Stress

Detection Using Wearable Devices.

Sensors 2021, 21, 2873. https://

doi.org/10.3390/s21082873

Academic Editor: Maria de Fátima

Domingues

Received: 24 March 2021

Accepted: 14 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M15 6BH, UK;
kayisan.m.dalmeida@stu.mmu.ac.uk
* Correspondence: g.masala@mmu.ac.uk; Tel.: +44-(0)161-247-1407

Abstract: Stress has been identified as one of the major causes of automobile crashes which then
lead to high rates of fatalities and injuries each year. Stress can be measured via physiological
measurements and in this study the focus will be based on the features that can be extracted by
common wearable devices. Hence, the study will be mainly focusing on heart rate variability (HRV).
This study is aimed at investigating the role of HRV-derived features as stress markers. This is
achieved by developing a good predictive model that can accurately classify stress levels from
ECG-derived HRV features, obtained from automobile drivers, by testing different machine learning
methodologies such as K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multilayer
Perceptron (MLP), Random Forest (RF) and Gradient Boosting (GB). Moreover, the models obtained
with highest predictive power will be used as reference for the development of a machine learning
model that would be used to classify stress from HRV features derived from heart rate measurements
obtained from wearable devices. We demonstrate that HRV features constitute good markers for stress
detection as the best machine learning model developed achieved a Recall of 80%. Furthermore, this
study indicates that HRV metrics such as the Average of normal-to-normal (NN) intervals (AVNN),
Standard deviation of the average NN intervals (SDNN) and the Root mean square differences
of successive NN intervals (RMSSD) were important features for stress detection. The proposed
method can be also used on all applications in which is important to monitor the stress levels in a
non-invasive manner, e.g., in physical rehabilitation, anxiety relief or mental wellbeing.

Keywords: stress; wearable device; machine learning; smart watch; heart rate variability; electrocar-
diogram

1. Introduction

Stress can be defined as a biological and psychological response to a combination of
external or internal stressors [1,2], which could be a chemical or biological agent or an
environmental stimulus that causes stress to an organism [3]. Stress is, in essential, the
body’s coping mechanism to any kind of foreign demand or threat. At the molecular level,
in a stressful situation the Sympathetic Nervous System (SNS) produces stress hormones,
such as cortisol, which then, via a cascade of events, lead to the increase of available
sources of energy [4]. This large amount of energy is used to fuel a series of physiological
mechanisms such as: increasing the metabolic rate, increasing heart rate and causing the
dilation of blood vessels in the heart and other muscles [5], while decreasing non-essential
tasks such as immune system and digestion. Once stressors no longer impose a threat to
the body, the brain fires up the Parasympathetic Nervous System (PSN) which is in charge
of restoring the body to homeostasis. However, if the PSN fails to achieve homeostasis, this
could lead to chronic stress; thus, causing a continual and prolonged activation of the stress
response [6]. Conversely, during acute stress, the stress response develops immediately,
and it is short-lived.

Studies carried out in this field suggest that stress can lead to abnormalities in the
cardiac rhythm, and this could lead to arrythmia [7]. Additionally, stress does not only
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have physical implications, but it can also be detrimental to one’s mental health; in fact,
chronic stress can enhance the chances of developing depression. For these reasons, it is
important to develop a system that can detect and measure stress in an individual in a
non-invasive manner in such way that stress can be regulated or relieved via personalised
medical interventions or even by just alerting the user of their stressful state.

Furthermore, stress has been identified as one of the major causes of automobile
crashes which then lead to high rates of fatalities and injuries each year [8]. As reported
by Virginia Tech Transportation Institute (VTTI) and the National Highway Traffic Safety
Administration (NHTSA), lack of attention and stress were the leading cause of traffic
accidents in the US, with a rate of ~80%. Therefore, being able to accurately monitor stress
in drivers could significantly reduce the amount of road traffic accidents and consequently
increase public road safety.

Given that stress is regulated by the Autonomous Nervous System, it can be measured
via physiological measurements such as Electrocardiogram (ECG), Galvanic Skin Response
(GSR), electromyogram (EMG), heart rate variability (HRV), heart rate (HR), blood pressure,
breathe frequency, Respiration Rate and Temperature [9]. These are considered to be an
accurate methodology for bio signal recording as they cannot be masked or conditioned
by human voluntary actions. However, this study will be mainly focusing on HRV, which
is controlled by PSN and SNS; therefore, an imbalance in any functions regulated by
these two nervous system branches will affect HRV [10]. HRV is the variation in interval
between successive normal RR (or NN) intervals [11]; it is derived from an ECG reading
and it is measured by calculating the time interval between two consecutive peaks of
the heartbeats [12]. As explained in [11] the RR intervals are obtained by calculating the
difference between two R waves in the QRS complex.

HRV can be subdivided into time domain and frequency domain metrics as described
in Table 1.

Table 1. Time and Frequency Metrics derived from Heart Rate Variability.

Time Domain Metrics

SDNN Standard deviation of all NN intervals

SDANN Standard deviation of the average NN intervals

AVNN Average of NN intervals

RMSSD Square root of the mean squared differences of successive RR intervals

pNN50 Percentage differences of successive RR intervals larger than 50 ms

Frequency Domain Metrics

TP Total Power—total spectral power of all NN intervals up to 0.004 Hz

LF Low Frequency—total spectral power of all NN intervals with frequency
ranging from 0.04 Hz to 0.15 Hz

HF High Frequency—total spectral power of all NN intervals with frequency
ranging from 0.15 Hz to 0.4 Hz

VLF Very Low Frequency—total spectral power of all NN intervals with
frequencies >0.004 Hz

ULF Ultra-Low Frequency—total spectral power of all NN intervals with
frequencies <0.003 Hz

LF/HF Ratio of low to high frequency

HRV is traditionally obtained from ECG and requires the use of computational soft-
ware for calculation; this is a process is limited to laboratory or clinical settings and requires
a certain degree of technical knowledge for interpretation and calculation. Thanks to the ad-
vancement of technology, however, commercially available portable devices and wearables
have the capacity to monitor and record HRV measurements. Dobs et al. (2019) performed
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a systemic review and meta-analysis on the numerous studies that compared the quality
of HRV measurements acquired from ECG and obtained from portable devices, such as
Elite HRV, Polar H7 and Motorola Droid [13]. Twenty-three studies revealed that HRV
measurements obtained from portable devices resulted in a small amount of absolute error
when compared to ECG; however, this error is acceptable, as this method of acquiring HRV
is more practical and cost-effective, as no laboratory or clinical apparatus are required [13].

Furthermore, the Apple Watch is one of the most best-selling and popular smart-
watches in the market. Studies, carried out by Shcherbina and colleagues [14], demon-
strated that the Apple Watch was the best HR estimating smartwatch with one-minute
granularity and with the lowest overall median error (below 3%) while Samsung Gear S2
reported the highest error. In addition, it is also important to validate the HRV estimation
of the Apple Watch. Currently, the best way to obtain RR raw values from the Apple Watch
is via the Breathe app developed by Apple. Authors in [15] conducted an investigation
that validated the Apple Watch in relation to HRV measurements derived during mental
stress in 20 healthy subjects. In this study, the RR interval series provided by the Apple
watch was validated using the RR interval obtained from Polar H7 [15]. Successively, the
HRV parameters were compared and their ability to identify the Autonomous Nervous
System (ANS) response to mild mental stress was analysed [15]. The results revealed that
the Apple Watch HRV measurements had good reliability and the HRV parameters were
able to indicate changes caused by mild mental stress as it presented a significant decrease
in HF power and RMSSD in stress condition compared to the relax state [15]. Therefore,
this study suggests that the Apple Watch presents a potential non-invasive and reliable
tool for stress monitoring and detection. In this study, raw RR intervals, from beat-to-beat
measurements obtained from the Breathe app, are considered for stress classification.

This study is aimed at developing a good predictive model that can accurately classify
stress levels from ECG-derived HRV features, obtained from automobile drivers, testing
different machine learning methodologies such as K-Nearest Neighbour (KNN), Support
Vector Machines (SVM), Multilayer Perceptron (MLP), Random Forest (RF) and Gradient
Boosting (GB). Moreover, the models obtained with highest predictive power will be used
as a reference for the development of a machine learning model that would be used to
classify stress from HRV features derived from heart rate measurements obtained from
wearable devices in a unsupervised system-based web application.

The paper is organised as follows. Section 2 provides a discussion of related work
conducted in the literature. Section 3 describes the experimental methodology of the study,
including a description of the dataset, pre-processing, hyperparameter tuning and the
design protocol used for the development of a simple stress detection web application
based on Apple Watch derived data. Section 4 presents the experimental results and
Section 5 an intensive discussion of the results obtained. Lastly, Section 6 provides the
concluding remarks of the study, as well as proposed future work.

2. Related Work

As stress level changes so does the HRV and it has been proven that HRV decreases
as stress increases [11]. This is possible because HRV provides a measure to monitor the
activity of the ANS and, therefore, can provide a measure of stress [16]. Authors in [16]
explored the interaction between HRV and mental stress. Here they took ECG recordings
during rest and mental task conditions, which was meant to reflect a stressful state. Linear
HRV measures were then analysed in order to provide information on how the heart
responds to a stressful task. The results demonstrated that the mean RR interval was
significantly lower during a mental task than in the rest condition [16]. This difference
was significant only when time domain parameters (pNN50) and the mean RR interval
were analysed; while the frequency domain measure did not show a significant difference,
although there was an elevated LF/HF in the stressed condition [16]. As LF is associated
with the SNS and HF with PNS, the increased LF/HF ratio does suggest that there is a
higher sympathetic activity in the stress condition compared to the resting state [16].
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Furthermore, investigations have been carried out in order to accurately classify stress
in drivers via HRV measurements. For example, authors in [17] aimed to classify ECG
data using extracted parameters into highly stressed and normal physiological states of
drivers. In this study, they extracted time domain, frequency domain and nonlinear domain
parameters from HRV obtained by extracting RR intervals from QRS complexes. These
extracted features were fed into the following machine learning classifiers: K Nearest
Neighbor (KNN), radial basis function (RBF) and Support Vector Machine (SVM. The
results showed that SVM with RBF kernel gave the highest results, with 83.33% accuracy,
when applied to time and non-linear parameters, while giving an accuracy of 66.66% with
frequency parameter [17]. This was in concordance with the result obtained by [16] as
the frequency domain parameters did not give a significant difference between rest and
mental tasks.

In this study, instead of analysing how each HRV measure is affected by the onset of
stress, we took into consideration the combination of both time and frequency domain HRV
features and how these aid stress classification with the use of machine learning models.
The performance of the machine learning models was evaluated, taking into consideration
the following metrics: Area Under Receiver Operator Characteristic Curve (AUROC), Re-
call/Sensitivity and F1 score, without relying only on accuracy. Furthermore, we detected
stress in a non-invasive manner using the Apple Watch, from which we extracted heart
rate data, obtained from volunteers subjected to different mental state conditions.

3. Materials and Methods

3.1. Datasets

The first part of this study consists in the development of a good stress predictive
model from ECG-derived HRV measurements. The dataset used was collected at Mas-
sachusetts Institute of Technology (MIT) by Healey and Picard [18], which is freely available
from PhysioNet [19]. The dataset consists of a collection of multi-parameter recordings
obtained from 27 young and healthy individuals while they were driving on a desig-
nated route in the city and highways around Boston, Massachusetts. The driving protocol
involved a route that was planned to put the driver though different levels of stress; specif-
ically, the drive consisted of periods of rest, highway driving and city driving which were
presumed to induce low, medium and high stress, respectively [18]. This investigation
measured four types of physiological signals: ECG, EMG, GSR and respiration. The dataset
is available in the PhysioNet waveform format containing 18 .dat and 18 .hea files with a .txt
metadata file. Each bio-signal .dat file contains the original recording for ECG, EMG, GSR,
HR and Respiration. As the aim of this study is to classify stress based on HRV metrics,
a beat annotation file was created from .dat files by using the WQRS tool that works by
locating QRS complexes in the ECG signal using and gives an annotation file as the out-
put [20]. The annotation file serves the purpose of extracting RR intervals together with its
corresponding timestamp using the PhysioNet HRV toolkit. HRV features were extracted
from the RR intervals by splitting the dataset in windows of 30 s. Time domain features
were calculated using a C implementation that connects Python to the PhysioNet HRV
toolkit and by calling the get_hrv method which returns the HRV metrics. While frequency
domain metrics were obtained by applying the Lomb Periodogram which determines the
power spectrum at any given frequency [21]. GSR signals were used to determine and label
the stress states in drivers, as the marker in the dataset was mainly made of missing values.
The median GSR values were used as the cut-off point, thus, values above the median were
labelled as stress while the values below the median were labelled as no stress. For clarity
reasons, this dataset will be referred to as ‘original-dataset’.

The second portion of this investigation aimed to develop machine learning models
that would classify stress from HRV features derived from HRV measurements obtained
from the Apple Watch. For this purpose, data was collected from 4 Apple Watch users,
who were asked not to exercise or intake caffeine before and on the day of the experiment.
The volunteers were subjected to 2 different conditions. The first condition was a 15-min
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relaxation period where they listened to relaxing lo-fi music. The second was a stressful
condition experienced after an 8-h shift of work. Immediately after each task, the volunteers
were asked to record their beat-to-beat measurements 5 times, using the Apple Breathe App
available on their Apple Watch. The subjects were subjected to these two conditions on
separate days. Thanks to the Breathe App, it was possible to obtain raw RR intervals from
beat-to-beat measurements and all the data was accessible from the user’s Personal Health
Record, which can be exported in XML format via Apple’s Health App. The beat-to-beat
measurements of interests, mapped into the <InstantaneousBeatsPerMinute> tag, were
extracted from the XML file in Python using xml and pandas modules. Successively, the raw
RR intervals (in seconds) were derived from the beat per minute (bpm) readings using the
following equation:

RR =
60

bpm
(1)

Moreover, HRV features were extracted from the calculated RR intervals using the
NumPy library, for time domain, and the pyhrv library, specifically the frequency_domain
module and the Welch’s Method for frequency domain features [22]. This dataset will be
used as a blind test for the obtained classifier, in order to measure its predictive power on
unseen data; hence, this dataset will be referred to as a ‘blind-dataset’ throughout this paper.
The stress prediction of the blind-dataset was performed by a simple web application,
developed using Streamlit. This experimental procedure is illustrated in Figure 1.

 

Figure 1. Illustration of the experimental procedure followed for stress detection on data obtained from Apple Watch users.

3.1.1. Data Pre-Processing

Firstly, missing values in original-dataset were replaced with the mean value of each
column. Then the data was further split into training and testing datasets with an 80:20
(training:testing) split. From this point onwards, the testing and training data were treated
separately as different entities in order to prevent data overfitting and data leakage. Data
normalisation was done separately on the training and testing set instead of the whole
dataset that could leak information about the test into the train set. Normalisation was
performed using the scikit-learn library, where continuous values are rescaled in a range
between 0 and 1 with the aim of having all numeric columns in the same range, as there
are features that are in different ranges such as ECG, HR, EMG, seconds and HF.
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3.1.2. Feature Selection

Features were selected based on their relevance to the classification task that this
study proposed. This was accomplished using three techniques: Pearson’s Correlation,
Recursive Feature Elimination (RFE) [23] and Extra Tree Classifier [24], used to estimate
feature importance. The common least important features from each method were dropped
from both training and testing datasets; Figure 2 illustrates this process.

Figure 2. Flow chart illustrating the Feature Selection Process implemented in this study.

Pearson’s Correlation calculates the correlation coefficient between each feature and
the target class (stress) and this value ranges between −1 and 1. Low correlation is
represented by values close to 0, with 0 being no correlation, and high positive and negative
correlations are achieved with values closer to 1 and −1, respectively. In this study, relevant
features were chosen based on their highly positive and highly negative correlations with
the target. Feature Importance using Extra Trees Classifier, is an ensemble-based learning
algorithm that aggregates the results of multiple decision trees to output a classification
result [24]. In each decision, a Gini Importance of the feature is calculated which determines
the best feature to split the data on based on the Gini Index mathematical criteria. RFE
functions by recursively eliminating attributes and building the Linear Regression machine
learning model on the basis of the selected attributes. It then uses the accuracy of the model
that contributes the most to the predictive output of the algorithm. RFE will then rank each
feature based on importance with 1 being the most important.

As the second goal of this study was to develop a classification model that would
classify stress from data obtained from wearable devices, a ‘modified-dataset’ was created
from tailoring original-dataset to present features that were purely relevant to the attributes
calculated from the RR intervals recorded from the device. This also aimed to further
test the classifiers’ performance on a dataset resembling that generated from the wearable
device. Therefore, the relevant features for the modified-dataset were: HR, AVNN, SDNN,
RMSSD, pNN50, TP and VLF. The modified-dataset was also the reference dataset for the
stress detection application which was used to validate the predictive power of the trained
algorithms in a unsupervised system.
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3.2. Parameter Tuning

In order to achieve the most efficient classification model, hyper-parameter tuning was
performed on each algorithm used in this study to determine the best choice of parameters
that would yield the highest performance. After generating the baseline for each classifier,
where the parameters were set to their default values, a scikit-learn library [25] function
that loops through a set of predefined hyperparameters and fit the model on the training
set was used to perform parameter tuning. Different ranges of each parameter were used
in each grid. The outputs from the grid search are the best parameter combinations that
give the highest predictive performance which were then compared to their corresponding
baseline models. All algorithms in this study were created with the scikit-learn library.

3.2.1. K-Nearest Neighbour

K-Nearest Neighbour (KNN) performs classification based on the closest neighbouring
training points in a given region [26]; thus, the classification of new test data is dependent
on the number of neighbouring labelled examples present at that given location. In order
to obtain the best KNN classification model, different values for k (number of nearest
neighbours) and the p value (the power parameter equivalent to the Euclidean distance
or Manhattan distance) were investigated. The k values investigated ranged from 1 to 30
inclusive, while p values could either be 1 (Manhattan distance) or 2 (Euclidean distance).
The best parameter values resulted from the grid search are as follows: k = 25 and p = 1,
uniform weights was also selected meaning that all points in each neighbourhood are
weighted equally.

3.2.2. Support Vector Machine

The function of the Support Vector Machine (SVM) algorithm is to locate the hyper-
plane in N-dimensional space (where N represents the number of features) that classifies
the data instances into their corresponding class [27] The performance of this algorithm
is affected by hyperparameters such as the soft margin regularization parameter (C) and
kernel, a function that transforms low dimensional inputs space into a higher dimensional
space making the data linearly separable.

For the SVM classification model, different C values (0.001, 0.01, 0.1, 1, 10, 100 and
1000) and kernels, such as Linear kernel, Polynomial (poly) kernel and Gaussian Radial
Basis Function (RBF) kernel were tested. As RBF and poly kernel depends on the gamma
(γ, that determines the distance of influence of a single training point) and degree (the
degree used to find the hyperplane) parameters respectively, 3 grid searches were carried
out for each kernel with γ values of 0.001, 0.01, 0.1, 1, 10, 100 and 1000 and degree values
ranged from 1 to 6 inclusive. The best parameter settings resulted to be RBF kernel with
γ = 10 and C = 100.

3.2.3. Multilayer Perceptron

Multilayer Perceptron (MLP) is a feedforward artificial neural network that was
developed to circumvent the drawbacks and limitations imposed by the single-layer
perceptron [28]. MLPs are made of at least 3 layers of nodes (input layer, hidden layer and
output layer), where each node is connected to every node in the subsequent layer with
a certain weight. MLP’s performance, like other machine learning algorithms, is highly
dependent on hyperparameter tuning of the following parameters: learning rate coefficient
(h), momentum (μ) and the size of the hidden layer. h determines the size of the weight’s
adjustments made at each iteration; h values of 0.3, 0.25, 0.2, 0.15, 0.1, 0.1, 0.005, 0.01 and
0.001 were investigated in the grid search. μ controls the speed of training and learning
rate; this parameter was set to a range between 0 and 1 with intervals of 0.1. Finally, the
size of the hidden layer corresponds to the number of layers and neurones in the hidden
layer; the following hidden layer sizes were analysed (10, 30, 10), (4, 6, 3, 2), (20), (4, 6,
3), (10, 20) and (100, 100, 400), where each value represent the number of neurons at its
corresponding layer position. A configuration of h = 0.001, μ = 0.1 and three hidden layers
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of 100, 10 and 400 nodes, respectively, proved to be the optimal settings for the model
following the grid search.

3.2.4. Random Forest

Random Forest (RF) is an ensemble-based learning algorithm consisting of a combina-
tion of randomly generated decision tree classifiers, the results of which are aggregated
to obtain a better predictive performance [26]. Based on the parameter tuning grid search
performed, the optimal configuration for this algorithm was when the number of trees
in the forest (estimators) was set to 300, out of the values 1, 2, 3, 4, 8, 16, 32, 64 and
100 that were tested, with the maximum number of features set to the square root of the
total number of features, while the log base 2 of the number of features gave a lower
prediction performance.

3.2.5. Gradient Boosting

Gradient Boosting (GB) is also an ensemble-based algorithm composed of multiple
decision trees trained to predict new data and where each tree is dependent on one another.
This model, which is trained in a gradual, sequential and additive manner, is highly
dependent on the learning rate parameter that regulates the shrinkage of the contribution
of each tree to the model. The optimal value for this parameter was found to be 0.14 as
other learning rate values of 1, 0.5, 0.25, 0.1, 0.05 and 0.01 were also tested in the grid search.

A Naïve Bayes probabilistic algorithm [26] was used as the baseline model for perfor-
mance comparison between the other more complex algorithms. The configuration for this
model was kept as simple as possible by utilising the parameters in their default values as
presented by the GuassianNB python model.

Furthermore, in order to determine whether there were statistical differences between
the investigated models and the baseline model, a One-Way ANOVA statistical test with
Tukey’s post Hoc comparison was performed on the mean AUROC scores. The null and
alternate hypothesis formulated were:

Hypothesis 1 (H1). Null Hypothesis: The mean AUROC score for the compared 2 models
are equal.

Hypothesis 2 (H2). Alternative Hypothesis: The mean AUROC score for the 2 compared models
are not equal, at least AUROC value of one model is different from the other.

4. Results

All results, related to original-dataset and modified-dataset, are described in terms
of machine learning metrics such as Area Under Receiver Operator Characteristic Curve
(AUROC), Recall/Sensitivity and F1 score [26], including their standard deviation. Every
machine learning algorithm was run with a five-fold cross validation. Meanwhile, results
from stress classification from data obtained from the Apple Watch are expressed in terms
of prediction probability.

4.1. Feature Selection on Original-Dataset

Feature Selection was performed in order to determine the attributes in the dataset that
most contribute to the classification task. Figure 3 represents the heat map plot obtained
from Pearson’s Correlation. Feature selection scores from RFE, shown in Table 2, indicate
that the most relevant features are those with the lowest score. This also shows that the
best features (score of 1) were time domain HRV metrics such as RMSSD and AVNN, and
frequency domain metrics like TP and ULF, followed by SDNN with a score of 4 (Table 2).
Furthermore, Figure 4 illustrates a histogram of the feature importance scores based on
the Extra Trees Classifier. Figure 4 shows the Gini Importance of each feature, where the
greater the value, the greater the importance of the feature in stress classification.
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Figure 3. Heat map plot of Pearson’s Correlation Feature Selection performed on original-dataset.

 

Figure 4. Feature Importance of features from original-dataset using Extra Trees Classifier.119
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Table 2. RFE feature importance score on original-dataset, the most relevant features have the lowest
RFE score.

Feature RFE Score

EMG 1
HR 1

footGSR 1
handGSR 1

Interval in seconds 1
NNRR 1
AVNN 1
RMSSD 1

TP 1
ULF 1
RESP 2

marker 3
SDNN 4
LF_HF 5

LF 6
ECG 7

pNN50 8
HF 9

newtime 10
time 11
VLF 12

Seconds 13

The common features, from each method, that least contributed to classification or
that had the lowest score were dropped from the dataset; these were LF_HF, LF and HF.
Additionally, GSR attributes were also dropped because they presented a very strong
correlation with stress classification as these were used for stress labelling. Thus, in order to
avoid data leakage and overfitting, they were eliminated. Moreover, intuitively redundant
features were also dropped like the time related features marker, due to its high number of
missing values and EMG, given that it is irrelevant in the context of the smart watch.

4.2. Stress Classification on Original-Dataset

In this experiment, stress was classified from bio-signals obtained from subjects who
drove under different stress conditions. The results obtained from hyperparameter tuning,
illustrated in Table 3, showed that the three best models for the classification task imposed
by this dataset were MLP, RF and GB which yielded an AUROC of 83%, 85% and 85%
respectively. Thus, the models have more than 83% probability of correctly classifying
data instances.

Table 3. Comparison of the predictive performance of the best classifiers obtained from the grid
search (trained on original-dataset).

Algorithm AUROC Recall F1 Score

NB 0.60 ± 0.02 0.63 ± 0.04 0.61 ± 0.02
KNN 0.80 ± 0.01 0.76 ± 0.02 0.74 ± 0.01
SVM 0.81 ± 0.01 0.79 ± 0.03 0.77 ± 0.01
MLP 0.83 ± 0.01 0.81 ± 0.07 0.77 ± 0.02
RF 0.85 ± 0.01 0.81 ± 0.03 0.78 ± 0.02
GB 0.85 ± 0.01 0.80 ± 0.02 0.79 ± 0.01

NB, Naïve Bayes; KNN, K Nearest Neighbour; SVM, Support Vector Machine; MLP, Multilayer Perceptron; RF,
Random Forest; GB, Gradient Boosting. NB represent the baseline model used as means of comparison for the
other complex machine learning algorithm.

Moreover, MLP and RF presented a Recall of 81% while GB 80% (Table 3); this indicates
that at least 80% of the predicted Tue Positive instances are actual positives. Therefore, at
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least 80% of the instances predicted to be in the stress class have been correctly classified
as such. Finally, the F1 scores for MLP, RF and GB are 77%, 78% and 79%, respectively;
thus, the model has at least 77% accuracy on the dataset. Figure 3 illustrates the Receiver
Operating Characteristics (ROC) curve for all the classifiers investigated in this study.

Figure 5 consolidates the findings shown in Table 3, illustrating that the models with
the greatest ROC area are GB, RF and MLP. It is also visible that this NB model serves as a
good baseline model as its ROC curve suggest that its classification is nearly due to chance.
A statistical analysis was performed to measure the significance of these results (Table 4).

Figure 5. ROC curve plot of each classification model trained on original-dataset. The AUROC scores were achieved by the
models during stress prediction of the test dataset from the original-dataset.

Table 4. Statistical Evaluation of the machine learning models.

Model A Model B mean (A) mean (B) diff se p-Tukey 1

GB KNN 0.852 0.800 0.052 0.009 0.001
GB MLP 0.852 0.825 0.027 0.009 0.039
GB NB 0.852 0.603 0.249 0.009 0.001
GB RF 0.852 0.853 −0.001 0.009 0.9
GB SVM 0.852 0.813 0.039 0.009 0.001

KNN MLP 0.800 0.825 −0.025 0.009 0.077
KNN NB 0.800 0.603 0.197 0.009 0.001
KNN RF 0.800 0.853 −0.053 0.009 0.001
KNN SVM 0.800 0.813 −0.013 0.009 0.671
MLP NB 0.825 0.603 0.222 0.009 0.001
MLP RF 0.825 0.853 −0.028 0.009 0.036
MLP SVM 0.825 0.813 0.012 0.009 0.732
NB RF 0.603 0.853 −0.250 0.009 0.001
NB SVM 0.603 0.813 −0.210 0.009 0.001
RF SVM 0.853 0.813 0.040 0.009 0.001

1p values in bold represent statistical significance, where p < 0.05.

Table 4 shows that there was a statistical difference between the AUROC means of all
hyperparameter-tuned models and the baseline (NB–AUROC = 60%) as the p < 0.05. This
confirms that the parameter tuning did improve the model’s performance significantly,
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and thus, H1 is accepted. Moreover, the Tukey’s comparison test showed that there is a
statistically significant difference between the AUROC values of GB and MLP and between
MLP and RF (p < 0.05). However, the differences between GB and RF are not statistically
significant (p = 0.9). Figure 6 summarises the results obtained during this experimental
series, by illustrating the performance comparison between the hyperparameter-tuned
models and the baseline NB model.

 

Figure 6. Model performance comparison of machine learning algorithms trained on original-dataset.

4.3. Stress Classification on Modified-Dataset

The other objective of this study was to develop a classification model that would
classify stress from HRV data obtained from wearable devices. To achieve this, classifiers
from Table 3 were used for stress classification of a modified-dataset, which is a modification
of the original-dataset but with features that mimic those obtained from the wearable device.
Table 5 shows the results obtained during the classification task.

Table 5. Predictive performance of machine learning classifiers on modified-dataset.

Algorithm AUROC Recall F1 Score

NB 0.60 ± 0.02 0.69 ± 0.04 0.63 ± 0.02
KNN 0.74 ± 0.02 0.76 ± 0.02 0.71 ± 0.02
SVM 0.74 ± 0.01 0.79 ± 0.02 0.74 ± 0.01
MLP 0.75 ± 0.01 0.80 ± 0.06 0.72 ± 0.02
RF 0.77 ± 0.01 0.74 ± 0.01 0.72 ± 0.01
GB 0.73± 0.01 0.70 ± 0.02 0.70 ± 0.01

As shown in Table 5, MLP seems to be the overall best performing classifier with 75%
AUROC, 80% Recall and 72% F1 score.

In addition, Figure 7 illustrates the Receiver Operating Characteristics (ROC) curve
for all the classifiers used for the classification of modified-dataset.
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Figure 7. ROC curve plot of each classification model tested on modified-dataset. The AUROC scores
were achieved by the models during stress prediction of the test dataset from the modified-dataset.

Figure 7 shows that the ROC curve from the MLP classifiers seems to be the furthest
away from the chance curve and to have the largest area under the curve.

Additionally, a statistical analysis (One-Way ANOVA statistical test with Tukey’s post
Hoc) of the top three best performing algorithms, obtained from the original-dataset, and
their corresponding algorithms, from the modified-dataset, was performed in order to
determine their statistical difference. Moreover, these results provided additional insight
into which model would be best suited to be implemented in the stress detection application.
As shown in Table 6, it is evident that the machine learning algorithms trained on original-
dataset are statistically the better performing models (p < 0.05), which is expected due to
the fact that more information on the dataset is being fed to the model during training.

Table 6. Statistical Evaluation of the machine learning models. Numbers 1 and 2 correspond to
original-dataset and modified-dataset respectively.

Model A Model B mean (A) mean (B) diff se p-Tukey 1

GB 1 GB 2 0.852 0.731 0.121 0.008 0.001
GB 1 MLP 1 0.852 0.825 0.027 0.008 0.011
GB 1 MLP 2 0.852 0.752 0.100 0.008 0.001
GB 1 RF 1 0.852 0.853 −0.001 0.008 0.9
GB 1 RF 2 0.852 0.768 0.084 0.008 0.001
GB 2 MLP 1 0.731 0.825 −0.094 0.008 0.001
GB 2 MLP 2 0.731 0.752 −0.021 0.008 0.088
GB 2 RF 1 0.731 0.853 −0.122 0.008 0.001
GB 2 RF 2 0.731 0.768 −0.037 0.008 0.001

MLP 1 MLP 2 0.825 0.752 0.073 0.008 0.001
MLP 1 RF 1 0.825 0.853 −0.028 0.008 0.01
MLP 1 RF 2 0.825 0.768 0.057 0.008 0.001
MLP 2 RF 1 0.752 0.853 −0.101 0.008 0.001
MLP 2 RF 2 0.752 0.768 −0.016 0.008 0.313
RF 1 RF 2 0.853 0.768 0.085 0.008 0.001

1p values in bold represent statistical significance, where p < 0.05.

Furthermore, Table 6 indicates that there is no significant difference in the AUROC
values between RF2 and MLP2 (p = 0.31). MLP2 was then chosen as the model that will be
implemented in the stress detection web application due to its 80% recall score and overall
performance. Additionally, another One-Way ANOVA statistical test with Tukey’s post
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Hoc comparison was performed to determine whether there were statistical differences
between the models and the Naïve Bayes baseline model. The results determined that there
was a statistical difference between the AUROC means of the models and the baseline as
the p = 0.001 (results not shown).

4.4. Stress Classification from HRV Measurements Obtained from Apple Watch

A simple web application that would perform stress classification on HRV data
uploaded by the user (blind-dataset) was developed with the aim to analyse data extracted
using wearable devices. The aim of this process was to test the predictive power of the
chosen model on data obtained from real participants. The application was developed in
Python using the Streamlit framework and it is programmed in such way that the user can
upload a csv format data, which will be first normalised and then classified as “stress” or
“no stress” using the saved MLP model with Recall 80% and AUROC of 75%. Firstly, the
application will prompt the user to insert the csv file in the side menu bar. Secondly, the
backend code will normalise the input data, so all data instances are within the same range,
and display the inserted and normalised data in a tabular format. Thirdly, the normalised
data undergoes classification, and the results are displayed as Prediction Probability, shown
in Figure 8.

 

Figure 8. User Interface of the Stress Detection Web Application developed using Streamlit.

After running the program with the input data derived from the volunteers, the pre-
diction probabilities for the model to predict an instance as stress or no stress were recorded
for the different stress scenarios. Figure 9 summarises the results of this investigation in a
bar chart presenting the mean prediction probabilities.
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Figure 9. Mean Prediction Probability obtain from the stress detection app with volunteers input
data, who were subjected to different stress conditions (after work stress and relaxation).

As displayed in Figure 9, the model was able to correctly classify a stress state with
a prediction probability of 71 ± 0.1%. Additionally, it was able to achieve a prediction
probability of 79 ± 0.3% when the model was presented with a relaxing situation.

5. Discussion

Stress has been identified as one of the major causes of automobile crashes [8] and an
important player in the development of cardiac arrythmia [7]; therefore, it is important
to be able to detect and measure stress in a non-invasive and efficient manner. In this
study, to accomplish this, we address the stress detection problem by using traditional
machine learning algorithms which were trained on ECG-derived HRV metrics obtained
from automobile drivers [18,19].

In this paper, stress classification was performed mainly using HRV-derived features
as studies have shown that HRV is impacted during changes in stress levels, given that it
is highly controlled by the ANS [10]. Moreover, other investigations proved that RMSSD,
AVNN and SDNN were evaluated as being the most reliable HRV metrics in distinguishing
between stressful and non-stressful situations [28]. Those findings were also confirmed in
this study as shown in Table 2, where AVNN, RMSSD and SDNN were classified as the HRV
features with the highest RFE feature importance scores. Therefore, they were considered
to be the features that contribute the most in the stress classification performance of the
model. This further confirms that HRV features are viable markers for stress detection.

Following hyperparameter tuning, we were able to produce stress classification mod-
els with high predictive power. As shown in Table 3, the best 3 models for the classification
task imposed by original-dataset were MLP, RF and GB with AUROC of 83%, 85% and 85%,
respectively; thus, these classifiers have ~84% probability of successfully distinguishing
between the stress and no stress class. In addition, MLP and RF gave Recall scores of
81% while GB of 80%; indicating that ~80% of the predicted positive instances are actual
positives. Furthermore, these scores were statistically greater than the Naïve Bayes baseline
model (p < 0.05) as illustrated in Table 4.

There are very few studies performed on stress classification in drivers using HRV
derived features [17,18], although each study took a different approach to the classification
problem, the classification yielded similar results. For instance, [17] investigated KNN,
SVM-RBF and Linear SVM as their potential classifiers for stress detection. Their results
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suggested that SVM with RBF kernel was the best performing model by giving an accuracy
of 83% [17]. However, more extensive investigation is necessary to corroborate this finding
by also considering other classification metrics.

It is also imperative to discuss the fact that stress is a result of a combination of external
(environment) and internal factors (e.g., mental health). Thus, stress could be perceived
as a subjective mental state; for example, certain situations like a drive in the city or in
the highway might not induce the same level of stress in every individual. For instance,
individuals suffering from anxiety could feel stressed in such conditions. Additionally,
stress could be induced from the invasive apparatus used such as the electrodes placed in
different parts of their body and the sensor placed around their diaphragm in [18]; the fact
that the subject is aware that they are being monitored for changes in their mental state
could also impact their stress levels. For this reason, is important to use less intrusive and
everyday devices such as smart watches or mobile phones that are already an essential
part of life in this modern society.

In this paper we also aimed to develop a classification model that would detect stress
from data obtained from the Apple Watch. For this purpose, the best classifiers trained on
original-dataset were tested for the classification of the modified-dataset which presented
features that mimic those derived from the wearable device. Table 5 demonstrates that the
overall ideal model for the stress classification of HRV features derived from wearable-
obtained RR intervals, is MLP with a AUROC of 75% and a Recall of 80%. This was
determined based on the Recall score, as in this stress classification task there is a high cost
associated with False Negatives. For instance, if an individual’s condition, which is actually
stressed, is predicted as not stressed, the cost associated with this False Negative can be
high, especially in a medical or driving context which could then lead to a misdiagnosis
or a car accident respectively. Therefore, it is imperative to select the model with the
highest sensitivity.

Figure 8 shows the user interface (UI) of the simple stress detection web application.
The purpose of this was simply to provide a visual UI to demonstrate the software func-
tionality. This could then be implemented into a mobile or car application where the user
would be alerted when stress is detected and would prompt them to relax or take breaks.

The blind-dataset, obtained from the volunteers, served as a blind test for the MLP
classifier in order to measure its predictive power on unseen data in an unsupervised
application system.

When classifying a stressful task, the web application was able to correctly predict
stress conditions with a 71% prediction probability. Additionally, it was able to achieve
a prediction probability of 79% when the model was presented with a relaxing state.
However, it is important to further improve the model’s performance by investigating
multiple stress levels in order to obtain more accurate stress detection.

6. Conclusions

In this paper, we developed a comparative study to determine the viability of HRV
features as physiological markers for stress detection. This was achieved by computing
different supervised machine learning models to determine which model can be used to
analyse data extracted using wearable devices. The MLP model was considered to be an
ideal algorithm for stress classification due to its 80% sensitivity score. The predictive
power of this classifier was found to be statistically greater compared to the baseline model
created with the Naïve Bayes algorithm with a p value of 0.001. This model was then
implemented in the unsupervised stress detection application where stress can be detected
from blind dataset of HRV features, and extracted from real users using wearable devices
under different stress conditions.

A benefit of this study is that there is a need for technologies that would monitor
stress in drivers in order to reduce car crashes, as nearly 80% of road incidents are due to
drivers being under stress. This project could be the initial steps for tackling this problem.
In fact, the algorithm produced in this model could be implemented in smart cars. So,
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when drivers are experiencing episodes of stress, the automobile could switch to autopilot
as well as alert the driver of their state. This implementation could massively reduce traffic
accidents as well as reduce the number of fatalities and injuries caused by car crashes.

However, the benefit of this study can also be extended to all applications in which it is
important to monitor stress levels e.g., in physical rehabilitation post incident, in temporary
or chronic anxiety, in mental health disease, as well as in many ageing conditions. The
distribution of smart watches is growing in the population and people appreciate their
functionalities. Therefore, wearable devices offer a big opportunity to extract health
parameters without an uncomfortable and invasive approach.

We plan that future work should involve the improvement of the classification models
by exploring a wider range of parameter values during the hyperparameter tuning process.
Additionally, the Deep Learning approach could also be implemented in order to compare
its performance in comparison to the supervised models used in this study.

Moreover, another future work we propose is the development of a classifier that
would be able to distinguish between different levels stress: high, medium and low. In
addition to this, we suggest collecting new real-world ECG data, from which HRV features
could be extracted, in order to gain a better insight on the predictive power of the models
obtained in this study. This would also provide a more updated dataset compared to that
used in this study, dated 2005 [18]. As technologies have advanced, a more accurate ECG
recording could be acquired; thus, this would make the classification more accurate and
relevant to real world implementations.

Therefore, a natural evolution of this work will require the acquisition of a large
dataset through smart watches and in an extensive number of tests involving human
subjects e.g., through a driving simulator. Furthermore, it will be important to test the
model considering other domains focused to the elderly and health care.
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Abstract: Current clinical practice lacks consistent evidence in the management of scapular dyskinesis.
This study aims to determine the short- and long-term effects of a scapular-focused exercise protocol
facilitated by real-time electromyographic biofeedback (EMGBF) on pain and function, in individuals
with rotator cuff related pain syndrome (RCS) and anterior shoulder instability (ASI). One-hundred
and eighty-three patients were divided into two groups (n = 117 RCS and n = 66 ASI) and guided
through a structured exercise protocol, focusing on scapular dynamic control. Values of pain and
function (shoulder pain and disability index (SPADI) questionnaire, complemented by the numeric
pain rating scale (NPRS) and disabilities of the arm, shoulder, and hand (DASH) questionnaire) were
assessed at the initial, 4-week, and 2-year follow-up and compared within and between. There were
significant differences in pain and function improvement between the initial and 4-week assessments.
There were no differences in the values of DASH 1st part and SPADI between the 4-week and 2-year
follow-up. There were no differences between groups at the baseline and long-term, except for
DASH 1st part and SPADI (p < 0.05). Only 29 patients (15.8%) had a recurrence episode at follow-up.
These results provide valuable information on the positive results of the protocol in the short- and
long-term.

Keywords: scapula neuromuscular activity and control; rotator cuff related pain syndrome; anterior
shoulder instability; scapular dyskinesis; electromyographic biofeedback

1. Introduction

The rotator cuff related pain syndrome (RCS) [1,2] and anterior shoulder instability
(ASI) are the two most prevalent shoulder dysfunctions [3,4]. They are characterized by
the presence of pain [5–9], decreased function [5,7,9], muscle weakness [5,6,10–13], altered
range of motion (ROM) [5,6,9], altered scapula neuromuscular control [12–14], and scapular
dyskinesis [12,15,16].

Research investigating the scapular orientation and kinematics in RCS compared to
asymptomatic controls concluded that no irrefutable relationship could be found between
the scapula orientation and RCS [17]. However, scapular-focused stabilization and motor
control exercise is promoted to address scapular dyskinesis, reduce pain [18], and restore
function [11] and have been included in most studies demonstrating the benefit of exercise
for RCS [19,20]. Reijneveld et al. [21] found no evidence effectiveness on a scapular-focused
treatment approach in patients with RCS.
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When it comes to shoulder instability, there is limited research in the management to
guide therapists [7]. For traumatic instability, the current literature recommends surgical
treatment [8], but for atraumatic instability, physiotherapy remains the recommended
course of treatment [22] in the form of exercise to improve muscle strength and propriocep-
tion [7]. Yet, the lack of specific detail about the exercises used and the low-quality studies
available is a concern [3,7,13]. Both cohort [22] and randomized controlled trials [9,23]
studied the effect of specific exercise programs in patients with shoulder instability. They
mostly found a significant benefit in reducing pain [9,22], increasing stability [22,23],
muscle strength [9,23], ROM [23], and function [22,23]. Eshoj et al. [23] reported that a
neuromuscular shoulder exercise program incorporating strength, coordination, balance,
proprioception, and functional kinetic chain work was superior to the standard care ex-
ercise program emphasizing strength training to increase muscle mass in patients with
traumatic shoulder instability.

Several randomized studies [5,18,24] have investigated the effects of motor control and
muscle strengthening exercises in patients with RCS. Above all, they observed that scapular-
focused exercise leads to higher patient-rated outcomes [18], including reduction in pain
level [5,18,24] and improvement in function [5,18,24], ROM [18], and strength [18,25]. Other
studies investigated the effect of scapular-focused exercises on electromyographic mea-
sures of muscle activity [18,24,26–29] and the timing of onset [30,31] with no uniformity in
results [31]. Studies incorporating electromyographic biofeedback (EMGBF) to guide exer-
cise performance also reported inconsistent findings regarding its effect. Huang et al. [27]
found that the use of EMGBF improves motor control in both symptomatic and asymp-
tomatic subjects where Juul-Kristensen et al. [24] found EMGBF made no difference to
pain and function outcomes. Larsen et al. [28] proposed that individuals with subacro-
mial impingement syndrome may benefit from incorporating EMGBF to improve the
neuromuscular function.

However, to date, the scapular-focused exercise incorporated in research interven-
tions has been quite varied with a lack of clarification about the intensity, frequency, and
progression of exercises and a lack of explicit objective scapular related criteria for the
success and progression of exercise [16,25]. Moreover, despite being referred to as an aid in
shoulder intervention [3], the exercise programs mostly have not emphasized biofeedback
as a learning strategy or an objective measure of motor control. Given the conflicting
results of the value and need for scapular-focused exercise, further research is needed
incorporating more explicit criteria for the administration of scapular-focused exercise
before the call to abandon this intervention can be heeded.

The main objective of this study was to describe the short- and long-term effects of a
scapular-focused exercise protocol supported by real-time EMGBF on the level of pain and
function in individuals with shoulder dysfunctions. Additionally, scapular neuromuscular
activity and control, ROM, and glenohumeral flexor and abductor isometric muscle strength
(GMS) were assessed to explore the mechanisms of recovery.

It was hypothesized that:

i. After 4-weeks of treatment, the protocol would lead to an amelioration in both
groups in pain and function (decrease in the shoulder pain and disability index
(SPADI) [32] levels with a minimal clinically important difference (MCID) ranging
from 8 to 13 points) [33]; decrease in the numeric pain rating scale (NPRS) level
of at least a MCID of 2.17 points [34]; and decrease in the disabilities of the arm,
shoulder, and hand (DASH) levels with a MCID of 10.2 points [35].

ii. Primary outcome ameliorations (pain reduction and function improvement) made
at the 4-week assessment would be retained at the 2-year assessment in both groups.

2. Materials and Methods

2.1. Study Design

A prospective cohort was developed to implement the scapular-focused exercise
protocol, with initial, 4-week, and 2-year follow-up assessments.

130



Sensors 2021, 21, 2888

2.2. Sample

From 213 patients recruited consecutively from an outpatient orthopaedic clinic, 183
were included and 30 unable to commit to the schedule of treatments were excluded
before commencing. These 183 patients were divided into two groups according to the
diagnostic categorization: RCS group (n = 117) and ASI group (n = 66). All patients
had a prior consultation with an orthopaedic physician who made the diagnosis and
recommended physiotherapy. The mean (±standard deviation) age for the RCS group
was 41.1 (±12.2) and for the ASI group 26.7 (±10.3) years. Patient symptoms originated
mostly from overuse in the RCS group (59.0%) and trauma in the ASI group (48.5%). Most
patients in both groups were in the chronic stage of the condition (length of symptoms
for more than 6 weeks) (81.2% for the RCS group and 71.2% for the ASI group). Sample
demographics and clinical information are presented in Table 1. All patients were included
based on the following criteria: 1. Age between 18 and 60 years; 2. read, write, and speak
Portuguese; 3. primary complaint of shoulder pain; 4. RCS or ASI clinical diagnosis.
Patients were excluded if they had: 1. Neurological symptoms [36]; 2. positive thoracic
outlet syndrome (screened with Allen’s and Adson’s tests) [36,37]; 3. history of shoulder
surgery or fracture [38]; 4. structural injuries confirmed by imaging (e.g., ligaments and
labrum); 5. symptoms reproduced by cervical examination [37,38]; 6. unable to commit to
the scheduled treatments; 7. anti-inflammatory drug use.

Table 1. Patient characteristics.

RCS Group
(n = 117)

ASI Group
(n = 66)

Age (mean (SD)) 41.1 (12.2) 26.7 (10.3) **

Sex (%)
Female 48 (41.0) 37 (56.1)
Male 69 (59.0) 29 (43.9)

Origin of symptoms (%)

Trauma 30 (25.6) 32 (48.5) **
Non-traumatic 18 (15.4) 0 (0.0) **

Overuse 69 (59.0) 27 (40.9) **
Sub or Dislocation 0 (0.0) 7 (10.6) **

Length of symptoms (%)
Acute (0–2 weeks) 3 (2.6) 6 (9.1)

Sub-acute (2–6 weeks) 19 (16.2) 13 (19.7)
Chronic (+6 weeks) 95 (81.2) 47 (71.2)

Symptomatic side (%)
Dominant 80 (68.4) 53 (80.3) *

Non-Dominant 34 (29.0) 9 (13.6) *
Bilateral 3 (2.6) 4 (6.1) *

Abbreviations: RCS: Rotator cuff related pain syndrome; AS: Anterior shoulder instability; SD: Standard deviation;
* p < 0.05; ** p < 0.001 between-groups.

2.3. Diagnostic Criteria

For RCS classification, patients were required to have current anterolateral acromial
area pain [39], pain with active shoulder elevation [38], pain with passive or isometric
resisted shoulder external rotation [40,41], and at least two positive results from the Neer
test [42], Hawkins test [43], and Jobe/Empty can test [44]. Despite the poor diagnostic
accuracy of these tests [45], they were included as assessments of impairment clinically
associated with this syndrome [2]. Patients were classified ASI if they presented with
current anterior or anterosuperior shoulder pain [46], pain with passive, active or resisted
shoulder movement at 90◦ abduction combined with external rotation, and a positive
apprehension-relocation-surprise test as this continuum has demonstrated the best overall
diagnostic discriminative performance [47]. All patients gave written informed consent
before data collection. This research had the approval of the Ethics Committee for Research
of the School of Healthcare—Setúbal Polytechnic Institute.
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2.4. Testing Procedure

The primary outcome measure of pain and function was the SPADI [33], comple-
mented by the NRPS [48] and DASH [35]. The secondary outcome measures of scapular
neuromuscular activity and control were a combination of surface electromyography and
clinical observation. The surface electromyography (Physioplux system version 1.06 com-
prised of four pairs of 24-mm-diameter silver chloride gel surface electrodes, a ground
electrode of the same type, four electrode pair cables connected to miniaturized differential
amplifiers, and a main HUB unit that communicates via Bluetooth™ to a computer) en-
abled both patients and the physiotherapist to assess, monitor, and correct in real-time the
muscular activation and behavior during the exercises. Clinical observation of the scapula’s
medial and inferior borders was used to detect scapular dyskinesis [classified as present if
one or both scapular prominences (medial and inferior border) were observed during the
glenohumeral movement or classified as absent if no prominence was observed [14]], using
these specifications to increase the validity of the observation. Range of motion (ROM)
was measured using a standard plastic goniometer (following the procedures for the
glenohumeral joint motion measurements [49] recognizing the limitation of measurement
without stabilization [50]). Graded glenohumeral flexors and abductors isometric muscle
strength (GMS) was measured through isometric manual muscle testing (acknowledging
the reduced sensitivity compared to dynamometry [51]). Outcome measures are presented
in Table 2. Assessments and interventions were performed by the same examiner. All
outcome assessments were carried out prior to the start of the weekly scheduled treatment
(Figure 1), at 4-weeks and 2-years after the patient was discharged, hereinafter referred to as
initial (baseline), 4-week (short-term), and follow-up (long-term) assessments, respectively
(Figure 2).

Figure 1. Resume of a session of the scapular-focused exercise protocol.
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Figure 2. Scapular-focused exercise protocol flow diagram.

Table 2. Resume of testing procedure.

Outcome Goal Instrument MCID Assessment Procedures

Pain and Function
Determine pain

intensity between
assessment moments

and measure and
monitor function and
symptoms over time

SPADI [32] ranging from 8 to
13 points [33] Filling in the SPADI questionnaire

NPRS [48] 2.17 [34] Patient asked to report the worst pain felt in the
last week

DASH [35] 10.2 [33] Filling in the DASH questionnaire

Scapular neu-
romuscular
activity and

control

SSNC

Assess the muscular
percentage of MVIC

activity of LT, SA,
and UT during arm

elevation and
lowering

EMGBF,
PhysiopluxTM

system version
1.06

N/A

Actively raise (Flexion) then lower (Extension) the
arm at a controlled self-paced velocity through

maximum painless ROM in the sagittal, scapular,
and frontal planes from a natural standing

position for one set of three repetitions with a 20-s
pause between repetitions

SSAO

Assess muscular
activation onset

during rapid active
shoulder elevation

EMGBF,
PhysiopluxTM

system version
1.06

N/A

Actively raise (Flexion) the arm as rapidly as
possible, without exacerbating pain or discomfort,

to a maximum arm elevation angle of 45◦ in the
sagittal, scapular, and frontal planes from a natural
standing position for one set of three repetitions

with a 20-s pause between repetitions

Dynamic
Scapular

Alignment

Detect scapular
dyskinesis

Clinical
observation of
the scapular
medial and

inferior border
[14]

N/A
Clinical observation of the scapular medial and

inferior border behavior during the arm elevation
(Flexion) and lowering (Extension)

ROM Assess glenohumeral
ROM

Standard
goniometer

[49]
N/A Normative ROM assessment with a standard

goniometer

GMS
Assess glenohumeral
flexor and abductor

muscle strength

Isometric
manual muscle

testing [52]
N/A

Measured in a sitting position with the arm at 90◦
in the sagittal and frontal planes, respectively.

Manual resistance was applied against the forearm
with the elbow extended.

Abbreviations: MCID: Minimal Clinically Important Difference; SPAD: Shoulder pain and disability index; NPRS: Numeric pain rating scale;
DASH: Disabilities of the arm, shoulder, and hand; SSNC: Scapular stabilizer neuromuscular control; MVIC: Maximum voluntary isometric
contraction; LT: Lower trapezius; SA: Serratus anterior; UT: Upper trapezius; EMGBF: Electromyographic biofeedback; ROM: Range of
motion; SSAO: Scapular stabilizer activation onset; GMS: Glenohumeral flexor and abductor muscle strength; N/A: Non applicable.
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All outcomes were assessed in the initial, weekly, 4-week, and follow-up moments as
summarized in Table 2 and described in detail in the Appendix A.

2.5. Treatment Protocol

The treatment protocol was developed using the sequential stages of motor relearn-
ing, cognitive, associative, and autonomous [53], as a framework, while promoting the
integration of local and global muscle function [54]. The treatment was divided into three
phases (Appendix A) and conducted in weekly sessions to both: 1. Objectively assess the
progress towards the outcomes and 2. Treat patients using exercises for the main purpose
of increasing scapular neuromuscular activity and control.

2.6. Statistics

Descriptive statistics (means and frequency) were used to characterize the groups and
variables’ distribution. The Mann-Whitney U test and Wilcoxon signed-rank test were
used to compare the quantitative outcomes. Fisher’s exact test and McNemar exact test
were used to compare the qualitative outcomes. Regarding the missing values (present
only at follow-up) a complete-case analysis approach was adopted, assuming the missing
data is completely random and unrelated to any of the variables involved in the study.
The significance level was set at p < 0.05 and all statistical analysis was performed using
the Python Software Foundation, Python Language Reference, version 3.7, available at
http://www.python.org (accessed on 3 May 2020).

3. Results

At baseline, in the initial assessment, both RCS and ASI groups had high levels of pain
and poor levels of function (SPADI, NPRS, and DASH), decreased scapular neuromuscular
activity and control (SSNC, SSAO, and scapular alignment), decreased ROM and GMS.
There was a difference in the scores of SPADI and DASH 1st and 3rd parts (p < 0.05) but
none in any of the secondary outcome measures (Table 3).

After completion of the 4-weeks intervention, all outcomes improved compared with
the baseline (p < 0.05) in both groups and the pain and function MCID values were met.
Differences were found between the groups in the outcome SPADI, NPRS, and DASH 1st
part at this short-term assessment (p < 0.05) (Table 3).

At the 2-year follow-up assessment, for the RCS group, there were no differences with
the 4-week assessment in the level of SPADI, NPRS, DASH 1st and 3rd parts, SSAO, ROM,
and GMS, reflecting the maintenance of the results in the long-term. However, differences
were found in the DASH 2nd part, SSNC, and dynamic scapular alignment, which indicate
a loss of the gains in these outcomes in the long-term (p < 0.05) (Table 3).

For the ASI group, there were no differences with the 4-week assessment in the level
of SPADI, NPRS, DASH 1st part, SSAO, ROM, and GMS but differences were found in
the DASH 2nd and 3rd parts, SSNC, and dynamic scapular alignment at the long-term
(p < 0.05). At the 2-year follow-up, the two groups were only different in the levels of
SPADI and DASH 1st part (Table 3).

At the 2-year follow-up, five (2.7%) patients were unable to return for an objective
re-assessment and instead were contacted by either email or phone to answer the outcomes
not requiring their presence, seven (3.8%) patients were unreachable, 29 (15.8%) patients
reported returning to physiotherapy between the treatment protocol and follow-up to seek
new treatment due to the same shoulder problem (recurrence), and 23 (12.6%) were not
included in the 2-year follow-up as they reported having had new traumatic incidents
unrelated to their treatment in the study that resulted in them seeking further health care
services (e.g., shoulder surgery, fractures, muscle or tendons ruptures, etc.).
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Repeated measures for time were unfeasible due to the non-normal distribution of
outcomes. The power analysis by t-tests was computed for pain and function outcomes,
considering the difference between two dependent means. The results obtained showed an
excellent power for all variables (0.99 < d < 1.00), given the sample size of 183 participants.
These results boost confidence in the outcomes reported, reinforcing the relevance of the in-
tervention and assessment methods on the recovery efficacy of these patients, between their
initial and short-time assessments and between their short-time and long-term assessments.

4. Discussion

In this study of the measures taken at the initial assessment, the RCS and ASI groups
were different for age, and the outcome of SPADI, DASH 1st, and 3rd part, with higher
mean age and higher SPADI and DASH disability scores for the RCS group. Older patients
usually present with worse function levels than younger patients [25,29]. The between-
group analysis, comparing the short-term results for pain and function demonstrated
differences between the two groups (Table 3).

The within-group analysis, comparing results between the initial and 4-weeks (short-
term) assessments, showed that clinically meaningful changes were achieved for pain and
function over time in both groups. Both outcomes reached their predefined MCID and
the other outcomes presented meaningful improvements. While both groups improved
significantly, it was not the diagnostic category that determined the specific exercises, rather
it was an assessment of the patients’ movement/control impairments. This is consistent
with the view that, even when following a protocol or recommended guidelines, the
management should be tailored to the patients’ pain and disability presentations rather
than the hypothesized clinical diagnostic categorization [55,56].

Two years after discharge, despite a slight loss in the outcomes, the scores of SPADI,
NPRS, and DASH 1st part for the ASI group and the scores of SPADI, DASH 1st, and
3rd part for the RCS group as well as the results of ROM and GMS for both groups were
not different, demonstrating that the protocol of good results was not temporary. For
the outcome scapular neuromuscular activity and control, only the SSAO component
maintained the 4-week results through to the long-term. The SSNC and dynamic scapular
alignment components presented differences.

For pain and function, the results of SPADI, NPRS, and DASH at 4-weeks were
very good for both groups. NRPS at the short-term had a mean of 1.58 (±1.29) for the
RCS group and 0.91 (±1.16) for the ASI group, which is better than most studies incor-
porating scapular exercise to treat RCS or ASI associated shoulder pain and dysfunc-
tion [9,18,23–25,28,29,34]. Disability improvement presented similar gains with this study
compared to others (SPADI [5,26]; DASH [29,41]). These results corroborated studies that
suggested a rehabilitation program incorporating motor control exercises is effective for
reducing pain and disability for patients with RCS [5,18] and ASI [9,24].

The initial results of SSNC of decreased activity in LT and SA muscles corroborated the
presupposition that shoulder dysfunctions comprise an alteration in the scapulothoracic
stabilizer function [37], consistent with the findings of DeMey et al. [26]. Contrarily,
Larsen et al. [28] reported a non-significant tendency to a higher level of mean UT, LT,
and SA muscle activity in RCS patients compared to those without RCS. Collectively,
these findings support the view that diagnostic categorization does not predict the muscle
function, rather it is the presence of muscle dysfunction that represents either a risk
variable that may contribute to pain and disability or a central nervous system response to
pain and threat [57]. The initial SSNC findings in this study may reflect dysfunction in the
feedforward processing present even before the onset of movement [58]. This general initial
motor plan is expected to be fine-tuned using real-time internal feedback mechanisms.
With a planning-control model underpinning the assessment and management of motor
control/function, two principles guided the management of abnormal neuromuscular
activity and motion in this study: (1) Treatment strategies to re-educate neuromuscular
activity and control incorporating criteria for a preferred pattern of muscle activation prior

136



Sensors 2021, 21, 2888

to and during the execution of a motor command; (2) optimization of internal feedback
mechanisms, so a deviation or perturbation of predicted movement can be effectively
detected and corrected in real-time. Roy et al. [59,60] showed that conscious movement
training with feedback causes immediate effects on motor strategies and can restore the
force-couple activation in the scapular muscles, especially the stabilizers, consistent with
the improvement in LT and SA activity in both groups of this study.

Concerning SSAO, half of the sample in this study already presented a feedforward
mechanism [61] rather than a feedback mechanism found in other studies [36,62,63]. This
highlights that the pattern of activation alone is not responsible for the patients’ symptoms
and disability. This is not surprising as physical impairments, whether they are of pos-
ture, mobility, motor control or others, do not predict pain and disability [55] and motor
responses to pain are variable [64]. Rather, physical impairments, in this case in SSAO,
can only be judged as potential predisposing or contributing factors that may contribute
to some patients’ disabilities depending on their lifestyle behaviors and requirements.
Through the exercise protocol, patients who initially presented with a feedback mechanism
changed to a feedforward one, as in other studies [65,66] where it is defended that the mus-
cle pattern of onset can be improved by therapeutic exercises [65], and that the mechanisms
can be trained, shifting from feedback to feedforward, while the movement is trained and
repeated [66]. Contrary to these findings, DeMey et al. [26] observed no change in the
recruitment timing after the treatment and Larsen et al. [28] saw no significant differences in
muscle activation onset between patients with and without RCS, however neither of those
studies incorporated biofeedback or motor performance criteria for facilitating learning
and guiding the progression of exercise.

Contemporary neuroscience and motor control theory hold that pain alters motor
patterning/control variably in response to the individual’s conscious and unconscious
perception of threat, leading to changes in movement and motor function to provide
protection from further pain, injury or threat [57,64,67]. Strategies that reduce pain, dys-
function and threat generally will, in turn, alter central processing, motor control, and
disability [55,62,65]. As such, the reduction in the level of pain and the improvement in
the level of function found in this study cannot be attributed to a single variable such
as motor control. However, the approach to the scapular-focused exercise, emphasizing
non-aggravating controlled progression of exercise with feedback, encouragement, and
guidance in load management, likely contributed to reduced threat alongside improved
control/strength leading to improvement.

The dynamic scapular alignment showed significant differences between the initial
and 4-week assessments with very good results, but around 40% of the patients lost their
gains at the follow-up, despite the great results of the pain and function, SSAO, ROM, and
GMS outcomes. This supports the previous literature challenging the relationship between
scapular alignment and RCS [1,17,68]. While a scapular-focused exercise protocol has
been demonstrated in this study to be effective at reducing pain and disability; improving
dynamic scapular alignment alone is not predictive of disability; and strategies to evaluate
the contribution of scapular and other malalignments, such as the shoulder symptom
modification procedure, described by Lewis [1], may prove helpful in predicting the
potential contribution of dynamic scapular alignment to the individual patients’ pain and
dysfunction. Moreover, the kinematic analysis would provide a more objective analysis of
scapular alignment in any future study.

High recurrence rates are common in shoulder dysfunctions, particularly in sport
activities [68]. At a 3-month follow-up, Struyf et al. [18] found maintenance of the effects of
a scapular-focused treatment in patients with RCS. Given the increasing body of evidence
from studies demonstrating no increased clinical benefit from surgery compared with
exercise [69], it seems reasonable that patients with RCS or ASI associated shoulder pain
and dysfunction should undergo a conservative trial of rehabilitation before considering
surgical options. In the current study, only 29 patients (15.8%) had a recurrence episode
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(new symptoms due to the same problem that brought them to physiotherapy in the
first place).

The results of this study support other research [13,27,40,69–73] that a progressive
scapular-focused approach incorporating feedback and home management can significantly
reduce pain and increase function in RCS and ASI associated shoulder pain. Whether the
specific attention is to motor control, in particular, SSNC requires further research.

Both 1st and 2nd hypotheses were confirmed successfully with a reduction of pain and
an increase of function with differences at the short-term assessment, and no differences
between the short- and the long-term. Some limitations should be considered that restrict
the generalizability of results: (1) No direct cause-and-effect relationship can be drawn
from this protocol and these results as it did not include a control group. Further studies are
needed to assess the effectiveness of this protocol against other rehabilitation approaches
and clarify the contribution of EMGBF and possibly the kinematic feedback [74,75]; (2) al-
though the diagnostic criteria reflect commonly used clinical features, the lack of gold
standard diagnostic criteria compromises the RCS and ASI cohort distinctions of this study;
(3) all procedures were conducted by the same researcher, although bias was minimized
by the principal outcomes of pain and function being patient-rated. For the scapular
neuromuscular activity and control outcome, bias was minimized by assessing SSNC and
SSAO with the real-time EMGBF automatically recorded by the system. Additionally,
data collection by the same researcher with extensive experience with shoulder patients
and a standardized exercise approach using the EMGBF software provides consistency in
procedures and measures. Both the usability and learnability of the EMGBF software and
the protocol’s procedures should be assessed in the future, using a range of both novice
and expert physiotherapists.

5. Conclusions

The presented findings suggest that a well-described scapular-focused exercise proto-
col, with the aid of real-time EMGBF feedback and home management, can reduce pain
and increase function, as well as scapular neuromuscular activity and control, ROM, and
GMS in patients with shoulder dysfunctions in the short-term. At the long-term, it appears
to maintain the gains of pain and function, and the gains of SSAO, ROM, and GMS, but
not for SSNC and dynamic scapular alignment. The inclusion of both ASI and RCS impair-
ment associated groups adds evidence to the limited body of knowledge on the effect of
physiotherapy on these types of shoulder dysfunctions.
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Appendix A. Detailed Description of the Scapular-Focused Exercise Protocol

In the initial, weekly, 4-week, and follow-up moments, the following assessment
procedures were performed:

To assess the primary outcome of pain and function, the self-administered question-
naire shoulder pain and disability index (SPADI) [32] was used. The reported minimal
clinically important difference (MCID) ranging from 8 to13 points [33] was used to de-
termine the clinical significance of the results. To complement the assessment of this
primary outcome, the numeric pain rating scale (NPRS) [48] was used to determine the
pain intensity between assessment moments with a MCID of 2.17 points [34], and the self-
administered questionnaire disabilities of the arm, shoulder, and hand (DASH) was used
to monitor the function with a MCID of 10.2 points [33]. DASH is divided into three parts
(1st: Daily life activities, 2nd: work activity, and 3rd: Sports/arts activity, respectively) [35].

To assess the scapular stabilizer activation onset (SSAO) and scapular stabilizer neuro-
muscular control (SSNC), the electromyographic biofeedback (EMGBF), Physioplux system
version 1.06 was used. The EMGBF system was comprised of four pairs of 24-mm-diameter
silver chloride gel surface electrodes, a ground electrode of the same type, four electrode
pair cables connected to miniaturized differential amplifiers, and a main HUB unit that
communicates via Bluetooth™ to a computer. Each amplifier had a voltage gain of 1000,
input impedance higher than 100 MΩ, a common mode rejection ratio of 110 dB, and a
bandwidth (−3 dB) of 25 to 500 Hz. The four amplified electromyographic (EMG) signals
were then collected by the main HUB unit and converted to a digital format with a 12-bit
resolution at a sampling rate of 1000 Hz. An envelope function was applied to each EMG
channel using the root mean square of the mean of the absolute signal value over the last
100 milliseconds (ms). The muscle onset was determined when the EMG signal amplitude
was 3 standard deviation points above the baseline signal for a 25 ms window. The baseline
signal was determined by the resting EMG signal during 500 ms, collected before each
activity. Prior to the surface electrode application, the patients’ skin was shaved (if neces-
sary) and cleaned with alcohol to reduce skin impedance. The placement of the surface
electrodes and the normalization of EMG data and muscle testing positions were based on
the work of Ekstrom et al. [76] and Hermens et al. [77] (Table A1).

Table A1. Placement of the electrodes and normalization of EMG data.

Muscle Placement of the Electrodes Position

Normalization: Muscular
Action to Measure the
Maximum Voluntary
Isometric Contraction

Upper
Trapezius [76,77]

Between C7 spinous process
and the lateral tip of the

acromion

Sitting position with no back support.
Shoulder abducted to 90◦ (no

abduction in the case of pain) with
the neck side-bent to the same side,

rotated to the opposite side

Pressure applied to extend the
head above the elbow (or to

shoulder elevation in the case
of pain)

Lower
Trapezius

[76]

At 2/3 on the line from the
root of the spine of the scapula

to the 8th thoracic vertebra

Sitting position with no back support
Arm raised above the head in line
with the lower trapezius muscle

Pressure applied against the
arm elevation

Serratus Anterior
[76,77]

Vertically along the
mid-axillary line at the 6th rib

through the 8th rib

Sitting position with no back support.
Shoulder abducted to 125◦ in the

scapular plane

Pressure applied above the
elbow and at the inferior angle
of the scapula attempting to

de-rotate the scapula

Anterior Deltoid [76] At one finger width distal and
anterior to the acromion

Sitting position with no back support.
Place the humerus in a slight external

rotation to increase the effect of
gravity on the anterior fibers

Pressure applied on the
antero-medial surface of the
arm, against abduction and

flexion
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All electrodes were placed over the belly, in line with the fiber directions, with an
inter-electrode distance of 2.5 cm, and a ground electrode was placed over the contra-lateral
clavicle. After measuring three 5-s maximum voluntary isometric contractions (MVIC) for
each muscle [65] with a 20-s pause between MVIC, patients raised their arm in the sagittal
plane from their standing postural natural position for two sets of three repetitions, again
with a 20-s pause between repetitions. In the first set, patients were asked to perform the
movement as rapidly as possible, without exacerbating pain or discomfort, to a maximum
arm elevation angle of 45◦, which was intended to record SSAO. The second set was
performed in a controlled self-paced velocity through the patients’ maximum painless
ROM both concentrically and eccentrically to assess SSNC.

SSAO can be classified as being a feedforward or feedback onset. The feedforward
activation onset represents the anticipatory muscle activation that occurs prior to the
mobilizer muscles and the feedback activation onset is a muscle activation that occurs
after the designated feedforward period [61]. By definition, and used for this study, a
feedforward activation pattern (considered as normal) was the activation of lower trapezius
(LT) and serratus anterior (SA) 100 ms before to 50 ms after the anterior deltoid (AD)
activation onset [61]. This outcome was computed using an accurate statistical-based
method for the muscle onset detection [78]. A feedback pattern was an activation of LT
and SA greater than 50 ms after AD activation [61].

SSNC levels were classified as follows: (i) Reduced when observing LT and SA activity
between 0–10% of MVIC; (ii) moderate when observing LT and SA activity between 10–30%
of MVIC and less than 20% of the upper trapezius (UT) MVIC activity; (iii) good when
observing LT and SA activity greater than 30% of MVIC and less than 20% of UT MVIC.
These levels were determined while patients concentrically flexed their arm to 90◦ of
elevation or within their non-painful available ROM, and eccentrically returned to the
initial position. The muscle MVIC percentages considered for the “good” classification
were extracted from Ludewig and Cook’s [36] published results.

To assess the dynamic scapular alignment during active arm elevation and lowering,
a clinical observation of the scapular medial border and the inferior angle was used to
detect scapular dyskinesis. The dynamic scapular alignment was defined as normal when
no prominence of the scapula medial and inferior borders was observed. The adopted
dichotomous classification of scapula dyskinesis (“yes” when observing scapula medial
and inferior scapular border or scapula medial border prominence or “no” when none is
observed) was based on McClure et al. [14].

To assess the range of motion (ROM) a standard plastic goniometer was used and
graded normal when the values corresponded with the normative ROM values expected
for each movement and age group [49].

The glenohumeral flexor and abductor isometric muscle strength (GMS) was assessed
by the isometric manual muscle testing [52], in a sitting position with the arm at 90◦ in
the sagittal and frontal planes, respectively. Manual resistance was applied against the
forearm with the elbow extended, graded normal (level 5 on a scale of 1 to 5) when the
patient withstood the test position against a strong pressure [52], for 3 s, without losing the
testing position.

Both evaluations of the outcomes and exercises intervention were recorded in the
assessment, reassessment, and treatment form (Figures A1 and A2):
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Figure A1. Assessment and treatment form.
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Figure A2. Reassessment and next treatment form.

The treatment protocol was developed using the sequential stages of motor relearning,
cognitive, associative, and autonomous [53], into three phases (Table A2), as a framework,
while promoting the integration of local and global muscle function [54].
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Table A2. Motor relearning phases of the treatment protocol.

Motor Relearning Phase Phases Description and Purpose Progression

Phase 1

Facilitate patient pain-free awareness and dynamic
control of scapulothoracic neutral zone through its
stabilizers’ co-activation, namely, LT and SA, with a

minimum participation of UT (or other
scapulothoracic, glenohumeral, and spinal muscles)

(i) Patient should be able to activate scapular stabilizer
muscles and dissociate their activation from other
scapulothoracic, glenohumeral, and spinal muscles
without pain provocation;
(ii) Be capable of moving the scapula from different
postural orientations and positions to its neutral zone
(maintaining this position) through the co-activation of
its scapular stabilizers in low-load exercises without
pain provocation.

Phase 2

Progressively integrate scapular neuromuscular
activity and control skills gained in Phase 1 during

pain-free directional shoulder movements. It is
currently accepted that the scapula axis of rotation

changes with the increasing arm elevation and plane of
movement [79]. This implies the integration of LT and

SA co-activation with other scapulothoracic force
generators, such as UT, and simultaneous coordination

with glenohumeral muscles.

(i) Maintain scapulothoracic neutral zone by activating
its stabilizers while raising (fexion) the arm (<30◦) in
different elevation planes, the primary aim of this stage
being the focus on the scapular neuromuscular activity
and control setting phase [80,81];
(ii) Arm elevation movements (>30◦) should be chosen
so that their primary elevation plane or direction
matches that of symptom producing movements and
progressively explored through the available pain-free
glenohumeral ROM (concentrically and eccentrically).

Phase 3 Expected learning transfer of motor skills acquired in
Phases 1 and 2 to functional activities.

(i) Fragmenting daily living activities into less complex
achievable movements that can be progressively
trained;
(ii) and During normal function, occupational,
recreational, and sports activities.

Abbreviations: LT: Lower trapezius; SA: Serratus anterior; UT: Upper trapezius; ROM: Range of motion.

The general principles for exercise prescription [82] recommend the use of variables
such as the number of exercises, series, repetitions, recovery time, and the use of a peri-
odization model [83] to support the exercise program prescription and progression. In
this study, the magnitude of stimulus and progression (either in the same exercise or to
progress to the next exercise or phase) were tailored to each patient’s performance and
re-assessment, while operating within the protocol’s structure.

The progression guidelines were the following, as described in Table A3:

Table A3. Progression guidelines.

Progression Guidelines:

Exercise complexity

Two possible sources:
(i) Mechanical load, which included exercise variations that required greater arm
elevation angles or the use of weights;(ii) Task or motor planning-control difficulty,
which involved tasks and exercises in which it is necessary to incorporate both
feedforward and feedback mechanisms of motor performance [58,84].

Feedback
from the EMGBF

Provided during all sessions to facilitate the best performance at each step. However,
to progress to the next exercise or phase, the patient had to demonstrate their
capability to reproduce the same performance without visual feedback.
At this stage, EMGBF was used by the clinician to confirm the correct exercise
performance.

Perceived effort
Although a high-perceived effort is acceptable at the beginning of each phase or while
increasing exercise complexity, correct exercise performance should be achieved with
low perceived effort, pain-free exercise performance, and with normal breathing.

Sets, repetitions
and endurance

In the absence of normative data for endurance, exercises for this population were
progressed when the patient could perform three sets of 10 repetitions or hold the
specified position for one set of 10 repetitions of 10 s with no pain, low perceived effort
(although a high-perceived effort is acceptable at the beginning of each phase or while
increasing exercise complexity), normal breathing, and good SSNC. Note, while this
arbitrary performance criteria was effective for this population, the number of sets,
repetitions or holding time goal for progression will vary with different patient groups
according to sport, work, and lifestyle requirements.

Resting time
between exercises

Although patients were encouraged to rest the least time possible between exercises,
they could rest for a maximum of 2 min between exercises (especially high-loaded) but
not between sets or repetitions [65].

Abbreviations: EMGBF: Electromyographic biofeedback; SSNC: Scapular stabilizer neuromuscular control.
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The treatment protocol was conducted in weekly sessions to both: 1. Objectively
assess the progress towards the outcomes and 2. treat patients using exercises for the
main purpose of increasing scapular neuromuscular activity and control. EMGBF was
used to provide patients with a real-time quality indicator for their exercise performance.
SSNC was defined as a threshold (% of MVIC) of muscle activation. A minimum level
of activity of LT and SA and a maximum level of activity of UT were initially set so that
patients were able to achieve the objectives easily, and then thresholds were progressively
increased towards their target cut-off points with a maximum step increase of 5% of MVIC.
The EMGBF software was used as a form of augmented feedback to continually provide
exercise performance feedback and software parameters modeled to display a green or red
bar when muscle activity levels were, respectively, correctly and incorrectly attained.

At the end of each session, five homework exercises with print outs regarding sets,
repetitions, and recovery time, to be completed twice daily, were assigned to the patient
based upon the exercises correctly performed during the session. A schema of the scapular-
focused treatment protocol, with some examples of the typical exercises executed can be
seen, as follows, in Figure A3.

Figure A3. Scapular-focused treatment protocol.
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Abstract: The continuous and simultaneous monitoring of physiological parameters represents a
key aspect in clinical environments, remote monitoring and occupational settings. In this regard,
respiratory rate (RR) and heart rate (HR) are correlated with several physiological and pathological
conditions of the patients/workers, and with environmental stressors. In this work, we present and
validate a wearable device for the continuous monitoring of such parameters. The proposed system
embeds four conductive sensors located on the user’s chest which allow retrieving the breathing
activity through their deformation induced during cyclic expansion and contraction of the rib cage.
For monitoring HR we used an embedded IMU located on the left side of the chest wall. We compared
the proposed device in terms of estimating HR and RR against a reference system in three scenarios:
sitting, standing and supine. The proposed system reliably estimated both RR and HR, showing
low error averaged along subjects in all scenarios. This is the first study focused on the feasibility
assessment of a wearable system based on a multi-sensor configuration (i.e., conductive sensors and
IMU) for RR and HR monitoring. The promising results encourage the application of this approach
in clinical and occupational settings.

Keywords: cardio-respiratory monitoring; wearable system; wearable device; smart textile; IMU;
respiratory rate; heart rate

1. Introduction

Continuous, real-time and non-invasive monitoring of vital signs through wearable
devices represents one of the most appealing challenges posed by the modern medicine,
healthcare and occupational health [1,2]. Regarding modern medicine and healthcare,
the use of unobtrusive, lightweight and comfortable wearable devices for collecting phys-
iological signals constitutes a key aspect for improving both the monitoring in clinical
settings and a remote/home monitoring of the patients [3]. In clinical settings, a continuous
monitoring becomes challenging in all those wards hospitalizing patients which require
particular care because they have to be connected to bulky, portable, monitoring devices
and every movement around the hospital becomes thus difficult [3,4]. Outside the clinic,
wearable devices have gained increased attention for the remote monitoring of the patients
and healthcare, due to their intrinsic comfortably, ease of use and reduced costs [3,5–7].
Moreover, the use of wearables to monitor physiological parameters has gained attention
in occupational health as well, due to the increased attention to the workers’ health and
safety by monitoring their condition in the era of Industry 4.0 [8]. Indeed, the monitoring
of physiological parameters is beneficial to assessing physiological status, and the activi-
ties and fatigue levels of workers (e.g., muscle-skeletal and cardiovascular disorders) to
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improving their health, well-being and safety and thus meeting the guidelines defined by
ergonomics [6,9,10].

In these scenarios, respiratory rate (RR) and heart rate (HR) have gained broad interest,
since they are strictly related to different physiological and pathological conditions of the
patients/workers (e.g., early detection of critical events) and to different environmental
stressors [6,11,12]. These vital signs can be monitored using many approaches [9,13].

In this work, we present a prototype of a novel wearable device for simultaneous
monitoring of the cardio-respiratory parameters (i.e., RR and HR). The proposed system
uses different sensors with respect to what has been reported in the literature and used in
commercial devices, since it is based on four conductive textiles (for RR monitoring) and
an IMU (for monitoring HR). These sensors were embedded within a highly integrated,
lightweight, comfortable and low-cost wearable device. We have tested the feasibility of the
proposed device in three different scenarios to mimic conditions that can be experienced
in the above-described fields. Specifically, we enrolled eight healthy volunteers and we
monitored their cardio-respiratory activity, in terms of RR and HR estimation, in three
different scenarios: (i) sitting (e.g., it can simulate the occupational settings of a computer
worker), (ii) standing and (iii) supine position (e.g., they can simulate clinical and remote
applications). This work is organized into the following sections: (i) in Section 2 we focus
on the related works; (ii) in Sections 3 and 4 we describe the proposed wearable system
(WS) and the experimental protocol used to assess its feasibility in monitoring RR and HR;
(iii) in Section 5 we describe the techniques of data analysis used to estimate RR and HR
starting from the raw data recorded by the WS; (iv) Section 6 reports the results in terms
of both RR and HR; (v) Section 7 deals with the discussion of the obtained results and
the conclusion.

2. Related Works

The state of the art of wearable systems for RR monitoring consists of techniques
based on the cyclic expansion and contraction of the rib cage during the breathing activity.
Most of these systems directly measure the expansion of the rib cage by means of electrical
elements that change their impedance with strain (i.e., resistive and piezoresistive sensors,
capacitive sensors and inductive sensors) and fiber optic sensors [14–20]. Fiber optic sensors
(e.g., fiber Bragg grating sensors) have some advantages over their electrical counterparts
related to their metrological properties (high sensitivity, good accuracy and short response
time), immunity from electromagnetic interference and small size, and they are most often
used in this field [17,21–24]. However, the interrogation systems are usually bulky and only
recently have there been commercially available portable systems, but these remain quite
expensive solutions (from around 3.000 USD to 40.000 USD). When the application does
not require the use of the system in a harsh environment in terms of electromagnetic field
(e.g., patients monitoring during magnetic resonance scan [23,24]), the resistive, capacitive
and inductive sensors may be valid alternatives due to the low prices of both the sensors
and the front-end electronics, and the possibility to collect the data by wireless transmis-
sion protocol [25,26]. Among others, resistive sensors represent a convenient solution to
implement reliable, accurate and low-cost assessments of breathing activity and RR [9,27].
In addition, they can be manufactured as “smart textiles”; thus, it is possible to design
highly integrated solutions maximizing the comfort and minimizing the encumbrance
of the system itself [28,29]. A commercially available solution for RR monitoring is the
SS5LB by BIOPAC systems Inc., which transduces the chest wall deformations using a
strain gauge. To allow the collection of the transduced signal, an additional component
has to be purchased, increasing both the complexity and costs. Moreover, the device can-
not be used in unstructured and unsupervised environments [30]. As regards HR, many
techniques have been proposed to develop wearable devices. They are mainly based on
electrocardiography (ECG), photoplethysmography (PPG) and the monitoring of the local
mechanical vibrations provided by the heartbeat to the chest wall, in terms of accelerations
(seismocardiography, SCG) [21,31] or local angular rotations (gyrocardiography, GCG) [32,33].
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Specifically, monitoring the cardiac activity using chest wall induced vibrations is an
appealing solution for developing highly integrated wearable systems due to the recent
technological advancements that have been made in micro-electromechanical systems
(MEMSs) for motion tracking that integrate tri-axial accelerometers and gyroscopes into
a miniaturized inertial measurement unit (IMU) [31]. Available commercial devices for
monitoring HR based on a PPG sensor proposed by Polar. Different devices have been
developed to match the needs of subjects (i.e., humans and animals) when monitoring
their HRs during physical activities [34,35]. One of the limitations of these devices which is
crucial for the application of interest is the inability to simultaneously monitor RR and HR.
There are several solutions for monitoring RR and HR by wearable systems; however, the
state of the art of wearable systems for simultaneous monitoring of these two parameters
consists only of a few works. In [36,37] the system was based on electrodes placed in
contact with the subject’s skin to monitor both ECG and breathing-induced variations of
chest wall impedance during the cyclic respiration. In [22] fiber optic sensors were used
for the mentioned purpose. In [38] a piezoelectric sensor was adopted to monitor SCG
and breathing activity. In [26] a wearable belt embedding a capacitive sensor and two
conductive textiles used as electrodes for a single lead ECG were used to monitor RR and
HR simultaneously. Although this system is compliant with the scenarios presented in this
study, it is characterized by a high price and having no feature to cope with sensor damage
or data loss due to the sensor’s failure.

3. Experimental Setup

3.1. Wearable Device

The wearable device, hereinafter referred to as WS, consists of two main components:
the first one uses 2 elastic bands; the second one is a a custom electrical board. The elastic
bands utilizes 2 sensing elements each. The sensing elements are conductive textiles
laser-cut as rectangles (dimensions L × W 50 mm × 10 mm) from an A4 sheet of material
(Eeontex LG-SLPA by Eeonyx Corporation). When these textiles undergo strain, their initial
resistance changes according to the applied strain. In this case, the strain is provided by
the expansion and contraction of the rib cage during ventilation. To retrieve the respiratory
signal on the rib cage, the sensing elements are hand sewed into the elastic bands on the
extremities with silver-coated yarn (mod.235/36 dtex 2-ply HC, Statex Produktions und
Vertieb GmbH, Germany), whose purpose is twofold: (i) to fix the sensing element to the
band and (ii) to provide the electrical contact to retrieve the sensor’s output signal by
connecting it to the electronic board. In addition, the elastic bands are provided with Velcro
to allow the adaptability of the system to different anthropometries.

The custom electrical board has two main functions:

• To process the signal retrieved by the four conductive sensors. To accomplish this task
it has 4 embedded Wheatstone bridges (1/4 bridge configuration with the sensing
element connected in series with a trimmer of 50 kΩ with the other resistances of
82.5 kΩ) to transduce the conductive sensors’ output (i.e., an electrical resistance) into
a voltage, 2 instrumentation amplifiers (AD8426 by Analog Devices) with a set gain of
6 and a microcontroller (STM32F446RET by STMicroelectronics).

• To retrieve the cardiac activity information and the position of the subject by using a
Magneto-Inertial Measuring Unit (M-IMU, LSM9DS1 by STMicroelectronics).

In addition, the board is equipped with a microSD card socket for storage the data
related to respiratory activity (provided by the 4 conductive sensors) and to heart activity
(provided by the IMU). All data were collected at 100 Hz. The electronics are powered by
a 750 mAh Li-Po battery at 3.7 V, which guarantees autonomy of approximately 8 h. The
electronic board along with the battery was placed into a custom 3D-printed TPU casing.

Figure 1 shows a schematic representation of the developed wearable system, the M-
IMU axes’ orientation and the reference system.
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Figure 1. Schematic representations of the proposed wearable system and the reference system,
and their positioning on the rib cage.

The first step was to assess the response of the sensing elements by applying strain of
up to 10%. We repeated 4 quasi-static trials and we calculated the calibration curve and the
sensors’ sensitivity. The output of the sensors (an electrical resistance) was transduced in a
voltage by a voltage divider (61.9 kΩ) powered at +5 V. Therefore, the calibration curve
represents the relationship between the output of the amplification stage and the applied
strain. It is the well represented by a second-order polynomial (y = 0.12 · x2 − 3.81 · x +
59.97), as confirmed by the high value of the correlation coefficient (R2 > 0.99).

3.2. Reference System

A reference system (Zephyr BioHarness 3.0 by Medtronic) provided the RR (collected
at 25 Hz) and HR (single lead ElectroCardioGram, ECG, collected at 250 Hz).

4. Population and Experimental Protocol

To assess the performance of the proposed wearable system, we enrolled 8 healthy
male volunteers (mean ± standard deviation: age—27.8 ± 2.7 years old; body mass—75.4
± 12.2 kg; height—1.74 ± 0.08 m). Table 1 shows details regarding the subjects’ ages
and somatotypes.

Table 1. Age, body mass, height and body mass index (BMI) of the 8 volunteers.

Volunteer Age [Years] Body Mass [kg] Height [m] BMI [kg·m−2]

V1 30 72 1.69 25.2
V2 28 76 1.80 23.5
V3 26 88 1.89 24.6
V4 27 70 1.75 22.9
V5 28 74 1.75 24.2
V6 25 98 1.77 31.9
V7 25 63 1.65 23.1
V8 33 62 1.63 23.3

Informed consent was obtained from all subjects involved in the study (protocol code
27.2(18).20 of 15/06/2020), and the principles of declaration of Helsinki and amendments
were followed in all the study’s steps.

Firstly, each volunteer was asked to wear the reference instrument belt on the xiphoid
process line and the 2 elastic belts (one on the nipple line and one on the umbilical line).
Both systems were worn in direct contact with the skin. The electronic board was positioned
on the left side of the upper belt (next to the heart), in order to retrieve the cardiac activity
displacements on the chest wall. Then, the volunteer was asked to perform approximately
10 s of self-paced breathing, a0 s apnea at the end of the inspiratory phase, 3 min of self-
paced breathing and finally a 10 s apnea at the end of the inspiratory phase. The same
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protocol was applied in 3 different positions (i.e., standing, sitting and supine) for a total of
24 trials. The 9-axes M-IMU and the output of the 4 Wheatstone bridges along with the
reference system parameters were collected simultaneously.

Figure 2 shows a graphical representation of the experimental setup and the proto-
cols performed.

Figure 2. A schematic representation of the experimental protocol performed. The top trend repre-
sents the respiratory trial performed in the 3 tested scenarios shown in the lower part.

5. Data Analysis

The data analysis aimed at accomplishing two tasks: (i) estimating RR and HR starting
from the trends of the conductive sensors’ output and from the IMU; (ii) assessing the
performance of the proposed wearable system by comparing the values of RR and HR
estimated by the wearable system and the reference one. In this regard, we implemented
both a frequency domain analysis, for estimating average RR during the trials, and a time
domain analysis to estimate RR breath-by-breath) [27].

To estimate HR we considered the signals recorded by the embedded IMU, and we
analyzed them using two approaches: (i) we implemented a frequency domain analysis to
monitor the average HR on the whole trial (it lasted approximately 3 min); (ii) a windowed
frequency domain analysis considering windows of 30 s. This solution allows investigating
how HR behaves over time.

The data analysis was entirely implemented in MATLAB® for each subject and
each protocol.

5.1. Respiratory Activity: Data Analysis

To assess RR we considered the signals recorded by the conductive sensors, which fol-
lowed the breathing-related motions of the subjects’ rib cages (see Section 3.1). Specifically,
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we considered the average in time of the sensors of the four recorded conductive signals,
hereinafter denoted as rWS(t). Both the conductive signal and reference signal (rre f (t))
were filtered using a third-order Butterworth band-pass filter between 0.05 Hz and 2 Hz
using zero-phase digital filtering implemented through the function “filtfilt” (embedded in
MATLAB®). We selected 0.05 Hz as the low cut-off frequency in order to discard very slow
signal variations from the recorded data; conversely, we selected 2 Hz as the high cut-off
frequency, since RR is hardly above 1.5 Hz [9]. The choice of filtering the RR signals within
the mentioned frequency band (i.e., from 0.05 to 2 Hz) agrees with the results reported
in [27]. We aimed to filter out components not relevant for our applications while avoiding
discarding any useful information recorded by the sensors [9,39].

5.1.1. Frequency Domain Analysis

For the i-th subject we computed the error between the RR estimated using the
spectrum of rre f (t) (FRR

re f ,i) and rWS(t) (FRR
WS,i) in each scenario as follows:

F̃RR
WS,i = |FRR

re f ,i − FRR
WS,i| (1)

FRR
re f and FRR

WS correspond to the highest peak in the spectra within the range 0.1–1.5 Hz.
In (1) all terms are expressed in bpm, denoting breaths per minute. The spectra of the
signals were obtained by computing the power spectral density (PSD) considering Welch’s
overlapped segment averaging estimator over the duration of the trials (180 s). To that
end, we used the MATLAB® function “pwelch.” In addition, we computed the percentage
version of (1) as follows:

F̃RR
WS%,i =

|FRR
re f ,i − FRR

WS,i|
FRR

re f ,i

The averages of subjects for F̃RR
WS,i and F̃RR

WS%,i are denoted as F̃RR
WS and F̃RR

WS%, respectively.

5.1.2. Time Domain Analysis

To implement a breath-by-breath analysis we computed the breath duration (ΔTrr[n])
between two inspiratory peaks both considering rWS(t) and rre f (t). To that end, we
implemented the following steps [28]:

• The first step was devoted to the identification of the inspiratory peaks. We used
the MATLAB® function “findpeaks” with the inverse of the average RR (the value
estimated using the frequency domain analysis) as temporal threshold; we used as
amplitude threshold 50% of the RMS of rWS(t) during the entire duration of the task,
and concerning rre f (t) we used as the amplitude threshold 40% of its RMS.
We used two different amplitude thresholds to optimize the detection of the peaks.
After this step, we visually inspected the detected peaks and eventually removed
those not related to the end of inspiratory phase. This correction was performed on
the data collected by the reference system and by the wearable system, mainly in the
supine position, and it was needed due to the different morphologies of the signals
which are affected by the position assumed by the subject.

• The second step was devoted to computing the period of each breathing act, ΔTrr[n].
This parameter was considered as the time elapsed between two consecutive peaks.
This analysis was performed for both the wearable system (ΔTrr,WS) and the reference
one (ΔTrr,re f ) (see Figure 3);

• The third step was devoted to computing the RR for the n-th breath as 60
ΔTrr [n]

, for

rWS(t) ( f RR
WS[n]) and rre f (t) ( f RR

re f [n]).
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Figure 3. A schematic representation of the breathing act period ΔTrr[n]. The blue line represents
rWS(t), and the red circles represent the identified respiratory peaks.

To compare the WS with the reference system in the time domain for the i-th subject
and each protocol, we computed the mean absolute error (MAEWS,i) as follows:

MAEWS,i =
1

Nbreaths

Nbreaths

∑
n=1

| f RR
re f [n]− f RR

WS[n]| (2)

In (2), Nbreaths denotes the number of breaths identified in the i-th subject and the
specific scenario. In addition, we computed the percentage version of (2) as follows:

MAEWS%,i =
1

Nbreaths

Nbreaths

∑
n=1

| f RR
re f [n]− f RR

WS[n]|
f RR
re f [n]

The averages of MAEWS,i and MAEWS%,i over all subjects are denoted as MAEWS
and MAEWS%, respectively.

A method specifically proposed to test the feasibility of a new measuring system
for monitoring physiological parameters has been proposed in this study. Indeed, we
performed Bland–Altman analysis [40] considering all the RR values collected by the
proposed system (i.e., f RR

WS[n]) and by the reference one (i.e., f RR
re f [n]). This analysis was

performed considering all the 8 volunteers in all the three scenarios. As recommended
in [40], we computed the following parameters:

• fRRmean[n], calculated as the average value between f RR
re f [n] and f RR

WS[n];
• Δ fRR, calculated as the difference between f RR

re f [n] and f RR
WS[n];

• Mean of the differences (MOD), calculated as the mean of the difference between
f RR
re f [n] and f RR

WS[n];
• Limits Of agreement (LOAs), calculated as MOD ± (1.96 · STD(Δ fRR)).

5.2. Cardiac Activity: Data Analysis

According to Figure 1, to monitor the cardiac activity we considered the following signals:

• sax (t), which denotes the acceleration along x-axis of the M-IMU;
• sgx (t) denoting the angular rotation around x-axis of the M-IMU;

Firstly, we band-pass filtered the two signals from 0.7 Hz to 20 Hz in order to remove
or minimize bias, breathing activity-related signal and high frequency noise [41]. The choice
of this filtering frequency band allowed preserving the informative content related to SCG [33,42].
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Subsequently, in order to enhance the effect of the heart beat on recorded signals, we
computed the Hilbert transform of sax (t) and sgx (t). It is typically used in SCG and GCG
data analysis [43], and given a generic signal s(t), its Hilbert transform is defined as follows:

ŝ(t) =
1
π

∫ +∞

−∞

s(ξ)
t − ξ

dξ, (3)

The outcome of the Hilbert transform, i.e., ŝ(t), is a complex signal containing in
its real part the copy of s(t) and in its imaginary part a 90 deg phase shift of s(t) itself.
Assuming that the heart-beat activity (h(t)) is hidden and only its modulation can be
measured, it is possible to model the recorded signal (s(t)) as follows [44]:

s(t) = h(t)cos(2π f0t) + ε(t) (4)

In (4), cos(2π f0t) denotes the modulating term [44], while ε(t) denotes additive noise.
Therefore, according to the effect of (3) on the input signal, it is possible to extract h(t) as follows:

h(t) =
√
(
(ŝ(t)))2 + (�(ŝ(t)))2, (5)

denoting 
(ŝ(t)) and �(ŝ(t)) the real part and the imaginary part of ŝ(t), respectively.
To estimate HR we considered the following signals related to the WS:

• hax (t), denoting the heart-beat activity estimated considering sax (t);
• hgx (t), denoting the heart-beat activity estimated considering sgx (t);

All the above-mentioned signals were further filtered using a zero-phase shift band-
pass filter from 0.7 to 5 Hz, in order to remove bias and obtain the heart-beat envelope
(<5 Hz) [43].

The ECG signal recorded by the reference system and band-pass filtered from 0.7 to
20 Hz is denoted as hre f (t).

5.2.1. Frequency Domain Analysis

For the i-th subject we computed the error between the HR estimated using the
spectrum of hre f (t) (FHR

re f ,i) and hWS(t) (FHR
WS,i) in each scenario as follows:

F̃HR
WS,i = |FHR

re f ,i − FHR
WS,i| (6)

FHR
re f and FHR

WS correspond to the highest peaks in the spectra within the range 0.7–4 Hz
of the signals collected by the reference system and the wearable device, respectively. Thus,
FHR

WS was calculated by considering either hax or hgx . As for the RR analysis (described in
Section 5.1.1), the spectra of the signals were computed by considering the power spectral
density (PSD) using a Welch’s overlapped segment averaging estimator over the entire
duration of the trials (180 s). In addition, we computed the percentage version of (6) as
follows:

F̃HR
WS%,i =

|FHR
re f ,i − FHR

WS,i|
FHR

re f ,i
.

The averages of subjects of F̃HR
WS,i and F̃HR

WS%,i are denoted as F̃HR
WS and F̃HR

WS,i, respectively.

5.2.2. Windowed Frequency Domain Analysis

To further investigate the HR estimation capabilities of the proposed WS, we imple-
mented a new frequency domain analysis, considering 30 s lasting windows to compute
the PSD.

To that end, we considered only hgx (t), being the most reliable according to Section 6.2.2,
and we computed its spectrum by using the the MATLAB® “pwelch” function with a
Hamming window of 30 s with an overlap between segments of 50%.
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Similarly to (6), considering the i-th subject and the k-th window, we computed the
error between the HR estimated using the spectrum of hre f (t) (FHR

re f ,ik) and hgx (t) (FHR
gx ,ik) in

each scenario as follows:
f̃ HR
gx ,ik = |FHR

re f ,ik − FHR
gx ,ik| (7)

In addition, we computed the percentage version of (7) as follows:

f̃ HR
gx%,ik =

|FHR
re f ,ik − FHR

gx ,ik|
FHR

re f ,ik

The averages of f̃ HR
gx ,ik and f̃ HR

gx%,ik for windows are denoted as f̃ HR
gx ,i and f̃ HR

gx%,i, respec-

tively; their averages for subjects are denoted as f̃ HR
gx and f̃ HR

gx%.

6. Results

6.1. Respiratory Activity
6.1.1. Frequency Domain Analysis

The frequency domain analysis allowed us to estimate the average RR during the
entire duration for each volunteer in each scenario (i.e., standing, sitting and supine). An
example of a signal spectrum for a representative subject is presented in Figure 4 which
shows the normalized PSD (nPSD), computed by dividing the amplitude of the spectrum
by its maximum peak value, of both the reference system and the WS in all scenarios.
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1 RR estimated: 0.2609Hz

0 0.5 1 1.5 2
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1 RR estimated: 0.2444Hz
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0
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1 RR estimated: 0.2792Hz
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0 0.5 1 1.5 2
0

0.5

1 RR estimated: 0.2582Hz

0 0.5 1 1.5 2
0

0.5

1 RR estimated: 0.2604Hz

Figure 4. nPSD of rre f (left) and rWS (right) a representative subjects in each scenario.

Tables 2 and 3 report the values of F̃RR
WS,i and F̃RR

WS%,i in the upper part and their average
along subjects, i.e., F̃RR

WS and F̃RR
WS%, respectively, in the lower part in all three scenarios.

The worst case is related to subject 8 during the scenario “supine,” in which the system
apparently failed in estimating the average RR. This might have been caused by a too low
or absent pre-strain on the sensing elements due to the supine position. However, if such a
value is discarded the average error in the supine scenario is equal to 0.14 bpm.
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Table 2. The absolute error of RR estimated for each volunteer, considering the three scenarios.
The average value of the mentioned error for every subject is also shown.

Volunteer F̃RR
WS,i [bpm]-Sitting F̃RR

WS,i [bpm]-Standing F̃RR
WS,i [bpm]-Supine

1 0.99 0.01 0.01
2 0.06 2.39 0.36
3 0.07 0.06 0.01
4 0.02 0.01 0.03
5 0.04 0.00 0.13
6 0.01 0.01 0.01
7 0.11 0.27 0.34
8 0.04 0.01 22.57

Average 0.17 0.35 2.95

Table 3. The percentage of absolute error of RR estimated for each volunteer, considering the three
scenarios. The average value of the mentioned error for each of the subjects is also shown.

Volunteer F̃RR
WS%,i [%]-Sitting F̃RR

WS%,i [%]-Standing F̃RR
WS%,i [%]-Supine

1 6.78 0.05 0.87
2 0.40 25.43 2.16
3 0.95 0.72 0.08
4 0.09 0.10 0.13
5 0.33 0.01 1.19
6 0.06 0.08 0.04
7 0.72 1.47 2.58
8 0.32 0.07 66.94

Average 1.21 3.49 9.25

6.1.2. Time Domain Analysis

The behaviours of rre f (t) and rWS(t) over time are reported in Figure 5 in all scenarios
for a representative subject.
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Figure 5. rre f (left) and rWS (right) plotted over time for all scenarios using a representative subject.
Peaks selected using the method presented in Section 5 were superimposed on the signals (red
circles).
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The values of MAEWS,i and MAEWS%,i in all scenarios are reported in the upper part
of Tables 4 and 5, and their averages for subjects (MAEWS and MAEWS%) in the lower part.

Table 4. MAEWS of RR estimated for each volunteer, considering the three scenarios. The average
value of the mentioned error for each subject is also shown.

Volunteer MAEWS,i [bpm]-Sitting
MAEWS,i

[bpm]-Standing
MAEWS,i [bpm]-Supine

1 0.24 0.61 1.16
2 0.30 0.28 1.08
3 0.22 0.39 1.11
4 0.24 0.33 3.14
5 0.11 0.11 1.92
6 0.18 0.25 0.87
7 0.36 0.23 1.78
8 0.05 0.23 0.07

Average 0.21 0.30 1.39

Table 5. MAEWS% of RR estimated for each volunteer, considering the three scenarios. The average
value of the mentioned error for each subject is also shown.

Volunteer MAEWS%,i [%]-Sitting MAEWS%,i [%]-Standing MAEWS%,i [%]-Supine

1 1.52 3.17 7.72
2 1.44 2.25 7.41
3 2.56 3.59 9.08
4 1.36 1.89 15.00
5 0.91 0.81 18.09
6 1.15 1.64 5.65
7 2.25 1.29 12.57
8 0.37 1.93 0.57

Average 1.45 2.07 9.51

Concerning the Bland–Altman analysis, the values of MODs and LOAs estimated for
each scenario are reported in Table 6 and depicted in Figure 6.

Table 6. Results of the Bland–Altman analysis of speed for the three tested scenarios.

Scenario MOD [bpm] LOA-Upper [bpm] LOA-Lower [bpm]

Sitting −0.0039 0.9391 −0.9470
Standing 0.0186 1.6753 −1.6392
Supine −0.2948 4.9264 −5.5160
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Figure 6. Plot related to Bland-Altman analysis for each scenario. Each plot contains all breath-by-

breath RR values estimated for each subject. Δ fRR = f RR
re f [n]− f RR

WS[n], and f RR
mean =

f RR
re f [n]+ f RR

WS [n]
2 ,

for n-th breath estimated.
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6.2. Cardiac Activity
6.2.1. Frequency Domain Analysis

According to Section 5, we have estimated HR considering hax (t) and hgx (t). The best
results were obtained considering hgx (t), and the standing scenario was the worst case.
The results related to F̃HR

WS,i and F̃HR%
WS,i are reported in Tables 7 and 8, respectively.

Table 7. Error between average HR estimated using rre f and rWS from hax (t) and hgx (t) signals over
subjects (F̃HR

WS,i) for each scenario.

Volunteer F̃HR
WS,i [bpm]-Sitting F̃HR

WS,i [bpm]-Standing F̃HR
WS,i [bpm]-Supine

hgx (t)

1 0.56 2.92 0.89
2 3.83 0.05 0.18
3 5.19 5.97 0.03
4 0.28 13.07 0.09
5 0.13 1.98 0.06
6 0.30 0.23 0.28
7 0.18 6.20 0.02
8 0.25 0.08 0.80

Average 1.34 3.81 0.29

hax (t)

1 0.41 32.80 0.06
2 3.83 0.05 0.18
3 8.45 24.55 0.03
4 6.29 0.73 2.23
5 0.13 0.02 0.06
6 3.04 9.93 0.28
7 0.16 36.21 0.02
8 0.25 6.24 0.12

Average 2.82 13.82 0.37

Table 8. Percentage of error between average HR estimated using rre f and rWS from hax (t) and hgx (t)
signals over subjects (F̃HR

WS%,i) for each scenario.

Volunteer F̃HR
WS%,i [%]-Sitting F̃HR

WS%,i [%]-Standing F̃HR
WS%,i [%]-Supine

hgx (t)

1 0.83 6.44 1.53
2 5.54 0.06 0.28
3 7.96 7.37 0.06
4 0.41 17.98 0.14
5 0.21 2.69 0.10
6 0.35 0.23 0.37
7 0.31 11.21 0.04
8 0.30 0.09 1.14

Average 1.99 5.75 0.46
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Table 8. Cont.

Volunteer F̃HR
WS%,i [%]-Sitting F̃HR

WS%,i [%]-Standing F̃HR
WS%,i [%]-Supine

hax (t)

1 0.61 72.34 0.11
2 5.54 0.06 0.28
3 12.96 30.31 0.06
4 9.16 1.00 3.59
5 0.21 0.03 0.10
6 3.53 9.85 0.37
7 0.28 65.49 0.04
8 0.30 7.01 0.17

Average 4.07 23.26 0.59

An example of the spectra obtained considering hgx (t) is presented in Figure 7, which
refers to a representative subject.

Figure 7. PSD of hre f (left) and hgx (right) for a representative subject and all scenarios.

6.2.2. Windowed Frequency Domain Analysis

The results obtained for f̃ HR
gx ,i (i.e., the error between HR estimated using hre f and hgx

for i-th subject averaged along the 30 s time windows considered to compute the spectra)
and f̃ HR

gx (i.e., f̃ HR
gx ,i averaged along subject) are reported for each scenario in Table 9. Conversely,

results related to f̃ HR
gx%,i are reported in Table 10.
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Table 9. Values of f̃ HR
gx ,i obtained for all subjects in the three experimental scenarios.

Volunteer f̃ HR
gx ,i [bpm]-Sitting f̃ HR

gx ,i [bpm]-Standing f̃ HR
gx ,i [bpm]-Supine

1 5.45 27.27 0.18
2 0.00 27.45 0.67
3 13.45 16.18 1.00
4 8.60 4.60 5.20
5 0.20 0.00 0.00
6 0.20 35.60 28.73
7 0.80 15.20 0.00
8 0.20 0.20 0.40

Average 3.61 15.81 4.52

Table 10. Values of f̃ HR
gx%,i obtained for all subjects in the three experimental scenarios.

Volunteer f̃ HR
gx%,i [%]-Sitting f̃ HR

gx%,i [%]-Standing f̃ HR
gx%,i [%]-Supine

1 8.02 53.99 0.29
2 0.00 16.99 1.08
3 20.96 20.91 1.98
4 13.03 6.33 8.01
5 0.31 0.00 0.00
6 0.23 30.01 13.42
7 1.30 22.56 0.00
8 0.29 0.24 0.58

Average 5.52 18.88 3.17

7. Discussion and Conclusions

In this study, we presented a prototype of an unobtrusive and multiparametric wear-
able system for continuous monitoring of RR and HR. The feasibility of the system has
been assessed in different static positions (i.e., sitting, standing and supine), simulating
clinical and remote/home monitoring scenarios, and an occupational setting—specifically,
a computer worker sitting at a desk. Continuously monitoring those parameters can
provide useful information on the health status of an individual, including insights on
upcoming potentially critical conditions, and can improve workers’ conditions in terms of
health, well-being and safety [1–3]. Indeed, although HR is a well established parameter
for evaluating an individual’s critical critical state, RR is mostly neglected. Indeed, RR is
directly affected by the effort made (e.g., physical activity, load handling), the surrounding
environment and the psycho-physical state. Thus, a system capable of jointly monitor-
ing breathing activity and cardiac activity may be beneficial to providing comprehensive
assessments of the mentioned conditions [3,12,45].

As shown in Figure 1, the proposed wearable system embeds four conductive textiles
sewed into two elastic bands located on the chest wall of the user (pulmonary rib cage and
abdomen) for RR monitoring and an inertial measurement unit (IMU) integrated within a
custom and compact PCB (located on the left side of pulmonary rib cage) for retrieving HR
in terms of SCG and GCG.

Concerning the breathing activity, we monitored both average RR, by means of a
frequency domain analysis (Section 5.1.1), and RR breath-by-breath, through a time domain
analysis (Section 5.1.2). In both cases we considered rsg(t) band-pass filtered using a zero
phase shift filter and we compared the estimated RR with the one estimated by the reference
system (rre f (t)). According to Section 6.1.1, the average RR estimated by the proposed
WS can be considered as reliable, since the errors obtained were, on average, fractions
of the breath-per-minute in sitting and standing tasks. The average error was ~3 bpm
when considering the supine task, which corresponds to an average percentage error of
~9%. Such results were confirmed in the time domain analysis (Section 6.1.2). Indeed,
the MAEWS obtained for sitting and standing are fractions of the breaths per minute.
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Additionally, in the worst case scenario (represented by the supine task) acceptable errors
were obtained (~1.5 bpm, corresponding to a MAEWS% of ~9.5%). The same behavior was
obtained considering Bland–Altman analysis (see Table 6 and Figure 6). Although the
MOD value was acceptable in all the cases, the LOAs were high especially for the supine
position. A possible explanation for the worse results obtained during supine task may lie
in an undesired interaction between the elastic bands with the support used let subjects
lay down. Probably, in this configuration the elastic band stretched, thereby worsening
the signals recorded by conductive sensors. The use of bands with the rear part being stiff
instead of being elastic might solve this issue. However, this is just a speculation and future
investigations will be devoted to study such aspects.

As regards HR, we considered the signals recorded by IMU. Firstly, we employed
the Hilbert Transform to enhance the contribute of the heartbeat on the recorded signals,
as already used in similar applications [43,44]. This technique allowed us to obtain the
heartbeat envelope relative to the x-axis of the accelerometer (hax ) and the x-axis of the
gyroscope (hgx ). Considering such signals, we implemented a frequency domain analysis to
estimate an average HR during the entire duration of the trials. Afterwards, we estimated
the average HR on 30 s time windows to better assess the capabilities of the proposed
device. In both cases, the results were compared with respect the ECG recorded by the
reference system. Regarding the average HR, estimated considering the entire duration of
the trials, hgx and hax returned similar results in sitting and supine tasks, while hgx (average
error of 3.81 bpm, corresponding to a percentage error of 5.75%) prominently outperformed
hax (average error of 13.82 bpm, corresponding to a percentage error of 23.26%) considering
the standing task. This is likely due to the higher sensitivity of the accelerometer to the
body motions, which are higher in standing being the subjects less constrained than in
sitting and supine. As expected, the best results were obtained in the supine scenario
(average error of 0.29 bpm and percentage error of 0.46% considering hgx , while 0.37 bpm
and 0.59% considering hax ), where most of the movements detected by the IMU are due
to heartbeat, once the respiration has been filtered out. Considering the average HR on a
30 s time window, we considered only hgx , on the basis the better results obtained in the
above-mentioned frequency domain analysis, which allowed obtaining error (averaged
along subjects) of ~3.5 bpm (~5.5%), ~4.5 bpm (~3.2%) and ~16 bpm (~18.9%) in sitting,
supine and standing tasks respectively.

A few studies have investigated to simultaneously monitor breathing and cardiac
activities, and the proposed system show error in line with the systems reported in litera-
ture [22,36–38]. Results presented in [22] show errors smaller than ~2% and ~6%; however,
fiber Bragg grating sensors were used, which require more expensive and bulky systems to
retrieve the signals, and above all, the HR were estimated during apnea. In [36], where the
authors used a belt embedding textile electrodes for recording ECG and breathing activity
through impedance variation of the chest wall. They showed errors of ~2% concerning
RR estimation and better results in terms of HR estimation. Despite the very good results
obtained, the main drawback of this solution lays in the contact required between the
electrodes and the skin of the subjects and the need to continue guarantee a low impedance
at the contact points. A similar approach was proposed by [37]; however, no performance
comparisons with a reference system were presented. In [38] the system proposed is based
on a single piezoelectric sensors which allowed the authors to obtain errors of (in aver-
age) ~10% and ~6% for RR and HR respectively. To conclude the comparison, the main
advantage of our solution lays in the ease of use, simple and low cost electronics required
and high wearability and comfort, which does not require direct contact with the skin or
further adjustments of the sensors after they are worn by the user. Moreover, because of
the presence of IMU within the device, it is possible to exploit their sensitivity on body
motion artifacts to further improve the estimation of RR, similarly to [20,46].

The present work is mainly focused on the design of the device and the technology,
rather than implementing or assessing robust and efficient algorithms to remove motion
artifact from recorded signals during the everyday life. However, we reckon that the
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problem of motion artifact removal should be taken into account since in a real-life scenario,
movements of the subjects can occur. To overcome this concern, different solutions have
been proposed for both RR [20,28,47,48] and regarding HR [33,41,49–51]. Future works will
be devoted to defining a tailored approach on our system, by combining the two different
sensor technologies embedded (i.e., textile strain sensors and an M-IMU) to develop a
sensor-fusion algorithm to remove motion artifacts occurring during real life.

Future works will be devoted to further improve the proposed system to enhance its
capabilities of HR and RR estimation. Indeed, in its present version, the sensors are sewed
on two elastic bands which, despite being comfortable for an ease removal, introduce
an additional compliance thus reducing the sensitivity of the conductive sensors. This
contingency does not allow them to reliably catch the SCG activity. Therefore, as a future
work we are planning on sewing the sensors directly onto an elastic t-shirt (i.e., sportswear)
to reduce as much as possible additional compliant elements between the sensors and the
user, aiming at investigating whether conductive sensors allow also reliably and robustly
monitoring HR, as much as they do with respect RR. Moreover, this may lead to a lower
system complexity, to slightly improve its cost and to provide a more comfortable system.
In addition, we will test the improved system on a larger population, including females
and pathological subjects, to evaluate its potential use also in clinical settings. Since we
tested the device on only male subjects, we can just speculate that the use of the proposed
device might not be of any discomfort on female subjects. Taking into account what most
women wear during sport activities (i.e., sport bras), the use of the upper band of the
proposed device should not be of relevant discomfort, since they also allow being regulated
in length thanks to the provided Velcro. We are convinced that with the improved device
this potential discomfort will be avoided. In addition, the respiratory movements will be
hardly detected by the upper band due to the presence of the breast. However, this hurdle
will be overcome thanks to the presence of the second band. Moreover, we will evaluate
the system performances during different daily living activities which result to be more
challenging but represent a typical use of the proposed system. Finally, it is worth noting
that we used basic data analysis techniques; therefore, more sophisticated analyses (e.g.,
based on machine learning methods) may allow improving the estimation of respiratory
and cardiac parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

WS Wearable System
RR Respiratory Rate
HR Heart Rate
PSD Power Spectral Density
nPSD Normalized Power Spectral Density
PCB Printed Circuit Board
ADC Analog Digital Converter
M-IMU Magneto-Inertial Measurement Unit
IMU Inertial Measurement Unit
BMI Body Mass Index
RMS Root Mean Square
MOD Mean of Difference
LOA Limit of Agreement
ECG Electrocardiography
SCG Seismocardiography
GCG Gyrocardiography
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Abstract: This study aimed to investigate the accuracy and reliability of hip and ankle worn Actigraph
GT3X+ (AG) accelerometers to measure steps as a function of gait speed. Additionally, the effect
of the low frequency extension filter (LFEF) on the step accuracy was determined. Thirty healthy
individuals walked straight and walked with continuous turns in different gait speeds. Number of
steps were recorded with a hip and ankle worn AG, and with a Stepwatch (SW) activity monitor
positioned around the right ankle, which was used as a reference for step count. The percentage
agreement, interclass correlation coefficients and Bland–Altmann plots were determined between
the AG and the reference SW across gait speeds for the two walking conditions. The ankle worn
AG with the default filter was the most sensitive for step detection at >0.6 m/s, whilst accurate step
detection for gait speeds < 0.6 m/s were only observed when applying the LFEF. The hip worn AG
with the default filter showed poor accuracy (12–78%) at gait speeds < 1.0 m/s whereas the accuracy
increased to >87% for gait speeds < 1.0 m/s when applying the LFEF. Ankle worn AG was the most
sensitive to measure steps at a vast range of gait speeds. Our results suggest that sensor placement
and filter settings need to be taken into account to provide accurate estimates of step counts.

Keywords: accelerometers; Bland–Altman plots; gait speed; interclass correlation coefficient; low fre-
quency extension filter; Stepwatch

1. Introduction

Walking is the most common form and used marker of physical activity, where the
number of steps per day is associated with health, e.g., cardiovascular health, dementia and
future mortality risk [1–3]. Accelerometry is an established method for measuring steps [4],
with the Actigraph GT3X+ (AG; ActiGraph Corp.) being one of the most commonly used
accelerometers. AG is a small triaxial accelerometer (dimensions: 4.6 cm × 3.3 cm × 1.5 cm;
weight: 19 g) that can be worn on different body positions (e.g., wrist, ankle and hip) and
has a dynamic range of ±6G (1G = 9.81 m/s2). Additionally, AG has a long battery life and
can continuously measure physical activity for up to six weeks at 30 Hz [5,6]. For the AG
software to detect a step, the bandpass filtered vertical component (y-axis) accelerometer
signal must exceed a proprietary amplitude threshold and cross the zero axis (i.e., positive
and negative values) of the proprietary amplitude threshold [7].

Accelerometer device placement and gait speed are known to influence the step
detection accuracy of accelerometers [8,9]. The hip is the most commonly used placement
for measuring walking since the hip accurately reflects the center of mass of the body.
However, since slow walking generally has low acceleration amplitudes and the amplitude
decreases from the ground upwards, the signal measured at the hip might not be sufficient
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to cross the proprietary threshold for detecting a step. Previous studies have shown AG
to accurately detect steps at a gait speed of >1.0 m/s [5,10], whereas few studies have
investigated the sensitivity of AG to detects steps at different ranges of gait speeds < 1.0 m/s.
Slow walking speeds have been linked to various movement disorders and high risk of
morbidity and mortality [11]. Therefore, it is important to be able to accurately detect steps
at low gait speeds (<1.0 m/s) to be able to identify individuals who have an increased risk
of deteriorating health. This is especially important for people with disability (i.e., stroke
or Parkinson’s) or the elderly, who often have compromised gait speeds. Hergenroeder
et al. [1] showed the hip worn AG percentage agreement with observed step count to be
<52% at gait speed ≤ 1.0 m/s and >85% at >1.0 m/s in older adults [1]. While it has been
suggested that the accuracy of accelerometers to detect a step is inversely proportional to
gait speed [5,8,12], it is unclear at which gait speed the sensitivity of hip and ankle worn
AG starts decreasing. Furthermore, previous studies exploring the step detection accuracy
of accelerometers have assessed straight walking, i.e., steady speed without changing the
walking direction [1,13–15]. However, walking in everyday life is rarely performed during
steady state; in fact, most walking bouts in daily life include four steps or less [16] and 50%
of the steps executed each day incorporate turning steps [17]. Therefore, it is important
that validation of accelerometer step detection accuracy also incorporates non-steady state
walking (e.g., turning).

To take into consideration low frequency/amplitude movements, AG developed a low
frequency extension filter (LFEF), which increases the sensitivity of the accelerometer signal
at low intensity movements by decreasing the proprietary amplitude threshold. This allows
for more accurate step detection during slow walking (<1.0 m/s) [6,14,18]. Although the
LFEF has shown to improve step count accuracy during slow walking, studies by Wallen
et al. [18], Toth et al. [19] and Feito et al. [13,14] showed a significant overestimation in
daily steps taken in the free-living environment. Little is known at which range of gait
speeds the LFEF should be applied to optimize the sensitivity of step detection. While
previous studies [8,9,20] have shown the accuracy of AG to determine steps to be poor
during slow walking, no previous studies have explored at what level the accuracy drops
when walking straight and performing continuous turns.

This study aspired to determine the validity of the ankle and hip worn AG in healthy
adults in a controlled environment before testing the validity of the accelerometers in
people with a disability (e.g., those with neurological diseases) or elderly people. The aim
of this study was to determine the validity of hip and ankle worn AG accelerometer for
measuring steps compared to step counts measured with a reference ankle sensor in healthy
adults. We especially investigated the accuracy of the AG accelerometer to detect steps
across a large span of gait speeds during straight walking and walking with continuous
turns. Additionally, we observed the step detection accuracy of the AG using the default
filter (i.e., AG-DF) compared to the LFEF (i.e., AG-LFEF).

2. Materials and Methods

2.1. Study Participants

Thirty healthy participants (14 males, mean age ± standard deviation: 42 ± 13 years)
with no ongoing or recent medical conditions affecting their gait participated in this cross-
sectional study. The study was approved by the Regional Board of Ethics in Stockholm
(2017/1626-31 and 2018/2524-32) and all participants gave written informed consent prior
to participation.

2.2. Data Collection

Participants attended one gait assessment including two different walking tasks;
walking straight and walking with continuous turns, since these conditions reflect different
walking patterns occurring in everyday life. Prior to assessment, participants were fitted
with two AG’s and one Stepwatch (SW) activity monitor. SW has been shown to be sensitive
to detect steps over a range of gait speeds, especially during slow walking [21]. The position
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of the accelerometers was guided by Webber and St. John [8] with the AG accelerometers
attached around the right hip (above the iliac crest) and left ankle (proximal to the lateral
malleolus), and the SW reference sensor positioned on the right ankle (proximal to the
lateral malleolus) [8]. The AG devices recorded time series acceleration data at a sampling
rate of 30 Hz whereas the SW sensor records the number of steps per one second epochs.
For the SW sensor, the participants height were entered into the Modus Health software
and the following configuration was used: “no quick stepping”, “slow walking speed”,
“rarely varying pace” and “gentle leg motion” [8]. The AG and SW devices utilize the
local computer time to initialize the device timestamp. In order to synchronize the AG and
SW devices, the local time on the local computer were reset to coordinated universal time
approximately 15 min before the start of data collection for each participant. We are aware
of the potential problems that might occur during data synchronization (i.e., clock drifting),
therefore we validated the start and stop times for each trail by; (1) asking the participants
to stand still between 10 and 20 s before and after each trail to delineate the devices step
onset and offset; (2) manually recording the start and stop times from the local computer
and (3) comparing the devices step onset and offset times to the manually recorded start
and stop time for each trail.

For straight walking, participants were asked to walk straight for a distance of 40 m
with a 180 degree turn around a cone after 20 m (Figure 1A). For the walking with contin-
uous turning trial, participants were instructed to walk through a maze (34 m distance)
consisting of an equal distribution of 45 and 90 degree turns to the right and left (Figure 1B).
Participants were instructed to start in their self-selective comfortable gait speed and gradu-
ally decrease their speed after each trail in order to achieve a good distribution of speeds for
both walking conditions. Each participant performed between 10 and 15 trials per walking
condition and we aimed to measure gait speeds between 0.2 and 1.6 m/s for straight
walking and between 0.2 and 1.0 m/s for continuous turning. The time taken to complete
each trail was measured with a stopwatch and immediately entered into a prearranged
Microsoft Excel spreadsheet to calculate the average gait speed for each trail. The narrow
gait speed range for turning reflects the nature of walking and continuous changing the
direction, which often occurs at lower speeds. The start and stop time, manually counted
steps and gait speeds were recorded for each trail by a trained investigator.

Figure 1. (A) Straight ahead walking. (B) Continuous turning. Each circle represents a cone and the
direction of walking is shown by the arrows.

2.3. Data Analysis

The raw acceleration signal was bandpass filtered between 0.25 and 2.5 Hz to attenuate
noise and artifacts and to extract physical movements [22]. Subsequently, the raw signal
was digitized by a 12-bit analog to digital (A/D converter) at 30 Hz, which allows for
4096 levels of both positive and negative accelerations measurements (i.e., 212 = 4096). Since
the acceleration is both in the positive (acceleration towards the earth surface) and negative
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(acceleration away from the earth surface) direction, no movement (zero acceleration) is
associated with the center of the A/D scale (i.e., A/D = 4096/2 = 2048). The positive
and negative acceleration, which is proportional to the vector component of acceleration
deviates the signal from the center value (zero acceleration). Subsequently, the AG software
calculated the difference between the measured A/D reading and the center value and
thereby only retaining the magnitude of the acceleration and removing the sign [23]. The
magnitude of the AG signal is then converted to counts, where a count is defined as the
acceleration amplitude crossing some AG proprietary amplitude threshold. The AG count
data were then summed to one second epochs, i.e., sum of 30 counts per second, and
exported to excel using the ActiLife 6 software (version 6.13.4). The number of steps was
obtained using both the DF (0.25–2.5 Hz) [14] and the LFEF [14,24]. Subsequently, the AG
step data were imported to Matlab where the start and stop times were used to delineate
the total number of steps for each walking and turning trial. The SW data were exported
to excel using the Modus Health (StepWatch4 RE 1.1.6) software. The SW output yields
the timestamp at which each step was taken. The start and stop time were used to sum
the number of steps for each trail of the two walking conditions. The total number of
steps for each trail was grouped in four gait speed groups of 0.4 m/s for straight walking
(i.e., 0.2–0.6 m/s, >0.6–1.0 m/s, >1.0–1.4 m/s and >1.4 m/s) and two gait speed groups
for walking with continuous turning (0.2–0.6 m/s and >0.6–1.0 m/s). The gait speeds
were stratified into 0.4 m/s in order to obtain a relatively good distribution of gait speeds
samples within each group and to resemble gait speed categories of individuals who are
dependent on others in activities in daily living and also have rehabilitation needs [25].

Statistical analyses were carried out using IBM SPSS v.27 software and the level of
significance was set to 5%. In line with previous findings [8,9], the mean percentage
agreement and two-way random inter class correlation coefficient (ICC2,1) between the
manually counted steps and the SW activity monitor across all gait speeds was >99%
and 0.99, respectively, for both straight walking and continuous turning. We therefore
used SW as a reference for measuring steps in our study. The percentage agreement
between the SW step count and the ankle and hip worn AG step count using the DF and
the LFEF were calculated as: (AG step count/SW step count) × 100) for the gait speed
groups [1,9]. The interrater reliability between the SW monitor and the AG devices was
determined using the two-way random ICC2,1 for both filter settings. The strength of the
ICC was classified as follows: <0.50 = poor; 0.50–0.75 = moderate; 0.75–0.9 = good and
>0.90 = excellent [26,27]. Additionally, Bland–Altmann plots were used to describe the
mean percentage bias between the SW and the AG devices [28,29]. We defined the mean
percentage bias as: (the difference between the number of steps between AG and SW/mean
number of steps between AG and SW) × 100 [29]. We also defined a mean percentage bias
of <10% to be an acceptable agreement between the SW and AG devices.

3. Results

3.1. Number of Steps and Time Spent in Each Gait Speed Group for Straight Walking and Walking
with Continuous Turning

For straight walking there was a lower mean number of steps and time spent in the
>1.0 m/s gait speed groups (>1.0–1.4 m/s: 30 steps and 34 s and >1.4 m/s: 26 steps and 25 s)
compared to <1.0 m/s gait speed groups (0.2–0.6 m/s: 54 steps and 103 s and >0.6–1.0 m/s:
36 steps and 51 s). For continuous turning the mean number of steps and time spent in the
0.2–0.6 m/s gait speed group was also higher (55 steps and 91 s) compared to gait speeds
between >0.6 and 1.0 m/s (39 steps and 45 s). The lower time spent and the higher number
of steps for walking with continuous turns compared to straight walking for the same gait
speed ranges are indicative of the shorter walking distance (i.e., 34 m) and the nature of
walking and turning, which often requires shorter steps.
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3.2. Straight Walking

The mean percentage agreement for the ankle worn AG-DF was high (≥92%) at gait
speeds > 0.6 m/s (Table 1) but dropped to 71% for gait speeds < 0.6 m/s. The ankle
worn AG-DF showed moderate to good reliability (ICC2,1: 0.70–0.85) with the SW activity
monitor at gait speeds > 0.6 m/s (Table 2) whereas the reliability was poor (ICC2,1 < 0.29) at
gait speeds < 0.6 m/s. The ankle worn AG-LFEF showed a percentage agreement of ≥94%
and moderate to excellent reliability (ICC2,1: 0.70–0.97) across all represented gait speeds.
For the hip worn AG-DF, the percentage agreement was ≥92% at gait speeds > 1.0 m/s,
with the percentage agreement decreasing rapidly at gait speeds < 1.0 m/s (Table 1). When
the AG-LFEF was applied to the hip worn sensor, the percentage agreement was ≥96% for
gait speeds > 0.6–1.4 m/s. While the hip worn AG-DF showed poor to moderate reliability
(ICC2,1: 0.00–0.58) with the SW across all gait speeds, the agreement was moderate to good
at all represented gait speeds when the LFEF was applied (Table 2).

Table 1. Mean percentage agreement (standard deviation) between SW activity monitor and ankle
and hip worn AG using the DF and LFEF for different gait speeds during straight walking and
walking with continuous turns.

Straight Walking Continuous Turning

Gait Speed
(m/s)

Ankle Hip Ankle Hip

DF LFEF DF LFEF DF LFEF DF LFEF

0.2–0.6 71 (19) 96 (7) 12 (17) 87 (22) 82 (17) 96 (5) 25 (23) 88 (15)
>0.6–1.0 96 (5) 97 (5) 69 (25) 97 (5) 95 (4) 97 (4) 78 (13) 96 (5)
>1.0–1.4 96 (4) 97 (4) 92 (7) 97 (4) - - - -

>1.4 92 (8) 94 (8) 94 (12) 96 (11) - - - -

Table 2. ICC2,1 between SW activity monitor and the ankle and hip worn AG using the DF and the
LFEF for different gait speeds during straight walking and walking with continuous turning.

Straight Ahead Walking Continuous Turning

Gait Speed
(m/s)

Ankle Hip Ankle Hip

DF LFEF DF LFEF DF LFEF DF LFEF

0.2–0.6 0.29 0.97 0.00 0.50 0.28 0.97 0.00 0.58
>0.6–1.0 0.79 0.83 0.00 0.86 0.89 0.93 0.12 0.88
>1.0–1.4 0.85 0.86 0.58 0.87 - - - -

>1.4 0.70 0.70 0.42 0.57 - - - -

The Bland–Altman plots (Figure 2) showed a low mean percentage bias (−3.0–−8.0%)
for both the AG-DF and AG-LFEF at gait speeds between >0.6 and >1.4 m/s (Figure 2F–H)
and between 1.0 and >1.4 m/s (Figure 2C,D) for the ankle and hip worn AG, respectively.
The mean percentage bias was high for the hip worn AG-DF for gait speeds ranging
between 0.2 and 1.0 m/s (−40.0–−160.0%; Figure 2A,B) compared to the AG-LFEF. The
high negative mean percentage bias is indicative of the number of steps being significantly
underestimated by the AG sensors.
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3.3. Walking with Continuous Turning

The percentage agreement for the ankle worn AG-DF was 95% for gait speeds between
>0.6 and 1.0 m/s and 82% for gait speeds < 0.6 m/s (Table 1). The ankle worn AG-DF also
showed good reliability (ICC2,1 = 0.89) at gait speeds between >0.6 and 1.0 m/s whereas the
reliability was poor (ICC2,1 = 0.28) at gait speeds < 0.6 m/s (Table 2). When the AG-LFEF
was applied to the ankle, the percentage agreement was >96% and the level of reliability
was excellent (ICC2,1: 0.93–0.97) across all represented gait speeds. The hip worn AG-DF
showed a percentage agreement of 78% at gait speeds between >0.6 and 1.0 m/s but
dropped drastically for gait speeds < 0.6 m/s. The reliability was poor (ICC2,1: 0.00–0.12)
for all gait speeds using the hip worn AG-DF. Conversely, when the hip worn AG-LFEF
was applied, the percentage agreement was >88% and the reliability was moderate to good
(ICC2,1: 0.58–0.88) for gait speeds ranging 0.2–1.0 m/s.

The Bland–Altman plots for walking with continuous turns showed a low mean
percentage bias (−3.0–−5.0%; Figure 3C,D) for both ankle worn AG-DF and AG-LFEF
for all represented gait speeds (0.2–1.0 m/s) except when using the ankle worn AG-DF
at gait speeds between 0.2 and 0.6 m/s (−21.0%; Figure 3C). The mean percentage bias
was low for the hip worn AG-LFEF (−4.0%) for gait speeds between >0.6 and 1.0 m/s and
otherwise high at all represented gait speeds (−13–−127%; Figure 3A,B).

Figure 3. Bland–Altman plots for percentage bias between the hip worn AG and SW vs. the mean
number of steps between the hip worn AG and SW using the DF and LFEF for gait speeds between
(A) 0.2–0.6 m/s. (B) >0.6–1.0 m/s during continuous turning. Bland–Altman plots for percentage
bias between the ankle worn AG and SW vs. the mean number of steps between the ankle worn AG
and SW using the DF and LFEF for gait speeds between (C) 0.2–0.6 m/s. (D) >0.6–1.0 m/s during
continuous turning. The grey and white filled circles represent the DF and LFEF, respectively. The
grey and black solid line represents the mean percentage bias for the DF and the LFEF, respectively.
The grey and black dashed line represents the ± 95% limits of agreement.
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4. Discussion

The purpose of this study was to determine the accuracy of ankle and hip worn AG
accelerometers to detect steps using the DF and LFEF as a function of gait speed during
steady state walking and continuous turning. The results showed the ankle worn AG-DF
to be the most sensitive for step detection at gait speeds > 0.6 m/s, whilst accurate step
detection for gait speeds < 0.6 m/s were only observed when applying the LFEF. The hip
worn AG-DF showed poor accuracy (12–78%) at gait speeds < 1.0 m/s whereas the accuracy
increased to >87% for gait speeds < 1.0 m/s when applying the LFEF. Walking straight in a
steady state or while walking with continuous turns did not impact the sensitivity of AG
to detect step counts.

While previous studies [8,9,20] have shown the accuracy of AG to determine steps to
be poor during slow walking, no previous study have explored at what level the accuracy
drops when walking straight and performing continuous turns. In line with previous
findings by Treacy et al. (2017), our results showed the hip worn AG-DF to have acceptable
percentage agreement with SW for gait speeds > 1.0 m/s but significantly under counts
the number of steps at gait speeds between 0.2 and 1.0 m/s for both straight walking and
continuous turning. Irrespective of walking condition, the ankle worn AG-DF showed poor
accuracy for step detection at gait speeds < 0.6 m/s and an increased accuracy and level
of reliability for gait speeds between >0.6 and 1.4 m/s. These findings are in agreement
with Treacy et al. (2017), Klaasen et al. (2016), Weber and St. John (2016) and Hergenroeder
et al. (2018) who found that ankle worn accelerometers (i.e., SW, Fitbit and AG ankle) are
generally more accurate when compared to sensors placed at the hip. This is likely due
to the criteria of the AG step detection algorithm, which depends on a signal amplitude
threshold of the vertical acceleration to determine if a step is taken. The ground impact and
the signal amplitude picked up by the AG generally decreases from the distal to proximal
placement (i.e., higher at ankle compared to the hip) [20], which is a plausible explanation
for why ankle worn accelerometers overall show greater accuracy for step detection than
hip worn sensors. In contrast, the acceleration signal at the hip during slow speeds is most
likely not sufficient to register a step using the existing algorithms developed for AG [9].

Walking is an important marker for health where the number of steps per day is
often associated with cardiovascular health [1]. Moreover, slow walking speeds has been
linked with various movement disorders and high risk of morbidity and mortality [11].
Therefore, it is important to be able to accurately detect steps at low gait speeds to be able
to identify health risk. This is especially important for people with disability, who often
have compromised gait speeds. Previous studies [8,30] have shown improved accuracy for
detecting steps using AG when applying the LFEF. For example, Weber and St. John [8]
compared the accuracy of hip and ankle worn AG to an ankle reference sensor in older
adults during straight walking [8]. Their results showed the absolute percentage error
decreased from 47% to <3% for the ankle worn AG and from 96% to 19% for the hip worn
AG when applying the LFEF. In our study, the overall step detection sensitivity for hip and
ankle worn AG improved while applying the LFEF, especially at gait speeds < 0.6 m/s.
Currently, there is no consensus regarding which gait speeds and (or) frequency movement
the LFEF should be applied at. Our results suggest the LFEF should be used at gait
speeds < 0.60 m/s for the ankle worn AG and <1.0 m/s for the hip worn AG. On the other
hand, walking in daily life often occur in different speed ranges with most people varying
their gait speed depending on the purpose of taking steps. Therefore, using the DF and
LFEF is a bit more challenging for populations that walk both slow and at normal speeds.
In line with this, it is worth noting, that previous studies [18,19,24,31], which recorded
accelerometer data over a few days in daily living, have shown the LFEF to overestimate
the number of steps taken over a day. Since the LFEF increases the sensitivity at low
frequency movements, the AG might be prone to falsely detect steps during stationary
movements not related to walking and especially the hip worn AG. Therefore, exploring
and redefining the accelerometer amplitude cut points at low frequency movements to
negate potential overestimation in daily living is warranted. We suggest that future work
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should also entail validating the present findings in daily living and to determine a cut-off
gait velocity at which the LFEF should be used.

Study limitations include the relatively small sample size including healthy adults that
walked slower than their self-selective gait speeds. It is unclear whether healthy controls
walking at slower gait speeds reflect the walking pattern of individuals who walk slowly
due to old age or disability (e.g., stroke or Parkinson’s). Therefore, future work entails
validating the findings in these populations. The study measured steps over a relative short
distance and measuring a longer walking distance could result in an increased reliability.
On the other hand, the variability of the gait pattern among healthy adults is low and
approximately 30 steps has shown to be sufficient for reliable measures of spatial and
temporal gait parameters [32]. Therefore, we do not believe our result would have been
different if we had assessed a longer duration of walking. Finally, our study included
relatively small number of data points at gait speeds > 1.0 m/s. This could result in
misrepresentation of the percentage agreement and interclass correlation coefficient at gait
speeds > 1.0 m/s. Still, previous studies has shown good reliability of accelerometers at
gait speeds > 1.0 m/s [5].

5. Conclusions

Our results showed the hip worn AG device to have poor agreement and reliability at
gait speeds of <1.0 m/s, with the LFEF drastically increasing the accuracy of the step count
at gait speeds between 0.2 and 1.0 m/s. The ankle worn AG showed the highest accuracy
at gait speeds > 0.60 m/s, however at gait speeds < 0.60 m/s the LFEF needs to be applied
to heavily negate underestimating. Walking straight in a steady state or while walking
with continuous turns did not impact the sensitivity of AG to detect step counts.
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Abstract: In recent years, significant work has been done in technological enhancements for mobility
aids (smart walkers). However, most of this work does not cover the millions of people who have both
mobility and visual impairments. In this paper, we design and study four different configurations of
smart walkers that are specifically targeted to the needs of this population. We investigated different
sensing technologies (ultrasound-based, infrared depth cameras and RGB cameras with advanced
computer vision processing), software configurations, and user interface modalities (haptic and
audio signal based). Our experiments show that there are several engineering choices that can be
used in the design of such assistive devices. Furthermore, we found that a holistic evaluation of
the end-to-end performance of the systems is necessary, as the quality of the user interface often
has a larger impact on the overall performance than increases in the sensing accuracy beyond a
certain point.

Keywords: smart walker; obstacle detection; aging; rehabilitation

1. Introduction

While a significant amount of research and industry interest targets mobility aids at
the elderly and disabled, these efforts are often not applicable to people who have specific
comorbidities. A particularly widespread group of such patients have both visual and
mobility impairments. For instance, according to the World Health Organization, there are
an estimated 1.3 billion people globally living with some form of visual impairment [1].
As this population ages, they will also require mobility assistance at least at the rate of
the people with a healthy vision, estimated to be about 16% for individuals 65 years
of age or older [2]. A significant challenge, however, is that the assistive technologies
developed for people with normal eyesight often cannot be used by people with visual
impairments. This is partially due to the fact that the user interfaces often rely on visual
feedback. Furthermore, people with visual impairment already need some type of assistive
technology to navigate their environment—the use of two distinct devices would lead to
an unacceptable cognitive overload.

The research described in this paper focuses on devices that simultaneously help
people with their visual and mobility impairments, and at the same time also use user
interfaces which are appropriate to the capabilities of the user and do not lead to cognitive
overload. As there has been very little work done on devices with this particular com-
bination of capabilities (some examples include [3,4]), it is not clear what type of path
planning and obstacle detection technologies are appropriate in these settings (ultrasound,
vision, infrared and or structured/light technologies). It is also uncertain what type of
user interaction is the least distracting (sound, haptic or high-contrast visual) and what
the content and frequency of the communication with the user should be. In conclusion,
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one of our objectives was the exploration of the design space: we investigated a variety of
obstacle detection and user interaction technologies, and evaluated them under various sce-
narios. The four obstacle detection techniques we used are (a) ultrasonic distance sensors;
(b) 2D observable light camera input processed with state-of-the-art deep learning-based
computer vision algorithms; (c) depth images from an RGB-D camera with minimal post-
processing; and (d) the processing of a 3D point cloud acquired from an RGB-D camera.
For the user interface, we investigated the use of audible and haptic signals.

Beyond the investigation of the technologies involved, we need to keep in mind that
the output of our work needs to be an assistive device that can be deployed and used by
people who have mobility and visual impairments. We implemented the technological
solutions in the form of a smart walker, and we also took into consideration several
practical design requirements. The walkers need to be affordable, they should preferably be
autonomous, and do not require a network connection or cloud computation. Furthermore,
the user interface is very important, as it needs to convey information about obstacles and
proposed avoidance strategies without distracting the user.

The contributions of this paper are as follows:

• We described the designs of several smart walker configurations that can use various
technologies for obstacle detection and user interaction.

• We described four different approaches for obstacle detection, based on different
sensing techniques (ultrasound, RGB cameras, and RGB-D depth cameras). Corre-
spondingly, we described the appropriate processing techniques that can transform
the sensor output to a signal identifying the detected obstacles.

• We validated the proposed object detection techniques in a series of real-world experiments.
• We studied the user interaction techniques based on audio versus haptic notifications.

The remainder of the paper is organized as follows. In Section 2, we review the related
work. In Section 3, we described the proposed approaches in detail. The evaluations of
the proposed approaches through various configurations are given in Section 4 and we
conclude in Section 5.

2. Related Work

One of the earliest implementations for a smart walker and smart cane for elderly
users with impaired mobility were the PAMM designs implemented at MIT in the late
1990s (Dubowsky et al. [5]). These devices were essentially small mobile robots augmented
with handles. They used a sonar array for obstacle detection, an upward pointing camera
for localization using ceiling mounted markers and a force/torque sensor mounted on
the handle for user control. While limited by the technology available at the time, these
designs remained influential, and outlined the research directions which are now being
pursued by many researchers.

MacNamara and Lacey [3] proposed a wheeled walker (rollator) targeted towards
aged people who also have visual impairments. Similarly to our work, this system was
designed to detect obstacles in the path of the user and communicate their presence using
two techniques: audio feedback and a feedback that uses motors to align the wheels in an
obstacle-free direction.

This work led to an early commercial implementation in the form of the motorized
rollator Guido by Haptica [6]. In addition to a more polished commercial design, this
system specifically focused on older blind people. It used sonar and laser ranging devices
to avoid obstacles and a SLAM algorithm to build a map of its environment, allowing it
to guide the user to a predetermined destination. One of the challenges faced by Guido
as a commercial product launched in the early 2000s was the high cost of devices such
as LIDARs.

Zehtabian et al. [7] described an IoT-augmented four-legged walker, which uses
sensors to track and visualize the weight distribution over its legs during use. This
facilitates proper walker usage for rehabilitation and assists physicians in checking their
patients’ rehabilitation progress.
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In a follow-up paper, Khodadadeh et al. [8] processes the walker’s data stream using a
deep neural network-based classifier. This allows the detection of unsafe usage that could
hinder a patient’s rehabilitation.

Paulo et al. [9] implemented ISR-AIWALKER, a robotic walker using computer vi-
sion as the primary human–machine interface modality. This contrasts with previous
approaches that primarily relied on force sensing. The walker was also augmented with
multimodal sensing capabilities that allow it to analyze and classify the gait of the user.
In follow-up work, Garrote et al. [4] augmented the ISR-AIWALKER with robot-assisted
navigation targeted towards users who lack a dexterous upper limb or have visual im-
pairments. The walker uses reinforcement learning algorithms to learn a behavior that
fuses user intent and the environmental sensing of the obstacles. Whenever obstacles are
detected, the system adds corrections to the movement in order to avoid collisions.

Kashyap et al. [10] developed a self-driven smart walker by augmenting the rear
wheels of a rollator with motors. The user interacts with the rollator using voice commands,
such as “go to (room name)”. The authors evaluated several off-the-shelf, LIDAR-based
simultaneous localization and mapping (SLAM) implementations for mapping and naviga-
tion. The system also has a fall detection algorithm that prevents the rollator from moving
away if the user falls.

Bhatlawande et al. [11] proposed a system where ultrasonic sensors are attached to a
belt and a pair of glasses worn by the user. The system detects and identifies obstacles and
indicates an obstacle-free path using audio feedback.

Orita et al. [12] implemented a device that augments the white cane used by visually
impaired people with a Microsoft Kinect camera connected to a laptop and uninterruptible
power supply in a backpack. Information about the lack of obstacles was communicated
to the user through vibration feedback. A small experimental study using blindfolded
subjects had shown that the device helped users navigate an indoor environment.

Pham et al. [13] devised a system to provide a blind user feedback about drops, objects,
walls, and other potential obstacles in the environment. The system relies on a Kinect sensor
worn by the user, with the output processed by a laptop computer in a backpack. Feedback
to the user is provided using a Tongue Display Unit, a sensory substitution device.

Panteleris and Argyros [14] investigated the challenges of vision-based SLAM arising
in the use of the c-Walker [15], a smart rollator with a Kinect sensor as an RGB-D camera.
Rollator users normally move in environments with many other people around, thus the
SLAM algorithm must consider a large number of independently moving objects.

Viegas et al. [16] described a system which allows a four-legged smart walker to
collect data about the load the users put on each walker leg using load cells and the relative
position of the user to the walker using a LIDAR. This information is transmitted using
Bluetooth to an external device and can be used to guide the users in the correct use of the
device and prevent dangerous situations.

Ramadhan [17] described a wrist-wearable system that allows visually impaired
persons to navigate public places and seek assistance if needed. The system contains a
suite of sensors, haptic interaction modules as well as a GPS module and has the ability to
communicate over cellular networks.

Kim and Cho [18] performed a user study about the challenges encountered by
the users of several types of commercial smart canes with obstacle detection capabilities,
and compared them with the traditional white canes. The output of the customer interviews
was used to advance design guidelines for improved smart canes.

Feltner et al. [19] and Mostofa et al. [20] designed walkers targeted at visually impaired
people. These works describe the early versions of the walker configurations described in
the next section.

3. Proposed Approaches

The most widely used assistive devices for mobility are the cane, four wheeled rol-
lators, and four legged walkers. These devices are simple and intuitive for most people
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and, by physical construction, they support and stabilize the users. In order to extend
the benefits of these devices to people who are both mobility and visually impaired, they
need to be augmented with additional capabilities. A relatively wide number of choices
exist with regards to the type of sensing and processing capabilities that can be deployed.
To explore this design space, we started from a standard four-wheeled rollator with a
basket and seat. We implemented four different augmentation configurations across a
range of sensor types, processing hardware and software, and user interface techniques.

3.1. User Interaction

Assistive devices in general, and devices for visually impaired users in particular,
have special user interface (UI) requirements. Graphical user interfaces, the most widely
used techniques to convey information to the user, are not applicable. UIs for assistive
devices must be robust to environmental noise, not require significant cognitive effort from
the user and reduce the chance of misunderstood signals. Given the capabilities of the
augmented rollator, there are two distinct messages that the UI must convey. The obstacle
detected message warns the users that they would hit an obstacle if they continue on the
current trajectory. A signal of increased urgency can be used to convey the proximity of the
obstacle. The navigational guidance message provides a recommendation to the user to turn
towards the left or right in order to avoid the obstacle.

For our rollator, we chose to implement and compare two UI methods: a voice-based
user interface that conveys the information through spoken messages, and a haptic feedback
that is enacted through coin vibration motors attached to the handles of the walker. Both
modalities can convey both the obstacles detected and the navigational guidance messages,
as well as their various gradations. In the case of the voice interface, this is conveyed
through the content and tone of the voice. For the haptic interface, the intensity of the
vibration corresponds to the proximity of the obstacle, while the vibration in the left or
right handle conveys the direction of the recommended turn.

3.2. (A) Ultrasonic Sensors

In this configuration, we removed the basket of the walker and attached nine HC-
SR04 [21] ultrasonic sonar distance sensors to the lower front crossbar of the walker. We
used a Raspberry Pi 3b+ device to drive the sensors, as well as collect and interpret
the results.

The HC-SR04 sensor operates as follows. A ultrasonic sound wave, above the fre-
quency of human hearing, is generated as a trigger. If there is an object in the sensor’s
path, the sound wave bounces back to the sensor as an echo and is captured by the sensor.
By measuring the time taken by sound to travel to the obstacle and back, we can calcu-
late the distance to the obstacle. In practice, this sensor is limited to a viewing angle of
14 degrees and can operate to a distance of up to 400 cm–s with an accuracy of 3 mm. In or-
der to cover the range of obstacles of interest to the user of the walker, we attached seven
of these sensors across the width of the walker. They were also angled slightly towards
the floor in order to detect obstacles immediately in the front of the walker. In addition,
to detect obstacles to the left and right of the walker, we attached one outward angled
sensor to each side of the walker (see Figure 1). One technical challenge we encountered
was that the sound waves from the multiple sensors interfered with each other, which is
possible for one sensor to detect a delayed echo from a wave started by a different sensor.
To avoid this, in our implementation the sensors perform their detection sequentially.
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Figure 1. The rollator configured with nine HC-SR04 ultrasonic sensors. Seven sensors are facing
forward to capture obstacles in a wide area in front of the walker. To facilitate navigational guidance,
two sensors (one on the left and the other on the right) are capturing obstacles.

The outcome of the detection step is an array of distance values corresponding to the
directions covered by the individual sensors. The first use of these data is the obstacle
detection message: the user will be warned if there is an obstacle closer than 200 cm–s in
the direction of movement. This message is triggered if any of the central sensors detect an
obstacle in this range. In addition to this, the arrangement of the sensors also allows us to
recommend the user a navigational guidance for the avoidance of the obstacle. For instance,
if there are obstacles detected in the front and to the right of the walker, the system will
recommend the user to move towards the left.

3.3. (B) RGB Camera with Deep Learning-Based Computer Vision Algorithms

In recent years, the significant reduction in the cost of video cameras, together with
the advances of deep learning-based computer vision algorithms made it possible to
detect obstacles based solely on video information, without using a dedicated distance or
depth sensors. To investigate the feasibility of such an approach, in this configuration, we
mounted a forward-facing Logitech C270HD webcam on the top crossbar of the walker.
We used deep learning-based computer vision algorithms to process the video stream.
The algorithms required the full-featured version of the Tensorflow library, exceeding the
capabilities of a Raspberry Pi device. In our experiments, we used a laptop computer
placed on the seating area of the walker.

Recent research on deep learning-based object detection systems created a number of
approaches that can detect objects of specific types in images in real time. Some of these
approaches include R-CNN, Fast R-CNN, Faster R-CNN, YOLO and others. While the
training of such systems requires non-trivial computational capabilities, many pre-trained
neural networks are available in the public domain. For instance, the Object Detection
API of the TensorFlow library provides a simple programmatic interface to a choice of
several different pre-trained networks. In our experiments, we used a pre-trained network
with the Faster R-CNN region proposal network [22] with the Inception Resnet V4 [23]
model trained on the Open Images data set [24]. By applying this object detector to the
video frames captured through the camera driver of OpenCV, we obtained a collection of
bounding boxes on the image, together with the tentative label and a confidence value.
While the pre-trained network handles and detects a wider variety of objects, we only
retain objects detected with the labels relevant to our application, such as doors, cars and
chairs (see Figure 2).
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Figure 2. Object detection of door and car with TensorFlow.

Many objects of interest to the user have relatively uniform sizes. Thus, for a given
camera with a fixed focal length, the size of a bounding box in the image can allow us
to approximate the distance to the object. For instance, if a chair occupies approximately
half of the field of view of a camera with the 45◦ view angle, the distance to the chair will
be approximately 2–3 ft. Note that this approximation critically depends on the correct
identification of the object—a car with a similar size bounding box would be much farther
away. This approach, while limited in absolute precision, in practice allows us to develop
a software implementation that provides sufficient accuracy for the purposes of obstacle
detection and navigational messages.

We identify the central region of the visual area, which is where the walker is currently
heading. However, comparing the bounding box of the obstacle to this region, we can
identify whether the obstacle is in this region, and also if it is on the left or right side of the
region. This allows us to generate the appropriate navigational messages.

3.4. (C) Depth Camera with Direct Processing of the Depth Image

In this configuration, we mounted a Microsoft Kinect RGB-D depth camera to the
lower front crossbar of the walker. As with the ultrasonic sensors in configuration (A),
the Kinect was angled towards the floor. The device was connected to a Raspberry Pi and
powered through a dedicated 12 V DC rechargeable battery. Figure 3—top shows the depth
component of a captured image, with darker colors representing closer distances. The areas
in black are locations where the camera was unable to determine the location of the point.

In order to implement the functionality required by the walker while relying only
on the limited computational capabilities of a Raspberry Pi, we chose to implement an
algorithm based on an idea from Ortigosa et al. [25]. We started from the central vertical
stripe of the depth image. To reduce the noise and limit the data to be processed, we
performed a pre-processing step by calculating the average of the values on the center
stripe, skipping the black pixels for which no value was available. This created a one-
dimensional array of the size of the height of the image (see Figure 3—bottom). If there is
no obstacle in front of the walker, the pixels at the bottom will have the smallest distance
values, gradually and smoothly increasing to the top of the image. Obstacles will be
indicated by a sudden increase in the slope of this array. On the other hand, a negative
slope indicates a drop in the elevation such as the beginning of a staircase or a street curb.

The advantage of this approach is that it only requires an averaging of a central area,
followed by an iteration over a one-dimensional array while tracking the slope. This
computational load is well within the reach of most IoT devices. A disadvantage of the
approach is that by focusing only on the central stripe, it cannot take into consideration the
available space to the left and right. Thus, a system using this algorithm can only perform
obstacle detection, not navigational guidance.
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Figure 3. Top: The depth component of an image recorded by a Kinect camera in configuration (C).
Darker colors show closer points, with black pixels representing points for which depth information
is not available. The blue central column is the area processed for obstacle detection. Bottom: The
one-dimensional array extracted from the depth map. Pixel 500 refers to the bottom of the image.
The smooth increase in distance from 500 to 200 shows an approximately 4 m free area in front of the
walker, with a drop starting after that.

3.5. (D) Depth Camera with Point Cloud Model and Processing

With the Kinect mounted as in case (C), for this configuration we used more complex
algorithms that build a point cloud of the scene as an intermediate step. These algorithms
required more computational power than available in the Raspberry Pi 3, thus, as in case (B),
we used a laptop computer to process the input and to power the Kinect device. Figure 4
shows the rollator in this configuration.

We are extracting a point cloud from the Kinect device, and processing it through
an approach similar to that of Pham et al. [13]. In order to focus on the processing of
the data relevant to the user of the walker, we performed a series of pre-processing steps
using the Point Cloud Library [26]. We removed the points from the point cloud that
were not immediately relevant to the user of the walker, as well as points that lie outside
the Kinect’s range of accuracy. Second, we noticed that the initially captured point cloud
contained hundreds of thousands of points. The user of the walker does not need such a
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detailed spatial resolution for obstacle avoidance. However, the time needed to process
this information would reduce the temporal resolution of the obstacle detector, introducing
unacceptable delays into the obstacle notification and navigation guidance. To solve this
problem, we down-sampled the point cloud using a voxel grid filter to a spatial resolution
of 1 cm.

Figure 4. The smart walker in configuration D.

The next step is to extract a model of the floor in the point cloud which allows us
to interpret other points as belonging to obstacles. We use the random sampling and
consensus (RANSAC) algorithm to determine the coefficients of a large horizontal plane
within the point cloud, with the inlier points being considered as part of the floor. If no
such plane could be found, this means that either the walker is at the edge of a sudden drop
(such as a staircase) or that a large, close obstacle obstructed the majority of the camera
view. In both cases, the user is warned about an immediate obstacle at close range.

After the plane of the floor was extracted, the outlier points were considered to be
part of the obstacles. We used the techniques described by Li et al. [27] to iterate through
all outlier points and determine the distance from the obstacles. The stages of processing
the point cloud are shown in Figure 5.

Figure 5. Cont.
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Figure 5. The stages of processing the point cloud: (top) the high-resolution point cloud extracted
from the Kinect sensor; (middle) the point cloud after the elimination of non-relevant points and
downsampling; and (bottom) the points of an obstacle, after the floor plane was identified and
removed from the image using RANSAC.

4. Results

There is no single criteria that can be used to compare the various configurations
of the smart walker. Obviously, devices with higher computational power and more
capable sensors should yield better performance when measured in localization accuracy.
For instance, an RGB-D camera that returns both an image and a depth value for every
pixel will inevitably yield a high-quality model of the environment on which complex
path planning algorithms can be applied. However, a sensor of this complexity has both a
higher cost and more costly processing requirements.

Sensors with significantly less capabilities, such as the ultrasonic sensors that return
only a single numerical value for a depth (configuration (A)), or sensors that collect only
an image (configuration (B)), will yield a walker with less capabilities in an absolute sense.
However, such a walker can still provide useful services to the user, and be better in
terms of its dimensions of cost, robustness and reliability compared to walkers with more
complex sensors (such as configurations (C) and (D)).

Thus, we are going to evaluate our designs in two different ways. Objective tests for
obstacle detection measure the performance of the sensor paired with a specific processing
algorithm. These tests do not involve the participation of a human user.

End-to-end usability tests measure the utility provided by a walker to the user for
obstacle avoidance and navigation. Such tests holistically consider the entire system,
including sensor performance, processing latency, the quality, and types of feedback given
to the user.

The objective of these experiments was to investigate the capabilities of the augmented
walker. These tests consider a human user performing specific navigation tasks with the
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configured walker. As these experimental systems do not yet meet the criteria of safety for
human subjects research with elderly and disabled people, in these experiments we used
healthy volunteers, from 20 to 30 years old, from the research group. The subjects were
instructed to put some of their weight on the walker to model mobility impairment and
were blindfolded to model visual impairment.

4.1. Obstacle Detection: Configuration (A) versus (B)

In this set of experiments, we compared the two configurations that do not have an
RGB-D sensor ((A) and (B)) in their ability to detect and estimate the distance to an obstacle
placed in front of the walker.

For the experiments with the (A) and (B) configurations, we chose a set of obstacles
to experiment with based on the following considerations. We included both indoor and
outdoor obstacles, as these sensor types can function in both environments (this is not
possible for (C) and (D)). We also included both obstacles that raise above the level of the
floor, and obstacles that represent a drop (such as the stairs, curb and swimming pool).
Finally, we added some obstacles that test the ability of the computer vision system in
configuration (B) to identify obstacles that cannot be distinguished by a simple distance
sensor like in configuration (A). For instance, the computer vision system can distinguish
between a door (which can be opened, thus treated differently by the user) from a wall.

What we are interested in here is whether these more limited sensors are able to cap-
ture a variety of obstacles that a typical user might encounter. Table 1 shows the results of a
series of experiments we performed with a variety of obstacles in a household environment.
The ground truth have been obtained through direct measurement from the sensor to the
closest point of the obstacle. Some of the conclusions we can draw from these experiments
are as follows. Both configurations (A) (ultrasonic sensor) and (B) (camera processed
through computer vision) were able to detect all the obstacles in these experiments, and re-
turned the correct “no obstacle” answer in the empty hallway. The ultrasonic sensor, which
is an active sensor specialized on the distance measurement, obtained the sub-centimeter
accuracy, an operational parameter of this sensor type. As expected, the values obtained
from the processing of the camera image were less accurate. The camera, as a passive image
sensor, does not directly capture any depth information, as all values are inferred only
from relative image sizes. Nevertheless, we conclude that the accuracy of both sensors was
sufficient for making a decision about whether the user should be notified of the obstacle or
not. As a note, with regards to the quality of this notification, the computer vision system
was able to identify the type of obstacle (e.g., person, wall or car), while the depth sensor
can only detect the distance, albeit at a higher accuracy.

Table 1. Comparing the accuracy of configurations A and B for measuring the distance (cm) to
several indoors (upper part) and outdoors (lower part) obstacle types.

Obstacle Ground Truth Config (A) Config (B)

Empty hallway N/A No obstacle No obstacle
Wall 91.9 92.3 82.9
Door 53.7 54.6 40.3
Person 110.3 110.2 120.9
Stairs 51.8 52.3 54.9
Backpack 42.5 42.6 39.5
Curb 87.3 86.9 100.3
Car 132.6 131.3 111.2
Swimming pool 49.3 50.1 68.3

4.2. Obstacle Detection: Configuration (C) versus (D)

In this series of experiments, we compared the two configurations of the walker that
use the same Kinect RGB-D camera as the sensor. As discussed in the previous section,
the difference between these configurations is the processing algorithms: (C) uses a simple
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central stripe averaging technique that can be implemented on a Raspberry Pi 3 device,
while (D) uses a more complex approach based on creating and processing a point cloud.

A general observation with the use of the Kinect sensor is that due to the fact that it
uses an infrared emitter and sensor, it does not work in bright sunshine, when the infrared
rays from the sun confuse the measurements. Configurations (A) and (B) do not suffer from
this problem. For the experiments with (C) and (D) configurations, the nature of the sensor
did not allow for outdoor experiments, which restricted the use of obstacles in the indoor
setups. At the same time, the low-resolution point cloud representations are not suitable
for certain types of obstacle classifications such as between a wall and a door. On the other
hand, the 3D representations allow us to distinguish between obstacles that represent a
drop or a raise in the floor. To verify that our algorithms can identify these situations, we
added experiments to test for this, looking at the bottom of a stairwell and a drop in the
floor level.

The measurements for these obstacle types are shown in Table 2. We found that
for these measurements, the approach (D) slightly under-estimated the distance to the
obstacles, while (C) slightly overestimated them. However, for all cases, the obstacles
and drops were detected correctly, and the errors were small enough not to affect in any
measurable way the experience of the user.

We concluded from this experiment that if the only goal was the detection of the
obstacles in front of the walker, the much simpler algorithm using configuration (C) is
sufficient. However, we note that (C) ignores the obstacles outside of the center stripe,
and thus it cannot provide navigational guidance.

Table 2. Comparing the accuracy of configurations C and D for measuring the distance (cm) to
several likely obstacle types.

Obstacle Ground Truth Config (C) Config (D)

Empty hallway N/A No obstacle No obstacle
Wall 128 130 120
Drop N/A Detected Detected
Bottom of stairwell 125 129 119
Item in path 182 187 172

4.3. Blindfolded Navigation (Configuration A versus B)

As devices need to be deployed to the user, the most useful evaluation is that of
measuring the way in which they impact the user’s daily routine. We are less interested,
for instance, in the high precision measurement of the distance to an obstacle, than the fact
that the obstacle has been detected, and the user had successfully avoided the collision and
navigated to their destination with the help of the walker. To evaluate the performance of
the augmented walkers along this dimension, we performed a series of experiments that
tested the navigational guidance of the walkers for users with severe visual impairment.

In these environments, we considered three setups which involved the same walker
frame, but with different configurations and ways of interaction with the user. BASELINE
involved the walker without any of the augmentations, serving only as a mobility aid.
A+H was the walker in Configuration (A) with a haptic user interface for signaling the
navigational guidance. B+A was the walker in configuration (B) with an audio feedback.
To model severe visual impairment, the users (healthy volunteers) were blindfolded.

We chose these setups to investigate some representative choices at various technology
levels. Thus, BASELINE is a “no-tech”, traditional assistive device. A+H is the “mid-tech”
choice, it uses a relatively simple sensor technology, with a low dimensional output (seven
dimensions), simple user interface based on a binary haptic actuator. As a perceived
complexity, the code driving this system can be measured in about one hundred lines of
Python code, without relying on external libraries. The B+A setup is the “high-tech” choice:
the input technology is the video input at a resolution of 1024 × 1024 corresponding to a
dimensionality of one million. It is processed through a deep learning system combining
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several technologies (ResNet, Inception, FasterRCNN) with the number of parameters
exceeding 10 million. It also uses a high-level, voice-based output. Naturally, many other
combinations could be investigated. However, a full exploration of the possible pairings
are beyond the scope of this paper.

We performed two types of experiments: simple navigation from source to destination
point and more complex indoor navigation experiments. In both types of experiments,
we measured the number of time the users collided with the obstacles. There were two
major situations that led to hit obstacles. In the first type, the user was already moving
when the notification was issued, and the momentum of the movement led to hitting the
obstacle. In the second type, a notification about an obstacle led the user to change their
trajectory, and this led to immediately hitting another obstacle, different from the one about
which it had been notified. We conjecture that the first type of collision could be mitigated
with a faster overall process of the detection–decision–notification cycle. The second type
would require the system to have a more sophisticated navigation and user prediction
model, which would take into account more obstacles in the scene and model the user’s
likely reaction to the navigation command. We have not encountered a situation where the
obstacle detector would have missed one of the obstacles in the scene.

The detection range of the HC-SR04 ultrasonic sensor is 4 m, the one of the Kinect
sensor is about 3.5 m, and the one based on a camera is basically unlimited, in practice
extending to the nearest occlusion. We judge that these ranges are sufficient for obstacle
detection in a rollator scenario. The practical problem, however, is that it is impractical for
a system to make a notification when it sees an obstacle four meters away—in any scenario
there is always going to be some kind of obstacle that is far out. The main challenge, as we
noted above, is not the detection of the obstacle, but making the decision to notify the user
in the right way and at the right time. If we notify the user too early, we risk spamming
them about obstacles they will not hit anyhow, while if we notify them too late, the user is
already committed to a move and will collide with the obstacle despite the notification.

4.3.1. Simple Navigation

The simple navigation task involved the user moving from a source to a destination
location, on a trajectory that would be a straight line in the absence of obstacles. The exper-
iments involved navigating an environment with various obstacle densities. We used both
an indoor and an outdoor environment, with the type of obstacles suitable to the setting.
The experiments considered four levels of obstacle densities: empty, low, medium and
high. We used the same ten obstacles, but the higher the obstacle density, the closer the
obstacles were to each other leading to a more complex navigation task. Note that even for
the empty setting, the user had to avoid collision with walls for the indoor environment
and curbs and cars for the outdoor environment. For each experiment, we counted the
number of obstacles the user collided with during the movement, as well as the time it
took to navigate from the source to the destination.

Figure 6—top shows the percentage of the obstacles hit under various configurations,
as an average of two trials. The results show that while there is considerable individual
variation, overall, the more densely packed the obstacles were, the lower the number of
the collisions and the faster the traversal. We conjecture that the main reason for this is
that when the obstacles were closely clustered, the user could traverse the area with the
obstacles very carefully and slowly to avoid them, but it could speed up on the rest of the
trajectory. However, when the same number of obstacles was distributed in the whole
area (in this case, with lower density) the user was more likely to be taken by surprise by
an obstacle.

Comparing the three setups, the B+A approach consistently showed the lowest num-
ber of collisions. The A+H approach was in general better than the baseline, with one
outlier for the medium-density outdoor setting. Empirical observation led us to conjecture
that this was due to a “snowball” effect: if a user hits several obstacles in close succession,
it is likely that they will hit other ones as well, perhaps as a result of disorientation.
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These results validate the fact that the walkers need to be evaluated as a holistic system.
While both configurations correctly detected the obstacles, with in fact the ultrasonic sensor
in A+H being the more accurate, the overall results in setup B+A were better. We conjecture
that the reason for this is that the users were not accustomed to navigate based on the haptic
feedback, with the audio signals offering a clearer guidance. In addition, the vision-based
sensing combined with audio output allowed the walker to identify the obstacle. This
information was not available in setup A+H. This information could be used by the user
for a more successful navigation.

This finding matches other studies that investigate the cognitive load of audio and
haptic feedback in assistive systems. For instance, Martinez et al. [28] found that blind peo-
ple prefer haptic feedback over audio feedback for short range navigation tasks, but prefer
audio feedback for other tasks such as orientation, communication and alerts.

Figure 6—bottom shows the measured values for the time to reach the destination.
For the indoor environment, we found that the higher the density of the obstacles,

that is, the closer the obstacles were clustered together, the faster the traversal time, as the
trajectory contains large stretches where no obstacle was present, allowing the user to speed
up. However, we found that, in general, there is little difference between the different
walker configurations in the time taken to navigate the trajectory.

Figure 6. (top) Efficacy of the navigational guidance system for configurations A and B, measured
as the percentage of the obstacles in the environment that were hit during the navigation (lower is
better); and (bottom) time needed to perform a navigation task (lower is better).
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4.3.2. Complex Indoor Navigation Task

The most frequently encountered navigation task by a mobility and visually chal-
lenged person is navigating their personal environment: this involves moving from the
bedroom to bathroom or from the front room to the kitchen. In contrast to the fixed
source–destination pairs we considered in the previous section, these navigation tasks are
more complex: they involve finding paths, going through doors and maneuvering around
furniture (see Figure 7).

To investigate the impact of the different walker setups for this task, we measured the
user’s navigation of four different paths in a house. The experiments were repeated with
the BASELINE, A+H and B+A configurations. The time it took to navigate these paths and
the number of obstacles with which they collided is shown in Table 3. In this environment,
we found that both augmented configurations A+H and B+A allowed the user to complete
the navigation tasks, both faster and with a lower number of collisions compared to the
BASELINE. There was no significant difference between the two augmented configurations.

Figure 7. A complex navigation task in an indoor environment. The disabled user needs to navigate
from the bedroom to the bathroom, avoid obstacles such as the bed and the chair, and must find and
open the appropriate doors.

Table 3. Experimental results for the complex navigation tasks.

Type of Aid Scenario Time Obstacles Hit

BASELINE

front door to kitchen 2:39 3
kitchen to bedroom 1:31 4
bedroom to bathroom 1:28 3
patio 3:32 3

A+H

front door to kitchen 1:52 1
kitchen to bedroom 1:12 2
bedroom to bathroom 1:04 1
patio 2:31 2

B+A

front door to kitchen 1:50 1
kitchen to bedroom 1:10 1
bedroom to bathroom 1:09 2
patio 2:23 0

5. Conclusions

In this paper, we described and studied several prototypes for a smart walker special-
ized for people with both visual and mobility impairments. As a first conclusion, we found
that there are multiple, very different choices of sensors that can ultimately ensure a similar
user experience. Active sensors such as ultrasonic distance sensors or infrared depth
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cameras achieve the best accuracy in localizing obstacles. However, recent advances in
computer vision, in particular object detection and recognition, allow passive, inexpensive
cameras to achieve accuracy that is sufficient for the purposes of such a walker. In addition,
computer vision systems can provide additional functionality such as identifying and nam-
ing the type of obstacle encountered by the user. Another conclusion of our experiments is
that the performance of such a walker needs to be evaluated in a holistic way—the accuracy
and reliability of the sensor, the type of user interaction used (such as haptic or audio),
the friendliness and clarity of the user interaction and the low latency all contribute to
the overall performance of the walker. Not every configuration justifies the additional
cost of the technology. In particular, it is not enough that there is a sensor that detects the
obstacle—we also need to find a way to convey it to the user in a way that triggers the right
real-time obstacle avoidance behavior.
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