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Preface to ”Big Data Analytics and Information

Science for Business and Biomedical Applications”

In today’s data-centric world, there is a host of buzzwords appearing everywhere in digital and

print media related to ‘Big Data’. We encounter data in every walk of life, and the information it

contains can be used to improve society, business, health, and medicine. This presents a substantial

opportunity for humanity in general and a great challenge for statisticians and data scientists. Making

sense of modern data structures and extracting meaningful information from them is not an easy task.

The rapid growth in the size, scope, and complexity of data in a host of disciplines has created the

need for innovative statistical strategies for analyzing and visualizing such data.

An enormous trove of digital data has been produced by biomedical research worldwide,

including genetic variants genotyped or sequenced at genome-wide scales, gene expression measured

under different experimental conditions, biomedical imaging data, including neuroimaging data,

electronic medical records (EMR) of patients, and much more.

Analysis of such data will not only deepen our understanding of complex human traits and

diseases, but will also shed light on disease prevention, diagnosis, and treatment. Undoubtedly,

comprehensive analysis of Big Data in genomics and neuroimaging calls for statistically rigorous

methods that can be applied in complex settings with data arising from multiple platforms. Various

statistical methods have been developed to accommodate the features of genomic studies, as well as

studies examining the function and structure of the brain.

Meanwhile, statistical theories have also correspondingly been developed. Alongside

biomedical applications, there has been a tremendous increase and interest in the use of Big Data

in business and financial applications. Financial time series analysis and prediction problems present

many challenges for the development of statistical methodology and computational strategies for

streaming data. The analysis of Big Data in biomedical, as well as business and financial research, has

drawn much attention from researchers worldwide.

This book provides a platform for an in-depth discussion of powerful statistical methods

developed for the analysis of Big Data in these areas. Both applied and theoretical contributions

to these areas are showcased.

With a focus on statistical and machine learning, Wu et al. develop a novel approach for text

feature learning motivated by trend analysis in cancer research examining 260,000 cancer studies

and the corresponding low-dimensional text representations. Su et al. extend the lasso-penalized

distance-weighted discrimination approach for binary classification to multicategory classification

problems with an approach that considers all classes simultaneously. They establish uniqueness of

the solution and obtain a non-asymptotic error bound in the case of group lasso penalization for

ultra-high dimensional data.

With a focus on high-dimensional regression, Ahmed, Amiri, and Doksum focus on developing

efficient prediction methods within the setting of high-dimensional regression where the number of

predictor variables is larger than the sample size. They investigate the performance of ensemble linear

subspace methods that combine the results of linear models applied to smaller subsets of predictor

variables selected by random selection and find settings where ensemble methods perform relatively

well. Zhao and Chen consider regression analysis within the context of missing data and develop a

conditional likelihood approach incorporating an instrumental variable that avoids the specification

of the process generating the missing data. A data perturbation technique is also developed for

ix



inference in the high-dimensional case. Pet al. consider estimation and variable selection in ultra

high-dimensional settings and develop an approach combining forward selection and backward

elimination with stopping criteria that control false positives and false negatives. The authors obtain

probability bounds on variable selection and show consistent estimation.

With a focus on biomedical data, Opoku et al. develop an algorithm based on ant colony system

optimization for improving solutions to the ill-posed neuroelectromagnetic inverse problem from

combined EEG and MEG data. Mei et al. use emulated clinical trial data and deep learning to compare

endovascular aortic repair and emergent open aortic repair as procedures for abdominal aortic

aneurysm and find that the former leads to improved expected survival. Cao and Lee consider the

variable selection problem for fMRI data and develop a Bayesian approach based on non-local priors

with posterior computation based on a combination of the Laplace approximation and stochastic

search.

Finally, with a focus on financial modeling, Sun and Bozdogan consider the segmentation of

high-dimensional time series data and develop an approach based on sparse principal component

regression and mixture model cluster analysis. This approach is applied to find change-points in the

adjusted closing price of the S&P 500 index over a span covering the years 1999 to 2019.

Börjesson and Singull consider deep learning for forecasting financial time series in a study

comparing multi-channel convolutional neural networks represented as nonlinear autoregressive

models and standard autoregressive time series modeling. A number of financial indices are

considered including the S&P 500 covering the years 2010 to 2019.

In summary, this collection comprises a variety of contributions to the state-of-the-art on

statistical methodology for Big Data and high-dimensional problems for biomedical and financial

applications and beyond. We hope that it will in turn inspire new methods and applications.

Farouk Nathoo, S. Ejaz Ahmed

Editors
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Abstract: Machine learning models can automatically discover biomedical research trends and

promote the dissemination of information and knowledge. Text feature representation is a critical

and challenging task in natural language processing. Most methods of text feature representation

are based on word representation. A good representation can capture semantic and structural

information. In this paper, two fusion algorithms are proposed, namely, the Tr-W2v and Ti-W2v

algorithms. They are based on the classical text feature representation model and consider the

importance of words. The results show that the effectiveness of the two fusion text representation

models is better than the classical text representation model, and the results based on the Tr-W2v

algorithm are the best. Furthermore, based on the Tr-W2v algorithm, trend analyses of cancer research

are conducted, including correlation analysis, keyword trend analysis, and improved keyword trend

analysis. The discovery of the research trends and the evolution of hotspots for cancers can help

doctors and biological researchers collect information and provide guidance for further research.

Keywords: feature representation; feature fusion; trend analysis; text mining

1. Introduction

Since the completion of the Human Genome Project and with the rapid development
of high-throughput biotechnology, the amount of data in the fields of biology, medicine,
genetics, and chemistry has exponentially grown. As of January 2021, the number of entries
in PubMed (Biomedical Literature Retrieval System) has exceeded 30 million [1]. However,
given the large-scale, rapid growth and massive amounts of data in various formats, people
can do little with the data. It is a major challenge for clinicians or biological researchers
to obtain cutting-edge information about research from tens of thousands of publications.
Traditional methods, the knowledge of which was manually acquired from literature and
images, can no longer meet researchers’ needs for understanding the current hotspots and
trends of biomedical research [2,3]. It has become urgent to use intelligent algorithms to
quickly and effectively acquire and discover biomedical knowledge.

Cancer research has attracted much attention in the medical field. Among all cancers,
lung cancer poses the greatest threat to human health; it is characterized by its rapid spread
and high probability of death. In recent years, according to statistical data around the
world, the possibility of people suffering from lung cancer has greatly increased. Besides,
gastric cancer, colorectal cancer, breast cancer, and liver cancer are also high-risk cancers
that have been studied in the medical field in recent years. Traditional trend analysis can
only be completed after reading and sorting out many documents published in the field in
recent years by experts. This approach may hinder the dissemination of information and
knowledge and cause omissions in the retrieval of papers by experts, which may affect
the results of the extraction of research hotspots or trend analysis. The usage of machine

1



Entropy 2021, 23, 338

learning models to automatically discover biomedical research trends can make up for this
deficiency [4,5].

Text feature learning is an important task in the field of natural language processing,
and it is the basis of many downstream applications, such as text clustering and classifi-
cation [6]. Most existing text feature representation learning is based on words, that is,
word vector representation. It obtains word representation by mapping words from a
one-dimensional space to a continuous vector space. The word representation methods
include neural networks, word co-occurrence methods, methods that rely on probability,
and interpretable knowledge base methods. A good low-dimensional mapping repre-
sentation often improves the performance of downstream tasks [7]. Feature fusion is the
integration of multiple different feature information to obtain more prominent feature
information [8–11]. Multimodal features from text, audio and vision can be fused with
fusion technique [12]. There are two types of fusion technique, early fusion, and late fusion.
Early fusion concatenates the features together at first and late fusion combines results [13].
We adopt early fusion for text clustering.

Based on text representation methods, we propose a multi-view feature fusion strategy.
The hotspots and trend analysis were conducted on 260,000 cancer studies using the
proposed method. Our contribution mainly includes the following points. (1) The fusion
of the improved vector representation model Ti-W2v algorithm and Tr-W2v algorithm
were proposed. (2) A correlation analysis algorithm based on similarity is proposed to
analyze the relationship among five cancer types. (3) A keyword trend analysis model
and its improved model are proposed. Taking lung cancer as an example, the keyword
analysis model analyzes the overall research hotspots. (4) Taking lung cancer as an example,
the trend of lung cancer research is further analyzed from three perspectives, including
gene proteins, therapeutic drugs and methods. The results can help guide the literature
summary and further work of relevant researchers.

The remainder of this paper is organized as follows: Section 2 lists the materials and
methods. Section 3 describes the experimental details, presents the experimental results,
and gives the error analysis. Section 4 discusses the results. Section 5 concludes our work.

2. Materials and Methods

2.1. Background

Traditional text representation models commonly include models based on word
frequency, TF-IDF, TextRank, and word embedding. The text feature representation model
based on word frequency is the simplest. It calculates the number of occurrences of each
word in the text and obtains the text vector with the word frequency of each word [14]. The
expression based on the word frequency algorithm is shown in Equation (1):

wordcount(i, j) = ni,j (1)

where ni,j is the occurrence number of word ti in document dj.
The text feature representation model based on TF-IDF considers the frequency of oc-

currence of each word in the training texts and the number of other training text containing
the word, that is, the frequency of the reverse text [15,16]. The expression of the TF-IDF
algorithm is shown as Equation (2):

t f id f (i, j) = t f (i, j) ∗ id f (i) =
ni,j

∑k nk,j
∗ log

|D|
1 +

∣∣{j : tiǫdj
}∣∣ (2)

where |D| represents the total number of files in the corpus. 1 +
∣∣{j : ti ∈ dj

}∣∣ represents
numbers of documents containing the term ti, we add 1 here to prevent the denominator
from being 0. The TF-IDF text representation model is an algorithm based on word
frequency, which pays more attention to the number of times the words appeared in the
document and does not consider the relative position between them.

2
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The TextRank-based text feature representation model is a graph-based sorting algo-
rithm for text [17]. Its core idea is that a word is more important if it appears after many
words. Besides, if a word is followed by another word with a high TextRank value, the
TextRank value of this word is accordingly higher. The TextRank model is an algorithm
based on graphs. Let G = (V,E) be a directed graph with the set of vertices V and set of
edges E, where E is a subset of V*V. For a given vertex Vi, let In(Vi) be the set of vertices
that point to it (predecessors), and let Out(Vi) be the set of vertices that vertex Vi points to
(successors). The score of a vertex Vi is defined as followed Equation (3):

WS(Vi) = (1− d) + d ∗ ∑
VjǫIn(Vi)

wji

∑VkǫOut(Vj)
wjk

WS
(
Vj
)

(3)

where d is a damping factor that can be set between 0 and 1; wji is the weight between
Vj and Vi. The TextRank model focuses more on the degree of co-occurrence between
words in a fixed-length window. This considers the relative position of words to a certain
extent, so when the number of documents is small, the TextRank algorithm can express
text information more accurately, while the TF-IDF algorithm cannot do this.

The text feature representation model based on word embedding maps words to
another space through a certain mapping rule and generates expressions in a new space [18].
The word embedding text representation model is an algorithm based on a neural network.
The hidden attributes between words in the text, such as the similarity and part of speech
between words, are emphasized. As the characteristics of neural networks, the word
embedding text representation model is difficult to be explained, but its final effect is better
than TF-IDF and the TextRank algorithm. The obtained word vectors can measure the
semantic and other relevant features between words. Therefore, word embedding methods
to represent text features has been a hotspot in recent years. The most commonly used
word embedding tool is Word2Vec [19–21], which contains two training modes: the CBOW
training mode and the Skip-gram training mode.

2.2. Method

As shown in Figure 1, our proposed framework consists of two modules, a feature
fusion module, and a research trend analysis module. The feature fusion module contains
two fusion strategies, and the research trend analysis includes three trend analysis methods.

3
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Figure 1. Framework of our work.

2.2.1. Feature Fusion Representation Model

The word-based text representation method needs to obtain the representation of each
word first. Then, word vectors can be used to obtain a text representation. The classic
method is used to add all word vectors and the average of all vectors as the text vector.
In this method, all words in the text are considered equally important. This is obviously
far-fetched because the importance of words in the text is different. The representation
algorithms of TF-IDF and TextRank represent a text by calculating the weight of words
in the text, but the analysis point and calculation method of the two are quite different.
The Word2Vec algorithm can determine the semantic information of words and does
not consider the importance of words. To retain the advantages of the above methods,
we propose a multi-view fusion strategy, which combines Word2Vec with TF-IDF and
TextRank. In this fusion strategy, Word2Vec is chosen as the representation method of
words. The weights of words in text are given by TF-IDF and TextRank. We named the
fusion method Ti-W2v and Tr-W2v, and the details are given in the following sections.

Ti-W2v is an improved algorithm that combined TF-IDF and Word2Vec. TF-IDF is
adopted to calculate the weight coefficient of each word in the text, and the embedding
vector of the text can be generated with the product of the weights and embedding vectors
of Word2Vec for all words. The advantage is that different words in the text can be given
different degrees of importance, closer to the actual situation than average embedding.
For a corpus, D is the corpus, and D = {D1, D2, . . . , Dk}, Di is the ith document. Vi is the

4
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representation of Di. wij is the jth word in Di, vij is the vector of wij obtained by word2vec.
TIij is the weight of wij, obtained with TF-IDF as Equation (4):

TIij =
ni,j

∑k nk,j
∗ log

|D|
1 +

∣∣{j : ti ∈ dj
}∣∣ (4)

Vi is defined using Equation (5):
Vi = TIij × vij (5)

The TF-IDF algorithm is based on word frequency. It measures the importance of
words based on text word frequency and global reverse text frequency. It is suitable
for cases in which the number of documents is relatively large. While, in TextRank, the
importance of words is decided by their relative position. It does not depend on other
documents and considers the co-occurrence of each word. Based on the fusion strategy, we
propose the Tr-W2v algorithm, which combines TextRank and Word2Vec. First, TextRank
is used to calculate the weight coefficients of different words in the text, and then the
Word2Vec embedding vectors of the words by weight are added to obtain the text vector.
TRij is the weight of wij, obtained with TextRank as Equation (6):

TRij = (1− d) + d ∗ ∑
VmǫIn(Vj)

wmi

∑VkǫOut(Vm)
wmk

WS(Vm) (6)

as Ti-W2v, Vi is defined with Equation (7):

Vi = TIij × vij (7)

2.2.2. Cancer Research Trend Analysis Model

Based on the fusion-improved feature representation model proposed in the previous
section, we propose three trend analysis models. We first propose a similarity trend analysis
model based on the five high-incidence cancer datasets. A keyword trend analysis model
and an improved keyword analysis model are proposed based on the lung cancer dataset.
Then, lung cancer-related gene proteas, treatment methods, and drugs, and other hotspots
related to lung cancer were analyzed.

Correlation Analysis Based on Similarity

We use the Tr-W2v algorithm to obtain the corresponding text vectors of abstracts on
the five major cancer in the last five years. Then, the text vectors of various cancers are
integrated into a vector for a certain year of this type of cancer in units of years (addition
and average). The cosine similarities of different cancers are calculated in different years,
and the correlation of different cancers are analyzed for the past five years through cosine
similarity. Figure 2 shows the flowchart of the algorithm.
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Figure 2. Flowchart of similarity trend analysis.

Keyword Trend Analysis Model

Taking the lung cancer dataset as an example, we use the TextRank algorithm to
obtain the top 10% of keywords and corresponding weights in each document. Then, all
the keywords and corresponding weights of the year are integrated into units of years. The
method of integration is as follows: for the keywords that have not appeared, we add them
and the corresponding weights directly to the keywords of the year. For the keywords that
have appeared, we add and merge their weights as their new weights. Finally, the top 50
keywords were obtained as hotspots of the year through keyword reordering. Figure 3
shows the flowchart of the algorithm.

Figure 3. Flowchart of keyword trend analysis.

Improved Keyword Trend Analysis Model

The keyword analysis model proposed in the previous section can coarsely analyze
the annual research hotspots of single types of cancer (taking lung cancer as an example).
For more detailed trend analysis, we propose an improved keyword analysis on this basic
model. As in the correlation analysis, we first use the Tr-W2v algorithm to obtain the
text vector corresponding to lung cancer of each year. Further, the k-means clustering
algorithm is adopted, and k categories are generated. The keyword integration operation
in the previous section is utilized to obtain hotspots of different clusters. Then, the top
keyword of each category is extracted and integrated into the distribution of hotspots of
that year. Figure 4 shows flowchart of the algorithm.

6
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Figure 4. Flowchart of improved keyword trend analysis.

3. Results

3.1. Datasets

For comparing the effect of representation methods, we use the second edition of
the well-known public classification dataset 20 newsgroups [22]. In the analysis of cancer
research trends, we retrieve PubMed articles using MeSH terms and obtain experimental
datasets that include data from the past five years on the five most common cancers in
China (lung cancer, breast cancer, gastric cancer, colorectal cancer, and liver cancer) [23,24].
Table 1 shows the distribution of the number of research papers for the five major cancers
in the most recent five years.

Table 1. Number of research papers for the five cancers.

Cancer 2014 2015 2016 2017 2018

Lung 9322 9966 9446 9508 10,149
Breast 12,328 12,825 12,600 12,286 12,743
Gastric 3747 3572 3637 3414 3561

Colorectal 8950 9174 8778 8617 8868
Liver 6651 6871 6517 6431 6555

3.2. Results

In the cancer dataset, the most papers on lung cancer and breast cancer were published
in 2018. The number of papers published in 2014 is the largest for gastric cancer. For
colorectal and liver cancer, the number of papers published in 2015 is the largest. The
number of cancer papers has not increased over the years. It shows a stable trend, and in
some years, the trend is slightly lower than in previous years; however, the total number of
cancer research papers is still rising slightly.

3.2.1. Comparison Results of Feature Fusion Methods

To compare the results of feature fusion methods, we conduct clustering experiments
on five text representation algorithms, including TF-IDF, Word2Vec, TextRank, Ti-W2v,
and Tr-W2v. First, the five algorithms are used to vectorize the text of the data set. Then,

7
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we use the classical k-means clustering algorithm to evaluate the effects of the five word-
representation algorithms. We select ten categories from 20 newsgroups dataset as the
experimental dataset. The number of clusters in k-means is set to 10, the initialization
method defaults to k-means++, and the maximum iteration number is set to 300. Using the
silhouette coefficient of clustering as a measurement [25]. The result of TF-IDF, Word2Vec,
TextRank, Ti-W2v, and Tr-W2v are 0.402, 0.449, 0.433, 0.491, and 0.502, respectively. Figure 5
shows the two-dimensional clustering visualization effect of the data.

Figure 5. Two-dimensional clustering visualization results based on five word-representation algorithms.

In the clustering experiment, the clustering silhouette coefficients based on TF-IDF,
Word2Vec, TextRank, Ti-W2v, and Tr-W2v are 0.402, 0.449, 0.433, 0.491, and 0.502, respec-
tively. Among them, the Tr-W2v algorithm has the best result. The effect of Word2Vec
vector is 11.7% higher than that of TF-IDF. The effect of the TextRank vector is 7.7% higher
than that of TF-IDF. Ti-W2v has a 9.4% improvement over Word2Vec. Tr-W2v has a 2.2%
improvement over Ti-W2v. The choice of word vectors plays a vital role in text represen-
tation. It is best to use the Word2Vec method to improve the results. Additionally, the
word vector fusion method also has a certain effect. The effect based on the TextRank
fusion text vector is better than that of the TF-IDF fusion text vector. They are both better
than Word2Vec. Although the improvement effect is not as obvious as the replacement of
word vectors, there is also a certain degree of improvement. In general, Tr-W2v fusion text
vectors have the best clustering effect, which also reflects that it can better represent the
text information. We evaluated the effect of the Tr-W2v algorithm’s TextRank window size.
When the window size is 2, 4, 5, 6, 10, the results are 0.469, 0.485, 0.502, 0.490, and 0.453,
respectively. We choose 5 as the window size.

The results of the fusion feature experiment show that the fusion vector obtained
by the Tr-W2v algorithm has the best result in clustering experiments, and the Ti-W2v
algorithm is slightly inferior to the Tr-W2v algorithm; however, both are better than the
traditional text representation model. It may be caused by the difference between the
TF-IDF algorithm and the TextRank algorithm. The TF-IDF algorithm only considers word
frequency information and does not consider the relationship between words. Compared
with the TF-IDF algorithm, TextRank can obtain important information, such as the relative
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position of words within a single text, so the integration of TextRank and Word2Vec will
perform better. In addition, we can see that the TF-IDF and TextRank vector clustering
effects are slightly different from the other three vector clustering effects. The TF-IDF
and TextRank algorithms represent vectors by word frequency and word co-occurrence
position, respectively. Meanwhile, the other three algorithms are based on Word2Vec’s
low-dimensional dense vectors. Therefore, the clustering shape based on TF-IDF and the
TextRank algorithm are more decentralized, while the other three algorithms are more
uniform and regular.

3.2.2. Cancer Trend Analysis Results

Next, the experimental results of the cancer research trend analysis model based on
the fusion-improved feature representation model are listed below.

Correlation Analysis Results Based on Similarity

A correlation analysis is conducted based on similarity to determine the relationships
among the five cancer types. Figure 6 shows the results for the most recent five years.

Figure 6. Correlation of the top five high-risk cancers. (a) Correlation between lung cancer and the other four cancers,
(b) correlation between breast cancer and the other four cancers, (c) correlation between gastric cancer and the other four
cancers, (d) correlation between colorectal cancer and the other four cancers, and (e) correlation between liver cancer and
the other four cancers.

From Figure 6, we can conclude that colorectal cancer is most closely related to the
other four cancers. The following reasons indicate that smoking may cause lung cancer;
long-term smokers are more likely to die from colorectal cancer than nonsmokers [26].
There are many repeated research directions for the treatment of breast cancer and colorectal
cancer [27,28]. The stomach and colorectal are organs of the digestive tract system, and
many studies are conducted simultaneously [29,30]. The above studies can confirm the
close relationship between colorectal cancer and four other cancers from the side. Lung
cancer, breast cancer, gastric cancer, and colorectal cancer have the lowest similarity with
liver cancer. In addition, lung cancer has the highest similarity to colorectal cancer among
all relations, and breast cancer has the lowest similarity to liver cancer. This also shows that
among the top five high-incidence cancers, lung cancer is most closely linked to colorectal
cancer, while breast cancer is relatively less linked to liver cancer.
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Results of the Keyword Trend Analysis Model

Taking lung cancer as an example, Figure 7 shows the visualization results of the
annual hotspots word cloud of lung cancer obtained by the keyword trend analysis model
and the improved keyword trend analysis model.

Figure 7. Hotspots of lung cancer were obtained by keyword trend analysis model (a) and improved
keyword trend analysis model (b).

It can be found that the hotspots in the past five years have focused on the patient,
cancer, cell, lung, study, tumor, CI, nsclc, and so on. According to the principles of the
TextRank algorithm and the characteristics of the lung cancer research literature, the above
results are normal because the central idea of the TextRank algorithm is that the more
times a word and other important words co-occurrence within a certain length, the more
important the word is. The above vocabulary in the literature of lung cancer research
uses TextRank’s weight ranking mechanism, and the above vocabulary may exist in the
important vocabulary and hotspot area of the study in the literature on lung cancer. Public
hotspots are basically the same each year using the keyword trend analysis model. The
results are too rough to study the trend of lung cancer in the past five years. The improved
keyword trend analysis model is optimized with more details. The results are significantly
different from the keyword analysis methods before improvement (see the right-hand side
of Figure 7). Based on improved methods, hotspots in different categories are combined to
generate hotspots of one year. Then, the differential hotspots between years are chosen to
represent the public hotspot of each year. Therefore, the hotspots of each year are clearly
distinguished, which makes it easier and clearer to analyze the research trends of lung
cancer in the recent five years.

Results of Analysis on Research Trend

Based on improved keyword trend analysis results, to present the research trend on
lung cancer, research trends in different areas are listed in Figures 8–10. Figure 8 shows the
research trends of related gene proteins and invertase factors in lung cancer research in the
past five years. Figure 9 shows the hot research trends of lung cancer-related treatment
drugs and methods in the past five years, and Figure 10 shows the other hot topics of lung
cancer in the past five years’ research trends.

The number of genes and proteins in the human body is very large, and many studies
invest in gene protein-related research on lung cancer each year. It can be seen from
Figure 8 that the research hotspots for genes and proteins are various in different years.
The unique hot research terms in 2014 included the ATK1 gene, YAP gene, PKM2 gene,
LSCC gene, and PDCD5 gene. The unique hot research terms in 2015 included PMS
separation enhancer protein, BBP gene, Bsm gene, and THOR long noncoding RNA. The
unique hot research terms in 2016 included SFTPD gene, p110α protein, DDX17 gene,
Globo H glycoprotein, and LHX6 gene. The unique hot research terms in 2017 included
SiRNA, TGF-β transforming growth factor, luciferase, RDM1 protein, and SNHG15 long-
chain noncoding RNA. The unique hot research terms in 2018 included miRNA-223 and
LKB1 gene.
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Figure 8. Research trends of lung cancer research related gene protein and invertase factor in the
last five years.

Figure 9. Research trends of lung cancer research related therapeutic drugs and methods in the
last five years.

With the development of science and technology, different lung cancer related treat-
ment drugs and treatment methods have emerged. It can be seen from Figure 9 that the
research hotspots for different drugs and treatments vary by year. The unique research
words in 2014 included metal platinum anticancer drugs CHIP, galactosylceramide, thymo-
quinone drugs, AR lung nodule intelligent diagnosis system treatment, NC treatment, and
TP treatment. The unique research hotspot words in 2015 included enzalutamide drugs,
tenofovir dipivoxil drugs, dibenzylthiocaprylic acid drugs, thalidomide drugs, PEGPH2O
tumor effect drugs, EP regimen treatment, intraoperative radiotherapy, and robot-assisted
thoracoscopic surgery. The unique research hotspot words in 2016 included linsitinib
drugs, penicillin drugs, SKLB drugs, sitagliptin drugs, erlotinib drugs, statins, ARMS
quantitative treatment, and PCR-clamp method detection. The unique research hotspot
words in 2017 included cucurbitacin, human resistin, and dimethyl amiloride. The unique
research hotspot words in 2018 included aspirin drugs, intraoperative radiotherapy for
lung cancer, gamma knife treatment, leishmaniasis, and low-dose lung CT technology.

Figure 10. Research trends of other related hotspots in the last five years.

It can be seen from Figure 10 that the research hotspots for other factors related to
lung cancer in different years are also different. The unique hot research terms in 2014
included DOX, derivative, exosomes, and mesothelioma. The unique hot research terms in
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2015 included DFI and bmplc. The unique hot research terms in 2016 included TMB tumor
mutation load, monocyte leukemia CMML, and Co3O4 nanoparticles. The hot research
terms in 2017 included adhesion, csc, and tam. The unique hot research terms in 2018
included image, examination, software, feature, algorithm, epithelioid, pneumonia, and
bilateral. Regarding the hot words in 2018, it is noteworthy that with the advancement of
science and technology, computer software and artificial intelligence algorithms play an
increasingly important role in lung cancer research, such as artificial intelligence for image
diagnosis of the lung.

4. Limitation

There are some limitations in our work. We only took five cancers as examples and
discussed their relevance. More cancer data should be added. Further, the word2vec is
chosen as the embedding method. Advanced text representation methods such as BERT
(Bidirectional Encoder Representations from Transformers) [31] and BioBERT [32] might be
a better choice. For the design of the experiment, we apply three methods to analyze the
trend of cancer, and more diversified test methods could be used in future work.

5. Conclusions

Text feature representation models play an essential role in natural language process-
ing. Improving these models helps machines better understand relevant text information
and promote downstream tasks. Considering the words’ degree of importance, we com-
bined the TF-IDF and TextRank with word2vec. Results demonstrate the effectiveness of
the fusion models. Meanwhile, the combined model is adopted to present research trend
analysis of cancers. The proposed models can help researchers find research hotspots in
biology, medicine, information retrieval, and natural language processing.
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Abstract: Distance weighted discrimination (DWD) is an appealing classification method that is
capable of overcoming data piling problems in high-dimensional settings. Especially when various
sparsity structures are assumed in these settings, variable selection in multicategory classification
poses great challenges. In this paper, we propose a multicategory generalized DWD (MgDWD)
method that maintains intrinsic variable group structures during selection using a sparse group lasso
penalty. Theoretically, we derive minimizer uniqueness for the penalized MgDWD loss function and
consistency properties for the proposed classifier. We further develop an efficient algorithm based on
the proximal operator to solve the optimization problem. The performance of MgDWD is evaluated
using finite sample simulations and miRNA data from an HIV study.

Keywords: high dimension; multicategory classification; DWD; sparse group lasso; L2-consistency;
proximal algorithm

1. Introduction

Classification problems appear in diverse practical applications, such as spam e-mail classification,
disease diagnosis and drug discovery, among many others (e.g., [1–3]). In these classification
problems, the goal is to predict class labels based on a given set of variables. Recent research has
focused extensively on linear classification: see [4,5] for comprehensive introductions. Among many
linear classification methods, support vector machines (SVMs) (see [6,7]) and distance-weighted
discrimination (DWD) (see [8–10]) are two commonly used large-margin based classification methods.

Owing to the recent advent of new technologies for data acquisition and storage, classification
with high dimensional features, i.e., a large number of variables, has become a ubiquitous problem
in both theoretical and applied scientific studies. Typically, only a small number of instances are
available, a setting we refer to as high-dimensional, low-sample size (HDLSS), as in [11]. In the HDLSS
setting, a so-called “data-piling” phenomenon is observed in [8] for SVMs, occurring when projections
of many training instances onto a vector normal to the separating hyperplane are nearly identical,
suggesting severe overfitting. DWD was originally proposed to overcome data-piling in the HDLSS
setting. In binary classification problems, linear SVMs seek a hyperplane maximizing the smallest
margin for all data points, while DWD seeks a hyperplane minimizing the sum of inverse margins over
all data points. Reference [8] suggests replacing the inverse margins by the q-th power of the inverse
margins in a generalized DWD method; see [12] for a detailed description. Formally, for a training
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data set {(yi, Xi)}N
i=1 of N observations, where Xi ∈ Rp and yi ∈ {−1, 1}, binary generalized linear

DWD seeks a proper separating hyperplane {X : a + X⊤b = 0} through the optimization problem

arg max
a,b

N

∑
i=1

1

dq
i

s.t. di = yi

(
a + XT

i b
)
+ ηi ≥ 0, ∀i,

ηi ≥ 0, ∀i, ∑
i

ηi ≤ c,

‖b‖2
2 = 1,

(1)

where a and b are the intercept and slope parameters, respectively. The slack variable ηi is introduced
to ensure that the corresponding margin di is non-negative and the constant c > 0 is a tuning parameter
to control the overlap between classes. Problem (1) can also be written in a loss-plus-penalty form
(e.g., [12]) as

(â, b̂) = argmin
a,b

[
1
N

N

∑
i=1

φq

{
yi

(
a + X⊤i b

)}
+ λ‖b‖2

2

]
, (2)

where

φq(u) =

{
1− u, if u ≤ Q
ϕq(u), if u > Q,

(3)

with Q = q
q+1 , q > 0 and ϕq(u) = (1− Q)(Qu−1)q. When q = 1, (1) becomes the standard DWD

problem in [8] while problem (2) appears in [9,13].
The binary classification problem (1) is well studied. However, in many applications such as

image classification [1], cancer diagnosis [2] and speech recognition [3], to name a few, problems with
more than two categories are commonplace. To solve these multicategory problems with the DWD
classifier, approaches based on either formulation (1) or (2) are common. One common strategy is
to extend problem (1) to multiple classes by solving a series of binary problems in a one-versus-one
(OVO) or one-versus-rest (OVR) method (e.g., [14]). Instead of reducing the multicategory problem to
a binary one, another strategy based on problem (1) considers all classes at once. As shown in [14],
this approach generally works better than the OVO and OVR methods. Based on an extension of
problem (2), [15] proposes multicategory DWD, written in a loss-plus-penalty form as

min
ak ,bk

1
N

N

∑
i=1

φq

(
ayi + X⊤i byi

)
+ λ

K

∑
k=1

‖bk‖2
2

s.t.
K

∑
k=1

ak = 0;
K

∑
k=1

bjk = 0, ∀j = 1, . . . , p,

(4)

with yi, k ∈ {1, . . . , K} and where ak and bk = (b1k, · · · , bpk) are the intercept and slope parameters for
each category k, respectively. Although these methods can be applied to multicategory classification in
the HDLSS setting, both problems (2) and (4) use the L2 penalty and do not perform feature selection.
As discussed in [16], for high dimensional classification, taking all features into consideration does
not work well for two reasons. First, based on prior knowledge, only a small number of variables are
relevant to the classification problem: a good classifier in high dimensions should have the ability to
sparsely select important variables and discard redundant ones. Second, classifiers using all available
variables in high-dimensional settings may have poor classification performance.
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Much of the SVM literature has considered variable selection in high-dimensional classification
problems to improve performance (e.g., [17–19]). Among the DWD literature, to the best
of our knowledge, only [16] considered variables selection and classification simultaneously.
Wang and Zou [16] considered an L1 rather than an L2 penalty in problem (2) to improve
interpretability through sparsity in the binary classification. Moreover, [16] made selections based on
the strengths of input variables within individual classes but ignored the strengths of input variable
groupings, thereby selecting more factors than necessary for each class. To overcome this weakness
in this paper, we developed a multicategory generalized DWD method that is capable of performing
variable selection and classification simultaneously. Our approach incorporates sparsity and group
structure information via the sparse group lasso penalty (see [20–24]).

Although DWD is well studied, it is less popular than the SVM for binary classification, arguably
for computational and theoretical reasons. For an up-to-date list of works on DWD mostly focused
on the q = 1 case, see [14,15]. Theoretical asymptotic properties of large-margin classifiers in high
dimensional settings were studied in [25], and [26] derived an expression for asymptotic generalization
error. In terms of computation, [8] solved the standard DWD problem in (1) as a second-order cone
programming (SOCP) problem using a primal-dual interior-point method that is computationally
expensive when N or p is large. To overcome computational bottlenecks, [12] proposed an approach
based on a novel formulation of the primal DWD model in (1): this method, proposed in [12],
does not scale to large data sets and requires further work. Lam et al. [27] designed a new algorithm
for large DWD problems with q ≥ 2 and K = 2 based on convergent multi-block ADMM-type
methods (see [28]). Wang and Zou [16] solved the lasso-penalized binary DWD problem by combining
majorization–minimization and coordinate descent methods: the lasso penalty does not directly permit
a SOCP solution. In fact, solution identifiability in the generalized DWD problem with q > 1 requires
more constraints and remains an open research problem (see [8]). To the best of our knowledge, no work
focusing on computational aspects of lasso penalized multicategory generalized DWD (MgDWD)
exists. The same holds for sparse group lasso-penalized MgDWD.

The theoretical and computational contributions of this paper are as follows. First, we establish
the uniqueness of the minimizer in the population form of the MgDWD problem. Second, we prove
a non-asymptotic L2 estimation error bound for the sparse group lasso-regularized MgDWD loss
function in the ultra-high dimensional setting under mild regularity conditions. Third, we develop
a fast, efficient algorithm able to solve the sparse group lasso-penalized MgDWD problem using
proximal methods.

The rest of this paper is organized as follows. In Section 2.1, we introduce the MgDWD problem
with sparse group lasso penalty. In Sections 2.2 and 2.3, we establish theoretical properties of
the population classifier and regularized empirical loss. We propose a computational algorithm
in Section 2.4. Section 3 illustrates the finite sample performance of our method through simulation
studies and a real data analysis. Proofs for major theorems are given in the Appendix A.

2. Methodology

2.1. Model Setup

We begin with some basic set-up and notation. Consider the multicategory classification problem
for a random sample {(yi, Xi)}N

i=1 of N independent and identically distributed (i.i.d.) observations
from some distribution P(y, X). Here, y is the categorical response taking values in Y = {1, . . . , K},
and X = (x1, . . . , xp)⊤ ∈ X ⊂ Rp is the covariate vector. We wish to obtain a proper separating
hyperplane {X ∈ X |ak + X⊤bk = 0} for each category k ∈ Y , where ak and bk = (b1k, . . . , bpk)

⊤ are
intercept and slope parameters, respectively.

In this paper, we consider MgDWD with sparse group lasso regularization. That is, we estimate a
classification boundary by solving the constrained optimization problem
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min
ak , bk
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ayi + X⊤i byi
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+ λ1
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s.t.
K

∑
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ak = 0;
K

∑
k=1

bjk = 0, ∀j = 1, . . . , p,

(5)

where φq is as defined in (3).
To approach this problem, we apply the concept of a “margin vector” to extend the definition

of a (binary) margin to the multicategory case. Denote the margin vector of an observation Xi as
Fi = ( fi1, . . . , fiK)

⊤, with fik = ak + X⊤i bk satisfying ∑
K
k=1 fik = 0. Let Ei = (ei1, . . . , eiK)

⊤ be the class
indicator vector with eik = 1{yi = k}. The multicategory margin of the data point (yi, Xi) is then
given as fiyi

= ayi + X⊤i byi = E⊤i Fi. Therefore, the MgDWD loss can be rewritten as

φq(ayi + X⊤i byi ) = φq(E⊤i Fi) = E⊤i φq(Fi) =
K

∑
k=1

1{yi = k}φq(ak + X⊤i bk). (6)

Based on (6), Lemma 1 describes the Fisher consistency of the MgDWD loss.

Lemma 1. Given X = u, the minimizer of the conditional expectation of (6) is

F̃(u) =
(

f̃1(u), . . . , f̃K(u)
)⊤

, satisfying

argmax
k∈Y

f̃k(u) = argmax
k∈Y

Pr{y = k|X = u},

where

f̃k(u) =





Q q

√
Pr{y = k|X = u}
Pr{y = k∗|X = u} , k 6= k∗

−Q ∑
l 6=k∗

q

√
Pr{y = l|X = u}

Pr{y = k∗|X = u} , k = k∗.

and k∗ = argmin
k∈Y

Pr{y = k|X = u}.

Consequently, f̃k(u) can be treated as an effective proxy of Pr{y = k|X = u} and, for any new
observation X∗, a reasonable prediction of its label y∗ is

ŷ∗ = argmax
k∈Y

{ak + X⊤∗ bk}.

Speaking to the sparse group lasso (SGL) regularization in (5), the L1 penalty encourages an
element-wise sparse estimator that selects important variables for each category, indicated by b̂jk 6= 0.
Assuming that parameters in different categories share the same information, we use an L2 penalty
to encourage a group-wise sparsity structure that removes covariates that are irrelevant across
all categories, that is, where β̂ j = (b1j, . . . , bKj)

⊤ = 0. Specifically, let xj = (x1j, · · · , xNj)
T and

B = (bjk) ∈ Rp×K
jk , where the k-th column bk is the slope vector for the category label k and the j-th

row β⊤j is the group coefficient for the variable xj. If xj is noise in the classification problem or is not
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relevant to category label k, then the entry bjk of B should be shrunk to exactly zero. The SGL penalty
of (5) can be written as a convex combination of the lasso and group lasso penalties in terms of β j as

λ1

K

∑
k=1

p

∑
j=1
|bjk|+ λ2

p

∑
j=1

√√√√ K

∑
k=1

b2
jk = λ

p

∑
j=1

{
τ‖β j‖1 + (1− τ)‖β j‖2

}
, (7)

where λ > 0 is the scale of the penalty and τ ∈ [0, 1] tunes the propensity between the element-wise
and group-wise sparsity structure.

2.2. Population MgDWD

In this subsection, some basic results pertaining to unpenalized population MgDWD are given.
These results are necessary for further theoretical analysis.

Denote the marginal probability mass of y as Pr(y = k) = πk with πk > 0 and ∑
K
k=1 πk = 1,

and the conditional probability density functions of X given y = k by g(X | y = k) = gk(X).
Let Θ = (θ1, . . . , θK) be the collection of coefficient vectors θk = (ak, b⊤k )

⊤ for all labels and
Z = (1, X⊤)⊤. The population version of the MgDWD problem in (6) is

L(ϑ) = E
{
I(Y )⊤φq(Θ

⊤Z)
}
=

K

∑
k=1

πk

∫

X

φq(Z⊤θk)gk(x)dx, (8)

where ϑ = vec{Θ} is the vectorization of the matrix Θ and I(Y ) = (1{y = 1}, . . . ,1{y = K})⊤ is
a random vector. Denote the true parameter value ϑ∗ as a minimizer of the population MgDWD
problem, namely,

ϑ∗ ∈ argmin
ϑ∈C

L(ϑ),

where C =
{

ϑ ∈ RK(p+1)
∣∣ Cϑ = 0K

}
is the set of sum-constrained ϑ with C = 1⊤K ⊗ Ip+1, where ⊗

denotes the Kronecker product.
To facilitate our theoretical analysis, we first define the gradient vector and Hessian matrix of the

population MgDWD loss function. We then introduce some regularity conditions necessary to derive
theoretical properties of this problem. Let diag{v} be a diagonal matrix constructed from the vector v,
and let ◦ and ⊕ be the Hadamard product and the direct matrix sum, respectively. Denote the gradient
vector of the population MgDWD loss function (8) as

S(ϑ) = E
(
{I(Y ) ◦ φ′q(Θ

⊤Z)} ⊗ Z
)
= vec

(
S1, . . . , SK

)
,

with

Sk = E
{
1{y = k}φ′q(Z⊤θk)Z

}
= πk

∫

X

φ′q(Z⊤θk)Zgk(X)dX,

and its Hessian matrix as

H(ϑ) = E
{

diag
{
I(Y , X ) ◦ ϕ′′q (Θ

⊤Z)
}
⊗ (ZZ⊤)

}
=

K⊕

k=1

Hk,

where ϕ′′q denotes the second derivative of the function ϕq; I(Y , X ) = I(Y ) ◦ I(X ) is a random

vector with I(X ) = (1{X ∈ X1}, . . . ,1{X ∈ Xk})⊤ and Xk =
{

X ∈ X
∣∣Z⊤θk > Q

}
; and

Hk = E
{
1{y = k, X ∈ Xk}ϕ′′q (Z⊤θk)ZZ⊤

}
= πk

∫

Xk

ϕ′′q (Z⊤θk)ZZ⊤gk(X)dX.
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The block structure ofH(ϑ) implies a parallel relationship between each category. The relationship
between the θk is reflected by the sum-to-zero constraint in the definition of C .

We assume the following regularity conditions.
(C1) The densities of X given y = k ∈ Y , i.e., the gk(X), are continuous and have finite

second moments.
(C2) 0 < Pr{X ∈ X ∗

k |y = k} < 1 for all k ∈ Y , where X ∗
k =

{
X ∈ X

∣∣Z⊤θ∗k > Q
}

.
(C3) Var

{
X
∣∣ X ∈ X ∗

k , y = k
}
≻ Op for all k ∈ Y .

Remark 1. Condition (C1) ensures that L, S andH are well defined and continuous in ϑ. For the theoretically
optimal hyperplane {X ∈ X |Z⊤θ∗k = 0}, the case with θ∗k = 0p+1 leaves X useless for classification.
On the other hand, when a∗k 6= 0 and b∗k = 0p, the hyperplane is the empty set and is similarly meaningless.
Condition (C2) is proposed to avoid the case where b∗k = 0p so that ϑ∗ always contains information relevant
to the classification problem. For bounded random variables, condition (C2) should be assumed with caution.
Condition (C3) implies the positive definiteness ofH(ϑ∗).

By convexity and the second-order Lagrange condition, the following theorem shows that the
local minimizer of the population MgDWD problem exists and is unique.

Theorem 1. Under the regularity conditions (C1)-(C3), the true parameter ϑ∗ ∈ C is the unique minimizer of
L(ϑ) with b∗k 6= 0p, and

L(ϑ∗) =
K

∑
k=1

A(k, q)πk,

with 0 ≤ u(k, q) ≤ A(k, q) ≤ v(k, q) ≤ 1, where

A(k, q) = 1−E
{
1{X ∈ X

∗
k }
{

1−
( Q

Z⊤θ∗k

)q} ∣∣∣ y = k
}

,

u(k, q) = Pr
{

X /∈ X
∗

k

∣∣y = k
}
+ Q2q Pr

{
Q < Z⊤θ∗k ≤ Q−1∣∣y = k

}
,

v(k, q) = Pr
{

Z⊤θ∗k ≤ 1
∣∣ y = k

}
+ inf

ǫ>0

( Q
1 + ǫ

)q
Pr
{

Z⊤θ∗k > 1 + ǫ
∣∣ y = k

}
.

The bounds in Theorem 1 show how q affects the loss function L(ϑ∗). The upper bound v(k, q) is
a decreasing function of q with

lim
q→0

v(k, q) = 1 and lim
q→∞

v(k, q) = Pr
{

Z⊤θ∗k ≤ 1
∣∣ y = k

}
.

In the lower bound u(k, q), the first term Pr
{

X /∈ X ∗
k

∣∣y = k
}

is an increasing function of q and
the last term Q2q Pr

{
Q < Z⊤θ∗k ≤ Q−1

∣∣y = k
}

is a decreasing function of q, with

lim
q→0

u(k, q) = 1 and lim
q→∞

u(k, q) = Pr
{

Z⊤θ∗k ≤ 1
∣∣ y = k

}
.

Consequently, for the given population P(y, X), a larger q encourages the population MgDWD
estimator to focus more on the regions {X /∈ Xk, y = k

}
that correspond to misclassifications. As a

result, the estimator’s performance will be similar to the hinge loss as q→ ∞. Setting q too small will
lead to an ineffective classifier due to the unreasonable penalty placed on the well classified region
{X ∈ Xk, y = k

}
. This variation in the lower bound with respect to q provides a necessary condition

for the existence of an optimal q.
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Remark 2. The explicit relationship between q and ϑ∗ is complicated. While it may be more desirable to prove
that a greater value of q results in a smaller value of the loss function L(ϑ), there is no explicit formula for the
optimal value ϑ∗ in terms of q.

2.3. Estimator Consistency

Under the unpenalized framework presented in the previous subsection, all covariates will
contribute to the classification task for each category: this scenario may lead to a classifier that overfits
to the training data set. In this subsection, we study the consistency of the estimator for (5) in ultra-high
dimensional settings.

To achieve structural sparsity in the estimator, the regularization parameter λ in (7) must be large
enough to dominate the gradient of the empirical MgDWD loss evaluated at the theoretical minimizer
ϑ∗ = vec{Θ∗} with high probability. On the other hand, λ should also be as small as possible to
reduce the bias incurred by the SGL regularization term

P(β) =
p

∑
j=1

τ‖β j‖1 + (1− τ)‖β j‖2.

Lemma 2 provides a suitable choice of λ under the following assumption.
(A1) The predictors X = (x1, . . . , xp) ∈ Rp are independent sub-Gaussian random vectors

satisfying EX = 0p, and where Var(X) = Σ, there exists a constant κ > 0 such that for any γ ∈ Rp,
E exp(γ⊤Σ

−1/2X) ≤ exp(‖γ‖2
2κ2/2). From here on, we define ς2

1 as the largest eigenvalue of Σ.

Lemma 2. Denote S(ϑ∗) = (IK ⊗ Z⊤)diag(vec{E})vec{φ′q(ZΘ
∗)}, where E =

(
E1, . . . , EN

)⊤
,

Z =
(
Z1, . . . , ZN

)⊤
with Zi = (1, X⊤i )⊤, and IK is the identity matrix of size K. Under condition (A1),

P̃
{

PS(ϑ∗)
}
≤ τΛ1 + (1− τ)Λ2

with probability at least 1− 2(Kp)1−c2
1 − p1−c2

2 , where

P = (IK − K−11K1⊤K )⊗ Ip+1,

Λ1 = max{ς1κ, 1}
(

1− 1
K

)√2 log(pK)
N

,

Λ2 = max{2
√

2ς1κ, 1}
{

c2

√(
1− 1

K

)2 log(p)
N

+

√
K− 1

N

}
,

for constants c1, c2 > 1.

It is difficult to obtain a closed form for the conjugate of the SGL penalty, say,

P̄(v) = supu∈C \{0}
〈u,v〉
P(u) . Instead, we use a regularized upper bound P̃(v) ≥ P̄(v). Based on Lemma 2,

we propose a theoretical tuning parameter value

λ = c0

√
log(pK)

N
, (9)

where c0 is some given constant satisfying λ > τΛ1 + (1− τ)Λ2.
Before we can derive an error bound for the estimator in (5), we impose two

additional assumptions.
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(A2) For the true parameter value ϑ∗, there is a (se, sg)-sparse structure in the coefficients B∗ with
element-wise and group-wise support sets

E =
{
(j, k) ∈ {1, . . . , p} × {1, . . . , K}|b∗jk 6= 0

}
and G =

{
j ∈ {1, . . . , p}|β∗j 6= 0K

}

with cardinality |E | = se and |G | = sg, respectively.
(A3) There exist some positive constants ς2 and ς3 such that

ς2
2 = max

γ∈V

‖diag{vec(E⊤)}(Z⊗ IK)γ‖2
2

N‖γ‖2
2

and ς2
3 = min

γ∈U

γ⊤H(ϑ∗)γ
γ⊤γ

with V =
{

v ∈ RK(p+1)|0 < ‖v‖0 ≤ se + K
}

and

U =

{
δ ∈ RK(p+1)

∣∣∣∣
τ

1− τ
‖δE+

‖1 + ∑
j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)}
,

where C0 = (c0−1)
(c0+1) , E c is the complement of E , E+ = E ∪ {l = 1 + (k − 1)(p + 1)|k = 1, . . . , K},

and G+ = G ∪ {0}.
Under the choice of λ given in (9), we show the L2-consistency of the estimator in (5).

Theorem 2. Suppose that conditions (A1)-(A3) hold. Then with λ = c0

√
log(pK)

N in (5), we have that

‖ϑ̂ − ϑ∗‖2 ≤
{

C1
√

se + K + C2

√
sg + 1

}√ log(pK)
N

with probability at least 1 − 2(Kp)2(se+K)(1−c2
3), where C1 = 2ς−2

3 {c0τ + (
√

2 + 2c3)ς2} and
C2 = 2ς−2

3 c0(1− τ).

Remark 3. The sub-Gaussian distribution assumption (A1) is common in high-dimensional scenarios.
This assumption characterizes the tail behavior of a collection of random variables including Gaussian,
Bernoulli, and bounded variables as special cases. Assumption (A2) describes structural sparsity at two
levels. The element-wise size se < p is the size of the underlying generative model, and the group-wise size
sg < pK is the size of the signal covariate set. Both se and sg are allowed to depend on the sample size N.
As a result, the dimension p is allowed to increase with the sample size N. Assumption (A3) guarantees that
eigenvalues are positive in this sparse scenario.

Remark 4. In practice, the tuning parameters λ and τ in (7) are commonly chosen by M-fold cross validation.
That is, we choose the pair (τ, λ) with the highest prediction accuracy among the sub-data sets Dm, specifically,

CV(τ, λ) =
M

∑
m=1

∑
i∈Dm

,1{yi = ŷi(τ, λ)}

where ŷi(τ, λ) = argmax
k∈Y

Z⊤i θ̂k(τ, λ).

2.4. Computational Algorithm

In this section, we propose an efficient algorithm to solve problem (5). Our approach uses the
proximal algorithm (see [29]) for solving high dimensional regularization problems. In two main steps,
this approach obtains a solution to the constrained optimization problem by applying the proximal
operator to the solution to the unconstrained problem.
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Since regularization is not needed for the intercept terms α = (a1, . . . , aK)
⊤, it can be separated

from the coefficients in B. The empirical MgDWD loss of (8) is given by

L(ϑ) =
1
N

N

∑
i=1

E⊤i φq(Fi) =
1
N

tr
{

Eφq(F
⊤)
}
=

1
N

vec{E⊤}⊤vec
{

φq(F
⊤)
}

where F = ( fik)N×K = ZΘ = 1Nα⊤ + XB. Various properties of the loss function L(ϑ) follow below.

Lemma 3. The loss function L(ϑ) has Lipschitz continuous partial derivatives. In particular,

for S(α) =
∂L(θ)

∂α
=

1
N

{
E ◦ φ′q(F)

}⊤
1N and any u, v ∈ RK, we have that

∥∥S(u)− S(v)
∥∥

2 ≤
√

nmax

N
(q + 1)2

q
‖u− v‖2,

where nmax is the largest group sample size. For S(B) =
∂L(θ)

∂B
=

1
N

{
E ◦ φ′q(F)

}⊤
X and any U, V ∈ Rp×K,

we have that

∥∥vec{S(U)− S(V)}
∥∥

2 ≤
maxk ‖diag(ek)X‖2

2
N

(q + 1)2

q
‖vec{U−V}‖2,

where ek is the k-th column of E and indicates the observations belonging to the k-th group.

Hence, following the majorization–minimization scheme, we can majorize the empirical MgDWD
loss L(ϑ) by a quadratic function, that is,

L(ϑ) ≤L(ϑ∗) + S(α∗)⊤(α− α∗) +
Lα

2
‖α− α∗‖2

2

+ vec{S(B)}⊤vec{B− B∗}+
LB∗
2
‖vec{B− B∗}‖2

2,

for some ϑ∗ = vec{(α∗, B⊤∗ )⊤}, where Lα and LB denote the Lipschitz constants in Lemma 3. Instead of
minimizing L(ϑ) directly, we apply gradient descent to minimize its surrogate upper bound function.
The gradient descent updates are given by

α∗ = α− q(q + 1)−2
√

nmaxN

{
E ◦ φ′q(F)

}⊤
1N , (10)

B∗ = B− q(q + 1)−2

maxk ‖diag(ek)X‖2
2

{
E ◦ φ′q(F)

}⊤
X. (11)

Next, we address the problem’s constraints and regularization simultaneously by applying the
proximal operator. For α∗, it is clear that

αnew = argmin
α⊤1K=0

‖α− α∗‖2
2 = PKα∗, (12)

where PK = IK − k−11K1K. For B∗ = (β1∗, . . . , βp∗)⊤, the minimization problem can be expressed as

Bnew = argmin
B1K=0p

1
2
‖vec{B− B∗}‖2

2 +
λ1

LB
‖vec{B}‖1 +

λ2

LB
‖vec{B}‖1,2

= argmin
B1K=0p

p

∑
j=1

1
2
‖β j − β j∗‖2

2 +
λ1

LB
‖β j‖1 +

λ2

LB
‖β j‖2,

(13)
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which implies that we can implement minimization for p groups in parallel. The following theorem
provides the solution to (13).

Theorem 3. Let ρ1, ρ2 ≥ 0 and β∗ ∈ RK. Then the constrained regularization problem

min
β∈RK

1
2
‖β− β∗‖2

2 + ρ1‖β‖1 + ρ2‖β‖2

s.t. β⊤1K = 0

has a solution of the form

β∗ =
{

1− ρ2

‖PK(β∗ − ρ1u)‖2

}
+

PK(β∗ − ρ1u) (14)

for some u ∈ ∂‖β‖1.

In the special case with ρ2 = 0, the constrained regularization problem in Theorem 3 reduces to
the constrained lasso problem with solution β̃∗ = PK(β∗ − ρ1u). Combined with (14), the proximal
operator U , given by

β∗ = U (β̃∗, ρ2) =
{

1− ρ2

‖β̃∗‖2

}
+

β̃∗, (15)

can be introduced to realize the group sparsity of β̃∗.
For the standard lasso problem, the subgradient u has a closed form given by

β̃∗ = β∗ − ρ1u = S(β∗, ρ1), with S(u, v) = sign(u)(|u| − v)+. However, under the constraint on
β̃∗, the naive solution PKS(β∗, ρ1) is misleading in that it satisfies the constraint but does not achieve
shrinkage, let alone loss function minimization. The term PKu is suggestive of the intersection between
the subdifferential set ∂‖β‖1 and the constraint set {β ∈ RK|β⊤1K = 0}; in this sense, β̃∗ might not
have a closed form. Here we consider using coordinate descent to solve the constrained lasso problem.
For some fixed coordinate m, since β⊤1K = 0, we have that bm = −∑l 6=m bl . Rewriting the objective
function of the lasso-constrained problem in a coordinate-wise form, we obtain

K

∑
l=1

1
2
(bl − bl∗)

2 + ρ1|bl | =
(

bk −
(bk∗ − bm∗)

2
+

1
2

K

∑
l 6=k,m

bl

)2
+ ρ1

{
|bk|+

∣∣∣bk +
K

∑
l 6=k,m

bl

∣∣∣
}

+
1
4

(
bk∗ + bm∗ +

K

∑
l 6=k,m

bl

)2
+

K

∑
l 6=k,m

1
2
(bl − bl∗)

2 + ρ1|bl |.
(16)

Next, Theorem 4 provides the solution to the optimization problem (16).

Theorem 4. Suppose that t, s ∈ R and ̺ ≥ 0. Then the regularization problem

min
b∈R

1
2
(b− t)2 + ̺{|b|+ |b + s|}

has solution

b∗ =





t, |t| < C(s, t)

−C(s, t), C(s, t) ≤ |t| ≤ C(s, t) + 2̺

sign(t)(|t| − 2̺), |t| > C(s, t) + 2̺

= t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, 2̺
}

,
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where C(s, t) =
1− sign(s)sign(t)

2
|s|.

By Theorem 4, given some m ∈ {1, . . . , K}, the coordinate-wise minimizer for any k 6= m can be
expressed as the proximal operator

bk = T (t, s, ρ1) = t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, ρ1
}

, (17)

with s = ∑l 6=k,m bl and t = (bk∗ − bm∗ − s)/2. If we fix m during iteration, then the shrinkage of bm

will be indirectly reflected in the other bk. We propose that m change with k in the coordinate-wise
minimization process to ensure that every coordinate can be equally shrunk. We summarize our
proposed algorithm in Algorithm 1.

Algorithm 1 Proximal gradient descent algorithm for SGL-MgDWD.

Input: λ1, λ2.
Initialization: α(0) = 0K, B(0) = Op×K, l = 0.

1: repeat
2: Update α according to (10) and (12):

α(l+1) = PK{α(l) − L−1
α S(α(l))}.

3: Update B̃ according to (11):

B̃ = B(l) − L−1
B S(B(l)).

4: Set B(l+1) ← B̃.
5: repeat
6: for m = 1 to K do
7: for k in {1, . . . , K} \m do
8: Update (t, s):

t = b̃k − b̃m, s =
K

∑
r=1

b
(l+1)
r − b

(l+1)
k − b

(l+1)
m .

9: Update b
(l+1)
k according to (17) and b

(l+1)
m by constraint:

b
(l+1)
k = T (t, s, L−1

B λ1), b
(l+1)
m = −s− b

(l+1)
k .

10: end for
11: end for
12: until B(l+1) convergence.
13: Update B(l+1) according to (15):

B(l+1) = U (B(l+1), L−1
B λ2).

14: Set l ← l + 1.
15: until some condition is met.
Output: α(l) and B(l).
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3. Numerical Analysis

In the following section, we use both simulated and real data sets to evaluate the finite sample
properties of our proposed method. We compare the finite sample performance of SGL-MgDWD with
L1-regularized multinomial logistic regression (L1-logistic).

3.1. Simulation Studies

The data is generated from the following model. Consider the K-category classification problem
where πk = K−1 and gk(X) is the density function of a normal distribution with mean vector
µk = (µ1k, µ2k, 0⊤p−2)

⊤ and covariance matrix Ip, where (µ1k, µ2k) = (2 cos(πrk), 2 sin(πrk)) with

rk =
2(k−1)

K , for k = 1, . . . , K. In this model, only the first two variables contribute to the classification
and their corresponding parameter vectors β1 and β2 form two groups of coefficients. The true model
has the sparsity structure (se, sg) = (2K, 2) for a total of K(p + 1) coefficients. We set the sample size
for each category to nk = 50, 100, 200 and 400, and the number of classes to K = 5 and 11. We consider
dimensionality p = 100 and 1000.

In what follows, we compare the proposed SGL-MgDWD method with the OVR method based
on SGL-MgDWD with K = 2 (OVR-SGL-gDWD). For SGL-MgDWD, logistic regression and OVR,
the tuning parameter λ is optimized over a discrete set by minimizing the prediction error using 5-fold
cross validation. In each simulation, we conduct 100 runs and use a testing set of equal size to evaluate
each method’s performance using the following criteria:

• Testing set accuracy, measuring the rate of correct classification;
• Signal, as the average number of correctly-selected element-wise and group-wise signals, that is,

with b̂jk 6= 0 and β̂ j 6= 0, respectively, denoted by the pair (s+e , s+g );
• Noise, as the average number of incorrectly-selected element-wise and group-wise components,

that is, with b̂jk = 0 and β̂ j = 0, respectively, denoted by the pair (n+
e , n+

g ).

Simulation results are summarized in Tables 1 and 2.
As shown in Tables 1 and 2, the proposed SGL-MgDWD method performs better than the

L1-logistic and OVR methods. Specifically, in each scenario, predictions from the SGL-MgDWD
method had higher accuracy relative to the other two methods. Similarly, the SGL-MgDWD method
correctly selected the signal components of the model with fewer incorrectly-selected noise components,
again relative to the L1-logistic and OVR methods. These simulation results also demonstrate that
test accuracy increases with increasing sample size nk and that test accuracy decreases with higher
dimension p at fixed nk. This is consistent with the derived theoretical properties. All computations
were performed on a Tensorflow 2.3 CPU on Threadripper 2950X at 4.1 Ghz.

3.2. HIV Data Analysis

Symptomatic distal sensory polyneuropathy (sDSP) is a common debilitating condition among
people with HIV. This condition leads to neuropathic pain and is associated with substantial
comorbidities and increased health care costs. Plasma miRNA profiles show differences between HIV
patients with and without sDSP, and several miRNA biomarkers are reported to be associated with
the presence of sDSP in HIV patients (see [30]). The corresponding binary classification problem was
analyzed in [30] using random forest classifiers. However, the HIV data set can be further classified into
four classes. The HIV data set has 1715 miRNA measures for 40 patients and is partitioned into four
groups (K = 4) with nk = 10 patients each category: non-HIV, HIV with no brain damage (HIVNBD),
HIV with brain damage but stable (HIVBDS) and HIV with brain damage and unstable (HIVBDU).
In the following analysis, we apply our proposed method to this classification problem. The primary
aim was to identify critical miRNA biomarkers for each of the four groups. Beyond achieving a finer
classification, this analysis is helpful in assessing related pathogenic effects for each patient group.

Given the small sample size of N = 40, we chose the tuning parameter λ by maximizing
leave-one-out cross validation accuracy. We fixed (q, τ) = (1, 0.1). Table 3 shows the signal for
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coefficient estimates obtained from the SGL-MgDWD method using the selected λ. We conclude
that there are 22 critical miRNA biomarkers important to the classification problem. In particular,
the biomarkers miR-25-star, miR-3171, miR-3924 and miR-4307 are not relevant to the non-HIV group;
miR-4641, miR-4655-3p and miR-660 are not relevant to the HIVNBD group; miR-217 and miR-4683 are
not relevant to the HIVBDS group; and miR-217 and miR-4307 are not relevant to the HIVBDU group.

Table 1. Simulation results for the SGL-MgDWD, L1-logistic, and OVR methods with K = 5. Time is
measured relative to a baseline logistic regression model with K = 5, p = 100, and N = 50. Numbers in
parentheses denote standard deviations.

nk p Method Test Accuracy Signal (s+e , s+g ) Noise (n+
e , n+

g ) Time (SD)

50

100

SGL-MgDWD 0.980 (9.99, 2) (0, 0) 1.150 (0.173)

L1-logistic 0.979 (9.00, 2) (116.98, 26.17) 1.000 (0.153)

OVR-SGL-gDWD 0.912 - - -

1000

SGL-MgDWD 0.979 (10, 2) (6.96, 1.94) 5.290 (0.166)

L1-logistic 0.966 (10, 2) (2793.65, 722.38) 5.130 (0.063)

OVR-SGL-gDWD 0.740 - - -

100

100

SGL-MgDWD 0.981 (10, 2) (0.07, 0.03) 1.453 (0.155)

L1-logistic 0.980 (8.82, 2) (35.18, 3.98) 1.258 (0.127)

OVR-SGL-gDWD 0.828 - - -

1000

SGL-MgDWD 0.980 (10, 2) (1.01, 0.25) 4.863 (0.150)

L1-logistic 0.978 (9.93, 2) (1380.38, 192.37) 4.703 (0.061)

OVR-SGL-gDWD 0.546 - - -

200

100

SGL-MgDWD 0.980 (10, 2) (7.67, 2.08) 1.776 (0.164)

L1-logistic 0.980 (9.39, 2) (13.1, 0.72) 1.709 (0.175)

OVR-SGL-gDWD 0.934 - - -

1000

SGL-MgDWD 0.982 (10, 2) (1.09, 0.29) 8.641 (0.186)

L1-logistic 0.981 (9.79, 2) (199.02, 2.51) 2.505 (0.121)

OVR-SGL-gDWD 0.950 - - -

400

100

SGL-MgDWD 0.981 (10, 2) (0.02, 0) 2.792 (0.159)

L1-logistic 0.981 (10, 2) (4.72, 3.95) 2.828 (0.115)

OVR-SGL-gDWD 0.979 - - -

1000

SGL-MgDWD 0.981 (10, 2) (4.72, 3.95) 15.800 (0.221)

L1-logistic 0.981 (9.6, 2) (16.17, 0.02) 17.915 (1.585)

OVR-SGL-gDWD 0.964 - - -
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Table 2. Simulation results for the SGL-MgDWD, L1-logistic, and OVR methods with K = 11. Time is
measured relative to a baseline logistic regression model with K = 5, p = 100, and N = 50. Numbers in
parentheses denote standard deviations.

nk p Method Test Accuracy Signal (s+e , s+g ) Noise (n+
e , n+

g ) Time (SD)

50

100

SGL-MgDWD 0.735 (21.41, 2) (0.14, 0.02) 1.661 (0.143)

L1-logistic 0.735 (20.13, 2) (337.77, 22.07) 1.610 (0.110)

OVR-SGL-gDWD 0.647 - - -

1000

SGL-MgDWD 0.733 (21.25, 2) (0, 0) 7.105 (0.205)

L1-logistic 0.566 (20.67, 2) (3805.97, 265.82) 6.933 (0.205)

OVR-SGL-gDWD 0.382 - - -

100

100

SGL-MgDWD 0.737 (21.82, 2) (0.06, 0.01) 2.518 (0.099)

L1-logistic 0.721 (20, 2) (173.17, 5.81) 2.418 (0.103)

OVR-SGL-gDWD 0.609 - - -

1000

SGL-MgDWD 0.737 (21.88, 2) (5.4, 0.77) 12.371 (0.109)

L1-logistic 0.697 (20.15, 2) (1859.51, 9.04) 12.279 (0.114)

OVR-SGL-gDWD 0.214 - - -

200

100

SGL-MgDWD 0.738 (22, 2) (0, 0) 5.191 (0.079)

L1-logistic 0.730 (20, 2) (50.7, 0.08) 4.246 (0.100)

OVR-SGL-gDWD 0.609 - - -

1000

SGL-MgDWD 0.738 (21.98, 2) (0.23, 0.04) 21.950 (0.241)

L1-logistic 0.730 (20, 2) (523.08, 1.07) 22.158 (0.163)

OVR-SGL-gDWD 0.490 - - -

400

100

SGL-MgDWD 0.740 (22, 2) (0, 0) 7.025 (0.172)

L1-logistic 0.738 (20, 2) (3.71, 3.48) 7.997 (0.122)

OVR-SGL-gDWD 0.709 - - -

1000

SGL-MgDWD 0.738 (22, 2) (0.68, 0.11) 38.301 (0.200)

L1-logistic 0.734 (20, 2) (38.84, 35.37) 41.059 (2.064)

OVR-SGL-gDWD 0.556 - - -

Table 3. Signal for the coefficient estimates obtained from the SGL-MgDWD method with
(q, τ) = (1, 0.1) for the HIV data set. The symbols “+” and “-” denote positive and negative coefficient
estimates, respectively, while “0” denotes a zero coefficient (i.e., an irrelevant variable).

Non-HIV HIVNBD HIVBDS HIVBDU

interception + + - +
miR-255b - + - +
miR-217 + - 0 0
miR-25-star 0 + + -
miR-3136-5p - - + -
miR-3152-3p + - - +
miR-3159 - - - +
miR-3171 0 + - -
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Table 3. Cont.

Non-HIV HIVNBD HIVBDS HIVBDU

miR-33b - - - +
miR-34c-3p - - + +
miR-3545-5p - + - +
miR-3654 - - - +
miR-3924 0 - + -
miR-4307 0 - + 0
miR-4474-5p - + + +
miR-4526 + - - -
miR-4641 + 0 - -
miR-4655-3p + 0 - -
miR-4680-5p - - + -
miR-4683 - - 0 +
miR-589 - + + -
miR-619 + - - +
miR-660 + 0 - +
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Proof. For simplicity, we write pj = P(y = j|X) and fk = fk(X). Using the Lagrange multiplier
method, we define

L(F) = E
{ K

∑
k=1

1{y = k}φq{F(X)}
∣∣∣X = u

}
+ µ1⊤K F(X) =

K

∑
k=1

pkφq( fk) + µ fk.

Then for each k,

∂L(F)

∂ fk
= φ′q( fk)pk + µ = 0 (A1)

with

φ′q( f j) =

{
−1, fk ≤ Q

−(Q f−1
k )q, fk > Q.

Without loss of generality, assume that p1 > p2 ≥ p3 ≥ · · · ≥ pK−1 > pK. Note that −1 ≤ φ′q < 0,
and so pj ≥ −φ′q( fk)pk = µ > 0 and µ = pk if and only if fk ≤ Q.
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If µ < pK < pk, then pK 6= µ when fK > Q, which implies that fk > fK > Q for all 1 ≤ k ≤ K.
Hence, substituting φ′q( fk) = −(Q f−1

k )q into (A1) yields

fk = Q q
√

pkµ−1 > Q > 0.

However, ∑
K
k=1 fk > 0, contradicting the sum-to-zero constraint. Therefore, µ = pK < pk for

k < K and the result follows.

Appendix A.2. Proof of Theorem 1

Lemma A1. Under (C1), L(ϑ) exists, and it is convex on ϑ.

Proof. The existence of L(ϑ) will be satisfied if

EX|y
{
|φq(Z⊤θk)|

∣∣ y = k
}
=
∫

X

|φq(Z⊤θk)|gk(X)dX < ∞.

We divide X into two disjoint subsets. Defining Xk = {X ∈ X | Z⊤θk > Q}, it is clear that

∫

Xk

|φq(Z⊤θk)|gk(X)dX ≤ (q + 1)−1
∫

Xk

gk(X)dX < ∞.

Note that 0 < φq(u) < (1 + q)−1 < 1 when u > Q. On the other hand, for
X c

k = {X ∈ X | Z⊤θk ≤ Q},
∫

X c
k

|φq(Z⊤θk)|gk(X)dX ≤ |1− ak|+
p

∑
j=1

bjk

∫

X

|xj|gk(X)dX < ∞,

if EX|y
{
|xj|

∣∣ y = k
}
< ∞ for all k ∈ Y . This completes the proof of the existence of L(ϑ).

Recall that

L(ϑ) =
K

∑
k=1

πk

∫

X

φq(Z⊤θk)gk(X)dX,

where φq(u) is a convex function of u, so its composition with the affine mapping u = Z⊤θk is
still convex in θk. Clearly, gk(X), πk > 0, so the non-negatively-weighted integral and sum both
preserve convexity.

Lemma A2. Existence of minimizers of L(ϑ) on C =
{

ϑ ∈ RK(p+1)
∣∣ Cϑ = 0K

}
, where C = 1⊤K ⊗ Ip+1.

Proof. By Jensen’s inequality, for any ϑ ∈ C , we have that

L(ϑ) ≥ φq

( K

∑
k=1

πkE{Z⊤θk|y = k}
)

.
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Let µ = vec
{
(πkE{zj|y = k})jk

}
, where ‖µ‖2 ≥

(
∑

K
k=1 π2

k

) 1
2 ≥ K−

1
2 > 0. For some C > 0,

we have that

L(ϑ) ≥φq(µ
⊤ϑ) = 1{µ⊤ϑ < Q}(1− µ⊤ϑ) + 1{µ⊤ϑ ≥ Q}ϕq(µ

⊤ϑ)

≥1{µ⊤ϑ < Q}
∣∣1− |µ⊤ϑ|

∣∣

=1{µ⊤ϑ < −(C + 1)}(|µ⊤ϑ| − 1) + 1{−(C + 1) < µ⊤ϑ < −1}(|µ⊤ϑ| − 1)

+ 1{−1 < µ⊤ϑ < Q}(1− |µ⊤ϑ|)
>1{‖µ‖2‖ϑ‖2 > C + 1}C

=1

{
‖ϑ‖2 >

C + 1
‖µ‖2

}
C.

Note that 1 − µ⊤ϑ > 1 − Q > 0 when µ⊤ϑ < Q. By the Cauchy–Schwarz inequality,
−µ⊤ϑ = |µ⊤ϑ| ≤ ‖µ‖2‖ϑ‖2.

Hence, if ‖ϑ‖2 >
C + 1
‖µ‖2

> 0, then L(ϑ) > C > 0. The contrapositive of this result implies the

existence of a minimizer in the unconstrained problem. That is, the closed set
{

ϑ ∈ C
∣∣ L(ϑ) ≤ C

}
is

bounded for some large enough C. This guarantees the existence of a solution, as desired.

Lemma A3. Under (C1), S(ϑ) exists and

∂L(ϑ)
∂ϑ

= S(ϑ).

Proof. The existence of S(ϑ) will follow if

∫

X

|φ′q(Z⊤θk)zj|πkgk(X)dX ≤ πk

∫

X

|zj|gk(X)dX < ∞

for j = 1, . . . , p + 1. Note that |φ′q(u)| ≤ 1 when u > Q.

For every θkj ∈ R, φq(Z⊤θk) is a Lebesgue integrable function of X. For any u ∈ R, φ′q(u) exists
and |φ′q(u)| ≤ 1. Hence, by the Leibniz integral rule, we have that

∂

∂θjk

∫

X

φq(Z⊤θk)πkgk(X)dX =
∫

X

∂φq(Z⊤θk)

∂θjk
πkgk(X)dX

=
∫

X

φ′q(Z⊤θk)zjπkgk(X)dX

and for any l 6= k,

∂

∂θjl

∫

X

φq(Z⊤θk)πkgk(X)dX = 0,

which is sufficient to show that

∂L(ϑ)
∂ϑ

= S(ϑ).

Lemma A4. Suppose (C1) is satisfied. Then (C2) implies that b∗k 6= 0.
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Proof. We can rewrite φq(u) as

φq(u) =1{u ≤ Q}(1− u) + 1{u > Q}(1−Q)
(Q

u

)q

=
{
− 1{u ≤ Q} − 1{u > Q}

(Q
u

)q+1}
u + 1{u ≤ Q}+ 1{u > Q}

(Q
u

)q

=φ′q(u)u + 1{u ≤ Q}+ 1{u > Q}
(Q

u

)q
.

Then for any γ ∈ Rp+1 and its corresponding Xk = {X ∈ X |Z⊤γ > Q}, we have that

E
{
1{y = k}φq(Z⊤γ)

}

=E
{
1{y = k}φ′q(Z⊤γ)Z⊤γ

}
+E

{
1{y = k, Z⊤γ ≤ Q}

}

+E
{
1{y = k, Z⊤γ > Q}

( Q

Z⊤γ

)q}

=S⊤k (γ)γ + Pr{y = k, X /∈ Xk}+E
{
1{y = k, X ∈ Xk}

( Q

Z⊤γ

)q}

=S⊤k (γ)γ + πk

(
1−E

{
1{X ∈ Xk}

{
1−

( Q

Z⊤γ

)q}∣∣∣y = k
})

.

Let ϑ∗ ∈ C be a local minimizer. It follows that PS(ϑ∗) = 0 and ∑
K
k=1 S⊤k (θ∗k)θ

∗
k = S⊤(ϑ∗)ϑ∗ = 0

since ϑ∗ = Pϑ∗ and P =
(
IK − K−11K1⊤K

)
⊗ Ip+1. Therefore,

L(ϑ∗) =E
{
1{y = k}φq(Z⊤θ∗k)

}

=
K

∑
k=1

πk

(
1−E

{
1{X ∈ X

∗
k }
{

1−
( Q

Z⊤θ∗k

)q}∣∣∣y = k
})

=
K

∑
k=1

πk

(
1− Pr{X ∈ X

∗
k |y = k}E

{
1−

( Q

Z⊤θ∗k

)q ∣∣∣ y = k, X ∈ X
∗

k

})
.

(A2)

For any γ ∈ Rp+1 and its corresponding Xk = {X ∈ X |Z⊤γ > Q}, we always have that

0 < E
{( Q

Z⊤γ

)q ∣∣∣ y = k, X ∈ Xk

}
< 1.

If γ = 0p+1, then Xk = ∅ so that Pr{y = k, X /∈ Xk} = πk and Pr{y = k, X ∈ Xk} = 0.
If γ1 ≤ Q and γ/1 = 0p, then Xk = ∅, giving the same conclusions as the previous case. If γ1 > Q
and γ/1 = 0p, then Xk = X so that Pr{y = k, X /∈ Xk} = 0 and Pr{y = k, X ∈ Xk} = πk.
Consequently, when 0 < Pr{X ∈ Xk|y = k} < 1, then neither Xk nor X equal ∅, so bk 6= 0 follows.

Note that Pr{X /∈ Xk|y = k} > 0 implies that Pr{0 < Z⊤γ ≤ Q|y = k} > 0 or
Pr{Z⊤γ ≤ 0|y = k} > 0, and so special attention should be paid to bounded random variables.

Lemma A5. Under (C1),H(ϑ) exists and

∂2L(ϑ)
∂ϑ∂ϑ⊤

= H(ϑ).

Furthermore,H(ϑ∗) ≻ OK(p+1) when (C2) and (C3) hold.
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Proof. The existence of H(ϑ) follows if its all entries are absolutely integrable, that is, for any
j, k = 1, . . . , p + 1,

∫

X

|1{Z⊤θk > Q}ϕ′′q (Z⊤θk)zjzl |πkgk(X)dX

≤(q + q−1 + 2)
∫

X c
k

|zjzl |gk(X)dX

<∞.

Equivalently, the result follows if EX|y
{
|zjzl |

∣∣ y = k
}
< ∞ for all k ∈ Y . Note that 0 < ϕ′′q (u) ≤

q + q−1 + 2 when u > Q.
Let η be a test function belonging to the Schwartz space D . Then η′ ∈ D with some support

denoted by supp(η′).
Clearly, φ′q(u) is not differentiable at Q but is Lipschitz continuous. Therefore, the measurable

function Sk(θk) is a locally integrable function of θk. Then the (regular) generalized functions Sk(θk)

belong to the dual space of D .
For the distributional derivative of Sk(θk) with respect to θjk, we have that

∣∣∣∣∣

〈
∂Sk(θk)

∂θjk
, η(θjk)

〉∣∣∣∣∣ =
∣∣∣∣∣−
〈

Sk(θk),
dη(θjk)

dθjk

〉∣∣∣∣∣

≤
∫

R

∣∣∣Sk(θk)η
′(θjk)

∣∣∣dθjk

≤ max
θjk∈supp(η′)

|η′(θjk)|
∫

supp(η′)
|Sk(θk)|dθjk

<∞

implying that the function f (θjk, X) = φ′q(Z⊤θk)Zπkgk(X)η′(θjk) is integrable on R × X .
Therefore, by Fubini’s Theorem,

〈
∂Sk(θk)

∂θjk
, η(θjk)

〉
=−

〈
Sk(θk),

dη(θjk)

dθjk

〉

=
∫

X

−
〈

φ′q(Z⊤θk)Zπkgk(X),
dη(θ jk)

dθjk

〉
dX

=
∫

X

〈
∂φ′q(Z⊤θk)

∂θjk
Zπkgk(X), η(θjk)

〉
dX

=

〈
E

{
∂φ′q(Z⊤θk)

∂θjk
Z1{y = k}

}
, η(θjk)

〉
,

which implies that

∂Sk(θk)

∂θjk
= E

{
∂φ′q(Z⊤θk)

∂θjk
Z1{y = k}

}
.

Recall that φ′q can be written as

φ′q(u) = ϕ′q(u)1{u > Q}+ (−1)1{u ≤ Q} = (ϕ′q(u) + 1)1{u > Q} − 1,
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which contains a Schwartz product between the differentiable function ϕ′q(u) and the generalized
function 1{u > Q}. Note that

1{Z⊤θk > Q} =1{zj > 0, θjk > cjk}+ 1{zj ≤ 0, θjk ≤ cjk}
=(21{zj > 0} − 1)1{θjk > cjk}+ (1− 1{zj > 0})
=sign(zj)1{θjk > cjk}+ 1{zj ≤ 0},

where cjk = (Q−∑l 6=j zlθlk)/zj and

∂1{Z⊤θk > Q}
∂θjk

+ 0 = sign(zj)δ(θjk − cjk)

= sign(zj)|zj|δ(Z⊤θk −Q)

= zjδ(Z⊤θk −Q),

where δ(x) is the Dirac delta function and the distributional derivative of 1{x > 0}. Recall that
δ(cx) = δ(x)/|c| and f (x)δ(x− c) = f (c)δ(x− c) for some constant c and function f .

Thus, by the product rule for the distributional derivative of the Schwartz product,

∂φ′q(Z⊤θk)

∂θjk
=

∂(ϕ′q(Z⊤θk) + 1)

∂θjk
1{Z⊤θk > Q}+ (ϕ′q(Z⊤θk) + 1)

∂1{Z⊤θk > Q}
∂θjk

=ϕ′′q (Z⊤θk)zj1{Z⊤θk > Q}+ (ϕ′q(Z⊤θk) + 1)zjδ(Z⊤θk −Q)

=ϕ′′q (Z⊤θk)zj1{Z⊤θk > Q}.

Substituting the above expression, we obtain

∂Sk(θk)

∂θjk
= E

{
ϕ′′q (Z⊤θk)Zzj1{Z⊤θk > Q}1{y = k}

}
.

Similarly, for l 6= k, we have the distributional derivative

∂Sk(θk)

∂θjl
= 0.

Recall that the distributional derivative does not depend on the order of differentiation and agrees
with the classical derivative whenever the latter exists. To summarize, we have that

Hk(θk) =
∂2L(ϑ)
∂θk∂θ⊤k

=
∂Sk(θk)

∂θ⊤k
, H(ϑ) =

K⊕

k=1

Hk(θk).

The Hk(θk) are symmetric matrices, soH(ϑ) is also symmetric.
In the sense of generalized functions, differentiation is a

continuous operation with respect to convergence in D ′. Therefore,
φ′0 = lim

q→0
φ′q = −1{u ≤ 0} and φ′′0 = lim

q→0
φ′′q = δ(u); φ′∞ = lim

q→∞
φ′q = −1{u ≤ 1} and

φ′′∞ = lim
q→∞

φ′′q = δ(u− 1), which coincides with results from the hinge loss.

Next,H(ϑ) ≻ OK(p+1) if and only if both H1(θ1) and its Schur complement
⊕K

k=2 Hk(θk) are both
symmetric and positive definite. We can deduce that H(ϑ) ≻ OK(p+1) if and only if Hk(θk) ≻ Op+1

for all k.
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Note that there exists c > 0 such that ϕ′′q (Z⊤θk) ≥ c on Xk. Then for any γ ∈ Rp+1,

γ⊤Hk(θk)γ =πk

∫

Xk

ϕ′′q (Z⊤θk)(Z⊤γ)2gk(X)dX

≥c Pr{X ∈ Xk, y = k}E{(Z⊤γ)2|X ∈ Xk, y = k}
≥c Pr{X ∈ Xk, y = k}

(
γ2

0 + γ⊤1 Var{X|X ∈ Xk, y = k}γ1
)
,

which implies that γ⊤Hk(θk)γ = 0 if and only if γ = 0p+1 when Var{X|X ∈ Xk, y = k} is assumed
to be non-singular. Assuming that Var{X|y = k} ≻ O implies that Var{X|X ∈ Xk, y = k} � O.

Proof of Theorem 1. By Lemma A2, a minimizer ϑ∗ ∈ C exists with b∗k 6= 0p (by Lemma A4) and
H(ϑ∗) ≻ OK(p+1) (by Lemma A5). By the second-order Lagrange condition and the convexity of L(ϑ)
(by Lemma A1), a minimizer of the population MgDWD loss is unique.

Recall from (A2) that

L(ϑ∗) =E
{
1{y = k}φq(Z⊤θ∗k)

}

=
K

∑
k=1

πk

(
1−E

{
1{X ∈ X

∗
k }
{

1−
( Q

Z⊤θ∗k

)q}∣∣∣y = k
})

=
K

∑
k=1

A(k, q)πk.

It follows that

0 ≤E
{
1{X ∈ X

∗
k }
{

1−
( Q

Z⊤θ∗k

)q}∣∣∣y = k
}

<E
{
1{Z⊤γ > 1 + q−1}+ 1{Q < Z⊤γ ≤ 1 + q−1}

{
1−

( Q
1 + q−1

)q}∣∣∣y = m
}

=Pr
{

Z⊤γ > Q
∣∣y = m

}
− Pr

{
Q < Z⊤γ ≤ Q−1∣∣y = m

}
Q2q

≤1

and

1 ≥E
{
1{X ∈ X

∗
k }
{

1−
( Q

Z⊤θ∗k

)q}∣∣∣y = k
}

>E
{
1{Z⊤θ∗k > 1 + ǫ}

{
1−

( Q
1 + ǫ

)q}∣∣∣y = k
}

≥ sup
ǫ>0

{
1−

( Q
1 + ǫ

)q}
Pr
{

Z⊤θ∗k > 1 + ǫ
∣∣ y = m

}

≥0.

Consequently, 0 ≤ u(k, q) ≤ A(k, q) ≤ v(k, q) ≤ 1.
Note that lim

q→∞
(1 + ǫ)−qQq = e−1 when ǫ = 0 and lim

q→∞
(1 + ǫ)−qQq = 0 when ǫ > 0.

The difference between these two results is attributed to pointwise convergence.
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Let fm = 1− A(k, m) ∈ D ′ with m = 1, 2, . . . and η ∈ D . By Fubini’s theorem and the dominated
convergence theorem,

lim
m→∞

〈
fm, η

〉
= lim

m→∞

〈
E
{
1{X ∈ X

∗
k }
( Q

Z⊤θ∗k

)q∣∣∣y = k
}

, η(γ)
〉

= lim
m→∞

E
{〈

1{X ∈ X
∗

k }
( Q

Z⊤θ∗k

)q
, η(θ∗k)

〉∣∣∣y = k
}

=E
{

lim
m→∞

〈
1{X ∈ X

∗
k }
( Q

Z⊤θ∗k

)q
, η(θ∗k)

〉∣∣∣y = k
}

=0 =
〈
0, η(θ∗k)

〉
.

Similarly,

lim
m→0

〈
fm, η

〉
=E
{

lim
m→0

〈
1{X ∈ X

∗
k }
( Q

Z⊤θ∗k

)q
, η(γ)

〉∣∣∣y = k
}

=E
{〈

1{Z⊤θ∗k > 0}, η(γ)
〉∣∣∣y = k

}

=
〈
E
{
1{Z⊤θ∗k > 0}

∣∣y = k
}

, η(θ∗k)
〉

=
〈

Pr
{

Z⊤θ∗k > 0
∣∣ y = k

}
, η(θ∗k)

〉
,

hence

A(k, ∞) = lim
q→∞

A(k, q) = Pr
{

X /∈ X
∗

k

∣∣ y = k
}

, and A(k, 0) = lim
q→0

A(k, q) = 1.

As a result, A(k, ∞) coincides with the population hinge/SVM loss and A(k, 0) is independent
of θ∗k .

Appendix A.3. Proof of Lemma 2

Proof. By the definition of P̃,

P̃
{

PS(ϑ∗)
}
= τ‖PS(ϑ∗)‖∞ + (1− τ)max

j

{
‖PKS(α∗)‖2, ‖PKS(β∗j )‖2

}
,

where

PKS(α∗) = PK
(
E ◦ φ′q{F(ϑ∗)}

)⊤
1K =

1
N

N

∑
i=1

PKdiag{Ei}φ′q(F∗i ),

PKS(β∗j ) = PK
(
E ◦ φ′q{F(ϑ∗)}

)⊤
xj =

1
N

N

∑
i=1

xijPKdiag{Ei}φ′q(F∗i ),

PK = (p1, . . . , pK) with pk = (plk) = 1{l = k} − K−1, and

E{PKS(α∗)} = PKS(α∗) = 0K, E{PKS(β∗j )} = PKS(β∗j ) = 0K.

Denoting

dik =
{

p⊤k diag{Ei}φ′q(F∗i )
}
=

K

∑
l=1

(
1{yi = k} − 1

K

)
eilφ
′
q( f ∗il ),
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we have that |dik| ≤ 1− K−1. Note that the dik are N i.i.d. random variables with

1
N

N

∑
i=1

E(dik) = p⊤k S(α∗) = 0 and
1
N

N

∑
i=1

E(dikxij) = p⊤k S(β∗j ) = 0.

By Hoeffding’s inequality, we have that

Pr

{
|p⊤k S(α∗)| > c1

(
1− 1

K

)√2 log(pK)
N

}
≤ 2(pK)−c2

1 , (A3)

where c1 > 1.
Regarding the dikxij, we have that

E exp{dikxij} ≤ E exp{(1− K−1)|xij|} ≤ exp{4(1− K−1)2ς2
1κ2},

which implies that the dikxij are N independent sub-Gaussian random variables with variance proxy
(1− K−1)2ς2

1κ2. Taking c1 > 1, we have that

Pr

{
|p⊤k S(β∗j )| > c1ς1κ

(
1− 1

K

)√2 log(pK)
N

}
≤ 2(pK)−c2

1 . (A4)

Then by (A3) and (A4),

Pr
{

max
j

{
|p⊤k S(α∗)|, |p⊤k S(β∗j )|

}
> Λ1

}
≤ 2(pK)−c2

1 (A5)

with

Λ1 = max{ς1κ, 1}c1

(
1− 1

K

)√2 log(pK)
N

.

Taking a union bound over the Kp entries of PS(β∗) yields that

Pr
{
‖PS(ϑ∗)‖∞ ≥ Λ1

}
=Pr

{
max

j,k

{∣∣∣ 1
N

N

∑
i=1

p⊤k S(α∗)
∣∣∣,
∣∣∣ 1

N

N

∑
i=1

p⊤k S(β∗j )
∣∣∣
}
≥ Λ1

}

≤2K(p + 1)(Kp)−c2
1 .

On one hand,

‖Pdiag{Ei}φ′q(F∗i )‖2
2 =‖(Ei − K−1) ◦ φ′q(F∗i )‖2

2 ≤
K

∑
l=1

(eil − K−1)2 · 1 = 1− K−1,

so for any γ ∈ RK,

|γ⊤Pdiag{Ei}φ′q(F∗i )| ≤ ‖γ‖2

√
1− 1

K

and E{γ⊤Pdiag{Ei}φ′q(F∗i )} = 0. Applying Hoeffding’s lemma,

E exp{γ⊤PKS(α∗)} =
N

∏
i=1

E exp
{ 1

N
γ⊤PKdiag{Ei}φ′q(F∗i )

}
≤ exp

{
‖γ‖2

2
2N

(
1− 1

K

)}
.
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Applying a square root to Theorem 2.1 of [31] with c2 > 1, we have that

Pr

{
‖PS(α∗)‖2 ≥

√
K− 1

N
+ c2

√(
1− 1

K

)2 log(p)
N

}
≤ p−c2

2 . (A6)

On the other hand, since the xij are N independent sub-Gaussian random variables with variance
proxy ς2

1κ2,

E exp{γ⊤PS(β∗j )} =
N

∏
i=1

E exp
{ xij

N

{
γ⊤Pdiag{Ei}φ′q(F∗i )

}}

≤
N

∏
i=1

E exp
{√

1− 1
K
‖γ‖2

N
|xij|

}

≤ = exp
{‖γ‖2

2
2

(
1− 1

K

)8ς2
1κ2

N

}

and E{PKS(β∗j )} = 0K. Similarly, we have that

Pr

{
‖PS(β∗j )‖2 ≥ 2

√
2ς1κ

{√
K− 1

N
+ c2

√(
1− 1

K

)2 log(p)
N

}}
≤ p−c2

2 (A7)

for a constant c2 > 1.
Therefore, by (A6) and (A7),

Pr
{

max
j

{
‖PS(α∗)‖2, ‖PS(β∗j )‖2

}
≥ Λ2

}
≤ p−c2

2

with

Λ2 = max{2
√

2ς1κ, 1}
{√

K− 1
N

+ c2

√(
1− 1

K

)2 log(p)
N

}
.

Applying the union bound to (A5), it follows that

Pr
{

P̃
{

PS(ϑ∗)
}
≥ τΛ1 + (1− τ)Λ2

}
≤ 2K(p + 1)(pK)1−c2

1 + p1−c2
2 ,

and the desired result follows.

Appendix A.4. Proof of Theorem 2

Lemma A6. Suppose that λ = c0

√
log(pK)

N
. Then ϑ̂ − ϑ∗ ∈ U , where

U =

{
δ ∈ RK(p+1)

∣∣∣∣
τ

1− τ
‖δE+

‖1 + ∑
j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)}
,

C0 = (c0−1)
(c0+1) , E c denotes the complement of E , E+ = E ∪ {l = 1 + (k − 1)(p + 1)|k = 1, . . . , K},

and G+ = G ∪ {0}.

Proof. Since ϑ̂ = ϑ∗ + δ is the minimizer, we have that

L(ϑ∗) + λP(β∗) ≥L(ϑ̂) + λP(β̂)

λ
{

P(β∗)− P(β∗ + δ̃)
}
≥L(ϑ∗ + δ)− L(ϑ∗),

(A8)
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where β∗ is the vector ϑ∗ without the ak components, replacing δ̃ for δ. Then

P(β∗)− P(β∗ + δ̃) =τ
(
‖β∗

E
‖1 − ‖β∗E + δ̃E ‖1 − ‖δ̃E c‖1

)

+ (1− τ)
(

∑
j∈G

‖β∗j ‖2 − ∑
j∈G

‖β∗j + δj‖2 − ∑
j/∈G

‖δ∗j ‖2

)

≤τ
(
‖δ̃E ‖1 − ‖δ̃E c‖1

)
+ (1− τ)

(
∑
j∈G

‖δj‖2 − ∑
j/∈G

‖δ∗j ‖2

)

≤τ
(
‖δE+

‖1 − ‖δE c‖1
)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 − ∑
j/∈G

‖δj‖2

)
.

By the convexity of L,

L(ϑ∗ + δ)− L(ϑ∗) ≥ 〈S(ϑ∗), δ〉 ≥ −P̄{PS(ϑ∗)}P(δ) ≥ − λ

c0
P(δ).

Note that

P(δ) = τ
(
‖δE+

‖1 + ‖δE c‖1
)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 + ∑
j/∈G

‖δj‖2

)
.

Combining the above results, we have that

λ
{

P(ϑ∗)− P(ϑ∗ + δ)
}
≥
{

L(ϑ∗ + δ)− L(ϑ∗)
}

(c + 1)τ‖δE+
‖1 + (1− τ) ∑

j∈G+

‖δj‖2 ≥ (c− 1)τ‖δE c‖1 + (1− τ) ∑
j/∈G

‖δj‖2

τ

1− τ
‖δE+

‖1 + ∑
j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)
.

Lemma A7. Assume that conditions (A1)-(A3) are satisfied. Then

sup
v∈V

|∆L(u, v)−E{∆L(u, v)}|
‖v‖2

> Λ3

with probability at most 2(Kp)2(se+K)(1−c2
3), where

Λ3 = (1 +
√

2c3)ς2

√
2(se + K) log(pK)

N

and ∆L(u, v) = L(u + v)− L(u) for any u, v ∈ RK(p+1) and for some constant c3 > 1.

Proof. Given any u ∈ RK(p+1) and v ∈ V with V =
{

v ∈ RK(p+1)|0 < ‖v‖0 ≤ se + K
}

,

∆L(u, v) =
1
N

N

∑
i=1

E⊤i
(

φq
{
(U + V)⊤Zi

}
− φq

{
U⊤Zi

})

=
1
N

N

∑
i=1

K

∑
k=1

eik

(
φq
{

Z⊤i (uk + vk)
}
− φq

{
Z⊤i (uk)

})

=
1
N

N

∑
i=1

di(u, v),

where u = vec{U}, v = vec{V}.
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The bounded gradient implies the Lipschitz continuity of φq so that |φq(u + v)− φq(u)| ≤ |v|.
Since eik ∈ {0, 1}, we have that

|di(u, v)| ≤
K

∑
k=1

∣∣∣eik
{

φq
{

Z⊤i (uk + vk)
}
− φq(Z⊤i uk)

}∣∣∣

≤
K

∑
k=1

∣∣eikZ⊤i vk
∣∣ ≤ E⊤i vec{V⊤Zi}

=v⊤(Zi ⊗ IK)Ei.

Note that

N

∑
i=1

(
v⊤(Zi ⊗ IK)Ei

)2
= ‖diag{vec{E⊤}}(Z⊗ IK)v‖2

2.

By Hoeffding’s inequality, we have that

Pr

{∣∣∣ 1
N

N

∑
i=1

di(u, v)−E
( 1

N

N

∑
i=1

di(u, v)
)∣∣∣ > t

}

≤2 exp

{
− 2N2t2

4‖diag{vec{E⊤}}(Z⊗ IK)v‖2
2

}

≤2 exp

{
− Nt2

2ς2
2‖v‖2

2

}
.

Thus Pr{R(v) > Λ3} ≤ 2(Kp)−(se+K)c2
3 with

R(v) =
|∆L(u, v)−E{∆L(u, v)}|

‖v‖2
and Λ3 = c3ς2

√
2(se + K) log(pK)

N
.

Next, we consider covering V with ǫ-balls such that for any v1 and v2 in the same ball,∣∣ v1
‖v1‖2

− v1
‖v1‖2

∣∣ ≤ ǫ, where ǫ is a small positive number. The number of ǫ-balls required to cover

a m-dimensional unit ball is bounded by ( 2
ǫ + 1)m. Then for those v

‖v‖2
, we require a covering number

of at most (3(Kp)/ǫ)se+K. Let N denote such an ǫ-net. We have that

Pr

{
sup
v∈N

R(v) > Λ3

}
≤
(3Kp

ǫ

)se+K
2(Kp)−(se+K)c2

3 = 2
{3

ǫ
(Kp)1−c2

3

}se+K
.

Furthermore, for any v1, v2 ∈ V ,

|R(v1)− R(v2)| ≤
2
N

∥∥∥diag{vec{E⊤}}(Z⊗ IK)
( v1

‖v1‖2
− v1

‖v1‖2

)∥∥∥
1

≤ 2√
N

∥∥∥diag{vec{E⊤}}(Z⊗ IK)
( v1

‖v1‖2
− v1

‖v1‖2

)∥∥∥
2

≤2ς2ǫ.
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Therefore supv∈V
R(v) ≤ supv∈N

R(v) + 2ς2ǫ. Taking ǫ =

√
(se + K) log(pK)

2N
, we have that

Pr

{
sup
v∈V

R(v) > Λ3

}
≤Pr

{
sup
v∈N

R(v) > (c3 − 1)ς1

√
2(se + K) log(pK)

N

}

≤2
{√ 2N

(se + K) log(pK)
3(Kp)1−(c3−1)2

}se+K

≤2
{
(Kp)2−(c3−1)2

}se+K
.

Setting c3 = 1 +
√

2c4 and c4 > 1, we obtain the desired result that

Pr

{
sup
v∈V

R(v) > (1 +
√

2c4)ς2

√
2(se + K) log(pK)

N

}
≤ 2(Kp)2(se+K)(1−c2

4).

Proof of Theorem 2. Consider a disjoint partition on the coordinate set δ = ϑ̂ − ϑ∗, that is,
δ = ∑

M
m=1 vm with vm ∈ V . Note that, each subvector vm has at most se + K non-zero coordinates.

Denote v0 = 0 and um = ϑ∗ + ∑
m−1
l=0 vl so that u1 = ϑ∗ and uM + vM = ϑ∗ + δ. We have

the decomposition

∆L(ϑ∗, δ) =L
(

ϑ∗ +
M

∑
m=1

vm

)
− L(ϑ∗) =

M

∑
m=1

L
(

ϑ∗ +
m

∑
l=0

vl

)
− L

(
ϑ∗ +

m−1

∑
l=0

vl

)

=
M

∑
m=1

L(um + vm)− L(um) =
M

∑
m=1

∆L(um, vm).

By Lemma A7,

M

∑
m=1

∆L(um, vm) ≥
M

∑
m=1

E
{

∆L(um, vm)
}
−Λ3‖vm‖2 = E

{
∆L(ϑ∗, δ)

}
−Λ3‖δ‖2

with high probability. By Lemma A5, L is twice differentiable so that

E
{

∆L(ϑ∗, δ)
}
=

1
N

N

∑
i=1

E
(

E⊤i φq
{

Fi(ϑ
∗ + δ)

})
−E

(
E⊤i φq

{
Fi(ϑ

∗)
})

=L(ϑ∗ + δ)−L(ϑ∗)

=S(ϑ∗)⊤δ +
1
2

δ⊤H(ϑ∗)δ + o(‖δ‖2
2)

≥0 +
ς2

3
2
‖δ‖2

2 + o(‖δ‖2
2).

Consequently, ∆L(ϑ∗, δ) is bounded below by
ς2

3
2
‖δ‖2

2 −Λ3‖δ‖2 with high probability.

Note that

P(β∗)− P(β∗ + δ̃) ≤τ
(
‖δE+

‖1 − ‖δE c‖1
)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 − ∑
j/∈G

‖δj‖2

)

≤
(

τ‖δE+
‖1 + (1− τ) ∑

j∈G+

‖δj‖2

)
.
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From (A8),

L(ϑ∗) + λP(β∗) ≥L(ϑ̂) + λP(β̂)

λ
{

P(β∗)− P(β∗ + δ̃)
}
≥L(ϑ∗ + δ)− L(ϑ∗)

λ
(

τ‖δE+
‖1 + (1− τ) ∑

j∈G+

‖δj‖2

)
≥ ς2

3
2
‖δ‖2

2 −Λ3‖δ‖2.

Clearly, ‖δE+
‖1 ≤ √

se + K‖δE+
‖2 ≤ √

se + K‖δ‖2 and ∑j∈G+
‖δj‖2 ≤ √

sg + 1‖δ‖2.
We conclude that

ς2
3

2
‖δ‖2

2 ≤λ
(

τ‖δE+
‖1 + (1− τ) ∑

j∈G+

‖δj‖2

)
+ Λ3‖δ‖2

‖δ‖2
2 ≤2ς−2

3

{
λ
(

τ
√

se + K + (1− τ)
√

sg + 1
)
+ Λ3

}
‖δ‖2,

after which the desired result follows from straightforward algebraic manipulation.

Appendix A.5. Proof of Lemma 3

Proof. Since

vec(F⊤)⊤ = vec
{
(1Nα⊤ + XB)⊤

}⊤
= α⊤(1⊤N ⊗ IK) + vec(B⊤)⊤(X⊤ ⊗ IK),

we have that




∂vec(F⊤)⊤

∂α
=

∂α⊤(1⊤N ⊗ IK)

∂α
=

∂α⊤

∂α
(1⊤N ⊗ IK) = IK(1

⊤
N ⊗ IK) = 1⊤N ⊗ IK

∂vec(F⊤)⊤

∂vec(B⊤)
=

∂vec(B⊤)⊤(X⊤ ⊗ IK)

∂vec(B⊤)
= IpK(X

⊤ ⊗ IK) = X⊤ ⊗ IK.

The derivative with respect to α is

NS(α) =N
∂L(θ)

∂α
=

∂

∂α
vec{E⊤}⊤vec

{
φq(F

⊤)
}

=
∂vec(F⊤)⊤

∂α

∂φq
{

vec(F⊤)⊤
}

∂vec(F⊤)
vec{E⊤}

=(1⊤N ⊗ IK)diag
(
vec
{

φ′q(F
⊤)
})

vec{E⊤}

=vec
(
IK

{
E ◦ φ′q(F)

}⊤
1N
)

=
{

E ◦ φ′q(F)
}⊤

1N .
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Thus,

∥∥S(α)|uv
∥∥2

2 =
∥∥S(u)− S(v)

∥∥2
2 = N−2∥∥(1⊤N ⊗ IK)vec

{(
E ◦ φ′q{F(α)}

∣∣u
v

)⊤}∥∥2
2

≤N−2∥∥1⊤N ⊗ IK
∥∥2

2

∥∥vec
{(

E ◦ φ′q{F(α)}
∣∣u
v

)⊤}∥∥2
2

=N−1
K

∑
k=1

N

∑
i=1

e2
ik

(
φ′q{ fik(uk)} − φ′q{ fik(vk)}

)2

≤N−1
K

∑
k=1

( N

∑
i=1

eik

)
L2

q(uk − vk)
2

≤N−1nmaxL2
q‖u− v‖2

2,

where Lq = (q+1)2

q is the Lipschitz constant of φ′q. We have that Lα =
√

nmax
N Lq.

The derivative with respect to vec(B⊤) is

N
∂L(θ)

∂vec(B⊤)
=

∂

∂vec(B⊤)
vec{E⊤}⊤vec

{
φq(F

⊤)
}

=
∂vec(F⊤)⊤

∂vec(B⊤)
∂φq
{

vec(F⊤)⊤
}

∂vec(F⊤)
vec{E⊤}

=(X⊤ ⊗ IK)diag
(
vec
{

φ′q(F
⊤)
})

vec{E⊤}

=vec
(

IK
{

E ◦ φ′q(F)
}⊤

X
)

=vec
({

E ◦ φ′q(F)
}⊤

X
)

.

Therefore, the derivative with respect to B is S(B) = N−1X⊤
{

E ◦ φ′q(F)
}

. Note that

vec
(

X⊤
{

E ◦ φ′q(F)
})

=(IK ⊗ X⊤)diag{vec(E)}vec{φ′q(F)}

=

{
K⊕

k=1

X⊤diag(ek)

}
vec{φ′q(F)}

and

N

∑
i=1

{
eikX⊤i (uk − vk)

}2
= ‖diag(ek)X(uk − vk)‖2

2 ≤ ‖diag(ek)X‖2
2‖uk − vk‖2

2;
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thus

N2∥∥vec{S(U)− S(V)}
∥∥2

2 =
K

∑
k=1

∥∥∥X⊤diag(ek)φq{ fk(bk)}
∣∣uk
vk

∥∥∥
2

2

≤
K

∑
k=1

‖X⊤diag(ek)‖2
2‖diag(ek)φq{ fk(bk)}|uk

vk
‖2

2

≤
K

∑
k=1

‖diag(ek)X‖2
2

N

∑
i=1

eik
(
φq{ fik(uk)} − φq{ fik(vk)}

)2

≤L2
q

K

∑
k=1

‖diag(ek)X‖2
2

N

∑
i=1

{
eikX⊤i (uk − vk)

}2

≤L2
q

K

∑
k=1

‖diag(ek)X‖4
2‖uk − vk‖2

2

≤max
k

{
‖diag(ek)X‖2

2

}2
‖vec(U−V)‖2

2.

We conclude that LB = LqN−1 maxk ‖diag(ek)X‖2
2.

Appendix A.6. Proof of Theorem 3

Lemma A8. The indicator function

δR(x) =

{
0, if x ∈ R
∞, if x /∈ R,

whereR = {x ∈ Rp | 1⊤p x = 0}, has subdifferential

∂δR(x) =

{
{g ∈ Rp | g = s1p, s ∈ R}, if x ∈ R
∅, if x /∈ R.

Proof. Suppose that x ∈ R. Then g ∈ ∂δR(x) if and only if both

δR(y) ≥ δR(x) + 〈g, y− x〉 for all y ∈ R and

ω⊤(y− x) ≤ 0.

Let z = y− x. Then z ∈ R since 1⊤p (y− x) = 0. Thus, g⊤z ≤ 0. If g⊤z = 0, then g ∈ {g ∈ Rp |
g = s1p, s ∈ R}. If there exists g ∈ ∂δR(x) satisfying g⊤z < 0 for some z ∈ R, then −z ∈ R, so we
must have that g⊤z > 0. This is a contradiction.

Now, for any x /∈ R, we have that g ∈ ∂δR(x) if and only if both

δR(y) ≥ δR(x) + 〈g, y− x〉 for all y ∈ R and

ω⊤(x− y) ≥ ∞.

For x /∈ R and y ∈ R, since z = x− y ∈ Rp and g⊤z ≥ ∞, it must be that g ∈ ∅.

Proof of Theorem 3. It is sufficient to minimize the objective function

G(β) =
1
2
‖β− β∗‖2

2 + ρ1‖β‖1 + ρ2‖β‖2 + δR(β),
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whereR = {x ∈ RK | 1⊤K β = 0}. Then the subdifferential of G(β) is

∂G(β) = β− β∗ + ρ1∂‖β‖1 + ρ2∂‖β‖2 + ∂δR(β).

For an optimal solution β∗ ∈ R, we have that 0p ∈ ∂G(β∗) if and only if there exist u ∈ ∂‖β‖1,
v ∈ ∂‖β‖2 and s ∈ R such that β∗ = β∗ − ρ1u − ρ2v − s1p. Since 1⊤β∗ = 0, we have that
s = p−11⊤p (β∗ − ρ1u− ρ2v), so

β∗ = PK(β∗ − ρ1u− ρ2v).

If β∗ = 0p, then |uj| < 1 for j = 1, . . . , p, ‖v‖2 ≤ 1 and

‖PK(β∗ − ρ1u)‖2 = ρ2‖PKv‖2 ≤ ρ2‖PK‖2‖v‖2 = ρ2‖v‖2 ≤ ρ2;

If β∗ 6= 0K, then u ∈ ∂‖x‖1 , v = β∗
‖β∗‖2

and

β∗ = PK

(
β∗ − ρ1u− ρ2

β∗

‖β∗‖2

)

(
1 +

ρ2

‖β∗‖2

)
β∗ = PK(β∗ − ρ1u).

Note that β∗ = PKβ∗ ∈ R. Taking the norm of both sides, we see that

(
1 +

ρ2

‖β∗‖2

)
‖β∗‖2 = ‖PK(β∗ − ρ1u)‖2

‖β∗‖2 = ‖PK(β∗ − ρ1u)‖2 − ρ2 > 0.

Substituting this result back into the β∗ 6= 0K case, we have that

β∗ =
{

1− ρ2

‖PK(β∗ − ρ1u)‖2

}
PK(β∗ − ρ1u).

Combining the above two cases gives the desired result.

Appendix A.7. Proof of Theorem 4

Proof. Denote the objective function by

G(b) =
1
2
(b− t)2 + ̺{|b|+ |b + s|}.

When s = 0, we obtain a lasso problem with

b∗ = argmin
b∈R

1
2
(b− t)2 + 2̺|x| = S(t, 2̺).

When s 6= 0, the subdifferential of G(b) is

∂G(b) = b− t + ̺{∂|x|+ ∂|x + s|}.

We see that 0 ∈ ∂G(b∗) if and only if there exist u ∈ ∂|b| and v ∈ ∂|b + s| with

b∗ = b− ̺(u + v).
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If b∗ = 0, then |u| < 1 and v = sign(s), hence

b∗ = 0 if |t− ̺sign(s)| ≤ ̺.

If s > 0, then sign(s) = 1 and 0 ≤ t ≤ 2̺. If s < 0, then sign(s) = −1, and−2̺ ≤ t ≤ 0. Note that
if t 6= 0, then sign(s) = sign(t) or sign(s)sign(t) = 1.

When b∗ = −s, then u = −sign(s) and |v| < 1, hence

b∗ = −s if |t + s + ̺sign(s)| ≤ ̺.

If s > 0, then sign(s) = 1 and −(s + 2λ) ≤ t ≤ −s < 0. If s < 0, then sign(s) = −1 and
0 < −s ≤ t ≤ −(s− 2λ). Note that sign(s) = −sign(t) is equivalent to sign(s)sign(t) = −1.

Let C(s, t) =
1− sign(s)sign(t)

2
|s| ≥ 0. We can summarize the two cases above as

b∗ = −C(s, t) if 0 ≤ C(s, t) ≤|t| ≤ C(s, t) + 2̺. (A9)

If b∗ 6= 0,−s, then u = sign(b∗) and v = sign(b∗ + s), thus

b∗ = t− ̺
{

sign(b∗) + sign(b∗ + s)
}

b∗ + s = t + s− ̺
{

sign(b∗) + sign(b∗ + s)
}

.

If sign(b∗) = −sign(b∗ + s) = 1, then b∗(b∗ + s) < 0 or 0 < t < −s. Thus b∗ = t > 0 if
0 < t < −s. If sign(b∗) = −sign(b∗ + s) = −1, then b∗(b∗ + s) < 0 or −s < t < 0. Thus b∗ = t < 0 if
−s < t < 0. Rewriting the two cases above, we have that

b∗ = t if 0 < |t| < C(s, t). (A10)

If sign(b∗) = sign(b∗ + s) = 1, then

min{b∗, b∗ + s} > 0

t− 2̺ +
s− |s|

2
> 0

sign(t)|t| > sign(t)
( |s|

2
+ 2̺

)
− s

2
> 0.

Note that t > 0 and sign(x) = sign(t). If sign(b∗) = sign(b∗ + s) = −1, then

max{b∗, b∗ + s} < 0

t + 2̺ +
s + |s|

2
> 0

sign(t)|t| < sign(t)
( |s|

2
+ 2̺

)
− s

2
< 0.

Note that t < 0 and sign(x) = sign(t). Rewriting the two cases above, we have that

b∗ = t− 2̺sign(t) if |t| > 2̺ + C(s, t). (A11)

Summarizing (A9)–(A11),

b∗ =





t, |t| < C(s, t),

−C(s, t), C(s, t) ≤ |t| ≤ C(s, t) + 2̺,

sign(t)(|t| − 2̺), |t| > C(s, t) + 2̺,
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with C(s, t) =
1− sign(s)sign(t)

2
|s| ≥ 0. On one hand, when s 6= 0,

b∗ = t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, 2̺
}

.

On the other hand, when s = 0, it follows that b∗ = S(t, 2̺) since S(z, 0) = z.
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Abstract: Regression models provide prediction frameworks for multivariate mutual information

analysis that uses information concepts when choosing covariates (also called features) that are

important for analysis and prediction. We consider a high dimensional regression framework where

the number of covariates (p) exceed the sample size (n). Recent work in high dimensional regression

analysis has embraced an ensemble subspace approach that consists of selecting random subsets of

covariates with fewer than p covariates, doing statistical analysis on each subset, and then merging

the results from the subsets. We examine conditions under which penalty methods such as Lasso

perform better when used in the ensemble approach by computing mean squared prediction errors

for simulations and a real data example. Linear models with both random and fixed designs are

considered. We examine two versions of penalty methods: one where the tuning parameter is selected

by cross-validation; and one where the final predictor is a trimmed average of individual predictors

corresponding to the members of a set of fixed tuning parameters. We find that the ensemble

approach improves on penalty methods for several important real data and model scenarios. The

improvement occurs when covariates are strongly associated with the response, when the complexity

of the model is high. In such cases, the trimmed average version of ensemble Lasso is often the

best predictor.

Keywords: ensembling; high-dimensional data; Lasso; elastic net; penalty methods; prediction;

random subspaces

1. Introduction

Recent research in statistical science has focused on developing effective and useful
techniques for analyzing high-dimensional data where the number of variables substan-
tially exceeds the number of cases or subjects. Examples of such data sets are genome or
gene expression arrays, and other biomarkers based on RNA and proteins. The challenge
is to find associations between such markers (X’s) and phenotype (Y).

Regression models provide useful frameworks for multivariate mutual information
analysis that uses information concepts when choosing covariates (also called features)
that are important for the analysis and prediction. A recent article that includes both the
concept of mutual information and the Lasso is [1]. This paper develops properties of
methods that use the information in a vector X to reduce prediction error, that is, to reduce
entropy. We consider regression experiments, that is, experiments with a response variable
Y ∈ R and a covariate vector (X1, . . . , Xp)t. The objective is to use a sample of i.i.d. vectors
(xi, yi), 1 ≤ i ≤ n, where xi = (xi1, . . . , xip)

t with xij ∈ R, to construct a predictor Ŷ0 of a
response Y0 corresponding to a covariate vector x0 = (x01, . . . , x0p)

t that is not part of the
sample. Let X = (xij)n×p be the design matrix of explanatory variables (covariates) and
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y = (y1, . . . , yn)t be the vector of response variables. Denote X[, j] as the jth column vector
of the design matrix. We will use the linear model

y = Xβββ + ǫǫǫ, (1)

where βββ = (β1, . . . , βp)t is the vector of regression coefficients and ǫǫǫ = (ǫ1, . . . , ǫn)t∼
N(0, σ2 I) is the residual error term. In this model, predictors Ŷ0 take the form

Ŷ0 =
p

∑
j=1

β̂ jx0,j,

where β̂ j is an estimator based on the i.i.d. sample (xi, yi), 1 ≤ i ≤ n.
Under n ≥ p, the ordinary least square (OLS) estimator of βββ can be used. When n < p

a unique OLS estimate does not exist. However, for sparse models where most of the β’s
are zero, we can use the Lasso [2] criteria that forces many of the estimated β’s to be set to
zero. For a given penalty level λ ≥ 0, the Lasso estimate of βββ is

β̂ββ = argminβ

{1
2
‖y− xβββ‖2

2 + λ‖βββ‖1
}

,

where ‖.‖2 is the Euclidean distance and ‖β‖1 = ∑ |β j| is the ℓ1-norm. The Lasso not only
sets a subset of β’s to zero, it also shrinks OLS estimates of the remaining β’s towards zero.
It is an effective procedure for experiments when one can assume that the number r of
covariates that are relevant for the response in the sense that their β coefficient is not zero,
satisfies r ≤ n. That is, for sparse models.

Other effective high-dimension methods that we consider are adaptive Lasso, ref. [3],
smoothly clipped absolute deviation (SCAD), ref. [4], least angle regression (LARS), ref. [5],
and elastic net, ref. [6]. The properties of Lasso, and its variants, are well studied to examine
consistency of parameter estimates [7,8], and to assess the prediction error and the variable
selection process [9,10] examined properties of the Lasso in partially linear models. Several
variants of Lasso were introduced by [11] and more recently by [12]. See [13–15] for many
of the extensions of the original Lasso.

In this paper, we examine properties of statistical methods based on Ensemble Linear
Subspace Analysis (ELSA) for analyzing high-dimensional data. ELSA is based on repeated
random selection of subsets of covariates, doing statistical inference on each of the subsets,
and then combing the results from subsets to construct a final inference. One advantages of
this ensemble subspace approach is that it makes the analysis of studies with a million or
more covariates variables more manageable. Another advantage is that for many situations
the ensemble approach is more efficient because it takes advantage of the high efficiency of
statistical methods for the case where the number of covarites is less than or equal to the
sample size.

Classical examples using sub-models whose results are pooled and aggregated into a
final statistical analysis is the bagging method ([16]) and the random forests approach ([17]).
Recent studies that use ensemble ideas include [18,19]. These papers focus on feature
selection, that is, selecting the covariates that are associated with the response variable.
This paper deals with using the selected covariates to construct efficient predictors of the
response. We examine conditions under which penalty methods such as Lasso perform
better when used in the ensemble approach by computing mean squared prediction errors
for simulations and a real data example. Linear models with both random and fixed
designs are considered. We examine two versions of penalty methods: one where the
tuning parameter is selected by cross-validation; and one where the final predictor is a
trimmed average of individual predictors corresponding to the members of a set of fixed
tuning parameters. We find that the ensemble approach improves on penalty methods for
several important real data and model scenarios. The improvement occurs when covariates
are strongly associated with the response, when the complexity of the model (represented
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by r/p) is high. In such cases, the trimmed average version of ensemble Lasso is often the
best predictor.

The rest of this article is organized as follows. In Sections 2 and 3, we introduce six
different approaches to subspace selection. Section 3 describes a new approach for dealing
with tuning parameters λ. Instead of using the standard Lasso based on a λ̂ obtained by
cross validation, it computes Lasso predictors for a fixed set of tuning parameters and uses
the average of these predictors as the fixed predictors. Section 4 outlines other penalty-
based ensemble methods for high dimensional data. Section 5 introduces the concepts of
mean squared Prediction Error (MSPE) and efficiency (EFF) for fixed and random design
experiments as well as for real data. Section 6 gives efficiency of various penalty methods
with respect to CV Lasso, including efficiencies of ensemble subspace version of these
penalty methods. The efficiency results show that when the model complexity r/p is
moderately high, trimmed subspace method perform best in all but one case. Section 7
compares six ensemble subspace Lasso methods to the standard CV Lasso. For models
with a mixture of strong and weak signals, the ensemble methods perform best except
when the models are very sparse. The final section gives a summary of results.

2. Ensembling via Random Subspaces

The following three-step protocol provides the ensemble subspace approach:

• Divide the initial dataset (X, y), X = (xij)n×p, y ∈ Rn randomly into smaller sub-
datasets by selecting at random subsets covariates. The sample size n remains
the same.

• Construct predictors of the future response Y0 within each sub dataset.
• Combine the results obtained from each sub dataset into a final analysis.

We consider three approaches to choosing subsets of X-variables
1. Choose subspaces with p∗ covariates, where p∗ is the number of distinct covariates

after randomly selecting p covariates with replacement from the collection of all covariates.
Here the random variable p∗ is known to have expected value approximately 0.63p. Let
x∗ denote the distinct covariates and X∗ denote the corresponding design matrix. The
subspace data is (X∗, y) where y ∈ Rn and X∗ = (x∗ij)n×p∗ . By repeating this procedure B

times independently and using a method such as Lasso we get predictors {Ŷ0,1, . . . , Ŷ0,B}.
2. Choose n covariates without replacement from the p covariates, repeating B times

independently and using a method such as Lasso thereby obtaining {Ŷ0,1, . . . , Ŷ0,B}.
3. Same as 2., except choose n/2 covariates.
The final prediction of the response based on a covariate vector x0 is Ŷ0(x0) =

B−1 ∑
B
b=1 Ŷ0b(x0). Note that the terms in the sum that defines Ŷ0b(x0) are identically

distributed, but not independent. Thus, with Ŷ0 = Ŷ0(x0) and Ŷ0b = Ŷ0b(x0)

Var(Ŷ0b) =
1
B

Var(Ŷ01) +
B− 1

B
Cov(Ŷ01, Ŷ02) = ρσ2 +

1− ρ

B
σ2, (2)

where σ2 is the variance of one predictor Ŷ0 and ρ is the pairwise correlation between two
such predictors. By selecting B large, we can make the second term negligible. When ρ
is sufficiently small ρσ2 can in many cases be smaller than the variance of the predictor
based on all the covariates. When Ŷ0 is prediction unbiased, that is, E(Ŷ0 − Y) = 0, then
Var(Ŷ0) equals the prediction mean squared error (PMSE). When the subspace have n or
fewer variables, OLS is prediction unbiased.

3. Prediction on Subspaces

We consider two approaches for dealing with Lasso tuning parameters: the cross-
validated and the Trimmed Lasso. The same approaches will be applied to the other penalty
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methods. Let X∗ = {x∗ij} be the subspace design matrix. The Lasso estimate based on a
linear model on the subspace is

β̂ = argminβ

{1
2
‖y− X∗β‖2

2 + λ‖β‖1
}

,

The standard procedure is to choose the tuning parameter λ using 10-fold cross-validation
(CV), which denoted as CVLasso hereafter. Note, since the size of subspace design X∗ =
{x∗ij} is changed, β̂ is changed as well and correspond the number variables in X∗ = {x∗ij}.
It is implemented in the library “glmnet” in R. Cross validation may sometimes lead to
unfortunate choices of λ because the random choices of training and test sample may not
yield a λ that represents a λ that will give a good predictor. Thus we will consider a method
based on a collection of fixed λ’s. This method, which we call the Trimmed Lasso (TrLasso),
uses as predictor the trimmed average (10% in each tails) of Lasso predictors computed
from a path of 100 λ’s. The path is generated using the library glmnet in R with option
“nlambda”. The largest lambda, λMAX , is the smallest value for which all beta coefficients
are zero while λMIN = λMAXe−6. The λ values are equally spaced on the log scale. We
consider six versions of ensemble subspace methods. In the following, “approach j” for
j = 1, 2 and 3 chooses subspace sizes p∗, n, and n/2, respectively.

ETrLasso (j): For j = 1, 2 and 3 use approach (j) to choose the number of variables in each
subspace. Then apply TrLasso in each subspace.
ECVTLasso (j): For j = 1, 2 and 3 use approach (j) to choose the number of variables in
each subspace. Then apply CVLasso in each subspace.

4. Competitors to Lasso

4.1. Elastic-Net

For highly correlated predictor variables the Lasso tends to select a few of them and
shrink the rest to zero, see [6,15] for an extensive discussion. For such cases the Elastic Net,
denoted ELNET hereafter, is suggested as a compromise between the ridge and the Lasso
methods. The estimates of coefficients can be obtained from:

β̂ = argminβ

{1
2
‖Y− Xβ‖2

2 + λ
(1

2
(1− α)‖β‖2

2 + α‖β‖1
)}

, (3)

where α ∈ [0, 1]. Here α = 1 leads to the regular Lasso. The penalty parameters, λ and α,
are two nonnegative tuning parameters.

We examine properties of ELNET using of α = 0.25, 0.5, and 0.75, while λ is treated as
for the Lasso. Thus we obtain TrELNET(α) and CVELNET(α). For ELNET the ensemble
subspace method is also carried out as for the Lasso but only using the trimmed (10%)
option, resulting in three methods for each α. We use the notation TrELNET(j, α) and
ELNET(j, α), j = 1, 2, 3 for the trimmed and CV ensemble subspace option for subspace of
size p∗, n, and n/2. The calculations of these ELNETs, including the Lasso where α = 1, are
done using the library glmnet in R.

4.2. Adaptive Lasso

Ref. [3] introduced the adaptive Lasso for linear regression. It uses a weighted penalty
of the form ∑

p
j=1 wj|β̂ j| where wj = 1/|β̂ j| and β̂ j is a preliminary estimate of β j and

β̂ = argminβ

{1
2
‖Y− Xβ‖2

2 + λ‖wβ‖1
)}

. (4)

The preliminary beta estimate is typically the Ridge estimate. We use that in our simula-
tion studies. The Adaptive Lasso is also computed as a 10% trimmed average of Lasso
predictors for a sequenced of λ’s and as the predictor obtained when λ is selected using CV.
They are denoted as TrALasso and CVALasso, respectively. We consider these methods
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for the proposed ensembled subspace procedures and denote them as ETrAlasso(j) and
ECVAlasso(j), j = 1, 2, 3.

4.3. Lars

Least angle regression, also called LARS, was developed in [5]. It uses a model
selection algorithms based on forward selection that enables the procedure to select a
parsimonious set of predictors to be used for the efficient prediction of a response variable
from an available large collection of possible covariates. It improves computational effi-
ciency compared to the Lasso. As in Section 3, LARS is considered with trimming and with
CV in prediction. They are denoted as TrLARS and CVLARS, respectively. We consider
the trimmed and CV versions of these methods for the proposed ensembled subspace
procedure and denoted them as ETrLARS(j) and ECVLARS(j), j = 1, 2, 3. The calculation
of LARS is done by using the library LAR in R.

4.4. Scad

Ref. [4] introduced the SCAD penalty for linear regression. It is a symmetric and
quadratic spline on the reals whose first order derivative is

SCAD′λ,a(x) = λ
{

I(|x| ≤ λ) +
(aλ− |x|)+
(a− 1)λ

I(|x| > λ)
}

, (5)

where λ > 0 and a = 3.7 as recommended by [4]. The SCAD penalty is continuously
differentiable and can produce sparse solutions and nearly unbiased estimates for sparce
models with large beta coefficients. The CV and trimmed version of SCAD will be labeled
as CVSCAD and TrSCAD, while the ensemble subspace methods will be ECVSCAD(j) and
ETrSCAD(j), j = 1, 2, 3.

5. Mean Squared Prediction Error (MSPE)

5.1. (a) Random Covariates, Simulated Data

To examine prediction error, we generate a training set D = {(x1, y1), . . . , (xn, yn)}
using the simulation model under consideration, and for each method considered obtain a
predictor of the form ŷi = ∑

p
j=1 β̂ jxij, i = 1, . . . , n. To explore the performance of proposed

methods on data not used in producing the prediction formula, we independently generate
a test set D0 = {(x01, y01), . . . , (x0n0 , y0n0)} and compute

MSPE =
1
n0

n0

∑
i=1

(y0i − ŷ0i)
2,

where

ŷ0i =
p

∑
j=1

β̂ jx0ij, i = 1, . . . , n0,

is the predicted value of y0i based on x0i. We use n0 = 0.3n in the simulation studies.
We repeat the process of generating independent collections for training and test sets
M = 2000 times, therby obtaining MSPE1, . . . , MSPEM. We measure the efficiency of a
predictor Ŷ by comparing it to the standard method, Lasso with cross-validation

EFF(Ŷ) =
1
M ∑

b

MSPEb(CVLasso)

MSPEb(Ŷ)
, (6)

where the sum is over the simulation, and as mentioned earlier for the Lass the standard
procedure is to choose the tuning parameter λ using 10-fold cross-validation (CV).
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5.2. (b) Fixed Covariate, Simulated and Real Data

Let D = {(x1, y1), . . . , (xn, yn)}, x ∈ Rp and y ∈ R, denote a real or simulated data set
with random y’s and fixed x’s. Split this set into a test set D0 with n0 data vectors and a
training set D1 with the remaining n1 data vectors, where n0 = 0.3n and n1 = 0.7n. For
each of the discussed methods, the training set is used to produce a prediction algorithm
that is used to predict the y’s in the test set. The MSPE is then MSPE = 1

n0
∑

n0
i=1(ŷ0i − y0i)

2,
where ŷ0i is the predicted value of y0i based on x’s in the test set. Next we compute the ratio
with respect to CVLasso(MSPE). This procedure is repeated 2000 times and the average
is the final EFF(Ŷ). For simulated experiments, an additional M = 2000 repetitions is
carried out.

6. Efficiency Result for Lasso Competitors

In the following, we compare the accuracy of the methods presented in Sections 3 and 4.
The results are presented with B = 250 subspaces; we also tried B = 500, but since the result
were nearly the same, they are not presented here. We examine the relative performance of
the methods as a function of the complexity index which is defined as the ratio r/p of the
number of covariates that are relevant for the response y to the total number of covariates.

6.1. Syndrome Gene Data

Ref. [20] studied expression quantitative trait locus mapping in the laboratory rat to
gain a broad perspective of gene regulation in the mammalian eye and to identify genetic
variation relevant to human eye disease. The dataset which is from the flare library in
R has n = 120 with p = 200 predictors, it includes the expression level of TRIM32 gene
which can be considered as dependent variable. To compare the accuracy of the proposed
methods on this dataset, we randomly select 30% of the data as a test set and consider the
rest as a training set, and calculate the relative efficiency EFF(Ŷ) to CVLasso. We repeat the
procedure of selecting training and test set 2000 times which provide good accuracy. The
results are reported in Table 1.

Among the seven Lasso Type competitor to CVLasso, the most efficient in terms of
EFF(Ŷ) is the one based on subspaces of sizes n/2 = 60 and based on a trimmed average
of Lasso predictors computed for a sequence of λ tuning parameters. We found that it
improves on CVLasso 83% of the time. However, the average of the mean square prediction
error ratios is EFF(Ŷ) = 1.11, thus the improvement does not appear to be substantial.

Turning to the other procedures in Table 1, we see that, generally, the best performance
is obtained for the trimmed ensemble versions based on subspaces of size n/2, expect for
adaptive Lasso which is best for subspace size n. Generally, the improvement ensemble
over CvLasso is about 1.1 in terms of EFF(Ŷ). Moreover, the performance of these methods
are very close, including ELNET methods with different α. That is, using subspaces and a
robust trimmed average of response predictors obtained from the path of glment lambdas
is more efficient than using the predictor based on the lambda selected by glment cross
validation. The improvement achieved by the trimmed ensemble versions of SCAD based
on subspaces of size n/2 over the basic (CV and trimmed) versions of SCAD is striking.

54



Entropy 2021, 23, 324

Table 1. Efficiencies with respect to CVLasso for the Syndrome Gene data.

Method

CVLasso TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
- 1.048(0.002) 1.059(0.002) 1.079(0.002) 1.102(0.002)

ECVLasso(1) ECVLasso(2) ECVLasso(3)
1.056(0.001) 1.067(0.002) 1.059(0.002)

CVELNET(0.25) TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.028(0.001) 1.057(0.002) 1.056(0.002) 1.092(0.002) 1.103(0.002)

ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.068(0.001) 1.071(0.002) 1.059(0.002)

CVELNET(0.50) TrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.014(0.000) 1.053(0.002) 1.059(0.002) 1.084(0.002) 1.103(0.002)

ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.062(0.001) 1.069(0.002) 1.060(0.002)

CVELNET(0.75) TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.006(0.000) 1.049(0.002) 1.059(0.002) 1.081(0.002) 1.103(0.002)

ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.059(0.001) 1.067(0.002) 1.059(0.002)

CVLARS TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
0.963(0.002) 0.990(0.002) 1.076(0.002) 1.100(0.002) 1.083(0.002)

ECVLARS(1) ECVLARS(2) ECVLARS(3)
1.067(0.001) 1.046(0.003) 0.775(0.005)

CVALasso TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
0.899(0.002) 0.958(0.002) 1.004(0.003) 1.110(0.002) 1.100(0.002)

ECVALasso(1) ECVALasso(2) ECVALasso(3)
1.070(0.002) 1.086(0.002) 1.075(0.002)

CVSCAD TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.837(0.003) 0.891(0.003) 0.954(0.003) 0.969(0.003) 1.099(0.002)

ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.986(0.001) 1.014(0.002) 1.033(0.002)

6.2. Simulation Efficiency Results

We next used a modification of a model set forth by [21]. We set p = 1000, and in
contrast to the syndrome Gene inspired model, we now use i.i.d. random x’s, as indicated
in Model (7). The model provides a large range of β values corresponding to strong,
moderate and weak covariate signals. The correlations between covariates renage from
0.28 and 0.94.

X ∼ N(M, Σ), (7)

M = (µi)i=1,...,p, µi
i.i.d∼ N(5, 2),

Σ = (σi,j)i,j=1,...,p, σi,j = σj,i
i.i.d∼ Uni f (0.4, 0.6), i 6= j

σi,i ∼ Uni f (0.8, 1.2),

β j0+1, . . . , β j0+r
i.i.d∼ Uni f (−2, 2), j0 ∈ {1, . . . , p− r},

β j = 0, for all otherj,

yi =
p

∑
j=1

β jxij + ǫi, with ǫi
i.i.d∼ N(0, 0.15), i = 1, . . . , n.
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Using this model, we generate (x1, y1), . . . , (xn, yn), n = 180. Tables 2–5 give the mean
of the efficiency criteria over M = 2000trials. The numbers in parentheses are standard
deviations (SD). We next discuss the result for the case with r = 150 relevant variables.
Here k denotes the number of covariates in the subspaces, and p∗ is the number of distinct
variables in a bootstrap sample from the set of covariates.

Table 2. Efficiencies of trimmed mean methods with respect to the CVLasso for the model (7) with
complexity index r/p = 0.15.

Method

TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
1.021(0.002) 1.015(0.003) 0.841(0.004) 0.759(0.004)

TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.023(0.003) 0.978(0.004) 0.835(0.004) 0.754(0.004)

ETrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.026(0.002) 1.001(0.003) 0.841(0.004) 0.756(0.004)

TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.023(0.002) 1.009(0.003) 0.841(0.004) 0.756(0.004)

TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
0.998(0.002) 1.049(0.003) 0.880(0.004) 0.733(0.004)

TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
0.995(0.003) 0.971(0.003) 0.823(0.004) 0.763(0.004)

TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.844(0.005) 1.017(0.003) 0.826(0.004) 0.771(0.004)

Table 3. Efficiencies of cross validated methods with respect to the CVLasso for the model (7) with
complexity index r/p = 0.15.

Method

CVLasso ECVLasso(1) ECVLasso(2) ECVLasso(3)
- 0.974(0.003) 0.727(0.004) 0.671(0.004)

CVELNET(0.25) ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.033(0.002) 0.971(0.003) 0.722(0.004) 0.668(0.004)

CVELNET(0.50) ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.016(0.001) 0.977(0.003) 0.725(0.004) 0.670(0.004)

CVELNET(0.75) ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.006(0.000) 0.976(0.003) 0.726(0.004) 0.671(0.004)

CVLARS ECVLARS(1) ECVLARS(2) ECVLARS(3)
0.953(0.003) 1.040(0.003) 0.822(0.004) 0.680(0.004)

CVALasso ECVAlasso(1) ECVAlasso(2) ECVAlasso(3)
1.015(0.003) 1.073(0.004) 0.711(0.004) 0.732(0.004)

CVSCAD ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.816(0.004) 0.875(0.004) 0.733(0.004) 0.682(0.004)

6.2.1. Results for r/p = 0.15

(a) Lasso Based Methods

Trimmed Lasso based on all p = 1000 covariates performs best, with ensemble
trimmed Lasso with k = p∗, a close second. Ensemble CVLasso performs poorly for all k.
The trimming approach dominates the cross validation approach.
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(b) ELNET Based Methods

CV and trimmed ELNET based on all p = 1000 covariates are close and better than the
ensemble methods and CVLasso. The value α in ELNET does not make much difference.
Among ensemble methods, the trimmed version with k = p∗ and α = 0.75 is the best, it is
slightly better than CVLasso.

(c) LARS Based Methods

The trimmed and CV ensemble subspace methods with k = p∗ are best with the
trimmed version slightly better. Both are better than CV Lasso.

(d) Adaptive Lasso Based Methods

CV ensemble adaptive Lasso based on subspaces with k = p∗ is best among all methods.

(e) SCAD Based Methods

For this model, SCAD does poorly for all but one version, presumably because it
produces poor predictors for β’s that are close to zero. The one version that does well is the
trimmed ensemble method with k = p∗ variables.

6.2.2. Results for r/p = 0.30

(a) Lasso Based Methods

Trimmed ensemble Lasso based on p∗ covariates in the subspaces performs best. The
trimming approach outperforms the CV approach for each of k.

(b) ELNET Based Methods

Trimmed ensemble ELNET based on p∗ covariates performs best. The trimming ap-
proach outperforms the CV approach for each k. The value of α does not make
much difference.

(c) LARS Based Methods

Trimmed ensemble LARS based on p∗ covariates is best among all LARS methods.
Trimmed methods outperform CV methods.

(d) Adaptive Lasso Based Methods

CV Adaptive ensemble Lasso based on subspaces with p∗ covariates is best among all
methods. Trimmed methods outperform CV methods except when k = p∗.

(e) SCAD Based Methods

Trimmed ensemble SCAD with p∗ covariates in the supspaces does well. Trimmed
ensemble versions outperform CV version and the k = 1000 version.
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Table 4. Efficiencies of trimmed methods with respect to the CVLasso for the model (7) with r/p = 0.3.

Method

TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
1.056(0.002) 1.135(0.003) 1.092(0.005) 1.002(0.004)

TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.095(0.002) 1.130(0.003) 1.087(0.004) 0.997(0.004)

TrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.073(0.002) 1.133(0.003) 1.092(0.005) 1.000(0.004)

TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.062(0.002) 1.133(0.003) 1.096(0.005) 1.003(0.004)

TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
1.037(0.002) 1.146(0.003) 1.121(0.005) 0.957(0.004)

TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
1.055(0.002) 1.104(0.003) 1.072(0.004) 1.006( 0.004)

TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.836(0.004) 1.098(0.003) 1.054(0.004) 1.021(0.004)

Table 5. Efficiencies of cross validated methods with respect to the CVLasso for the model (7) with
r/p = 0.3.

Method

ECVLasso(1) ECVLasso(2) ECVLasso(3)
- 1.050(0.002) 0.914(0.004) 0.873(0.004)

CVELNET(0.25) ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.060(0.002) 1.082(0.003) 0.920(0.004) 0.875(0.004)

CVELNET(0.50) ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.024(0.001) 1.063(0.002) 0.915(0.004) 0.874(0.004)

ECVELNET(0.75) ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.008(0.000) 1.055(0.002) 0.915(0.004) 0.873(0.004)

CVLARS ECVLARS(1) ECVLARS(2) ECVLARS(3)
0.964(0.003) 1.106(0.002) 1.029(0.004) 0.883(0.004)

CVALasso ECVAlasso(1) ECVAlasso(2) ECVAlasso(3)
1.004(0.003) 1.178(0.004) 0.913(0.004) 0.948(0.004)

CVSCAD ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.888(0.003) 0.936(0.003) 0.899(0.004) 0.874(0.004)

6.2.3. Overall Summary

Tables 2–5 show that the ensemble and trimming methods can improve on the CV
Lasso. Overall, the CV esnsemble Adaptive Lasso based on subspaces with p∗ covariates
performs best. For r/p = 0.30, that is, 30% complexity, ensemble subsace with p∗ covariates
does best overall and the trimmed approach is best except for the Adaptive Lasso. When
r/p = 0.15, the results are less clear, except the ensemble subspaces with p∗ covariates
yields the overall best result when coupled with the Adaptive Lasso. The overall superior
performance of ensemble subspace methods based on p∗ can in part be explained by
formula (2) because the p∗ methods produce predictors that are weakly correlated.
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7. Comparison of Cv and Trimmed Lasso Methods

7.1. Syndrome Gene Data Inspired Simulation Model

Simulation based on real data is very important from an application perspective,
because the structure of the underlying population is often unknown. In this subsection,
we use x from [20] as described in Section 6.1. That is we use non-random covariates to
compare the efficiencies of the proposed Lasso-based methods on this dataset as a function
of the complexity index r/p. We randomly selected r predictor variables from p = 200
predictors, where r/p ranges from 0 to and 0.5, and used the following models with r
covariates relevant to the response Y.

β j0+1, . . . , β j0+r
i.i.d∼ Uni f (−2, 2), j0 ∈ {1, . . . , 200− r}, (8)

β j = 0, for all other j,

yi =
p

∑
j=1

β jxij + ǫi, with ǫ
i.i.d∼ N(0, 0.4).

The average of the standard deviations of the predictors is 0.28, so we considered
ǫ ∼ N(0, 0.4). We then calculated the discussed efficiencies of the proposed methods using
M = 2000. The result are reported in Figure 1. It shows that for r/p less than 0.29 the Lasso
cross validated method has the best performance. For r/p larger than 0.29, the trimmed
subspace version with n variables in the subspaces is best with cross validatioed ensemble
Lasso with p∗ covariates a close second. This CV ensemble Lasso is also second best for
r/p < 0.29. For r/p <0.29, the performance of subspace methods are poor.

Figure 1. Efficiencies of the Lasso ensemble subspace methods with respect to the CVLasso for the
Syndrome Gene inspired simulation model, with different complexity indices r/p.

To summarize, in terms of predictor error, for sparse models, the cross validated lasso
based on all covariates performs best, while for the model with r/p larger than 0.29, the
trimmed ensemble lasso based on subspaces of size n performs best.

7.2. Simulated Models with Random Covariates
7.2.1. (a) Strong and Weak Signals. Strong Covariate Correlations

We consider model (7) with values of r/p ranging from 0 to 0.5. The results in Figure 2
show that the ensemble CV Lasso based on subspaces with p∗ covariates improves on the
CV Lasso for all values of the complexity index r/p. The ensemble trimmed Lasso with p∗

covariates is for best 0.07 < r/p < 0.3 while the ensemble trimmed Lasso with n covariates
in each subspace is best for r/p > 0.3. The ensemble CV Lasso’s with n and n/2 covariates
are slightly worse than CV Lasso.

To summarize, the ensemble methods with p∗ covariates in the subspaces perform
very well when compared to the CV Lasso. The ensemble trimmed Lasso versions are
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best for values of r/p larger than 0.2. This shows that when there are many covariates
with strong and weak signals cross validation may lead to a poor choice of the trimming
parameter λ.

Figure 2. Efficiencies of the Lasso ensemble subspace methods with respect to the CVLasso for the
model (7), with different complexity indices r/p.

7.2.2. (b) Strong and Weak Signals. Weak Covariate Correlations

We consider model (7) with σij replaced by

σij ∼ Uni f (0.0, 0.2). (9)

Figure 3 shows that the dominance of the ensemble trimmed Lasso methods holds for
r/p > 0.09. In other words, when there is weak correlations between the covariates, and
the complexity of the model is more than 0.09, it is better to use the trimmed average of
ensemble predictors based ona sequence of fixed trimming parameters than using trimming
parameters obtained by cross validation.

Figure 3. Efficiencies of the Lasso ensemble subspace methods with respect to the CVLasso for the
model (9), with different complexity indices r/p.

7.2.3. (c) Strong Signals. Weak Covariate Correlations

We consider model (9) with β replaced by

β ∼ Uni f (2, 3). (10)

Figure 4 shows that for very small complexity (r/p ≤ 0.020), CV Lasso is best, while for
r/p > 0.020, the ensemble trimmed Lasso with p∗ covariates in the subspaces improves an
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CV Lasso and does very well overall. For r/p > 0.15, the ensemble trimmed Lasso with n
covariates in the subspaces is best. The trimmed ensemble versions do better than the CV
ensemble versions for r/p > 0.025.

Figure 4. Efficiencies of the Lasso ensemble subspace methods with respect to the CVLasso for the
model (10), with different complexity indices r/p.

7.2.4. (d) Weak Signal. Weak and Strong Correlation between Covariates

These two cases had very similar results. Here we give only the case where we use
model (9) with

β ∼ Uni f (−0.2, 0.2). (11)

Figure 5 shows that in this case the ensemble trimmed Lasso methods with p∗ and with n
covariates in the subspaces do poorly. The ensemble CV Lasso methods performs at the
same level as CV Lasso, as does the ensemble trimmed mean approach with k = n/2.

Figure 5. Efficiencies of the Lasso ensemble subspace methods with respect to the CVLasso for the
model (11), with different complexity indices r/p.

8. Conclusions

This article explores the random ensemble subspace approach for high-dimensional
data analysis. This technique splits the data into covariate subspaces and generates models
and methods on each covariate subspace. Merging and assembling the methods provides
a global solution to the high-dimensional data analysis challenge. Let n denote the sam-
ple size and p the member of covariates, under p >> n. We consider three different
approaches of selecting subspaces: repeatedly select subspaces as follows (1) n covariates
with replacement from p covariates, then use the distinct covariates to form subspaces, (2)
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n covariates at random without replacement, and (3) n/2 covariates on random without
replacement. This approach is applied to a variety of penalty methods and compared
to cross-validation (CV) Lasso using mean squared predictor error (MSPE). We consider
MSPE as a function of model complexity, which is defined as r/p where r is the number
of covariates that are associated with the response and find that when r/p is moderate to
large, the cross-validation ensemble subspace approach improves the CVLasso that uses all
p covariates in one step. We also introduced an alternative to cross-validation that consists
of computing predictors for a fixed set of data-based tuning parameters and using these
predictors’ trimmed mean. This approach works well when the ratio r/p is above 0.2.

To facilitate communication among researchers and provide possible collaborations
between scientists across disciplines and as supporters of open-science, the codes are
written in R according to the end-to-end protocol we implemented in this manuscript,
which are available on request.
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Abstract: We study how to conduct statistical inference in a regression model where the outcome
variable is prone to missing values and the missingness mechanism is unknown. The model we
consider might be a traditional setting or a modern high-dimensional setting where the sparsity
assumption is usually imposed and the regularization technique is popularly used. Motivated by
the fact that the missingness mechanism, albeit usually treated as a nuisance, is difficult to specify
correctly, we adopt the conditional likelihood approach so that the nuisance can be completely
ignored throughout our procedure. We establish the asymptotic theory of the proposed estimator
and develop an easy-to-implement algorithm via some data manipulation strategy. In particular,
under the high-dimensional setting where regularization is needed, we propose a data perturbation
method for the post-selection inference. The proposed methodology is especially appealing when
the true missingness mechanism tends to be missing not at random, e.g., patient reported outcomes
or real world data such as electronic health records. The performance of the proposed method is
evaluated by comprehensive simulation experiments as well as a study of the albumin level in the
MIMIC-III database.

Keywords: nuisance; post-selection inference; missingness mechanism; regularization; asymptotic
theory; unconventional likelihood

1. Introduction

A major step towards scientific discovery is to identify useful associations from various features
and to quantify their uncertainties. This usually warrants building a regression model for an outcome
variable and estimating the coefficient associated with each feature as well as the precision of
the estimator. Besides the traditional regression with a small dimensionality, with advances in
biotechnology, the modern high-dimensional regression usually posits a sparse parameter in the
model, and then applies regularization to select the significant features in order to recover the sparsity.
In particular, the post-selection inference could be challenging in a regularized regression framework.
In this paper, our main interest is to consider a regression model where the outcome variable is prone
to missing values. We study both the traditional setting where regularization is not needed and the
modern one with regularization.

The missing data issue is an inevitable concern for statistical analysis in various disciplines ranging
from biomedical studies to social sciences. In many applications, the occurrence of missing data is
usually not the investigator’s primary interest but complicates the statistical analysis. The validity
of any method devised for missing data heavily depends on the assumption of the missingness
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mechanism [1]. Unfortunately, those assumptions are largely unknown and difficult, if not infeasible,
to be empirically tested. Therefore, one prefers to concentrate on analyzing the regression model for the
outcome variable, while treating the mechanism model as a nuisance. A flexible assumption imposed
at the minimum level on the mechanism would provide protection against model misspecification at
this level.

While it is indeed promising to regard the missingness mechanism as a nuisance with a
flexible assumption, a potential issue is the model identifiability problem if the mechanism contains
missing-not-at-random cases, i.e., allowing the mechanism to depend on the missing values themselves.
In the past few years, researchers have made great progress on this topic by introducing a so-called
instrument. This instrument could be a shadow variable [2–7] or an instrumental variable [8,9].
Both approaches are reasonable and are suitable for different applications. In this paper, we adopt the
shadow variable approach as it facilitates the interpretability of the regression model for the outcome.
The details of the shadow variable approach will be articulated later throughout the paper.

Therefore, we proceed with a semiparametric framework where our primary interest is a
parametric regression, e.g., a linear model, where the statistical task is to estimate the parameter
of interest and conduct statistical inference (particularly post-selection inference for the setting with
regularization). For the nuisance missingness mechanism, we only impose a nonparametric assumption
without specifying a concrete form. We encode the shadow variable as Z, which is one component of
the covariate X. In general, a shadow variable with a smaller dimensionality allows more flexibility
of the missingness mechanism. Therefore, although it could be multidimensional, we only consider
univariate Z throughout the paper. With all of these ingredients, we analyze a conditional likelihood
approach which will eventually result in a nuisance-free procedure for parameter estimation and
statistical inference.

There are at least two extra highlights of our proposed method that are worth mentioning. The first
pertains to the algorithm and computation. Although it looks complicated at first sight, we show
that, via some data manipulation strategy, the conditional likelihood function can be analytically
written as the likelihood of a conventional logistic regression with some prespecified format. Therefore,
our objective function can be readily optimized by many existing software packages. This greatly
alleviates the computational burden of our procedure. Second, while the variance estimation under
the traditional setting is straightforward following the asymptotic approximation, it is challenging for
the setting with regularization. To resolve this problem, we present an easy-to-implement data-driven
method to estimate the variance of the regularized estimator via a data perturbation technique. It is
noted that the current literature on the inference procedure for regularized estimation in the presence of
missing values is very scarce. The authors of [10–12] all considered the model selection problem under
high dimensionality with missing data; however, none of them studied the post-selection inference in
this context.

The remainder of the paper is structured as follows. In Section 2, we first layout our model
formulation and introduce the shadow variable and the conditional likelihood. Section 3 details the
traditional setting without regularization. We present our algorithm of how to maximize the conditional
likelihood function, the theory of how to derive the asymptotic representation of our proposed
estimator and how to estimate its variance. In Section 4, we devote ourselves to the modern setting
where the sparsity assumption is imposed and the regularization technique is adopted. Both algorithm
and theory as well as the variance estimation through the data perturbation technique are presented.
In Section 5, we conduct comprehensive simulation studies to examine the finite sample performance
of our proposed estimator as well as the comparison to some existing methods. Section 6 is the
application of our method to the regression model for the albumin level which suffers from a large
amount of missing values in the MIMIC-III study [13]. The paper is concluded with a discussion in
Section 7.
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2. Methodology

Denote the outcome variable as Y and covariate X. We assume X = (U
T
, Z)

T
where U is

p-dimensional and Z univariate, with detailed interpretation later. We consider the linear model

Y = α + β
T
U + γZ + ǫ, (1)

where β is also p-dimensional, α and γ are scalars and the true value of γ, γ0, is nonzero, ǫ ∼ N(0, σ2).
We consider the situation that Y has missing values while X is fully observed. We introduce a binary
variable R to indicate missingness: R = 1 if Y is observed and R = 0 if missing. To allow the greatest
flexibility of the missingness mechanism model, we assume

pr(R = 1 | Y, X) = pr(R = 1 | Y, U) = s(Y, U), (2)

where s(·) merely represents an unknown and unspecified function not depending on Z. We reiterate that,
as the assumption (2), in a nonparametric flavor, does not specify a concrete form of s(·), one does not
need to be worrisome of the mechanism model misspecification. Moreover, as it allows the dependence
on Y, besides missing-completely-at-random (MCAR) and many scenarios of missing-at-random (MAR),
the assumption (2) also contains various situations of missing-not-at-random (MNAR).

We term Z the shadow variable following the works in [5–7,14]. Its existence depends on whether
it is sensible that Z and R are conditionally independent (given Y and U) and that Y heavily relies
on Z (as γ0 6= 0). There are many examples in the literature documenting that the existence of Z is
practically reasonable. In application, a surrogate or a proxy of the outcome variable Y, which would not
synchronically affect the missingness mechanism, could be a good choice for the shadow variable Z.

We assume independent and identically distributed observations {ri, yi, ui, zi} for i = 1, ..., N and
the first n subjects are free of missing data. Now we present a s(·)-free procedure via the use of the
conditional likelihood. Denote V = (Y, U

T
)

T
. We start with

n

∏
i=1

p(vi | zi, ri = 1) =
n

∏
i=1

s(vi)

g(zi)
p(vi | zi),

where g(zi) = pr(ri = 1 | zi) =
∫

pr(ri = 1 | v)p(v | zi)dv and p(· | ·) is a generic notation for
conditional probability density/mass function. If V were univariate, we denote A as the rank statistic
of {v1, ..., vn}, then

n

∏
i=1

p(vi | zi, ri = 1) = p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

= p(A | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1)p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1). (3)

The conditional likelihood that we use, the first term on the right hand side of (3), is exactly

p(A | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1) =
p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1)

=
∏

n
i=1 p(vi | zi, ri = 1)

Σω∈Ω ∏
n
i=1 p(vω(i) | zi, ri = 1)

=
∏

n
i=1 p(vi | zi)

Σω∈Ω ∏
n
i=1 p(vω(i) | zi)

, (4)

where Ω represents the collection of all one-to-one mappings from {1, ..., n} to {1, ..., n}. Now (4) is
nuisance-free and can be used to estimate the unknown parameters in p(vi | zi).

Although V is multidimensional in our case, the idea presented above can still be applied and it
leads to

∏
n
i=1 p(yi, ui | zi, ri = 1)

Σω∈Ω ∏
n
i=1 p(yω(i), uω(i) | zi, ri = 1)

=
∏

n
i=1 p(yi, ui | zi)

Σω∈Ω ∏
n
i=1 p(yω(i), uω(i) | zi)

. (5)
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Furthermore, to simplify the computation, we adopt the pairwise fashion of (5) following the
previous discussion on pairwise pseudo-likelihood in [15], which results

∏
1≤i<j≤n

p(yi, ui | zi)p(yj, uj | zj)

p(yi, ui | zi)p(yj, uj | zj) + p(yi, ui | zj)p(yj, uj | zi)
.

After plugging in model (1) and some algebra, the objective eventually becomes to minimize

L(θ) =

(
N
2

)−1

∑
1≤i<j≤N

φij(θ) =

(
N
2

)−1

∑
1≤i<j≤N

rirj log{1 + Wij exp(θ
T
dij)}, (6)

where θ = (γ̃, β̃
T
)

T
, γ̃ = γ/σ2, β̃ = γ̃β, dij = (−yi\jzi\j, u

T

i\jzi\j)
T
, yi\j = yi − yj, ui\j = ui − uj,

zi\j = zi − zj and Wij = p(zi | uj)p(zj | ui)/{p(zi | ui)p(zj | uj)}.
Denote the minimizer of (6) as θ̂. By checking that

∂2φij(θ)

∂θ∂θ
T = rirj{1 + Wij exp(θ

T
dij)}−2Wij exp(θ

T
dij)dijd

T

ij

is positive definite, θ̂ uniquely exists. To compute θ̂, one also needs a model for Wij. Fortunately, this model
only depends on fully observed data xi and xj. Essentially any existing parametric, semiparametric,
or nonparametric modeling technique for p(z | u) can be used, and Wij can be estimated accordingly.

Throughout, we denote Ŵij as an available well-behaved estimator of Wij. Although our procedure
stems from p(y, u | z, r = 1), which only relies on the data {yi, xi} with i = 1, it can be seen that,
not only the data {yi, xi}with i = 1 are used to compute θ̂, the data {xi}with i = 0 are also used in the
process of estimating Wij. Therefore, all observed data, both from completely-observed subjects and from
partially-observed subjects, are utilized in our procedure.

One can notice that, due to the assumption (2) which allows the greatest flexibility of the
mechanism model and the adoption of the conditional likelihood, not all parameters α, β, γ, and σ2

are estimable. Nevertheless, the parameter β, which quantifies the association between Y and U after
adjusting for Z and is of primarily scientific interest, can be fully estimable. The remainder of the paper
focuses on the estimation and inference of β, as well as the variable selection procedure based on β.

Before moving on, we give some comparison with the existing literature to underline the novel
contributions we make in this paper. Based on a slightly different but more restrictive missingness
mechanism assumption that pr(R = 1 | Y, X) = a(Y)b(X), Refs. [16–18] used the similar idea to
analyze non-ignorable missing data for a generalized linear model and a semiparametric proportional
likelihood ratio model, respectively. They focused on different aspects of how to use the conditional
likelihoods and their consequences such as the partial identifiability issue and the large bias issue.
In this paper, we focus on the linear model (1) and we just showed that the parameter β is fully
identifiable. It can be seen that the method presented in this paper can be applied to different models,
but their identifiability problems or some other relevant issues have to be analyzed on a case-by-case
basis. For instance, Ref. [19] studied the parameter estimation problem in a logistic regression model
with a low dimensionality under assumption (2). They showed that, different from the current paper,
all the unknown parameters are identifiable in their context. However, because of the complexity
of their objective function, the algorithm studied in [19] is trivial and cannot be extended to a high
dimensional setting.

3. Traditional Setting without Regularization

Computation. Directly minimizing L(θ) is feasible; however, it is very computationally involved.
From rearranging the terms in L(θ), we realize that it can be rewritten as the negative log-likelihood
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function of a standard logistic regression model. To be more specific, let k be the index of pair (i, j)
with k = 1, ..., K and K = (n

2). Then,

L(θ) =
1
K

K

∑
k=1

log
{

1 + exp
(

skθ
T
tk + log Ŵk

)}
, (7)

where sk = −sign(zi\j), tk = (|zi\j|yi\j,−|zi\j|u
T

i\j)
T
. Denote gk = I{zi\j > 0}, then one can show that

the summand in (7), log
{

1 + exp
(

skθ
T
tk + log Ŵk

)}
, equals,

−
[

gk

(
θ

T
tk + sk log Ŵk

)
− log

{
1 + exp

(
θ

T
tk + sk log Ŵk

)}]
,

which is the contribution of the k-th subject to the negative log-likelihood of a logistic regression with
gk as the response, θ as the coefficient, tk as the covariate, and sk log Ŵk as the offset term, but without
an intercept. Therefore, θ̂ can be obtained by fitting the aforementioned logistic regression model.
Algorithm 1 describes the steps for data manipulation and model fitting to estimate θ under this
traditional setting.

Algorithm 1 Minimization of (6) without penalization

1: Inputs: {yi, ui, zi}, {yj, uj, zj}, Ŵij, for i = 1, ..., n and j = 1, ..., n

2: Initialize: k← 0
3: for j ∈ {2 : n} do

4: for i ∈ {1 : (j− 1)} do

5: k← k + 1
6: yi\j ← yi − yj, ui\j ← ui − uj, zi\j ← zi − zj, Ŵk ← Ŵij

7: gk ← I{zi\j > 0}
8: sk ← −sign(zi\j)

9: tk ← (|zi\j|yi\j,−|zi\j|u
T

i\j)
T

10: Fit logistic regression with response g, covariate t, offset s
T

log Ŵ, and no intercept.
11: Outputs: θ̂

Asymptotic Theory. The asymptotic theory of θ̂ involves a model of p(z | u), which does not
contain any missing values, and therefore any statistical model, either parametric, or semiparametric,
or nonparametric, can be used. For simplicity, we only discuss the parametric case here, and any
further elaborations will be rendered into Section 7. For a parametric model p(z | u; η), one can apply
the standard maximum likelihood estimate η̂. Here, we simply assume

√
N (η̂− η0) = −G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}+ op(1), (8)

where G = E
[

∂2

∂η∂η
T log {p(z | u; η0)}

]
, E‖ ∂2

∂η∂η
T log {p(z | u; η0)} ‖2 < ∞, η0 is the true value of η,

and ‖M‖ =
√

trace(MMT) for a matrix M. With this prerequisite, we have the following result for θ̂,
and its proof is provided in Appendix A.

Theorem 1. Assume (8) as well as E

∥∥∥∥
∂2φij(θ0,η0)

∂θ∂θ
T

∥∥∥∥
2

< ∞. Denote θ0 the true value of θ. Then

√
N
(

θ̂− θ0

)
d−→ N

(
0, A−1

ΣA−1
)

,
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where A = E

{
∂2φij(θ0,η0)

∂θ∂θ
T

}
, Σ = 4E

{
λ12(θ0, η0)λ13(θ0, η0)

T
}

, λij(θ0, η0) = BG−1Mij(η0)−Nij(θ0, η0),

B = E

{
∂2φij(θ0,η0)

∂θ∂η
T

}
, Mij(η0) = 1

2

{
∂

∂η log p(zi | ui; η0) +
∂

∂η log p(zj | uj; η0)
}

, and Nij(θ0, η0) =

∂φij(θ0,η0)

∂θ .

If one prefers the asymptotic result of β̂, we have

Corollary 1. Let C be a p× (p + 1) matrix such that Cθ = β, i.e.,

C =




0 1/γ̃0 0 · · · 0
0 0 1/γ̃0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/γ̃0




.

Denote β0 the true value of β. Then, following Theorem 1, we have
√

N
(

β̂− β0

)
d−→ N

(
0, CA−1

ΣA−1C
T
)

.

Variance Estimation. With Theorem 1 and Corollary 1, the variance estimation is straightforward
using the plugging in strategy. Note that var(θ̂) = 1

N A−1
ΣA−1, then one would have the estimate

v̂ar(θ̂) = 1
N Â−1

Σ̂Â−1 where Â = (N
2 )
−1

∑1≤i<j≤N
∂2φij(θ̂,η̂)

∂θ∂θ
T ,

Σ̂ = 4
N−1 ∑

N
i=1

[
1

N−1 ∑
N
j=1,j 6=i

{
B̂Ĝ−1Mij(η̂)−Nij(θ̂, η̂)

}]⊗2
, B̂ = (N

2 )
−1

∑1≤i<j≤N
∂2φij(θ̂,η̂)

∂θ∂η
T , and Ĝ =

1
N ∑

N
i=1

∂2

∂η∂η
T log {p(zi | ui; η̂)}.

4. Modern Setting with Regularization

In the past few decades, it has become a standard practice to consider the high-dimensional
regression model, where one assumes the parameter β is sparse and often uses the regularization
technique to recover the sparsity. While it is a prominent problem to analyze this type of model when
the data are prone to missing values, the literature is quite scarce primarily because it is cumbersome
to rigorously address the missingness under high dimensionality. Therefore, it is valuable to extend
the nuisance-free likelihood procedure proposed in Section 3 to the setting with regularization.
Computation. Regularization is a powerful technique to identify the zero elements of a sparse
parameter in a regression model. Various penalty functions have been extensively studied, such as
LASSO [20], SCAD [21], and MCP [22]. In particular, we study the adaptive LASSO penalty [23] with
the objective of minimizing the following function

Lλ(θ) = L(θ) +
p

∑
j=1

λ
∣∣∣̂̃βj

∣∣∣
−1 ∣∣∣β̃ j

∣∣∣ , (9)

where λ > 0 is the tuning parameter. Following [23], ̂̃βj is a root-N-consistent estimator of β̃ j;
for example, one can use the estimator via minimizing the unregularized objective Function (6).
Obviously, the penalty term in (9) does not alter the numerical characteristic of L(θ) that we presented
in Section 3. The Lλ(θ) is essentially the regularized log-likelihood of a logistic regression model with
the similar format as discussed in (7).

To choose the tuning parameter λ, one can follow either the cross-validation method or various
information-based criteria. Fortunately, all of these approaches have been extensively studied in the
literature. In this paper, we follow the Bayesian information criterion (BIC) to determine λ. Specifically,
we choose λ to be the minimizer of the following BIC function
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BIC(λ) = 2L(θ) + pλ
log(n)

n
,

where pλ is the number of nonzero elements in ̂̃
βλ and the minimizer of (9) is encoded as

θ̂λ = (̂̃γλ, ̂̃β
T

λ)
T. We summarize the whole computation pipeline as Algorithm 2 below.

Algorithm 2 Minimization of (9) with the ALASSO penalty

1: Inputs: {yi, ui, zi}, {yj, uj, zj}, Ŵij, for i = 1, ..., n and j = 1, ..., n

2: Initialize: k← 0
3: for j ∈ {2 : n} do

4: for i ∈ {1 : (j− 1)} do

5: k← k + 1
6: yi\j ← yi − yj, ui\j ← ui − uj, zi\j ← zi − zj, Ŵk ← Ŵij

7: gk ← I{zi\j > 0}
8: sk ← −sign(zi\j)

9: tk ← (|zi\j|yi\j, |zi\j|u
T

i\j)
T

10: Fit logistic regression with response g, covariates t, offset s
T

log W, and no intercept.
11: Obtain ̂̃θ.
12: Fit logistic regression with ALASSO penalty.
13: Find λ⋆ which minimizes the BIC.
14: Outputs: θ̂(λ⋆) = θ̂λ

Asymptotic Theory. Recall that θ = (γ̃, β̃T)T. Without loss of generality, we assume the first p0

parameters in β̃ are nonzero, where 1 ≤ p0 < p. For simplicity, we denote θT = (γ̃, β̃1, ..., β̃p0)
T as the

vector of nonzero components and θTc = (β̃p0+1, ..., β̃p)T as the vector of zeros.

In Theorem 1, we defined A = E
{

∂2φij(θ0,η0)

∂θ∂θ
T

}
, a (p + 1)× (p + 1) matrix. Now we assume it can

be partitioned as A =

(
A1 A2

A
T

2 A3

)
, where A1 is a (p0 + 1)× (p0 + 1) submatrix corresponding to θT .

Similarly, we defined Σ = 4E
{

λ12(θ0, η0)λ13(θ0, η0)
T
}

, and we also assume it can be partitioned as

Σ =

(
Σ1 Σ2

Σ
T

2 Σ3

)
, where Σ1 is a (p0 + 1)× (p0 + 1) submatrix corresponding to θT as well. We denote

the minimizer of (9), θ̂λ, as θ̂λ = (θ̂T
λ,T , θ̂T

λ,Tc)T, and its true value θ0 = (θT
0,T , θT

0,Tc)T.

Now, we present the oracle property pertaining to θ̂λ, which includes the asymptotic normality for
the nonzero components and the variable selection consistency. The proof is provided in Appendix B.

Theorem 2. Assume (8), A1 is positive definite and E‖ ∂φij(θ0,η0)

∂θ ‖2 < ∞ for each θ in a neighborhood of θ0.
We also assume

√
Nλ→ 0 and Nλ→ ∞. Then,

√
N
(

θ̂λ,T − θ0,T

)
d−→ N

(
0, A−1

1 Σ1A−1
1

)
.

In addition, let TN = {j ∈ {1, ..., p} : ̂̃βj,λ 6= 0} and T = {j ∈ {1, ..., p} : β̃ j,0 6= 0}, then

lim
N→∞

pr(TN = T) = 1.

Variance Estimation. Although the above theory provides a rigorous justification for the asymptotic
property of θ̂λ, in practice, however, it does not guide the standard error estimation. Here, we propose
a data perturbation approach for the variance estimation. Specifically, following [24], we generate a
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set of independent and identically distributed positive random variables Ξ = {ξi, i = 1, ..., N} with
E(ξi) = 1 and var(ξi) = 1, e.g., the standard exponential distribution. Since it is based on a U-statistic
structure, we perturb our objective function by adding κij = ξiξ j to each of its pairwise terms. We first
obtain the estimator θ̂⋆ by minimizing the perturbed version of (6):

L⋆(θ) =

(
N
2

)−1

∑
1≤i<j≤N

κijφij(θ).

Then, we obtain the estimator θ̂⋆λ by minimizing the perturbed version of (9):

L⋆
λ(θ) =

(
N
2

)−1

∑
1≤i<j≤N

κijφij(θ) +
p

∑
j=1

λ∣∣∣∣
̂̃β
⋆

j

∣∣∣∣

∣∣∣β̃ j

∣∣∣ ,

where the optimal λ is also computed by the BIC. We repeat this data perturbation scheme a large
number of times, say, M.

Following the theory in [25,26], under some regularity conditions, one can first show that√
N
(

θ̂⋆λ,T − θ0,T

)
converges in distribution to N(0, A−1

1 Σ1A−1
1 ), the same limiting distribution of

√
N
(

θ̂λ − θ0

)
. Furthermore, one can also show pr∗

(
θ̂⋆λ,Tc = 0

)
→ 1, where pr∗ is the probability

measure generated by the original data X and the perturbation data Ξ. In addition, one can show

that the distribution of
√

N
(

θ̂⋆λ,T − θ̂λ,T

)
conditional on the data can be used to approximate the

unconditional distribution of
√

N
(

θ̂λ,T − θ0,T

)
and that pr∗

(
θ̂⋆λ,Tc = 0 | X

)
→ 1.

To achieve a confidence interval for θj, the j-th coordinate in θ, the lower and upper bounds

can be formed by θ̂⋆λ,j,α/2 and θ̂⋆λ,j,1−α/2, respectively, where θ̂⋆λ,j,q represents the q-th quantile of{
θ̂⋆λ,j,m, m = 1, ..., M

}
.

5. Simulation Studies

We conduct comprehensive simulation studies to evaluate the finite sample performance of our
proposed estimators and also compare with some currently existing methods. We first present the
results under the model without regularization, then with regularization.

5.1. Scenarios without Regularization

For the proposed estimator studied in Section 3, we generate {Ri, Yi, UT
i , Zi}, i = 1, . . . , N,

independent and identically distributed copies of (R, Y, UT, Z), as follows. We first generate the
random vector U = (U1, . . . , Up)T with Ui ∼ N(0.5, 1) and p = 4, and then generate Z = αz + ηTU+ ǫz

with αz = 0.5, η = (−0.5, 1,−1, 1.5)T, ǫz ∼ N(0, 1). Afterwards, the outcome variable Y is generated
following the model (1) with α = −1, β = (−0.5, 1,−1, 1.5)T, γ = 0.5, and ǫ ∼ N(0, 1), and the
missingness indicator R is generated following pr(R = 1 | Y, U) = I(Y < 2.5, U1 < 2, U2 < 2, U3 <

2, U4 < 2) which results in around 40% missing values. We examine two situations with sample size
N = 500 and N = 1000 respectively. Besides the estimator studied in Section 3 (Proposed), we also
implement the estimator using all simulated data (FullData) and the estimator using completely
observed subjects only (CC). Based on 1000 simulation replicates, for each of the three estimators,
we summarize the sample bias, sample standard deviation, estimated standard error, and coverage
probability of 95% confidence intervals in Table 1.
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Table 1. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error
(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all
simulated data), CC (using only completely observed subjects), and of the proposed estimator studied
in Section 3.

N Parameter Method Bias SD SE CP

500

γ̃
FullData 0.0026 0.0444 0.0450 0.9540

CC −0.0329 0.0564 0.0560 0.9100
Proposed 0.0174 0.0829 0.0789 0.9450

β1

FullData 0.0022 0.0489 0.0503 0.9510
CC 0.0376 0.0670 0.0699 0.9300

Proposed 0.0164 0.1644 0.1607 0.9400

β2

FullData −0.0017 0.0657 0.0635 0.9310
CC −0.0649 0.0851 0.0835 0.8680

Proposed −0.0399 0.2305 0.2239 0.9360

β3

FullData 0.0022 0.0616 0.0635 0.9540
CC 0.0778 0.0871 0.0867 0.8430

Proposed 0.0462 0.2323 0.2298 0.9410

β4

FullData −0.0045 0.0792 0.0810 0.9530
CC −0.0988 0.1007 0.1043 0.8550

Proposed −0.0672 0.3081 0.3047 0.9380

1000

γ̃
FullData −0.0012 0.0317 0.0317 0.9540

CC −0.0348 0.0396 0.0393 0.8510
Proposed 0.0068 0.0573 0.0555 0.9350

β1

FullData 0.0011 0.0367 0.0355 0.9370
CC 0.0399 0.0490 0.0494 0.8840

Proposed 0.0154 0.1154 0.1138 0.9460

β2

Full Data 0.0020 0.0448 0.0448 0.9500
CC −0.0649 0.0577 0.0588 0.8110

Proposed −0.0153 0.1531 0.1591 0.9590

β3

Full Data −0.0015 0.0458 0.0449 0.9460
CC 0.0779 0.0605 0.0611 0.7490

Proposed 0.0135 0.1598 0.1634 0.9480

β4

Full Data 0.0009 0.0564 0.0571 0.9540
CC −0.0949 0.0720 0.0734 0.7550

Proposed −0.0242 0.2091 0.2167 0.9430

Furthermore, we consider a similar simulation setting where the generation is the same as above
except for a logistic missingness mechanism model with logit{pr(R = 1 | Y, U)} = 3− 2Y + 0.5U1 −
U2 + U3 − 1.5U4, which also results in around 40% missing values. We replicate the results, shown in
Table 2.

We can reach the following conclusions from Tables 1 and 2. For the estimator Proposed,
although its bias is slightly larger than the benchmark FullData, it is still very close to zero. The sample
standard deviation and the estimated standard error are rather close to each other. The sample
coverage probability of the estimated 95% confidence interval is also very close to the nominal
level. This observation well matches our theoretical justification in Theorem 1. On the contrary,
the estimator CC is clearly biased, resulting in empirical coverage far from the nominal level,
and therefore is not recommended to use in practice. It is also clear that, compared to the benchmark
FullData, the estimator Proposed has estimation efficiency loss to some extent. This is because the
proposed method uses the conditional likelihood approach and it completely eliminates the effect of
the nuisance.
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Table 2. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error
(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all
simulated data), CC (using only completely observed subjects), and of the proposed estimator studied
in Section 3, with a logistic missingness mechanism model.

N Parameter Method Bias SD SE CP

500

γ̃
FullData −0.0011 0.0464 0.0451 0.9410

CC −0.0306 0.0567 0.0567 0.9200
Proposed 0.0100 0.0822 0.0787 0.9380

β1

FullData −0.0004 0.0509 0.0503 0.9520
CC 0.0440 0.0636 0.0637 0.8930

Proposed 0.0146 0.1308 0.1236 0.9420

β2

FullData 0.0013 0.0639 0.0637 0.9520
CC −0.0871 0.0828 0.0821 0.8190

Proposed −0.0173 0.1824 0.1753 0.9430

β3

FullData −0.0030 0.0655 0.0636 0.9400
CC 0.0876 0.0847 0.0821 0.8030

Proposed 0.0214 0.1840 0.1756 0.9440

β4

FullData 0.0023 0.0845 0.0812 0.9390
CC −0.1307 0.1083 0.1061 0.7560

Proposed −0.0331 0.2533 0.2384 0.9360

1000

γ̃
FullData 0.0004 0.0315 0.0317 0.9490

CC −0.0286 0.0396 0.0398 0.8950
Proposed 0.0060 0.0568 0.0555 0.9390

β1

FullData 0.0007 0.0362 0.0354 0.9420
CC 0.0442 0.0451 0.0447 0.8410

Proposed 0.0079 0.0910 0.0859 0.9290

β2

FullData −0.0004 0.0450 0.0448 0.9390
CC −0.0879 0.0571 0.0576 0.6640

Proposed −0.0044 0.1277 0.1220 0.9420

β3

FullData −0.0009 0.0450 0.0448 0.9450
CC 0.0880 0.0588 0.0577 0.6660

Proposed 0.0114 0.1309 0.1222 0.9380

β4

FullData −0.0005 0.0576 0.0572 0.9510
CC −0.1342 0.0755 0.0745 0.5740

Proposed −0.0191 0.1757 0.1661 0.9370

5.2. Scenarios with Regularization

For the estimator studied in Section 4, the independent and identically distributed samples
are generated as follows. The variable U = (U1, . . . , Up)T is generated from MVN(0, Σu)

with Σu = (0.5|i−j|)1≤i,j≤p and p = 8. Then, the shadow variable Z is generated following
Z = αz + ηTU + ǫz with αz = 0, η = (−0.5, 0.5,−1, 1,−0.5, 0.5,−1, 1)T and ǫz ∼ N(0, 1). The outcome
variable Y is generated from model (1) with α = 0, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, γ = 3, ǫ ∼ N(0, σ2)

and σ = 3. The distribution of the missingness indicator follows from logit{pr(R = 1 | Y, U)} =

5 + 5Y + 0.2U1 + 0.2U7, which results in about 45% missing values. Similar to Section 5.1, we also
examine two situations with sample size N = 500 and N = 1000 respectively, and we implement
three estimators FullData, CC, and Proposed. When the estimator Proposed is implemented, we
perform M = 500 perturbations in order to obtain the confidence interval for the unknown parameter.
The results summarized below are based on 1000 simulation replicates.

Figure 1 shows the L1, L2, and L∞ norms of the bias for the three different estimators. As sample
size increases, there is no doubt that the estimation bias is getting smaller for any method. It is also
clear that the bias of the Proposed estimator is larger than the benchmark FullData, but much smaller
than the method CC.
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Figure 1. In Section 5.2, L1 (1st column), L2 (2nd column), and L∞ (3rd column) norms of the estimation
bias of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects), and of the proposed estimator studied in Section 4.

We present the statistical inference results in Table 3 for N = 500 and Table 4 for
N = 1000, respectively, including sample bias, sample standard deviation, estimated standard error,
coverage probability, and length of 95% confidence interval for the three different methods. For the
nonzero β’s as well as γ̃, similar to Section 5.1, the method CC clearly prompts coverage probability
far from the nominal level hence is not reliable. For the method Proposed, its estimation bias is quite
close to zero, and its sample standard deviation and estimated standard error are quite close to each
other. The coverage probability of the confidence interval converges to the nominal level 95% as the
sample size gets larger. For the noisy zero β’s, the coverage probabilities in the three methods are all
close to 1, reflecting the variable selection consistency in the oracle property, even for the CC method.
Furthermore, a very nice finite sample property of our proposed estimator is that it produces the
confidence interval with the shortest length, which can be clearly seen from both Tables 3 and 4.
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Table 3. In Section 5.2, with sample size N = 500, sample bias (Bias), sample standard deviation
(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence
interval of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

γ̃
FullData 0.0001 0.0120 0.0132 0.9480 0.0515

CC −0.0729 0.0180 0.0183 0.0370 0.0716
Proposed −0.0423 0.0500 0.0498 0.8200 0.1926

True Nonzero

β1

FullData 0.0021 0.1686 0.1649 0.9400 0.6415
CC −0.6547 0.2207 0.2114 0.1460 0.8233

Proposed 0.0354 0.4698 0.4746 0.9320 1.8513

β2

Full Data −0.0275 0.1692 0.1791 0.9440 0.6952
CC −0.3501 0.2227 0.2174 0.6180 0.8471

Proposed −0.2654 0.5843 0.5609 0.8940 1.9237

β5

Full Data −0.0172 0.1576 0.1756 0.9650 0.6826
CC −0.4478 0.2172 0.2161 0.4370 0.8418

Proposed −0.1251 0.4037 0.4611 0.9330 1.8063

True Zero

β3

FullData 0.0085 0.1567 0.1890 0.9960 0.7184
CC 0.0063 0.2067 0.2304 0.9890 0.8890

Proposed 0.0109 0.0988 0.1690 1.0000 0.4398

β4

Full Data −0.0019 0.1581 0.1900 0.9940 0.7206
CC −0.0017 0.2097 0.2307 0.9900 0.8914

Proposed 0.0126 0.1112 0.1447 1.0000 0.3668

β6

Full Data 0.0045 0.1212 0.1606 0.9980 0.6146
CC −0.0053 0.1749 0.1953 0.9900 0.7560

Proposed 0.0034 0.0664 0.1160 1.0000 0.2555

β7

Full Data 0.0014 0.1351 0.1839 0.9980 0.7063
CC −0.0055 0.1870 0.2245 0.9950 0.8717

Proposed 0.0024 0.0386 0.1115 1.0000 0.2538

β8

Full Data −0.0072 0.1295 0.1748 0.9990 0.6653
CC −0.0062 0.1795 0.2125 0.9940 0.8251

Proposed 0.0016 0.0741 0.1066 1.0000 0.2284

Table 4. In Section 5.2, with sample size N = 1000, sample bias (Bias), sample standard derivation
(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence
interval of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

γ̃
FullData −0.0005 0.0073 0.0088 0.9690 0.0344

CC −0.0730 0.0126 0.0130 0.0000 0.0507
Proposed −0.0213 0.0311 0.0334 0.8700 0.1293

True Nonzero

β1

FullData −0.0005 0.1186 0.1170 0.9300 0.4547
CC −0.6655 0.1568 0.1507 0.0090 0.5864

Proposed 0.0211 0.2911 0.2969 0.9300 1.1631

β2

Full Data −0.0321 0.1175 0.1249 0.9550 0.4861
CC −0.3387 0.1477 0.1534 0.3960 0.5972

Proposed −0.0979 0.2907 0.3383 0.9230 1.3115

β5

Full Data −0.0225 0.1051 0.1206 0.9590 0.4698
CC −0.4485 0.1478 0.1534 0.1770 0.5964

Proposed −0.0621 0.2351 0.2526 0.9290 0.9871
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Table 4. Cont.

Parameter Method Bias SD SE CP Length

True Zero

β3

FullData −0.0007 0.0621 0.1162 1.0000 0.4253
CC 0.0023 0.1414 0.1614 0.9920 0.6180

Proposed 0.0044 0.0581 0.0910 1.0000 0.2091

β4

Full Data 0.0020 0.0632 0.1170 1.0000 0.4271
CC −0.0005 0.1333 0.1608 0.9930 0.6207

Proposed 0.0063 0.0584 0.0887 1.0000 0.2107

β6

Full Data 0.0013 0.0571 0.1010 1.0000 0.3670
CC −0.0034 0.1159 0.1378 0.9950 0.5313

Proposed 0.0012 0.0281 0.0688 1.0000 0.1430

β7

Full Data −0.0028 0.0599 0.1144 1.0000 0.4231
CC −0.0033 0.1243 0.1584 0.9970 0.6131

Proposed 0.0016 0.0288 0.0698 1.0000 0.1421

β8

Full Data 0.0039 0.0589 0.1080 1.0000 0.3970
CC 0.0028 0.1256 0.1497 0.9940 0.5752

Proposed 0.0000 0.0333 0.0644 1.0000 0.1314

6. Real Data Application

The Medical Information Mart for Intensive Care III (MIMIC-III) is an openly available electronic
health records (EHR) database, developed by the MIT Lab for Computational Physiology [13],
comprising de-identified health-related data associated with intensive care unit patients with rich
information including demographics, vital signs, laboratory test, medications, and more.

Our initial motivation for this data analysis is to understand the missingness mechanism for some
laboratory test biomarkers in this EHR system. As for the EHR database, since the data are collected in
a non-prescheduled fashion, i.e., only available when the patient seeks care or the physician orders
care, the visiting process could be potentially informative about the patients’ risk categories. Therefore,
it is very plausible that the data are missing not at random, or a mix of missing not at random and
missing at random [27,28]. When we first conducted the data cleaning process briefly, an interesting
phenomenon we observe is that, compared to most biomarkers which usually have <3% missing
values, the albumin level in the blood sample, a very indicative biomarker associated with different
types of diseases [29], has around 30% missingness.

To further understand this phenomenon, we concentrate on a subset of the data with sample size
N = 1359 in which 421 samples have missing values in the albumin level but all other variables are
complete. We aim to apply the proposed method to the study of the albumin level (Y). The calcium level
in the blood sample, free of missing data, has been shown in the biomedical literature that it has high
correlation with the albumin level [30–32]; therefore, we adopt the calcium level as the shadow variable
Z. Seventeen other variables comprise the vector U, which are either demographics (age and gender),
chart events (respiratory rate, glucose, heart rate, systolic blood pressure, diastolic blood pressure,
and temperature), other laboratory tests (urea nitrogen, platelets, magnesium, hematocrit, red blood
cell, white blood cell, and peripheral capillary oxygen saturation (SpO2)), or aggregated metrics
(simplified acute physiology score (SAPS-II) and sequential organ failure assessment score (SOFA)).

We implement the proposed estimator studied in Section 4 to achieve both variable selection and
post-selection inference. We also compare it with the CC method which naively fits the regularized
linear regression with the ALASSO penalty. For each of the methods, we apply the data perturbation
scheme presented in Section 4 with M = 500 for standard error estimation. The results are summarized
in Table 5. The solution path of the Proposed method, as the tuning parameter λ varies, is also provided
in Figure 2.
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Table 5. In Section 6, the parameter estimate (Estimate), standard error (SE), and confidence interval
(CI) of the estimator of CC (using only completely observed subjects) and of the proposed estimator
studied in Section 4 in the MIMIC−III study.

Effect
CC Proposed

Estimate SE CI Estimate SE CI

Calcium(shadow) 0.7707 0.0691 [0.6532, 0.9153] 1.5271 0.1796 [1.1815, 1.8835]

Red Blood Cell 0.6491 0.0514 [0.5337, 0.7257] 0.7545 0.1631 [0.3594, 1.0109]
Magnesium 0.0000 0.0686 [−0.2073, 0.0000] 0.2731 0.2452 [0.0000, 0.6609]
SOFA −0.2720 0.0268 [−0.3135, −0.2099] −0.1852 0.1040 [−0.3467, 0.0000]
Temperature −0.0360 0.0351 [−0.0883, 0.0659] 0.0000 0.0964 [0.0000, 0.3132]
White Blood Cell −0.0245 0.0123 [−0.0416, 0.0000] 0.0000 0.0025 [0.0000, 0.0000]
Age 0.0000 0.0008 [0.0000, 0.0000] 0.0000 0.0017 [0.0000. 0.0000]
Gender 0.0000 0.0240 [−0.0477, 0.0662] 0.0000 0.1320 [−0.4025, 0.0000]
Respiratory Rate 0.0000 0.0034 [−0.0141, 0.0000] 0.0000 0.0008 [0.0000, 0.0000]
Glucose 0.0000 0.0000 [0.0000, 0.0000] 0.0000 0.0005 [0.0000, 0.0000]
Heart Rate 0.0000 0.0025 [−0.0091, 0.0000] 0.0000 0.0004 [0.0000, 0.0000]
Systolic BP 0.0000 0.0045 [−0.0139, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Diastolic BP 0.0000 0.0072 [0.0000, 0.0223] 0.0000 0.0000 [0.0000, 0.0000]
Urea Nitrogen 0.0000 0.0004 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Platelets 0.0000 0.0000 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Hematocrit 0.0000 0.0027 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
SpO2 0.0000 0.0145 [−0.0479, 0.0000] 0.0000 0.0162 [0.0000, 0.0000]
SAPS-II 0.0000 0.0106 [−0.0051, 0.0269] 0.0000 0.0000 [0.0000, 0.0000]
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Figure 2. In Section 6, as tuning parameter λ varies, the solution path of the proposed estimator in the
MIMIC-III study. The optimal λ, λ∗, equals 1.0030 and log λ∗ = 0.0030.

In general, both methods achieve the goal of variable selection and post-selection inference by
leveraging the regularization technique coupled with the data perturbation strategy, and identify
many variables as noise with zero coefficients. In particular, the Proposed method provides larger
effects for the calcium level (the shadow variable) and the red blood cell count, whereas a smaller
effect for the aggregated SOFA score. The Proposed method simplifies the body temperature and the
white blood cell count as nonsignificant variables, which are identified as nonzero but with a very
small effect using the CC method. It is also worthwhile to mention that the Proposed method signifies
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the magnesium level with a quite significant coefficient, which was extensively investigated in the
scientific literature [33–35].

7. Discussion

In this paper, we provide a systematic approach for parameter estimation and statistical inference
in both traditional linear model where the regularization is not needed and the modern regularized
regression setting, when the outcome variable is prone to missing values and the missingness
mechanism can be arbitrarily flexible. A pivotal condition rooted in our procedure is the shadow
variable Z, which overcomes the model identifiability problem and enables the nuisance-free
conditional likelihood process.

Certainly any method would have its own limitations and could be potentially improved.
One needs a model p(z | u) to implement the proposed estimator in Sections 3 and 4. As its modeling
does not involve any missing data, we simply use the parametric maximum likelihood estimation in
our algorithm as well as in the theoretical justification. Indeed, any statistical or machine learning
method can be used for modeling p(z | u). For instance, if one would like to consider a semiparametric
model [36], e.g.,

p(z | u; η, F) =
exp(ηTuz) f (z)∫
exp(ηTuz)dF(z)

,

where η = (η1, ..., ηp)
T

is a vector of unknown parameters and f (z) is the density of an unknown
baseline distribution function F with respect to some dominating measure ν. With this model fitted,
Wij can be simplified to Wij = exp(−zi\jη

T
ui\j). Therefore, a similar conditional likelihood approach

can be used to estimate η without estimating the nonparametric component f (z).
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Appendix A. Proof of Theorem 1

Proof. Note that θ̂ is obtained by setting estimating equation ∂L(θ̂,η̂)
∂θ = 0, which is equivalent to

{
∂L(θ̂, η̂)

∂θ
− ∂L(θ0, η̂)

∂θ

}
+

{
∂L(θ0, η̂)

∂θ
− ∂L(θ0, η0)

∂θ

}
+

∂L(θ0, η0)

∂θ
= 0. (A1)

Specifically,
∂L(θ̂, η̂)

∂θ
− ∂L(θ0, η̂)

∂θ
=

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+ op

(
N−

1
2

)
, (A2)

by Taylor expansion. Similarly,

∂L(θ0, η̂)

∂θ
− ∂L(θ0, η0)

∂θ
=

∂2L(θ0, η0)

∂θ∂η
T (η̂− η0) + op

(
N−

1
2

)
. (A3)

With (A2) and (A3) plugging into (A1), we can obtain the following equation,

√
N

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+
√

N
∂2L(θ0, η0)

∂θ∂η
T (η̂− η0) +

√
N

∂L(θ0, η0)

∂θ
+ op(1) = 0. (A4)

As
√

N (η̂− η0) = −G−1
√

N 1
N ∑

N
i=1

∂
∂η log {p(zi | ui; η0)}+ op(1) from the asymptotic property of η̂,

(A4) is equivalent to
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√
N

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+

∂2L(θ0, η0)

∂θ∂η
T

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]

+
√

N
∂L(θ0, η0)

∂θ
+ op(1) = 0.

Thus,

√
N
(

θ̂− θ0

)

= −
{

∂2L(θ0, η̂)

∂θ∂θ
T

}−1

×
{

∂2L(θ0, η0)

∂θ∂η
T

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]
+
√

N
∂L(θ0, η0)

∂θ

}

+op(1)

= −A−1

{
B

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]
+
√

N
∂L(θ0, η0)

∂θ

}
+ op(1), (A5)

where ∂2L(θ0,η0)

∂θ∂θ
T

p−→ A = E
{

∂2φij(θ0,η0)

∂θ∂θ
T

}
, and ∂2L(θ0,η0)

∂θ∂η
T

p−→ B = E
{

∂2φij(θ0,η0)

∂θ∂η
T

}
. In addition, we need to

form a projection of 1
N ∑

N
i=1

∂
∂η log {p(zi | ui; η0)} in (A5) through

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)} =

(
N
2

)−1

∑
1≤i<j≤N

1
2

[
∂

∂η
log {p(zi | ui; η0)}+

∂

∂η
log
{

p(zj | uj; η0)
}]

,

and
∂L(θ0, η0)

∂θ
=

(
N
2

)−1

∑
1≤i<j≤N

∂φij(θ0, η0)

∂θ
.

To sum up, (A5) can be formed as

√
N
(

θ̂− θ0

)
= A−1

√
N

(
N
2

)−1

∑
1≤i<j≤N

{
BG−1Mij(η0)−Nij(θ0, η0)

}
+ op(1),

where Mij(η0) =
1
2

[
∂

∂η log {p(zi | ui; η0)}+ ∂
∂η log

{
p(zj | uj; η0)

}]
and Nij(θ0, η0) =

∂φij(θ0,η0)

∂θ .

Appendix B. Proof of Theorem 2

Proof. Define function

qij(θ) = φij

(
θ0 +

θ√
N

, η̂

)
− φij(θ0, η̂)−

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
= Op

(
1
N

)
, (A6)

and we can form a U-statistic based on qij(θ) as

QN(θ) =
2

N(N − 1) ∑
1≤i<j≤N

qij(θ)

= L

(
θ0 +

θ√
N

)
− L(θ0)−

1√
N
· 2

N(N − 1)
θ

T

∑
1≤i<j≤N

∂φij(θ0, η̂)

∂θ
.

The variance of QN(θ) is bounded by var {QN(θ)} ≤ 2
N var

{
qij(θ)

}
, from Corollary 3.2 of [37].

Meanwhile, 2
N var

{
qij(θ)

}
= 2

N

[
E
{

qij(θ)
2
}
− E

{
qij(θ)

}2
]
≤ 2

N E
{

qij(θ)
2
}

, as E
{

qij(θ)
}2 ≥ 0.

As φij(θ, η̂) is convex, that is, differentiable at θ0, we can conclude
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φij

(
θ0 +

θ√
N

, η̂

)
− φij (θ0, η̂) ≥

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
, (A7)

from which we can obtain qij(θ) ≥ 0. Similarly,

φij

(
θ0 +

θ√
N

, η̂

)
− φij (θ0, η̂) ≤

(
θ√
N

)T ∂φij

(
θ0 +

θ√
N

, η̂
)

∂θ
. (A8)

From (A6)–(A8), we can conclude

0 ≤ qij(θ) ≤
(

θ√
N

)T




∂φij

(
θ0 +

θ√
N

, η̂
)

∂θ
− ∂φij (θ0, η̂)

∂θ



 .

Therefore, we can bound

2
N

E
{

qij(θ)
2
}
≤ 2

N

(
1√
N

)2

E
[

θ
T
{

∂

∂θ
φij

(
θ0 +

θ√
N

, η̂

)
− ∂φij(θ0, η̂)

∂θ

}]2

.

The term θ
T
{

∂
∂θ φij

(
θ0 +

θ√
N

, η̂
)
− ∂φij(θ0,η̂)

∂θ

} p−→ 0 as N → ∞. Thus, var {N ·QN(θ)}
p−→ 0

and consequently

N ·QN(θ)− N · E{QN(θ)}
p−→ 0. (A9)

Meanwhile, E {QN(θ)} = E
{

φij

(
θ0 +

θ√
N

, η̂
)}
− E

{
φij(θ0, η̂)

}
. Eventually from (A9) we have

N

{
L

(
θ0 +

θ√
N

)
− L (θ0)

}
− θ

T√
N

2
N(N − 1) ∑

1≤i<j≤N

∂φij(θ0, η̂)

∂θ

− N

[
E
{

φij

(
θ0 +

θ√
N

, η̂

)}
− E

{
φij(θ0, η̂)

}] p−→ 0. (A10)

The third term on the left side of (A10) has convergence properties

N

[
E
{

φij

(
θ0 +

θ√
N

, η̂

)}
− E

{
φij(θ0, η̂)

}]

= N

[
E

{
φij(θ0, η̂) +

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
+

1
2

(
θ√
N

)T
∂2φij(θ0, η̂)

∂θ∂θ
T

θ√
N

+ op

(
1
N

)}

−E
{

φij(θ0, η̂)
}]

p−→ 1
2

θ
T
Aθ.

By CLT for U-statistics,

√
N

[
2

N(N − 1) ∑
1≤i<j≤N

∂φij(θ0, η̂)

∂θ

]
d−→ N(0, Σ).

Using Slutsky’s theorem, we can simplify (A10) as

N

{
L

(
θ0 +

θ√
N

)
− L(θ0)

}
d−→ 1

2
θ

T
Aθ+ θ

T
W,

where W ∼ N(0, Σ). Based on convexity [38], for every compact set K ⊂ Rp+1, we have
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[
N

{
L

(
θ0 +

θ√
N

, η̂

)
− L(θ0, η̂)

}
: θ ∈ K

]
d−→
{

1
2

θ
T
Aθ+ θ

T
W : θ ∈ K

}
. (A11)

Now we develop large sample properties on the penalty term in objective function with adaptive
LASSO penalty. We modify the penalty term as

N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣

∣∣∣∣∣β̃ j,0 +
β̃ j√
N

∣∣∣∣∣− N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣

∣∣∣β̃ j,0

∣∣∣ .

From Theorem 1, we have already obtained
√

N
(̂̃βj − β̃ j,0

)
= Op(1). Meanwhile, Nλ→ ∞ and

√
Nλ→ 0. If β̃ j,0 6= 0, then

√
Nλ/

∣∣∣̂̃βj

∣∣∣ p−→ 0 and
∣∣∣
√

Nβ̃ j,0 + β̃ j

∣∣∣−
∣∣∣
√

Nβ̃ j,0

∣∣∣→ sign(β̃ j,0)β̃ j. Eventually

N
λ∣∣∣̂̃βj

∣∣∣

(∣∣∣∣∣β̃ j,0 +
β̃ j√
N

∣∣∣∣∣−
∣∣∣β̃ j,0

∣∣∣
)

=
√

N
λ∣∣∣̂̃βj

∣∣∣

(∣∣∣
√

Nβ̃ j,0 + β̃ j

∣∣∣−
∣∣∣
√

Nβ̃ j,0

∣∣∣
) p−→ 0.

If β̃ j,0 = 0, then
√

Nλ/
∣∣∣̂̃βj

∣∣∣ = Nλ/
(√

N
∣∣∣̂̃βj

∣∣∣
) p−→ ∞, consequently

N
λ∣∣∣̂̃βj

∣∣∣

(∣∣∣∣∣β̃ j,0 +
β̃ j√
N

∣∣∣∣∣−
∣∣∣β̃ j,0

∣∣∣
)

=
√

N
λ∣∣∣̂̃βj

∣∣∣

∣∣∣β̃ j

∣∣∣ p−→
{

0, if β̃ j = 0,

∞, if β̃ j 6= 0.

Therefore, we can summarize

N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣

(∣∣∣∣∣β̃ j,0 +
β̃ j√
N

∣∣∣∣∣−
∣∣∣β̃ j,0

∣∣∣
)

p−→
{

0, if β̃ = (β̃1, ..., β̃p0 , 0, ..., 0),

∞, otherwise.

We have infinity in the limit function, so we cannot use standard argumentation relating
to uniform convergence in probability on compacts [39]. However, we can apply slightly more
complicated epi-convergence. Thus, based on the works in [23,40,41], we have

N

{
L

(
θ0 +

θ√
N

)
− L (θ0)

}
+ N

p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣

(∣∣∣∣∣β̃ j,0 +
β̃ j√
N

∣∣∣∣∣−
∣∣∣β̃ j,0

∣∣∣
)

e−d−−→ V(θ), (A12)

and

V(θ) =

{
1
2 θ

T

TA1θT + θ
T

TWT , if θ = (γ̃, β̃1, ..., β̃p0 , 0, ..., 0),

∞, otherwise.

and WT ∼ N(0, Σ1). Specifically, the left side of (A12) is minimized if θ =
√

N
(

θ̂λ − θ0

)
and

V(θ) has a unique minimizer
(
−(A−1

1 WT)
T
, 0

T
)T

by setting ∂V(θ)
∂θ = 0. Therefore, convergence of

minimizers [40] can be concluded from (A12):

√
N
(

θ̂λ,T − θ0,T

)
d−→ −A−1

1 WT and
√

N
(

θ̂λ,Tc − θ0,Tc

)
d−→ 0. (A13)

For j ∈ T,

pr (j /∈ TN) = pr
(̂̃βj,λ = 0

)
→ 0.

Thus, pr (T ⊂ TN) → 1. In addition, θ̂λ minimizes the convex objective function Lλ(θ) so that
0 ∈ ∂Lλ(θ̂λ). As Lλ(θ) might be nondifferentiable and gradient of Lλ(θ) does not exist for some θ, we
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use ∂Lλ(θ) to represent an arbitrary selection of the subgradient of Lλ(θ). By taking the subgradient
of the objective function with adaptive LASSO penalty, we can obtain

∂Lλ(θ̂λ) = ∂L(θ̂λ) + ∂




p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣

∣∣∣̂̃βj,λ

∣∣∣


 .

For j /∈ T, pr (j ∈ TN) can be upper bounded by

pr


∂jL(θ̂λ) +

λ∣∣∣̂̃βj

∣∣∣
sign

(̂̃βj,λ

)
= 0


 ≤ pr



√

N
∣∣∣∂jL(θ̂λ)

∣∣∣ =
√

N
λ∣∣∣̂̃βj

∣∣∣


 , (A14)

where ∂j is the j-th coordinate of subgradient and
√

Nλ/
∣∣∣̂̃βj

∣∣∣ p−→ ∞ as j /∈ T.

We can expand the subgradient
√

N∂L(θ̂λ) as

√
N∂L(θ̂λ) =

√
N
{

∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)}
+
√

N∂L(θ0) +
√

NA
(

θ̂λ − θ0

)
, (A15)

where
√

N∂L(θ0) is bounded in probability,
√

NA
(

θ̂λ − θ0

)
D−→
√

NW which is bounded in

probability as well. By Theorem 1 of the work in [42],

sup
|θ̂λ−θ0|≤M/

√
N

∣∣∣∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)∣∣∣ = op

(
1√
N

)
.

Therefore,
√

N
{

∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)} p−→ 0. Finally,
√

N
∣∣∣∂jL(θ̂λ)

∣∣∣ is bounded and

the right side of (A14) converges to 0, which proves pr(j ∈ TN)→ 0 for j /∈ T.
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Abstract: Predictive models play a central role in decision making. Penalized regression approaches,
such as least absolute shrinkage and selection operator (LASSO), have been widely used to construct
predictive models and explain the impacts of the selected predictors, but the estimates are typically
biased. Moreover, when data are ultrahigh-dimensional, penalized regression is usable only after
applying variable screening methods to downsize variables. We propose a stepwise procedure for
fitting generalized linear models with ultrahigh dimensional predictors. Our procedure can provide
a final model; control both false negatives and false positives; and yield consistent estimates, which
are useful to gauge the actual effect size of risk factors. Simulations and applications to two clinical
studies verify the utility of the method.

Keywords: estimation consistency; generalized linear models; high dimensional predictors; model
selection; stepwise regression

1. Introduction

In the era of precision medicine, constructing interpretable and accurate predictive models,
based on patients’ demographic characteristics, clinical conditions and molecular biomarkers, has
been crucial for disease prevention, early diagnosis and targeted therapy [1]. When the number of
predictors is moderate, penalized regression approaches such as least absolute shrinkage and selection
operator (LASSO) by [2] have been used to construct predictive models and explain the impacts of
the selected predictors. However, in ultrahigh dimensional settings where p is in the exponential
order of n, penalized methods may incur computational challenges [3], may not reach globally optimal
solutions and often generate biased estimates [4]. Sure independence screening (SIS) proposed by [5]
has emerged as a powerful tool for modeling ultrahigh dimensional data. However, the method
relies on a partial faithfulness assumption, which stipulates that jointly important variables must
be marginally important, an assumption that may not be always realistic. To relieve this condition,
some iterative procedures, such as ISIS [5], have been adopted to repeatedly screen variables based
on the residuals from the previous iterations, but with heavy computation and unclear theoretical
properties. Conditional screening approaches [see, e.g., [6]] have, to some extent, addressed the
challenge. However, screening methods do not directly generate a final model, and post-screening
regularization methods, such as LASSO, are recommended by [5] to produce a final model.

For generating a final predictive model in ultrahigh dimensional settings, recent years have seen
a surging interest of performing forward regression, an old technique for model selection; see [7–9],
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among many others. Under some regularity conditions and with some proper stopping criteria,
forward regression can achieve screening consistency and sequentially select variables according to
metrics such as AIC, BIC or R2. Closely related to forward selection also, is least angle regression
(LARS) [10], a widely used model selection algorithm for high-dimensional models. In the generalized
linear model setting [11,12], proposed differential geometrical LARS (dgLARS) based on a differential
geometrical extension of LARS.

However, these methods have drawbacks. First, once a variable is identified by the forward
selection, it is not removable from the list of selected variables. Hence, false positives are unavoidable
without a systematic elimination procedure. Second, most of the existing works focus on variable
selection and are silent with respect to estimation accuracy.

To address the first issue, some works have been proposed to add backward elimination steps
once forward selection is accomplished, as backward elimination may further eliminate false positives
from the variables selected by forward selection. For example, ref. [13,14] proposed a stepwise selection
for linear regression models in high-dimensional settings and proved model selection consistency.
However, it is unclear whether the results hold for high-dimensional generalized linear models
(GLMs); Ref. [15] proposed a similar stepwise algorithm in high-dimensional GLM settings, but with
no theoretical properties on model selection. Moreover, none of the relevant works have touched upon
the accuracy of estimation.

We extend a stepwise regression method to accommodate GLMs with high-dimensional predictors.
Our method embraces both model selection and estimation. It starts with an empty model or
pre-specified predictors, scans all features and sequentially selects features, and conducts backward
elimination once forward selection is completed. Our proposal controls both false negatives and false
positives in high dimensional settings: the forward selection steps recruit variables in an inclusive
way by allowing some false positives for the sake of avoiding false negatives, while the backward
selection steps eliminate the potential false positives from the recruited variables. We use different
stopping criteria in the forward and backward selection steps, to control the numbers of false positives
and false negatives. Moreover, we prove that, under a sparsity assumption of the true model, the
proposed approach can discover all of the relevant predictors within a finite number of steps, and
the estimated coefficients are consistent, a property still unknown to the literature. Finally, our GLM
framework enables our work to accommodate a wide range of data types, such as binary, categorical
and count data.

To recap, our proposed method distinguishes from the existing stepwise approaches in high
dimensional settings. For example, it improves [13,14] by extending the work to a more broad GLM
setting and [15] by establishing the theoretical properties.

Compared with the other variable selection and screening works, our method produces a final
model in ultrahigh dimensional settings, without applying a pre-screening step which may produce
unintended false negatives. Under some regularity conditions, the method identifies or includes the
true model with probability going to 1. Moreover, unlike the penalized approaches such as LASSO,
the coefficients estimated by our stepwise selection procedure in the final model will be consistent,
which are useful for gauging the real effect sizes of risk factors.

2. Method

Let (Xi, Yi), i = 1, . . . , n, denote n independently and identically distributed (i.i.d.) copies of
(X, Y). Here, X = (1, X1, . . . , Xp)T is a (p+ 1)-dimensional predictor vector with X0 = 1 corresponding
to the intercept term, and Y is an outcome. Suppose that the conditional density of Y, given X, belongs
to a linear exponential family:

π(Y | X) = exp{YXTβ− b(XTβ) +A(Y)}, (1)
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where β = (β0, β1, . . . , βp)T is the vector of coefficients; β0 is the intercept; and A(·) and b(·) are
known functions. Model (1), with a canonical link function and a unit dispersion parameter, belongs
to a larger exponential family [16]. Further, b(·) is assumed twice continuously differentiable with a
non-negative second derivative b′′(·). We use µ(·) and σ(·) to denote b′(·) and b′′(·), i.e., the mean
and variance functions, respectively. For example, b(θ) = log(1 + exp(θ)) in a logistic distribution
and b(θ) = exp(θ) in a Poisson distribution.

Let L(u, v) = uv − b(u) and En{ f (ξ)} = n−1 ∑
n
i=1 f (ξi) denote the mean of { f (ξi)}n

i=1 for a
sequence of i.i.d. random variables ξi (i = 1, . . . , n) and a non-random function f (·). Based on the i.i.d.
observations, the log-likelihood function is

ℓ(β) = n−1
n

∑
i=1

L(XT
i β, Yi) = En{L(XTβ, Y)}. (2)

We use β∗ = (β∗0, β∗1, . . . , β∗p)T to denote the true values of β. Then the true model isM = {j : β∗j 6=
0, j ≥ 1} ∪ {0}, which consists of the intercept and all variables with nonzero effects. Overarching
goals of ultra-high dimensional data analysis are to identifyM and estimate β∗j for j ∈ M. While
most of the relevant literature [8,9] is on estimatingM, this work is to accomplish both identification
ofM and estimation of β∗j.

When p is in the exponential order of n, we aim to generate a predictive model that contains the
true model with high probability, and provide consistent estimates of regression coefficients. We further
introduce the following notation. For a generic index set S ⊂ {0, 1, . . . , p} and a (p + 1)-dimensional
vector A, we use Sc to denote the complement of a set S and AS = {Aj : j ∈ S} to denote the subvector
of A corresponding to S. For instance, if S = {2, 3, 4}, then XiS = (Xi2, Xi3, Xi4)

T. Moreover, denote
by ℓS(βS) = En{L(XT

S βS, Y)} the log-likelihood of the regression model of Y on XS and denote by
β̂S the maximizer of ℓS(βS). Under model (1), we elaborate on the idea of stepwise (details in the
supplementary materials) selection, consisting of the forward and backward stages.

Forward stage: We start with F0, a set of variables that need to be included according to some a priori
knowledge, such as clinically important factors and conditions. If no such information is available, F0

is set to be {0}, corresponding to a null model. We sequentially add covariates as follows:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk,

where Fk ⊂ {0, 1, . . . , p} is the index set of the selected covariates upon completion of the kth step,
with k ≥ 0. At the (k + 1)th step, we append new variables to Fk one at a time and refit GLMs: for
every j ∈ Fc

k , we let Fk,j = Fk ∪ {j}, obtain β̂Fk,j
by maximizing ℓFk,j

(βFk,j
), and compute the increment

of log-likelihood,
ℓFk,j

(β̂Fk,j
)− ℓFk

(β̂Fk
).

Then the index of a new candidate variable is determined to be

jk+1 = arg max
j∈Fc

k

ℓFk,j
(β̂Fk,j

)− ℓFk
(β̂Fk

).

Additionally, we update Fk+1 = Fk ∪ {jk+1}. We then need to decide whether to stop at the kth
step or move on to the (k + 1)th step with Fk+1. To do so, we use the following EBIC criterion:

EBIC(Fk+1) = −2ℓFk+1
(β̂Fk+1

) + |Fk+1|n−1(log n + 2η1 log p), (3)

where the second term is motivated by [17] and |F| denotes the cardinality of a set F.
The forward selection stops if EBIC(Fk+1) > EBIC(Fk). We denote the stopping step by k∗ and

the set of variables selected so far by Fk∗ .
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Backward stage: Upon the completion of forward stage, backward elimination, starting with B0 = Fk∗ ,
sequentially drops covariates as follows:

B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bk,

where Bk is the index set of the remaining covariates upon the completion of the kth step of the
backward stage, with k ≥ 0. At the (k + 1)th backward step and for every j ∈ Bk, we let Bk/j = Bk \ {j},
obtain β̂Bk/j

by maximizing ℓ(βBk/j
), and calculating the difference of the log-likelihoods between these

two nested models:
ℓBk

(β̂Bk
)− ℓBk/j

(β̂Bk/j
).

The variable that can be removed from the current set of variables is indexed by

jk+1 = arg min
j∈Bk

ℓBk
(β̂Bk

)− ℓBk/j
(β̂Bk/j

).

Let Bk+1 = Bk \ {jk+1}. We determine whether to stop at the kth step or move on to the (k + 1)th
step of the backward stage according to the following BIC criterion:

BIC(Bk+1) = −2ℓBk+1
(β̂Bk+1

) + η2n−1|Bk+1| log n. (4)

If BIC(Bk+1) > BIC(Bk), we end the backward stage at the kth step. Let k∗∗ denote the stopping
step and we declare the selected model Bk∗∗ to be the final model. Thus, M̂ = Bk∗∗ is the estimate
ofM. As the backward stage starts with the k∗ variables selected by forward selection, k∗∗ cannot
exceed k∗.

A strength of our algorithm, termed STEPWISE hereafter, is the added flexibility with η1 and η2

in the stopping criteria for controlling the false negatives and positives. For example, a smaller value
of η1 close to zero in the forward selection step will likely include more variables, and thus incur more
false positives and less false negatives, whereas a larger value of η1 will recruit too few variables and
cause too many false negatives. Similarly, in the backward selection step, a large η2 would eliminate
more variables and therefore further reduce more false positives, and vice versa for a small η2. While
finding optimal η1 and η2 is not trivial, our numerical experiences suggest a small η1 and a large η2

may well balance the false negatives and positives. When η2 = 0, no variables can be dropped after
forward selection; hence, our proposal includes forward selection as a special case.

Moreover, [8] proposed a sequentially conditioning approach based on offset terms that absorb
the prior information. However, our numerical experiments indicate that the offset approach may be
suboptimal compared to our full stepwise optimization approach, which will be demonstrated in the
simulation studies.

3. Theoretical Properties

With a column vector v, let ‖v‖q denote the Lq-norm for any q ≥ 1. For simplicity, we denote the
L2-norm of v by ‖v‖, and denote vvT by v⊗2. We use C1, C2, . . . , to denote some generic constants that
do not depend on n and may change from line to line. The following regularity conditions are set.

1. There exist a positive integer q satisfying |M| ≤ q and q log p = o(n1/3) and a constant K > 0
such that sup|S|≤q ‖β∗S‖1 ≤ K, where β∗S = arg maxβS

E [ℓS(βS)] is termed the least false value of
model S.

2. ‖X‖∞ ≤ K. In addition, E(Xj) = 0 and E(X2
j ) = 1 for j ≥ 1.

3. Let ǫi = Yi − µ(βT∗Xi). There exists a positive constant M such that the Cramer condition holds,
i.e., E[|ǫi|m] ≤ m!Mm for all m ≥ 1.

4. |σ(a)− σ(b)| ≤ K|a− b| and σmin := inf|t|≤K3 |b′′(t)| is bounded below.
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5. There exist two positive constants, κmin and κmax such that 0 < κmin < Λ
(

E
(

X⊗2
S

))
< κmax < ∞,

uniformly in S ⊂ {0, 1, . . . , p} satisfying |S| ≤ q, where Λ(A) is the collection of all eigenvalues
of a square matrix A.

6. minS:M6⊆S,|S|≤q DS > Cn−α for some constants C > 0 and α > 0 that satisfies qn−1+4α log p→ 0,
where DS = maxj∈S c∩M

∣∣E
[(

µ(βT∗X)− µ(β∗TS XS)
)

Xj
]∣∣.

Condition (1), as assumed in [8,18], is an alternative to the Lipschitz assumption [5,19]. The
bound of the model size allowed in the selection procedure or q is often required in model-based
screening methods see, e.g., [8,20–22]. The bound should be large enough so that the correct model
can be included, but not too large; otherwise, excessive noise variables would be included, leading
to unstable and inconsistent estimates. Indeed, Conditions (1) and (6) reveal that the range of q
depends on the true model size |M|, the minimum signal strength, n−α and the total number of
covariates, p. The upper bound of q is o((n1−4α/ log p) ∧ (n1/3/ log p)), ensuring the consistency of
EBIC [17]. Condition (1) also implies that the parameter space under consideration can be restricted
to B := {β ∈ Rp+1 : ‖β‖1 ≤ K2}, for any model S with |S| ≤ q. Condition (2), as assumed in [23,24],
reflects that data are often standardized at the pre-processing stage. Condition (3) ensures that Y has a
light tail, and is satisfied by Gaussian and discrete data, such as binary and count data [25]. Condition
(4) is satisfied by common GLM models, such as Gaussian, binomial, Poisson and gamma distributions.
Condition (5) represents the sparse Riesz condition [26] and Condition (6) is a strong "irrepresentable"
condition, suggesting thatM cannot be represented by a set of variables that does not include the
true model. It further implies that adding a signal variable to a mis-specified model will increase the
log-likelihood by a certain lower bound [8]. The signal rate is comparable to the conditions required
by the other sequential methods, see, e.g., [7,22].

Theorem 1 develops a lower bound of the increment of the log-likelihood if the true modelM is
not yet included in a selected model S.

Theorem 1. Suppose Conditions (1)–(6) hold. There exists some constant C1 such that with probability at least
1–6exp(−6q log p),

min
S:M6⊆S,|S|<q

{
max
j∈Sc

ℓS∪{j}(β̂S∪{j})− ℓS(β̂S)

}
≥ C1n−2α.

Theorem 1 shows that, before the true model is included in the selected model, we can append a
variable which will increase the log-likelihood by at least C1n−2α with probability tending to 1. This
ensures that in the forward stage, our proposed STEPWISE approach will keep searching for signal
variables until the true model is contained. To see this, suppose at the kth step of the forward stage
that Fk satisfies M 6⊆ Fk and |Fk| < q, and let r be the index selected by STEPWISE. By Theorem 1,
we obtain that, for any η1 > 0, when n is sufficiently large,

EBIC(Fk,r)− EBIC(Fk) = −2ℓFk,r
(β̂Fk,r

) + (|Fk|+ 1)n−1(log n + 2η1 log p)

−
[
−2ℓFk

(β̂Fk
) + |Fk|n−1(log n + 2η1 log p)

]

≤ −2C1n−2α + n−1(log n + 2η1 log p) < 0,

with probability at least 1 − 6 exp(−6q log p), where the last inequality is due to Condition (6).
Therefore, with high probability the forward stage of STEPWISE continues as long as M 6⊆
Fk and |Fk| < q. We next establish an upper bound of the number of steps in the forward stage
needed to include the true model.
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Theorem 2. Under the same conditions as in Theorem 1 and if

max
S:|S|≤q

{
max

j∈S c∩Mc

∣∣∣E
[{

Y− µ(β∗TS XS)
}

Xj

]∣∣∣
}

= o(n−α),

then there exists some constant C2 > 2 such thatM⊂ Fk, for some Fk in the forward stage of STEPWISE and
k ≤ C2|M|, with probability at least 1− 18 exp(−4q log p).

The "max" condition, as assumed in Section 5.3 of [27], relaxes the partial orthogonality
assumption that XMc are independent of XM, and ensures that with probability tending to 1, appending
a signal variable increases log-likelihood more than adding a noise variable does, uniformly over all
possible models S satisfyingM 6⊆ S, |S| < q. This entails that the proposed procedure is much more
likely to select a signal variable, in lieu of a noise variable, at each step. Since EBIC is a consistent model
selection criterion [28,29], the following theorem guarantees termination of the proposed procedure
withM⊂ Fk for some k.

Theorem 3. Under the same conditions as in Theorem 2 and ifM 6⊂ Fk−1 andM ⊂ Fk, the forward stage
stops at the kth step with probability going to 1− exp(−3q log p).

Theorem 3 ensures that the forward stage of STEPWISE will stop within a finite number of steps
and will cover the true model with probability at least 1− q exp(−3q log p) ≥ 1− exp(−2q log p). We
next consider the backward stage and provide a probability bound of removing a signal from a set in
which the set of true signalsM is contained.

Theorem 4. Under the same conditions as in Theorem 2, BIC(S\{r})− BIC(S) > 0 uniformly over r ∈ M
and S satisfyingM⊂ S and |S| ≤ q, with probability at least 1− 6 exp(−6q log p).

Theorem 4 indicates that with probability at 1− 6 exp(−6q log p), BIC would decrease when
removing a signal variable from a model that contains the true model. That is, with high probability,
back elimination is to reduce false positives.

Recall that Fk∗ denotes the model selected at the end of the forward selection stage. By Theorem 2,
M⊂ Fk∗ with probability at least 1− 18 exp(−4q log p). Then Theorem 4 implies that at each step of
the backward stage, a signal variable will not be removed from the model with probability at least
1− 6 exp(−6q log p). By Theorem 2, |Fk∗ | ≤ C2|M|. Thus, the backward elimination will carry out
at most (C2 − 1)|M| steps. Combining results from Theorems 2 and 3 yields that M ⊂ M̂ with
probability at least 1− 18 exp(−4q log p)− 6(C2 − 1)|M| exp(−6q log p). Let β̂ be the estimate of β∗
in model (1) at the termination of STEPWISE. By convention, the estimates of the coefficients of the
unselected covariates are 0.

Theorem 5. Under the same conditions as in Theorem 2, we have thatM⊆ M̂ and

‖β̂− β∗‖ → 0

in probability.

The theorem warrants that the proposed STEPWISE yields consistent estimates, a property not
shared by many regularized methods, including LASSO. Our later simulations verified this. Proof of
main theorems and lemmas are provided in Appendix A.

4. Simulation Studies

We compared the proposal with the other competing methods, including the penalized methods,
such as least absolute shrinkage and selection operator (LASSO); the differential geometric least angle
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regression (dgLARS) [11,12]; the forward regression (FR) approach [7]; the sequentially conditioning
(SC) approach [8]; and the screening methods, such as sure independence screening (SIS) [5], which
is popular in practice. As SIS does not directly generate a predictive model, we applied LASSO for
the top [n/ log(n)] variables chosen by SIS and denoted the procedure by SIS+LASSO. As the FR, SC
and STEPWISE approaches involve forward searching and to make them comparable, we applied the
same stopping rule, for example, Equation (3) with the same γ, to their forward steps. In particular,
the STEPWISE approach, with η1 = γ and η2 = 0, is equivalent to FR and asymptotically equivalent
to SC. By varying γ in FR and SC between γL and γH , we explored the impact of γ on inducing false
positives and negatives. In our numerical studies, we fixed γH = 10 and set γL = η1. To choose η1 and
η2 in (3) and (4) in STEPWISE, we performed 5-fold cross-validation to minimize the mean squared
prediction error (MSPE), and reported the results in Table 1. Since the proposed STEPWISE algorithm
uses the (E)BIC criterion, for a fair comparison we chose the tuning parameter in dgLARS by using
the BIC criterion as well, and coined the corresponding approach as dgLARS(BIC). The regularization
parameter in LASSO was chosen via the following two approaches: (1) giving the smallest BIC for the
models on the LASSO path, denoted by LASSO(BIC); (2) using the one-standard-error rule, denoted by
LASSO(1SE), which chooses the most parsimonious model whose error is no more than one standard
error above the error of the best model in cross-validation [30].

Table 1. The values of η1 and η2 used in the simulation studies.

Normal Model Binomial Model Poisson Model

Example 1 (0.5, 3) (0.5, 3) (1, 3)
Example 2 (0.5, 3) (1, 3) (1, 3)
Example 3 (1, 3) (0.5, 3) (0.5, 1)
Example 4 (1, 3.5) (0, 1) (1, 3)
Example 5 (0.5, 3) (0.5, 2) (0.5, 3)

Note: values for η1 and η2 were searched on the grid {0, 0.25, 0.5, 1} and {1, 2, 3, 3.5, 4, 4.5, 5}, respectively.

Denote by Xi = (Xi1, . . . , Xip)
T and β = (β1, . . . , βp)T, the covariate vector for subject i (1, . . . , n)

and the true coefficient vector. The following five examples generated XT
i β, the inner product of the

coefficient and covariate vectors for each individual, which were used to generate outcomes from the
normal, binomial and Poisson models.

Example 1. For each i,

cXT
i β = c×

(
p0

∑
j=1

β jXij +
p

∑
j=p0+1

β jXij

)
, i = 1, . . . , n,

where β j = (−1)Bj (4log n/
√

n + |Zj|), for j = 1, . . . , p0 and β j =0 otherwise Bj was a binary random variable
with P(Bj = 1) = 0.4 and Zj was generated by a standard normal distribution; p0 = 8; Xijs were independently
generated from a standardized exponential distribution, that is, exp(1)− 1. Here and also in the other examples,
c (specified later) controls the signal strengths.

Example 2. This scenario is the same as Example 1 except that Xij was independently generated from a
standard normal distribution.

Example 3. For each i,

cXT
i β = c×

(
p0

∑
j=1

β jXij +
p

∑
j=p0+1

β jX
∗
ij

)
, i = 1, . . . , n,
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where β j = 2j for 1 ≤ j ≤ p0 and p0 = 5. We simulated every component of Zi = (Zij) ∈ Rp and Wi =
(Wij) ∈ Rp independently from a standard normal distribution. Next, we generated Xi according to Xij =

(Zij + Wij)/
√

2 for 1 ≤ j ≤ p0 and X∗ij = (Zij +
p0

∑
j′=1

Zij′)/2 for p0 < j ≤ p.

Example 4. For each i,

cXT
i β = c×

(
500

∑
j=1

β jXij +
p

∑
j=501

β jXij

)
, i = 1, . . . , n,

where the first 500 Xijs were generated from the multivariate normal distribution with mean 0 and a covariance

matrix with all of the diagonal entries being 1 and cov(Xij, Xij′) = 0.5|j−j′ | for 1 ≤ j, j′ ≤ p. The remaining
p− 500 Xijs were generated through the autoregressive processes with Xi,501 ∼ Unif(-2, 2), Xij = 0.5 Xi,j−1

+ 0.5 X∗ij, for j = 502, . . . , p, where X∗ij ∼ Unif(-2, 2) were generated independently. The coefficients β j for

j = 1, . . . , 7, 501, . . . , 507 were generated from (−1)Bj (4log n/
√

n + |Zj|), where Bj was a binary random
variable with P(Bj = 1) = 0.4 and Zj was from a standard normal distribution. The remaining β j were zeros.

Example 5. For each i,

cXT
i β = c× (−0.5Xi1 + Xi2 + 0.5Xi,100) , i = 1, . . . , n,

where Xi were generated from a multivariate normal distribution with mean 0 and a covariance matrix with all
of the diagonal entries being 1 and cov(Xij, Xij′) = 0.9|j−j′ | for 1 ≤ j, j’ ≤ p. All of the coefficients were zero
except for Xi1, Xi2 and Xi,100.

Examples 1 and 3 were adopted from [7], while Examples 2 and 4 were borrowed from [5,15],
respectively. We then generated the responses from the following three models.

Normal model: Yi = cXT
i β + ǫi with ǫi ∼ N(0, 1).

Binomial model: Yi ∼ Bernoulli( exp(cXT
i β)/{1 + exp(cXT

i β)}).
Poisson model: Yi ∼ Poisson( exp(cXT

i β)).

We considered n = 400 and p = 1000 throughout all of the examples. We specified the magnitude
of the coefficients in the GLMs with a constant multiplier, c. For Examples 1–5, this constant was set,
respectively for the normal, binomial and Poisson models, to be: (1, 1, 0.3), (1, 1.5, 0.3), (1, 1, 0.1),
(1, 1.5, 0.3) and (1, 3, 2). For each parameter configuration, we simulated 500 independent data sets.
We evaluated the performances of the methods by the criteria of true positives (TP), false positives
(FP), the estimated probability of including the true models (PIT), the mean squared error (MSE) of β̂

and the mean squared prediction error (MSPE). To compute the MSPE, we randomly partitioned the
samples into the training (75%) and testing (25%) sets. The models obtained from the training datasets
were used to predict the responses in the testing datasets. Tables 2–4 report the average TP, FP, PIT,
MSE and MSPE over 500 datasets along with the standard deviations. The findings are summarized
below.

First, the proposed STEPWISE method was able to detect all the true signals with nearly zero FPs.
Specifically, in all of the Examples, STEPWISE outperformed the other methods by detecting more TPs
with fewer FPs, whereas LASSO, SIS+LASSO and dgLARS included much more FPs.

Second, though a smaller γ in FR and SC led to the inclusion of all TPs with a PIT close to 1, it
incurred more FPs. On the other hand, a larger γ may eliminate some TPs, resulting in a smaller PIT
and a larger MSPE.

Third, for the normal model, the STEPWISE method yielded an MSE close to 0, the smallest
among all the competing methods. The binary and Poisson data challenged all of the methods, and
the MSEs for all the methods were non-negligible. However, the STEPWISE method still produced
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the lowest MSE. The results seemed to verify the consistency of β̂, which distinguished the proposed
STEPWISE method from the other regularized methods and highlighted its ability to provide a more
accurate means to characterize the effects of high dimensional predictors.

Table 2. Normal model.

Example Method TP FP PIT MSE (×10−4) MSPE

1 (p0 = 8) LASSO(1SE) 8.00 (0.00) 5.48 (6.61) 1.00 (0.00) 2.45 1.148
LASSO(BIC) 8.00 (0.00) 2.55 (2.48) 1.00 (0.00) 2.58 1.172
SIS+LASSO(1SE) 8.00 (0.00) 6.59 (4.22) 1.00 (0.00) 1.49 1.042
SIS+LASSO(BIC) 8.00 (0.00) 6.04 (3.33) 1.00 (0.00) 1.37 1.025
dgLARS(BIC) 8.00 (0.00) 3.52(2.53) 1.00 (0.00) 2.25 1.130
SC (γL) 8.00 (0.00) 3.01 (1.85) 1.00 (0.00) 1.09 0.895
SC (γH) 7.60 (1.59) 0.00 (0.00) 0.94 (0.24) 14.56 5.081
FR (γL) 8.00 (0.00) 2.96 (2.04) 1.00 (0.00) 1.08 0.896
FR (γH) 7.88 (0.84) 0.00 (0.00) 0.98 (0.14) 3.74 2.040
STEPWISE 8.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.21 0.972

2 (p0 = 8) LASSO(1SE) 8.00 (0.00) 4.74 (4.24) 1.00 (0.00) 2.46 1.154
LASSO(BIC) 8.00 (0.00) 2.12 (2.02) 1.00 (0.00) 2.62 1.182
SIS+LASSO 7.99 (0.10) 6.84 (4.57) 0.99 (0.10) 1.65 1.058
SIS+LASSO(BIC) 7.99 (0.10) 6.11 (3.85) 0.99 (0.10) 1.56 1.041
dgLARS(BIC) 8.00 (0.00) 3.26(2.62) 1.00 (0.00) 2.28 1.138
SC (γL) 8.00 (0.00) 2.73 (1.53) 1.00 (0.00) 0.98 0.901
SC (γH) 7.30 (2.11) 0.00 (0.00) 0.90 (0.30) 23.70 6.397
FR (γL) 8.00 (0.00) 2.45 (1.65) 1.00 (0.00) 0.92 0.907
FR (γH) 7.94 (0.60) 0.00 (0.00) 0.99 (0.00) 2.69 2.062
STEPWISE 8.00 (0.00) 0.01 (0.10) 1.00 (0.00) 0.21 0.972

3 (p0 = 5) LASSO(1SE) 5.00 (0.00) 8.24 (2.63) 1.00 (0.00) 3.07 1.084
LASSO(BIC) 5.00 (0.00) 12.33 (3.28) 1.00 (0.00) 27.97 2.398
SIS+LASSO(1SE) 0.97 (0.26) 15.94 (2.93) 0.00 (0.00) 1406.22 76.024
SIS+LASSO(BIC) 0.97 (0.26) 16.20 (2.81) 0.00 (0.00) 1354.54 71.017
dgLARS(BIC) 5.00 (0.00) 53.91 (14.44) 1.00 (0.00) 6.63 0.979
SC (γL) 4.48 (0.50) 0.25 (0.44) 0.48 (0.50) 21.74 3.086
SC (γH) 4.48 (0.50) 0.14 (0.35) 0.48 (0.50) 21.70 2.065
FR (γL) 5.00 (0.00) 0.23 (0.66) 1.00 (0.00) 0.27 0.973
FR (γH) 5.00 (0.00) 0.14 (0.35) 1.00 (0.00) 0.15 0.074
STEPWISE 5.00 (0.00) 0.03 (0.22) 1.00 (0.00) 0.18 0.976

4 (p0 = 14) LASSO(1SE) 14.00 (0.00) 29.84 (15.25) 1.00 (0.00) 13.97 1.148
LASSO(BIC) 13.94 (0.24) 4.92 (5.54) 0.94 (0.24) 38.69 1.995
SIS+LASSO(1SE) 11.44 (1.45) 15.19 (7.29) 0.05 (0.21) 133.38 4.714
SIS+LASSO(BIC) 11.35 (1.51) 10.98 (7.19) 0.05 (0.21) 137.06 4.940
dgLARS(BIC) 14.00 (0.00) 13.93 (6.68) 1.00 (0.00) 18.08 1.329
SC (γL) 13.68 (0.60) 0.86 (0.62) 0.75 (0.44) 11.80 1.148
SC (γH) 4.20 (2.80) 0.03 (0.17) 0.03 (0.17) 407.86 6.567
FR (γL) 14.00 (0.00) 0.50 (0.76) 1.00 (0.00) 1.23 0.940
FR (γH) 4.99 (3.07) 0.00 (0.00) 0.03 (0.17) 360.65 6.640
STEPWISE 14.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.91 0.958

5 (p0 = 3) LASSO(1SE) 3.00 (0.00) 22.76 (9.05) 1.00 (0.00) 1.01 0.044
LASSO(BIC) 3.00 (0.00) 8.29 (3.23) 1.00 (0.00) 1.75 0.054
SIS+LASSO(1SE) 3.00 (0.00) 8.40 (3.10) 1.00 (0.00) 0.44 0.041
SIS+LASSO(BIC) 3.00 (0.00) 9.58 (3.36) 1.00 (0.00) 0.29 0.040
dgLARS(BIC) 3.00 (0.00) 13.39 (4.94) 1.00 (0.00) 1.28 0.048
SC (γL) 3.00 (0.00) 1.47 (0.67) 1.00 (0.00) 0.03 0.038
SC (γH) 2.01 (0.10) 0.01 (0.10) 0.01 (0.10) 4.51 0.008
FR (γL) 3.00 (0.00) 1.21 (1.01) 1.00 (0.00) 0.03 0.038
FR ( γH) 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.003
STEPWISE 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.039

Note: TP, true positives; FP, false positives; PIT, probability of including all true predictors in the selected
predictors; MSE, mean squared error of β̂; MSPE, mean squared prediction error; numbers in the parentheses
are standard deviations; LASSO(BIC), LASSO with the tuning parameter chosen to give the smallest BIC for the
models on the LASSO path; LASSO(1SE), LASSO with the tuning parameter chosen by the one-standard-error
rule; SIS+LASSO(BIC), sure independence screening by [5] followed by LASSO(BIC); SIS+LASSO(1SE), sure
independence screening followed by LASSO(1SE); dgLARS(BIC), differential geometric least angle regression
by [11,12] with the tuning parameter chosen to give the smallest BIC on the dgLARS path; SC(γ), sequentially
conditioning approach by [8]; FR(γ), forward regression by [7]; STEPWISE, the proposed method; in FR and
SC, the smaller and large values of γ are presented as γL and γH , respectively; p0 denotes the number of true
signals; LASSO(1SE), LASSO(BIC), SIS and dgLARS were conducted via R packages glmnet [31], ncvreg [32],
screening [33] and dglars [34], respectively

.
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Table 3. Binomial model.

Example Method TP FP PIT MSE MSPE

1 (p0 = 8) LASSO(1SE) 7.99 (0.10) 4.77 (5.56) 0.99 (0.10) 0.021 0.104
LASSO(BIC) 7.99 (0.10) 3.19 (2.34) 0.99 (0.10) 0.021 0.104
SIS+LASSO(1SE) 7.94 (0.24) 35.42 (6.77) 0.94 (0.24) 0.119 0.048
SIS+LASSO(BIC) 7.94 (0.24) 16.83 (21.60) 0.94 (0.24) 0.119 0.073
dgLARS(BIC) 8.00 (0.00) 3.27 (2.29) 1.00 (0.00) 0.019 0.102
SC (γL) 8.00 (0.00) 2.81 (1.47) 1.00 (0.00) 0.009 0.073
SC (γH) 1.02 (0.14) 0.00 (0.00) 0.00 (0.00) 0.030 0.028
FR (γL) 8.00 (0.00) 3.90 (2.36) 1.00 (0.00) 0.032 0.066
FR (γH) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.025 0.027
STEPWISE 7.98 (0.14) 0.08 (0.53) 0.98 (0.14) 0.002 0.094

2 (p0 = 8) LASSO(1SE) 7.98 (0.14) 3.29 (2.76) 0.98 (0.14) 0.054 0.073
LASSO(BIC) 7.99 (0.10) 3.84 (2.72) 0.99 (0.10) 0.052 0.067
SIS+LASSO(1SE) 7.92 (0.27) 28.20 (7.31) 0.92 (0.27) 0.038 0.030
SIS+LASSO(BIC) 7.92 (0.27) 9.60 (12.92) 0.92 (0.27) 0.051 0.058
dgLARS(BIC) 7.99 (0.10) 3.94 (2.65) 0.99 (0.10) 0.050 0.067
SC (γL) 7.72 (0.45) 0.39 (0.49) 0.72 (0.45) 0.005 0.063
SC (γH) 1.13 (0.37) 0.00 (0.00) 0.00 (0.00) 0.069 0.044
FR (γL) 7.99 (0.10) 0.66 (0.76) 0.99 (0.10) 0.014 0.051
FR (γH) 2.10 (0.30) 0.00 (0.00) 0.00 (0.00) 0.061 0.033
STEPWISE 7.99 (0.10) 0.02 (0.14) 0.99 (0.10) 0.004 0.056

3 (p0 = 5) LASSO(1SE) 4.51 (0.52) 7.36 (2.57) 0.52 (0.50) 0.155 0.051
LASSO(BIC) 4.98 (0.14) 5.97 (2.25) 0.98 (0.14) 0.118 0.037
SIS+LASSO(1SE) 0.85 (0.46) 10.66 (3.01) 0.00 (0.00) 0.206 0.186
SIS+LASSO(BIC) 0.85 (0.46) 12.10 (3.13) 0.00 (0.00) 0.197 0.185
dgLARS(BIC) 4.92 (0.27) 16.21 (6.21) 0.92 (0.27) 0.112 0.035
SC (γL) 4.32 (0.49) 0.47 (0.50) 0.33 (0.47) 0.016 0.048
SC (γH) 2.62 (1.34) 0.42 (0.50) 0.00 (0.00) 0.104 0.066
FR (γL) 4.98 (0.14) 0.67 (0.79) 0.98 (0.14) 0.020 0.033
FR (γH) 2.98 (0.95) 0.40 (0.49) 0.00 (0.00) 0.087 0.043
STEPWISE 4.97 (0.17) 0.04 (0.28) 0.97 (0.17) 0.014 0.034

4 (p0 = 14) LASSO(1SE) 9.96 (1.89) 6.78 (7.92) 0.01 (0.01) 0.112 0.107
LASSO(BIC) 9.33 (1.86) 2.79 (2.87) 0.00 (0.00) 0.112 0.118
SIS+LASSO(1SE) 10.03 (1.62) 28.01 (9.54) 0.03 (0.17) 0.098 0.070
SIS+LASSO(BIC) 8.90 (1.99) 5.42 (10.64) 0.01 (0.10) 0.114 0.120
dgLARS(BIC) 9.31 (1.85) 2.84 (2.86) 0.00 (0.00) 0.110 0.117
SC (γL) 9.48 (1.40) 2.35 (2.14) 0.00 (0.00) 0.043 0.070
SC (γH) 1.17 (0.40) 0.00 (0.00) 0.00 (0.00) 0.125 0.049
FR (γL) 11.83 (1.39) 1.58 (1.60) 0.09 (0.29) 0.026 0.048
FR (γH) 2.06 (0.24) 0.00 (0.00) 0.00 (0.00) 0.119 0.032
STEPWISE 11.81 (1.42) 1.52 (1.58) 0.09 (0.29) 0.026 0.048

5 (p0 = 3) LASSO(1SE) 2.00 (0.00) 1.55 (1.76) 0.00 (0.00) 0.008 0.215
LASSO(BIC) 2.00 (0.00) 1.86 (1.57) 0.00 (0.00) 0.008 0.213
SIS+LASSO(1SE) 2.23 (0.42) 10.81 (6.45) 0.23 (0.42) 0.007 0.192
SIS+LASSO(BIC) 2.10 (0.30) 3.60 (4.65) 0.10 (0.30) 0.007 0.206
dgLARS(BIC) 2.00 (0.00) 1.64 (1.49) 0.00 (0.00) 0.008 0.213
SC (γL) 2.27 (0.49) 7.16 (3.20) 0.29 (0.46) 0.060 0.166
SC (γH) 1.87 (0.34) 0.03 (0.17) 0.00 (0.00) 0.005 0.030
FR (γL) 2.96 (0.20) 8.88 (5.39) 0.96 (0.20) 0.013 0.147
FR ( γH) 1.97 (0.17) 0.03 (0.17) 0.00 (0.00) 0.005 0.019
STEPWISE 2.89 (0.31) 0.76 (1.70) 0.89 (0.31) 0.001 0.194

Note: abbreviations are explained in the footnote of Table 2.

96



Entropy 2020, 22, 965

Table 4. Poisson model.

Example Method TP FP PIT MSE MSPE

1 (p0 = 8) LASSO(1SE) 7.93 (0.43) 4.64 (4.82) 0.96 (0.19) 0.001 4.236
LASSO(BIC) 7.99 (0.10) 14.37 (14.54) 0.99 (0.10) 0.001 3.133
SIS+LASSO(1SE) 7.89 (0.37) 25.37 (8.39) 0.91 (0.29) 0.001 3.247
SIS+LASSO(BIC) 7.89 (0.37) 17.77 (11.70) 0.91 (0.29) 0.001 3.078
dgLARS(BIC) 8.00 (0.00) 13.28 (14.31) 1.00 (0.00) 0.001 3.183
SC (γL) 7.96 (0.20) 4.94 (3.46) 0.96 (0.20) 0.001 2.874
SC (γH) 5.05 (1.70) 0.04 (0.24) 0.07 (0.26) 0.001 3.902
FR (γL) 7.93 (0.26) 4.86 (3.73) 0.93 (0.26) 0.001 2.837
FR (γH) 5.13 (1.61) 0.06 (0.31) 0.07 (0.26) 0.001 3.833
STEPWISE 7.91 (0.29) 2.77 (2.91) 0.91 (0.29) 0.001 3.410

2 (p0 = 8) LASSO(1SE) 8.00 (0.00) 2.23 (3.52) 1.00 (0.00) 0.001 3.981
LASSO(BIC) 8.00 (0.00) 8.98 (8.92) 1.00 (0.00) 0.001 3.107
SIS+LASSO(1SE) 7.98 (0.14) 22.85 (7.08) 0.98 (0.14) 0.001 2.824
SIS+LASSO(BIC) 7.98 (0.14) 13.55 (8.24) 0.98 (0.14) 0.001 2.937
dgLARS(BIC) 8.00 (0.00) 8.91 (9.10) 1.00 (0.00) 0.001 3.099
SC (γL) 8.00 (0.00) 3.89 (2.89) 1.00 (0.00) 0.000 2.979
SC (γH) 5.68 (1.45) 0.00 (0.00) 0.12 (0.33) 0.001 3.971
FR (γL) 8.00 (0.00) 3.60 (2.80) 1.00 (0.00) 0.000 3.032
FR (γH) 5.71 (1.42) 0.00 (0.00) 0.10 (0.30) 0.001 3.911
STEPWISE 7.98 (0.14) 2.00 (2.23) 0.98 (0.14) 0.000 3.589

3 (p0 = 5) LASSO(1SE) 4.37 (0.51) 6.88 (2.61) 0.38(0.48) 0.001 1.959
LASSO(BIC) 4.79 (0.41) 5.62 (2.17) 0.79 (0.41) 0.000 2.044
SIS+LASSO(1SE) 0.86 (0.47) 10.11 (2.55) 0.00 (0.00) 0.002 3.266
SIS+LASSO(BIC) 0.86 (0.47) 11.86 (2.99) 0.00 (0.00) 0.002 3.160
dgLARS(BIC) 4.55 (0.51) 18.29 (6.13) 0.56 (0.49) 0.001 1.877
SC (γL) 4.73 (0.45) 0.53 (0.66) 0.73 (0.45) 0.000 2.479
SC (γH) 2.84 (0.63) 0.40 (0.49) 0.00 (0.00) 0.001 0.664
FR (γL) 4.54 (0.52) 1.98 (2.19) 0.55 (0.50) 0.000 2.128
FR (γH) 2.71 (0.70) 0.43 (0.50) 0.00 (0.00) 0.001 0.605
STEPWISE 4.54 (0.52) 1.77 (2.01) 0.55 (0.50) 0.000 2.132

4 (p0 = 14) LASSO(1SE) 10.01 (1.73) 3.91 (6.03) 0.01 (0.10) 0.003 15.582
LASSO(BIC) 12.11 (1.46) 36.56 (22.43) 0.19 (0.39) 0.002 5.688
SIS+LASSO(1SE) 10.42 (1.66) 21.41 (8.87) 0.03 (0.17) 0.003 11.316
SIS+LASSO(BIC) 10.73 (1.66) 32.67 (8.92) 0.03 (0.17) 0.003 8.545
dgLARS(BIC) 12.05 (1.52) 38.70 (28.97) 0.18 (0.38) 0.002 5.111
SC (γL) 10.33 (1.63) 10.48 (6.66) 0.02 (0.14) 0.002 4.499
SC (γH) 5.32 (1.92) 0.52 (1.37) 0.00 (0.00) 0.003 14.005
FR (γL) 12.00 (1.71) 8.93 (6.36) 0.23 (0.42) 0.001 4.503
FR (γH) 5.65 (2.13) 0.38 (1.15) 0.00 (0.00) 0.003 13.802
STEPWISE 11.80 (1.72) 5.97 (5.37) 0.19 (0.39) 0.001 5.809

5 (p0 = 3) LASSO(1SE) 2.00 (0.00) 1.13 (2.85) 0.00 (0.00) 0.003 2.674
LASSO(BIC) 2.01 (0.10) 2.82 (2.52) 0.01 (0.10) 0.003 2.583
SIS+LASSO(1SE) 2.87 (0.34) 9.28 (3.85) 0.87 (0.34) 0.002 2.455
SIS+LASSO(BIC) 2.87 (0.34) 9.88 (4.29) 0.87 (0.34) 0.002 2.355
dgLARS(BIC) 2.00 (0.00) 2.88 (2.38) 0.00 (0.00) 0.003 2.562
SC (γL) 2.75 (0.44) 3.27 (1.75) 0.75 (0.44) 0.001 2.339
SC (γH) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.003 1.086
FR (γL) 3.00 (0.00) 2.80 (1.73) 1.00 (0.00) 0.001 2.326
FR (γH) 2.40 (0.49) 0.00 (0.00) 0.40 (0.49) 0.002 0.981
STEPWISE 3.00 (0.00) 0.35 (0.59) 1.00 (0.00) 0.001 2.977

Note: abbreviations are explained in the footnote of Table 2.

5. Real Data Analysis

5.1. A Study of Gene Regulation in the Mammalian Eye

To demonstrate the utility of our proposed method, we analyzed a microarray dataset from [35]
with 120 twelve-week male rats selected for eye tissue harvesting. The dataset contained more than
31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array); see [35] for a more
detailed description of the data.

Although our method was applicable to the original 31,042 probe sets, many probes turned out to
have very small variances and were unlikely to be informative for correlative analyses. Therefore, using
variance as the screening criterion, we selected 5000 genes with the largest variances in expressions and
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correlated them with gene TRIM32 that has been found to cause Bardet–Biedl syndrome, a genetically
heterogeneous disease of multiple organ systems including the retina [36].

We applied the proposed STEPWISE method to the dataset with n = 120 and p = 5000, and
treated the TRIM32 gene expression as the response variable and the expressions of 5000 genes as the
predictors. With no prior biological information available, we started with the empty set. To choose η1

and η2, we carried out 5-fold cross-validation to minimize the mean squared prediction error (MSPE)
by using the following grid search: η1 = {0, 0.25, 0.5, 1} and η2 = {1, 2, 3, 4, 5}, and set η1 = 1 and
η2 = 4. We also performed the same procedure to choose the γ for FR and SC. The regularization
parameters in LASSO and dgLARS were selected to minimize BIC values.

In the forward step, STEPWISE selected the probes of 1376747_at, 1381902_at, 1382673_at and
1375577_at, and the backward step eliminated probe 1375577_at. The STEPWISE procedure produced
the following final predictive model:

TRIM32 = 4.6208 + 0.2310× (1376747_at) + 0.1914× (1381902_at) + 0.1263× (1382673_at). Table A1
in Appendix B presents the numbers of overlapping genes among competing methods. It shows that
the two out of three probes, 1381902_at and 1376747_at, selected from our method are also discovered
by the other methods, except for dgLARS.

Next, we performed Leave-One-Out Cross-Validation (LOOCV) to obtain the distribution of the
model size (MS) and MSPE for the competing methods.

As reported in Table 5 and Figure 1, LASSO, SIS+LASSO and dgLARS tended to select more
variables than the forward approaches and STEPWISE. Among all of the methods, STEPWISE selected
the fewest variables but with almost the same MSPE as the other methods.

Table 5. Comparisons of MSPE among competing methods using the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS

Training set 0.005 0.005 0.005 0.006 0.005 0.014
Testing set 0.011 0.012 0.010 0.009 0.014 0.020

Note: The mean squared prediction error (MSPE) was averaged over 120 splits. LASSO, least absolute
shrinkage and selection operator with regularization parameter that gives the smallest BIC; SIS+LASSO, sure
independence screening by [5] followed by LASSO; dgLARS, differential geometric least angle regression
by [11,12] that gives the smallest BIC; SC(γ), sequentially conditioning approach by [8]; FR(γ), forward
regression by [7]; STEPWISE, the proposed method. STEPWISE was performed with η1 = 1 and η2 = 4 ; FR
and SC were performed with γ = 1.
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Figure 1. Box plot of model sizes for each method over 120 different training samples from the
mammalian eye data set. STEPWISE was performed with η1 = 1 and η2 = 4, and FR and SC were
conducted with γ = 1.
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5.2. An Esophageal Squamous Cell Carcinoma Study

Esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal
cancer, is known to be associated with poor overall survival, making early diagnosis crucial for
treatment and disease management [37]. Several studies have investigated the roles of circulating
microRNAs (miRNAs) in diagnosis of ESCC [38].

Using a clinical study that investigated the roles of miRNAs on the ESCC [39], we aimed to use
miRNAs to predict ESCC risks and estimate their impacts on the development of ESCC. Specifically,
with a dataset of serum profiling of 2565 miRNAs from 566 ESCC patients and 4965 controls without
cancer, we demonstrated the utility of the proposed STEPWISE method in predicting ESCC with
miRNAs.

To proceed, we used a balance sampling scheme (283 cases and 283 controls) in the training
dataset. The design of yielding an equal number of cases and controls in the training set has proved to
be useful [39] for handling imbalanced outcomes as we encountered here. To validate our findings,
samples were randomly divided into a training (n1 = 566, p = 2565) and testing set (n2 = 4965,
p = 2565).

The training set consisted of 283 patients with ESCC (median age of 65 years, 79% male) and 283
control patients (median age of 68 years, 46.3% male), and the testing set consisted of 283 patients with
ESCC (median age of 67 years, 85.7% male) and 4682 control patients (median age of 67.5 years, 44.5%
male). Control patients without ESCC came from three sources: 323 individuals from National Cancer
Center Biobank (NCCB); 2670 individuals from the Biobank of the National Center for Geriatrics and
Gerontology (NCGG); and 1972 individuals from Minoru Clinic (MC). More detailed characteristics of
cases and controls in the training and testing sets are given in Table 6.

Table 6. Clinicopathological characteristics of study participants of the ESCC data set.

Covariates Training Set Testing set
n1 (%) n2 (%)

Esophageal squamous cell carcinoma (ESCC) patients
Total number of patients 283 283
Age, median (range) 65 [40, 86] 67 [37, 90]
Gender:
Male 224 (79.0%) 247 (87.3%)
Female 59 (21.0%) 36 (12.7%)
Stage:
0 24 (8.5%) 27 (9.5%)
1 127 (44.9%) 128 (45.2%)
2 58 (20.5%) 57 (20.1%)
3 67 (23.7%) 61 (21.6%)
4 7 (2.4%) 10 (3.6%)
Non-ESCC Controls
Total number of patients 283 4,682
Age, median (range) 68 [27, 92] 67.5 [20, 100]
Gender:
Male 131 (46.3%) 2,086 (44.5%)
Female 152 (53.7%) 2,596 (55.5%)
Data sources of the controls:
National Cancer Center Biobank (NCCB) 17 (6.0%) 306 (6.5%)
National Center for Geriatrics and Gerontology (NCGG) 158 (55.8%) 2,512 (53.7%)
Minoru clinic (MC) 108 (38.2%) 1,864 (39.8%)

We defined the binary outcome variable to be 1 if the subject was a case and 0 otherwise. As age
and gender (0 = female, 1 = male) are important risk factors for ESCC [40,41] and it is common to adjust
for them in clinical models, we set the initial set in STEPWISE to be F0 = {age, gender}. With η1 = 0
and η2 = 3.5 that were also chosen from 5-fold CV, our procedure recruited three miRNAs. More
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specifically, miR-4783-3p, miR-320b, miR-1225-3p and miR-6789-5p were selected among 2565 miRNAs
by the forward stage from the training set, and then the backward stage eliminated miR-6789-5p.

In comparison, with γ = 0, both FR and SC selected four miRNAs, miR-4783-3p, miR-320b,
miR-1225-3p and miR-6789-5p. The list of selected miRNAs by different methods are given in Table A2
in Appendix B.

Our findings were biologically meaningful, as the selected miRNAs had been identified by other
cancer studies as well. Specifically, miR-320b was found to promote colorectal cancer proliferation
and invasion by competing with its homologous miR-320a [42]. In addition, serum levels of miR-320
family members were associated with clinical parameters and diagnosis in prostate cancer patients [43].
Reference [44] showed that miR-4783-3p was one of the miRNAs that could increase the risk of
colorectal cancer death among rectal cancer cases. Finally, miR-1225-5p inhibited proliferation and
metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation of
β-catenin signaling [45].

Aiming to identify a final model without resorting to a pre-screening procedure that may miss
out on important biomarkers, we applied STEPWISE to reach the following predictive model for ESCC
based on patients’ demographics and miRNAs:

logit−1(−35.70 + 1.41 × miR-4783-3p + 0.98 × miR-320b + 1.91 × miR-1225-3p + 0.10 × Age −
2.02×Gender), where logit−1(x) = exp(x)/(1 + exp(x)).

In the testing dataset, the model had an area under the receiver operating curve (AUC) of 0.99
and achieved a high accuracy of 0.96, with a sensitivity and specificity of 0.97 and 0.95, respectively.
Additionally, using the testing cohort, we evaluated the performances of the models sequentially
selected by STEPWISE. Starting with a model containing age and gender, STEPWISE selected
miR-4783-3p, miR-320b and miR-1225-3p in turn. Figure 2, showing the corresponding receiver operating
curves (ROC) for these sequential models, revealed the improvement by sequentially adding predictors
to the model and justified the importance of these variables in the final model. In addition, Figure 2e
illustrated that adding an extra miRNA selected by FR and SC made little improvement of the model’s
predictive power.

Furthermore, we conducted subgroup analysis within the testing cohort to study how the
sensitivity of the final model differed by cancer stage, one of the most important risk factors. The
sensitivities for stages 0, i.e., non-invasive cancer, 9 (n = 27), 1 (n = 128), 2 (n = 57), 3 (n = 61) and 4
(n = 10) were 1.00, 0.98, 0.97, 0.97 and 1.00, respectively. We next evaluated how the specificity varied
across controls coming from different data sources. The specificities for the various control groups,
namely, NCCB (n = 306), NCGG (n = 2512) and MC (n = 1864), were 0.99, 0.99 and 0.98, respectively.
The results indicated the robust performance of the miRNA-based model toward cancer stages and
data sources.

Finally, to compare STEPWISE with the other competing methods, we repeatedly applied the
aforementioned balance sampling procedure and split the ESCC data into the training and testing sets
100 times. We obtained MSPE and the average of accuracy, sensitivity, specificity, and AUC. Figure 3
reported the model size of each method. Though STEPWISE selected fewer variables compared to the
other variable selection methods (for example, LASSO selected 11-31 variables and dgLARS selected
12–51 variables), it achieved comparable prediction accuracy, specificity, sensitivity and AUC (see
Table 7), evidencing the utility of STEPWISE for generating parsimonious models while maintaining
competitive predictability.
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Table 7. Comparisons of competing methods over 100 independent splits of the ESCC data into training
and testing sets.

Training Set MSPE Accuracy Sensitivity Specificity AUC

STEPWISE 0.02 0.97 0.98 0.97 1.00
SC 0.01 0.99 0.98 0.98 1.00
FR 0.02 0.99 0.97 0.97 1.00
LASSO 0.01 0.98 1.00 0.97 1.00
SIS+LASSO 0.01 0.99 1.00 0.99 1.00
dgLARS 0.04 0.96 0.99 0.94 1.00
Training Set MSPE Accuracy Sensitivity Specificity AUC

STEPWISE 0.04 0.96 0.97 0.95 0.99
SC 0.03 0.96 0.97 0.96 0.99
FR 0.04 0.96 0.97 0.95 0.99
LASSO 0.03 0.96 0.99 0.95 1.00
SIS+LASSO 0.02 0.97 0.99 0.96 1.00
dgLARS 0.05 0.94 0.98 0.94 1.00

Note: Values were averaged over 100 splits. STEPWISE was performed with η1 = 0 and η2 = 1. SC and FR
were performed with γ = 1. The regularization parameters in LASSO and dgLARS were selected to minimize
the BIC.

We used R software [46] to obtain the numerical results in Sections 4 and 5 with following packages:
ggplot2 [47], ncvreg [32], glmnet [31], dglars [34] and screening [33].

(a) Model 1, AUC = 0.71 (b) Model 2, AUC = 0.97

(c) Model 3, AUC = 0.98 (d) Model 4, AUC = 0.99

Figure 2. Cont.
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(e) Model 5, AUC = 0.99

Figure 2. Comparisons of ROC curves for the selected models in the ESCC data set by the
sequentially selected order: Model 1: −2.52 + 0.02× Age− 1.86× Gender; Model 2: −20.64 + 0.08×
Age − 2.12× Gender + 2.02× miR-4783-3p; Model 3: −24.21 + 0.09× Age − 2.16× Gender + 1.44×
miR-4783-3p −1.31× miR-320b; Model 4: −35.70 + 0.10× Age− 2.02× Gender + 1.40× miR-4783-3p

−0.98× miR-320b +1.91× miR-1225-3p; Model 5: −53.10 + 0.10 × Age − 1.85 × Gender + 1.43×
miR-4783-3p−0.92× miR-320b +1.43× miR-1225-3p +2.10× miR-6789-5p.
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Figure 3. Box plot of model sizes for each method based on 100 ESCC training datasets. Performance of
STEPWISE is reported with η1 = 0 and η2 = 3.5. Performances of SC and FR are reported with γ = 0.

6. Discussion

We have proposed to apply STEPWISE to produce final models in ultrahigh dimensional settings,
without resorting to a pre-screening step. We have shown that the method identifies or includes the
true model with probability going to 1, and produces consistent coefficient estimates, which are useful
for properly interpreting the actual impacts of risk factors. The theoretical properties of STEPWISE
were established under mild conditions, which are worth discussing. As in practice covariates are
often standardized for various reasons, Condition (2) is assumed without loss of generality. Conditions
(3) and (4) are generally satisfied under common GLM models, including Gaussian, binomial, Poisson
and gamma distributions. Condition (5) is also often satisfied in practice. Proposition 2 in [26] may be
used as a tool to verify Condition (5) as well. Conditions (1) and (6) are in good faith with the unknown
true model size |M| and minimum signal strength n−α in practice. The "irrepresentable" condition (6)
is strong and may not hold in some real datasets, see, e.g., [48,49]. However, the condition holds under
some commonly used covariance structures, including AR(1) and compound symmetry structure [48].

As shown in simulation studies and real data analyses, STEPWISE tends to generate models as
predictive as the other well-known methods, with fewer variables (Figure 3). Parsimonious models
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are useful for biomedical studies as they explain data with a small number of important predictors,
and offer practitioners a realistic list of biomarkers to investigate. With categorical outcome data
frequently observed in biomedical studies (e.g., histology types of cancer), STEPWISE can be extended
to accommodate multinomial classification, with more involved notation and computation. We will
pursue this elsewhere.

There are several open questions. First, our final model was determined by using (E)BIC, which
involves two extra parameters η1 and η2. In our numerical experiments, we used cross-validation to
choose them, which seemed to work well. However, more in-depth research is needed to find their
optimal values to strike a balance between false positives and false negatives. Second, despite our
consistent estimates, drawing inferences based on them remains challenging. Statistical inference,
which accounts for uncertainty in estimation, is key for properly interpreting analysis results and
drawing appropriate conclusions. Our asymptotic results, nevertheless, are a stepping stone toward
this important problem.

Supplementary Materials: An R package, STEPWISE, was developed and is available at https://github.com/
AlexPijyan/STEPWISE, along with the examples shown in the paper.
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Appendix A. Proofs of Main Theorems

Since b(·) is twice continuously differentiable with a nonnegative second derivative b′′(·), bmax :=
max|t|≤K3 |b(t)|, µmax := max|t|≤K3 |b′(t)| and σmax := sup|t|≤K3 |b′′(t)| are bounded above, where L

and K are some constants from Conditions (1) and (2), respectively. Let Gn{ f (ξ)} = n−1/2 ∑
n
i=1( f (ξi)−

E[ f (ξi)]) for a sequence of i.i.d. random variables ξi (i = 1, . . . , n) and a non-random function f (·).
Given any βS, when a variable Xr, r ∈ Sc is added into the model S, we define the augmented

log-likelihood as

ℓS∪{r}(βS+r) := En

{
L
(

βT
SXS + βrXr, Y

)}
. (A1)

We use β̂S+r to denote the maximizer of (A1). Thus, β̂S+r = β̂S∪{r}. In addition, denote the
maximizer of E[ℓS∪{r}(βS+r)] by β∗S+r. Due to the concavity of the log-likelihood in GLMs with the
canonical link, β∗S+r is unique.

Proof of Theorem 1. Given an index set S and r ∈ Sc, let B0
S(d) = {βS : ‖βS − β∗S‖ ≤ d/(K

√
|S|)}

where d = A2
√

q3 log p/n with A2 defined in Lemma A6.
Let Ω be the event that

{
sup

|S|≤q,βS∈B0
S(d)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]∣∣∣ ≤ 20A1d
√

q log p and

max
|S|≤q

|Gn

[
L(β∗TS XS, Y)

]
| ≤ 10(A1K2 + bmax)

√
q log p

}
,

where A1 is some constant defined in Lemma A4. By Lemma A4, P(Ω) ≥ 1− 6 exp(−6q log p). Thus
in the rest of the proof, we only consider the sample points in Ω.
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In the proof of Lemma A6, we show that max|S|≤q ‖β̂S − β∗S‖ ≤ A2K−1(q2 log p/n)1/2 under Ω.

Then given an index set S and βS such that |S| < q, ‖βS − β∗S‖ ≤ A2K−1(q2 log p/n)1/2, and for any
j ∈ Sc,

ℓS∪{j}(β∗S+j)− ℓS(β̂S) ≥ inf
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

ℓS∪{j}(β∗S+j)− ℓS(βS)

= n−1/2Gn

[
L(β∗TS+jXS∪{j}, Y)

]
− n−1/2Gn

[
L(β∗TS XS, Y)

]

− sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

∣∣∣n−1/2Gn

[
L(βT

SXS, Y)− L(β∗TS XS, Y)
]∣∣∣

+ E
[

L(β∗TS+jXS∪{j}, Y)
]
− E

[
L(β∗TS XS, Y)

]

≥ −20(A1K2 + bmax)
√

q log p/n− 20A1 A2q2 log p/n +
σminκmin

2
‖β∗S+j − (β∗TS , 0)T‖2,

where the second inequality follows from the event Ω and Lemma A5.
By Lemma A1, ifM 6⊆ S, there exists r ∈ Sc ∩M, such that ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1

maxκ−1
maxn−α.

Thus, there exists some constant C1 that does not depend on n such that

max
j∈Sc

ℓS∪{j}(β̂S+j)− ℓS(β̂S) ≥ max
j∈Sc

ℓS∪{j}(β∗S+j)− ℓS(β̂S) ≥ ℓS∪{r}(β∗S+r)− ℓS(β̂S)

≥ −20(A1K2 + bmax)
√

q log p/n− 20A1 A2q2 log p/n +
C2σminκminn−2α

2σ2
maxκ2

max
≥ C1n−2α, (A2)

where the first inequality follows from β̂S+j being the maximizer of (A1) and the second inequality
follows from Conditions (1) and (6).

Withdrawing the restriction to Ω, we obtain that

P

(
min

|S|<q,M6⊆S
max
j∈Sc

ℓS∪{j}(β̂S∪{j})− ℓS(β̂S) ≥ C1n−2α

)
≥ 1− 6 exp(−6q log p).

Proof of Theorem 2. We have shown that our forward stage will not stop whenM 6⊆ S and |S| < q
with probability converging to 1.

For any r ∈ Sc ∩ Mc, β∗S+r is the unique solution to the equation E
[{

Y −
µ
(

βT
S+rXS∪{r}

)}
XS∪{r}

]
= 0. By the mean value theorem,

E
[{

Y− µ
(

β∗TS XS
)}

Xr
]
= E

[{
µ
(

βT
∗X
)
− µ

(
β∗TS XS

)}
Xr
]

= E
[{

µ
(

βT
∗X
)
− µ

(
β∗TS XS

)}
Xr
]
− E

[{
µ
(

βT
∗X
)
− µ

(
β∗TS+rXS∪{r}

)}
Xr
]

=
(

β∗TS+r − (β∗TS , 0)
)
E
[
σ
(

β̃T
S+rXS∪{r}

)
X⊗2

S∪{r}
]
er,

where β̃S+r is some point between βS+r and (β∗TS , 0)T and er is a vector of length (|S|+ 1) with the rth
element being 1.

Since |β̃T
S+rXS∪{r}| ≤ |β∗TS+rXS∪{r}| + |(β∗TS , 0)XS∪{r}| ≤ 2K2 by Conditions (1) and (2),

|σ(β̃T
S+rXS∪{r})| ≥ σmin and

o(n−α) =
∣∣∣E
[{

Y− µ
(

β∗TS XS
)}

Xr

]∣∣∣ ≥ σminκmin‖β∗TS+r − (β∗TS , 0)‖.

Therefore, maxS:|S|≤q,r∈Sc∩Mc ‖β∗TS+r − (β∗TS , 0)‖ = o(n−α).
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Under Ω that is defined in Theorem 1, max|S|≤q ‖β̂S − β∗S‖ ≤ A2K−1(q2 log p/n)1/2. For any
j ∈ Sc,

ℓS∪{j}(β∗S+j)− ℓS(β̂S) ≤ sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

ℓS∪{j}(β∗S+j)− ℓS(βS)

≤
∣∣∣n−1/2Gn

[
L(β∗TS+jXS∪{j}, Y)

]∣∣∣+
∣∣∣n−1/2Gn

[
L(β∗TS XS, Y)

]∣∣∣

+ sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

∣∣∣n−1/2Gn

[
L(βT

SXS, Y)− L(β∗TS XS, Y)
]∣∣∣

+
∣∣∣E
[

L(β∗TS+jXS∪{j}, Y)
]
− E

[
L(β∗TS XS, Y)

]∣∣∣

≤ 20(A1K2 + bmax)
√

qn−1 log p + 20A1 A2q2n−1 log p + σmaxκmax‖β∗S+j − (β∗TS , 0)T‖2/2,

where the second inequality follows from the event Ω and Lemma A5. Since
maxS:|S|<q,r∈Sc∩Mc ‖β∗S+r − (β∗TS , 0)T‖ = o(n−α) and qn−1+4α log p→ 0,

max
S:|S|<q,r∈Sc∩Mc

ℓS∪{r}(β∗S+r)− ℓS(β̂S) ≤ 20(A1K2 + bmax)
√

qn−1 log p + 20A1 A2q2n−1 log p

+ σmaxκmax‖β∗S+j − (β∗TS , 0)T‖2/2 = o(n−2α),

with probability at least 1− 6 exp(−6q log p). Then by Lemma A6,

max
S:|S|<q,r∈Sc∩Mc

ℓS∪{r}(β̂S+r)− ℓS(β̂S)

≤ max
S:|S|<q,r∈Sc∩Mc

|ℓS∪{r}(β̂S+r)− ℓS∪{r}(β∗S+r)|+ max
S:|S|<q,r∈Sc∩Mc

∣∣∣ℓS∪{r}(β∗S+r)− ℓS(β̂S)
∣∣∣

≤ A3q2n−1 log p + o(n−2α) = o(n−2α), (A3)

with probability at least 1− 12 exp(−6q log p).
By Theorem 1, ifM 6⊆ S, the forward stage would select a noise variable with probability less

than 18 exp(−6q log p).
For k > |M|,M 6⊆ Sk implies that at least k− |M| noise variables are selected within the k steps.

Then for k = C2|M| with C2 > 2,

P (M 6⊆ Sk) ≤
k

∑
j=k−|M|

(
k
j

){
18 exp(−6q log p)

}j ≤ |M|k|M|
{

18 exp(−6q log p)
}k−|M|

≤ 18 exp(−6q log p + log |M|+ |M| log k) ≤ 18 exp(−4q log p).

Therefore,M⊂ SC2|M| with probability at least 1− 18 exp(−4q log p).

Proof of Theorem 3. By Theorem 2,M will be included in Fk for some k < q with probability going
to 1. Therefore, the forward stage stops at the kth step if EBIC(Fk+1) > EBIC(Fk).

On the other hand, that EBIC(Fk+1) < EBIC(Fk) if and only if 2ℓFk+1
(β̂Fk+1

) − 2ℓFk
(β̂Fk

) ≥
(log n + 2η1 log p)/n. Thus, to show the forward stage stops at the kth step, we only need to show
that with probability tending to 1,

2ℓFk+1
(β̂Fk+1

)− 2ℓFk
(β̂Fk

) < (log n + 2η1 log p)/n, (A4)

for all η1 > 0.

105



Entropy 2020, 22, 965

To prove (A4), we first verify the conditions (A4) and (A5) in [17]. Given any index S such that
M⊆ S and |S| ≤ q, let β∗S be the subvector of β∗ corresponding to S. We obtain that

E
[
(Y− µ(βT

∗SXS))XS

]
= E

[
E
[
(Y− µ(βT

∗MXM))|XS

]
XS

]
= 0.

This implies β∗S = β∗S.

Given any π ∈ R|S|, let HS :=
{

h(π, βS) = (σmaxK2|S|)−1σ
(

βT
SXS

) (
πTXS

)2
, ‖π‖ = 1, βS ∈

B0
S(d)

}
. By Conditions (1) and (2), h(π, βS) is bounded between −1 and 1 uniformly over ‖π‖ = 1

and βS ∈ B0
S(d).

By Lemma 2.6.15 in [50], the VC indices of W := {(K
√
|S|)−1πTXS, ‖π‖ = 1} and V :=

{βT
SXS, βS ∈ B0

S(d)} are bounded by |S|+ 2. For the definitions of the VC index and covering numbers,
we refer to pages 83 and 85 in [50]. The VC index of the class U := {(K2|S|)−1(πTXS)

2, ‖π‖ = 1}
is the VC index of the class of sets {(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t, ‖π‖ = 1, t ∈ R}. Since
{(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t} = {(XS, t) : 0 < (K
√
|S|)−1πTXS ≤

√
t} ∪ {(XS, t) : −

√
t <

(K
√
|S|)−1πTXS ≤ 0}, each set of {(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t, ‖π‖ = 1, t ∈ R} is created by
taking finite unions, intersections and complements of the basic sets {(XS, t) : (K

√
|S|)−1πTXS < t}.

Therefore, the VC index of {(XS, t) : (K2|S|)−1(πTXS)
2 ≤ t, ‖π‖ = 1, t ∈ R} is of the same order as

the VC index of {(XS, t) : (K
√
|S|)−1πTXS < t}, by Lemma 2.6.17 in [50].

Then by Theorem 2.6.7 in [50], for any probability measure Q, there exists some universal constant
C3 such that N(ǫ,U , L2(Q)) ≤ (C3/ǫ)2(|S|+1). Likewise, N(dǫ,V , L2(Q)) ≤ (C3/ǫ)2(|S|+1). Given
a βS,0 ∈ B0

S(d), for any βS in the ball {βS : supx |βT
Sx − βT

S,0x| < dǫ}, we have supx |σ(βT
Sx) −

σ(βT
S,0x)| < Kdǫ by Condition (4). Let V ′ := {σ−1

maxσ(βT
SXS), βS ∈ B0

S(d)}. By the definition of covering

number, N(Kdǫ,V ′, L2(Q)) ≤ (C3/ǫ)2(|S|+1)Given a σ(βT
S,0x) and πT

0x, for any σ(βT
Sx) in the ball

{σ(βT
Sx) : supx |σ(βT

Sx) − σ(βT
S,0x)| ≤ Kdǫ} and π in the ball {π : supx |(πTx)2 − (πT

0x)2| < ǫ},
(σmaxK2|S|)−1 supx |σ(βT

Sx)(πTx)2 − σ(βT
S,0x)(πT

0x)2| ≤ (σ−1
maxKd + (K2|S|)−1)ǫ. Thus, N((σ−1

maxKd +

(K2|S|)−1)ǫ,HS, L2(Q)) ≤ (C3/ǫ)4(|S|+1), and consequently N(ǫ,HS, L2(Q)) ≤ (C4/ǫ)4(|S|+1) for
some constant C4.

By Theorem 1.1 in [51] and |S| ≤ q, we can find some constant C5 such that

P


 sup
‖π‖=1,βS∈B0

S(d)

|Gn [h(π, βS)]| ≥ C5
√

q log p




≤ C′4
C5
√

q log p

(
C′4C2

5q log p

4(|S|+ 1)

)4(|S|+1)

exp(−2C2
5q log p)

≤ exp
(

4(|S|+ 1) log(C′4C2
5q log p)− 2C2

5q log p
)
≤ exp (−5q log p) ,

where C′4 is some constant that depends on C4 only. Thus,

P
(

sup
|S|≤q,‖π‖=1,βS∈B0

S(d)

∣∣∣En

{
σ
(

XT
S βS

) (
πTXS

)2
}
− E

[
σ
(

XT
S βS

) (
πTXS

)2
] ∣∣∣ ≥ C5K2

√
q3 log p/n

)

≤
q

∑
s=|M|

( ep
s

)s
exp (−5q log p) ≤ exp(−3q log p). (A5)

By Condition (5), σminκmin ≤ Λ
(

E
[
σ
(
XT

S βS
)

X⊗2
S

])
≤ σmaxκmax, for all βS ∈ B0

S(d) and S : M ⊆
S, |S| < q. Then, by (A5),

σminκmin/2 ≤ Λ
(
En

{
σ
(

XT
S β∗S

)
X⊗2

S

})
≤ 2σmaxκmax
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uniformly over all S satisfyingM⊆ S and |S| ≤ q, with probability at least 1− exp(−3q log p). Hence,
the condition (A4) in [17] is satisfied with probability at least 1− exp(−3q log p).

Additionally, for any βS ∈ B0
S(d),

∣∣∣En

{
σ
(

XT
S βS

) (
πTXS

)2 }
−En

{
σ
(

XT
S β∗S

) (
πTXS

)2 }∣∣∣

≤
∣∣∣n−1/2Gn

{
σ
(

XT
S βS

) (
πTXS

)2 }∣∣∣+
∣∣∣n−1/2Gn

{
σ
(

XT
S β∗S

) (
πTXS

)2 }∣∣∣

+
∣∣∣E
[
σ
(

XT
S βS

) (
πTXS

)2 ]
− E

[
σ
(

XT
S β∗S

) (
πTXS

)2 ]∣∣∣

≤2C5K2
√

q3 log p/n + µmax‖βS − β∗S‖
√
|S|Kλmax.

Hence, the condition (A5) in [17] is satisfied uniformly over all S such thatM⊆ S and |S| ≤ q,
with probability at least 1− exp(−3q log p).

Then (A4) can be shown by following the proof of Equation (3.2) in [17]. Thus, our forward stage
stops at the kth step with probability at least 1− exp(−3q log p).

Proof of Theorem 4. Suppose that a covariate Xr is removed from S. For any r ∈ M, sinceM 6⊆ S\{r}
and r is the only element that is in (S\{r})c ∩M, by Lemma A1 and (A2)

ℓS(β̂S)− ℓS\{r}(β̂S\{r}) ≥ ℓS(β∗S)− ℓS\{r}(β̂S\{r})

= ℓS\{r}∪{r}(β∗S\{r}+r)− ℓS\{r}(β̂S\{r}) ≥ C1n−2α,

with probability at least 1− 6 exp(−6q log p). From the proof of Theorem 1, we have for any η2 > 0,
BIC(S)− BIC(S\{r}) ≤ −2C1n−2α + η2n−1 log n < 0, uniformly over r ∈ M and S satisfyingM⊂ S
and |S| ≤ q, with probability at least 1− 6 exp(−6q log p).

Proof of Theorem 5. By Theorems 1–3, we have that the event Ω1 := {|M̂| ≤ q andM⊆ M̂} holds
with probability at least 1− 25 exp(−2q log p). Thus, in the rest of the proof, we restrict our attention
on Ω1.

As shown in the proof of Theorem 3, we obtain that β∗M̂ = β∗M̂. Then by Lemma A6, we have

‖β̂M̂ − β∗M̂‖ ≤ A2K−1
√

q2 log p/n with probability at least 1− 6 exp(−6q log p). Withdrawing the
attention on Ω1, we obtain that

‖β̂− β∗‖ = ‖β̂M̂ − β∗M̂‖ = ‖β̂M̂ − β∗M̂‖ ≤ A2K−1
√

q2 log p/n,

with probability at least 1− 31 exp(−2q log p).

Additional Lemmas and Proofs

Lemma A1. Given a model S such that |S| < q,M 6⊆ S, under Condition (6),
(i): ∃r ∈ Sc ∩M, such that β∗S+r 6= (β∗TS , 0)T.
(ii): Suppose Conditions (1), (2) and (6’) hold. ∃r ∈ Sc ∩M, such that ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1

maxκ−1
maxn−α.

Proof. As β∗S+j is the maximizer of E
[
ℓS∪{j}(βS+j)

]
, by the concavity of E

[
ℓS∪{j}(βS+j)

]
, β∗S+j is the

solution to the equation E
[(

Y− µ
(

β∗TS XS + β jXj
))

XS∪{j}
]
= 0,

(i): Suppose that β∗S+j = (β∗TS , 0)T, ∀j ∈ Sc ∩M. Then,

0 = E
[(

Y− µ
(

β∗TS XS
))

Xj
]
= E

[(
µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xj
]

⇒ max
j∈Sc∩M

∣∣E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xj
]∣∣ = 0,
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which violates the Condition (6). Therefore, we can find a r ∈ Sc ∩M, such that β∗S+r 6= (β∗TS , 0)T.
(ii): Let r ∈ Sc ∩M satisfy that

∣∣E
[(

µ
(

βT∗X
)
− µ

(
β∗TS XS

))
Xr
]∣∣ > Cn−α. Without loss of generality,

we assume that Xr is the last element of XS∪{r}. By the mean value theorem,

E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xr
]

= E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xr
]
− E

[(
µ
(

βT
∗X
)
− µ

(
β∗TS+rXS∪{r}

))
Xr
]

= E
[(

µ
(

β∗TS+rXS∪{r}
)
− µ

(
(β∗TS , 0)XS∪{r}

))
Xr
]

=
(

β∗TS+r − (β∗TS , 0)
)
E
[
σ
(

β̃T
S+rXS∪{r}

)
X⊗2

S∪{r}
]
er, (A6)

where β̃S+r is some point between β∗S+r and (β∗TS , 0)T and er is a vector of length (|S|+ 1) with the rth
element being 1.

As β̃S+r is some point between β∗S+r and (β∗TS , 0)T, |β̃T
S+rXS∪{r}| ≤ |β∗TS+rXS∪{r}| +

|(β∗TS , 0)XS∪{r}| ≤ 2K2, by Conditions (1) and (2). Thus, |σ(β̃T
S+rXS∪{r})| ≤ σmax. By (A6) and

Condition (5),

Cn−α ≤
∣∣∣E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xr

]∣∣∣

≤ ‖β∗TS+r − (β∗TS , 0)‖σmaxλmax

(
E
[
X⊗2

S∪{r}
])
‖er‖ ≤ σmaxκmax‖β∗TS+r − (β∗TS , 0)‖.

Therefore, ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1
maxκ−1

maxn−α.

Lemma A2. Let ξi, i = 1, . . . , n be n i.i.d random variables such that |ξi| ≤ B for a constant B > 0. Under
Conditions (1)–(3), we have E [|Yiξi − E [Yiξi] |m] ≤ m!(2B(

√
2M + µmax))m, for every m ≥ 1.

Proof. By Conditions (1) and (2), |βT∗Xi| ≤ KL, ∀i ≥ 1 and consequently
∣∣µ(βT∗Xi)

∣∣ ≤ µmax. Then by
Condition (3),

E[|Yi|m] = E[|ǫi + µ(βT
∗Xi)|m] ≤

m

∑
t=0

(
m
t

)
E
[
|ǫi|t

]
µm−t

max

≤
m

∑
t=0

t!
(

m
t

)
Mtµm−t

max ≤ m!(M + µmax)
m,

for every m ≥ 1. By the same arguments, it can be shown that, for every m ≥ 1, E [|Yiξi − E [Yiξi] |m] ≤
E
[
(|Yiξi|+ |E [Yiξi] |)m] ≤ m!(2B(M + µmax))m.

Lemma A3. Under Conditions (1)–(3), when n is sufficiently large such that 28
√

q log p/n < 1, we have
supβ∈B

∣∣En
{

L(βTX, Y)
}∣∣ ≤ 2(M + µmax)K3 + bmax, with probability 1− 2 exp(−10q log p).

Proof. By Conditions (2), supβ∈B
∣∣βTX

∣∣ ≤ K3. Thus,

sup
β∈B

∣∣∣En

{
L(βTX, Y)

}∣∣∣ ≤ sup
β∈B

∣∣∣En

{∣∣∣YβTX
∣∣∣
}∣∣∣+ bmax

≤
(∣∣En {|Y| − E [|Y|]}

∣∣+ E [|Y|]
)

K3 + bmax

≤
(∣∣En {|Y| − E [|Y|]}

∣∣)K3 + (M + µmax)K
3 + bmax,

where the last inequality follows from that E[|Y|] ≤ M + µmax as shown in the proof of Lemma A2.
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Let ξi = 1{Yi > 0} − 1{Yi < 0}. Thus |ξi| ≤ 1. By Lemma A2, we have E
[∣∣|Yi| − E [|Yi|]

∣∣m
]
≤

m!(2(M + µmax))m. Applying Bernstein’s inequality (e.g., Lemma 2.2.11 in [50]) yields that

P
(
|En {|Y| − E [|Y|]}| > 10(M + µmax)

√
q log p/n

)

≤ 2 exp

(
−1

2
196q log p

4 + 20
√

q log p/n

)
≤ 2 exp(−10q log p), (A7)

when n is sufficiently large such that 20
√

q log p/n < 1. Since 10(M + µmax)
√

q log p/n = o(1), then

P

(
sup
β∈B

∣∣∣En

{
L(βTX, Y)

}∣∣∣ ≥ 2(M + µmax)K
3 + bmax

)
≤ 2 exp(−10q log p).

Lemma A4. Given an index set S and r ∈ Sc, let B0
S(d) = {βS : ‖βS − β∗S‖ ≤ d/(K

√
|S|)} and A1 :=

(M + 2µmax). Under Conditions (1)–(3), when n is sufficiently large such that 10
√

q log p/n < 1, we have

1. |Gn
[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]
| ≤ 20A1d

√
q log p, uniformly over βS ∈ B0

S(d) and |S| ≤ q, with
probability at least 1− 4 exp(−6q log p).

2. |Gn
[
L(β∗TS XS, Y)

]
| ≤ 10(A1K2 + bmax)

√
q log p, uniformly over |S| ≤ q, with probability at least

1− 2 exp(−8q log p).

Proof. : (1): Let R|S|(d) be a |S|-dimensional ball with center at 0 and radius d/(K
√
|S|). Then

B0
S(d) = R|S|(d) + β∗S. Let C|S| := {C(ξk)} be a collection of cubes that cover the ball R|S|(d), where

C(ξk) is a cube containing ξk with sides of length d/(K
√
|S|n2) and ξk is some point in R|S|(d). As

the volume of C(ξk) is
(
d/(K

√
|S|n2)

)|S|
and the volume of R|S|(d) is less than (2d/(K

√
|S|))|S|,

we can select ξks so that no more than (4n2)|S| cubes are needed to cover R|S|(d). We thus assume

|C|S|| ≤ (4n2)|S|. For any ξ ∈ C(ξk), ‖ξ − ξk‖ ≤ d/(Kn2). In addition, let T1S(ξ) := En
[
YξTXS

]
,

T2S(ξ) := En
[
b
( (

β∗S + ξ
)T

XS
)
− b
(

β∗TS XS
)]

, and TS(ξ) := T1S(ξ)− T2S(ξ).
Given any ξ ∈ R|S|(d), there exists C(ξk) ∈ C|S| such that ξ ∈ C(ξk). Then

|TS(ξ)− E [TS(ξ)]| ≤ |TS(ξ)− TS(ξk)| |TS(ξk)− E [TS(ξk)]|+ |E [TS(ξ)]− E [TS(ξk)]|
=: I + I I + I I I.

We deal with I I I first. By the mean value theorem, there exists a ξ̃ between ξ and ξk such that

|E [TS(ξk)]− E [TS(ξ)]| =
∣∣∣E
[
Y(ξk − ξ)TXS

]
+ E

[
µ
((

β∗S + ξ̃
)T

XS

)
(ξk − ξ)TXS

]∣∣∣

≤ E[|Y|]‖ξk − ξ‖‖XS‖+ µmax‖ξk − ξ‖‖XS‖ ≤ (M + 2µmax)d
√
|S|n−2 = A1d

√
|S|n−2, (A8)

where the last inequality follows from Lemma A2 and A1 = M + 2µmax.
Next, we evaluate I I. By Condition (2), |XT

iSξ| ≤ ‖XiS‖‖ξ‖ ≤ d/(K
√
|S|)

√
|S|K = d, for all

ξ ∈ R|S|(d). Then by Lemma A2,

E
[∣∣∣YξT

k XS − E
[
YξT

k XS
]∣∣∣

m]
≤ m!(2(M + µmax)d)

m.
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By Bernstein’s inequality, when n is sufficiently large such that 10
√

q log p/n ≤ 1.

P

(
|T1S(ξk)− E [T1S(ξk)]| > 10(M + µmax)d

√
qn−1 log p

)

≤ 2 exp

(
−1

2
100q log p

4 + 20
√

q log p/n

)
≤ 2 exp(−10q log p). (A9)

Since |b(
(

β∗S + ξk
)T

XS)− b(β∗TS XS)| ≤ µmaxd, by the same arguments used for (A9), we have

P

(
|T2S(ξk)− E [T2S(ξk)]| > 10µmaxd

√
qn−1 log p

)
≤ 2 exp(−10q log p). (A10)

Combining (A9) and (A10) yields that uniformly over ξk

|TS(ξk)− E [TS(ξk)]| ≤ 10A1d
√

qn−1 log p, (A11)

with probability at least 1− 2(4n2)|S| exp(−10q log p).
We now assess I. Following the same arguments as in Lemma A3,

P
(

sup
ξ∈C(ξk)

|TS(ξ)− TS(ξk)| > (2M + 3µmax)d
√
|S|n−2

)
≤ 2 exp(−8q log p). (A12)

Since
√
|S|n−2 = o(

√
qn−1 log p), combining (A8), (A11) and (A12) together yields that

P
(

sup
ξ∈R|S|(d)

|TS(ξ)− E [TS(ξ)]| ≥ 20A1d
√

qn−1 log p
)

≤ 2(4n2)|S| exp(−10q log p) + 2 exp(−8q log p) ≤ 4 exp(−8q log p).

By the combinatoric inequality (p
s) ≤ (ep/s)s, we obtain that

P
(

sup
|S|≤q,βS∈B0

S(d1)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]∣∣∣ ≥ 20A1d
√

q log p
)

≤
q

∑
s=1

(ep/s)s4 exp(−8q log p) ≤ 4 exp(−6q log p).

(2): We evaluate the mth moment of L(β∗SXS, Y).

E
[(

Yβ∗SXS − b(β∗SXS)
)m
]
≤ E

[
m

∑
t=0

(
m
t

)
|Y|tK2tbm−t

max

]

≤
m

∑
t=0

(
m
t

)
t!
(
(M + µmax)K

2)t
bm−t

max ≤ m!((M + µmax)K
2 + bmax)

m.

Then, by Bernstein’s inequality,

P
(
|Gn

[
L(β∗TS XS, Y)

]
| > 10(A1K2 + bmax)

√
q log p

)
≤ 2 exp(−10q log p).
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By the same arguments used in (i), we obtain that

P
(

sup
|S|≤q

∣∣∣Gn

[
L
(

β∗TS XS, Y
)]∣∣∣ ≥ 10(A1K2 + bmax)

√
q log p

)

≤
q

∑
s=1

(ep/s)s2 exp(−10q log p) ≤ 2 exp(−8q log p).

Lemma A5. Given a model S and r ∈ Sc, under Conditions (1), (2) and (5), for any ‖βS − β∗S‖ ≤ K/
√
|S|,

σminκmin‖βS − β∗S‖2/2 ≤ E
[
ℓS(β∗S)

]
− E [ℓS(βS)] ≤ σmaxκmax‖βS − β∗S‖2/2.

Proof. Due to the concavity of the log-likelihood in GLMs with the canonical link,
E
[
YXS − µ(β∗TS XS)XS

]
= 0. Then for any ‖βS − β∗S‖ ≤ K/

√
|S|, |βTXS| ≤ |β∗TXS|+ |(β− β∗)TXS| ≤

K2 + K/
√
|S| × K

√
|S| = 2KL. Thus, by Taylor’s expansion,

E [ℓS(βS)]− E [ℓS(β∗S)] = −
1
2
(βS − β∗S)

TE
[
σ
(

β̃T
SXS

)
X⊗2

S

]
(βS − β∗S),

where β̃S is between βS and β∗S. By Condition (5), σminκmin‖βS − β∗S‖2/2 ≤ E
[
ℓS(β∗S)

]
− E [ℓS(βS)] ≤

σmaxκmax‖βS − β∗S‖2/2.

Lemma A6. Under Conditions (1)–(6), there exist some constants A2 and A3 that do not depend on n, such that
‖β̂S − β∗S‖ ≤ A2K−1

√
q2 log p/n and |ℓS(β̂S)− ℓS(β∗S)| ≤ A3q2 log p/n hold uniformly over S : |S| ≤ q,

with probability at least 1− 6 exp(−6q log p).

Proof. Define

Ω(d) :=
{

sup
|S|≤q,βS∈B0

S(d)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

) ]∣∣∣ < 20A1d
√

q log p
}

.

By Lemma A4, the event Ω(d) holds with probability at least 1− 4 exp(−6q log p). Thus, in
the proof of Lemma A6, we shall assume Ω(d) hold with d = A2

√
q3 log p/n for some A2 >

20(σminκmin)
−1K2 A1.

For any ‖βS − β∗S‖ = A2K−1
√

q2 log p/n, since
√

q2 log p/n ≤
√

q3 log p/n/
√
|S|, βS ∈ B0

S(d).
By Lemma A5,

ℓS(β∗S)− ℓS(βS)

=
(
ℓS(β∗S)− E [ℓS(β∗S)]− (ℓS(βS)− E [ℓS(βS)])

)
+ (E [ℓS(β∗S)]− E [ℓS(βS)])

≥ σminκmin‖βS − β∗S‖2/2− 20A1d
√

q log p/n

= σminκmin A2
2q2 log p/(K2n)− 20A1 A2q2 log p/n > 0.

Thus,
inf

|S|≤q,‖βS−β∗S‖=A2K−1
√

q2 log p/n
ℓS(β∗S)− ℓS(βS) > 0.

Then by the concavity of ℓS(·), we obtain that max|S|≤q

∥∥∥β̂S − β∗S
∥∥∥ ≤ A2K−1

√
q2n−1 log p.
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On the other hand, for any ‖βS − β∗S‖ ≤ A2K−1
√

q2 log p/n,

|ℓS(β∗S)− ℓS(βS)|
≤
∣∣∣ℓS(β∗S)− E [ℓS(β∗S)]− (ℓS(βS)− E [ℓS(βS)])

∣∣∣+ |E [ℓS(β∗S)]− E [ℓS(βS)]|

≤ σmaxκmax‖βS − β∗S‖2/2 + 20A1d
√

q log p/n ≤ A3q2n−1 log p,

where A3 := 4σmaxλmax A2
2K−2 + 20A1 A2.

Appendix B. Additional Results in the Applications

Table A1. Comparison of genes selected by each competing method from the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS

STEPWISE 3 3 2 2 2 0
FR 4 2 2 2 0
LASSO 16 5 2 0
SIS+LASSO 9 2 0
SC 4 0
dgLARS 7

Note: Diagonal and off-diagonal elements of the table represent the model sizes for each method and the
number of overlapping genes selected by the two methods corresponding to the row and column, respectively.

Table A2. Selected miRNAs for ESCC training dataset.

Methods Selected miRNAs

STEPWISE miR-4783-3p; miR-320b; miR-1225-3p

FR miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

SC miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

LASSO miR-6789-5p; miR-6781-5p; miR-1225-3p; miR-1238-5p; miR-320b;
miR-6794-5p; miR-6877-5p; miR-6785-5p; miR-718; miR-195-5p

SIS+LASSO miR-6785-5p; miR-1238-5p; miR-1225-3p; miR-6789-5p; miR-320b;
miR-6875-5p; miR-6127; miR-1268b; miR-6781-5p; miR-125a-3p

dgLARS miR-891b; miR-6127; miR-151a-5p; miR-195-5p; ; miR-3688-5p
miR-125b-1-3p; miR-1273c; miR-6501-5p; miR-4666a-5p; miR-514a-3p

Note: LASSO, SIS+LASSO, dgLARS selected 20, 17 and 33 miRNAs, respectively, and we only reported top 10
miRNAs.
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Abstract: Electroencephalography/Magnetoencephalography (EEG/MEG) source localization in-

volves the estimation of neural activity inside the brain volume that underlies the EEG/MEG

measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture

model for source reconstruction and implement Ant Colony System (ACS) optimization coupled

with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our

approach is evaluated using simulation studies and a real data application in which we implement

a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the

ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model.

Keywords: ant colony system; bayesian spatial mixture model; inverse problem; nonparamteric

boostrap; EEG/MEG data

1. Introduction

Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-
invasive approaches for measuring electrical activity of the brain with high temporal
resolution. These neuroimaging techniques allow us to study brain dynamics and the
complex informational exchange processes in the human brain. They are widely used
in many clinical and research applications [1,2], though estimating the evoked-response
activity within the brain from electromagnetic fields measured outside of the skull remains
a challenging inverse problem with infinitely many different sources within the brain that
can produce the same observed data [3].

Proposed solutions to the MEG/EEG inverse problem have been based on distributed
source and dipolar methods [4]. In the case of distributed source methods, every location
on a fine grid within the brain has associated neural activation source parameters. In
this case, the number of unknown current sources exceeds the number of MEG or EEG
sensors and estimation thus requires constraints through regularization or priors to obtain
a solution. For such methods, various steps have been taken to regularize the solution
by choosing minimum-norm solutions or by limiting the spatiotemporal variation of the
solution. These approaches impose L2 or L1 [5] norm regularization constraints that serve
to stabilize and condition the source parameter estimates. However, these methods do not
consider the temporal nature of the problem. In [6], the authors propose a dynamic state-
space model that accounts for both spatial and temporal correlations within and across
candidate intra-cortical sources using Bayesian estimation and Kalman filtering. Dipolar
methods, on the other hand, assume that the actual current distribution can be explained by
a small set of current dipoles with unknown locations, amplitudes and orientations (see [4]
for review). Hence, the resulting inverse problem becomes non-linear and a number
of dipoles is to be estimated. Proposed solutions to this problem include algorithms
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such as simulated annealing [7] to address nonlinear optimization in the localization of
neuromagnetic sources.

From the perspective of Bayesian approaches, the ill-posed nature of the inverse prob-
lem requires incorporation of prior assumptions when choosing an appropriate solution
out of an infinite set of candidates. For instance, the authors of [8] consider Gaussian scale
mixture models, with flexible, large covariance components representing spatial patterns
of neural activity. The authors of [9] also propose a hierarchical linear model with Gaussian
errors in a Parametric Empirical Bayes (PEB) framework whose random terms are drawn
from multivariate Gaussian distributions and covariances factor into temporal and spatial
components at the sensor and source levels. The authors of [10] propose an application of
empirical Bayes to the source reconstruction problem with automatic selection of multiple
cortical sources. The authors of [11] developed the Mesostate-Space Model (MSM) based
on the assumption that the unknown neural brain activity can be specified in terms of a set
of locally distributed and temporally coherent meso-sources for either MEG or EEG data,
while the authors of [12] extend this approach to propose a Switching Mesostate-Space
Model (SMSM) to allow flexibility by accounting for complex brain processes that cannot
be characterized by linear and stationary Gaussian dynamics.

By extending and building on the MSM, the authors of [13] developed a Bayesian
spatial finite mixture model incorporating the following two conditions, taken directly
from [13]:

1. Relaxing the assumption of independent mixture allocation variables and modeling
mixture allocations using the Potts model, which allows for spatial dependence in
allocations.

2. Formulate the model for combined MEG and EEG data for joint source localization.

This spatiotemporal model describes a joint model that combines MEG and EEG data,
in which brain neural activity is modeled from the Gaussian spatial mixture model. The
neural source activity is described in terms of a few hidden states, with each state having
its own dynamics and a Potts model used in representing the spatial dependence in the
mixture model.

For the Bayesian mixture model formulated, an Iterated Conditional Modes (ICM)
algorithm was developed by the authors of [13] for simultaneous point estimation and
model selection for the number of mixture components in the latent process. Whilst ICM is
a very simple and computationally efficient algorithm, convergence of this algorithm is
sensitive to starting values and local optima. This issue was left unresolved in [13]. Here
we investigate the potential for finding better solutions, and focus on implementing a
population-based optimization algorithm-based Ant Colony System (ACS) [14] .

ACS is a metaheuristic optimization algorithm inspired by the biological behavior
of ants constructing solutions based on their collective foraging behavior [14]. ACS has
been successfully applied in several areas such as clustering, data mining and image
segmentation problems [15–17]. ACS is a constructive algorithm that uses an analogue of
ant trail pheromones to learn about good features of solutions in combinatorial optimization
problems. New solutions are generated using a parameterized probabilistic model, the
parameters of which are updated using previously generated solutions so as to direct
the search towards promising areas of the solution space. The model used in ACS is
known as pheromone, an artificial analogue of the chemical substance used by real ants to
mark trails from the nest to food sources. Based on this representation, each artificial ant
constructs a part of the solution based on concentration of pheromone information released
by other ants. The amount of pheromone deposited by an ant reflects the quality of the
good solutions built and the traversed path. The pheromone deposited and volatilized
adds solution components to partial solutions. After some time and based on more ants’
communications through pheromone information, they tend to follow the same optimal
paths yielding the optimal solution, in our context maximization of the posterior density.

As an alternative to the ICM algorithm, we thus implement the ACS algorithm coupled
with a local search ICM algorithm to provide a new approach to model estimation and
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potentially better estimates of the model parameters. This approach is evaluated and found
to provide significant improvements. Within the context of a simpler spatial mixture, ACS
has been implemented for a Gaussian Potts mixture model in [18] and has been shown to
outperform both the Simulated Annealing and ICM algorithms for parameter and mixture
component estimation. The theoretical guarantees associated with simulated annealing to
reach a global optimum is dependent on the choice of a cooling schedule. The choice of
an optimal cooling schedule can be difficult in practice for large spatiotemporal models.
ACS has also proved to be competitive with genetic and other optimization algorithms in
several tasks, mainly in image classification and the traveling salesman problem [19,20].

Ant Colony Optimization (ACO) algorithms are implemented to solve Constraint
Satisfaction Problems (CSP) where ACO solutions to CSP face the challenge of high cost
and low solution quality. Motivated by this challenge, the authors of [21] proposed
Ant Colony Optimization based on information Entropy (ACOE). The idea is based on
incorporating a local search that uses a crossover operation to optimize the best solution
according to the feedback of information entropy. This is performed by comparing the
difference of the information entropy between the current global best solution and the best
solution in the current iteration. Datasets from four classes of binary CSP test cases were
generated and then ACOE was implemented for comparison. Results showed that ACOE
outperformed Particle Swarm Optimization (PSO), a Differential Evolution (DE) algorithm
and Artificial Bee Colony (ABC) in terms of the solution quality, data distribution and
convergence performance.

To our knowledge, this is the first attempt at solving the neuroelectromagnetic inverse
problem for combined EEG/MEG data using a population-based optimization approach
combined with a spatial mixture model. The primary contribution of this paper is the
design and implementation of the ACS algorithm to the dynamic spatial model and its
evaluation. Importantly, we demonstrate improved results both in the estimation of neural
activity and model selection uniformly across all conditions considered.

The rest of the paper proceeds as follows. The posterior distribution of the model
and the design and implementation of the ACS algorithm are presented in Section 2. In
Section 3 our algorithm is investigated using simulation studies and comparisons made
with an existing approach developed in [13] . Section 4 provides an illustration on real
data and the development of a nonparametric bootstrap for interval estimation in a study
of scrambled face perception. The paper concludes with a conclusion and directions for
future work in Section 4.

Related Works

Merging EEG and MEG aims at accounting for information missed by one modality
and captured by the other. Fused reconstruction therefore appears promising to reach high
temporal and spatial resolutions in brain function imaging. The authors of [22] address the
added value of combining EEG and MEG data for distributed source localization, building
on the flexibility of parametric empirical Bayes, namely for EEG–MEG data fusion, group
level inference and formal hypothesis testing. The proposed approach follows a two-step
procedure by first using unimodal or multimodal inference to derive a cortical solution at
the group level, and second by using this solution as a prior model for single subject-level
inference based on either unimodal or multimodal data. Another popular approach for
non-globally optimized solutions of the MEG/EEG inverse problem is based on the use
of adaptive Beamformers (BF). However, the BFs are known to fail when dealing with
correlated sources acting like poorly tuned spatial filters with a low signal-to-noise ratio
(SNR) of the output time series and often meaningless cortical maps of power distribution.
To address this limitation, the authors of [23] developed a novel data covariance approach
to supply robustness to the beamforming technique when operating in an environment
with correlated sources. To reduce the impact of the low spatial resolution of MEG and EEG,
the authors of [24] developed a unifying framework for quantifying the spatial fidelity of
MEG/EEG source estimates. This method quantifies the spatial fidelity of MEG/EEG esti-
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mates from simulated patch activations over the entire neocortex superposed on measured
resting-state data. This approach grants more generalizability in the evaluation process that
allows for, e.g., comparing linear and non-linear estimates in the whole brain for different
Signal-to-Noise Ratios (SNR), number of active sources and activation waveforms. The
authors of [25] discuss a solution to the source reconstruction problem and developed a
novel hierarchical multiscale Bayesian algorithm for electromagnetic brain imaging using
MEG and EEG within the context of sources that vary in spatial extent. In this Bayesian
algorithm, the sensor data measurements are defined using a generative probabilistic
graphical model that is hierarchical across spatial scales of brain regions and voxels. This
algorithm enables robust reconstruction of sources that have different spatial extent, from
spatially contiguous clusters of dipoles to isolated dipolar sources.

In [26], the authors propose a methodological framework for inverse-modeling of
propagating cortical activity. Within this framework, cortical activity is represented in
the spatial frequency domain, which is more natural than the dipole domain when deal-
ing with spatially continuous activity. In dealing with multi-subject MEG/EEG source
imaging, he authors of [27] propose a sparse multi-task regression that takes into account
inter-subject variabilities known as the Minimum Wasserstein Estimates (MWE). This
work jointly localizes sources for a population of subjects by casting the estimation as
a multi-task regression problem in three key ideas. First, it proposes to use non-linear
registration to obtain subject-specific lead field matrices that are spatially aligned. Second,
it copes with the issue of inter-subject spatial variability of functional activations using
optimal transport. Finally, it makes use of non-convex sparsity priors and joint inference of
source estimates to obtain accurate source amplitudes. Various applications for MEG/EEG
source reconstruction have been applied in the clinical setting for detection of epileptic
spikes [28], identification of seizure onset zone [29] and presurgical workup of epilepsy
patients [30–32].

2. Methods

This section describes the Bayesian spatial mixture model developed in [13] and the
ACS-ICM algorithm.

2.1. Model

We provide details and mathematical description of the joint model below. Let
M(t) = (M1(t), M2(t), ..., MnM (t))′ and E(t) = (E1(t), E2(t), ..., EnE(t))

′ denote the MEG
and EEG, respectively, at time t, t = 1, . . . , T; where nM and nE denote the number of MEG
and EEG sensors, the model assumes:

M(t) = XMS(t) + ǫM(t), ǫM(t)|σ2
M

iid∼ MVN(0, σ2
M HM), t = 1, . . . , T,

E(t) = XES(t) + ǫE(t), ǫE(t)|σ2
E

iid∼ MVN(0, σ2
EHE), t = 1, . . . , T,

where XM and XE denote nM × P and nE × P forward operators, respectively computed
based on Maxwell’s equations under the quasi-static assumption [33] for EEG and MEG;
HM and HE are known nM × nM and nE × nE matrices, respectively, which can be obtained
from baseline data providing information on the covariance structure of EEG and MEG
sensor noise; and S(t) = (S1(t), . . . SP(t))′ represents the magnitude and polarity of neural
currents sources over a fine grid covering the cortical surface. In this case, P represents a
large number of point sources of potential neural activity within the brain covering the
cortical surface. It is assumed that the P cortical locations are embedded in a 3D regular
grid composed of Nv voxels to allow efficient computational implementation. Given this
grid of voxels, a mapping v : {1, ..., P} → {1, ..., Nv} is defined such that v(j) is the index
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of the voxel containing the jth cortical location. We assume a latent Gaussian mixture with
allocations at the level of voxels:

Sj(t)|µµµ(t), α, Z
ind∼

K

∏
l=1

N(µl(t), αl)
Zv(j)l , (1)

j = 1, . . . , P, t = 1, . . . , T; where ZZZ = (Z
′
1, Z

′
2, ..., Z

′
Nv
)′ is a labeling process defined

over the grid of voxels such that for each v ∈ {1, ..., Nv}, ZZZ
′
v = (Zv1, Zv2, ..., ZvK) with

Zvl ∈ {0, 1} and ∑
K
l=1 Zvl = 1; µµµ(t) = (µ1(t), µ2(t), ..., µK(t))′ = (µ1(t), µµµA(t)′)′, where

µµµA(t) = (µ2(t), ..., µK(t))′ denotes the mean of the “active” states over different com-
ponents of activity and µ1(t) = 0 for all t, so that the first component corresponds to
an “inactive” state. The variability of the lth mixture component about its mean µl(t) is
represented by αl , l = 1, . . . , K.

The labeling process assigns each voxel to a latent state and is assumed to follow a
Potts model:

P(ZZZ|β) =
exp{β ∑h∼j δ(Zj, ZhZj, ZhZj, Zh)}

G(β)
, δ(Zj, ZhZj, ZhZj, Zh) = 2Z

′
jZhZ
′
jZhZ
′
jZh − 1,

where G(β) is the normalizing constant for this probability mass function, β ≥ 0 is a
hyper-parameter that governs the strength of spatial cohesion, and i ∼ j indicates that
voxels i and j are neighbors, with a first-order neighborhood structure over the 3D regular
grid. The mean temporal dynamics for active components is assumed to follow a first-order
vector autoregressive process:

µµµA(t) = AAAµµµA(t− 1) + a(t), a(t)|σ2
a

i.i.d∼ MVN(000, σ2
a I)

t = 2, . . . , T, µµµA(1) ∼ MVN(000, σ2
µ1

III), with σ2
µ1

fixed and known, but σ2
a unknown and

assigned an inverse-Gamma (aa, ba) hyper-prior. Although in [13] a pseudo-likelihood
approximation is adopted to the normalizing constant of the Potts model and then assigned
a uniform prior to the spatial parameter to control the degree of spatial correlation, we
fixed the inverse temperature parameter and vary it as part of a sensitivity analysis.

For model selection, the number of mixture components, the value of K, in Equation (1)
will not be known prior and so it is estimated simultaneously with model parameters.
Thus this approach achieves simultaneous point estimation and model selection. We can
obtain a simple estimate for the number of mixture components based on the estimated
allocation variables Ẑ when the algorithm is run with a sufficiently large value of K. This
is achieved by running the algorithm with a value of K that is larger than the expected
number of mixture components. For example, the value of K can be set as K = 15 when
running the algorithm. The jth location on the cortex is allocated to one of the mixture
components based on the estimated value of Ẑv(j), where ẐZZv(j) = (Ẑv(j)1

, Ẑv(j)2
, . . . , Ẑv(j)K

)′

and Ẑv(j)l
= 1 if location j is allocated to component l ∈ {1, . . . , K}. When the algorithm

is run with a value of K that is large, there will result empty mixture components that
have not been assigned any voxel locations under Ẑ. In a sense these empty components
have been automatically pruned out as redundant. The estimated number of mixture
components can be obtained by counting the number of non-empty mixture components
as follows:

K̂ =
K

∑
l=1

I{
nv

∑
v=1

Ẑvl 6= 0}.

This estimator requires us to run our algorithm only once for a single value of K and
then the resulting number of mixture components assigned a location in Ẑ is determined
and K̂ ≤ K.
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2.2. Ant Colony System

Ant Colony System (ACS) is a population-based optimization algorithm introduced
in [14]. The basic structure of this algorithm is designed to solve the traveling salesman
problem in which the aim is to find the shortest path to cover a given set of cities without
revisiting any one of them. The inspiring source and development of this algorithm is the
observation of the foraging behavior of real ants in their colony. This behavior is exploited
in artificial ant colonies for the search of approximate solutions to discrete optimization
problems, for continuous optimization problems, and for important problems in telecom-
munications, such as routing and load balancing, telecommunication network design, or
problems in bioinformatics [34,35]. At the core of this algorithm is the communication be-
tween the ants by means of chemical pheromone trails, which enables them to collectively
find short paths between their nest and food source. The framework of this algorithm
can be categorized into four main parts: (1) construction of an agent ant solution, (2) local
pheromone update of the solution, (3) improving solution by local search, and (4) global
pheromone update of the best solution.

At each step of this constructive algorithm a decision is made concerning which
solution component to add to the sequence of solution components already built. These
decisions are dependent on the pheromone information, which represents the learned
experience of adding a particular solution component given the current state of the solution
under construction. The accumulated amount of pheromone mirrors the quality of the
solution constructed based on the value of the objective function. The pheromone update
aims to concentrate the search in regions of the search space containing high quality
solutions while there is a stochastic component facilitating random exploration of the
search space. In particular, the reinforcement of solution components depending on the
solution quality is an important ingredient of ACS algorithms. To learn which components
contribute to good solutions can help assembling them into better solutions. In general,
the ACS approach attempts to solve an optimization problem by iterating the following
two steps: (1) candidate solutions are constructed using a pheromone model, that is, a
parameterized probability distribution over the solution space; (2) the candidate solutions
are used to modify the pheromone values in a way that is deemed to bias future sampling
toward high quality solutions.

The posterior distribution of the dynamic model takes the form P(Θ|E, M) =
P(Θ, E, M)/P(E, M), where:

P(Θ, E, M) = P(E, M|Θ)P(Θ) = P(E|Θ)P(M|Θ)P(Θ)

=
T

∏
t=1

MVN(E(t); XES(t), σ2
EHE) ×MVN(M(t); XMS(t), σ2

M HM)

× IG(σ2
E; aE, bE)× IG(σ2

M; aM, bM)× [
p

∏
j=1

T

∏
t=1

K

∏
l=1

N(Sj(t); µl(t), αl)
Zv(j)l ]

× [
T

∏
t=2

MVN(µµµA(t); AAAµA(t− 1), σ2
a III)]×MVN(µµµA(1); 000, σ2

µ1
III)× Potts(Z; β) (2)

×
K

∏
l=1

IG(αl ; aα, bα)××[
K−1

∏
i=1

K−1

∏
j=1

N(Aij; 0, σ2
A)]× IG(σ2

a ; aa, ba)

where MVN(x; µ, Σ) denotes the density of the dim(x)-dimensional multivariate normal
distribution with mean µ and covariance Σ evaluated at x; IG(x; a, b) denotes the density
of the inverse gamma distribution with parameters a and b evaluated at x; N(x; µ, σ2)
denotes the density of the normal distribution with mean µ and variance σ2 evaluated at
x; Potts(Z; β) is the joint probability mass function of the Potts model with parameter β
evaluated at Z. Equation (2) represents the objective function to be maximized over Θ. The
goal is to optimize over Θ = {S(t), Z, µµµ(t), ααα, σ2

E, σ2
M, AAA, σ2

a }maximizing the posterior (2).
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ACS is based on set of agents, each representing artificial ants that construct solutions
as sequences of solution components. Agent ant k builds a solution by allocating label ℓ
from a set of voxel labels Λ = {1, . . . K} to the voxel s ∈ {1, ..., Nv} based on a probabilistic
transition rule pk(s, ℓ). The transition rule quantifies the probability of ant k, assigning
voxel s to label ℓ. This transition rule depends on the pheromone information τ(s, ℓ) of the
coupling (s, ℓ) representing the quality of assigning voxel s to label ℓ based on experience
gathered by ants in the previous iteration. We let:

ℓ =

{
arg maxu τ(s, u) if q ≤ qo

pk(s, ℓ) if q > qo

pk(s, ℓ) =
τ(s, ℓ)

∑u∈Λ τ(s, u)
(3)

where ℓ is a label for voxel s selected according to the transition rule above; q ∼ Uni f orm(0, 1);
qo ∈ (0, 1) is a tuning parameter. An artificial ant chooses, with probability q0, the so-
lution component that maximizes the pheromone function τ(s, ℓ) or it performs, with
probability 1− q0, a probabilistic construction step according to (3). The ACS pheromone
system consists of two update rules; one rule is applied whilst constructing solutions
(local pheromone update rule) and the other rule is applied after all ants have finished
constructing a solution (global pheromone update rule). After assigning a label to a voxel,
an ant modifies the amount of pheromone of the chosen couples (s, ℓ) by applying a local
pheromone update (4):

τ(s, ℓ)← (1− ρ)τ(s, ℓ) + ρτo (4)

where ρ ∈ (0, 1) is a tuning parameter that controls evaporation of the pheromone and τo

is the initial pheromone value. This operation simulates the natural process of pheromone
evaporation preventing the algorithm from converging too quickly (all ants constructing
the same solution) and getting trapped into a poor solution. In practice, the effect of this
local pheromone update is to decrease the pheromone values via evaporation (1− ρ)τ(s, ℓ)
on the visited solution components, making these components less desirable for the sub-
sequents ants. The value of the evaporation rate indicates the relative importance of the
pheromone values from one iteration to the following one. If ρ takes a value near 1, then
the pheromone trail will not have a lasting effect, and this mechanism increases the random
exploration of the search space within each iteration and helps avoid a too rapid conver-
gence of the algorithm toward a sub-optimal region of the parameter space, whereas a
small value will increase the importance of the pheromone, favoring the exploitation of the
search space near the current solution.

To improve all solutions constructed and also update the other model parameters, we
considered incorporating ICM as a local search method. Here, the ICM algorithm is used for
both updating the model parameters and also for a local search over the mixture allocation
variables. Thus, the update steps corresponding to ACS are combined with running ICM
to convergence at each iteration. Finally, after all solutions have been constructed by
combined ACS and ICM steps, the quality of all solutions is evaluated using the objective
function where the corresponding best solution is selected. We use a global update rule,
where pheromone evaporation is again applied on the best solution chosen. Assuming
voxel j is assigned to label v for the best solution, the global update is given as:

τ(j, v)←
{
(1− ρ)τ(j, v) + ρτo,

(1− ρ)τ(j, k), and for all k 6= v

The steps described are performed repeatedly until a change in the objective function
becomes negligible and the model parameters from the best solution are returned as the
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final parameter estimates. The optimal values for the tuning parameters (qo, τo, ρ) used
in our ACS-ICM algorithm depend on the data. The strategy we adopt for choosing the
tuning parameters is by using an outer level optimization on top of the ACS-ICM algorithm
to optimize over tuning parameters (qo, τo, ρ) within updates at the outer level based on
the Nelder–Mead algorithm [36] applied to optimize over tuning parameters.

In order to reduce the dimension of parameter space and computing time, we apply
clustering to the estimated neural sources. This is achieved by implementing a K-means
algorithm to cluster the P locations on the cortex into a smaller number of J ≤ P clusters,
assuming that Sj(t) = Sl(t) for cortical locations l, j belonging to the same cluster. We
investigated different values of J = 250, 500, 1000 in our simulation studies. Within the
ICM algorithm, the labeling process Z is updated using an efficient chequerboard updating
scheme [13]. The update scheme starts with partitioning Z into two blocks Z = {ZW , ZB}
based on a three-dimensional chequerboard arrangement, where ZW corresponds to “white”
voxels and ZB corresponds to “black” voxels. Under the Markov random field prior with
a first-order neighborhood structure, the elements of ZW are conditionally independent
given ZB, the remaining parameters, and the data E, M. This allows us to update ZW in a
single step, which involves simultaneously updating its elements from their full conditional
distributions. The variables ZB are updated in the same way.

It is well-known that the ICM algorithm is sensitive to initial values and the authors
of [13] found this to be the case with the ICM algorithm developed for the spatiotemporal
mixture model. The solution obtained, and even the convergence of the algorithm depend
rather heavily on the starting values chosen. In the case of ACS-ICM, regardless of the initial
values, the algorithm finds a better solution with the optimal tuning parameters and this
solution tends to be quite stable. This is because ACS-ICM is a stochastic search procedure
in which the pheromone update concentrates the search in regions of the search space
containing high quality solutions to reach an optimum. When considering a stochastic
optimization algorithm, there are at least two possible types of convergence that can be
considered: convergence in value and convergence in solution. With convergence in value,
we are interested in evaluating the probability that the algorithm will generate an optimal
solution at least once. On the contrary, with convergence in solution we are interested in
evaluating the probability that the algorithm reaches a state that keeps generating the same
optimal solution. The convergence proofs are presented in [37,38]. The authors of [37]
proved convergence with a probability of 1− ǫ for the optimal solution and more in general
for any optimal solution in [38] of the ACS algorithm. This supports the argument that
theoretically the application of ACS-ICM to source reconstruction should improve ICM .

The local search ICM algorithm procedure is presented in Algorithm 1 and the ACS-
ICM algorithm is presented in Algorithm 2. Convergence of the ICM algorithms is mon-
itored by examining the relative change of the Frobenius norm of the estimated neural
sources on consecutive iterations.

Algorithm 1 presents a detailed description of the ICM algorithm. The ICM algo-
rithm requires full conditional distributions of each model parameter where the mode
of the distribution is taken as the update step for the parameter. The full conditional
distribution are described and presented in [13]. This ICM algorithm is embedded in our
ACS-ICM algorithm.
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Algorithm 1 Iterated Conditional Modes (ICM) Algorithm.

1: Θ = {S(t), Z, µµµ(t), ααα, σ2
E, σ2

M, AAA, σ2
a } ← Initial Value

2: Converged← 0

3: while Converged = 0 do

4: σ2
M ←

[
∑

T
t=1

1
2

(
M(t)− XMS(t)

)′
H−1

M

(
M(t)− XMS(t)

)
+ bM

]
/
[

aM + TNM
2 + 1

]

5: σ2
E ←

[
∑

T
t=1

1
2

(
E(t)− XES(t)

)′
H−1

E

(
E(t)− XES(t)

)
+ bE

]
/
[

aE + TNE
2 + 1

]

6: σ2
a ←

[
∑

T
t=2

1
2 (µµµ

A(t)− AµAµAµA(t− 1))′(µµµA(t)− AµAµAµA(t− 1)) + ba

]
/
[

aa +
(T−1)(K−1)

2 + 1
]

7: vec(AAA)←
(

1
σ2

a

(
∑

T
t=2 µµµA(t)′KrtKrtKrt

)
×CCC−1

1

)′
, where C1 = 1

σ2
A

III(K−1)2 + 1
σ2

a

(
∑

T
t=2 KrtKrtKrt

′KrtKrtKrt

)
,

and KrtKrtKrt =
(

µµµA(t− 1)′ ⊗ IIIK−1

)

8: for l = 1, ..., K do

9: αl ←
[

P
∑

j=1

T
∑

t=1
Zv(j)l(Sj(t)−µl(t))2

2 + bα

]
/
[ T

P
∑

j=1
Zv(j)l

2 + aα + 1
]

10: end for

11: µµµ(1) ←
((

∑
P
j=1(Sj(1)~IK−1)

′DDDj +
1
σ2

a
µµµA(2)′AAA

)
× BBB−1

1

)′
, where BBB1 = ∑

P
j=1 DDDj +

1
σ2

a
A′AA′AA′A + 1

σ2
µ1

IIIK−1, DDDj = Diag(
Zv(j)l

αl
, l =

2, ..., K), ~IK−1 = (1, 1, . . . , 1)′ with dim (~IK−1) = K− 1

12: for t = 2, ..., T − 1 do

13: µµµ(t)←
((

∑
P
j=1(Sj(t)~IK−1)

′DDDj +
1
σ2

a
(µµµA(t + 1))′AAA + 1

σ2
a
(µµµA(t− 1)′AAA′)

)
× BBB−1

2

)′

where BBB2 = ∑
P
j=1 DDDj +

1
σ2

a
(A′AA′AA′A + IIIK−1)

14: end for

15: µµµ(T)←
((

∑
P
j=1(Sj(T)~IK−1)

′DDDj +
1
σ2

a
(µµµA(T − 1)′AAA′)

)
× BBB−1

3

)′

where BBB3 = ∑
P
j=1 DDDj +

1
σ2

a
IIIk−1

16: for j = 1, ..., P do

17: SSSj ← − 1
2ΣΣΣSj

WWW2j ⊲ SSSj = (Sj(1), Sj(2), ..., Sj(T))
′

ΣΣΣ−1
Sj

= W1j IT , WWW ′2j = (W2j(1), W2j(2), ..., W2j(T))

where W1j =
1

σ2
M

(
XM[, j]′H−1

M XM[, j]
)
+ 1

σ2
E

(
XE[, j]′H−1

E XE[, j]
)
+ ∑

K
l=1

Zv(j)l

αl

W2j(t) =
1

σ2
M

(
− 2M(t)′H−1

M XM[, j] + 2(∑v 6=j XM[, v]Sv(t))′H−1
M XM[, j]

)

+ 1
σ2

E

(
− 2E(t)′H−1

E XE[, j] + 2(∑v 6=j XE[, v]Sv(t))′H−1
E XE[, j]

)
− 2 ∑

K
l=1

µl(t)
αl

XM[, j], XE[, j] denote the jth column of XE and XM

18: end for

19: Let B denote the indices for “black” voxels and W denote the indices for “white” voxels.
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20: for κ ∈ B simultaneously do

21: Zκq ← 1 and Zκl ← 0, ∀l 6= q
where q = argmaxh∈{1,...,K} P(h), and

22: P(h) =
α
−TNjκ /2

h ×exp
(
− 1

2 ∑j|v(j)=κ α−1
h ∑

T
t=1(Sj(t)−µh(t))2+2β ∑v∈δκ Zvh

)

∑
K
l=1 α

−TNjκ /2

l ×exp
(
− 1

2 ∑j|v(j)=κ α−1
l ∑

T
t=1(Sj(t)−µl(t))2+2β ∑v∈δκ Zvl

)

where Njκ is the number of cortical locations contained in voxel κ.

23: end for

24: for κ ∈W simultaneously do

25: Zκq ← 1 and Zκl ← 0, ∀l 6= q
where q = argmaxh∈{1,...,K} P(h), and

26: P(h) =
α
−TNjκ /2

h ×exp
(
− 1

2 ∑j|v(j)=κ α−1
h ∑

T
t=1(Sj(t)−µh(t))2+2β ∑v∈δκ Zvh

)

∑
K
l=1 α

−TNjκ /2

l ×exp
(
− 1

2 ∑j|v(j)=κ α−1
l ∑

T
t=1(Sj(t)−µl(t))2+2β ∑v∈δκ Zvl

)

where Njκ is the number of cortical locations contained in voxel κ.

27: end for

28: Check for convergence. Set Converged = 1 if so.

29: end while

Algorithm 2 Ant Colony System (ACS)-ICM Algorithm.

1: Θ ֋ Initial Value; set tuning parameters τo, qo, ρ and Nants.

2: Initialize pheromone information τ(i, ℓ) = τo, for each (i, ℓ) ∈ {1, . . . Nv} × {1, . . . K} representing information gathered by ants.

3: Construct candidate solutions for each of Nants ants. For ant j, we find a candidate voxel labeling Z(j) = (Z
′ (j)

1 , Z
′ (j)

2 , . . . , Z
′ (j)

Nv
)′. This

is done sequentially for each ant j.

• Construct candidate by assigning label l to voxel s using the transition probability rule:

ℓ =

{
arg maxu τ(s, u) if q ≤ qo

p(s, ℓ) if q > qo

where if q > qo the label for voxel s is drawn randomly from {1, . . . , K} with probability

p(s, ℓ) =
τ(s, ℓ)

∑u∈Λ τ(s, u)
,

and where q ∼ uniform[0, 1].

• Assuming voxel s is assigned label ℓ set:
τ(s, ℓ)← (1− ρ)τ(s, ℓ) + ρτo

and for all k 6= l
τ(s, ℓ)← (1− ρ)τ(s, k)

where ρ is a tuning parameter in (0,1), which represents evaporation of the pheromone trails and τo > 0.
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4: For all ants, improve candidate solutions by running ICM to convergence (this also allows an update to the other model parameters)
Θ = {{µµµA(1), µµµA(2), ..., µµµA(T)}, {α1, α2, ..., αk}, σ2

E, σ2
M, {Sj(t), t = 1, 2 . . . , T, j = 1, 2, ..., P}, AAA, σ2

a }.

5: For all Nants solutions, evaluate the quality of each ant’s solution using objective function: P(Θ, E, M). Keep track of the best value.
The current solution for each ant serves as the starting value for the next iteration.

6: Apply global updating of the pheromone function. For the best solution, (s, ℓ) update the pheromone as follows:
Assuming voxel s is assigned label ℓ set:

τ(s, ℓ)← (1− ρ)τ(s, ℓ) + ρτo

and for all k 6= ℓ:
τ(s, ℓ)← (1− ρ)τ(s, k)

Check for convergence via increase in logP(Θ, E, M). Go back to step 3

7: Return all voxel labeling Z and model parameters Θ from the best solution.

3. Simulation Studies

In this section, we use a simulation study to evaluate the performance of our algorithm.
The simulation study assesses the quality of the source estimates and the optimized
objective function values obtained when using our proposed algorithm in comparison
to the existing ICM algorithm developed in [13]. We then make comparisons between
ACS-ICM and the ICM algorithm applied to combined simulated EEG and MEG data.

3.1. Proposed Approach

The MEG and EEG data were both generated from four scenarios with two, three, four
and nine latent states corresponding to regions of neural activity. In each of the four cases,
one of the states is inactive, while the remaining states represent different regions of brain
activity generated by Gaussian signals. The temporal profile of brain activity at each of
the brain locations in the activated regions is depicted in Appendix A, Figures A1 and A2.
We projected the source activity at 8196 brain locations from the cortex onto the MEG and
EEG sensor arrays using the forward operators XM and XE. The simulated data were
then obtained by adding Gaussian noise at each sensor, where the variance of the noise
at each sensor was set to be 5% of the temporal variance of the signal at that sensor. The
number of mixture components K was set to be the true number of latent states (either
two, three, four, or nine) in the model. We simulated 500 replicate datasets and both
ACS-ICM and ICM were applied to each dataset. For each simulated dataset we applied
our algorithm with J = 250, 500, 1000 clusters so as to evaluate how the performance varies
as this tuning parameter changes. We initialized both algorithms using the same starting
values. For each replicate we computed the correlation between the estimated sources
and the true sources Corr[(S(1)′, S(2)′, . . . , S(T)′), (Ŝ(1)′, Ŝ(2)′, . . . , Ŝ(T)′)] as a measure of
agreement. This measure was also averaged over the 500 replicate datasets to compute
average correlation. In addition, we estimated the Mean-Squared Error (MSE) of the
estimator Ŝj(t) based on the R = 500 simulation replicates for each brain location j and time
point t. The Total MSE (TMSE) was computed by adding all the MSE’s over brain locations
and time points. This was done separately for locations in active and inactive regions.

In our simulation studies, the ACS-ICM algorithm had four tuning parameters. The
first denoted as qo ∈ (0, 1) controlled the degree of stochasticity, with larger values
corresponding to less stochasticity and thus less random exploration of the parameter
space. When a solution is chosen, another tuning parameter τ0 controlled the amount of
pheromone reinforcing this solution in the information available to the other ants. A third
tuning parameter ρ controlled the evaporation of pheromone, and finally a fourth tuning
parameter Nants controlled the number of ants. The number of ants (Nants) was fixed at 10,
a value for which we have seen generally good performance. This was chosen based on
computing efficiency and similar results (objective function values) from using Nants ≥ 10.
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The remaining optimal tuning parameters (qo, τ0, ρ) for all simulations cases were chosen
using an outer level optimization using the Nelder–Mead algorithm.

3.2. Simulation Results
3.2.1. Evaluation of Neural Source Estimation

We present the average correlation between the estimated values and the truth for
the algorithms considered in our study in Appendix A, Table A1. Inspecting Table A1,
we observe that for all cases considered for the true number of latent states (either two,
three, four, or nine), the estimates obtained from the ACS-ICM algorithm yielded a higher
average correlation than those obtained from ICM. In addition, with respect to the number
of clusters, ACS-ICM resulted in a higher average correlation than ICM uniformly for
all cluster sizes (250, 500, 1000). In summary, the average correlation was significantly
improved when estimates were computed using the ACS-ICM algorithm for both large
and small numbers of latent states as well as cluster sizes. In addition, we present in
Appendix A, Figure A4, violin plots comparing the correlation values obtained from each
of the algorithms for different simulation cases across all replicates. These plots show
the entire distribution and provide a better assessment of each algorithm for simulation
replicates. Observing Figure A4, we can see that ACS-ICM provides the highest correlation
values uniformly in all simulation scenarios.

The TMSE for all simulation scenarios is presented in Appendix A, Table A2. To im-
prove the readability of the results from TMSE values, we computed the relative percentage
improvement in TMSE of the neural source estimators from ICM to ACS-ICM. Here, using
ICM as the reference algorithm, the relative percentage improvement is defined as the ratio
of the difference in TMSE between ICM and ACS-ICM to its ICM TMSE value multiplied by
100. The results of this computation are presented in Table 1. In all simulation scenarios for
Table 1, ACS-ICM performed better and showed a significant improvement as compared
to ICM. Specifically with respect to the number of clusters, ACS-ICM was roughly 10%
better than ICM with respect to TMSE when the cluster size was 250. For both small and
large numbers of latent states, ACS-ICM was better than ICM in the active region with
significant improvements. This shows that ACS-ICM outperforms ICM in active regions
using both small and large numbers of latent states. The total MSEs were decomposed into
total variance and total squared bias for the same distinct cases of the simulation depicted
in Table 1. From the results, when we considered active regions with different numbers
of clusters, and observed that ACS-ICM was better than ICM based on the total squared
bias due to the percentage of relative change. Based on the total variance we also noticed a
similar positive change from ICM to ACS-ICM uniformly for all values of K. It is also clear
that for inactive regions, ACS-ICM was better than ICM for both total variance and squared
bias for all simulation cases considered. Overall, these results from the TMSE demonstrate
a significant improvement obtained from our algorithm when considering total squared
bias and variance for our simulation studies. This improvement was observed uniformly
across all conditions.

We present in Figure 1 boxplots comparing the final objective function values obtained
from each of the algorithms for the different simulation scenarios across all replicates.
Again, a clear pattern emerged showing that ACS-ICM yielded the highest objective
function values uniformly in all cases. Overall, ACS-ICM outperformed the ICM algorithm
uniformly with respect to both neural source estimates and the values of the objective
function. This indicates the superiority of the ACS-ICM algorithm over ICM for computing
neural source estimates for the spatiotemporal model.

3.2.2. Evaluation of Mixture Component Estimation

In addition to evaluating point estimation and objective function maximization, we
also evaluated model selection, comparing K̂ACS and K̂ICM, that is, the estimators obtained
from ACS-ICM and ICM, respectively. We focused on estimating the number of mixture
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components and evaluating the sampling distribution of K̂ACS and K̂ICM. The following
five scenarios were considered in our experiments:

1. Two latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (a).

2. Three latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (c).

3. Four latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (e).

4. Four latent states with Gaussian and sinusoidal source activity in the active regions
depicted in Appendix A, Figure A1, panel (g).

5. Nine latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A2, panel (a).

Table 1. Simulation study I-Percentage of relative improvement in Total Mean-Squared Error (TMSE) of the neural source
estimators decomposed into variance and squared bias from ICM to ACS-ICM. This total was obtained separately for
locations in active regions and then for the inactive region.

Active Region Inactive Region

Algorithm Clusters TMSE (%) (Bias)2 Variance TMSE (%) (Bias)2 Variance
% % % % % %

K = 2

ICM→ACS-ICM 250 9.78 11.11 8.93 9.93 6.15 13.16
ICM→ACS-ICM 500 6.63 4.39 8.57 9.48 9.71 9.26
ICM→ACS-ICM 1000 2.95 2.04 4.03 3.86 1.57 5.70

K = 3

ICM→ACS-ICM 250 5.10 7.80 2.76 4.97 4.31 5.60
ICM→ACS-ICM 500 24.85 25.42 24.31 15.89 18.26 13.61
ICM→ACS-ICM 1000 36.57 53.61 20 10.83 10 11.61

K = 4

ICM→ACS-ICM 250 12.24 11.11 12.88 8.90 14.19 4.94
ICM→ACS-ICM 500 17.94 14.75 20.71 2.86 3.10 2.64
ICM→ACS-ICM 1000 29.28 30.30 30.65 2.76 3.62 2.06

K = 9

ICM→ACS-ICM 250 31.14 22.77 27.65 15.44 13.07 17.58
ICM→ACS-ICM 500 14.83 11.40 18.20 17.0 20.39 13.71
ICM→ACS-ICM 1000 23.79 25.52 22.08 8.65 7.03 10.14
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Figure 1. Box-plots comparing the objective function values obtained in the simulation studies for the ICM and ACS-ICM
algorithms. The first row corresponds to the case when K = 2, second row corresponds to when K = 3, third row is when
K = 4 and the last row is when K = 9.
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We simulated the data for each of the five scenarios considered, and added 5% Gaus-
sian noise at the sensors with 1000 replicate datasets used in each case. The algorithms
were run with an upper bound of K = 10 for each of the 5000 simulated datasets. For
each dataset, we computed the value of the estimator, and histograms representing the
sampling distributions are presented in Figure 2, for each of the five cases above illustrating
the sampling distribution of K̂ICM (panels (a)–(e)) and K̂ACS (panels (f)–(j)) corresponding
to the first and second row, respectively. Observing Figure 2, where the true signals are
well separated in the simulation experiments, in all cases except for the case with a larger
number of latent states (K = 9), the mode of the sampling distributions corresponds to the
true number of latent states for both the ACS-ICM and ICM algorithms. In the case of nine
neural sources, ACS-ICM gave better and improved results than ICM. Additionally, Table 2
reports both the bias and mean-squared error of the estimators from ACS-ICM (K̂ACS) and
ICM (K̂ICM). From Table 2, both ACS-ICM and ICM are biased and over-estimated for
the small number of latent states but underestimated for the large number of latent states.
More importantly, the estimate for the number of mixture components obtained from ACS-
ICM exhibited the best performance in terms of both bias and MSE uniformly for all cases
considered. This is based on |Bias(K̂ACS)| < |Bias(K̂ICM)| and MSE(K̂ACS) < MSE(K̂ICM).

We repeated the simulation studies for all five cases but where true signals are less
well separated by altering the true signals depicted in Appendix A, Figure A3. We present
histograms depicted in Figure 3, for each of the five cases above, illustrating the sampling
distribution of K̂ICM (panels (a)–(e)) and K̂ACS (panels (f)–(j)). In this case, the mode of the
sampling distribution corresponds to the true number of latent states when K = 2 and K =
3 but not for the case with four and nine latent states with both algorithms. In Table 2 we
compare the bias and mean square error of K̂ICM and K̂ACS under this simulation settings.
Similarly, under these settings, ACS-ICM outperformed ICM in terms of the bias and
mean square error; thus, |Bias(K̂ACS)| < |Bias(K̂ICM)| and MSE(K̂ACS) < MSE(K̂ICM). In
summary, for model selection, based on the results presented in Table 2, ACS-ICM showed
an overall better performance over ICM uniformly for all eight conditions considered.

Whereas the ACS-ICM algorithm showed superiority in terms of quality of source
estimates, a drawback is that it is computationally expensive relative to ICM due to its
population-based and iterative procedure. Notwithstanding, this might not be a serious
challenge for source localization problems, which do not require real-time solutions in
most situations. With regards to computation time, on the Niagara cluster running R
software on a single core (Intel Skylake 2.4 GHz, AVX512), ICM computed source estimates
in approximately 2 min whereas ACS-ICM computed estimates in roughly 6 h and 30 min.

Table 2. Simulation study II—bias and Mean Square Error (MSE) of estimated number of mixture components (K̂) from the
1000 simulation replicates when the algorithms were run with K = 10.

K = 2 K = 3 K = 4 K = 9

Algorithm Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂)

The case where the true signals were well-separated

ICM 0.11 0.13 0.06 0.42 0.20 0.44 −2.54 6.19
ACS-ICM 0.04 0.06 0.02 0.38 0.10 0.31 −2.01 4.46

The case where the true signals were less well-separated

ICM 0.11 0.13 0.525 0.58 −1.02 1.63 −4.83 16.12
ACS-ICM 0.05 0.07 0.35 0.41 −1.00 1.31 −3.68 10.47
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Figure 2. Histograms illustrating the sampling distribution of K̂ in the case where the true signals were well separated in
the simulation studies. The first row corresponds to the sampling distribution of K̂ICM; panel (a), K = 2; panel (b), K = 3;
panel (c), K = 4 with three Gaussian signals; panel (d), K = 4 with two Gaussian signals and one sinusoid; panel (e), K = 9
with eight Gaussian signals. The second row corresponds to the sampling distribution of K̂ACS; panel (f), K = 2; panel (g),
K = 3; panel (h), K = 4 with three Gaussian signals; panel (i), K = 4 with two Gaussian signals and one sinusoid; panel (j),
K = 9 with eight Gaussian signals. In each case the vertical red line indicates the true number of latent states underlying the
simulated data.

130



Entropy 2021, 23, 329

Figure 3. Histograms illustrating the sampling distribution of K̂ in the case where the true signals were less well-separated
in the simulation studies. The first row corresponds to the sampling distribution of K̂ICM; panel (a), K = 2; panel (b), K = 3;
panel (c), K = 4 with three Gaussian signals; panel (d), K = 4 with two Gaussian signals and one sinusoid; panel (e), K = 9
with eight Gaussian signals. The second row corresponds to the sampling distribution of K̂ACS; panel (f), K = 2; panel (g),
K = 3; panel (h), K = 4 with three Gaussian signals; panel (i), K = 4 with two Gaussian signals and one sinusoid; panel (j),
K = 9 with eight Gaussian signals. In each case the vertical red line indicates the true number of latent states underlying the
simulated data.

4. Application to Scrambled Face Perception MEG/EEG Data

In this section, we present the application of our methodology for comparison with
EEG and MEG data measuring an event-related response to the visual presentation of
scrambled faces in a face perception study. In addition, we demonstrate how a nonpara-
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metric bootstrap can be used to obtain standard errors, confidence intervals and T-maps.
The data from both MEG and EEG were obtained from a single subject in an experimental
paradigm that involved repeated random presentation of a picture showing either a face
or a scrambled face while the subject was required to make a symmetry judgement. The
scrambled faces were created through 2D Fourier transformation, random phase permuta-
tion, inverse transformation and outline-masking of each face. The experiment involved a
sequence of trials, each lasting 1800 ms, where in each trial the subject was presented with
one of the pictures for a period of 600 ms while being required to make a four-way, left–
right symmetry judgment while brain activity was recorded over the array. Both scrambled
faces and unscrambled faces were presented to the subject; however, our analysis will focus
only on trials involving scrambled faces. This produced a multivariate time series for each
trial, and the trial-specific time series were then averaged across trials to create a single
multivariate time series; the average evoked response is depicted in Figure 4, panel (a),
for MEG data, and panel (c), for EEG data. Looking from a spatial perspective, at a given
time point, each array recorded a spatial field such as that depicted in Figure 4, panel (b),
which shows the MEG spatial field at a particular time point, and Figure 4, panel (d), which
shows the EEG spatial field at the same time point. The degree of inter-trial variability was
quite low. This experiment was conducted while EEG data were recorded, and then again
on the same subject while MEG data were recorded.

The EEG data were acquired on a 128-sensors ActiveTwo system with a high sampling
rate of 2048 Hz and down-sampled to 200 Hz. The EEG data were re-referenced to the
average over good channels. The resulting EEG data were a trial-specific multivariate time
series and contained 128 sensors, 161 time points and 344 trials. For real data analysis, the
trial-specific time series were averaged across trials to produce a single average evoked
response. The MEG data were acquired on 274 sensors with a CTF/VSM system, with
a high sampling rate of 480 Hz and down-sampled to 200 Hz. The MEG data obtained
were a trial -specific multivariate time series and contained 274 sensors, 161 time points
and 336 trials. We obtained a temporal segment of the data from time point t = 50 to
t = 100, resulting in 51 time points for both the EEG and MEG data. The trial-specific
time series were averaged across trials to produce a single average evoked response.
Detailed description of the data and related analysis can be found in [9,39,40]. In addition,
a link to the open access data repository used for analysis can be found here: https:
//www.fil.ion.ucl.ac.uk/spm/data/mmfaces (accessed on 14 November 2020).

We set the upper bound at K = 10 mixture components, voxels as nv = 560, β = 0.3
(hyperparameter of Potts model) and a cluster size of J = 250. For our real data application,
the optimal tuning parameters (qo, τ0, ρ, Nants) = (0.43, 0.05, 0.64, 10) were selected simi-
larly using the Nelder–Mead algorithm. First, the ICM algorithm was run to convergence
and the estimates obtained were used as the initial values for the ACS-ICM algorithm.
Our primary interest lies in the estimated neural sources Ŝ(t) and we computed the total
power of these estimated sources obtained from both algorithms at each brain location,
which was then mapped onto the cortex. The cortical maps showing the spatial patterns
from the estimated power of the reconstructed sources are displayed in Figure 5. The first
and second row depict the corresponding results obtained from the ICM and ACS-ICM
algorithms, respectively. As shown in Figure 5, the greatest power occurred on the bilateral
ventral occipital cortex for both estimated sources from the ACS-ICM and ICM algorithms.
Interestingly, the results from ACS-ICM estimates also differed when compared with the
results from ICM in the left ventral frontal and right ventral temporal regions. In particular,
the ACS-ICM estimate detected higher power, whereas ICM showed low activation in
these regions. The estimated source locations of these region is responsible for high-level
visual processing. Therefore, the cortical power map seems to represent regions that would
be expected to show scrambled face-related activity. To compare the general quality of
the estimates from ACS-ICM versus ICM, we show the plot of the final objective function
values obtained from the algorithms in Figure 6. We see clearly that the application of
ACS-ICM has led to higher quality estimates with much larger posterior density values.
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The ACS-ICM algorithm used to maximize the posterior distribution produces only
point estimates of the neural source activity. In addition to the point estimates, we applied
a nonparametric bootstrap on the trial-specific multivariate time series to obtain confi-
dence interval estimates and characterize the variability in our source estimates, which
is another extension to [13]. The interval estimates were constructed by resampling the
trial-specific MEG/EEG time series data with replacement. From each resampled dataset,
we obtained the average evoked response and then run the ACS-ICM algorithm for a total
of 400 nonparametric bootstrap replicates. This procedure was made feasible using parallel
computation on a large number of computing cores. We constructed a cortical map of the
bootstrap standard deviations of the total power of the estimated source. To account for
uncertainty in our point estimates, we constructed a T-map and this is depicted in Figure 7.
A T-map is the ratio of the ACS-ICM point estimate of the source activity to its bootstrap
standard deviations. The T-map represents the best depiction of reconstructed power since
it accounts for standard errors that a simple map of the point estimates does not. Broadly,
the T-map seems to indicate similar results to those obtained from point estimates, in
particular with respect to high power activation on the bilateral ventral occipital cortex and
right ventral temporal region. An interesting observation from the T-map is the detection of
a high signal in the left ventral temporal region but a low activation from the point estimate.

Figure 4. The Magnetoencephalography (MEG) and Electroencephalography (EEG) data considered in the face perception
study: panels (a,c) show the time series observed at each MEG sensor and EEG sensor, respectively; panels (b,d) depict
the spatially interpolated values of the MEG data and the EEG data, respectively, each observed at t = 80, roughly 200 ms
after presentation of the stimulus. In panels (b,d) the black circles correspond to the sensor locations after projecting these
locations onto a 2-dimensional grid (for presentation).
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Figure 5. Brain activation for scrambled faces—the power of the estimated source activity ∑
T
t=1 Ŝj(t)

2 at each location j of
the cortical surface. Row 1 displays results from our ICM algorithm applied to the combined MEG and EEG data; Row

2 displays results from ACS-ICM applied to the combined MEG and EEG data.

Figure 6. Objective function values obtained from the data with the ACS-ICM (left) and ICM (right) algorithms.

In addition, we present the temporal summary from our bootstrap replicates represent-
ing the interval estimation for the estimated temporal profile of brain activity at the peak
location of the T-map. The interval estimate represents a 95% confidence interval depicted
in Figure 8. One of the key components of our work is varying the inverse temperature
parameter for sensitivity analysis. We fixed the inverse temperature at β = (0.1, 0.44) and
run the ACS-ICM algorithm to convergence. We run our algorithm together with K = 10,
nv = 560 and a cluster size of J = 250. For β = 0.1, the corresponding results obtained are
depicted in the first row of Figure 9. The results indicate activation on the bilateral ventral
occipital cortex. Additionally, at β = 0.44, the power map results from ACS-ICM, depicted
in the second row of Figure 9, differ when compared with results from ACS-ICM at β = 0.1
In particular, the highest power signals occured in the right ventral temporal region where
there was low activation for using β = 0.1.

For our real data application we applied both algorithms with J = 500 clusters so as
to evaluate how the performance varies as this tuning parameter changes. The results are
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displayed in Appendix B. The corresponding results obtained from ACS-ICM are displayed
in the second row of Figure A5. Examining Figure A5, ACS-ICM seems to indicate similar
results to those obtained from using a tuning parameter of J = 250, in particular with
respect to activation on the bilateral ventral occipital cortex. For our sensitivity analysis, we
present results obtained from using inverse temperature (β = 0.1 and β = 0.44) displayed
in Figure A6. We observe that from ACS-ICM, the spatial spread of the high power occurs
on the bilateral ventral occipital cortex. In addition, source estimates obtained from ACS-
ICM indicate bilateral activation in the occipital cortex, and activation in the right temporal
and right frontal regions of the brain. These estimated source locations reveal activation
in areas known to be involved in the processing of visual stimuli. More interestingly,
ACS-ICM also detected high power in a region on the corpus callosum; given that the
inverse problem is ill-posed with an infinite number of possible configurations this may be
the reason.

In our real data analysis, the required computation time for ICM was 3 min on a
single core (Intel Skylake 2.4 GHz, AVX512) with R software, whereas the computation
time for the ACS-ICM was roughly 7 h. The choice of cluster size will have an impact on
the computational time required by the algorithm. With regards to ACS-ICM, the required
computing time for a cluster size of 250 was approximately 7 h, whereas for a cluster
size of 500, ACS-ICM required 12 h of computing time. While there is a substantially
increase in computation, the paper has demonstrated uniform improvements in the quality
of the solutions, in terms of both source estimation and model selection. Furthermore, the
bootstrap can be implemented in parallel on a computing cluster to obtain standard errors
with no increase to the required computation time.

Figure 7. The spatial profile of brain activity from ACS-ICM based on our bootstrap replicates. Row 1 displays standard
deviations of the total power of the estimated source activity; Row 2 displays the T-map.
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Figure 8. The 95% confidence interval for the estimated temporal profile of brain activity at the peak
location of the T-map from the bootstrap replicates.

Figure 9. Brain activation for scrambled faces—the power of the estimated source activity ∑
T
t=1 Ŝj(t)

2 at each location j of
the cortical surface. Row 1 displays results from our ACS-ICM algorithm applied to the combined MEG and EEG data with
β = 0.1; Row 2 displays results from ACS-ICM applied to the combined MEG and EEG data with β = 0.44.

Residual Diagnostics for the Scrambled Faces MEG and EEG Data

We assessed the goodness of fit of the model by checking the residual time series plot,
normal quantile–quantile plot and residuals versus fitted values after running the ACS-ICM
and ICM algorithms. This was done by computing the residuals for both EEG and MEG
after applying both algorithms. The residuals were computed as ǫ̂M(t) = M(t)− XMŜ(t)
and ǫ̂E(t) = E(t)− XEŜ(t) at each time point t = 1, . . . , T. The assumption made for the
residuals was that they should be draws from a mean-zero Gaussian distribution if the
assumed model generated the observed data. The residual time series plot for EEG and
MEG from the ACS-ICM algorithm is displayed in Figure 10, panels (a) and (b). The plots
from Figure 11, panels (a) and (b), also depicts residuals time series plots obtained from
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ICM for EEG and MEG, respectively. Examining the plots, the residual time series plots
obtained from both algorithms exhibit similar patterns for MEG and EEG. However, there
are significant improvements seen in estimates from ACS-ICM. Specifically for the EEG
data, there are sensors with relatively large peaks remaining from the ICM but significant
improvements from ACS-ICM as we observe no fewer residuals patterns relative to ICM.
In the case of MEG data, we observe that the residuals obtained from ACS-ICM reveal few
sensors with peaks remaining as compared to ICM, where there are more sensors with
large peaks and residuals.

In Figures 10 and 11, panels (c) and (d), we show plots of the residuals versus fitted
values from ACS-ICM and ICM. For the EEG data, the ACS-ICM residuals reveal fewer
extreme values with smaller residual patterns but more outliers are seen in the residuals
obtained from ICM comparably. The residuals obtained from ICM are characterized by
higher values to the left of zero and lower values to the right of zero. In the case of
MEG data, the residuals obtained from ACS-ICM also show fewer extreme values with
a smaller residual pattern but a similar resemblance for residuals obtained from the ICM
algorithm with few extreme values outside the zero band. We observe more extreme values
in the residual plot obtained from ICM than that obtained from ACS-ICM. This signifies
improvements of the ACS-ICM algorithm over ICM. Inspecting Figure 10, panels (e) and (f),
reveals normal quantile–quantile plots for the EEG and MEG residuals obtained from the
ACS-ICM algorithm. There is no deviation from normality observed from the EEG and
MEG data. Hence, the Gaussian assumption holds from using the ACS-ICM algorithm. In
the case of the ICM, in Figure 11, panels (e) and (f) depict the normal quantile–quantile
plots for the EEG and MEG data. In this case we observe a clear divergence from the normal
distribution for the EEG and MEG residuals. In particular, we see a strong deviation from
normality in the left and right tail of the distribution for the EEG data. There is also a
deviation from normality in the right tail of the distribution for the MEG data.

In summary, the residual analysis revealed the use of the ACS-ICM algorithm resulted
in estimates with a better fit of the spatial mixture model for the EEG and MEG data relative
to ICM. Thus our proposed approach leads to improvements in point estimation and model
selection uniformly in all settings in simulation studies and in our application with larger
objective function values and improved model fit based on residual analysis.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)

Figure 10. Brain activation for scrambled faces using the ACS-ICM algorithm—residual diagnostics: time series of residuals,
(a) EEG, (b) MEG; residuals versus fitted values, (c) EEG, (d) MEG; residual normal quantile–quantile plots, (e) EEG,
(f) MEG.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. Brain activation for scrambled faces using icm algorithm—residual diagnostics: time series of residuals, (a) EEG,
(b) MEG; residuals versus fitted values, (c) EEG, (d) MEG; residual normal quantile–quantile plots, (e) EEG, (f) MEG.

5. Discussion and Conclusions

In this section, we provide numerical results obtained in the data analysis, limitations
of the proposed approach and the prospects for future research. We have developed
an ACS-ICM algorithm for spatiotemporal modeling of combined MEG/EEG data for
solving the neuroelectromagnetic inverse problem. Adopting a Bayesian finite mixture
model with a Potts model as a spatial prior, the focus of our work has been to improve
source localization estimates, model selection and model fit. The primary contribution
is the design and implementation of the ACS-ICM algorithm as an approach for source
localization that result in better performance over ICM, which is very positive uniformly in
every setting on simulation studies and real data application. Another key development is
the technique implemented in choosing the tuning parameters for the ACS-ICM by using
an outer level optimization that numerically optimizes the choice of the tuning parameters
for this algorithm. This strategy ensures that the optimal tuning parameters based on the
data and problem complexity are selected.

5.1. Numerical Results

In our simulation studies, we observed four significant improvements associated with
ACS-ICM over ICM: (1) ACS-ICM neural source estimates provided improved correlation
between estimated and truth sources uniformly across all settings considered; (2) the
objective function values obtained from the posterior density values for ACS-ICM were
larger than those obtained from ICM uniformly across all settings considered; (3) ACS-ICM
showed significant improvement with respect to the total mean square error for all cluster
sizes considered compared to ICM; (4) ACS-ICM exhibited improved performance in terms
of both bias and mean square error for the non-regular problem of estimating number of
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mixture components. Moreover, the application of ACS-ICM to real data led to higher
quality estimates with larger maximized posterior density values. These improvements
have demonstrated the advantage of the ACS-ICM algorithm when compared with ICM
in both the face perception analysis as well as the simulation studies. In addition to
implementing the ACS-ICM algorithm for point estimation, we demonstrated how a
nonparametric bootstrap can be used to obtain standard errors, confidence intervals and
T-maps for the proposed methodology. This was done to account for uncertainty in our
point estimates of the neural source activity.

5.2. Limitations of the Proposed Approach

An important limitation of the simulation studies is the use of white noise added to
the signals. This is because MEG/EEG data would have structured noise that arise from,
e.g., motion, and such noise would be spatially correlated. The spatially correlated noise
will make the simulation scenarios more challenging, which we expect to result in a decline
in performance. We did not pursue this scenario in our simulation and we will consider it
in our future studies.

5.3. Prospects for Future Research

In our current work, we are implementing ACS-ICM for the spatial mixture model
developed in [13]. We hope in the future to extend the model by considering a robust
error structure in the MEG/EEG model. The model currently assumes that the errors are
independent in time. This will be extended by allowing for an autoregressive structure.
A second extension would be to relax the assumption that the errors have a Gaussian
distribution by incorporating a multivariate t distribution for the error terms. Integrating
these extensions, we will develop a new joint model for the MEG/EEG data and implement
the ACS-ICM and ICM algorithms for the neuroelectromagnetic inverse problem.

Furthermore, when we obtained the source estimates from the ACS-ICM algorithm,
we mapped a function of them (the total power) on the cortex and in that map we used
no thresholding. That is to say, the locations were not thresholded so we can see all the
locations with estimated power. For our future studies we hope to map the total power on
the cortex with a threshold so that we can see the locations with highest power. In a better
way to choose the threshold, our next objective is to extend this work by implementing
thresholding of cortical maps using random field theory [41]. Random field theory is
mainly applied in dealing with thresholding problems encountered in functional imaging.
This is used to solve the problem of finding the height threshold for a smooth statistical
map, which gives the required family-wise error rate. In going forward with our current
work, the idea is to take the point estimate obtained from ACS-ICM and standard errors
(obtained from bootstrap) to provide estimates of p-values for t-statistics pertaining to the
number of activated voxels comprising a particular region.

It should be noted that the ACS-ICM algorithm and spatial model developed can also
be applied to studies involving multiple subjects. Expanding from a single subject model
to a model developed for multiple subjects would be of great interest for the MEG/EEG
inverse problem. This will be based on developing a fully Bayesian analysis based on a
divide and conquer Markov Chain Monte Carlo (MCMC) method [42]. This approach
for Bayesian computation with multiple subjects is to partition the data into partitions,
perform local inference for each piece separately, and combine the results to obtain a global
posterior approximation.
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Figure A1. The true signal Sj(t) used in each of the distinct active and inactive regions in the simulation studies of Section 3
for K = 2; panel (a), K = 3; panel (c) and K = 4; panel (e) & (g) are depicted in the left column. The right column presents
the true partition of the cortex into active and inactive states for the corresponding states for K = 2; panel (b), K = 3; panel
(d) and K = 4; panel (f) & (h).

Table A1. Simulation study I—Average (Ave.) correlation between the neural source estimates and
the true values for the ICM and ACS-ICM algorithms. The simulation study is based on R = 500
simulation replicates where each replicate involves the simulation of MEG and EEG data based on a
known configuration of the neural activity depicted in Appendix A, Figures A1 and A2.

K = 2 K = 3 K = 4 K = 9

Algorithm Clusters Ave. Corr. Ave. Corr. Ave. Corr. Ave. Corr.

ICM 250 0.60 0.63 0.62 0.54
ACS-ICM 250 0.64 0.67 0.63 0.59
ICM 500 0.53 0.55 0.49 0.44
ACS-ICM 500 0.56 0.61 0.53 0.46
ICM 1000 0.41 0.43 0.40 0.37
ACS-ICM 1000 0.46 0.47 0.45 0.43
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Figure A2. The true signal Sj(t) in panel (a) and true partition of the cortex into active and inactive states for the case of
K = 9 states (panel b–f) used in simulation studies of Section 3.
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Figure A3. The true signal Sj(t) used in in each of the distinct active and inactive regions for K = 2; panel (a), K = 3; panel
(b), K = 4; panel (c) & (d), K = 9; panel (e) in the simulation study of Section 3.2, in the second part of the study where the
mixture components were less well separated.
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Table A2. Simulation study I—Total Mean-Squared Error (TMSE) of the neural source estimators decomposed into variance
and squared bias for the ICM and ACS-ICM algorithms. This total was obtained separately for locations in active regions
and then for the inactive region.

Active Region Inactive Region

Algorithm Clusters TMSE (Bias)2 Variance TMSE (Bias)2 Variance

K = 2

ICM 250 92 36 56 141 65 76
ACS-ICM 250 83 32 51 127 61 66
ICM 500 196 91 105 211 103 108
ACS-ICM 500 183 87 96 191 93 98
ICM 1000 271 147 124 285 127 158
ACS-ICM 1000 263 144 119 274 125 149

K = 3

ICM 250 490 237 253 523 255 268
ACS-ICM 250 465 219 246 497 244 253
ICM 500 1203 582 621 705 345 360
ACS-ICM 500 904 434 470 593 282 311
ICM 1000 1657 817 840 674 321 353
ACS-ICM 1000 1051 379 672 601 289 312

K = 4

ICM 250 776 378 396 674 289 385
ACS-ICM 250 681 336 345 614 248 366
ICM 500 1404 651 753 804 387 417
ACS-ICM 500 1152 555 597 781 375 406
ICM 1000 2493 1100 1393 796 359 437
ACS-ICM 1000 1763 797 966 774 346 428

K = 9

ICM 250 2100 918 1182 1541 727 814
ACS-ICM 250 1446 709 737 1303 632 671
ICM 500 2515 1246 1269 1260 618 642
ACS-ICM 500 2142 1104 1038 1046 492 554
ICM 1000 3561 1720 1839 1549 740 809
ACS-ICM 1000 2714 1281 1433 1415 688 727
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Figure A4. Violin plots comparing the correlation values obtained in the simulation studies for the ICM and ACS-ICM
algorithms. The first row corresponds to the case when K = 2, the second row corresponds to when K = 3, the third row is
when K = 4 and the last row is when K = 9.
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Appendix B

We present results from the ACS-ICM and ICM algorithms with tuning parameters
for the cluster size of 500. The cortical maps displaying the spatial patterns of the total
power for estimated sources are represented below.

Figure A5. Brain activation for scrambled faces—the power of the estimated source activity ∑
T
t=1 Ŝj(t)

2 at each location
j of the cortical surface. Row 1 displays results from our ICM algorithm applied to the combined MEG and EEG data;
Row 2 displays results from ACS applied to the combined MEG and EEG data.

Figure A6. Brain activation for scrambled faces—the power of the estimated source activity ∑
T
t=1 Ŝj(t)

2 at each location j

of the cortical surface. Row 1 displays results from our ACS applied to the combined MEG and EEG data with β = 0.1;
Row 2 displays results from ACS applied to the combined MEG and EEG data with β = 0.44.
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Figure A7. The spatial profile of brain activity from ACS-ICM based on our bootstrap replicates. Row 1 displays standard
deviations of the total power of the estimated source activity; Row 2 displays the T-map.
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Abstract: Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta.
Once ruptured AAA (rAAA) happens, repairing procedures need to be applied immediately, for which
there are two main options: open aortic repair (OAR) and endovascular aortic repair (EVAR). It is of
great clinical significance to objectively compare the survival outcomes of OAR versus EVAR using
randomized clinical trials; however, this has serious feasibility issues. In this study, with the Medicare
data, we conduct an emulation analysis and explicitly “assemble” a clinical trial with rigorously
defined inclusion/exclusion criteria. A total of 7826 patients are “recruited”, with 3866 and 3960 in the
OAR and EVAR arms, respectively. Mimicking but significantly advancing from the regression-based
literature, we adopt a deep learning-based analysis strategy, which consists of a propensity score step,
a weighted survival analysis step, and a bootstrap step. The key finding is that for both short- and
long-term mortality, EVAR has survival advantages. This study delivers a new big data strategy for
addressing critical clinical problems and provides valuable insights into treating rAAA using OAR
and EVAR.

Keywords: abdominal aortic aneurysm; emulation; deep learning; Medicare data

1. Introduction

Abdominal aortic aneurysm (AAA) is a balloon-like dilatation of the aorta that supplies blood
to the body and happens below the chest. Each year, it is estimated that 200,000 people in the U.S.
are diagnosed with AAA, and ruptured AAA (rAAA) poses significant clinical and public health
challenges [1]. rAAA is associated with an overall mortality rate of over 80%, which causes more
than 5000 deaths in the country each year [2,3]. Once rAAA occurs, repairing procedures need to be
conducted immediately. In the current clinical practice, there are two main approaches: emergent open
aortic repair (OAR) and endovascular aortic repair (EVAR). OAR has a relatively longer history
and is still considered as the standard procedure for AAA repair, during which large incisions are
unavoidable [4]. EVAR was first successfully conducted and reported in 1994, and only small incisions
in the groins are needed [5]. However, this circumvented procedure makes EVAR require more
intense monitoring and probable reintervention [6]. Moreover, preoperative imaging and specific
anatomic requirements make EVAR less well suitable for emergent rAAA. As suggested in multiple
studies [7–11], the preferred minimum invasion but awaited long-term postoperative complications
may account for the favorable 30-day mortality but similar or even inferior late survival of EVAR
compared to OAR. With the criticalness of rAAA and prevalence of EVAR and OAR, it is of significant
interest to objectively evaluate and directly compare their survival outcomes.
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In general, to compare the effects of two treatments, the gold-standard approach is to conduct
a randomized controlled clinical trial. However, most of the existing clinical trials have focused on
patients who have elective/intact AAA (eAAA/iAAA) and excluded those who have rAAA and require
emergent care (e.g., OVER [7], DREAM [8]). This is sensible as patients with rAAA cannot bear the
prolonged process of eligibility examination, treatment assignment, and finally, surgical procedure,
which are non-negligible steps in a clinical trial for bias control but unacceptable for saving lives in a
real-world setting.

With the aforementioned concerns, researchers have focused on observational data and analysis
to assess the survival outcomes of the two procedures for rAAA patients. Our literature review
suggests that quite a few of them have relied on large medical claims databases in particular,
including Medicare [6,10,12,13]. In these studies [6,10], regression and other association analysis
techniques have been the main tools. It is well recognized that such analyses, even after accounting for
confounders, can only lead to conclusions on association, as opposed to the desired cause-and-effect
relationship. To overcome such limitations, causal inference techniques [14–16] can be adopted.
Here we note that, with extensive examinations and comparisons, no approach has been observed
to dominate others—it is expected that such an approach may not exist, and different approaches
have different pros and cons. In this article, we adopt the emulation approach, which is relatively
new but has already been examined in many publications [17–19]. With this approach, a clinical trial
is explicitly designed and assembled using observational data, and statistical analysis approaches
designed for clinical trials can be then adopted, bearing the potential of drawing causal conclusions.
Comparatively, the biggest advantage of this approach may be its lucid interpretations.

Built on the emulation strategy, we take a big data analysis approach. Here “big data” is
manifested in at least two perspectives. The first is that our effort is built on the Medicare data.
The Medicare database is massive, covers the dominating majority of the U.S. senior population,
and contains comprehensive information. Compared to for example hospital- and community-based
data, Medicare data is advantageous with its unbiased sample selection and relatively uniform and
detailed data collection. It has served as the basis of a large number of clinical and public health studies,
including those that adopt causal inference analysis techniques [19,20]. More details on the analyzed
Medicare data are provided below in Section 2.1. The second big data perspective is that in the analysis
of the emulated trial, deep learning techniques are adopted. In “standard” emulation analysis (as well
as most if not all analysis of real clinical trials) [18,19], regression (e.g., logistic and Cox) techniques have
been adopted. For diverse fields including engineering, business, social science, and others [21,22],
the superiority of deep learning techniques in prediction has been well established through a myriad
of published studies. Relatively recently, deep learning techniques have been applied to biomedical
studies on cancer [23], fracture [24], chronic diseases [25], and cardiovascular diseases [26]. The studied
outcomes/phenotypes include continuous [25], categorical [24], and, more recently, survival [27].
It is noted that the existing deep learning analyses of biomedical data are mostly in the association
analysis domain.

The overarching goal of this study is to directly compare EVAR versus OAR for rAAA patients
and draw conclusions as close to causal as possible, so as to further inform clinical practice. This study
may advance from the existing literature in the following aspects:

• It strives to compare the treatment effects of EVAR and OAR under the clinical trial framework,
as opposed to the commonly adopted observational data analysis framework. The conclusion so
generated may have important and direct clinical implications.

• It advances from the existing emulation analyses by investigating a new disease condition and
treatments, which may further expand the paradigm of emulation analysis.

• Deep learning techniques, as opposed to “simple” regressions, are adopted. This study may assist
in introducing deep learning to the emulation paradigm, as well as further fostering deep learning
research. Specifically, this is the first application of deep learning to the emulation analysis and
study of rAAA. Building on the existing deep learning components, we assemble an analysis
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pipeline that mimics the “propensity score + inverse probability treatment (IPT) weighting Cox
regression” approach [18,19].

Looking at a higher level, an “ordinary” clinical trial generates an information set (target),
whose most notable characteristic is the balance in information between two treatment arms. In addition,
it is usually assumed that such an information set can be sufficiently described using a (semi)parametric
model. Information contained in observational data fundamentally differs from the target. As such,
a central goal of the emulation approach is to properly carve a subset of information, as large as
possible, that mimics the target. With the deep learning analysis approach, the (semi)parametric
probabilistic structure can be significantly relaxed. Overall, this study falls into the intersection of
information theory and machine learning.

2. Methods

This section details the procedures of conducting an emulation study to compare the treatment
effects of EVAR and OAR using a big data approach. First, we introduce the Medicare data used in this
study in Section 2.1. In Sections 2.2 and 2.3, we develop protocols of the target randomized clinical
trial and the corresponding emulated trial, respectively. Last, we describe the analysis approaches in
Section 2.4.

2.1. Data Source

As briefly mentioned above, we analyze the Medicare data in this study. Medicare is a federal
health insurance program for adults aged 65 years and above, certain younger people with disabilities,
and people with end-stage renal disease (permanent kidney failure requiring dialysis or a transplant).
As the single largest payer of health care in the U.S., it covers 98% of adults who are over 65 years old,
accounts for 99% of death in the elderly population, and generates a huge amount of medical claims
data [28]. The Centers for Medicare & Medicaid Services (CMS) offers a wide range of datasets that
follow Medicare beneficiaries across multiple care settings. More specifically, it collects over two billion
data points per year through reimbursement to hospital care (Medicare Part A), physician and outpatient
services (Medicare Part B), drug prescription (Medicare Part D), and other health care claims. It also
collects billions of other data points through enrollment information, beneficiary eligibility checks,
quality metrics, and calls to 1-800-MEDICARE [29].

For our study, we first retrieve all inpatient claims between 1 January 2011 to 30 September
2015 from the Medicare provider utilization and payment data: hospital care (Part A), which contains
detailed information on health services provided in 54 million inpatient episodes for 23 million Medicare
beneficiaries. Information contained in each claim includes beneficiary demographics (e.g., age, sex,
race), Medicare enrollment status, services provided (up to 25 diagnosis codes and up to 25 procedure
codes), and beneficiary death information. More details on such information and how it is utilized in
our analysis are provided below.

It is noted that for research purposes, Medicare data can be viewed as publicly available. We only
conduct a secondary analysis of the existing deidentified data. As such, no IRB or other approvals
are needed.

2.2. The Target Randomized Clinical Trial

Under the emulation analysis paradigm [30], one of the first and most important steps is the
design of a target randomized clinical trial. For treating rAAA, there is a lack of real clinical trials.
As such, similar to in some literature [19], we need to design a hypothetical target trial. The following
design has been motivated by relevant observational studies [6,10–13] and is clinically well grounded.

The target randomized clinical trial aims to compare the short- and long-term all-cause mortality
of rAAA patients treated with EVAR and OAR. More specifically, we enroll participants who are
diagnosed with rAAA within the enrollment period and exclude those who meet any of the following
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criteria: (1) the participant is under 65 years old at enrollment; (2) conversion between EVAR and OAR
is necessary after randomization; (3) the participant has concurrent conditions of thoracic aneurysms,
thoracoabdominal aneurysms, or aortic dissection; and (4) a repair of the thoracic aorta or visceral
or renal bypass is considered necessary for the participant. If a participant develops multiple cases
of rAAA during the enrollment period, only the first is considered as the primary case and included
in analysis. Such criteria have been motivated by observational studies [6,11] and data availability,
and have the same level of rigor as a real clinical trial.

The trial enrolls participants from 1 January 2011 to 30 September 2015. After enrollment, each eligible
participant is randomized to receive either EVAR or OAR and followed until death, loss to follow-up,
or end of the study (30 June 2019). Such decisions have been made with the considerations that both
treatments have been extensively adopted in the study period, the enrollment is long enough to ensure a
sufficient sample size, and the follow-up is long enough to ensure a sufficient effective sample size.

To assess both short- and long-term mortality after EVAR and OAR, we define two primary
outcomes: time from treatment to short-term perioperative mortality and time from treatment to
long-term all-cause mortality. The short-term perioperative mortality is defined as death during the
index hospitalization or within 30 days of discharge, for which all participants alive at 30 days after
discharge are censored. For the long-term all-cause mortality, a subject is censored at loss to follow-up
or end of the study (30 June 2019), whichever comes first. The two survival outcomes have different
implications and are both critically important [11].

2.3. The Emulated Trial

To emulate the target randomized clinical trial described above, we develop an emulated trial using
the Medicare claims data. The strategy closely follows that developed in the emulation literature [19].
First, we identify Medicare beneficiaries who were diagnosed with rAAA and underwent EVAR or
OAR between 1 January 2011 and 30 September 2015. We exclude individuals that met any of the
following criteria: (1) the individual was under 65 years old at diagnosis; (2) both EVAR and OAR were
present in the same index hospitalization, which indicated conversion; (3) concurrent diagnosis codes
of thoracic aneurysms, thoracoabdominal aneurysms, or aortic dissection; (4) concurrent procedure
codes of repair of the thoracic aorta or visceral or renal bypass; and (5) less than 12 months of Medicare
enrollment before the index hospitalization. If a beneficiary had multiple eligible claims, only the
first was considered as the primary case and included in analysis. Additional information on patient
selection is provided in the flowchart in Figure 1. The relevant International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) codes are provided in Appendix A.

We then classify each eligible subject into one of the two treatment groups: EVAR and OAR,
based on the procedure he/she actually received. Follow-up information is then extracted for each
subject (to death, loss to follow-up, or end of the study which is 30 June 2019). A loss to follow-up is
defined as discontinuation of Medicare enrollment. To identify the primary outcomes, we track each
study subject from treatment to his/her documented death. We note that there are 5.35% of the study
subjects for whom the date of treatment is missing. For these subjects, we use the date of admission
to approximate the date of treatment, since rAAA is an emergent condition that needs immediate
treatment, and the average lag time between admission and procedure is 0.53 days in our cohort.
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Figure 1. Flowchart of cohort definition.

2.4. Data Analysis

This study has survival outcomes. If this were a real clinical trial, analysis could be conducted
using a Cox model. Although balance is expected with proper randomization, to be cautious, in clinical
trial analysis, potential confounders are still commonly adjusted. For an emulated trial with a survival
outcome, published studies [18,19] suggest the following main analysis steps: (a) conduct a propensity
score analysis for treatment using the logistic regression approach, and (b) conduct a Cox regression
analysis for survival with IPT weighting. When it can be assumed that all relevant variables are properly
included, the first step is a simple parametric regression, and the consistency of parameter estimation
can be easily established. The balance in covariate distributions between the two treatment arms for
the pseudo sample created by the IPT weighting directly follows. With this balance, the validity of the
(weighted) Cox regression follows [31,32].

As briefly mentioned in Section 1, deep learning has demonstrated promising performance with
biomedical data. It is of significant interest to apply it to emulation. Equally importantly, the analysis
presented in the Supplementary Materials shows that the Cox proportionality assumption is not
satisfied. The deep learning approach described below, although has some connections with the Cox
model, can be more flexible and less dependent on model assumptions, with its “built-in” flexibility.
It consists of the following steps: (a) estimate propensity scores for treatment using a single-layer
neural network. This is the counterpart of the logistic regression mentioned above; (b) construct a
multi-layer neural network for survival. Advancing from the “standard” deep learning survival,
we incorporate weights generated in Step (a), which is the counterpart of the IPT weighted Cox
regression mentioned above; and (c) advancing from the existing deep learning literature, we also
conduct a bootstrap-type procedure to gain insights into the variation of the neural network weight
estimation, which is analogous to the regression coefficient estimation and reveals the treatment effects.

Denote n as the number of independent subjects. For subject i, denote Ci as the censoring time
and Ti as the event time. We observe the right-censored survival outcome Yi = min(Ti, Ci) and event
indicator di = I(Ti ≤ Ci) with I(·) being the indicator function. Denote Xi =

(

Xi1, Xi2, . . . , Xip

)

as the
baseline covariates and Zi as the binary treatment assignment.

Step 1: We employ a single-layer neural network to estimate the propensity score, which is the
probability of treatment assignment conditional on the baseline covariates. In particular, the input
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includes the covariates described in Table 1, with standardization for the continuous variables and
coding for the categorical variables. The labels in the data are the binary treatment assignment
variables. For the neural network architecture, we use the Rectified Linear Units (ReLU) as the
activation function, sigmoid activation function to produce the probability output, and logarithmic
loss function (binary cross-entropy). For optimization, a stochastic gradient descent algorithm with
Nesterov momentum is used, and a grid search is conducted to tune the learning rate. For such tasks,
we adopt the open-source python module keras (https://keras.io). With the outputted propensity score,
we compute the IPT weight as its inverse for a subject in one treatment group and the inverse of one
minus propensity score for a subject in the other group.

Table 1. Descriptive characteristics of the study cohort.

EVAR
(N = 3930)

OAR
(N = 3866)

p-Value *

Demographic
Age, mean(sd) 78.03 (7.52) 76.59 (6.90) <0.0001

Male 3023 (76.34) 2786 (72.06) <0.0001
Race 0.0030

White 3588 (90.77) 3550 (92.02)
Black 249 (6.30) 178 (4.61)
Other 116 (2.93) 130 (3.37)

Medical conditions
Congestive heart failure 464 (11.72) 299 (7.73) <0.0001

Cardiac arrhythmia 596 (15.05) 438 (11.33) <0.0001
Valvular disease 199 (5.03) 172 (4.45) 0.2304
Coronary disease 758 (19.14) 603 (15.60) <0.0001

Diabetes 329 (8.31) 256 (6.62) 0.0045
Hypertension 1250 (31.25) 1078 (27.88) 0.0004

Chronic obstructive pulmonary diseases 707 (17.85) 584 (15.11) 0.0011
Clinically significant lower extremity vascular diseases 26 (0.66) 27 (0.70) 0.8215

Renal atherosclerosis 20 (0.51) 27 (0.70) 0.2684
Vascular intestine disease 7 (0.18) 2 (0.05) 0.1027

Renal failure 493 (12.45) 358 (9.26) <0.0001
Other renal diseases 3 (0.08) 1 (0.03) 0.3289
Kidney transplant 4 (0.10) 3 (0.08) 0.7291

Liver disease 33 (0.83) 30 (0.78) 0.7766
Cerebrovascular diseases and paralysis 93 (2.35) 67 (1.73) 0.0544

Other neurological diseases 153 (3.86) 114 (2.95) 0.0258
Hyperlipidemia 817 (20.63) 687 (17.77) 0.0013

Cancer 132 (3.33) 87 (2.25) 0.0037
Rheumatoid arthritis 76 (1.92) 39 (1.01) 0.0008

Prior intact AAA diagnosis 511 (12.90) 440 (11.38) 0.0393

Other
Year in which repair was performed <0.0001

2011 808 (20.40) 1013 (26.20)
2012 869 (21.94) 913 (23.62)
2013 819 (20.68) 785 (20.31)
2014 837 (21.14) 701 (18.13)
2015 627 (15.83) 454 (11.74)

Outcome (followed until death, loss to follow-up,
or 06/30/2019)

All-cause mortality 2430 (61.36) 2542 (65.75) <0.0001
Perioperative mortality (in-hospital or 30 days after discharge) 1107 (27.95) 1704 (44.08) <0.0001

* p-values based on t-tests for continuous variables and Chi-squared test for categorical variables.

Step 2: Here we conduct the IPT weighted survival analysis. The input includes the same set of
covariates and treatment indicator as in Step 1, as well as the IPT weights computed above. For subject
i, denote wi as the IPT weight and Ri =

{

j : T j > Ti

}

as the at-risk set (at time Ti). We consider a neural
network with two hidden layers and the number of nodes determined by tuning. Denote θ as the
weights that characterize the network (note that they are not the IPT weights), and gθ(Xi, Zi) as the

156



Entropy 2020, 22, 1349

output for subject i. Partly motivated by the loss function under the Cox regression as well as recent
deep learning studies, such as DeepSurv, we consider the objective function:

l(θ) = −
1
∑

i di

n
∑

i=1

diwi

















gθ(Xi, Zi) − log
∑

j∈Ri

exp
(

gθ
(

X j, Z j

))

















.

For optimization, we adopt a gradient descent approach. ReLU is used as the activation
function, and the adaptive moment estimation algorithm (Adam) for gradient descent optimization
with a cyclical learning rate method is adopted. We perform a grid search for hyper-parameter
tuning. The computational program is developed based on the open-source python module pycox
(https://github.com/havakv/pycox).

Step 3: A procedure similar to the 0.632 bootstrap for regression analysis [33] is conducted.
In particular, 0.632n samples are randomly selected from the original data without replacement.
With the bootstrapped samples, the above analysis is conducted, and the neural network weight
estimates are extracted. This is repeated multiple (e.g., 1000) times to assess the variability of estimates.
For regression, the 0.632 bootstrap is equivalent to the “n-out-of-n with replacement” bootstrap.
By sampling without replacement, it can reduce ties and computational cost.

In Appendix B, we sketch the algorithm for conducting the Step 3 bootstrap type analysis.
The analysis of the whole data amounts to skipping the bootstrapping step and otherwise applying the
same procedures.

The above analysis can deliver the following. The first is a propensity score estimate for each
subject. If needed, the weights of the neural network can be extracted to help assess the relative
contributions of covariates. The second is the survival neural network. For a subject with a set
of known confounder values and treatment assignment, it can generate the (relative) survival risk.
Most of the existing deep learning studies have treated neural networks as black boxes. As we conduct
a clinical trial analysis, the effect of the treatment is of the most essential interest. As such, we retrieve
the estimated weights for the treatment indicator and confounders. With the presence of hidden layers,
the weight matrices need to be multiplied across layers to obtain the overall contributions. The third
product is that, for the (overall) weight of the treatment indicator, the bootstrap type analysis can
generate an evaluation of its variability. The same is also applicable to the confounders.

Remarks

For a large number of binary data analysis problems, the superiority of neural networks over
logistic and other regressions has been established [23,24]. Several recent publications, such as
DeepSurv [27] and Cox-nnet [34] and others, seem to suggest similar superiority for survival data.
As our goal is to take advantage of the recent deep learning developments, we choose not to
“re-establish” the merit of deep learning. We also note that there are multiple “base techniques” for
building neural networks. The adopted ones have been shown in recent studies as having a strong
mathematical/statistical ground and competitive numerical performance. For example, it has been
proved that stochastic gradient descent algorithms can find global minima on the training objective of
deep neural networks in polynomial time under mild assumptions [35]. Farrell et al. (2020) established
novel nonasymptotic high probability bounds for the fully connected feedforward neural networks
with ReLU activations [36]. On the other hand, our literature review suggests that, compared to
regression analysis, theoretical research on deep learning remains very rare. Consistency properties
(for example, for the weights and bootstrapped estimation) remain unclear. Published literature seems
to suggest tremendous challenges. It is beyond our scope to conduct such theoretical investigation.
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3. Results

3.1. Patient Characteristics and Unadjusted Incidences

Our analysis includes 7826 eligible subjects, with 3960 in the EVAR arm and 3866 in the OAR
arm. The summary statistics are shown in Table 1. It is observed that the study subjects were slightly
younger in the OAR arm and more likely to be white males in both arms. Participants in the OAR
arm were healthier with lower percentages of almost all medical conditions (except for two rare
conditions: clinically significant lower extremity vascular diseases and renal atherosclerosis). It is
also observed that, as time passed by (from year 2011 to 2015), the rAAA patients were more and
more likely to receive EVAR. Here we note that, without the IPT weighting, all demographic variables
and most medical condition variables are significantly unbalanced between the two treatment arms,
highlighting a significant difference between real clinical trials and observational studies. Table 1 also
shows the unadjusted incidence rates by treatment. The EVAR arm has a slightly lower unadjusted
incidence rate for long-term all-cause mortality and a significantly lower unadjusted incidence rate for
short-term perioperative mortality.

3.2. Analysis of the Emulated Trial

Prior to analysis, we deleted 15 records with missing measurements (7 in the EVAR arm and 8 in
the OAR arm). Analysis was conducted using the approach described in Section 2.4. For the propensity
score analysis, the baseline covariates include age, gender, race, year in which repair was performed
(this variable has been considered in the published observational studies [6,10]; it is also motivated
by the changing rates of EVAR and OAR), and 20 medical conditions, as shown in Table 1 (and with
related ICD-9-CM codes in Appendix A). For survival analysis, the same baseline covariates and the
treatment indicator are included.

For both the propensity score and survival analysis, the obtained fully connected neural network
architectures are available from the authors. For the propensity score analysis, the learning rate is
tuned as 0.008. The distributions of propensity scores are shown in Figure 2. Minor differences between
the two arms are observed.

 

Figure 2. Distribution of propensity score.

For the analysis of short-term survival, the learning rate for Adam optimizer is tuned as 0.016.
The analysis results are summarized in Figure 3. The left panel shows the estimated survival curves,
after accounting for IPT weights, for the two treatments separately. With the bootstrap procedure,
we are also able to obtain the pointwise 90% confidence intervals. It is noted that this analysis
mimics the “familiar” regression analysis and differs from most of the existing deep learning studies,
however, it lacks rigorous theoretical justifications that are available for regression analysis. EVAR is
observed to have a modest survival advantage, with the lower bounds of its confidence intervals
almost coinciding with the upper bounds of OAR’s confidence intervals. Based on the estimated
survival curves, we compute the expected survival under EVAR as 83.5 days, compared to 79.2 days
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under OAR. In the right panel of Figure 3, the forest plot, which shows the medians as well as the 25%
and 75% quantile values of the overall estimated weights (“accumulated” over layers), again suggests
the survival advantage of EVAR. The right panel of Figure 3 also contains weight information for
confounders that demonstrate considerable and “persistent” effects (across the bootstrapped datasets),
including race and seven medical conditions.

 

  
Figure 3. Analysis of short-term mortality. Left: estimated survival curves with pointwise 90% confidence
intervals. Right: forest plot of the estimated weights.

For the analysis of long-term survival, the learning rate for Adam optimizer is tuned as 0.036.
The analysis results are summarized in Figure 4, which are parallel to those in Figure 3. The findings
are similar to those for short-term survival. Briefly, the left panel suggests some advantages of EVAR,
but the pointwise confidence intervals overlap. We compute the expected survival as 1464.2 days
under EVAR and 1348.0 days under OAR. The forest plot in the right panel shows that the advantage
of EVAR is smaller than that for short-term survival. Confounders that demonstrate considerable and
“persistent” effects include race, sex, and six medical conditions.

 

  
Figure 4. Analysis of long-term mortality. Left: estimated survival curves with pointwise 90%
confidence intervals. Right: forest plot of the estimated weights.

For comprehensiveness, we also conduct a regression-based analysis. The results are presented
in the Supplementary Materials. As the Cox model assumption is violated in both survival analyses,
the results cannot be sensibly utilized.

4. Discussion

As fully discussed in published literature, the Medicare data has multiple unique advantages.
With its broad coverage of the U.S. elderly population, our findings can be applied to this population
with high confidence. Although there is no evidence that the relative treatment effects of EVAR and
OAR differ by age, sex, and race [11–13], application of the findings to the younger U.S. population
and populations in other countries/regions should be conducted with cautions. Besides, we have
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analyzed the Medicare inpatient claims data from 1 January 2011 to 30 June 2019. Both the enrollment
and follow-up times are long enough, especially compared to many peer studies [11–13].

Recently, deep learning has become increasingly popular in biomedical studies, especially including
in the analysis of Medicare and other healthcare data. Beyond those mentioned in the first section,
other examples also include Ali et al. (2020), which develops a novel information framework using
ensemble deep learning and a feature fusion technique to analyze wearable sensor and electronic
medical test data for heart disease prediction [37]. Additional examples include Ali et al. (2020) [38],
Jain et al. (2020) [39], and Selden (2020) [40]. The deep learning techniques adopted in this article
can fully meet our needs, and it is beyond our scope to comprehensively review/compare existing
techniques. We do recognize that it is of interest to explore the applications of other deep learning
techniques to the emulation setting.

The emulation strategy has been developed and adopted in quite a few studies. Its pros and cons
have been well documented. It is especially noted that, first, emulated trials, although resembling real
clinical trials in multiple perspectives, still have notable limitations and cannot replace real clinical trials.
Second, there is still a lack of objective comparison and definitive conclusion on its relative performance
with respect to other causal inference approaches. Although important, this is beyond the scope of this
study. The adopted deep learning methods have been based on certain well-developed components
and software programs. Nevertheless, their “combination” and application to the emulation setting
and rAAA treatment problem are new and novel. Our analysis has demonstrated how to “replace”
regression using deep learning under settings more sophisticated than in the literature. As the
“propensity score + survival analysis” strategy and individual components of the deep learning
analysis have been more or less developed in the literature, we choose not to methodologically further
discuss or conduct more numerical investigations.

Our main finding is that EVAR has advantageous short- and long-term survival. Although the
improvement in expected survival is modest, considering the severity of rAAA, it may still have
important clinical implications. In the literature, the short-term survival advantage of EVAR has been
suggested in multiple observational analyses [6,10,12]. However, there has been a lack of definitive
conclusion on the long-term benefit. For example, Behrendt et al. (2017) suggested early survival
benefit of EVAR over OAR, which reversed at ~2.5 years of follow-up, for iAAA and rAAA patients
in Germany [11]. Schermerborn et al. (2015) observed similar survival of the two procedures after
3 years from initial surgery for iAAA patients in the Medicare population [6]. And a 15-year follow-up
resulted from the EVAR-1 trial indicated that EVAR had inferior late survival compared to OAR [9].
Multiple factors can contribute to the differences observed in the aforementioned and other studies.
First, the studied populations have different characteristics. Second, the analysis strategies also differ,
with our strategy closer to a controlled clinical trial. It is also noted that the study periods are different.
Although there is still no indication of temporal variation in treatment effects, related confounders may
change over time.

Besides treatment, our analysis also suggests that race, gender, and certain medical conditions are
associated with survival after EVAR and OAR among rAAA patients. While most observational studies
that compare EVAR and OAR match study subjects or adjust for potential confounders, there is a lack
of attention on how these variables may impact survival after rAAA. We have found that compared to
other races, the white race is associated with lower short- and long-term mortality, and the black race
is associated with lower short-term mortality. This race difference has been insufficiently studied in
the literature. It can be caused by genetic effects (considering that genetic factors contribute to many
cardiovascular diseases), lifestyle, cultural factors, access to care, and other factors that may confound
survival. While Egorova et al. (2011) observed significantly worse outcomes after EVAR and OAR
for female patients, we have found no gender difference in short-term mortality and male associated
with higher long-term mortality [12]. One contributing factor is the difference in analysis technique:
Egorova et al. (2011) compared the observed survival with expected survival in a life table [12],
while we have conducted a more comprehensive adjusted analysis. Lastly, we have identified certain
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medical conditions as associated with survival. What may seem counterintuitive is that some medical
conditions are found as negatively associated with mortality. For example, it is found that prior intact
AAA diagnosis decreases short-term mortality risk after rAAA, and the presence of cardiac arrhythmia
increases both short- and long-term survival. One plausible explanation is that patients with related
medical conditions are more likely to have regular hospital visits and more access to healthcare services,
which may lead to more timely detection of emergent rAAA. For example, it is noted in Edwards et al.
(2014) that patients who had a prior diagnosis of intact AAA were less commonly admitted through
the emergency department, and were more commonly transferred between hospitals before treatment,
which was associated with better survival [10]. Dardic et al. (1998) also found that the presence of
hypertension, diabetes, and COPD was correlated with a statistically significant lower mortality rate,
whereas the presence of smoking, heart disease, and renal disease was correlated with a statistically
insignificant lower mortality rate after the diagnosis of rAAA [41].

This study inevitably has limitations. In particular, there is limited information covered by the
Medicare data [28,29]. Therefore, the treatment arms may be imbalanced on unmeasured confounders
such as over-the-counter drug uses and patients’ socioeconomic information. We note that this
limitation is shared by other emulation studies and analysis of observational data. Moreover, due to
limited data access, this study examines rAAA patients’ inpatient treatments from 1 January 2011 to
30 September 2015. With the special nature of rAAA, inpatient claims should be able to catch the
dominating majority of the cases. However, it remains unclear whether utilization of other clinical
settings (e.g., emergency room or outpatient) affects the treatment effects of EVAR and OAR. Also,
although there is no indication that the treatment effects have temporal variations, it may still be of
interest to examine more extensive data. In addition to data limitations, it is well documented in the
literature that the emulation approach, while being lucidly interpretable, has limitations [14,18,19].
For example, the approach can only emulate target trials without blind assignment. Given the specific
natures of EVAR and OAR, lack of blinding is not necessarily a limitation for this study. However,
future studies using the emulation approach should be cautious of these limitations.

With the possibility of more extensive data, it is of future interest to investigate the aforementioned
potential confounders that are unmeasured in this study, the effects of other clinical settings on the
treatment effects of EVAR and OAR after rAAA, and the potential temporal variations. Moreover, it is
also postponed to future work to conduct a direct comparison of the emulation approach and other
causal inference approaches using the large-scale Medicare data.

5. Conclusions

This study has suggested certain short- and long-term survival advantage of EVAR over OAR for
rAAA patients. It has also further advanced the emulation and deep learning techniques for analyzing
data mined from large medical record databases. Both the medical findings and analytic developments
can complement the existing literature and be of interest to stakeholders at multiple levels.
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Appendix A

Table A1. International Classification of Disease, 9th edition, Clinical Modification (ICD-9-CM) codes
for identifying eligible individuals and defining confounders (one year of medical history).

Variable ICD-9-CM Code *

Inclusion
Ruptured abdominal aortic aneurysm 441.3
Endovascular aortic repair 39.71
Open aortic repair 38.44, 39.25, 39.52, 38.34, 38.64, 38.40, 38.60

Exclusion
Thoracic aneurysms 441.1, 441.2
Thoracoabdominal aneurysms 441.6, 441.7
Aortic dissection 441.00-441.03
Repair of the thoracic aorta 38.35, 38.45, 39.73
Visceral or renal bypass 38.46, 39.24, 39.26

Medical history

Congestive heart failure

398.91, 402.01, 402.11, 402.91, 404.01, 404.03,
404.11, 404.91, 404.13, 404.93, 425.4, 425.5, 425.7,
425.8, 425.9, 428.0, 428.1, 428.20, 428.22, 428.30,
428.32, 428.40, 428.42, 428.9

Cardiac arrhythmia
426.0, 426.10, 426.11, 426.12, 426.13, 426.7, 426.9,
427.0, 427.1, 427.2, 427.3, 427.9, V45.0, V53.3

Valvular disease 093.2, 394, 395, 396, 397, 424, V42.2, V43.3
Coronary disease 412, 413, 414, 429.2
Diabetes 250
Hypertension 401, 402, 403, 404, 405

Chronic Obstructive Pulmonary diseases

416, 417.9, 490, 491, 492, 493, 494, 495.0, 495.1,
495.2, 495.3, 495.4, 495.5, 495.6, 495.8, 495.9, 496,
500, 501, 502, 503, 504, 505, 506.0, 506.2, 506.4,
506.9, 508.1, 508.8, 508.9

Clinically significant lower extremity vascular diseases 440.22, 440.23, 440.24, 440.3, 444.22, V43.4,
Renal atherosclerosis 440.1
Vascular intestine disease 557.1

Renal failure w dialysis
V45.1, V56.0, V56.1, V56.2, V56.3, V56.8, 585.6,
39.95 (w/o 586)

Renal failure without dialysis
403.01, 403.11, 403.91, 404.02, 404.03, 404.12,
404.13, 404.92, 404.93, 585 (w/o 585.6), 588.0

Other renal diseases 582, 583.0, 583.1, 583.2, 583.4
Kidney transplant V420

Liver disease
070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.9,
456.0, 456.1, 571, 572.1, 572.2, 572.3, 572.4, 572.8,
573.0, 573.1, 573.8, 573.9

Cerebrovascular diseases and paralysis 342, 344.1, 344.3, 344.4, 344.5, 344.9, 437.0, 438

Other neurological diseases

330, 331, 332, 333, 334.0, 334.1, 334.2, 334.4, 334.8,
335.0, 335.1, 335.2, 335.8, 335.9, 336.0, 336.2, 343,
344.0, 348.1, 348.3, 344.2, 344.6, 345, 437.3, 437.4,
437.5, 437.6, 437.7

Hyperlipidemia 272

Cancer

140, 141, 142, 143, 144,145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158,159, 160, 161,
162, 163, 164, 165, 170, 171,172, 174, 175, 176, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,
202, 203.0, 238.6

Rheumatoid arthritis
446, 701.0, 710.0, 710.1, 710.2, 710.3, 710.4, 710.8,
710.9, 711.2, 719.3, 714,720, 725, 728.5, 728.89

Prior intact AAA diagnosis 441.4, without mention 441.3

* Primary or any secondary diagnosis/procedure code.
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Appendix B

Algorithm A1. Algorithm for the bootstrap type analysis (Step 3).

1. Initialize b = 0.
2. Update b = b + 1, randomly sample 0.632n subjects without replacement from the original data and

conduct the following procedure.
Step 1. Estimate the propensity score.
• Construct a simple multilayer perceptron with one hidden layer, ReLU and sigmoid activations,

and binary cross-entropy as the loss function.
• For a fixed learning rate from a vector of hyper-parameter values:

# Compile the model using a stochastic gradient descent optimizer with Nesterov momentum.
# Compute the classification accuracy as the metrics for model selection.

• Select the best model with the highest accuracy from the above grid search, and calculate the IPT weight
by transforming the estimated propensity score.

Step 2. Assess the treatment effects using the IPT weighted survival analysis.
• Construct a multilayer perceptron with two hidden layers, ReLU activations, and the proposed loss

function l(θ).
• For a fixed learning rate, the number of nodes in hidden layers from a grid of hyper-parameter values:

# Compile the model using Adam optimizer.
# Estimate the weights θ, and compute the concordance statistic for model selection.

• Select the best model with the largest concordance, and obtain the effects of treatment and other
confounders by multiplying the estimated weights across layers.

3. Repeat until b = B is large enough (e.g., B = 1000).
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Abstract: High-dimensional variable selection is an important research topic in modern statistics.
While methods using nonlocal priors have been thoroughly studied for variable selection in linear
regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized
linear models have not been investigated. In this paper, we consider a hierarchical generalized
linear regression model with the product moment nonlocal prior over coefficients and examine its
properties. Under standard regularity assumptions, we establish strong model selection consistency in
a high-dimensional setting, where the number of covariates is allowed to increase at a sub-exponential
rate with the sample size. The Laplace approximation is implemented for computing the posterior
probabilities and the shotgun stochastic search procedure is suggested for exploring the posterior
space. The proposed method is validated through simulation studies and illustrated by a real data
example on functional activity analysis in fMRI study for predicting Parkinson’s disease.

Keywords: high-dimensional; nonlocal prior; strong selection consistency

1. Introduction

With the increasing ability to collect and store data in large scales, we are facing the opportunities
and challenges to analyze data with a large number of covariates per observation, the so-called
high-dimensional problem. When this situation arises, variable selection is one of the most commonly
used techniques, especially in radiological and genetic research, due to the nature of high-dimensional
data extracted from imaging scans and gene sequencing. In the context of regression, when the number
of covariates is greater than the sample size, the parameter estimation problem becomes ill posed,
and variable selection is usually the first step for dimension reduction.

A good amount of work has recently been done for variable selection from both frequentist
and Bayesian perspectives. On the frequentist side, extensive studies on variable selection have
emerged ever since the appearance of least absolute shrinkage and selection operator (Lasso) [1].
Other penalization approaches for sparse model selection including smoothly clipped absolute
deviation (SCAD) [2], minimum concave penalty (MCP) [3] and many variations have also been
introduced. Most of these methods are first considered in the context of linear regression and then
extended to generalized linear models. Because all the methods share the basic desire of shrinkage
toward sparse models, it has been understood that most of these frequentist methods can be interpreted
from a Bayesian perspective and many analogous Bayesian methods have also been proposed. See for
example [4–6] that discuss the connection between penalized likelihood-based methods and Bayesian
approaches. These Bayesian methods employed local priors, which still preserve positive values at
null parameter values, to achieve desirable shrinkage.
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In this paper, we are interested in nonlocal densities [7] that are identically zero whenever a
model parameter is equal to its null value. Compared to local priors, nonlocal prior distributions have
relatively appealing properties for Bayesian model selection. In particular, nonlocal priors discard
spurious covariates faster as the sample size grows, while preserving exponential learning rates to
detect nontrivial coefficients [7]. Johnson and Rossell [8] and Shin et al. [9] study the behavior of
nonlocal densities for variable selection in a linear regression setting. When the number of covariates
is much smaller than the sample size, [10] establish the posterior convergence rate for nonlocal priors
in a logistic regression model and suggest a Metropolis–Hastings algorithm for computation.

To the best of our knowledge, a rigorous investigation of high-dimensional posterior consistency
properties for nonlocal priors has not been undertaken in the context of generalized linear regression.
Although [11] investigated the model selection consistency of nonlocal priors in generalized linear
models, they assumed a fixed dimension p. Motivated by this gap, our first goal was to examine the
model selection property for nonlocal priors, particularly, the product moment (pMOM) prior [8]
in a high-dimensional generalized linear model. It is known that the computation problem can
arise for Bayesian approaches due to the non-conjugate structure in generalized linear regression.
Hence, our second goal was to develop efficient algorithms for exploring the massive posterior space.
These were challenging goals of course, as the posterior distributions are not available in closed form
for this type of nonlocal priors.

As the main contributions of this paper, we first establish model selection consistency for
generalized linear models with pMOM prior on regression coefficients (Theorems 1–3) when the
number of covariates grows at a sub-exponential rate of the sample size. Next, n terms of computation,
we first obtain the posteriors via Laplace approximation and then implement an efficient shotgun
stochastic search (SSS) algorithm for exploring the sparsity pattern of the regression coefficients.
In particular, the SSS-based methods have been shown to significantly reduce the computational time
compared with standard Markov chain Monte Carlo (MCMC) algorithms in various settings [9,12,13].
We demonstrate that our model can outperform existing state-of-the-art methods including both
penalized likelihood and Bayesian approaches in different settings. Finally, the proposed method is
applied to a functional Magnetic Resonance Imaging (fMRI) data set for identifying alternative brain
activities and for predicting Parkinson’s disease.

The rest of paper is organized as follows. Section 2 provides background material regarding
generalized linear models and revisits the pMOM distribution. We detail strong selection consistency
results in Section 3, and proofs are provided in the Appendix A. The posterior computation algorithm
is described in Section 4, and we show the performance of the proposed method and compare it
with other competitors through simulation studies in Section 5. In Section 6, we conduct a real data
analysis for predicting Parkinson’s disease and show our method yields better prediction performance
compared with other contenders. To conclude our paper, a discussion is given in Section 7.

2. Preliminaries

2.1. Model Specification for Logistic Regression

We first describe the framework for Bayesian variable selection in logistic regression followed
by our hierarchical model specification. Let y ∈ {0, 1}n be the binary response vector and
X = (xij) ∈ Rn×p be the design matrix. Without loss of generality, we assume that the columns of X

are standardized to have zero mean and unit variance. Let xi ∈ Rp denote the ith row vector of X that
contains the covariates for the ith subject. Let β be the p× 1 vector of regression coefficients. We first
consider the following standard logistic regression model:

P (yi = 1 | xi, β) =
exp

(
x⊤i β

)

1 + exp
(
x⊤i β

) , i = 1, 2, . . . , n, (1)
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We will work in a scenario where the dimension of predictors, p grows with the sample size n.
Thus, we consider the number of predictors is function of n, i.e., p = pn, but we denote it as p for
notational simplicity.

Our goal is variable selection, i.e., the correct identification of all non-zero regression coefficients.

In light of that, we denote a model by k =
{

k1, k2, . . . , k|k|
}
⊆ [p] =: {1, 2, . . . , p} if and only if all

the nonzero elements of β are βk1
, βk2

, . . . , βk|k| and denote βk =
(

βk1
, βk2

, . . . , βk|k|

)⊤
, where |k| is the

cardinality of k. For any m× p matrix A, let Ak ∈ Rm×|k| denote the submatrix of A containing the
columns of A indexed by model k. In particular, for 1 ≤ i ≤ n, we denote xik as the subvector of xi

containing the entries of xi corresponding to model k.
The class of pMOM densities [8] can be used for model selection through the following

hierarchical model

π (βk | τ, k) = dk(2π)−
|k|
2 (τ)−r|k|− |k|2 |Uk|

1
2 exp

(
− β⊤k Uk βk

2τ

)
∏
|k|
i=1 β2r

ki
, (2)

π(k) ∝ I(|k| ≤ mn). (3)

Here U is a p× p nonsingular matrix, r is a positive integer referred to as the order of the density
and dk is the normalizing constant independent of the positive constant τ. Please note that prior
(2) is obtained as the product of the density of multivariate normal distribution and even powers of

parameters, ∏
|k|
i=1 β2r

ki
. This results in π(βk | τ, k) = 0 at βk = 0, which is desirable because (2) is a

prior for the nonzero elements of β. Some standard regularity assumptions on the hyperparameters
will be provided later in Section 3. In (3), mn ∈ [p] is a positive integer restricting the size of the largest
model, and a uniform prior is placed on the model space restricting our analysis to models having size
less than or equal to mn. Similar structure has also been considered in [5,9,14]. An alternative is to use
a complexity prior [15] that takes the form of

π(k) ∝ c−|k|1 p−c2|k|,

for some positive constants c1, c2. The essence is to force the estimated model to be sparse by penalizing
dense models. As noted in [9], the model selection consistency result based on the nonlocal priors
derives strength directly from the marginal likelihood and does not require strong penalty over model
size. This is indeed reflected in the simulation studies in [14], where the authors compare the model
selection performance under uniform prior and complexity prior. The result under uniform prior
is much better than that under complexity prior, as the complexity prior always tends to prefer the
sparse models.

By the hierarchical model (1) to (3) and Bayes’ rule, the resulting posterior probability for model
k is denoted by,

π(k|y) = π(k)

π(y)
mk(y), (4)

where π(y) is the marginal density of y, and mk(y) is the marginal density of y under model k given by

mk(y) =
∫

exp
{

Ln(βk)
}

π (βk | k) dβk

=
∫

exp
{

Ln(βk)
}

dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

(
− β⊤k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk, (5)
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where

Ln(βk) = log

(
n

∏
i=1

{
exp

(
x⊤ikβk

)

1 + exp
(
x⊤ikβk

)
}yi
{

1

1 + exp
(
x⊤ikβk

)
}1−yi

)
(6)

is the log likelihood function. In particular, these posterior probabilities can be used to select a model
by computing the posterior mode defined by

k̂ = arg maxkπ(k|y). (7)

Of course, the closed form of these posterior probabilities cannot be obtained due to not only
the nature of logistic regression but also the structure of nonlocal prior. Therefore, special efforts
need to be devoted to both consistency analysis and computational strategy as we shall see in the
following sections.

2.2. Extension to Generalized Linear Model

We can easily extend our previous discussion on logistic regression to a generalized linear
model (GLM) [16]. Given predictors xi and an outcome yi for 1 ≤ i ≤ n, a probability density
function (or probability mass function) of a generalized linear model has the following form of the
exponential family

p(yi|θ) = exp
{

a(θ)yi + b(θ) + c(yi)
}

,

in which a(·) is a continuously differentiable function with respect to θ with nonzero derivative, b(·) is
also a continuously differentiable function of θ, c(·) is some constant function of y, and θ is also
known as the natural parameter that relates the response to the predictors through the linear function
θi = θi(β) = x⊤i β. The mean function is µ = E(yi|xi) = −b′(θi)/a′(θi) , φ(θi), where φ(·) is the
inverse of some chosen link function.

The class of pMOM densities specified in (2) can still be used for model selection in this generalized
setting by noting that the log likelihood function in (5) and (6) now takes the general form of

Ln(βk) =
n

∑
i=1

{
a(θi(βk))yi + b(θi(βk)) + c(yi)

}
. (8)

After obtaining the posterior probabilities in (4) with the log likelihood substituted as (8), we can
select a model by computing the posterior mode. In Section 4, we will adopt some search algorithm
that use these posterior probabilities to target the mode in a more efficient way.

3. Main Results

In this section, we show that the proposed Bayesian model enjoys desirable theoretical properties.
Let t ⊆ [p] be the true model, which means that the nonzero locations of the true coefficient vector
are t = (j, j ∈ t). We consider t to be a fixed vector. Let β0 ∈ Rp be the true coefficient vector and
β0,t ∈ R|t| be the vector of the true nonzero coefficients. In the following analysis, we will focus on
logistic regression, but our argument can be easily extended to any other GLM as well. In particular,

Hn(βk) = −∂2Ln(βk)

∂βk∂β⊤k
=

n

∑
i=1

σ2
i (βk)xix

⊤
i = X⊤k Σ(βk)Xk

as the negative Hessian of Ln(βk), where Σ(βk) ≡ Σk = diag(σ2
1 (βk), . . . , σ2

n(βk)),
σ2

i (βk) = µi(βk)(1− µi(βk)) and

µi(βk) =
exp

(
x⊤ikβk

)

1 + exp
(
x⊤ikβk

) .
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In the rest of the paper, we denote Σ = Σ(βt) and σ2
i = σ2

i (βt) for simplicity.
Before we establish our main results, the following notations are needed for stating our

assumptions. For any a, b ∈ R, a ∨ b and a ∧ b mean the maximum and minimum of a and b,
respectively. For any sequences an and bn, we denote an . bn, or equivalently an = O(bn), if there
exists a constant C > 0 such that |an| ≤ C|bn| for all large n. We denote an ≪ bn, or equivalently
an = o(bn), if an/bn −→ 0 as n → ∞. Without loss of generality, if an ≥ bn > 0 and there exist
constants C1 > C2 > 0 such that C2 < bn/an ≤ an/bn < C1, we denote an ∼ bn. For a given vector
v = (v1, . . . , vp)⊤ ∈ Rp, the vector ℓ2-norm is denoted as ‖v‖2 = (∑

p
j=1 v2

j )
1/2. For any real symmetric

matrix A, λmax(A) and λmin(A) are the maximum and minimum eigenvalue of A, respectively.
To attain desirable asymptotic properties of our posterior, we assume the following conditions:

Condition (A1) log n . log p = o(n1/2) and mn = O
(
(n/ log p)

1−d′
2 ∧ log p

)
for some

0 ≤ d < (1 + d)/2 ≤ d′ ≤ 1.
Condition (A1) ensures our proposed method can accommodate high dimensions where the

number of predictors grows at a sub-exponential rate of n. Condition (A1) also specifies the
parameter mn in the uniform prior (3) that restricts our analysis on a set of reasonably large models.
Similar assumptions restricting the model size have been commonly assumed in the sparse estimation
literature [4,5,9,17].

Condition (A2) For some constant C ∈ (0, ∞) and 0 ≤ d < (1 + d)/2 ≤ d′ ≤ 1,

max
i,j
|xij| ≤ C,

0 < λ ≤ min
k:|k|≤mn+|t|

λmin

(
n−1Hn(β0,k)

)
≤ Λmn+|t| ≤ C2(log p)d,

and Λζ = maxk:|k|≤ζ λmax(n−1X⊤k Xk) for any integer ζ > 0. Furthermore, ‖β0,t‖2
2 = O

(
(log p)d

)
.

Condition (A2) gives lower and upper bounds of n−1Hn(β0,k) and n−1X⊤k Xk, respectively,
where k is a large model satisfying |k| ≤ mn + |t|. The lower bound condition can be regarded as a
restricted eigenvalue condition for ℓ0-sparse vectors. Restricted eigenvalue conditions are routinely
assumed in high-dimensional theory to guarantee some level of curvature of the objective function
and are satisfied with high probability for sub-Gaussian design matrices [5]. Similar conditions have
also been used in the linear regression literature [18–20]. The last assumption in Condition (A2) says
that the magnitude of true signals is bounded above (log p)d up to some constant, which allows the
magnitude of signals to increase to infinity.

Condition (A3) For some constant c0 > 0,

min
j∈t

β2
0,j ≥ c0

( |t|Λ|t| log p

n
∨ 1

log p

)
. (9)

Condition (A3) gives a lower bound for nonzero signals, which is called the beta-min condition.
In general, this type of condition is necessary for catching every nonzero signal. Please note that due
to Conditions (A1) and (A2), the right-hand side of (9) decreases to zero as n→ ∞. Thus, it allows the
smallest nonzero coefficients to tend to zero as we observe more data.

Condition (A4) For some small constant δ > 0, the hyperparameters τ and r satisfy

τr+1/2 ∼ n−1/2 p2+δ.

Condition (A4) suggests appropriate conditions for the hyperparameter τ in (2). A similar
assumption has also been considered in [9]. The scale parameter τ in the nonlocal prior density reflects
the dispersion of the nonlocal prior density around zero, and implicitly determines the size of the
regression coefficients that will be shrunk to zero [8,9]. For the below theoretical results, we assume
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that U = I for simplicity, but our results are still valid for other choices of U as long as λmax(U) = O(1)
and λmin(U) = O(1).

Theorem 1 (No super set). Under conditions (A1), (A2) and (A4),

π
(
k ) t | y

) P−→ 0, as n→ ∞.

Theorem 1 says that, asymptotically, our posterior will not overfit the model, i.e., not include
unnecessarily many variables. Of course, it does not guarantee that the posterior will concentrate on
the true model. To capture every significant variable, we require the magnitudes of nonzero entries
in β0,t not to be too small. Theorem 2 shows that with an appropriate lower bound specified in
Condition (A3), the true model t will be the mode of the posterior.

Theorem 2 (Posterior ratio consistency). Under conditions (A1)–(A4) with c0 = {(1− ǫ0)λ}−1
{

2(3 +

δ) + 5{(1− ǫ0)λ}−1
}

for some small constant ǫ0 > 0,

max
k 6=t

π
(
k | y

)

π
(
t | y

) P−→ 0, as n→ ∞.

Posterior ratio consistency is a useful property especially when we are interested in the point
estimation with the posterior mode, but does not provide how large probability the posterior puts
on the true model. In the following theorem, we state that our posterior achieves strong selection
consistency. By strong selection consistency, we mean that the posterior probability assigned to the
true model t converges to 1. Since strong selection consistency implies posterior ratio consistency,
it requires a slightly stronger condition on the lower bound for the magnitudes of nonzero entries in
β0,t, i.e., a larger value of c0, compared to that in Theorem 2.

Theorem 3 (Strong selection consistency). Under conditions (A1)–(A4) with c0 = {(1− ǫ0)λ}−1
{

2(9 +
2δ) + 5{(1− ǫ0)λ}−1

}
for some small constant ǫ0 > 0, the following holds:

π
(
t | y

) P−→ 1, as n→ ∞.

4. Computational Strategy

In this section, we describe how to approximate the marginal density of the data and to conduct
the model selection procedure. The integral formulation in (4) leads to the posterior probabilities
not available in closed form. Hence, we use Laplace approximation to compute mk(y) and π(k|y).
A similar approach to compute posterior probabilities has been used in [8–10].

Please note that for any model k, when Uk = Ik, the normalization constant dk in (2) is given by

dk =
{
(2r− 1)!!

}−|k|
. Let

f (βk) = log
(

exp
{

Ln(βk)
}

π (βk | k)
)

= ∑
n
i=1

{
yix
⊤
ikβk − log

(
1 + exp(x⊤ikβk)

)}
− |k| log ((2r− 1)!!)− |k|2 log(2π)−

(
r|k|+ |k|

2

)
log τ

− β⊤k βk

2τ + ∑
|k|
i=1 2r log

(
|βki
|
)
.

For any model k, the Laplace approximation of mk(y) is given by

(2π)
|k|
2 exp

{
f (β̂k)

}
|V(β̂k)|−

1
2 , (10)
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where β̂k = arg maxβk
f (βk) obtained via the optimization function optim in R using a quasi-Newton

method and V(β̂k) is a |k| × |k| symmetric matrix which can be calculated as:

−
n

∑
i=1

xikx⊤ik exp(x⊤ikβk){
1 + exp(x⊤ikβk)

}2 −
1
τ

Ik − diag

(
2r

β2
k1

, . . . ,
2r

β2
k|k|

)
.

The above Laplace approximation can be used to compute the log of the posterior probability
ratio between any given model k and true model t, and select a model k with the highest probability.

We then adopt the shotgun stochastic search (SSS) algorithm [9,12] to efficiently navigate through
the massive model space and identify the global maxima. Using the Laplace approximations of the
marginal probabilities in (10), the SSS method aims at exploring “interesting” regions of the resulting
high-dimensional model spaces and quickly identifies regions of high posterior probability over models.
Let nbd(k) = {Γ+, Γ−, Γ0} containing all the neighbors of model k, in which Γ+ =

{
k ∪ {j} : j /∈ k

}
,

Γ− =
{

k \ {j} : j ∈ k
}

and Γ0 =
{

k \ {j} ∪ {l} : j ∈ k, l /∈ k
}

. The SSS procedure is described in
Algorithm 1.

Algorithm 1 Shotgun Stochastic Search (SSS)

Choose an initial model k(1)

for i = 1 to i = N − 1 do

Compute π(k|y) for all k ∈ nbd
(
k(i)
)

Sample k+, k− and k0, from Γ+, Γ− and Γ0 with probabilities proportional to π(k|y)
Sample the next model k(i+1) from {k+, k−, k0} with probability proportional to{

π(k+|y), π(k−|y), π(k0|y)
}

end for

5. Simulation Studies

In this section, we demonstrate the performance of the proposed method in various settings.
Let X be the design matrix whose first |t| columns correspond to the active covariates for which we
have nonzero coefficients, while the rest correspond to the inactive ones with zero coefficients. In all

the simulation settings, we generate xi
i.i.d.∼ Np(0, Σ) for i = 1, . . . , n under the following two different

cases of Σ:

• Case 1: Isotropic design, where Σ = Ip, i.e., no correlation imposed between different covariates.

• Case 2: Autoregressive correlated design, where Σij = 0.3|i−j|, for all 1 ≤ i ≤ j ≤ p.
The correlations among different covariates are set to different values.

Following the simulation settings in [9,10], we consider the following two designs, each with the
same sample size n = 100 and number of predictors being either p = 100 or 150:

• Design 1 (Dense model): The number of predictors p = 100 and |t| = 8.

• Design 2 (High-dimensional): The number of predictors p = 150 and |t| = 4.

We investigate the following two settings for the true coefficient vector β0,t to include different
combinations of small and large signals.

• Setting 1: All the entries of β0,t are set to 3.

• Setting 2: All the entries of β0,t are generated from Unif(1.5, 3).

Finally, for given X and 1 ≤ i ≤ n, we sample yi from the following logistic model as in (1)

P (yi = 1 | xi, β0) =
exp

(
x⊤i β0

)

1 + exp
(

x⊤i β0
) .
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We will refer to our proposed method as “nonlocal” and its performance will then be
compared with other existing methods including Spike and Slab prior-based model selection [21],
empirical Bayesian LASSO (EBLasso) [22], Lasso [23] and SCAD [24]. The tuning parameters in
the regularization approaches are chosen by 5-fold cross-validation. Spike and slab prior method is
implemented via the BoomSpikeSlab package in R. For the nonlocal prior, the hyperparameters are set
at U = I, r = 1 and we tune τ = 10−in−1/2 p2+0.05 for four different values of i = 0, 1, 2, 3. We choose
the optimal τ by the mean squared prediction error through 5-fold cross-validation. Please note that
this implies that τ is data-dependent and the resulting procedure is similar to an empirical-Bayesian
approach in the high-dimensional Bayesian literature given the prior knowledge about the sparse true
model [13]. For the SSS procedure, the initial model was set by randomly taking three coefficients to be
active and the remaining to be inactive. The detailed steps for our method are coded in R and publicly
available at https://github.com/xuan-cao/Nonlocal-Logistic-Selection. In particular, the stochastic
search is implemented via the SSS function in the R package BayesS5.

To evaluate the performance of variable selection, the precision, sensitivity, specificity, Matthews
correlation coefficient (MCC) [25] and mean-squared prediction error (MSPE) are reported at Tables 1–4,
where each simulation setting is repeated for 20 times. The criteria are defined as

Precision =
TP

TP + FP
, Sensitivitiy =

TP
TP + FN

, Specificity =
TN

TN + FP
,

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, MSPE =

1
ntest

ntest

∑
i=1

(
ŷi − ytest,i

)2
,

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively.
Here we denote ŷi = x⊤i β̂, where β̂ is the estimated coefficient based on each method. For Bayesian
methods, the usual GLM estimates based on the selected support are used as β̂. We generated test
samples ytest,1, . . . , ytest,ntest with ntest = 50 to calculate the MSPE.

Table 1. The summary statistics for Design 1 (Dense model design) are represented for each setting
of the true regression coefficients under the first isotropic covariance case. Different setting means
different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.02
Spike and Slab 1 0.38 1 0.60 0.21

Lasso 0.67 1 0.96 0.80 0.17
EBLasso 1 0.38 1 0.60 0.22
SCAD 0.57 1 0.93 0.73 0.14

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.73 1 0.97 0.84 0.18
Spike and Slab 1 0.13 1 0.34 0.23

Lasso 0.54 0.88 0.93 0.65 0.15
EBLasso 1 0.63 1 0.78 0.22
SCAD 0.47 0.88 0.91 0.60 0.13
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Table 2. The summary statistics for Design 1 (Dense model design) are represented for each setting
of the true regression coefficients under the second autoregressive covariance case. Different setting
means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.89 1 0.99 0.94 0.13
Spike and Slab 0.71 0.63 0.98 0.64 0.20

Lasso 0.70 0.88 0.98 0.76 0.16
EBLasso 1 0.50 1 0.69 0.23
SCAD 0.67 0.75 0.97 0.68 0.17

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.88 0.88 0.99 0.86 0.14
Spike and Slab 0.83 0.63 0.99 0.70 0.13

Lasso 0.63 0.88 0.96 0.72 0.14
EBLasso 1 0.38 1 0.60 0.22
SCAD 0.47 0.88 0.91 0.60 0.13

Table 3. The summary statistics for Design 2 (High-dimensional design) are represented for each
setting of the true regression coefficients under the first isotropic covariance case. Different setting
means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.08
Spike and Slab 0.75 0.75 0.99 0.74 0.09

Lasso 0.80 1 0.99 0.89 0.14
EBLasso 1 0.75 1 0.86 0.21
SCAD 0.67 1 0.99 0.81 0.12

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.10
Spike and Slab 0.75 0.75 0.99 0.74 0.11

Lasso 0.67 1 0.99 0.81 0.14
EBLasso 1 0.75 1 0.86 0.23
SCAD 0.44 1 0.97 0.66 0.12

Table 4. The summary statistics for Design 2 (High-dimensional design) are represented for each
setting of the true regression coefficients under the second autoregressive covariance case. Different
setting means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 0.75 1 0.86 0.11
Spike and Slab 1 0.50 1 0.71 0.10

Lasso 0.57 1 0.98 0.75 0.10
EBLasso 1 0.50 1 0.70 0.18
SCAD 0.44 1 0.97 0.66 0.12

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 0.75 1 0.86 0.15
Spike and Slab 0.50 0.50 0.99 0.49 0.14

Lasso 0.44 1 0.97 0.66 0.13
EBLasso 1 0.50 1 0.70 0.21
SCAD 0.40 1 0.96 0.62 0.14
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Based on the above simulation results, we notice that under the first isotropic covariance case,
the nonlocal-based approach overall works better than other methods especially in the strong signal
setting (i.e., Setting 1), where our method is able to consistently achieve perfect estimation accuracy.
This is because as signal strength gets stronger, the consistency conditions of our method are easier
to satisfy which leads to better performance. When the covariance is autoregressive, our method
suffers from lower sensitivity compared with the frequentist approaches in high-dimensional design
(Table 4), but still has higher precision, specificity and MCC. The poor precision of the regularization
methods has also been discussed in previous literature in the sense that selection of the regularization
parameter using cross-validation is optimal with respect to prediction but tends to include too many
noise predictors [26]. Again we observe under the autoregressive design, the performance of our
method improves as the true signals strengthen. To sum up, the above simulation studies indicate
that the proposed method can perform well under a variety of configurations with different data
generation mechanisms.

6. Application to fMRI Data Analysis

In this section, we apply the proposed model selection method to an fMRI data set for identifying
aberrant functional brain activities to aid the diagnosis of Parkinson’s Disease (PD) [27]. Data consists
of 70 PD patients and 50 healthy controls (HC). All the demographic characteristics and clinical
symptom ratings have been collected before MRI scanning. In particular, we adopt the mini-mental
state examination (MMSE) for cognitive evaluation and the Hamilton Depression Scale (HAMD) for
measuring the severity of depression.

6.1. Image Feature Extraction

Functional imaging data for all subjects are collected and retrieved from the archive by
neuroradiologists. Image preprocessing procedure is carried out via Statistical Parametric Mapping
(SPM12) operated on the Matlab platform. For each subject, we first discard the first 5 time points for
signal equilibrium and the remaining 135 images underwent slice-timing and head motion corrections.
Four subjects with more than 2.5 mm maximum displacement in any of the three dimensions or 2.5◦

of any angular motion are removed. The functional images are spatially normalized to the Montreal
Neurological Institute space with 3× 3× 3 mm3 cubic voxels and smoothed with a 4 mm full width
at half maximum (FWHM) Gaussian kernel. We further regress out nuisance covariates and applied
temporal filter (0.01 Hz < f < 0.08 Hz) to diminish high-frequency noise.

Zang et al. [28] proposed the method of Regional Homogeneity (ReHo) to analyze characteristics
of regional brain activity and to reflect the temporal homogeneity of neural activity. Since some
preprocessing methods especially spatial smoothing fMRI time series may significantly change the
ReHo magnitudes [29], preprocessed fMRI data without the spatial smoothing step are used for
calculating ReHo. In particular, we focus on the mReHo maps obtained by dividing the mean ReHo of
the whole brain within each voxel in the ReHo map. We further segment the mReHo maps and extract
all the 112 ROI signals based on the Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data
Analysis Toolkit.

Slow fluctuations in activity are fundamental features of the resting brain for determining
correlated activity between brain regions and resting state networks. The relative magnitude of
these fluctuations can discriminate between brain regions and subjects. Amplitude of Low Frequency
Fluctuations (ALFF) [30] are related measures that quantify the amplitude of these low frequency
oscillations. Leveraging the preprocessed data, we retain the standardized mALFF maps after
dividing the ALFF of each voxel by the global mean ALFF. Using the HOA, we again obtain
112 mALFF values via extracting the ROI signals based on the mALFF maps. Voxel-Mirrored
Homotopic Connectivity (VMHC) quantifies functional homotopy by providing a voxel-wise measure
of connectivity between hemispheres [31]. By segmenting the VMHC maps according to HOA, we also
extract 112 VHMC values.
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6.2. Results

Our candidate features consist of 336 radiomic variables along with all the clinical characteristics.
We now consider a standard logistic regression model with the binary disease indicator as the outcome
and all the radiomic variables together with five clinical factors as predictors. Various models including
the proposed and other competing methods will then be implemented for classifying subjects based
on these extracted features. The dataset is randomly divided into a training set (80%) and a testing
set (20%) while maintaining the PD:HC ratio in both sets. For Bayesian methods, we first obtain the
identified variables, and then evaluate the testing set performance using standard GLM estimates
based on the selected features. The penalty parameters in all frequentist methods are tuned via
5-fold cross validation in the training set. The hyperparameters for the proposed method are set as in
simulation studies.

The HAMD score and nine radiomic features including five mALFFs, two ReHos, two VHMCs
are selected by the SSS procedure under pMOM prior. In Figure 1, we plot the histograms of selected
radiomic features with different colors representing different groups. The predictive performance
of various methods in the test set is summarized in Table 5. We can tell from Table 5 that the
nonlocal prior-based approach has overall better prediction performance compared with other methods.
Our nonlocal approach has higher precision and specificity compared with all the other methods,
but yields a lower sensitivity than the frequentist approaches. Based on the most comprehensive
measure MCC, our method outperforms all the other methods.
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Figure 1. Histograms of selected radiomic features for PD and HC subjects with darker color
representing overlapping values. Purple: PD group; Green: HC group.
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Table 5. The summary statistics for prediction performance on the testing set for all methods.

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.77 0.83 0.73 0.56 0.21
Spike and Slab 0.53 0.75 0.27 0.40 0.29

Lasso 0.67 1 0.45 0.55 0.18
EBLasso 0.57 1 0.18 0.32 0.28
SCAD 0.58 1 0.37 0.41 0.19

7. Conclusions

In this paper, we propose a Bayesian hierarchical model with a pMOM prior specification
over regression coefficients to perform variable selection in high-dimensional generalized linear
models. The model selection consistency of our method is established under mild conditions
and the shotgun stochastic search algorithm can be used for the implementation of our proposed
approach. Our simulation and real data studies indicate that the proposed method has better
performance for variable selection compared to a variety of state-of-the-art competing methods.
In the fMRI data analysis, our method is able to identify abnormal functional brain activities for PD
that occur in the regions of interest including cingulate gyrus, central opercular cortex, occipital pole,
brainstem, left amygdala, occipital pole, inferior temporal gyrus, and juxtapositional lobule cortex.
These findings suggest disease-related alterations of functional activities that provide physicians
sufficient information to get involved with early diagnosis and treatment. Our findings are also
coherent with the alternative functional features in cortical regions, brainstem, and limbic regions
discovered in previous studies [32–35].

Our fMRI study certainly has limitations. First, we would like to note that fMRI data are typically
treated as spatio-temporal objects and a generalized linear model with spatially varying coefficients
can be implemented for brain decoding [36]. However, in our application, for each subject, a total of
135 fMRI scans were obtained, each with the dimension of 64× 64× 31. If we take each voxel as a
covariate to perform the whole-brain functional analysis, it would be computationally challenging and
impractical given the extremely high dimension. Hence, we adopt the radiomics approach to extract
three different types of features that can summarize the functional activity of the brain, and take these
radiomic features as covariates in our generalized linear model. For future studies, we will focus on
several regions of interest rather than the entire brain and take the spatio-temporal dependency among
voxels into consideration.

Second, although ReHo, ALFF, and VHMC are different types of radiomic features that quantify
the functional activity of the brain, it is definitely possible that in some regions, three measures are
highly correlated with each other. Our current theoretical and computational strategy can accommodate
a reasonable amount of correlations among covariates, but might not work in the presence of high
correlation structure. For future studies, we will first carefully examine the potential correlations
among features and might only retain one feature for each region if significant correlations are detected.

One possible extension of our methodology is to address the potential misspecification of the
hyperparameter τ. The scale parameter τ is of particular importance in the sense that it can reflect
the dispersion of the nonlocal density around zero, and implicitly determine the size of the regression
coefficients that will be shrunk to zero [8]. Cao et al. [14] investigated the model selection consistency
for the hyper-pMOM priors in linear regression setting, where an additional inverse-gamma prior
is placed over τ. Wu et al. [11] proved the model selection consistency using hyper-pMOM prior
in generalized linear models, but assumed a fixed dimension p. For future study, we will consider
this fully Bayesian approach to carefully examine the theoretical and empirical properties for such
hyper-pMOM prior in the context of high-dimensional generalized linear regression. We can also
extend our method to develop a Bayesian approach for growth models in the context of non-linear
regression [37], where the log-transformation is typically used to recover the additive structure.
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However, then the model does not fall into the category of GLMs, which is beyond the current setting
in this paper. Therefore, we leave it as a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

Lasso least absolute shrinkage and selection operator
SCAD smoothly clipped absolute deviation
MCP minimum concave penalty
pMOM product moment
SSS shotgun stochastic search
MCMC Markov chain Monte Carlo
fMRI functional Magnetic Resonance Imaging
GLM generalized linear model
EBLasso empirical Bayesian LASSO
MCC Matthews correlation coefficient
MSPE mean-squared prediction error
PD Parkinson’s Disease
HC healthy controls
MMSE mini-mental state examination
HAMD Hamilton Depression Scale
SPM12 Statistical Parametric Mapping
FWHM full width at half maximum
HOA Harvard-Oxford atlas
ALFF Amplitude of Low Frequency Fluctuations
VMHC Voxel-Mirrored Homotopic Connectivity

Appendix A

Throughout the Supplementary Material, we assume that for any

u ∈ {u ∈ Rn : u is in the space spanned by the columns of Σ
1/2Xk}

and any model k ∈ {k ⊆ [r] : |k| ≤ mn + |t|}, there exists δ∗ > 0 such that

E
[

exp
{

u⊤Σ
−1/2(y− µ)

}]
≤ exp

{ (1 + δ∗)u⊤u

2

}
, (A1)

for any n ≥ N(δ∗). However, as stated in [5], there always exists δ∗ > 0 satisfying inequality (A1), so it
is not really a restriction. Since we will focus on sufficiently large n, δ∗ can be considered an arbitrarily
small constant, so we can always assume that δ > δ∗.
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Proof of Theorem 1. Let M1 = {k : k ) t, |k| ≤ mn} and

PR(k, t) =
π(k | y)

π(t | y)
,

where t ⊆ [r] is the true model. We will show that

∑
k:k∈M1

PR(k, t)
P−→ 0 as n→ ∞. (A2)

By Taylor’s expansion of Ln(βk) around β̂k, which is the MLE of βk under the model k, we have

Ln(βk) = Ln(β̂k)−
1
2
(βk − β̂k)

⊤Hn(β̃k)(βk − β̂k)

for some β̃k such that ‖β̃k − β̂k‖2 ≤ ‖βk − β̂k‖2. Furthermore, by Lemmas A.1 and A.3 in [5] and
Condition (A2), with probability tending to 1,

Ln(βk)− Ln(β̂k) ≤ −1− ǫ

2
(βk − β̂k)

⊤Hn(β0,k)(βk − β̂k)

for any k ∈ M1 and βk such that ‖βk − β0,k‖2 < c
√
|k|Λ|k| log p/n =: cwn, where ǫ = ǫn :=

c′
√

m2
nΛmn log p/n = o(1), for some constants c, c′ > 0. Please note that for βk such that

‖βk − β̂k‖2 = cwn/2,

Ln(βk)− Ln(β̂k) ≤ −1− ǫ

2
‖βk − β̂k‖2

2 λmin
{

Hn(β0,k)
}

≤ −1− ǫ

2
c2w2

n

4
nλ = −1− ǫ

8
c2λ|k|Λ|k| log p −→ −∞ as n→ ∞,

where the second inequality holds due to Condition (A2). It also holds for any βk such that
‖βk − β̂k‖2 > cwn/2 by concavity of Ln(·) and the fact that β̂k maximizes Ln(βk).

Define the set B :=
{

βk : ‖βk − β̂k‖2 ≤ cwn/2
}

, then we have B ⊂ {βk : ‖βk − β0,k‖2 ≤ cwn}
for some large c > 0 and any k ∈ M1, with probability tending to 1.

mk(y) =
∫

exp
{

Ln(βk)
}

π (βk | k) dβk

=
∫

exp
{

Ln(βk)
}

dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

(
− β⊤k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

≤ dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

{
Ln(β̂k)

}
(A3)

×
[ ∫

B
exp

{
− 1− ǫ

2
(βk − β̂k)

⊤Hn(β0,k)(βk − β̂k)−
β⊤k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk

+ exp
(
− 1− ǫ

8
c2λ|k|Λ|k| log p

) ∫

Bc
exp

(
− β⊤k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

]
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Please note that for Ak = (1− ǫ)Hn(β0,k) and β∗k = (Ak + Uk/τ)−1 Ak β̂k, we have

∫

B
exp

{
− 1− ǫ

2
(βk − β̂k)

⊤Hn(β0,k)(βk − β̂k)−
β⊤k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk

≤
∫

exp
{
− 1

2
(βk − β∗k)

⊤(Ak + Uk/τ)(βk − β∗k)
} |k|

∏
i=1

β2r
ki

dβk

× exp
{
− 1

2
β̂⊤k
(

Ak − Ak(Ak + Uk/τ)−1 Ak

)
β̂k

}

= (2π)|k|/2 det
(

Ak + Uk/τ
)−1/2

exp
{
−1

2
β̂⊤k
(

Ak − Ak(Ak + Uk/τ)−1 Ak

)
β̂k

}
Ek

( |k|
∏
i=1

β2r
ki

)
,

where Ek(.) denotes the expectation with respect to a multivariate normal distribution with mean
β∗k and covariance matrix (Ak + Uk/τ)−1. It follows from Lemma 6 in the supplementary material
for [8] that

Ek

( |k|
∏
i=1

β2r
ki

)
≤

(
nΛ|k| + τ−1

nλ + τ−1

)|k|/2{
4V
|k| +

4 [(2r− 1)!!]
1
r

n(λ + τ−2)

}r|k|

≤
(

nΛ|k| + τ−1

nλ + τ−1

)|k|/2

2r|k|−1





(
4V
|k|

)r|k|
+

(
4 [(2r− 1)!!]

1
r

n(λ + τ−1)

)r|k|
 ,

where V = ‖β∗k‖2
2, and

∫

Bc
exp

{
− β⊤k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk ≤ (Cτ)|k|/2,

for some constant C > 0. Further note that

det
{

Hn(β0,k)(1− ǫ) + τ−1 I
}1/2

≤
(
nΛ|k| + τ−1)|k|/2

≤ exp
{

C|k| log n
}

≪ exp
{1− ǫ

8
c2λ|k|Λ|k| log p

}

for some constant C > 0 and some large constant c > 0, by Conditions (A1), (A2) and (A4). Therefore,
it follows from (A3) that

mk(y) ≤ C−|k|/2(τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ǫ) + τ−1Uk

}−1/2

×
[

Λ|k|
|k|/2

{(
V
|k|

)r|k|
+ n−r|k|

}
+ o(1)

]
(A4)

≤ C−|k|/2(τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ǫ) + τ−1Uk

}−1/2

×Λ|k|
|k|/2

{(
V
|k|

)r|k|
+ n−r|k|

}
,
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for some constant C > 0. Next, note that it follows from Lemma A.3 in the supplementary material
for [5] that

V = ‖β∗k‖2
2 ≤ ‖β̂k‖2

2 ≤
(
‖β̂k − β0,k‖2 + ‖β0,k‖2

)2

≤
(√ |k|Λ|k| log p

n
+
√

log p

)2

≤ 2
( |k|Λ|k| log p

n
+ log p

)
.

Therefore,

(
V
|k|

)r|k|
≤

(2 log p
|k|

)r|k|
exp

(
r|k|2

Λ|k|
n

)

.
(

2 log p
|k|

)r|k|

by Conditions (A1) and (A2). Combining with (A4), we obtain the following upper bound for mk(y),

mk(y) ≤ (C1τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ǫ) + τ−1Uk

}−1/2

×Λ|k|
|k|/2

(
log p
|k|

)r|k|
, (A5)

for any k ∈ M1 and some constant C1 > 0. Similarly, by Lemma 4 in the supplementary material
for [8] and the similar arguments leading up to (A5), with probability tending to 1, we have

mt(y) & (C1τ)−r|t|−|t|/2 exp
{

Ln(β̂t)
}

det
{

Hn(β0,t)(1 + ǫ) + τ−1Ut

}−1/2

× exp
{
− 1

2
β̂⊤t
(

At − At(At + τ−2 It)
−1 At

)
β̂t

}(
log p

)−r|t|

& (C1τ)−r|t|−|t|/2 exp
{

Ln(β̂t)
}

det
{

Hn(β0,t)(1 + ǫ) + τ−1Ut

}−1/2(
log p

)−r|t|

by Lemma A1, where At = (1 + ǫ)Hn(β0,t). Therefore, with probability tending to 1,

mk(y)

mt(y)
.

{
C1n1/2τr+1/2}−(|k|−|t|) det

{
n−1Hn(β0,t)(1 + ǫ) + (nτ)−1Ut

}1/2

det
{

n−1Hn(β0,k)(1− ǫ) + (nτ)−1Uk

}1/2

× exp
{

Ln(β̂k)− Ln(β̂t)
}

Λ|k|
|k|
2

(
log p
|k|

)r|k|
(log p)r|t| (A6)

.
{

C1 p2+δ
}−(|k|−|t|)( 2

λ

)|k|−|t|
exp

{
Ln(β̂k)− Ln(β̂t)

}
(log p)r(2|k|+|t|)

. (C1 p)−(2+δ)(|k|−|t|)
( 2

λ

)|k|−|t|
p(1+δ∗)(1+2w)(|k|−|t|)(log p)r(2|k|+|t|)

for any k ∈ M1, where the second inequality holds by Lemma 2 in [38], Conditions (A2) and (A4),
and the third inequality follows from Lemma 3 in [38], which implies

Ln(β̂k)− Ln(β̂t) ≤ bn(|k| − |t|) (A7)

for any k ∈ M1 with probability tending to 1, where bn = (1 + δ∗)(1 + 2w) log p with some small
constant w > 0 satisfying 1 + δ > (1 + δ∗)(1 + 2w).
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Hence, with probability tending to 1, it follows from (A6) that

∑
k∈M1

PR(k, t) = ∑
k)t

π(k)mk(y)

π(t)mt(y)
≤ ∑

k)t

mk(y)

mt(y)

≤
mn−|t|
∑

|k|−|t|=1

(
p− |t|
|k| − |t|

)
p−(1+c)(|k|−|t|). (A8)

for some constant c > 0. Using (
p−|t|
|k|−|t|) ≤ p|k|−|t| and (A8), we get

∑
k∈M1

PR(k, t) = o(1).

Thus, we have proved the desired result (A2).

Proof of Theorem 2. Let M2 = {k : k + t, |k| ≤ mn}. For any k ∈ M2, let k∗ = k ∪ t, so that
k∗ ∈ M1. Let βk∗ be the |k∗|-dimensional vector including βk for k and zeros for t \ k. Then by
Taylor’s expansion and Lemmas A.1 and A.3 in [5], with probability tending to 1,

Ln(βk∗) = Ln(β̂k∗)−
1
2
(βk∗ − β̂k∗)

⊤Hn(β̃k∗)(βk∗ − β̂k∗)

≤ Ln(β̂k∗)−
1− ǫ

2
(βk∗ − β̂k∗)

⊤Hn(β0,k∗)(βk∗ − β̂k∗)

≤ Ln(β̂k∗)−
n(1− ǫ)λ

2
‖βk∗ − β̂k∗‖2

2

for any βk∗ such that ‖βk∗ − β0,k∗‖2 ≤ c
√
|k∗|Λ|k∗ | log p/n = cwn for some large constant c > 0.

Please note that
Let Bk = n(1− ǫ)λIk and β∗k = (Bk + Uk/τ)−1Bk β̂k,

∫
exp

{
− n(1− ǫ)λ

2
‖βk∗ − β̂k∗‖2

2

}
exp

(
− β⊤k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

=
∫

exp
{
− n(1− ǫ)λ

2
‖βk − β̂k‖2

2 −
1

2τ
β⊤k Ukβk

} |k|
∏
i=1

β2r
ki

dβk exp
{
− n(1− ǫ)λ

2
‖β̂t\k‖2

2

}

= (2π)
|k|
2 |Bk + Uk/τ|−1/2 exp

{
−1

2
β̂⊤k
(

Bk − Bk(Bk + Uk/τ)−1Bk

)
β̂k

}
Ek

( |k|
∏
i=1

β2r
ki

)

× exp
{
− n(1− ǫ)λ

2
‖β̂t\k‖2

2

}
.

where Ek(.) denotes the expectation with respect to a multivariate normal distribution with mean
β∗k and covariance matrix (Bk + Uk/τ)−1. It follows from Lemma 6 in the supplementary material
for [8] that

Ek

( |k|
∏
i=1

β2r
ki

)
≤

(
nλ + τ−1

nλ + τ−1

)|k|/2{
4V
|k| +

4 [(2r− 1)!!]
1
r

n(λ + τ−1)

}r|k|

≤
(

nλ + τ−1

nλ + τ−1

)|k|/2

2r|k|−1





(
4V
|k|

)r|k|
+

(
4 [(2r− 1)!!]

1
r

n(λ + τ−1)

)r|k|
 ,
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where V = ‖β∗k‖2
2. Define the set B∗ :=

{
βk : ‖βk∗ − β̂k∗‖2 ≤ cwn/2

}
, for some large constant c > 0,

then by similar arguments used for super sets, with probability tending to 1,

π(k | y) = dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2

∫

B∗∪Bc∗
exp

{
Ln(βGk∗ )

}
exp

(
− β⊤k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

. (C1τ)−r|k|−|k|/2 exp
{

Ln(β̂k∗)
}

det
(

Bk + Uk/τ
)−1/2

×
[

exp
{
− n(1− ǫ)λ

2
‖β̂t\k‖2

2

}( log p
|k|

)r|k|
+ exp

{
− cC|k∗|Λ|k∗ | log p

}]

for any k ∈ M2 and for some constant C > 0.
Since the lower bound for π(t | y) can be derived as before, it leads to

PR(k, t) .
{

C1n1/2τr+1/2}−(|k|−|t|) det
{
(1 + ǫ)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

det
{
(1− ǫ)λIk + (nτ)−1Uk

}1/2

× exp
{

Ln(β̂k∗)− Ln(β̂t)
}

exp
{
− n(1− ǫ)λ

2
‖β̂t\k‖2

2

}( log p
|k|

)r|k|
(log p)r|t|(A9)

+
{

C1n1/2τr+1/2}−(|k|−|t|)det
{
(1 + ǫ)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

× exp
{

Ln(β̂k∗)− Ln(β̂t)
}

exp
{
− c C|k∗|Λ|k∗ | log p

}
(log p)r|t| (A10)

for any k ∈ M2 with probability tending to 1.
We first focus on (A9). Please note that

det
{
(1 + ǫ)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

det
{
(1− ǫ)λIk + (nτ)−1Uk

}1/2

≤
{
(1 + ǫ)Λ|t| + (nτ)−1

}|t|/2

{
(1− ǫ)λ + (nτ)−1

}|k|/2

=
{ (1 + ǫ)Λ|t| + (nτ)−1

(1− ǫ)λ + (nτ)−1

}|t|/2{ 1
(1− ǫ)λ + (nτ)−1

}(|k|−|t|)/2

. exp
{

C|t| log Λ|t|
} { 1

(1− ǫ)λ + (nτ)−1

}(|k|−|t|)/2

for some constant C > 0. Furthermore, by the same arguments used in (A7), we have

Ln(β̂k∗)− Ln(β̂t) . C∗(|k∗| − |t|) log p

= C∗|t \ k| log p + C∗(|k| − |t|) log p

for some constant C∗ > 0 and for any k ∈ M2 with probability tending to 1. Here we choose
C∗ = (1 + δ∗)(1 + 2w) if |k| > |t| or C∗ = 3 + δ if |k| ≤ |t| so that

{
C1n1/2τr+1/2}−(|k|−|t|){ 1

(1− ǫ)λ + (nτ)−1

}(|k|−|t|)/2
pC∗(|k|−|t|)

× exp
{

r|k| log
( log p
|k|

)
+ r|t| log(log p)

}

. p(C∗−2−δ)(|k|−|t|) = o(1),

where the inequality holds by Condition (A4). To be more specific, we divide M2 into two disjoint
sets M′2 = {k : k ∈ M2, |t| < |k| ≤ mn} and M∗2 = {k : k ∈ M2, |k| ≤ |t|}, and will show that
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∑k∈M′2
PR(k, t) + ∑k∈M∗2

PR(k, t) −→ 0 as n→ ∞ with probability tending to 1. Thus, we can choose
different C∗ for M′2 and M∗2 as long as C∗ ≥ (1 + δ∗)(1 + 2w). On the other hand, with probability
tending to 1, by Condition (A3),

exp
{
− n(1− ǫ)λ

2
‖β̂t\k‖2

2

}
≤ exp

[
− n(1− ǫ)λ

2

{
‖β0,t\k‖2

2 − ‖β̂t\k − β0,t\k‖2
2

}]

≤ exp
[
− n(1− ǫ)λ

2

{
|t \ k|2 min

j∈t
β2

0,j − c′w′2n
}]

≤ exp
{
− (1− ǫ)λ

2

(
c0|t \ k|2|t| − c′|t \ k|

)
Λ|t| log p

}

≤ exp
{
− (1− ǫ)λ

2
(c0 − c′)|t \ k|2|t|Λ|t| log p

}

for any k ∈ M2 and some large constants c0 > c′ > 0, where w′2n = |t \ k|Λ|t\k| log p/n. Here,
c′ = 5λ−2(1− ǫ)−2 by the proof of Lemma A.3 in [5].

Hence, (A9) for any k ∈ M2 is bounded above by

exp
{
|t| log Λ|t| + C∗|t \ k| log p− (1− ǫ)λ

2
(c0 − c′)|t \ k|2|t|Λ|t| log p

}

. exp
{
−
( (1− ǫ)λ

2
(c0 − c′)− C∗ − o(1)

)
|t \ k|2|t|Λ|t| log p

}

≤ exp
{
−
( (1− ǫ)λ

2
(c0 − c′)− C∗ − o(1)

)
|t \ k|2|t|Λ|t| log p

}

≤ exp
{
−
( (1− ǫ)λ

2
(c0 − c′)− C∗ − o(1)

)
|t|Λ|t| log p

}

with probability tending to 1, where the last term is of order o(1) because we assume c0 = 1
(1−ǫ0)λ

{
2(3+

δ) + 5
(1−ǫ0)λ

}
>

2
(1−ǫ)λ

(C∗ + o(1)) + c′ for some small ǫ0 > 0.

It is easy to see that the maximum (A10) over k ∈ M2 is also of order o(1) with probability tending
to 1 by the similar arguments. Since we have (A2) in the proof of Theorem 1, it completes the proof.

Proof of Theorem 3. Let M2 = {k : k + t, |k| ≤ mn}. Since we have Theorem 1, it suffices to
show that

∑
k:k∈M2

PR(k, t)
P−→ 0 as n→ ∞. (A11)

By the proof of Theorem 2, the summation of (A9) over k ∈ M2 is bounded above by

∑k∈M2
p(C∗−2−δ)(|k|−|t|) exp

{
−
(
(1−ǫ)λ

2 (c0 − c′)− C∗ − o(1)
)
|t \ k|2|t|Λ|t| log p

}

≤ ∑
r
|k|=0 ∑

(|t|−1)∧|k|
v=0 (|t|v )(

r−|t|
|k|−v)p−(|k|−|t|) exp

{
−
(
(1−ǫ)λ

2 (c0 − c′)− C∗ − o(1)
)
(|t| − v)2|t|Λ|t| log p

}

≤ ∑
r
|k|=0 ∑

(|t|−1)∧|k|
v=0

(
|t|r
)|t|−v

exp
{
−
(
(1−ǫ)λ

2 (c0 − c′)− C∗ − o(1)
)
(|t| − v)2|t|Λ|t| log p

}

≤ exp
{
−
(
(1−ǫ)λ

2 (c0 − c′)− C∗ − o(1)
)
|t|Λ|t| log p + 2(|t|+ 2) log p

}

≤ exp
{
−
(
(1−ǫ)λ

2 (c0 − c′)− C∗ − 6− o(1)
)
|t|Λ|t| log p

}

with probability tending to 1, where C∗ ≤ 3 + δ is defined in the proof of
Theorem 2. Please note that the last term is of order o(1) because we assume
c0 = 1

(1−ǫ0)λ

{
2(9 + 2δ) + 5

(1−ǫ0)λ

}
>

2
(1−ǫ)λ

(C∗ + 6 + o(1)) + c′ for some small ǫ0 > 0. It is easy

to see that the summation of (A10) over k ∈ M2 is also of order o(1) with probability tending to 1 by the
similar arguments.
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Lemma A1. Under Condition (A2), we have

exp
{1

2
β̂⊤k
(

Ak − Ak(Ak + τ−1Uk)
−1 Ak

)
β̂k

}
. 1

for any k ∈ M1 with probability tending to 1.

Proof. Please note that by Condition (A2),

(Ak + τ−1Uk)
−1 ≥ (At + (nτλ)−1 Ak)

−1 =
nτλ

nτλ + 1
A−1

k ,

which implies that

1
2

β̂⊤k
(

Ak − Ak(Ak + τ−1Uk)
−1 Ak

)
β̂k ≤ 1

2(nτλ + 1)
β̂⊤k Ak β̂k.

Thus, we complete the proof if we show that

1
nτλ

β̂⊤k Hn(β0,k)β̂k ≤ C

for some constant C > 0 and any k ∈ M1 with probability tending to 1. By Lemma A.3 in [5] and
Condition (A2),

1
nτ

β̂⊤k Hn(β0,k)β̂k ≤ 1
τ

λmax
{

n−1Hn(β0,k)
}
‖β̂k‖2

2

≤ 1
τ
(log p)d(‖β0,k‖2

2 + o(1)
)

= O
(
1
)

for any k ∈ M1 with probability tending to 1.
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Abstract: This paper presents a new and novel hybrid modeling method for the segmentation of high
dimensional time-series data using the mixture of the sparse principal components regression (MIX-SPCR)
model with information complexity (ICOMP) criterion as the fitness function. Our approach encompasses
dimension reduction in high dimensional time-series data and, at the same time, determines the number
of component clusters (i.e., number of segments across time-series data) and selects the best subset of
predictors. A large-scale Monte Carlo simulation is performed to show the capability of the MIX-SPCR
model to identify the correct structure of the time-series data successfully. MIX-SPCR model is also
applied to a high dimensional Standard & Poor’s 500 (S&P 500) index data to uncover the time-series’s
hidden structure and identify the structure change points. The approach presented in this paper
determines both the relationships among the predictor variables and how various predictor variables
contribute to the explanatory power of the response variable through the sparsity settings cluster wise.

Keywords: high dimensional time-series; segmentation; mixture regression; sparse PCA; entropy-based
robust EM; information complexity criteria

1. Introduction

This paper presents a new and novel method for the segmentation and dimension reduction in
high dimensional time-series data. We develop hybrid modeling between mixture-model cluster analysis
and sparse principal components regression (MIX-SPCR) model as an expert unsupervised classification
methodology with information complexity (ICOMP) criterion as the fitness function. This new approach
performs dimension reduction in high dimensional time-series data and, at the same time, determines the
number of component clusters.

The research of time-series segmentation and change point positioning has been a hot topic of
research for a long time. Different research groups have provided solutions with various approaches
in this area, including, but not limited to, Bayesian methods Barber et al. [1], fuzzy systems Abonyi
and Feil [2], and complex system modeling Spagnolo and Valenti [3], Valenti et al. [4], S Lima [5], Ding
et al. [6]. We group these approaches into two branches, one based on complex systems modeling and
the other on the statistical model through parameter estimation and inference. Among the complex
systems-based modeling approaches, it is worth noting a series of papers that use the stochastic volatility
model by Spagnolo and Valenti [3]. For example, these authors used a nonlinear Hestone model to
analyze 1071 stocks on the New York Stock Exchange (1987–1998). After accounting for the stochastic
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nature of volatility, the model is well suited to extracting the escape time distribution from financial
time-series data. The authors also identified the NES (Noise Enhanced Stability) effect to measure market
dynamics’ stabilizing effect. The approach we propose in this paper belongs to another branch of using
a statistical model on time scales. Along with the empirical analysis, we show a broader view of how
different companies/sectors behaved across different periods. In particular, we use a mixture-model based
statistical methodology to segment the time-series and determine change points.

The mixture-model cluster analysis of regression models is not new. These models are also known
as “cluster-wise regression”, “latent models”, and “latent structure models of choice”. These models have
been well-studied among statisticians, machine learning researchers, and econometricians in the last
several decades to construct time-series segmentation models and identify change points. They have
many useful theoretical and applied properties. Mixture-model cluster analysis of regression models is a
natural extension of the standard multivariate Gaussian mixture-model cluster analysis. These models
are beneficial to study heterogeneous data sets that involve not just one response variable but can have
several responses or target-dependent variables simultaneously with a given set of independent variables.
Recently, they have been proven to be a precious class of models in various disciplines in behavioral and
economic research, ecology, financial engineering, process control, and monitoring, market research, transportation
systems. Additionally, we also witness the mixture model’s usage in the analysis of scanner panel, survey,
and other choice data to study consumer choice behavior and dynamics Dillon et al. [7].

In reviewing the literature, we note that Quandt and Ramsey [8] and Kiefer [9] studied data sets by
applying a mixture of two regression models using moment generating function techniques to estimate
the unknown model parameters. Later, De Veaux [10] developed an EM algorithm to fit a mixture of two
regression models. DeSarbo and Cron [11] used similar estimating equations and extended the earlier
work done on a mixture of two regression models to a mixture of K-component regression models. For an
excellent review article on this problem, we refer the reviewers to Wedel and DeSarbo [12].

In terms of these models’ applications in the segmentation of time-series, they can be seen in the early
work of Sclove [13], where the author applied the mixture model to the segmentation of US gross national
product, a high dimensional time-series data. Specifically, Sclove [13] used the statistical model selection
criteria to choose the number of classes.

With the currently existing challenges in mind in the segmentation of time-series data, in this paper,
our objective and goal are to develop a new methodology which can:

• Identify and select variables that are sparse in the MIX-SPCR model.

• Treat each time segment continuously in the process with some specified probability density
function (pdf).

• Determine the number of time-series segments and the number of sparse variables and estimate the
structural change points simultaneously.

• Develop a robust and efficient algorithm for estimating model parameters.

We aim to achieve these objectives by developing the information complexity (ICOMP) criteria as our
fitness function throughout the paper for the segmentation of high-dimensional time-series data.

Our approach involves a two-stage procedure. We first make a variable selection by using SPCA
with the benefit of sparsity. We then fit the sparse principal component regression (SPCR) model by
transforming the original high dimensional data into several main principal components and estimating
relationships between the sparse component loadings and the response variable. In this way, the mixture
model not only handles the curse of dimensionality but also maintains the model’s excessive explanatory
power. In this manner, we choose the best subset of predictors and determine the number of time-series
segments in the MIX-SPCR model simultaneously using ICOMP.
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The rest of the paper is organized as follows. In Section 2, we present the model and methods.
In particular, we first briefly explain sparse principal component analysis (SPCA) due to Zou et al. [14]
in Section 2.1. In Section 2.2, we modify SPCA and develop mixtures of the sparse principal component
regression (MIX-SPCR) model for the segmentation of time-series data. In Section 3, we present a
regularized entropy-based Expectation and Maximization (EM) clustering algorithm. As is well known,
the EM algorithm performs through maximizing the likelihood of the mixture models. However, to make
the conventional EM algorithm robust (not sensitive to initial values) and converge to global optimum, we
use the robust version of the EM algorithm for the MIX-SPCR model based on the work of Yang et al. [15].
These authors addressed the robustness issue by adding an entropy term of mixture proportions to
the conventional EM algorithm’s objective function. While our EM algorithm is in the same spirit of
the Yang et al. [15] approach, there are significant differences between our approach and theirs. Yang’s
robust EM algorithm merely deals with the usual clustering problem without involving any response
(or dependent) variable or time factor in the data. We extend it to the case of the MIX-SPCR model in
the context of time-series data. In Section 4, we discuss various information criteria, specifically the
information complexity based criteria (ICOMP). We derive the ICOMP for the MIX-SPCR model based
on Bozdogan’s previous research ([16–20]). In Section 5, we present our Monte Carlo simulation study.
Section 5.2 involves an experiment on the detection of structural points, and Section 5.3 presents a large
scale Monte Carlo simulation verifying the advantage of the MIX-SPCR with statistical information criteria.
We provide a real data analysis in Section 6 using the daily adjusted closing S&P 500 index and stock
prices from the Yahoo Finance database that spans the period from January 1999 to December 2019. Finally,
our conclusion and discussion are presented in Section 7.

2. Model and Methods

In this section, we briefly present the sparse principal component analysis (SPCA), sparse principal
component regression (SPCR) as a background. Then, by hybridizing these two methods within the mixture
model, we propose the mixture-model cluster analysis of sparse principal component regression (abbreviated as
MIX-SPCR model hereafter), for segmentation of high dimensional time-series datasets. Compared with
a simple linear combination of all explanatory variables (i.e., the dense PCA model), the new approach
interprets better because it maintains a sparsity specification.

Referring to Figure 1, we first show the overall structure of the model in this paper. The overall
processing flow is that we clean and standardize the data after obtaining the time-series data.
Subsequently, we specify the number of time-series segments and how many Sparse Principal Components
(SPCs) each segment contains. Using the Robust EM algorithm (Section 3), we estimate the model
parameters, especially the boundaries (also known as change points) of each time segment. The information
criterion values are calculated using the method of Section 4. By testing different numbers of time
segments/SPCs, we obtain multiple criterion values. According to the calculated information criterion
values, we choose the most appropriate model with the estimated parameters.
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Figure 1. The flowchart of the MIX-SPCR method.

2.1. Sparse Principal Component Analysis (SPCA)

Given the input data matrix, X with n number of observations and p variables, we decompose X using
the singular value decomposition (SVD). We write the decomposition procedure as X = UDVT , where D is
a diagonal matrix of singular values and orthogonal columns U and V as the left and right singular vectors.
When we perform SVD of a data matrix X that has been centered, by subtracting each column’s mean,
the process is the well-known principal component analysis (PCA). As discussed by Zou et al. [14], PCA has
several advantages as compared with other dimensionality reduction techniques. For example, the PCA
can sequentially identify the source of variability by considering the linear combination of all the variables.
Because of the orthonormal constraint during the computation, all the calculated principal components (PCs)
have clear geometrical interpretation corresponding to the original data space as a dimension reduction
technique. Because PCA can deal with “the curse of dimensionality” of high-dimensional data sets, it has
been widely used in real-world scenarios, including biomedical and financial applications.

Even though PCA has excellent properties that are desirable in real-world applications and statistical
analysis, the interpretation of PCs is often difficult since it includes all the variables as linear combinations
of all the original variables in each of the PCs. In practice, the principal components always have a
large number of non-zero coefficient values for corresponding variables. To resolve this drawback,
researchers proposed various improvements focusing on PCA’s sparsity while maintaining the minimal
loss of information. Shen and Huang [21] designed an algorithm to iteratively extract top PCs using the
so-called penalized least sum of square (PLSS) criterion. Zou et al. [14] utilized the lasso penalty (via Elastic
Net) to maintain a sparse loading of the principal components, which is named sparse principal component
analysis (SPCA).

In this paper, we use the sparse principal component analysis (SPCA) proposed by Zou et al. [14].
Given the data matrix X, we minimize the objective function to obtain the SPCA results:

(Â, B̂) = arg min
A,B

n

∑
i=1

∥∥∥xT
i −ABTxT

i

∥∥∥
2
+

k

∑
j=1

λ1,j

∥∥∥B(j)

∥∥∥
1
+ λ2

k

∑
j=1

∥∥∥B(j)

∥∥∥
2

2
, (1)
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subject to

ATA = Ik. (2)

where Ik is the identity matrix. We maintain the hyperparameters λ1,j and λ2 to be non-negative. The A

and B matrices of size (p× k) are given by

B =




B1,1 · · · B1,k
...

. . .
...

Bp,1 · · · Bp,k


 =

[
B(1) | . . . | B(k)

]
=




B1
...

Bp


 , (3)

and

A =




A1,1 · · · A1,k
...

. . .
...

Ap,1 · · · Ap,k


 =

[
A(1) | . . . | A(k)

]
=




A1
...

Ap


 . (4)

If we choose the first k principal components from the data matrix X, then the estimate B̂(j) contains
the sparse loading vectors, which are no longer orthogonal.

A bigger λ1,j means a greater penalty for having non-zero entries in B̂(j). By using different λ1,j,
we control the number of zeros in the jth loading vector. If λ1,j = 0 for j = 1, 2, . . . , k, this problem reduces
to usual PCA.

Zou et al. [14] proposed a generalized SPCA algorithm to solve the optimization problem in
Equation (1). The algorithm applies the Elastic Net (EN) to estimate B(j) iteratively and update matrix
A. However, this algorithm is not the only available approach for extracting principal components with
sparse loadings. The SPCA could also be computed through dictionary learning by Mairal et al. [22].
By introducing the probability model of principal component analysis, SPCA is equivalent to the sparse
probabilistic principal component analysis (SPPCA) if the prior is Laplacian distribution for each weight matrix
element (Guan and Dy [23], Williams [24]). For further discussion on SPPCA, we refer readers to those
related publications for more details.

Next, we introduce the MIX-SPCR model for the segmentation of time-series data.

2.2. Mixtures of SPCR Model for Time-Series Data

Suppose the continuous response variable is denoted as y = {yi|1 ≤ i ≤ n}, where n represents the
number of observations (time points). Similarly, we have the predictors denoted as X = {xi|1 ≤ i ≤ n}.
Each observation xi has p dimensions and is represented as xi = [x1,i, x2,i, · · · , xp,i]

T . Both the response
variable and independent variables are collected sequentially labeled by time points T = [t1, t2, · · · , tn].

The finite mixture model allows applying cluster analysis on conditionally dependent data into several
classes. In the time-series data scenario, researchers cluster the data ((t1, x1, y1), (t2, x2, y2), · · · , (tn, xn, yn))

into several homogeneous groups where the number of groups G is unknown in general. Within each
group, we apply the SPCA to extract top k principal components that each of them has a sparse loading of
p variable coefficients. The extracted top k PCs are denoted as matrix Pp×k. We also use Pg to represent the
principal component matrix obtained from the group indexed by g = 1, 2, . . . , G.

The SPCR model assumes that each pair (xi, yi) is independently drawn from a cluster using both the
SPCA and the regression model as follows.

yi = xT
i Pgβg + ǫi,g, i = 1, 2, · · · , n, (5)
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where βg =
[

βg,1, βg,2, · · · , βg,k

]T
.

For each group g, the random error is assumed to be Gaussian distributed. That is, ǫi,g ∼ N (0, σ2
g).

If the response variable is multivariate, then the random error is usually also assumed to be a multivariate
Gaussian distribution. Thus the probability density function (pdf) of the SPCR model is

f (yi|xi, Pg, βg) = N
(

yi|xT
i Pgβg, σ2

g

)
. (6)

We emphasize here that the noise (i.e., the error term) included in the statistical model is drawn from
a normal distribution independent for each time-series segment, with different values of σ2

g for each period.
Since we use the EM algorithm to estimate the parameters of the model, the noise parameter σ2

g can be
estimated accurately as well. Future studies will consider introducing different noise distributions, such as
α-stable Lévy noise [25], and other non-Gaussian noise distributions to further extend the current model.

We also consider time factor ti in the SPCR model of time-series data to be continuous. The pdf of the
time factor is

f (ti|vg, σ2,time
g ) = N

(
ti|vg, σ2,time

g

)
, (7)

where vg is the mean, and σ2,time
g is the variance of the time segment g. Apart from the normal distribution,

our approach can also be generalized to other distributions for the time factor, such as skewed distributions,
Student’s t-distribution, ARCH, GARCH time-series models, and so on.

As a result, if we use the MIX-SPCR model to perform segmentation of time-series data, the likelihood
function of the whole data ((t1, x1, y1), (t2, x2, y2), · · · , (tn, xn, yn)) with G number of clusters (or segments)
is given by

L =
n

∏
i=1

G

∏
g=1

[
πg f (yi|xi, Pg, βg) f (ti|vg, σ2,time

g )
]zg,i

, (8)

where the πg is the mixing proportion with the constraint that πg ≥ 0 and
G
∑

g=1
πg = 1. We follow the

definition of missing values by Yang et al. [15] and let Z = {Z1, Z2, · · · , Zn}. If Zi = g, then zg,i = 1,
otherwise, zg,i = 0. Then the log-likelihood function of the MIX-SPCR model models is

Lmix = log (L)

=
n

∑
i=1

G

∑
g=1

zg,i log
[
πg f (yi|xi, Pg, βg) f (ti|vg, σ2,time

g )
]

(9)

=
n

∑
i=1

G

∑
g=1

zg,i

[
log πg + log f (yi|xi, Pg, βg) + log f (ti|vg, σ2,time

g )
]

=
n

∑
i=1

G

∑
g=1

zg,i log πg

︸ ︷︷ ︸
Lπ

+
n

∑
i=1

G

∑
g=1

zg,i log f (yi|xi, Pg, βg)

︸ ︷︷ ︸
LSPCR

+
n

∑
i=1

G

∑
g=1

zg,i log f (ti|vg, σ2,time
g )

︸ ︷︷ ︸
Ltime

. (10)

We denote z =
[
zg,i
]

where g = 1, 2, · · · , G and i = 1, 2, · · · , n.
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Given the number of segments, researchers usually apply the EM algorithm to
determine the optimal segmentation by setting the objective function as JEM = Lmix

(Gaffney and Smyth [26], Esling and Agon [27], Gaffney [28]).

3. Regularized Entropy-Based EM Clustering Algorithm

The EM algorithm is a method for iteratively optimizing the objective function. As discussed in
Section 2.2, by setting the objective function as the log-likelihood function, we can use the EM algorithm to
identify optimal segmentation of time series.

However, in practice, the EM algorithm is sensitive to model initialization conditions and
cannot estimate the number of clusters appropriately. To deal with the initialization problem,
in 2012, Yang et al. [15] proposed using an entropy penalty to stabilize the computation of each step.
The improved method is called the robust EM algorithm. In this paper, we extend the robust EM algorithm
to deal with time-series data for the MIX-SPCR model.

In Section 3.1, we discuss the entropy term of the robust EM algorithm. Then, we show the extension
of the robust EM algorithm for the MIX-SPCR model in Sections 3.2 and 3.3.

3.1. The Entropy of EM Mixture Probability

As introduced in Equation (8), the πg represents the mixture probability of each cluster or segment.
In other words, the value of πg is the probability that a data point belongs to group g. The clustering
complexity is determined by the number of clusters and corresponding probability values, which could be
obtained using entropy. Given {πg|1 ≤ g ≤ G}, the entropy of Zi is

H(Zi|
{

πg|1 ≤ g ≤ G
}
) = −

G

∑
g=1

πglog(πg), for i = 1, 2, · · · , n. (11)

Then the entropy of Z is written as,

H(Z|
{

πg|1 ≤ g ≤ G
}
) =

n

∑
i=1

H(Zi|
{

πg|1 ≤ g ≤ G
}
)

= −
n

∑
i=1

G

∑
g=1

πglog(πg)

= −n
G

∑
g=1

πglog(πg). (12)

The objective function of the robust EM algorithm is

JRobust-EM = Lmix − λRobust-EMH(Z|
{

πg|1 ≤ g ≤ G
}
), (13)

where λRobust-EM ≥ 0. The log-likelihood term Lmix is from Equation (9), which gives the goodness-of-fit.
Next, we present the steps of the EM algorithm for maximizing the objective function in Equation (13).
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3.2. E-Step (Expectation)

From a Bayesian perspective, we let ẑg,i denote the posterior probability of the true cluster membership
that a dataset triplet (ti, xi, yi) is drawn from group g. Using the Bayes theorem, we have

ẑg,i = E(Zi = g|yi, xi, Pg, βg) (14)

=
πgN

(
yi; xiPgβg, σ2

g

)
N
(

ti|vg, σ2,time
g

)

G
∑

h=1
πhN

(
yi; xiPhβh, σ2

h

)
N
(

ti|vh, σ2,time
h

) . (15)

3.3. M-Step (Maximization)

Using the robustified derivation of π̂g, the estimated mixture proportion, we have

π̂new
g = π̂EM

g + λ̂Robust-EMπ̂old
g

(
log(π̂old

g )−
G

∑
h=1

(
π̂old

h log(π̂old
h )
))

, (16)

where

π̂EM
g =

n
∑

i=1
ẑg,i

n
. (17)

We follow the recommendation of Yang et al. [15] for the value of λ̂new
Robust-EM

as

λ̂new
Robust-EM = min





G
∑

h=1
exp

(
−ηn

∣∣∣π̂new
g − π̂old

g

∣∣∣
)

G
,

1−max

{
n
∑

i=1
ẑold

h,i /n|h = 1, 2, · · · , G

}

−max
{

π̂old
h |h = 1, 2, · · · , G

} G
∑

h=1
π̂old

h log π̂old
h





,

(18)

where

η = min
{

1, 0.5⌊p/2−1⌋
}

, (19)

and p is the number of variables in the model.
We iterate E-step and M-step several times until convergence to obtain the parameter estimates.

In particular, the βg values get updated by maximizing the JRobust-EM from Equation (13). Since we fix
the number of segments and principal components during each E-step and M-step, the updated values of
βg and σg can be calculated using Lmix directly. The estimated values of βg and σg are given as follows.

β̂new
g =

[
n

∑
i=1

ẑold
g,i (x

T
i Pg)

T(xT
i Pg)

]−1 n

∑
i=1

ẑold
g,i (x

T
i Pg)

Tyi

=

[
n

∑
i=1

ẑold
g,i PT

g xix
T
i Pg

]−1 n

∑
i=1

ẑold
g,i PT

g xiyi, (20)

σ̂2,new
g =

n

∑
i=1

ẑold
g,i

∥∥∥yi − xT
i Pg β̂new

g

∥∥∥
2

2
/

n

∑
i=1

ẑold
g,i . (21)
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For the time factor, the estimated mean v̂g and variance σ̂2,time
g are

v̂g =

n
∑

i=1
ẑg,iti

n
∑

i=1
ẑg,i

, (22)

σ̂2,time
g =

n
∑

i=1
ẑg,i
(
ti − v̂g

)2

n
∑

i=1
ẑg,i

. (23)

As discussed above, our approach is flexible in considering other distributional models for the
time-series factor, which we will pursue in separate research work.

4. Information Complexity Criteria

Recently, the statistical literature recognized the necessity of introducing model selection as one of the
technical areas. In this area, the entropy and the Kullback–Leibler [29] information (or KL distance) play a
crucial role and serve as an analytical basis to obtain the forms of model selection criteria. In this paper,
we use information criteria to evaluate a portfolio of competing models and select the best-fitting model
with minimum criterion values.

One of the first information criteria for model selection in the literature is due to the seminal work
of Akaike [30]. Following the entropy maximization principle (EMP), Akaike developed the Akaike’s
Information Criterion (AIC) to estimate the expected KL distance or divergence. The form of AIC is

AIC = −2 log L(θ̂) + 2k, (24)

where L(θ̂) is the maximized likelihood function, and k is the number of estimated free parameters in the
model. The model with minimum AIC value is chosen as the best model to fit the data.

Motivated by Akaike’s work, Bozdogan [16–20,31] developed a new information complexity (ICOMP)
criteria based on Van Emden’s [32] entropic complexity index in parametric estimation. Instead of
penalizing the number of free parameters directly, ICOMP penalizes the covariance complexity of the
model. There are several forms of ICOMP. In this section, we present the two general forms of ICOMP

criteria based on the estimated inverse Fisher information matrix (IFIM). The first form is

ICOMP(IFIM) = −2 log L(θ̂) + 2C(Σ̂model)

= −2 log L(θ̂) + 2C1(F̂−1), (25)

where L(θ̂) is the maximized likelihood function, and C1(F̂−1) represents the entropic complexity of IFIM.
We define C1(F̂−1) as

C1(F̂−1) =
s
2

log

(
trF̂−1

s

)
− 1

2
log
∣∣∣F̂−1

∣∣∣ , (26)

and where s = rank(F̂−1). We can also give the form of C1(F̂−1) in terms of eigenvalues,

C1(F̂−1) =
s
2

log

(
λ̄a

λ̄g

)
, (27)
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where λ̄a is the arithmetic mean of the eigenvalues, λ1, λ2, . . . , λs, and λ̄g is the geometric mean of
the eigenvalues.

We note that ICOMP penalizes the lack of parsimony and the profusion of the model’s complexity
through IFIM. It offers a new perspective beyond counting and penalizing number of estimated parameters
in the model. Instead, ICOMP takes into account interaction (i.e., correlation) among the estimated
parameters through the model fitting process.

We define the second form of ICOMP as

ICOMP(IFIM)C1F
= −2 log L(θ̂) + 2C1F(F̂−1), (28)

where C1F(F̂−1) is given by

C1F(F̂−1) =
s
4

1
s tr

((
F̂−1

)T (
F̂−1

))
−
(

tr(F̂−1)
s

)2

(
tr(F̂−1)

s

)2 . (29)

In terms of the eigenvalues of IFIM, we write C1F(F̂−1) as

C1F(F̂−1) =
1

4λ̄2
a

s

∑
j=1

(
λj − λ̄a

)2 . (30)

We want to highlight some features of C1F(F̂−1) here. The term C1F(F̂−1) is a second-order
equivalent measure of complexity to the original term C1(F̂−1). Additionally, we note that C1F(F̂−1) is
scale-invariant and C1F(F̂−1) ≥ 0 with C1F(F̂−1) = 0 only when all λj = λ̄a. Furthermore, C1F(F̂−1)

measures the relative variation in the eigenvalues.
These two forms of ICOMP provide us an easy to use computational means in high dimensional

modeling. Next, we derive the analytical forms of ICOMP in the MIX-SPCR model.

4.1. Derivation of Information Complexity in MIX-SPCR Model for Time-Series Data

We first consider the log-likelihood function of the MIX-SPCR model given in Equation (9),

Lmix = Lπ + LSPCR + Ltime. (31)

After some work, the estimated inverse Fisher information matrix (IFIM) of the mixture probabilities is

F̂−1
π =




π̂−1
1 0 0 0
0 π̂−1

2 0 0

0 0
. . . 0

0 0 0 π̂−1
G




. (32)

Similarly, for each segment g, the estimated IFIM, F̂−1
g,SPCR

, is

F̂−1
g,SPCR

=




σ̂2
g

[
n
∑

i=1
ẑg,i
(
xT

i Pg
)T (

xT
i Pg

)]−1

0

0T 2σ̂4
g
(
∑ ẑg,i

)−1


 , g = 1, 2, . . . , G. (33)
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Note that the IFIM should include both the SPCR models F̂−1
g,SPCR

and the time factor F̂−1
g,time

for
each segment.

For each segment g, the time factor is under the univariate Gaussian distribution. As a result, the IFIM
of the time factor is

F̂−1
g,time

=

[
σ̂2,time

g /n 0
0 2

n σ̂4,time
g

]
. (34)

By combining the two IFIMs for the SPCR model and the time factor, we have the inverse
Fisher information

F̂−1
g =

[
F̂−1

g,SPCR
0

0T F̂−1
g,time

]
. (35)

Overall, the inverse of the estimated Fisher information matrix (IFIM) for the MIX-SPCR
model becomes

F̂−1 ∼=




F̂−1
π 0 0 · · · 0
0 F̂−1

1 0 · · · 0
0 0 F̂−1

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · F̂−1
G




. (36)

Using the above definition of ICOMP(IFIM) and the properties of block-diagonal matrices with their
trace and determinant, we have

ICOMP(IFIM) = −2Lmix + 2C1(F̂−1), (37)

where

C1(F̂−1) =
s
2

log




tr(F̂−1
π ) +

G

∑
g=1

tr(F̂−1
g )

s



− 1

2

[
log
∣∣∣F̂−1

π

∣∣∣+
G

∑
g=1

log
∣∣∣F̂−1

g

∣∣∣
]

, (38)

and where s = rank(F̂−1) = rπ +
G
∑

g=1
rg = dim(F̂−1).

Similarly, we derive the second equivalent form of ICOMP(IFIM)C1F
as

ICOMP(IFIM)C1F
= −2Lmix + 2C1F(F̂−1). (39)

Using the properties of the block-diagonal matrices, we have

tr

((
F̂−1

)T (
F̂−1

))
= tr

(
F̂−1

π

)2
+

G

∑
g=1

tr
(
F̂−1

g

)2
. (40)
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Thus, an open computational form of ICOMP(IFIM)C1F
becomes

ICOMP(IFIM)C1F
= −2Lmix +

s
2

1
s

[
tr
(
F̂−1

π

)2
+

G
∑

g=1
tr
(
F̂−1

g

)2
]
−




tr(F̂−1
π )+

G
∑

g=1
tr(F̂−1

g )

s




2




tr(F̂−1
π )+

G
∑

g=1
tr(F̂−1

g )

s




2 . (41)

We note that in computing both forms of ICOMP above, we do not need to build the full inverse of
the estimated Fisher information matrix (IFIM) for the MIX-SPCR model given in Equation (36). All one
requires is the computation of IFIM for each segment, which is appealing.

We also use AIC and CAIC (Bozdogan [33]) for comparison purposes given by

AIC = −2Lmix + 2s∗, and, (42)

CAIC = −2Lmix + s∗ (log n + 1) , (43)

where s∗ = G(k + 3) is the number of estimated parameters in the MIX-SPCR model and log denotes the
natural logarithm of the sample size n.

Next, we show our numerical examples starting with a detailed Monte Carlo simulation study.

5. Monte Carlo Simulation Study

We perform numerical experiments in a unified computing environment: Ubuntu 18.04 operating
system, Intel I7-8700, and 32 GB of RAM. We use the programming language Python and the scientific
computing package NumPy [34] to build a computational platform. The size of the input data directly
affects the running time of the program. At n = 4000 time-series observations, the execution time for
each EM iteration is about 0.9 s. Parameter estimation can reach convergence within 40 steps of iterations,
with a total machine run time of 37 s.

5.1. Simulation Protocol

In this section, we present the performance of the proposed MIX-SPCR model using synthetic data
generated from a segmented regression model. Our simulation protocol has p = 12 variables and four
actual latent variables. Two segmented regression models determine the dependent variable y, and each
segment is continuous and has its own specified coefficients (β1 and β2). Our simulation set up is as follows:
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Λ =




1.8 0 0 0
1.8 0 0 0
1.8 0 0 0
0 1.7 0 0
0 1.7 0 0
0 1.7 0 0
0 0 1.6 0
0 0 1.6 0
0 0 1.6 0
0 0 0 1.5
0 0 0 1.5
0 0 0 1.5




, (44)

ψ = diag (1.27, 0.61, 0.74, 0.88, 0.65, 0.81, 0.74, 1.3, 1.35, 0.74, 0.92, 1.32) , (45)

Σ = ΛΛT + ψ, (46)

xt ∼ MVN (0, Σ) , t = 1, 2, · · · , 4000, (47)

β1 = (−10, 0.1, 0.1, 0.1, 2.1, 0, 0, 0.1, 0.1, 0, 0, 0), (48)

β2 = (0, 0, 0, 0, 0, 0.5, 0.3, 0.1, 2.1, 1, 2, 20), (49)

yt,g=1 = x1,tβ1 + ε1,t, t = 1, 2, · · · , 2800, (50)

yt,g=2 = x2,tβ2 + ε2,t, t = 2801, 2802, · · · , 4000. (51)

We set the total number of time-series observations, n = 4000. The first segment has n1 = 2800,
and the second segment has n2 = 1200 time-series observations. We randomly draw error term from a
Gaussian distribution with zero mean and σ2 = 9. Among all the variables, the first six observable variables
explain the first segment, and the remaining six explanatory variables primarily determine the second
segment. We set the mixing proportions π1 = 0.7 and π2 = 0.3 for two time-series segments, respectively.

5.2. Detection of Structural Change Point

In the first simulation study, we limit the actual number of segments equal to two, which means that
the first segment expands from the starting point to a structural change point, and the second segment
expands from the change point to the end. By design, each segment is continuous on the time scale,
and different sets of independent variables explain the trending and volatility. We run the MIX-SPCR
model to see if it can successfully determine the position of the change point using the information
criteria. If a change point is correctly selected, we expect that the information criteria is minimized at this
change point.

Figures 2 and 3 show our results from the MIX-SPCR model. Specifically, it shows the sample path of
the information criteria at each time point. We note that all the information criteria values are minimized
from t = 2800 to t = 3000, which covers the time-series’s actual change point position. As the MIX-SPCR
model selects different change points, the penalty term of AIC and CAIC remain the same because both the
number of model parameters and the number of observations do not change. In this simulation scenario,
the fixed penalty term means that the AIC and CAIC reflect the changes only in the “lack of fit” term of
various models without considering model complexity. This indicates that using AIC-type criteria just
counting and penalizing the number of parameters may be necessary but not sufficient in model selection.
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As a comparison, however, we note that the penalty term of information complexity-based criteria, C1 and
C1F, are adjusted in selecting different change points. They are varying but not fixed.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

t

− 1 5 0

− 1 0 0

− 5 0

0

5 0

1 0 0

1 5 0

Y

Figure 2. The plot of two-segment simulated time-series data. We show the plot of the simulated time-series
data through the whole-time scale. Note that the first segment is from the starting point t = 1 to the change
point t = 2800, and the second time segment expands from the change point t = 2801 to the end t = 4000.
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Figure 3. Sample path of information criteria for the simulated time-series data. The horizontal
coordinate represents the position of the possible change points, and the vertical coordinate represents
the corresponding information criterion (IC) values. The lower the IC value, the more likely the selected
position of the change point is the real position. The real change point is t = 2800.

5.3. A Large-Scale Monte Carlo Simulation

Next, we perform a large-scale Monte Carlo simulation to illustrate the MIX-SPCR model’s
performance in choosing the correct number of segments and the number of latent variables. A priori,
in this simulation, we pretend that we do not know the actual structure of the data and use the information
criteria to recover the actual construction of the MIX-SPCR model. To achieve this, we follow the
above simulation protocol using a different number of time points by varying n = 1000, 2000, 4000.
As before, there are twelve explanatory variables drawn from four latent variable models generated
from a multivariate Gaussian distribution given in Equation (47). The simulated data again consist
of two time-series segments with mixing proportions π1 = 0.7 and π2 = 0.3, respectively. For each
data generating process, we replicate the simulation one hundred times and record both information
complexity-based criteria (ICOMP(IFIM) & ICOMP(IFIM)C1F

) and classic AIC-type criteria (AIC & CAIC).
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In Table 1, we present how many times the MIX-SPCR model selects different models in the one hundred
simulations. In this way, we can assess different information criteria by measuring the hit rates.

Looking at Table 1, we see that when the sample size n = 1000 (small), AIC selects the correct
model (G = 2, k = 4) 69 times, CAIC selects 80 times, ICOMP(IFIM) selects 48 times, and ICOMP(IFIM)C1F

selects 76 times, respectively, in 100 replications of the Monte Carlo simulation. When the sample size is
small, ICOMP(IFIM) tends to choose a sparser regression model sensitive to the sample size. However,
as the sample size increases, when n = 2000 and n = 4000, ICOMP(IFIM) consistently outperforms other
information criteria in terms of hit rates. The percentage of the correctly identified model is above 90%,
as reported above.

Table 1. Frequency of the choice of the true model with information criteria in 100 replications of the
experiment for each sample size (n) of time-series observations. The true model is G = 2 and k = 4.

n = 1000 n = 2000 n = 4000
G = 2 G = 3 G = 2 G = 3 G = 2 G = 3

AIC

k = 2 0 0 0 0 0 0
k = 3 0 6 0 3 0 1
k = 4 69 0 77 0 75 0
k = 5 24 1 20 0 24 0

CAIC

k = 2 1 0 0 0 0 0
k = 3 1 3 0 1 0 1
k = 4 80 0 96 0 93 0
k = 5 14 1 3 0 6 0

ICOMP(IFIM)

k = 2 31 2 1 0 0 0
k = 3 2 5 0 2 0 1
k = 4 48 0 96 0 96 0
k = 5 11 1 1 0 3 0

ICOMP(IFIM)
C1F

k = 2 2 1 0 0 0 0
k = 3 0 7 0 3 0 1
k = 4 76 0 93 0 93 0
k = 5 13 1 4 0 6 0

Our results show that the MIX-SPCR model works well in all settings to estimate the number of
time-series segments and the number of latent variables.

Figure 4 illustrates how the MIX-SPCR model performs if the number of segments and the number of
sparse principal components are unknown beforehand.

The choice of the number of segments (G) has a significant impact on the results. For all the simulation
scenarios, the correct choice of the number of segments (G = 2) has information criterion values less
than the incorrect choice (G = 3). This pattern emerges consistently among all the sample sizes, both the
classical ones and information-complexity based criteria.

In summary, the large-scale Monte Carlo simulation analysis highlights the performance of the
MIX-SPCR model. As the sample size increases, the MIX-SPCR model improves its performance. As shown
in Figure 3, the MIX-SPCR model can efficiently determine the structural change point and estimate the
mixture proportions when the number of segments is unknown beforehand. Another key finding is that,
by using the appropriate information criteria, the MIX-SPCR model can correctly identify the number
of segments and the number of latent variables from the data. In other words, our approach can extract
the main factors not only from the intercorrelated variables but also classify the data into several clearly
defined segments on the time scale.
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Figure 4. Plot of average and 1SD (standard deviation) of information criterion values over different sample
sizes in all simulations with three Sparse Principal Components (SPCs) and G = 2 segments. The red
line indicates the estimated MIX-SPCR model based on two groups (G = 2). Correspondingly, the black
line indicates the estimated MIX-SPCR model for three groups (G = 3). Horizontal coordinates represent
different numbers of SPCs.

6. Case Study: Segmentation of the S&P 500 Index

6.1. Description of Data

The financial market often generates a large amount of time-series data, and in most cases,
the generated data is high-dimensional. In this paper, we use the S&P 500 index and its related hundreds
of company stocks categorized into eleven sectors, which are high dimensional time-series data. The index
value is the response variable mixed by plenty of companies’ variations at each time point. These long
time-series values often consist of different regimes and states. For example, the stock market experienced
a boom period from 2017 to 2019, which is a dramatic change compared with the stock market during the
2008 financial crisis. If we analyze each sector or company, some industries perform more actively than
others during a particular period.

In this section, we implement the MIX-SPCR model on the adjusted closing price of the S&P 500
(^GSPC) as a case study. We extract the daily adjusted closing prices from the Yahoo Finance database
(https://finance.yahoo.com/) that spans the period from 1 January 1999 to 31 December 2019. By removing
weekends and holidays, there are n = 5292 tradable days in total. The main focus of this section is to split
the time-series into several self-contained segments. Besides, we expect the extracted sparse principal
components to explain the variance and volatility in each segment.
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6.2. Computational Results

To have a big picture of how the S&P 500 index values reflect the changes of 506 company stock
prices, Figure 5 shows the plot of the normalized values of adjusted closing prices. We use the MIX-SPCR
model with the information criteria to determine the number of segments and the number of sparse
principal components. To achieve interpretable results, we limit our search space to a maximum of
seven time-series and six sparse principal components. Table 2 shows the optimal combination of three
self-contained segments and three sparse principal components for each of the segments by using the
information complexity ICOMP(IFIM). The other three information criteria also choose this combination as
the best-fitting model. Figure 6 illustrates the probability and time range of each segment. We can see that
the first segment is from 1 January 1999, to 26 October 2007. The second time-series segment spans from 29
October 2007, to the end of 2016. The last segment extends from 30 December 2016 to 31 December 2019.

Figure 5. Normalized S&P 500 index and stock prices from January 1999 to December 2019.
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Figure 6. Segmented periods and probability. The plot’s vertical coordinate indicates the probability that
an individual time-series data point belongs to each segment.
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Table 2. The ICOMP(IFIM) values of segmentation results for S&P 500 index data (Lower is better).

Number of Sparse Principal Components
1 2 3 4 5

Number of Segments

1 30,097.04 30,092.45 30,106.50 30,121.64 30,145.13
2 29,975.01 30,058.40 30,293.55 30,234.65 30,347.94
3 30,010.70 30,062.19 29,241.52 30,453.74 30,526.20
4 29,877.27 29,825.73 29,811.53 30,571.39 30,628.61
5 29,904.35 29,973.47 30,011.18 30,311.52 30,554.82
6 30,111.35 30,361.39 30,388.47 30,665.26 30,581.29
7 30,031.39 30,564.65 30,597.14 30,823.76 31,057.54

We emphasize that many factors may explain the stock market variation, and this is not a research
on how the socioeconomic events influence the S&P 500 index. However, it does raise our interest in
the distribution of two structural change points from the segmentation results. The first change point is
October 2007, which is the early stage of the 2008 financial crisis. The second structural change point is
December 2016, the transitional period of the USA presidential election. Identification of these two change
points shows that our proposed method can detect the underlying physical and structural change from the
available time-series data.

Table 3 lists the estimated coefficients (βg) from sparse principal component regression. Because all
the collected stock prices and S&P 500 index values are standardized before implementing the MIX-SPCR
model, we make dimension reduction, remove the constant term, and perform regression analysis using
the SPCR model. The R2 values are above 0.8 across all three different time segments.

Table 3. SPCR coefficients (βg) of three different segments.

Segment 1 (R2 = 0.82) Segment 2 (R2 = 0.94) Segment 3 (R2 = 0.97)
01-01-1999 ∼ 26-10-2007 27-10-2007 ∼ 29-12-2016 30-12-2016 ∼ 31-12-2019

SPC1 0.0964 0.1240 0.1512
SPC2 0.0729 −0.0439 0.0359
SPC3 0.0079 0.0191 −0.0051

6.3. Interpretation of Computational Results

One may ask a question, “Can the MIX-SPCR model identify the key variables from the hundreds
of companies?” If the constructed model is dense, the selected companies would include all the sectors
whereby the dense model is limiting the interpretation of the data. Our analysis identifies all the companies
with non-zero coefficient values and maps them back to each of the sectors in Tables A1–A3. Each calculated
sparse principal component vector consists of around fifty companies, much less than the original data
dimension (p = 506). We observe that these selected companies are grouped into a few sectors within
different time segments. For example, energy companies load in the first sparse principal component
vector from 1999 to 2007 (segment 1) and diminish after that.

To have a detailed analysis of how different sectors perform across three segments, we do the stem
plot to show the sparse principal component coefficients Pg of four sectors, namely financials, real estate,
energy, and information technology (IT). Figures 7 and 8 indicate a similar behavior that happened in
financial and real estate companies. Both sectors play an essential role in the first two time-series segments
but have no contribution in the third segment, which is the period after December 2016. Notice that
in Figure 9, energy companies act as an essential player before 2016. However, during the recession
in 2008, energy company loadings are negated from the first SPC to the second SPC. Compared with
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other industries, the variation in energy company stock prices does not contribute to the S&P 500 index
after 2016.

Another question is ”What sector/industry is the main contributing factor after the 2016 United
States presidential election?” A possible answer is, as shown in Figure 10, the SPC coefficients of
information technology companies. From 1999 to the recession in 2008, IT companies work mainly on the
second SPC and the third SPC, which do not contribute much to the main variation. After the recession,
the variations of IT companies do not contribute compared with other sectors. However, after December
2016, companies from the IT industry play an essential role in the primary stock price volatility.
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Figure 7. Stem plot of SPC coefficients Pg for financial companies within each time segment. From top to
bottom, the three panels represent different segmented periods, respectively. The horizontal axis of each
panel indicates the company in the industrial sector. The vertical axis shows the SPC coefficient values.
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Figure 10. Stem plot of SPC coefficients Pg for information technology companies within each time
segment. From top to bottom, the three panels represent different segmented periods, respectively.
The horizontal axis of each panel indicates the company in the industrial sector. The vertical axis shows the
SPC coefficient values.

As discussed above, Figures 7–10 provide a clear picture of how different sectors perform
(via coefficient Pg) without considering the effects on the S&P 500 index. It might raise the interest in
how the SPCR coefficient Pgβg changes before/after certain socioeconomic events. We follow the research
implemented by Aït-Sahalia and Xiu [35] about how the Federal Reserve addressing heightened liquidity
from March 10 to 14 March 2008, affects the stock market. The data analyzed by Aït-Sahalia and Xiu [35]
are the S&P 100 index values using the traditional PCA, and the authors grouped stocks into financial
and non-financial categories. Instead of PCA, we apply the SPCR model on the S&P 500 index and
analyze how eleven sectors react before/after Federal Reserve operations. Figure 11 shows that financials,
consumer discretionary, real estate, and industrials experienced more significant perturbations than other
sectors in terms of SPCR coefficients Pgβg. This conclusion is consistent with the results from Aït-Sahalia
and Xiu [35] that the average loadings of first and second principal components of financial companies
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are distinct from non-financial companies. However, considering that we have 506 companies in the raw
data and make a sparse loading of companies for comparison, the excessive explanatory power is still
maintained in this high-dimensional case using the SPCR model, which is more interpretable.
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Figure 11. Overlay plot of the SPCR coefficients before/after 2008 financial crisis.

7. Conclusions and Discussions

In this paper, we presented a new and novel method to segment high-dimensional time-series data
into different clusters or segments using the mixture model of the sparse principal components model
(MIX-SPCR). The MIX-SPCR model considers both the relationships among the predictor variables and
how various predictor variables contribute the explanatory power to the response variable through
the sparsity settings. Information criteria have been introduced and derived for the MIX-SPCR model.
These criteria are applied to study their performance under different sample sizes and to select the
best-fitting model.

Our large-scale Monte Carlo simulation exercise showed that the MIX-SPCR model could successfully
identify the real structure of the time-series data using the information criteria as the fitness function.
In particular, based on our results, the information complexity-based criteria—i.e., ICOMP(IFIM) and
ICOMP(IFIM)C1F

—outperformed the conventional standard information criteria, such as the AIC-type
criteria as the data dimension and the sample size increase.

Later, we empirically applied the MIX-SPCR model to uncover the S&P 500 index data (from 1999 to
2019) and identify two change points of this data set.

We observe that the first change point physically coincides with the early stages of the 2008
financial crisis. The second change point is immediately after the 2016 United States presidential election.
This structural change point coincides with the election of President Trump and his transition.

Our findings showed how the S&P 500 index and company stock prices react within each time-series
segment. The MIX-SPCR model presents excessive explanatory power by identifying how different
sectors fluctuated before/after the Federal Reserve’s addressing heightened liquidity from 10 March to 14
March 2008.

Although this is not a traditional event study paper, it is the first paper to use the sparse principal
component regression model with mixture models in the time-series analysis. The proposed new and
novel MIX-SPCR model enlightens us to explore more interpretable results on how macroeconomic
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factors/events influence the stock prices on the time scale. Later, in a separate paper, we will incorporate
the event study in the MIX-SPCR model as our future research initiative.

This paper’s time segmentation model builds on time-series data, constructs likelihood functions,
and performs parameter estimation by introducing error information unique to each period.
Researchers have recently realized that environmental background noise can positively affect the model
building and analysis under certain circumstances ([36–42]). For example, in Azpeitia and Wagner [40],
the authors highlighted that the introduction of noise is necessary to obtain information about the system.
In our next study, we would like to explore this positive effect of environmental noise even further and
use it to build better statistical models for analyzing high-dimensional time-series data.
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Appendix A. Tables

Table A1. Sparse Principal Component (SPC) of Segment 1 (1 January 1999 ∼ 26 October 2007).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 4 6.56 6 9.84 1 1.64
Industrials 6 8.57 3 4.29 6 8.57

Utilities 5 17.86 3 10.71 3 10.71
Materials 2 7.14 1 3.57 1 3.57

Consumer Discretionary 5 7.81 6 9.38 6 9.38
Energy 13 46.43 1 3.57 3 10.71

Financials 5 7.58 10 15.15 15 22.73
Real Estate 5 16.13 2 6.45 5 16.13

Consumer Staples 2 6.06 0 0.00 1 3.03
Communication Services 1 3.85 2 7.69 1 3.85
Information Technology 2 2.82 16 22.54 8 11.27

Table A2. Sparse Principal Component (SPC) of Segment 2 (27 October 2007 ∼ 29 Decmeber 2016).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 7 11.48 2 3.28 1 1.64
Industrials 5 7.14 6 8.57 4 5.71

Utilities 0 0.00 0 0.00 5 17.86
Materials 6 21.43 2 7.14 3 10.71

Consumer Discretionary 7 10.94 14 21.88 3 4.69
Energy 2 7.14 14 50.00 9 32.14

Financials 12 18.18 3 4.55 16 24.24
Real Estate 2 6.45 3 9.68 6 19.35

Consumer Staples 0 0.00 0 0.00 0 0.00
Communication Services 5 19.23 3 11.54 1 3.85
Information Technology 4 5.63 3 4.23 2 2.82

Table A3. Sparse Principal Component (SPC) of Segment 3 (30 Decmeber 2016 ∼ 31 Decmeber 2019).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 10 16.39 14 22.95 2 3.28
Industrials 9 12.86 4 5.71 4 5.71

Utilities 1 3.57 0 0.00 0 0.00
Materials 1 3.57 3 10.71 6 21.43

Consumer Discretionary 3 4.69 10 15.63 8 12.50
Energy 0 0.00 3 10.71 1 3.57

Financials 5 7.58 1 1.52 10 15.15
Real Estate 0 0.00 0 0.00 2 6.45

Consumer Staples 0 0.00 6 18.18 3 9.09
Communication Services 2 7.69 5 19.23 5 19.23
Information Technology 19 26.76 4 5.63 9 12.68

211



Entropy 2020, 22, 1170

References

1. Barber, D.; Cemgil, A.T.; Chiappa, S. Bayesian Time Series Models; Cambridge University Press: Cambridge, UK, 2011.

2. Abonyi, J.; Feil, B. Cluster Analysis for Data Mining and System Identification; Springer Science & Business Media:

New York, NY, USA, 2007.

3. Spagnolo, B.; Valenti, D. Volatility effects on the escape time in financial market models. Int. J. Bifurc. Chaos

2008, 18, 2775–2786.

4. Valenti, D.; Fazio, G.; Spagnolo, B. Stabilizing effect of volatility in financial markets. Phys. Rev. E 2018, 97, 062307.

5. S Lima, L. Nonlinear Stochastic Equation within an Itô Prescription for Modelling of Financial Market. Entropy

2019, 21, 530.

6. Ding, W.; Wang, B.; Xing, Y.; Li, J.C. Correlation noise and delay time enhanced stability of electricity futures

market. Mod. Phys. Lett. B 2019, 33, 1950375.

7. Dillon, W.R.; Böckenholt, U.; De Borrero, M.S.; Bozdogan, H.; De Sarbo, W.; Gupta, S.; Kamakura, W.; Kumar, A.;

Ramaswamy, B.; Zenor, M. Issues in the estimation and application of latent structure models of choice. Mark. Lett.

1994, 5, 323–334.

8. Quandt, R.E.; Ramsey, J. Estimating Mixtures of Normal Distributions and Switching Regressions. J. Am.

Stat. Assoc. 1978, 73, 730–738.

9. Kiefer, N.M. Discrete parameter variation: Efficient estimation of a switching regression model. Econometrica

1978, 46, 427–434.

10. De Veaux, R.D. Parameter Estimation for a Mixture of Linear Regressions; Doctoral Dissertation and Tech. Rept.

No. 247; Department of Statistics, Stanford University: Stanford, CA, USA, 1986.

11. DeSarbo, W.S.; Cron, W.L. A maximum likelihood methodology for clusterwise linear regression. J. Classif.

1988, 5, 249–282.

12. Wedel, M.; DeSarbo, W.S. A Review of Recent Developments in Latent Class Regression Models; In Advanced

Methods of Marketing Research; Bagozzi, R., Ed.; Blackwell Pub.: Hoboken, NJ, USA, 1994; pp. 352–388.

13. Sclove, S.L. Time-series segmentation: A model and a method. Inf. Sci. 1983, 29, 7–25.

14. Zou, H.; Hastie, T.; Tibshirani, R. Sparse principal component analysis. J. Comput. Graph. Stat. 2006, 15, 265–286.

15. Yang, M.S.; Lai, C.Y.; Lin, C.Y. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognit.

2012, 45, 3950–3961.

16. Bozdogan, H. On the information-based measure of covariance complexity and its application to the evaluation

of multivariate linear models. Commun. Stat. Theory Methods 1990, 19, 221–278.

17. Bozdogan, H. Choosing the number of component clusters in the mixture-model using a new informational

complexity criterion of the inverse-Fisher information matrix. In Information and Classification; Springer: New York,

NY, USA, 1993; pp. 40–54.

18. Bozdogan, H. Choosing the number of clusters, subset selection of variables, and outlier detection in the standard

mixture-model cluster analysis. In New approaches in Classification and Data Analysis; Springer: New York, NY, USA,

1994; pp. 169–177.

19. Bozdogan, H. Mixture-model cluster analysis using model selection criteria and a new informational measure of

complexity. In Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational

Approach; Springer: New York, NY, USA, 1994; pp. 69–113.

20. Bozdogan, H. A new class of information complexity (ICOMP) criteria with an application to customer profiling
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Abstract: In this paper, predictions of future price movements of a major American stock index were
made by analyzing past movements of the same and other correlated indices. A model that has
shown very good results in audio and speech generation was modified to suit the analysis of financial
data and was then compared to a base model, restricted by assumptions made for an efficient market.
The performance of any model, trained by looking at past observations, is heavily influenced by how
the division of the data into train, validation and test sets is made. This is further exaggerated by
the temporal structure of the financial data, which means that the causal relationship between the
predictors and the response is dependent on time. The complexity of the financial system further
increases the struggle to make accurate predictions, but the model suggested here was still able to
outperform the naive base model by more than 20% and 37%, respectively, when predicting the next
day’s closing price and the next day’s trend.

Keywords: deep learning; financial time series; causal and dilated convolutional neural networks

1. Introduction

Deep learning has brought a new paradigm into machine learning in the past decade and has
shown remarkable results in areas such as computer vision, speech recognition and natural language
processing. However, one of the areas where it is yet to become a mainstream tool is in forecasting
financial time series. This despite the fact that time series does provide a suitable data representation
for deep learning methods such as a convolutional neural network (CNN) [1]. Researchers and market
participants (Market participants is a general expression for individuals or groups who are active
in the market, such as banks, investors, investment funds, or traders (for their own account); often,
we use the term trader as a synonym for market participant [2]) are still, to the most part, sticking to
more historically well known and tested approaches, but there has been a slight shift of interest to
deep learning methods in the past years [3]. The reason behind the shift, apart from the structure of
the time series, is that the financial market is an increasingly complex system. This means that there is
a need for more advanced models, such as deep neural networks, that do a better job in finding the
nonlinear relations in the data.

Omar Berat Sezer et al. [3] gives a very informative review of the published literature on the
subject between 2005 and 2019 and states that there has been a trend towards more usage of deep
learning methods in the past five years. The review covers a wide range of deep learning methods,
applied to various time series such as stock market indices, commodities and forex. From the review,
it is clear that CNNs is not the topmost used method and that developers have focused more on
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. The CNNs are,
however, very good at building up high-level features from lower-level features that were originally
found in the input data, which is not something a LSTM network is primarily designed to do.
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However, the CNNs and LSTM networks do not need to be used as two separate models, but they
could be used as two separate parts of the same network. An example is to use a CNN to preprocess
the data, in order to extract suitable features, which could then be used as the input to the LSTM part
of the network [4].

Furthermore, the WaveNet structure considered in [5] suggests that the model can catch long-
and short-term dependencies, which is what the LSTM is designed to do as well. Although this is
something that will not be further explored in this paper, it does provide further research questions,
such as if the WaveNet can be used as a sort of preprocessing to a LSTM network. Another example
would be to process the data through a CNN and a LSTM separately and then combine them, before
the final output, in a suitable manner. This is something that is explored, with satisfactory results,
in [6], and the CNN part of the network is in fact an implementation of the WaveNet here as well.
However, only the LSTM part of the network handles the exogenous series; therefore, for future work,
it would be interesting to see if the performance could be improved by making the WaveNet handle
the exogenous series as well.

Papers where the WaveNet composes the whole network instead of just being a component in
one exist as well. Two examples are [7,8], and these models take into consideration exogenous
series as well. However, they used ReLU as the activation function instead of SeLU, but they
implemented normalization of the network in a similar way as will be done in this paper. Furthermore,
when considering the exogenous series, their approach regarding the output from each residual layer
was different. Instead of extracting the residual from each exogenous series, which will be done in this
paper, only the combined residual was used. See Section 3.2 for more details.

In contrast to the approach taken in this paper, and by all who try to fit statistical models
on financial time series, there are those who state that complexity is not the issue, but instead
advocate for the Efficient Market Hypothesis (EMH) [9]. A theory that essentially suggests that
no model, no matter how complex, can outperform the market, since the price is based on all available
information. The theory rests upon three key assumptions—(1) no transaction costs, (2) cost is not a
barrier to obtain available information and (3) all market participants agree on the implications of the
available information—which are stated to be sufficient, but not necessary (sufficient but not necessary
means, in this context, that the assumptions do not need to be fulfilled at all times; for example,
the second assumption might be loosened from including all to only a sufficient number of traders).
These assumptions, even with modifications, are very bold, and there are many who have criticized
the theory over the years. However, whether one agrees with the theory or not, one would probably
agree with the statement that a model which satisfies the assumptions made in EMH would indeed be
suitable as a base model. This means that such a model can be used as a benchmark in order to assess
the accuracy of other models.

Traders and researchers alike would furthermore agree that the price of any asset is, apart from its
inner utility, based on the expectation of its future value. For example, the price of a stock is partially
determined by the company’s current financials, but also by the expectation of future revenues or
future dividends. This expectation is, by the neoclassical economics, seen as completely rational,
giving rise to the area of rational expectation [10]. However, the emergence of behavioral economics
has questioned this rationality and proposes that traders (or more generally, decision-makers who act
under risk and uncertainty) are sometimes irrational and many times affected by biases [11].

A trader that sets out to exploit this irrationality and these biases can only do so by looking
into the past and, thereby, also go against the hypothesis of the efficient market. Upon reading this,
it should be fairly clear that making predictions in the financial markets is no trivial task, and it should
be approached with humility. However, one should not be discouraged since the models proposed
in [3] do provide promising or, oftentimes, positive results.

An important note about the expectation mentioned above is that the definition of a trader,
provided by Paul and Baschnagel, is not limited to a human being; it might as well be an algorithm.
This is important since the majority of transactions in the market are now made by algorithms.
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These algorithms are used in order to decrease the impact of biases and irrationality in decision
making. However, the algorithms are programmed by people and are still making predictions under
uncertainty, based on historical data, which means that they are by no means free of biases. Algorithms
are also more prone to get stuck in a feedback loop, which has been exploited by traders in the past.
An interesting example is the two Norwegians, Svend Egil Larsen and Peder Veiby, who in 2010 were
accused of manipulating algorithmic trading systems. They were, however, acquitted in 2012, since
the court found no wrongdoing.

The aim of this paper is to expand the research in forecasting financial time series, specifically
with a deep learning approach. To achieve this, two models, which greatly differ in the approach
towards the effectiveness of the market, are compared. The first model is restricted by the assumptions
made on the market by the EMH and is seen as the base model. The second model is a CNN, inspired
by the WaveNet structure [5], and is influenced by a model developed for audio and speech generation
by researchers at Google. The models set out to predict the next day’s closing price as well as the
trend (either up or down) of Standard and Poor’s 500 (S&P 500), a well-known stock market index
comprising 500 large companies in the US.

The outline of this paper is as follows. In Section 2 we give a brief background to the theory
needed and in Section 3 formulate the considered models and discuss the methodology. The results of
the study are given in Section 4 with a discussion in Section 5. We conclude the paper in Section 6.

2. Theoretical Background

2.1. Time Series

When using time series as a forecasting model, one makes the assumption that future events, such
as the next day’s closing price of a stock, can be determined by looking at past closing prices in the
time series. Most models, however, include a random error as a factor, meaning that there is some
noise in the data which cannot be explained by past values in the series.

Furthermore, the models can be categorized as parametric or non-parametric, where the
parametric models are the ones most regularly used. In the parametric approach, each data point in the
series is accompanied by a coefficient, which determines the impact the past value has on the forecast
of future values in the series.

The linear autoregressive model of order p, written as AR(p), is given by

Xt = c +
p

∑
i=1

ϕiXt−i + εt, (1)

with unknown parameters ϕi and εt as white noise. This is one of the most well known time series
models, and it is a model where the variable is regressed against itself (auto meaning “oneself”,
when used as a prefix). It is often used as a building block to more advanced time series models,
such as the autoregressive moving average (ARMA) or the generalized autoregressive conditional
heteroskedasticity (GARCH) models. However, the AR process will not be considered as a building
block in the models proposed in this paper. Instead, the proposed CNN models in this paper can be
represented as the nonlinear version of the AR model, or NAR(p) for short, given as

Xt = c + f (Xt−1, . . . , Xt−p) + εt, (2)

with a nonlinear function f (·, . . . , ·). In fact, a large number of machine learning models, when applied
to time series, can be seen as AR or NAR models. This might seem obvious to some, but it is something
that is seldom mentioned in the scientific literature. Furthermore, the models can be generalized to a
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nonlinear autoregressive exogenous (NARX) model. Given Zk as an exogenous time series and ψk its
accompanied coefficient, we have the NARX(p, r) model

Xt = c + f (Xt−1, . . . , Xt−p, Zt−1, . . . , Zt−r) + εt. (3)

When determining the coefficients in the autoregressive models, most models need the underlying
stochastic processes {Xt : t ≥ 0} to be stationary or at least weak-sense stationary. This means that we
are assuming that the mean and the variance of Xt are constant over time. However, when looking at
historical prices in the stock market, one can clearly see that this is not the case, for either the variance
or the mean. All of the above models can be generalized to handle this non-stationarity by applying
suitable transformations to the series. These transformations, or integrations, are a necessity when
determining the values for the coefficients, for most of the well-known methods, although this need
not be the case when using a neural network [12].

2.2. Neural Networks

The neural network, when applied on a supervised problem, sets out to minimize a certain
predefined loss function. The loss function used in this paper, when calculating the next day’s closing
price, was the mean absolute percentage error (MAPE)

ǫ(w) =
100
n

n

∑
i=1

∣∣∣∣
yi − ti

ti

∣∣∣∣ ,

where ti is the ith target value and yi is the model’s prediction. The reason for this is that the errors
are now made proportional with respect to the target value. This is important, since the mean and
variance of financial series cannot be assumed to be stationary, and this would otherwise skew the
accuracy of the model, unproportionally, to times characterized by a low mean. Meanwhile, the loss
function used for classifying the next day’s trend was the binary crossentropy

ǫ(w) =
1
n

n

∑
i=1

ti log(yi) + (1− ti) log(1− yi)).

The loss function is with respect to the weight w, and the loss is minimized when choosing the
weights that solve the function

∂ǫ(w)

∂w
= 0.

However, this algebraic solution is seldom achievable, and numerical solutions are more often
used. These numerical methods set out to find points in close proximity to a local (hopefully global,
but probably not) optima.

Moreover, instead of calculating the gradient with respect to each weight individually,
backpropagation uses the chain rule, where each derivative can be computed layerwise backward.
This leads to a decrease in complexity, which is very important, since it is not unusual that the number
of weights might be counted in thousands or in tens of thousands.

The neural network is, unless stated otherwise, considered to be a fully connected network,
which means that all weights, in two adjacent layers, are connected to each other. Although backpropagation
did a remarkable job in decreasing the complexity, the fully connected models are not good at scaling to
many hidden layers. This problem can be solved by having a sparse network, which means that not all
weights are connected. The CNN model, further explained in the next section, is an example of a sparse
network, where not all units are connected and where some units also share weights.
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2.3. Convolutional Neural Networks

The input to the CNN, when modeling time series, is a three-dimensional tensor, i.e., (nr of
observations)×(width of the input)×(nr of series). The number of series is here the main series,
for which the predictions will be made over, plus optional exogenous series.

Furthermore, in the CNN model, there is an array of hyperparameters that defines the structure
and complexity of the network. Below is a short explanation of the most important parameters to be
acquainted with in order to understand the networks proposed in this paper.

2.3.1. Activation Function

In its simplest form, when it only takes on binary values, the activation function determines if the
artificial neuron fires or not. More complex activation functions are often used, and the sigmoid and
tanh functions

g(x) =
ex

ex + 1
, (4)

g(x) = tanh(x),

are two examples, which have been used to a large extent in the past. They are furthermore two good
examples of activation functions that can cause the problem of vanishing gradients (studied by Sepp
Hochreiter in 1991, but further analyzed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [13]),
which of course is something that should be avoided. A function that does not exhibit this problem is
the rectified linear unit (ReLU) function

g(x) =

{
0 if x ≤ 0,

x otherwise,

which has gained a lot of traction in recent years, and is today the most popular one for deep neural
networks. One could easily understand why ReLU avoids the vanishing gradient problem, by looking
at its derivative

g′(x) =

{
0 if x ≤ 0,

1 otherwise,

and from it conclude that the gradient is either equal to 0 or 1. However, the derivative also shows
a different problem that comes with the ReLU function, which is that the gradient might equal zero,
and that the output from many of the nodes might in turn become zero. This problem is called the
dead ReLU problem, and it might cause many of the nodes to have zero impact on the output. This can
be solved by imposing minor modifications on the function, and it therefore now comes in an array of
different flavors. One such flavor is the exponential linear unit (ELU)

g(x) =

{
α(ex − 1) if x ≤ 0,

x otherwise,

where the value of alpha is often chosen to be between 0.1 and 0.3. The ELU solves the dead ReLU
problem, but it comes with a greater computational cost. A variant of the ELU is the scaled exponential
linear unit (SELU)

g(x) = λ

{
αex if x ≤ 0,

x otherwise,
(5)

which is a relatively new activation function, first proposed in 2017 [14]. The values of α and λ

have been predefined by the authors, and the activation also needs the weights in the network to be
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initialized in a certain way, called lecun_normal. lecun_normal initialization means that the start value
for each weight is drawn from a standard normal distribution.

Normalization can be used as a preprocessing of the data, due to its often positive effect on the
model’s accuracy, and some networks also implement batch normalization at some point or points
inside the network. This is what is called external normalization. However, the beauty of SeLU is
that the output of each node is normalized, and this process is fittingly called internal normalization.
Internal normalization proved to be more useful than external normalization for the models in this
paper, which is why SeLU was used throughout the network in the final models.

2.3.2. Learning Rate

The learning rate, often denoted by η, plays a large role during the training phase of the models.
After each iteration, the weights are updated by a predefined update rule such as gradient descent

wi+1 = wi − η∇ǫ(wi),

where ∇ǫ(wt) is the gradient for the loss function at the ith iteration. The learning rate, η, can here
be seen as determining the rate of change in every iteration. Gradient descent is but one of many
update rules, or optimizers (as they are more often called), and it is by far one of the simplest. More
advanced optimizers are often used, such as the adaptive moment estimation (Adam) [15], which has,
as one if perks, individual learning rates for each weight. The discussion about optimizers will not
continue further in this paper, but it should be clear that the value of the learning rate and the choice
of optimizer have a great impact on the overall performance of the model.

2.3.3. Filters

The filter dimensions need to be determined before training the model, and the appropriate
dimensions depend on the underlying data and the model of choice. When analyzing time series,
the filter needs to be one dimensional, since the time series is just an ordered sequence. The developer
needs to determine just two things: the width of the filters (Figure 1 shows a filter with the width equal
to two) and then how many filters to use for each convolutional layer. The types of features that the
convolutional layer “searches” for are highly influenced by the filter dimensions, and having multiple
filters means that the network can search for more features in each layer.

Figure 1. Dilated convolutional layers for an input series of length 16.

2.3.4. Dilation

A dilated convolutional filter is a filter that, not surprisingly, is widened but still uses the same
number of parameters. The filter is widened by neglecting certain inputs, and an example of this
can be observed in Figure 1. The bottom layer represents the input, in the form of a time series
x = (x1, x2, . . . , xn) (for some time n, onto which repeated dilated convolutions, with increasing
dilation rates, are applied; the filter width is again set to equal two in the observed model). The first
hidden layer applies dilated convolutions with the dilation rate equal to one, meaning that the layer
applies the filter onto two adjacent elements, xi and xi+1, of the input series. The second layer applies
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dilated convolutions, with the rate now set to equal two, which means that the filter is applied onto
elements xi and xi+2 (notice here that the number of parameters remains the same, but the filter width
has been “widened”). Lastly, the third and fourth layer have rates equal to four and eight, so the filter
is applied onto elements xi and xi+4, and xi and xi+8, respectively.

2.3.5. Dropout

The dropout factor is a way to prevent the model from overfitting to the training data, and it does
this by setting a fraction of the weights in a certain layer to zero. This leads to a decrease in complexity,
but the developer does not have control over which nodes will be set to zero (i.e., the weights are
chosen at random). Hence, dropout is not the same as changing the number of nodes in the network.
For more details, see [16].

2.4. WaveNet

The CNN models proposed in this paper are inspired by the WaveNet structure, modeled by van
den Oord et al. in 2016 [5]. The main part of the network in a WaveNet can be visualized in Figure 2,
which incorporates a dilated (and causal) convolution and a 1× 1 convolution (i.e., the width of the
filter set to equal one). The input from the left side is the result of a casual convolution, with filter size
equal to two, which has been applied to the original input series as a sort of preprocessing. The output
on the right side of the layer is the residual, which can be used as the input to a new layer, with an
identical set up. The number of residual connections must be predetermined by the developer, but the
dilated convolution also sets an upper limit on how many connections can be used. Figure 1 displays
repeated dilations on an input series with length equal to 16, and we can see that the number of layers
has an upper limit of four.

Figure 2. Overview of the residual layer, when only the main series is used as input.

Furthermore, the output from the bottom of each layer is the skip, which is the output that is
passed on to the following layers in the network. If four layers are used, as in Figure 1, then the network
would end up with four skip connections. These skip connections are then added (element-wise)
together to form a single output series. This series is then passed through two 1× 1 convolutions,
and the result of this will be the output of the model.

The WaveNet has three important characteristics: it is dilated, causal and has residual connections.
This means that the network is sparsely connected, that calculations can only include previous values
in the input series (which can be observed in Figure 1) and that information is preserved across
multiple layers. The sparsity is also further increased by having the width of the filters equal to only
either one or two.

The WaveNet sets out to maximize the joint probability of the series x = (xt, . . . , xt−p)T , for any
time t and length equal to p, which is factorized as a product of conditional probabilities

p(x) =
t

∏
i=1

p(xi|x1, . . . , xi−1),
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where the conditional probability distributions are modeled by convolutions. Furthermore, the joint
probability can be generalized to include exogenous series

p(x|h) =
t

∏
i=1

p(xi|x1, . . . , xi−1, h1, . . . , hi−1),

where h = (ht, ht−1, . . . , h1)
T is the exogenous series.

The WaveNet, as proposed by the authors, uses a gated activation unit on the output from the
dilated convolution layer in Figure 2

z = tanh(wt,k ∗ x)⊙ σ(ws,k ∗ x),

where ∗ is a convolution operator, ⊙ is an element-wise multiplication error, σ is a sigmoid function,
w∗,k is the weights for the filters and k denotes the layer index. However, the model proposed in this
paper will be restricted to only use a single activation function

z = SeLU(wk ∗ x) (6)

and the reason behind this is, again, that the gated activation function did not generalize well to the
analyzed time series data.

When using an exogenous series to help improve the predictions, the authors introduce two
different ways to condition the main series by the exogenous series. The first way, termed global
conditioning, uses a conditional latent vector l (not dependent on time), accompanied with a filter vk,
and can be seen as a type of bias that influences the calculations across all timesteps

z = SeLU(wk ∗ x + vk ∗ l).

The other way, termed local conditioning, uses one or more conditional time series h =

(ht, ht−1, . . . , h1)
T , that again influences the calculations across all timesteps

z = SeLU(wk ∗ x + vk ∗ h) (7)

and this is the approach that has been taken in this paper. This approach can further be observed in
Figure 3.

Figure 3. Overview of the residual layer, when the main series is conditioned by an exogenous series.

Lastly, the WaveNet originally used a softmax activation function on the last output of the network,
with the target values (raw audio) quantized into 256 different values. However, the softmax did not
generalize well to the predictions for the financial time series used here, where the use of no activation
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function performed better when predicting the next day’s closing price of the S&P 500. In addition,
when classifying the trend, the activation on the last output was seen as a hyperparameter, where the
sigmoid and SeLU activations were compared against each other.

2.5. Walk-Forward Validation

Walk-forward validation, or walk-forward optimization, was suggested by Robert Pardo [17] and
was brought forward since the ordinary cross-validation strategy is not well suited for time series
data. The reason behind why cross-validation is not optimal for time series data is because temporal
correlations exist in the data, and it should then be considered as “cheating” if one were to use future
data points to predict past data points. This, most likely, leads to a lower training error, but should
result in a higher validation/test error, i.e., it leads to poorer generalization due to overfitting. In order
to avoid overfitting, the model should then, when making predictions at (or past) time t, only be
trained on data points that were recorded before time t.

Depending on the data and the suggested model, one may choose between using all past
observations (until the time of prediction) or using a fixed number of most recent observations as
training data. The walk-forward scheme, using only a fixed number of observations, can be observed
in Figure 4.

Figure 4. Walk-forward validation with five folds.

2.6. Efficient Market Hypothesis

Apart from the three sufficient assumptions, Eugen Fama (who can be seen as the father of modern
EHM), lays out in [9] three different types of tests for the theory: weak form, where only past price
movements are considered; semi-weak form, where other publicly available information is included,
such as quarterly or annual reports; strong form, where some actors might have monopolistic access
to relevant information. The tests done in this paper, outlined in the introduction, are clearly of the
weak form.

Fama also brings to light three models that have historically been used to explain the movements
of asset prices in an efficient market: the fair game model, the submartingale and the random walk.
The fair game is by far the most general of the three, followed by the submartingale and then the
random walk. However, this paper does not seek to explain the movements of the market, but merely
to predict them, which means that any of the models can be used as the base model in the tests ahead.

Given the three assumptions on the market, the theory indicates that the best guess for any price
in the future is the last known price (i.e., the best guess for tomorrow’s price of an asset is the price of
that asset today). This can be altered to include a drift term, which can be determined by calculating
the mean increment for a certain number of past observations, and the best guess then changes to be
the last known price added with that mean increment.
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3. Model Formulations and Methodology

3.1. Base Model

The base model in this paper, when predicting the next day’s closing price, was chosen to be that
of a random walk, and this model can be modeled as an AR(1) process

Xt = c + ϕ1Xt−i + εt,

where ϕ1 needs to equal one. εt is here again a white noise, which accounts for the random fluctuations
of the asset price. The c parameter is the drift of the random walk, and it can be determined by taking
the mean of k previous increments

c =
1
k

k

∑
j=1

(Xj − Xj−1).

The best guess of the next day’s closing is obtained by taking the expectation of the random walk
model (ϕ1 equal to one)

E(Xt) = E(c + Xt−1 + εt) = c + Xt−1, (8)

which is the prediction that the base model used.
In the case of predicting the trend, the base model implemented a passive buy-and-hold strategy,

which means that the model always predicts the trend to be up.

3.2. CNN Model

As stated in the introduction, a CNN model, inspired by the WaveNet, was compared to the base
model, and two different approaches were needed in order to answer the research questions. The first
approach was to structure the CNN as a univariate model, which only needed to be able to handle
a single series (the series to make predictions over). This model can be expressed as a NAR model,
which can be observed by studying Equation (2). Each element xt in the sequence is determined
by a non-linear function f (the CNN in this case), which takes the past p elements in the series as
input. The second approach was to structure the CNN as a multivariate model, which needed to be
able to handle multiple series (the series to make predictions over, together with exogenous series).
This model, on the other hand, can be expressed as a NARX model, which can be observed by studying
Equation (3). Again, each xt is determined by a non-linear function f , which here takes the past p and
r elements in the main and exogenous series as inputs.

The NAR and NARX models were here, for convenience, named the single- and multi-channel
models. However, two different variants of the multi-channel model were tested in order to compare
the different structures implemented in the original WaveNet paper and in [7,8].

As was mentioned in the introduction, the difference between the two variants is how the
residuals from the exogenous series are handled. The implementation found in the WaveNet paper
takes into account both the main series residuals as well as the exogenous series residuals, while the
implementation in the second variant only takes into account the main series residuals. This can be
visualized by observing Figure 3 and then ignoring the residual for each exogenous series. This,
in turn, leads to each residual layer beyond the first layer having a similar structure to that of
Figure 3. The two variants were named multi-channel-sparsely-connected model (multi-channel-sc)
and multi-channel-fully-connected model (multi-channel-fc) in this paper. Furthermore, all models
have adopted a dropout factor of 0.2 for all layers, since this leads to better performances for all
three models.

The three models (the single-channel as well the two variants of the multi-channel) can be further
observed in Figure 5, which is a side view of the dilated layer shown in Figure 1. (a) represents
the single-channel model, where no exogenous series are considered; therefore, the model only has
to handle a single residual. (b) represents the multi-channel-sc model, where exogenous series
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are considered, but again, only a single residual is taken into account, while (c) represents the
multi-channel-fc, where all residuals are taken into account.

Figure 5. Side view of the dilated convolutional layers in Figure 1. (a) Only the main series is used;
(b,c) when the main series is conditioned by an exogenous series, as in the model proposed in [7,8] and
in the original WaveNet [5].

3.3. Data Sampling and Structuring

The financial data, for the single-channel model as well as the more complex multi-channel
models, were collected from Yahoo! Finance. The time interval between the observations was chosen
to equal a single day, since the objective was to predict, for any given time, the next day’s closing price
and the next day’s trend (i.e., the time series x = (xt, . . . , xt−p)T , at any time t, was used to predict xt+1

in the first case and yt+1 in the second case, where yt+1 = {0, 1}).
For the single-channel model, the series under consideration, at any time t, was x = (xt, . . . , xt−p)T ,

which is composed of ordered closing prices from S&P 500. In the multi-channel models, different
combinations of ordered OHLC (open, high, low and close) prices, of the S&P 500, VIX (implied
volatility index of S&P 500), TY (10 year treasury note) and TYVIX (implied volatility index of TY)
were considered. As mentioned before, the closing price of the S&P 500 was the main series, while the
other series Z = (z1, . . . , zm) were the exogenous series, where i, zi = (zi,t, . . . , zi,t−r)

T , for every i.
The values of p and r determine the orders of the NAR and NARX, and different values will be tested
during the validation phase. However, only combinations where p and r are equal will be tested, and p
will therefore be used to denote the length for both the main and exogenous series in the continuation
of this paper.

The time span of the observations was chosen to be between the first day in 2010 and the last day in
2019, which resulted in 2515×m observations, where again m denotes the number of exogenous input
series. Furthermore, since the models require p preceding observations, x = (xt, . . . , xt−p)T , to make a
prediction and then an additional observation, xt+1, to evaluate this prediction, the number of time
series that could be used for predictions were decreased to (2515− p− 1)×m. These observations
were then structured into time series, resulting in a tensor with dimension (2515− p− 1)× p×m.

The resulting tensor was then divided into folds of equal size, which were used in order to
implement the walk-forward scheme. The complete horizontal bars in Figure 4 should here be seen
as the whole tensor, while the subsets consisting of the blue and red sections are the folds. The blue
and red sections (training and test set of that particular fold) should be seen as a sliding window that
“sweeps” across the complete set of time series. Whenever the model is done evaluating a certain fold,
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the window sweeps a specific number of steps (determined by the size of the test set) in time in order
to evaluate the next fold.

By further observing Figure 4, it should become clear that the number of folds is influenced by
the size of the training and test sets. The size of each fold could (and most likely should) be seen as
a hyperparameter. However, due to the interest of time, the size of each fold was set to 250 series,
which means that each fold had a dimension of 250× p×m. Each fold was then further divided into a
training set (first 240 series) and a test set (last 10 series), where the test set was used to evaluate the
model for that particular fold.

The sizes chosen for the training and test sets gave as a result 226 folds. These folds were then
split in half, where the first half was used in order to validate the models (i.e., determine the most
appropriate hyperparameters), and the second half was used to test the generalization of the optimal
model found during the validation phase.

One last note about the data sampling is that when predicting the closing price, the time series
were the original prices collected from Yahoo!, while when predicting the trend, the time series were
changed to model the increments each day.

3.4. Validation and Backtesting

During the validation phase, different values for the length of the input series (i.e., the value of
p), the number of residual connections (i.e., number of layers stacked upon each other, see Figures 1
and 2) and the number of filters (explained in the theory section for CNNs) in each convolutional
layer were considered. The values considered for p were 4, 6, 8 and 12, while the number of layers
considered were 2 and 3, and the number of filters considered were 32, 64 and 96. When classifying
the trend, the activation function applied to the last output was seen as a hyperparameter as well,
and the sigmoid and SeLU activations were considered.

For the multi-channel models, all permutations of different combinations of the exogenous input
series were considered. However, it was only for the mutli-channel-fc model that the exogenous series
were seen as a hyperparameter. The optimal combination of exogenous series for the multi-channel-fc
model was then chosen for the multi-channel-sc model as well. One final note regarding the
hyperparameters is that the dilation rate was set to a fixed value equal to two, which is is the same rate
as was proposed in the original WaveNet model, and the resulting dilated structure can be observed in
Figure 1.

As was stated in the previous section, the validation was made on the first 113 folds. The overall
mean for the error of these folds, for each combination of the hyperparameters above, was used in
order to compare the different models, and the model with the lowest error was then used during the
backtesting.

The batch size was set to equal one for all models, while the number of epochs was set to 300
in the single-channel model and 500 in the multi-channel models. The difference in epochs is here
due to the added complexity that the exogenous series brings. An important note regarding the
epochs and the evaluation of the models is that the model state, associated with the epoch with the
lowest validation/test error, was ultimately chosen. This means that if a model made predictions
over 300 epochs, but the lowest validation/test error was found during epoch 200, the model state
(i.e., the value of the model’s weights) associated with epoch 200 were chosen as the best performing
model for that particular fold.

3.5. Developing the Convolutional Neural Network

The networks were implemented using the Keras API, from the well known open-source library
TensorFlow. Keras provides a range of different models to work with, where the most intuitive
might be the Sequential model, where developers can add/stack layers, and then compile them
into a network. However, the Sequential model does not provide enough freedom to construct
the complexity introduced in the residual and skip part of the WaveNet. Keras functional API
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(more information regarding Keras functional API can be found on Keras official documentation
https://keras.io/models/model/) might be less intuitive at first, but it does provide more freedom,
since the order of the layers in the network is defined by having the output of every layer explicitly
defined as an input parameter to the next layer in the network.

Furthermore, Keras comes with TensorFlow’s library of optimizers, which are used in order to
estimate the parameters in the model and taken as an input parameter when compiling the model.
The optimizer used here was the Adam optimizer, and the learning rate was set to equal 0.0001.

4. Results

4.1. Validation

Table 1 displays the validation error when predicting the next day’s closing price, while Table 2
displays the validation accuracy when classifying the trend. The p is again the length of the input time
series, while l is the number of layers in the residual part of the network (see Figure 1), and f is the
number of filters used in each convolutional layer. In Table 2, a denotes the used activation function.

Table 1. Validation error for the different models, where p is the length of the time series, l is the
number of residual layers and f is the number of filters.

Hyperparameters MAPE

p l f
Single- Multi- Multi-

Channel Channel-sc Channel-fc

4 2 32 0.5787 0.5706 0.5599

4 2 64 0.5802 0.5527 0.5577

4 2 96 0.5783 0.5508 0.5587

6 2 32 0.5720 0.5491 0.5544

6 2 64 0.5752 0.5450 0.5426

6 2 96 0.5793 0.5462 0.5479

8 2 32 0.5764 0.5413 0.5498

8 2 64 0.5737 0.5445 0.5450

8 2 96 0.5796 0.5405 0.5495

8 3 32 0.5733 0.5518 0.5251

8 3 64 0.5692 0.5259 0.5377

8 3 96 0.5687 0.5468 0.5389

12 2 32 0.5714 0.5524 0.5526

12 2 64 0.5744 0.5478 0.5542

12 2 96 0.5744 0.5417 0.5422

12 3 32 0.5700 0.5298 0.5444

12 3 64 0.5672 0.5368 0.5290

12 3 96 0.5584 0.5312 0.5325
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Table 2. Validation accuracy for the different models, where a is the activation function, p is the length
of the time series, l is the number of residual layers and f is the number of filters.

Hyperparameters Accuracy

a p l f Single-Channel Multi-Channel-sc Multi-Channel-fc

Sigmoid 4 2 32 0.6035 0.6000 0.5779

Sigmoid 4 2 64 0.6150 0.5991 0.6283

Sigmoid 4 2 96 0.5956 0.6204 0.6637

Sigmoid 6 2 32 0.6283 0.6009 0.6283

Sigmoid 6 2 64 0.6115 0.6186 0.6319

Sigmoid 6 2 96 0.6097 0.6319 0.6389

Sigmoid 8 2 32 0.5938 0.6283 0.6146

Sigmoid 8 2 64 0.5956 0.6133 0.6248

Sigmoid 8 2 96 0.6248 0.5947 0.6363

Sigmoid 8 3 32 0.6150 0.6053 0.6000

Sigmoid 8 3 64 0.6265 0.6044 0.6451

Sigmoid 8 3 96 0.6487 0.6124 0.6327

Sigmoid 12 2 32 0.6009 0.6027 0.6115

Sigmoid 12 2 64 0.6035 0.6212 0.6327

Sigmoid 12 2 96 0.6168 0.5920 0.6398

Sigmoid 12 3 32 0.6168 0.5973 0.5973

Sigmoid 12 3 64 0.6195 0.6106 0.6248

Sigmoid 12 3 96 0.6442 0.6159 0.6292

SeLU 4 2 32 0.6752 0.6664 0.6894

SeLU 4 2 64 0.7053 0.7195 0.6920

SeLU 4 2 96 0.7018 0.7097 0.7469

SeLU 6 2 32 0.7062 0.6814 0.6938

SeLU 6 2 64 0.6947 0.7000 0.7133

SeLU 6 2 96 0.7204 0.7389 0.7230

SeLU 8 2 32 0.7018 0.6735 0.6717

SeLU 8 2 64 0.7071 0.6885 0.6841

SeLU 8 2 96 0.6947 0.7159 0.7257

SeLU 8 3 32 0.6549 0.6407 0.6619

SeLU 8 3 64 0.6973 0.7044 0.7133

SeLU 8 3 96 0.7336 0.7345 0.7425

SeLU 12 2 32 0.7097 0.6743 0.7018

SeLU 12 2 64 0.6752 0.7292 0.7027

SeLU 12 2 96 0.7434 0.7230 0.7142

SeLU 12 3 32 0.6699 0.6319 0.6637

SeLU 12 3 64 0.7257 0.7088 0.7434

SeLU 12 3 96 0.7487 0.7310 0.7496

The lowest validation error was achieved with p, l and f equal to 12, 3 and 96 for the single-channel
model, while 8, 3, 64 and 8, 3, 32 were the optimal parameters for the multi-channel-sc model and the
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multi-channel-fc model, respectively. The highest validation accuracy was achieved with SeLU as the
activation for all models and p, l and f equal to 12, 3 and 96 for the single-channel model, while 8, 3,
96 and 12, 3, 96 were the optimal parameters for the multi-channel-sc model and the multi-channel-fc
model, respectively.

The validation error and validation accuracy for the multi-channel models are displayed only for
the best combination of exogenous series found for the multi-fc-channel model, which proved to be
just the highest daily value of the VIX in both cases.

4.2. Testing

Figure 6 shows the cumulative mean, of the test error, for all 113 test folds, while Figure 7 shows
the cumulative mean for the last 50. These two figures paint two different pictures of the single-channel
and multi-channel models. The means across all 113 folds were 0.5793, 0.4877, 0.4707 and 0.4621,
for the base, the single-channel, multi-channel-sc and multi-channel-fc models, respectively, while the
means across the last 50 were 0.6572, 0.5468, 0.5250 and 0.5416. By looking at these numbers, one can
see that the performance of the multi-channel-fc model to the base model, when predicting the next
day’s closing price, was worse in the last 50 folds than for all 113 folds, while the reverse can be said
about the single-channel and the multi-channel-sc models.

Figure 6. Cumulative mean of the MAPE for all 113 test folds.

Figure 7. Cumulative mean of the MAPE for the last 50 test folds.

Figures 8 and 9, on the other hand, show the cumulative mean of the validation error for all 113 test
folds and the last 50 test folds. Again, the multi-channel-fc model started out well, but the performance
compared to the single-channel and multi-channel-sc model worsened over time. The means across
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all 113 test folds were 0.5442, 0.7504, 0.7451 and 0.7496 for the base, single-channel, multi-channel-sc
and multi-channel-fc models, respectively, while the means for the last 50 test folds were 0.5600, 0.7580,
0.7600 and 0.7360.

Figure 8. Cumulative mean for the accuracy for all 113 test folds.

Figure 9. Cumulative mean for the accuracy for the last 50 test folds.

Both the single-channel and multi-channel models outperformed the base model over the test
folds, which accounts for almost five years of observations. Furthermore, the multi-channel models
clearly performed better than the single-channel model, when looking at the performance across
all test folds. However, the positive effects of including the exogenous series seemed to wear off
in the last folds for the complex multi-channel-fc model, while it actually increased for the simpler
multi-channel-sc model. This suggests that the problem of generalization for the multi-channel-fc
model probably lies in that the relationship between the main series and the exogenous series has been
altered, which, interestingly enough, only affects the more complex model.

Figure 10 shows the gains for the models when applied to the test data. Both the single- and
multi-channel models clearly outperformed the passive buy-and-hold strategy, which is to be expected,
since the test accuracy for the base model was well below the other models. The gains were 1.5596,
26.3642, 25.0388 and 26.9360 for the base, single-channel, multi-channel-sc and multi-channel-fc,
respectively, meaning that if one was to implement any of the WaveNet inspired models, during the
specified period, he or she would have a profit of more than 24 times the original amount.
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Figure 10. The calculated gain across all test folds, for all of the four models.

Lastly, while the multi-channel-fc model outperformed all other models across all folds, it is also
of interest, for further work, to see in what settings the multivariate model performed the best and
the worst. Figures 11 and 12 give an example of these settings, where it shows the folds for which the
multi-channel-fc model outperformed (fold 139) and underperformed (fold 148) the most against the
base model.

Figure 11. Predictions for the 10 test observations in test fold 25.

Figure 12. Predictions for the 10 test observations in test fold 34.
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5. Discussion

There is no real scientific basis for having the training size equal to 240 and validation/test
size equal to 10, although it did perform better than having the sizes equal 950 and 50 respectively.
It might seem odd to someone, with little or no experience in analyzing financial data, that one would
choose to have a limit on the training size and why the models, evidently, perform better using fewer
observations, since having a larger set of training observations is generally seen as a good thing.
However, the financial markets are ever-changing, and the predictors (the past values in the time
series) usually change with it. New paradigms find their way into the markets, while old paradigms
may lose their impact over time. These paradigms can be imposed by certain events, such as an
increase in monetary spending, the infamous Brexit or the current Covid-19 pandemic (especially the
response, by the governments and central banks, to the pandemic). Paradigms can also be recurrent,
such as the ones that are imposed by where we are in the short- and long-term debt cycle. Because of
these shifts, developers are restricted in how far back in time they can look and, therefore, need to put
restrictions on the training size.

The paper brings forward two very positive results, which are that the predictions for the next
day’s closing price as well as the trend are made significantly better by the CNN models. However,
the fact that the performance of the more complex multi-channel model decreases over time, against
the other models, for both predicting the closing price and the trend, is indeed concerning. This became
obvious when studying the change in performance between all 113 and the last 50 test folds. If both
the multi-channel-sc and multi-channel-fc models performed worse in the last 50 folds, then it would
have been easy to again “blame” the temporal structure of the financial data and, more specifically,
the temporal dependencies between the main and exogenous series. However, only the more complex
multi-channel model’s performance degraded, which means that the complexity (i.e., the intermingling
between the series in all residual layers) is the primary issue. A solution might then be to have the
complexity as a hyperparameter as well and not differentiate between the two structures, as was done
here. In other words, the two models might more appropriately be seen as two extreme cases of the
same model, in a similar way as having the number of filters set to 32 and 96 (see Table 1, 32 and
96 are the extreme cases for the number of filters). By looking at Figure 5 (with p equal to 16 in this
case), one can see that the hyperparameter for the complexity has two more values to chose from
(having the exogenous series to directly influence the second and third hidden layers). It would also
be appropriate to compare the models against different time frames and asset classes to see if the
less complex model indeed generalizes better over time, or if the result here was just a special case.
However, viewing the complexity as a hyperparameter could prove to be beneficial in both cases.

The tests made in this paper were not primarily intended to judge the suitability of the models
as trading systems, but rather if a deep learning approach could perform better than a very naive
base model. However, the multi-channel models outperformed the base model by more than 20%,
and this difference is quite significant and begs the question of what changes could be done in order
for the model to be used as a trading system. While most of the predictions in fold 25, Figure 11,
are indeed very accurate, the predictions in fold 34, Figure 12, would be disheartening for any trader
to see if it were to be used as a trading system. This suggests that one should try to look for market
conditions, or patterns, similar to the ones that were associated with low error rates in the training
data. This could be done by clustering the time series, in an unsupervised manner, and then assign a
score for each class represented by the clusters, where the score can be seen as the probability of the
model to make good predictions during the conditions specific to that class. A condition classed in a
cluster with a high score, such as the pattern in Figure 11, would probably prompt the trader to trust
the system and to take a position (either long or short, depending on the prediction), while a condition
classed in a cluster with a lower score would prompt the trader to stay out of the market or to follow
another trading system that particular day.
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6. Conclusions

The deep learning approach, inspired by the WaveNet structure, proved successful in extracting
information from past price movements of the financial data. The result was a model that outperformed
a naive base model by more than 20%, when predicting the next day’s closing price, and by more than
37% when predicting the next day’s trend.

The performance of the deep learning approach is most likely due to its exceptional ability to
extract non-linear dependencies from the raw input data. However, as the field of deep learning
applied to the financial market progresses, the predictive patterns found in the data might become
increasingly hard to find. This would suggest that the fluctuations in the market would come to more
and more mirror a system, where the only predictive power lies in the estimation of the forces acting on
the objects, which are heavily influenced by the current sentiment in the market. A way to extract the
sentiment, at any current moment, might be to analyze unstructured data, extracted from, for example,
multiple news sources or social media feeds. Further study in text mining, applied to financial news
sources, might therefore be merited and might be an area that will become increasingly important to
the financial sector in the future.
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