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Preface to ”Symmetry and Mesoscopic Physics”

Nature loves to play dice with us, providing this or that riddle along the way of our

understanding of its diversity. It is like the faces of an n-dimensional facially regular polyhedron,

the numerous faces of which from time to time indicate different problems for us. Depending on our

luck, we can get the Ariadne’s thread, which could lead us to the laws of nature based on beauty

and harmony. Since ancient times people have realized that very often harmony is associated with

symmetry. In this issue, we tried to present some of the results of the manifestation of symmetries

and symmetry breaking in finite quantum systems that have peculiarities compared to macroscopic

samples. Some authors find the effects of symmetry and asymptotic symmetry breaking in the

analysis of Bose-Einstein condensate. Other authors have shown how symmetries, due to spin-orbit

interaction in quantum dots and graphene, can explain the effects of electron transport in these

systems. The problem of scaling symmetry, related to fractals, is studied as well, which allows us to

understand the mechanisms of fabrication of complex materials with predefined physical properties

and functionalities.

Rashid G. Nazmitdinov, Vyacheslav Yukalov

Editors

ix





symmetryS S

Article

Particle Fluctuations in Mesoscopic Bose Systems

Vyacheslav I. Yukalov 1,2

1 Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia;
yukalov@theor.jinr.ru

2 Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil

Received: 10 April 2019; Accepted: 25 April 2019; Published: 1 May 2019

Abstract: Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are
considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above
the Bose–Einstein condensation temperature Tc, as well as below this temperature. The strength of
particle fluctuations defines whether the system is stable or not. Stability conditions depend on the
spatial dimensionality d and on the confining dimension D of the system. The consideration shows
that mesoscopic systems, experiencing Bose–Einstein condensation, are stable when: (i) ideal Bose
gas is confined in a rectangular box of spatial dimension d > 2 above Tc and in a box of d > 4 below
Tc; (ii) ideal Bose gas is confined in a power-law trap of a confining dimension D > 2 above Tc and of
a confining dimension D > 4 below Tc; (iii) the interacting Bose system is confined in a rectangular
box of dimension d > 2 above Tc, while below Tc, particle interactions stabilize the Bose-condensed
system, making it stable for d = 3; (iv) nonlocal interactions diminish the condensation temperature,
as compared with the fluctuations in a system with contact interactions.

Keywords: Bose systems; asymptotic symmetry breaking; Bose–Einstein condensation; particle
fluctuations; stability of Bose systems

1. Introduction

The theory of Bose systems has recently attracted high attention triggered by experimental studies
of cold trapped atoms (see, e.g., the books and review articles [1–19]). Special attention has been
payed to the study of particle fluctuations, mainly considering three-dimensional macroscopic Bose
systems or harmonically-trapped atoms. The importance of this problem has been emphasized after
the appearance of a number of papers claiming the occurrence of thermodynamically-anomalous
particle fluctuations in the whole region below the condensation temperature Tc even for equilibrium
three-dimensional interacting systems (a list of the papers containing such claims has been summarized
in [20]). The origin of the arising fictitious anomalies and the ways of avoiding them have been
discussed in detail in reviews [16–18].

It would not be strange if anomalously strong fluctuations would be found at the point of
a second-order phase transition. This would be natural, since at the point of a phase transition,
the system is unstable and fluctuations in a system can drastically increase. It is exactly the
system instability that drives the phase transition and forces the system to transfer to another state.
However, as soon as the transition to the other state has happened, the real system becomes stable
and has to exhibit thermodynamically normal fluctuations. It is therefore more than strange how
thermodynamically-anomalous fluctuations could arise in realistic three-dimensional interacting
systems.

Moreover, Bose–Einstein condensation is necessarily accompanied by the spontaneous breaking
of global gauge symmetry. From the mathematical point of view, the similar breaking of continuous
symmetry occurs under magnetic phase transitions [21]; hence, anomalous fluctuations of the order
parameter should appear in magnets below Tc. However, thermodynamically-anomalous fluctuations

Symmetry 2019, 11, 603; doi:10.3390/sym11050603 www.mdpi.com/journal/symmetry1
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imply the system instability [22]. Therefore, if such fluctuations would really arise in the whole range
below Tc, then neither superfluids nor magnets would exist. Fortunately, it has been shown [23,24]
that thermodynamically-anomalous fluctuations in interacting three-dimensional equilibrium systems,
discussed in theoretical papers, are just calculational artifacts caused, briefly speaking, by the use of a
second-order approximation for calculating fourth-order terms.

The aim of the present paper is to extend the investigation of particle fluctuations in Bose systems
in several aspects: First, we consider mesoscopic systems that are finite, although containing many
particles N � 1. Taking into account a finite number of particles requires modifying the definition of
the Bose function by introducing a finite cutoff responsible for the existence of a minimal wave vector
prescribed by the system geometry. Second, we analyze particle fluctuations above, as well as below Tc

for the Bose systems of arbitrary dimensionality, which allows us to find the critical spatial dimension
above which the system is stable. Third, we consider two types of Bose systems, confined either in
a rectangular box or in a power-law trap. Fourth, the influence of nonlocal interactions on particle
fluctuations is analyzed, as compared to that of local interactions.

Throughout the paper, the system of units is employed where the Planck and Boltzmann constants
are set to one, h̄ = 1 and kB = 1.

2. Particle Fluctuations and Stability

Here and in what follows, we consider mesoscopic systems that are finite, containing a finite
number of particles N, although with this number is rather large, N � 1.

Observable quantities are given by statistical averages 〈Â〉 of Hermitian operators Â. Fluctuations
of the observable quantities are characterized by the variance:

var(Â) ≡ 〈Â2〉 − 〈Â〉2 .

The observable is called extensive when:

〈Â〉 ∝ N (N � 1) , (1)

which is equivalent to the condition:

〈Â〉
N
' const (N � 1) . (2)

Fluctuations are termed thermodynamically normal if the inequalities:

0 ≤ var(Â)

|〈Â〉| < ∞ (3)

are valid for any N, which can also be represented as the condition:

var(Â)

|〈Â〉| ' const (N � 1) . (4)

When these conditions do not hold, the fluctuations are called thermodynamically anomalous.
Sometimes, instead of the terms thermodynamically normal or thermodynamically anomalous, one
says, for short, that fluctuations are just normal or anomalous.

Particle fluctuations, describing the fluctuations of the number of particles, characterized by the
number-of-particles operator N̂, are quantified by the relative variance:

var(N̂)

N
=

1
N

(
〈N̂2〉 − 〈N̂〉2

)
, (5)

2
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where N = 〈N̂〉. The fluctuations are normal when:

0 ≤ var(N̂)

N
< ∞ (6)

for any N, or in other words, when:

var(N̂)

N
' const (N � 1) . (7)

The strength of particle fluctuations characterizes the system stability, since these fluctuations are
directly connected to the isothermal compressibility:

κT ≡ −
1
V

(
∂V
∂P

)

TN
=

1
ρN

(
∂N
∂µ

)

TV
(8)

by the equality:

κT =
var(N̂)

ρTN

(
ρ ≡ N

V

)
, (9)

with ρ being the average particle density. The system stability requires that:

0 ≤ κT < ∞ (10)

for any N, which yields Conditions (6) and (7). The above relations give us one of the ways for
calculating the relative variance:

var(N̂)

N
= ρTκT =

T
N

(
∂N
∂µ

)

TV
. (11)

3. Ideal Gas in a Rectangular Box

Bose systems in a rectangular box are not merely an interesting object allowing for detailed
calculations, but it can also be realized experimentally inside box-shaped traps [25–27].

3.1. Modified Bose Function

The grand Hamiltonian of a gas in a rectangular box of volume V reads as:

H = Ĥ − µN̂ =
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr , (12)

where the integration is over the given volume V. Assuming periodic continuation of the box, the field
operators can be expanded in plane waves,

ψ(r) = ∑
k

ak ϕk(r) , ϕk(r) =
1√
V

eik·r , (13)

which gives:

H = ∑
k

ωka†
k ak

(
ωk =

k2

2m
− µ

)
. (14)

The total number of particles is the sum:

N = N0 + N1 , N1 = ∑
k 6=k0

nk , (15)

3
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where N0 is the number of condensed particles, while N1 is the number of uncondensed particles, with
the momentum distribution:

nk ≡ 〈a†
k ak〉 =

(
eβωk − 1

)−1
. (16)

Here, β = 1/T is the inverse temperature. For a large number of particles, the sums over momenta can
be represented as the integrals,

∑
k

nk → V
∫

nk
dk

(2π)d ,

where d is spatial dimensionality. In the case of isotropic functions under the integrals, it is possible to
pass to spherical coordinates. However, it is necessary to take into account that for a finite system, the
values of the wave vectors start not from zero, but from a finite minimal momentum k0 that can be
estimated as:

k0 =
2π

L
=

2π

aN1/d , (17)

with the box volume:
V = Ld , L = aN1/d ,

where a is the mean interparticle distance. Thus, the integration over the momenta takes the form:

∫ dk
(2π)d →

2
(4π)d/2Γ(d/2)

∫ ∞

k0

kd−1 dk , (18)

where the lower limit is given by the cutoff prescribed by the minimal quantity k0. Then, the number
of uncondensed particles becomes proportional to the modified Bose function:

gn(z) ≡
1

Γ(n)

∫ ∞

u0

zun−1

eu − z
du , (19)

with z ≡ exp(βµ) being the fugacity and where the lower limit is given by the cutoff:

u0 =
k2

0
2mT

=
ε0

T
(20)

defined by the minimal energy:

ε0 =
2π2

ma2 N−2/d . (21)

Since the minimal energy (21) tends to zero for large N, it is admissible to keep in mind that:

u0 � 1 (N � 1) . (22)

In this way, the relative variance (11) can be expressed through the derivative of the modified Bose
function (19). The latter differs from the standard Bose function by the existence of a nonzero lower
integration limit defined by the minimal wave vector.

3.2. Fluctuations above the Condensation Temperature

At temperatures above the condensation point, there are no condensed particles, so that the total
number of particles reads as:

N =
V
λd

T
gd/2(z) (T ≥ Tc) , (23)

where:

λT ≡
√

2π

mT

4
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is the thermal wavelength. Hence, the relative variance (11) is:

var(N̂)

N
=

z
ρλd

T

∂gd/2(z)
∂z

(T > Tc) , (24)

where ρ ≡ N/V is the particle density.
Estimating the Bose function above Tc, where z < 1, we find:

gn(z) = −
z

(1− z)Γ(1 + n)

[
un

0 −
nu1+n

0
(1 + n)(1− z)

]
(n < 0 , z < 1) . (25)

In particular,

g−1/2(z) = −
z√

π(1− z)

(
u−1/2

0 +
u1/2

0
1− z

)
(z < 1) (26)

and:
g0(z) = −

z
1− z

(z < 1) . (27)

Calculating the derivatives of the modified Bose functions requires being attentive, since some of
the derivatives are different from those for the standard Bose functions. Generally, we have:

∂gn(z)
∂z

=
1
z

gn−1(z) +
un−1

0
Γ(n)(1− z + u0)

. (28)

Using the smallness of u0, we can write:

un−1
0

1− z + u0
' 1

1− z

(
un−1

0 − un
0

1− z

)
(z < 1) .

Therefore, for n < 1, we find:

∂gn(z)
∂z

= − un
0

(1− z)2Γ(1 + n)
(n < 1 , z < 1) ; (29)

while for n > 1, keeping the main terms, we get:

∂gn(z)
∂z

=
1
z

gn−1(z) (n > 1 , z < 1) . (30)

We shall also need the derivatives:

∂g1/2(z)
∂z

= − 2u1/2
0√

π(1− z)2 (d = 1 , z < 1) ,

∂g1(z)
∂z

= − u0

(1− z)2 (d = 2 , z < 1) ,

∂g3/2(z)
∂z

=
1
z

g1/2(z) (d = 3 , z < 1) .

For the relative variance, depending on the space dimensionality, we obtain:

var(N̂)

N
= − 2z√

π(1− z)2ρλT

( ε0

T

)1/2
(d = 1 , T > Tc) ,

var(N̂)

N
= − z

(1− z)2ρλ2
T

( ε0

T

)
(d = 2 , T > Tc) ,

5
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var(N̂)

N
=

1
ρλ3

T
g1/2(z) (d = 3 , T > Tc) . (31)

The negative values of the variance for d = 1 and d = 2 show that these low-dimensional systems are
unstable. However, the gas is stable in three dimensions.

As follows from the derivative:

∂gd/2(z)
∂z

=
1
z

g(d−2)/2(z) (d > 2 , z < 1) , (32)

the system is stable for d > 2. That is, the critical spatial dimension, above which the uncondensed gas
in a rectangular box is stable, is dc = 2, so that the stability condition is:

d > dc = 2 (T > Tc) . (33)

3.3. Condensation Temperature of a Gas in a Rectangular Box

At the temperature of Bose condensation, the chemical potential becomes zero, µ = 0, because of
whuich z = 1. The total number of particles:

N =
V
λd

T
gd/2(1) (T = Tc) (34)

defines the critical temperature:

Tc =
2π

m

[
ρ

gd/2(1)

]2/d
. (35)

For different dimensionalities, we have:

g1/2(1) =
2√
π

u−1/2
0 (d = 1) ,

g1(1) = − ln u0 (d = 2) ,

g3/2(1) = ζ(3/2) (d = 3) .

This gives the critical temperatures for a one-dimensional system:

Tc =
πρ√
2m

ε1/2
0 (d = 1) , (36)

and for a two-dimensional system:

Tc =
2πρ

m ln(Tc/ε0)
(d = 2) . (37)

Iterating the latter equation and taking into account that:

Tc

ε0
� exp

(
2πρ

mε0

)
, ε0 ∝ N−2/d (N � 1) ,

we obtain:
Tc =

2πρ

m ln(2πρ/mε0)
(d = 2) . (38)

For a three-dimensional box, we have the known result:

Tc =
2π

m

[
ρ

ζ(3/2)

]2/3
(d = 3) . (39)

6
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The critical temperatures at a large N � 1 scale as:

Tc ∝
1
N

(d = 1) ,

Tc ∝
1

ln N
(d = 2) ,

Tc ∝ const (d = 3) . (40)

For d ≤ 2, the critical temperature diminishes to zero as N increases. It remains finite for d > 2. Recall
that, as is found above, the system is unstable for d ≤ 2. Thus, the Bose gas in a box is stable in the
case where the critical temperature remains finite for large N.

3.4. Fluctuations below Critical Temperature

Below the critical temperature, there appears the Bose–Einstein condensate, so that the
number-of-particle operator becomes the sum of the number of condensed particles N0 and the
number-of-particle operator N̂1 of uncondensed particles,

N̂ = N0 + N̂1 (T < Tc) . (41)

When the condensate function η is introduced by means of the Bogolubov shift [28–30] of the field
operator:

ψ(r)→ η(r) + ψ1(r) ,

then particle fluctuations are defined by the fluctuations of uncondensed particles (see the detailed
explanations in [3,9,16–18]),

var(N̂) = var(N̂1) .

The average number of uncondensed particles is:

N1 =
V
λd

T
gd/2(1) (T < Tc) . (42)

Therefore, the relative particle variance reads as:

var(N̂)

N
=

1
ρλd

T
lim
z→1

∂gd/2(z)
∂z

(T < Tc) . (43)

For a mesoscopic system, we have:

lim
z→1

∂gn(z)
∂z

= gn−1(1) +
un−2

0
Γ(n)

. (44)

Notice that the last term here would be absent for a macroscopic system. In particular,

lim
z→1

∂g1/2(z)
∂z

= g−1/2(1) +
u−3/2

0√
π

.

Since:
g−1/2(1) = −

1
3
√

π
u−3/2

0 ,

we find:

lim
z→1

∂g1/2(z)
∂z

=
2

3
√

π
u−3/2

0 .

7
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We also need the limits:

lim
z→1

∂g1(z)
∂z

=
1
u0

,

and:

lim
z→1

∂g3/2(z)
∂z

= g1/2(1) +
2√
π

u−1/2
0 .

Using g1/2(1) from the previous subsection, we get:

lim
z→1

∂g3/2(z)
∂z

=
4√
π

u−1/2
0 .

Generally, from the expression:

lim
z→1

∂gd/2(z)
∂z

= g(d−2)/2(1) +
u(d−4)/2

0
Γ(d/2)

(45)

we see that the last term here increases with N by a power-law, when d < 4, while it increases
logarithmically for d = 4,

lim
z→1

∂g2(z)
∂z

= 1− ln u0 (d = 4) .

For the relative variance (43), we obtain:

var(N̂)

N
=

2
3
√

πρλT

(
T
ε0

)3/2
(d = 1) ,

var(N̂)

N
=

1
ρλ2

T

(
T
ε0

)
(d = 2) ,

var(N̂)

N
=

4√
πρλ3

T

(
T
ε0

)1/2
(d = 3) ,

var(N̂)

N
=

1
ρλ4

T

(
T
ε0

)
(d = 4) . (46)

Keeping in mind that ε0 ∝ N−2/d, the scaling of these expressions with respect to N is as follows:

var(N̂)

N
∝ N3 (d = 1) ,

var(N̂)

N
∝ N (d = 2) ,

var(N̂)

N
∝ N1/3 (d = 3) ,

var(N̂)

N
∝ ln N (d = 4) . (47)

This shows that for all dimensions below and including four, particle fluctuations are anomalous,
corresponding to an unstable systems. In that sense, the dimension four is critical, implying that the
stability condition for a condensed gas in a box is:

d > dc = 4 (T < Tc) . (48)

8
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4. Ideal Gas in a Power-Law Trap

Power-law traps are the most often used devices for trapping particles. Here, we study particle
fluctuations and the related stability of mesoscopic clouds in such traps.

4.1. Modified Semiclassical Approximation

The general form of confining potentials, employed in power-law traps, can be represented as:

U(r) =
d

∑
α=1

ωα

2

∣∣∣∣
rα

lα

∣∣∣∣
nα

, (49)

where:
lα ≡

1√
mωα

is the effective trap radius in the α direction. As a whole, a trap can be characterized by the effective
trap frequency ω0 and effective length l0 connected by the relations:

ω0 ≡
(

d

∏
α=1

ωα

)1/d

=
1

ml2
0

, l0 ≡
(

d

∏
α=1

lα

)1/d

=
1√

mω0
. (50)

In the limit nα → ∞, we return to a rectangular box.
When the effective trap frequency is much lower than temperature,

ω0

T
� 1 , (51)

it is possible to resort to the semiclassical approximation that, however, needs to be modified for
considering mesoscopic systems [18,31].

In the semiclassical approximation, one defines the density of states:

ρ(ε) =
(2m)d/2

(4π)d/2Γ(d/2)

∫

Vε

[ε−U(r)]d/2−1 dr ,

in which:
Vε ≡ {r : U(r) ≤ ε}

is the volume available for particle motion.
For trapped particles, an important notion is the confining dimension [18,31]:

D ≡ d +
d

∑
α=1

2
nα

. (52)

The density of states for the power-law potential (49) reduces to:

ρ(ε) =
εD/2−1

γDΓ(D/2)
, (53)

where we use the notation:

γD ≡
πd/2

2D/2

d

∏
α=1

ω1/2+1/nα
α

Γ(1 + 1/nα)
.

In the normal state above Tc, the number of particles is given by the formula:

N =
TD/2

γD
gD/2(z) (T ≥ Tc) . (54)

9
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We again meet the Bose function that has to be modified according to the definition (19) by using the
integral cutoff:

u0 =
ε0

T
(ε0 ∼ ω0) , (55)

with ε0 being the lowest energy level in the trap, which is of the order of ω0.

4.2. Condensation Temperature of a Gas in a Power-Law Trap

At the critical temperature Tc, we have µ = 0 and z = 1. Then, Equation (54) yields:

Tc =

[
γD N

gD/2(1)

]2/D
. (56)

The modified Bose function, depending on the confining dimension, takes the forms:

gD/2(1) =
2

(2− D)Γ(D/2)

(
T
ε0

)1−D/2
(D < 2) ,

g1(1) = ln
T
ε0

(D = 2) ,

gD/2(1) = ζ

(
D
2

)
(D > 2) .

If D < 2, the spatial dimension can only be d = 1, when:

γD =

√
π

Γ(D)

(ω0

2

)D/2
(d = 1) .

Then, the critical temperature is:

Tc =

√
π

Γ(D)

(
1− D

2

)
Γ
(

D
2

)(
ω0

2ε0

)D/2
Nε0 (D < 2 , d = 1) . (57)

The confining dimension equals two, D = 2, when d = 1 and n = 2, so that:

γ2 = ω0 (D = 2 , d = 1 , n = 2) .

This yields the critical temperature:

Tc =
Nω0

ln(Tc/ε0)
(D = 2 , d = 1) . (58)

For large N, one has:
Tc

ε0
� exp

(
ω0

ε0
N
)

,

since for a one-dimensional harmonic oscillator, ε0 = ω0/2. Because of this, the critical temperature
(58) can be simplified to:

Tc =
Nω0

ln(2N)
. (59)

For the confining dimension larger than two, the critical temperature is:

Tc =

[
γD N

ζ(D/2)

]2/D
(D > 2) . (60)

10
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In the case of harmonic traps, when nα = 2, hence D = 2d and γD = ωd
0 , the critical temperature

becomes:

Tc =

[
N

ζ(d)

]1/d
ω0 (nα = 2 , d > 1) .

4.3. Scaling with Respect to the Particle Number

As is explained in Section 2, extensive observables are proportional to the number of particles
N, when this number is large. This definition prescribes the scaling of the system characteristics with
respect to N. As a representative of an observable quantity, we may take, e.g., internal energy:

〈Ĥ〉 = 〈H〉+ µN . (61)

This is an extensive quantity satisfying the condition:

〈Ĥ〉
N
' const (N � 1) . (62)

For the considered case of a gas in a power-law trap, we have:

〈Ĥ〉
N

=
Dg1+D/2(z)

2NγD
T1+D/2 . (63)

The function g1+D/2(z) is finite for all D > 0 and all z. Hence, the condition (62) implies:

NγD ' const (N � 1); . (64)

To make the consideration slightly less cumbersome, let us set the powers nα = n for the trapping
potential. Then, the confining dimension is:

D =

(
1 +

2
n

)
d . (65)

γD becomes:

γD =
πd/2

Γd(1 + 1/n)

(ω0

2

)D/2
,

which tells us that:
γD ∝ ωD/2

0 (N � 1) .

Therefore, ω0 scales as:

ω0 ∝
1

N2/D (N � 1) . (66)

Using this scaling and the fact that ω0 ∼ ε0, we see that the critical temperatures from the previous
subsection behave as:

Tc ∝
1

N2/D−1 (D < 2) ,

Tc ∝
1

ln N
(D = 2) ,

Tc ∝ const (D > 2) . (67)

4.4. Fluctuations above the Condensation Temperature

Particle fluctuations above the condensation temperature are described by the formula:

var(N̂)

N
=

TD/2

NγD
z

∂gD/2(z)
∂z

(T > Tc) , (68)

11
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where z < 1. For the modified Bose function, we have:

∂gm(z)
∂z

=
1
z

gm−1(z) +
1

(1− z)Γ(m)

(
um−1

0 − um
0

1− z

)
(z < 1) , (69)

with the value:

gm−1(z) = −
z

(1− z)Γ(m)

[
um−1

0 − m− 1
m(1− z)

um
0

]
(m < 1 , z < 1) (70)

for m < 1. Summarizing, we have the derivatives:

∂gm(z)
∂z

= − um
0

(1− z)2Γ(1 + m)
(m < 1 , z < 1) ,

∂g1(z)
∂z

= − u0

(1− z)2 (m = 1 , z < 1) ,

∂gm(z)
∂z

=
1
z

gm−1(z) (m > 1 , z < 1) .

From here, we find the relative variance:

var(N̂)

N
= − zTD/2

(1− z)2NγDΓ(1 + D/2)

( ε0

T

)D/2
(D < 2 , T > Tc) ,

var(N̂)

N
= − zT

(1− z)2Nγ2

( ε0

T

)
(D = 2 , T > Tc) ,

var(N̂)

N
=

TD/2

NγD
gD/2−1(z) (D > 2 , T > Tc) , (71)

characterizing particle fluctuations above the critical temperature. For D ≤ 2, the variance is negative,
which means instability. The system is stable only for D > 2, giving the stability condition:

d +
d

∑
α=1

2
nα

> 2 (T > Tc) . (72)

4.5. Fluctuations below the Condensation Temperature

Below the condensation temperature, where µ = 0 and z = 1, the number of uncondensed
particles reads as:

N1 =
TD/2

γD
gD/2(1) (T ≤ Tc) . (73)

The variance of the total number of particles coincides with that of the uncondensed particles, which
leads to:

var(N̂)

N
=

TD/2

NγD
lim
z→1

∂gD/2(z)
∂z

(T < Tc) . (74)

For the derivative in the right-hand side of the above formula, we have:

lim
z→1

∂gD/2(z)
∂z

= gD/2−1(1) +
uD/2−2

0
Γ(D/2)

. (75)

Employing the values:

gD/2−1(1) =
2

(4− D)Γ(D/2− 1)
uD/2−2

0 (D < 4) ,

12
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g1(1) = − ln u0 (D = 4) ,

we get the derivatives:

lim
z→1

∂gD/2(z)
∂z

=

[
2

(4− D)Γ(D/2− 1)
+

1
Γ(D/2)

]
uD/2−2

0 (D < 4) ,

lim
z→1

∂g2(z)
∂z

= − ln u0 (D = 4) ,

lim
z→1

∂gD/2(z)
∂z

= gD/2−1(1) = ζ

(
D
2
− 1
)

(D > 4) .

In that way, we come to the relative variances:

var(N̂)

N
=

TD/2

NγD

[
2

(4− D)Γ(D/2− 1)
+

1
Γ(D/2)

] (
T
ε0

)2−D/2
(D < 4) ,

var(N̂)

N
=

T2

Nγ4
ln
(

T
ε0

)
(D = 4) ,

var(N̂)

N
=

TD/2

NγD
ζ

(
D
2
− 1
)

(D > 4) . (76)

Keeping in mind that ε0 ∝ N−2/D results in the scaling:

var(N̂)

N
∝ N(4−D)/D (D < 4) ,

var(N̂)

N
∝ ln N (D = 4) ,

var(N̂)

N
∝ const (D > 4) . (77)

This tells us that the system is stable only for D > 4. Therefore, the stability condition is:

d +
d

∑
α=1

2
nα

> 4 (T < Tc) . (78)

Notice that in the case of the often considered harmonic potential, when nα = 2, we have D = 2d
and γD = ωd

0 . Then, the stability condition (78) reduces to the condition d > 2. The relative particle
variance reads as:

var(N̂)

N
=

ζ(d− 1)
ζ(d)

(
T
Tc

)d
(nα = 2 , d > 2) .

5. Interacting Bose System above the Condensation Temperature

The grand Hamiltonian for a system of interacting Bose particles is:

H =
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr +

+
1
2

∫
ψ†(r)ψ†(r′)Φ(r− r′)ψ(r′)ψ(r) drdr′ . (79)

For generality, we consider a nonlocal isotropic interaction potential Φ(r) = Φ(r), where r ≡ |r|. The
integration is assumed to be over a rectangular box of volume V confining the system.

13
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In the Hartree–Fock approximation, the Hamiltonian takes the form:

HHF = EHF +
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr +

+
∫

Φ(r− r′)
[
ρ(r′)ψ†(r)ψ(r) + ρ(r′, r)ψ†(r′)ψ(r)

]
drdr′ , (80)

where:
EHF = − 1

2

∫
Φ(r− r′)

[
ρ(r)ρ(r′) + | ρ(r, r′) |2

]
drdr′

and the notations are used for the single-particle density matrix:

ρ(r, r′) = 〈 ψ†(r′)ψ(r)〉 (81)

and the particle density:
ρ(r) = ρ(r, r) = 〈 ψ†(r)ψ(r)〉 . (82)

Employing the expansion of the field operators over plane waves, as in Equation (13), we get the
Hamiltonian:

HHF = EHF + ∑
k

ωka†
k ak , (83)

in which:
EHF = − 1

2
ρΦ0N − 1

2V ∑
kp

nknpΦk+p ,

Φk is a Fourier transform of Φ(r), and:

Φ0 =
∫

Φ(r) dr . (84)

The momentum distribution is given by the expression (16), with the spectrum:

ωk =
k2

2m
+ ρΦ0 +

1
V ∑

p
npΦk+p − µ . (85)

The function np possesses a maximum at p → 0, because of which it is possible to use the
approximation [32,33]:

∑
p

npΦk+p
∼= Φk ∑

p
np (86)

giving:

ωk =
k2

2m
+ ρ(Φ0 + Φk)− µ . (87)

Introducing the effective interaction radius by the relation:

r2
e f f ≡

∫
Φ(r)r2dr∫
Φ(r)dr

=
4π

Φ0

∫ ∞

0
Φ(r)r4 dr (88)

shows that the long-wave limit of Φk is:

Φk '
(

1− 1
6

k2r2
e f f

)
Φ0 . (89)

Then, the spectrum (87) can be represented as:

ωk '
k2

2m∗
− µe f f (k→ 0) , (90)

14
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with the effective mass:
m∗ ≡ m

1− ρΦ0r2
e f f /3

(91)

and effective chemical potential:
µe f f ≡ µ− 2ρΦ0 . (92)

In this approximation, the number of particles acquires the same form (23), however with the
notations:

λT ≡
√

2π

m∗T
, z ≡ exp(βµe f f ) . (93)

Using again the modified Bose function (19) and following the same analysis as in Section 3, we come
to the conclusion that the system is stable for d > 2, when T > Tc. The difference is that now instead
of mass m, there is the effective mass m∗, and at the critical temperature, we have:

µe f f = 0 , µ = 2ρΦ0 (T = Tc) .

Therefore, the critical temperature becomes:

Tc =
2π

m∗

[
ρ

gd/2(1)

]2/d
. (94)

As an example, let us consider the realistic three-dimensional case. Using the Robinson
representation (see the details in review [18]), we can find the behavior of the effective chemical
potential at high temperatures:

µe f f = T ln
(

ρλ3
T

)
(T � Tc) (95)

and at the temperature approaching the critical point from above,

µe f f ' −T
ζ2(3/2)

4π

[
1−

(
Tc

T

)3/2
]2

. (96)

Then, the isothermal compressibility:

κT =
g1/2(z)
ρ2Tλ3

T
(97)

at high temperatures is:

κT '
1

ρT
(T � Tc) , (98)

while close to the critical point, it is:

κT '
0.921

ρT

[
1−

(
Tc

T

)3/2
]−1

; (99)

respectively, particle fluctuations, described by the relative variance:

var(N̂)

N
= ρTκT =

g1/2(z)
ρλ3

T
, (100)

at high temperatures behave as:
var(N̂)

N
' 1 (T � Tc), (101)
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and close to the critical point, we get:

var(N̂)

N
' 0.921

[
1−

(
Tc

T

)3/2
]−1

. (102)

Outside of the critical temperature itself, particle fluctuations are thermodynamically normal. The
divergence of the compressibility at the critical point signifies a second-order phase transition. At the
point of the phase transition, the system is not stable, and the fluctuations do not need to be finite.

6. Interacting Bose System below the Condensation Temperature

In Section 3, it is proven that the ideal Bose gas, confined in a box, is stable below the condensation
temperature only for d > 4. In the present section, we show that interactions stabilize the system,
making it stable already for d = 3.

6.1. Self-Consistent Approach

For describing a Bose system with the Bose–Einstein condensate, we employ the self-consistent
approach [16–18,24,34,35], providing a gapless spectrum, correct thermodynamics, the validity of all
conservation laws, and good agreement with Monte Carlo simulations and experimental data.

The energy Hamiltonian has the form:

Ĥ =
∫

ψ̂†(r)
(
− ∇

2

2m

)
ψ̂(r) dr +

+
1
2

∫
ψ̂†(r)ψ̂†(r′)Φ(r− r′)ψ̂(r′)ψ̂(r) drdr′ . (103)

The genuine Bose–Einstein condensation necessarily requires global gauge symmetry
breaking [6,9,17,18]. Finite systems, strictly speaking, do not exhibit this symmetry breaking.
However, a system with a large number of particles N � 1 enjoys asymptotic symmetry breaking [36]
in the sense that the system properties asymptotically, with respect to N, are close to the system with
broken symmetry. The global gauge symmetry can be broken by the Bogolubov shift [28–30]:

ψ̂(r) = η(r) + ψ1(r) , (104)

in which the condensate function η(r) and the operator of uncondensed particles ψ1(r) are mutually
orthogonal, ∫

η∗(r)ψ1(r) dr = 0 (105)

and the operator of uncondensed particles satisfies the condition:

〈ψ1(r)〉 = 0 . (106)

The number of condensed particles is:

N0 =
∫
|η(r)|2 dr , (107)

while the number of uncondensed particles is given by the average:

N1 = 〈N̂1〉 , N̂1 =
∫

ψ†
1(r)ψ1(r) dr . (108)
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The grand Hamiltonian reads as:

H = Ĥ − µ0N0 − µ1N̂1 − Λ̂ , (109)

where:
Λ̂ =

∫ [
λ(r)ψ†

1(r) + λ∗(r)ψ1(r)
]

dr

and µ0, µ1, and λ(r) are Lagrange multipliers guaranteeing the validity of the normalizations (107)
and (108), as well as condition (106).

The evolution equation for the condensate function can be written as:

i
∂

∂t
η(r, t) =

〈
δH

δη∗(r, t)

〉
(110)

and the equation for the operator of uncondensed particles as:

i
∂

∂t
ψ1(r, t) =

δH
δψ†

1(r, t)
. (111)

Keeping in mind, as usual, the periodic continuation of the box, we expand the field operators
in plane waves, as in (13), and assume the existence of the Fourier representation for the interaction
potential:

Φk =
∫

Φ(r)e−ik·r dr , Φ(r) =
1
V ∑

k
Φkeik·r . (112)

Then, we get the normal density matrix:

ρ1(r, r′) = 〈ψ†
1(r
′)ψ1(r)〉 =

1
V ∑

k 6=0
nkeik·(r−r′) (113)

and the anomalous matrix:

σ1(r, r′) = 〈ψ1(r′)ψ1(r)〉 =
1
V ∑

k 6=0
σkeik·(r−r′), (114)

in which:
nk ≡ 〈a†

k ak〉 , σk ≡ 〈aka−k〉 . (115)

The condensate function η(r) = η defines the condensate density:

ρ0 ≡
N0

V
= |η|2 . (116)

The density of uncondensed particles is:

ρ1 ≡
N1

V
= ρ1(r, r) =

1
V ∑

k
nk . (117)

The diagonal anomalous matrix gives the anomalous average:

σ1 ≡ σ1(r, r) =
1
V ∑

k
σk . (118)

The average density of particles is the sum:

ρ ≡ N
V

= ρ0 + ρ1 . (119)
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Then, we use the Hartree–Fock–Bogolubov approximation and accomplish the Bogolubov
canonical transformation:

ak = ukbk + v∗−kb†
−k , bk = u∗k ak − v∗k a†

−k ,

where uk and vk are chosen so as to diagonalize the Hamiltonian. In that way, we obtain the
diagonalized Hamiltonian:

HB = EB + ∑
k

εkb†
k bk , (120)

in which:

EB = − 1
2

NρΦ0 − ρ0 ∑
p
(np + σp)Φp −

1
2V ∑

kp
(nknp + σkσp)Φk+p +

1
2 ∑

k
(εk −ωk) ,

the particle spectrum is:

εk =
√

ω2
k − ∆2

k , (121)

and where:

ωk =
k2

2m
+ ∆ + ρ0(Φk −Φ0) +

1
V ∑

p
np(Φk+p −Φp) ,

∆k = ρ0Φk +
1
V ∑

p
σpΦk+p , ∆ ≡ lim

k→0
∆k = ρ0Φ0 +

1
V ∑

p
σpΦp . (122)

For the expressions in (115), we find:

nk =
ωk
2εk

coth
( εk

2T

)
− 1

2
, σk = −

∆k
2εk

coth
( εk

2T

)
. (123)

The chemical potentials are:

µ0 = ρΦ0 +
1
V ∑

k
(nk + σk)Φk , µ1 = ρΦ0 +

1
V ∑

k
(nk − σk)Φk . (124)

In the long-wave limit, we can use the expansion:

Φk+p ' Φp +
k2

2
Φ′′p (k→ 0) ,

where:

Φ′′p ≡
∂2Φp

∂p2 .

Then, the spectrum (121) becomes of the phonon type:

εk ' ck (k→ 0) , (125)

with the sound velocity:

c =

√
∆

me f f
(126)

and with the notation for the effective mass:

me f f ≡
m

1 + m
V ∑p(np − σp)Φ′′p

. (127)
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Actually, Expression (126), which can be written as:

me f f c2 = ∆ ,

is the equation:
mc2

1 + m
V ∑p(np − σp)Φ′′p

= ρ0Φ0 +
1
V ∑

p
σpΦp , (128)

defining the sound velocity c.
To simplify the consideration, we can resort to the approximation (86), similarly, to which we can

write:

∑
p

σpΦk+p
∼= Φk ∑

p
σp . (129)

This gives:
1
V ∑

p
(np − σp)Φ′′p = (ρ1 − σ1)Φ′′0 ,

where:
Φ′′0 = lim

p→0
Φ′′p = − 4π

3

∫ ∞

0
Φ(r)r4 dr .

In view of the notation for the effective interaction radius (88), we get:

Φ′′0 = − 1
3

Φ0r2
e f f .

Then, the effective mass (127) acquires the form:

me f f =
m

1 + (σ1 − ρ1)Φ0mr2
e f f /3

. (130)

In the approximations (86) and (129), the chemical potentials (124) become:

µ0 = ρΦ0 + (ρ1 + σ1)Φ0 , µ1 = ρΦ0 + (ρ1 − σ1)Φ0 . (131)

Furthermore, we have:

ωk =
k2

2m
+ ∆ + ρ(Φk −Φ0) ∆k = (ρ0 + σ1)Φk , ∆ = (ρ0 + σ1)Φ0 . (132)

The spectrum (121) can be written as:

ε2
k =

[
k2

2m
+ (ρ1 − σ1)(Φk −Φ0)

] [
k2

2m
+ ρ(Φk −Φ0) + (ρ0 + σ1)(Φk + Φ0)

]
. (133)

The density of uncondensed particles is:

ρ1 =
∫ [

ωk
2εk

coth
( εk

2T

)
− 1

2

]
dk

(2π)3 . (134)

The anomalous average (118) can be represented in the form:

σ1 = −
∫ ∆k

2εk

dk
(2π)3 −

∫ ∆k
2εk

[
coth

( εk
2T

)
− 1
] dk

(2π)3 . (135)

When the first term here diverges, which happens for the local interaction, we can use dimensional
regularization [18].
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6.2. Particle Fluctuations

The number-of-particles variance can be found by involving the formula:

var(N̂)

N
= 1 + ρ

∫
[g(r)− 1] dr , (136)

in which:
g(r12) =

1
g2 〈ψ̂

†(r1)ψ̂
†(r2)ψ̂(r2)ψ̂(r1)〉 (137)

is the pair correlation function, with r12 ≡ r1 − r2.
Accomplishing the Bogolubov shift (104), we use the Hartree–Fock–Bogolubov (HFB) decoupling

for the expressions containing the operators ψ1. Since, mathematically, the HFB approximation is
of second order with respect to the products of the operators ψ1, it is necessary to leave in the pair
correlation function only the terms of second order with respect to these operators [3,16–18,23,24]. As
a result, we obtain: ∫

[g(r)− 1] dr =
2
ρ

lim
k→0

(nk + σk) . (138)

In this way, for the relative variance, we find:

var(N̂)

N
= 1 + 2 lim

k→0
(nk + σk) . (139)

For small k, when εk tends to zero, we have:

nk '
T∆k

ε2
k

+
∆k

12T
+

T
2∆k

− 1
2

+

(
∆k
3T
− T

∆k
− ∆3

k
90T3

)
ε2

k
8∆2

k
,

σk ' −
T∆k

ε2
k
− ∆k

12T
+

∆kε2
k

720T3 (εk → 0) . (140)

Therefore:

lim
k→0

(nk + σk) =
1
2

(
T
∆
− 1

)
,

with:
∆ = me f f c2 = (ρ0 + σ1)Φ0 .

Thus, we come to the expression:
var(N̂)

N
=

T
me f f c2 ; (141)

respectively, the compressibility is:

κT =
var(N̂)

NρT
=

1
ρme f f c2 . (142)

Taking into account Formula (126) leads to the variance:

var(N̂)

N
=

T
(ρ0 + σ1)Φ0

. (143)
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Note that Expression (143) is valid at zero temperature, as well. This is easy to check considering
the quantities (123) at zero temperature,

nk =

√
ε2

k + ∆2
k

2εk
− 1

2
, σk = −

∆k
2εk

(T = 0) .

From here, in the long-wave limit, we have:

nk '
∆k
2εk

+
εk

4∆k
− 1

2
(εk → 0 , T = 0) .

Hence:
lim
k→0

(nk + σk) = −
1
2

(T = 0)

and:
var(N̂)

N
= 0 (T = 0) .

The above result for the relative variance (143) can be generalized for nonuniform systems [37] by
involving the local-density approximation, which yields:

var(N̂)

N
=

T
N

∫
ρ(r)
∆(r)

dr , (144)

where:
∆(r) = [ρ0(r) + σ1(r)]Φ0 . (145)

Particle fluctuations in a three-dimensional Bose-condensed system of interacting particles are
thermodynamically normal in both cases, when particles are in a box or in a nonuniform external
potential.

7. Conclusions

Particle fluctuations in Bose systems were studied. Investigating the behavior of these fluctuations
is important because they are directly connected with isothermal compressibility and define the system
stability with respect to pressure variations. Thermodynamically-anomalous fluctuations signify
system instability; while thermodynamically-normal fluctuations mean that the equilibrium system is
stable. The obtained results are as follows.

The ideal Bose gas confined in a rectangular box is stable, depending on the temperature, in
spatial dimensions:

d > 2 (T > Tc) ,

d > 4 (T < Tc) .

The stability of the ideal Bose gas in a power-law trap depends on the confining dimension:

D ≡ d +
d

∑
α=1

2
nα

.

This gas is stable for the confining dimensions:

D > 2 (T > Tc) ,

D > 4 (T < Tc) .

Interactions stabilize Bose-condensed systems, so that an interacting system with Bose–Einstein
condensate becomes stable at d = 3 for either a system in a box or in an external potential.
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Nonlocal interactions with a stronger strength or with a larger interaction radius increase the
effective mass, hence diminishing the condensation temperature.
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Abstract: We analyze, analytically and numerically, the position, momentum, and in particular the
angular-momentum variance of a Bose–Einstein condensate (BEC) trapped in a two-dimensional
anisotropic trap for static and dynamic scenarios. Explicitly, we study the ground state of
the anisotropic harmonic-interaction model in two spatial dimensions analytically and the
out-of-equilibrium dynamics of repulsive bosons in tilted two-dimensional annuli numerically
accurately by using the multiconfigurational time-dependent Hartree for bosons method.
The differences between the variances at the mean-field level, which are attributed to the shape
of the BEC, and the variances at the many-body level, which incorporate depletion, are used to
characterize position, momentum, and angular-momentum correlations in the BEC for finite systems
and at the limit of an infinite number of particles where the bosons are 100% condensed. Finally,
we also explore inter-connections between the variances.

Keywords: Bose–Einstein condensates; density; position variance; momentum variance;
angular-momentum variance; harmonic-interaction model; MCTDHB

PACS: 03.75.Hh; 03.75.Kk; 67.85.Bc; 67.85.De; 03.65.-w

1. Introduction

Bose–Einstein condensates (BECs) made of ultra-cold atoms offer a wide platform to study
many-body physics [1–5]. Here, there is a growing interest in the so-called particle limit [6–16],
in which the interaction parameter (i.e., the product of the interaction strength times the number
of particles) is kept fixed while the number of particles is increased to infinity. At the particle limit,
the energy per particle, density per particle, and reduced density matrices [17] per particle computed
at the many-body level of theory boil down to those obtained in mean-field theory [7–10,14,16], despite
the fact that the respective many-boson wavefunctions are (much) different [13,15]. It turns out that
variances of many-particle operators are a useful tool to characterize correlations (namely, differences
between respective many-body and mean-field quantities) that exist even when the interacting bosons
are 100% condensed [11,12].

The variance of a many-particle operator of a trapped BEC generally depends on the trap shape,
strength and sign of the interaction and, in out-of-equilibrium problems, on time. Consequently,
the difference between variances computed at the many-body and mean-field levels of theory
also depends on these variables and, of course, on the observable under examination. The first
examples [11,12] concentrated on one-dimensional problems and the position and momentum
variances, and investigated conditions and mechanisms for the differences between the respective
many-body and mean-field variances at the particle limit. In two spatial dimensions, further types
of trap topologies come into play, and respective many-body and mean-field variances can exhibit

Symmetry 2019, 11, 1344; doi:10.3390/sym11111344 www.mdpi.com/journal/symmetry25
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additional phenomena, such as opposite anisotropy [18] and distinct (effective) dimensionality [19].
The many-body variance of a trap BEC has been applied to extract excitations [20], analyze the range of
inter-particle interaction [21], examine the effects of asymmetry of a double-well potential [22], and to
assess numerical convergence [23,24].

So far, only the position and momentum variances were studied for BECs in rather general
traps. In [25,26], the angular-momentum variance is studied for BECs in two-dimensional isotropic
traps, and scenarios were the mean-field angular-momentum variance has less [25] or more [26]
symmetry (in terms of its conservation) than the many-body angular-momentum variance are
identified. Going beyond these works, in the present work we study, analytically and numerically,
the angular-momentum variance of a trapped BEC in a two-dimensional anisotropic trap for static
and dynamic scenarios, and analyze the difference between the many-body and mean-field variances
for finite systems and at the limit of an infinite number of particles. Furthermore, we also study the
respective position and momentum variances, and thereby offer a comprehensive characterization
of the BEC in terms of its variances. This would allow us to put forward inter-connections between
the variances.

Let us elaborate on the strategy of exposition chosen in the paper. We first study the ground state of
a many-particle model which is exactly solvable, i.e., integrable, both at the many-body and mean-field
levels of theory. A couple of symmetries are also used in the analysis. These would allow us to obtain
exact and transparent results for any number of particles and particularly to analyze the variances at
the particle limit. The merit of analytical closed-form results and, in the context of interacting bosons,
their explicit evaluation at the limit of an infinite number of particles is obvious. Then, as is the usual
case in many realistic systems, we continue to explore a set-up which is not integrable, and more so,
examine its out-of-equilibrium dynamics which is rather complicated already at the mean-field level of
theory, let alone at the many-body level of theory. The later necessitates the state-of-the art numerical
tools for the accurate integration of the Schrödinger equation and a careful interpolation of properties
to the particle limit. All in all, we show below that the combination of analytics and numerics, i.e.,
of completely opposite methodologies, provides substantial and complementary novel knowledge
on the position, momentum, and angular-momentum variances of anisotropic trapped BECs in two
spatial dimensions.

The structure of the paper is as follows. In Section 2 we study the position, momentum, and
angular-momentum variances of the ground state within an exactly solvable model, the anisotropic
harmonic-interaction model. In Section 3 we study numerically the time-dependent variances of an
out-of-equilibrium BEC sloshing in a tilted annulus. Summary and outlook are given in Section 4.
Finally, Appendix A discusses translations of variances and inter-connections of the latter.

2. The Anisotropic Harmonic-Interaction Model

Solvable models of particles interacting by harmonic forces, or, briefly, the harmonic-interaction
model (and its variants), have drawn including in the BEC literature much attention [27–41]. Here we
consider the anisotropic two-dimensional harmonic-interaction model

Ĥ(r1, . . . , rN) =
N

∑
j=1

[(
−1

2
∂2

∂x2
j
+

1
2

ω2
xx2

j

)
+

(
−1

2
∂2

∂y2
j
+

1
2

ω2
yy2

j

)]

+λ0

N

∑
1≤j<k

[
(xj − xk)

2 + (yj − yk)
2
]

, (1)

where λ0 is the interaction strength; positive values imply attraction and negative repulsion. Without
loss of generality we take ωy > ωx, namely, that the trap is tighter along the y-axis than along the
x-axis (the trap anisotropy satisfies ωy

ωx
> 1). Here and hereafter h̄ = m = 1.
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Transforming from Cartesian to Jacobi coordinates,

Qk,x =
1√

k(k + 1)

k

∑
j=1

(
xk+1 − xj

)
, Qk,y =

1√
k(k + 1)

k

∑
j=1

(
yk+1 − yj

)
, 1 ≤ k ≤ N − 1,

QN,x =
1√
N

N

∑
j=1

xj, QN,y =
1√
N

N

∑
j=1

yj, (2)

the many-body solution for the ground state is given by

Ψ(Q1, . . . , QN) =
(ωx

π

) 1
4
(ωy

π

) 1
4
(

Ωx

π

) N−1
4
(

Ωy

π

) N−1
4

×e−
1
2

(
Ωx ∑N−1

j=1 Q2
j,x+ωxQ2

N,x

)
× e−

1
2

(
Ωy ∑N−1

j=1 Q2
j,y+ωyQ2

N,y

)

= Ψ(r1, . . . , rN) =
(ωx

π

) 1
4
(ωy

π

) 1
4
(

Ωx

π

) N−1
4
(

Ωy

π

) N−1
4

×e−
αx
2 ∑N

j=1 x2
j−βx ∑N

1≤j<k xjxk × e−
αy
2 ∑N

j=1 y2
j−βy ∑N

1≤j<k yjyk , (3)

where
Ωx =

√
ω2

x + 2Nλ0, Ωy =
√

ω2
y + 2Nλ0 (4)

are the interaction-dressed frequencies of the relative-motion degrees-of-freedom, and

αx = Ωx + βx, βx =
1
N

(ωx −Ωx) ,

αy = Ωy + βy, βy =
1
N
(
ωy −Ωy

)
(5)

are parameters arising in the transformation from Jacoby coordinates back to Cartesian coordinates.

Equation (4) prescribes the range of interactions for which the system is trapped, λ0 > − ω2
x

2N , i.e.,
from moderate repulsion to any attraction. Clearly, the many-body solution (3) in two spatial
dimensions factorizes to a product of respective one-dimensional many-body solutions.

All properties of the ground state can in principle be obtained from Ψ, such as the energy, densities,
and reduced density matrices, see [29]. Here, as mentioned above, we concentrate on variances and
their inter-connections. The many-particle position X̂ = ∑N

j=1 xj, Ŷ = ∑N
j=1 yj variance per particle is

given by
1
N

∆2
X̂ =

1
2ωx

,
1
N

∆2
Ŷ =

1
2ωy

. (6)

Due to the symmetry of center-of-mass separation in the Hamiltonian (1), the many-particle
position variance per particle is independent both of the interaction strength and the number of bosons
in the system. Similarly, the many-particle momentum P̂X = ∑N

j=1
1
i

∂
∂xj

, P̂Y = ∑N
j=1

1
i

∂
∂yj

variance per
particle is given by

1
N

∆2
P̂X

=
ωx

2
,

1
N

∆2
P̂Y

=
ωy

2
, (7)

reflecting the minimal uncertainty product 1
N ∆2

X̂
1
N ∆2

P̂X
= 1

N ∆2
Ŷ

1
N ∆2

P̂Y
= 1

4 of the interacting system in
the anisotropic harmonic trap.

The many-particle angular-momentum L̂Z = ∑N
j=1

1
i

(
xj

∂
∂yj
− yj

∂
∂xj

)
variance per particle is,

at least for bosons, a less familiar and more intricate quantity. After some lengthy but otherwise
straightforward algebra it is given by
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1
N

∆2
L̂Z

=
1
4

(
Ωy −Ωx

)2

ΩyΩx

(
N − 1

N

)2
[(

1 +
1

N − 1
Ωy

ωy

)(
1 +

1
N − 1

Ωx

ωx

)
(8)

+

(
Ωy

ωy
− 1
)(

Ωx

ωx
− 1
)]

+
1

4N

[(
ωy −Ωy

)
− (ωx −Ωx)

] [(
ωy + Ωy

)
− (ωx + Ωx)

]

ωyωx
,

where we have made use of the bosonic permutational symmetry, the structure of Ψ,

L̂ZΨ = −1
i

{
[
(αy − βy)− (αx − βx)

]
(

N

∑
j=1

xjyj

)
+ (βy − βx)

(
N

∑
j=1

xj

)(
N

∑
k=1

yk

)}
Ψ, (9)

and the inverse coordinate transformations

xN =
1√
N

QN,x +

√
N − 1

N
QN−1,x, yN =

1√
N

QN,y +

√
N − 1

N
QN−1,y,

xN−1 =
1√
N

QN,x −
1√

N(N − 1)
QN−1,x +

√
N − 2
N − 1

QN−2,x,

yN−1 =
1√
N

QN,y −
1√

N(N − 1)
QN−1,y +

√
N − 2
N − 1

QN−2,y (10)

to evaluate the various integral terms contributing to (8).
The angular-momentum variance per particle of the ground state (3) depends on the dressed

frequencies, Ωx and Ωy, and the number of particles N. Namely, unlike the respective position and
momentum variances it depends explicitly on the interaction strength and the number of particles.
1
N ∆2

L̂Z
is, of course, non-zero only for anisotropic traps [for isotropic traps, from ωy = ωx we get

Ωy = Ωx and expression (8) then vanishes]. For non-interacting bosons, Equation (8) boils down to

1
N ∆2

L̂Z
= 1

4
(ωy−ωx)2

ωyωx
= 1

4

(
ωy
ωx −1

)2

ωy
ωx

, the value for a single particle in the anisotropic trap 1
2 ω2

xx2 + 1
2 ω2

yy2,

which only depends on the trap anisotropy. Opposite to the non-vanishing of the angular-momentum
variance, we note that the expectation value of the angular-momentum operator, 1

N 〈Ψ|L̂Z|Ψ〉, vanishes
for any anisotropy ωy

ωy
, interaction strength λ0, and number of particles N. This is straightforward to

see since Ψ is even under reflection of all coordinates X → −X and separately of Y → −Y, whereas
L̂Z is odd under reflection.

The anisotropic harmonic-interaction model (1) can be solved analytically at the mean-field level
of theory as well, like in [29], also see [41]. Starting from the ansatz where each and every boson resides
in one and the same orbital, the mean-field solution is given by

ΦGP(r1, . . . , rN) =

=

(√
ω2

x + 2Λ
π

) N
4



√
ω2

y + 2Λ

π




N
4

e−
1
2

√
ω2

x+2Λ ∑N
j=1 x2

j × e−
1
2

√
ω2

y+2Λ ∑N
j=1 y2

j

= ΦGP(Q1, . . . , QN)

=

(√
ω2

x + 2Λ
π

) N
4



√
ω2

y + 2Λ

π




N
4

e−
1
2

√
ω2

x+2Λ ∑N
k=1 Q2

k,x × e−
1
2

√
ω2

y+2Λ ∑N
k=1 Q2

k,y , (11)
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where Λ = (N − 1)λ0 is the interaction parameter and Λ > −ω2
x

2 the condition for a trapped solution.
Like the many-body solution (3), the mean-field solution (11) in two spatial dimensions factorizes to
a product of respective one-dimensional mean-field solutions.

The many-particle position variance computed at the mean-field level is given by

1
N

∆2
X̂,GP =

1
2
√

ω2
x + 2Λ

,
1
N

∆2
Ŷ,GP =

1

2
√

ω2
y + 2Λ

, (12)

and seen to be dressed by the interaction. Similarly, the many-particle momentum variance computed
at the mean-field level is dressed by the interaction and given by

1
N

∆2
P̂X ,GP =

√
ω2

x + 2Λ
2

,
1
N

∆2
P̂Y ,GP =

√
ω2

y + 2Λ

2
. (13)

Interestingly, because the mean-field solution (11) is made of Gaussian functions, it satisfies the
minimal uncertainty product 1

N ∆2
X̂,GP

1
N ∆2

P̂X ,GP
= 1

N ∆2
Ŷ,GP

1
N ∆2

P̂Y ,GP
= 1

4 as well.
The many-particle angular-momentum variance computed at the mean-field level is given by

1
N

∆2
L̂Z ,GP =

1
4

(√
ω2

y + 2Λ−
√

ω2
x + 2Λ

)2

√
ω2

y + 2Λ
√

ω2
x + 2Λ

, (14)

where we have made use of the structure and symmetries of ΦGP,

L̂ZΦGP = −1
i

(√
ω2

y + 2Λ−
√

ω2
x + 2Λ

) N

∑
j=1

xjyjΦGP, (15)

to arrive at the final expression.
The relation between the mean-field and many-body variances deserves a discussion. Their

difference is used to define position, momentum, and angular-momentum correlations in the system.
For the position and momentum variances, the following ratios hold,

1
N ∆2

X̂,GP
1
N ∆2

X̂

=
1√

1 + 2Λ
ω2

x

,
1
N ∆2

Ŷ,GP
1
N ∆2

Ŷ

=
1√

1 + 2Λ
ω2

y

,

1
N ∆2

P̂X ,GP
1
N ∆2

P̂X

=

√
1 +

2Λ
ω2

x
,

1
N ∆2

P̂Y ,GP
1
N ∆2

P̂Y

=

√
1 +

2Λ
ω2

y
, (16)

obviously for any number of particles N. These ratios simply imply that, since repulsion (Λ < 0)
broadens the position density, the many-body position variance is smaller than the corresponding
mean-field one for repulsive interaction, and vise verse for attraction (Λ > 0). Inversely, since repulsion
narrows the momentum density, the many-body momentum variance is larger than the corresponding
mean-field one for repulsive interaction, and vise versa for attraction. Furthermore, both the position
and momentum variances per particle exhibit the same anisotropies as the respective densities for any
interaction parameter Λ, namely, if 1

N ∆2
X̂,GP

> 1
N ∆2

Ŷ,GP
then 1

N ∆2
X̂
> 1

N ∆2
Ŷ

is satisfied and, analogously,

if 1
N ∆2

P̂X ,GP
< 1

N ∆2
P̂Y ,GP

then 1
N ∆2

P̂X
< 1

N ∆2
P̂Y

is satisfied. We shall return to these relations and the
anisotropy of the variance in the numerical example below.

We now extend the above discussion to the particle limit, in which the energy per particle,
densities per particle, and reduced densities per particle at the mean-field and many-body levels of
theory coincide, see in the context of the harmonic-interaction model [16]. Particularly, the system of

29



Symmetry 2019, 11, 1344

bosons becomes 100% condensed. The results (16) for the position and momentum variances hold at
the particle limit as well, owing to the center-of-mass separability for any number of particles, namely,
limN→∞

1
N ∆2

X̂,GP
limN→∞

1
N ∆2

X̂
= 1√

1+ 2Λ
ω2

x

,
limN→∞

1
N ∆2

Ŷ,GP
limN→∞

1
N ∆2

Ŷ
= 1√

1+ 2Λ
ω2

y

,
limN→∞

1
N ∆2

P̂X ,GP

limN→∞
1
N ∆2

P̂X

=
√

1 + 2Λ
ω2

x
, and

limN→∞
1
N ∆2

P̂Y ,GP

limN→∞
1
N ∆2

P̂Y

=

√
1 + 2Λ

ω2
y

. For the angular-momentum variance the limit has to be taken explicitly for each of the terms

in (8). First are the frequencies (4), for which we have at the limit of an infinite number of bosons when
Λ is held fixed

lim
N→∞

Ωx =
√

ω2
x + 2Λ, lim

N→∞
Ωy =

√
ω2

y + 2Λ. (17)

Then, the angular-momentum variance takes on the appealing form

lim
N→∞

1
N

∆2
L̂Z

=
1
4

(√
ω2

y + 2Λ−
√

ω2
x + 2Λ

)2

√
ω2

y + 2Λ
√

ω2
x + 2Λ

[
1 +

(√
1 +

2Λ
ω2

y
− 1

)(√
1 +

2Λ
ω2

x
− 1

)]
. (18)

Comparing (18) to the mean-field expression (14), it is instrumental to prescribe their ratio at the
limit of an infinite number of particles (where, as mentioned above, the density per particle and other
properties coincide),

limN→∞
1
N ∆2

L̂Z,GP

limN→∞
1
N ∆2

L̂Z

=
1

1 +

(√
1 + 2Λ

ω2
y
− 1

)(√
1 + 2Λ

ω2
x
− 1
) , (19)

which is always smaller than 1 for interacting bosons in the anisotropic trap. Furthermore, we see that
for attractive interaction the many-body variance can become much larger than the mean-field quantity
in the anisotropic trap, signifying the growing necessity of the many-body treatment, even when the
system is 100% condensed. This concludes our investigation of a solvable anisotropic many-boson
model in which the variances of the momentum, position, and angular-momentum many-particle
operators can be computed and investigated analytically and their values at the many-body and
mean-field levels of theory compared and contrasted.

3. Bosons in an Annulus Subject to a Tilt

In most scenarios of interest, the position, momentum, and angular-momentum variance cannot be
computed analytically. This in many cases is the situation when symmetries are lifted. Moreover, even
when the variances can be computed for the ground state, like in the previous Section 2, their values
for an out-of-equilibrium scenario are rarely within analytical reach. This would be the situation of the
present investigation.

Bosons in rings, annuli, and shells have attracted considerable attention [42–66]. Here we
consider weakly interacting bosons initially prepared in the ground state of a two-dimensional
annulus. The annulus is then suddenly slightly tilted, leading to an out-of-equilibrium dynamics
in an anisotropic setup. We build on and extend the study of bosons’ dynamics in an annulus
within an isotropic setup [19] (for which, e.g., the angular-momentum variance is 0). We analyze
the BEC dynamics in terms of its time-dependent variances and other quantities of relevance,
see Figures 1–7 below.

We consider the out-of-equilibrium dynamics governed by the time-dependent many-particle
Schrödinger equation in two spatial dimensions, Ĥ(r1, . . . , rN)Ψ(r1, . . . , rN ; t) = i ∂Ψ(r1,...,rN ;t)

∂t .
The bosons are initially prepared in the ground state of the annulus, see Figure 1 in [19]. The trap

potential is given by V̂(r) = 0.05r4 + V0e−
r2
2 , with a barrier of heights V0 = 5 and 10 throughout

this work. The interaction between the bosons is repulsive and taken to be λ0W(r− r′) = λ0e−
(r−r′)2

2 ,
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where the interaction strengths are λ0 = 0.02 and 0.04 throughout this work. The form and extant
of the interaction potential do not have a qualitative influence on the physics to be described below.

At time t = 0 a linear term is added such that V(r) = 0.05r4 + V0e−
r2
2 + 0.01x. The physical meaning

of the added potential is that a constant force pointing to the left is suddenly acting on the interacting
bosons. Geometrically, the annulus can be considered to be slightly tilted to the left. Symmetry-wise,
the isotropy of the potential is lifted and anisotropy sets in. All in all, the interacting bosons are not in
their ground state any more and out-of-equilibrium dynamics emerges.

To compute the time-dependent many-boson wavefunction we use the multiconfigurational
time-dependent Hartree for bosons (MCTDHB) method [67–69]. MCTDHB represents the wavefunction
as a variationally optimal ansatz which is a linear-combination of all time-dependent permanents
generated by distributing the N bosons over M time-adaptive orbitals. The quality of the wavefunction
increases with M and convergence of quantities of interest is attained. The theory, applications,
benchmarks, and extensions of MCTDHB are extensively discussed in the literature, see, e.g.,
Refs. [70–95]. Here we employ the numerical implementation in [96,97] both for preparing the
ground state [98] (using imaginary-time propagation) and real-time dynamics. Finally, we mention
that MCTDHB is the bosonic version of the nearly three-decades-established distinguishable-particle
multiconfigurational time-dependent Hartree method frequently used (alongside its extensions) in
molecular physics [99–105].

From the time-dependent wavefunction Ψ(r1, . . . , rN ; t), here normalized to 1, we
compute properties of interest. The reduced one-particle density matrix is defined as
ρ(r, r′; t) = N

∫
dr2 · · · drNΨ∗(r′, r2, . . . , rN ; t)Ψ(r, r2, . . . , rN ; t) = ∑j nj(t)φ∗j (r

′; t)φj(r; t), where
{φj(r; t)} are the natural orbitals and {nj(t)} the natural occupations. The number of
particles residing outside the condensed mode φ1(r; t), i.e., the total number of depleted
particles, is given by ∑j>1 nj(t) = N − n1(t). Analogously, the reduced two-particle
density matrix is given by ρ(r1, r2, r′1, r′2; t) = N(N − 1)

∫
dr3 · · · drNΨ∗(r′1, r′2, r3, . . . , rN ; t)×

Ψ(r1, r2, r3, . . . , rN ; t) = ∑jpkq ρjpkq(t)φ∗j (r
′
1; t)φ∗p(r′2; t)φk(r1; t)φq(r2; t), from which the variance of

a many-particle operator Â = ∑j â(r) is computed,

1
N

∆2
Â(t) =

1
N

(
〈Ψ(t)|Â2|Ψ(t)〉 − 〈Ψ(t)|Â|Ψ(t)〉2

)

=
1
N

{
∑

j
nj(t)

∫
drφ∗j (r; t)â2(r)φj(r; t)−

[
∑

j
nj(t)

∫
drφ∗j (r; t)â(r)φj(r; t)

]2

+ ∑
jpkq

ρjpkq(t)
[∫

drφ∗j (r; t)â(r)φk(r; t)
] [∫

drφ∗p(r; t)â(r)φq(r; t)
]}

. (20)

To compute the various terms for the position, momentum, and angular-momentum variance
numerically we work in coordinate representation and operate on orbitals first with coordinate
derivatives and then with coordinate multiplications. Thus, for the position operator â(r) = x̂ and
â2(r) = x̂2 and likewise for â(r) = ŷ, for the momentum operator â(r) = 1

i
∂

∂x and â2(r) = − ∂2

∂x2

and likewise for â(r) = 1
i

∂
∂y , and for the angular-momentum operator â(r) = 1

i

(
x ∂

∂y − y ∂
∂x

)
and

â2(r) = −x2 ∂2

∂y2 − y2 ∂2

∂x2 + 2yx ∂
∂y

∂
∂x + x ∂

∂x + y ∂
∂y . For the numerical solution we use a grid of 642 points

in a box of size [−8, 8)× [−8, 8) with periodic boundary conditions. Convergence of the results with
respect to the number of grid points has been checked using a grid of 1282 points.

We begin with the dynamics of N = 10 bosons in the annulus. Following the sudden tilt of the
potential, the bosons start to flow to the left. To quantify their sloshing dynamics, Figure 1 shows
the time-dependent center-of-mass, 1

N 〈Ψ|X̂|Ψ〉(t), for the two barrier heights, V0 = 5 and V0 = 10,
and the two interaction strengths, λ0 = 0.02 and λ0 = 0.04 [we mention that 1

N 〈Ψ|Ŷ|Ψ〉(t) = 0 due
to the Y → −Y reflection symmetry]. The dynamics of 1

N 〈Ψ|X̂|Ψ〉(t) appears to be almost periodic
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and rather simple. We examine the amplitude and frequency of oscillations. It is useful to compare
the amplitude of the center-of-mass motion with the radius of the (un-tilted) annulus. The radius of
the density at its maximal value, R, is determined numerically using a computation with a resolution
of 2562 grid points as R = 1.75(0) for V0 = 5, λ0 = 0.02, and R = 2.06(2) for V0 = 10, λ0 = 0.02 [19].
From Figure 1 we see that the amplitude is about 13–25% of the radius, implying a mild sloshing of the
density along the tilted annulus. The amplitude increases with the radius of the annulus and decreases
with the interaction strength, where the latter implies that it is more difficult to compress the BEC for a
stronger interaction. The decrease of the frequency of oscillations with R (V0) and increase with λ0 are
compatible with angular excitations, also see [19]. Last but not least, convergence with M is clearly
seen. In fact, here already M = 1 orbitals accurately describe the center-of-mass dynamics for short
and intermediate times, and M = 3 orbitals for all times.
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Figure 1. Center-of-mass dynamics following a potential quench. The mean-field (M = 1 time-adaptive
orbitals) and many-body (using M = 3, 5, 7, 10, 12, 14, and 15, 16 time-adaptive orbitals)
time-dependent expectation value of the center-of-mass, 1

N 〈Ψ|X̂|Ψ〉(t), of N = 10 bosons in the annuli
with barrier heights and interaction strengths: (a) V0 = 5, λ0 = 0.02; (b) V0 = 5, λ0 = 0.04; (c) V0 = 10,
λ0 = 0.02; and (d) V0 = 10, λ0 = 0.04 following a sudden potential tilt by 0.01x. The corresponding
depletions are plotted in Figure 2 and the respective position, momentum, and angular-momentum
variances in Figures 3–5. See the text for more details. The quantities shown are dimensionless.

Figure 2 depicts the total number of depleted particles, N − n1(t), out of N = 10 bosons in the
tilted annulus. During the dynamics, the depletion is rather small, ranging from less than 0.012 of
a particle out of N = 10 particles (0.12%) for V0 = 5, λ0 = 0.02 to less than 0.065 of a particle out of
N = 10 particles (0.65%) for V0 = 10, λ0 = 0.04. Generally, the depletion increases with the annulus
radius and interacting strength, implying angular excitations, see [19]. Finally, convergence with M is
clearly seen. Now, M = 3 orbitals nicely follow and M = 5 orbitals accurately describe the depletion
dynamics, see Figure 2. The small amount of time-dependent depletion is in line with the accurate
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description of the center-of-mass dynamics by M = 1 time adaptive orbitals, see Figure 1. Let us
continue to the variances.
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Figure 2. Depletion dynamics following a potential quench. The time-dependent total number of
depleted particles, N − n1(t), of N = 10 bosons following a sudden potential tilt by 0.01x for annuli
with barrier heights and interaction strengths (a) V0 = 5, λ0 = 0.02; (b) V0 = 5, λ0 = 0.04; (c) V0 = 10,
λ0 = 0.02; and (d) V0 = 10, λ0 = 0.04. M = 3, 5, 7, 10, 12, 14, and 15, 16 time-adaptive orbitals are used.
The respective position, momentum, and angular-momentum variances are plotted in Figures 3–5.
See the text for more details. The quantities shown are dimensionless.

Figure 3 plots the time-dependent many-particle position variance per particle, 1
N ∆2

X̂
(t) and

1
N ∆2

Ŷ
(t), for the two barrier heights and two interaction strengths. There are several features that

immediately are seen. First, since rotational symmetry is lifted, the dynamics of respective quantities
along the x-axis and y-axis are different [note that at t = 0 the variances 1

N ∆2
X̂
= 1

N ∆2
Ŷ

because the
initial condition is the ground state of the un-tilted, isotropic annulus]. The mean-field (M = 1) and
many-body (M ≥ 3) values are clearly separated from each other, and the former lie about 10–25%
above the latter depending on the repulsion strength and barrier height, also see [11,19]. This is despite
the small amount of depletion, see Figure 2. Furthermore, the many-body and mean-field variances
do not cross each other, see Figure 3, indicating that the dynamics is mild and sufficiently close to
the ground state and low-lying manifold of excited states (compare to [18] with interaction-quench
dynamics in a single trap).

The mean-field position variance accounts for the geometry of the annulus and shape of the
density and weakly depends on the interaction strength. The many-body position variance incorporates
the (small amount of) depletion and hence strongly depends on the interaction strength. Both the
mean-field and many-body variances oscillate with a relatively small amplitude, albeit with a different
frequencies’ content, see in this respect [20]. This amplitude slightly decreases with the repulsion
strength, which correlates with the dependence of the center-of-mass dynamics on the interaction
strength, see Figure 1. Moreover, the amplitude of oscillations of the y-axis variances is smaller than
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that of the x-axis variances, since the sloshing dynamics is primarily along the x direction. Last but not
least is the so-called opposite anisotropy of the (position) variance [18]. During the dynamics, there
can occur instances where 1

N ∆2
X̂
> 1

N ∆2
Ŷ

at the many-body level (M ≥ 3) whereas 1
N ∆2

X̂
< 1

N ∆2
Ŷ

at the
mean-field level (M = 1) [or, in principle, vice versa, i.e., 1

N ∆2
X̂
< 1

N ∆2
Ŷ

at the many-body level whereas
1
N ∆2

X̂
> 1

N ∆2
Ŷ

at the mean-field level]. Examples for the former can be readily found for V0 = 10,
λ0 = 0.02, see Figure 3c,g around t = 70, and for V0 = 10, λ0 = 0.04, see Figure 3d,h around t = 100,
signifying among others that correlations ‘win’ over shape. Finally, we see that already M = 3 orbitals
accurately describe the dynamics of the position variance.

We move to the momentum variance and also make contact with the results of the position
variance. Figure 4 displays the many-particle momentum variance per particle, 1

N ∆2
P̂X
(t) and 1

N ∆2
P̂Y
(t),

for V0 = 5, V0 = 10 and λ0 = 0.02, λ0 = 0.04. Just like the results of the position variance, since
rotational symmetry is lifted the dynamics of respective quantities along the x-axis and y-axis are
different [the initial conditions imply 1

N ∆2
P̂X

= 1
N ∆2

P̂Y
at t = 0]. The mean-field (M = 1) and many-body

(M ≥ 3) values are, again, separated from each other, but now the former lie below the later, and there is
only about 1–4% of a difference depending on the repulsion strength and barrier height, also see [12,19].
Thus, the momentum variance rather weakly depends on the (small amount of) depletion. This is
because the matrix elements in (20) are typically smaller with the momentum operator than with
the position operator. Yet, despite their small difference, the many-body and mean-field momentum
variances do not cross each other, see Figure 4 (contrast with the interaction-quench dynamics in
a single trap in [18]).

It is instructive to analyze the momentum-variance dynamics at short times. Whereas ∆2
P̂X
(t)

primarily increases, ∆2
P̂Y
(t) mainly decreases. This matches the geometry of the sloshing dynamics in

the tilted annulus, in which bosons from the ‘north’ and ‘south’ poles (on the y-axis) start to move to
the left and accumulate in the ‘west’ pole (on the x-axis), and that the cross section of the rim of an
annulus is enlarged when moving away from the center of the annulus. In other words, the dynamics
of the momentum variances at short times when moving to the left reflects the relative localization
of the bosons in the x direction and the effective broadening of the wavepacket along the y direction.
Both the mean-field and many-body variances oscillate with a very small amplitude, note the scale
on the y-axis in Figure 4. The high-frequency oscillations mark high-energy radial excitations across
the (tight) annulus rim [19]. Like for the position variance, the amplitude of oscillations of the y-axis
momentum variances is smaller than that of the x-axis momentum variances. Finally, we see that
already M = 3 orbitals accurately describe the dynamics of the momentum variance; the difference to
the M > 3 results is lower than 1%.

We now move to the angular-momentum variance and an interesting inter-connection with the
momentum variance. Figure 5 presents the many-particle angular-momentum variance per particle,
1
N ∆2

L̂Z
(t), for the two barrier heights, V0 = 5 and V0 = 10, and the two interaction strengths, λ0 = 0.02

and λ0 = 0.04. There are several features seen in the dynamics. Since rotational symmetry is lifted,
1
N ∆2

L̂Z
6= 0 expect for the initial conditions at t = 0 (the values of the minima for t > 0, see below,

are close to but not 0). The dynamics of 1
N ∆2

L̂Z
(t) appears to be almost periodic and rather regular,

more than that for the respective position and momentum variances, compare to Figures 3 and 4.
On the other end, focusing on the dynamics of the center-of-mass in Figure 1, one can clearly observe
correlation between the two quantities; Whenever 1

N 〈Ψ|X̂|Ψ〉(t) has a minimum, i.e., the bosons are
maximally localized to the left, 1

N ∆2
L̂Z
(t) has a maximum, and whenever 1

N 〈Ψ|X̂|Ψ〉(t) has a maximum
(which value is about 0), i.e., the bosons are momentarily, approximately equally distributed along
the annulus, 1

N ∆2
L̂Z
(t) has a minimum (which value, as mentioned above, is close to 0). Furthermore,

the frequencies of the two quantities as well as their relative amplitudes as a function of the barrier
height and interaction strength are alike. These observations call for a dedicated analysis.
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Figure 3. Position variance dynamics following a potential quench. The mean-field (M = 1 time-
adaptive orbitals) and many-body (using M = 3, 5, 7, 10, 12, 14, and 15, 16 time-adaptive orbitals)
time-dependent position variances per particle, 1

N ∆2
X̂
(t) [left column, panels (a–d)] and 1

N ∆2
Ŷ
(t) [right

column, panels (e–h)], of N = 10 bosons in the annuli with barrier heights and interaction strengths
(a,e) V0 = 5, λ0 = 0.02; (b,f) V0 = 5, λ0 = 0.04; (c,g) V0 = 10, λ0 = 0.02; and (d,h) V0 = 10, λ0 = 0.04
following a sudden potential tilt by 0.01x. The respective depletions are plotted in Figure 2. See the
text for more details. The quantities shown are dimensionless.
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Figure 4. Momentum variance dynamics following a potential quench. The mean-field (M = 1
time-adaptive orbitals) and many-body (using M = 3, 5, 7, 10, 12, 14, and 15, 16 time-adaptive orbitals)
time-dependent momentum variances per particle, 1

N ∆2
P̂X
(t) [left column, panels (a–d)] and 1

N ∆2
P̂Y
(t)

[right column, panels (e–h)], of N = 10 bosons in the annuli with barrier heights and interaction
strengths (a,e) V0 = 5, λ0 = 0.02; (b,f) V0 = 5, λ0 = 0.04; (c,g) V0 = 10, λ0 = 0.02; and (d,h) V0 = 10,
λ0 = 0.04 following a sudden potential tilt by 0.01x. The respective depletions are plotted in Figure 2.
See the text for more details. The quantities shown are dimensionless.
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Figure 5. Angular-momentum variance dynamics following a potential quench. The mean-field
(M = 1 time-adaptive orbitals) and many-body (using M = 3, 5, 7, 10, 12, 14, and 15, 16 time-adaptive
orbitals) time-dependent angular-momentum variance per particle, 1

N ∆2
L̂Z
(t), of N = 10 bosons in

the annuli with barrier heights and interaction strengths (a) V0 = 5, λ0 = 0.02; (b) V0 = 5, λ0 = 0.04;
(c) V0 = 10, λ0 = 0.02; and (d) V0 = 10, λ0 = 0.04 following a sudden potential tilt by 0.01x.
The respective depletions are plotted in Figure 2. See the text for more details. The quantities shown
are dimensionless.

To shed light on the above dynamics of the angular-momentum variance, see Figure 5, we analyze
the translational properties of variances in Appendix A. Whereas the position variances and,
trivially, the momentum variances, are translationally invariant, this invariance does not hold for
the angular-momentum variance. If a wavepacket prepared in the origin has angular-momentum
variance 1

N ∆2
L̂Z

, then several terms are added when the wavepacket is translated to the point (a, b)
in plane, and angular-momentum variance is thereafter computed, see Equation (A3). Now, if this
wavepacket is rotationally symmetric, i.e., 1

N ∆2
L̂Z

= 0, then several of the terms in (A3) vanish due to

spatial symmetry and we are left with the appealing relation, 1
N ∆2

L̂Z

∣∣∣
Ψ(a,b)

= a2 1
N ∆2

P̂Y

∣∣∣
Ψ
+ b2 1

N ∆2
P̂X

∣∣∣
Ψ

[Equation (A4)], connecting the angular-momentum variance of Ψ(a, b) localized at (a, b) and of Ψ at
the origin. The meaning of this relation is that the momentum variances, 1

N ∆2
P̂X

and 1
N ∆2

P̂Y
, together

with the spatial translations along the y-axis and x-axis, respectively, determine the angular-momentum
variance of a translated wavepacket (rotationally symmetric at the origin).

Returning to and combining Figure 5 for the angular-momentum variance, Figure 1 for
the center-of-mass dynamics, and Figure 4e–h for 1

N ∆2
P̂Y

, we can now discuss and explain their
inter-connection. Explicitly, the center-of-mass dynamics is analogous to translating the wavepacket
along the x-axis (back and forth to the left), hence, according to Equation (A4), 1

N ∆2
P̂Y

is needed.

This is why the dependencies of the frequency and amplitude of oscillations of 1
N ∆2

L̂Z
(t) on the

barrier height and interaction strength nicely follow, respectively, those of 1
N 〈Ψ|X̂|Ψ〉(t), compare
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Figures 1 and 5. What is the role of 1
N ∆2

P̂Y
then? The momentum variance helps us understand the

deviations between the many-body and mean-field results in Figure 5. We see that the maxima of
the many-body 1

N ∆2
L̂Z
(t) (M > 3) are larger than the maxima of the mean-field 1

N ∆2
L̂Z
(t) (M = 1).

The difference is about 7–25% (compare to the low depletion, Figure 2), depending on V0 and λ0,
and follows the respective trend of the many-body and mean-field results for 1

N ∆2
P̂Y

, see Figure 4e–h.
We note that, although the wavepacket describing the bosons dynamics in the tilted annulus is not a
translated, rotationally invariant wavepacket, and the values of deviations (in percents) between the
many-body and mean-field results are actually larger for ∆2

L̂Z
(at the maxima) than for ∆2

P̂Y
, we find

the above analytically based analysis to well explain the numerical findings and trends. Last but not
least, a close inspection of the many-body and mean-field curves of the angular-momentum variance
in Figure 5 shows that there are instances when they cross each other, i.e., one is smaller or larger
than the other. This is in contrast with the non-crossing of the many-body and mean-field position
and momentum variances, see Figures 3 and 4, respectively. Finally, we find that already M = 3
time-adaptive orbitals accurately describe the dynamics of the angular-momentum variance.

Our investigations are nearing their end, what is left to explore is the behavior of the position,
momentum, and angular-momentum variances at the particle limit. Which of the above-described
detailed findings, plotted in Figures 1–5 for a rather small (N = 10 bosons) yet weakly depleted BEC,
survive this limit? To answer the question, we concentrate on the system with the higher barrier,
V0 = 10, and stronger interaction (for N = 10 bosons), λ0 = 0.04. We hence fix the interaction
parameter Λ = λ0(N − 1) = 0.36, and compute and compare the dynamics for N = 10, N = 100,
and N = 1000 bosons using M = 3 time-adaptive orbitals. We have seen for N = 10 bosons that M = 3
time-adaptive orbitals accurately describe the variances. This implies that, keeping the interaction
parameter Λ fixed while increasing the number of particles N, using M = 3 time-adaptive orbitals for
calculating the variances will be (at least) as accurate as for N = 10 particles, see in this respect [24].
Before we proceed, a methodological remark. Examining the convergence of properties with the
number of particles for N = 10, N = 100, and N = 1000 bosons is (still) far away from infinity,
see in this respect [15]. We hence use, interchangeably, the term en route to the particle limit. We shall
see below that, in effect, the particle limit is practically well achieved for the variances already for
N = 1000 bosons.

Figure 6 prints the total number of depleted particles, N − n1(t), for N = 10, N = 100, and N =

1000 bosons for Λ = 0.36 and V0 = 10 using M = 3 time-adaptive orbitals. Convergence of the number
of depleted particles with N is nicely seen. Since N − n1(t) converges to a finite (and small) value
with N, the bosons are becoming 100% condensed in the limit of an infinite number of particles, i.e.,
n1(t)

N → 1 as N → ∞, at least up to the maximal time of the computation, t = 100.
Figure 7 exhibits the position variances per particle, 1

N ∆2
X̂
(t) and 1

N ∆2
Ŷ
(t), momentum variances

per particle, 1
N ∆2

P̂X
(t) and 1

N ∆2
P̂Y
(t), angular-momentum variance per particle, 1

N ∆2
L̂Z
(t), and the

expectation value of the center-of-mass, 1
N 〈Ψ|X̂|Ψ〉(t), for N = 10, N = 100, and N = 1000 bosons and

for Λ = 0.36 and V0 = 10 using M = 3 time-adaptive orbitals. Once again, convergence of each of the
quantities with N is clearly seen. Yet, whereas the center-of-mass dynamics converges to the mean-field
dynamics when the number of particles is increased, the variances exhibit many-body dynamics which
converges nicely with N, but not to the respective mean-field dynamics. Beyond that, all the above
results, for the frequencies, amplitudes, anisotropies, inter-connections, and particularly the differences
between the many-body and mean-field position, momentum, and angular-momentum variances
persist at the limit of infinite number of particles, despite the bosons becoming 100% condensed.
This brings the present analysis to an end.
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Figure 6. Depletion dynamics following a potential quench en route to the particle limit.
The time-dependent total number of depleted particles, N − n1(t), of N = 10, N = 100, and
N = 1000 bosons with interaction parameter Λ = λ0(N − 1) = 0.36 for an annulus with barrier height
V0 = 10 following a sudden potential tilt by 0.01x. The number of time-adaptive orbitals is M = 3.
The respective position, momentum, and angular-momentum variances along with the expectation
value of the center-of-mass are plotted in Figure 7. See the text for more details. The quantities shown
are dimensionless.

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

0.0 20.0 40.0 60.0 80.0 100.0

X
 p

o
si

ti
o
n
 v

ar
ia

n
ce

Time

(a)

GP (M=1)

N=10 (M=3)

N=100 (M=3)

N=1000 (M=3)
1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

0.0 20.0 40.0 60.0 80.0 100.0

Y
 p

o
si

ti
o
n
 v

ar
ia

n
ce

Time

(b)

GP (M=1)

N=10 (M=3)

N=100 (M=3)

N=1000 (M=3)

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

0.605

0.0 20.0 40.0 60.0 80.0 100.0

P
X

 m
o
m

e
n
tu

m
 v

a
ri

a
n
c
e

Time

(c)

GP (M=1)

N=10 (M=3)

N=100 (M=3)

N=1000 (M=3)

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

0.605

0.0 20.0 40.0 60.0 80.0 100.0

P
Y

 m
o
m

e
n
tu

m
 v

a
ri

a
n
c
e

Time

(d)

GP (M=1)

N=10 (M=3)

N=100 (M=3)

N=1000 (M=3)

Figure 7. Cont.
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Figure 7. Position, momentum, and angular-momentum variance dynamics following a potential
quench en route to the particle limit. The mean-field (M = 1 time-adaptive orbitals) and many-body
(using M = 3 time-adaptive orbitals) time-dependent position variances per particle, (a) 1

N ∆2
X̂
(t) and

(b) 1
N ∆2

Ŷ
(t), momentum variances per particle, (c) 1

N ∆2
P̂X
(t) and (d) 1

N ∆2
P̂Y
(t), and angular-momentum

variance per particle, (f) 1
N ∆2

L̂Z
(t), of N = 10, N = 100, and N = 1000 bosons with interaction

parameter Λ = λ0(N − 1) = 0.36 for an annulus with barrier height V0 = 10 following a sudden
potential tilt by 0.01x. (e) The time-dependent expectation value of the center-of-mass, 1

N 〈Ψ|X̂|Ψ〉(t).
The respective depletions are plotted in Figure 6. See the text for more details. The quantities shown
are dimensionless.

4. Summary and Outlook

In the present work we studied, analytically and numerically, the position, momentum, and
especially the angular-momentum variance of interacting bosons trapped in a two-dimensional
anisotropic trap for static and dynamic scenarios. Explicitly, we investigated the ground state of
the anisotropic harmonic-interaction model in two spatial dimensions analytically and researched
the out-of-equilibrium dynamics of repulsive bosons in tilted two-dimensional annuli numerically
accurately by using the MCTDHB method. The differences between the variances at the mean-field
level, which are attributed to the shape of the density per particle, and the respective variances at
the many-body level, which incorporate a small amount of depletion outside the condensed mode,
were used to characterize sometimes large position, momentum, and angular-momentum correlations
in the BEC for finite systems and at the limit of an infinite number of particles where the bosons
are 100% condensed. Finally, we also explored and utilized inter-connections between the variances,
particularly between the angular-momentum and momentum variances, through the analysis of their
translational properties.

There are many intriguing directions to follow out of which we list three below. First, variances of
BECs in the rotating frame of reference in which high-lying excitations become low-energy excitations
and even the ground state. Second, angular-momentum variance of a BEC flowing past an obstacle in
which the mean angular-momentum variance vanishes. And third, variances in three-dimensional
geometries lacking lower-dimensional analogs, such as a Möbius strip. In all these cases, whether
considering a few interacting bosons or a BEC in the particle limit, interesting and exciting results
are expected.
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Appendix A. Variances and Translations

Consider the many-particle translation operator in two spatial dimensions e−i(P̂X a+P̂Yb), where
P̂X = ∑N

j=1 p̂x,j and P̂Y = ∑N
j=1 p̂y,j. Its operation on a multi-particle wavefunction Ψ is given by

e−i(P̂X a+P̂Yb)Ψ(x1, y1, . . . , xN , yN) = Ψ(x1 − a, y1 − b, . . . , xN − a, yN − b) ≡ Ψ(a, b). What are the
implications on the variances when computed with respect to the translated wavefunction Ψ(a, b)?

For the position operator X̂ = ∑N
j=1 x̂j (and equivalently for Ŷ = ∑N

j=1 ŷj) we have
〈Ψ(a, b)|X̂|Ψ(a, b)〉 = 〈Ψ|X̂|Ψ〉+ Na and 〈Ψ(a, b)|X̂2|Ψ(a, b)〉 = 〈Ψ|X̂2|Ψ〉+ 2Na〈Ψ|X̂|Ψ〉+ (Na)2,
implying that

1
N

∆2
X̂

∣∣∣
Ψ(a,b)

=
1
N

∆2
X̂

∣∣∣
Ψ

. (A1)

Trivially for the momentum operator P̂X (and equivalently for P̂Y = ∑N
j=1 p̂y,j) one has

1
N

∆2
P̂X

∣∣∣
Ψ(a,b)

=
1
N

∆2
P̂X

∣∣∣
Ψ

, (A2)

i.e., both the position variance and momentum variance are translationally invariant.
For the angular-momentum operator L̂Z = ∑N

j=1
(

x̂j p̂y,j − ŷj p̂x,j
)

the situation is
more interesting. From 〈Ψ(a, b)|L̂Z|Ψ(a, b)〉 = 〈Ψ|L̂Z|Ψ〉 + a〈Ψ|P̂Y|Ψ〉 − b〈Ψ|P̂X |Ψ〉
and 〈Ψ(a)|L̂2

Z|Ψ(a)〉 = 〈Ψ|L̂2
Z|Ψ〉+ a2〈Ψ|P̂2

Y|Ψ〉+ b2〈Ψ|P̂2
X |Ψ〉+ a〈Ψ|L̂Z P̂Y + P̂Y L̂Z|Ψ〉 − b〈Ψ|L̂Z P̂X +

P̂X L̂Z|Ψ〉 − 2ab〈Ψ|P̂Y P̂X |Ψ〉 we have

1
N

∆2
L̂Z

∣∣∣
Ψ(a,b)

=
1
N

∆2
L̂Z

∣∣∣
Ψ
+ a2 1

N
∆2

P̂Y

∣∣∣
Ψ
+ b2 1

N
∆2

P̂X

∣∣∣
Ψ

+a
(
〈Ψ|L̂Z P̂Y + P̂Y L̂Z|Ψ〉 − 2〈Ψ|L̂Z|Ψ〉〈Ψ|P̂Y|Ψ〉

)

−b
(
〈Ψ|L̂Z P̂X + P̂X L̂Z|Ψ〉 − 2〈Ψ|L̂Z|Ψ〉〈Ψ|P̂X |Ψ〉

)

−2ab
(
〈Ψ|P̂Y P̂X |Ψ〉 − 〈Ψ|P̂Y|Ψ〉〈Ψ|P̂X |Ψ〉

)
. (A3)

Equation (A3) deserves a discussion. In turn, even for the ground state of an interacting
many-boson system in a rotationally symmetric [for which 1

N ∆2
L̂Z

= 0 holds] but otherwise translated
trap, the angular-momentum variance

1
N

∆2
L̂Z

∣∣∣
Ψ(a,b)

= a2 1
N

∆2
P̂Y

∣∣∣
Ψ
+ b2 1

N
∆2

P̂X

∣∣∣
Ψ

(A4)

differs at the many-body level and mean-field level of theory, i.e., when a, b 6= 0 and λ0 6= 0. This is,
as can be seen in (A4), because of the respective many-body and mean-field momentum variances,
1
N ∆2

P̂X
and 1

N ∆2
P̂Y

. The analytical result (A4) is employed to analyze the numerical findings for the
time-dependent angular-momentum variance in the main text. Generally in the absence of spatial
symmetries, see Equation (A3), more terms contribute to the translated angular-momentum variance.

References

1. Cornell, E.A.; Wieman, C.E. Nobel Lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and
some recent experiments. Rev. Mod. Phys. 2002, 74, 875. [CrossRef]

2. Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser.
Rev. Mod. Phys. 2002, 74, 1131. [CrossRef]

3. Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose–Einstein condensation in trapped gases.
Rev. Mod. Phys. 1999, 71, 463. [CrossRef]

4. Leggett, A.J. Bose–Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys.
2001, 73, 307. [CrossRef]

41



Symmetry 2019, 11, 1344

5. Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885.
[CrossRef]

6. Castin, Y.; Dum, R. Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1)
symmetry breaking approach. Phys. Rev. A 1998, 57, 3008. [CrossRef]

7. Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy
functional. Phys. Rev. A 2000, 61, 043602. [CrossRef]

8. Lieb, E.H.; Seiringer, R. Proof of Bose–Einstein Condensation for Dilute Trapped Gases. Phys. Rev. Lett. 2002,
88, 170409. [CrossRef]
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Abstract: We consider a two-component linearly coupled system with the intrinsic cubic nonlinearity
and the harmonic-oscillator (HO) confining potential. The system models binary settings in BEC and
optics. In the symmetric system, with the HO trap acting in both components, we consider Josephson
oscillations (JO) initiated by an input in the form of the HO’s ground state (GS) or dipole mode
(DM), placed in one component. With the increase of the strength of the self-focusing nonlinearity,
spontaneous symmetry breaking (SSB) between the components takes place in the dynamical JO
state. Under still stronger nonlinearity, the regular JO initiated by the GS input carries over into a
chaotic dynamical state. For the DM input, the chaotization happens at smaller powers than for the
GS, which is followed by SSB at a slightly stronger nonlinearity. In the system with the defocusing
nonlinearity, SSB does not take place, and dynamical chaos occurs in a small area of the parameter
space. In the asymmetric half-trapped system, with the HO potential applied to a single component,
we first focus on the spectrum of confined binary modes in the linearized system. The spectrum
is found analytically in the limits of weak and strong inter-component coupling, and numerically
in the general case. Under the action of the coupling, the existence region of the confined modes
shrinks for GSs and expands for DMs. In the full nonlinear system, the existence region for confined
modes is identified in the numerical form. They are constructed too by means of the Thomas–Fermi
approximation, in the case of the defocusing nonlinearity. Lastly, particular (non-generic) exact
analytical solutions for confined modes, including vortices, in one- and two-dimensional asymmetric
linearized systems are found. They represent bound states in the continuum.

Keywords: Bose-Einstein condensates; Josephson oscillations; spontaneous symmetry breaking;
Thomas-Fermi approximation; dynamical chaos; ground states; perturbation theory

1. Introduction

The combination of a harmonic-oscillator (HO) trapping potential and cubic non-
linearity is a ubiquitous setting which occurs in diverse microscopic, mesoscopic, and
macroscopic physical settings. A well-known realization is offered by Bose-Einstein con-
densates (BECs) with collisional nonlinearity [1–3], loaded in a magnetic or optical trap—
see, e.g., Refs. [4–14]. A similar combination of the effective confinement, approximated by
the parabolic profile of the local refractive index, and the Kerr term is relevant as a model
of optical waveguides [15–18]. Models of the same type appear in other physical systems
too, such as networks of Josephson oscillators [19].

The character of states created by the interplay of the intrinsic nonlinearity and
externally applied trapping potential strongly depends on the sign of the nonlinearity. In the
case of the self-attraction (or self-phase-modulation, SPM, in terms of optics [20]), localized
modes, similar to solitons, arise spontaneously. On the other hand, self-repulsion tends to
create flattened configurations, which, in turn, may support dark solitons in various static
and dynamical states [6–14]. A specific situation occurs in a system combining repulsion
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and a weak parabolic potential with an additional spatially periodic one (it represents
an optical lattice in BEC [21], or a photonic crystal in optics and plasmonics [22–24]):
the interplay of the periodic potential with the self-repulsion gives rise to bright gap
solitons [21,25], whose effective mass is negative. For this reason, gap solitons are expelled
by the HO potential, but are trapped by the inverted one that would expel modes with
positive masses [26].

Another noteworthy feature of the dynamics of one-dimensional (1D) nonlinear fields
trapped in confining potentials is the degree of its nonintegrability. The generic model
for such settings is provided by the nonlinear Schrödinger equation (NLSE, alias the
Gross–Pitaevskii equation, in terms of BEC [1–3]) with the cubic term, whose integrability
in the 1D space [27] is broken by the presence of the HO potential. Nevertheless, systematic
numerical simulations, performed for the repulsive sign of the cubic nonlinearity, have
demonstrated that the long-time evolution governed by NLSE with the HO potential term
does not lead to establishment of spatiotemporal chaos (“turbulence”), which would be
expected in the case of generic nonintegrability [28,29]. Instead, the setup demonstrates
quasi-periodic evolution, represented by a quasi-discrete power spectrum, in terms of a
multi-mode truncation (Galerkin approximation) [14]. This observation is specific for the
harmonic (quadratic) confining potential, while anharmonic ones quickly lead to the onset
of clearly observed chaos [30,31]. Thermalization of the model with the HO potential was
recently explored, in the framework of a stochastically driven dissipative Gross–Pitaevskii
equation, in Ref. [32].

The interplay of the cubic nonlinearity and trapping potentials also occurs in two-
component systems, which represent, in particular, binary BEC [12,33–35]. Here, we aim to
consider the system with linear coupling between the components. In optics, if two modes
carrying orthogonal polarizations of light propagate in the same waveguide, linear mixing
between them is induced by a twist of the guiding structure, see, e.g., Ref. [36]. In BEC,
different atomic states which correspond to the interacting components can be linearly
coupled by a resonant electromagnetic wave [37–40]. Another realization of linearly mixed
systems is offered by dual-core waveguides, coupled by tunneling of the field across a
barrier separating the cores. The dual-core schemes are equally relevant to optics and
BEC [41]. In particular, experiments with temporal solitons in dual-core optical fibers were
reported in recent work [42].

The coupling between the components enhances the complexity of the system and
makes it possible to find new static and dynamical states in it. In particular, the symmetric
system combining the attractive cubic terms of the SPM type and (optionally) HO potential
acting in each component, with linear coupling between them, gives rise to spontaneous
symmetry breaking (SSB) of two-component states [35,42]. In the case of repulsive SPM
acting in each component and nonlinear repulsion between them (cross-phase modula-
tion, XPM), it was found [33] that the linear mixing shifts the miscibility-immiscibility
transition [43] in the trapped condensate. Furthermore, effects of nonintegrability may
be stronger in the linearly coupled system, because the linear coupling makes the system
of one-dimensional NLSEs nonintegrable, even in the absence of the HO potential [44],
although the integrability is kept by the system with the linear coupling added to the SPM
and XPM terms with equal strengths (the Manakov’s nonlinearity) [45].

The objective of the present work is two-fold. First, in Section 2 we aim to analyze
the onset of chaos, as well as SSB, in the symmetric linearly coupled system, with both
attractive and repulsive signs of the SPM terms, starting from an input in the form of
the ground state (GS), or the first excited state (the dipole mode (DM), represented by a
spatially odd wave function) of the HO, which is initially launched in one core (component),
while the other one is empty. This type of the input is, in particular, experimentally relevant
in optics [42]. As a nonchaotic dynamical regime in this case, one may expect Josephson
oscillations (JO) of the optical field [42,44,46–49], or of the BEC wave function [50–56],
between the cores. As a measure of the transition to dynamical chaos in the system, we
use a relative spread of the power spectrum of oscillations produced by simulations of
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the coupled NLSEs. Naturally, the chaotization sets in above a certain threshold value
of the nonlinearity strength, and the chaos is much weaker in the case of the repulsive
nonlinearity. In the dynamical state initiated by the GS, the SSB takes place prior to the
onset of the dynamical chaos, while the DM input undergoes the chaotization occurs first,
followed by the SSB at a slightly stronger nonlinearity.

The second objective, which is presented below in Section 3, is to construct stationary
GS and DM in the asymmetric (half-trapped) linearly coupled system, with the HO potential
applied to one component only. The latter system can be realized in the experiment,
applying, for instance, the trapping potential only to one core of the double waveguide
for matter waves in BEC (e.g., by focusing laser beams, which induce the trapping, on the
single core). In optics, a similar setup may be built as a coupler with two widely different
cores, narrow and broad ones, with the narrow core emulating the component carrying a
tightly confining potential, cf. Ref. [57]. A remarkable peculiarity of such a system is that
the linear coupling mixes completely different types of the asymptotic behavior at |x| → ∞:
the trapped component is always confined, in the form of a Gaussian, by the HO potential,
while the untrapped one is free to escape. In addition, the asymmetry between the coupled
cores makes it necessary to take into regard a difference in the chemical potentials or
propagation constants (in terms of the BEC and optics, respectively) between them, which
is represented by parameter ω in Equation (10), see below. Some results for the half-trapped
system are obtained in an analytical form, in the weak- and strong-coupling limits, as well
as by means of the Thomas–Fermi approximation (TFA), and full results are produced
numerically. In addition, particular solutions for localized states of the linear half-trapped
system (including vortex states in its 2D version) are found in an exact form. The exact
solutions belong to the class of bound states in the continuum [58–60], alias embedded [61]
ones, which are spatially confined modes existing, as exceptional states, with the carrier
frequency falling in the continuous spectrum. The paper is concluded by Section 4.

2. The Symmetric System
2.1. The Coupled Equations

As outlined above, we consider systems modeled by a pair of coupled NLSEs for com-
plex amplitudes u(x, z) and v(x, z) of two interacting waves. In the normalized form, the
equations are written in terms of the spatial-domain propagation in an optical waveguide
with propagation distance z and transverse coordinate x:

i
∂u
∂z

+
1
2

∂2u
∂x2 + λv− Ω2

2
x2u + σ

(
|u|2 + g|v|2

)
u = 0,

(1)

i
∂v
∂z

+
1
2

∂2v
∂x2 + λu− Ω2

2
x2v + σ

(
|v|2 + g|u|2

)
v = 0.

Here, coefficients σ > 0 or σ < 0 represents the strength of the focusing or defocusing
SPM in each core, while λ and σg represent the linear mixing and XPM interaction, respec-
tively. By means of rescaling, the strength of the HO trapping potential is set to be Ω = 1
(unless it is zero in one core). In other words, x is measured in units of the respective HO
length. This implies that the unit of the transverse coordinate in the optical waveguides
takes typical values in the range of 10–30 µm, hence the respective unit of the propagation
distance (the Rayleigh/diffraction distance corresponding to the OH length) is estimated
to be between 1 mm and 1 cm, for the carrier wavelength ∼ 1µm. In the matter-wave
realization of the system, typical units of x and time (replacing z in Equation (1) are∼10 µm
and 10 ms, respectively.

The system conserves two dynamical invariants., viz., the total norm (or power, in
terms of optics),

P =
∫ +∞

−∞

[
|u(x)|2 + |v(x)|2

]
dx, (2)
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and the Hamiltonian (in which Ω = 1 is set),

H =
∫ +∞

−∞

[
1
2

(∣∣∣∣
∂2u
∂x2

∣∣∣∣
2

+

∣∣∣∣
∂2v
∂x2

∣∣∣∣
2)
− σ

2

(
|u|4 + |v|4

)

−σg|u|2|v|2 + 1
2

x2
(
|u|2 + |v|2

)
− λ(uv∗ + u∗v)

]
dx, (3)

where ∗ stands for the complex conjugate. The remaining scaling invariance of Equation (1)
makes it possible to either set |σ| = 1, or keep nonlinearity coefficient σ as a free parameter,
but fix P ≡ 1. All simulations performed in this work comply with the conservation of P
and H, up to the accuracy of the numerical codes.

It is relevant to mention that the present two-component system resembles nonlin-
ear models with a double-well potential, in the case when the wave functions in two
wells are linearly coupled by tunneling across the potential barrier, see, e.g., Refs. [62,63].
Nevertheless, the exact form of the system and its solutions are different.

In the limit of a small amplitude A0 of the input, linearized Equation (1) with Ω = 1
admit exact solutions for inter-core JO of the ground and dipole states (exact solutions for
higher-order states can be readily found too):

u(GS)
JO (x, t) = A0 exp

(
−1

2
x2 − 1

2
iz
)

cos(λz),

(4)

v(GS)
JO (x, t) = iA0 exp

(
−1

2
x2 − 1

2
iz
)

sin(λz),

u(DM)
JO (x, t) = A0x exp

(
−1

2
x2 − 3

2
iz
)

cos(λz),

(5)

v(DM)
JO (x, t) = iA0x exp

(
−1

2
x2 − 3

2
iz
)

sin(λz).

Expressions given by Equations (4) and (5) at z = 0 are used below as inputs in
simulations of the full nonlinear Equation (1). The simulations presented in this section
were performed in domain |x| < 10. This size, tantamount to 20 HO lengths, is sufficient
to display all details of the solutions. Standard numerical methods were used, viz., the
split-step fast-Fourier-transform scheme for simulations of the evolution governed by
Equations (1) and (10), and the relaxation algorithm for finding solutions to stationary
equations, such as Equations (12) and (13), see below.

2.2. The Transition from Regular to Chaotic Dynamics

Increase of amplitude A0 of the input leads to nonlinear deformation of the oscillations,
and eventually to the onset of dynamical chaos. A typical example of an essentially
nonlinear but still regular JO dynamical regime, produced by numerical simulations of
Equation (1) with g = 0 (no XPM interaction), in interval 0 < z < Z, with the DM input,
taken as per Equation (5) at z = 0, is presented in Figure 1. In particular, the left bottom
panel of the figure displays oscillations of peak intensities of the fields,

{
U2

max(z), V2
max(z)

}
≡ max

x

{
|u(x, z)|2, |v(x, z)|2

}
, (6)

and, as a characteristic of the dynamics, in the right bottom panel we plot power spectra,
|P(κ)|2, |Q(κ)|2, produced by the Fourier transform of the peak intensities:

{P(κ), Q(κ)} =
∫ Z

0

{
U2

max(z), V2
max(z)

}
exp(−iκz)dz, (7)
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where κ is a real propagation constant. Very slow decay of the peak intensities, observed in
the former panel, is a manifestation of the system’s nonintegrability (in this connection, we
again stress that the total norm is conserved during the simulations).

The regularity of the dynamical regime displayed in Figure 1 is clearly demonstrated
by its spectral structure, which exhibits a single narrow peak at κpeak ≈ 2. The peak’s
width, ∆κ ' 0.1, which corresponds to the relative width, ∆κ/κpeak ≈ 0.05, is comparable
to the spread of the Fourier transform, corresponding to Z = 100 in Figure 1. It can be
estimated as δκ = 2π/Z ≈ 0.06. Note the overall symmetry between the two components
in Figure 1 (in particular, their spectra are identical in the bottom panel).

 

Figure 1. A typical example of a regular Josephson dynamical regime, initiated by the DM (dipole mode) input launched in
the u component (as given by Equation (5) with z = 0 and A0 = 1). The solution is produced by simulations of Equation (1)
with λ = σ = Ω = 1, g = 0. Plots in the top row display the evolution of components u(x, z) and v(x, z). Left bottom: The

evolution of the peak intensities of both components, U2
max(z) ≡ max

x

{
|u(x, z)|2

}
and V2

max(z) ≡ max
x

{[
|v(x, z)|2

]}
. Right

bottom: The power spectrum of oscillations of the two components, defined as per Equation (7). The spectra are virtually
identical for both components.

The simulations with the same input, but larger values of A0, give rise to chaotic
(“turbulent”) dynamical states with a broad dynamical spectrum, see a typical example
in Figure 2. Note that both the regular and chaotic dynamical pictures displayed in
Figures 1 and 2 extend over the distance estimated to be ∼10 Rayleigh (diffraction) lengths
corresponding to the width of the DM input. This estimate is sufficient to make conclusions
about the character of the dynamics.

Systematic simulations with the GS input, provided by Equation (4) at z = 0, produce
similar results (not shown here in detail). In particular, as well as in the case of the DM
input, amplitudes A0 = 1 and 4 initiate, severally, quasi-regular and chaotic evolution.

51



Symmetry 2021, 13, 372

 

Figure 2. The same as in Figure 1, but for a typical example of a chaotic dynamical regime, initiated by the DM input (5)
with a larger amplitude, A0 = 4. Note different scales on vertical axes in two plots in the left panel.

The results for the transition from regular JO to chaotic dynamics, initiated by the GS
and DM inputs, taken as per Equations (4) and (5) at z = 0, are summarized in charts plotted
in the plane of

(
λ, A2

0
)

in Figure 3. They display heatmaps of values of the parameter
which quantifies the sharpness of the central peak in the spectrum of the dynamical state:

Sharpness ≡
∫

FWHM|P(κ)|
2dκ

∫ ∞
0 |P(κ)|

2dκ
, (8)

where the integration in the numerator is performed over the section of the central spectral
peak selected according to the standard definition of the full width at half-maximum:
|P(κFWHM)|2 = (1/2)(P(κ))max. Values of Sharpness close to 1 imply the domination of
a single sharp peak, such as one in Figure 1, which corresponds to a regular dynamical
regime, while decrease of this parameter indicates a transition to a broad spectrum, which
is a telltale of the onset of chaotic dynamics—see, e.g., Figure 2.

Figure 3 clearly demonstrates decay of the central peak’s sharpness, i.e., transition to
dynamical chaos, with the increase of the input’s intensity, A2

0, in the case of the attractive
SPM, σ = +1. Such a trend is not straightforward in the opposite case of the self-repulsion,
σ = −1. In particular, the chaotization is not observed at all in the latter case at small values
of λ. This conclusion agrees with findings reported in work [14] for the single-component
NLSE (which corresponds to λ = 0), with the HO potential and σ = −1. Computations of
the spectrum, reported in that work, demonstrate that no transition to dynamical chaos
takes place at all values of parameters. The fact that an area of weak chaotization is,
nevertheless, observed in the right panels of Figure 3 is explained by the above-mentioned
circumstance, that the addition of the linear coupling to a pair of NLSEs destroys their
integrability (in free space). On the other hand, the increase of the sharpness with the
increase of λ, observed at relatively small values of A2

0 (which is observed in an especially
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salient form in the left bottom panel of Figure 3) also has a simple explanation: the increase
of λ makes the linear terms in the system dominating over nonlinear ones, thus tending to
maintain a quasi-linear behavior.

 

Figure 3. Heatmaps of values of sharpness (8) of the central spectral peak quantifying proximity of the system’s dynamics
to the regular regime. The maps are plotted in the plane of the linear-coupling strength, λ, and intensity of the input,
A2

0, which is launched in one component. (Top left): The GS input, given by Equation (4) at z = 0, in the case of the
self-attraction (σ = +1). (Top right): The same, but in the case of self-repulsion (σ = −1). (Bottom left): The same as in the
top left panel, but produced by the DM input, given by Equation (5) at z = 0. (Bottom right): The same as in the bottom left
panel, but in the case of self-repulsion (σ = −1). In all cases, g = 0 is set in Equation (1) (no XPM interaction between the
components). Black curves cutting the left panels in their lower areas designate the onset of SSB (spontaneous symmetry
breaking), signalized by appearance of θ 6= 0, see Equation (9).

Lastly, the comparison of the left and right panels in Figure 3 suggests that the
chaotization sets in faster in dynamical regimes initiated by the DM input, in comparison
to their counterparts originating from the GS, for the same values of the input’s intensity,
A2

0. The difference between the GS and DM dynamical regimes is salient for relatively
small values of λ. It may be explained by the fact that attractive SPM naturally tends to
form a stable bright soliton from the GS input, which then maintains regular motion in
the HO potential [64]. On the other hand, spatially odd bright solitons do not exist in free
space, which impedes transformation of the DM input into a regular dynamical state.

As said above, the heatmaps are displayed in Figure 3 for g = 0, i.e., in the absence
of the XPM coupling between the components, which is the case for dual-core couplers.
On the other hand, in the case of the Manakov’s nonlinearity, i.e., g = 1, the above-
mentioned integrability of such a system of NLSEs with the linear coupling [45] (but
without the trapping potential) suggests that the full system will be closer to integrability
and farther from the onset of chaos. Indeed, numerical results collected from simulations
of Equation (1) with σ = g = +1 (not shown here in detail) demonstrate a much smaller
chaotic area in the

(
λ, A2

0
)

plane. In particular, the GS input generates “turbulent” behavior
only at A2

0 & 200, being limited to λ . 0.15, cf. the top left panel in Figure 3.

2.3. Spontaneous Symmetry Breaking (SSB) between the Coupled Components

A noteworthy feature of the dynamical state presented in Figure 2 is breaking of
the symmetry between fields u and v (while the patterns initiated by the GS and DM
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inputs keep their parities, i.e., spatial symmetry (evenness) and antisymmetry (oddness),
respectively). This is a manifestation of the general effect, which is well known, in diverse
forms, in linearly coupled dual-core systems with intrinsic attractive SPM [41]. In particular,
SSB of stationary states in systems with the HO trapping potential acting in both cores
was addressed in Refs. [35,56], while Figure 2 demonstrates the symmetry breaking in the
dynamical JO state.

The SSB effect may be quantified, as usual [44], by asymmetry of the dynamical states,
which we define as

Θ ≡
∫ ∞

0 |P(κ)|
2dκ −

∫ ∞
0 |Q(κ)|2dκ

∫ ∞
0 |P(κ)|

2dκ +
∫ ∞

0 |Q(κ)|2dκ
. (9)

The SSB occurs as a transition from Θ = 0 to Θ 6= 0 with the increase of A2
0 at some

critical point, which is a generic property of stationary states in dual-core systems with
intrinsic attractive nonlinearity [41,44], while here we consider it in the dynamical setting.
On the other hand, in the case of the repulsive nonlinearity, σ = −1 in Equation (1), SSB
of stationary states takes place in this system only at g > 1 [56], while we here focus on
the most relevant case of g = 0. Accordingly, the present system with σ = −1 does not
feature SSB.

For σ = +1, the SSB boundaries in the parameter planes of the GS and DM solutions
are shown by bold black lines in the top and bottom left panels of Figure 3, respectively.
The SSB bifurcation of the dynamical states under consideration is of the supercritical, alias
forward, type [65], in terms of dependence Θ

(
A2

0
)
, as shown in Figure 4 for the dynamical

states initiated by the GS and DM inputs. It is observed that, naturally, the critical value of
A2

0 increases with λ, as the symmetry is maintained by the linear coupling, hence stronger
coupling needs stronger nonlinearity to break the symmetry. Note also that the transition
from Θ = 0 to Θ ≈ 1 (a strongly asymmetric state) is steeper at larger λ.

 

Figure 4. Plots of the SSB (spontaneous symmetry breaking) in the dynamical states initiated by the GS (ground state) and
DM (dipole mode) inputs: the asymmetry parameter, defined as per Equation (9), is plotted versus the intensity of the input,
A2

0, for three different fixed values of the linear-coupling constant, λ, as indicated in the figure.

It is worth noting that, as clearly shown by the SSB boundary (the black line) in the
top left panel of Figure 3, the SSB of the GS mode happens prior to the transition to the
dynamical chaos. This conclusion agrees with known results showing that SSB of stationary
modes does not, normally, lead to chaotization of the system’s dynamics [41,44]. On the
other hand, the bottom left panel in Figure 3 demonstrates a different situation for the DM
states, which exhibit the chaotization prior to the SSB, although the separation between
these transitions is small. This conclusion agrees with the fact that, as clearly seen in
Figure 4, the SSB in DM states occurs at values of the input’s amplitude essentially higher
than those which determine the SSB threshold of the GS solutions.
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3. The Half-Trapped System

The asymmetric system of linearly coupled NLSEs, with the HO potential included in
one equation only, is written as

iuz +
1
2

uxx + λv− 1
2

x2u + σ
(
|u|2 + g|v|2

)
u = −ωu,

(10)

ivz +
1
2

vxx + λu + σ
(
|v|2 + g|u|2

)
v = 0,

cf. Equation (1). Here, as said above, Ω = 1 is set in the first equation, and the propagation-
constant mismatch, ω (in terms of BEC, it represents a difference in the chemical potentials
between the two wave functions) is a common feature of asymmetric systems. Stationary
solutions to Equation (10) are looked for as

{u, v} = {U(x), V(x)} exp(−iµz), (11)

with real propagation constant−µ (in BEC, with z replaced by t, µ is the chemical potential),
and real functions U(x) and V(x) satisfying equations

(µ + ω)U +
1
2

d2U
dx2 + λV − 1

2
x2U + σ

(
U2 + gV2

)
U = 0, (12)

µV +
1
2

d2V
dx2 + λU + σ

(
V2 + gU2

)
V = 0. (13)

Most results are produced below disregarding the XPM coupling between the compo-
nents (g = 0). Nevertheless, the XPM terms are included when collecting numerical results
for the threshold of the existence of bound states.

3.1. The Linearized System: Analytical and Numerical Results
3.1.1. Emission of Radiation in the Untrapped Component

In the linear limit, σ = 0, two decoupled equations in system (10) with λ = 0
produce completely different results: all excitations of component u stay confined in the
HO trap, while the v component with any µ > −ω freely expands. In particular, in the
limit of λ = 0, obvious bound-state GS and DM solutions to the linearized version of
Equations (12) and (13), with zero v component, are

U(0)
GS (x) =

1
π1/4 exp

(
− x2

2

)
, V(0)

GS = 0, (14)

U(0)
DM(x) =

√
2

π1/4 x exp
(
− x2

2

)
, V(0)

DM = 0, (15)

where the pre-exponential constants are determined by the normalization condition,

∫ +∞

−∞

[
U2(x) + V2(x)

]
dx = 1, (16)

which we adopt in this section. The eigenvalues corresponding to eigenmodes (14) and
(15) are

µ
(0)
GS = 1/2−ω; µ

(0)
DM = 3/2−ω. (17)

Proceeding to dynamical states, in the lowest approximation with respect to small λ
the evolution of the v field is driven by the respective linearized equation in system (10),

ivz +
1
2

vxx = −λU(0)
GS,DM(x) exp

(
−iµ(0)

GS,DMz
)

. (18)
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Obviously, Equation (18) gives rise to emission of propagating waves (“radiation”),

in the form of v ∼ λ exp
(

ikx− iµ(0)
GS,DMz

)
, at resonant wavenumbers k = ±

√
2µ

(0)
GS,DM,

provided that µ
(0)
GS,DM is positive, i.e.,

vrad ∼ λ exp
(
±i
√

2µ
(0)
GS,DM

(
x−Vphz

))
, (19)

where the phase velocity is

Vph =
k
2
≡ ±1

2

√
2µ

(0)
GS,DM (20)

(in terms of the spatial-domain propagation in the optical waveguide, it is actually the
beam’s slope). The expansion of the area in the (x, z) plane occupied by the radiation field
is bounded by the group velocity,

∣∣Vgr
∣∣ = |k| ≡ 2Vph.

An illustration of this dynamics is presented in Figure 5. Straight red lines designate
the wave-propagation directions, which exactly agree with the phase velocity predicted by
Equation (20), and the expansion of the area occupied by the radiation complies with the
prediction based on the group velocity.

 

                  X            X 

Figure 5. Simulations of the evolution of the linearized half-trapped system (10), displayed in the untrapped component by
plotting Re(v(x, z)). (Left): Emission of radiation generated by the GS (ground state) populating the trapped component,
u(x, z) (see Equation (14)), with ω = 0.25 in Equation (10). (Right): The same, but for the radiation generated by the DM
(dipole mode) in the trapped component (see Equation (15)), with ω = 0. In both cases, the linear-coupling constant is
λ = 0.05.

The emission of radiation into the v core gives rise to a gradual decay of the amplitude
in the u core, due to the conservation of the total norm, see Equation (16). An example of
the decay is displayed in Figure 6, for a small initial amplitude of the GS input, A0 = 0.1
(which corresponds to the quasi-linear dynamical regime), and a relatively large coupling
constant, λ = 1, which makes the transfer of the norm (power) from u to v faster.

On the other hand, the same input with large A0 makes the u-v coupling a weak effect,
in comparison with the dominant nonlinearity, hence the input mode in the u core seems
quite stable, as shown in Figure 7.

3.1.2. The Shift of the GS and DM Existence Thresholds at Small Values of Coupling Constant λ

At µ
(0)
GS,DM < 0 the radiation is not generated by Equation (19), hence two-component

bound states may exist in this case. Our next objective is to find, for the coupled system
with λ > 0, threshold values (ωGS,DM)thr of the mismatch parameter ω in Equations (12)
and (13), such that the bound states of the GS and DM types exist at

ω > (ωGS,DM)thr, (21)

respectively. Obviously, (ωGS)thr = 1/2 and (ωDM)thr = 3/2 in the limit of λ = 0, see
Equation (17).
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First, we aim to find lowest-order corrections to the GS and DM eigenvalues (17) for
small λ. Then, a shift of the respective thresholds can be identified by setting µGS,DM = 0. In
the limit of λ = 0, the GS and DM wave functions are taken as per Equations (14) and (15),
respectively. With small λ, the first-order solution for V(x), viz., V(x) ≡ λV(1)

GS,DM(x), must
be found from the inhomogeneous equation, which follows from Equation (13), in which
µ = 0 is set:

d2

dx2 V(1)
GS,DM = −2U(0)

GS,DM(x). (22)

Straightforward integration of Equation (22), with expressions (14) and (15) substituted
on the right-hand side, yields

V(1)
GS (x) = −

√
2π1/4

[
x√
2

erf
(

x√
2

)
+

√
2
π

exp
(
− x2

2

)]
, (23)

V(1)
DM(x) = 2π1/4erf

(
x√
2

)
, (24)

where erf(x) is the standard error function, which is an odd function of x.

11111111111 

Figure 6. (Left): The evolution of fields u and v in the half-trapped system, as produced by simula-
tions of Equation (10) with ω = 0 and coupling constant λ = 1, initiated by the DM input in the u
core, taken as per Equation (14) with A0 = 0.1. Here and in Figure 7, spurious left-right asymmetry
of the radiation field in the v component is an illusion produced by plotting. (Right): The evolution

of the peak intensities of both components, max
x

{
|u(x, t)|2

}
and max

x

{
|v(x, t)|2

}
.
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Figure 7. The same as in Figure 6, but for a large amplitude of the DM input in the u component,
A0 = 8.

Next, the small perturbation in Equation (12), represented by term λV, produces
a small shift δµ of the eigenvalue, as a feedback from component V. According to the
standard rule of quantum mechanics, which deals with the linear Schrödinger equation [66],
in the first approximation of the perturbation theory, when V(x) is replaced by expression
(23) or (24), the result is

δµGS,DM = −λ2
∫ +∞

−∞
V(1)

GS,DM(x)U(0)
GS,DM(x)dx ≡ −IGS,DMλ2, (25)

with coefficients
IGS = −3.414, IDM = 4, (26)

where the former and latter ones are computed, respectively, in a numerical form and
analytically (note opposite signs of these coefficients). Then, the accordingly shifted threshold
values sought for are

(ωGS)thr = 1/2− IGSλ2, (ωDM)thr = 3/2− IDMλ2. (27)

The analytical predictions are compared to numerical results, obtained from a solution
of the linearized variant of Equations (12) and (13), in Figure 8. Note that the linear u-v
coupling facilitates the formation of the DM bound state, by lowering (ωDM)thr, but impedes
to form the GS, by making the respective threshold, (ωDM)thr, higher. It is seen that for the
DM the analytical approximation is essentially more accurate than for the GS.
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Figure 8. The analytically predicted and numerically found threshold values of the mismatch parameter, ω, above which
the GS and DM solutions (the left and right panels, respectively) are produced, for the half-trapped system, by the linearized
version of Equations (12) and (13), vs. coupling constant λ. The analytical results are produced by Equation (27). For the GS,
they are shown (in the inset) only for relatively small values of λ, as in this case the analytical approximation is inaccurate at
larger λ.

An example of a bound-state solution of linearized Equations (12) and (13) of the
DM type, numerically found at λ = 0.225 and ω = 1.4, i.e., below the threshold value
(ωDM)thr = 1.5, corresponding to the limit of λ→ 0, is displayed in Figure 9. The existence
of the DM at this point agrees with the right panel of Figure 8.

 

Figure 9. A bound state of the DM (dipole mode) type in the half-trapped system, found as a
numerical solution of Equations (12) and (13) with ω = 1.4, λ = 0.225, and σ = 0 (the linearized
version). The eigenvalue corresponding to this solution is µ ≈ −0.036.

3.1.3. The Analysis for Large Values of λ

In the opposite limit of large coupling constant λ, an analytical approximation for
the discrete eigenvalues can be developed too. In this case, |µ|may also be large, ∼λ. In
the zero-order approximation, one may neglect the derivative term in Equation (13), to
obtain V ≈ −(λ/µ)U. Then, substituting this relation back into the originally neglected
derivative term, one obtains a necessary correction to this relation:

V ≈ −λ

µ
U +

λ

2µ2
d2U
dx2 . (28)

The subsequent substitution of this expression in the linearized Equation (12) leads to
an equation for U which is tantamount to the usual stationary linear Schrödinger equation
with the HO potential:

(
µ− λ2

µ
+ ω

)
U +

1
2

(
1 +

λ2

µ2

)
d2U
dx2 −

1
2

x2U = 0. (29)
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Then, the standard solution for the quantum-mechanical HO yields an equation which
determines the spectrum of the eigenvalues:

µ− λ2

µ
+ ω =

(
1
2
+ n

)√
1 +

λ2

µ2 , (30)

where n = 0, 1, 2, . . . is the quantum number. Taking into regard that λ is now a large
parameter, Equation (30) produces a final result for the spectrum,

µ ≈ −λ− ω

2
+

1√
2

(
1
2
+ n

)
. (31)

The spectrum remains equidistant in the current approximation, while further cor-
rections ∼1/λ give rise to terms ∼(1/2 + n)2, which break this property. As concerns the
existence threshold for the bound states, Equation (31) predicts ωthr ≈ −2λ. The coefficient
in this relation is not accurate, as the derivation is not valid for small |µ|, but the implication
is that, for large λ, ωthr drops to negative values with a large modulus, ∼−λ.

The prediction of the GS and DM eigenvalues, given by Equation (31) with n = 0 and
n = 1, respectively, is compared to numerically found counterparts in Figure 10, which
shows proximity between the analytical and numerical results. The plots do not terminate
in the displayed domain, i.e., they do not reach the existence boundary.

 

Figure 10. ( The top row): left and right panels display the analytically predicted eigenvalues given by Equation (31)
with n = 0 and n = 1, for the ground state (GS) and dipole mode (DM), respectively, of the half-trapped system, and
their counterparts produced by the numerical solution of linearized coupled Equations (12) and (13), as functions of the
linear-coupling constant, λ, and mismatch parameter, ω. (The bottom row): cross sections of the respective top panels
along the diagonal connecting points (λ, ω) = (0.10) and (10, 0). The results shown in these plots are relevant for relatively
large values of λ.
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3.1.4. Exact Solutions for One- and Two-Dimensional Bound States in the Continuum (BIC) in
the Linear System

A remarkable property of the coupled half-trapped system, represented by the lin-
earized version of Equations (10), (12) and (13), is that it admits particular spatially confined
solutions in an exact analytical form. These are exceptional solutions, which, for an arbi-
trary value of the linear-coupling constant, λ, exist at a single, specially selected, value
of the mismatch parameter, ω, and with a single value of the eigenvalue, µ. First, it is
possible to find an exact mode which is a fundamental one (GS) in the V component, and a
second-order mode in U:

U(x) = U0

[(
λ2 − 1

2

)
+ x2

]
exp

(
− x2

2

)
,

V(x) = −2λU0 exp
(
− x2

2

)
,

U2
0 = π−1/2

(
λ4 + 4λ2 + 1/2

)−1
,

ω =
9
4
− λ2

2
, µ =

1
2

(
λ2 +

1
2

)
, (32)

with amplitude U0 defined by condition P = 1, see Equation (16). We stress that, as seen in
Equation (32), this exact solution may only have µ > 0, i.e., it is BIC (a bound state in the
continuous spectrum [58–60]), alias an embedded mode [61]. It is worthy to note that this BIC
mode and additional ones, presented below, are found in the coupled system, with one
component trapped in the HO potential.

In addition to the above spatially even solution, an odd one of the BIC type is available
too. It is composed of a DM in the V component and a third-order mode in U. In the
normalized form, i.e., with P = 1 (as per Equation (16)), the solution is

U(x) = U0x
[(

λ2 − 3
2

)
+ x2

]
exp

(
− x2

2

)
,

V(x) = −2λU0x exp
(
− x2

2

)
,

U2
0 = 2π−1/2

(
λ4 + 4λ2 + 3/2

)−1
,

ω =
11
4
− λ2

2
, µ =

1
2

(
λ2 +

3
2

)
, (33)

which also exists at a single value of ω, and with a single eigenvalue, µ > 0. Note that
both exact solutions, given by Equations (32) and (33), may exists at positive and negative
values of ω, as well as at ω = 0 (in Equations (32) and (33), ω = 0 at λ2 = 9/2 and
λ2 = 11/2, respectively).

These exact solutions for BIC states in the two-component systems are somewhat
similar to those found in Ref. [67], which addressed a system of spin-orbit-coupled linear
Gross–Pitaevskii equations for a binary BEC. In that work, exact solutions were produced
for a specially designed form of the trapping potential.

The exact solutions of the linearized system may be tried as inputs in simulations of
the full nonlinear system based on Equation (10), with ω selected as per the solutions. The
simulations, performed with moderate values of the initial amplitude, produce a robust
state with steady internal oscillations, as shown in Figure 11 for the attractive (σ = 1)
and repulsive (σ = −1) SPM nonlinearity. In addition, the simulations demonstrate weak
emission of radiation in the untrapped (v) component. In the case of the self-attraction
(the left panel in Figure 7), the radiation is almost invisible. The self-repulsion in the v
component, naturally, enhances the emission, which becomes visible in the right panel of
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the figure. Still larger amplitudes of the input lead to irregular oscillations and conspicuous
emission of radiation (not shown here in detail).

 

Figure 11. The evolution initiated by the exceptional (BIC) exact solution (32) of the system of
linearized Equations (12) and (13), as produced by simulations of the full nonlinear half-trapped
system (10), with the attractive SPM, σ = 1 in the top row, and repulsive σ = −1 in the bottom one.
Other parameters are g = 0, λ = 7/2 and ω = 1/2, which are related as per Equation (32).

It may happen that the linearized system of Equations (12) and (13) produces isolated
BIC/embedded modes in a numerical form at other values of parameters. The present
work does not aim to carry our comprehensive search for such solutions. On the other
hand, it is relevant to mention that a straightforward two-dimensional (2D) extension of
the present system readily produces exceptional exact solutions for BIC/embedded modes
of both fundamental (GS, alias zero-vorticity) and vortex types.

The 2D extension of the linearized form of Equation (10) is

iuz +
1
2
(
uxx + uyy

)
+ λv− 1

2

(
x2 + y2

)
u = −ωu,

(34)

ivz +
1
2
(
vxx + vyy

)
+ λu = 0.

Although the realization of this model in optics in not straightforward, it may be
implemented for matter waves in a dual-core “pancake-shaped” holder of BEC [35,68]. In
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polar coordinates (r, θ), particular exact solutions of linear Equation (34), with all integer
values of the vorticity, S = 0, 1, 2, . . . , are found as

u = U0rS
[(

λ2 − 1− S
)
+ r2

]
exp

(
−iµz + iSθ − r2

2

)
,

v = −2λU0rS exp
(
−iµz + iSθ − r2

2

)
,

ω =
1
2

(
5 + S− λ2

)
, µ =

1
2

(
λ2 + 1 + S

)
, (35)

with arbitrary amplitude U0 (the 2D solution of the GS type corresponds to S = 0 in
Equation (35)). As well as in 1D solutions (32) and (33), µ takes only positive values in the
2D solution, hence it also represents states of the BIC/embedded type.

3.2. The Nonlinear Half-Trapped System
3.2.1. The Thomas–Fermi Approximation (TFA)

In the presence of the self-defocusing nonlinearity, σ = −1 in Equations (12) and (13),
it is relevant to apply TFA to finding the GS of the half-trapped system, omitting the second
derivatives in both equations [2], and keeping condition µ < 0, which is necessary for the
existence of a generic (non-BIC) localized state in the V component. Then, Equation (13)
with g = 0 (the XPM coupling is omitted here) is solved as

U = (V/λ)
(

V2 − µ
)

, (36)

and Equation (12) amounts to an algebraic equation for the squared amplitude W ≡ −V2/
µ > 0, viz.,

mW(W + 1)3 + ξ2W = ξ2
0 − ξ2, (37)

where

m ≡ −2µ

λ2 > 0, ξ ≡ − x
µ

, (38)

ξ2
0 ≡ − 2

µ3

[
λ2 − µ(ω + µ)

]
, (39)

and the applicability condition for TFA is easily shown to be m � 1. The TFA solution
exists under condition ξ2

0 > 0 (see Equation (39)), i.e., in a finite interval (bandgap) of values
of the propagation constant,

0 < −µ <
√

λ2 + ω2/4 + ω/2 ≡ −µ0. (40)

Outside of the bandgap, i.e., at µ < µ0 < 0, the TFA solution does not exist. In the
bandgap, Equation (37) produces a usual GS profile, with a single value of W corresponding
to each ξ2 from region ξ2 < ξ2

0 (see Figure 12, which displays a typical example of the
TFA-predicted GS and its comparison with the numerically found counterpart). The
solution vanishes at the border points, ξ = ±ξ0, and is equal to zero at ξ2 > ξ2

0, so that the
derivative of the TFA solution, dW/dξ, is discontinuous at the border points, which is a
usual peculiarity of the TFA [2,69].
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Figure 12. A typical example of the GS solution predicted by TFA (Thomas–Fermi approximation)
for the half-trapped system, as per Equations (36)–(39), for σ = −1, g = 0, λ = 8, µ = −4, and
its comparison to the numerically found counterpart. The respective value of parameter m (see
Equation (38)), which should be small for the applicability of TFA, is m = 0.125.

Note that in the limit of large λ, the bandgap’s width, as given by Equation (40), is
−µ0 ≈ λ + ω/2, which is close to the largest value of −µ predicted by Equation (31) for
the GS (n = 0) in the linearized half-trapped system. Finally, the TFA solution may be cast
in a simple explicit form close to the edge of the bandgap, i.e., at

0 < δµ ≡ µ− µ0 � −µ0, (41)

ξ2
0 ≈ −

(
4/µ3

0

)√
λ2 + ω2/4δµ (42)

In this case, Equations (37) and (36) simplify to

U2 ≈
{ (

µ2
0/2
)(

ξ2
0 − ξ2), at ξ2 < ξ2

0,
0 at ξ2 > ξ2

0,
(43)

V2 ≈
{ (

λ2/2
)(

ξ2
0 − ξ2), at ξ2 < ξ2

0,
0 at ξ2 > ξ2

0.
(44)

Expressions (42)–(44) make it possible to calculate the total power of the GS (see
Equation (2)),

P ≈ 16
3

(
λ2 + µ2

0

)(
λ2 +

ω2

4

)3/4

(−µ0)
−7/2(δµ)3/2. (45)

Note that relation (45) satisfies the anti-Vakhitov–Kolokolov criterion, dP/d(δµ) > 0,
which is a necessary condition for stability of localized states supported by self-repulsive
nonlinearity [70], as is the case in the present setting (the Vakhitov–Kolokolov criterion
proper, dP/d(δµ) < 0, is a well-known necessary condition for stability of states in models
with self-attraction [71–73]).

3.2.2. Existence Boundaries for Nonlinear States

The shrinkage of the existence region for GS solutions, and its expansion for DM
ones, in the linear version of the coupled half-trapped system, shown in Figure 8, suggests
identifying existence boundaries of the same states in the full nonlinear system. Numerical
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data, necessary for the delineation of the existence region of the GSs and DMs in the
nonlinear system, were collected by solving Equations (12) and (13) for spatially even
and odd modes with the fixed total power, P = 1 (as per Equation (16)), while the linear-
coupling coefficient, λ, and the nonlinearity coefficient, σ, were varied, the latter one
taking both positive and negative values (for the self-attraction/repulsion). The results are
summarized by the heatmap in Figure 13 (for the GS) and Figure 14 (for the DM), which
show threshold values of the mismatch parameter, defined as per Equation (21).

Figure 13. The heatmap of threshold values of the mismatch parameter, (ωGS)thr, in the half-trapped
system, based on Equations (12) and (13). For given values of the nonlinearity and linear-coupling
coefficients, σ and λ, the stable GS (ground state), subject to the normalization condition P = 1 (see
Equation (16)), exist above the threshold, i.e., at ω ≥ (ωGS)thr. Positive and negative values of σ

correspond to the attractive and repulsive sign of the self-interaction, respectively. The nontrivial
region is one confined by red lines, in which the result is (ωGS)thr < 1/2, i.e., the nonlinearity and
linear coupling help to maintain self-trapped GSs in the parameter area where the decoupled system,
with λ = 0, cannot create such states.

 

Figure 14. The same as in Figure 13, but for DMs (dipole modes), obtained as numerical solutions to Equations (12) and
(13) with g = 0 and g = 1 (the left and right panels, respectively). In this case, the nontrivial region, located between the red
boundaries, is one with (ωDM)thr < 3/2.

Nontrivial parametric areas for the GS and DM solutions are identified as domains
with, respectively, (ωGS)thr < 1/2 and (ωDM)thr < 3/2. The former one is surrounded
by red lines in Figure 13, and its counterpart for the DMs is located between red lines in
Figure 14. In these areas, the coupled half-trapped system maintains stable localized GSs at
ω < 1/2, and DMs at ω < 3/2, while in the absence of the coupling they may only exist at
ω > 1/2 and ω > 3/2, respectively.

Note that the vertical cross-section of the heatmap in Figure 13, drawn through σ = 0
(along which the system remains linear), that starts from λ = 0, belongs to the area with
(ωGS)thr > 1/2, in agreement with the result for the linear system, which shows that the
coupling impedes the existence of the GS, see the left panel of Figure 8 and Equation (27).
Furthermore, Figure 13 demonstrates that the SPM nonlinearity of either sign facilitates the
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creation of GS in parameter regions surrounded by red lines. Naturally, the self-attraction
(σ > 0) helps to create such states starting from arbitrarily small values of λ, while the
self-repulsion (σ < 0) can do it in the region separated by a gap from λ = 0. Nevertheless,
at λ > 0.24 the detrimental effect of the linear coupling cannot be outweighed by the SPM
nonlinearity.

In Figure 14, the vertical cross-section corresponding to the linear system (σ = 0)
entirely belongs to the nontrivial area, with (ωDM)thr < 3/2, also in agreement with
Equation (27) and the right panel of Figure 8. Figure 14 demonstrates that the nonlinearity,
generally, impedes the maintenance of the localized DMs. This conclusion is supported,
in particular, by the comparison of panels (a) and (b) in the figure, which shows that
the addition of the attractive XPM nonlinearity with the SPM conspicuously reduces the
remaining nontrivial area.

4. Conclusions

The objective of this work is to analyze new effects in the symmetric and asymmetric
systems of linearly coupled fields, which are subject to the action of the HO (harmonic-
oscillator) trapping potential and cubic self-attraction or repulsion. The system can be
implemented in nonlinear optics and BEC. In the symmetric system, with identical HO
potentials applied to both components, we focus on the consideration of JO (Josephson
oscillations) in the system, by launching, in one component, an input in the form of the GS
(ground state) or DM (dipole mode) of the HO potential. On the basis of systematically
collected numerical data, we have identified two transitions in the system’s dynamics,
which occur with the increase of the input’s power in the case of the self-attraction. The
first is SSB (spontaneous symmetry breaking) between the linearly coupled components in
the dynamical JO state. At a higher power, the nonlinearity causes a transition from regular
JO, initiated by the GS input, to chaotic dynamics. This transition is identified through
consideration of spectral characteristics of the dynamical regime. The input in the form
of the DM undergoes the chaotization at essentially smaller powers than the dynamical
regime initiated by the GS input, which is followed by the SSB at slightly higher powers. In
the case of self-repulsion, SSB does not occur, while the chaotization takes place in a weak
form, in a small part of the parameter space.

In the half-trapped system, with the HO potential acting on a single component, a
nontrivial issue is identification of the system’s linear spectrum, i.e., a parameter region
in which the linearized system maintains trapped binary (two-component) modes. This
problem is solved here analytically in the limit cases of weak and strong linear coupling,
and in the numerical form in the general case. In particular, the linear coupling between
the components leads to the shrinkage of the spectral band in which the GS exists, and
expansion of the existence band for the DM. The existence region for trapped states in the
full nonlinear system is identified numerically, and such states are constructed analytically
by means of the TFA (Thomas–Fermi approximation). In addition, exceptional solutions of
the linearized system of the BIC (bound-state-in-continuum), alias embedded, type were
found in the exact analytical form, in both the 1D and 2D settings, the 2D solution being
found with an arbitrary value of the vorticity.

The work may be extended by considering inputs in the form of higher-order HO
eigenstates. Another relevant direction for the extension of the analysis is a systematic
study of the 2D system.
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42. Hung, N.V.; Tai, L.X.T.; Bugar, I.; Longobucco, M.; Buzcy ński, R.; Malomed, B.A.; Trippenbach, M. Reversible ultrafast soliton

switching in dual-core highly nonlinear optical fibers. Opt. Lett. 2020, 45, 5221–5224.
43. Mineev, V.P. The theory of the solution of two near-ideal Bose gases. Zh. Eksp. Teor. Fiz. 1974, 67, 263–272. [English translation:

Sov. Phys. JETP 1974, 40, 132–136].
44. Malomed, B.A. Solitons and nonlinear dynamics in dual-core optical fibers. In Handbook of Optical Fibers; Peng, G.-D., Ed.;

Springer: Berlin/Heidelberg, Germany, 2018; pp. 421–474.
45. Tratnik, M.V.; Sipe, J.E. Bound solitary waves in a birefringent optical fiber. Phys. Rev. A 1988, 38, 2011–2017. [CrossRef]
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Abstract: Quantum droplets are ultradilute liquid states that emerge from the competitive interplay
of two Hamiltonian terms, the mean-field energy and beyond-mean-field correction, in a weakly
interacting binary Bose gas. We relate the formation of droplets in symmetric and asymmetric
two-component one-dimensional boson systems to the modulational instability of a spatially uniform
state driven by the beyond-mean-field term. Asymmetry between the components may be caused
by their unequal populations or unequal intra-component interaction strengths. Stability of both
symmetric and asymmetric droplets is investigated. Robustness of the symmetric solutions against
symmetry-breaking perturbations is confirmed.

Keywords: quantum droplet; binary Bose–Einstein condensate; modulational instability

1. Introduction

The mean-field (MF) theory of weakly interacting dilute atomic gases rules out formation of a
liquid state [1,2]. However, it has been recently shown that a liquid phase arises if one takes into
account beyond-MF effects originating from quantum fluctuations around the MF ground state of
weakly interacting binary (two-component) Bose gases [3]. A fundamental property that allows one
to interpret this phase as a fluid is incompressibility: It maintains a limit density which cannot be
made larger (see details below), hence adding more atoms leads to spatial expansion of the state.
Another fundamental feature of this quantum-fluid phase is that it facilitates self-trapping of quantum
droplets (QDs), which are stabilized by the interplay between the contact MF interaction and the
beyond-MF Lee–Huang–Yang (LHY) correction [4]. Binary Bose–Einstein condensates (BECs) with
competing intra- and inter-component MF interactions of opposite signs offer a remarkable possibility
for the generation of QDs, as proposed by Petrov [3]. This possibility was further elaborated in various
settings, including different effective dimensions [5–20]. In particular, the dynamics of QDs with the
flat-top (FT) or Gaussian shape, which correspond to large or relatively small numbers of particles,
respectively, was addressed in the framework of the one-dimensional (1D) reduction of the model [20].
The theoretical prediction was followed by experimental creation of QDs in mixtures of two different
atomic states of 39K, with quasi-2D [21,22] and fully 3D [23,24] shapes (see also recent reviews [25,26]).
Very recently, the creation of especially long-lived QDs was reported in a heteronuclear 41K-87Rb
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system [27]. Another theoretically predicted and experimentally realized option for the creation of
QDs makes use of the single-component condensate with dipole–dipole interactions [28–35]. It is
relevant to mention that the formation of multiple droplets was also predicted and experimentally
observed as an MF effect in strongly nonequilibrium (turbulent) states of BECs [36].

Collective modes of QDs are a subject of special interest, as they reveal internal dynamics of the
droplets [20,24,32,37,38]. In particular, the stable existence of the QDs is secured if the particle-emission
threshold lies below all excitation modes, hence a perturbation in the form of such modes will not
cause decay of the droplet.

We aim to address issues that are related to the creation of QDs in the 1D setting and were not
addressed in previous works. First, we consider modulational instability (MI) of spatially uniform
plane-wave (PW) states, in the framework of the coupled system of Gross–Pitaevskii (GP) equations
with the LHY corrections, for the two-component MF wave function of the binary condensate. This is
the system which was originally derived in [5]. Recently, MI has been experimentally demonstrated in
BECs with attractive interactions [39–41]. Other examples of the MI are provided by the binary BEC
with the linear Rabi coupling or the spin-orbit coupling [41,42], and by a system combining the MF
and LHY terms [43]. The linear-stability analysis, followed by direct simulations of the corresponding
GP equations, shows that the lower branch of the PW states exhibits MI, the instability splitting the
PW into a chain of localized droplet-like structures. Secondly, we address properties of the QDs
in the binary condensate in the framework of the two-component GP system, without assuming
effective inter-component symmetry, which reduces the system to a single-component GP equation.
The asymmetry implies different MF self-repulsion coefficients in the two components, and/or unequal
norms in them. Although properties of QDs have been studied by using the two-component GP
system in some papers [6,11,14,15,17,18], the explicit asymmetry of the system parameters has not been
addressed, except for [14] in which the situation for 39K-39K and 23Na-87Rb atomic mixtures have been
considered. We conclude that the population difference between the components does not significantly
affect density profiles of QDs in the system with equal MF self-repulsion strengths in the two
components. On the other hand, we find that profiles of the QD solutions are essentially asymmetric
when the self-repulsion coefficients are different in the components. Generally, the numerical findings
corroborate stability of the known symmetric states against symmetry-breaking perturbations. We also
address the MI of the two-component system, and demonstrate that chains of asymmetric QDs can be
generated by the MI-induced nonlinear evolution.

The paper is organized as follows. In Section 2 we introduce the model and discuss conditions
necessary for the formation of the droplets. Section 3.1 deals with the single-component version of the
symmetric system. We consider various solutions admitted by it (PW, FT, periodic, etc.), and apply the
linear-stability analysis of the PW solution to assess the MI, in a combination with direct simulations.
In Section 3.2, we address the stability of asymmetric droplets, as well as the formation of droplets in
the two-component asymmetric system via the MI. The paper is concluded by Section 4. Additional
symmetric and asymmetric exact and approximate analytical solutions are presented in Appendices.

2. Model and Methods

We consider the 1D model of the two-component condensate with coefficients of the
intra-component repulsion, g1 > 0 and g2 > 0, and inter-component attraction, g12 < 0. In the
weak-interaction limit, the corresponding energy density, which includes the MF terms and LHY
correction, was derived in [5]:

E1D =

(√
g1ρ1 −

√
g2ρ2

)2

2
+

gδg
(√

g2ρ1 +
√

g1ρ2
)2

(g1 + g2)2 − 2
√

m (g1ρ1 + g2ρ2)
3/2

3πh̄
, (1)

72



Symmetry 2020, 12, 174

where m is the atomic mass (the same for both components), ρj = |Ψj|2 (j = 1, 2) is the density of the
j-th component, represented by the MF wave function Ψj, and

g ≡ √g1g2, δg ≡ g12 + g. (2)

The last term in Equation (1) represents the LHY correction. Derivation of Equation (1) assumes that the
binary BEC is close to the point of the MF repulsion-attraction balance, with |δg| � g . In experiments,
δg may be tuned to be both positive and negative [21–23].

Equation (1) is valid in the case of tight confinement applied in the transverse dimensions, which
makes the setting effectively one-dimensional. In the 3D case, the LHY term ∼ −ρ3/2 (for ρ1 = ρ2 ≡ ρ)
is replaced by one ∼ +ρ5/2. A detailed consideration of the crossover from 3D to 1D [12,44,45] in the
two-component system is a problem which may be a subject of a separate work. Here, it is relevant to
compare the symmetric version of Equation (1) for the energy density with that recently presented
in [12]. It demonstrates that an accurately derived LHY contribution to the energy density of the 1D
system contains, in addition to the ρ3/2 term which was derived in [5], a term ∼ ρ2, which can be
absorbed into the mean-field energy density, and a higher-order term ∼ ρ3, which was omitted in the
analysis reported in [12]. A conclusion formulated in that work is that the energy density originally
derived in [5] is literally valid if the ratio of the mean-field energy to that of the transverse confinement
takes values ≤ 0.03. For typical experimental parameters, this implies that the difference between
absolute values of scattering lengths of the mean-field intra-component repulsion and inter-component
attraction should be ≤ 1 nm, which may be achieved in the experiment. The 1D QDs originate from
the balance of the second term in Equation (1), corresponding to the weakly repulsive MF interaction,
with δg > 0, and the LHY term, which introduces effective attraction in the 1D setting, on the contrary
to the repulsion in the 3D setting [5,20].

The energy functional,
∫ +∞
−∞ E1DdZ, gives rise to the system of GP equations, which include the

LHY correction,

ih̄
∂Ψ1

∂T
= − h̄2

2m
∂2Ψ1

∂Z2 + (g1 + Gg2)|Ψ1|2Ψ1 − (1− G)g|Ψ2|2Ψ1 −
g1
√

m
πh̄

√
g1|Ψ1|2 + g2|Ψ2|2Ψ1,

ih̄
∂Ψ2

∂T
= − h̄2

2m
∂2Ψ2

∂Z2 + (g2 + Gg1)|Ψ2|2Ψ2 − (1− G)g|Ψ1|2Ψ2 −
g2
√

m
πh̄

√
g1|Ψ1|2 + g2|Ψ2|2Ψ2,

(3)

where T and Z are the time and coordinate measured in physical units, and parameter

G =
2gδg

(g1 + g2)2 , (4)

measures the deviation from the MF repulsion–attraction balance point, see Equation (2).
The normalization of the components of the wave function is determined by numbers of bosons
in each component:

Nj =
∫ +∞

−∞
|Ψj|2dZ. (5)

Further, rescaling (
mg2

h̄3

)
T ≡ t,

(
mg
h̄2

)
Z ≡ z,

(
h̄√
mg

)
Ψ1,2 ≡ ψ1,2 (6)

casts Equation (3) in the normalized form,

i
∂ψ1

∂t
= −1

2
∂2ψ1

∂z2 + (P + GP−1)|ψ1|2ψ1 − (1− G)|ψ2|2ψ1 −
P
π

√
P|ψ1|2 + P−1|ψ2|2ψ1,

i
∂ψ2

∂t
= −1

2
∂2ψ2

∂z2 + (P−1 + GP)|ψ2|2ψ2 − (1− G)|ψ1|2ψ2 −
1

πP

√
P−1|ψ2|2 + P|ψ1|2ψ2,

(7)

73



Symmetry 2020, 12, 174

where parameter

P ≡
√

g1

g2
=

g1

g
(8)

determines the asymmetry of the system, in the case of P 6= 1. Note that, as concerns stationary
solutions with chemical potentials µ1,2, sought for as

ψ1,2 (z, t) = exp(−iµ1,2t)φ1,2(z), (9)

states with mutually proportional components, φ1(z) = Kφ2(z), are only possible in the fully
symmetric case with P = 1, µ1 = µ2, and K = 1. In previous works [5,20], 1D solutions for QDs were
considered only in the framework of the single GP equation which corresponds to symmetric system
Equation (7) with P = 1 and ψ1 = ψ2.

3. Modulation Instability Versus QDs

In this section, we address MI of PWs in both symmetric and asymmetric GP systems, and relate
it to formation of the QDs in the binary bosonic gas. To the best of our knowledge, this is the first
work aiming to associate the MI with the formation of the 1D droplets in the system with unequal
components. We first consider MI in the framework of the single-component reduction of the symmetric
version of Equation (7), after briefly reviewing stationary solutions of the GP equation. Next, we extend
the analysis for the two-component GP system, which makes it possible to produce asymmetric QDs,
starting from the MI of asymmetric PW states.

3.1. The Single-Component GP Model

Under the single-component reduction of the binary system, with g1 = g2 ≡ g and ψ1 = ψ2 ≡ ψ,
Equation (1) simplifies to [5]

ε1D ≡
h̄4

m2g3 E1D =
δg
g

n2 − 25/2

3π
n3/2, (10)

with the single dimensionless density, n = |ψ|2 ≡
(

h̄2/mg
)

ρ. Assuming a spatially uniform state,
the equilibrium density and the corresponding chemical potential are given by

n0 =
8

9π2

(
g

δg

)2
, µ0 = − 4

9π2
g

δg
. (11)

Density n0 corresponds to the minimum of the energy per particle, ∂n
[
n−1ε1D(n)

]
= 0, and µ0 is

negative for δg/g > 0. The corresponding single GP equation is

i
∂ψ

∂t
= −1

2
∂2ψ

∂z2 +
δg
g
|ψ|2ψ−

√
2

π
|ψ|ψ, (12)

with normalization condition
∫ +∞
−∞ |ψ(z)|2dz = N, where N ≡ N1 = N2 is the number of atoms in

each component.
Although coefficient δg/g can be scaled out in Equation (12), as done in [20], we keep it here as a

free parameter. This option is convenient for the subsequent consideration of the MI, treating δg/g and
density n as independent constants, which may be matched to experimentally relevant parameters.

Below, we address two stationary solutions of Equation (12). One is the QD bound state of a
finite size, which was studied in detail in [5] and [20]. The other solution is the PW with uniform
density. Here, we briefly recapitulated basic properties of these solutions for the completeness
of the presentation. In Section 3.1.3 we address the MI of the PWs and associate it with the
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spontaneous generation of chains of localized modes. Additional families of exact analytical solutions
of Equation (12) are given in Appendix A.

3.1.1. The Droplet Solution

As shown in [5,20,46], at δg/g > 0 Equation (12) gives rise to an exact soliton-like solution
representing a QD, maintained by the balance between the effective cubic self-repulsion and
quadratic attraction:

ψ(z, t) =
Ae−iµt

1 + B cosh(
√
−2µz)

, A =
√

n0
µ

µ0
, B =

√
1− µ

µ0
. (13)

This solution exists in a finite range of negative values of the chemical potential µ0 < µ < 0, featuring
the FT shape at 0 < µ − µ0 � |µ0|, with size L ≈ (−2µ0)

−1/2 ln
[
(1− µ/µ0)

−1
]

[5,20]. A typical
density profile of the FT solution is displayed in the inset of Figure 1. At µ = µ0, the size of the droplet
diverges, and the solution carries over into the delocalized PW with uniform density, n = n0. The fact
that the density of the condensate filling the FT state cannot exceed the largest value, n0, implies its
incompressibility. For this reason, the condensate may be considered as a fluid, as mentioned above.
With the increase of µ from µ0 towards µ = 0, the maximum density of the localized mode,

nmax ≡ n(z = 0) = n0

(
µ

µ0

)2 (
1 +

√
1− µ

µ0

)−2
, (14)

monotonously decreases from n0 to 0. The QD’s FWHM size, defined by condition n (z = LFWHM/2) =
n (z = 0) /2, also shrinks at first with increasing µ, attaining a minimum value (LFWHM)min ≈
2.36/

√−µ0 at µ/µ0 ≈ 0.776. Further increase of µ towards µ = 0 makes the QD broader, its width
diverging as LFWHM ≈ 1.71/

√−µ at µ→ −0.

µ0

FT

µc

nc

n0

PW (n+)

PW (n−)

Figure 1. The maximum density nmax ≡ n(z = 0) in the FT (flat-top) state, as per Equation (14), and the
PW (plane-wave)/density are displayed as functions of µ by the red-solid and blue-dashed curves,
respectively, for δg/g = 0.05. In this case, Equation (11) yields n0 = 36.025 and µ0 = −0.900633.
The PW solution includes upper and lower branches corresponding to n±, as given by Equation (20),
the lower one (marked by circles) being subject to the MI (modulational instability). The spinodal
point is one with coordinates (µc, nc). For other values of δg/g, the plot can be generated from the
present one by rescaling. The inset shows the density profile of the FT solution for δg/g = 0.05 and
µ = µ0 + 0.00001, very close to the delocalization limit (the transition to PW).
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The norm of the exact QD solutions given by Equation (13) is

N(µ) = n0

√
− 2

µ0

[
ln

(
1 +

√
µ/µ0√

1− µ/µ0

)
−
√

µ

µ0

]
. (15)

It satisfies the well-known Vakhitov–Kolokolov (VK) necessary stability criterion [47],

dN(µ)

dµ
= −n0

µ2
0

√
−µ

2
1

1− µ/µ0
< 0, (16)

due to µ0 < 0 and
0 < µ/µ0 < 1. (17)

Full stability of the QD family has been verified by direct simulations of the evolution of perturbed
QDs in the framework of Equation (12).

It is relevant to mention that the exact solution of Equation (13) is valid too at δg/g < 0, when the
cubic term in Equation (12) is self-attractive, like the quadratic one. In that case, µ0 is positive, as per
Equation (11), while the chemical potential of the self-trapped state remains negative, as the solution
of Equation (13) may exist only at µ < 0. Then, it follows from Equation (13) that the soliton-like
mode exists for all values of µ < 0 (unlike the finite interval Equation (17), in which the solution exists
for δg/g > 0), and it does not feature the FT shape. Rather, with the increase of −µ, it demonstrates
a crossover between the KdV-soliton shape ∼ sech2 (√−µ/2z

)
and the nonlinear-Schrödinger one,

∼ sech
(√
−2µz

)
. For δg/g < 0, the N(µ) dependence for the soliton family carries over into the

following form,

N(µ)

∣∣∣∣
δg<0

= n0

√
2

µ0

[√
− µ

µ0
− arctan

(√
− µ

µ0

)]
, (18)

which is an analytical continuation of Equation (15). This dependence also satisfies the VK criterion.

3.1.2. The Plane-Wave Solution

The PW solution of Equation (12 )can be presented in a form ψ(z, t) =
√

n exp (iKPWz− iµt) with
wavenumber KPW and constant density n, which determine the corresponding chemical potential:

µPW =
δg
g

n−
√

2
π

√
n +

1
2

K2
PW. (19)

The Galilean invariance of Equation (12) implies that any quiescent solution ψ0 (z, t) generates a family
of moving ones, with arbitrary velocity c. Therefore, KPW may be canceled by means of transformation
ψc (z, t) = exp

(
icz− ic2t/2

)
ψ0 (z− ct, t) with c = −KPW.

For given µ, Equation (19) produces two different branches of the density as a function of µ (here,
KPW = 0 is set):

√
n±(µ) =

1√
2π

g
δg
±
√

1
2π2

(
g

δg

)2
+

g
δg

µ. (20)

For δg/g = 0.05, these branches are shown in Figure 1. As follows from Equation (20), they exist (for
δg/g > 0) above a minimum value of µ: µc = −(2π2δg/g)−1 = (9/8)µ0, the respective density being

nc = n±(µc) =
1

2π2

(
g

δg

)2
=

9
16

n0. (21)

Values µ = µc and n = nc correspond to the spinodal point [5], and n+(µ0) = n0 (see Equation (13)).
Note that the above-mentioned existence region of the soliton solution in terms of the chemical
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potential, µ0 < µ < 0, lies completely inside that of the PW state, which is µc ≤ µ. Thus, the soliton
always coexists with the PW (this fact is also obvious in Figure 1).

3.1.3. Modulational Instability of the Plane Waves

Here, we aim to analyze the MI of PW solutions in the framework of the single-component GP
Equation (12) and demonstrate how the development of the MI can help to generate QDs. We perform
the analysis for the PWs with zero wavenumber KPW = 0, which is sufficient due to the aforementioned
Galilean invariance of the underlying equation.

A small perturbation is added to the stationary PW state as

ψ(z, t) =
[√

n + δψ(z, t)
]

exp (−iµt) . (22)

The substitution of this expression in Equation (12) and linearization with respect to perturbation δψ

leads to the corresponding Bogoliubov–de Gennes equation,

i
∂

∂t
δψ = −1

2
∂2

∂z2 δψ +
δg
g

n(δψ + δψ∗)−
√

n√
2π

(δψ + δψ∗). (23)

By looking for perturbation eigenmodes with wavenumber k and frequency Ω,

δψ = ζ cos(kz−Ωt) + iη sin(kz−Ωt), (24)

and real infinitesimal amplitudes ζ and η, Equation (23) yields a dispersion relation for the
eigenfrequencies:

Ω2 =
k4

4
+

(
δg
g

n−
√

n√
2π

)
k2. (25)

The MI takes place when Ω acquires an imaginary part. As follows from Equation (25), this occurs
when the density satisfies condition n < [2π2(δg/g)2]−1 = nc see (Equation (21)), which corresponds
to branch n− of the PW state. The instability region in terms of k is given by

k2 < 4
( √

n√
2π
− δg

g
n
)
≡ k2

0. (26)

The MI gain σ ≡ |ImΩ| is plotted in Figure 2 versus |k| and δg/g, for given density n = 40 in panel (a),
and versus |k| and n, for given δg/g = 0.05 in (b). It is easy to find from Equation (25) that the largest
gain is attained at wavenumber

kmax =
k0√

2
, (27)

with k0 defined as per Equation (26). Note that Figure 2a includes the case of the self-attractive cubic
nonlinearity, with δg/g < 0, which naturally displays much stronger MI, as in this case it is driven by
both the quadratic and cubic nonlinear terms. In fact, the extension of the MI chart to δg/g < 0 makes
it possible to compare the MI in the present system and its well-known counterpart in the setting with
the fully attractive nonlinearity.

Comparing parameter values at which the QD solutions are predicted to appear, and the MI
condition for the PW with the corresponding density, the MI is expected to provide a mechanism for
the creation of the QDs. This is confirmed by direct simulations of the GP Equation (12), as shown in
Figure 3. The PW with n = 10 is taken as the input, so that it is subject to the MI for δg/g = 0.05, as seen
in Figure 2b. As shown in Figure 3, small initial perturbations trigger the emergence of multiple-QD
patterns (chains) at t ≥ 100. For these parameters, we get kmax = 0.6508 and σ (kmax) = 0.2118,
which determines the wavelength of the fastest growing modulation, λ = 2π/kmax ≈ 9.66, and the
growth-time scale, τ = 2π/σ (kmax) ≈ 30. The number of the generated droplets in Figure 3 is
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consistent with estimate L/λ ' 10, where L = 100 is the size of the simulation domain. We have
checked that the number of generated droplets is approximately given by L/λ for other values of
parameters as well. This dynamical scenario is similar to those observed in other models in the course
of the formation of soliton chains by MI of PWs [39,40]. The long-time evolution in Figure 3a shows
that the number of the droplets becomes smaller due to merger of colliding droplets into a single one,
which agrees with dynamical properties of 1D QDs reported in [20].

(a) (b)

| k | | k |

ndg
g

0 321 0 0.50.25
s s

dg/g = 0.05n = 40

Figure 2. Color-coded values of the MI gain, σ = Im(Ω), are displayed for fixed n = 40 in (a), and for
fixed δg/g = 0.05 in (b). Note that panel (a) covers both signs of the cubic nonlinearity, δg > 0 and
δg < 0. Solid and dashed white curves represent the MI boundary (Equation (26)) and the peak value
of the MI gain (Equation (27)), respectively.

To implement this mechanism of the generation of a chain of solitons in the experiment, i.e., make
the density smaller than the critical value nc, one may either apply interaction quench (by means of
the Feshbach resonance), suddenly decreasing δg/g, as was done in recent experimental works for
different purposes [21–23,48]. Another option, which is specific to the 1D setting, is sudden decrease
of density n by relaxing the transverse trapping.

3.2. The Two-Component Gross–Pitaevskii Model

In this section, we revert to the full two-component GP system Equation (7), aiming to explore
the formation of QD states in it. The two-component setting may include parameter imbalance
between the two components, as indicated theoretically [3] and observed experimentally [21–23,27].
Here, we present the analysis of asymmetric QDs in two cases: (i) the two-component GP system
with different populations, N1/N2 6= 1, and equal intra-component coupling strength, g1 = g2 (i.e.,
P = 1, see Equation (8)), and (ii) the system with different intra-component coupling strengths,
g1 6= g2 (i.e., P 6= 1). These options suggest a possibility to check the stability of the solutions of the
symmetric system, reduced to the single-component form, against symmetry-breaking perturbations.
That objective is relevant because, in the real experiment, scattering lengths of the self-interaction in
the two components are never exactly equal [21–24]. We address, first, an asymmetric single-droplet
solution, and, subsequently, MI of the PW states in the two-component system.

Because, as said above, solutions with mutually proportional components (written as φ1 = Kφ2)
are possible solely in the strictly symmetric setting, asymmetric QDs cannot be found in an exact
analytical form. As shown in Appendix B (see Equations (A6)–(A12)), asymptotic analytical solutions
can be obtained for strongly asymmetric states, with one equation replaced by its linearized version.
In this section, we chiefly rely on numerical solution of Equation (7).
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Figure 3. A typical example of the MI development, starting from an unstable PW state, with density
n = 10 and δg/g = 0.05, which is subject to the MI, pursuant to Figure 2. In (a), the spatiotemporal
pattern of the evolution of the condensate density is shown. In the right-hand panels, cross sections of
the density profiles are displayed at t = 100 (b), t = 120 (c), and t = 140 (d). The simulations were
performed in domain −50 < z < +50 with 2500 grid points and periodic boundary conditions.

3.2.1. Asymmetric QDs with Unequal Populations (N1 6= N2) for g1 = g2 (P = 1)

In the system with P = 1 (see Equation (8)), we calculated the droplet states as stationary solutions
of Equation (7) by means of the imaginary-time-evolution method with the Neumann’s boundary
conditions, under the constraint that the norm is fixed in the first component,

∫ +∞
−∞ dz|ψ1(z)|2 = N1,

while chemical potential µ2 is fixed in the other one, allowing its norm N2 to vary.
Figure 4 displays essential features of weakly asymmetric droplets for δg/g = 0.05 and fixed

N1 = 100. The symmetric (completely overlapping) solution with N1 = N2 is found at µ1 = µ2 =

−0.88878. When µ2 deviates from this value, profiles of the two components become slightly different,
as shown in Figure 4a. The profiles of the droplet solution hardly change for different values of µ2,
but Figure 4b demonstrates that, at µ2 → −0, ψ2 develops small-amplitude extended tails, which are
absent in ψ1. Due to the contribution of the tails, the approach of µ2 < 0 towards zero leads to the
increase of norm N2, as seen in Figure 4c. Note that the growth of N2(µ2) at µ2 → −0 is opposite to the
decay of the QD’s norm in the single-component model at µ→ −0, cf. Equation (15). At µ2 ≥ 0, the ψ2

79



Symmetry 2020, 12, 174

component undergoes delocalization, with its tails developing a nonzero background at |z| → ∞,
as seen in the density profile displayed in Figure 4b for µ2 = 0, and norm N2(µ2) diverging at µ2 → −0
in Figure 4c.

(a)

µ2=�0.4

(b)

µ2=�0.4

µ2=�0.04

µ2= 0

(c)

Figure 4. (a) Stationary weakly asymmetric (with respect to the two components) solutions of
Equation (7), obtained for µ2 = −0.4 with fixed N1 = 100. Dashed and solid curves display density
profiles of the first (n1) and second (n2) components, respectively. (b) The semi-log plot of the density
profiles of n2 for µ2 = −0.4, −0.04, and 0 at z > 0. (c) Dependences of N2 (black dots: the left vertical
axis) and asymmetry parameter δ21, defined as per Equation (28) (the red dashed line pertaining to
the right vertical axis), on µ2 for fixed N1 = 100. The parameters are P = 1 (g1 = g2) and δg/g = 0.05.
The symmetric point with N1 = N2 = 100 and δ21 = 0 corresponds to µ1 = µ2 = −0.88878.

In Figure 4c, we also plot the parameter of the asymmetry between the two components, defined as

δ21 =
n2(z = 0)− n1(z = 0)
n2(z = 0) + n1(z = 0)

. (28)

It increases almost linearly with µ2, although its absolute value does not exceed 0.02. Thus, the droplet
tends to keep a nearly symmetric profile, with respect to the two components, in the symmetric
system, even if the population imbalance is admitted. In fact, this circumstance makes the analysis
self-consistent, as the use of the GP system with the LHY correction implies that the MF intra- and
inter-component interactions nearly cancel each other, which is possible only if shapes of the two
components are nearly identical.

3.2.2. Asymmetric QDs in the System with P 6= 1 (g1 6= g2)

Next, we consider the QDs for P 6= 1, setting P > 1 without loss of generality. Then, the MF
energy is minimized for n2 > n1; the situation with n1 > n2 can be considered too, replacing P by P−1.

Following the procedure similar to that employed in Section 3.2.1, we produce QD solutions
for δg/g = 0.05, N1 = 100, and several different values of P, varying µ2. In Figure 5a, we plot
density profiles for three different values of P. Naturally, the difference of the two components
increases with the increase of P. In Figure 5b we display N2 and parameter δ21 (see Equation (28))
of the asymmetric QDs for P = 1.25 and 1.67. All these states have been checked to be stable in
time-dependent simulations.

The density difference at the center of the droplet can be determined by the condition of
the existence of the liquid phase in the free space. This condition is obtained by minimizing the
grand-potential density E1D − µ1ρ1 − µ2ρ2 [5,14], which leads to the zero-pressure condition,

p(ρ1, ρ2) = −E1D + ∑
j=1,2

(
∂E1D

∂ρj

)
ρj

≡ −E1D + µ1ρ1 + µ2ρ2 = 0. (29)
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From this, we obtain relation

(
√

g1ρ1 −
√

g2ρ2)
2

2
+

gδg(
√

g2ρ1 +
√

g1ρ2)
2

(g1 + g2)2 −
√

m
3πh̄

(g1ρ1 + g2ρ2)
3/2 = 0, (30)

which can be rewritten in the scaled form as

P + GP−1

2
n2

1 +
P−1 + GP

2
n2

2 + (G− 1)n1n2 =
1

3π

(
Pn1 +

n2

P

)3/2
. (31)

For given n1, we solved Equation (31) to find the respective value of n2, which is shown in
Figure 6 for δg/g = 0.05 and several values of P. There are two branches of the solutions,
that enclose the negative-pressure region, in which QDs may exist. The maximum value of nj
at the tip of the negative-pressure region corresponds to the density in the droplet’s FT segment.
The ascending negative-pressure region for each P nearly follows relation n2 = Pn1, which is derived
by the minimization condition for the dominant first term in Equation (30) It is seen that a larger
difference in the profiles of the two components occurs for larger P, as expected. Also, for given
n1, the negative-pressure region becomes wider with respect to n2 for larger P (note that the figure
displays a log–log plot).

P =1.25 P = 1.67 P = 2.5
(a)

(b)

P =1.25

P =1.67

Figure 5. (a) Stationary solutions of Equation (7), obtained for δg/g = 0.05 and N1 = 100. From the
left panel to the right one, the parameter in Equation (8) is P = 1.25, 1.67, and 2.5, and the chemical
potential for the second component is µ2 = −0.018, −0.011, and −0.006, respectively, just below the
threshold above which the tails of ψ2 extend to infinity. Dashed and solid curves represent the density
of the first (n1) and second (n2) components. (b) Dependences of N2 (black dots: the left vertical axis)
and asymmetry parameter δ21, defined as per Equation (28) (the red dashed line pertaining to the right
vertical axis), on µ2 for fixed N1 = 100 and P = 1.25 or P = 1.67.

As the QDs have a finite norm, it is relevant to characterize the asymmetry in terms of the norm,
rather than density. Here, we aim to find a largest value of the norm difference,

∆21 = (N2 − N1)/NT, (32)
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where NT = N1 + N2 is the total norm, which admits the existence of the QDs. For given N1, we
obtain the upper bound for N2 above which the solution becomes delocalized, and calculate the
corresponding critical value of ∆21. The results are shown in Figure 7. For the system with P = 1 ,
the curve demonstrates an empirical dependence ∆21 ∝ N−α

T with exponent α ≈ 0.58. Accordingly,
the asymmetry tends to vanish asymptotically for very “heavy” droplets, at NT → ∞. As the
system becomes slightly asymmetric, with P = 1.25, exponent α is significantly reduced for small NT,
and converges to a certain finite value at NT → ∞. Thus, it is again confirmed that values P > 1
maintain conspicuous asymmetry between the QD’s components. Finally, strongly asymmetric non-FT
(Gaussian-shaped [20]) solutions can be obtained in an approximate analytical form for any value of P,
as shown in Appendix C.

P = 10

P = 2.5
P = 1.25

P = 1

Figure 6. The negative-pressure region in the (n1, n2) plane for δg/g = 0.05 and values of asymmetry
parameter in Equation ( 8) P = 1 (the solid curve), 1.25 (dashed), 2.5 (dashed-dotted), and 10 (dotted).
Boundaries are determined by the zero-pressure condition, as given by Equation (31). The negative
pressure, at which localized states may exist, occurs inside the boundaries. Thin lines represent relation
n2 = Pn1.

P = 1

P = 1.25
P = 2.5

Figure 7. The inverse of the largest relative norm difference ∆21, up to which the asymmetric droplets
exist (see Equation (32)), shown as a function of the total number, NT, at different values of asymmetry
parameter of Equation (8). Here we set δg/g = 0.05.
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3.2.3. The MI of the Asymmetric PW States

The MI of two-component asymmetric PWs is a relevant subject too. Such solutions are written as
ψj(z, t) = √nje

−iµjt, (j = 1, 2). The substitution of this in Equation (7) yields

µ1 = (P + GP−1)n1 + (−1 + G)n2 −
P
π

√
Pn1 +

n2

P
,

µ2 = (P−1 + GP)n2 + (−1 + G)n1 −
1

πP

√
Pn1 +

n2

P
. (33)

Accordingly, in the symmetric system with P = 1, densities of the asymmetric PW state are expressed
in terms of the chemical potentials as

nj =
1
4

[
1

π2G2 +
µ1 + µ2

G
+ (−1)j+1(µ1 − µ2)

]
±
√

1 + 2π2G(µ1 + µ2)

4π2G2 .

We introduce the perturbation around the PW states as

ψj(z, t) =
[√

nj + δψj(z, t)
]

e−iµjt, (34)

δψj = ζ j cos(kz−Ωt) + iηj sin(kz−Ωt), (35)

with infinitesimal amplitudes ζ j and ηj, cf. Equation (24). The substitution of this in Equation (7) and
the linearization with respect to ζ j and ηj yields the dispersion equation for the perturbation:

Ω2
± =

k2

4

[
k2 + 2(P1 + P2 −Q1 −Q2)

]
± k2

2

√
(P1 − P2 −Q1 + Q2)2 + 4(R− S)2, (36)

where

P1 = (P + GP−1)n1, P2 = (P−1 + GP)n2,

Q1 =
P2n1

2π
√

Pn1 + P−1n2
, Q2 =

P−2n2

2π
√

Pn1 + P−1n2
. (37)

R = (−1 + G)
√

n1n2, S =

√
n1n2

2π
√

Pn1 + P−1n2
,

For P = 1 and n1 = n2, these results reproduce Equation (25) for the Ω− branch. A parameter
region in which at least one squared eigenfrequency Ω2

± is negative gives rise to the MI of the
two-component state.

3.2.4. The MI for P = 1

In Figure 8, we plot the gain spectrum σ = Im(Ω) for the asymmetric PWs in the symmetric
system with P = 1 and δg/g = 0.05, in the plane of wavenumber k and density ratio n12 = n2/n2.
For the consistency with the single-component situation displayed in Figure 3, we here fix the total
density as (n1 + n2)/2 = 10. For given n12, the MI occurs at |k| < k0, and the gain attains its maximum
at k = kmax = k0/

√
2. The largest gain is obtained at equal densities, n12 = 1. Both the k-band of the

instability and magnitude of the gain slowly decrease as the deviation of n12 from unity increases.
This means that the MI occurs in the PW states with a large density difference, thus giving rise to the
formation of solitons with large asymmetry even for equal intra-component MF interaction strengths,
P = 1 (see Equation (8)).
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Figure 8. Color-coded values of the MI gain, σ = Im(Ω), for asymmetric PWs, as calculated from
Equation (36) in the plane of wave number |k| and density ratio n12 = n1/n2, are displayed for (a) P = 1
and (b) P = 1.25 with fixed δg/g = 0.05 and (n1 + n2)/2 = 10. The solid and dashed white curves
represent the MI boundary k = k0 and the peak value of the MI gain at k = kmax = k0/

√
2, respectively.

In (c), we plot σ(kmax) (circles) and nmax
12 (triangles) versus P.

In Figure 9 we display typical examples of the numerically simulated development of the MI in
the symmetric two-component system with P = 1 and population imbalance. Figure 9a shows the
evolution of central-point values of the density of the first component, n1(z = 0), for different values
of the density ratio, n12 = n1/n2. Time required for the actual onset of the instability increases with
the increase in n12, as is clearly shown by the density-plot evolution in Figure 9d,e for n12 = 1 and
Figure 9f,g for n12 = 9. This observation can be understood in terms of the MI gain σ, as shown in
Figure 8c, where σ at k = kmax becomes smaller with increasing n12.

Spatial profiles at fixed time, which are plotted in Figure 9b,c for these two cases, show
fragmentation of the profiles into sets of localized structures. The decrease in the number of fragments
with the increase of n12 is explained by the decrease of kmax, see Figure 8a. For n12 = 1, the results
are the same as in the single-component case, as coinciding profiles in the two components of the
symmetric system are stable against spontaneous symmetry breaking. On the other hand, when
n12 6= 1 an in-phase two-component localized structure appears, keeping the initial density imbalance.
Since one can select an arbitrary ratio of densities of the two components for the initial PW state,
a highly asymmetric structure, like the one displayed in Figure 9c, may emerge even for P = 1, as a
result of the MI-induced nonlinear evolution.

3.2.5. The MI for P 6= 1

Figure 8b represents the MI gain for P = 1.25 and a fixed total density, (n1 + n2)/2 = 10, in the
case of slightly different strengths of the intra-component repulsion. The peak value of the MI gain is
attained at n12 = nmax

12 = 0.577, below the equal-densities point n12 = 1. This is consistent with the fact
that, at P > 1, unequal values n1 < n2 are suitable to the formation of an asymmetric soliton structure,
as seen in Figure 5a. In Figure 8c, we plot the peak MI gain, σ(kmax), along with the respective value
of the density ratio, nmax

12 , as a function of P. Value nmax
12 monotonously decreases as a function of P,

while the peak gain attains a minimum at P = 1.
In Figure 10, we present the development of the MI in the two-component system for P = 1.25

and a fixed total density, (n1 + n2)/2 = 10. Figure 10a displays the evolution of the central-point
density of the first component, n1(z = 0), for different values of the density ratio, n12 = n1/n2. It
shows that time required for the development of the MI increases with the increase in the asymmetry
of the density. This is also made evident by the density plots of the temporal evolution of the first
component, shown in Figure 10e–g. This result is consistent with Equation (36), which shows a
decrease of the MI gain with the increase of the asymmetry even for P 6= 1. Spatial profiles at fixed
time, displayed in Figure 10b–d, show fragmentation of the profiles. Figure 10c clearly indicates that,
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even for n12 = 1, the MI generates asymmetric droplet-like structures similar to Figure 5a, where the
complete overlapping of the two densities does not occur.
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Figure 9. Numerically simulated development of the MI of asymmetric PW states in the two-component
system, with P = 1 and δg/g = 0.05 . The initial PW states are taken with fixed total density,
(n1 + n2)/2 = 10. (a) The evolution of the central density of the first component, n1(z = 0), for different
density ratios in the two components, n12 = n1/n2. (b,c) Snapshots of density profiles for the cases of
(b) n12 ≡ n1/n2 = 1 at t = 200 and (c) n12 = 9 at t = 400. Panels (d,e) and (f,g) are top views of the
spatiotemporal evolution of the densities, n1 (z, t) and n2(z, t), for n12 = 1 and n12 = 9, respectively.
Simulations were performed in the domain −50 ≤ z ≤ +50 with 2048 grid points, subject to periodic
boundary conditions. In this figure and in Figure 10, the scaled time unit corresponds to ∼ 1 µs in
physical units.
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Figure 10. Numerically simulated development of the modulational instability in the two-component
system with δg/g = 0.05 and P = 1.25. The initial PW states are taken with a fixed total density,
(n1 + n2)/2 = 10. (a) The evolution of the central density of the first component, n1(z = 0), for different
density ratios in the two components, n12 = n1/n2. (b–d) Snapshots of density profiles for the cases of
(b) n12 ≡ n1/n2 ∼ 0.1 at t = 300, (c) n12 = 1 at t = 200 and (d) n12 = 9 at t = 600. Panels (e–g) represent
the top view of the spatiotemporal evolution of the densities, n1 (z, t), corresponding to (b–d),
respectively (the evolution of n2 (z, t) shows similar patterns). Simulations were performed in the
domain −50 ≤ z ≤ +50 with 2048 grid points, subject to periodic boundary conditions.

4. Conclusions

The main purpose of this work is to associate the MI (modulation instability) of plane waves
(PWs) to the mechanism of the creation of QDs (quantum droplets) in the system described by
the coupled GP (Gross–Pitaevskii) equations including the LHY (Lee–Huang–Yang) terms in the
1D setting. This system is the model of weakly interacting binary Bose gases with approximately
balanced interactions between the intra-component self-repulsion and the inter-component attraction.
We have investigated, analytically and numerically, the MI of the lower branch of PW states in both
symmetric (effectively single-component) and asymmetric (two-component) GP systems, and ensuing
formation of a chain of droplet-like states. In particular, numerical solution for QDs which are

86



Symmetry 2020, 12, 174

asymmetric with respect to the two components are obtained, both in the system with equal repulsion
strengths but unequal populations in the two components, and in the one with different self-repulsion
strengths. The results corroborate that the previously known symmetric states are robust against
symmetry-breaking disturbances.

These predictions can be tested experimentally by preparing uniform binary Bose gases with
equal or different densities of two components, and suddenly reducing the strength of the effective MF
(mean-field) interaction by means of the Feshbach-resonance quench, in order to enhance the relative
strength of the LHY terms. In particular, for typical values of physical parameters, an estimate of the
characteristic time of the modulation instability growth for typical values of the physical parameters is
∼1 µs. This time is much smaller than a typical lifetime of the droplet, which is &100 µs [21–23,27],
thus making the observation of the MI feasible. The present analysis being restricted to the 1D setting,
effects of the tight transverse confinement and crossover to the 3D configuration [12,44,45] deserves
further consideration.
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Appendix A. Other Exact Solutions for the Single-Component GP Equation

Here we briefly list other types of exact solutions of the single-component Equation (12),
in addition to the FT and PW solutions in Equations (13) and (22) which were considered in detail above
(solutions to Equation (12) in the form of dark and anti-dark solitons were reported in [46]).The stability
of a majority of these solutions is not addressed here, as it should be a subject for a separate work.

Appendix A.1. δg/g > 0

In the case of comparable quadratic self-attraction and cubic repulsion in Equation (12) with
δg > 0, exact spatially-periodic solutions with odd parity can be expressed in terms of the Jacobi’s
elliptic sine, whose modulus q is an intrinsic parameter of the family:

ψ(z, t) = exp (−iµsnt) [A sn(βz, q) + B], (A1)

where

B =

√
2

3π

g
δg

> 0, A =

√
2

1 + q2 B > 0, µsn = −2
δg
g

B2 < 0, β2 =
2

(1 + q2)

δg
g

B2.

In the limit of q→ 1, Equation (A1) goes over into the kink (the same as found in [46]),

ψ(z, t) = exp (−iµkinkt) [A tanh(βz) + B] , (A2)

with parameters

A = B =

√
2

3π

g
δg

> 0, µkink = −2
δg
g

B2, β2 =
δg
g

B2.
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Appendix A.2. δg/g < 0

In the case when the inter-species MF attraction is stronger than the intra-species repulsion,
resulting in δg < 0, spatially-periodic solutions are expressed in terms of even Jacobi’s elliptic functions,
dn(x, q) and cn(x, q). First, it is

ψ(z, t) = exp (−iµdnt) [A dn(βz, q) + B], (A3)

with the elliptic modulus taking all values 0 < q < 1, other parameters being

B =

√
2

3π

g
δg

< 0, A = −
√

2
2− q2 B > 0, µdn = −2B2 δg

g
> 0, β2 = − 2

(2− q2)

δg
g

B2.

The second solution is expressed in terms of the elliptic cosine, with q2 > 1/2:

ψ(z, t) = exp (−iµcnt) [A cn(βz, q) + B] , (A4)

B =

√
2

3π

g
δg

< 0, A = −
√

2
2q2 − 1

B > 0, µcn = −2
δg
g

B2 > 0, β2 = − 2
(2q2 − 1)

δg
g

B2.

In the limit of q → 1, both solutions in Equations (A3) and (A4) carry over into a state of the
“bubble” type [49], which changes the sign at two points (the same solution was reported as an
“W-shaped soliton” in [46]):

ψ(z, t) = exp (−iµbubblet) [Asech(βz) + B], (A5)

with parameters

B =

√
2

3π

g
δg

< 0, A = −
√

2B > 0, µ bubble = β2 = −2
δg
g

B2 > 0.

Appendix B. Analytical Solutions for Strongly Asymmetric Fundamental and Dipole States

Here we consider analytical solutions of Equation (7) with strong asymmetry, N1 � N2, which can
be found under small-amplitude conditions, n1(z = 0)� n2(z = 0)� n0. Then, cubic terms may be
neglected in Equation (7), and approximation

√
P|ψ1|2 + P−1|ψ2|2 ≈ P−1/2 |ψ2| is used to simplify

Equation (7) to the following equations for stationary states in Equation (9):

µ1φ1 = −1
2

d2φ1

dz2 −
√

P
π

φ2φ1, (A6)

µ2φ2 = −1
2

d2φ2

dz2 −
1

πP3/2 φ2
2. (A7)

Although this case is somewhat formal, in terms of the underlying concept of the quantum droplets,
which is essentially based on the competition of residual MF and LHY terms, it is interesting to consider
it too.

The soliton solution of Equation (A7) is obvious,

φ2(z) =
3π

2
(−µ2)

P3/2

cosh2 (√−µ2/2z
) (A8)

where the solution in Equation (13) takes essentially the same form in the limit of |µ| � µ0. Then,
the substitution of Equation (A8) in Equation (A6) makes it tantamount to the linear Schrödinger
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equation with the Pöschl-Teller potential [50]. The ground-state (GS) solution of Equation (A6) for φ1,
with arbitrary amplitude φ

(0)
1 ,

(φ1(z))GS =
φ
(0)
1[

cosh
(√
−µ2/2z

)]γ , (A9)

exists with
γ =

1
2

(√
24P2 + 1− 1

)
, (A10)

and eigenvalue

(µ1)GS =
(√

24P2 + 1− 1
)2 µ2

16
. (A11)

In this case, the QD solutions are quasi-Gaussian objects [20]. Note that, in the symmetric system with
P = 1, Equations (A10) and (A11) yield γ = 2 and (µ1)GS = µ2, i.e., the eigenmode and eigenvalue
coincide with their counterparts in the soliton solution in Equation (A8), while they are different in the
asymmetric system, the GS level lying below or above the chemical potential of soliton in Equation (A8)
at g1 > g2 and g1 < g2, respectively.

In Figure A1 we compare a typical asymptotic solution given by Equations (A8) and (A9) with a
numerically obtained GS solution for the same values of the parameters. It is seen that the analytical
and numerical results match well.
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Figure A1. Comparison of the asymptotic analytical solutions, given by Equations (A8) and (A9),
with their numerically obtained counterparts. The density of the first (n1) and second (n2) components
are displayed in top and bottom panels, respectively. Solid blue lines represent the numerical results,
while dashed red lines represent the analytical solution. Here, parameters are δg/g = 0.05, N1 =

0.0001067, N2 = 0.0148044 and (µ2)GS = µ2 = −0.005.

Further, it is also possible to produce the first excited state of Equation (A6) in the form of the
dipole (antisymmetric) mode with an arbitrary amplitude:

(φ1(z))dip =
φ
(0)
1 sinh

(√
−µ2/2z

)
[
cosh

(√
−µ2/2z

)]γ , (A12)

where γ is the same as in Equation (A10), the respective eigenvalue being

(µ1)dip =
(√

24P2 + 1− 3
)2 µ2

16
, (A13)

which is obviously higher than its GS counterpart in Equation (A11) (at P = 1, Equation (A13) yields
(µ1)dip = µ2/4, and (µ1)dip falls below µ2 for P >

√
2). Unlike the GS, the dipole mode exists not
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at all values of P, but only for P >
√

1/3. Exactly at P =
√

1/3, one has (µ1)dip = 0, and the dipole

mode in Equation (A12), with γ = 1, is a delocalized one, ∼ tanh
(√
−µ2/2z

)
.

Linear Schrödinger Equation (A6) with the Pöschl-Teller potential may give rise to higher bound
states of integer order ν as well, with eigenvalues

(µ1)ν =
(√

24P2 + 1− (1 + 2ν)
)2 µ2

16
, (A14)

where ν = 0 and 1 correspond to Equations (A11) and (A13), respectively, the ν-th spate existing at
P2 > ν (ν + 1) /6. The number of such solutions is always finite.

Unlike solutions considered in Appendices A and C, the stability of the solutions given by
Equations (A8)–(A14) is obvious.

Appendix C. Other Exact Solutions in the Case of N1 � N2

Here we provide periodic solutions to the semi-linear system of Equations (A6) and (A7) in terms
of Jacobi elliptic functions. In the limit of q → 1, they go over into solutions given in the main text,
in the form of Equations (A8), (A9), and (A12).

Appendix C.1. Solution of Equation (A7)

An exact periodic solution of Equation (A7) with the quadratic nonlinearity is

φ2 = A[dn2(βz, q) + p] , (A15)

with

β2 = − µ2

2
√

1− q + q2
, A = − 3πµ2P3/2

2
√

1− q + q2
, p =

−(2− q) +
√

1− q + q2

3
. (A16)

In the limit of q→ 1, the solution in Equation (A15) goes over into the solution in Equation (A8). Note
that p is vanishing in this limit, according to Equation (A16).

Appendix C.2. Solutions of Equation (A6)

We now show that, with φ2 given by Equation (A15), linear Equation (A6) φ1 has several particular
solutions depending on the value of P.

Solutions For P2 = 1/3

Appendix C.2.1. Solution I

It is easy to check that
φ1 = φ

(0)
1 dn(βz, q) (A17)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2− q + 2
√

1− q + q2
√

1− q + q2
.

Appendix C.2.2. Solution II

φ1 = φ
(0)
1 cn(βz, q) (A18)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2q− 1 + 2
√

1− q + q2
√

1− q + q2
.
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In the limit of q → 1, solutions I and II go over into the solution Equation (A9) with γ = 1 and
µ1 = µ2/4.

Appendix C.2.3. Solution III

φ1 = φ
(0)
1 sn(βz, q) (A19)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2
√

1− q + q2 − (1 + q)√
1− q + q2

.

In the limit of q→ 1, solution III goes over into the solution Equation (A12) with γ = 1 and µ1 = 0.
Solutions for P2 = 1.

Appendix C.2.4. Solution IV

It is easy to check that
φ1 = φ

(0)
1 [dn2(βz, q) + p] (A20)

is an exact solution to Equation (A6), provided that

P2 = 1, µ1 = µ2 .

Appendix C.2.5. Solution V

φ1 = φ
(0)
1 cn(βz, q)dn(βz, q) (A21)

is an exact solution to Equation (A6), provided that

P2 = 1, µ1 =
(µ2

2

) q +
√

1− q + q2
√

1− q + q2
.

In the limit q = 1, solutions IV and V go over into solution Equation (A9) with γ = 2 and µ1 = µ2.

Appendix C.2.6. Solution VI

φ1 = φ
(0)
1 sn(βz, q)dn(βz, q) (A22)

is an exact solution to Equation (A6), provided that

P2 = 1 , µ1 =
(µ2

4

) 3(1− q) +
√

1− q + q2
√

1− q + q2
.

Appendix C.2.7. Solution VII

φ1 = φ
(0)
1 sn(βz, q)cn(βz, q) (A23)

is an exact solution to Equation (A6), provided that

P2 = 1 , µ1 =
(µ2

4

) 2
√

1− q + q2 − (2− q)√
1− q + q2

.

In the limit of q→ 1, solutions VI and VII go over into Equation (A12), with γ = 2 and µ1 = µ2/4.

91



Symmetry 2020, 12, 174

References

1. Pitaevskii, L.; Stringari, S. Bose–Einstein Condensation and Superfluidity; Oxford University Press: Oxford,
UK, 2016.

2. Pethick, C.; Smith, H. Bose–Einstein Condensation in dilute Gases; Cambridge University Press: Cambridge,
UK, 2002.

3. Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015,
115, 155302.

4. Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its
Low-Temperature Properties. Phys. Rev. 1957, 106, 1135–1145.

5. Petrov, D.S.; Astrakharchik, G.E. Ultradilute low-dimensional liquids. Phys. Rev. Lett. 2016, 117, 100401.
6. Li, Y.; Luo, Z.; Lio, Y.; Chen, Z.; Huang, C.; Fu, S.; Tan, H.; Malomed, B.A. Two-dimensional solitons and

quantum droplets supported by competing self-and cross-interactions in spin-orbit-coupled condensates.
New J. Phys. 2017, 19, 113043.

7. Cappellaro, A.; Macrí, T.; Bertacco, G.F.; Salasnich, L. Equation of state and self-bound droplet in
Rabi-coupled Bose mixtures. Sci. Rep. 2017, 7, 13358.

8. Jørgensen, N.B.; Bruun, G.M.; Arlt, J.J. Dilute fluid governed by quantum fluctuations. Phys. Rev. Lett. 2018,
121, 173403.
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Abstract: We show that the axial symmetry of the Bychkov–Rashba interaction can be exploited
to produce electron spin-flip in a circular quantum dot, without lifting the time reversal symmetry.
In order to elucidate this effect, we consider ballistic electron transmission through a two-dimensional
circular billiard coupled to two one-dimensional electrodes. Using the tight-binding approximation,
we derive the scattering matrix and the effective Hamiltonian for the considered system. Within this
approach, we found the conditions for the optimal realization of this effect in the transport properties
of the quantum dot. Numerical analysis of the system, extended to the case of two-dimensional
electrodes, confirms our findings. The relatively strong quantization of the quantum dot can make
this effect robust against the temperature effects.

Keywords: quantum dot; Kramers degeneracy; spin-orbit interaction; tight-binding approach

1. Introduction

Spin-polarized transport in semiconductor nanostructures attracts a continuous experimental
and theoretical attention due to great interests for both basic research and device applications (see for
a review [1–3]). Indeed, apart fundamental aspects related to the origin of spin current in nanosystems,
the inversion of spin polarization is necessary, for example, for operation of spin-based logic elements.
The inversion of spin polarization can be achieved in an external AC field with the aid of the electron
spin resonance (see, for example, [4]), or by the lifting the spin degeneracy by means of a magnetic
field that induces the Zeeman splitting (e.g., [5]). The spin currents can be inverted also by mechanical
strain of a silicene [6]. Periodically rippled graphene can as well invert the polarized spin current,
by changing the electron flow direction through the system [7].

One of the main requirements for device operability is the efficient manipulation of spin-polarized
currents in a semiconductor structure. An additional condition for device applications is that
a polarized current should be generated by means of all-electrical methods. In particular, a remarkable
progress has been achieved in all-electrical injection from ferromagnetic contacts [8,9] and
(Ga,Mn)As [10]. Alternatively to the injection, a spin-orbit interaction (SOI) present in semiconductors
provides a natural mechanism to manipulate the spin (e.g., [11–14]). In particular, the electrical field,
caused by the structure inversion asymmetry of the heterostructure, gives rise to the Bychkov–Rashba
term [15,16]. The strength of this interaction can be controlled by means of an applied electric
field [17–19]. It should be mentioned that the Rashba interaction is one of the basic ingredients
in the physics of Majorana fermions [20–22]. This physics is based on two superconducting electrodes
electrically connected to a semiconductor nanowire with strong Rashba coupling, and a uniform
magnetic field. The explosive activity in this direction includes among many proposals as well the use
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of high-temperature cuprate superconductors [23] and exotic pairs of parafermions without magnetic
field [24] to create Majorana zero modes for quantum computing applications (e.g., [25–27]).

Several proposals rely on the SOI as the basic mechanism to achieve a spin filtering effect
in low-dimensional semiconductor structures [28–31]. In fact, it might allow for an all-electrical
spin-polarized current generation. The relatively small energy scale, produced by the SOI, presents,
however, a major obstacle for technological applications. Indeed, the spin splitting induced by the SOI
in typical semiconductor alloys can reach a few meV [17,18]. This scale stipulates certain restrictions
on the choice of nanosystems that would be enabled to overcome the impact of thermal effects.
It is well known that wide gap semiconductors (e.g., GaAs) possess a relatively weak spin-orbit
interaction. In contrast, narrow gap semiconductors own strong spin-orbit couplings as well as
g factors. These two factors guide the choice of most favorable materials, especially, in view of the
Majorana physics. The latter question is, however, beyond the scope of the present paper, and we
leave this problem for future. The main result of the present paper is that the symmetry of a circular
quantum dot can be used to obtain the robust mechanism to inverse z-component of spin-polarized
current for non-magnetic metallic contacts.

2. Symmetry of Rashba SOI

It is well known that the invariance of the SOI with respect to the time-reverse operation leads to
the Kramers degeneracy (e.g., [32]). Therefore, any system, where the SOI is the only spin-dependent
term, will exhibit this two-fold degeneracy. Explicitly, the time reversal symmetry is obtained by
inverting both spin and momentum operators. The resulting states, although degenerated in energy,
are distinguished by an opposite orbital motion and an opposite spin orientation.

To employ this fundamental feature, we consider a two-dimensional (2D) semiconductor quantum
dot (QD) with a circular confinement and the Rashba spin-orbit interaction. In the effective mass
approximation for the conduction band, the Hamiltonian can be written as Ĥ = ∑N

i=1 ĥi, with the
single-particle Hamiltonian taken in the form

ĥ = Ĥ0 + ĤR =
p̂2

x + p̂2
y

2m∗
+ Vext(r) + ĤR, (1)

where m∗ is the electron effective mass and Vext(r) is an external rotationally symmetric potential.
We consider the limit of the weak Coulomb interaction, when the external potential dominates in
electron properties (e.g., [33]). The Bychkov–Rashba interaction has the form: ĤR = α̃

(
p̂yσx − p̂xσy

)
/h̄.

The strength parameter α̃ depends strongly on the material, reaching its maximum value for narrow
gap III-V semiconductor alloys. For instance, typical values of α̃ = 10–40 meV × nm have been
experimentally determined for different InAs-based structures [28,29,34]. An important feature is that
the Bychkov–Rashba interaction preserves the axial symmetry, i.e.,

[
ĤR, Ĵz

]
= 0, where Ĵz = L̂z + ŝz.

Therefore, the full Hamiltonian obeys the conservation law
[
Ĥ, Ĵz

]
= 0.

In the dimensionless cylindrical coordinates r =
√

x2 + y2/d and φ = arctan(y/x) the
Hamiltonian (1) takes the form

ĥ = −∆ + V(r) + α

[(
0 e−iφ

−eiφ 0

)
∂

∂r

− i
r

(
0 e−iφ

eiφ 0

)
∂

∂φ

]
. (2)
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Here α = 2m∗α̃d/h̄2, ∆ = ∂2

∂r2 + 1
r

∂
∂r +

1
r2

∂2

∂φ2 is the Laplace operator, and the parameter d is
a characteristic length in our system. Since the eigenstates of the Hamiltonian (2) are eigenstates of the
Jz operator, they can be expressed in the following form

Φnj =

(
unj(r)ei(j−1/2)φ

vnj(r)ei(j+1/2)φ

)
, (3)

where n = 1, 2, ... and j = 1/2, 3/2, ... stand for radial and the angular momentum quantum numbers,
respectively. To simplify the eigenvalue problem, we represent the wavefunction (3) as a formal series
with respect to the strength of the spin-orbit interaction α

Φnj = ei(j−1/2)φ ∑
m

αm

(
um

nj(r)
vm

nj(r)e
iφ

)
. (4)

At m = 0 the wavefunction f 0
nj(r) is the radial part of the Shrödinger equation solution without

the spin-orbit interaction

− ∆ f 0
nj(r) + (Vext(r) +

(j− 1/2)2

r2 ) f 0
nj(r) = Enj f 0

nj(r) . (5)

We recall that the energy scale, produced by the effective external potential Vext(r), is larger than
that produced by the spin-orbit interaction (cf [35]). Therefore, it is enough to consider the expansion
of the wavefunction (4) up to the first order with the respect to the strength parameter. As a result,
we obtain two differential equations for the coefficients um

nj(r), vm
nj(r), at m = 1:

(
2r( f 0

nj)
′ + f 0

nj)
)
(u1

nj)
′ + r f 0

nj(u
1
nj)
′′ = 0 , (6)

r2( f 0
nj)
′
(

4(v1
nj)
′ + 2

)
+ f 0

nj

(
r
(

2r(v1
nj)
′′ + 2(v1

nj)
′ − 2j + 1

)
− 4jv1

nj

)
= 0 (7)

The trivial solution of Equation (6) is u1
nj = 0, while we obtain v1

nj = r/2 to hold true Equation (7).
Thus, the approximate eigenfunctions of the Hamiltonian (2) to the first order in α can be written in
the form

Φnj ≈ f 0
nj(r)e

i(j−1/2)φ

(
1

−[αr/2]eiφ

)
. (8)

Below we will use this function to find the optimal conditions for the electron spin-flip
phenomenon in the QD.

3. Effective Hamiltonian Model

To analyze transport properties of the circular QD we employ the effective Hamiltonian
method [36,37]. According to this method, the scattering system is described by the Hamiltonian that
contains the structure with discrete spectrum (our QD), the continuum with the external scattering
states (external electrodes), and the interaction between continuum states with QD’s eigenstates.
Evidently, once the system is opened, the discrete states of QD’s own the widths, i.e., they transform to
resonance states. The main object in such an investigation is the scattering matrix that describes the
relation between the amplitudes of incoming states from electrodes and the amplitudes of the reflected
states from, or transmitted through the structure into electrodes.

One of the efficient approaches to reach reliable numerical results on ballistic transport through
mesoscopic system is based on the tight-binding model. Following [38] we model the scattering system
as a two-dimensional billiard with two attached 1D electrodes in the tight-binding representation
(see details in Appendix A). In this case, the scattering matrix that describes scattering from a channel
C′ to a channel C takes the form
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SCC′(E) = δCC′ − 2πiψ1
C(E)ψ1

C′(E)∑
mn

W∗nCFnm(E)WmC′ . (9)

Here, ψ1
C =

√
sin k

π – the wave function of a semi-infinite long electrodes (without the SOI) at the
contact point; E is the electron energy in the electrode in the 1D tight-binding model. The matrix F is

defined as F =
(

E− He f f (E)
)−1

, while the effective Hamiltonian has form

He f f
nm (E) = δnmεn − exp(ik)∑

C
WnCW∗mC . (10)

Here, the coefficients
WnC = Ψ∗n(r = rC) (11)

are the normalized eigenfunctions Ψn(r), corresponding to the eigenvalue εn of our structure; rC—the
coordinate of C-th electrode junction (see Figure A1 and discussion around it in Appendix A).
Note, that the index C denotes the electrode and as well the spin orientation.

Assuming a weak coupling of our structure with the external electrodes, let us consider a pair of
degenerate levels with energy εp = εp+1 ≈ E, i.e., near the energy E of a scattering electron. We assume
also a strong confinement potential Vext(r), that allows the neglecting of resonance overlapping for
the open system. As discussed above, the pair of corresponding eigenfunctions are time conjugated:
Ψp+1 = T̂ Ψp, where T̂ = −iσyK̂ is the time-reverse operator. As a result, the following relations
take place

Wp+1c↑ = −W∗pc↓, Wp+1c↓ = W∗pc↑. (12)

From this property it follows immediately that the effective Hamiltonian (10) is a diagonal matrix
due to the orthogonality condition ∑C W∗pCWp+1C = 0. Consequently, we obtain for the S-matrix
elements between two electrodes the following definitions:

Sc↑c′↑ = δcc′ − X(E)
(

Wpc↑W∗pc′↑ + W∗pc↓Wpc′↓
)

, (13)

Sc↑c′↓ = −X(E)
(

Wnc↑W∗pc′↓ −W∗pc↓Wpc′↑
)

, (14)

Sc↓c′↑ = −X(E)
(

Wnc↓W∗pc′↑ −W∗pc↑Wpc′↓
)

, (15)

Sc↓c′↓ = δcc′ − X(E)
(

Wpc↓W∗pc′↓ + W∗pc↑Wpc′↑
)

, (16)

where
X(E) =

2i sin k
E− εp + exp(ik)w2

p
. (17)

Here, we introduce the parameter

w2
p = ∑

c
|Wpc↑|2 + |Wpc↓|2. (18)

The resonant condition arises at the electron energy

Eres = εp − w2
p cos k, (19)

when the factor (17) reaches its maximal value 2/w2
p. Hereafter, we assume that the ballistic transport

occurs at the resonance energy (19). From Equations (13)–(16) it follows that

|Sc↑c↓|2 = |Sc↓c↑|2 = 0, (20)

|Sc↑c′↑|2 = |Sc↓c′↓|2, (21)

|Sc↑c′↓|2 = |Sc↓c′↑|2 . (22)
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There are a few remarks in order. First, it should be noted that Equations (20)–(22) lead us to the
fact that at the transport through our system from electrode c′ to c the spin polarization is

Pcc′ =
|Sc↑c′↑|2 + |Sc↑c′↓|2 − |Sc↓c′↑|2 − |Sc↓c′↓|2
|Sc↑c′↑|2 + |Sc↑c′↓|2 + |Sc↓c′↑|2 + |Sc↓c′↓|2

= 0 .

This result is in the agreement with the statement that a nonzero spin polarization in system with
the SOI cannot occur if there is only one open channel in electrodes [39,40].

Second, from Equation (20) it follows that the reflection coefficient with the spin-flip is always
zero. The reflection coefficient without the spin-flip can be rewritten as

Scσcσ = 1− X(E)
(
|Wpcσ|2 + |Wpcσ|2

)
, σ =↑, ↓ . (23)

Finally, without loss of generality, we assume the equal coupling of the QD’s states to both
electrodes (1 and 2). As a result, taking into account the definition (18), we have

(
|Wp1↑|2 + |Wp1↓|2

)
=
(
|Wp2↑|2 + |Wp2↓|2

)
= w2

p/2 . (24)

Evidently, at the resonance energy (19) the reflection (23) becomes zero, and, consequently,
we obtain for the S-matrix

S(Eres) =

(
0 T†

T 0

)
, (25)

with 2× 2 matrix

T =

(
S2↑1↑ S2↑1↓
S∗2↑1↓ S∗2↑1↑

)
. (26)

From the unitarity of S matrix S†S = 1 it follows that T†T = 1. The spin-orbit interaction
converts a two-component spinor into another two-component spinor. In particular, it could change
the incoming spin up electron state | ↑〉 to the outgoing spin down electron state | ↓〉 and vice versa.
Consequently, to reach the ideal electron spin-flip phenomenon we require that the direct scattering
matrix elements (non-spin-flip components) should be equal zero: T11 = T22 = 0 ⇒ S2σ1σ = 0.
From Equations (13) and (16) it follows that this requirement holds if the following relation takes place
for the eigenstates of our QD:

Wp2↑W∗p1↑ = −W∗p2↓Wp1↓ . (27)

To see the consequences of this relation for our system, we apply this condition to the eigenstates
of the QD of the radius R: W∗pc↑ = unj(rc) exp(i(j − 1/2)φc), W∗pc↓ = vnj(rc) exp(i(j + 1/2)φc)

[see Equation (3)]. In the tight-binding approximation the point rc is located just before the quantum
point contact (QPC) between the QD and the electrode (see Figure A1). At the QPC r = R, and the
radial wave function ψ(r) [v(r) or u(r)] takes the form at r = rc:

ψ(rc) ≈ ψ(R)− dψ(R)
dR

a0 + .. . (28)

Here a small quantity a0 is the distance between lattice sites. Taking into account that ψ(R) = 0 at
the Dirichlet boundary condition (a closed QD), we obtain:

W∗nc↑ = −a0u′nj(R) exp[i(j− 1/2)φc],

W∗nc↓ = −a0v′nj(R) exp[i(j + 1/2)φc] (29)

(prime denotes derivative over R). As a result, the condition (27) takes the form

[u′nj(R)]2 exp[−i(j− 1/2)(φ2 − φ1)] = −[v′nj(R)]2 exp[i(j + 1/2)(φ2 − φ1))] , (30)
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that leads us to the following equations:

[u′nj(R)]2 = [v′nj(R)]2, (31)

exp[2ij(φ2 − φ1)] = −1. (32)

For the approximate eigenfunction (8) we obtain the condition Rα ≈ 2, resolving Equation (31).
Among solutions of Equation (32) there is one φ2 − φ1 = π which is common for all possible states
with the quantum number j. In other words, an electron with the spin up (down), injected from one
electrode to the QD, exits from the opposite electrode with the spin down (up). Thus, by altering either
the spin-orbit strength α or the QD’s radius R within the condition Rα ≈ 2, we obtain the spin-flip
transmission through our structure.

To illuminate this analytical solution, we consider the simplest quantum well potential of the
form Vext(r < R) = 0, Vext(R) = ∞. The solution of the eigenvalue problem for this potential provides
the radial wavefunctions [v(r) and u(r)] in terms of the Bessel functions (e.g., [41]). In this case,
the Dirichlet boundary condition for the wavefunction (3) yields the equation

Jj−1/2(µ+)Jj+1/2(µ−) = Jj−1/2(µ−)Jj+1/2(µ+) , (33)

that defines the energy spectrum εnj. Here, Jj±1/2(r) is the Bessel functions, and the parameter µ± has
the following structure

µ± =
(

α/2±
√

εnj + (α/2)2
)

R . (34)

The application of Equation (31) leads to the transcendental equation

Jj−1/2(µ+)± Jj+1/2(µ+) = 0. (35)

Plus or minus sign here are opposite to signs of u′v′-derivatives. In the case of the ideal spin-flip
process the numerical solution of the transcendental Equation (35) for several lowest eigenvalues with
quantum numbers j and n gives Rα = 1.5 . . . 2.5 (see Table 1). Please note that the transport properties
could be affected at the interface between the 1D lead and the 2D QD. However, the use of the QPC
restricts the number of open channels between the electrode and the QD [42]. Consequently, we belief
that our results will be valid for a realistic situation as well. To confirm our findings, we consider a 2D
case below.

Table 1. Value of Rα for quantum numbers n and j.

n j Rα

0 1/2 1.68
0 3/2 1.85
1 1/2 1.57
0 5/2 1.98
1 3/2 1.61
2 1/2 1.59
0 7/2 2.1

4. The 2D Model

The results, obtained with the aid of the one-dimension electrodes, serve to illustrate the basic
principles of the spin-flip at the transmission through the QD. To elucidate these principles we have
considered the particular situation, when direct transmission matrix elements were equal zero. In this
section, to demonstrated the vitality and the validity of our findings we consider the 2D structure
depicted in Figure 1. The QD is modelled by a constant potential (gray) with the SOI included.
The ballistic electrons, propagating from one electrode to another, tunnel to the QD through the
thin potential shell (dark gray). On the thin lines the Dirichlet boundary conditions are imposed.
All electrodes have equal width d, while the circular QD has the radius R = 2d.
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SOI

Figure 1. Sketch of the 2D device that consists of a circular lateral QD. The effective QD’s confinement
includes a constant potential with the Rashba interaction (gray region). Additional thin (0.1d) constant
potential shell (dark gray region) controls the coupling between the QD and two electrodes.

We perform numerical calculations in the framework of the tight-binding approach on the square
lattice n = nx x̂ + nyŷ (x̂ and ŷ are 2D vectors of elementary translations with length a0 in x and y
direction, a0—lattice constant, nx and ny—integers). In the tight-binding approximation the system
Hamiltonian (1) has the following form

Ĥ = Ĥ0 + ĤR
Ĥ0 = ∑

n,σ
εnσc†

nσcnσ − ∑
〈nm〉,σ

tc†
nσcmσ

ĤR = − α
2a0

∑
n

{
i
(

c†
n↑cn+ŷ↓ + c†

n↓cn+ŷ↑
)
−

(
c†

n↑cn+x̂↓ − c†
n↓cn+x̂↑

)}
+ H.c. .

(36)

Here, we use the following notations: εn,σ = 4t−V(nxa0, nya0), t = h̄2/2m∗a2
0; the indices 〈nm〉

stand for nearest neighbor sites n and m. We solve the Schrödinger equation in a discretized space,
according to the method developed by Ando [43]. Examples of numerical treatment of quantum
billiards within this approach can be found, for example, in Refs. [44,45]. In our calculations the
electrode width d = 40a0; while dimensionless units are defined as E = EF/E0 = EF2m∗d2/h̄2,
α = α̃/(dE0) = α̃2m∗d/h̄2, where the characteristic length of the device d was chosen as the unit
length. In these units the energy range 2(d/a0)

2(1− cos(πa0/d)) < E < 2(d/a0)
2(1− cos(2πa0/d))

corresponds to one transverse mode in all contacts.
Figure 2 displays the numerical results for the direct process |S2↑1↑|2 as a function of the electron

energy and the strength of the Rashba interaction. The results are in a good agreement with those that
have been obtained from the condition (35) (see Table 1).

Figure 2. The probability for the direct transmission |S2↑1↑|2 as function of the electron energy and
the parameter Rα. Red crosses indicate (E, Rα) that correspond to |S2↑1↑|2=0 for: n = 0, j = 1/2,
n = 0, j = 3/2, n = 1, j = 1/2.
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It is noteworthy that the approximate condition Rα ≈ 2 is unique in that there is no dependence
neither on the electron energy, nor on the spin of the electron state. In other words, it can be
fulfilled for a set of QD’s electron states even at large opening of the QD. To model this case
(a resonance overlapping regime), we remove the potential barrier between the QD and the electrodes.
Indeed, the direct spin transmission |S2↑1↑|2 is suppressed strongly near Rα ∼ 1.6 (see Figure 3a).
In this case, the spin-flip process, averaged over energy (available at the one channel transport),
becomes a dominant phenomenon, reaching about ∼97% of the efficiency (see Figure 3b). In other
words, the thermal effects affect only slightly the spin-flip process even in the regime of the large
opening of the QD.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. Quantum dot with radius R = 2d without any additional potential. The probability
for the direct transmission |S2↑1↑|2 as function of the electron energy and the parameter Rα (a).
Average effectivity of spin invertor

∫
dE|S2↓1↑|2/

∫
dE(|S2↓1↑|2 + |S2↑1↑|2) over energy range

2(d/a0)
2(1− cos(πa0/d)) < E < 2(d/a0)

2(1− cos(2πa0/d)) (b).

Larger the dot radius lesser the spin-orbit strength is required to hold the condition Rα ≈ 2.
However, with the increase of the dot radius the spacing between levels becomes smaller. Note, that in
principle, QD levels will be affected by the coupling as well. In fact, they will be shifted with
respect to those of the closed QD, especially, in the case of a strong electron-electron interaction [46].
Therefore, the discussed effect is most probable in a narrow gap semiconductor QD with a strong
confinement potential and at the weak coupling regime. In this case, the resonance states will be well
separated from each to other.

However, as discussed above, the overlapping of resonances and the thermal smearing decrease
the efficiency of the spin-flip phenomenon as well. To evaluate the energy scaling we transform
the equation αR = 2 in dimensional units: R̃α̃ = h̄2/m∗ ≈ 0.076/(m∗/me) nm2 eV. In the case of
InAs α̃ = 40 meV nm with m∗ = 0.023 me the desired QD radius should be R̃ ≈ 80 nm. For the QD’
radius R̃ =100 nm the spacing between lowest levels is of the order ∆E ≈ 5h̄2/2m∗R̃2 ≈ 0.8 meV.
The temperature smearing will be significant if kT > ∆E. In other words, our device could operate with
100% efficiency at T < 9K, which is far from the typical temperature values∼100 mK for single-electron
tunneling spectroscopy experiments (see, for example, the textbook [42]).

5. Summary

We suggest the mechanism of the z-component spin inversion with the aid of the circular lateral
QD that symmetrically coupled to two electrodes. The effective confinement potential of the QD
consists of the circular potential well. From our analysis of the ballistic electron transport through
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the QD with the Rashba SOI, it follows the Kramers degeneracy of the QD levels could lead to the
destructive interference of the direct (σ → σ) spin scattering process, while producing the spin-flip
phenomenon. We found that the optimal conditions for the realization of the perfect spin-flip processes
is subject to the condition α̃R̃ ≈ h̄2/m∗. In fact, this condition depends quite weakly on the particular
choice of the quantum level. We found that this effect is robust for the QD’s states at the temperature
less than 9 K.
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Appendix A. Derivation of Effective Hamiltonian on 2D Square Lattice

The Hamiltonian of our scattering system can be presented as follows:

Ĥ = Ĥ0 + V̂ , (A1)

where the Hamiltonian Ĥ0 consists of three terms: two electrodes (C = L, R or 1, 2) with continuous
spectra and a closed substructure with a discrete spectrum:

Ĥ0 = ĤL + ĤB + ĤR

ĤB = ∑
n

En|n〉〈n|, (A2)

ĤC =
∫

dEE|E, C〉〈E, C|.

The corresponding eigenstates are normalized:

〈n|m〉 = δnm, (A3)

〈E, C|E′, C〉 = δ(E− E′). (A4)

The V̂ operator connects the closed substructure (ĤB) with electrodes (ĤL,R). The stationary
Shrödinger equation for the Hamiltonian Ĥ0 reads as

(E− Ĥ0)|φ〉 = 0 , (A5)

while we are interested in the solution for the total Hamiltonian (A1)

(E− Ĥ0)|ψ〉 = V̂|ψ〉 . (A6)

For the energy E different from the eigenvalue of the closed substructure En we can define the
operator (E + iε− Ĥ)−1. Consequently, if the outgoing wave boundary condition is adopted, we can
transform Equation (A6) to the Lippmann-Schwinger equation

|ψ〉 = |φ〉+ 1
(E− Ĥ0)

V̂|ψ〉 . (A7)

The formal solution of this equation reads as

F̂(E)|ψ〉 =
(

1− 1
(E− Ĥ0)

V̂
)
|ψ〉 = |φ〉 . (A8)
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Following Refs. [36,37], with the aid of the basis states (A3) we construct projector operators for
each term in the Hamiltonian (A2):

P̂B = ∑
n
|n〉〈n|, (A9)

P̂C =
∫

dE|E, C〉〈E, C| , (A10)

with the properties

P̂s P̂s′ = δss′ P̂s, (A11)

P̂sĤP̂s′ = δss′ Ĥs, (A12)

∑
s=L,B,R

P̂s = 1. (A13)

By means of the projection operators the Lippmann-Schwinger Equation (A8) transforms to the
following form

((
∑

s=L,B,R
P̂s

)
F̂(E)

(
∑

s′=L,B,R
P̂s′

))(
∑

s=L,B,R
P̂s

)
|ψ〉 =

(
∑

s′′=L,B,R
P̂s′′

)
|φ〉




P̂L F̂P̂L P̂L F̂P̂B P̂L F̂P̂R
P̂B F̂P̂L P̂B F̂P̂B P̂B F̂P̂R
P̂R F̂P̂L P̂R F̂P̂B P̂R F̂P̂R






|ψL〉
|ψB〉
|ψR〉


 =



|φL〉
|φB〉
|φR〉


 . (A14)

Here, each block of the matrix representation of the operator F(E) (A14) has the following structure

P̂s F̂P̂s′ = P̂s

(
1− 1

E− Ĥ0
V̂
)

P̂s′ = P̂s

(
1− 1

E− Ĥ0

(
∑

s′′=L,B,R
P̂s′′

)
V̂

)
P̂s′ (A15)

=

(
δss′ −

1
E− Ĥs

P̂sV̂P̂s′

)
.

Our closed substructure is subjected to the Dirichlet boundary conditions on junction with
electrodes, i.e., the following condition P̂sV̂P̂s = 0 takes place. In other words, the operator V̂ does not
affect the structure of the isolated subsystem. As a result, we have

P̂s F̂P̂s = 1. (A16)

Another reasonable assumption is the absence of the direct connection between electrodes:

P̂C F̂P̂C′ = δCC′ . (A17)

Taking into account the above arguments, we transform the Lippmann-Schwinger Equation (A14)
to the form




1 − 1
E−ĤL

P̂LV̂P̂B 0

− 1
E−ĤB

P̂BV̂P̂L 1 − 1
E−ĤB

P̂BV̂P̂R

0 − 1
E−ĤR

P̂RV̂P̂B 1






|ψL〉
|ψB〉
|ψR〉


 =



|φL〉
|φB〉
|φR〉


 . (A18)

Considering the initial state |φ〉 in the form


|φL〉
|φB〉
|φR〉


 =




αL|E, L〉
0

αR|E, R〉


 , (A19)
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we present the scattering state |ψ〉 as


|ψL〉
|ψB〉
|ψR〉


 =




(αLr + αRt′)|E, L〉
|ψB〉

(αLt + αRr′)|E, R〉


 , (A20)

defining the scattering matrix elements

S =

(
r t′

t r′

)
(A21)

To get to the heart of the problem, let us consider, for example, the second equation from (A18),
and corresponding wavefunctions |ψL〉, |ψR〉 from Equation (A20):

(
1− 1

E− ĤB
∑

C=L,R
P̂BV̂P̂C

1
E− ĤC

P̂CV̂P̂B

)
|ψB〉 =

1
E− ĤB

∑
C=L,R

P̂BV̂P̂C|φC〉 (A22)

Multiplying the both sides of Equation (A22) by E− ĤB, we obtain

(
E− ĤE f f

)
|ψB〉 = ∑

C=L,R
P̂BV̂P̂C|φC〉 (A23)

with the following definition of the effective Hamiltonian

ĤE f f = ĤB + ∑
C=L,R

P̂BV̂P̂C
1

E− ĤC
P̂CV̂P̂B = ĤB + ∑

C=L,R
X̂C . (A24)

The eigenstates of HB form the natural basis for the effective Hamiltonian. Taking into account
this fact, we obtain by means of Equation (A23) the following system

∑
m

(
E− 〈n|ĤE f f |m〉

)
〈m|ψB〉 = ∑

C=L,R
〈n|V̂

∫
dE|E, C〉〈E, C|φC〉. (A25)

Here, the matrix elements 〈n|ĤE f f |m〉 have the following structure

〈n|ĤE f f |m〉 = δnmEn + ∑
C=L,R

〈n|V̂P̂C
1

E− ĤC
P̂CV̂|m〉 = δnmEn + ∑

C=L,R
X̂C

nm , (A26)

where the matrix elements of X̂C operator are

〈n|X̂C|m〉 = 〈n|V̂
(∫

dE′|E′, C〉〈E′, C|
)

1
E− ĤC

(∫
dE′′|E′′, C〉〈E′′, C|

)
V̂|m〉 . (A27)

Using the definition of ĤC (A2), we can write

X̂C
nm =

∫
dE′〈n|V̂|E′, C〉 1

E− E′
〈E′, C|V̂|m〉 . (A28)

To obtain the matrix elements 〈n|V̂|E, C〉 = 〈E, C|V̂|n〉∗ we make the transformation to the
tight-binding representation by inserting the resolution of identity 1 = ∑j |j〉〈j| into the definition:

〈n|V̂|E, C〉 = 〈n|
(

∑
j
|j〉〈j|

)
V̂


∑

j′
|j′〉〈j′|


 |E, C〉 = ∑

jj′
〈n|j〉〈j|V̂|j′〉〈j′|E, C〉 . (A29)
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To visualize the idea of the tight-binding approach, Figure A1 displays the example of the 2D
cavity connected to 1D electrodes. We can see that the matrix elements 〈j|V̂|j′〉 = 〈j′|V̂|j〉∗ are nonzero
only for j = (N, 1), j′ = (N + 1, 1) at the connection to the right continuum and for j = (0, 1), j′ = (1, 1)
at the connection to the left continuum. We introduce the coefficients

WnC = ∑
j∈B,j′∈C

〈n|j〉〈j|V̂|j′〉, (A30)

WnR = 〈n|(N, 1)〉〈(N, 1)|V̂|(N + 1, 1)〉, (A31)

WnL = 〈n|(1, 1)〉〈(1, 1)|V̂|(0, 1)〉 , (A32)

that are independent on energy. As a result, the matrix elements (A29) can be written in the form

〈n|V̂|E, C〉 = WnC〈jCin|E, C〉, (A33)

〈n|V̂|E, L〉 = WnL〈(0, 1)|E, L〉, (A34)

〈n|V̂|E, R〉 = WnR〈(N + 1, 1)|E, R〉, (A35)

where jCin denotes the beginning of the semi-infinite electrode C. Taking into account the definition
Equation (A33), the expression (A28) can be written in the form

X̂C
nm = WnCW∗mC

∫
dE′
|〈jCin|E′, C〉|2

E− E′
(A36)

-1 0 1 2 jx

L B

...

N N+1

R
jy

2

1

jin

L

jin

R

Figure A1. Connection between bounded system B and electrode C. The coupling operator 〈j|V̂|j′〉 =
〈j′|V̂|j〉∗ = 〈(jx, jy)|V̂|(j′x, j′y)〉 is nonzero only for jx = 0, j′y = 1 and jy = j′y = 1 at the connection to
the left electrode and for jx = N, j′y = N + 1 and jy = j′y = 1 at the connection to the right electrode.

In the tight-binding representation the electron wave function 〈jCin|E′, C〉 in the electrode C is
(see Equation (A50))

〈jCin|E, C〉 = sin(|k|)√
π| sin(k)|

=
(1− (E/2)2)1/4

√
π

, (A37)

where for the 1D tight-binding model the dispersion E = −2 cos(k) is used. The integration in
Equation (A36) over zone from E = −2 to E = 2 yields [see Equation (A52)] the expression for matrix
elements of the operator X̂C

〈n|X̂C|m〉 = WnCW∗mC
π

∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
= −WnCW∗mCeik. (A38)

The scattering matrix elements SCC′(E), describing the transition from a continuum C′ to
a continuum C at the incident energy E, are [37]

SCC′(E) = δCC′ − 2πi〈E, C|P̂CV̂P̂B

(
E− Ĥe f f (E)

)−1
P̂BV̂P̂′C|E, C′〉 . (A39)

Inserting the resolution of identities 1 = ∑j |j〉〈j|, 1 = ∑n |n〉〈n|, by means of
Equations (A19), (A23), (A30) and (A33), we obtain
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SCC′(E) = δCC′ − 2πiψ1
C(E)ψ1

C′(E)∑
mn

W∗nCFnm(E)WmC′ . (A40)

Here, the function ψ1
C = 〈jCin|E, C〉 (see Figure A1) are the wave functions of the semi-infinite

electrodes at the QPC.

Appendix A.1. Normalization Constant of the Electrode Eigenfunctions

We consider the electron eigenstate in the electrode as

〈j|E, C〉 = a(k) sin(kj) (A41)

with the normalization constant a(k) and −π < k < π. These functions must satisfy the equation

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = δ(E− E′) (A42)

First, let us rewrite δ(E− E′) using dispersion relation E = −2 cos(k) at −π < k ≤ π:

δ(E− E′) = δ
(
−2(cos(k)− cos(k′)

)
= δ

(
4 sin

(
k + k′

2

)
sin
(

k− k′

2

))

=
δ
(

k−k′
2

)

4|
√
| sin(k)|

√
| sin(k′)|

+
δ
(

k+k′
2

)

4|
√
| sin(k)|

√
| sin(k′)|

. (A43)

On the other hand, we have

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = a(k)a∗(k′)

∞

∑
j=1

sin(kj) sin(k′ j) (A44)

=
a(k)a∗(k′)

2

∞

∑
j=1

(
cos((k− k′)j)− cos((k + k′)j)

)
.

The Lagrange’s trigonometric identity

N

∑
n=1

cos(nθ) = −1
2
+

sin
(
(2N + 1) θ

2

)

2 sin
(

θ
2

) (A45)

helps us to write down

1
2
+

∞

∑
n=1

cos(nθ) = lim
N→∞

sin
(
(2N + 1) θ

2

)

2 sin
(

θ
2

) =
θ/2

2 sin
(

θ
2

) lim
N→∞

sin
(
(2N + 1) θ

2

)

θ/2
=

π

2
δ

(
θ

2

)
. (A46)

Taking into account the above results, we have for Equation (A44)

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = a(k)a∗(k′)π

4

(
δ

(
k− k′

2

)
− δ

(
k + k′

2

))
. (A47)

Finally, combining Equations (A43) and (A47), we have for Equation (A42)

1
4|
√
| sin(k)|

√
| sin(k′)|

(
δ
(

k−k′
2

)
+ δ

(
k+k′

2

))
= a(k)a∗(k′)π

4

(
δ
(

k−k′
2

)
− δ

(
k+k′

2

))
. (A48)

Comparing the left and the right sides of this equation, we obtain
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a(k) =
sgn(k)√
π| sin(k)|

. (A49)

Consequently, Equation (A41) becomes

〈j|E, C〉 = sin(|k|j)√
π| sin(k)|

. (A50)

Appendix A.2. Integral Over Zone

We recall that E = Re(E) + iε and

lim
ε→0+

a∫

−a

dx
f (x)

x + iε
= lim

ε→0+

a∫

−a

dx
x− iε

x2 + ε2 f (x) = lim
ε→0+

a∫

−a

dx
(

x f (x)
x2 + ε2 − i

ε f (x)
x2 + ε2

)

= P
a∫

−a

dx
f (x)

x
− iπ f (0), (A51)

As a result, we have
∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
= P

∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
− iπ

∫ 2

−2
dE′δ(E− E′)

√
1− (E′/2)2

= π

(
E
2
− i
√

1− (E/2)2
)

(A52)

= −πeik.

Here we use the dispersion relation E = −2 cos(k).
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2007, 57, 565–907. [CrossRef]

13. Nazmitdinov, R.G.; Pichugin, K.N.; Valín-Rodríguez, M. Spin control in semiconductor quantum wires:
Rashba and Dresselhaus interaction. Phys. Rev. B 2009, 79, 193303. [CrossRef]

14. Schliemann, J. Colloquium: Persistent spin textures in semiconductor nanostructures. Rev. Mod. Phys.
2017, 89, 011001. [CrossRef]

15. Bychkov, Y.A.; Rashba, E.I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers.
J. Phys. C Solid State Phys. 1984, 17, 6039–6045. [CrossRef]

16. Rashba, E.I. Electron spin operation by electric fields: Spin dynamics and spin injection. Phys. Low-Dimens.
Syst. Nanostruct. 2004, 20, 189–195. [CrossRef]

17. Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T. Gate Control of Spin-Orbit Interaction in an Inverted
In0.53Ga0.47 As/In0.52 Al0.48 As Heterostructure. Phys. Rev. Lett. 1997, 78, 1335–1338. [CrossRef]

18. Grundler, D. Large Rashba splitting in InAs quantum wells due to electron wave function penetration into
the barrier layers. Phys. Rev. Lett. 2000, 84, 6074–6077. [CrossRef]

19. Hu, C.M.; Nitta, J.; Akazaki, T.; Takayanagi, H.; Osaka, J.; Pfeffer, P.; Zawadzki, W. Zero-field spin splitting in
an inverted In0.53Ga0.47 As/In0.52 Al0.48 As heterostructure: Band nonparabolicity influence and the subband
dependence. Phys. Rev. B 1999, 60, 7736–7739. [CrossRef]

20. Lutchyn, R.M.; Sau, J.D.; Das Sarma, S. Majorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett. 2010, 105, 077001. [CrossRef]

21. Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires.
Phys. Rev. Lett. 2010, 105, 177002. [CrossRef] [PubMed]

22. Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P. Signatures of Majorana
Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007.
[CrossRef] [PubMed]

23. Lucignano, P.; Mezzacapo, A.; Tafuri, F.; Tagliacozzo, A. Advantages of using high-temperature cuprate
superconductor heterostructures in the search for Majorana fermions. Phys. Rev. B 2012, 86, 144513.
[CrossRef]

24. Klinovaja, J.; Loss, D. Time-reversal invariant parafermions in interacting Rashba nanowires. Phys. Rev. B
2014, 90, 045118. [CrossRef]

25. Elliott, S.R.; Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics.
Rev. Mod. Phys. 2015, 87, 137–163. [CrossRef]

26. Sarma, S.D.; Freedman, M.; Nayak, C. Majorana zero modes and topological quantum computation.
Quantum Inf. 2015, 1, 15001. [CrossRef]

27. Aasen, D.; Hell, M.; Mishmash, R.V.; Higginbotham, A.; Danon, J.; Leijnse, M.; Jespersen, T.S.; Folk, J.A.;
Marcus, C.M.; Flensberg, K.; et al. Milestones Toward Majorana-Based Quantum Computing. Phys. Rev. X
2016, 6, 031016. [CrossRef]

28. Koga, T.; Nitta, J.; Akazaki, T.; Takayanagi, H. Rashba spin-orbit coupling probed by the weak
antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well
asymmetry. Phys. Rev. Lett. 2002, 89, 046801. [CrossRef]

29. Governale, M.; Boese, D.; Zülicke, U.; Schroll, C. Filtering spin with tunnel-coupled electron wave guides.
Phys. Rev. B 2002, 65, 140403. [CrossRef]

30. Ohe, J.; Yamamoto, M.; Ohtsuki, T.; Nitta, J. Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit
interaction. Phys. Rev. B 2005, 72, 041308. [CrossRef]

31. Wang, X.F.; Vasilopoulos, P. Spin-dependent transmission in waveguides with periodically modulated
strength of the spin-orbit interaction. App. Phys. Lett. 2003, 83, 940–942. [CrossRef]

32. Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1994.
33. Heiss, W.D.; Nazmitdinov, R.G. Orbital magnetism in small quantum dots with closed shells. J. Exp. Theor.

Phys. Lett. 1998, 68, 915. [CrossRef]
34. Könemann, J.; Haug, R.J.; Maude, D.K.; Fal’ko, V.I.; Altshuler, B.L. Spin-Orbit Coupling and Anisotropy of

Spin Splitting in Quantum Dots. Phys. Rev. Lett. 2005, 94, 226404. [CrossRef] [PubMed]
35. Valín-Rodríguez, M.; Puente, A.; Serra, L. Role of spin-orbit coupling in the far-infrared absorption of lateral

semiconductor dots. Phys. Rev. B 2002, 66, 045317. [CrossRef]

109



Symmetry 2020, 12, 2043

36. Mahaux, C.; Weidenmüller, H.A. Shell-Model Approach to Nuclear Reactions; North-Holland:
Amsterdam, The Netherlands, 1969.

37. Dittes, F.M. The decay of quantum systems with a small number of open channels. Phys. Rep.
2000, 339, 215–316. [CrossRef]

38. Sadreev, A.F.; Rotter, I. S-matrix theory for transmission through billiards in tight-binding approach. J. Phys.
A Math. Gen. 2003, 36, 11413–11433. [CrossRef]

39. Kiselev, A.A.; Kim, K.W. Prohibition of equilibrium spin currents in multiterminal ballistic devices.
Phys. Rev. B 2005, 71, 153315. [CrossRef]

40. Zhai, F.; Xu, H.Q. Symmetry of Spin Transport in Two-Terminal Waveguides with a Spin-Orbital Interaction
and Magnetic Field Modulations. Phys. Rev. Lett. 2005, 94, 246601. [CrossRef]

41. Bulgakov, E.N.; Sadreev, A.F. Spin polarization in quantum dots by radiation field with circular polarization.
J. Exp. Theor. Phys. Lett. 2001, 73, 505. [CrossRef]

42. Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport; Oxford University Press:
New York, NY, USA, 2010.

43. Ando, T. Quantum point contacts in magnetic fields. Phys. Rev. B 1991, 44, 8017–8027. [CrossRef]
44. Nazmitdinov, R.G.; Pichugin, K.N.; Rotter, I.; Šeba, P. Whispering gallery modes in open quantum billiards.

Phys. Rev. E 2001, 64, 056214. [CrossRef] [PubMed]
45. Nazmitdinov, R.G.; Pichugin, K.N.; Rotter, I.; Šeba, P. Conductance of open quantum billiards and classical

trajectories. Phys. Rev. B 2002, 66, 085322. [CrossRef]
46. Sandalov, I.; Nazmitdinov, R.G. Shell effects in nonlinear magnetotransport through small quantum dots.

Phys. Rev. B 2007, 75, 075315. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

110



symmetryS S

Article

On Symmetry Properties of The Corrugated
Graphene System

Mihal Pudlak 1, Jan Smotlacha 2 and Rashid Nazmitdinov 2,3,*
1 Institute of Experimental Physics, Watsonova 47, 04001 Košice, Slovakia
2 BLTP, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
3 BLTP, Dubna University, 141982 Dubna, Moscow Region, Russia
* Correspondence: rashid@theor.jinr.ru

Received: 20 February 2020; Accepted: 24 March 2020; Published: 3 April 2020

Abstract: The properties of the ballistic electron transport through a corrugated graphene system are
analysed from the symmetry point of view. The corrugated system is modelled by a curved surface
(an arc of a circle) connected from both sides to flat sheets. The spin–orbit couplings, induced by the
curvature, give rise to equivalence between the transmission (reflection) probabilities of the transmitted
(reflected) electrons with the opposite spin polarisation, incoming from opposite system sides. We find
two integrals of motion that explain the chiral electron transport in the considered system.

Keywords: graphene; ripple; transport; symmetry

1. Introduction

It appears that graphene possesses a remarkable stretchability. For example, the DFT and
molecular dynamics simulations predict that it can be stretched up to about 20–30%, without being
damaged [1]. The experimental measurements demonstrate a good agreement with the theoretical
estimations, while the robust engineering results indicate on sample-wide elastic strain ∼6% [2].
Evidently, transforming the flat surface to the curved one, one creates the strain that affects the
graphene properties. This fact suggests that, by altering the stretchability, one might tune electronic
and transport properties of the graphene sheet.

Recent experimental techniques enable demonstrating evidently a spatial variation of graphene
and its direct consequences. For example, ripples can be formed by means of the electrostatic
manipulation without any change of doping [3]. Periodically rippled graphene can be fabricated
by the epitaxial technique (e.g., [4]). In this case, in contrast to free-standing graphene, a strong
modification of the electronic structure of graphene is observed, which gives rise to localised phonon [5]
and plasmon [6] modes. Periodic nanoripples can be created as well by means of the chemical vapour
deposition [7]. It is found that ripples, acting as potential barriers, yield the localisation of charged
carriers [8]. The potential surface variations could reach the figure of 20–30 meV. Similar independent
prediction has been done in the study of Klein collimation by the rippled graphene superlattice [9].
In this model, the hybridisation between the π- and σ-orbitals creates the potential barrier between
the flat and curved graphene pieces. The barrier value could reach ∆ε ≈ 24 meV at the ripple radius
R = 12Å. This fact provides the confidence in the vitality and the validity of our model (outlined in
Section 2) and following analyses its symmetry properties, presented in our paper.

Indeed, the lattice deformation changes the distance between ions, pz orbital orientation, and is
leading to shift of the on-site energies of pz orbitals. This affects the effective Dirac equation that
could simulate the low energy electron states as a result of a deformation-induced gauge field [10].
The surface curvature modulates also the hopping parameter in the tight-binding approach [10,11].
Moreover, it enhances as well the effect of the spin–orbit coupling [12], usually neglected in flat
carbon-based systems.
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Recently, it is predicted that rippled graphene could lead to the spin selectivity effect for the ballistic
electrons [13,14] in virtue of the curvature-induced spin–orbit couplings (see details in [12,13,15–17]). As a
result, it is shown that at the particular energy values the ballistic electrons with the one spin polarisation
can travel through periodically repeated ripples without any reflection. At the same time, electrons with the
opposite spin polarisation are fully reflected. Once we change the flow direction through the considered
system, the situation becomes inverse. It is noteworthy that different experiments of a spin selective electron
transmission through biomolecules has been discussed recently in Ref. [18]. In this review, the authors
claimed that this phenomenon implies that chirality and spin may play an important role in biology.

In mesoscopic systems, symmetries are key points that allow to illuminate essential features of
finite quantum systems (e.g., [19,20]). The basic goal of this paper is to elucidate the above discussed
phenomenon from point of view of the symmetry properties of the considered system.

2. Basic Physics of The Corrugated Graphene

In our consideration, the corrugated graphene structure consists of a rippled graphene connected
to two flat graphene sheets (see Figure 1).

Figure 1. The corrugated graphene system. There are two flat surfaces: Region I, defined in the
intervals −∞ < x < −R cos θ0; and Region III, defined in the intervals R cos θ0 < x < ∞. A ripple is
modelled by an arc of a circle (Region II) of radius R, defined as −R cos θ0 < x < R cos θ0. At θ0 = 0,
the ripple is a half of the nanotube, while at θ0 = π/2 the ripple does not exist. The angle φ = π − 2θ0.
Here, we have −∞ < y < ∞. We keep the translational invariance along the y-axis, which is chosen as
the symmetry and the quantisation axis.

For analysis of the curved graphene surface, we recapitulate the major results [17] obtained for
armchair CNTs. In this case, only the interaction between nearest neighbour atoms is considered.
The analysis is done in an effective mass approximation for the point K, in the vicinity of the Fermi
level E = 0. A similar approach can be applied for K′ point.

The Hamiltonian of the nanotube has the following form in the effective mass approximation [12]

Hr = γ(τxπ̂x + τyπ̂y)⊗ I − λyτy ⊗ σx(~r)− ξxτx ⊗ σy . (1)

Here, the operators π̂x = −i ∂
R∂θ , π̂y = −i ∂

∂y , σx(~r) = σx cos θ − σz sin θ, and ξx = 2δγp/R,
λy = δγ′/4R. The Pauli matrices σx,y act in the spin space. The matrices τx,y act on the sublattice
degree of freedom. The Pauli matrix τi is called the “pseudospin”, to distinguish it from the real
electron spin.

The following notations are used: γ = −
√

3Vπ
ppa/2 =

√
3γ0a/2, γ′ =

√
3(Vσ

pp −Vπ
pp)a/2 = γ1a,

p = 1− 3γ′/8γ; where Vσ
pp and Vπ

pp are the transfer integrals for σ- and π-orbitals, respectively, in a
flat graphene. The distance d between atoms in the unit cell determines the length of the primitive
translation vector a =

√
3d ' 2.46 Å. For numerical illustration, we assume that γ0 = −Vπ

pp ≈ 3 eV
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and γ1 ≈ 8 eV (see, e.g., [12]). The intrinsic source of the spin–orbit coupling δ = ∆/3επσ is defined
by means of the quantity

∆ = i
3h̄

4m2c2

〈
x|∂V

∂x
py −

∂V
∂y

px|y
〉

, (2)

where V is the atomic potential and επσ = επ
2p − εσ

2p. Here, the energies επ
2p and εσ

2p denote the energies
of π- and σ-orbitals orbitals, respectively. We recall that σ-orbitals are localised between carbon atoms,
while π-orbitals are directed perpendicular to the nanotube surface.

With the aid of the method discussed in [13,17], one obtains the eigenvalues of the Hamiltonian
in Equation (1)

E = κE±, κ = ±1, (3)

where κ = +1(−1) is associated with the conductance (valence) band, and the energies E± are defined as

E± =

√
t2
m + t2

y + λ2
y + λ2

x ± 2
√

λ2
x

(
t2
m + λ2

y

)
+ t2

yλ2
y . (4)

Here, tm = mγ/R, ty = γky, λx = γ(1/2 + 2δp)/R, and m is a magnetic quantum number
(see details in [13,17]). Due to the curvature-induced spin–orbit coupling spin is no anymore a good
quantum number. The eigenstates of Equation (1) are characterised by a quantum number s = ±1,
and have the following form

Φs=±1
m,ky

(θ, y) = eimθeikyyN±




κ(cos θ/2A± − sin θ/2B±)
κ(sin θ/2A± + cos θ/2B±)

cos θ/2C± − sin θ/2D±
sin θ/2C± + cos θ/2D±


 , (5)

where

D± =
λyλx ±

√
λ2

x(t2
m + λ2

y) + t2
yλ2

y

itmλx − tyλy
, (6)

A± =
1

E±

(
tm − ity + i(λy + λx)D±

)
, (7)

B± =
1

E±

[
(tm − ity)D± + i

(
λy − λx

)]
, (8)

C± = 1, (9)

and N± is a normalisation constant

N2
± =

t2
yλ2

y + t2
mλ2

x

2

[(
λyλx ±

√
λ2

x

(
t2
m + λ2

y

)
+ t2

yλ2
y

)2

+ t2
yλ2

y + t2
mλ2

x

] . (10)

Generally, the relations |A±| = |D±| and |B±| = |C±| are fulfilled.
The solution for a flat graphene is well known (e.g., [21,22]). Near the center of each valley

(the point K or K′) electron dispersion is determined by the Dirac-type Hamiltonian

H f = γ(τx k̂x + τy k̂y)⊗ I, (11)

where again the Pauli matrices τx,y act on the sublattice degrees of freedom, I is 2× 2 unity matrix
acting in the spin space, with k̂ = −i(∂/∂x, ∂/∂y). The eigenvalues and eigenstates of the flat graphene
Hamiltonian are

E = κγ
√

k2
x + k2

y , κ = ±1 , (12)
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Ψσ
k(x, y) =

1
2

(
κe−iϕ

1

)
⊗
(

1
σi

)
eik·r, σ = ± , (13)

where e−iϕ = (kx − iky)/
√

k2
x + k2

y, k = (kx, ky), r = (x, y), and k =
√

k2
x + k2

y. The spin degeneracy
is taken into account. In our consideration, the states with the spin up and down are the eigenstates of
the operator σy. The above describe solutions are used to calculate the electron transmission through
the corrugated graphene. We recall that, in rippled graphene, the symmetries related to the spin
degree of freedom and to the angular momentum are not conserved [13,17].

3. Symmetries

To illuminate specific symmetries of our system, we have to identify the corresponding operators
that act within one valley only. Evidently, these operators should act on the A an B sublattices of the
honeycomb lattice.

3.1. The Operator Ŝt = τy ⊗ iσyC

The spin–orbit coupling implies that one of the symmetries should be related to the time-reverse
symmetry operator T = iσyC with C the operator of complex conjugation (see, e.g., [23,24]). However,
the operator T does not commute neither with the Hamiltonian of the flat graphene in Equation (11)
or with the Hamiltonian of the ripple in Equation (1). Taking into account the “pseudospin” degree of
freedom, we observe consequently that the operator Ŝt = τy⊗T commutes with the both Hamiltonians

[Ŝt, H f ] = 0 , [Ŝt, Hr] = 0 . (14)

Let us investigate the properties of this operator with respect to the eigenfunctions of the
Hamiltonian H f ( Hr) described in Section 2. For the sake of convenience, we introduce the following
equivalent definitions: Ψσ

k(x, y) ≡ 〈r|σ, k〉, σ = (+/−) ⇔ σ = (↑ / ↓). As a result, for the wave
function, associated with the flat graphene sheet, we have

Ŝt| ↑ ±k〉 = ±eiϕ| ↓ ∓k〉
Ŝt| ↓ ±k〉 = ∓eiϕ| ↑ ∓k〉

}
⇒ S2

t = 1 , (15)

i.e., the operator Ŝt has two eigenvalues +1 and −1. Since the phase eiϕ does not affect our results,
hereafter, we omit it in our calculations.

Any ket |ψ〉 can be expressed as

|ψ〉 = 1
2
[(

1 + Ŝt
)
|ψ〉+

(
1− Ŝt

)
|ψ〉
]
= |ψ+〉+ |ψ−〉 , (16)

where

|ψ+〉 =
1 + Ŝt

2
|ψ〉 , |ψ−〉 =

1− Ŝt

2
|ψ〉 , (17)

with the property Ŝt|ψ±〉 = ±|ψ±〉. In our particular case, we can form four types of the wave functions:

|ψ±〉 =
1± Ŝt

2
| ↑ +k〉 = 1

2
(| ↑ +k〉 ± | ↓ −k〉) , (18)

|φ±〉 =
1± Ŝt

2
| ↓ +k〉 = 1

2
(| ↓ +k〉 ∓ | ↑ −k〉) . (19)

Thus, for the plane graphene sheet the full set of the operator Ŝt consists of the wave functions
in Equations (18) and (19). These wave functions contain the equal mixture of the spin up and down
states, associated with electrons that move in opposite directions of our structure.
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Since for the curved graphene we use the eigenstates of the CNT, a complete set of quantum
numbers consists of the magnetic quantum number m and the wave number ky. In this case,
we introduce the equivalent notations Φs

m,ky
(θ) ≡ 〈θ|s, m, ky〉. The action of the operator Ŝt on

the wave function in Equation (5), associated with the nanotube, yields

Ŝt|s = +,±m,±ky〉 = iB∗+|s = +,∓m,∓ky〉
Ŝt|s = −,±m,±ky〉 = iB∗−|s = −,∓m,∓ky〉

}
⇒ S2

t = 1 , (20)

since |B±|2 = 1 [see Equation (8)]. Applying the same arguments [see Equations (16) and (17)], we obtain

|χ±〉 =
1± Ŝt

2
|s = +, m, ky〉 =

1
2
(|s = +, m, ky〉 ± iB∗+|s = +,−m,−ky〉) , (21)

|ϕ±〉 =
1± Ŝt

2
|s = −, m, ky〉 =

1
2
(|s = −, m, ky〉 ± iB∗−|s = −,−m,−ky〉) . (22)

Having the symmetry properties of the wave functions of the different elements of our structure,
we are ready to elucidate the symmetry properties of the transmission and reflection probabilities.
Equating the wave functions Ψ, Φ at points x = −R cos θ0 (the boundary between Regions I and II),
and x = R cos θ0 (the boundary between Regions II and III), we define the unknown reflection and
transmission amplitudes rβ

α , tβ
α (α, β = ↑, ↓). In these amplitudes, the upper (bottom) index denotes

the spin polarisation of the incoming (outgoing) (reflected and transmitted) electron. For the sake
of discussion, in our model, electrons move from the left to the right direction. As a result, at the
boundary between Regions I and II for the electron, which moves from the left side with the spin up
polarisation, we have:

Ψ+
kx ,ky

(x) + rL(φ)
↑
↑Ψ

+
−kx ,ky

(x) + rL(φ)
↑
↓Ψ
−
−kx ,ky

(x) = (23)

a+Φ+
m+ ,ky

(θ) + b+Φ+
−m+ ,ky

(θ) + a−Φ−m− ,ky
(θ) + b−Φ−−m− ,ky

(θ) ; x = −R cos θ0 , θ = −φ/2 .

The unknown coefficients a(+/−), b(+/−) characterise transport properties of the electron transfer
across the rippled region. The wave numbers m+ and m− are determined by the equation

m± =
R
γ

√
E2 − t2

y − λ2
y + λ2

x ∓ 2
√

λ2
x(E2 − t2

y) + λ2
yt2

y , (24)

where E = γk (E > 0) is the electron energy. At the boundary between Regions II and III, we have the
following conditions

a+Φ+
m+ ,ky

(θ) + b+Φ+
−m+ ,ky

(θ) + a−Φ−m− ,ky
(θ) + b−Φ−−m− ,ky

(θ) = (25)

tL(φ)
↑
↑Ψ

+
k (x) + tL(φ)

↑
↓Ψ
−
k (x); x = R cos θ0, θ = φ/2.

The system of Equations (23) and (25) determine the coefficients rL(φ)
β
α and tL(φ)

β
α . Acting by the

operator Ŝt on these equations, we obtain:

• at the boundary between Region I and II

Ψ−−kx ,−ky
(x)− rL(φ)

↑∗
↑ Ψ−kx ,−ky

(x) + rL(φ)
↑∗
↓ Ψ+

kx ,−ky
(x) =

ia∗+B∗+(m+, ky)Φ+
−m+ ,−ky

(θ) + ib∗+B∗+(−m+, ky)Φ+
m+ ,−ky

(θ)+

+ia∗−B∗−(m−, ky)Φ−−m− ,−ky
(θ) + ib∗−B∗−(−m−, ky)Φ−m− ,−ky

(θ) ; x = R cos θ0, θ = −φ/2 ;

(26)
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• at the boundary between Region II and III

ia∗+B∗+(m+, ky)Φ+
−m+ ,−ky

(θ) + ib∗+B∗+(−m+, ky)Φ+
m+ ,−ky

(θ)+

+ia∗−B∗−(m−, ky)Φ−−m− ,−ky
(θ) + ib∗−B∗−(−m−, ky)Φ−m− ,−ky

(θ) =

tL(φ)
↑∗
↑ Ψ−−k(x)− tL(φ)

↑∗
↓ Ψ+

−k(x) ; x = −R cos θ0, θ = φ/2 .

(27)

Next, we consider the equations that determine the coefficients rR(φ)
β
α and tR(φ)

β
α for the electron

that moves from the right to the left side with the down spin polarisation. Namely, we have:

• at the boundary between Regions II and III

Ψ−−kx ,−ky
(x) + rR(φ)

↓
↓Ψ
−
kx ,−ky

(x) + rR(φ)
↓
↑Ψ

+
kx ,−ky

(x) =

ã+Φ+
m+ ,−ky

(θ) + b̃+Φ+
−m+ ,−ky

(θ) + ã−Φ−m− ,−ky
(θ) + b̃−Φ−−m− ,−ky

(θ) ; x = R cos θ0 , θ = φ/2;
(28)

• at the boundary between Regions I and II

ã+Φ+
m+ ,−ky

(θ) + b̃+Φ+
−m+ ,−ky

(θ) + ã−Φ−m− ,−ky
(θ) + b̃−Φ−−m− ,−ky

(θ) =

tR(φ)
↓
↓Ψ
−
−kx ,−ky

(x) + tR(φ)
↓
↑Ψ

+
−kx ,−ky

(x) ; x = −R cos θ0 , θ = −φ/2 .
(29)

From the comparison of Equations (26) and (27) with Equations (28) and (29), it follows that the
coefficients rR(φ)

β
α and tR(φ)

β
α of Equations (28) and (29) can be expressed in the following form

rR(φ)
↓
↓ = −rL(−φ)↑∗↑ ; rR(φ)

↓
↑ = rL(−φ)↑∗↓ ; (30)

and
tR(φ)

↓
↓ = −tL(−φ)↑∗↑ ; tR(φ)

↓
↑ = −tL(−φ)↑∗↓ . (31)

As a result, we obtain for the reflection probabilities

|rR(φ)
↓
↓|2 = |rL(−φ)↑↑|2 ; |rR(φ)

↓
↑|2 = |rL(−φ)↑↓|2 , (32)

while for the transmission probabilities we have

|tR(φ)
↓
↓|2 = |tL(−φ)↑↑|2 ; |tR(φ)

↓
↑|2 = |tL(−φ)↑↓|2 . (33)

We have similar probabilities for the electron motion with the spin up polarisation from the right
to the left side

|rR(φ)
↑
↑|2 = |rL(−φ)↓↓|2 ; |rR(φ)

↑
↓|2 = |rL(−φ)↓↑|2 , (34)

and, consequently, for the transmission probabilities

|tR(φ)
↑
↑|2 = |tL(−φ)↓↓|2 ; |tR(φ)

↑
↓|2 = |tL(−φ)↓↑|2 . (35)

From these results, it follows that the operator Ŝt does not involve the other valley, i.e., QED.
However, it interchanges the sign of the vector k and the electron spin polarisation in the flat part
of the considered graphene structure. In the rippled graphene region, it changes m± → −m± and
the sign of the ky component: ky → −ky. We conclude that the operator St acts like a time-reversal
operator in the single valley.

3.2. The Operator Ŝch = τx ⊗ σy

We recall that it was found in Refs. [13,14] that the electron scattering in the superlattice,
created by periodically repeated elements, has a curious behaviour. Note that in this way we mimic
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periodically rippled graphene as a set curvatures between flat graphene areas (e.g., see Figure 1 and
the corresponding discussion in Ref. [14]). One element of the superlattice gives rise to the dominance
of the electron transmission with a certain spin polarisation. While this effect is small for a few ripples,
it defines the perfect transmission for electrons with the one spin polarisation and the perfect reflection
for electrons with the opposite spin polarisation in the case of hundreds of ripples. As a result, we find
the optimal angle values for the ripple that ensures the perfect transmission at relatively large number
of elements N � 1 in the superlattice. Note that the transmission depends on the ripple radius and
the spin–orbit coupling strengths (see details in [14]). It is noteworthy that transmitted electrons with
different spin orientation choose different channels characterised by the quantum number s = ±1 [13].
This fact implies the existence of the additional symmetry that is fundamental for this feature.

To give an insight into this symmetry, we consider the case ky = 0, when the spectrum in
Equation (4) and the eigenspinors are particular simple. In this case, Equations (3) and (4) are reduced
to the form

E = ±(D ± λx) , (36)

where D =
√

λ2
y + t2

m and tm = γ
R m. For the rippled (arc) piece (see Figure 1), there are four eigenenergies

E =





E1 = λx +D
E2 = λx −D
E3 = −λx +D
E4 = −λx −D

(37)

The connection between the energy and the quantum number m can be formulated in the form

m⇒ ms = ±
R
γ

√
(sE− λx)2 − λ2

y, s = ±1 , (38)

that determines four possible values of the quantum number m. Here, we introduce the additional quantum
number s that characterises our eigenstates. Note that in Equation (38) the sign of the quantum number s
depends on the sign of the energy E. In particular, the following relations take place

E > 0 :⇐⇒





s = +1 , E1 > 0
s = +1 , if E2 > 0
s = −1 , if E3 > 0

(39)

On the other hand, at E < 0, the branches E3 and E4 have the quantum number s = +1, while the
branch E2 is characterised by the quantum number s = −1.

At a fixed electron energy E(E > 0), Equations (37), (38), and (39), establish the connection
between the energies Ej(j = 1, 2, 3) and the magnetic quantum number m with the quantum number s

E1 , E2 → ±tm+1 ⇐⇒ s = +1 , (40)

E3 → ±tm−1 ⇐⇒ s = −1 . (41)

We recall that the angular momentum is not conserved. As a result, the eigenfunction is the
mixture of the eigenfunctions in Equation (5) at a given energy (see Figure 2). The energy branches
in Equation (37) with the same quantum number s repel each other, while there is a crossing of the
branches with the different s (see Figures 2 and 3). The anticrossings yield the energy gaps = 2λy

indicated by the arrows (see the insets in Figures 2 and 3). As a result, the energy gaps give rise to
evanescent modes at energies λx − λy < |E| < λx + λy in our system.
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Figure 2. The spectrum in Equation (4) (ky = 0) versus the magnetic quantum number m.
The non-quantised values ±ms=±1 at the energy E = 0.2 eV (thin horizontal line that mimics the Fermi
energy) are indicated at the crossing of the energy branches with different s. Symbols E1, E2, E3, E4 are
used to guide the eyes on the formal solutions (straight lines) defined by Equation (36), irrespective of
the sign of the quantum number s. In contrast, there is anticrossing of the energy branches with the same
quantum number s = +1 for the pair (E1, E2) at E > 0. Similar anticrossing occurs at E < 0, when the
pair (E3, E4) has the same quantum number s = +1. These anticrossings are caused by the term λy in the
Hamiltonian in Equation (1), which creates the energy gaps 2λy near the energy E = ±λx (see [13,17]).
The following parameters are used: R = 10 Å, δ = 0.01, p = 0.1, γ = (4.5 · 1.42) eV· Å, γ′ = 8

3 γ.
These parameters define the values of the spin–orbit coupling strengths: λy = δγ′/4R = 0.0043 eV,
λx = γ(1/2 + 2δp)/R = 0.32 eV (see Section 2).

Figure 3. The same as in Figure 2. Solid lines are associated with the positive energy states (E > 0),
while the negative energies are denoted by dashed lines (see text). Once the energy changes the
sign, it affects the sign of the corresponding quantum number s. There are anticrossing of the energy
branches with the same quantum number s = +1 for the pair (E1, E2) at E > 0 and for the pair (E3, E4)
at E < 0.
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At ky = 0, the eigenvectors in Equation (5) of the Hamiltonian in Equation (1) transform to the
following form (see details in [13,17]):

Φj,m(θ) =
(

I ⊗ e−i
σy
2 θ
)
~νj(m) eimθ , j = 1, ..4 . (42)

Here

~ν1 =




−itm

−A−
−iA−
−tm


 ,~ν2 =




−itm

A+

iA+

−tm


 ,~ν3 =




−itm

A+

−iA+

tm


 ,~ν4 =




−itm

−A−
iA−
tm


 , (43)

where
A± = ±λy +

√
t2
m + λ2

y . (44)

The choice of the components of the wave function in Equation (42) depends on the energy interval
in Equation (37), available for electrons. For example (see Figure 2), for E > λx ⇒ E = E1 ∨
E = E3, the base eigenfunctions are: ∼ exp(±im+1θ)~ν1(±tm+1);∼ exp(±im−1θ)~ν3(±tm−1), respectively.
As discussed above, the quantum number s, characterising the components of the wave function in
Equation (42), is associated with the specific energy (see Equations (40) and (41)). The wave function in
Equation (13) of the flat graphene at ky = 0 is convenient to present in the form:

Ψσ
k (x) =

1
2

(
τ k
|k|
1

)
⊗
(

1
σi

)
eikx, σ = ± . (45)

As above, we use the following definitions: Ψσ
k(x) ≡ 〈x|σ, k〉, σ = (+/−) ⇔ σ = (↑ / ↓).

The symbol τ = −(+) is ascribed to the valence (conduction) band. We study the case E ≥ 0;
the opposite case can be analysed with the same method. As above, the positive value of the wave
number k ≡ kx corresponds to the direction of the electron motion from the left to the right side of the
considered system.

In the case ky = 0, there is one more operator Ŝch = τx⊗ σy that commutes with both Hamiltonians
in Equations (1) and (11), describing the flat and the rippled pieces of our system, respectively:

[Ŝch, H f ] = 0 , [Ŝch, Hr] = 0 . (46)

For the wave function, associated with the flat graphene sheet, we have

Ŝch| ↑ ±k〉 = ±| ↑ ±k〉
Ŝch| ↓ ±k〉 = ∓| ↓ ±k〉

}
⇒ α = ±1 . (47)

Thus, the operator Ŝch has the eigenvalue α = +1(−1), acting on the wave function of the electron,
traveling from the left side of our structure with spin up (down) polarisation. The eigenvalues are equal
in value but opposite in sign if the operator Ŝch acts on the wave function of the electron, traveling from
the right side of our structure with spin up (down) polarisation. On the other hand, the action of the
operator Ŝch on the electron wave functions, associated with the rippled piece of our system, is as follows:

ŜchΦ1,m(θ) = −Φ1,m(θ) , (48)

ŜchΦ2,m(θ) = −Φ2,m(θ) , (49)

ŜchΦ3,m(θ) = +Φ3,m(θ) , (50)

ŜchΦ4,m(θ) = +Φ4,m(θ) . (51)
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In this case, the operator Ŝch has the eigenvalue α = +1(−1) as well, providing us the connection
between the eigenstates of the flat and rippled pieces of the considered system.

Now, we are ready to discuss the list of eigenfunctions, responsible for the transport properties in
different energy range.

• E > λx.

1. Quantum numbers: α = +1, s = −1. These quantum numbers determine the available set of
the wave functions: Ψ+

k (x), Ψ−−k(x),Φ3,m(θ). If the corresponding symmetries are responsible
for the transport properties, there are only the following options.

(a) The electron is moving from the left side of our structure (flat graphene sheet) with the
spin up polarisation [Ψ+

k (x) ≡ | ↑ +k〉]. In this case, in the rippled graphene region
(see Figure 2), there is one open channel, defined by the wave function Φ3,m. The wave
function Ψ−−k(x) ≡ | ↓ −k〉 describes the reflection with the electron spin–flip.

(b) The electron is moving from the right side (flat graphene sheet) with the spin down
polarisation [Ψ−−k(x) ≡ | ↓ −k〉]. In this case, in the rippled graphene region, there is
only the transmission channel, defined by the wave function Φ3,m. The wave function
Ψ+

k (x) ≡ | ↑ +k〉 describes the reflection with the electron spin–flip.

As a result, we expect the equivalence between the left/right transmission probabilities with
the opposite spin polarisations. Indeed, this expectation is consistent with Equation (33),
obtained from the different arguments at ky = 0.

2. Quantum numbers: α = −1, s = +1. The available set of the wave functions: Ψ−k (x), Ψ+
−k(x),

Φ1,m(θ). In this case, the symmetries dictate the following options.

(a) The electron is moving from the left side (flat graphene sheet) with the spin
down polarisation [Ψ−k (x) ≡ | ↓ +k〉]. In this case, in the rippled graphene
region (see Figure 2), there is one open channel, defined by the wave function Φ1,m(θ).
The wave function Ψ+

−k(x) ≡ | ↑ −k〉 describes the reflections with the electron spin–flip.

(b) The electron is moving from the right side (flat graphene sheet) with the spin up
polarisation [Ψ+

−k(x) ≡ | ↑ −k〉]. In this case, in the rippled graphene region for this
electron there is only the transmission channel, defined by the wave function Φ1,m(θ).
The wave function Ψ−k (x) ≡ | ↓ +k〉 describes the reflections with the electron spin–flip.

Again, we expect the equivalence between the left/right transmission probabilities with
the opposite spin polarisations. Indeed, this expectation is consistent with Equation (35),
obtained from different arguments at ky = 0.

• E < λx.

1. Quantum numbers: α = −1, s = +1. In this case, the available set includes the following wave
functions: Ψ+

−k(x), Ψ−k (x), Φ2,m(θ). The symmetries dictate the following options.

(a) The electron is moving from the left side (flat graphene sheet) with the spin down
polarisation [Ψ−k (x) ≡ | ↓ +k〉]. In the rippled graphene region, there is only the
transmission channel, defined by the wave function Φ2,m(θ). The wave function
Ψ+
−k(x) ≡ | ↑ −k〉 describes the reflections with the electron spin–flip.

(b) The electron is moving from the right side (flat graphene sheet) with the spin up
polarisation [Ψ+

−k(x) ≡ | ↑ −k〉]. In the rippled graphene region, there is only
the transmission channel, defined by the wave function Φ2,m(θ). The wave function
Ψ−k (x) ≡ | ↓ +k〉 describes the reflections with the electron spin–flip.
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Again, the expected equivalence between the left/right transmission probabilities with the
opposite spin polarisations is consistent with Equation (35), obtained from different arguments
at ky = 0.

2. Quantum numbers: α = +1, s = −1. In this case, the available set includes the following
wave functions: Ψ+

k (x), Ψ−−k(x), Φ3,m(θ). This situation is completely equivalent to the case
discussed at E > λx, Point 1.

Thus, at ky = 0, the symmetry, associated with the operator Ŝch, determines the following transport
properties through the rippled graphene piece: (i) at the transmission, it preserves the electron spin
polarisation, while forbids the spin–flip; and (ii) the reflection occurs only with the spin–flip.

For ky 6= 0, the operator Ŝch does not commute with the Hamiltonians. In this case, the discussed
symmetry is broken. It results in constraint release on the reflections and transmissions mechanisms in
our system (i.e., [25]).

3.3. The Relation Between the Operators Ŝt and Ŝch

Note that these two symmetry operator commute if ky = 0. Evidently, they have the common
basis, while having different eigenvalues. Let us analyse this situation in details. One can readily see
that the eigenfunctions in Equations (18) and (19), associated with the flat graphene piece, are common
eigenstates for the both operators:

Ŝt|ψ±〉 = ±|ψ±〉 , Ŝt|φ±〉 = ±|φ±〉 , (52)

Ŝch|ψ±〉 = +|ψ±〉 , Ŝch|φ±〉 = −|φ±〉 . (53)

For the rippled graphene piece, we have to consider only the case ky = 0. In this case, it is
convenient to construct the common basis from the set in Equation (42). Taking into account the
properties in Equations (48)–(51), we introduce the following superpositions

Φj =
1
2
[Φj,m(θ) + Φj,−m(θ)] , j = 1, .., 4 . (54)

As a result, we obtain
ŜtΦ1,2 = Φ1,2 , ŜtΦ3,4 = −Φ3,4 , (55)

ŜchΦ1,2 = −Φ1,2 , ŜchΦ3,4 = Φ3,4 . (56)

Thus, the eigenfuctions in Equation (54) form the complete set for the both symmetry operators in
the case of the rippled graphene piece.

4. Summary

Evidently, symmetries play an essential role in our understanding different phenomena in
mesoscopic physics. In graphene physics, they become especially apparent in the transport properties
of the corrugated systems. We find two symmetry operators that explain the chiral behaviour of the
ballistic electron transport through the rippled graphene. This unusual behaviour has emerged due to
the curvature-induced spin–orbit coupling. In particular, the symmetry operator Ŝt (see Section 3.1)
elucidates the equivalence between the transport characteristics of the ballistic electrons travelling
from opposite sides of our system that have different type of polarisations. This operator acts as
a time-reversal operator in the single valley system, considered in our paper. The other symmetry
operator Ŝch (see Section 3.2) enables us to explain the selection of open energy channels for the ballistic
electrons travelling through the rippled graphene subsystem at the direct incident of the electron flow
(ky = 0). This symmetry explains the dominance of different electron spin polarisations that depend on
the direction of the electron flow. This selection becomes increasingly important at multiple periodic
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repetition of the corrugated graphene structure, considered in our paper (see also [14]). From our
preliminary analysis, it follows that similar symmetry preserves if we consider the down side of the
CNT. This problem is, however, beyond the scope of the present studies and will be discussed in detail
in forthcoming paper.
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Abstract: Deterministic nano-fractal structures have recently emerged, displaying huge potential
for the fabrication of complex materials with predefined physical properties and functionalities.
Exploiting the structural properties of fractals, such as symmetry and self-similarity, could greatly
extend the applicability of such materials. Analyses of small-angle scattering (SAS) curves from
deterministic fractal models with a single scaling factor have allowed the obtaining of valuable
fractal properties but they are insufficient to describe non-uniform structures with rich scaling
properties such as fractals with multiple scaling factors. To extract additional information about
this class of fractal structures we performed an analysis of multifractal spectra and SAS intensity of
a representative fractal model with two scaling factors—termed Vicsek-like fractal. We observed that
the box-counting fractal dimension in multifractal spectra coincide with the scattering exponent of
SAS curves in mass-fractal regions. Our analyses further revealed transitions from heterogeneous
to homogeneous structures accompanied by changes from short to long-range mass-fractal regions.
These transitions are explained in terms of the relative values of the scaling factors.

Keywords: fractals; small-angle scattering; form factor; structural properties; dimension spectra;
pair distance distribution function

1. Introduction

Recent progress in materials science and nanotechnology has opened new possibilities in the
production of new types of nano- and micro-structured materials with improved functions and
properties [1–7], thus providing links to both deterministic classical mechanics and chaotic quantum
mechanics [8,9]. Since the physical characteristics greatly depend on their structure, one of the
main challenges in the field of materials science is to understand the correlation between them on
a broad spectrum of length scales, starting from atomic level. In particular, for many nanoscale
structures, quantum-like properties are frequently observable, thus displaying many interesting
nano-effects [10–12]. However, for some materials, such as electrospun nanofibers, it has been shown
that these effects depend strongly upon their fractal structure [9].

Therefore, ongoing research is carried out to obtain structures with exact self-similar (ESS)
properties [13–19], where an intrinsic pattern repeats itself exactly under scaling. This procedure
usually leads to highly symmetric fractal structures, such as Cantor dust, Sierpinski carpet or Menger
sponge [20]. In the field of chaotic deterministic systems they are known as strange attractors, since they

Symmetry 2019, 11, 806; doi:10.3390/sym11060806 www.mdpi.com/journal/symmetry125
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may represent a set of infinite unconnected points (Cantor dust), a pathological curve (Weierstrass
function) which is continuous everywhere but differentiable nowhere, or generally any geometric
shape that cannot be easily described with a simple set operations of basic geometric objects.

ESS nano- and micro-materials attract a lot of attention due to their improved physical
characteristics as compared with classical ones, and which arise mainly due to their symmetry and
self-similar properties [21]. For example, the mechanical performance of 3D printed biomimetic Koch
fractals interlocking can be effectively increased via fractal design [22], while the radiative heat flux can
be kept at a short range (as compared to non-fractal structures) in ESS-based materials [23]. However,
one of the main challenges in building such fractal materials is finding the suitable mixing composition
between the embedding matrix and the fractal’s material. To date, only a few materials have been
successfully used to create such ESS structures, including dicarbonitrile [24] and bys-terpyridine
molecules [13], single/poly crystalline silicone [14,15] or alkyletene dimers [25].

The structural properties of this new generation of nano- and micro-scale materials can
effectively be determined using the small-angle scattering (SAS) of X-rays (SAXS) or neutrons
(SANS) [26,27]. This widely used material-morphology investigation method has the advantage
of sampling a statistically significant macroscopic volume. For ESS structures, the main advantage
of SAS relies on its ability to distinguish between mass and surface fractals through the value of the
scattering exponent τ in the fractal region [28–31]. More recently, it has been shown that SAS can also
differentiate between ESS and statistically self-similar (SSS) structures [32] as well as between regular
and fat fractals, that is, those with positive Lebesgue measure [33].

However, the behavior of the SAS intensity curves obtained from multifractals, that is, structures
obtained by intermixing fractals with several scaling factors, are not yet completely understood. This is
mainly due to the fact that the vast majority of physical materials are heterogeneous at nano- and
micro-scales, thus requiring models with at least two scaling factors. Although a first step in this direction
was done by obtaining the SAS spectrum from a multifractal structure generated using the chaos game
algorithm [34], an expression for the scattering intensity was derived only recently [32]. Moreover,
in Reference [34] it has been shown that, for the investigated structure, the oscillations in the fractal region
are not very pronounced leading to difficulties in recovering the scaling factors from experimental data.
This is an intrinsic consequence of the model’s construction procedure, which involves a random variable
in generating the positions of the fractal scattering units, as well as the presence of multiple scaling factors.

The purpose of this work is to provide a description of how to extract the scaling factor(s) from
SAS data and how to relate them to the degree of fractal’s heterogeneity. To this aim, in Section 2.1 we
briefly describe the multifractals together with the moment method used to calculate the dimension
spectra. Section 2.2 presents the main concepts of SAS with a focus on the form factor, pair distance
distribution function (pddf) and their properties. In Section 3.1 we describe the construction process
of the Vicsek-like multifractal model with two variable scaling factors [35,36] and show how one can
obtain analytically the box-counting fractal dimension. In Section 3.2 we calculate numerically the
corresponding dimension spectra and compare them with the theoretical results. In Section 3.3 we
obtain the coefficients of the pddf. Finally, Section 3.4 presents an analytical expression of the form
factor together with the influence of the polydispersity. Here, we also relate the behavior of the form
factor with information from dimension spectra from Section 3.2.

2. Theoretical Background

2.1. Multifractals

Multifractals are non-uniform structures with rich scaling and self-similar properties that
can change at every point [37,38]. A common procedure used to investigate their properties is
to calculate their dimension spectrum. For this purpose several methods can be used, such as
moment method [39], multifractal detrended fluctuation analysis [40] or wavelet transform modulus
maxima [41]. Here, we make use of the moment method due to its simplicity of implementation in
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a computer code as well as for its general applicability. An advantage of this method is that it is
particularly well suited for analysis of images acquired by various methods including atomic force
microscopy, scanning electron microscopy, computed tomography etc.

For this purpose, let us consider first an object S covered by a grid of boxes Bi(l) of size l and
a measure µ(B) determined by the probability of hitting the object in the box Bi. The corresponding
partition function Zs is defined by [41]:

Zs(l) =
N

∑
i=1

ps
i (l), (1)

where N ∝ 1/l2 is the number of boxes, i indexes each individual box, and pi = µ(B) represent
probabilities with ri fragmentation ratios, such that ∑N

i=1 pi = 1.
In terms of the partition function, the generalized dimension spectrum Ds can be written as [41]:

Ds ≡
1

1− s
lim
l→0

ln Zs(l)
− ln l

, (2)

where we take into account that Zs has a power-law behavior in the limit l → 0 and N → ∞, so that
Zs ∝ lDs(s−1). Therefore:

Ds = lim
l→0

1
1− s

ln ∑N
i=1 ps

i (l)
− ln l

, (3)

with pi ≡ Ni(l)/N being the relative weight of the i-th box. In practice, dimension spectra can
be obtained from images acquired using various techniques, such as atomic force microscopy,
scanning electron microscopy, computed tomography and so on. Thus the quantity Ni in defining the
probabilities pi, is given by the number of non-white pixels in the i-th box, while N is the total number
of pixels in the image.

The function Ds is a monotonically decreasing one, with the horizontal asymptotes αmax =

lims→−∞ Ds and αmin = lims→∞ Ds. The quantities αmax and αmin describe the scaling properties of the
most rarefied, and respectively of the most dense regions in the fractal. Thus, the object is homogeneous
if αmax = αmin, so that it becomes a single scale fractal, and the corresponding Ds spectrum is a line.
In particular, at s = 0 one recover the well-known box-counting dimension, since it gives:

D0 = lim
l→0

log N(l)
− log l

, (4)

with s ≡ D0 and l = δ. Here, N(l) is the number of boxes in the minimal cover. At s = 1, D1 gives
a description of how the morphology increases as l → 0, and thus is called the information dimension.
After applying L’Hopital’s rule, D1 can be written as:

D1 = lim
l→0

∑N
i=1 pi log pi

− log l
, (5)

which is related to Shannon’s entropy and measures how the information scales with 1/l. The higher the
values of fractal dimension D1, the more uniform the density. At s = 2, Equation (3) gives D2, which is
called the two-point correlation dimension and is a measure of the correlation between pairs of points in each
box. It describes how the data are scattered, with higher values of D2 corresponding to higher compactness.

2.2. Small-Angle Scattering

SAS technique is based on the interaction of an incident beam with the electrons in the
sample (for SAXS), respectively with the atomic nuclei (for SANS). Since neutrons interact with
the magnetic moments, they also provide important information about the sample material’s magnetic
properties. Therefore, SAS describes spatial density-density correlations in materials through a Fourier
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transform, leading to the determination of the differential elastic cross section dσ/dΩ. When this
quantity is normalized with regard to the irradiated volume V

′
, it gives the scattering intensity [26]

I(q) = (1/V
′
)dσ/dΩ as a function of the momentum transfer q = 4πλ−1 sin θ, where λ is the incident

beam’s wavelength and 2θ the scattering angle. Although in this low-resolution technique the phase
information is lost, a more detailed structural description can be obtained when it is complemented
by data obtained from other methods, such as protein crystallography [42], nuclear magnetic
resonance [43], or when numerical procedures are used to recover the phase, as in coherent SAXS [44].
Let us consider a volume V

′
irradiated by a beam of light, X-ray, or neutrons, which contains the

matrix, with a scattering length density (SLD) ρp, together with a large number of randomly oriented,
non-interacting multifractals, with uncorrelated positions. Denoting by ρm the SLD of the fractals,
after subtracting the matrix density, we can consider a system of scattering units “frozen” in vacuum.
It has a scattering density of ∆ρ = ρm − ρp, called the scattering contrast. Thus, denoting by n the
concentration of the fractals, the scattering intensity is given by [26]:

I(q) = n|∆ρ|2V2
〈
|F(q)|2

〉
, (6)

where V is each fractal’s volume, F(q) is the form factor:

F(q) ≡ 1
V

∫

V
e−iq·rdr, (7)

obeying the boundary condition F(0) = 1. The symbol 〈· · · 〉 stands for ensemble averaging over all
orientations of the fractal, which, for an arbitrary two-dimensional function f , is defined as:

〈
f (qx, qy)

〉
=

1
2π

∫ 2π

0
f (q, φ)dφ. (8)

For a mass fractal with fractal dimension Dm, total length L, composed of p basic units, each of
size l, separated by the distance d, so that l . d . L, the normalized form factor in Equation (7) can be
written as:

〈
|F(m)(q)|2

〉
'





1, q . 2π/L,

(qL/2π)−Dm , 2π/L . q . 2π/h,

1/p, 2π/h . q . 2π/l,

(1/p) (qL/2π)−4 , 2π/l . q,

(9)

where p is of the order of (L/h)Dm . The four intervals in the definition of this piecewise function
delimit the main structural regions on a double logarithmic scale: the plateau at low q is the Guinier
region, the simple power-law decay is the fractal region, a second plateau, and finally the Porod region
represented by a power-law decay with scattering exponent -4, or respectively -3 for 2D structures.
Because we are dealing with a model for which the distances between the objects is of the same order
of magnitude as their size, so that d/l ' 1, the second plateau from Equation (9) will not be observed.
This shall be of no concern to us, since we are extracting structural information from the fractal region.

In calculating the SAS curves one makes use of the following properties of the form factor defined
in Equation (7):

• F(q)→ F(βq) if the particle’s length is scaled as L→ βL,
• F(q)→ F(q)e−iq·a if the particle is translated by the vector r → r + a,
• F(q) = [VI FI(q) + VI I FI I(q)] / (VI + VI I), if the particle can be decomposed as a union of two

non-overlapping subsets I and I I.
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It is known that for a single-scale mass fractal consisting of k units (here disks will be used) at the
m-th iteration, each with a form factor F0, the scattering intensity can be written as [30]:

I(q) = I(0)S(q)
〈
|F0(q)|2

〉
/km, (10)

where S(q) is the structure factor, defined by:

S(q) ≡
〈
ρqρ−q

〉
/km, (11)

and is related to the pddf p(r) through:

S(q) = 1 + (km − 1)
∫ +∞

0
drp(r)

sin qr
qr

. (12)

For single scale mass-fractals, the function p(r) appearing in Equation (12) is the probability
density of finding the distance r between the centers of two arbitrarily taken disks inside the fractal,
and is defined by the following expression [30]:

p(r) =
2

km (km − 1) ∑
rp

Cpδ(r− rp), (13)

where the symbol δ is the Dirac’s delta function, rjk ≡ |rj − rk| is the relative distance between the
centers of disk j and k, and Cp are the number of distances separated by rp.

In a physical system, the scatterers have almost always a certain degree of polydispersity.
Thus, in order to take into account this effect we consider that their size obey a distribution function
DN(l), defined in such a way that DN(l)dl gives the probability of the size of the fractal to be found in
the interval (l, l + dl). In particular, we consider a log-normal distribution of the type:

DN(l) =
1

σl(2π)1/2 e−
(log(l/µ)+σ2/2)

2

2σ2 , (14)

with relative variance σr = (〈l2〉D−µ2)1/2/µ, mean value µ = 〈l〉D, and variance σ =
(
log(1 + σ2

r )
)1/2.

Therefore, by using Equations (6) and (14) one obtains the polydisperse form factor averaged over the
distribution function [26]:

I(q)/I(0) =
∫ ∞

0
〈|F(q)|2〉A2

m(l)DN(l)dl, (15)

where Am is the corresponding area at mth iteration.
Thus, the scattering intensity given by Equation (15) leads to a simple power-law decay I(q) ∝ q−τ,

where τ = Dm for mass fractals, and τ = 2d − Ds for surface fractals. Recall that for mass fractals
embedded in a d-dimensional Euclidean space we have Ds = Dm < d and Dp = d, while for surface
fractals Dm = Dp = d and d− 1 < Ds < d. Here, Ds is the fractal dimension of the set’s boundary, Dm

is the set’s “mass” fractal dimension, and Dp is the “pore” dimension of the surrounding matrix phase.
Therefore, an object is classified as a mass fractal with Dm = τ when the experimentally determined value
of τ is smaller than d, while for d− 1 < τ < d, it is a surface fractal with dimension Ds = 2d− τ [45,46].

3. Results and Discussions

3.1. Construction of the Multifractal Model

In constructing the Vicsek-like [35] multifractal model one starts with a square of edge size l0 in
which we inscribe a disk of radius r0, with 0 < r0 < l0/2 such as that their centers coincide (Figure 1).
This is called the zero-order iteration (i.e., m = 0), or the initiator. We choose a Cartesian system of
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coordinates with the origin coinciding with the center of the square and disk, and axes parallel with the
edges of the square. By replacing the initial disk with k1 = 4 smaller disks of radii r1 = βs1r0 situated
in the corners of the square, and with k2 = 1 disk of radius r2 = βs2r0 situated in the center, we obtain
the first iteration or generator (m = 1). Here, βs1 and βs2 are the scaling factors. The positions of the
four corner disks are chosen in such a way that their centers are given by:

aj =
1− βs1

2
{±l0,±l0}, (16)

with all combinations of the signs and with j = 1, · · · , 4. The second fractal iteration (m = 2) is
obtained by performing a similar operation on each of the k1 + k2 disks. For arbitrarily iterations m,
the total number of disks is:

Nm = (k1 + k2)
m , (17)

In the high m iteration number limit one obtains the multifractal, whose fractal dimension is
given by [35]:

2

∑
i=1

kiβ
D
si = 1. (18)

Note that the fractal dimension for the well-known Vicsek fractal is recovered for βs1 = βs2 = 1/3.
Figure 1 shows the first three iterations of the multifractal at various values of the scaling factors

βs1 and βs2. The different colors in Figure 1 represent the disks which arise at a given iteration number
m. Black color denotes the disks arising at m = 1, orange those at m = 2, while green is used for the
third iteration. The upper row from Figure 1 shows that for βs1 = 0.1 and βs2 = 0.8, denoted here
model M1, a more heterogeneous structure is obtained when compared with the model M2 from the
middle-row (i.e., for βs1 = 0.2 and βs2 = 0.6) or with the model M3 in the lower-raw, constructed
using βs1 = 0.3 and βs2 = 0.4. It can also be noted that for model M3 the structure consists of very
closely sized disks, and it resembles the single scale Vicsek fractal, as pointed out before.

m = 1 m = 2 m = 3

m = 1 m = 2 m = 3

Figure 1. Cont.
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m = 1 m = 2 m = 3

Figure 1. (Color online) First three iterations of the two-scale multifractal models. Upper row: βs1 = 0.1
and βs2 = 0.8 (Model M1). Note that for m = 3 the disks of radii l0β3

s1
/2 = 0.0005l0 are too small to be

seen in the figure (at the given size). Middle row: βs1 = 0.2 and βs2 = 0.6 (Model M2). Lower row:
βs1 = 0.3 and βs2 = 0.4 (Model M3). Black, orange and green colors denote the disks generated at
iterations m = 1, m = 2, and respectively at m = 3.

3.2. Dimension Spectra

The corresponding dimension spectra Ds for the three models M1, M2 and M3 are plotted using
Equation (2) and can be seen in Figure 2 for −10 < s < 10. The spectrum for model M1 (black curve)
clearly shows that Ds covers a broad range of values, with 0.15 . Ds . 1.85. This can be explained
by a high degree of heterogeneity, with the densest regions having the fractal dimension ' 1.85,
while the most rarefied ones have dimension ' 0.2. The spectrum for model M2 (red curve) covers
the much tighter range between 0.81 . Ds . 1.55. But still, pronounced differences between regions
with high and low densities are easily observed. The spectrum of model M3 (green curve) is almost
a horizontal line, as expected, since the two scaling factors have close values, thus leading to an almost
homogeneous fractal structure, with a fractal dimension of Ds ' 1.42. The vertical blue dotted line
indicates the s = 0 axis. The box-counting dimensions of the three models can be determined using
the intersection of the fractal dimension spectrum with this axis, so that: D0 ' 1.22 (for model M1),
D0 ' 1.31 (for model M2) and D0 ' 1.42 (for model M3).

 

s

2

2

2

Figure 2. (Color online) Dimension spectra Ds for the three multifractal models: M1 (black),
M2 (red), M3 (green). The intersection of the vertical line with each horizontal (dashed) line gives the
box-counting dimension D0.
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3.3. Pair Distance Distribution Function

Figure 3 shows the real space characteristics for the same models M1, M2 and M3, at fractal
iteration number m = 4 using the pddf function defined in Equation (13). The coefficients Cp are
calculated numerically using simple combinatorial analysis. The general feature is the presence of
distance-groups on a double logarithmic scale.

For βs1 = 0.1 and βs2 = 0.8 the periodicity is clearly visible (Figure 3a), the main groups being
separated by gaps at r/l0 ' 4.5× 10−3, 4.5× 10−2 and respectively at 4.5× 10−1, indicating the absence
of the corresponding distances inside the fractal. The position of these groups is well described as
having the periodicity log10 (1/βs1), and thus, they are related to the scaling factor βs1. Inside each
main group, other less pronounced smaller gaps can be noticed, which can be described as having
a periodicity related to βs1.

For models M2 and M3, when the scaling factors are relatively closer to each other, the gaps
between main groups are less pronounced but still some periodicity can be seen (Figure 3b,c). However,
the gaps within a single group are significantly smeared out (especially for model M3) and thus
determining the scaling factor βs2 in these cases cannot be done with sufficient accuracy. This can
be explained by the fact that when the scaling factors have close values, the position of the gaps
corresponding to a scaling factor start to “interfere” with the positions of those corresponding to the
other one. This leads to a more homogeneous structure, also reflected by the almost constant line in
the dimension spectra of model M3 (the green curve from Figure 2).

3.4. Small-Angle Scattering Form Factor

In the proposed model, the positions of the four disks with scaling factor βs1 can be described by:
G1(q) = cos (qxl0 (1− βs1/2)) cos

(
qyl0 (1− βs1/2)

)
while the position of the disk with scaling factor

βs2 is given by G2(q) = 1. The total number of particles at m-th iteration is given by Equation (17),
with k1 = 4 and k2 = 1, while the total surface area is

(
k1β2

s1 + k2βs2
)m. Thus, at m = 1, the fractal

consists of k1 disks of radius r1 = βs1r0 and one disk of radius r2 = βs2r0, with r0 = l0/2. Therefore,
the form factor is given by:

F1(q) =
k1β2

s1G1(q)F0(βs1q) + k2βs2G2(q)F0(β2
s2q)

k1β2
s1 + k2β2

s2
, (19)

where F0(q) = 2J1(q)/q is the form factor of the disk, and J1(q) is the Bessel function of the first kind.
At m = 2, while repeating the same procedure for each disk, one obtains k2 disks of radius β2

s2r0,
k1 disks of radii βs1βs2r0, k2

1 disks of radii β1
s2r0, k1 and so on. Thus, at an arbitrarily iteration m, we can

write the corresponding form factor in terms of a recurrence relation of the form [32]:

Fm(q) =
k1β2

s1G1(q)Fm−1(βs1q) + k2βs2G2(q)Fm−1(β2
s2q)

k1β2
s1 + k2β2

s2
. (20)

Thus, at arbitrary m, the scattering intensity (Equation (10)) can be written as:

Im(q)/Im(0) =
〈
|Fm(q)|2

〉
, (21)

Figure 4 shows the corresponding monodisperse (black curves) and polydisperse (red curves)
scattering intensity for the multifractal models M1, M2 and M3. For calculating the polydispersity we
used the log-normal distribution function given by Equation (14) with the relative variance σr = 0.2.
One observes the presence of three main regions in each case. At ql0 ' π we have a Guinier region
with I(q) ∝ q0. At π . ql0 . 2π/βm

s2 we have a mass fractal region with I(q) ∝ q−D0 , where D0

is the box counting dimension of the multifractal, whose value coincides with that obtained from
the dimension spectra (see Figure 2) and from Equation (18). At 2π/βm

s2 & ql0 we are beyond the
mass-fractal region, reaching the Porod regime with I(q) ∝ q−3. Here, the main region of interest is the
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mass fractal one, since the exponent of the scattering intensity can be related to the multifractal spectra
given in Figure 2.

Figure 3. (Color online) The coefficients Cp (orange dots) in Equation (13) for the pair distribution
function of the considered multifractal models at m = 4. (a) Model M1; (b) Model M2; (c) Model M3.
For a better visualization of pddf grouping the vertical line (blue) for each distance is shown.

Figure 4. (Color online) Scattering form factor (Equation (21)) for monodisperse (black) and polydisperse
(red) multifractal models at m = 4. (a) Model M1; (b) Model M2; (c) Model M3. Vertical lines indicate
the lower and upper edges of mass fractal region.
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These results show that, for the suggested model, the length of mass-fractal regions depends on
the scaling factor βs2, since βs2 > βs1. The scattering from the three models M1, M2 and M3 illustrate
three important cases. First, for the case of model M1, since βs2 = 0.8 is much larger than βs1 = 0.1,
and they are related through βs1 ≡ (1− βs2) /2, the upper edge of the mass fractal region is very
close to its lower edge, so that no oscillations can be observed in this region (Figure 4a). However,
when βs2 is of comparable size with βs1, the length of the mass fractal region is enough large, so that
a log-periodicity with the period log (1/βs1) can be observed (Figure 4a,b). In order to provide a better
view of the log-periodicity, we show in Figure 5 the quantity I(q)qD0 vs. q. This also clearly shows
the increasing complexity of the scattering curves in the fractal region, which arise due to mixing of
structures of various sizes, corresponding to repeated subdivisions of the fractal with scaling factors
βs1 and βs2. In addition, for models M1 and M2 one can see that the number of most pronounced
minima in the fractal region coincide with the fractal iteration number.

Note that in all cases, the corresponding polydisperse form factor smears the monodisperse
curve. The degree to which the polydisperse curve is smeared-out depends on the value of the relative
variance σr in the size distribution (Equation (14)): the higher the value of σr the more smooth the
scattering curve. Therefore, as Figures 4 and 5 show, the periodicity and the number of fractal iteration
can be recovered when the values of the relative variance are not very high.

For models M2 and M3, the relationships between the log-periodicity and the scaling factors are
not so obvious as for model M1, due to superposition of maxima and minima arising from the ’mixing’
of various structures of comparable sizes and of distances between them. This behavior is similar to
the one observed in pddf, where separation of distance-groups is clearly visible only for model M1.
Note that for 3D structures, the number of distances of a given value, is much higher than for the 2D
model developed here, and thus, more pronounced minima and maxima shall be observed the SAS
intensity for both the M2 and M3 models, along with more pronounced gaps in pddf.

Figure 5. (Color online) The quantity I(q)qD0 , where D0 is the box-counting fractal dimension for
monodisperse (black) and polydisperse (red) multifractal models at m = 4. (a) Model M1; (b) Model
M2; (c) Model M3. Vertical lines indicate the lower and upper edges of the mass fractal region.
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Therefore, a combined structural investigation involving SAXS/SANS experimental data, as well
as an image analysis of multifractals, can be used to exploit the advantages provided by both reciprocal
and real space. While for real space analysis the phase is not lost and thus the structure can be directly
obtained, in the case of a reciprocal space analysis, the information is obtained from a macroscopic,
statistically significant volume.

4. Conclusions

We developed a multifractal model that generalizes the well-known two-dimensional Vicsek
fractal, with disks as basic units. The model is characterized by the presence of two-scaling factors βs1

and βs2 controlling the multifractal spectra and implicitly the box counting dimension D0, in the range
from 0 to 2.

Changes in the fractal heterogeneity are assessed using pddf and SAS intensity for several
representative values of the scaling factors. The relative degree of heterogeneity is confirmed using the
dimension spectra. However, depending on the relative values of the scaling factors, the changes can be
more clearly visible in a particular space, that is, reciprocal or real. Thus, in order to extract additional
structural information we identify three major situations, each one with its particular approach:

• If βs1 << βs2, the system is highly heterogeneous and structural parameters are more clearly
visible in pddf (see Figure 3a), since the mass fractal region of the scattering intensity is very short
Figure 4a). The scaling factor βs1 is extracted from the periodicity of large groups of distances,
while βs2 can be extracted in a relatively good approximation, from the periodicity of smaller
groups found inside larger ones. The number of fractal iterations coincide with the number of
large distinct groups in pddf.

• If βs1 . βs2, separation of pddf in distinct groups of distance is not very clear since the
values of distances arising from each of the scaling factors begin to mix with each other
(see Figure 3b,c), and thus extracting exact values of the scaling factors can become a very difficult
task. However, in the reciprocal space, the corresponding mass fractal region of scattering intensity
is characterized by a succession of maxima and minima on a power-law decay (generalized
power-law decay) and the value of the largest scaling factor can be clearly estimated from the
periodicity of minima. In addition, the fractal dimension can be obtained from the scattering
exponent of this power-law decay while the fractal iteration number can be obtained from the
number of the minima.

• If βs1 = βs2, the system reduces to a single scale fractal. Structural properties of such systems
have been studied elsewhere (see Reference [30]).

Since multifractal spectra can be obtained by analyzing the images captured using various
techniques, such as atomic force microscopy, scanning/transmission electron microscopy, computed
tomography etc., a combined analysis of multifractal spectra together with SAS data can provide
a route towards a more detailed structural analysis of multifractal structures at nano/micro-scales by
exploiting the advantages provided by both real and reciprocal space analysis.
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Sierpiński Triangles up to the Fifth Order. J. Am. Chem. Soc. 2017, 139, 13749–13753. [CrossRef] [CrossRef]
[PubMed]

17. Li, N.; Zhang, X.; Gu, G.C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Lü, J.T.; Tang, H.; et al.
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Abstract: Small-angle scattering (SAS; X-rays, neutrons, light) is being increasingly used to better
understand the structure of fractal-based materials and to describe their interaction at nano- and
micro-scales. To this aim, several minimalist yet specific theoretical models which exploit the fractal
symmetry have been developed to extract additional information from SAS data. Although this problem
can be solved exactly for many particular fractal structures, due to the intrinsic limitations of the SAS
method, the inverse scattering problem, i.e., determination of the fractal structure from the intensity
curve, is ill-posed. However, fractals can be divided into various classes, not necessarily disjointed,
with the most common being random, deterministic, mass, surface, pore, fat and multifractals.
Each class has its own imprint on the scattering intensity, and although one cannot uniquely identify
the structure of a fractal based solely on SAS data, one can differentiate between various classes to
which they belong. This has important practical applications in correlating their structural properties
with physical ones. The article reviews SAS from several fractal models with an emphasis on
describing which information can be extracted from each class, and how this can be performed
experimentally. To illustrate this procedure and to validate the theoretical models, numerical
simulations based on Monte Carlo methods are performed.

Keywords: small-angle scattering; fractals; structural properties; Monte Carlo simulations; form
factor; structure factor

1. Introduction

Small-angle scattering (SAS; X-rays, neutrons, light) is a widely used innovative technique for an
efficient characterization of the structure of disordered materials at nano- and micro-scales [1,2]. With the
recent advances of its derivative techniques, i.e., grazing-incidence [3], anomalous [4], scanning [5] or
magnetic [6] SAS, the range of applications has been greatly extended. This includes now a much
larger class of hierarchical materials, i.e., materials in which the structural elements themselves have a
structure, such as biological macromolecules [1,7–9], polymers [10–13], composites [14–17] or cellular
solids [18–20].

It is well-known that in fractal-based materials, the structural hierarchy and the geometric symmetry
within a single structure play an important role in determining their bulk and surface properties.
Common applications of such materials include enhancing: the lithium storage performance of CuO
nanomaterials with surface fractal characteristics [21], the rheological behavior of fractal-like aggregates
in polymer nanocomposites [22], the compatibility and interfacial reactivity of high-performance
layered silicate/epoxy nanocomposites [23], the tensile modulus and strength in carbon nanotube
fibers with mesoporous crystalline structure [24] or the electrocatalytic activity, durability and stability in
Sierpinski gasket-like Pt–Ag octahedral alloy nanocrystals [25]. In addition, the fractal structure [26], also
gives rise to quantum effects in various materials such as in plasmonic structures with sub-nanometer
gaps [27] or in organometal halide perovskite nanoplatelets [28]. This dependence of the quantum
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effects and bulk properties on the fractal structure, can be attributed to the interplay between regular
and chaotic dynamics of particles, confined in fractal-like regions. This interplay in classical and
quantum systems leads to the emergence of dynamical symmetries, and are related to the existence of
conserved quantities of the dynamics and integrability under certain conditions [29].

Therefore, understanding the influence of the fractal structure on physical properties and their
evolution, can guide the preparation of advanced materials tailored for specific applications. Within this
context, development of theoretical models for SAS data analysis and interpretation form the first steps
in elucidating the structure-bulk properties relationship. However, the evolution of their properties,
is usually determined by complex quantum mechanical models.

In SAS analysis, one of the key issues is the development of models that allow extracting the
most important structural parameters from a given set of SAS measurements. Due to technological
limitations, until several years ago almost all measurements were performed on random fractals, i.e.,
on structures where only statistical properties remain invariant at various magnifications, such as
clusters generated by diffusion-limited aggregation (DLA). Thus, parameter-extraction procedures
concerned obtaining only the fractal dimensions Ds, Dm or Dp (see below), and the inner and outer
fractal cutoffs l, and respectively ξ [30–36]. While the fractal dimension is related to the self-similarity
property under scale transformations [26], the two cutoffs set the range in which this self-similarity can
be observed. For physical samples, the inner cutoff is defined by the size of the building blocks that
make up the fractal (typically atoms or molecules). The outer cutoff is defined by the largest distance
separating two points inside the fractal.

The fractal dimension is captured in the modeling process by writing the scattering intensity,
such as [37]:

I(q) ∝ qDs−2(Dm+Dp)+2d. (1)

This is a simple power-law decay on a double logarithmic scale within a given q-range limited by
reciprocal fractal outer and inner cutoffs qoc, and respectively qic, i.e., when qoc < q < qic. It is also
known in the literature as the fractal region. Here, q is the module of the scattering vector, Ds, Dm

and Dp are the surface, mass and respectively the pore fractal dimensions, and d is the Euclidean
dimension of the space in which the fractal is embedded. In the case of surface fractals d− 1 < Ds < d,
Dm = Dp = d and the scattering intensity reduces to I(q) ∝ qDs−2d [38]. For mass fractals 0 < Dm < d,
Dm = Ds and Dp = d, and I(q) ∝ q−Dm [39], while for pore fractals Dp = Ds and Dm = d, and thus
I(q) ∝ q−Dp [40]. Therefore, by using Equation (1) one can obtain the fractal dimension from the slope
(τ) of the experimental scattering curve. Moreover, one can differentiate between mass and surface
fractals, i.e., if the measured slope is τ < d then the sample is a mass fractal, while if d < τ < d + 1,
the sample is a surface fractal.

To obtain the outer fractal cutoff ξ, Equation (1) is extended by adding a properly weighted
exponential term which gives rise to a region (also known as Guinier region) where I(q) ∝ q0

at q < qoc. Then, the position of the transition point qoc gives an estimation of fractal radius of
gyration, which in turn is a measure of its outer cutoff [41,42]. The inner fractal cutoff l is obtained
by addition of a second exponential term and of a power-law decay at q > qic. Then, the position
of qic is related to the radius of gyration of the smallest building block composing the fractal [41,42].
Moreover, by considering a succession of power-law decays interleaved with Guinier regions, one
can describe hierarchically structured systems. This succession forms the basis of Beaucage [43,44]
and Guinier–Porod [45] models, which are widely used as empirical models to analyze SAS data
from random fractal and particulate systems, such as those occurring in some amphiphilic triblock
polyelectrolytes [46], rocks [47], fertilizers encapsulated by starch-based superabsorbent polymers [48],
silica-filled silicone rubber [49], aerosol nanoparticles [50] or micro/nano-sized TATB crystallites [51].

However, recent advances in materials science and nanotechnology allows fabrication of deterministic
fractal materials with predefined structures, i.e., structures where an intrinsic pattern repeats itself
exactly under scaling, such as: Sierpinski triangular [52–54], supramolecular [25,55], octahedral [56]
or Cantor fractals [57]. In addition, theoretical developments in SAS from deterministic fractals
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have shown that the corresponding intensity curves are characterized by a much more complex
behavior, as compared to scattering from random fractals. The main difference is that in the former
case, the simple power-law decay is replaced by a generalized power-law decay, where maxima and
minima superimposed on a monotonically decreasing curve [58–60]. Also, the complexity of the
patterns formed by these maxima and minima increases with the magnitude of the scattering vector q.
Generally, both features arise as an effect of two competing symmetries present in a deterministic
fractal. First, there is dilation invariance symmetry, which is responsible for the power-law decay.
Second, there is geometric symmetry, which is the source of maxima splitting as q increases. These two
symmetry-effects are the defining characteristics of SAS from deterministic fractals, and are generally
used to differentiate them from random fractals [58].

Although separating these effects from SAS intensity is not an easy task, some general guidelines
for extracting additional structural parameters have been provided for various types of deterministic
fractals. In the case of SAS from deterministic mass fractals one can extract [58]:

• The fractal dimension Dm, from the generalized power-law decay:
• The fractal scaling factor βs, from the period of the scattering curve on a double logarithmic scale,
• The number of fractal iterations m, equal to the number of the main minima,
• The inner and outer fractal cutoffs from the beginning and the end of periodicity region, i.e., from

fractal regime,
• The total number of basic objects km composing the fractal, from the relation km = (1/βs)

mDm .

For mass fractals, the log-periodicity of the scattering curve arises from the self-similarity of
distances between the basic objects composing the fractal. In the case of deterministic surface fractals
one can extract basically the same information [60]. However, the nature of log-periodicity in the
fractal region is different, and arises from the self-similarity of sizes of the basic objects. In the case of
deterministic fat fractals, i.e., fractals in which the scaling factor is not constant, but it increases after a
given number of iterations, it was shown that one can obtain the fractal dimensions and scaling factors
at each scale [59,61]. In the case of deterministic multifractals with two scaling factors, i.e., fractals
with various scaling factors at the same scale, it was shown that under certain conditions, one can also
obtain both scaling factors from SAS curves [62].

In this survey are presented and discussed the latest theoretical advances useful for differentiating
between random, deterministic mass, surface, fat and multifractals, from SAS data. Detailed “receipts”
are provided that show how to extract the structural parameters about each fractal type. They are
subsequently applied to numerical data generated from Monte Carlo methods. To this aim, the pair-
distance distribution function (pddf), the form and structure factors are calculated. The importance of
preparing samples with a high degree of monodispersity for a clear and unambiguous description of
experimental SAS data, is highlighted by studying the influence on the scattering curve of a log-normal
distribution of the fractal size.

The paper is structured as follows. Section 2 presents the theoretical background required for a
proper understanding of the results discussed thereafter. Here, the main properties of fractals, of SAS
technique and Monte Carlo simulations relevant to SAS from fractals are described. In Section 3 are
introduced the main types of fractals together with representative models. Analytic expressions of
the form and structure factors are derived and compared with results from Monte Carlo simulations.
The main conclusions and prospects for future theoretical developments are summarized in Section 4.

2. Theoretical Background

2.1. Fractals

Mathematically, characterization of fractals requires a rigorous definition of the fractal (Hausdorff)
dimension [63]. This which involves abstract concepts from measures theory [64]. For this purpose,
let us consider S a subset of the n-dimensional Euclidean space, and that the set {Ci} is a cover of S
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with ci = diam (Ci) ≤ s, with s ∈ S. The Hausdorff measure mα (S) of the set S is defined by taking the
infimum over all possible coverings, i.e.:

mα (S) = lim
s→0

inf{Ci}∑
i

cα
i , with α ∈ R+. (2)

Then, the fractal dimension D of the set S is defined by:

D ≡ inf{α : mα (S) = 0} = sup{α : mα (S) = +∞}. (3)

This corresponds to the value of α for which the Hausdorff measure changes from zero to infinity.
When α = D, mα (S) can take arbitrarily values within this range.

However, in practice is very difficult to apply Equation (3) for determination of the fractal
dimension, and therefore one must resort to other methods. A common approach is to determine the
variation of the fractal measure M, such as mass, area, volume, or any scalar quantity attached to the
fractal support, within a sphere of dimension n and radius r centered on the fractal. For this purpose,
we can write [65]:

M (r) = A (r) rD, (4)

where limr→∞ log A (r) / log r → 0. This is known in the literature as the mass-radius relation [65].
Let us consider a fractal of size L composed of balls of size a. Then, the number of balls enclosed

by the imaginary sphere of radius r with a ball in the center, is given by [65]:

N (r) ∝ (r/a)D ∝ rD, (5)

with l . r . L. If the fractal is a line then D = 1, if it is a smooth surface, D = 2, while if the fractal is a
regular Euclidean three-dimensional object, then D = 3. For D < 1, the structure reduces to a set of
disconnected points.

In the case of fractals with a scaling factor βs, one can use the property that at first iteration the
fractal consists of k copies of itself, each of size βsL, and write that [65]:

M (L) = kM (βsL) . (6)

Then, by using Equation (4), one obtains:

kβDm
s = 1, (7)

which can be used to obtain the fractal dimension D. In the case of fractals with multiple scaling factors
βsi and ki copies with i = 1, · · · , n, the above equation can be extended to [65]:

n

∑
i=1

kiβ
Dm
si = 1. (8)

For surface fractals one can write a similar relationship as in Equation (5), and write as [66]:

S (r) = S0r2−Ds , (9)

where S(r) represents the area between the boundary of the (rough) surface and the envelope of all
spheres of radius r centered on the boundary. Here, S0 is a constant, which is the surface area itself for
a smooth surface, i.e., when Ds = 2. Analogous relations as those given by Equation (7) can be written
for surface fractals also. For three-dimensional fractals, when D → 3 the surface is so folded that it
almost fulfills all the available space, while when D → 2, the surface is almost completely smooth.

The fractal dimensions obtained above are equivalent with the box-counting dimension described in
Ref. [26]. This is the single dimension which characterize fractals with a single scaling factor. However,
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for fractals with multiple scaling factors, a more detailed description of their structure requires
determination of additional fractal dimensions. This is achieved by making use of the multifractal
formalism [67,68], and in particular of the moment method [69]. Although other methods have been
developed for determination of the dimension spectra, the moment method is widely used for its
general applicability, including image analysis.

Within this method, one considers an object S covered by a grid of boxes Bi(l) of size l. Let us
suppose that the measure determined by the probability of hitting the object in the box Bi is µ(B).
Therefore, the number of covered boxes N at resolution l is N ∝ 1/l2, and the corresponding “partition
function” Zq can be written as [70]:

Zq(l) =
N

∑
i=1

pq
i (l). (10)

Here, i denotes each individual box, and pi = µ(B) with ∑N
i=1 pi = 1, are the hitting probabilities.

Then, the generalized dimension spectrum is given by [70]:

Dq ≡
1

1− s
lim
l→0

ln Zq(l)
− ln l

. (11)

The function Zq has a power-law behavior when l → 0 and N → ∞, so that Zq ∝ lDq(q−1). Thus:

Dq = lim
l→0

1
1− q

ln ∑N
i=1 pq

i (l)
− ln l

, (12)

where the ratio pi ≡ Ni(l)/N gives the relative weight of the i-th box.
One of the main property of Dq is that is a monotonically decreasing function, with horizontal

asymptotes at αmax = limq→−∞ Dq and αmin = limq→∞ Dq. Therefore, one can describe the scaling
properties of the most rarefied, and respectively of the most dense regions in the fractal in terms of
αmax and αmin, i.e., the object is heterogeneous (multifractal) if αmax 6= αmin, and homogeneous (simple
fractal) otherwise. Also, the box-counting dimension is recovered, at q = 0, and is given by [65]:

D0 = lim
l→0

log N(l)
− log l

, (13)

where N(l) is the number of boxes in the minimal cover. At q = 1, one obtains D1 which is called the
information, i.e.:

D1 = lim
l→0

∑N
i=1 pi log pi

− log l
, (14)

and describes how the morphology increases as l → 0, i.e., the lower the values of D1, the less uniform
the density. For q = 2, Equation (12) gives the two-point correlation dimension D2, and measures the
correlation between pairs of points in each box. The higher the values of D2 the more compact the
fractal. As we shall see later, we can extract only the dimension D0 from SAS data.

2.2. Small-Angle Scattering

In SAS, a beam of particles (usually X-ray or neutrons) hit a sample, after which they are scattered
elastically at various angles θ, as shown in Figure 1 [71]. While X-rays are scattered by the electron
cloud, neutrons are scattered by nuclei or by the magnetic moments associated with unpaired electron
spins in magnetic materials. The structure of the sample is to be determined from the distribution of
scattered beam around the beam-stop.
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2.2.1. General Background

Basically, one can describe a SAS process by considering that the beam propagates with the
wave vector k = (2π/λ) k̂ along an axis which coincides with the axis of the collimator with beam
opening ∆r. Here, λ is the wavelength. The role of the collimator is to select a monochromatic and well
collimated beam, such that it provides a sharp energy spectrum, concentrated at a unique eigenvalue.
A detector, placed at a large distance from the sample, records the number of particles passing through
a small opening dΩ (Figure 1). Let us consider that its position is given by the vector r = (x, y, z),
which is oriented along the direction r̂, and at an angle (θ, φ) with respect to the direction of the
incident beam. As such, the structure of the scattering particles can be described in terms of the wave
vector k

′
. To this aim, one introduces the scattering vector q defined by [71]:

q = k
′ − k, (15)

where |k′ | = |k| = k. Thus, the magnitude of the scattering vector is given by:

q =

√
k2 + k′2 − 2kk′ cos θ =

√
2k2 (1− cos θ). (16)

Since cos θ = 1− 2 sin2 θ/2, and k = 2π/λ, the previous equation becomes:

q =
4π

λ
sin

θ

2
. (17)

Figure 1. Overall configuration of a SAS experiment. First, a beam of particles is emitted from a
radiation source, and a small fraction pass through the collimator. Then, they hit the sample, and the
scattered particles around the beam-stop are recorded. The quantities k and k

′
denote the incident and,

respectively the scattered wave vectors, Ω is the solid angle, and r̂ is the unit vector along the beam
scattered at angles φ and θ [72].

Let us consider that an incident beam of neutrons or X-rays is scattered by a sample of volume V
′

containing a macroscopic number of objects with scattering lengths bj. After such an event, the scattering
amplitude can be written as [71]:

A(q) ≡
∫

V′
ρs(r)e−iq·rd3r, (18)
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where ρs(r) = ∑j bjδ(r − rj) is the scattering length density (SLD), rj are the microscopic objects
positions and δ is the Dirac’s δ function. In SAS, multiple scattering is neglected, and the scattering
intensity I(q), i.e., the differential scattering cross section per unit volume, is expressed as the product
between the scattering amplitude and its complex conjugate, i.e. [71]:

I(q) ≡ 1
V ′

dσ

dΩ
=

1
V ′
|A(q)|2. (19)

Since the positions rj, and thus SLD, are fixed in time, Equation (19) can be written as [73]:

I(q) =
1

V ′
∫

V′
Γη(r)e−iq·rd3r, (20)

where Γη(r) is given by:

Γη(r) =
∫

V′
η(r

′
)η(r

′
+ r)d3r

′
, (21)

and represents the autocorrelation function of the deviations η(r) of SLD ρs(r) from its mean value
〈ρs〉, i.e., η(r) = ρs(r)− 〈ρs〉. Then, the normalized correlation function γ(r) is defined as [74]:

γ(r) ≡ Γη(r)
Γη(0)

, with γ(0) = 1, (22)

and where the normalization constant Γη(0) is given by:

Γη(0) ≡
∫

V′
η(r

′
)η(0 + r

′
)d3r

′
= V

′ 〈
η2
〉

, (23)

Here,
〈
η2〉 is the mean square fluctuation of the density fluctuations about its mean value throughout

the sample. Therefore, Equation (20) takes the form:

I(q) =
〈

η2
〉 ∫

V′
γ(r)e−iq·rd3r. (24)

The function γ(r) → 0 as r increases, there are no correlations between fluctuations of η(r
′
) and

η(r
′
+ r) at large r, and the integration over the volume V

′
can be replaced by an integration over an

infinite region. Also, γ(r) 6= 0 only for small values of r, and the properties of γ(r) depend only on the
magnitude of r. Therefore, the intensity in Equation (24) becomes:

I(q) = 4π
〈

η2
〉 ∫ ∞

0
r2γ(r)

sin qr
qr

dr, (25)

where the property
〈
e−iq·r〉 = sin(qr)/(qr) has been used (see also Equation (29) below). The function

γ(r) depends also on the system’s geometry and gives the probability to find a volume element vi
within the system, at a distance r from another volume element vj.

2.2.2. Two-Phase Fractal Systems

We consider here mainly two-phase system, in which particles, i.e., fractals with scattering length
density (SLD) ρm are “frozen” in an embedding matrix with “pore” SLD ρm. Therefore, by subtracting
the “pore” density we can consider the system as if the fractals were “frozen” in a vacuum and had the
density ∆ρ = ρm − ρp. This procedure can be performed since a constant shift of ∆ρ is important only
when q→ 0, and which is beyond the instrumental q-range. Then, for practical applications the total
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scattering amplitude is represented as a sum amplitude of rigid fractals. Thus, the scattering intensity
can be written in a general form as [71]:

I(q) = n|∆ρ|2V2P(q)S(q), (26)

where n is the particle concentration and V is the volume of each fractal. The quantity P(q) describes
the spatial distribution of the scattering lengths of fractal’s atoms, and is defined by [71]:

P(q) ≡
〈
|F(q)|2

〉
=

〈
| 1
V

∫

V
e−iqrdr|2

〉
, (27)

where F(q) is the fractal form factor (see next subsection). The structure factor can be written as [71]:

S(q) = 1 + 4πn
∫ ∞

0
[g(r)− 1] r2 sin (qr)

qr
dr, (28)

and contains information about the spatial arrangements of the fractals.
The quantity 〈· · · 〉 in Equation (27) denotes an ensemble averaging over all possible orientations

of the fractals. Thus, if the probability of any orientation is the same, in 3D it can be calculated
according to [71]:

〈
f (qx, qy, qz)

〉
=

1
4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ f (q, θ, φ), (29)

where qx = q cos φ sin θ, qy = q sin φ sin θ and qz = q cos θ, and f is an arbitrarily function. In 2D we
can write a similar expression:

〈
f (qx, qy)

〉
=

1
2π

∫ 2π

0
f (q, φ)dφ, (30)

where qx = q cos φ and qy = q sin φ.

2.2.3. Form Factor

By following a similar procedure as the one used in obtaining Equation (25), one can write the average
of the squared form factor in terms of the pair-distance distribution function p(r) = r2γ(r) [71], as:

P(q) = 4π
∫ ∞

0
p(r)

sin qr
qr

dr. (31)

Here, γ(r) represents the correlation function of the fractal. Then, the function p(r) is related to the
number of lines with lengths between r and r + dr joining distinct volume elements inside the fractal.
It has the properties that p(r) = 0 at r = 0 and when r > D, where D is the maximum distance in
the particle. Therefore, for homogeneous fractals as discussed here, p(r) represents a histogram of
distances. However, due to the averaging, it does not contain any information about the orientations
of these lines. The sine term in the last equation can be approximated by a Taylor series expansion:

sin (qr) ' sin a +
cos a

1!
(qr− a)− sin a

2!
(qr− a)2 − cos a

3!
(qr− a)3 + · · · . (32)

Since SAS data are recorded near the beam-stop, i.e., close to the zero angle, we can set a = 0 in
Equation (32). Therefore, we have:

sin (qr) ' qr− 1
3!

(qr)3 − 1
5!

(qr)5 + · · · . (33)
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Also, since q is very small, in a good approximation we can keep only the first two terms in the last
equation, and thus Equation (31) becomes [71]:

P(q) ' 4π
∫ ∞

0
p(r)

1
qr

(
qr− 1

3!
(qr)3 − · · ·

)
dr

' 4π
∫ ∞

0
p(r)dr− 4π

1
3!

∫ ∞

0
p(r)(qr)2dr + · · ·

' 4π
∫ ∞

0
p(r)dr− 4π

q2

3!

∫ ∞
0 p(r)dr∫ ∞
0 p(r)dr

∫ ∞

0
p(r)r2dr + · · ·

' 4π
∫ ∞

0
p(r)dr

(
1− q2

3
1
2

∫ ∞
0 p(r)r2dr∫ ∞

0 p(r)dr
+ · · ·

)

' P(0)

(
1− q2 R2

g

3
+ · · ·

)
, (34)

where we have the intensity at zero angle given by:

P(0) = 4π
∫ ∞

0
p(r)dr, (35)

and the radius of gyration:

R2
g =

∫ ∞
0 p(r)r2dr

2
∫ ∞

0 p(r)dr
. (36)

As it will be seen further, some properties are discussed in terms of the scattering curve while others
in terms of pddf. Generally, the symmetry of a particle is better represented in the reciprocal space,
while the shape and structure are better understood in real space.

2.2.4. Structure Factor

Experimentally, the form factor appearing in Equation (27) can be measured for samples with very
small concentrations of scattering particles, i.e., when the distance between them is much larger than
their sizes. This is because the interference between fractals can be neglected, and the measured data
contains information only about the shape and size of particles. However, at high fractal concentrations
(typically above 5%), the interference effects can no longer be ignored, and they are described by
a structure factor (Equation (28)). Since we deal here only with systems in which the particles are
“frozen” in a matrix, the structure factor S(q) is completely defined by their positions.

Please note that throughout the paper one considers a system of randomly oriented fractals whose
positions are uncorrelated. This implies small concentrations, and thus the correlations between fractals
are ignored. However, within a single fractal, the correlations between the basic objects cannot be
ignored, and thus the structure factor S(q) is used to describe correlations inside a fractal. Therefore,
we shall be concerned mainly with the relative positions of the objects forming the fractal, since they
are intimately connected with the fractal properties observed in the SAS intensity. Figure 2 illustrates
graphically the above observations and explains the basic terms used to study the scattering properties
from fractal-based samples. Please note that more generally, S(q) may depend also on the interaction
potential between particles, and thus it can deliver information about thermodynamic properties such
as the osmotic pressure and compressibility.
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Figure 2. (Color online) Schematic representation of the sample’s structure investigated in this work.
The irradiated macroscopic volume V

′
(gray region) consists from a matrix with SLD ρp in which are

dispersed fractals with SLD ρm, overall size ξ, and size of the basic objects 2r0. The orientations and
positions of the fractals are uncorrelated. Their number is enough large such that an observable signal
is recorded at detector, and enough small such that the distances between fractals are larger than their
overall size ξ.

2.2.5. Polydispersity

In physical systems, the fractals usually have different sizes. We consider here that all fractals
have the same shape while their size are distributed according to a distribution function DN(l) defined
such that DN(l)dl gives the probability of finding an object whose size falls within (l, l + dl). Without
losing generality, throughout this paper it will be used the log-normal distribution function:

DN(l) =
1

σl(2π)1/2 e−
(ln(l/l0)+σ2/2)

2

2σ2 , (37)

where σ =
(
ln(1 + σ2

r )
)2 is the variance and l0 = 〈l〉D is the mean value of the length, σr ≡(〈

l2〉
D − l2

0
)1/2 /l0 is the relative variance, and 〈· · · 〉D =

∫ ∞
0 · · ·DN(l)dl. Therefore, by averaging

Equation (27) over the distribution function (37), one obtains [71]:

P(q) = n|∆ρ|2
∫ ∞

0

〈
|F(q)|2

〉
V2(l)DN(l)dl, (38)

where V(l) is the fractal volume. Analytic expressions for the form factor of each type of deterministic
fractals shall be provided thereafter in their corresponding section. In the limit of strong polydispersity,
i.e., when σr � 1, the maxima and minima present in the scattering intensity of a deterministic fractal
are completely smoothed and thus the intensities form random fractals can be modeled by using
deterministic fractals with a high degree of size polydispersity.

Other important properties which will be used in calculating the SAS intensity are:

• F(q)→ F(βsq) when the length is scaled as L→ βsL,
• F(q)→ F(q)e−iq·a when the particle is translated r → r + a,
• F(q) = [VI FI(q) + VI I FI I(q)] / (VI + VI I), when the particle consists of two non-overlapping

subsets I and I I.

Certainly, for 2D models, all the volumes shall be replaced by the corresponding areas.

2.3. Monte Carlo Simulations

A Monte Carlo-based algorithm similar to the one described in Ref. [75] is used to generate the pddf
p(r). To this aim, the area occupied by a given fractal is filled with a large number of randomly generated
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points pairs (i, j), and all the distances |ri − rj| between them are collected into a histogram with about
M = 250 boxes. Such a histogram gives directly the function pddf: p(r) = C−1 ∑(i,j) |ri − rj|ξ−1M. Here,
the coefficient C ensures that the form factor is normalized such that P(0) = 1. Then, for arbitrarily
values of the scattering vector q, the form factor is calculated by performing numerically the Fourier
transform in Equation (31). The simulated scattering curves are used to validate the analytic expressions
for the form factors.

Figure 3 illustrates the results of the above steps for a simple example of a disk of radius a. At the
first step, the square which circumscribe the disk is approximated by a set of random points (upper left
part). Those found inside the disk are kept (blue points) and the others (gray points) are eliminated.
The upper-right part of the same figure shows the corresponding pddf, while the lower part shows the
corresponding scattering intensity obtained from Equation (31) (red curve). For comparison, the same
figure shows the analytic curve (black) of an infinite thin circular disk of the same size, and with a
known expression of the form factor given by [76]:

Fdisk (qa) =
2J1 (qa)

qa
, (39)

where J1 (·) is the Bessel function of the first kind and the first order.
The results show an excellent agreement between the two curves in almost the whole q-range.

However, small deviations begin to arise at large values of q (& 40) and are due to the intrinsic
property of Monte Carlo method to approximate the disk by a finite collection of random points.
The approximation can be improved by increasing the number of scattering points.

Figure 3. (Color online) Upper left: Approximating a disk of radius a with a set of randomly distributed
points (blue). Upper-right: the corresponding pddf p(r). Lower part: A comparison between the
analytic expression (black curve) and Monte Carlo simulations (red curve) of SAS intensities.
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3. Small-Angle Scattering from Fractals

In this section, analytic forms of scattering intensity shall be derived for various types of fractals,
by providing and deriving explicit expressions for the form, and respectively the structure factor
appearing in Equation (26). For simplicity, the fractals considered here consist either from disks or
from balls, but any other geometric form can be used. While in the former case the form factor is given
by Equation (39), in the later one, the form factor of a ball of radius a can be written as [71]:

Fball (qa) =
3 (sin qa− qa cos qa)

(qa)3 . (40)

3.1. Random Mass Fractals

To derive the scattering structure factor of a mass fractal, let us choose first an imaginary sphere
centered on the fractal and consider a spherical layer of radius r and width dr. Then, the number of
balls (particles) within the spherical layer is:

dN(r) = ng(r)dV, (41)

where dV = 4πr2dr is the layer volume. Thus, the total number of particles within the sphere is given
by: N(r) = n

∫ r
0 g(r)4πr2dr [39]. By differentiating Equation (5) and comparing with Equation (41),

one obtains [39]:

ng(r) =
Dm

4πaDm
rDm−3, (42)

where a = r0 (see Figure 2).
This expression shows that g(r)→ 0 for large values of r, since the fractal dimension is Dm < 3.

However, any sample is characterized by a macroscopic density at large scale. Thus, in order to
describe the large-scale behavior of g(r), an exponential term of the form e−(r/ξ)β

, known as the cutoff
function is introduced [77]. Here, ξ is the fractal outer cutoff, and it gives the distance above which
the mass distribution is no longer described by the mass fractal law, and thus it coincides with the
fractal size, as pointed out in Section 1. This cutoff function is faster than any power law, and it is clear
that the larger the value of β, the sharper the cutoff. In the reciprocal space, an increase of β leads to
the formation of a distinct jump just beyond the Guinier regime [77]. After this hump, the power-law
decay q−Dm (see Equation (47)) is still visible but at different levels, depending on the values of β,
and "ripples" occur for β & 5 [77]. One of the most common cutoff functions, which provides a
reasonable assumption for describing the behavior of g(r) at large distances, corresponds to β = 1,
and this value will be used in the following. With the introduction of the exponential cutoff, a uniform
density shall be subtracted, to avoid the divergence of the structure factor, and therefore we have [39]:

n (g(r)− 1) =
Dm

4πaDm
rDm−3e−r/ξ . (43)

By introducing Equation (43) into Equation (28), one can write:

S(q) = 1 +
Dm

aDm

∫ ∞

0
rDm−1 e−r/ξ sin qr

qr
dr (44)

= 1 +
1

(qa)Dm

DmΓ (Dm − 1)

(1 + q−2ξ−2)(
Dm−1)/2

, (45)

where Γ (·) is the gamma function. Depending on the values of the scattering vector q, we distinguish
several main regions in the scattering intensity in Equation (31), with the structure factor given by
Equation (45) and form factor by Equation (40):
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• When q→ 0,
S(q) ' 1 + Γ (Dm + 1) (ξ/a)Dm

(
1− q2ξ2Dm (Dm + 1) /6

)
, (46)

and therefore the scattering intensity is dominated by S(q). By comparing this with Equation (34)
one can see that the outer cutoff ξ is related to the mass fractal radius of gyration Rg by [39]:
R2

g = Dm (Dm + 1) ξ2/2.
• When ξ−1 . q . a−1,

S(q) ∝ q−Dm , (47)

and therefore S(q) still dominates in Equation (34) since yet P(q) ' 1. The last equation shows that
the scattering intensity of a mass fractal is a straight line on a double logarithmic scale. Therefore,
deviations from this line at low and values of the scattering vector q provide information about
the fractal overall size ξ, and respectively about the radius a of fractal basic unit.

• When q→ ∞,

S(q) ' 1 +
DmΓ (Dm − 1) sin ((Dm − 1)π/2)

qDm aDm
, (48)

and thus, for qa� 1, S(q)→ 1, while P(q) dominates in the scattering intensity [73]. Therefore,
scattering at large q values provides information about the fractal basic particles.

As an application of the above results, let us consider a two-dimensional (2D) DLA cluster, as a
representative example of random mass fractals. The DLA is generated by particles undergoing a
random walk due to Brownian motion, and which cluster into aggregates [78]. It is widely used to
describe structures in which diffusion is the main means of transport, and it occurs often in dielectric
breakdown, electrodeposition or Hele-Shaw flow.

The overall size of the generated DLA is ξ ' 234 nm and consists from particles of radius
a ' 1 nm (Figure 4—upper row). The numerical values were chosen such that they fit into a typical
range covered by SAS measurements. The corresponding pddf is shown in Figure 4—lower row (left;
black points). For comparison, the pddf of an equivalent disk, i.e., a disk centered on the cluster and
with radius ξ/2 is also shown (red points). The total number of distances used in calculating each
pddf is about 32.7× 105. When the positions of the disks forming the DLA and their shape are known,
the calculations can be greatly simplified if one uses only the mass-center coordinates, since the number
of points used in calculating the pddf is much lower. The corresponding Fourier transform will give
the structure factor describing the relative positions of the disk inside the aggregate. By multiplying it
with the disk form factor, the scattering intensity (Equation (31)) is recovered.

The results show that in the case of DLA, although the pddf has an overall similar behavior as for the
disk, it is characterized by the presence of local minima and maxima, with the main maxima (at r ' 75 nm)
shifted to the left. These reflects deviations of the DLA from the circular symmetry of the disk. Also,
the height of the maxima increases, and indicates the number of most common distances within DLA.
This peak is followed by a second one, slightly shifted to the left (at r ' 110 nm), and less pronounced,
and which partially follows the disk’s pddf for 100 nm . r . 140 nm. This indicates that within this
range the number of distances within DLA and the disk coincide. Finally, for 140 nm . r . 234 nm
the number of distances within DLA decreases faster, and both reach the same maximum value at
ξ ' 234 nm. Please note that at r ' 225 nm the DLA’s pddf is quite flat in this region, and may
pose difficulties in an accurate determination of overall size ξ from SAS data, due to experimental
errors [79].

Figure 4 lower row right shows the SAS intensity (red curve) from DLA obtained by Fourier
transform (Equation (31)) of the corresponding pddf. The analytic expression (Equation (47)) is also
shown in the fractal region (black curve). The results show a very good agreement between the two
curves. The scattering exponent is 1.66 and coincides with the analytic value from mean-field theory
for diffusion-limited cluster formation (d2 + 1)/(d + 1) with d = 2 [80] and with other computer
simulations of Witten-Sander aggregates [81].
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Figure 4. (Color online) Upper row: Left—2D DLA cluster of overall size ξ ' 234 nm consisting
from about 500 particles of radius a ' 1 nm, Right—the corresponding approximation with a set of
randomly distributed points (blue). Lower row: Left—pddf of the 2D DLA (black points) and of an
equivalent disk (red; see text for additional explanations), Right—A comparison between the analytic
expression of SAS intensity (black curve) with Monte Carlo simulations (red curve).

3.2. Random Surface Fractals

To derive the scattering law for surface fractals, one considers a system consisting from a random
distribution of material with constant SLD ρ. By denoting with c the fraction of the volume occupied
by the material, then 1− c denotes the fraction of unoccupied volume, and the average density of the
sample can be expressed as ρc. Therefore, the density fluctuations can be expressed as:

η(r) =

{
ρ(1− c), r ∈ occupied volume

−ρc r /∈ occupied volume,
(49)

and the mean square volume is: 〈
η2
〉
= ρ2c(1− c). (50)

Thus, Equation (25) becomes:

P(q) = 4πρ2c(1− c)
∫ ∞

0
r2γ(r)

sin qr
qr

dr, (51)
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where the correlation function is defined by [38]:

γ(r) =
Z(r)− c

1− c
. (52)

The function Z(r) represents the probability that if a point is in the occupied volume, then a second
point situated at a distance r apart from the second point, belongs also to the occupied volume. Thus,
from definition, Z(r) = 1 excepting those points found at distance r apart from the pore boundary.
In the latter case, the volume of the layer with occupied regions is Vb ≡ S0r3−Ds , while in the former
case, the volume is cV

′ −Vb. Also, it is known that in the limit r → 0, the function Z(r) is given by [38]:

Z(r) ' 1− S0

4cV ′
r3−Ds , (53)

and therefore, by using Equation (52), the correlation function becomes [38]:

γ(r) = 1− S0

4c(1− c)V ′
r3−Ds . (54)

Performing two integration by parts in Equation (51) and taking into account that both γ(r) and
its derivative tend to zero at large r, the scattering intensity can be rewritten as [38]:

P(q) = −4πδ2c(1− c)q−3
∫ ∞

0
[rgγ,,(r) + 2γ,(r) sin qr]dr. (55)

Then, according to Erdélyi’s theorem for asymptotic expansion of Fourier integrals, in the limit of large
values of the scattering vector q, the intensity becomes:

P(q) = − 4πρ2

q6−Ds
c(1− c)Γ(3− Ds) sin [π (Ds − 1) /2] lim

r→0
{rDs−2 d2

dr2 [rg(r)]}. (56)

Finally, by using the correlation function given by Equation (54), the scattering intensity can be
rewritten as:

P(q) ' πS0ρ2Γ(5− Ds) sin [π (Ds − 1) /2] q6−Ds , (57)

which shows that for a surface fractal [38]:

P(q) ∝ q−(6−Ds). (58)

A similar procedure can be used to show that for d = 2, P(q) ∝ q−(4−Ds). Therefore the scaling law
P(q) ∝ q−(2d−Ds) is recovered, and taking into account that S(q) = 1 for surface fractals discussed
here, the scattering intensity in Equation (1) is recovered. Please note that when Ds = 2, Equation (57)
reduces to Porod law, where P(q) ' 2πρ2S0q−4, and the density profile varies sharply over distances
smaller than q−1.

Since S(q) = 1, the function Z(r) in Equation (53) gives the probability that a point at distance r in
an arbitrarily direction from a given point inside the fractal will itself be in the fractal. This holds true
since there is only a small probability of finding an occupied point outside a particular fractal in which
the origin is chosen. As such, c is negligible and thus 1− c ' 1, Therefore, Z(r) = γ(r), where γ(r)
represents now the correlation function of the fractal, and not of the whole sample, as in Equation (25).
Therefore, Equation (51) gives:

P(q) = 4π
∫ ∞

0
r2γ(r)

sin qr
qr

dr, (59)

with the SLD factor ρ2 included in Equation (26). Thus, by using the property that p(r) = r2γ(r),
Equation (31) is recovered.
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To illustrate the above results, we consider in the following a random surface fractal model which
consists from disks whose radii follow a power-law distribution. The model is shown in Figure 5
upper left row, where disks with identical radii have the same color. Specifically, one considers that
the radius of the largest disk (blue), also known as the zero-th fractal iteration (m = 0) is r0, and the
scaling factor βs = 1/2. Then, the radius of the disks forming the first fractal iteration (green disks) is
r1 = βsr0, the radius of the disks forming the second fractal iteration (black disks) is r2 = β2

sr0, and so
on. From the construction one can see that each disk is tangent to at least another disk and they form
an aggregate, of overall size ξ ' 234 nm. Since the number of disks at a given iteration increases by a
factor of 3, then the fractal dimension of the model is Ds ≡ log 3/ log 2 ' 1.58, and therefore in the
fractal region the corresponding form factor is given by (see discussion below Equation (58)):

P(q) ∝ q−(4−1.58) = q−2.42. (60)

Figure 5 upper-right row shows the discretized version of the surface fractal model used for
computing the pddf in Figure 5 lower-left row (black). For comparison, the pddf of a disk of equivalent
radius is also shown in red. The total number of distances used in both cases is about 1.54 × 108.
The results show that the pddf of the random surface fractal has a similar behavior as of the pddf
of DLA (see Figure 4 lower-left row) in the sense that the main maximum is shifted to the left with
respect to the disk’s maxima, while its height increases. Thus, this reflects the asymmetry of the model
as compared to the circular one. However, as opposed to the pddf of DLA, for surface fractals the
maxima are much less pronounced, and generally the curve is smoother. This indicates a more uniform
structure of the surface fractal, which arise from the existence of disks of different sizes.

For surface fractals, it has been recently shown that the scattering intensity can be obtained by
neglecting the spatial correlations between disks, and therefore one can use the approximation of
independent units, i.e. [60]:

P(q) '
m

∑
n=0

β
n(4−Ds)
s P0 (βsq) , (61)

where P0(q) ≡
〈
|Fdisk(q)|2

〉
, and Fdisk is given by Equation (39). The corresponding intensity is shown

in Figure 5 lower-right row (black), where one can see that the scattering exponent is in excellent
agreement with the analytic value obtained above. The Monte Carlo simulations (red curve) are also
in very good agreement with the theoretical results. This is to be expected, since there is an excellent
agreement between theoretical and Monte Carlo-based curves of a disk (see Figure 3 lower row),
while Equation (61) is just a sum of SAS intensities of disks of various radii. The edges of the fractal
region are marked in Figure 5 lower row right by dotted vertical lines, and they provide information
about the overall fractal size, and about the size of the smallest disk composing the fractal.

Figure 5. Cont.
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Figure 5. (Color online) Upper row: Left—random surface fractal of overall size ξ ' 234 nm consisting
from disks of different radii, Right—the corresponding approximation with a set of randomly distributed
points (blue). Lower row: Left—pddf of the random surface fractal (black points) and of an equivalent
disk (red), Right—A comparison between the analytic expression (black curve) of SAS intensity
(Equation (34)) and Monte Carlo simulations (red curve).

3.3. Deterministic Mass Factals

In the following, the scattering properties from deterministic mass fractals are illustrated on fractals
similar to the well-known Cantor fractal. For this purpose, one considers first a square with edge l0
which circumscribes a disk of radius r0 = l0/2 such that their centers coincide. One also considers a
Cartesian system of coordinates whose origin lies in the square center, and with axes parallel to the
square edges. At first iteration, the disk of radius r0 is replaced by 5 smaller disks of radius r1 = βsr0,
with βs = 1/3. One disk is situated in the origin, while the centers of the other disks are shifted from
the origin by:

aj = {0,±βtl0} and bj = {±βtl0, 0}, (62)

with all combinations of the signs, and βt = (1− βs) /2. The second iteration is obtained by performing
a similar operation on each of the 5 disks of radius r1, and so on. The “cross” mass fractal is obtained
in the limit of infinite number of iterations. Figure 6 upper row shows the construction at iterations
m = 1, 2 and 3, while in the middle row is shown the discretized version, for the same iterations.
The total number of disks at m-th iteration is km = 5m, and the radius of each disk is rm = βsr0.
Therefore, in accordance with Equation (5), the fractal dimension is given by:

Dm = lim
m→∞

log km

log l0/rm
=

log 5
log 3

' 1.46, (63)

and the total area of the fractal at m-th iteration is Am = km A0, where A0 = πr2
0 is the surface area of

the disk at m = 0.
The position of the disk centers inside the fractal can be written as:

Gm (q) =
1
5
(
1 + 2 cos qxum + 2 cos qyum

)
, (64)

where um = l0βtβ
m−1
s , and G0(q) ≡ 1. Then, for arbitrarily iteration number m = 0, 1, 2, · · · , the fractal

form factor is given by:

Fm (q) = F0 (rmq)
m

∏
i=0

Gi (q) . (65)
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Figure 6. (Color online) Upper row: Iterations m = 1, 2 and 3 of the deterministic “Cross” mass fractal
of overall size ξ ' 125 nm. Middle row: the corresponding approximation with a set of randomly
distributed points (blue). Lower row: Left—pddf of the “Cross” mass fractal (black points) and of
an equivalent disk (red points), Right—A comparison between the mono- and polydisperse analytic
expression (black, and respectively blue curve) of SAS intensity given by Equation (26) with the form
factor given by Equation (65), and Monte Carlo simulations (red curve). The polydisperse curve is
calculated with Equation (38), and the relative variance used is σr = 0.5.

The pddf of the cross-mass fractal at iteration m = 3, overall dimension ξ ' 125 nm, is shown in
Figure 6 lower row left (black). For comparison, the pddf of the equivalent disk is shown also (red).
The main feature of fractal’s pddf is the presence of a succession of local maxima and minima on a
parabola-like function similar to that of the disk, but with the maximum shifted to smaller values
of r. These features reflect both the deviations from the circular symmetry of the fractal, as well as its
particular feature, in which a periodic structure arise in its construction. Please note that at r & 110 nm
the fractal’s pddf is almost flat, thus making it difficult to estimate its overall dimension from SAS data.
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The fractal form factor at m = 3 obtained from the Fourier transform of the pddf is shown in
Figure 6 lower row right in black, while the scattering curve obtained from Monte Carlo simulations is
shown in red. The analytic curve is characterized by the presence of the three main regions: Guinier,
at q . 2π/ξ, fractal, at 2π/ξ . q . 2π/r3, where r3 is the radius of the disk at iteration m = 3,
and Porod, at q & 2π/r3. In the fractal region, the scattering curve consists from a superposition of
maxima and minima on a power-law decay. This is known in the literature as a generalized power-law
decays (see also Introduction section). The exponent of the power-law decay is approximately 1.46,
which is agreement with the analytic value given by Equation (63). The number of main minima in
the fractal region is equal to 3, and it coincides with the fractal iteration number. The periodicity of
these minima on a double logarithmic scale is log10 (1/βs), and it can be used to extract information
about the fractal scaling factor. By knowing the fractal dimension Dm, iteration number m and the
scaling factor βs, the number of disks composing the mass fractal can be determined from the relation
km = (1/βs)

mDm [58]. When measurements are performed on an absolute scale, the Porod region can
be used to extract the ratio Pm/Am, where Pm is the total perimeter of the fractal at m-th iteration,
and Am is the total surface area (see above). For 3D fractals this would give the specific surface Am/Vm,
where Vm is the fractal volume at m-th iteration.

The corresponding polydisperse curve (blue) is calculated by using Equation (37), where the
relative variance is σr = 0.5. In this case, the simple power-law decay, specific to scattering from
random mass fractals (see Figure 4) is recovered, and the scattering exponent is preserved. Please
note that generally, the oscillations in the fractal region are still visible up to σr . 0.4, and thus the
polydisperse curve can be used to extract the fractal iteration number and scaling factor, as discussed
before for the monodisperse case. This is important from an experimental point of view, since in
practice it is very hard to prepare samples containing perfectly monodisperse fractals.

The Monte Carlo simulations (red) show a good agreement with the polydisperse curve, excepting
the presence, in the former case, of a local bump at q ' 6× 10−1 nm−1, and of slight deviations at q close
to the end of the fractal region. This agreement is to be expected, since the behavior of SAS intensity in
the fractal region is dominated by the relative positions of the disks inside the fractal, as described by
the generative function given by Equation (64). This implies that one can calculate the intensity based
only on the center-of-mass positions of each disk [58]. Then, each of the most pronounced maxima
and minima in the fractal region corresponds to the interference cluster amplitude, where each cluster
represents a fractal iteration. The positions and amplitudes of these maxima and minima are related to
the most common distances between the center-of-masses [58]. However, when the scattering intensity
is calculated by using randomly generated points, we use only an approximation of the fractal shape
and not the distances between center-of-masses. As such, the number of possible distances used is
much higher, and thus the maxima and minima are significantly smeared out. As described above,
the polydispersity also leads to smearing the maxima and minima. Thus, although the effects on the
scattering curve are similar, their nature is different.

Please note that in building the cross-mass fractal, a single scaling factor has been used at
each iteration, while the ratio between the size of the disks to the distances between them is about
unity. By releasing these constraints, additional fractal classes, each one with its own “signature”
on the scattering curve, can be investigated. In particular, by increasing the value of the scaling
factor after a predefined number of iterations (every second, every third, etc.), one obtains a fractal
with positive Lebesgue measure (also known as fat fractals). It has been recently shown that for fat
fractals, the scattering curve consists from a succession of power-law decays with increasing values
of the scattering exponents [59]. Such models can be used to describe the properties of hierarchically
structured materials in which the fractal dimension varies with the scale (iterations with constant
scaling factor). However, within each scale, the scattering behavior of regular (thin) fractals is recovered
(Figure 4). Also, allowing the distances between disks to be much bigger than the disk’s size, induces
the appearance of a constant region (also known as a plateau or asymptotic) between the fractal and

157



Symmetry 2020, 12, 65

Porod regions [60]. Therefore, the beginning and the end of this plateau can be used to estimate the
length of the minimal distances between disks, and respectively their size.

3.4. Deterministic Surface Fractals

The construction process of the deterministic surface is similar to that of the cross-mass fractal,
where an initial disk is repeatedly divided into a set of smaller structures, according to the same rule
for each iteration. If we denote by r0 the radius of the disk at m = 0 (initiator), then at the first iteration
(m = 1; generator), there are also four disks of radius βsr0 whose centers are situated on the positive
and negative coordinate axes, at a distance (1 + βs) r0 from the origin. At the m-th approximation,
the surface fractal is built from the (m− 1)-th approximation by adding disks of radii βm

s r0 placed at
a distance (1 + βs) r0 from the centers of the disks of radii βm−1

s r0, in all directions of the coordinate
axes and on the positions that are already not occupied by other disks (Figure (7) upper row).

At m-th iteration, the obtained Cross-surface fractal is built as a sum of mass fractals at iterations
n from 0 to m. In Figure (7) upper row, each mass fractal is colored differently, and thus at m = 3 the
surface fractal consists from mass fractals at iterations n = 0, 1, 2, 3. By construction, one can see that at
m-th iteration, the overall size ξ of the surface fractal is very well approximated by the overall size of
the mass fractal at iteration n = m. Please note that from the point of view of scattering properties,
the main difference between cross-mass and surface fractals is that the former ones consist from disks
of the same size, while the later ones consist from disks of different sizes, following a power-law
distribution. Their number is given by:

km = 2× 3m − 1, (66)

and their radii are distributed in the following way: one disk of radius r0 (blue), 4 disks of radius
r1 = βsr0 (green), 12 disks of radius r2 = β2

sr0 (black), and so on. Since at m-th iteration the radius is
rm = βm

s r0, then the surface fractal dimension is:

Ds = lim
m→∞

log km

log (r0/rm)
= 1. (67)

The discrete version of the surface fractal is shown in Figure 7 middle row, and the corresponding
pddf at m = 3 is shown in Figure 7 lower-low left (black). For comparison, the pddf of the equivalent
disk is also shown (red). The figure clearly shows that the pddf of the surface fractal is much smoother
than the pddf of the cross-mass fractal (Figure 6 lower row left). This is due to the presence of disks
of various sizes in th former case. However, the overall behavior is similar to the one of mass fractal
where the main maximum is shifted to the left of disk’s maximum, while at large r, the pddf is almost
completely flat. These features reflect the deviations from the circular symmetry, and which are specific
to the surface fractal model.

Since the cross-surface fractal consists from a superposition of mass fractals at various iterations,
by adding their amplitudes and normalizing the result to unity at q = 0, one can write [60]:

〈
|F(sf)

m (q) |2
〉
=

1− hβ2
s

1− (hβ2
s)

m+1

m

∑
n=0

(
hβ2

s

)2n 〈
|F(mf)

n (q) |2
〉

, (68)

with h = 3, and where F(mf)
n (·) is the mass fractal form factor at n-th iteration. Therefore, the surface

fractal form factor can be written as:

P(q) = P(0)
〈
|F(sf)

m (q) |2
〉

, (69)

where P(0) = n|∆ρ|2 A2
m, and Am is the total surface area of the fractal at m-th iteration.
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Figure 7. (Color online) Upper row: Iterations m = 1, 2 and 3 of the deterministic “Cross” surface
fractal of overall size ξ ' 195 nm (at m = 3). Middle row: the corresponding approximation with
a set of randomly distributed points (blue). Lower row: Left—pddf of the random surface fractal
(black points) and of an equivalent disk (red points), Right—A comparison between the approximation
of independent units (black curve) of SAS intensity (Equation (61)) and Monte Carlo simulations
(red curve).

Please note that in some cases it is very difficult to derive an analytic expression for the mass fractal
form factor in Equation (69). However, if we are not interested in the intricate behavior of the scattering
curve, one can use the approximation of independent units (AIU) in Equation (61) to calculate the
scattering intensity of surface fractals. Here, this approach is used, and the results are shown in Figure 7
lower row right (black). It is clear that in the fractal region i.e., for 2π/ξ . q . π/ (2r3), the scattering
intensity decays proportional to q−(4−1) = q−3. Thus, the fractal dimension of the surface fractal is
Ds = 1, as predicted by Equation (67). Despite using the AIU, in the fractal range one can observe the
presence of three pronounced minima at q ' 3.5× 10−2, 3.5× 10−2 and 3.5× 10−1 nm−1. This shows
that the surface fractal consists from three iterations of mass fractals. The minima positions also show
an approximate log-periodicity with the scale factor 1/βs. The results are similar to those of scattering
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from deterministic cross-mass fractals, but the nature of the log-periodicity is different. While in the
case of scattering from mass fractals, the periodicity arises from the self-similarity of distances between
disks, for surface fractals, it arises from the self-similarity of disk sizes.

Monte Carlo simulations are presented in the same figure (red), and show that the scattering
exponent in the fractal region of the scattering curve is recovered, but without following in detail the
small oscillations present in the analytic curve. This effect is similar to the one seen in Figure 6 lower
row right for mass fractals, and arise due to the discretization of the surface fractal with randomly
positioned points.

3.5. Deterministic Multifractals

Single-scale fractal presented so far, lead to homogeneous structures and are the simplest cases of
fractal systems. An exception is the fat fractal discussed in Section 3.3, which although have different
scaling factors, they occur at different scales. However, real fractal may have far more reach scaling
and self-similar properties that change from point to point. They are known as multifractals, and to
model their scattering properties, one should consider structures in which various scaling factors
occurs at the same scale.

For simplicity, we consider in the following a multifractal built from two scaling factors βs1 and
βs2. The initiator (m = 0) is a single disk, while the first iteration (m = 1) consists from four disks found
on the coordinate axes, as in the case of deterministic cross-mass and surface fractals (see Figures 6
and 7 upper rows), each one with the scaling factor βs1, and one disk in the center, with the scaling
factor βs2. The second iteration is obtained by repeating the same procedure for each of the five disks at
m = 1, and so on. It is clear that when βs1 = βs2, one recovers the single-scale deterministic cross-mass
fractal shown in Figure 6 upper row.

Figure 8 upper row shows the cross multifractal models at iteration m = 2 for βs1 = 0.15 and
βs2 = 0.7 (model MI, left), βs1 = 0.20 and βs2 = 0.6 (model MII, middle) and βs1 = 0.33 and βs2 = 0.34
(model MIII, right). In this figure, the disks with the same radius have the same color. Note that
although for model MIII, the scaling factors are different, they are very close to each other, thus leading
to disks of similar radii. Consequently, they all have the same color. The fractal dimension of each
model is calculated according to Equation (8), with k1 = 4 and k2 = 1. Therefore, one obtains
Dm ' 1.26 for model MI, Dm ' 1.31 for model MII and Dm ' 1.46 for model MIII. The total number
of particles at m-th iteration is (k1 + k2)

2, and the total surface area is
(
k1β2

s1 + k2β2
s2
)m A0, where A0

is the surface area of the single disk at m = 0.
Therefore, the multifractal form factor can be expressed through a recurrence relation between

subsequent iterations. For an arbitrarily two-scale multifractal, one can write [62,82]:

Fm (q) =
k1β2

s1G1 (q) Fm−1 (βs1q) + k2β2
s2G2 (q) Fm−1 (βs2q)

k1β2
s1 + k2β2

s2
, (70)

where the generative function G1(q) is given by Equation (64), G2(q) = 1, and the form factor at m = 0
is given by Equation (39). Please note that the choice of the generative functions, of the initial shape,
of the number of disks and their positions is arbitrarily. Thus, Equation (70) gives the form factor of a
two-scale multifractal at an arbitrarily iteration m.

Figure 8 middle row shows the discretized version of the cross multifractals used to calculate the
pddf (Figure 8 lower row left) of models MI (black), model MII (green) and model MIII (blue) with the
overall size ξ ' 100 nm. For comparison, the pddf of the equivalent disk is also shown (red). The most
pronounced differences, as compared to the disk’s pddf occur in model MI, where the maxima is the
left-most shifted and has the highest values. This shows that the structure corresponding to model
MI is the most heterogeneous. This can be clearly seen also from their construction: while the model
MI consists from disks with the highest difference in the values of their radii, for model MIII (i.e.,
for a single-scale fractal), the structure consists from disks of similar radii, and is more homogeneous.
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In addition, the local maxima and minima present in the pddf reflect the relative values of various
distances within the fractal. In particular, the main maximum at r ' 25 nm (model MI), r ' 30 nm
(model MII), and r ' 47 nm (model MIII) give the most common distances inside the multifractal.

Figure 8. (Color online) Upper row: The second iteration (m = 2) of the deterministic “Cross” multifractal
of overall size ξ = 100 nm at various scaling factors: Left—Model MI (βs1 = 0.15 and βs2 = 0.70),
Middle—Model MII (βs1 = 0.20 and βs2 = 0.60), Right—Model MIII (βs1 = 0.33 and βs2 = 0.34).
For each fractal, the disks of the same radius have the same color. Middle row: the corresponding
approximation with a set of randomly distributed points (blue). Lower row: Left—pddf of the multifractal
models and of an equivalent disk (red points), Right—A comparison between the analytic expression
(black curve) of SAS intensity (Equation (70)) and Monte Carlo simulations (red curve). The curves for
models MII and MIII are shifted vertically by a factor of 103, and respectively of 106, for clarity.

Figure 8 lower row right shows the SAS curves of the three models at iteration m = 4, calculated
using Equation (70). The main feature of the curve is the presence of the three main regions: Guinier,
fractal and Porod (not shown here) as in the case of deterministic mass and surface fractals, and which
allows extraction of the main structural information. However, a specific feature of scattering from
multifractals is the appearance of an additional surface fractal region between the mass fractal and Porod
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regions. In the mass fractal region, the scattering exponent coincides with the mass fractal dimension
Dm, while in the surface fractal region, the exponent is 4− Ds. This shows that the multifractal model
consists from mass fractals in which the basic units are not simply Euclidean objects, but they are
themselves complex structures, in particular surface fractals, which in their turn have disks as basic
units. Please note that while the overall length of the two mass and surface fractal regions is defined by
the overall fractal size, and respectively by the two scaling factors, i.e., π . q . π/ (βs1βs2)

m, the length
of each individual region depends on the value of βs1, i.e., the higher the value of βs1 the longer the
mass fractal region and the shorter the surface fractal region.

Monte Carlo simulations performed on all three models at m = 4 are also presented in Figure 8
lower row right (red). The results confirm the values of the scattering exponents in both regions.
However, the fine structure of the scattering curve is lost in the simulated curves, for the same reason
as in the case of deterministic mass and surface fractals. Therefore, experimental SAS data showing
a succession of mass-to-surface fractal regions, can be attributed to multifractal (i.e., heterogeneous)
structures. Thus, the procedure of extracting structural information about multifractals involves a
separate analysis of both the mass, and respectively the surface fractal regions (Sections 3.3 and 3.4).

4. Conclusions

The latest advances in preparation of complex materials allow the synthesis of various types of
nanomaterials based on deterministic fractals. These materials have improved physical properties such
as optical, electronic, mechanical thermal ones, with important applications in surface engineering,
heterogeneous catalysis, manufacturing of cloaking devices etc. It is already known that generally,
the main reason for the improved properties is the exact self-similar structure of the fractal. Therefore,
one of the fundamental challenges is to establish the correlations between their physical and chemical
properties from one side, and the structural properties from another one. While the evolution of
their properties can be assessed by complex quantum mechanical models, the nanoscale structure
is generally addressed by using the SAS technique. In the latter case, one of the main reasons for
using SAS is that it provides statistically significant quantities averaged over a macroscopic volume,
it allows for sample deuteration (when neutrons are used) and eliminates the requirement of sample
preparation, specific to other structural methods.

Here, the main structural properties of deterministic fractals are determined based on information
provided by SAS technique. The focus is on differentiating between various classes of fractal, by using
information from the corresponding scattering curves. For this purpose, several new theoretical models
are introduced, and their scattering properties are validated against data based on Monte Carlo
simulations. Table 1 summarizes the structural parameters which can be obtained from SAS curves
for the main classes of fractals. Please note that in Table 1 are listed only those properties specific to
each class of fractals. Besides them, by using SAS one can obtain also additional properties that are not
necessarily related to a specific fractal, such as the: overall size, specific surface, molecular weight, size
of the basic unit, correlation/persistence length, or the mass per unit length.

Figure 9 shows schematically the scattering curves corresponding to the fractals listed in Table 1.
Each of them is compared to the curve of random mass fractals (taken as a reference due to its widespread
occurrence in experimental data). In this figure, the random mass fractals have been labeled differently,
depending on the context, and in accordance with the most common terminology in the literature.
As such, mass fractals, random fractals, monofractals and thin fractals, all represent a single-scale random
mass fractal. A representative example is given by DLA, shown in Figure 4 upper row. The results in
Figure 9 show that each class of fractals has its own imprint on the scattering curve, and thus, the SAS
technique can differentiate between:

• Mass and surface fractals (Figure 9 upper row, left). The differentiation is made through the value
of the scattering exponent τ in the fractal region that is τ = Dm for random mass fractals,
and τ = d− Ds for surface fractals. Here, d is the Euclidean dimension of the space in which the
fractal is embedded.
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• Random and deterministic fractals (Figure 9 upper row, right). The differentiation is made based on
the type of power-law decay, i.e., a simple power-law decay for random fractals, and a generalized
power-law decay (a complex superposition of minima and maxima on a simple power-law decay)
for deterministic fractals.

• Mono and multifractals (Figure 9 middle row, left). The differentiation is made through the presence
of one or more power-decays, either simple or generalized. For monofractals, there is a single
power-law decay, while for two-scale multifractals, there is a succession of a mass fractal followed
by a surface fractal. When the two scaling factors have similar values, the length of the surface
fractal region is very short, and vice-versa.

• Thin and fat fractals (Figure 9 middle row, right). The differentiation is made in a similar way as in
the previous case. However, the main difference is that the surface fractal region is replaced by
another mass fractal region with the exponent smaller than the one of the first mass fractal region.

• r ' 1 and r � 1 fractals (Figure 9 lower row). The differentiation is made through the presence
of an additional region of constant intensity between the fractal and Porod regions. For fractal
in which the ratio of the size of basic units to the minimal characteristic distances between them
is about unity, the length of this constant region is very short. However, for fractals with r � 1,
the length of the constant region is much bigger.

Most of the above results illustrated here, are validated by Monte Carlo simulations. Although
they represent important advances in structural analysis of fractal structures, there are still important
open question which need to be addressed.

Experimentally, the main issues arise from the loss of information about phases, the influence
of instrumental limitations, polydispersity and of incoherent scattering at high q, which may hinder
the extraction of structural parameters from a SAS curve. The loss of phase information is an intrinsic
drawback of the SAS method, since it gives the absolute value of the Fourier transform of the density.
In the case of randomly oriented fractals, the square of the Fourier transform is also averaged over all
possible orientations of vector q. This operation leads to an ill-posed problem in recovering the density
from SAS data. Such issue can be handled by measuring the scattering of an ensemble of aligned
fractals from different angles with a position sensitive detector. The instrumental limitations arise
from the finite resolution of the collimation and detection systems, as well as from the wavelength
spread. For samples based on deterministic fractals, these lead to either partial or a total smearing of
the scattering curves, and the fine structure of the intensity is lost. In the former case, the main maxima
and minima are still visible, and all the structural parameters presented in Table 1 can be recovered.
However, in the latter case, all the maxima and minima are completely smeared out. This leads to the
impossibility of extracting the scaling factor(s) and the iteration number. The effect of polydispersity is
similar to the one of finite instrumental resolution, i.e., the higher the polydispersity, the more smeared
the SAS curve. Finally, the q-independent background of SAS curve, determined by the scattering
density of irradiated nuclei with nonzero spins such as 1H or 7Li isotopes, may hinder the structural
features arising at high q. In this case, one can use deuteration to increase the contrast and reduce the
background.

Theoretically, since a given fractal dimension may represent virtually an infinite number of
structures, then how one can differentiate between them? Second, multifractals are characterized by a
whole spectrum of dimensions given by Equations (11) or (12). Can SAS, eventually in combination
with other methods, provide other dimensions, besides D0 (see Equation (13))? And if the multifractal
consists from more than two scaling factors, which is probably one of the most common situations in
physical samples, can we recover all the scaling factor from SAS curves?

From a practical point of view, partial answers to these questions begin to emerge. The progress
in SAS instrumentation could eliminate the disadvantage of finite instrumental resolution, to a
sufficiently high degree, without sacrificing the complex morphology of deterministic fractals and
without increasing the measurement time. Similarly, recent advances in nanotechnology, materials
science and chemistry allows preparation of highly monodisperse samples. Of particular importance
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is the use of ptychographic methods for phase recovery in coherent SAS by numerical procedures.
Also, a combined use of SAXS with tensor tomography, also known as 3D scanning SAXS, allows
determination of 3D orientation of nanofractals in a bulk specimen, and thus symmetries within the
sample can be exploited to extract additional structural information about fractals.

Table 1. Fractal specific parameters which can be obtained from a SAS experiment. Here Dm and
Ds are the mass, and respectively the surface fractal dimension, βs is the mass and surface fractals

scaling factor, m is the mass fractal iteration number, β
(i)
s , k(i)m , m(i) and D(i)

m are the scaling factors,
the number of basic units, iteration number and respectively the fractal dimensions at i-th structural
level (i = 1, 2, · · · ) in a fat fractal, βs1 and βs2, with βs1 < βs2 are the multifractal scaling factors, km is
the number of basic units in a mass fractal, h is the characteristic minimal distance between basic units
in a mass fractal, and r ≡ l/h, with l the size of basic units composing the mass fractal. The exponents
of the scaling factors and number of units occurring for fat fractals denote an index (over the structural
levels) and not a power.

Fractal Type Parameters Source Fractal Power-Law Decays

Random mass
fractals Dm Exponent of power-law decay A single simple power-law decay

with exponent Dm.

Random
surface fractals Ds Exponent of power-law decay A single simple power-law decay

with exponent d− Ds.

Deterministic
mass fractals

Dm Exponent of power-law decay

A single generalized power-law
decay with exponent Dm.

βs Period on the logarithmic scale

m Number of periods in logarithmic scale

km km = (1/βs)
mDm

Deterministic
surface fractals

Ds Exponent of power-law decay
A single generalized power-law
decay with exponent Ds.

βs Period on the logarithmic scale

m Number of periods in logarithmic scale

Deterministic
fat fractals

D(i)
m , D(i)

m , · · · Exponents of power-law decays at each
structural level

A succession of generalized
power-law decay with exponents
Dm1 < Dm2 < · · · .

β
(i)
s , · · · Periods on the logarithmic scale at each

structural level

m(i) Number of periods in logarithmic scale
at each structural level

k(i)m
As for deterministic mass fractals, but
at each structural level

Deterministic
multifractals
with two
scaling factors

Dm, Ds
Exponents of power-law decays in each
fractal region

A succession of mass-to-surface
fractal generalized power-law
decays, with exponents Dm,
and respectively Ds.

βs1, βs2
Periods on the logarithmic scale from
mass, and surface fractal regions

m Number of periods in logarithmic scale
from mass or surface fractal regions

km1 km1 = (1/βs1)
m1Dm1

Deterministic
mass
fractals with
r � 1

Dm Exponents of the power-law decay

A region with constant intensity
occurs after the fractal region.

βs
Periods on the logarithmic scale from
mass fractal region

m Number of periods in logarithmic scale
from mass fractal regions

h End of the constant region

km As for deterministic mass fractals
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Figure 9. (Color online) Schematic representation of SAS from different classes of 2D fractals Upper row:
Left—mass and surface fractals, Right—random and deterministic fractals. Middle row: Left—mono
and multifractals, Right—Thin and fat fractals. Lower row: r � 1 and r ' 1 fractals (see below). Here ξ

is the overall size of mass fractals, and respectively the size of the largest disk in a surface fractal, Dm

(including Dm1 and Dm2) and Ds are the mass and, respectively the surface fractal dimensions, l is the
size of disks in a mass fractal, and respectively the size of smallest disk in a surface fractal, m (including
m1 and m2) are the fractal iteration numbers, βs (including βs1 and βs2) are the scaling factors, h is the
minimal distance between the disks, and r = l/h.
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Abstract: We use a random gap model to describe a metal–insulator transition in three-dimensional
semiconductors due to doping, and find a conventional phase transition, where the effective scattering
rate is the order parameter. Spontaneous symmetry breaking results in metallic behavior, whereas the
insulating regime is characterized by the absence of spontaneous symmetry breaking. The transition
is continuous for the average conductivity with critical exponent equal to 1. Away from the critical
point, the exponent is roughly 0.6, which may explain experimental observations of a crossover of the
exponent from 1 to 0.5 by going away from the critical point.

Keywords: particle-hole symmetry; metal–insulator transition; random gap model

1. Introduction

The particle-hole symmetry plays a crucial role in solid state physics. In particular in semi- as
well as in superconductor physics [1], this symmetry appears due to the existence of two separate
bands. Recent theoretical studies of three-dimensional Weyl materials has renewed interest in the
disordered driven metal–insulator transition [2–26]. It was shown recently that Anderson localization
can be prevented even in the strong disorder regime when particle-hole symmetry is present [27,28].
This can be understood by the simple picture that particle-hole pairs can be created by an infinitesimal
excitation energy.

Undoped semiconductors have a small gap between the valence and the conduction band,
typically of the order of 0.2, ..., 1.2 eV [1]. This gap is strongly affected by doping, which allows us to
engineer a variety of useful technological applications. In particular, sufficiently strong doping closes
the gap such that a metallic phase appears. A classical example for this type of metal–insulator
transition is doped silicon, where typical dopants are phosphorus (Si:P) or boron (Si:B) [29–33].
Disorder plays a crucial role in these materials due to the inhomogeneous distribution of the dopants.
This suggested that Anderson localization must play a crucial role in these systems, where the
quantum states would undergo a transition from extended to localized states for increasing disorder.
This transition should be reflected in the transport properties, where extended states lead to a metal
and localized states to an insulator at vanishing temperatures.

Measurements of the conductivity σ(N) as a function of doping concentration N in Si:P at low
temperatures has indeed revealed a critical behavior. Above a critical concentration Nc a power law
was found

σ(N) ∼ σ0(N/Nc − 1)µ (N ≥ Nc)

and a vanishing conductivity for N ≤ Nc. The exponent µ was determined as µ ≈ 0.5 for some
experiments [29–32], whereas a crossover from µ ≈ 0.5 at some distance from the critical point to µ ≈ 1
in a vicinity very close to Nc was observed in other experiments [32,33].

Although the picture of an Anderson transition is quite appealing, an alternative description
can be provided by a random gap model. The idea is that the dopants create energy levels inside
the semiconductor gap. These levels are associated with states that can overlap with the states in the
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semiconductor bands and eventually fill the semiconductor gap by forming extended states. The effect
can be described by a random distribution of local gaps. Then the locally filled gaps can be distributed
over the entire system and form eventually, after sufficient doping, a conducting “network”. This is
associated with a second-order phase transition which will be described in this article. The transition
is distinguished from the Anderson transition by the fact that the metallic phase appears at strong
disorder (i.e., high dopant concentration) and the insulating phase at weak disorder. This does not rule
out an Anderson transition if we increase the disorder inside the metallic regime. However, in realistic
systems it is more likely to see the transition caused by the random gap than the more sophisticated
Anderson transition for N � Nc.

In the following, we will discuss and analyze the insulator-metal transition due to random gap
closing in a three-dimensional system. This will be based on a two-band model with particle-hole
symmetry. The latter is essential for the existence of metallic states in the presence of strong disorder.

2. Model and Symmetries

We consider a two-band model with a symmetric Hamiltonian. This can be expressed in terms of
Pauli matrices σj (j = 0, ..., 3). A simple case is

H = h1σ1 + h3σ3 (1)

with symmetric matrices h1, h3 in three-dimensional (real) space. To be more specific, we can choose

the Fourier components h1 = k/
√

2m with k ≡
√

k2
1 + k2

2 + k2
3. For a uniform gap ∆ implies h3 = ∆/2

we obtain two bands with the dispersion Ek = ±
√

k2/2m + ∆2/4. Subsequently we will consider
a random gap h3 with mean values ∆/2 to describe the effect of an inhomogeneous distribution of
dopants and rescale k/

√
2m→ k.

The one-particle Hamiltonian H is invariant under an Abelian chiral transformation:

eασ2 Heασ2 = H . (2)

In order to reveal the relevant symmetry for transport in this system, we construct the
two-body Hamiltonian

Ĥ =

(
H 0
0 H

)
, (3)

where the upper block H acts on bosons and the lower block H on fermions. The reason for introducing
this two-body Hamiltonian is that we can transform the distribution of the random Hamiltonian H into
a distribution of the Green’s function Ĝ(z) = (Ĥ− z)−1 [34,35], which is often called a supersymmetric
representation of the Green’s function.

Next we introduce the transformation matrix

Û =

(
0 ϕσ2

ϕ′σ2 0

)
(4)

and obtain the anti-commutator relation

{Ĥ, Û}+ = 0 . (5)

This implies the non-Abelian chiral symmetry

eÛ ĤeÛ = Ĥ , (6)
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which is an extension of the Abelian symmetry (2). The Green’s function Ĝ(z) does not obey this
symmetry for z 6= 0. Therefore, z plays here the role of a symmetry-breaking field. An interesting limit
is z→ 0, which we will study in the next section.

Now we consider the case of a random gap with mean 〈h3,r〉 = ∆/2 and variance 〈h3,rh3,r′〉 −
∆2/4 = gδr,r′ and its effect on the average conductivity at frequency ω. The conductivity is obtained
from the Kubo formula as [35,36]

σkk = −
e2

2h
ω2 lim

ε→0
Re

{
∑

r
r2

k Tr2 [〈G0r(ω/2 + iε)Gr0(−ω/2− iε)〉]
}

, G(z) = (H − z)−1 . (7)

In particular, we are interested in the DC limit ω → 0. This limit restores the chiral symmetry of
Ĥ in (6) for the Green’s functions. However, the symmetry can be spontaneously broken now. Since it
is a continuous symmetry, this creates a massless mode, which represents fluctuations on arbitrarily
large length scales.

Here it should be noticed that σ2(H + z)−1σ2 = −(H − z)−1. This has the consequence that the
product in (7) reads G0r(z)Gr0(−z) = (H − z)−1

0r (H + z)−1
r0 = −(H − z)−1

0r σ2(H − z)−1
r0 σ2 such that

elements of Ĝ(ω/2 + iε) are sufficient to express the conductivity.
A common approximation for the average two-particle Greens function is the factorization of

the average

〈G0r(ω/2 + iε)Gr0(−ω/2− iε)〉 ≈ 〈G0r(ω/2 + iε)〉〈Gr0(−ω/2− iε)〉 (8)

and a subsequent self-consistent Born approximation for the two factors. There are corrections though,
which might be divergent [35,36]. The reason is that the expression on the left-hand side decays like a
power law with distance r while the expression on the right-hand side decays exponentially. The power
law is a consequence of the massless mode associated with the spontaneously broken non-Abelian
symmetry. This problem will be discussed and solved in Section 4.

3. Self-Consistent Approximation

We start with the self-consistent Born approximation of the average one-particle Green’s function

〈G(z)〉 ≈ G0(z + iη), G0(z) = (〈H〉 − z)−1 , (9)

where the self-energy η is a scattering rate, which is determined by the self-consistent equation
iη = G0,0(z + iη) [37]. This reads in our case with momentum cut-off λ

iη = γ(z + iη)
[

λ− α

2
log
(

α + λ

α− λ

)]
(γ = g/2π2, α =

√
(z + iη)2 − ∆2/4)

and for z = 0 this simplifies to the relation η = η I with

I = γ [λ− β arctan(λ/β)] , β =
√

η2 + ∆2/4 .

In this case there are two solutions of the self-consistent equation, namely η = 0 and η 6= 0 with

γ =
1

λ− β arctan(λ/β)
. (10)
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A nonzero η reflects spontaneous symmetry breaking with respect to (6). Such a solution exists
for (10) only at sufficiently large γ. Moreover, η vanishes continuously as we reduce γ. Then there is a
phase boundary which separates the symmetric and the symmetry-broken regime:

γ(∆) =
2

2λ− ∆ arctan(2λ/∆)
(11)

which is plotted in Figure 1. The average density of states then reads

ρ(E) =
1

2π
lim
ε→0

Im {Tr2 [〈Grr(E + iε)〉]} ≈ 1
2π

lim
ε→0

Im {Tr2G0,0(E + iε + iη)}

=
1
π

Im
{
(E + iη)

[
λ− α

2
log
(

α + λ

α− λ

)]}
, α =

√
(E + iη)2 − ∆2/4) . (12)

As a qualitative picture the average density of states is plotted for a fixed η in Figure 2.
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Figure 1. Phase diagram of the metal–insulator transition of the three-dimensional random gap model
from Equation (11), where disorder is the parameter γ and the average gap is ∆.
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Figure 2. Average density of states of the three-dimensional random gap model for fixed η = 0.04 and
average gap ∆ = 0.4 (full curve) and ∆ = 0.8 (dashed curve).
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4. Scaling Relation of the Average Two-Particle Green’s Function

Using the factorization of the averaged product of Green’s functions in Equation (8), the
conductivity in Equation (7) is approximated as [36]

ω2 ∑
r

r2
k Tr2 [〈G0r(y)Gr0(−y)〉] ≈ ω2 ∑

r
r2

k Tr2 [〈G0r(y)〉〈Gr0(−y)〉] (y = ω/2 + iε) , (13)

where the constant prefactor e2/2h has been omitted here. This can be combined with the self-consistent
Born approximation in Equation (9) to obtain

ω2 ∑
r

r2
k Tr2 [〈G0r(y)〉〈Gr0(−y)〉] ≈ ω2 ∑

r
r2

k Tr2 [G0,r(y + iη)G0,−r(−y− iη)] . (14)

For the expression (7) this approximation leads to the Boltzmann (or Drude) conductivity, which
reads in our specific case

σkk ≈
e2

2h
ω2

π2

∫ λ

0

∆2/4− z2

(∆2/4− z2 + k2)3 k2dk (z = ω/2 + iη) . (15)

Thus the conductivity vanishes in the DC limit ω → 0 for η > 0. The reason is that
the self-consistent Born approximation creates the Green’s function G0,r(y + iη), which decays
exponentially on the scale 1/η. Consequently, the sum over the real space coordinates on the right-hand
side of Equation (14) is finite.

A more careful inspection indicates that the averaged product of Green’s function on the left-hand
side of Equation (13) decays according to a power law as a consequence of the massless fluctuations
around the spontaneous symmetry breaking solution η 6= 0 [34]. We can perform the integration with
respect to these fluctuations and obtain the diffusion propagator [35]

Tr2 [〈G0r(y)Gr0(−y)〉] ≈ η − iy
4

∫ eiq·r

−iy + Dq2 d3q (16)

with diffusion coefficient

D =
η − iy

2 ∑
r

rk
2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] . (17)

After summing over the real space coordinates we obtain the expression

ω2 ∑
r

r2
k Tr2 [〈G0r(y)Gr0(−y)〉] = ω2 f (η/y)∑

r
rk

2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] , (18)

where the coefficient on the right-hand side is a result of the strong massless fluctuations, which didn’t
exist in the approximation given by Equation (14). It depends on the ratio of the order parameter of
spontaneous symmetry breaking η and the symmetry-breaking field y:

f (η/y) = (1 + iη/y)2 . (19)

This coefficient indicates that the correlations of the Green’s function fluctuations are negligible
only for f (η/y) ≈ 1. This is the case in the absence of symmetry breaking, where η = 0 and f (0) = 1.
This justifies the approximation by Equation (14) in the insulating regime. On the other hand, in the
presence of spontaneous symmetry breaking (i.e., for η > 0) the coefficient diverges for ω → 0 and
gives ω2 f (η/y)→ −1 in the limits ε→ 0 and then ω → 0.
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The diffusion coefficient in Equation (17) is easy to calculate and reads

∑
r

rk
2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] =

1
4π

1√
∆2/4 + (η − iy)2

, (20)

which together with the scaling relation (18) gives for the conductivity of Equation (7) in the DC limit
ω → 0

σkk =
e2

4πh
η2

√
∆2/4 + η2

. (21)

The solution η of the self-consistent Equation (10) is inserted into σkk and the conductivity is
plotted as a function of disorder strength γ in Figure 3. The conductivity vanishes linearly with
decreasing disorder strength (i.e., with decreasing doping concentration). To illustrate the crossover to
a power law with exponent 0.6, the calculated conductivity and the power-law fit are plotted together
in Figure 4.
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5. Discussion and Conclusions

Our result for the DC conductivity in Equation (21), together with the solution of the order
parameter η in Equation (10), provides a simple description of a metal–insulator transition in doped
three-dimensional semiconductors. The metal–insulator transition is characterized by the scattering
rate η that vanishes in the insulating regime. Such a behavior is not an Anderson transition, since the
latter would have a scattering rate η 6= 0 on both sides of the transition [38]. Even more important is
the change of the coefficient f (η/y): It is always 1 in the insulating regime and infinite in the metallic
regime. This quantity describes the correlations of the Green’s function fluctuations in the relation (18).

There is a linear behavior near the metal–insulator transition and a crossover to a non-critical
power law, as depicted in Figure 4. For the linear part the slope of the conductivity is quite robust
with respect to the average gap ∆ (cf. Figure 3). Away from the transition point a negative curvature
appears though, which can be fitted by a power law with exponent µ ≈ 0.6 (cf. Figure 4). The change
of exponents can be related to the discussion in References [33,39] about a crossover of exponents
in Si:P from µ ≈ 1 very close to the critical point Nc to µ ≈ 0.5 further away from Nc. Rosenbaum
et al. have found that the conductivity close to the critical point varies from sample to sample [32].
This indicates strong conductivity fluctuations, which may also exist in our random gap model, as
indicated by the strong fluctuations of the Green’s functions due to the large values of f (η/y).

As mentioned in the Introduction, a related metal–insulator transition in three-dimensional Weyl
fermionic systems has attracted considerable attention recently [2–26]. Formally, this transition is
very similar, although the underlying Hamiltonian is that of Weyl fermions rather than our simple
semi-conductor Hamiltonian in Equation (1). This difference leads to the creation of two distinct
insulating phases, characterized by the Hall conductivity σxy = ∓e2/2h in the lower part of the phase
diagram in Figure 1 for Weyl fermions. But the role of the particle-hole symmetry, the existence of a
massless mode due to spontaneous breaking of this symmetry and the role of diffusion in the metallic
phase are the same in both types of models [26–28]. This indicates that metal–insulator transitions in
systems with particle-hole symmetry are based on the same type of mechanism.
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Abstract: Symmetries play paramount roles in dynamics of physical systems. All theories of quantum
physics and microworld including the fundamental Standard Model are constructed on the basis of
symmetry principles. In classical physics, the importance and weight of these principles are the same
as in quantum physics: dynamics of complex nonlinear statistical systems is straightforwardly
dictated by their symmetry or its breaking, as we demonstrate on the example of developed
(magneto)hydrodynamic turbulence and the related theoretical models. To simplify the problem,
unbounded models are commonly used. However, turbulence is a mesoscopic phenomenon and the
size of the system must be taken into account. It turns out that influence of outer length of turbulence
is significant and can lead to intermittency. More precisely, we analyze the connection of phenomena
such as behavior of statistical correlations of observable quantities, anomalous scaling, and generation
of magnetic field by hydrodynamic fluctuations with symmetries such as Galilean symmetry, isotropy,
spatial parity and their violation and finite size of the system.

Keywords: stochastic dynamics; symmetry breaking; field-theoretic renormalization group

1. Introduction

The success of physics is to a large extent dictated by its enormous predictive power describing
many natural phenomena. Ranging from microscopic distances probed at colliders facilities up to
macroscopic scales observed through sophisticated astronomical devices, physics develops theories
and models that describe reality to a very high precision. Once one understands basic principles,
one could not stop wonder about the incredible efficiency with which fundamental physical laws
are constructed. To a large extent, guiding principles in physics are based on a correct recognition of
underlying symmetries.

From a historical point of view, the first nontrivial symmetry found was Galilei’s discovery
of equivalence of inertial frames whose direct consequence is momentum conservation. A further
development in theoretical physics, most notably utilized by E. Noether in her work, uncovers the
fundamental role in classical physics played by symmetries. Later on, it was realized that many
physical theories can be based on a proper identification of symmetries. The prototypical and most
successful example is how the Lorentz covariance of particle physics, underlying principles of quantum
mechanics and local gauge symmetry, restrict the permissible form of theory to such an extent that
every such attempt results in a kind of quantum field theory [1]. From a modern perspective, this is
related to the observation that most quantum field theory models should be interpreted as kind of
effective field models that describe physics sufficiently up to a certain energy scale. An input from
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experiments is still needed to impose restrictions on theory, for example, in mirror symmetry, time
reversal and charge conjugation play a fundamental role in the formulation of the standard model [2].
Indications of whether a given interaction is accompanied by some symmetry are inferred by the
experiment and not from theoretical reasoning alone.

Symmetry considerations are not restricted to particle physics only. They are important in other
research areas as well. In particular, our aim in this article is to describe them in the context of classical
physics related mainly to applications in fluid mechanics. To set the context and provide the basic
framework for theoretical considerations and relations with other branches of physics, we discuss the
underlying ideas more broadly.

The problems considered in this paper belong to statistical physics, which forms a cornerstone of
the modern science. Since its foundation as a scientific discipline in the works of Gibbs and Boltzmann,
it has evolved to a great depth both in scope and rigorousness. At present, methods primarily devoted
to the study of physical systems are applied in such diverse scientific fields as chemistry, biology,
economics, sociology and computer science. Such a success might be explained by the generality of
the fundamental laws of statistical physics and genuine appearance of systems with great resemblance
to the models studied in physics. In general, they could be characterized by a large number of
entities (atoms, spins and so on) that interact with each other. It is important to realize how large this
number is. For instance, merely one mole of ordinary matter under normal circumstances contains as
many as 1023 atoms or molecules. This is an incredibly large value beyond human ability to imagine.
The rigorous treatment of such a system in terms of particle dynamics (via classical Euler–Lagrange
equations or Schrödinger equation in the quantum case) is apparently meaningless. Nonetheless, it
is an experimental fact that under stationary boundary conditions all closed macroscopic systems
tend to evolve to the equilibrium state that is characterized by a constant value of its macroscopic
(coarse-grained) characteristics, e.g., temperature, volume, magnetization, etc. At mesoscopic scales of
space and time, this tendency remains true, but the thermodynamic parameters are slowly varying
functions of position and time. In a more precise sense, this property of nature is formulated in the
second law of thermodynamics. In an isolated system, it also identifies an equilibrium with the most
disordered (equivalent to the most probable) state under given external conditions.

In many instances encountered in equilibrium physics, it is possible to use an approximation in
which interactions or fluctuations between microscopic constituents of the model can be neglected or
treated as a small perturbation to the ideal situation of noninteracting particles. The ideal gas and van
der Waals model are famous examples. Note that in the latter case attractive interaction between gas
molecules are effectively taken into account by the corresponding virial term [3].

When matter is more dense, interactions between neighboring particles cannot be neglected.
The fundamental property of additivity of energy and entropy [3] in the equilibrium is maintained by the
assumption that the system may be considered comprising of noninteracting subsystems (”mesoscopic”
elements of matter). It should be noted that, for the very possibility of considering noninteracting
particles or subsystems as the ideal situation, particles are assumed to have short-range interactions.
At the microscopic level, this corresponds to electrically neutral molecules or clusters of molecules.
Problems related to formation and structure of these quantities [4] are beyond the scope of this article.

However, there also exist situations, in which neglecting fluctuations is not appropriate at all. The
theory of critical phenomena [5,6], which deals with the second-order phase transitions in macroscopic
systems, is a well-known representative. It is observed, e.g., in liquid–vapor transition, λ−transition
in superfluid helium or various magnetic transitions between paramagnetic and ferromagnetic phases.
A characteristic feature of these transitions is the appearance of strong fluctuations and correlations
between underlying constituents (atoms or spins, subsystems comprising thereof). A parameter used
for a quantitative description of correlations is the correlation length. Broadly speaking, it represents the
average distance to which atoms or clusters “feel” each other or behave cooperatively. In equilibrium
situations, it is of atomic order, which explains why a dilute atomic system usually can be considered
consisting of effectively non-interacting atoms. In dense matter, this is rephrased to clusters of atoms.
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The first attempt to tackle the problem of phase transitions was based on the use of mean field
theory. Loosely speaking, it presumes that correlations between mesoscopic stochastic variables can
be treated perturbatively. Thus, in the sense of the central limit theorem, deviations from the ideal
Gaussian behavior of fluctuations can be constructed (in quantum field theory, this procedure is also
known as the Wick theorem). In most cases, some equation of state for macroscopic quantities can be
directly obtained. In situations when the system is far from the critical region, the correlation length is
very small and can be effectively neglected. There is no obvious discrepancy with the experimental
data. However, it turns out that this approach exhibits large quantitative differences between the
theory and the experiment in the vicinity of a critical point. The problem is that here the correlations
are very large. In fact, directly at the transition point, the correlation length is divergent. Therefore,
perturbation theory is no longer applicable (the coupling constant is very large and by no means can
be treated as a small quantity). However, the divergent correlation length reveals another important
effect in the physical picture: scale invariance. In contrast to the aforementioned symmetries, this is a
case of a dynamically generated (emergent) symmetry. Mathematically, it is an invariance with respect
to the special class of transformations that account for a change in the scale at which a physical system
is studied. A divergent correlation length means that there is no special scale and the system looks and
behaves at every scale in the same way.

A well-known observation in physics is that symmetry might have enormous influence on the
properties of the physical system. In terms of scale invariance, the experimentally observed power
laws for the functional dependence of various thermodynamic functions can be explained and also
the various relations between critical exponents can be quantitatively estimated. Another important
property of the second order phase transition is universality. In a simple formulation, it says that the
behavior of the system near its critical point is fully determined by universal quantities—dimension of
space, and number of components of order parameter, symmetry constraints—that are not characteristic
of one system only, but a whole class of systems and also states that universal quantities do not
depend on the model-dependent parameters—coupling constants, etc. Thus, in microscopic details
very different physical systems such as strongly anisotropic magnetic material (the Ising model) and
liquid might have the same critical properties. One only has to know a few very general pieces of
information to classify a given physical system according to its critical behavior into some universality
class, wherein all the systems behave in the same way.

It is interesting to realize that there is a great intrinsic similarity between quantum models in
particle physics and statistical models. A profound relation between quantum field theory and statistical
mechanics is revealed through the language of path integrals [5,6]. A classical random field in this
framework is completely analogous to a fluctuating quantum field. Field models are often amenable to
perturbation methods. Using Feynman diagrammatic technique, terms in perturbative expansion are
expressed via Feynman diagrams that are a graphical representation of certain integrals. As a rule, they
contain divergences in the range of large and small scales (wavevectors). In particle physics, there are
no natural restrictions on scales, therefore it is necessary to find an effective procedure to eliminate these
divergences step by step in each order of a concrete perturbation scheme. In perturbation expansions of
classical field theories, natural scales usually exist: at small scales, the continuum description breaks
down at atomic scales (nanophysics) and there is no reason to go below this lower limit. On the other
hand, real quantities of matter are of finite size. In the theoretical description, however, it is convenient
and customary to extrapolate results obtained for a finite quantity of homogeneous matter to the whole
space when modeling real systems. Below, we demonstrate renormalization methods in the framework
of the stochastic model of developed turbulence and related applications.

The method of renormalization group (RG) was proposed in the framework of the quantum field
theory in the 1950s [1,7–11]. From the practical point of view, the RG method represents an effective way
to determine non-trivial asymptotic behavior of Green functions (correlation functions) in the range
of large (ultraviolet) or small (infrared) wavevectors (scales). The asymptotic behavior is non-trivial
if, in a given order of a perturbative calculation, the divergences in a certain range of wavevectors
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appear (e.g., so-called large logarithms), which compensate for the smallness of the coupling constant g.
In such case, summation of all terms of a perturbation series is needed. This summation can be carried
out by means of the RG approach. Technically, one obtains linear partial differential RG equations for
the Green functions. The coefficient functions (RG-functions) in the differential operator (see below)
are calculated at a given order of the perturbation scheme. However, the solution of the RG equation
represents the sum of an infinite series. For example, if the RG-functions are calculated at the lowest
non-trivial order of the perturbation theory and the corresponding RG-equation is solved, the obtained
result is a sum of leading logarithms of the whole perturbation series. Moreover, if the RG-functions
are calculated with an improved precision, the solution of the RG equation includes corrections to the
leading logarithms.

Notwithstanding the similarity of theoretical description of quantum field theory and classical
statistical models, it has to be borne in mind that there is an essential difference in the interpretation and
use of the RG in statistical physics on the one hand and in particle physics on the other hand. In particle
physics, we are interested in an analysis of scaling in ultraviolet (UV) regime corresponding to large
momenta. On the other hand, in statistical physics, asymptotic behavior in the opposite infrared (IR)
limit of small momenta is usually studied. In both statistical mechanics and hydrodynamic transport
problems, the interest in the IR behavior of statistical models is determined by the property of the
basic field-theoretic tool—perturbation theory—to reproduce the observed singular behavior of certain
physical quantities only in the limit of an infinite (flat) space. However, this infrared limit is usually
rather sensitive to the large-scale structure of the model and care has to exercised when passing to the
limit. In the case of equilibrium systems, the analysis is based on the Gibbs distribution, but, in the
case of steady-state stochastic systems, there is no generic tool to this end which emphasizes the role of
symmetry arguments.

The final aim of the theory (either in stochastic dynamics or developed turbulence) is to find the
time-space dependence of statistical correlations—mainly those that can be experimentally measured.
It turns out that use of quantum field theory methods (RG included) allows deriving a linear differential
equation, which contains stable solutions in the asymptotic region of large macroscopic scales.

Solutions take a form of a product of a power-like term with a nontrivial exponent and scaling
function of dimensionless variables (the scaling function is not determined by the RG method).
To compute critical exponents in the form of asymptotic series, one has to resort to a certain scheme (we
often employ variants of dimensional renormalization). Asymptotic properties of the scaling functions
are analyzed by the operator product expansion, which is another theoretical tool developed mainly by
Wilson, Wegner and Kadanoff [12–14]. In the stochastic theory of fully developed turbulence, scaling
functions may be singular functions of dimensionless arguments and this can drastically change the
critical exponents. The results demonstrate intermittent (multifractal) behavior of statistical correlations
of the random fields of concentration of advected particles. Intermittency is a typical mesoscopic
phenomenon, which is quantitatively revealed in singular behavior of correlation functions of velocity
fluctuations with respect to an external turbulent spatial scale L.

The RG method not only leads to a quantitative description of the behavior near critical points, it
also provides a new framework in which the aforementioned scale invariance and universality are
naturally explained. At present, the use of the RG method in equilibrium statistical physics is well
established and represents an important theoretical tool.

Contrary to the equilibrium physics, there are only few rigorous results in the case of
non-equilibrium systems. Some of their properties are reminiscent of the equilibrium systems and thus
it seems natural to apply the RG method to them. However, there exist also fundamental differences
between them. Non-equilibrium systems might be divided [15] into two broad classes

• Systems with a Hermitian Hamiltonian, whose stationary states are described by Gibbs–Boltzmann
distribution. Note that at the beginning they happen to be in a state far from the stationary
(equilibrium) state. The dynamic description of such systems is obtained directly from static
formulations. Examples include the Landau–Ginzburg equation for time evolution of local
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magnetization, kinetic Ising model, and models A-H for various models of critical dynamics [16].
All these equations are specific realizations of a rather general Langevin equation [5].

• Systems without Hermitian Hamiltonian or without Hamiltonian description at all, which in
general do not need to have a stationary state. The detailed balance condition is not satisfied
for them, which implies that Einstein relation between thermal fluctuations and friction forces
cannot be stated. Typical examples of such systems cover: fluid in turbulent state, irreversible
chemical processes, surface growing models, etc. Other approaches to such systems have to be
used via quite general stochastic differential equation, which can be considered as an extension of
a Langevin equation or using a master equation [17]. The former equation is suggested for some
macroscopic quantity. Neglect of microscopic degrees of freedom is replaced by an introduction of
random force. Then, according to underlying physical observations, properties of random force
have to be specified. The latter approach is probably more fundamental, but also more difficult
to handle.

In what follows, our main interest concerns specific problems of the second type related to
hydrodynamics. In hydrodynamics, dissipation of mechanical energy to heat is an essential part of the
physics. Since a Hamiltonian description is not possible in this case, we are dealing with steady states
of the latter class.

As we know from everyday experience, fluids can exhibit very different behaviors from very
simple, e.g., laminar flow, which is very predictable, to very chaotic, as is realized in turbulent motions.
Turbulence is important in the analysis of phenomena in a wide range of scales from particle collisions
in accelerators [18] and circulation of human blood [19] to the flow of air and water in the atmosphere
and oceans, solar wind [20] and clusters of galaxies [21]. Let us stress that all studied systems belong
to open systems that need a continuous input of energy in order to maintain steady state.

Theoretical analysis of turbulence is based on the statistical analysis of solutions of the Navier–
Stokes problem. Symmetry and similarity arguments have allowed infering important conclusions about
the scaling behavior of velocity correlation functions in the case of very large Reynolds numbers (the
famous Kolmogorov theory in the first place) [22,23]. However, a more detailed statistical description
of this fully developed turbulence as well as the onset of turbulence in a laminar flow are still lacking.
Notwithstanding the rapid development of experimental methods [24], one of the major problems in the
study of turbulence is the deficit of high-resolution experimental data. Therefore, numerical methods
have become important tools in the investigation of turbulence [24] and provide solid benchmarks for
testing of analytic results.

It is well-known that weather forecasting can be done for no more than a few days. This is caused
by the intrinsic instability of Navier–Stokes (NS) equations, which are believed to describe motion of
viscous (non-relativistic) fluids [22]. The formidable task of finding its solution remains one of the last
unsolved classical problems [23]. For classification of various fluid states, the Reynolds number Re has
been introduced. It is defined as Re = VL/ν, where V is typical average flow velocity, L is an external
scale (e.g., a dimension of an obstacle, which causes perturbation to the regular flow) and ν is kinematic
viscosity of the medium. It thus expresses the ratio between inertial and friction (dissipation) forces in a
given fluid. In the case of low values, Re� 1, regular (laminar) flow is observed. With an increasing
value of Re, very different phenomena occur ranging from the periodical ones as Kármán vortices to
very chaotic irregular motion for the limit of very high values of Re� 1 (in practice value Re ≥ 106 is
large enough) [23,25]. This state of fluid is known as fully developed turbulence.

At first sight, a very complicated problem turns out to be theoretically tractable because of
appearance of new symmetries (again kind of emergent symmetry)—statistical symmetries. Kolmogorov
postulated hypotheses [23,26] that could explain turbulence and also predict statistical and scaling
properties of various correlation and structure functions. The Kolmogorov theory can be considered
a kind of theory for “ideal” turbulence in the sense that it assumes the infinite value for the Reynolds
number. These hypotheses are still not proved from the first principles—in this case from the Navier–
Stokes equations. It should also be borne in mind that Kolmogorov’s hypotheses are stated for the case
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of homogeneous isotropic flat space but without any specific indication how this limit is approached
when the Reynolds number grows without limit.

In contrast to mathematics, the physicist’s approach to turbulence follows a different path. Instead
of considering a difficult mathematical problem related to boundary and initial conditions, their
effect is replaced by properly chosen random force. The Navier–Stokes equation is amended by an
additive random variable, which also mimics continuous input of mechanical energy into the system.
The choice of the structure and statistics of the random force is the most essential point in modeling of
the large-scale effects on the scale-invariant behavior predicted by the Kolmogorov theory. To this end,
random forces concentrated at large spatial scales are used. In the basic setup of the stochastic problem,
rotational symmetry of force correlations is assumed, but variation of the symmetry properties of force
correlations (e.g., anisotropy and reflection asymmetry) may be used to probe the effect of large-scale
properties on the scaling behavior of velocity correlations. The modeled large-scale induced effects
include the appearance of a set of anomalous scaling dimensions in corrections to Kolmogorov scaling
(multifractality) and magnetohydrodynamic dynamo. On the other hand, the Galilei invariance and
small-scale anisotropy have been shown to be stable against large-scale perturbations.

In 1977, D. Forster, D. R. Nelson and M. J. Stephen applied the RG method to calculate the
correlations of velocity field [27] governed by the stochastic Navier–Stokes equation with external
random forcing. This work was motivated by Wilson’s momentum shell approach to RG, in which
tracing out of fast degrees of freedom is supplemented with scale transformation [12,15]. Later, it
was shown by C. De Dominicis and P. C. Martin [28] that in the range of small wave numbers the
correlations of the velocity field manifest a scaling behavior with the celebrated Kolmogorov exponents.
The stochastic NS equation was proposed to justify the Kolmogorov theory and has to be distinguished
from the usual NS equations.

The essential idea of applying RG in the theory of developed turbulence consists in elimination of
the direct influence of the modes with high wave numbers on observed quantities. Their influence
is included in some effective variables, e.g., to the turbulent viscosity. Such an approach based
on momentum shell approach was later developed further [29,30]. Let us note that in this paper
we consider a different field-theoretic renormalization group technique [23,26,31,32], whose main
advantage is more transparent and easier calculations.

Another interesting problem related to turbulence is the advection of some quantity [33,34]
(temperature field, concentration field or tracer) by the turbulent field. In addition to the practical
importance of such a problem, it is also very interesting from the theoretical point of view. It is still not
clear to what extent turbulence is intermittent [23], i.e., what its fractal nature is. On the other hand,
advection of a passive scalar quantity by simpler models (e.g., Kraichnan model that is described in
detail below) than turbulence exhibits very strong intermittent behavior.

Naively, basic assumptions of Kraichnan-like models can be considered too crude. A typical
approach to stochastic dynamics starts from an analysis of ideal systems—homogeneous in space and
time, isotropic, incompressible (in the case of fluids), possessing mirror symmetry, etc. In the present
review, the corresponding results for fully developed turbulence are summarized. However, real
systems almost always exhibit some form of anisotropy, compressibility or violated mirror symmetry.
The effect of such deviations from the ideal system on fluctuating random fields has been an object of
intensive research activity, whose arguments and conclusions are described. The results have led to
the general conclusion that such effects play a very important role. They can drastically change the
large-scale behavior predicted by models of ideal systems.

In the original formulation of the Kraichnan model, the velocity field is assumed to be Gaussian,
isotropic, incompressible and uncorrelated in time (white noise). More sophisticated models aim
to incorporate effects of anisotropy, compressibility and finite correlation time [35]. Recent studies
have pointed out some crucial differences between problems with vanishing and finite correlation
time [33,36] and between the compressible and incompressible flows [37,38]. We employ the Kraichnan
rapid-change ensemble to model the turbulent mixing [39]. Thus, we assume that velocity field is
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given by time-decorrelated Gaussian variable with the pair velocity function of the following form
〈vv〉 ∝ δ(t− t′)k−d−ε, where k = |k| is the wave number and 0 < ε < 2 is a free parameter of the
theory. The physically most interesting value ε = 4

3 corresponds to the realistic (“Kolmogorov”) scaling
behavior. This model gained popularity in the past mainly because of the insight it provides into
the explanation of intermittency and anomalous scaling in turbulent flows. In the context of our
study, it is worth mentioning that the Kraichnan ensemble allows a straightforward incorporation
of compressibility, which appears complicated if the velocity is modeled by dynamical equations.
The Kraichnan ensemble has been generalized further to the case of finite correlation time (see,
e.g., [34,36,40] for the passive scalar and [41] for the passive vector fields). However, such synthetic
models with non-vanishing correlation time are plagued by the lack of Galilean symmetry.

In Section 2, a short introduction to field-theoretic approach to stochastic dynamic is given and
we briefly discuss the choice of the functional representation of the perturbation expansion for the
solution of the Langevin equation. Section 3 is reserved for discussion of stochastic Navier–Stokes
equation and basics of Kraichnan model. Section 4 is devoted to basic information of renormalization
group approach and the related Section 5 to operator product expansion that is a specific method
of the RG technique. In Section 6, Ward identities are used to obtain information about energy and
momentum transfer in turbulent media. Section 7 is devoted to use of Ward identities in the RG
analysis. Section 8 describes a dynamic restoration of initially broken Galilean symmetry. Section 9
is dedicated to a mechanism of spontaneous symmetry breaking in magnetohydrodynamic problem
which is responsible for creation of magnetic dynamo. In Section 10, we discuss the effect of anisotropy
and Section 11 is reserved for final remarks and comments.

2. Field-Theoretic Formulation

It is a well-known fact [5] that the failure of Landau theory of the second-order phase transition
lies in the assumption of analyticity of the energy functional F = F(ϕ), where ϕ(x) is an order
parameter configuration. The equilibrium physics of the phase transition is described by the order
parameter at the minimum of the energy functional. The fluctuation theory of phase transitions takes
as the fundamental quantity the random field ϕ(x), whose probability density function is defined
by the energy functional as the effective Hamilton function of the Gibbs distribution. The difference
of the fluctuation theory from the mean field theory of the microcanonical ensemble is to take the
Landau functional as the fundamental Hamiltonian of the canonical ensemble instead that of an exact
microscopic model. To calculate physical quantities, one has to average over all configurations of ϕ(x).
Although a complete mathematical proof of the equivalence between microscopic and fluctuation
model is missing, the latter approach has a very important and useful property. In contrast to the
microscopic model, it is possible to use the RG method in order to analyze its behavior and to obtain
quantitative predictions for critical exponents.

According to rather general arguments, many dynamic phenomena in nature exhibit a clear
separation of time scales. For instance, typical time and space scales in (classical) critical systems
diverge and this allows describing relevant physical quantities in terms of continuous fields. In fact,
the latter corresponds simply to slow modes stemming from conservation laws or broken symmetries.
On the other hand, fast degrees of freedom enter theoretical description through random noise fields.
Similar reasoning applies to other systems that do not exhibit criticality. Famous examples encompass
turbulence, reaction–diffusion problems, driven systems. A general class that covers such dynamical
systems is known in the literature as stochastic dynamics. From the theoretical point of view, it
is important that large scale properties can be properly taken into account through a formalism of
Langevin-like equations.

The Langevin approach can be briefly summarized as follows. The aim is to study a slowly
varying field or a set of fields ϕ. Employing physical insight and symmetry reasoning, it is possible to
postulate a stochastic differential equation of the form
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∂t ϕ = V(ϕ) + f , (1)

where the functional V = V(ϕ) is local in the time variable, i.e., V depends only on the field ϕ and
its spatial derivatives at a given time instant. In rare cases, V can be obtained from a microscopic
model through a controlled coarse-grained procedure, but mostly its construction requires nontrivial
knowledge about physical properties of a given stochastic system [42]. The random force f mimics the
neglected rapid degrees of freedom and it is often modeled by means of Gaussian random variables.
A nonzero mean value of f can be easily absorbed in the functional V. Thus, the complete statistical
information about f is captured by specification of the first two moments

〈 f (x)〉 = 0, 〈 f (x) f (x′)〉 = δ(t− t′)D(x, x′), (2)

where for brevity we have introduced the following notation x = (t, x), where x is a d-dimensional
vector. Let us note that, when necessary, we write the space dimension d explicitly. This permits a
straightforward check of complicated expressions and also plays an important role in perturbative RG
techniques such as dimensional regularization.

The crucial difference between critical and genuine non-equilibrium systems lies in the correlation
function D(x, x′) in Equation (2). In critical dynamics, we know to what the system should relax.
It should end up in the thermal equilibrium described by the Gibbs probability distribution e−H/kBT ,
which greatly restricts the form of D. On the other hand, in non-equilibrium systems, such a relation
is broken and steady states (obtained in the limit of large time) are of much more complicated
dynamical nature.

There exist many theoretical approaches, which can be undertaken for an investigation of the
stochastic problem in Equations (1) and (2). Remarkable equivalence of stochastic problems with certain
quantum field theory models offers a plethora of possibilities to use. Due to work of H.-K. Janssen [43]
and C. De Dominicis [44], a given stochastic model can be cast into a path integral formulation, which
is amenable to many theoretical methods such as Feynman diagrammatic technique, the RG method,
and others. To provide background for later use of functional methods and sake of notation, we recall
now the De Dominicis-0Janssen statement in a succinct manner [5]. First, let us rewrite potential
term V(ϕ) as the sum Lϕ + n(ϕ), where Lϕ represents the linear part in the field ϕ and n(ϕ) contains
non-linearities. Then, stochastic problem in Equation (1) is tantamount to the quantum-field-theory
model with double set of fields φ ≡ {ϕ, ϕ′} and action functional of form [32]

S [φ] = 1
2

ϕ′Dϕ′ + ϕ′[−∂t ϕ + Lϕ + n(ϕ)]. (3)

The auxiliary prime fields ϕ′ were put forward in [45] and are known as Martin–Siggia–Rose
response fields. Hereinafter, we have employed a condensed notation, in which integrals over space-time
and summations over repeated internal indices are implied. For instance, the second term in the action
functional in Equation (3) is a shorthand for the expression

ϕ′∂t ϕ = ∑
∫

dt
∫

ddx ϕ′(t, x)∂t ϕ(t, x) ≡
∫

dx ϕ′i(x)∂t ϕi(x), (4)

where the index i numbers different field components. In this work, we are mainly interested in
stochastic models concerning the velocity field v, which is a vector quantity and thus the appropriate
summation over the vector (internal) index must be taken into account as well. In particular, an
analogous expression to Equation (4) for the velocity field would be written as

v′∂tv =
∫

dt
∫

ddx v′i(t, x)∂tvi(t, x) ≡
∫

dx v′i(x)∂tvi(x). (5)

The main goal of any statistical theory is to predict behavior of various correlation and response
functions. Borrowing terminology from quantum field theory we refer to them as Green functions.
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These are defined as functional averages over the fields φ with the weight expS [φ], where S is action
functional in Equation (3). Statistical averaging with the weight eS are denoted as follows

〈. . .〉 =
∫
Dφ . . . eS [φ]. (6)

All Green functions are effectively encoded into generating functional G, which takes the form of
the functional integral

G[A] =
∫
Dφ exp [S [φ] + Aφ], (7)

where A ≡ (Aϕ, Aϕ′) is the formal source and

Aφ ≡
∫

dx
[

Aϕ(x)ϕ(x) + Aϕ′(x)ϕ′(x)
]

. (8)

Further, Dφ in Equation (7) denotes the functional measure, i.e. Dφ ≡ DϕDϕ′, and the expression∫
Dφ . . . corresponds to a functional integral over the infinite dimensional space of all possible field

configurations. Taking sufficiently many derivatives of G with respect to the formal sources at A = 0
yields any permissible Green function of the theory. For example, the response function 〈ϕϕ′〉 can be
represented by the following functional integral

〈ϕ(x)ϕ′(x′)〉 = δ2G[A]

δAϕ(x)δAϕ′(x′)

∣∣∣∣
A=0

=
∫
Dφ ϕ(x)ϕ′(x′)eS [φ]. (9)

The normalization factor, which ensures the equality G(0) = 1, has been included into the
functional measure Dφ. The generating functional G for field-theoretic models might be interpreted as
an analog of the partition function in equilibrium statistical physics [6]. The formal Taylor expansion
of G reads

G[A] =
∞

∑
n=0

1
n!

∫
dx1 · · ·

∫
dxnGn(x1, . . . , xn)A(x1) · · · A(xn), (10)

where A on the left hand side stands for either Aϕ or Aϕ′ source field, and coefficient functions
correspond to full Green functions

Gn(x1, . . . , xn) = 〈ϕ(x1) · · · ϕ(xn)〉 =
δnG[A]

δA(x1) · · · δA(xn)

∣∣∣∣
A=0

. (11)

The formulation in Equation (3) of the stochastic problem is advantageous for the use of the
powerful machinery of field-theoretic methods such as Feynman diagrammatic technique, RG method,
and operator product expansion. The starting point of perturbative techniques is a separation of action
S into a free part S0 and part containing nonlinearities Sint = ϕ′n(ϕ). This division is not unique, but
the necessary condition is the ability to solve the free part exactly. The free part S0 from Equation (3)
can be symmetrized in the following way

S0[φ] ≡ −
1
2

φKφ ≡ −1
2

(
ϕ

ϕ′

)(
0 (∂t − L)T

∂t − L −D

)(
ϕ

ϕ′

)
(12)

with the symmetric matrix K. Here, T denotes transposing, i.e., KT(x, x′) = K(x′, x). The inverse
matrix ∆ = K−1 defines the set of bare propagators ∆ik(x, x′) = 〈φi(x)φk(x′)〉0, which we number
as follows

∆12 = ∆T
21 = (∂t − L)−1, ∆11 = ∆12D∆21, ∆22 = 0, (13)

where φ1 ≡ ϕ, φ2 ≡ ϕ′. Generalization to a multicomponent field ϕ is obvious. The propagator ∆12

is retarded, therefore ∆21 = ∆T
12 is advanced. The symmetric propagator ∆11 = ∆T

11 contains both

189



Symmetry 2019, 11, 1193

(retarded and advanced) contributions. The interaction part generates vertices with one field ϕ′ and
two or more fields ϕ, which are determined by the concrete form of the nonlinear terms in the action
of the model. The aforementioned functional representation in Equation (3) permits construction
of standard Feynman graphs for Green functions [5,6,46] by means of Wick’s theorem. The lines
(propagators) are derived from the quadratic (free) part S0, whereas the interaction part Sint gives
rise to vertices. Wick’s theorem (see, e.g., [5,47] for details) for the functional in Equation (7) may be
compactly written in the exponential form

G[A] = exp
(

1
2

δ

δφ
∆

δ

δφ

)
exp

(
Sint[φ] + Aφ

)∣∣∣∣
φ=0

, (14)

where ∆ is the matrix of propagators in Equation (13) and

δ

δφ
∆

δ

δφ
≡
∫

dx
∫

dx′
δ

δφi(x)
∆ik(x, x′)

δ

δφk(x′)
(15)

is a shorthand notation for the universal differential operation and the indices i, k enumerate all fields
(response field included) in the model. Expansion of both exponents in Equation (14) leads to the
celebrated Feynman diagrammatic technique, which allows perturbative calculation of all Green
functions of the theory.

3. Stochastic Approach to Turbulence

The stochastic approach to the Navier–Stokes (NS) equation is analogous to fluctuation theory
for critical phenomena mentioned in Section 1. It can be regarded as a microscopic approach to fully
developed turbulence. The crucial difference from critical phenomena is that for turbulence there is no
counterpart of Hamiltonian (free-energy) functional. The stochastic NS equation neglects such physical
effects as influence of the boundaries or the precise form of system’s geometry (e.g., information about
the way turbulence is produced), which are in the experiments responsible for creating turbulent
instabilities. In a phenomenological sense, the input of energy is modeled by the proper choice of the
stochastic force. The main goal of this theory is to justify Kolmogorov hypotheses [23,25]. A general
proof of the equivalence between Kolmogorov hypotheses and the stochastic NS equations is still
missing; nevertheless, as various studies show, it provides a nontrivial input to scaling behavior
observed in turbulent flows [31,33].

The stochastic Navier–Stokes equation, which governs the dynamics of the velocity fluctuations
vi = vi(x), i = 1, . . . , d, assumes the following form

∂tv + (v ·∇)v− ν0∇2v +∇p = f , (16)

where ν0 is the molecular kinematic viscosity, p = p(x) stands for pressure fluctuations, ∇ is gradient,
∇2 = ∆ = ∂2/∂xi∂xi = ∂i∂i is Laplace operator, and f = f (x) represents an external random
force per unit mass. For simplicity, we consider incompressible fluid with the solenoidal velocity
∇ · v = 0 and unit density of fluid (ρ = 1). The incompressibility condition permits elimination of the
pressure field from the stochastic Navier–Stokes equation (Equation (16)) and we can consider only its
transverse components

∂tv + P(v ·∇)v− ν0∇2v = f , (17)

where all fields are transverse, and P denotes the transverse projection operator, which in the
momentum representation takes the form

Pij(k) = δij − kik j/k2 (18)
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with k = |k| being the magnitude of the wavevector k. In view of universality, it is assumed that the
large-scale random force f obeys the Gaussian distribution law. Hence, only the mean value and the
second moment have to be postulated. The former takes zero value (〈 fi〉 = 0) and pair correlation
function is chosen in a general form

〈 fi(t1, x1) f j(t2, x2)〉 ≡ Dij(x1, x2). (19)

It is convenient to specify the kernel function Dij in frequency–momentum representation

Dij(x1, x2) ≡ δ(t1 − t2)dij(x1, x2) = δ(t1 − t2)
∫ ddk

(2π)d Pij(k)d f (k)eik·(x1−x2), (20)

where d is a dimension of space. To employ the RG technique [28,31], the energy injection d f (k) is
usually chosen in the power-law form

d f (k) = D0k4−d−2εF(kL) (21)

where L denotes outer integral scale, D0 is the amplitude, and the scaling function F(kL) possesses the
unit asymptotic behavior in the range of large wave numbers kL� 1. For our purposes, it is sufficient
to consider the “massless” theory for which Equation (21) becomes simply

d f (k) = g0ν3
0 k4−d−2ε, (22)

with the additional feature that the corresponding integral in Equation (20) is IR regularized at
m ∼ L−1. The parameter D0 in Equation (22) is rewritten as g0ν3

0 for dimensional and calculational
reasons. The parameter g0 plays the role of the coupling constant, ε ≥ 0 is a free parameter of the
theory. For completeness, let us note that Equation (19) takes in frequency–momentum representation
the following form

〈 fi(ω, k) f j(ω
′, k′)〉 = (2π)d+1δ(ω + ω′)δ(k + k′)Pij(k)d f (k). (23)

From the mathematical point of view, Equation (16) represents a stochastic partial differential
equation, first order in time variable. This allows us to employ the machinery of Section 2. Let us
explain how these formal rules are applied to the theory of developed turbulence. According to the
aforementioned De Dominicis–Janssen approach, the stochastic model described by Equation (17) is
tantamount to the field-theoretic model with the action

SNS[v, v′] =
1
2

v′ iDijv′ j + v′ ·
[
−∂tv + ν0∇2v− (v ·∇)v

]
, (24)

where Dij is introduced into Equation (19), the auxiliary response vector field v′ is solenoidal (∇ · v′ = 0)
as well as the velocity field v, and ν0 is the bare (molecular) viscosity coefficient. To distinguish it from
the renormalized (turbulent) viscosity ν, which is generated in the process of the renormalization, we
denote it and other similar (bare) parameters by the subscript “0” . We stress that this notation is used in
the whole work.

Feynman rules for the perturbation theory are constructed by means of the general operation in
Equation (14)). The explicit form of the propagators is determined by the quadratic part of the action
in Equation (24) and in the frequency–momentum representation they are

∆vv
ij (ωk, k) =

Pij(k)d f (k)

ω2
k + ν2

0 k4
, ∆vv′

ij (ωk, k) = (∆v′v
ij (ωk, k))∗ =

Pij(k)
−iωk + ν0k2 , ∆v′v′

ij (ωk, k) = 0, (25)

where ∗ denotes complex conjugation and the transverse projector appears due to incompressibility
condition. In the time–momentum representation, the corresponding expressions are
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∆vv
ij (k, t′ − t) =

Pij(k)d f (k)
2ν0k2 e−ν0k2|t′−t|, (26)

∆vv′
ij (k, t′ − t) = θ

(
t′ − t

)
Pij(k)e−ν0k2(t′−t), (27)

∆v′v
ij (k, t′ − t) = θ

(
t− t′

)
Pij(k)e−ν0k2(t′−t), (28)

∆v′v
ij (k, t′ − t) = 0. (29)

Here, the step function θ(t) displays an important physical feature of the propagator ∆vv′—its
retardation. In fact, ∆vv′ is the leading order contribution to the response function 〈vv′〉 of the original
model in Equations (16)–(21). The propagator ∆vv represents the leading contribution to the pair
correlation function of the velocity field Wij = 〈vi vj〉. With coinciding time arguments, the latter is
proportional to the kinetic energy spectrum E(k) in the wavevector representation. This function
enters the equation of energy balance describing the transfer of the kinetic energy from the largest
spatial scales to the smallest ones, where it dissipates to heat [23]. The vertex factor

Vm(x1, x2, . . . , xm; φ) =
δmV[φ]

δφ(x1)δφ(x2) . . . δφ(xm)
(30)

is associated to each interaction vertex of a Feynman graph. In Equation (30), the dummy field φ is one
from the set of all fields {v′, v}. The interaction vertex in Equation (24) is cast in a more convenient form

−
∫

dt
∫

ddx v′(v ·∇)v = −
∫

dt
∫

ddx v′ ivk∂kvi = (∂kv′ i)vkvi, (31)

where the incompressibility condition ∂ivi = 0 and integration by parts have been used. The latter
step requires the standard assumption of rapid enough vanishing of velocity in the limit |x| → ∞.
Furthermore, the last expression in Equation (31) corresponds to the shorthand of Equation (4).
Rewriting functional in Equation (31) in the symmetric form viVijlvjvl/2, we derive the explicit form
for the corresponding vertex factor in the Fourier representation

Vijl = i(k jδil + klδij). (32)

Here, the wavevector k is flowing in the vertex through the field v′ and is denoted by slash in
Figure 2. The propagators (lines) ∆ and vertices V are graphically depicted in Figures 1 and 2.

vi v′j = 〈viv′j〉0 = ∆vv′
ij (ωk,k)

vi vj = 〈vivj〉0 = ∆vv
ij (ωk,k)

Figure 1. Nontrivial propagators for the model in Equation (24).

ṽi

vj

vl

≡ Vijl = i(kjδil + klδij)

Figure 2. Interaction vertex responsible for the nonlinear interactions between velocity fluctuations
in the model in Equation (24). Momentum k on the right hand side corresponds to the inflowing
momentum of the auxiliary field v′.

The theoretical description of the fluid turbulence on the basis of “first principles”, i.e., starting
from the stochastic Navier–Stokes (NS) equation [25] remains an open problem. However, considerable

192



Symmetry 2019, 11, 1193

progress has been made in understanding simplified model systems sharing certain essential properties
with the real problem: stochastic Burgers equation [48], shell models [49] and advection by random
“synthetic” velocity fields [33].

A paradigmatic model of a scalar quantity advected passively by a Gaussian random velocity field,
uncorrelated in time and self-similar in space, the so-called Kraichnan’s rapid-change model [39], is
a famous example. The standard notation for advection problem using the Kraichnan model slightly
differs from the one using stochastic Navier–Stokes ensemble. Therefore, in what follows, we give a brief
overview of basic physical ideas behind the Kraichnan model and introduce the corresponding notation.

The governing equation for diffusion–advection for field θ is

∂tθ + (v ·∇)θ − D0∇2θ = f θ , (33)

where D0 is the coefficient of molecular diffusivity and f θ ≡ f θ(x) is a zero-mean Gaussian random
noise with the correlation function

〈 f θ(x) f θ(x′)〉 = δ(t− t′)C(r/L), r = x− x′. (34)

The noise f θ in Equation (33) maintains the steady-state of the system. The particular form of the
correlator is not relevant, however. The sole condition which must be satisfied by the function C(r/L)
is that it must fall off rapidly at r ≡ |r| � L. Here, L is an integral scale related to the stirring.

In accordance with the generalized Kraichnan model [34,50] with finite correlation time taken
into account, we assume velocity field generated by a simple linear stochastic equation

∂tvi + Rvi = f v
i , (35)

where R ≡ R(x) is a linear operation to be specified below and f v
i ≡ f v

i (x) is a zero-mean random
stirring force with the correlator

〈 f v
i (x) f v

j (x′)〉 ≡ D f
ij(x; x′) =

1
(2π)d+1

∫
dω

∫
ddk Pij(k)D f (ωk, k)e−i(t−t′)+ik·(x−x′). (36)

It should be noted that, in the SDE in Equation (33), the multiplicative noise due to random
velocity is not a white noise in time as in the original Kraichnan model. Therefore, there is no need to
specify the interpretation of the SDE. However, in the analysis, the white-noise limit is considered and
it should recalled that in this limit the results correspond to the Stratonovich interpretation of the SDE
in Equation (33).

The correlator D f is chosen [34–36] in the following form

D f (ωk, k) = g0ν3
0(k

2 + m2)2−d/2−ε/2−η/2, (37)

with the wavenumber representation of the function R(x):

R(k) = u0ν0(k2 + m2)1−η/2. (38)

The positive amplitude factors g0 and u0 are the coupling constants of the model. Furthermore,
g0 can be regarded as a formally small parameter of the perturbation theory. The positive exponents ε

and η (ε = O(η)) are RG expansion parameters. They are analogous to expansion parameter ε = 4− d
in the ϕ4− theory. Now, the expansion is carried out in the (ε, η)-plane around the origin ε = η = 0.

Note the presence of two scales in the problem—integral scale L introduced in Equation (34) and
momentum scale m, which has appeared in Equation (38). Clearly, they have different physical origins.
However, these two scales can be related to each other and for technical purposes [35] it is reasonable
to choose L = 1/m. When not explicitly stated, this relation is always assumed.
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In the limit k� m the functions in Equations (37) and (38) take on a simple powerlike form

D f (ωk, k) = g0ν3
0 k4−d−ε−η , R(k) = u0ν0k2−η , (39)

which is convenient for actual calculations. The needed IR regularization will be given by restrictions
on the region of integrations.

From Equations (35), (36), and (39), the statistics of the velocity field v can be determined. It obeys
Gaussian distribution with zero mean and correlator

〈vi(t, x)vj(0, 0)〉 =
∫ dωk

2π

∫ ddk
(2π)d Dv(ωk, k)e−iωkt+ik·x, (40)

where the kernel function Dv(ωk, k) is assumed in the form

Dv(ωk, k) = Pij(k)
g10u10D3

0k4−d−ε−η

ω2
k + u2

10D2
0(k

2−η)2
. (41)

The correlator in Equation (41) is directly connected to the energy spectrum via the frequency
integral [34,51–55]

E(k) ' kd−1
∫

dωDv(ωk, k) ' g0ν2
0

u0
k1−ε. (42)

Hence, the coupling constant g0 and the exponent ε characterize the equal-time velocity correlator
or, similarly, energy spectrum. Further, the parameter u0 and the exponent η are related to the frequency
ωk ' u0ν0k2−η (or to the function R(k), the reciprocal of the correlation time at the wave number k)
which describes the mode with wave number k [34,51–57]. Let us note that in the chosen notation the
value ε = 8/3 corresponds to the well-known Kolmogorov “five-thirds law” for the spatial scaling
behavior of the velocity field, and the value η = 4/3 corresponds to the Kolmogorov frequency.
A straightforward dimensional analysis reveals that the parameters (charges) g0 and u0 are connected
to the ultraviolet (UV) momentum scale Λ (of the same order of magnitude as the inverse Kolmogorov
length) by the relations

g0 ' Λε+η , u0 ' Λη . (43)

In Ref. [50], it was demonstrated that the linear model in Equation (35) (and consequently the
Gaussian model in Equation (40) as well) is not invariant under Galilean transformation and, therefore,
it effectively neglects important effect of the self-advection of turbulent eddies. As a result of these
so-called “sweeping effects” the different time correlations of the velocity are not self-similar and
exhibit strong dependence on the integral scale [58,58–60]. However, the results presented in Ref. [50]
lead to the conclusion that the Gaussian model describe the passive advection reasonably well in the
appropriate frame of reference, in which the mean velocity field vanishes. An additional argument
to support the model in Equation (40) is that we are mainly interested in the equal-time, Galilean
invariant quantities (e.g., structure functions), which are not affected by the sweeping. Therefore, their
absence in the Gaussian model in Equation (40) is not relevant [34,36,40].

The kernel function in Equation (41) is written in a very general form and allows studying various
special limits, in which the numerical analysis of the resulting equations is simplified and which
provide a deeper physical insight. Possible limiting cases are

• The rapid-change model corresponding to the limit u10 → ∞, g′10 ≡ g10/u10 = const. Then, the
kernel function becomes

Dv(ωk, k) ∝ g′10D0k−d−ε+η . (44)

The velocity correlator is obviously δ−correlated in the time variable.
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• The frozen velocity field arising in the limit u10 → 0, in which the kernel function corresponds to

Dv(ωk, k) ∝ g0D2
0πδ(ωk)k2−d−ε. (45)

• The purely potential velocity field obtained in the limit α → ∞ with αg10 =constant. This case is
similar to the model of random walks in a random environment with long-range correlations [61,62].

• The turbulent advection, for which ε = 2η = 8/3. This choice mimics properties of the fully
developed turbulence and yields well-known Kolmogorov scaling [23].

Using Equation (3), the stochastic problem in Equations (33)–(36) can be recast into the equivalent
field theoretic model of the doubled set of fields φ ≡ {θ, θ′, v, v′} with the action functional

S [φ] = 1
2

v′D f v′ + θ′
[
−∂tθ − (v ·∇)θ + ν0∇2θ

]
+ v′ · [−∂tv− Rv] , (46)

where D f
ij is defined in Equation (36), and as usual θ′ and v′ are auxiliary response fields.

Generating functional of full Green functions G[A] is defined by Equation (7), where now a linear
form Aϕ is defined as

Aφ = Aθθ + Aθ′θ
′ + Avivi + Av′iv

′
i. (47)

Following the argument in [34], we set Av′
i = 0 in Equation (47) and carry out the explicit Gaussian

integration over the auxiliary vector field, v′ because we are not interested in the Green functions
containing the auxiliary field v′. After the integration, we are left with the field-theoretic model with
the action functional

S [φ] = −1
2

v(Dv)−1v + θ′[−∂tθ − (v ·∇)θ + ν0∇2θ], (48)

where the second term represents the De Dominicis–Janssen action for the stochastic problem in
Equation (33) at fixed velocity field v. The first term describes the Gaussian averaging over v specified
by the correlator Dv. The latter explicitly reads

Svel[v] =
1
2

∫
dx1

∫
dx2 vi(x1)D−1

ij (x1 − x2)vj(x2). (49)

The action in Equation (48) is written in a form that is suitable for a straightforward application of
the field-theoretic perturbative analysis with the use of the standard Feynman diagrammatic technique.
From the quadratic part of the action, we derive the matrix of bare propagators. The wavenumber
frequency representations of relevant propagators are: (a) the bare propagator 〈θθ′〉0 defined as follows

〈θθ′〉0 = 〈θ′θ〉∗0 =
1

−iω + ν0k2 ; (50)

and (b) the bare propagator for the velocity field 〈vv〉0 that reads

〈vivj〉0 = Pij(k)Dv(ω, k). (51)

The triple (interaction) vertex −θ′vj∂j can be rewritten in θ = θ′vjVjθ, where momentum k is
flowing into the vertex via the response field θ′. A graphical representation of the perturbation elements
for a Kraichnan-like model is schematically depicted in Figure 3.

195



Symmetry 2019, 11, 1193

vi vj = 〈vivj〉0 = ∆vv
ij (ωk,k)

vj

θ′(k)

θ

≡ Vj = ikj

θ θ′ = 〈θθ′〉0 = ∆θθ′

(ωk,k)

Figure 3. Feynman rules for the model in Equation (48).

Taking as a example the Kraichnan model, let us briefly describe what kind of quantities might be
studied by functional techniques. From experimental and theoretical point of view, the main focus is
in the behavior of the equal-time structure functions

SN(r) ≡ 〈[θ(t, x + r)− θ(t, x)]N〉 (52)

in the inertial range, specified by the inequalities l ∼ 1/Λ � r ≡ |r| � L = 1/m (l is an
internal length). Brackets 〈· · · 〉 denote the functional average over fields φ = {θ, θ′, v} with the
weight functional expS [Φ] from Equation (48). In the isotropic case, the odd functions S2N+1 vanish
identically, while for even functions S2N a simple dimensional argument dictates the following form

S2N(r) = ν−N
0 r2N R2N(r/l, r/L, g0, u0), (53)

where R2N are scaling functions of purely dimensionless variables. In principle, functions R2N can
be calculated by means of the usual perturbation theory (i.e., as series in g0). However, this is not a
reasonable way to study the inertial-range behavior: the reason is that the coefficients are singular
in the limits r/l → ∞ and/or r/L→ 0 and compensate for the smallness of g0. To obtain correct IR
behavior the entire series have to be summed. Such a summation procedure can be effectively done by
the use of the field theoretic RG and OPE (see Sections 4 and 5).

The RG analysis can be divided into two stages. During the first stage, the multiplicative
renormalizability of the model is proved and the differential RG equations for its correlation (structure)
functions are derived. The asymptotic behavior of functions similar to the one in Equation (52) for
r/l � 1 and any fixed r/L is governed by IR stable fixed points (see next section) of the RG equations
and assumes the form

S2N(r) = ν−N
0 r2n (r/l)−γN R2N(r/L), r/l � 1 (54)

with so far unknown scaling functions R2N(r/L). Whenever γN is a nonlinear function of N, we refer
to such case as anomalous scaling or multiscaling.

Let us remind that the quantity ∆[S2N ] ≡ −2N + γN is called the critical dimension. The exponent
γN , the difference between the critical dimension ∆[S2N ] and the canonical dimension −2N, is known
as the anomalous dimension. In the present case, the latter takes a simple form: γN = nε. For any
function RN(r/L), the representation in Equation (54) implies scaling behavior in the IR region (r/l �
1, r/L fixed) with definite critical dimensions of all IR relevant parameters, ∆[S2N ] = −2N + Nε,
∆r = −1, ∆L−1 = 1 and fixed irrelevant parameters ν0 and l.

In the second stage, the small r/L behavior of the functions R2N(r/L) is analyzed in the general
representation in Equation (54) employing the OPE technique (Section 5). It predicts that, in the limit
r/L→ 0, the functions R2N(r/L) have the asymptotic forms

R2N(r/L) = ∑
F

CF(r/L) (r/L)∆N , (55)

where CF are coefficients regular in the variable r/L. In general, the summation is performed over
specific renormalized composite operators F with critical dimensions ∆n. Kraichnan model exhibits
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nontrivial scaling behavior as some of anomalous exponents ∆N are negative and singular behavior on
L is present. Such situation never occurs in critical phenomena [5,6] where corresponding exponents
are positive and lead only to subleading corrections.

More elaborated discussion on anomalous scaling can be found in Section 10, which is devoted
to generalization of Kraichnan model. Namely, assumption of isotropy is abandoned and effect of
anisotropy is taken into account.

4. Renormalization Group Analysis

Let us briefly summarize main ideas of the quantum-field theory of renormalization and RG
technique; a detailed account can be found in monographs [5,6,15,46].

Feynman graphs of Green functions are a convenient graphical representation of perturbation theory.
Quantum field theory models are well-known for appearance of UV divergences in loop diagrams. This
results from an integration at large momenta. Therefore, it is necessary to find an effective procedure to
eliminate these divergences step by step in a controlled manner. Finite diagrams (free of UV divergences)
are brought by an iterative renormalization procedure. The inherent ambiguity of this removal of
divergences may be used to establish connection between values of Green functions at different scales
without having explicit solutions for them. This is the idea of the method of renormalization group (RG)
proposed in the framework of high energy physics long time ago [1,7–11].

In statistical physics, RG allows one to extract relevant information about large-scale behavior
from the mutual correlation between IR behavior of Green functions and UV divergences at critical
dimension [5,15]. Thus, in statistical theories, the RG method can be understood as an effective way
to determine non-trivial asymptotic behavior of Green functions in the range of small (infrared)
wavevectors (scales).

There is simple criterion how to determine the true asymptotic range in the framework of the
RG. One of the RG-functions is the β-function, which is the coefficient of the operation ∂g in the RG
equation. The β-function is calculated perturbatively as infinite series of powers of the coupling
constant g. Non-trivial asymptotic behavior is governed by RG fixed points g∗, which are roots of the
β function (solutions of equation β(g) = 0). A fixed point can be IR or UV stable depending on the
behavior of the β-function in the vicinity of g∗. Of course, physical theories contain usually many
charges and these considerations have to be properly generalized [5,46].

The field theoretic RG is based on non-trivial techniques of UV renormalization. The basic
procedure lies in a perturbative calculation of the RG-functions in the framework of a prescribed
scheme of regularization [5,6]. To find and analyze UV divergences in a specific field-theoretic model
counting of canonical scaling dimensions of fields and parameters of the model is used. The essence of
such a power counting is closely connected with the existence of a scale invariance in the model.

For models considered in this paper, it is advantageous to calculate Feynman diagrams in a
formal scheme [5] without UV-cut-off Λ. Then, UV-divergences manifest themselves as poles in
a dimensionless parameter ε that measures deviation from a logarithmic theory, i.e., a theory in
which all coupling constants become dimensionless. The procedure of multiplicative renormalization
removing UV-divergences (in the present case, poles in a parameter ε) is the following: the original
action S [φ, e0] is declared to be unrenormalized; its parameters e0 (the letter e0 stands for the whole
set of parameters; for instance, coupling constants, deviation from criticality, viscosity, etc.) are
the bare parameters, and they are assumed to be functions of the new renormalized parameters e.
The new renormalized action is the functional SR[φ] = S [φZφ, eZe] with certain (to be determined
perturbatively such that the Green functions generated by the renormalized action are UV finite, i.e.,
regular in ε) renormalization constants of fields Zφ (one per each independent component of the field)
and parameters Ze. In unrenormalized full Green functions GN = 〈φ . . . φ〉, the functional averaging
〈. . . 〉 is performed with the weight functional expS [φ], whereas, in renormalized functions GR

N , with
the renormalized weight functional expSR[φ]. The relation between the functionals S [φ] and SR[φ]

leads to the relation between the corresponding Green functions GR
N = Z−N

φ GN , where by definition
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GN = GN(e0, ε . . . ) (ellipsis denotes other arguments such as coordinates or wavenumbers), and, by
convention, the quantities GR

N and Zφ are expressed in terms of the parameters e. The correspondence
e0 ↔ e within perturbation theory is assumed to be one-to-one, therefore either of the sets e0, e can be
taken as the independent variables.

For translationally invariant theories, it is much more convenient to deal not with the full
Green functions GN , but with their connected parts WN . Their generating functional being through
the relation

W [A] ≡ lnG[A]. (56)

A further simplification is possible through 1-irreducible functions ΓN (also called one particle
irreducible functions or vertex functions). The generating functional for the latter is defined by the
functional Legendre transform [47]

Γ[α] ≡ W [A]− Aα, (57)

where

Aα =
∫

dx (Aϕ(x)αϕ(x) + Aϕ′(x)αϕ′(x)), αϕ =
δW [A]

δAϕ(x)
, αϕ′ =

δW [A]

δAϕ′(x)
. (58)

To simplify notation in practical calculations, it is convenient to relabel α-variables back to the
original fields φ. This allows us to rewrite the first relation in Equation (57) compactly as

Γ[φ] = S [φ] + Γ̃[φ], (59)

where Γ̃[φ] is the sum of all one particle irreducible (1PI) loop diagrams [5].
Statements of RG theory are readily summarized at the level of corresponding Green functions.

For connected and 1PI Green functions, they read

WR
N(e, ε, . . . ) = Z−N

φ (e, ε)WN(e0(e, ε), ε, . . . ) , (60)

ΓR
N(e, ε, . . . ) = ZN

φ (e, ε)ΓN(e0(e, ε), ε, . . . ), (61)

where the functions e0(e, ε), ZN
φ (e, ε) can be chosen arbitrarily, which implies an arbitrary choice of

normalization of the fields and parameters e at given e0. In the present text, we also interchangeably
use the following notation for the connected Green functions

Wφ1 ...φN ≡ 〈φ1 . . . φN〉conn., (62)

and for the 1PI Green functions according to the aforementioned relabeling α→ φ

Γφ1 ...φN ≡ 〈φ1 . . . φN〉1-ir. (63)

The crucial statement of the theory of renormalization is that for the multiplicatively
renormalizable models these functions can be chosen to provide UV finiteness of Green functions as
ε→ 0. With this choice, all UV divergences (poles in ε) contained in the functions e0(e, ε), ZN

φ (e, ε) are
absent in renormalized Green functions WR

N(e, ε). We note that the UV finiteness in this sense of any
one set of Green functions (full, connected, and 1-irreducible) automatically leads to the UV-finiteness
of any other. The RG equations are written for the renormalized functions WR

N which differ from the
original unrenormalized functions WN only by normalization, and, therefore, can be used equally
well to analyze the critical scaling. Let us recall an elementary derivation of the RG equations [5,46].
The requirement of elimination of divergences does not uniquely determine the functions e0(e, ε) and
Zφ(e, ε). An arbitrariness remains which allows introducing an additional dimensional parameter
scale setting parameter (renormalization mass) µ in these functions (and via them also into WR

N)

WR
N(e, µ, ε, . . . ) = Z−N

φ (e, µ, ε)WN(e0(e, µ, ε), ε, . . . ) . (64)
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A change of µ at fixed e0 leads to a change of e, Zφ and WR for unchanged WN(e0, ε, . . . ). We
denote by D̃µ the differential operator µ∂µ for fixed e0 and apply it to both sides of the equation
ZφWR

N = WN with it. This yields the basic RG differential equation

[
µ∂µ + ∑

e
D̃µe∂e + Nγφ

]
WR

N(e, µ, ε, . . . ) = 0, γφ ≡ D̃µ ln Zφ (65)

where the operator D̃µ is expressed in the variables µ, e. The coefficients D̃µe and γφ are called
the RG functions and are calculated in terms of various renormalization constants Z. Coupling
constants (charges) g are those parameters e, on which the renormalization constants Z = Z(g) depend.
Logarithmic derivatives of charges in Equation (65) are β functions

βg = D̃µg . (66)

All the RG-functions are UV-finite, i.e., have no poles in ε, which is a consequence of the functions
WR

N being UV-finite in Equation (65).
For models considered in the present work, the analysis of divergences should be augmented by

the following considerations:

• For any dynamic model in Equation (1), all 1PI Green functions containing only the original
fields φ are proportional to the closed loops of step functions, hence they vanish, and thus do not
generate counterterms.

• If for some reason several external momenta or frequencies occur as an overall factor in all the
Feynman diagrams of a particular Green function, the real degree of divergence δ′ is less than
δ ≡ dΓ(ε = 0) by the corresponding number of units.

• Sometimes the divergences formally allowed by dimensionality are absent due to symmetry
restrictions, for instance, the Galilean invariance of the fully developed turbulence [31] restricts
the form of possible counterterms.

• Nonlocal terms of the model are not renormalized.

In principle, these general considerations permit determining all superficially divergent functions
and to explicitly obtain the corresponding counter-terms for any dynamic model.

The most convenient scheme for analytic calculations is the scheme of minimal subtractions (MS)
proposed in [63], in which all the renormalization constants Z in the perturbation theory are of the
form

ZMS(g, ε) = 1 +
∞

∑
n=1

gn
n

∑
k=1

ε−kcn,k . (67)

In the dimensional renormalization the contribution to the coefficient of gn in Equation (67) may
be expressed as a Laurent series in ε. In the MS scheme, only the singular part of the Laurent expansion
of each coefficient is retained. In any other renormalization scheme, the renormalization constant is of
the form

Z(g, ε) = 1 +
∞

∑
n=1

gn
∞

∑
k=−n

εkcn,−k , (68)

where the regular part of each coefficient ∑∞
k=0 εkcn,−k is, by and large, an arbitrary regular function of

ε at the origin.

5. Composite Operators and Operator Product Expansion

In this section, we recall the basic information about renormalization and critical exponents
(dimensions) of composite operators, i.e., local products of the basic fields of the model and their
derivatives. In the models we are interested in, they are constructed from the velocity field v, scalar
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field θ or magnetic field b at the single space-time point x ≡ (t, x). Examples are vn, bn, θn, ∂tvn, v∆v,
(∇θ ·∇θ)n and so on.

A theoretical analysis of composite operators and their renormalization is important at least for
two reasons. First, their critical dimensions and correlation functions can be measured experimentally
and for some operators such data are available [64,65]. For instance, in the fully developed turbulence,
the mean of the energy dissipation is proportional to the statistical average of the composite operator
v∆v. This quantity enters the equation of energy balance and contributes to the redistribution of the
energy of the turbulent motion and its dissipation. Moreover, strong statistical fluctuations of the
operator of energy dissipation seem to account for deviations from Kolmogorov’s exponents and lead
to the intermittency (multifractality) of the turbulent processes [23]. Second, the general solution of
the RG equation (Equation (65)) contains an unknown scaling function depending on dimensionless
effective variables (coupling constants, viscosity, etc.). This function can be calculated in the framework
of usual perturbation scheme in an expansion parameter but, as mentioned above, in certain asymptotic
ranges of scales, this calculation fails. Both experimental and theoretical reasons in theory of turbulence
motivate us to study behavior of correlation functions with respect to outer (integral) scale L. Let us
elucidate this issue in some detail. As an example we consider pair correlation function for velocity
fluctuations W2 = 〈vv〉 for field-theoretic model in Equation (24). There is no field renormalization
in this model [32], therefore the Green function W2R coincide with the unrenormalized function W2.
The only difference lies in a choice of variable and perturbation theory (expansion either in charge g or
g0, respectively). In renormalized variable correlation, function W2 depends on k, g, ν, µ and L. From a
dimensional consideration, we directly see that W2 can be represented in the form

W2 = ν2k2−dR(s, g, u) , s = k/µ , u = kL , (69)

where R is a function of dimensionless parameters and for brevity we have not explicitly written
the transverse projection operator. The correlation function W2 satisfies a general RG equation with
γφ = 0, which is a direct consequence of absence of renormalization of velocity field v, and reads

DRGW2 = 0 , DRG = µ∂µ + β(g)∂g − γν(g)ν∂ν . (70)

The solution of this equation can be found using the method of characteristics and presented in
the form

W2 = ν̄2k2−dR(1, ḡ, ū) , ū = u , (71)

where ḡ, ν̄ are invariant variables, i.e., the first integrals of Equation (70). Using standard RG
considerations, the invariant viscosity [31] takes the following form

ν̄ = ν exp
[∫ g

ḡ
dx

γν(x)
β(x)

]
=

(
gν3

ḡs2ε

)1/3

=

(
D0

ḡk2ε

)1/3
. (72)

As the parameter s approaches zero, invariant charge ḡ approaches IR fixed point g∗ and ν̄→ ν∗ =
(D0/g∗)

1/3 k−2ε/3. Hence, at fixed point g∗ (far from dissipation scales k� µ ∼ l−1), the single-time
correlation function of velocity field takes the scaling form

W2 = (D0/g∗)
2/3 k2−d−4ε/3R(1, g∗, kL) . (73)

Setting ε = 2 gives kinetic energy spectrum E(k) = W2kd−1 that behaves as a power-law function
of wavevector k. This coincides with Kolmogorov’s prediction −5/3 for the exponent. The remaining
scaling function R is not determined yet and in general it is possible to employ perturbation theory
and obtain infinite series in parameter ε. In particular, in the theory of turbulence, the main interest is
in the scaling function R(1, g∗, kL) in the inertial interval kL� 1. In the theory of critical phenomena,
the asymptotic form of scaling functions for kL � 1 (formally, L → ∞) is studied using Wilson’s
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operator product expansion (OPE) (see, e.g., [6,66]). The analog of L in turbulence is played by the
correlation length rc in critical phenomena. It turns out that this technique can be used also in the
theory of turbulence and in simplified (toy) models associated with the genuine turbulence (see,
e.g., [5,31,33,67,68]).

The generating functional of the correlation functions of the field φ with one insertion of the
composite operator F(φ) has the form (compare with the generating functional in Equation (7) for the
usual correlation functions of φ)

G[A, F] =
∫
Dϕ F(ϕ) exp [S [φ] + Aφ]. (74)

Since the arguments of the fields in the operator F coincide (giving rise to new closed loops
in the Feynman diagrams), correlation functions with these operators contain new UV divergences,
which have to removed by an additional renormalization procedure (see, e.g., [5,6,66]). The standard
RG equations yield the IR scaling of the renormalized correlation functions with definite critical
dimensions ∆F ≡ ∆[F] of a set of basis operators F. Due to the renormalization, ∆[F] is not the sum
of critical dimensions of the fields and derivatives in F. A detailed analysis of the renormalization
procedure of composite operators for the stochastic NS problem can be found in the review [67], and
below we restrict ourselves to the necessary information only.

As a rule, composite operators are mixed during the renormalization procedure, i.e., an UV
finite renormalized operator FR (correlation functions with one insertion of FR do not possess UV
divergences) takes the form FR = F+ counterterms, in which “counterterms” stands for a linear
combination of the operator F itself and other unrenormalized operators mixing the the operator F. Let
F ≡ {Fα} denote a closed set of operators mixing only with each other under renormalization. For this
set, the matrix of renormalization constants ZF ≡ {Zαβ} and the matrix of anomalous dimensions
γF ≡ {γαβ} are defined by

Fα = ∑
β

ZαβFR
β , γF = Z−1

F D̃µZF. (75)

The subsequent matrix of critical dimensions ∆F ≡ {∆αβ} reads

∆[F] ≡ ∆F = dk
F + ∆ωdω

F + γ∗F, (76)

in which dk
F, dω

F , and dF denote diagonal matrices of canonical dimensions of the operators of the closed
set (the diagonal element corresponding to a particular operator F is equal to the sum of canonical
dimensions of all fields, their derivatives and renormalized parameters in F) and γ∗F ≡ γF(g∗) is the
matrix in Equation (75) at the fixed point.

Critical dimensions of the set F ≡ {Fα} correspond to the eigenvalues of the matrix ∆F. The basis
operators possessing definite critical dimensions are linear combinations of the renormalized operators

F̄R
α = ∑

β

UαβFR
β , (77)

where the matrix UF = {Uαβ} is such that the matrix ∆′F = UF∆FU−1
F is diagonal.

Counterterms generated by a given operator F are determined by all possible 1PI Green functions
with one insertion of operator F and an arbitrary number of primary fields φ,

ΓN;F = 〈F(t, x)φ(t, x1) . . . φ(t, xN)〉. (78)

The total canonical dimension (the formal degree of divergence) for these functions is given by

dΓ = dF − NΦdΦ, (79)
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where the sum is taken over all types of field arguments. For dΓ is a nonnegative integer.
According to the OPE, the single-time product F1(t, x1)F2(t, x2) of two renormalized operators at

x ≡ (x1 + x2)/2 = const., and r ≡ x1 − x2 → 0 can be represented as follows

F1(t, x1)F2(t, x2) = ∑
α

Aα(r)F̄R
α (t, x). (80)

Here, the functions Aα are the Wilson coefficients regular in L, whereas F̄R
α are all possible

renormalized local composite operators of the type in Equation (77) allowed by symmetry arguments,
with specific critical dimensions ∆F̄R

α
.

The renormalized correlator 〈F1(t, x1)F2(t, x2)〉 is obtained by averaging Equation (80) with the
weight exp SR, quantities 〈F̄R

α 〉 ∝ L−dα fα(g, Lµ) involving dimensionless (scaling) functions fα(g, Lµ)

appear on the right hand side. Their asymptotic behavior for Lµ→ 0 is found from the corresponding
RG equations (see [34] for the case of Kraichnan model) and has the form

〈F̄R
α 〉 ∝ L

∆F̄R
α . (81)

From the operator product expansion in Equation (80), we therefore get

〈F1(t, x1)F2(t, x2)〉 = ∑̄
FR

CF̄R(r/L)∆F̄R , r/L→ 0, (82)

where the quantities CF̄R generated by the Wilson coefficients Aα in Equation (80) are regular in L,
the summation is carried out over all possible composite renormalized basis operators F̄R allowed
by the symmetry of the left side, and ∆F̄R are their critical dimensions. The leading contributions for
r/L → 0 are those with the least dimension ∆F̄R . In the theory of critical phenomena, it is observed
that all the nontrivial composite operators have positive critical dimensions ∆F̄R > 0 for small ε and
the most important term in Equation (82) corresponds to the simplest operator F̄R = 1 with ∆F̄R = 0,
i.e., the function R(r/L) is finite as L ≡ rc → 0 (see [6]). However, as has been noted in [68] in the
model of developed turbulence composite operators with negative critical dimensions exist and are
responsible for possible singular behavior of the scaling functions such as N-point correlation functions
WN = 〈ϕ . . . ϕ〉 as r/L → 0. We call operators with ∆F̄R < 0—if they exist—dangerous [67]. This is
motivated by the fact that they correspond to contributions to Equation (82) which diverge for r/L→ 0.
The scaling functions in Equation (82) decomposed in dangerous operators exhibit anomalous scaling
behavior which is a manifestation of a nontrivial multifractal (intermittent) nature of the statistical
fluctuations of the random fields under consideration and globally all the physical system.

Dangerous composite operators in the stochastic model of turbulence occur only for finite values of
the RG expansion parameter ε. Let us note that within the ε expansion it is not possible to determine
whether or not a given operator is dangerous, if only its critical dimension is not found exactly employing
the Schwinger equations, etc. or the Galilean symmetry (see [67,69]). Furthermore, dangerous operators
appear in the operator product expansion in the form of infinite families with the spectrum of critical
dimensions unbounded from below. Therefore, for a proper analysis of the large L behavior, a summation
of their contributions is called for.

6. Schwinger Equations and Conservation Laws

Useful information about composite operators can be gained even without an actual calculation of
Feynman diagrams. Exploiting invariance properties of functional integrals provides nontrivial relations
known as Schwinger equations [47]. One of the simplest symmetries is the translation invariance of
action in Equation (3). It is invariance with respect to a shift φ→ φ + ω, where ω = ω(x) is a suitably
chosen function that vanishes sufficiently fast, i.e., ω(∞) = 0. Such translations do not change the
integration measure and as a result the quantity

∫
DϕF[φ + ω] does not depend on ω for any functional

F[φ]. We then easily derive that the first variation with respect to ω yields a formal relation
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∫
Dφ

δF[φ]
δφ

= 0 (83)

written in the notation of Equation (7). The following relation is of particular importance

∫
Dφ

δ

δφ
exp[S [φ] + Aφ] = 0. (84)

Performing variational derivatives gives us

∫
Dφ

[
δS [φ]

δφ
+ A(x)

]
eS [φ]+Aφ = 0. (85)

Multiplication by field φα inside the functional integral is tantamount to a differentiation with
respect to the corresponding source field A. This observation allows us to rewrite Equation (85)

[
δS[φ]

δφ

∣∣∣∣
φ→δ/δA

+A(x)

]
G(A) = 0. (86)

Substituting G = eW , we obtain the corresponding Schwinger equation forW [A] where from
we can derive the equation for Γ[α]. All these equations are of finite order (for polynomial action) in
functional derivatives, and each of them is tantamount to an infinite chain of connected equations for
the Green functions—the expansion coefficients of the corresponding functionals [47].

In the following discussion, we need one additional relation that corresponds to the Schwinger
equation ∫

Dφ
δ

δϕ′

(
ϕ(x) exp[S [φ] + Aφ]

)
= 0, (87)

where φ stands for either the fluctuating field or the corresponding response field.
As discussed in Section 5, composite operators are related to experimentally measurable physical

quantities. We illustrate this claim on an example of stochastic hydrodynamics summarized in the
field-theoretic action in Equation (24). Our aim is to elucidate transfer of energy in a stationary
of turbulent state. The latter condition ensures that time derivatives of averaged quantities are
identically zero.

Let us derive equations describing energy and momentum transfer in turbulent flows. To obtain
an equation expressing momentum conservation, we employ the first equation in Equation (87), where
φ consists of altogether two d-dimensional vector fields {v, v′}. First, for φ, we choose a response field
v′, and we get

∫
Dφ

δ

δv′i(x)
exp[SNS[φ] + Aφ] =

∫
Dφ

[
δSNS[φ]

δv′i(x)
+ Av′i

]
exp[SNS[φ] + Aφ] = 0. (88)

Performing indicated derivative, we obtain differential equation

〈Av′i
+ Dijv′j − ∂tvi + ν0∆vi − (v ·∇)vi − ∂i p〉 = 0. (89)

Due to transversality of response field v′, a nonlocal term has appeared, which corresponds to the
pressure fluctuations

p = −∂l∂s

∆
(vlvs). (90)

To derive an equation describing energy transfer, we utilize the second Schwinger equation
(Equation (87)). In particular, letting ϕ′ → v′ and ϕ→ v in Equation (87) yields
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∫
Dφ

δ

δv′i(x)

(
vi(x) eSNS[φ]+Aφ

)
= 0. (91)

In an analogous manner to Equation (89), we get

〈vi Av′i
+ viDijv′j − vi∂tvi + ν0vi∇2vi − vi(vj∂j)vi − (vj∂j)p〉 = 0 (92)

written in a component notation. Note that all quantities have been normalized to unit mass, i.e., density
has been set to unity (ρ = 1). Equations (89) and (92) represent conservation laws for momentum and
energy. They can be further rewritten into a physically more transparent form

〈∂tvi + ∂jΠij〉 = 〈Dijv′j〉+ Av′i
, (93)

〈∂tE + ∂iSi〉 = 〈−E + viDijv′j + vi Av′i
〉, (94)

where vi might be interpreted as momentum density, E ≡ v2/2 is energy density, Πik is tensor of
momentum transfer, Si is vector of energy flow, and E is a rate of energy dissipation. Direct comparison
of Equations (89) and (92) with Equations (93) and (94) yields explicit expressions

Πij = pδij + vivj − ν0(∂ivj + ∂jvi), (95)

Si = pvi − ν0vj(∂ivj + ∂jvi) +
1
2

viv2, (96)

E =
1
2

ν0(∂ivj + ∂jvi)
2. (97)

We recognize Equation (93) as a stochastic Navier–Stokes equation stirred by random force Dijv′j
and regular force Av′i

.
Functional averaging of Equations (93) and (94) according to the prescription in Equation (6) with

weigh functional expSNS[φ] leads to the balance equation for energy and momentum. Assuming
vanishing external force Av′i

, we obtain the following equation for time derivative of energy

∂t 〈E〉 = − 〈E〉 − ∂i 〈Si〉+
〈

viDijv′j
〉

. (98)

It is clear that for homogeneous and isotropic flows at zero external force the mean value 〈F(x)〉
of an arbitrary composite operator F(x) = F(t, x) could not depend on the position x. Hence, it is
constant and consequently all spatial derivatives are identically zero. From Equation (98), we then get
for steady state

E =
∫

dx Dij(x, x′)
〈

vi(x)v′j(x′)
〉

, (99)

where we have introduced the following abbreviation for mean energy dissipation

E ≡ 〈E〉 . (100)

Let us recall (see Equation (19)) that pair correlation for random force can be written as Dij(x, x′) =
δ(t− t′)dij(x, x′). Insertion of this relation into Equation (100) and integrating over time variable t yields

E =
∫

ddx dij(x, x′)
〈

vi(t, x)v′j(t, x′)
〉
|t=t′ . (101)

To the lowest order in perturbation theory, the retarded response function
〈

vi(t, x)v′j(t, x′)
〉

0
is

δ-correlated in spatial variable. This property holds also for the full response function
〈

vi(x)v′j(x′)
〉

(what follows from a straightforward analysis of Feynman graphs) and therefore
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〈
vi(x)v′j(x′)

〉 ∣∣∣∣
t=t′

=
1
2

δ(x− x′)
(

δij −
∂i∂j

∆

)
. (102)

Insertion of this relation into Equation (101), recalling Equation (20) and integrating through
spatial variable x′, we derive

E =
1
2

∫ ddk
(2π)d d f (k)Pij(k)Pij(k). (103)

Summation over internal indices i and j corresponds to a calculation for a trace of transverse
projection operator Pii(k), which equals d− 1. Thus, we finally arrive at the expression

E =
d− 1

2(2π)d

∫
ddk d f (k). (104)

This relation reflects an important property of stationary homogeneous turbulence. It expresses
the expected fact that, to achieve a stationary state, it is necessary to inject energy into a system in a
continuous fashion. In the stochastic approach, this is done through a random force, which compensates
energetic losses due to friction processes. These losses are expressed through mean energy dissipation E .

7. Ward Identities and Galilean Invariance

We say that a given theory possesses a symmetry, if the corresponding action functional of the
theory is zero under the action generating this symmetry. Ward–Takahashi identities mathematically
express inherent symmetry of a given field-theoretic action. In stochastic models of turbulence, they
correspond to the well-known Galilean invariance. As a rule, these identities provide nontrivial
relations between various Green functions of theory and consequently between renormalization
constants. Moreover, they are also relevant for an analysis of composite operators.

As pointed out in Section 4, certain divergences present in Feynman diagrams of the perturbative
expansion of a Green function might cancel each other, so that the given Green function is in fact UV
finite. This compensation might be caused by the inherent fact that the underlying stochastic model
describing developed turbulence is invariant with respect to the Galilean transformations. Of course,
such and similar mechanisms are quite general in physics. As a further example, we can mention
absence of potential UV divergences in quantum electrodynamics, or even quantum chromodynamics
describing strong interactions between quarks and gluons. The underlying symmetry in these cases is
gauge symmetry.

Now, we show that Galilean invariance in the model in Equation (24) ensures that UV divergences
in triple 1PI function

〈vi
′(x1)vj(x2)vk(x3)〉1PI ≡ Γi,jk(x1; x2, x3) (105)

are actually absent. The essential idea consists in a derivation of certain Ward identity, which takes
form of an differential equation relating the triple 1PI Green function Γi;sl with the pair 1PI Green
function Γi;j, which is an abbreviation for

〈v′i(x1)vj(x2)〉1PI ≡ Γi,j(x1; x2). (106)

These relations stem from invariance property of generating functional with respect to the Galilean
transformations. Then, an absence of certain types of UV divergences in Γi,j leads to absence of
divergences in Γi,jk.

Let us consider a generalized Galilean transformation of fields φ ≡ {v′, v} defined as follows

φ→ φw : vw(x) = v(xw)−w(t), v′w(x) = v′(xw), (107)

where

xw ≡ x + u(t); t = t′; u =
∫ t

−∞
dt′w(t′) =

∫ ∞

−∞
dt′ θ(t− t′)w(t′). (108)
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Here, w(t) is some velocity vector describing the Galilean transformation. The spatial vector
u(t) is responsible for a shift of spatial coordinate x. The transformations in Equation (107) are a
generalization of the standard Galilean transformations [70], in which velocity w is constant in time
variable. This is brought about by functional integration in which functional space has to be restricted
by appropriate conditions. Here, it is required that velocity and response fields v and v′ vanish
sufficiently quickly in the limit |t| → ∞. Of course, arbitrary symmetry transformation of the model
must comply with this property.

Insertion of Equation (107) into the action in Equation (24) yields the following relation for the
transformed action

SNS[φw] = SNS[φ] + v′ · ∂tw = SNS[φ]− (∂tv′) ·w, (109)

where in the last equation we have transformed time derivative using partial integration. In this
derivation, the following relations for variational derivatives have been utilized

δwv(x) = (u ·∇)v(x)−w, (110)

δwv′(x) = (u ·∇)v′(x), (111)

δw∂tv(x) = (u ·∇)∂tv(x) + (w ·∇)v(x)− ∂tw, (112)

which can be directly obtained from Equation (107). In infinitesimal form, Equation (109) takes form

δwSNS[φ] = −(∂tv′) ·w, (113)

where

δwSNS[φ] ≡ SNS[φw]− SNS[φ] = w · δSNS[φw]

δw

∣∣∣∣
w=0

. (114)

The implicit assumption in derivation of Equation (113) is smallness of velocity w.
In a compact form, the requirement of Galilean invariance for the model in Equation (24) is

equivalent to the condition
G[A] = G[Aw] (115)

or in an infinitesimal form

δwG[A] = 0, w · δG[Aw]

δw

∣∣∣∣
w=0

= 0. (116)

The Ward identities are useful not only for Green functions of basic fields v, v′, but for composite
operators as well (see Section 5). This motivates an introduction of generalized generating functional
that includes composite operators F. It can be presented in the following form

G[A, a] =
∫
Dφ exp [SNS[φ] + Aφ + aF(φ)] , (117)

where aF(φ) stands for aF(φ) ≡ ∑N
i
∫

dx ai(x)Fi(φ, x). Sources ai(x) correspond to N composite
operators Fi(φ, x). In principle, the functional in Equation (117) generates not only all possible Green
functions of basic fields, but also full Green functions consisting of arbitrary inclusion of composite
operators and fields. In this regard, it is useful to compare this generating functional in Equation (117)
with the functional in Equation (74) that generates Green functions containing one inclusion of composite
operator F.

The functional measure is obviously translationally invariant. Hence, equality Dφ = Dφv is
satisfied and Equation (116) can be rewritten in the following way

∫
Dφ δweSNS(φw)+Aφw+aFw = 0, (118)
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or ∫
Dφ {δwSNS[φ] + Aδwφ + aδwF} eSNS[φ]+Aφ+aF = 0. (119)

As source fields A and a are independent, the choice a = 0 yields Ward identities for Green
functions of basic fields, whereas a 6= 0 leads to additional Ward identities for Green functions
containing contributions from composite operators. Further, we concentrate on derivation of Ward
identity for Green function containing solely basic fields φ = {v, v′}, which we derive from
Equation (119) inserting a = 0. We have

〈〈
−w · ∂tv′ + Aδwφ

〉〉
= 0, (120)

where double brackets 〈〈· · · 〉〉 correspond to the functional averaging with respect to the weight
functional exp[S [φ] + Aφ]

〈〈· · · 〉〉 =
∫
Dφ . . . exp [SNS[φ] + Aφ]∫
Dφ exp [SNS[φ] + Aφ]

. (121)

Using the relations in Equations (108)–(111), we rewrite Equation (120) in the component notation

∫
dx wi(t)

〈〈
−∂tv′i(x) +

t∫

−∞

dt′
[

Aj(x′)∂ivj(x′) + A′j(x′)∂iv′j(x′)
]
− Ai(x)

〉〉
= 0, (122)

where for brevity we have denoted x′ ≡ (t′, x), ∂i = ∂/∂xi, Aj(x) ≡ Avj(x) and A′j(x) ≡ Av′j
(x).

As Galilean velocity w is arbitrary, Equation (122) can be further simplified to

∫
ddx

〈〈
−∂tv′i(x) +

∞∫

−∞

dt′ θ(t− t′)
[

Aj(x′)∂ivj(x′) + A′j(x′)∂iv′j(x′)
]
− Ai(x)

〉〉
= 0. (123)

Every term in Equation (123) containing fields φ might be obtained by taking an appropriate
number of derivatives of exp[Aφ] with respect to source A. This means that field φ can be effectively
replaced by variational derivative δ/δA

φ in 〈〈. . .〉〉 ⇔ δ

δA
. (124)

Hence, we get

∫
ddx

〈〈
−∂t

δ
δA′i(x) +

∫ ∞
−∞ dt′ θ(t− t′)

[
Aj(x′) ∂

∂xi
δ

δAj(x′) + A′j(x′) ∂
∂xi

δ
δA′j(x′)

]
− Ai(x)

〉〉
= 0. (125)

In this formulation, the whole expression in brackets does not depend on integration over fields φ

and the equation can be further rewritten in terms of generating functional

∫
ddx

{
−∂t

δ
δA′i(x) +

∫ ∞
−∞ dt′ θ(t− t′)

[
Aj(x′) ∂

∂xi
δ

δAj(x′) + A′j(x′) ∂
∂xi

δ
δA′j(x′)

]
− Ai(x)

}
G(A) = 0. (126)

Substituting G = eW , we rewrite Equation (126) into equation for generating functionalW for
connected Green functions

∫
ddx

{
−∂t

δW
δA′i(x) +

∫ ∞
−∞ dt′ θ(t− t′)

[
Aj(x′) ∂

∂xi
δW

δAj(x′) + A′j(x′) ∂
∂xi

δW
δA′j(x′)

]
− Ai(x)

}
= 0. (127)
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Finally, by means of the functional Legendre transformations in Equation (57), we rewrite
Equation (127) in terms of generating functional for 1PI (vertex) functions Γ

∫
ddx

{
−∂tα

′
i(x) +

∫ ∞

−∞
dt′ θ(t− t′)

[
δΓ(α)

δαj(x′)
∂αvj(x′)

∂xi
+

δΓ(α)
δα′j(x′)

∂αv′j
(x′)

∂xi

]
− δΓ(α)

δαi(x)

}
= 0, (128)

where
αi ≡ αvi , α′i ≡ αv′i

. (129)

Generating functional Γ can be represented in form of formal Taylor series with respect to sources
α, in which coefficients by powers αn (n = 0, 1, 2, . . . , ∞) are 1PI Green functions. The first few terms are

Γ(α) = αv′Γv′vαv +
1
2

αv′Γv′vvα2
v + · · · , (130)

where, for instance, the second term actually stands for an expression

αv′Γv′vvα2
v ≡

∫
dx1

∫
dx2

∫
dx3 αv′i

(x1)Γi,jk(x1; x2, x3)αvj(x2)αvk (x3). (131)

Insertion of this expansion into Equation (128), we get an infinite system of the Ward identities
that relates various 1PI Green functions. For the present discussion, the most relevant is the Ward
identity between pair (two-point) and triple (three-point) Green functions. The substitution of the
expansion in Equation (130) into Equation (128) yields a formal polynomial in variables αi and α′j.
A comparison of terms proportional to term αiα

′
j gives the following relation

∫
ddx Γi,jk(x1; x2, x) +

[
θ(t− t1)

∂

∂x1k
+ θ(t− t2)

∂

∂x2k

]
Γi,s(x1; x2) = 0. (132)

Due to translation, invariance, Γi,j(x1; x2) = Γi,j(x1 − x2; 0), therefore

∂

∂x2k
= − ∂

∂x1k
, k = 1, . . . , d. (133)

Using this relation and integrating over time, the variable t (132) yields

∫∫
ddx dt Γi,jk(x1; x2, x) +

∫
dt [θ(t− t1)− θ(t− t2)]

∂

∂x1k
Γi,j(x1; x2) = 0. (134)

Let us integrate the second term in this equation over time t (Γi,j(x1; x2) does not depend on time
variable t, only on t1 and t2). It is straightforward to show that

∫ ∞

−∞
dt [θ(t− t1)− θ(t− t2)] =

∫ ∞

t1

dt−
∫ ∞

t2

dt =
∫ t2

t1

dt = t2 − t1. (135)

Employing this relation in Equation (134), we finally obtain the required Ward identity in the
coordinate representation

∫
dx Γi,jk(x1; x2, x) + (t2 − t1)

∂Γi,j(x1; x2)

∂x1k
= 0. (136)

For an analysis of UV divergences, it is useful to rewrite the Ward identity into a frequency–
momentum (Fourier) representation. Let us determine Fourier transforms of pair and triple Green
functions. They read
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Γi,j(x1; x2) =
1

(2π)2d+2

∫
dp1

∫
dp2 Γi,j(p1; p2)ei(p1·x1+p2·x2)−i(ω1t1+ω2t2), (137)

where pi = (ωi, pi). Translation invariance in time and space variables dictates

Γi;j(p1, p2) = (2π)d+1δ(ω1 + ω2)δ
(d)(p1 + p2)Γi,j(p1). (138)

This allows us to simplify Equation (137) into

Γi,j(x1; x2) =
1

(2π)d+1

∫
dp Γi;j(p)eip·(x1−p2·x2)−iωp(t1−t2). (139)

A similar consideration applies also for the triple Green function Γi,jk and leads to the Fourier
representation

Γi,jk(x1; x2, x3) =
∫∫∫ dp1dp2dp3

(2π)2(d+1)
δ(∑

i
ωi)δ

(d)(∑
i

pi)Γi,jk(p1; p2, p3)ei ∑3
i=1(pixi−ωiti). (140)

Hence, we derive
∫

dx Γi,jk(x1; x2, x) =
1

(2π)d+1

∫
dp Γi,jk(p;−p, 0)eip(x1−x2)−iωp(t1−t2). (141)

Insertion of the relations in Equations (139) and (141) into Equation (136) leads to the Ward
identity in form

Γi,jk(p;−p, 0) = pl
∂

∂ωp
Γi,j(p). (142)

This relation can be conveniently represented in a graphical form as follows

i p

k

j

p = 0

p

v′

v

v

= pl
∂

∂ωp

i p jp

v′ v
. (143)

From the Ward identity, it directly follows that there are no UV divergences in triple Green
functions. In fact, on the right hand side of Equation (143), we have the Green function Γi,j, which
contains only divergent structures that are proportional to p2 (divergences proportional to frequency
ωp). Therefore, taking derivative with respect to frequency ωp ensures that the divergent part on right
hand side of Equation (143) vanishes. Hence, the right hand side of Equation (143) is UV finite and
therefore also the left hand side of the given equation is UV finite. This concludes the proof of UV
finiteness of the triple one-time 1PI Green function Γi,jk.

8. Symmetry Restoration

In the previous Section 7, we show that the Galilean symmetry in Equations (107)–(108) restricts
appearances of UV divergences in the perturbation theory. In this regard, a natural question arises:
What can violation of the Galilean symmetry lead to? We address this issue in the context of the
stochastic Navier–Stokes model in Equation (24). Let us note that the following exposition closely
follows that in [71], where all necessary technical details can be found. Violation can be achieved by
various means. In particular, it can be achieved by modification of time behavior of the force correlator
in Equation (20). Let us imagine that there exists microscopic finite correlation time behaving according
to Ornstein-Uhlenbeck process [17,72].

209



Symmetry 2019, 11, 1193

Without loss of generality, let us consider a generalization of Equation (23) as

〈
fi(ω, k) f j(ω

′, k′)
〉
= (2π)d+1δ(ω + ω′)δ(k + k′)Pij(k)d f (ω, k), (144)

where the kernel function d f now assumes the following form

d f (ωk, k) = D0Pij(k)
k8−d−(y+2η)

ω2
k + ν2

0 u2
0k4−2η

. (145)

Exponent η is related to the dispersion law ωk ∝ k−2+η . From dimensional considerations,
parameter D0 can be represented as

D0 = g0ν5
0 u2

0, (146)

which can be interpreted as a defining relation for charge g0. Quite general form of Equation (145) allows
studying two special cases: the limit u0 → 0 fully corresponds to the time-independent correlation of
random force. On the other hand, the limit u0 → ∞ yields the previously analyzed Galilean model in
Equation (20).

The propagator in the frequency–momentum representation takes the form

〈
vivj

〉
0 = D0

k8−d−(y+2η)

ω2 + ν2
0 u2

0k4−2η

Pij(k)

ω2 + ν2
0 k4

, (147)

According to the theoretical consideration discussed in Sections 2 and 4, it can be shown [71] that
the model corresponding to Equation (24) with Equation (145) is multiplicatively renormalizable in
which two renormalization constants Z1 and Z2 have to be added. The renormalized action functional is

SNS[φ] =
1
2

v′iDikv′k + v′k
[
−∂t − Z1(vi∂i) + Z2ν∂2

]
vk, (148)

where g, ν, and u are the renormalized counterparts of the bare (original) parameters; the correlation
function Dv is written in terms of the renormalized parameters with the use of the relation g0ν5

0 u2
0 =

gµy+2ην5u2; and the reference scale µ is a new free parameter of the renormalized model. The action of
the renormalized model in Equation (148) can be constructed from the original action in Equation (24)
by renormalization of fields v→ Zvv, v′ → Zv′v′ and parameters

g0 = gµyZg, u0 = uµηZu, ν0 = νZν. (149)

The renormalization constants in Equations (148) and (149) are related as follows

Zν = Z2, Zu = Z−1
2 , Zg = Z2

1 Z−3
2 , Zv = Z−1

v′ = Z1. (150)

The leading one-loop calculation [71] of Feynman diagrams is relatively straightforward and
ensuing anomalous dimensions are

γ1 = g
1

d(d + 2)
u

(u + 1)3 , γ2 = g
1

d(d + 2)
u3d(d− 1) + 3u2d(d− 1) + 2u(d2 − d + 2)

4(u + 1)3 , (151)

where for brevity the following redefinition of the charge g

g
Sd

(2π)d ≡ gSd → g. (152)

has been used. Further, from the relations in Equation (150), we get β-functions

βg = g(−y− 2γ1 + 3γ2), βu = u(−η + γ2). (153)
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A straightforward analysis of the β functions reveals three IR fixed points: the trivial fixed point
(zero values of charges’ coordinates) and two nontrivial fixed points. The trivial (Gaussian) fixed point,
at which all nonlinearities are IR irrelevant, is

g∗ = 0, u∗ = 0 (154)

and is IR attractive when both y and η are negative.
A further fixed point {g∗, u∗} with the coordinates

u∗ =
−3 +

√
1− 16(α−1)

d(d−1)(3α−1)

2
, g∗ = d(d + 2)

(u∗ + 1)3

u∗
3α− 1

2
y, (155)

is actually of a saddle-point type for, which one eigenvalue of the matrix Ω is positive and the other
negative.

The most interesting fixed point is actually obtained in the limit u∗ → ∞, from Equations (145) and
(147). This case corresponds to an earlier studied model with random force uncorrelated in time [32].
Therefore, we might expect to find the known fixed point of this model. Introducing a new variable
x = 1/u, one obtains a new β function of the following form

βx = D̃µx = − 1
u2 βu = x

[
η − g

d− 1
4(d + 2)

]
. (156)

Actual calculations reveal the existence of the fixed point with the coordinates

x∗ = 0, g∗ =
4(d + 2)
3(d− 1)

y, (157)

which coincides with that in Ref. [32] and is IR attractive in the region restricted by inequalities y > 0
and η > y/3.

The main conclusion from these considerations is that at the only nontrivial IR attractive fixed
point correlation time vanishes. In other words, the Galilean symmetry, broken by the colored random
force in Equation (145), is reestablished in the IR limit.

9. Parity Breaking in Magnetohydrodynamic Turbulence

In addition to the passive scalar problems introduced in Section 3, there exists a broad class of
problems related to vector admixtures [23,35]. Due to the presence of more degrees of freedom, it is
natural to expect that observed behavior can be richer than in scalar case. Among many, much attraction
has been gained by a model of magnetohydrodynamics (MHD) [73–76]. The interplay between the
velocity field and the magnetic field is crucial in explaining many phenomena—magnetic dynamo,
convective processes, galaxy formation, etc. [77–81]—therefore it is clear that it has to be taken into
account properly.

The full stochastic MHD problem is rather complicated, therefore for many purposes for a
theoretical description it has been proposed to use a simplified model—the kinematic Kazantsev–
Kraichnan model [35]. Its basic assumption is that the vector field of magnetic induction B (hereinafter,
referred to as vector) is passively advected by the turbulent flow, but reaction on the velocity field by
the magnetic field is neglected. The most notable point of criticism to the Kazantsev–Kraichnan model
is the assumption about the velocity field using a simple Gaussian statistical ensemble. From a more
fundamental point of view, the velocity field would be generated dynamically. Therefore, we assume
here that the velocity field is brought about by the stochastic Navier–Stokes equation expounded in
Section 3.

The introduction of magnetic field in the Kazantsev–Kraichnan model comes from a physical
approximation called magnetohydrodynamic limit [74,75]. It is assumed that the matter is electrically
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neutral at large scales and that the mean free path is much shorter than the corresponding Debye length.
This assures that the electric displacement field accounting for the overall motion of charged particles
can be entirely neglected. The system is then completely described in terms of the variables of density,
pressure, and mean velocity field. From the RG point of view the displacement field is IR irrelevant.
Hence, there is no need to retain it. Faraday’s law ∂tB = −∇× E together with the generalized Ohm’s
law J = σ(E + v× B) give rise to the advection–diffusion equation ∂tB−∇× (v× B) = κ0∇2B.
According to the functional formulation from Section 2, the corresponding stochastic problem assumes
the form

∂tbi + ∂k(vkbi − vibk) = κ0∂2bi + f θ
i , (158)

where bi is just the fluctuating component of the magnetic induction, κ0 is the magnetic diffusion
coefficient, and a stochastic source term f θ

i has been added to the right side. This term is the random
part of the curl of the current and stems from the intrinsic randomness of the magnetic field [31].
A detailed account of the MHD problem can be found in [73–75].

The random source f θ
i in Equation (158) is assumed to be zero-mean Gaussian with the correlation

function
〈 f b

i (t, x) f b
j (t
′, x′)〉 = δ(t− t′)Cij(r/Lθ), r = x− x′, (159)

where Cij(r/Lθ) is a function, whose exact form is irrelevant. It must have a finite limit at (r/Lθ)→ 0
and vanish at (r/Lθ)→ ∞. The magnetic field bi is solenoidal, therefore the terms ∂k(vibk) and (bk∂k)vi
are equal.

In realistic scenarios, the stochastic NS equation (Equation (16)) has to be amended by a Lorentz
term responsible for the backward influence of the magnetic field on the velocity field. This is brought
about by a familiar force term in conducting fluid of form v × B ∼ J ∼ (∇ × B) × B. The most
important consequence of this argument is an important physical effect known as the turbulent
dynamo: generation of magnetic field at large scales by the turbulent motion. Let us make an
important remark, which should clarify the fundamental difference between equilibrium statistical
models and non-equilibrium ones. The turbulent dynamo might be explained by the mechanism of
spontaneous symmetry breaking most spectacularly associated with the Higgs mechanism in particle
physics. Here, “the ground state” of the turbulent gyrotropic fluid with vanishing mean b = 0 of
the magnetic field is unstable. It is stabilized by the spontaneous generation of a spatially uniform
anomalous mean b 6= 0. This happens in full analogy with the situation in a ferromagnetic material
below Tc, in which magnetic order is stabilized by the appearance of spontaneous magnetization.
The condition for total magnetization follows from an extremal condition imposed on free energy.
On the other hand, for the dynamo problem, the resulting field is determined by the properties of the
response function. In particular, it is required that all perturbations from a given stable state have to be
damped out sufficiently quickly. Let us note that that the instability manifests itself not at the level of
the action function but only at the following one-loop approximation.

Let us discuss the full MHD problem in more detail and introduce one specific generalization.
From now on, we assume that the MHD problem is governed by two coupled equations [22]

∇tv = ν0∇2v + (b ·∇)b−∇Q + f v, (160)

∇tb = ν0u0∇2b + A(b ·∇)v−∇P + f b, (161)

where b ≡ b(x) denotes a solenoidal vector field advected by a helical turbulent flow of an incompressible
velocity field v ≡ v(x). Both fields v and b are divergenceless. In other words, they satisfy the
incompressibility condition

∇ · b = ∇ · v = 0. (162)

Further, u0 is the bare inverse Prandtl number [23,26]. Functions P ≡ P(x) and Q ≡ Q(x) in
Equations (160) and (161) representing pressure fields are not relevant in the following analysis. In fact,
due to the solenoidal property in Equation (162), functions P and Q can be expressed in terms of a formal
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Biot–Savart law [23,26]. A is a dimensionless parameter of the model. Three particular values of the
parameter A have been analyzed in detail [35]. First, the value A = 1 yields the Kazantsev–Kraichnan
kinematic dynamo model, where the pressure term in Equation (161) drops out. Second, the choice
A = 0 leads to the model of passively advected vector admixture. Third, the value A = −1 corresponds
to the linearized NS equation in a background field with given statistics. It is therefore convenient to
retain A as a free parameter and analyze all three models together. The model in Equation (161) is
often called the generic A model in the literature [35,82,83]. The complete model thus comprises two
interconnected stochastic equations (Equations (160) and (161)).

Stochastic random sources f v and f b must be included in the coarse-grained setup of turbulence
and MHD problems. As usual, it is assumed that the random variable f b is Gaussian with zero mean
and correlation function

Db
ij(x; 0) ≡ 〈 f b

i (x) f b
j (0)〉 = δ(t)Cij(|x|/L). (163)

Here, L is the integral scale of stirring of the magnetic field b, Cij is finite at L→ ∞ and at |x| � L
it should rapidly fall off. Apart from these restrictions, Cij needs not be specified [35]. Further, f v

mimics the pumping of kinetic energy in the system at the largest spatial scales and is subject to the
condition of real IR energy injection implemented through its specific power-like form suited to the RG
approach [5]. However, the results obtained do not depend on specific forcing statistics because of the
universality of fully developed turbulence. Hence, we only take advantage of the most suitable forcing
in the RG analysis. Following this standard argument [5], we choose the pair correlation function of
zero-mean Gaussian statistics

Dv
ij(x; 0) ≡ 〈 f v

i (x) f v
j (0)〉 = δ(t)

∫ ddk
(2π)d D0k4−d−2εRij(k)eik·x, (164)

where d = 3 denotes the space dimension; k is the wavevector with the magnitude k = |k|; and
D0 ≡ g0ν3

0 > 0 is the positive quantity, where g0 is a coupling constant connected to the typical UV
momentum scale Λ through g0 ' Λ2ε. The parameter ε specifies the power-like behavior of the energy
pumping at large scales and assumes the value of 2 in the physically relevant IR energy pumping. In the
RG analysis of the fully developed turbulence, ε is assumed small in calculations. Its physical value of
2 is inserted into perturbative expansions only as the last step [5]. The tensor quantity Rij determines
the spatial parity violation in the model at hand. In symmetric isotropic incompressible turbulent fluid,
such as analyzed here, the tensor Rij(k) corresponds to the sum of the ordinary transverse projection
operator Pij(k) = δij − kik j/k2 and a helical term Hij(k) = iρ εijlkl/k, i.e.

Rij(k) = δij(k)−
kiki
k2 + iρεijl

kl
|k| , (165)

where εijl is the third-rank completely antisymmetric tensor. The real-valued helicity parameter ρ

obeys the inequality |ρ| ≤ 1 dictated by the condition that the correlation function is positive definite
in Equation (164). Evidently, the value ρ = 0 corresponds to the isotropic (non-helical) case, while the
value ρ = 1 corresponds to fully broken spatial parity.

Following the De Dominicis–Janssen approach (Section 2), the stochastic problem of Equations (161)
and (160) is equivalent to a field-theoretic model with the set of fields Φ = {v, b, v′, b′}, where the fields
with primes once more denote the response fields [5,45]. Thus, the field-theoretic model is given by the
Dominicis–Janssen action

S [Φ] = 1
2

[
v′iD

v
ijv
′
j + b′i D

b
ijb
′
j

]
+ v′[−∇tv + ν0∇2v + (b ·∇)b] + b′[−∇tb + ν0u0∇2b + A(b ·∇)v], (166)

where Db
ij and Dv

ij are defined in Equations (163) and (164), respectively. As usual, summations
over repeated indices i, j ∈ 1, 2, 3 are implied. As the original fields v and b, the response fields are
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solenoidal, i.e., ∇ · v′ = ∇ · b = 0. In the frequency–momentum representation, free propagators of
the model in Equation (166) are

〈b′ibj〉0 = 〈bib′j〉∗0 =
Pij(k)

iω + ν0u0k2 , 〈bibj〉0 =
Cij(k)

| − iω + ν0u0k2|2 , (167)

〈v′ivj〉0 = 〈viv′j〉∗0 =
Pij(k)

iω + ν0k2 , 〈vivj〉0 =
g0ν3

0 k4−d−2εRij(k)
| − iω + ν0k2|2 . (168)

The function Cij(k) is the Fourier transform of the function Cij(r/L) introduced in Equation (163).
Moreover, the theory includes three interaction vertices

• Sb′bv: b′i(−vj∂jbi + Abj∂jvi) = b′ivjVijlbl ,
• Sv′vv:−v′ivj∂jvi = v′ivjWijlvl/2,
• Sv′bb:v′ibj∂jbi = v′ivjUijlvl/2,

In the momentum–frequency representation, they are associated with the vertex factors [5]

Vijl = i(k jδil − Aklδij), Wijl = i(klδij + k jδil), Uijl = i(klδij + k jδil). (169)

In all these vertices, momentum k is flowing into through the corresponding response field, i.e.,
in Vijl it is the response field b′ and in Wijl , Uijl the field v′. A graphical representation of interaction
vertices is displayed in Figure 4.

Wijk =

v
′

i

vj

vk

Vijk =

b
′

i

vk

bj

Uijk =

v
′

i

bj

bk

Figure 4. Graphical representation of all interaction vertices of the model related velocity non-linearities
of the action (166).

The field theoretic model defined by the action in Equation (166) is intrinsically unstable due
to the fact that 1PI graphs 〈v′v〉1-IR and 〈b′b〉1-IR are not UV finite. To ensure the stabilization of the
advection–diffusion system, we assume—inspired by the argument in [84]—that the vector field b
fluctuates around a spontaneously generated non-vanishing mean B = 〈b〉 6= 0 with the magnitude
depending on the parameter A. The auxiliary field b′ is still supposed to have vanishing mean.
Technically, the spontaneous symmetry breaking is achieved by the substitution of the sum B + b
instead of the vector field b in the action in Equation (166). Such a change of variables gives rise to a
new action functional with the free part now containing additional terms, whereas the interacting part
remains intact. The action functional with broken symmetry is

S [φ] = 1
2

[
v′iD

v
ijv
′
j + b′i D

b
ijb
′
j

]
+ v′[−∇tv + ν0∇2v + (b ·∇)b] + b′[−∇tb + ν0u0∇2b

+ A(b ·∇)v] + v′(B ·∇)b + Ab′(B ·∇)v. (170)

The quadratic part of this action determines propagators of the theory and now it has more involved
structure than Equation (166). It is seen that the symmetry breaking brings about cross propagators
〈vb′〉, 〈bv′〉, 〈bv〉, and 〈bb〉. Furthermore, all propagators are more complicated and depend on the
uniform magnetic field B explicitly. In the frequency–momentum representation, they are
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〈vivj〉 =
β(k)β∗(k)
ξ(k)ξ∗(k)

Dv(k)Rij(k), 〈bibj〉 = A2 (B · k)2

ξ(k)ξ∗(k)
Dv(k)Rij(k)

〈viv′j〉 =
β∗(k)
ξ∗(k)

Pij(k), 〈bib′j〉 =
α∗(k)
ξ∗(k)

Pij(k), (171)

〈biv′j〉 = iA
(B · k)
ξ∗(k)

Pij(k), 〈vib′j〉 = i
(B · k)
ξ∗(k)

Pij(k), (172)

〈bivj〉 = iA
β(k)(B.k)
ξ(k)ξ∗(k)

Dv(k)Rij(k). (173)

Here, following abbreviations have been introduced

α(k) = iω + νk2, β(k) = iω + uνk2, ξ(k) = A(B · k)2 + α(k)β(k) (174)

for brevity. Propagators are depicted in Figure 5.

Figure 5. Graphical representation of all propagators of the model given by the quadratic part of the
action (166).

Identification of all relevant UV divergences is carried out by the standard power counting. We
omit the details, which are analogous to those in Ref. [82]. The model at hand is logarithmic at ε = 0.
In the framework of the minimal subtraction (MS) scheme, this means that all possible UV divergences
are poles in ε [5]. Following the analysis of Hnatič and Zalom [82], we arrive at the conclusion that all
UV divergences are absorbed in counterterms v′∇2v and b′∇2b. Thus, the model is multiplicatively
renormalizable with renormalized parameters g0, u0, and ν0

ν0 = νZν, g0 = gµ2εZg, u0 = uZu, (175)

where g, u, and ν are the corresponding renormalized parameters. The renormalization mass µ

is introduced as a consequence of the analytic regularization used in calculations. The quantities
Zi = Zi(g, u; d, ρ; ε) contain poles in the exponent ε. The renormalized action functional can be written
as follows

SR[φ] =
1
2

[
v′iD

v
ijv
′
j + b′i D

b
ijb
′
j

]
+ v′[−∇tv + νZ1∇2v + Z3(b ·∇)b] + b′[−∇tb + νuZ2∇2b

+ A(b ·∇)v] + Z3v′(B ·∇)b + Ab′(B ·∇)v, (176)

where Z1 and Z2 are renormalization constants defined by relations

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z−1

1 . (177)

Both renormalization constants, Z1 and Z2, correspond to a different class of Feynman diagrams
(details below). However, they reveal a common structure in the MS scheme: the nth order of

215



Symmetry 2019, 11, 1193

perturbation theory is related to the nth power of g with the corresponding coefficient containing poles
in ε of order n and less [5].

The relevant one-loop-order Feynman diagrams are shown in Figures 6 and 7.

Γ1 = Γ2 =

Γ3 = Γ4 =

Γ5 = Γ6 =

Γ7 = Γ8 =

Figure 6. Graphical representation of all Feynman diagrams for two-point one-irreducible Green
functions of the action (176). Graphs Γ1, . . . , Γ4 represent perturbation expansion for Γv′v function,
and Γ5, . . . , Γ8 for Γb′b function.

Γ̃v′bb = +2 +2 +2 +2

+2 +2 +2 +2

+1 +2 +1 +2

+1 +1

Figure 7. Graphical representation of all one-loop Feynman diagrams forces for one-irreducible Green
function Γv′bb.

One-loop calculation [84] of self-energy graphs Σij for the 1PI function Γb′i bj
yields the following

expression
Σij ∼ εisl psTl j (178)

where
Tl j = aΛδl j − b|B|(δl j + elej), e ≡ B

|B| . (179)

Here, ei are components of the unit vector pointing in the direction of the spontaneous magnetic
field. Terms proportional to δij might in principle generate instabilities. In the literature, the term
proportional to elej is known as exotic. As detailed analysis [84] shows, δij terms can be eliminated by
imposing the following relation
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|B| = aΛ
b

=

√
1

π|A|
Γ(d/2 + 3/2)

Γ(d/2 + 1)
u∗ν Λ, (180)

where the parameter A should not be equal to 0 or −1. At real space dimension d = 3, we get

|B| = 8
3π
√
|A|

u∗ν Λ. (181)

To get insight into relevance of the last term on the right hand side of Equation (179), let us
consider the approximate case of linearized MHD equations in polarized medium

∂tv = νk2v + iγb, ∂tb = uνk2v + iγv− iµ[k× e](e · b), (182)

where for brevity we have denoted γ = B · k, introduced µ as notation for certain combination of
model parameters and employed the time–momentum representation [84]. Solution is sought in the
form of plane waves

v ≡ v(t, x) = v(t)eik·x, b ≡ b(t, x) = b(t)eik·x. (183)

For an inviscid medium (ν = 0) without the exotic term (µ = 0), we get a solution known as
Alfvén waves for which

v(t) ∼ b(t) ∼ e−iωt, ω ≡ γ. (184)

The solution with the exotic term is more complicated. To find solutions with the exotic term
(µ 6= 0), let us first find a convenient orthonormal basis of three vectors e1, e2, e3. The following choice

e1 ≡
k
|k| , e2 ≡

e− e1 cos θ

sin θ
, e3 ≡ [e1 × e2] =

e1 × e
sin θ

(185)

turns out to be case and qualitatively is depicted in Figure 8.

e3

k
b

θ

e3

e1

e2

Figure 8. Construction of the proper orthonormal basis for a sought solution of linearized MHD equations.

The transverse velocity and magnetic vector fields are perpendicular to the wavevector k or,
equivalently, to the basis vector e1. Let us decompose fields into perpendicular components e2 and e3

as follows
v(t) = v2(t)e2 + v3(t)e3, b(t) = b2(t)e2 + b3(t)e3. (186)

It is a straightforward exercise to check that modes vi, bi; i = 2, 3 satisfy following equations

∂tv2(t) = iγb2(t), ∂tb2(t) = iγv2(t), (187)

∂tv3(t) = iγb3(t), ∂tb3(t) = iγv3(t) + 2iλb2(t). (188)
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Solution of these equations can be represented in the form

cb2(t) = −v2(t) = b2e−iγt,

b3(t) = [b3 + iλb2 t]e−iγt,

v3(t) = [−b3 − λ/γb2 − iλb2 t]e−iγt.

(189)

Thus, field-theoretic methods not only explain the emergence of turbulent dynamo, but also lead
to an accompanying physical effect: appearance of disturbances in Alfvén waves perpendicular to
the spontaneous field B, which leads to their linear growth in time. This generates long-lived pulses
t exp(−uνk2t)—similar to Goldstone bosons.

An intriguing unsolved problem remains, however. Although gyrotropy is the cause of the
dynamo effect, the value in Equation (180) calculated for the spontaneous magnetic field is independent
of the parameter ρ. Thus, any however small gyrotropy causes emergence of a finite spontaneous field.
It is thus not clear whether or not the dynamo will also occur in a normal fluid in which ρ = 0.

10. Effect of Strong Anisotropy

Another related problem that can be addressed is the effect of large-scale anisotropy on statistics
of the velocity field, and the passively advected fields in the inertial range [34,36,85–99]. The classical
Kolmogorov–Obukhov theory predicts that the anisotropy generated at large spatial scales by the
forcing (boundary conditions, geometry of the mesh, etc.) fades away when the energy is transferred
down to the smaller scales by means of the cascade mechanism [23,25]. This picture is corroborated
in recent analyses for even correlation functions. Thus, they provide us with some backup to the
hypothesis of the restored local isotropy of the turbulence for the velocity field and passively
advected field in the inertial range [34,36,90–95,97–99]. More specifically, the exponents describing
the scaling in the inertial range exhibit universality and hierarchy related to the state of anisotropy.
In particular, the main contribution to an even function comes from the exponent from the isotropic
shell [34,36,89,91–94,97–99]. However, the anisotropy survives in the inertial range being explicit
in odd correlation functions. This is inconsistent with the behavior anticipated on grounds of the
cascade picture. Further, the skewness factor decreases with the length scale much more slowly than
expected [50,85–88,100–103], whereas the odd dimensionless ratios of structure functions of higher
order (hyperskewness, etc.) increase. This hints at persistent anisotropy at small scales [34,36,90,92].
This appears a universal effect as it is observed for both the scalar [34,36] and vector [92] fields, advected
by the Gaussian rapid-change velocity, as well as for the scalar advected by the two-dimensional
velocity field generated by the stochastic Navier–Stokes equation [90].

Here, we demonstrate the anomalous scaling behavior of a passive scalar advected by the
velocity field due to the Kraichnan model with strong anisotropy. In contrast with the studies
in [34,36,50,85–88,103], where the velocity field was assumed isotropic and the anisotropy was generated
at large scales by the imposed linear mean gradient, the uniaxial anisotropy in considered model is
present at all scales. The anomalous exponents turn out to depend on the anisotropy parameters and
are thus not universal.

The aim of this section is twofold. First, expressions for the structure functions and correlation
functions of the scalar gradients are obtained and then the corresponding anomalous exponents are
computed in the leading order of the ε expansion. Due to the anisotropy of the velocity flow, the
composite operators of different ranks mix strongly with each other under renormalization. As a
direct consequence, the corresponding anomalous exponents are given by the eigenvalues of matrices
of generic structure (this is in contrast with the case of large-scale anisotropy, in which the matrices
are diagonal or triangular). In terms of the zero-mode approach [93,94], this basically means that the
SO(d) decompositions of the correlation functions do not diagonalize differential operators in the
corresponding exact equations.
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As mentioned in Section 3, in the rapid-change model, the passive advection of a scalar field
θ(x) ≡ θ(t, x) is described by the stochastic equation (Equation (33)). The velocity v(x) correlator now
instead of Equation (40) is assumed in the form

〈vi(x)vj(x′)〉 = D0
δ(t− t′)
(2π)d

∫
ddk Tij(k) (k2 + m2)−d/2−ε/2 exp[ik · (x− x′)], (190)

where
D0

ν0
≡ g0 ≡ Λε (191)

and the relation m = 1/L holds. In the isotropic case, the tensor quantity Tij(k) in Equation (190) is the
usual transverse projector Tij(k) = Pij(k) (see Equation (18)). The velocity statistics is now assumed
to be anisotropic in entire region of scales. The ordinary transverse projector is then replaced by the
general transverse structure

Tij(k) = a(ψ)Pij(k) + b(ψ)ñi(k)ñj(k), (192)

where the unit vector n denotes the singled out direction (n2 = 1),

ñi(k) ≡ Pij(k)nj, (193)

and ψ is the angle between the vectors k and n. In other words, (n · k) = k cos ψ [note that (ñ · k) = 0].
The positivity of the correlator in Equation (190) leads to the inequalities

a(ψ) > 0, a(ψ) + b(ψ) sin2 ψ > 0. (194)

In practical calculations, one works with the special case

Tij(k) =
[

1 + α1
(n · k)2

k2

]
Pij(k) + α2ñi(k)ñj(k). (195)

Then, the inequalities in Equation (194) reduce to α1,2 > −1.
Let us note that the quantities in Equations (192) and (195) are invariant with respect to

transformation n → −n. The anisotropy permits an introduction of the mixed correlator 〈v f 〉 ∝
nδ(t − t′)C′(r/L) with a function C′(r/L) similar to C(r/L) in Equation (34). This violates the
evenness in n and gives rise to non-vanishing odd functions S2n+1. However, this does not alter
RG analysis [104].

The stochastic problem to be analyzed is tantamount to the field theoretic model of the set of
fields φ ≡ {θ′, θ, v} with action

S [φ] = 1
2

θ′Dθθ′ + θ′
[
−∂t − (v ·∇) + ν0∇2 +

1
2

Dvij(0)∂i∂j

]
θ − 1

2
vD−1

v v. (196)

Here, Dθ and Dv are the correlators in Equations (34) and (190), respectively, and

Dvij(0) = D0

∫ ddq
(2π)d

Tij(q)
(q2 + m2)d/2+ε/2 (197)

is the diagonal term (in spatial variables) of the coefficient of the temporal δ function in the velocity
pair correlation function in Equation (190)).

The model in Equatio (196) corresponds to the usual Feynman diagrammatic technique with the
triple vertex in Equation (51), propagators in Equation (50) and

〈θθ〉0 = C(k) (ω2 + ν2
0 k4)−1, 〈θ′θ′〉0 = 0, (198)
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where C(k) is the Fourier transform of the function C(r/L) in Equation 34). The bare propagator
〈vv〉0 ≡ 〈vv〉 is defined by Equation (190) with the transverse projection operator from Equation (192)
or Equation (195).

The pair correlation functions 〈φφ〉 of the multicomponent field φ ≡ {θ′, θ, v} fulfill the Dyson
equation. In terms of component fields, we arrive at the system of two equations (cf. [25])

G−1(ω, k) = −iω + ν0k2 − Σθ′θ(ω, k), (199)

D(ω, k) = |G(ω, k)|2 [C(k) + Σθ′θ′(ω, k)], (200)

where G(ω, k) ≡ 〈θθ′〉 and D(ω, k) ≡ 〈θθ〉 are the exact response function and pair correlation
function, respectively, and Σθ′θ and Σθ′θ′ are self-energy operators represented by 1PI graphs. The rest
of the self-energy functions Σφφ in the model in Equation (196) vanish identically.

It is a characteristic feature of models such as that in Equation (196) that all the skeleton multi-loop
diagrams of self-energy functions Σθ′θ , Σθ′θ′ contain closed circuits of retarded propagators 〈θθ′〉 (it is
important that the propagator 〈vv〉0 in Equation (190) is δ correlated in time) and hence vanish.

In the presence of anisotropy, a new counterterm of the form θ′(n ·∇)2θ has to be introduced.
There is no such term in the unrenormalized action functional in Equation (196). Thus, the model in
Equation (196) in its original form is not multiplicatively renormalizable, and to employ RG techniques
we have to extend the model by adding a contribution corresponding to the counterterm to the
bare action

S [Φ] = θ′Dθθ′/2 + θ′
[
−∂t − (v ·∇) + ν0∇2 + χ0ν0(n ·∇)2

]
θ − vD−1

v v/2. (201)

Here, χ0 is a new dimensionless parameter. For stability of the system, positivity of the viscous
contribution ν0k2 + χ0ν0(n · k)2 is required, which leads to the inequality χ0 > −1. The real physical
value of the new parameter χ0 is zero. However, this does not hinder the application of the RG
techniques. It is first assumed to be arbitrary, and the equality χ0 = 0 is imposed as the initial condition
in the solution of equations for invariant variables. The vanishing χ0 corresponds to some nonzero
value of its renormalized counterpart, which can be explicitly calculated.

For the action in Equation (201), the nontrivial bare propagators in Equation (198) are replaced by

〈θθ′〉0 = 〈θ′θ〉∗0 =
1

−iω + ν0k2 + χ0ν0(n · k)2 , (202)

〈θθ〉0 =
C(k)

| − iω + ν0k2 + χ0ν0(n · k)2|2 . (203)

Once properly extended, the model becomes multiplicatively renormalizable: due to generation
of counterterms, two independent renormalization constants Z1,2 are introduced as coefficients of the
counterterms. This yields the renormalized action in the form

SR[Φ] = θ′Dθθ′/2 + θ′
[
−∂t − (v ·∇) + νZ1∇2 + χνZ2(n ·∇)2

]
θ − vD−1

v v/2, (204)

or to the multiplicative renormalization of all the parameters ν0, g0 and χ0 of the action in Equation (201):

ν0 = νZν, g0 = gµεZg, χ0 = χZχ. (205)

The correlator (Equation (190)) in Equation (204) is expressed in terms of renormalized variables
using Equations (205). From direct comparison of Equations (201), (204), and (205), we obtain
the relations

Z1 = Zν, Z2 = ZχZν, Zg = Z−1
ν . (206)
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The beta functions are given by

βg(g, α) ≡ D̃µg = g (−ε− γg) = g (−ε + γν) = g (−ε + γ1), (207)

βχ(g, χ) ≡ D̃µχ = −χγχ = χ(γ1 − γ2). (208)

The relation between βg and γν in Equation (207) is a consequence of the definitions and the last
equality in Equation (206).

One-loop calculation [104] leads to the following expressions for the anomalous dimension γ1(g)

γ1(g) =
gS̄d

2d(d + 2)

[
(d− 1)(d + 2) + α1(d + 1) + α2

]
, (209)

and for γ2(g, α)

γ2(g, α) =
gS̄d

2d(d + 2)χ
[
−2α1 + α2(d2 − 2)

]
, (210)

respectively. Let us note that Equations (209)–(210) are exact [104].
From explicit Equations (209) and (210), we see that the RG equations have just one IR stable

fixed point

g∗S̄d =
2d(d + 2)ε

(d− 1)(d + 2) + α1(d + 1) + α2
, χ∗ =

−2α1 + α2(d2 − 2)
(d− 1)(d + 2) + α1(d + 1) + α2

. (211)

At this point, both eigenvalues of the matrix Ω are equal to ε; the values γ∗1 = γ∗2 = γ∗ν = ε are
exact as a consequence of Equations (207)–(208) [here and below, γ∗F ≡ γF(g∗, χ∗)]. The fixed point in
Equation (211) is degenerate. By this we mean that its coordinates depend explicitly on the anisotropy
parameters α1,2.

Let us consider the solution of the RG equation in the example of the even two-time structure
functions

S2n(r, τ) ≡ 〈[θ(t, x)− θ(t′, x′)]2n〉, r ≡ x− x′, τ ≡ t− t′. (212)

They obey the RG equation DRGS2n = 0 with the differential operator DRG = Dµ + βg∂g +

βχ∂χ − γnuDν.
In renormalized variables, a dimensional argument leads to

S2n(r, τ) = ν−nr2nR̃2n(µr, τν/r2, r/L, g, χ). (213)

Here, R̃2n is a scaling function of dimensionless variables (dependence on d, ε, α1,2 and the angle
between the vectors r and n is implied). From the RG equation, the representation

S2n(r, τ) = (ν̄)−nr2nR̃2n(1, τν̄/r2, r/L, ḡ, χ̄), (214)

is easily derived in terms of the invariant variables ē = ē(µr, e). The identity L̄ ≡ L is a consequence
of the fact that L is not renormalized. The relation between the bare and invariant variables takes
the form

ν0 = ν̄Zν(ḡ), g0 = ḡr−εZg(ḡ), χ0 = χ̄Zχ(ḡ, χ̄). (215)

Equation (215) defines the invariant variables as functions of the bare parameters in an implicit
form. It is valid because expressions on both sides satisfy the same RG equation, and at µr = 1
Equation (215) coincides with Equation (205).

The asymptotic behavior at large µr of the invariant variables is governed by the IR stable fixed
point: ḡ → g∗, χ̄ → χ∗ for µr → ∞. However, in multi-charge problems, the possibility must be
considered that, even when the stable IR point exists, not every phase trajectory approaches it in the
limit µr → ∞. The phase trajectory may first pass outside the natural region of stability (physical
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region is given by the inequalities g > 0, χ > −1) or go to infinity within this region. It can be easily
verified that the RG flow reaches the fixed point in Equation (211) for arbitrary initial conditions g0 > 0,
χ0 > −1, including the physical case χ0 = 0. Moreover, the large µr behavior of the invariant viscosity
ν̄ can be extracted explicitly from Equation (215) together with the last relation in Equation (206):
ν̄ = D0rε/ḡ → D0rε/g∗ (we remind the reader that D0 = g0ν0). Then, for µr → ∞ and any fixed mr,
we get

S2n(r, τ) = D−n
0 rn(2−ε)g∗n R2n(τD0r∆t , r/L), (216)

where the scaling function

R2n(D0τr∆t , r/L) ≡ R̃2n(1, D0τr∆t , r/L, g∗, α∗), (217)

has appeared and ∆t ≡ −2+ γ∗ν = −2+ ε is the critical dimension of time. For the equal-time structure
function, we have

S2n(r) = D−n
0 rn(2−ε)g∗n R2n(r/L). (218)

Here, the definition of R2n is evident from Equation (217). It should be noted that Equations (216)–
(218) comprise a proof of the independence of the structure functions in the IR range (large µr and any
r/L) of the viscosity coefficient or, in other words, of the UV scale: the parameters g0 and ν0 appear in
Equation (216) only in the combination D0 = g0ν0. A similar property has been found for the stochastic
Navier–Stokes equation [105].

In contrast to the previously mentioned models, the scaling function R̃ in Equation (214) contains
two different scales—corresponding to spatial and time differences, respectively. The information
about its behavior can again be obtained using the OPE method from Section 5. Therefore, let F(r, τ)

stands for some multiplicatively renormalized quantity. Dimensionality considerations imply

FR(r, τ) = νdω
F r−dF R̃F(µr, τν/r2, r/L, g, α), (219)

where dω
F and dF are the canonical dimension in frequency and the total canonical dimension of

F, respectively (see Section 4 or [5]), and RF is a function of completely dimensionless variables.
The analog of Equation (214) has the form

F(r, τ) = ZF(g, α)FR = ZF(ḡ, ᾱ) (ν̄)dω
F r−dF R̃F(1, τν̄/r2, r/L, ḡ, ᾱ). (220)

In the large µr limit, one has ZF(ḡ, ᾱ) ' const (Λr)−γ∗F [106]. The UV scale comes into this relation
from Equation (191). In the IR range (Λr ∼ µr large, r/L arbitrary), Equation (220) takes on the form

F(r, τ) ' const Λ−γ∗F Ddω
F

0 r−∆[F]RF(D0τr∆t , r/L). (221)

Here,
∆[F] ≡ ∆F = dk

F − ∆tdω
F + γ∗F, ∆t = −2 + ε (222)

is the critical dimension of the function F. The scaling function RF is related to R̃F as in Equation (217).
For nonvanishing γ∗F, the function F in the IR range exhibits dependence on Λ or, equivalently, on ν0.

As a detailed analysis reveals [104], the operator θN requires no counterterms at all, i.e., it is in
fact UV finite, θN = Z [θN ]R with Z = 1. As a straightforward consequence, the critical dimension
of θN(x) is given by Equation (222) with no correction from γ∗F and reduces to the sum of the critical
dimensions of the factors:

∆[θN ] = N∆[θ] = N(−1 + ε/2). (223)

The structure functions in Equation (212) are linear combinations of pair correlators involving the
operators θN , therefore Equation (223) shows that they indeed satisfy the RG equation of the form in
Equation (65), as discussed in Section 4.

222



Symmetry 2019, 11, 1193

Tensor composite operators ∂i1 θ · · · ∂ip θ (∂iθ∂iθ)
n consisting solely of scalar gradients play an an

important role. It is technically convenient to work with the scalar operators obtained by contracting
the tensors with the vectors n in the fashion

F[N, p] ≡ [(n ·∇)θ]p(∂iθ∂iθ)
n, N ≡ 2n + p. (224)

Canonical dimensions of these operators depend on the total number of the fields θ and have the
following form dF = 0, dω

F = −N. These operators (Equation (224)) mix with each other only in the
renormalization procedure. As a consequence, the corresponding infinite renormalization matrix

F[N, p] = ∑
N′ ,p′

Z[N,p] [N′ ,p′ ] FR[N′, p′] (225)

is block-triangular, i.e., Z[N,p] [N′ ,p′ ] = 0 for N′ > N. It is then clear that the critical dimensions
associated with the operators F[N, p] are fully determined by the eigenvalues of the finite subblocks
with N′ = N.

In the isotropic case, as well as in the presence of large-scale anisotropy, the elements Z[N,p] [N,p′ ]
vanish for p < p′, and the block Z[N,p] [N,p′ ] is triangular together with the related blocks of the matrices
UF and ∆F in Equations (77) and (222). Moreover, it can be diagonalized in terms of to irreducible
operators (scalars, vectors, and traceless tensors), but even for nonvanishing imposed gradient its
eigenvalues coincide with those of the isotropic case. Hence, the introduction of large-scale anisotropy
has no effect on critical dimensions of operators in Equation (224) (see [34,36]). In the case of small-scale
anisotropy, the operators with different values of p mix in renormalization resulting in the matrix
Z[N,p] [N,p′ ] is of generic form (neither diagonal nor triangula).

The calculation of the renormalization constants Z[N,p] [N,p′ ] can be illustrated within the one-loop
approximation. Let Γ(x; θ) be the generating functional of the 1PI Green functions with the insertion
of just one composite operator F[N, p] of Equation (224) containing any number of fields θ. Here, x is
the argument of the composite operator and θ is the functional argument, the “classical counterpart”
of the random field θ. The general interest is in the Nth term of the expansion of Γ(x; θ) in θ, which is
denoted as ΓN(x; θ); it has the form

ΓN(x; θ) =
1

N!

∫
dx1 · · ·

∫
dxN θ(x1) · · · θ(xN) 〈F[N, p](x)θ(x1) · · · θ(xN)〉1−ir. (226)

The matrix of critical dimensions in Equation (222) is given in the one-loop approximation by the
expression

∆[N,p][N,p′ ] = Nε/2 + γ∗[N,p][N,p′ ], (227)

where the asterisk implies the substitution in Equation (211). Details of calculation of γ[N,p][N,p′ ] can be
found in [104].

As already mentioned, the critical dimensions are determined by the eigenvalues of the matrix
in Equation (227). It is readily checked that, in the isotropic case (α1,2 = 0), elements of the matrix
with p′ > p vanish, it becomes triangular, and its eigenvalues are the diagonal elements ∆[N, p] ≡
∆[N,p][N,p]:

∆[N, p] = Nε/2 +
2p(p− 1)− (d− 1)(N − p)(d + N + p)

2(d− 1)(d + 2)
ε + O(ε2). (228)

From this equation, we observe that, for fixed N and arbitrary d ≥ 2, the dimension ∆[N, p]
monotonically decreases with p. It reaches a minimum at the minimal allowed value of p = pN , i.e.,
pN = 0 if N is even and pN = 1 if N is odd:

∆[N, p] > ∆[N, p′] if p > p′ . (229)
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This minimal value ∆[N, pN ] decreases monotonically as N increases separately for even and odd
values of N, viz.

0 ≥ ∆[2n, 0] > ∆[2n + 2, 0], ∆[2n + 1, 1] > ∆[2n + 3, 1]. (230)

A similar hierarchy is demonstrated by the critical dimensions of certain tensor operators in the
stirred Navier–Stokes turbulence (see Ref. [107] and Section 2.3 of [31]). However, no clear hierarchy is
demonstrated by neighboring even and odd dimensions: relations

∆[2n + 1, 1]− ∆[2n, 0] =
ε(d + 2− 4n)

2(d + 2)
, ∆[2n + 2, 0]− ∆[2n + 1, 1] =

ε(2− d)
2(d + 2)

(231)

lead to inequality ∆[2n + 1, 1] > ∆[2n + 2, 0] for any d > 2. On the other hand, the relation ∆[2n, 0] >
∆[2n + 1, 1] is satisfied only if n is large enough, n > (d + 2)/4.

Let us denote ∆[N, p] the eigenvalue of the matrix in Equation (227), which coincides with
Equation (228) for α1,2 = 0. Because the eigenvalues depend continuously on parameters α1,2, at least
for small enough values of α1,2, this notation is unambiguous.

The dimension ∆[2, 0] vanishes identically for any α1,2 in all orders in ε. As in the isotropic model,
this is proved employing the Schwinger equation

∫
DΦ

δ

δθ′(x)

[
θ(x)eSR [Φ]+AΦ

]
= 0. (232)

It can be easily checked [104] that ∆[2, 0] ≡ 0, while the to the leading order in ε one obtains

∆[2, 2]/ε = 2 +
{
−(d− 2)d(d + 2)(d + 4)F∗0 − (d + 2)(d + 4)(2 + (d− 2)α1

+ dα2)F∗1 ++3(d + 4)(d− 2α1 + 2dα2)F∗2 + 15d(α1 − α2)F∗3
}/{

(d− 1)

× (d + 4)[(d− 1)(d + 2) + (d + 1)α1 + α2]
}

, (233)

where F∗n ≡ F(1, 1/2 + n; d/2 + n;−α∗) with α∗ from Equation (211).
For N > 2, the eigenvalues may be found in closed form only within an expansion in α1,2. The

explicit expressions can be found in [104]. They illustrate two features which appear to hold for all N:

• The most relevant anisotropy correction is of order (α1,2) for p 6= 0 and (α2
1,2) for p = 0. This

means that γ∗[N, 0] are anisotropy independent in the linear approximation.
• This leading contribution depends on α1,2 only through the combination α3 ≡ 2α1 + dα2.

This conjecture is supported by the following expressions for N = 6, 8 and p = 0:

γ∗[6, 0]/ε =
−2(d + 6)
(d + 2)

− 12(d− 2)2(d + 1)(d2 + 14d + 48)α2
3

(d− 1)2d(d + 2)4(d + 4)2 , (234)

γ∗[8, 0]/ε =
−4(d + 8)
(d + 2)

− 24(d− 2)2(d + 1)(d2 + 18d + 80)α2
3

(d− 1)2d(d + 2)4(d + 4)2 . (235)

Using the operator product expansion (Section 5), we infer for the scaling function R(r/L) in the
representation in Equation (218) for the correlator 〈F1(x)F2(x′)〉: the expression

R(r/L) = ∑
F

AF

(
r
L

)∆F

, r � L, (236)

where the coefficients AF are regular in (r/L)2.
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Now, let us discuss the equal-time structure functions SN in Equation (52). From this, it is
assumed that the mixed correlator 〈v f 〉 differs from zero; this does not influence the critical dimensions.
However, it gives rise to non-vanishing odd structure functions. As a rule, the operators entering into
the OPE are those generated by Taylor expansions together with all admissible operators which admix
to them in the renormalization procedure [5,6]. The leading term of the Taylor expansion of SN is the
operator F[N, N] from Equation (224). Renormalization brings about all the operators F[N′, p] with
N′ ≤ N and all allowed values of p. The operators with N′ > N (whose contributions would be more
relevant) are absent in Equation (236), because they do not appear in the Taylor expansion of SN and
do not admix to the terms therein. Hence, the RG representation in Equation (216) together with the
OPE representation in Equation (236) leads in the inertial range to the asymptotic expression for the
structure function:

SN(r) = D−N/2
0 rN(1−ε/2) ∑

N′≤N
∑
p

{
CN′ ,p (r/L)∆[N′ ,p] + · · ·

}
. (237)

The second sum is taken over all values of p, allowed for a given N′, numerical coefficients CN′ ,p
depend on ε, d, α1,2 and the angle ϑ between r and n. The ellipsis denotes the contributions of the
operators other than F[N, p], e.g., ∂2θ∂2θ. They generate terms of order (r/L)2+(ε) and higher and are
discarded in the following.

A few general remarks are in order:

• If the mixed correlator 〈v f 〉 is missing, the odd structure functions vanish. At the same time, the
contributions to even functions are given only by the operators with even values of N′. Only
contributions with p = 0 remain in the isotropic case (α1,2 = 0) [104,108]. When anisotropy is
present, α1,2 6= 0, the operators with p 6= 0 assume nonvanishing means, and their dimensions
∆[N′, p] enter the right hand side of Equation (237).

• The most relevant term of the small r/L behavior is obviously related to the contribution with the
smallest value of the exponent ∆[N′, p]. Now, we employ the hierarchy relations in Equations (229)
and (230), which hold for α1,2 = 0 and consequently remain valid at least for α1,2 � 1. We
conclude that, for sufficiently weak anisotropy, the leading term in (237) is given by the dimension
∆[N, 0] for any SN . In all particular cases considered, this hierarchy remains for finite values
of the anisotropy parameters as well. The contribution with ∆[N, 0] stays leading for such N
and α1,2.

• It is possible that the inequalities in Equations (229) and (230) may be violated for some values
of n, d and α1,2, so that the leading contribution to Equation (237) is given by a dimension with
N′ 6= N and/or p > 0.

• The introduction of the mixed correlator 〈v f 〉 ∝ nδ(t− t′)C′(r/L) explicitly violates the evenness
in n and generates non-vanishing odd functions S2n+1 and leads to to the contributions with
odd N′ to the expansion in Equation (237) for even functions. If the relations in Equations (229)
and (230) are satisfied, in even functions, the leading term is still given by the contribution with
∆[N, 0]. If the relations in Equation (231) are fulfilled, in the odd function S2n+1, the leading term
is given by the dimension ∆[2n, 0] for n < (d + 2)/4 and by ∆[2n + 1, 1] for n > (d + 2)/4. Let us
note that, for the model with an imposed gradient, for all n, the leading terms of S2n+1 are given
by the dimensions ∆[2n + 1, 1] [34,36].

Furthermore, it is permissible that the matrix in Equation (227) for some α1,2 has a pair of complex
conjugate eigenvalues, ∆ and ∆∗. In this case, the small r/L behavior of the scaling function ξ(r/L) in
Equation (237) would contain oscillating terms of the form

(r/L)Re ∆
{

C1 cos
[
Im ∆ (r/L)

]
+ C2 sin

[
Im ∆ (r/L)

]}
,

with constant factors Ci.

225



Symmetry 2019, 11, 1193

Representations similar to Equations (218) and (237) can be readily written for arbitrary equal-time
pair correlation functions, provided their canonical and critical dimensions are known. In particular,
for the operators F[N, p] in the IR region (Λr → ∞, r/L fixed), we arrive at

〈F[N1, p1]F[N2, p2]〉 = ν
−(N1+N2)/2
0 ∑

N,p
∑

N′ ,p′
(Λr)−∆[N,p]−∆[N′ ,p′ ]RN,p;N′ ,p′(r/L). (238)

Here, the indices N and N′ satisfy the inequalities N ≤ N1 and N′ ≤ N2. The indices p and p′

assume all allowed values for given N and N′. The small r/L behavior of the functions RN,p;N′ ,p′(r/L)
is of the form

ξN,p;N′ ,p′(mr) = ∑
N′′ ,p′′

CN′′ ,p′′ (r/L)∆[N′′ ,p′′ ], (239)

with the constraint N′′ ≤ N + N′ and corresponding values of p′′; CN′′ ,p′′ are numerical coefficients.
Thus far, we have considered the particular case of the velocity correlator given by Equations (190)

and (195). Explicit calculations [104] show that contributions to the renormalization constants (as a
direct consequence, to the coordinates of the fixed point and the anomalous dimensions as well) come
solely from the even polynomials in the expansion in Equation (192). This is why odd polynomials were
absent in Equation (192) from the very beginning. Further, from the explicit form [104] of self-energy
graph Σθ′θ , it can be shown that only the coefficients al with l = 0, 1 and bl with l = 0, 1, 2 contribute to
the constants Z1,2 in Equation (204) and, consequently, to the basic RG functions in Equations (207) as
well as Equation (208) to the coordinates of the fixed point in Equation (211). Hence, the fixed point
in the generic model in Equation (192) is fully parameterized by these five coefficients. The higher
coefficients appear only through the positivity conditions in Equation (194).

Further, for χ = 0, only coefficients al with l ≤ 2 and bl with l ≤ 3 might contribute to the
integrals Hn and, therefore, to the one-loop critical dimensions in Equation (227). As a consequence,
calculation of the latter is significantly simplified in the special case a0 = 1, a1 = 0 and bl = 0 for
l ≤ 2 in Equation (192). The coordinates of the fixed point in Equation (211) coincide with those in
the isotropic model. In particular, α∗ = 0, and the anomalous exponents will depend on the two
parameters a2 and b3 solely. In all analyzed cases, the general picture is akin to that outlined above
for the case in Equation (195). For instance, the hierarchy of the critical dimensions, stated in the
inequalities in Equations (229)–(231), persists also to this case. We conclude that the special case in
Equation (195) represents adequately the main features of the generic model in Equation (192).

The exponents are related to the critical dimensions of composite operators in Equation (224)
constructed from the scalar gradients. In contrast to the isotropic flow, these operators in the model
under consideration mix in renormalization in such a way that the matrices of their critical dimensions
are neither of diagonal nor triangular form. These matrices are calculated explicitly to the order (ε)
However, their eigenvalues (anomalous exponents) can be calculated only as perturbative series in
α1,2 (Equations (234) and (235)) or in a numerical fashion.

In the limit of zero anisotropy, the exponents can be related to definite tensor composite operators
constructed from the scalar gradients, and exhibit certain hierarchy connected to the degree of
anisotropy. It can be summarized as follows: the lower is the rank, the lower is the dimension
and, therefore, the contribution to the inertial-range behavior is more important.

Leading terms of the even (odd) structure functions are caused by the scalar (vector) operators.
For the case of finite anisotropy, the exponents cannot be related to individual operators (which are mixed
in renormalization procedure), but the aforementioned hierarchy is present for all the studied cases.

A short comment about the second-order structure function S2(r) is appropriate here. It can
be studied employing the RG and zero-mode techniques [104]; as in the isotropic case [39,109–111].
Its leading term is S2 ∝ r2−ε, but the amplitude now depends on α1,2 and the angle between the vectors
r and n from Equation (195). The first correction due to anisotropy is (r/L)∆[2,2] with the exponent
∆[2, 2] = O(ε) from Equation (233).
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In isotropic velocity field, the anisotropy inserted at large scales by external forcing or imposed
mean gradient, persists in the inertial range and shows in odd correlation functions: the skewness
factor S3/S3/2

2 decreases at r/L→ 0 but slowly (see [50,85–88,100–103]), while the higher-order ratios
S2n+1/Sn+1/2

2 increase (see, e.g., [34,36,90,92]).
In the studied model, the inertial-range behavior of the skewness factor is described by the

expression S3/S3/2
2 ∝ (r/L)∆[3,1]. For α1,2 → 0, the exponent ∆[3, 1] is given by Equation (228) with

n = 3 and p = 1. It is positive and coincides with the previous result [85,86]. By numerical means, it
can be shown that, if the anisotropy becomes strong enough, the exponent ∆[3, 1] becomes negative
and the skewness factor increases towards the depth of the inertial interval. Let us note that the
higher-order odd ratios increase already when the anisotropy is weak.

11. Conclusions

The crucial problem in many phenomena encountered in physics is the proper identification of
underlying symmetry and the mechanism that leads to its violation. The solution to such a task is by no
means obvious and requires deep understanding of the physical problem. In non-equilibrium statistical
physics, which deals with systems containing many interacting degrees of freedom, symmetries are
present at different levels of theoretical description.

In this article, our main aim is to summarize and elucidate approaches suitable for theoretical
analysis of symmetries and their violations in problems related to various aspects of fluid dynamics. In
particular, we concentrate on an overall analysis of symmetries emerging in fully developed turbulence
and related problems. All studied problems are of classical nature and share the common property
that they cannot be described within the standard equilibrium statistical physics and thus constitute
systems far from the thermal equilibrium. Nevertheless, it is possible to study them with the use
of powerful and versatile methods borrowed from high energy physics. We demonstrate how to
construct a functional-integral representation of classical stochastic problems based on the introduction
of an action functional analogous to that of particle physics. Use of the action functional is especially
illuminating in revealing symmetries of models and their consequences. The functional representation
is analyzed using Feynman diagrammatic technique and renormalization group approach. The latter is
especially convenient for an analysis of large-scale behavior. To this end, it is necessary to find R stable
fixed point(s) of the RG β functions of the model at hand. The fundamental difference between the RG
in high-energy physics and statistical systems is that only the opposite spatial scales are of interest.
In high-energy physics, small spatial scales are studied and the asymptotic behavior of models at large
momenta is vital. In classical statistical systems, there is a maximal spatial scale L. The goal of the
theory is then to determine how much L affects relevant physical quantities. We apply field-theoretic
methods to classical non-equilibrium systems and as a paradigmatic example present the stochastic
approach to fully developed turbulence. We review the basic setup, and briefly describe the RG
method and the related topic of operator product expansion. Examples are given of the use of the latter
as an important tool in the analysis of experimentally measurable quantities. The important Galilei
symmetry is described in the functional representation and its consequences derived. Consequences of
breaking of Galilei symmetry in the stochastic Navier–Stokes model with colored noise are discussed
with the use of the RG. Important effects of parity violation and strong anisotropy in turbulent flows
are analyzed in detail.
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Abbreviations

The following abbreviations are used in this manuscript:

NS Navier–Stokes
RG Renormalization Group
SDE Stochastic Differential Equation
UV Ultraviolet
IR Infrared
OPE Operator Product Expansion
1PI one-particle irreducible
MHD Magnetohydrodynamics

References

1. Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; Interscience: New York, NY,
USA, 1980.

2. Peskin, M.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley: Boston, MA, USA, 1995.
3. Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part 1; Pergamon Press: Oxford, UK, 1980.
4. Nazmitdinov, R.G. From Chaos to Order in Mesoscopic Systems. Phys. Part. Nucl. Lett. 2019, 16, 159.
5. Vasil’ev, A.N. The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics;

Chapman Hall/CRC: Boca Raton, FL, USA, 2004.
6. Zinn-Justin, J. Quantum Field Theory and Critical Phenomena, 4th ed.; Oxford University Press: Oxford, UK, 2002.
7. Stückelberg, E.; Petermann, A. La normalisation des constantes dans la théorie des quanta. Helv. Phys. Acta

1953, 26, 499.
8. Shirkov, D.V. Die Renormierungsgruppe für zwei Ladungen in der pseudoskalaren Mesontheorie.

DAN ZSSR 1955, 105, 972.
9. Gell-Mann, M.; Low, F.E. Quantum Electrodynamics at Small Distances. Phys. Rev. 1954, 95, 1300.
10. Bogoliubov, N.N.; Shirkov, D.V. On renormalization groups in quantum electrodynamics. DAN ZSSR 1955,

103, 203.
11. Bogoliubov, N.N.; Shirkov, D.V. Application of the renormalization group to improve the formulae of

perturbation theory. DAN ZSSR 1955, 103, 391.
12. Wilson, K.G.; Kogut, J. The renormalization group and the ε expansion. Phys. Rep. 1974, 12, 75.
13. Wegner, F.J. The Critical State, General Aspects. In Phase Transitions and Critical Phenomena; Domb, C.;

Green, M.S., Eds.; Academic Press Inc.: New York, NY, USA, 1976; pp. 7–124.
14. Kadanoff, L.P. Statistical Physics: Statics, Dynamics and Renormalization; World Scientific Publishing Co.:

Singapore, 2000.
15. Täuber, U.C. Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior;

Cambridge University Press: New York, NY, USA, 2014.
16. Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435.
17. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North-Holland: Amsterdam, The Netherlands, 2007.
18. Blaizot, J.P.; Iancu, E.; Mehtar-Tani, Y. Medium-induced qcd cascade: Democratic branching and wave

turbulence. Phys. Rev. Lett. 2013, 111, 052001.
19. Sabbah, H.N.; Stein, P.D. Turbulent blood flow in humans: Its primary role in the production of ejection

murmurs. Circ. Res. 1976, 38, 513–525.
20. Goldstein, M.L.; Wicks, R.T.; Perri, S.; Sahraoui, F. Kinetic scale turbulence and dissipation in the solar wind:

Key observational results and future outlook. Phil. Trans. R. Soc. A 2015, 373, 20140147.
21. Zhuravleva, I.; Churazov, E.; Schekochihin, A.A.; Allen, S.W.; Arévalo, P.; Fabian, A.C.; Forman, W.R.;

Sanders, J.S.; Simionescu, A.; Sunyaev, R.; et al. Turbulent heating in galaxy clusters brightest in X-rays.
Nature 2014, 515, 85–87.

22. Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1959.
23. Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995.
24. McComb, W.D. The Physics of Fluid Turbulence; Clarendon: Oxford, UK, 1990.
25. Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Vol 2; MIT Press: Cambridge, MA, USA, 1975.

228



Symmetry 2019, 11, 1193

26. Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015.
27. Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid.

Phys. Rev. A 1977, 16, 732.
28. Dominicis, C.D.; Martin, P.C. energy spectra of certain randomly-stirred fluids. Phys. Rev. A 1979, 19, 419.
29. Yakhot, V.; Orszag, S.A. Renormalization Group Analysis of Turbulence. I. Basic Theory. J. Sci. Comput. 1986,

1, 3.
30. Smith, L.M.; Woodruff, S.L. Renormalization-group analysis of turbulence. Annu. Rev. Fluid Mech. 1998,

30, 275.
31. Adzhemyan, L.T.; Antonov, N.V.; Vasil’ev, A.N. The Field Theoretic Renormalization Group in Fully Developed

Turbulence; Gordon & Breach: London, UK, 1999.
32. Adzhemyan, L.T.; Vasil’ev, A.N.; Pis’mak, Y.M. Renormalization-group approach in the theory of turbulence:

The dimensions of composite operators. Theor. Math. Phys. 1983, 57, 1131.
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