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Study of the Influence of Non-Deposit Locations in Data-Driven Mineral Prospectivity
Mapping: A Case Study on the Iskut Project in Northwestern British Columbia, Canada
Reprinted from: Minerals 2021, 11, 597, doi:10.3390/min11060597 . . . . . . . . . . . . . . . . . . 295

vi



About the Editors

Rajive Ganguli

Dr. Rajive Ganguli is the Malcolm McKinnon Professor of Mining Engineering and Associate

Dean of Assessment in the College of Mines and Earth Sciences at the University of Utah. He

was previously affiliated with the University of Alaska Fairbanks, Jim Walter Resources (Alabama)

and Hindustan Copper Limited (India). He has three degrees in Mining Engineering, and is a

registered Professional Engineer (Alaska) and a mine foreman (Alabama). He is very interested in

the grand challenges of mining, from exploiting Big Data to tackling the various issues that make

mine operations difficult. Over the last two decades, among other things, he has been working

on computational intelligence applications in the mining industry. He has partnered with mines in

the United States, Mongolia, and Mexico in developing the industrial applications of computational

intelligence.

Sean Dessureault

Dr. Sean Dessureault is the Vice President of Technology and Innovation for The Mosaic

Company, a leading vertically integrated fertilizer producer with mines throughout the Americas

and a global distribution network. From 2002 to 2018, Dessureault was a professor at the University

of Arizona, where he engaged in research related to the integration and effective use of mining

information systems and sustainability. In 2004, he founded MISOM Technologies, an IT services

company with expertise in data integration, control rooms, and automation. MISOM eventually

developed the FARA platform, which brings together Internet of Things (IoT) sensors, a tablet-based

mobile app, and modern approaches such as Big Data and gamification to create innovative form

digitization, worker engagement, and fleet management. In late 2017, MISOM was acquired by MST

Global, where Dr. Dessureault served as Chief Innovation Evangelist until joining Mosaic in 2019.

Pratt Rogers

Dr. Pratt Rogers is a mining professional with extensive research and business experience in data

management systems, automation, mining technology, and health and safety management systems.

Dr. Rogers started in a mining faculty at the University of Utah in 2016 as an Assistant Professor. Prior

to joining the University of Utah, Dr. Rogers worked as the VP of Product Development at MISOM

Technologies. He has Bachelor’s (2008), Master’s (2012), and Doctoral (2015) degrees in Mining

Engineering from The University of Arizona. He has worked as a site engineer for Luminant Mining

and as a mining analytics consultant across the United States, Canada, and Mexico. Dr. Rogers

continues to provide data analytics consultation for various mining companies. His research interests

concentrate on the reliability of data management systems in mining organizations for a variety of

objectives, such as fatigue management, short-range planning, and operational excellence. Recently,

Dr. Rogers has been working on a research project funded by NIOSH focused on fatigue management

modeling and monitoring tools.

vii





����������
�������

Citation: Ganguli, R.; Dessureault, S.;

Rogers, P. Introduction to the Special

Issue “Advances in Computational

Intelligence Applications in the

Mining Industry”. Minerals 2022, 12,

67. https://doi.org/10.3390/

min12010067

Received: 14 December 2021

Accepted: 28 December 2021

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Editorial

Introduction to the Special Issue “Advances in Computational
Intelligence Applications in the Mining Industry”
Rajive Ganguli 1,* , Sean Dessureault 2 and Pratt Rogers 1

1 Department of Mining Engineering, University of Utah, Salt Lake City, UT 84112, USA; pratt.rogers@utah.edu
2 The Mosaic Company, Tampa, FL 33605, USA; Sean.Dessureault@mosaicco.com
* Correspondence: rajive.ganguli@utah.edu

This is an exciting time for the mining industry, as it is on the cusp of a change in
efficiency as it gets better at leveraging data. After decades of focusing on collecting data,
the industry has developed to where the focus now is on utilizing the data. The utilization
of data typically involves developing models that are used to better understand mining
processes, with a variety of computational intelligence (CI) techniques being at the forefront
of methods used to develop models. Modeling and data collection add value by presenting
analytics so that humans, from frontline workers to corporate executives, can respond as
quickly as possible to changing conditions.

CI is often defined as a class of techniques, which includes neural networks, fuzzy
systems, and evolutionary computing. Many papers in this issue make excellent use of
these techniques to advance the state of the industry. However, given the broad nature of
the mining industry, we also chose to include other data-driven computational techniques
that are advancing the state of the art, regardless of whether they fall directly under CI. Our
focus was more on capturing the advances than maintaining the purity of the techniques.

The papers in this issue advance the state of the art in four broad categories: mine
operations, mine planning, mine safety, and advancing the sciences, primarily in image
processing applications. In the field of mining operations, Both and Dimitrakopolous [1]
utilize drill hole penetration rates to predict ball mill throughput. They combine a variety of
techniques, including neural networks, in their work. Young and Rogers [2] acknowledge
the important role stockpiles play in managing ore that is supplied to the mill, and the
industry’s struggle in understanding the grade distribution within the stockpiles. They
demonstrate that data from mine dispatch systems can be combined with traditional inter-
polation techniques to obtain the grade distribution of stockpiles. Olivier and Aldrich [3]
similarly show the value of combining simplicity with operational data. They extract
control rules from semi-autogenous grinding (SAG) mill operational data using decision
trees. In controlling the mill for power draw, the decision trees identify the same factors as
important as random forests.

In the field of mine planning, authors have either leveraged existing mine plans or
offered methods to improve mine plans. At a Mongolian mine, Sarantsatsral et al. [4] use
random forests to predict rock types in various mine planning scenarios. They determine
that rock types could be predicted relatively well for some mine planning scenarios. de
Carvalho and Dimitrakopoulos [5] improve real-time truck dispatch decisions by basing
them on a deep Q-learning reinforcement neural network model. The reinforcement
model is trained based on a continuous real-time discrete event simulation (DES) model,
which simulates short-term mine plans. Wilson et al. [6] utilize partial least squares (PLS)
regressions to model the geological uncertainty in oil-sands. They combine the PLS models
with DES methods to stabilize plant throughput, despite uncertainties in geology and
processing methods. Park et al. [7] leverage the Internet of Things to collect truck travel
times and environmental data from the transportation systems at a limestone mine. They
apply various machine learning models to identify when the transportation system suffered
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bottlenecks. The models are then used to anticipate problems in the transportation system,
aiding production planning.

Three diverse papers related to mining health and safety are included in this Special
Issue. Talebi et al. [8] explore the complex problem of mine operator fatigue using compu-
tational intelligence. The authors use a random forest model with operational technology
data and a PERCLOS fatigue monitoring system. The model identifies some interesting
leading indicators of fatigue found in operational technology. Many health and safety
management systems (HSMSs) are dependent upon qualitative/narrative datasets. Ganguli
et al. [9] explore using natural language processing (NLP) to contextualize these datasets.
The authors use large US-based MSHA datasets to train NLP models. These models can
then be used to improve the analysis of HSMS data at mine sites. Mining companies strive
to reduce risk to their operations and surrounding stakeholders. Chomacki et al. [10]
explore methods to improve the understating of mining impacts on local stakeholders.
Two models are created to assess risk to surface buildings from underground mining
units of operation. These tools will help manage the complex risks of mining impacts on
proximity stakeholders.

Five papers were included in the Special Issue that utilizes computational intelligence
tools to advance fundamental science in the areas of prospectivity mapping, rock/ore
classification, and rock fragmentation. First, Lachaud et al. [11] present a data-driven
mineral prospectivity model to identify areas with higher discovery potential. They use
existing geological datasets to train random forest machine learning models to improve
exploration decisions. Next, Sinaice et al. [12] present a model to help mining companies
more quickly classify rock masses using hyperspectral imaging, neighborhood component
analysis, and machine learning. By integrating these computational tools, the authors
present a rock mass classification model that can quickly and accurately predict geological
properties. Advanced imaging technologies are changing geological sampling and analysis.
Iwaszenko and Róg [13] provide an image analysis model to segment important geological
features of coal. The modeling can speed up the analysis, thereby influencing key mineral
processing decisions and earlier capturing valuable time and energy.

In addition to the image analysis discussed, Tungul et al. [14] provide an updated
approach to simplifying fragmentation analysis using smartphones and GNSS technology.
The authors showcase a methodology that can reduce the inherent error of GNSS. The
methodology can reduce the cost of fragmentation analysis and improve the speed of
analysis. This has the potential to allow smaller operations access to this critical mining
and mineral processing variable. Along the lines of rock fragmentation computational
intelligence, Dumakor-Dupey et al. [15] provide a review of computational intelligence and
blast-induced impacts. The authors explore various blast-impact empirical and machine
learning models. The paper provides a guide for future research in this area.

The editors are pleased with the results of the Special Issue and appreciate the contri-
butions of the authors, which include important contributions to computational intelligence
and operational excellence. In addition, the contributions to advancing fundamental science
in the mining domain will yield important results in the future. Digital transformation’s
benefits rest on computational intelligence and a culture of process change around analytics.
The mining and minerals industry, academia, and governments need to continue to invest
in research and development in this area. The research presented in this Special Issue is an
important, albeit small, contribution to this endeavor.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: With the increased use of digital technologies in the mining industry, the amount of centrally
stored production data is continuously growing. However, datasets in mines and processing plants
are not fully utilized to build links between extracted materials and metallurgical plant performances.
This article shows a case study at the Tropicana Gold mining complex that utilizes penetration rates
from blasthole drilling and measurements of the comminution circuit to construct a data-driven,
geometallurgical throughput prediction model of the ball mill. Several improvements over a previous
publication are shown. First, the recorded power draw, feed particle and product particle size are
newly considered. Second, a machine learning model in the form of a neural network is used and
compared to a linear model. The article also shows that hardness proportions perform 6.3% better than
averages of penetration rates for throughput prediction, underlining the importance of compositional
approaches for non-additive geometallurgical variables. When adding ball mill power and product
particle size, the prediction error (RMSE) decreases by another 10.6%. This result can only be achieved
with the neural network, whereas the linear regression shows improvements of 4.2%. Finally, it is
discussed how the throughput prediction model can be integrated into production scheduling.

Keywords: tactical geometallurgy; data analytics in mining; ball mill throughput; measurement
while drilling; non-additivity

1. Introduction

In recent years, the amount of collected and centrally stored production data in the
mining industry has increased massively with the implementation of digital technologies.
Some examples of centrally stored datasets in operating mines are records of fleet man-
agement systems [1], measurement while drilling (MWD) [2], measurements of material
characteristics using sensor techniques [3], and other key performance indicators at the
processing plants. While potentially all mine planning activities can benefit from the analy-
sis of production data (data analytics), interdisciplinary fields such as geometallurgy can
particularly gain from this growing data. Geometallurgy aims to capture the relationships
between spatially distributed rock characteristics and its metallurgical behavior when
the mined materials are processed and transformed into sellable products. One pertinent
part of geometallurgy is the optimization of comminution circuits and the prediction of
comminution performance indicators such as throughput in the mineral processing facili-
ties [4–6]. However, value is only added to the operation when the gained geometallurgical
knowledge is integrated into decision-making processes, whereas appropriate methods are
still mostly lacking for the tactical or short-term production planning horizon [7]. Another
current limitation is the cost-intensive sampling and laboratory testing of rock hardness
and grindability [8]. The present article shows a case study at the Tropicana Gold mining
complex that demonstrates how production data combined with machine learning can be
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used to construct a data-driven geometallurgical throughput prediction model and how
such a model can subsequently be utilized for short-term mine production scheduling.

The optimization of comminution circuits has traditionally relied on well-accepted
comminution laws and ore hardness and grindability indices for ball/rod mills [9,10] and
SAG mills [11–13]. These comminution models are routinely used for optimized grinding
circuit design, using averages or ranges of ore hardness tests of the mineral deposits to be
extracted. Instead of using constant values representing whole deposits, geometallurgical
programs account for the heterogeneity of geometallurgical variables within the mineral
reserve and their effect on downstream processes over time [14]. A typical geometallurgical
workflow includes a spatial model, which comprises geostatistically simulated or estimated
variables (e.g., grindability). Several case studies have demonstrated how throughput rates
of a comminution circuit can be predicted using spatial geometallurgical models of hardness
and grindability indices in combination with comminution theory [15–18]. Although
some of these throughput models have demonstrated high accuracy in reconciliation
studies, there are notable challenges when using and integrating them into decision-making
processes such as short-term production scheduling. First, the geometallurgical sampling
program requires cost-intensive laboratory testing to obtain the abovementioned hardness
and grindability indices [8,13]. The high associated costs spent in early project stages can be
prohibitively large and typically result in very sparse sampling, although research is being
conducted to increase the number of samples by using alternate data measurement tools
and small-scale processing tests [19]. Second, the throughput prediction models are built
to evaluate the weekly or monthly performance of mine production schedules a posteriori,
instead of integrating them into short-term production scheduling. Third, none of the
models account for the inherent uncertainty of the geometallurgical variables stemming
from the imperfect knowledge of the orebody.

There have been efforts to incorporate geometallurgical hardness properties and
their associated geological uncertainty into mine production scheduling in single, open-pit
mines [20] and in mining complexes [21]. The stochastic optimization models are developed
for long-term production scheduling and require that hardness and grindability indices are
geostatistically simulated for volumes of selective mining units (mining block). However,
most of the frequently utilized hardness and grindability indices are non-additive [13,22,23].
Geometallurgical samples are also collected on large support scales [24,25] and are typically
very sparse, as mentioned earlier. These complicating factors make the joint spatial interpo-
lation of geometallurgical variables and their change of support from point measurements
to mining blocks challenging [25–28]. Morales et al. [20] optimize the mine production
schedule using precalculated mill throughputs and economic values for each block inde-
pendently. The method thus ignores that extracted materials are blended in stockpiles and
in processing facilities; consequently, the non-additive comminution behavior of blended
materials and resulting metal production cannot be correctly assessed. Kumar and Dimi-
trakopoulos [29] optimize a mining complex while including predefined ratios of hard and
soft rock, to achieve a consistent throughput in processing streams. However, these ratios
are defined arbitrarily, and details of short-term planning are not addressed.

Both and Dimitrakopoulos [30] present a new approach that integrates a geometallur-
gical throughput prediction model into short-term stochastic production scheduling for
mining complexes. The stochastic production-scheduling formulation builds upon simul-
taneous stochastic optimization of mining complexes [31,32] which optimizes pertinent
components of a mining complex in a single mathematical model and incorporates geolog-
ical uncertainty to minimize technical risk. Instead of using block throughput rates, the
production-scheduling formulation calculates the throughput of blended materials using
an empirically created throughput prediction model, learning from previously observed
throughput rates at the ball mill [30]. One limitation of this work is that the integrated
throughput prediction model so far has only considered rock hardness, density, lithology,
and weathering degree of the mineral reserve. This ignores that mill throughput rates also
depend on operating factors of the processing plant, such as power draw, utilization rates,
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and particle size distributions. Second, a multiple linear regression (MLR) has been used
for throughput predictions, which is unable to capture potential nonlinear relationships
among input variables and geometallurgical response.

The case study at the Tropicana Gold mining complex shown in this article expands
the method presented in Both and Dimitrakopoulos [30] in multiple ways. First, the
recorded plant measurements power draw, feed particle size, and product particle size
of the ball mill are newly considered to improve the prediction of ball mill throughput
rates. Second, a more powerful supervised learning method in the form of an artificial
neural network is tested and compared to MLR, since the addition of the new comminution-
related features increases the possibilities of nonlinear interactions between predictive and
response variables. The plant measurements, including the observed ball mill throughput,
are retrieved from the comminution circuit at the Tropicana Gold mining complex. The
other dataset used in this case study to predict ball mill throughput comprises penetration
rates from measurement while drilling (MWD). The use of this dataset is motivated by its
ability to indicate the strength and hardness of the intact rock [2,33,34]. The penetration
rates are converted into a set of hardness proportions per selective mining unit (SMU) which
has recently been proposed to build a link between intact rock hardness and comminution
performance of the rock in milling and grinding circuits [30]. The present article also
compares the prediction capabilities of hardness proportions to averages of penetration
rates. In this way, the effect of ignoring non-additivity of hardness-related geometallurgical
variables can be quantified, an issue that has had little attention in the literature thus far.

In the following sections, the components of the Tropicana Gold mining complex are
introduced first, together with all utilized production data that are used for the prediction of
ball mill throughput. The supervised machine learning model is discussed next, including
a statistical analysis of the present dataset and a hyperparameter calibration. Analysis of
results, discussion, and conclusions follow.

2. The Tropicana Gold Mining Complex and Utilized Production Data for Ball Mill
Throughput Prediction

The Tropicana Gold mining complex is located in western Australia in the west of the
Great Victoria Desert. The gold deposit is mined from four pits, Boston Shaker, Tropicana,
Havana, and Havana South (from north to south), as can be seen in the aerial view in
Figure 1. In addition, the mining complex contains a processing plant, stockpiles, a tailings
facility, and multiple waste dumps. Gold is produced onsite in a single processing stream,
consisting of a comminution circuit and a carbon-in-leach (CIL) plant.
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The displayed dataset in the four pits in Figure 1 shows the drilling rate of penetration
(ROP) from production drilling (blastholes), which is part of the measurement while
drilling (MWD) dataset collected at the Tropicana Gold mining complex. It is clearly visible
how ROP reflects the heterogeneity of the rock and decreases with depth. Exemplary,
easy-to-drill (softer) rock is found towards the surface (red colors at Havana South Pit
and Boston Shaker Pit), whereas difficult-to-drill (harder) rock is located deeper in the
pits (green–blue colors in Havana Pit, Tropicana Pit, and deeper cutback of Boston Shaker
Pit). Both and Dimitrakopoulos [30] demonstrate strong correlations between the rate of
penetration (ROP) of drilled rock and ball mill throughput when these rock parcels are
sent to the processing plant. They subsequently present a method that predicts ball mill
throughput using ROP. This article extends this work by utilizing additional measurements
in the processing plant related to ball mill throughput.

The relevant material flow in the mining complex is shown together with all utilized
production data in Figure 2. Detailed material tracking in daily intervals is performed
using truck cycle data, starting from the material extraction in the pits and ending at the
crusher. Crucially, material tracking includes all dumping and rehandling activities at
run-of-mine (ROM) stockpiles, since rehandled material accounts for 80–90% of processed
ore in the Tropicana Gold mining complex. In this way, ROP entries recorded in the pits
can be successfully linked to observed measurements in the processing plant, including
the observed throughput of the ball mill. Details of successful implementations of ma-
terial tracking that include stockpiles can be found in Wambeke et al. [35] and Both and
Dimitrakopoulos [30].
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Figure 2. Material flow and utilized production data for ball mill throughput prediction in the
Tropicana Gold mining complex.

The comminution circuit at Tropicana Gold mining complex comprises three stages:
crushing (primary and secondary crusher), grinding (high-pressure grinding roll, HPGR),
and milling (ball mill). The cyclone overflow is sent to the CIL plant to extract the gold. The
recorded average power draw of the ball mill and the particle size distributions entering
and leaving the ball mill are of particular interest for throughput prediction. Note that the
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feed and product particle size distributions are subsequently defined by their 80% passing
diameters in µm. The feed particle size measurements (F80) are performed using image
analyzers on the conveyor belt of the HPGR product. Shift composites of cyclone overflow
samples are used for product particle size measurements (P80).

The relevance of all presented measurements above can be derived from comminution
theory, such as Bond’s law of comminution [9,10]. The Bond equation (Equation (1))
calculates the specific energy of the ball mill (W in kWh/t) required to grind the ore from a
known feed size (F80) to a required product size (P80).

W = Wi ∗
(

10√
P80
− 10√

F80

)
(1)

The Work index (Wi in kWh/t) is a measure of the ore’s resistance to crushing and
grinding [9]. In this article, it is useful to substitute the specific energy of the ball mill
(energy delivered per ton of ore in kWh/t) by the quotient of mill power draw (kW) and
mill throughput (processed tons per operating hour), as shown in Equation (2).

Power
TPH

= Wi ∗
(

10√
P80
− 10√

F80

)
(2)

Equation (3) is obtained by rearranging Equation (2) for ball mill throughput (TPH).

TPH =
Power

Wi ∗
(

10√
P80
− 10√

F80

) (3)

Next to the measured power draw and particle size distributions, it is clear that
throughput predictions of the ball mill must include some kind of information about ore
hardness. Generally, the harder the material, the higher its resistance against comminution,
thus needing to reside longer in the ball mill to reach the desired product size, given con-
stant power draw and particle feed size. In Bond’s equation, TPH is inversely proportional
to Wi, as shown in Equation (4).

TPH ∝
1

Wi
(4)

As introduced above, the role of informing ore hardness is taken over by ROP mea-
surements in this article. By utilizing cost-effective and easily accessible production data
(MWD information generated by drilling machines), costly and time-consuming laboratory
tests spent for Wi estimates of the geological reserve can be replaced. Mwanga et al. [8]
report that the typical sample volume required for Bond tests is relatively large (2–10 kg,
depending on test modification), and requires crushed ore smaller than 3.35 mm (passing a
6-mesh sieve). Furthermore, several grinding cycles are necessary to reach the steady state
of the simulated closed circuit. The alternative utilization of ROP is especially promising as
a substitute for Wi because of its demonstrated ability to indicate rock type, strength, and
alteration [34,36–38]. In general, high ROP (in m/h) indicates less competent rock, bearing
lower Wi. In turn, TPH is expected to increase, as shown in Equation (5).

ROP
(m

h

)
↗ =⇒ Wi

(
kWh

t

)
↘ =⇒ TPH ↗ (5)

Note that the dependencies in Equation (5) may be nonlinear. Rather, potentially
nonlinear dependencies call for more sophisticated prediction models for TPH prediction,
which are subsequently discussed in Section 3.

3. Application of Supervised Machine Learning for Throughput Prediction

This section discusses the use of supervised machine learning to create a throughput-
prediction model at the Tropicana Gold mining complex. Supervised machine learning
models require labelled datasets for training, consisting of data pairs {xi, yi}, i = 1, . . . , N,

9
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whereas xi is a vector of predictor variables, and yi is the known response. In this article,
the known response (label) is the observed ball mill throughput, and the M predictor
variables (features) comprise of the geological attributes of the ore and measured variables
in the comminution circuit. Throughput responses are recorded on a continuous scale,
rendering the supervised learning problem a regression task (yi ∈ R ).

3.1. Neural Networks

A feed-forward neural network is chosen as a supervised learning model for the
potentially nonlinear task of ball mill throughput prediction. In its essence, feed-forward
neural networks are fully connected, layered combinations of neurons that find their
origins in the perceptron model [39]. A single neuron (perceptron) calculates the inner
product between its internal weight vector, wT , and the input vector, x. After adding a
bias term, b ∈ R, the resulting value is passed through a nonlinear activation function,
g( · ), creating a scalar output z = g

(
wT x + b

)
. Several connected neurons to x form the

so-called first hidden layer of the neural network. If the outputs of the first hidden layer
are passed through another layer of neurons, a multilayer neural network is built [40]. The
output layer comprises a single neuron that receives as input the vector of hidden outputs,
z and provides an estimate, ŷ ∈ R. Neural networks are the method of choice in this
article because they have the proven advantage of being capable of approximating every
arbitrary function using either one hidden layer of exponentially many neurons, or multiple
consecutive neural layers consisting of fewer neurons [41]. This gives neural networks
theoretical advantages over linear prediction models, such as multiple linear regression,
which has been tested in previous work for throughput prediction [30]. Univariate statistics
and correlations in the present dataset, including potential nonlinearities, are discussed
next, followed by the discussion of the utilized neural network architecture, and tuning of
its hyperparameters.

3.2. Dataset and Statistical Analysis

The dataset for throughput prediction contains the hardness-related rate of penetration
(ROP) of the ore, which has been tracked in the Tropicana Gold mining complex, as
presented in Figure 2. The power draw, F80, and P80 measurements, as well as a ball mill
utilization factor reflecting ball mill up- and down-time, are also included. A 7-day moving
average of the data is calculated for an observed time horizon of six months (February–
August 2018), which reduces noise in the dataset and helps recognize trends of higher and
lower throughput rates that are more likely connected to rock properties of the material
processed. In the six-month interval, extraction mainly occurs in two pits, the Tropicana
and Havana Pit, and material is continuously stockpiled at the ROM stockpiles. Univariate
statistics of the predictive variables and the response variable (throughput) are shown
in Table 1.

Table 1. Univariate statistics of predictive variables (features) and ball mill throughput (response).

Average
ROP (m/h)

Ball Mill
Power (kW)

Ball Mill
Utilization (%) P80 (µm) F80 (mm) Ball Mill

Throughput (t/op.h)

Minimum 35.0 9996 0.7 76.5 10.3 796.4

Mean 41.4 13,002 1.0 83.3 13.1 926.5

Maximum 53.6 13,435 1.0 93.2 15.0 1007.9

Std. Dev. 3.45 685.9 0.052 3.12 1.00 34.8

Coeff. of Var.
(CV) 0.083 0.053 0.053 0.037 0.077 0.038

Skewness 0.88 −3.01 −3.03 0.57 −0.36 −1.07

Kurtosis 1.20 9.26 9.30 0.94 −0.13 3.05

Count 181 181 181 176 153 181
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Table 2 shows linear correlations between pertinent features and observed TPH using
Pearson’s correlation coefficient, in Equation (6) below, with xi and yi representing individ-
ual sample points and x, y indicating sample means. Note that correlations in Table 2 can
be inflated because they are calculated after applying the moving average.

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∗

√
∑n

i=1(yi − y)2
(6)

Table 2. Pearson’s correlation coefficient between predictor variables (geological, comminution-related) and ball
mill throughput.

No. Category Feature Unit Pearson’s Correlation Coefficient
to Ball Mill Throughput

A1 Ore hardness using average
pen-rate values Average ROP (m/h) 0.44

B1 (Harder material) <26 m/h (%) −0.274

B2

Ore hardness expressed by
proportions of

penetration rate
intervals

26–29 m/h (%) −0.370
B3 29–32 m/h (%) −0.525
B4 32–35 m/h (%) −0.361
B5 35–38 m/h (%) −0.416
B6 38–42 m/h (%) −0.318
B7 42–46 m/h (%) 0.028
B8 46–53 m/h (%) 0.356
B9 53–62 m/h (%) 0.386

B10 (Softer Material) >62 m/h (%) 0.498

C1

Measurements in the
comminution circuit

Feed size F80 (mm) 0.046

C2 Product size P80 (µm) 0.063

C3 Power (kW) 0.382

C4 Mill Utilization (%) 0.374

The tracked ROP entries are henceforth used in two different ways to inform material
hardness. The feature ‘Average ROP’ comprises weighted averages of continuous ROP
values linked to the materials that are transported to the crusher in the same observed time
interval. In contrast, Both and Dimitrakopoulos [30] propose a compositional approach,
which partitions ROP into easier-to-drill (softer rock) and difficult-to-drill (harder rock)
categories, using a set of ROP intervals. The split in multiple intervals results in proportions
of harder or softer materials sent to the comminution circuit in a given time interval. A
detailed explanation of how to calculate these hardness proportions is given in Both and
Dimitrakopoulos [30]. The listed features in Table 2 can broadly be distinguished into
three categories, whereas the first two categories are related to ore hardness. Average
ROP comprises the first category (A1), and hardness proportions built by intervals of
penetration rates comprise the second category (B1–B10). The third feature category reflects
measurements at the comminution circuit (C1–C4).

By comparing the Pearson correlation coefficients in Table 2, it can be seen that
some variables correlate more strongly with TPH, whereas other variables do not. A
stronger positive correlation of TPH for ‘Average ROP’ (in m/h) gives the first evidence
of the usefulness of this feature (A1). The compositional approach effectively partitions
the distribution of penetration rates into multiple hardness categories. Here, a higher
percentage of difficult-to-penetrate material in the processed ore blend (B1–B6) indicates
harder material, thus lowering TPH, which is confirmed by the negative correlation in
Table 2. Conversely, a higher fraction of easier-to-penetrate material in the blend is expected
to increase TPH, which is equally confirmed in Table 2 through positive correlations of
categories B8–B10. Interestingly, some hardness categories show a stronger correlation
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(positive and negative) than the average ROP feature (A1). This indicates that additional
information may be conveyed through the creation of hardness categories. The prediction
potential of average penetration rates and hardness proportions is compared in detail
in Section 4.1.

According to Equation (5), the relationship between ball mill power and TPH is
directly proportional. This theoretical relationship is empirically well reflected in Table 2,
showing a stronger positive correlation between ball mill power (C3) and TPH. The power
measurements thus comprise an important part of throughput prediction, subsequently
performed in Section 4 of this article. Although the ball mill utilization (C4) is not part of
Bond’s equation, it is not surprising to see a stronger correlation to TPH. Events of planned
and unplanned ball mill downtime, i.e., utilization < 100 percent, ramp-up and ramp-down
processes, are among the effects that also lower the effective throughput per operating hour.
A redundancy between ball mill utilization and ball mill power is observed, confirmed by
similar statistics of power and utilization in Table 1, which explains similar correlation in
Table 2. Relationships between TPH and particle sizes of the ore that result from Bond’s
law (Equation (1)) are shown in Equations (7) and (8).

P80 ↗ =⇒ TPH ↗ (7)

F80 ↘ =⇒ TPH ↗ (8)

On the one hand, a coarser product particle size (larger P80 value) results in higher
TPH (Equation (7)), given that ore characteristics, energy input and feed particle size stay
the same. On the other hand, a finer-grained feed size (smaller F80 value) can also lead to an
increased TPH because less grinding work needs to be applied to reach the desired product
size (Equation (8)). In the present dataset, the particle size measurements (C1–C2) show
very little correlation in Table 2. This can be for several reasons. Contrary to power draw,
the relationships in Equations (7) and (8) are nonlinear, and the particle size measurements
are incomplete for some periods, as indicated in Table 1. Additionally, one must consider
that particle size measurements over running belts are error-prone, especially when using
image analyzers for F80. It is analyzed in Section 4 whether particle size measurements
can enhance throughput prediction in practice. Note that all comminution variables are
scaled before usage by dividing by their maximum value. Compositional data naturally
comprises fractional values in [0,1] and thus does not have to be scaled.

3.3. Network Architecture and Hyperparameter Search

In its implementation, the architecture of a feed-forward neural network requires
the calibration of several hyperparameters. The hyperparameter setting is relevant to
the evaluation process and robustness of the approach. Therefore, it becomes obvious
to explore the hyperparameter space in order to find a stable region of this space [42].
However, due to the small size of the dataset (181 data points) and the need to test on
the entire horizon (181 days) to extrapolate the overall performance of the proposed
approach, the dataset cannot be split. Instead, k-fold cross-validation is used to measure
the configuration quality, thus minimizing the information loss [43]. Different periods
are used for different folds (20 folds) to simulate the more realistic scenario where a
prediction is made over a new period. The network architecture is implemented in Python
using the scikit-learn package [44]. The squared error between the observed throughput,
yi, i = 1, . . . , N, and predicted throughput, ŷi, i = 1, . . . , N, is chosen as the loss function to
be minimized during training, and the rectified linear unit is chosen as activation function.
The quasi-Newtonian L-BFGS algorithm [45] is used to minimize the loss function, which
proved to converge more quickly on the small dataset compared to stochastic gradient
methods. Finally, the root-mean-squared error (RMSE) is used for comparisons.

Early stopping of training is important to prevent overfitting in neural networks,
and therefore, the number of training iterations is a hyperparameter that needs to be
calibrated [46]. It was found that the validation error was minimal after five iterations.
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L2 regularization was tested but did not significantly increase generalization potential in
this application.

Number of Layers and Neurons

Figure 3 shows a sensitivity analysis of the number of neurons for two selected feature
sets. In Figure 3a, only hardness-related features are used, whereas Figure 3b includes
more features. Given the stochastic processes involved during training, each network
configuration is repeated 20 times using random initializations of weights. This procedure
results in a sample of errors that are shown by boxplots.

Minerals 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

more features. Given the stochastic processes involved during training, each network con-

figuration is repeated 20 times using random initializations of weights. This procedure 

results in a sample of errors that are shown by boxplots. 

 

Figure 3. Comparison of the number of neurons for two selected feature sets: (a) hardness proportions and (b) hardness 

proportions, ball mill power and product particle size (P80). 

Figure 3 shows that the average error and error variance reduce for both feature sets 

as the number of neurons increases. A plateau is reached at 25 to 30 neurons. This is ex-

pected since a too small number of neurons is not able to adequately map the underlying 

function. Note that this behavior can be observed independently of the number of layers. 

Two fully connected hidden layers are used in Figure 3a, whereas a single connected hid-

den layer was used for the sensitivity analysis in Figure 3b. For the best choice of layers, 

another sensitivity analysis is performed by varying the number of hidden layers from 

one to four. Figure 4 shows the results performed on the same selected feature sets. 

 

Figure 4. Comparison of the number of hidden layers for two selected feature sets: (a) hardness proportions and (b) hard-

ness proportions, ball mill power and product particle size (P80). 

Figure 4 indicates that one hidden layer delivers the most stable results on all tested 

feature sets. Although the addition of more layers can reduce the error in individual runs, 

as seen in Figure 4a, the network appears more prone to overfitting and the error variance 

increases. For larger feature sets (Figure 4b), overfitting appears to be exacerbated the 

more layers are used. The obtained results demonstrate the strength of parsimony of pa-

rameters (POP), as the model with the smallest size (i.e., one hidden layer) performs best. 

  

Figure 3. Comparison of the number of neurons for two selected feature sets: (a) hardness proportions and (b) hardness
proportions, ball mill power and product particle size (P80).

Figure 3 shows that the average error and error variance reduce for both feature sets as
the number of neurons increases. A plateau is reached at 25 to 30 neurons. This is expected
since a too small number of neurons is not able to adequately map the underlying function.
Note that this behavior can be observed independently of the number of layers. Two fully
connected hidden layers are used in Figure 3a, whereas a single connected hidden layer
was used for the sensitivity analysis in Figure 3b. For the best choice of layers, another
sensitivity analysis is performed by varying the number of hidden layers from one to four.
Figure 4 shows the results performed on the same selected feature sets.
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Figure 4. Comparison of the number of hidden layers for two selected feature sets: (a) hardness proportions and (b)
hardness proportions, ball mill power and product particle size (P80).

Figure 4 indicates that one hidden layer delivers the most stable results on all tested
feature sets. Although the addition of more layers can reduce the error in individual runs,
as seen in Figure 4a, the network appears more prone to overfitting and the error variance
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increases. For larger feature sets (Figure 4b), overfitting appears to be exacerbated the more
layers are used. The obtained results demonstrate the strength of parsimony of parameters
(POP), as the model with the smallest size (i.e., one hidden layer) performs best.

4. Results and Analysis

Section 4 is subdivided into two separate parts that aim to analyze the effects of
different feature sets on throughput prediction, and then benchmark the presented neu-
ral network against a multiple regression model. Section 4.1 addresses the prediction
of ball mill throughput using hardness-related variables only. In Section 4.2, pertinent
comminution variables are added individually, and their effect on throughput prediction
is evaluated.

4.1. Hardness-Related Variables (Effect of Non-Additivity)

This subsection aims to answer how different ways of informing about the hardness
and grindability of the geological reserve using penetration rates from blasthole drilling
perform for throughput prediction. Specifically, the prediction potential of the average rate
of penetration (ROP) is compared to the prediction behavior of hardness proportions cre-
ated using penetration rate intervals. Figure 5a shows a graphical comparison of ball mill
throughput (left axis) and average ROP of the processed ore (right axis). Figure 5b,c illus-
trates the evolution in time of two distinct hardness proportions compared to throughput,
and are discussed subsequently.

It can be seen in Figure 5a that average ROP follows ball mill throughput well in
many periods of the observed time horizon. Together with the strong positive correlation
reported in Table 2, the similar behavior of both variables in Figure 5a confirms the hy-
pothesis that penetration rates recorded by drilling machines can contribute to informing
the comminution performance and grindability of the processed ore. Next, this feature
is tested using 20-fold cross-validation. The performance of average ROP as a single
feature for throughput prediction is shown in Figure 6a (neural network) and Figure 6b
(multiple regression).

When comparing Figure 6a,b, there appears to be no obvious advantages of the neural
network compared to multiple regression, which can be explained by the fact that only one
single feature is used. Although following the general trends of throughput in most of the
observed time intervals, the results reveal weaknesses in predicting the right magnitudes
of low and high throughputs. A possible explanation for this weakness can be found
when considering penetration rates as a non-additive variable. Non-additivity is present if
linear averages of a variable, for instance penetration rates of two separate rock entities,
are different from the expected value of the combined (blended) sample. Thus, taking
mathematical averages can be detrimental to such variables. Other well-known examples
are metal recovery [47] and other variables representing product quality [48].

In fact, the feature ‘average ROP’ has gone through an averaging process twice.
First, penetration rates are averaged within a mining block when changing the support
from simulated grid nodes (point support) to mineable volumes (SMU) to reflect mine
selectivity. This standard process is only innocuous for additive variables such as metal
grades (at constant density). Second, a weighted average by tonnage of each truckload
is calculated per day, accounting for all sources of material that are blended. For the
alternative feature set of hardness proportions, penetration rates in point support are
split into several categories using penetration rate intervals. This procedure avoids the
averaging of harder and softer parts within the geological reserve. Instead, proportions of
softer and harder material are preserved in the ore blends that are processed in the mill
(compositional approach). A discussion of how to build hardness proportions and how
many hardness categories are needed can be found in Both and Dimitrakopoulos [30].

Figure 5b,c illustrates the evolution of two distinct hardness proportions compared
to TPH. Figure 5b shows the proportions of soft material arriving at the mill, informed
by the percentage of high penetration rates (greater than 62 m/h) in the ore blend. Here,
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higher throughputs are expected to occur when more of this soft material arrives at the mill.
Indeed, large proportions of softer material in Figure 5b coincide with high mill throughput,
which is most visible for days 1–10 as well as for days 170–181 of the observed period.
Figure 5c shows the proportions of harder material, which is reflected by penetration
rates that fall in the interval of 29 to 32 m/h. Larger proportions of this material category
should have a negative effect on throughput. Interestingly, Figure 5c shows that the
lowest mill throughput (days 128–133) coincides with the peaking of the fractions of harder
material. Conversely, the highest throughput is achieved when the proportions of this
harder-to-penetrate material are the smallest.
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Figure 5. Moving average of ball mill throughput compared to moving average of (a) average rate of
penetration (ROP), (b) proportions of softer material (high penetration rates in the interval >62 m/h),
and (c) proportions of harder material (low penetration rates falling in the interval of 29–32 m/h).
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The performance of hardness proportions for throughput prediction is shown in
Figure 6c (neural network) and Figure 6d (multiple regression). The highs and lows of
throughput are more closely predicted, leading to a reduction in the prediction error by
6.3% for both prediction models. This indicates that classification into hardness proportions
is advantageous over using a single, continuous hardness variable. The difference between
the neural network and the multiple regression model is relatively small.

4.2. Effect of Comminution Variables on Prediction

Several comminution variables were identified as potential candidates to improve
throughput prediction in Sections 2 and 3. In this subsection, the hardness feature set
comprising hardness categories is enhanced by one additional comminution variable at
a time. To analyze the effects of the neural network, a comparison to a multiple linear
regression model is provided for each experiment.

4.2.1. Ball Mill Power

The ball mill power measurements showed the potential to improve the prediction of
ball mill throughput due to its proportional relationship to TPH in Bond’s law (Equation (1))
and its strong correlation in the present dataset shown in Table 2. Figure 7a shows a
graphical comparison between the daily average power draw of the ball mill and TPH.
Power draw stays mostly constant for the observed time horizon, including some distinctive
drops in power in the second half of the observed time horizon. These power drops tend
to occur at times when the mill throughput decreases as well. It is thus not surprising
that adding ball mill power as a feature for throughput prediction especially enhances the
periods of sharp throughput decrease, as shown in Figure 8a.
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Figure 8. Ball mill throughput prediction (20-fold cross-validation) using as additional features:
(a) ball mill power (NN), (b) ball mill power (MLR), (c) feed particle sizes (NN), (d) feed particle
sizes (MLR) (e) product particle sizes (NN), (f) product particle sizes (MLR) (g) power and P80 (NN),
(h) power and P80 (MLR)–RSME is compared in brackets to respective model predictions (neural
network/multiple regression) using hardness features only.

By comparing the predictive performance of the neural network (NN) with the perfor-
mance of the multiple linear regression model (MLR) in Figure 8b, the superiority of the
neural network becomes apparent. MLR overestimates the influence of ball mill power,
seen in the sharp decrease in days 120–125. The neural network predicts closer to the
true throughput, which can be noticed visually and statistically. Compared to the sole
utilization of hardness proportions (Section 4.1), the RMSE decreases by 5.3% when using
the neural network, whereas the error for MLR rises by 1.5%.

4.2.2. Particle Sizes

Compared to ball mill power measurements, particle size measurements indicate a
low empirical correlation in the present dataset between particle sizes and TPH (Table 2).
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The theoretical relations to throughput (Equations (5), (8) and (9)) cannot be confirmed by
visual analysis in Figure 7b,c alone. The graphs also show a large amount of missing data,
especially for feed particle size (F80) measurements. No visible trends are recognizable.

By comparing the prediction behavior when adding particle sizes in Figure 8c–f, the
following conclusions may be drawn. Adding F80 measurements seems to not signifi-
cantly enhance throughput prediction in this case study since the RMSE decreases only
marginally when using the NN (−0.6%, Figure 8c) and increases when using MLR (+1.4%,
Figure 8d). The addition of product size measurements (P80) seems to have a positive
effect on throughput prediction in this case study, which is noticeable for both prediction
models. However, the NN prediction error (−6.5%) in Figure 8e reduces notably more
than the MLR prediction error (−3.0%) in Figure 8f, showing the superiority of the NN
when dealing with nonlinear features. The biggest gain in prediction accuracy can be
obtained when using both well-performing features, power draw and P80, together. Here,
the strengths of the neural network become most apparent, showing the lowest error in
Figure 8g and a 10.6% error reduction compared to ore hardness only. The MLR also shows
the lowest recorded error (−4.2%, Figure 8h), but the error decreases much less than the
NN. To summarize, the more features are added, the better their interdependencies can be
interpreted by NN.

5. Discussion

Next to the superior performance of hardness proportions combined with power
draw and product size measurements, the results obtained above show that the use of
neural networks can decrease the ball mill throughput-prediction error compared to using
multiple regression. Short-term decision making, such as short-term mine production
scheduling, can benefit from the demonstrated improvements in throughput prediction
presented in this article. A conventional short-term production schedule for the Tropicana
Gold mining complex is shown in Figure 9.
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Figure 9. Example of a monthly short-term production schedule in the Tropicana Gold mining complex.

As can be seen in Figure 9, short-term extraction can take place in multiple pits and
different mining areas within the pits in the same period of extraction, leading to blended
material streams at the processing plant(s). As a recent development in short-term mine
planning, the incorporation of a geometallurgical throughput-prediction model into short-
term production scheduling has been demonstrated in Both and Dimitrakopoulos [30].
Instead of building predefined throughput estimates per mining block, the authors predict
the ball mill throughput of blended materials using a multiple regression model, and
use these predictions for short-term production scheduling in a stochastic optimization
model. Figure 10 illustrates how the trained neural network in this article, together with

19



Minerals 2021, 11, 1257

comminution variables at the ball mill, can replace the multiple regression model for
production scheduling optimization.
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Figure 10. Comparison of models for ball mill throughput prediction and integration into short-term
production scheduling.

The stochastic constraint shown in Figure 10 ensures that for every period and simu-
lated orebody scenario, the scheduled ore tonnage equals the tonnage resulting from the
predicted hourly throughput and available mill hours. The deviation variables, d+,t,s and
d−,t,s, penalize deviations between the scheduled tonnage and realizable mill tonnage in the
objective function of the mathematical program, which is discussed in detail in Both and
Dimitrakopoulos [30]. The hardness proportions serving as input to the neural network
represent the weighted hardness proportions of the materials to be scheduled together in a
single short-term period. Furthermore, the planned power draw, as well as the planned
feed and product particle sizes for the future scheduled materials, can now serve as input
to the production scheduling optimization, since the neural network has been trained on
these attributes. Note that nonlinear production-scheduling formulations combined with a
metaheuristic solution method, such as simulated annealing, can handle these internal non-
linear computations in the optimization process, which have been developed for long-term
and short-term planning [31,49].

6. Conclusions

This article shows a case study at the Tropicana Gold mining complex that demon-
strates improvements of a geometallurgical throughput-prediction model using collected
production data in mines and processing plants, combined with supervised machine learn-
ing. The key improvements over a previous publication are: (i) including and testing the
influence of measurements in the comminution circuit that likely affect ball mill throughput
rates in a nonlinear way, (ii) utilizing a supervised learning model in the form of a neural
network to approximate nonlinear relationships between predictor and response variables,
and (iii) testing if compositional approaches can account for non-additive geometallurgical
variables better than average-type information. Finally, recommendations are given on
how to integrate the prediction model into short-term production scheduling.

Results show that adding ball mill power draw and product particle size measure-
ments can decrease the prediction error of throughput by 10.6% compared to throughput
prediction using geological hardness variables only. This result can only be achieved with
the trained neural network, whereas the linear regression model shows improvements
of up to 4.2%. Available feed size measurements in the presented case study appear too

20



Minerals 2021, 11, 1257

imprecise to positively affect the throughput prediction. A neural network structure of one
hidden layer comprising 30 neurons delivers the most stable predictions and shows the
lowest error variance. However, the advantages of the neural network are partly offset by
the more time-intensive hyperparameter search compared to the linear model, which is
easy to apply and shows comparative performance in some cases.

Finally, hardness proportions decrease the prediction error compared to the use of
averages of penetration rates. This underlines the importance of compositional approaches
for non-additive geometallurgical variables. A key takeaway is that the shown composi-
tional approach is not limited to ore hardness variables. Instead, it is conceivable to utilize
compositional approaches for other non-additive (geometallurgical) variables as well.

Future work aims to create more data-driven prediction models of metallurgical re-
sponses in mining complexes using production data generated in the mines and processing
plants. Next to the demonstrated prediction of comminution performance, the data-driven
prediction of metal recovery, consumption of reagents, and other revenue and cost factors
should be considered. The integration of these prediction models into decision-making pro-
cesses, such as short-term production scheduling, is pertinent for meeting key production
targets in mineral value chains.
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Abstract: The frequent best practice for managing large low-grade run-of-mine (ROM) stockpiles
is to average the entire stockpile to only one grade. Modern ore control and mineral processing
procedures need better precision. Low-precision models hinder the ability to create a digital mine-
to-mill model and optimize the holistic mining process. Prior to processing, poorly characterized
stockpiles are often drilled and sampled, despite there being no geological reason for relationships
between samples to exist. Stockpile management is also influenced by reserve accounting and lacks a
common operational workflow. This paper provides a review of base and precious metal run-of-mine
(ROM) pre-crusher stockpiles in the mining industry, and demonstrates how to build a spatial model
of a large long-term stockpile using fleet management system (FMS) data and geostatistical code in
Python and R Studio. We demonstrate a framework for modelling a stockpile believed to be readily
workable for most modern mines through use of established geostatistical modelling techniques
applied to the type of data generated in a FMS. In the method presented, each bench of the stockpile
is modeled as its own geological domain. Size of dump loads is assumed to contain the same volume
of material and grade values that match those of the grade data tracked in the FMS. Despite the
limitations of these inputs, existing interpolation techniques can lead to increased understanding of
the grade distribution within stockpiles. Using the framework demonstrated in this paper, engineers
and stockpile managers will be able to leverage operational data into valuable insight for empowered
decision making and smoother operations.

Keywords: stockpiles; operational data; mine-to-mill; geostatistics; ore control; mine optimization

1. Introduction
1.1. Objective

As mines are depleted and average global ore grades decline, the desire for an im-
proved working model for stockpile management is likely to grow [1]. Fortunately, digiti-
zation efforts have increased throughout the mining industry in recent years, and there
is already pressure for mining companies to make use of their new data [2]. Stockpiles
are composed of not just valuable material, but also valuable and often misunderstood
data, which makes them prime targets for the benefits of digital innovation [3]. This paper
provides a review of base and precious metal run-of-mine (ROM) pre-crusher stockpiles in
the mining industry, and demonstrates how to build a spatial model of a large long-term
stockpile using fleet management system (FMS) data and geostatistical code in Python and
R Studio.

1.2. Background

Early base and precious metal mining endeavored to extract the richest ores available.
In this scenario, miners would send rich ore directly to milling facilities. With the advent
of industrial mining during the 19th century, partly due to Watt and the steam engine [4],
mines scaled up into large tonnage operations capable of processing large tonnages of ore.
For the first time, low-grade ores could be mined profitably [5]. As a result of these larger
mines, the need for stockpiling gradually grew until they were justified to be economically
advantageous over the course of a mine life [6–8].
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According to Yi [7], the initial work around cut-off grades began in the 1960s and incorpo-
rated stockpiles in the 1980s [9]. These works determined that a stockpile will be required for
any case in which a mine plans to change cut-off grade over the course of its life. Presently,
the stockpiling of ore has become an integral part of mine planning [10,11]. Effective mine
planning requires a detailed understanding of the ore deposit. This understanding is then
leveraged into a production strategy that considers both the current mining environment
as well as predictions of future demand, commodity prices, and other conditions.

Much work has been carried out to determine when base and precious metal mines
should stockpile (cut-off grades, net present value (NPV) calculations, rehandle costs,
milling costs, production contracts, mine planning, etc.) [1,11–17]. The discipline of man-
aging stockpiles throughout mining operations to maximize the profit gained from their
eventual processing is still emerging [18]. Often stockpiles are created as an afterthought
or side effect to increased production. Occasionally, they are inherited from previous
operators upon the purchase of a mine [19]. In some operations, stockpiles are required to
fit into a space confined to a permit area they were not originally intended for.

The use of stockpiles has become paramount to the economic viability of production
strategies for several reasons, which include the following:

1. For strategic leverage in labor negotiations [20,21],
2. As a hedge to price changes and market conditions [22],
3. To buffer against production variability [1],
4. As a way to gain additional income after the mining of high-grade ores or at the end

of the mine life [11,12],
5. For ore blending purposes to ensure product quality [1,11,13,14], and
6. To counteract geological uncertainty [23].

1.3. Classification of Stockpiles

As is the case with many processes, blending or mixing is a necessary step to ensure
optimal product quality. Typically, these blending processes are performed after the pri-
mary crusher step. Within mining, pre-crusher stockpiling is often used for its operational
simplicity, but it typically lowers the confidence of the ore grade and reduces certainty
in feed quality [15]. Pre-crusher stockpiling takes on five forms which are illustrated in
Figure 1 [15–17]:

Just as there are operational differences between iron, coal and base and precious metal
mining, there are also differences in how these operations stockpile. For example, iron
ore is often shipped directly from the mine to the customer. Since the tonnages involved
are immense, extensive work has already been carried out to model the way that iron ore
should be stockpiled for re-handle [16,17,24,25]. Likewise, due to hazards around coal (loss
of energy through oxidation, spontaneous combustion, etc.) and since it is typically directly
shipped, there has been much work dedicated to understanding how it behaves during
stockpiling [26].

For large-scale base and precious metal mine stockpiles, however, little scientific liter-
ature exists to document how to spatially model multivariate distribution of characteristics
such as grade, hardness, rock type, and other geochemical properties. Kasmaee et al. [27]
demonstrated a method using sampling from the base of stockpiles in conjunction with
monthly surveying to create a kriging of an iron ore stockpile in Iran. Morley and Arvid-
son [28] mention that stockpile modelling typically involves arithmetic weighted averages
of grade and tonnage values determined from blast hole samples and survey volume
records. They also state that spatial modelling of stockpiles is performed manually using
engineering software tools. The disadvantage of these manual models is that they require
constant engineering resources which could be spent elsewhere. They are also subject
to human error, risk of employee turnover and inconsistencies in their design method.
Furthermore, base and precious metal stockpiles are classified as temporary storage [29]
and their contents shift over time. Dozers and other heavy equipment frequently displace
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stockpiled material from its original dump location, making it hard to know where material
is located within the stockpile.

Figure 1. Five Types of Pre-Crusher Stockpiles (adapted from [15–17]).

Another way of classifying stockpiles is by their construction design. Figure 2 shows
the different types of stockpile constructions which are common in mining operations.

Figure 2. Types of Stockpile Fill (adapted from [29]).

According to Carter, solutions for stockpile management are built into roughly a dozen
comprehensive mine scheduling software platforms [18]. These software systems integrate
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with short-term and small-scale stockpiles, but they do not serve well for large, long-term,
truck-dumped stockpiles. Generally, the stockpile modelling software that exists is tailored
to conveyor systems for intermediate stockpiles [24,25], but it may be possible to apply
some of their concepts to larger stockpiles. Discrete element modelling (DEM) [30] has
demonstrated the ability to model material flow of intermediate stockpiles, but remains
unproven for large stockpiles where particles are exceedingly numerous and variable.

In addition to modelling, documented technical methods for tracking ROM ore from
haul trucks into large stockpiles and onward through downstream processes are perfunc-
tory. Surface base and precious metal mines typically use global positioning systems
(GPS) to track haul truck movement and fleet management systems (FMS) to optimize
productivity. Afrapoli and Askari-Nasab [31] provide a detailed and current review of FMS
technology. FMS systems perform best for tracking material directly dumped from pit to
crusher, but lack the capability to track ore once it has been dumped into a stockpile.

Material tracking technology exists, but is rarely used in large stockpiles due to the
long duration of time from the placement of the ore to processing. Jansen et al. [32] demon-
strated proof of concept case studies involving SmartTag™ radio-frequency identification
(RFID) tracer technology for both source-to-product as well as process hold-up ore tracking
for the Northparkes mines in Australia. Jurdziak et al. [33] discuss the challenges, propose
a workflow and estimate savings of 2.5 million euros for implementing RFID ore tracking
at the KGHM Lubin mine in Poland. In addition to RFID, unmanned aerial vehicle (UAV)
technology, while promising for its ability to determine stockpile volumes [34,35], is still
incipient for the purposes of predicting grade distribution within the stockpile or tracking
material movement.

Failing to adequately track and model ore stockpiles results in a loss of data already
gained from geological exploration and mine production as illustrated in Figure 3. Such a
failure represents not only data and money wasted, but also an opportunity lost in saving
additional money during the processing of the stockpiled materials. This is a double lost
opportunity for the operator who is probably already operating on relatively thin margins.

Figure 3. Digital Gaps in Different Phases of Mining Operation.

Figure 3 illustrates a conceptual loss of data associated with stockpiled material that
was previously available from exploration models and operational logs. Moreover, the
figure illustrates how information is added about the material at each processing step,
including production drill sample analyses, ore control modelling and fleet management
system information, until the time of stockpiling. Data from each of these operational
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steps potentially add value to the material if appropriately used, but it is also wasted if the
material is not tracked into the stockpile.

If a modern mine can be considered as a digital system of production, stockpiles may
be thought of as digital bottlenecks, since they output less information into downstream
processes than was input into them [36]. According to Kahraman et al. [37], identify-
ing, tracking, and managing bottlenecks will enable significant improvement in mining
operations. However, data gaps, such as stockpiles, short circuit the bottleneck track-
ing capabilities of sites not to mention, automation, mine-to-mill, and other operational
improvement initiatives. While missing data can be thrown out to little detriment for
estimation purposes (grade, tonnage, amount of explosive needed, etc.), they need to be
included for predictive purposes (capital asset performance, maintenance, throughput,
mine-to-mill, etc.) [38].

1.4. Reconciliation and Metallurgical Accounting

Despite little documentation on technical modelling methods, literature contains
robust discussion on stockpiles as they pertain to reconciliation and metal accounting [32].
After the Sarbanes-Oxley Act of 2002 [39], the requirement for real-time disclosure of
financial conditions to stakeholders in the mining business has inspired more systematic
approaches to reconciliation and therefore more scrutiny of stockpiles. Macfarlane [40]
contends that a full understanding of metal flow is necessary in order for there to be
a systematic approach to reconciliation. Random stockpiling without a clearly defined
process map can make accounting for tonnage discrepancies futile. Misunderstanding of
stockpile characteristics reduces conversion of mineral resource inventory into saleable
product. Motivations for stockpile misunderstandings, underappreciation and neglect are
numerous, but generally include issues from the following categories [40,41]:

• Sampling accuracy,
• Data recording and material tracking,
• Geological modelling and estimation errors,
• Short-term and intermediary stockpile accounting,
• Mine design and mine planning,
• Grade control,
• Dispatch,
• Survey inconsistencies,
• Interdepartmental communication,
• Mine operations,
• Management,
• Training and turnover of employees, and
• Dilution, natural leaching and other factors.

Ghorbani and Nwalia [41] affirm that mass flow measurement, stream sampling, mass
balancing, and data handling and reporting are the four components of metallurgical
accounting. Large, long-term stockpiles pose challenges to each of these components.
Stockpiles are difficult to measure and sample [28]. They also risk being manipulated
for the purposes of balancing the overall deposit metal value, may become orphaned
by multiple operational departments and offer low incentives to be accurately recorded
or reported on a frequent basis [41,42]. Improvements in technical capacity to model
and manage stockpiles will therefore benefit reconciliation and metallurgical accounting.
However, these technical improvements must be incorporated into mining workflows for
such benefits to be reaped. Fortunately, existing reserve and operational models provide a
foundation for the incorporation of a stockpile working model.

1.5. Reserve and Operational Models

The primary method currently used to model stockpile characteristics in mining is av-
eraging the materials stockpiled and reconciling the values against reserve and operational
models. Figure 4 illustrates key aspects of reserve and operational models. A reserve model
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accounts for the entire life of mining operations and is based primarily on exploration drill
holes that are widely spaced apart compared to production drilling. This model is updated
biannually and contains more risk and uncertainty than the other models. Short term
operational models are a type of hybrid between ore control models and the reserve model
and are used for the purposes of planning on a one-to-three-year time horizon. Ore control
models are made from additional data obtained by production drilling and contain only
the information pertinent to areas of immediate mining within the next week to month for
operational purposes. While some details vary in the drillhole spacing and the amount of
hybridization between the short-term model, the reserve model and the ore control model,
most mining operations follow some version of this established working model.

Figure 4. Reserve and Operational Models.

Unlike the reserve and operational models described previously, to the knowledge
of the authors, there is no documented working model for large long-term stockpile
characteristic distribution, which poses some issues. First, since stockpiles are not income-
generating assets, without a working model that is easily implemented, they typically
suffer neglect. Moreover, since many short-term discrepancies in ore reserve accounting can
be written-off over time under the guise of environmental degradation [42] of stockpiles at
the end of the mine life, the absence of a working model may be a disincentive to dedicate
engineering resources to their concurrent management. Ultimately, these practices reduce
confidence in the characteristics of stockpiled material and lead to a wasteful duplication of
time and energy in drilling, and sampling, when the stockpile is finally set to be processed.
Many stockpile working models have been developed manually by mining engineers to
meet industry needs. However, there is a knowledge gap between the practical methods
developed within industry and scientific documentation.

1.6. Sampling

Many sampling issues have been identified to exist for both stockpiles as well as
ore control operational models. In the case of ore control, blast hole sampling from drill
collars has undergone intense scrutiny from the sampling community. Engström [43]
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provides a recent literature review on this scrutiny and states that blast hole sampling
problems include loss of fines (or inaccurate particle size distribution representation),
upward/downward contamination, influx of sub-drill material, pile segregation, pile shape
irregularities, operator-dependent sampling, too small sample size, frozen (or weathered)
blast hole cones and non-equiprobabilistic sampling equipment. Further complications to
ore control understanding exist due to material movement after blasting. Thornton [44]
states that material moves more than 4 m on average and movements of 10 m are common.
Depending on the drill pattern, this movement could equate to a displacement from the
initial sample location to up to three sample locations away.

The probability of a misclassification of ore to waste or waste to ore from sampling
errors alone is commonly between 5% and 20% for base and precious metal mines [45,46].
In addition, ore loss of 9% to 19% due to blast movement and dilution can be expected [44].
The negative impacts of these issues may become more critical when handling precious
metals and FMS data do not typically contain adjustments for them. However, the problem
of data accuracy is separate from that of data utilization. If FMS data are used more
frequently for modelling, then improvements in data accuracy will be encouraged through
data feedback loops. Improvements in sensor technology could lead to increased sampling
of mining operations and eventually better account for blast movement, dilution and
sampling errors. It is probable that incorporating these more accurate measuring methods
may help to improve the precision of the entire approach.

1.7. Current Practice and Scope

Industry sources have revealed that current practice is to take a running average
of the material characteristics that are fed into the stockpile over time. These running
averages are based on the reconciled survey volumes and grade values of materials and
are updated concurrent with reserve and operating models. This process is designed to
fulfill legal reporting requirements. Despite there being a large amount of data that are
tracked in the FMS, the resulting stockpile block model currently in place is merely one
large, homogenized block value containing the rolling average grade.

At this time, it is the understanding of the authors that no documented methodology
exists in academic literature for determining the grade distribution of large, low-grade,
randomly truck-dumped, pre-crusher stockpiles via FMS data. In such cases, drilling
and grab sampling of the stockpile are often performed in order to determine the grade
distribution and model the stockpile. These techniques have proven to be erroneous and
biased [28]. We therefore present and explore an initial approach believed to be readily
workable for most modern mines through use of established geostatistical modelling
techniques applied to the type of data generated by FMS. This method is part of an ongoing
study into developing an engineering methodology for greater understanding of large
ROM truck-dumped stockpiles.

The working model for stockpile management conceived in this paper can attenuate
the negative impacts of the present stockpiling scenario. It requires minimal engineering
resources, is easy to setup and maintain over a long period of time, makes use of readily
available data already existing in most modern mines and yields a high amount of detail.
Our method could be used as a stand-alone model, or it could be used to enhance or verify
other models. This method is software agnostic and can be integrated with mining software
packages, as we will demonstrate.

2. Materials and Methods
2.1. Approach

A data-driven approach was used to develop a working model of the characteristics
of the stockpile. This approach combined the knowledge of the mine planners with that of
the researchers in a process similar to the one demonstrated by Subramaniyan et al. [47].
For the purposes of this paper, as it is an example of the modelling technique, the exact
data presented are not real data but exemplify real data seen by researchers and demon-
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strate a hypothetical stockpile created to show the design method. Figure 5 outlines the
methodology used.

Figure 5. Research Approach Following a Data-Driven [47] Technique.

As demonstrated in Figure 5, the inputs of the mine planners were used during each
step of model development. In Step 1 mine planners shared relevant data with researchers,
helped clarify questions about the data itself along with explaining any outliers and also
defined the project boundary while researchers explored and cleaned the data. During
Step 2 researchers presented some early visualizations of the raw data and prepared the
modelling concepts. Mine planners provided feedback and context for the data visualiza-
tion. Step 3 involved preparing and refining the model in accordance with mine planner
requirements. Step 4 consisted of a final analysis and review. Each step provides the
opportunity for feedback to prior and subsequent steps in the process for the purposes of
tuning the final model.

2.2. Data

For the actual case study, a variety of survey, FMS, geological look-up tables, design
files, and drone photogrammetry data were made available to the research team. These
data have been kept proprietary and this paper contains only a hypothetical stockpile
created in likeness of the real data. The flow of data used for creating the model for the
actual case study is shown in Figure 6.
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Figure 6. Data Flow Overview Figure.

FMS data came from the mines dispatching system, which contained information
about trucks, grade IDs (ore control patterns), dumping locations, dump tonnage, and
dumping coordinates. Assay table data contained grade values along with other details
about the material such as hardness, rock type, concentration of deleterious elements, etc.
Assay table data were matched to corresponding grade IDs in the FMS data. These values
were interpolated into a block model by the same method demonstrated subsequently
in this paper. Survey data consisted of .dxf files from survey pickups. Survey data were
used to create the topographical extents of the block model and ensure that blocks were
sequenced correctly. Historical surveys were used to verify that interpolated block values
existed matched the real time frame.

A hypothetical dataset was made to illustrate the design method in this paper without
revealing the proprietary data of the site. Tables 1 and 2 describe this hypothetical dataset,
which represents the results of the combined FMS and assay table data shown in Figure 6.
These data are statistically similar to the data used at the case study location and are similar
to operational data available to most modern mines. The hypothetical example is that of
an open pit gold mine, but the methodology could easily be applied to any other base or
precious metal mine.

Table 1. Example FMS and Assay Data Categories.

Timestamp Grade ID Au g/t Actual Dumping
Location

Dump Coordinate
Easting

Dump
Coordinate
Northing

Dump
Tonnage

Date and Time
of Dump

Unique Grade
Pattern of
Material
Dumped

Au Grade
value in g/t

Name and bench
height of dump

location polygon

Easting
coordinate of dump

location

Northing
coordinate of

dump location

Tonnage of
material
dumped

Table 2. Statistical Characteristics of the Modelling Dataset.

Spatial Data

Number of Points 963

X min (m) X Max (m) Y Min (m) Y Max (m)

5 145 5 150

Grade Data

Grade Unit Grams per ton (g/t)

Minimum 1st Quartile Mean Median 3rd Quartile Maximum

0.3 0.33 0.3952 0.37 0.47 0.57
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As this model is a hypothetical example, survey volumes were designed in Maptek
Vulcan for the creation of the stockpile survey data. Maptek Vulcan was chosen only
because it was familiar and accessible to both the research team and the mine involved in
the study. The model is software agnostic and compatible with any engineering software
which uses .dxf file format. Other file formats may also prove compatible with the model
in the future. The dimensions of the hypothetical heaped fill stockpile are 150 m × 150 m
× 5 m. Figure 7 shows a screenshot of the designed hypothetical stockpile.

Figure 7. Screenshot of Hypothetical Heaped Fill Stockpile Designed in Maptek Vulcan.

Since the accuracy of each elevation value was limited to the value of the bench level,
each bench was modeled as a two-dimensional plane. In the actual case study, each bench
was aggregated to create the final block model. For the example shown in this paper, only
one bench is demonstrated. While there is some difference in the tonnage values of each
truck load in the data, for the purposes of this model, all dump locations were assumed to
contain the same amount of material. Only one bench is demonstrated in this paper, but
by this method multiple benches can be modelled as independent domains and combined
into a block model for an entire stockpile.

2.3. Model

The block model was computed using R scripts running on a Python Jupyter Notebook
Kernel. This notebook was developed using concepts from Pyrcz [48]. First, the combined
values given by the FMS and assay data were imported into a dataframe. Then, the bench
height given by the dump location was converted into an elevation or Z value for each of
the dump coordinates. A dataframe consisting of the centroid locations for each block in
the desired block model extents was then created. Finally, values for the block centroids
were interpolated from the initial dataframe and assigned based on the inverse distance
weighting (IDW) function from the gstats package in the R programming language to
the centroids of the dataframe representing the block model. These centroids were then
imported into Maptek Vulcan to demonstrate the capability of the model to be made
useable by an engineering team.
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The gstats package, developed by Edzer Pebesma [49], in the R programming language
performs a number of common geostatistical functions. Pebesma outlines the modelling
approach which should be used with gstats which is shown as Figure 8.

Figure 8. Decision Tree for Default gstats Program Action (from Pebesma [49]).

Inverse distance weighting (IDW) was selected as the modelling method in accordance
with Figure 8, in that prediction locations were specified while variograms and base
functions were not. Within gstats, the IDW function works the same way as the ordinary
kriging function only without a model being passed and instead the inverse distance
weighting power is directly specified by the user (β = 2) (see Equation (1)). A global search
neighborhood (default parameter) was used for the model, meaning that all data points
were used for estimating the value at each location.

IDW is a form of interpolation. Interpolation means to predict an attribute value ẑ
from sampled locations xi at unsampled sites (x0) of a given neighborhood [50]. In this case,
each of the dump locations along with corresponding grade values (ẑ) were considered as
the “sampled locations” (xi) and the unsampled sites (x0) were an array of block model
centroid values (x and y coordinates within the model space at 15 m × 15 m spacings).
While the general IDW equation varies slightly [51], for the purposes of the model shown
in this paper, the equation used for interpolation is

Zx,y =
∑n

i=1 Zid
−β
x,y,i

∑n
i=1 d−β

x,y,i

(1)

where Zx,y is the centroid point to be estimated, n is the number of samples, zi represents
the value of the ith sample, dx,y,i is the distance between Zx,y and zi, and β is the user
specified weight value.

This paper does not address which geostatistical method is best suited for modelling
stockpiles. It is meant to demonstrate that FMS data are capable of being used along with
geostatistical methods for greater operational understanding of stockpile characteristics.
IDW was selected to show that FMS data are amicable to such methods of interpolation
commonly employed in geostatistics. It was also chosen because it runs quickly without
requiring additional model parameters as an input, whereas variogram modelling is more
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time consuming and does not create a block model as a final product. The discussion
section of this paper includes more information on how to further refine the initial model.

3. Results

In a heaped fill stockpiling scenario, dumping occurs in two phases. The first phase
is a series of paddock dumps to form the base layer of the stockpile. The second phase
involves building an upper layer above an area of the paddock dumps from which a
campaign of edge dumps occurs until the bench is completed. Our results are broken down
into the scenarios described, being first paddock dumping, second edge dumping and
third a look at both in combination.

3.1. Data Visualization

Figure 9 shows an initial visualization of the hypothetical dataset. In Figure 9 each dot
represents a single dump of similar volume. The positions of the dots represent the FMS
tracked dumping position of the truck at the time of dumping. The dot colors represent the
interval of their grade values in accordance with the legend shown.

Figure 9. Visualization of FMS Data.

Visualizing FMS data in this manner allows for the identification of some areas of
homogeneity within the stockpile. One area would be the bottom left part of the figure,
where many black dots are near each other. It also reveals that most of the stockpile contains
areas of mixed values and it is not easily visually interpreted into a workable model.

The data from Figure 9 can be broken down into two types of data for greater under-
standing and better modelling. Each of the data types refer directly to the dumping process
used to create the data. The first type of data is termed base layer or paddock dumping
data and refers to instances in the data where the material was dumped as a heap on a
roughly flat surface. The second type of data is called upper layer or edge dumping data
and refers to situations where material was dumped down an existing stockpile face. Each
of these data types were also explored and modeled.
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3.2. Base Layer/Paddock Dumping Model

Via preliminary data analysis, FMS data which corresponds to paddock dumps and
forms the base layer of a stockpile in a hypothetical scenario are shown in Figure 10. In
Figure 10 each dot represents a single dump of similar volume. The positions of the dots
represent the FMS tracked dumping position of the truck at the time of dumping. The dot
colors represent the interval of their grade values in accordance with the legend shown.

Figure 10. Base Layer Grade Dumps of Example Stockpile Colored by Grade.

As is the case with paddock dumping for the base layer of a stockpile, the rows space
evenly and maintain homogeneity along their respective row or column as the material
originated from various low-grade areas in the pit of different grade amounts. This scenario
occurs at the beginning of each bench of the stockpile or from paddock dumping areas
where no upper layer is added. Material dumped this way is only handled by dozers or
other heavy equipment in areas around the perimeter of the stockpile. Areas where dumps
occurred too close to one another tend to settle into more vacant areas over time.

In the paddock dumping scenario, the area of influence of each truck load is closely
related to the dimensions of the haul truck used. Figure 11 illustrates how truck dimensions
influence the size and shape of the dumped material.

Figure 11. Volume of Influence of Haul Truck in Paddock Dumping Case.
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From Figure 11, the resulting heap of material takes on geometric form similar to that
of an elliptical frustum. The height, length and width (H, W, L in Figure 11) of the heap
are dependent on the respective height, width and length of the haul truck used. These
dimensions may be extended in horizontal directions if the haul truck moves excessively
during the dumping of its material, which will also coincide with a reduction in the height
of the corresponding heap. The width may also expand beyond the original width of the
truck if the truck does not move forward. A movement of less than two meters during
dumping is a common occurrence and this movement typically only affects the length
of the heap, not the width. Movements occur most frequently when a truck has backed
up too close to the neighboring heap before beginning its dumping phase, which acts to
smooth out the overall average area of influence of multiple paddock dumps for a given
area. At the time of dumping, heaps maintain an approximate 2:1 slope, consistent with
that of heaped loaded material. Over time the slope decreases to that of the natural angle
of repose of the material.

Figure 10 alone is sufficient to create a working model for a paddock-dumped stockpile
without the need of additional modelling. If operators have an approximate understanding
of where heaps of given ore values are located, they can easily match those locations to the
corresponding heaps during operation. Blending the example shown in Figure 10 can be
intuitively performed by processing the stockpile in parallel vertical approaches as needed.

3.3. Upper Layer/Edge Dumping Model

Figure 12 shows hypothetical FMS data for the second phase of heaped fill stockpile
construction. Like Figure 10, each dot in Figure 12 represents a single dump of similar
volume. The positions of the dots represent their FMS tracked position. The dot colors
represent the interval of their grade values in accordance with the legend shown. During
this phase, material is dumped on top of the material of the base layer. However, data from
the previous layer have been removed to facilitate visualization.

Figure 12. Upper Layer Dumps of an Example Stockpile Colored by Grade.
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Figure 12 demonstrates that many dumping locations are clustered together in the
initial area where the upper layer of the stockpile is first made (top left of Figure 12).
Afterwards, the stockpile is built by edge dumping material from the initial dumping area
until it fills the designed volume for the given bench. Dozers and other heavy equipment
help to ensure that material is cascaded without clumping, ensure compaction and maintain
safety berms during operation. These actions mix the material from its initial dumping
location in intractable ways.

While the FMS data in the previous phase could be defined by orderly row and column
behavior, within this upper layer, the dumping process is defined by radial progression
from an initial cluster point. Variation in the grade distribution is therefore defined by the
tendency of the material to be added in sweeping radial movements which correlate with
low-grade patterns of various grades in the pit.

Generally, its assumed that the volume of influence for of the haul truck in the upper
layer/edge dump case is that of dimensions in width equal to the width of the haul truck,
length equal to the horizontal component of the bench slope and variable height which is
influenced by width, length and material characteristics. This volume runs perpendicular
to the tangent of the dump location and is illustrated in Figure 13.

Figure 13. Assumed Area of Influence of Haul Truck in Edge Dumping Scenarios.

While the total volume of material is influenced by the capacity of the haul truck, dur-
ing this phase the shape of the material dumped is mostly influenced by bench height and
material characteristics. When edge dumping occurs normally, that is without rehandling
from dozers or other equipment, the resulting shape is a streak of material cascaded along
the entire face of the stockpile. This cascade of material typically aggregates more at the
bottom of the dumping area under normal conditions and less near the top crest of the
dump. Depending on the face of the stockpile larger amounts of material may clump at
various places along the face. Round and large material may also roll beyond the floor of
the bench, especially at higher bench heights. The authors recognize that these are initial
assumptions and more discussion on improvement of the model may be found in the
discussion section of this paper.

It should be noted that paddock dumping still occurs on top of the dump area during
the edge dumping phase. These dumps are usually to patch and level the floor of the dump
area, create safety berms or protect light stations. Occasionally, paddock dumping occurs
near the edge before subsequentially being pushed over by a dozer. Operator error may
cause trucks to misalign with the edge of the dump creating a more turbulent cascade.
Such dumping scenarios are extremely difficult to identify from the data alone.

While it does not offer an operational model on its own, Figure 12 still serves as a
starting point. Most homogeneity occurs in radial/diagonal left-to-right directions and at
the corners. As with Figure 10, optimizing stockpile processing can intuitively follow the
observable pattern of homogeneity (bottom left to top right or vice versa). Unlike Figure 10,
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operators will have a harder time identifying which area corresponds to which heap shown
in the data. This scenario also contains more natural mixing of material due to settling and
dozer handling than does the previous scenario.

3.4. Interpolation Model

Unlike Figures 10 and 12, Figure 9 offers no visual foundation for an operational
model. The approach considered for such a situation is that of interpolation. Figure 14
shows an example of an interpolated model for the hypothetical stockpile using the inverse
distance weighting method described in the method section. In this scenario, the area of
influence of each truck load is difficult to determine since material that was dumped first
affects the form that material dumped later takes.

Figure 14. Grade Distribution Map of Combination of Layers.

From the map shown in Figure 14, a block model may be created, since each coordinate
is located on the same elevation, the block centroid Z-value is given by the elevation level
midway through the bench. The block model shown in Figure 15 is the resulting block
model from the interpolation shown in Figure 15 in Maptek Vulcan and bounded by the
dimensions of the stockpile shown in Figure 7. To be clear, this block model contains only
one block level. In the event that a stockpile contains multiple benches or levels, this same
modelling process may be repeated for each level. Because the model was an interpolation,
it populated values for every position within the sample space, including the corners where
no data were shown. This interpolation is trimmed by the survey volume to create the
block model shown in Figure 15.
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Figure 15. Screenshot in Maptek Vulcan of Resulting Block Model from FMS Data Interpolation.

Figure 15 shows grade values for each 5 m× 5 m× 5 m block in the example stockpile
volume. Grade values are colored in accordance with the legend shown in the top left of
the black viewing window of the screenshot. The red box represents the model extent area.

3.5. Analysis

To showcase the variance of the model by region and see how it compares with the
data, confidence intervals on the mean values were used on each quadrant of the model
area. A summary of the confidence intervals is shown in Table 3. Confidence intervals
measure the degree of uncertainty in a dataset. They can take any number of probability
limits, but Table 3 shows only 90%, 95% and 99% confidence levels. The greater the
confidence interval value, the farther the mean value is from the remainder of the data.

Table 3. Confidence Intervals of Data and Model Areas.

Example Data All Area Bottom Left Bottom Right Top Left Top Right

Confidence Level (90.0%) 0.004606 0.005712376 0.005165079 0.005724806 0.005109

Confidence Level (95.0%) 0.00549 0.006809497 0.006156908 0.006824275 0.006090

Confidence Level (99.0%) 0.007221 0.008958197 0.008099109 0.008977509 0.008011

IDW Model All Area Bottom Left Bottom Right Top Left Top Right

Confidence Level (90.0%) 0.001927 0.003029155 0.003031626 0.002473611 0.002453

Confidence Level (95.0%) 0.002297 0.003611474 0.003614413 0.002948945 0.002924

Confidence Level (99.0%) 0.003021 0.004752802 0.004756644 0.003880283 0.003847

Table 3 shows that for each quadrant and confidence level, the model has a smaller
confidence interval value than that of the example data. Confidence interval values for the
entire data area are only lower than two of the confidence intervals for the IDW model.
These areas are in the bottom left and bottom right areas of the model and only when
compared between a 90% confidence level with the data to a 99% confidence level with the
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model. Overall, these lower values demonstrate that the model has less variance than the
dataset. The top half of the model also has less variance than the bottom half.

4. Discussion
4.1. Workflow

The controversy in using a method which incorporates FMS data is that it frequently
disagrees with the reconciled grade values which are required for financial reporting. FMS
data also contain errors and need to be cleaned before modelling can occur smoothly.
However, FMS data can be integrated into an automatic modelling process which frees
up engineering resources. Using a data-driven approach also acts as a step towards
digitization, which will improve after each iteration.

Figure 15 demonstrates that this modelling method may be passed into conventional
engineering software and used by mine operations to optimize the processing of the
stockpile. Effectively, this makes stockpile processing similar to mining of a large muck pile
and subject to the same methods of ore control and mine planning previously established.
Engineering software can create an optimized sequence for processing the stockpile which
reduces the variability of the feed entering the mill. Block information can be uploaded
into modern shovels with tracking technology so that operators can more tightly control
processing along expected grade boundaries.

Having knowledge of zones within the stockpile that are trending to higher or lower
values could potentially lead the operation to plan the dumping locations of each blast
pattern more thoroughly. The added cost of organizing the stockpile in a real-time opti-
mization would need to be weighed against the expected savings in rehandle cost at the
time of the processing of the stockpile years in the future. This cost analysis would be
tricky to perform since there are many variables to consider and most mines do not know
the exact values and tonnages of their low-grade ore to be mined over the course of the
entire mine life.

4.2. Data

Some dump coordinates exist outside of survey areas. This may be due to errors
in the FMS tracking capability, or some material may be initially dumped outside of the
boundary and later moved into it via dozers or other heavy equipment. Since FMS data
alone makes it hard to determine the extents of the topography, survey data will always
need to be used to create a final trim. There are also issues in variability in the physical
location of the GPS coordinate of the haul truck and how that exact position best relates to
the centroid of the corresponding dump location. This difference makes an even greater
impact in the upper layer or edge dumping case, where the area of influence of the truck is
more one-dimensional.

Future data inputs from real-time surveying of stockpiles via UAVs can improve the z
values substantially. Drone data can also be used to model the dumping by truck and the
movement of material by dozers. Furthermore, drones and additional sensors, along with
improved modeling of the spreading behavior can improve the basic assumptions of the
model, thus improving understanding the relationships between the data and the model.

Despite including drone data, the ability to track material flow over the entirety of
its life in a heap fill stockpile and through processing will likely remain out of reach.
However, a generalized model of key components of truck-dumped stockpile material
behavior (material flow during dumping and movement by dozers for example) will
improve the ability to estimate characteristic distribution within stockpiles. This modelling
could further reduce processing downtime and increase throughput during the eventual
processing of the stockpile.

4.3. Modelling

Sampling can be used to verify or calibrate the model. If each truck is sampled
individually, the average sampling density for the stockpile modelled would be equal to
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the haulage capacity of the truck used (100–400 t), which is an improvement in sampling
density orders of magnitude above conventional sampling campaigns for heaped filled
stockpiles and leach pads (175,000 tons in the use case of Winterton) [52]. While modelling
will never replace sampling, both problems can be worked interdependently.

In the event that the grade and tonnage values differ substantially from official values
given for financial reporting, the block model may be adjusted to represent the grade
distribution of the stockpile as weighted by each block in comparison to all others and not
strictly on block values given by interpolation of the FMS data. This adjustment to the
model could also be completed in an autonomous manner and would involve data which
are readily available at the mine.

The demonstration of FMS data incorporated into a stockpile block model in this paper
opens the door to additional discussion around optimal stockpile modelling from FMS data.
While the characteristic distribution of the material may not follow the inverse distance
weighting method presented in this paper, it may be adequately modelled via other geosta-
tistical methods, such as triangulation or nearest neighbors. Variograms, ordinary least
squares (OLS) prediction methods, as well as kriging may also prove useful for stockpile
modelling. These methods follow the modelling flowchart created by Pebesma [49] and
shown as Figure 8.

Further studies and sampling could fine tune the model, such as using discrete
element modeling for tracking flow of material for various settling scenarios. Once a model
is deemed precise, which accurately accounts for the stockpile characteristics “as is”, more
advanced models may account for metal degradation over time, natural leaching, and
other environmental factors. These models may apply directly to heap leach operations by
indicating target areas for hydrological work that could increase leaching capacity.

4.4. Other Factors

While the stockpile used in this study acts as a strategic form of storage, many of
the stockpiles used in mining act as a buffer to ensure continuity of the processing stage.
Stockpiles dedicated to maintaining a steady flow of material into the plant are generally
beneficial. However, bottlenecks and data loss may affect the intention of keeping control
of the flow of material from mine to plant. The short timeframe between stockpiling and
processing these types of stockpiles means a different approach for modelling them should
be used when compared with long-term stockpiles.

Exposure of stockpiles to dilution, weathering and other elements causes significant
changes to their characteristics. These changes amount to degradation, which is more
prevalent in long-term stockpiles. Rezakhah and Newman [42] quantify degradation to be
between 5 and 10% annually and recognize that literature on the problem of degradation is
often seen as isolated from stockpiling or mine planning problems. More robust models of
stockpiles from historical FMS data could provide a more granular look into the distribution
and rate of degradation which occurs within stockpiles over time.

Base and precious metal stockpiles have much in common, especially if they are made
using haul trucks and dozers of the same size. Where base and precious metal stockpiles
differ is due to geochemical characteristics of the ore as well as grade distribution differ-
ences (nugget effect). Base metals also oxidize quickly, which can affect the geotechnical
stability of their stockpiles. These differences should be considered when developing a
modelling approach for each of these types of stockpiled materials.

The model demonstrated in this paper takes a simplistic approach to the material
in each truck load. In reality each truck load will likely have undergone some degree of
pre-crusher blending. Shovels and loaders constantly mix the material and blast movement
and dilution cause it to not reflect what is in the FMS data. Stockpiles that act as process
buffers may also undergo additional blending both before and after crushing. In either
type of stockpile, the effects of blending must be considered when modelling.
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5. Conclusions

In conclusion, the type of working method demonstrated in this paper shows how
leveraging FMS data and existing interpolation techniques can lead to increased under-
standing of the grade distribution within stockpiles. Figures 14 and 15 indicate interpolated
grade values at each location within the stockpile in a way which is directly incorporable
into mining operations. Knowledge of the types of zones illustrated by Figures 14 and 15
could enable miners to optimize the processing of their stockpiles. While this method is
merely illustrative, it shows that through a systematic process of validation and modelling
improvements, a given mine can use this method to come to a better understanding of the
grade distribution within its long-term, low-grade stockpile. The implications of better
modelling ROM stockpiles will enhance the overall mine optimization such as mine-to-mill
and other continuous improvement initiatives at mines.
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Abstract: Grinding circuits can exhibit strong nonlinear behaviour, which may make automatic
supervisory control difficult and, as a result, operators still play an important role in the control
of many of these circuits. Since the experience among operators may be highly variable, control
of grinding circuits may not be optimal and could benefit from automated decision support. This
could be based on heuristics from process experts, but increasingly could also be derived from plant
data. In this paper, the latter approach, based on the use of decision trees to develop rule-based
decision support systems, is considered. The focus is on compact, easy to understand rules that are
well supported by the data. The approach is demonstrated by means of an industrial case study. In
the case study, the decision trees were not only able to capture operational heuristics in a compact
intelligible format, but were also able to identify the most influential variables as reliably as more
sophisticated models, such as random forests.

Keywords: grinding circuits; minerals processing; random forest; decision trees; machine learning;
knowledge discovery; variable importance

1. Introduction

Grinding circuits are well-known for their inefficiency and disproportionate contribu-
tions to the energy expenditure of mineral processing plants [1]. Studies have estimated
that comminution circuits account for between 2–3% of global energy consumption [1,2],
and up to 50% of the energy consumption on mineral processing plants [3], with the cost
rising exponentially, the finer the grind. Moreover, the pronounced effect of grinding on
downstream separation processes has long been a driving force for more efficient operation
of these circuits through process control. However, advanced control is often hindered by
the complexity of grinding operations, characterised by strongly nonlinear relationships
between coupled circuit variables and long time delays. In addition, frequent changes in
feed ore characteristics and other disturbances affect the operational state of the circuit,
requiring frequent adjustment of set points.

This is partly the reason why in the mineral processing industry, the majority of
regulatory grinding circuit control systems is realised through PID control loops [4,5].
In contrast, supervisory control functions designed to maintain set points for regulatory
control and adherence to process constraints are entrusted to either process operators
or advanced process control (APC) systems. The latter includes expert control systems
(ECS) [6,7], fuzzy controllers [8,9], and model predictive control systems [10,11].

Despite the advantages of APC, a recent survey [12] has indicated that it is still not
well-established on most mineral processing plants. As a consequence, grinding circuit
performance is still largely dependent on operator decision-making processes.

Through trial and error, operators accumulate experience and heuristic knowledge to
perform these supervisory functions. However, application of this knowledge is dependent
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on a subjective assessment of the state of the circuit and appropriate corrective action.
Naturally, this can lead to inconsistent operator decision-making during similar operational
states, as well as inconsistent operation between different individuals.

This work explores a methodology to support operator decision-making for the control
of grinding circuits by extracting knowledge from plant data. Generally speaking, this
may require feature extraction from raw process signals to be interpretable, which could be
visualised as sets of univariate time series signals or structured data by the operator, or via
more sophisticated infographic plots or displays, as indicated in Figure 1. This information
may also captured by diagnostic process models designed for anomaly or change point
detection or fault diagnosis, as well as models that could be used in automatic control
systems, as indicated in Figure 1.
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Figure 1. Data-driven modelling and decision support framework in support of human plant operator
and automatic control systems.

It may also be possible to build diagnostic models that could include if–then rules
that could be used for higher level interpretation of the data, and it is this aspect that is
considered in this paper.

More specifically, operator behaviour embedded in process data are extracted using
decision trees to provide explicit and actionable rules, such as those found in ECS, presented
in an if–then format. These rules are used to analyse current operator behaviour and guide
future operator decisions. Application of the methodology is demonstrated in a case study
using data from an industrial grinding circuit.

Section 2 provides a brief overview of knowledge discovery from data relating to
grinding circuits, while Section 3 describes the specific methodology followed in the
investigation, based on the use of decision trees. Section 4 demonstrates the methodology
on an industrial grinding circuit, with a discussion of the results and general conclusions
presented in Section 5.

2. Knowledge Discovery for Grinding Circuit Control

Control of grinding circuits requires knowledge of the fundamental principles governing
circuit operation. This knowledge allows the transformation of observed data and informa-
tion into sets of instructions [13]. The knowledge acquisition process is often referred to as
knowledge discovery, or knowledge engineering in ECS literature [14,15].

During traditional knowledge engineering, such as used during the crafting of ECS,
rules are extracted directly from the heuristic knowledge of operators or circuit experts.
This is generally facilitated through interviews, questionnaires, or observation of circuit
operation by the knowledge engineer [15,16]. However, situations often arise where hu-
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man experts have difficulties articulating their own decision-making rationale, or the
human expert knowledge is inadequate for a comprehensive knowledge-base. Alterna-
tively, data mining tools can be applied to extract knowledge from process data through
inductive learning.

Data mining usually involves fitting models to or extracting patterns from systems
by learning from examples. To facilitate decision support, the specific representation of
knowledge in these models are of great importance. For knowledge discovery purposes,
data mining models can be categorised according to the manner in which this knowledge
is represented, being either implicit or explicit [17]. Implicit representations lack the formal
mathematical notations of explicit representations, thus requiring experience to understand
and possibly enabling subjective interpretations.

Black box models with implicit knowledge representations have been applied suc-
cessfully for grinding circuit control using neural networks [18–20], support vector ma-
chines [21,22], reinforcement learning [23,24], or hybrid model systems [25], among others.
However, the difficulty associated with interpreting and transferring such implicit knowl-
edge make these models undesirable for operator decision support.

In contrast, rule-based classifiers are more suitable for the development of decision
support systems, as they generate explicit if–then rules that can in principle be interpreted
easily by human operators. In mineral processing, rule-based classifiers include evolu-
tionary algorithms, such as genetic algorithms [26], genetic programming [27,28], rough
sets [29], as well as decision trees [30]. In addition to this, some efforts have also been
made to extract rules indirectly from the data, via from black box models, such as neural
networks [31–34].

Of these methods, decision trees are by far the most popular, as the rules generated
by these models are easily interpretable by operators and can provide actionable steps to
move from one operational state to another. These rules consist of a sequence of conditional
statements combined by logical operators; an example is given below.

IF (X1 < C1) and (X2 > C2) and (X3 = C3) and . . . THEN (Class = k) (1)

While this method for rule induction has been applied to numerous problems, it
has found sparse application in the chemical and mineral processing industries. Saraiva
and Stephanopoulos [35] demonstrated the use of decision rules extracted from decision
trees to developing operating strategies for process improvement in case studies from the
chemical processing industry. Leech [36] developed a knowledge base from rules induced
from decision trees to predict pellet quality of uranium oxide powders for nuclear fuels.
Reuter et al. [37] generated a rule base to predict the manganese grade in an alloy from
slag characteristics in a ferromanganese submerged-arc furnace.

The applications of rule-based classifiers mentioned above mostly focus on the gener-
ation of rule sets for automatic control systems. Accordingly, these systems are often not
suitable for interpretation by humans. In this study, the use of decision trees to extract
rules from grinding circuit data that can be used to support control operators is considered.
Decision trees have received some focus in the development of decision support systems,
but applications to the processing industries were rarely encountered [38,39]

3. Methodology
3.1. Classification and Regression Trees

Decision trees are a class of machine learning algorithms that split the data space into
hyper-rectangular subspaces. Each subspace is associated with a single class label, for
categorical data, or numerical value for continuous data. These subspaces are identified by
recursively searching for partitions based on a single input variable that cause the largest
reduction in impurity of the output variable in the associated hyperrectangle.

Tree induction algorithms, such as CART (Breiman, et al., 1984) and C4.5 (Quinlan,
1993), utilise different concepts for this notion of impurity. Different impurity measures
are also used depending on whether the tree is used for classification or regression. For
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classification purposes, CART, the algorithm used during this investigation, calculates the
Gini Index at each split point. Consider a classification task where the proportion of class k,
at node η, is given by p(k|η) . The Gini Index, i(η), at node η is given by:

i(η) = 1−∑C
k=1 p(k|η)2 (2)

The Gini Index increases as the impurity or mixture of classes increases at the node.
For example, in a binary classification problem the Gini Index reaches a maximum value of
0.5 when both classes are of equal proportion in the node. A node containing examples
from a single class will have a Gini Index of 0. The reduction in impurity for a proposed
split position, ξ, depends on the impurity of the current node, the impurity of proposed
left and right child nodes (ηL and ηR), as well as the proportion of samples reporting to
each child node (pL and pR):

∆i(ξ, η) = i(η)− pR × i(ηR)− pL × i(ηL) (3)

The split position resulting in the largest decrease in impurity is selected. In regression
trees, splits are selected to minimise the mean squared error from predictions of the
child nodes.

Without a stopping criterion specified, this procedure is repeated until all examples in
a node belong to the same class, have the same response value or the node contains only a
single training example. In classification models, these terminal (leaf) nodes will predict
the label of the class present in the largest proportion. For regression models, leaf nodes
predict the average value of all samples belonging to the node.

The recursive nature of tree induction algorithms allow the decision trees to be repre-
sented as tree diagrams, as shown for the classification tree in Figure 2.
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Figure 2. General classification tree diagram.

The trees are readily converted to discrete normal form (DNF) [40] as sets of “if –then”
decision rules by following the decision paths from the root node to each leaf node. Table 1
presents the results of this procedure illustrated for the tree in Figure 2.

Table 1. Decision rules extracted from tree in Figure 2.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

If (X1 < C1),
then (Class = 1)

If (X1 >= C1),
and (X2 >= C2),
then (Class = 2)

If (X1 >= C1),
and (X2 < C2),

and (X3 >= C3),
and (X4 >= C4),
then (Class = 3)

If (X1 >= C1),
and (X2 < C2),

and (X3 >= C3),
and (X4 < C4),

then (Class = 2)

If (X1 >= C1),
and (X2 < C2),
and (X3 < C3),

then (Class = 4)
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Without any restrictions, decision tree models can grow to fit almost any data distri-
bution. However, this generally results in the tree overfitting training data with reduced
generalization performance. Stoppage criterions can be imposed to reduce the complexity
of the tree and reduce this probability of overfitting the dataset.

These are enforced by requiring a minimum amount of samples belonging to a pro-
posed node for the node to be formed, or placing a hard limit on the amount of allowable
splits or overall tree depth.

3.2. Evaluating the Utility of Decision Rules

In this investigation, the focus was on using decision tree algorithms to extract decision
rules which have significant support in the dataset and are sufficiently accurate, while
remaining compact and interpretable for decision support. The utility of a rule could be
considered a function of these factors, as indicated in Equation (4) below.

utility(rule) = f (support, accuracy, complexity) (4)

Conceptually, there should exist some optimal configuration of the parameters wherein
the utility of a rule is maximised. This concept is explored qualitatively in the case study.
Each of the three requirements are briefly discussed below.

3.2.1. Supporting Samples in the Dataset

For a rule to be of any utility, it needs to be applicable in the modelled system for
significant periods of time. The higher the number of samples in the dataset belonging to
a specific rule, the higher the support is for the rule, and the larger the fraction of time
for which the rule is valid for decision support. This metric is analogous to the support
metric used to quantify the strength of association rules [41]. An acceptable level of support
for a rule is dependent on the modelling problem. When modelling common operational
practices, a high number of supporting samples would be required. However, if fault or
rare events are investigated, the level of support could be considerably less.

3.2.2. Rule Accuracy

The accuracy of the rule refers to the dispersion of target values of the data samples
belonging to the rule. For classification trees, the accuracy of a rule is represented by the
proportion of training samples belonging to the class predicted by the node. For regression
trees, the accuracy is well represented by the standard deviation of the target values of
samples belonging to the rule. Low standard deviation of the target values of samples
indicates a relatively accurate prediction by the regression tree, with sample target values
close to the predicted mean.

Both accuracy measures are closely related to the impurity measures used during
construction of the trees. Ideally, emphasis is placed upon rules with high accuracy.

3.2.3. Complexity and Rule Interpretability

For a rule to be of utility for decision support, the rule must remain interpretable by
humans. While this notion of interpretability is naturally subjective, longer rules with a
large amount of splits are difficult to interpret and tie to physical phenomena. The shorter
the rule, the easier it is to interpret and possibly act upon.

Here, the decision tree algorithm is forced to generate shorter rules, and a fewer
number of rules, by specifying the maximum amount of splits allowed in the tree. However,
these restrictions will come at a cost, possibly decreasing the accuracy of the rules, since
the capacity of the model has been decreased. However, as will be shown, restricting the
number of splits does always not have a significant effect on the model generalisation
ability, while it significantly increases the interpretability of the rules.
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3.3. Decision Rule Extraction Procedure

This section describes the methodology used to extract useful rules from decision trees
to support operator decision-making. The overall procedure is displayed in Figure 3. The
process is naturally iterative, and in practice, a practitioner would repeat the process until a
rule set of sufficient utility is discovered. A short discussion of each step is presented below.
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3.3.1. Data Acquisition and Exploration

Operational data is collected from a mineral processing plant. Ideally, this dataset
would span a period of operation capturing some variation or drift in the process. To
successfully evaluate the utility of identified rules, the practitioner has to be very familiar
with the intricacies of the operation, or a circuit expert needs to be consulted. Next, an
exploratory analysis of the collected data can be conducted. The presence of frequently
recurring operating states are identified and the conditions around these states inspected.
Tying decision rules to specific operational states could provide guidance to move from
less, to more favourable states.

3.3.2. Model Specification and Tree Induction

The modelling problem needs to be carefully formulated to ensure rules are extracted
to address a specific variable that can solve an existing problem, or address specific opera-
tional patterns. This leads to the identification of candidate input, X, and target variables,
y, for the decision tree algorithm.

Both controlled and manipulated variables are suitable targets for knowledge discov-
ery. Decision tree models constructed with manipulated variables as the target leads to
rules with a direct control action as its prediction. Modelling a controlled variable does not
have this feature, but serves to discover common operational patterns leading to different
operational states.

In addition to traditional operational variables, the role of the operator is embedded
as a latent variable into the dataset. The operator’s contribution will usually be revealed as
a set point change in the manipulated variables. Thus, in many situations rules are actually
describing common decision-making patterns by operators.

Once the input and output variables are designated, decision trees are induced on a
training partition of the data, and a test set is used to measure the generalisation ability
of the tree. If the accuracy of the tree proved to be too low, previous steps were repeated.
Variable importance measures were used to quantify the relative contributions of different
variables to the model. The results should be evaluated for consistency with heuristic
circuit knowledge.

3.3.3. Rule Extraction and Evaluation

Decision trees are readily converted into a DNF rule set. In a decision tree, each
path from the root node to a terminal node can be represented as a rule consisting of the
conjunction of tests on the internal nodes on the path. The outcome of the rule is the class
label or numerical value in the leaf node. Such a rule is extracted for each terminal node in
the decision tree.

The utility of each rule was evaluated using the measures proposed above. Rules
with high utility are considered valuable for operator decision support and were further
analysed for the knowledge the rule contains and its practical usage.
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4. Case Study

In this section, the methodology is applied to a dataset from an industrial semi-
autogenous grinding (SAG) circuit. The circuit is operated under human-supervisory
control, with set points primarily determined by process operators based on production
targets from management. Classification trees were used to analyse the operational patterns
surrounding periods wherein the mill overloaded, requiring drastic action from process
operators. Identifying and addressing the circuit operating patterns during such events
could reduce the frequency of similar events in future operation.

4.1. SAG Circuit Description

A schematic of the SAG circuit is shown in Figure 4. Crushed ore and water are fed
to the SAG mill. Fine SAG mill product leaves the mill through a trommel screen and
enters a sump before being pumped to a reverse configuration ball milling circuit. Pebbles,
consisting of the mid-size fraction material building up, exit the mill through pebble ports
and crushed in a cone crusher before being fed back to the mill.
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Table 2. Description of SAG circuit variables in Figure 4.

Name Description Unit

X1 Mill power draw kW
X2 Dry feed rate Tonnes/hour
X3 Pebble discharge rate Tonnes/hour
X4 Pebble returns rate Tonnes/hour
X5 Water addition rate m3/hour
X6 Cyclone Pressure kPa
y Pebble circuit bypass Binary control variable

The SAG circuit is operated to achieve maximum throughput, by maximising dry feed
rate, while operating within the power draw limits imposed by the SAG mill drive system.
Operators continuously monitor the mill power draw and respond by changing the feed
rate accordingly. Distinction is made between the pebble discharge, X3, and pebble returns
rate, X4, since operators have the option to drop the whole pebble stream to a stockpile,
allowing near instantaneous mill load control.

This action was observed most often when the mill power draw reached a very high
level and risked tripping the mill. This action can be considered as another binary “on-
or-off” manipulated variable. A description of measured circuit variables, as indicated in
Figure 4, are given in Table 2.
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4.2. Modelling Problem Description

In this case study, the focus was on gaining an understanding of the sequence of events
leading to operators deciding to bypass the pebble circuit. It was generally understood
that these events occurred in reaction to impending mill overloads, by removing the mid-
size fraction from the mill charge. However, metallurgists wanted to discover common
operating patterns leading to these overload and subsequent pebble circuit bypass events.

While dropping the pebbles to a stockpile can dramatically reduce the mill load, and
subsequently power draw, this action essentially just postpones the problem. Generation
of the pebble material has consumed significant amounts of energy, without resulting in
product sent for downstream concentration. The pebbles contain a significant amount of
valuable material that will require regrinding in the future. Additionally, the drastic change
in mill load results in a coarser overall grind and forces the mill into subsequent cycles
of instability.

Accordingly, the modelling problem was formulated to predict the status of the pebble
circuit as a function of the remaining operational variables. The model specification is
summarised in Table 3.

Table 3. Classification model specification to predict the status of the SAG pebble circuit.

Inputs Output

X1, X2, X3, X5, X6 y

Since the status of the pebble circuit can be represented as a binary “on/off” variable,
the problem was suitable for a classification model. Alternatively, modelling the variable
X4 as a regression target should lead to similar results.

Notably missing from the inputs in Table 3 is X4, the pebble returns rate. Pebble circuit
bypass events correspond to normal tonnages on X3, but no pebble returns to the feed
conveyor (zero on X4). Thus, the status of the pebble circuit can be perfectly predicted from
knowledge of X3 and X4 alone. Combining these two variables in a model will result in
perfect predictions, but no meaningful insights will be obtained from decision rules.

Since it is a manually triggered event, modelling the status of the pebble circuit
essentially attempts to model the operators’ decision-making processes. Decision rules
induced during the analysis should identify the most common operational patterns leading
to bypass events. Once these patterns are identified, the behaviours can be addressed in an
attempt to decrease the frequency of these occurrences.

4.3. Raw SAG Circuit Data Exploration

Data samples were collected at a frequency of 5 min from the plant spanning a period
of approximately six weeks of operation. The normalised data samples are shown in
Figure 5. Regarding the binary variable y, a bypass of the pebble circuit is designated with
the value 1, while normal operation of the circuit is denoted with the value 0. From the
9500 samples present in the dataset, 435 samples corresponded to periods of bypassing the
pebble circuit, from 141 unique bypass events. The data were cleaned to remove downtime
and any equipment maintenance periods.

Figure 6 shows the effect of the pebble circuit bypass on the overall variability in
the circuit. The figure shows the principal component scores of the dataset on the first
three principal axes, with the pebble returns superimposed as a colour map. Bypassing the
pebble circuit corresponds to no pebbles returned to the mill. From the figure, it can be seen
that periods of bypass lie outside the edges of the central cluster of normal operation. This
suggests that reducing the frequency of these events would decrease the overall variability
in the SAG circuit.
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Figure 6. Principal component scores of SAG circuit operational data projected on first three principal
axes. Percentage of variance explained by each principal component shown in brackets. Pebble
return rates superimposed as a colour map.

4.4. Random Forest Classification Model

To gain a baseline indication of the predictability of the power draw from other circuit
variables, a random forest model [42] was trained for the classification task. The random
forest model, consisting of the bagged ensemble of trees and bootstrap samples used to
train each tree in the forest, provides an upper limit for comparison to the predictive
performance of individual tree models. Variable importance estimates from random for-
est models are also generally more reliable than decision trees because of the bootstrap
aggregating procedure.
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A random forest model was trained for the classification task specified in Table 3,
using the parameters summarised in Table 4. The number of trees in the forest was selected
to be large enough such that a further increase in the number of trees does not increase the
model generalization. The number of predictors to sample at each split in the tree, from
the total number of variables M, was maintained at the default value as suggested by Liaw
and Weiner [43].

Table 4. Random forest model parameters for classification of SAG circuit data.

Parameter Value

Maximum number of trees 50
Number of predictors sampled at each split f loor

(√
M
)
= 2

Minimum leaf size 1
Misclassification costs Table 5

Table 5. Custom cost matrix for random forest models to reduce false negatives.

Predicted Class

0 1

True Class
0 0 1
1 20 0

The dataset was split into a training and test dataset in an 80/20 ratio. Since the
number of bypass events are highly outnumbered by normal operation, the target dataset
was highly imbalanced. The imbalance was negated by imposing a higher misclassification
cost on bypass samples misclassified as normal pebble circuit operation. The higher misclas-
sification cost was set equal to the proportion of normal samples to pebble circuit bypass
samples, to reduce the amount of predictions resulting in false negatives. The custom cost
matrix is shown in Table 5.

To quantify the model accuracy on the imbalanced dataset, the F1-score was used, as
defined below:

F1 Score = 2× Precision× Recall
Precision + Recall

(5)

In this context, the precision designates the fraction of samples correctly classified
as bypass events (true positives) against the total number of samples classified as bypass
events (true positives and false positives). The recall designates the fraction of samples
correctly classified as bypass events (true positives) against the actual number of bypass
event samples (true positives and false negatives). Ideally, a model should obtain high
precision and recall. Since the F1-score is simply the harmonic mean of these two measures,
a high F1 score is also desired.

The F1 score as a function of the number of trees in the random forest model, as
calculated on the held-out test set, is shown in Figure 7. The figure demonstrates that the
F1-score improves sharply until ten trees are added to the model, after which the score
plateaus around 0.7 and less significant increases to the generalization performance is
observed. Notably, a single decision tree achieves a F1-score of only 0.47, indicating a
significant number of misclassifications.

The misclassifications are shown in the confusion matrix in Table 6 for a random
forest with 50 trees. The confusion matrix shows that the model predicts a low number
of false positives, corresponding to a precision of 0.77. However, a significant number of
false negatives, corresponding to a recall of 0.6, arises because of misclassification of actual
bypass events.
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Table 6. Confusion matrix of a random forest models with 50 trees on an independent test set.

Predicted Class

0 1

True Class
0 1805 15
1 35 52

The results demonstrate the difficulty of classifying the pebble circuit bypass events.
This is likely a consequence of the fact that the model is attempting to describe operator
decision-making. While it is thought that there is a general pattern leading to these events,
the decisions made ultimately rely on subjective assessments of conditions and inconsistent
choices between different individuals. The complexity of the modelling task is further
increased by the general uncertainty present in the circuit, related to the disturbances of
feed ore characteristics. However, the majority of the events are correctly classified, and the
rule extraction procedure can be used to identify the most prominent behavioural patterns
leading to these events.

The permutation importance and Gini importance measures [42,44] were calculated
to quantify the importance of each variable in the random forest model. A random or
dummy variable was added to the set of predictor variables, as was proposed by [45]. This
random variable had no relationship with the target variable and serves as an absolute
benchmark against which to measure the contributions of the variables. Both measures
were calculated for 30 instances of the model, with each instance trained on a different
subset of the data. The distributions of the importance measures calculated based on
the permutation importance and Gini importance criteria are shown in Figures 8 and 9,
respectively. In these figures, the red horizontal bars in the centres of the boxes show
the median values of the importance measures, while the upper and lower edges of the
boxes correspond with the 25th and 75th percentiles of the measures. The whiskers extend
to the most extreme points not considered outliers, which are indicated by ‘+’ markers.
The notches in the boxes can be used to compare the median values of the importance
measures, i.e., non-overlapping notches indicate a difference between the median values of
the importance measures with 95% certainty
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Figure 9. Box plots of Gini variable importance measures of random forest model with 50 trees for the
predictor set and a dummy variable (R), showing the median values (red bar), 25% and 75% percentiles
(upper and lower box edges), extreme points (whiskers), as well as outliers (red ‘+’ markers).

In both figures, all variables contributed significantly more to the target variable
than the random variable. Both measures shows markedly similar variable importance
distributions. Both measures identify significant model contributions from X5, the water
addition rate, and X2, the dry feed rate. A lesser contribution from X3, the pebble discharge
rate, is noted. Although the pebble circuit bypass is generally thought to be a response to
rapid increases in the power draw, this variable was deemed less significant.

Ideally, a decision tree analysed for decision support should prioritise the same vari-
ables as the random forest model. Apart from the F1-score, a similarity in the variable
importance distributions serve as additional indication that the structure of a decision tree
is sufficiently representative of the more accurate and robust random forest model. Ac-
cordingly, these measures were compared with the variable importance measures obtained
from a single decision tree, as demonstrated in the next section.

58



Minerals 2021, 11, 595

4.5. Decision Tree Induction and Simplification

The previous section demonstrated that the status of the pebble circuit is to an extent
predictable from the set of input variables. The RF model demonstrated that a F1-score of
0.47 could be obtained using a single decision tree. While this constitutes a considerable
drop in accuracy from the unrestricted random forest model, simpler decision tree models
should still be able to extract simple rules describing the most common patterns leading to
bypass events.

The trees in the random forest model are constructed without any restrictions on tree
or branch growth. This impedes the extraction of short, interpretable decision rules from
the tree.

A decision tree model was trained for the classification problem using the parameters
in Table 7 below. A restriction on the minimum parent (branch) node size is usually imposed
as a default setting in software packages to prevent the tree from growing separate branches
for each training example. However, the minimum leaf size of one member still allows the
tree to overfit the training data.

Table 7. CART model parameters for decision tree induction on the SAG circuit data.

Parameter Value

Minimum parent node size 10
Minimum leaf size 1

Number of predictors sampled at each split All (M)
Misclassification costs Table 5

A decision tree trained using the parameters in Table 7 is shown in Figure 10. With no
restrictions placed on the branch growth, the tree contains 173 branch nodes and 174 leaf
nodes. The tree achieved a classification accuracy, in terms of the F1 score, of 0.422.
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Figure 10. Decision tree predicting SAG pebble circuit status from operational data, with no restric-
tions on tree growth capabilities.

While the large number of splits and leaf nodes allow the tree to more closely fit the
training data, the interpretability of the decision tree and individual tree branches is lost.
The absence of restrictions on tree splitting parameters, such as the number of splits or
tree depth, also reduces the generalisation ability of the tree by overfitting to the training
dataset. This is demonstrated in Figure 11, where the training and test set accuracy of a
decision tree is plotted as a function of the maximum number of splits allowed.
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Figure 11. Classification tree prediction accuracy as a function of the maximum number of split
nodes allowed.

Figure 11 shows a slight increase in the F1-score on the test set with increasing number
of splits. There is a sharp increase in the F1-score up until 20 splits, after which the increases
become less significant. However, even at 20 splits, the F1-score is only 0.4, indicating a
significant number of misclassifications. This stresses the importance of the accuracy of
rules extracted from such a tree.

Further, Figure 11 shows that above 20 split nodes the tree is starting to overfit the
training data with only marginal increases to the generalization ability. This result indicates
that we can significantly reduce the number of splits for construction of the decision trees,
while maintaining acceptable accuracy and generalisation ability. Restricting the number
of splits and leaf nodes will somewhat decrease the reliability of the tree, but will also
simplify the tree branches greatly to allow the extraction of interpretable decision rules.
This simplification is demonstrated in Figure 12.

The trees in Figure 12 were constructed with the parameters indicated in Table 7, as
well as an additional parameter restricting the maximum number of splits allowed in the
tree. The figure demonstrates that small numbers of short, interpretable rule sets can be
generated with 20 or less splits in the tree, while maintaining acceptable accuracy on the
test dataset.
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tree on an independent test set is indicated.

For illustrative purposes, the rest of the analysis considers a tree with ten split nodes.
Table 8 shows the confusion matrix for such a tree, which achieved an F1-score of 0.331.
Because of the increased misclassification cost, the majority of bypass events are correctly
classified. However, this also leads to an increased number of false positives.

Table 8. Confusion matrix of a decision tree with a maximum of ten splits on an independent test set.

Confusion Matrix
Predicted Class

0 1

True class
0 1616 204
1 29 58

The above tree induction was simulated 30 times and the variable importance mea-
sures were calculated at each iteration. The permutation and Gini variable importance
measures are shown in Figures 13 and 14, respectively. Both measures rank the importance
of the input variables similarly to that of the random forest model in Figures 8 and 9.
However, the importance of the hydrocyclone has diminished in the underfit decision trees.
All inputs are again at least as important as the random variable.

The average F1-score over the 30 model instances is notably lower than the above
result. This demonstrates the sensitivity of the generated models to the specific partition of
data used during training.

The variable importance measures were calculated to directly compare with the
results in Figures 8 and 9. This analysis is required to analyse the importance of variables
in a random forest, since the forest of trees obstructs simple interpretation of the model.
However, a single decision tree is more interpretable, and the most significant variables
should be recognisable from the top branches in the tree.

The tree corresponding to the results in Table 8 is presented in Figure 15. The variables
close to the root node in the tree correspond to those identified as most significant by the
variable importance measures. In the following section, decision rules are extracted from
this tree and analysed for their utility in decision support.
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Figure 13. Box plots of permutation variable importance measures of a single decision tree with a
maximum of ten splits, showing the median values (red bar), 25% and 75% percentiles (upper and
lower box edges), extreme points (whiskers), as well as outliers (red ‘+’ markers). Distributions were
calculated over 30 model realisations.
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over 30 model realisations.
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4.6. Extracting and Evaluating Decision Rules

The pathways from the root node to leaf nodes in the tree in Figure 15 are represented
as decision rules in Table 9. Where the pathway contains multiple partitions on the same
variable, the rule was simplified to contain a single expression for each unique variable.
The support, accuracy and number of splits for each rule is summarised in Table 10, with
which the utility of each rule could be evaluated.

Table 9. Simplified decision rules extracted from the tree in Figure 15.

Number Rule

1 IF X5 < 0.381 AND X2 < 0.646 AND X3 < 0.229; THEN y = 0
2 IF X5 < 0.381 AND X2 < 0.646 AND X3 ≥ 0.229; THEN y = 1
3 IF 0.381 ≤ X5 < 0.507 AND X2 < 0.502; THEN y = 1
4 IF 0.381 ≤ X5 < 0.507 AND 0.502 ≤ X2 < 0.646; THEN y = 0
5 IF X5 < 0.507 AND X2 ≥ 0.646; THEN y = 1
6 IF 0.507 ≤ X5 < 0.613 AND X1 < 0.428; THEN y = 1
7 IF X5 ≥ 0.613 AND X1 < 0.428; THEN y = 0
8 IF X5 ≥ 0.507 AND X1 ≥ 0.428 AND X3 < 0.736; THEN y = 0
9 IF X5 ≥ 0.507 AND X1 ≥ 0.428 AND X3 ≥ 0.736; THEN y = 1

Table 10. Support, accuracy, and number of splits per rule in Table 8.

Number Supporting Samples (% of Dataset) Accuracy (Probability of Predicted Class) Number of Splits

1 1.45 1.000 3
2 2.24 0.246 3
3 0.48 0.189 2
4 9.82 0.988 4
5 5.79 0.360 2
6 2.35 0.196 2
7 6.21 0.970 2
8 68.17 0.989 3
9 3.49 0.102 3
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The rules in Table 9 leading to bypass events naturally have relatively small numbers
of supporting samples because of the prevalence of these events, and this state essentially
representing fault conditions. In Table 10, the rules predicting bypass events all have
an accuracy below 0.5. If the prediction was a simple majority vote of all the samples
belonging to the rule, the rules would naturally predict normal operation of the pebble
circuit. However, the higher cost imposed on misclassifying actual bypass events outweighs
the cost of misclassifying normal operation samples. Thus, the higher misclassification
cost allows for the identification of the operational states wherein these bypass events are
most likely to occur. Intuitively, the accuracy is thus better interpreted as an indication of
the probability of a bypass event occurring in the operational state specified by the rule.
The number of splits are low and interpretable because of the maximum number of splits
restriction imposed on the decision tree.

Three of the rules extracted are critically analysed below. Consider a closer inspection
of rule 5:

IF Water addition rate < 0.507
AND Dry feed rate ≥ 0.646;
THEN Bypass pebble circuit (Probability = 0.36)

(6)

The rule states that at a higher dry feed rate coupled with a lower water addition rate,
corresponding to an increased solids density in the SAG mill, there is a 36% chance the
circuit would be bypassed. Depending on ore characteristics at the time, the inadequate
water addition is causing the mill to retain more fines than usual, leading to an increase
in the mill load and power draw. To decrease the probability of this event in the future,
metallurgists could reconsider the SAG discharge density targets given to operators based
on different ore sources.

Rule 9 states the following:

IF Water addition rate ≥ 0.507
AND Mill power draw ≥ 0.428
AND Pebble discharge rate ≥ 0.736;
THEN Bypass pebble circuit (Probability = 0.102)

(7)

Rule 9 states that when the water addition rate and power draw are at medium levels
or higher, while the pebble discharge rate is high, there is a 10% chance that the pebble
circuit would be bypassed. This situation might arise when the mill feed suddenly changes
to a more competent ore source, or a larger portion of mid-size fraction material is being fed.
The mill load and power draw are not necessarily high, but the fraction of mid-size material
being discharged from the mill is increasing, possibly to a level where the pebble crusher
and circuit conveyors are unable to deal with the increased load. Depending on the mill fill
level and the amount of power available, operators might choose to draw a higher portion
of large rocks from the stockpile to attempt to break down some of the mid-size material.
Alternatively, operators may choose to draw an increased fraction of finer material from the
stockpile to maintain the mill throughput while not further contributing to the generation
of pebbles. Metallurgists could further investigate the particle size distributions received
from the preceding crusher section to deal with these occurrences.

Rule number 9 is directly contrasted by rule 8, which received the highest amount of
support in the dataset:

IF Water addition rate ≥ 0.507
AND Mill power draw ≥ 0.428
AND Pebble discharge rate < 0.736;
THEN Normal pebble circuit operation (Probability = 0.989)

(8)

As seen in the tree in Figure 15, rule 8 and rule 9 split the data space according to the
specific value of the pebble discharge rate. In contrast to rule number 9, rule 8 predicts
that at lower pebble discharge rates, the circuit was only bypassed 1.1% of the time. Thus,
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the combination of the two rules discover the explicit value of the pebble discharge rate,
such that when this value is exceeded, the operator is ten times more likely to bypass the
pebble circuit. The rule can alert an operator when approaching this specific operational
state, hopefully triggering faster control action and avoiding the bypass event.

5. Discussion and Conclusions

In the case study, classification trees were used to model operator decision-making,
when deciding whether to remove the critical size material from the circuit to prevent the
mill from overloading. It was demonstrated how the model specification can be exploited
to identify the causes of rare events. It was demonstrated that rules can be extracted to
understand why and when operators were making this particular decision.

This type of knowledge can be utilised by metallurgists to aid in determining circuit
operational parameters, or provided to the operator as decision support on a human-
machine interface (HMI). Decision support on a HMI could nudge the more cautious
operator to increase throughput, or restrain aggressive operators when their ambitions
might push equipment towards its limit and require drastic action. This decision support
could take the form of explicitly displaying rules extracted on a HMI, or process alarms
alerting the operator when entering a state governed by a specific rule. Depending on the
specific problem investigated, such decision support systems could either increase overall
throughput, increase the energy efficiency of the grinding task, or reduce the wear to mill
consumables and liners.

The merits of this type of rule induction is based on its simplicity. Site experts or
metallurgists can identify a problem and formulate a model to answer questions regarding
the problem. Rules are then easily induced using pre-packed CART implementations. There
is no guarantee that the rules will contain valid or insightful knowledge, so the expert
is required to critically analyse to ensure they are reasonable. The greatest inhibitor of
extracting rules for successful decision support would be the unavailability of quality data
sets, or a lack of site-specific knowledge to interpret and critically evaluate the patterns
such rules discover. Neither of these should be of any concern to a plant metallurgist.

While it is unlikely that this induction is used for the generation of a complete ECS, it
can certainly augment heuristic knowledge from experts in such systems. Experts often
have difficulty explaining the procedures they follow to arrive at decisions [15]. Rule
induction could aid in formalizing some of the procedures.

As noted by Li et al. [46], the integration of human operators and technology in the
control room is lacking in the minerals processing industry. The successful implementation
of any process control or decision support system is reliant on effective HMI visualisations,
and training operators to effectively utilise such tools.

In summary, decision trees can be used as an effective approach to extract intelligible
rules from data that can be used to support operators controlling grinding circuits. Three
criteria are considered in the process, i.e., the accuracy of the rule, the support of the
rule, and the complexity of the rule. While the case study described the application of
classification trees, the methodology is easily extended to regression problems.

In addition, in some instances, as was the case in this investigation, they can be used
to identify the most influential variables as reliable as more complex models, such as
random forests.

Future work will focus on the industrial operationalization of the approach, making
use of various online sensors in grinding circuits.
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Abstract: In a mine, knowledge of rock types is often desired as they are important indicators of
grade, mineral processing complications, or geotechnical attributes. It is common to model the rock
types with visual graphics tools using geologist-generated rock type information in exploration
drillhole databases. Instead of this manual approach, this paper used random forest (RF), a machine
learning (ML) algorithm, to model the rock type at Erdenet Copper Mine, Mongolia. Exploration
drillhole data was used to develop the RF models and predict the rock type based on the coordinates
of locations. Data selection and model evaluation methods were designed to ensure applicability for
real life scenarios. In the scenario where rock type is predicted close to locations where information
is available (such as in blocks being blasted), RF did very well with an overall success rate (OSR) of
89%. In the scenario where rock type was predicted for two future benches (i.e., 30 m below known
locations), the best OSR was 86%. When an exploration program was simulated, performance was
poor with a OSR of 59%. The results indicate that EMC can leverage RF models for short-term and
long-term planning by predicting rock types within drilling blocks or future blocks quite accurately.

Keywords: machine learning; random forest; rock type; mining geology

1. Introduction

Machine learning (ML) has been applied to mining and geology problems for at least
two decades now [1–6]. On the mining geology side, grade estimation has been a major
area of focus [7–11]. Machine learning techniques that were commonly applied were neural
networks (NN) and support vector machines. Many also tried hybrid approaches [12].
In order to estimate iron ore grades at a mine, researchers [6] used an “extreme learning
machine” (a feed forward NN) algorithm in combination with a “particle swarm opti-
mization” approach. To fill the data gaps for geochemical element grades in a porphyry
copper deposit, a multi-layer NN was used [13] along with a Gustafson-Kessel clustering
algorithm. In a case study to generalize assay values for known and unknown sampled
locations of a mineral sand deposit a hybrid NN was deployed. The combination included
a trained, tested, and validated feed forward NN along with a geostatistics model [14].
In another instance, a genetic algorithm (GA) was used to train a NN [11] for predicting
iron grades.

Researchers investigated methods for generalization, considering the complications
typical in earth science data [2,15,16]. Addressing these issues, some researchers have
used GA to split datasets properly into training and testing subsets [17,18]. To be method
agnostic, recommendations were made on how data should be split to ensure proper
evaluation of artificial intelligence models [19].

Some recent examples used ML to identify rock types based on machine operation
data from drills (such as drill penetration rate) or other sensor data. Logistic regression,
neural networks and gradient boosting were used by [20] to identify rock types based on
sensor data in oil well directional drilling. Clustering and other techniques were applied to
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“measurement-while-drilling” data to identify rock types in an iron ore mine [21]. Though
the nature of the application is different, it is worth mentioning that some have also used
machine learning to identify rock types from images [22,23].

Detecting rock types is also a focus of this paper. The large exploration drillhole
database of Erdenet Copper Mine (EMC), Mongolia, is utilized in this paper to identify
rock types. Traditionally, exploration databases are used primarily for grade estimation.
However, rock type modeling is also undertaken in support of grade estimation, geotechni-
cal modeling or mineral processing operations. For example, if rock type is known along
with grade, it may be processed a particular way. If rock type can be estimated at depths
below current operational depths, it can be used in developing future plans. Currently,
rock type modeling is performed manually using visual tools.

Manual modeling performed using 3D visual tools can be difficult and time consuming.
Making changes to manual models because of new data is also difficult. ML, on the other
hand, not only makes the job easier but also allows incorporation of data from other
sources. Therefore, the objective of this paper is to evaluate the effectiveness of using ML
in modeling the rock type.

EMC, about 350 km northwest of capital city Ulaanbaatar, mines the Erdenetiin Ovoo
copper porphyry deposit, one of the largest copper-molybdenum deposits in Mongolia.
The deposit is hosted by an intrusive complex in the Orkhon-Selenge trough [24]. The
mine, which started operations in 1978, splits the mining area primarily into four deposits,
Central, Northwest, Shand and Oyut. This paper focuses only on the Northwest and
Central deposits, as they are the only two deposits being mined currently.

Though the exploration holes were drilled from 1963 to 2018, the drillhole information
was only recently entered into a database as part of a relatively new digitization effort at the
mine. Therefore, there were several issues with the database, all of which had to be dealt
with prior to starting work on this paper. The issues primarily included duplicate holes,
irrelevant columns (or fields), terminology issues, missing critical values, and spelling.
After cleaning, the database consisted of 2823 exploration drillholes for the Northwest and
Central deposits. The total number of lithological “segments” were 90033. Segments are
explained later in the paper. Four fields (or columns in tables) in the database were used
in this research, three for the coordinates, and one for the rock type. As is common in
exploration databases, rock types in the database are geologist’s interpretation of the rock.

Figure 1 shows two views of the drillholes. Some holes were drilled from the surface
before the start of operations, while other holes were drilled inside the pit. Therefore, hole
lengths ranged from 28 m to 1054 m, with a median length of 75 m. About 140 holes were
above 485 m in depth (95th percentile). Hole bottom elevations range from 166 m to 1505 m,
with the median bottom elevation being 1310 m.

EMC uses the drillhole database to classify the main domains by lithology and fault
zones. These zones are then related to mining and mineral processing conditions. Rocks
are grouped into five major zones: andesite, granodiorite (GDIR), biotite granodiorite
porphyry, dyke and fault zones, and finally, unknown. About 43% of the copper comes
from GDIR. Therefore, the goal in this paper is to predict if the rock type in a given location
is GDIR or not.

ML, as with most modeling methods, requires data to be split into modeling (or
training) subset and testing subset. Usually, data is split into training and testing subsets
to ensure that both subsets are similar [15]. However, a model can be developed and
evaluated using different strategies to reflect the various ways it can be used in real life.
Therefore, a novelty of this paper is in how data is split for modeling and evaluation. This
is explained in the next section.
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Figure 1. Plan view (top) and cross-sectional view of the 2823 drillholes. Arrow points north. Scale is shown in meters. A
total of 90,033 drillhole segments are depicted.

2. Methodology
2.1. Data Selection Approaches

This paper uses two approaches for selecting data for training and testing subsets,
segment-based (SB) and hole-based (HB). The reasoning for the two approaches is explained
in a subsequent section.

SB and HB approaches are demonstrated using Figure 2. The figure shows a dataset
consisting of four holes, H1–H4. Each hole contains several lithological segments. Segments
are 5 m in thickness, except when the lithological segment is less than 5 m in thickness or
not a perfect multiple of 5 m. For example, consider a granodiorite intersection of 23 m,
followed by 3.5 m of diorite. The granodiorite intersection will be split into five segments

71



Minerals 2021, 11, 1059

of lengths 5 m, 5 m, 5 m, 5 m, 5 m and 3 m. The diorite will be on a separate segment of
3.5 m.
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elevations (“Elev.”) of 1020 and 1000.

In Figure 2, there are a total of 28 segments between the four holes. The figure also
shows two lines that indicate two arbitrary elevations (1020 and 1000). These lines will be
used later to explain additional concepts.

Assume that it is determined that 75% of the data will be selected for training. In
the SB method, 21 segments are selected for training. Of course, segments are selected
so that the training and testing subsets are similar in their distribution of rock types [19]
or meet the real life considerations. In the SB method, each hole will likely contribute to
both training and testing subsets. In the HB method, selection is made by holes and not by
segments. Therefore, 75% of the holes are selected for the training subset. Each segment in
the selected hole contributes only to the training subset. Segments in the other holes are all
in the testing subset.

Note that regardless of method, there would be exactly 28 rows of total data in the
data set. However, while the number of rows in the training subset will be 21 in the SB
approach, this will be different for the HB approach. It depends on which holes are selected
for training and testing subsets. For example, if H1 is sent to the testing set, the training
subset would have 22 rows.

2.2. Operational Situations and Their Relationship to Evaluation Methods

In a mine, there is information about rock type in areas that are drilled. However,
information is often preferred at a more granular level for operational reasons. Many times,
in this scenario, there is information available close to and surrounding the non-drilled
location. This operational situation is reflected in the SB strategy, where rock types are
predicted at locations close to where information is available. For example, if segments 3
and 5 in Figure 2 are in the test set, they are locations close to where information is available
(segments 1, 2, 4, 6). Segments are about 5 m apart. Therefore, this is similar to desiring
to know the rock type in a particular production blast, since drillhole spacing in a typical
blast is 5-by-5 m at EMC. Knowing the rock type has immediate operational value as it can
help predict grades or mineral processing complexities.

Another situation that occurs at a mine is when information is needed for areas where
hole density is sparse. This scenario is captured by the HB method. Since the holes in the
test set are not known to the model, this method simulates predicting an entire drillhole
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between known drillholes. The difference with SB is that the distance of testing segments
from training segments is much larger in HB. In HB, when a prediction is made for a test
segment, it is made based on segments (training data) that are in other holes. Since holes
are 50 m or more apart, predictions are essentially for locations 50 m or more away from
known data. In SB, however, predictions are made based on segments, some of which are
in the same hole (perhaps as close as 5 m away). SB is thus a scenario where predictions
are for locations that are near to locations with known data. Hence, SB-versus-HB is also a
near-versus-far comparison.

A variant of the above scenario is when information is required at depths beyond the
current drilling depth. In this situation, named “SB specific to elevation” (SBE), information
is available up to a given elevation, while there is interest in knowing the rock types
below this elevation. Therefore, using information up to this elevation, rock type has to
be predicted for deeper locations (future benches) for short-term or long-term planning
purposes. In this method, all segments above the specific elevation are in training subset,
while locations deeper than that are in the test subset. To define terminology, SBE-1600-
1300-30 indicates the SB evaluation method where segments between 1600 m and 1300
m elevations are part of the training subset. The “30” refers to the segments in the next
30 m of depth (1270–1300 m elevation). This 30 m forms the test set. Thus, the evaluation
is occurring at 1300 m elevation, with 1600–1300 m being the training set and 1270–1300
being the test set.

In the label SBE-1600-1300-30, 1600–1300 is referred to as the training interval (TI) with
a training width (TW) of 300 (1600–1300 = 300), while 30 is the evaluation width. Inciden-
tally, the highest collar elevation is 1600 m and, therefore, when the training interval starts
at 1600 m, it implies all segments up to a certain depth are included in the training subset.

One may also use Figure 2 to understand this method. When applied to Figure 2,
SBE-1020-1000-5 would imply that all segments of the dataset between the thick blue line
and the dashed blue line would be used in the training set. Predictions will be made for
5 m below this line, i.e., one segment below the dashed line. Note that in the dataset a
segment is represented by the coordinates of its centroid. Therefore, unlike Figure 2, it is
always clear whether a segment is above or below a line.

In the SB and HB strategies, training and testing subsets are selected by randomly
splitting the datasets [25]. In the results section, it is shown that despite the random
shuffling, the characterization of the subsets is almost identical in both strategies. In the
SBE strategy, training data is everything within a particular training interval, while testing
data is everything within a particular evaluation width that is just outside the training
interval. Since the two subsets represent different 3D spaces, there is no reason for them
to be similarly characterized. Normally, this would be an improper modeling approach.
However, that concern does not apply here as the intention is to test if ML can predict just
outside its training area.

The ML method used in the paper is random forest (RF). RF were used for two
major reasons [26]. One, unlike geostatistics, RF do not require any assumptions on the
distribution of data. Two, as explained in the section below, RF tend to generalize well.
RF are not new to mining geology [27,28], but since they are not a common technique in
mining they are briefly presented next.

2.3. Random Forest: Background

This paper is not intended to be a manual on random forest (RF). Those seeking a
deeper understanding are referred to [29], the source for this introduction. First, a note
on terminology. In machine learning terminology, ‘feature’ refers to a database field. A
drillhole database that contains the coordinates (northing, easting, elevation) and the rock
type code has four features. A RF developed to determine the rock type will then be based
on three features (northing, easting, elevation).

To understand random forests, one must first understand decision trees. A decision
tree is a series of yes/no questions that are used to sub-divide the samples in the training
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set. A question applied to a group of data acts like a boundary, as it splits the parent group
into two. The child groups can then be further split using boundaries of their own. The
application of decision trees is explained through an example.

Consider the training set in Figure 3 where each sample consists of x-coordinates,
y-coordinates, and a binary class indicator (1 or 0). In this example, the goal of the decision
tree is to determine the class for a given (x, y) location.
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Figure 3. Example training data set showing the two classes (1 and 0) and their coordinates, x (hori-
zontal axis) and y. The three lines shows three boundaries.

Assume that the tree starts with the blue boundary (Y > 36), splitting the data into
two. The two resultant groups are further split using the red (bottom group) and yellow
(top group) boundaries. The four subgroups are numbered I-IV to assist in the description.
Assume that the above was the extent of the tree, and the modeler wishes to know the class
for the test point (20,5). When the decision tree is applied to the point, it lands in Group III.
Therefore, the class assigned to (20,5) is the class implied by the samples in Group III. Since
1’s form the majority in Group III, the class assigned to (20,5) is 1. In a regression decision
tree, the assigned value can be the mean or median (or any other appropriate statistic) of
the group into which the point lands. In this example, any point being evaluated will face at
most two boundaries. Therefore, the depth of the tree is 2. Figure 4 shows a representation
of the decision tree, with the “yes” branch progressing to the left. The location at which a
boundary exists is called a node, i.e., a group of data points is a node. The final nodes are
also shown (I, II, III, and IV).

When a node is to be divided, one must first decide which feature to use for the
boundary. In this example, two features are available to be used as a basis for dividing
the boundary. The first boundary in the above example could have been on the X-axis
instead of the Y-axis. The next design choice is to identify where to locate the boundary on
the selected feature. In this example, the choice was to locate the first boundary at 36 (i.e.,
Y > 36). Most decision tree algorithms make both choices at once. If the number of features
is low, one could systematically apply boundaries in all the features, and then pick the one
where the resultant child groups have the least error (i.e., each node is homogenous and
contains only or mostly samples from the same category). Notice how group IV contains
only 0. This node can no longer be divided as it is fully homogeneous. The process of
dividing nodes can continue till the final nodes are all homogenous or have at least one
sample. One may also choose to limit the depth of the tree. Usually, a tree that is too deep
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may not be generalized. When the number of features is large, to reduce computations,
the algorithm may randomly choose a set of features to be used a basis for the boundary.
Different features are then considered for different boundaries.
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Figure 4. The example decision tree showing a tree depth of two. The labels (such as Y > 36) describe
the decision boundary at a node.

In a decision tree, algorithms will generally yield the same set of boundaries for a given
training set if all the features are considered for every boundary. In a random forest with N
training data points, decision trees are formed by randomly selecting (with replacement)
N of the training data points. Thus, the same data point may be selected many times for
modeling a tree, at the cost of other data points that are not selected. Multiple trees are
formed this way to make the forest. When the forest is applied to determine the category
for a given test point, the decisions of the various trees in the forest are combined to form
the final decision. One may use different strategies to combine the decisions. Random
forests have been found to be superior to a single decision tree, with generalization not
being an issue [26].

3. RF Modeling and Results

RF models were developed using the RandomClassifier() tool in scikit [30]. Only one
hyper parameter was set: maximum tree depth (MTD). It was set using trial and error runs.
Tree depth was increased until performance did not increase. In other words, the shortest
tree depth for the highest performance was used as the setting. The task of the RF was to
predict the rock class, GDIR (1) or not (0). Table 1 shows the distribution of GDIR rock type
in the training and testing subsets for the various strategies. Table 2 shows the performance
of the RF models for the various strategies.

Table 1. Data characterization for various evaluation strategies.

Strategy MTD NTrain GDIR_Train GDIR_Train_
Prop NTest GDIR_Test GDIR_Test_

Prop nonGDIR_Test

SB 20 45,016 18,696 42% 45,017 18,404 41% 26,613

SBE-1600-
1300-30 25 45,603 20,872 46% 5473 2198 40% 3275

SBE-1600-
1300-45 25 45,603 20,872 46% 7995 3216 40% 4779

SBE-1600-
1300-60 25 45,603 20,872 46% 10,468 4230 40% 6238

SBE-1400-
1300-30 25 28,531 12,744 45% 5473 2198 40% 3275

SBE-1400-
1300-45 25 28,531 12,744 45% 7995 3216 40% 4779

SBE-1400-
1300-60 25 28,531 12,744 45% 10,468 4230 40% 6238

SBE-1500-
1200-30 25 61,589 27,411 45% 4093 1490 36% 2603
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Table 1. Cont.

Strategy MTD NTrain GDIR_Train GDIR_Train_
Prop NTest GDIR_Test GDIR_Test_

Prop nonGDIR_Test

SBE-1500-
1200-45 25 61,589 27,411 45% 6008 2171 36% 3837

SBE-1500-
1200-60 25 61,589 27,411 45% 7786 2804 36% 4982

SBE-1300-
1200-30 25 16,632 6590 40% 4093 1490 36% 2603

SBE-1300-
1200-45 25 16,632 6590 40% 6008 2171 36% 3837

SBE-1300-
1200-60 25 16,632 6590 40% 7786 2804 36% 4982

HB 25 45,154 18,467 41% 44,879 18,632 42% 26,247

MTD = Maximum Tree Depth; NTrain = Total rows in training subset; GDIR_Train = Number of rows in training set with GDIR;
GDIR_Train_Prop = Proportion of GDIR in training subset; NTest = Total rows in testing subset; GDIR_Test = Number of rows in testing
set with GDIR; GDIR_Test_Prop = Proportion of GDIR in testing subset; nonGDIR_Test = Number of rows in testing set with rocks other
than GDIR

Table 2. Performance of RF models for various evaluation strategies.

Strategy GDIR_success
_num

GDIR_success
_prop

GDIR False
Positive

nonGDIR
_success_num

nonGDIR_
success_prop OSR

SB 15,760 86% 9% 24,246 91% 89%

SBE-1600-1300-30 1584 72% 13% 2865 87% 81%

SBE-1600-1300-45 2179 68% 14% 4115 86% 79%

SBE-1600-1300-60 2758 65% 15% 5301 85% 77%

SBE-1400-1300-30 1414 64% 11% 2909 89% 79%

SBE-1400-1300-45 1939 60% 13% 4175 87% 76%

SBE-1400-1300-60 2444 58% 14% 5376 86% 75%

SBE-1500-1200-30 1209 81% 12% 2302 88% 86%

SBE-1500-1200-45 1704 78% 13% 3353 87% 84%

SBE-1500-1200-60 2146 77% 14% 4304 86% 83%

SBE-1300-1200-30 1415 95% 71% 763 30% 53%

SBE-1300-1200-45 2053 95% 71% 1100 29% 52%

SBE-1300-1200-60 2656 95% 71% 1424 29% 52%

HB 7756 42% 29% 18727 71% 59%

GDIR_success_num = Number of GDIR test rows successfully classified; GDIR_success_prop = Proportion of GDIR test rows successfully
classified (100 × GDIR_success_num/ GDIR_Test); nonGDIR_success_num = Number of non-GDIR test rows successfully classified;
nonGDIR_success_prop = Proportion of non-GDIR test rows successfully classified (100 × nonGDIR_success_num/non-GDIR_Test);

The results demonstrate the following:

• The proportion of GDIR in the training and testing subsets depend on the evalua-
tion strategy.

# In SB and HB, despite random shuffling, GDIR is split about evenly between
training and testing subsets. This similarity between training and testing
subsets is appropriate as both represent the same 3D space.

# In the SBE strategies, the training subsets are much larger than the testing
subsets, since the training interval (e.g. 1600–1300 implies a 300 m training
interval) is much larger than the evaluation widths (e.g. 30 m). Since the two
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subsets represent completely different 3D spaces, the proportion of GDIR and
non-GDIR in the two subsets can be quite different.

• SBE models were developed for elevations of 1300 and 1200 m, as the mine is currently
operating approximately between those levels.

• RF performs quite well in the SB strategy. 81% of GDIR in the test subset is detected,
while 90% of non-GDIR is detected. The overall success rate (OSR) was 87%, i.e., 87%
of the rocks are recognized correctly as GDIR or non-GDIR.

• In the SBE strategy (also see Figure 5):

# Notice how the performance lines in Figure 5 are inclined downwards to the
right. In each scenario, the performance falls as the evaluation width increases
from 30 m to 60 m. This is not surprising, as a larger evaluation width tests
space farther away from the modeling space.

# The overall accuracy is higher for higher training intervals (Figure 6). Thus, at
1300 m, 1600–1300 (training interval = 300) outperforms 1400–1300 (training
interval = 100). Similarly, at 1200 m, 1500–1200 outperforms 1300–1200. The
effect is more pronounced at 1200 m elevation.

# The seemingly flawless performance for SBE-1300-1200 is misleading (Table 2,
column GDIR_success_prop). The ability to classify 95% of the GDIR rock type
as GDIR is paired with a 71% false positive rate. In other words, the classifi-
cation of rock as GDIR is unreliable. This strategy classifies most segments as
GDIR. Though that results in capturing all the GDIR, it also ends up classi-
fying non-GDIR as GDIR. This is seen in the low success rate for classifying
non-GDIR.

• The false positive rate of 9–15% (for most cases) is decent. This means that when a
rock is classified as GDIR, it is most likely to be GDIR.

• HB strategy showed that predicting entire holes is difficult. When a hole is hidden in
its entirety, only 42% of the GDIR rock segments in the hole are classified accurately.
This is accompanied by a 29% false positive rate, which is not good.
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Figure 6. The overall success rate for the SBE strategy arranged by training width. Each line represents a particular elevation,
with dashed lines representing 1300 m, while thick line representing 1200 m elevation.

4. Discussion

Most mining operations either use the manually developed rock type models or sensor
technologies to make assumptions on the rock types contained within a drill block, or in
future benches/blocks. This paper tested ML algorithms as an alternative to both approaches.

The SB strategy demonstrated that given a good density of information, the gaps
can be predicted with high accuracy. This would suggest that ML of existing information
may be a good substitute for using technologies to detect rock types, when information is
available for nearby locations.

The SBE strategies demonstrated that mine planning can benefit from ML. Erdenet
Copper Mine, with a bench height of 15 m, can predict rock type two to three benches
below the current depth with significant reliability.

The HB strategy demonstrated that RF machine learning cannot yet replace a drilling
campaign. The HB strategy simulated data sparsity. Without data density, ML can have
problems. A research team [31] cited inadequate data as the reason for overfitting when ap-
plying neural networks to estimate grades based on sample locations, lithological features
and alteration levels. Another team [28] cited data density as a concern when applying RF
for mineral prospectivity mapping.

Despite the mixed results, there are advantages to using RF. Unlike geostatistics, no
assumptions are made about the statistical characterization of drillhole data. However, RF
performs about as well as geostatistics [32]. Performance aside, geostatistical methods take
advantage of spatial relationships as defined by variograms. RF does not explicitly take
advantage of spatial relationships. The K-nearest neighbor machine learning technique [33],
which is a version of the common inverse distance squared technique in geostatistics, does
take distances into consideration. However, it is not a sophisticated algorithm. It is possible
that by incorporating spatial relationships such as variograms, RF or other machine learning
techniques may perform better. This would be an excellent topic for future research, would
be along approaches being attempted in recent times [18].

5. Conclusions

The machine learning technique random forest was applied to the exploration drill-
hole database at Erdenet Copper Mine in Mongolia to predict the presence of rock type
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granodiorite. Granodiorite is an important rock type at the mine as it contains 43% of the
copper. The data consisted of 90,033 drillhole segments from 2823 drillholes. Most segments
were 5 m in thickness. Two data selection approaches, segment-based and hole-based,
were utilized to ensure that models could be tested to align with real life needs. Models
were developed to test for three operational scenarios. The base SB method tested for the
scenario when rock type is predicted at locations close to where rock types are known. This
simulates the typical block that is blasted as part of day-to-day operation, where rock type
is known in a relatively dense grid. The base HB method tested for the scenario where
rock type is unknown for the entire length of a drillhole in between other drill holes. The
SBE method tested for the scenario where rock type is known up to a given elevation
but is unknown beyond that elevation. In the SBE method, rock types were predicted for
30, 45 and 60 m (evaluation width) beyond a specific elevation. The information made
available to the models in the SBE method, or the training interval, varied from 100 m to
300 m. Given the 15 m benches at the mine, the 30, 45 and 60 m evaluation widths implied
predictions to 2, 3 and 4 benches below where rock types were known.

The models performed very well in the SB scenario, with 86% of granodiorite being
predicted accurately, with a false positive rate of 9%, resulting in an overall accuracy level
of 89%. In the SBE method, the overall accuracy varied from 52% to 86%. Performance was
better for higher training intervals, and for shorter evaluation widths. Performance was
best in the SBE method at 1200 m, i.e., rock type was predicted better at 1200 m than at
other elevations. The highest performance was achieved at 1200 m elevation with a training
interval of 300 m and evaluation width of 30 m. The performance in the HB method was
not encouraging, with an overall success rate of 59%.

This paper demonstrated that random forest-based machine learning can be very
effective for predicting rock types in near distances. Predicting the entire length of a
missing drillhole is, however, another story. The good performance of near-distance
predictions should prompt mines to perhaps switch to machine learning over traditional
manual modeling (or imperfect sensor technologies) to predict rock types in ore blocks
blasted for production.
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Abstract: This paper presents a new truck dispatching policy approach that is adaptive given different
mining complex configurations in order to deliver supply material extracted by the shovels to the
processors. The method aims to improve adherence to the operational plan and fleet utilization in a
mining complex context. Several sources of operational uncertainty arising from the loading, hauling
and dumping activities can influence the dispatching strategy. Given a fixed sequence of extraction
of the mining blocks provided by the short-term plan, a discrete event simulator model emulates the
interaction arising from these mining operations. The continuous repetition of this simulator and a
reward function, associating a score value to each dispatching decision, generate sample experiences
to train a deep Q-learning reinforcement learning model. The model learns from past dispatching
experience, such that when a new task is required, a well-informed decision can be quickly taken.
The approach is tested at a copper–gold mining complex, characterized by uncertainties in equipment
performance and geological attributes, and the results show improvements in terms of production
targets, metal production, and fleet management.

Keywords: truck dispatching; mining equipment uncertainties; orebody uncertainty; discrete event
simulation; Q-learning

1. Introduction

In short-term mine production planning, the truck dispatching activities aim to deliver
the supply material, in terms of quantity and quality, being extracted from the mining
fronts by the shovels to a destination (e.g., processing facility, stockpile, waste dump).
The dispatching decisions considerably impact the efficiency of the operation and are
of extreme importance as a large portion of the mining costs are associated with truck-
shovel activities [1–4]. Truck dispatching is included under fleet optimization, which also
comprises equipment allocation, positioning shovels at mining facies and defining the
number of trucks required [2,5,6]. Typically, the truck dispatching and allocation tasks
are formulated as a mathematical programming approach whose objective function aims
to minimize equipment waiting times and maximize production [7–11]. Some methods
also use heuristic rules to simplify the decision-making strategy [12–14]. In general, a
limiting aspect of the structure of these conventional optimization methods is related to
the need to reoptimize the model if the configuration of the mining complex is modified,
for example, if a piece of fleet equipment breaks. Alternatively, reinforcement learning
(RL) methods [15] provide means to make informed decisions under a variety of situations
without retraining, as these methods learn from interacting with an environment and adapt
to maximize a specific reward function. The ability to offer fast solutions given multiple
conditions of the mining complex is a step towards generating real-time truck dispatching
responses. Additionally, most methods dealing with fleet optimization are applied to single
mines, whereas an industrial mining complex is a set of integrated operations and facilities
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transforming geological resource supply into sellable products. A mining complex can
include multiple mines, stockpiles, tailing dams, processing routes, transportation systems,
equipment types and sources of uncertainty [16–27].

The truck-dispatching model described herein can be viewed as a particular applica-
tion belonging to the field of material delivery and logistics in supply chains, commonly
modelled as vehicle routing problems and variants [28–30]. Dynamic vehicle routing
problems [31,32] are an interesting field which allows for the inclusion of stochastic de-
mands [33] and situations where the customer’s requests are revealed dynamically [34].
These elements can also be observed in truck-dispatching activities in mining complexes,
given that different processors have uncertain performances and that production targets
may change, given the characteristics of the feeding materials. One particularity of the
truck-dispatching model herein is that the trips performed between shovels and desti-
nations usually have short lengths and are repeated multiple times. Another important
aspect is that uncertainty arises from the geological properties of the transported materials
and the performance of different equipment. Over the last two decades, there is an effort
to develop frameworks accommodating uncertainties in relevant parameters within the
mining complex operations to support more informed fleet management decisions. Not ac-
counting for the complexity and uncertainties inherent to operational aspects misrepresent
queue times, cycling times and other elements, which inevitably translates to deviation
from production targets [6,35]. Ta et al. [9] allocate the shovels by a goal programming
approach, including uncertainties in truckload and cycle times. Few other approaches
optimize fleet management and production scheduling in mining complexes under both
geological and equipment uncertainty [22,36,37].

A common strategy to model the stochastic interactions between equipment and pro-
cessors in an operating mining environment is through the use of discrete event simulation
(DES) approaches [35,38–43]. The DES allows for replacing an extensive mathematical de-
scription or rule concerning stochastic events by introducing randomness and probabilistic
parameters related to a sequence of activities. The environment is characterized numeri-
cally by a set of observable variables of interest, such that each event modifies the state of
the environment [44]. This simulation strategy can be combined with ideas from optimiza-
tion approaches. Jaoua et al. [45] describe a detailed truck-dispatching control simulation,
emulating real-time decisions, coupled with a simulated annealing-based optimization that
minimizes the difference between tonnage delivered and associated targets. Torkamani
and Askari-Nasab [35] propose a mixed integer programming model to allocate shovels
to mining facies and establish the number of required truck trips. The solution’s perfor-
mance is assessed by a DES model that includes stochastic parameters such as truck speed,
loading and dumping times, and equipment failure behavior. Chaowasakoo et al. [46]
study the impact of the match factor to determine the overall efficiency of truck-shovel
operations, combining a DES and selected heuristics maximizing production. Afrapoli
et al. [47] propose a mixed integer goal programming to reduce shovel and truck idle times
and deviations from production targets. A simulator of the mining operations triggers the
model to be reoptimized every time a truck requires a new allocation. Afrapoli et al. [11]
combine a DES with a stochastic integer programming framework to minimize equipment
waiting times.

It is challenging to formulate all the dynamic and uncertain nature of the truck-shovel
operation into a mathematical formulation. The daily operations in a mining complex
are highly uncertain; for example, equipment failure, lack of staff or weather conditions
can cause deviations in production targets and cause modifications in the dispatching
policy. These events change the performance of the mining complex; thus, the related
mathematical programming model needs to be reoptimized. The use of DES of the mining
complex facilitates the modelling of such events. Note that some of the above mentioned
approaches simulate the mining operations to assess the dispatching performance or
improve it, using heuristic approaches. This strategy can generate good solutions, but the
models do not learn from previous configurations of the mining complex.
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Unlike the in the mentioned heuristic approaches, RL-based methods can take ad-
vantage of a mining complex simulator to define agents (decision-makers) that interact
with this environment based on actions and rewards. The repetition of such interaction
provides these agents with high learning abilities, which enables fast responses when a new
assignment is required. Recent approaches have achieved high-level performances over
multiple environments that require complex and dynamic tasks [48–55]. They have also
been applied to some short-term mine planning aspects showing interesting results [56–58].

This paper presents a truck-dispatching policy based on deep Q-learning, one of
the most popular RL approaches, in order to improve daily production and overall fleet
performance, based on the work in Hasselt et al. [50]. A DES is used to model daily
operational aspects, such as loading, hauling and dumping activities, generating samples,
to improve the proposed truck dispatching policy. A case study applies the method to
a copper–gold mining complex, which considers equipment uncertainty, modelled from
historical data, and orebody simulations [59–63] that assess the uncertainty and variability
related to metal content within the resource model. Conclusion and future work follow.

2. Method

The proposed method adapts the deep double Q-learning neural network (DDQN)
method [50] for dispatching trucks in a mining environment. The RL agents continually take
actions over the environment and receive rewards associated with their performances [15].
Herein, each mining truck is considered an agent; therefore, these terms are used inter-
changeably throughout this paper. The DES, described in Section 2.1, receives the decisions
made by the agents, simulates the related material flow and a reward value evaluating
each action. Section 2.2 defines the reward function and how the agents interact with
the RL environment; where the observed states and rewards compose the samples used
to train the DDQN. Subsequently, Section 2.3 presents the training algorithm based on
Hasselt et al. [50], updating the agent’s parameters (neural network weights). Figure 1
illustrates the workflow showing the interaction between the DES and the DDQN policy.
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2.1. Discrete Event Simulator

The discrete event simulator presented in this work assumes a predefined sequence
of extraction, the destination policy of each mining block and the shovel allocation. It
also presumes that the shortest paths between shovels and destinations have been defined.
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Figure 2 illustrates this relationship where the black arrow is the predefined destination
path for the block being extracted by the shovel. After the truck delivers the material to the
dumping point (waste dump, processing plant or leaching pad, for example), a dispatching
policy must define the next shovel assignment. The red arrow illustrates the path options
for dispatching.
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block (black arrow); the possible next dumping point (red arrows).

To simulate the operational interactions between shovels, trucks and dumping loca-
tions present in the mining complex, the DES considers the following major events:

Shovel Loading Event: The shovel loads the truck with an adequate number of loads.
The total time required for this operation is stochastic, and once the truck is loaded, it
leaves the shovel as the destination, triggering the “Truck Moving Event.” If the shovel
must move to a new extraction point, it incurs a delay, representing the time taken to
reposition the equipment. After the truck leaves the loading point, this event can trigger
itself if there is another truck waiting in the queue.

Truck Moving Event: This event represents the truck going from a shovel to a dumping
location, or vice versa. Each travelling time is sampled from a distribution approximated
from historical data. Travelling empty or loaded impacts on the truck speed, meaning
that time values are sampled from different distributions in these situations. When the
truck arrives at the loading point and the shovel is available, this event triggers a “Shovel
Loading Event”; otherwise, it joins the queue of trucks. If the truck arrives at the dumping
location, the event performs similarly; if the destination is empty, this event triggers a
“Truck Dumping Event,” otherwise, the truck joins the queue of trucks.

Truck Dumping Event: This event represents the truck delivering the material to its
destination, to a waste dump or a processing plant, for example. The time to dump is
stochastic, and after the event is resolved, a “Truck Moving Event” is triggered to send the
truck back to be loaded. Here, a new decision can be made, sending the truck to a different
shovel. Similar to the “Shovel Loading Event,” once this event is finished, it can trigger
itself if another truck is in the queue waiting for dumping.

Truck Breaking Event: Represents a truck stopping its activities due to maintenance
or small failures. In this event, a truck is removed from the DES regardless of its cur-
rent assignment. No action can be performed until it is fixed and can be returned to
the operation.
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Shovel Breaking Event: Represents the shovel becoming inaccessible for a certain
period due to small failures or maintenance. No material is extracted during this period,
and no trucks are sent to this location, being re-routed until the equipment is ready to be
operational again.

Figure 3a shows a diagram illustrating a possible sequence of events that can be
triggered. In the figure, the solid lines represent the events triggered immediately after the
end of a particular event. The dashed lines are related to events that can be triggered if
trucks are waiting in the queue. To ensure the sequence respects a chronological ordering, a
priority queue is maintained, where each event is ranked by its starting time, as illustrated
in Figure 3b.
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Figure 3. Discrete event simulation represented in terms of: (a) an initial event and possible next
events that can be triggered; (b) a priority queue that ranks each event by its starting time.

The DES starts with all the trucks being positioned at their respective shovel. This
configuration triggers a “Shovel Loading Event,” and the DES simulates the subsequent
events and how much material flows from the extraction point to their destinations by
the trucks. Once the truck dumps, a new decision is taken according to the DDQN policy.
The DES proceeds by simulating the subsequent operations triggered by this assignment.
This is repeated until the predefined time horizon, which represents Ndays of simulated
activities, is reached by the DES. All events that occur between the beginning and the end
of the DES constitute an episode. Subsequent episodes start by re-positioning the trucks at
their initial shovel allocation.

2.2. Agent–Environment Interaction
2.2.1. Definitions

The framework considers Ntrucks trucks interacting with the DES. At every time step
t ∈ T, after dumping the material into the adequate location, a new assignment for truck
i ∈ Ntrucks is requested. The truck-agent i observes the current state Si

t ∈ S, where Si
t

represents the perception of truck i on how the mining complex is performing at step t and
takes an action Ai

t ∈ A, defining the next shovel to which the truck will be linked. The state
Si

t is a vector encoding all attributes relevant to characterize the current status of the mining
complex. Figure 4 illustrates these attributes describing the state space, such as current
queue sizes, current GPS location of trucks and shovels, and processing plant requirements.
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This state information is encoded in a vector and inputted into the DDQN neural network,
which outputs action-values, one for each shovel, representing the probability that the
truck be dispatched to a shovel-dumping point path. A more detailed characterization of
the state Si

t is given in Appendix A.
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desirability probability of choosing an action.

2.2.2. Reward Function

Once the agent outputs the action Ai
t, the DES emulates how the mining complex

environment evolves by simulating, for example, new cycle times, the formation of queues,
taking into consideration all other trucks in operation. The environment, then, replies to
this agent’s decision with a reward function, represented by Equation (1):

Ri
t = perci

t − pqi
t (1)

where perci
t is the reward associated with delivering material to the mill and accomplishing

a percentage of the destination’s requirement (e.g., mill’s daily target in tons/day). pqi
t is

the penalty associated with spending time in queues at both shovels and destinations. This
term guides solutions with smaller queue formation while ensuring higher productivity.

In this multi-agent setting, each truck receives a reward Rt, which is the sum of each
truck Ri

t, as shown in Equation (2), to ensure that all agents aim to maximize the same
reward function.

Rt =
Ntrucks

∑
i

Ri
t (2)

During each episode, the agent performs Nsteps actions, the discounted sum of rewards
is the called return presented by Equation (3):

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . + γNsteps−t−1RNsteps =
Nsteps

∑
k=t+1

γk−t−1Rk (3)

where γ is a discounting factor parameter, which defines how much actions taken far in
the future impact the objective function [15]. Equation (4) defines the objective, which is to
obtain high-level control by training the agent to take improved actions so that the trucks
can fulfil the production planning targets and minimize queue formation.

max
a∈A

E
[

Gt

∣∣∣S = Si
t, A = Ai

t

]
(4)
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The environment is characterized by uncertainties related to loading, moving, dump-
ing times of the equipment, breakdowns of both trucks and shovels. This makes it very dif-
ficult to define all possible transition probabilities between states

(
p
(
Si

t+1

∣∣S = Si
t, A = Ai

t
))

to obtain the expected value defined in Equation (4). Therefore, these transition probabili-
ties are replaced by the Monte Carlo approach used in the form of the DES.

The framework allows for future actions to be rapidly taken since providing the
input vector St to the neural network and outputting the corresponding action is a fast
operation. This means that the speed at which the decisions can be made depends more
on how quickly the attributes related to the state of the mining complex can be collected,
which has been recently substantially improved with the new sensors installed throughout
the operation.

2.3. Deep Double Q-Learning (DDQN)

The approach used in the current study is the double deep Q-learning (DDQN)
approach based on the work of Hasselt et al. [50]. Q-function Qi

(
Si

t, Ai
t, wi

t
)

is the action-
value function, shown in Equation (5), which outputs values representing the likelihood
of truck i choosing action Ai

t, given the encoded state Si
t and the set of neural-network

weights wi
t, illustrated by Figure 4.

Qi

(
Si

t, Ai
t, wi

t

)
= E

[
Gt

∣∣∣S = Si
t, A = Ai

t

]
(5)

Denote Q∗i
(
si

t, ai
t, wi) to be the theoretical optimal action-value function. Equation (6)

presents the optimal policy π∗
(
Si

t
)

for the state Si
t, which is obtained by using the action-

function greedily:
π∗
(

Si
t

)
= argmax

a′∈A
Q∗i
(

Si
t, a′, wi

)
(6)

Note that, using Equation (6), the approach directly maximizes the reward function
described in Equation (4). This is accomplished by updating the Qi

(
Si

t, Ai
t, wi

t
)

function to
approximate the optimal action-value function

(
Qi
(
Si

t, Ai
t, wi

t
)
→ Q∗i

(
Si

t, Ai
t, wi)).

By letting agent i interact with the environment, given the state Si
t, the agent chooses

Ai
t, following a current dispatching policy πi

(
Si

t
)
= argmax

a′∈A
Qi
(
Si

t, a′, wi
t
)
, the environ-

ment then returns the reward Rt and a next state Si
t+1. The sample experience ei

k =(
Si

t, Ai
t, Rt, Si

t+1
)

is stored in a memory buffer, Di
K =

{
ei

1, ei
2, . . . , ei

K
}

, which is increased as
the agent interacts with the environment for additional episodes. A maximum size limits
this buffer, and once it is reached, the new sample ei

k replaces the oldest one. This is a known
strategy called experience replay, which helps stabilize the learning process [48,50,64].

In the beginning, Qi
(
Si

t, Ai
t, wi

t
)

is randomly initialized, then a memory tuple ei
k

is repeatedly uniformly sampled from the memory buffer Di
K, and the related ei

k =(
Si

t, Ai
t, Rt, Si

t+1
)

values are used to estimate the expected future return Gt, as shown
in Equation (7):

Gt =





Rt, i f episode terminates at t + 1

Rt + γQi

(
Si

t, argmax
a′∈A

Qi
(
Si

t+1, a′, wi
t
)
, wi

)
, otherwise

(7)

Additionally, gradient descent is performed on
(
Gt −Qi

(
Si

t, Ai
t, wi

t
))2 with respect

to the parameter weights wi
t. Note that a different Q-function, Qi(·), is used to predict

the future reward; this is simply the Qi(·) with the old weight parameters. Such an
approach is also used to stabilize the agent’s learning, as noisy environments can result in
a slow learning process [50]. After NUpdt steps, the weights wi

t are copied to wi, as follows:
Qi(·) = Qi(·).
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During training, the agent i follows the greedy policy πi
(
Si

t
)

meaning that it acts
greedily with respect to its current knowledge. If gradient descent is performed with
samples coming solely from πi

(
Si

t
)
, the method inevitably would reach a local maximum

very soon. Thus, to avoid being trapped in a local maximum, in ε% of the time, the agent
takes random actions exploring the solution space, sampling it from a uniform distribution
Ai

t ∼ U(A). In (100− ε)% of the time, the agent follows the current policy Ai
t ∼ πi

(
Si

t
)
.

To take advantage of long-term gains, after every Nsteps_reduce steps this value is reduced by
a factor reduce_ f actor ∈ [0, 1]. In summary, the algorithm is presented as follows:

Algorithm 1 Proposed learning algorithm.

Initialize the action-functions. Qi(·) and Qi(·) by assigning initial weights to wi
t and wi.

Set n1counter = 0 and n2counter = 0.
Initialize the DES, with the trucks at their initial locations (e.g., queueing them at the shovel).
Repeat for each episode:

Given the current truck-shovel allocation, the DES simulates the supply material
being transferred from mining facies to the processors or waste dump by the trucks.

Once the truck i dumps the material, a new allocation must be provided.
At this point, the agent collects the information about the state Si

t.
Sample u ∼ U(0, 100)
If u < ε%

The truck-agent i acts randomly Ai
t ∼ U(A)

Else:

The truck-agent i acts greedily Ai
t ∼ πi

(
Si

t

)

Taking action Ai
t, observe Rt and a new state Si

t+1.

Store the tuple ei
k =

(
Si

t, Ai
t, Rt, Si

t+1

)
in the memory buffer Di

K

Sample a batch of experiences ei
k =

(
Si

t, Ai
t, Rt, Si

t+1

)
, of size batch_size, from Di

K :

For each transition sampled, calculate the respective Gt from Equation (7).

Perform gradient descent on
(

Qi
1

(
st+1, a′, wi

1

)
− Gt

)2
according to Equation (8):

wi
1,next ← wi

1,old − α
(

Qi
1

(
st+1, a′, wi

1

)
− Gt

)
∇wi

1
Qi

1

(
st+1, a′, wi

1

) (8)

n1counter ← n1counter + 1 .
n2counter ← n2counter + 1 .
If n1counter ≥ NUpdt:

wi ← wi
t .

n1counter ← 0 .
If n2counter ≥ Nstep_reduce:

ε← ε ∗ reduce_ f actor .
n2counter ← 0 .

3. Case Study at a Copper—Gold Mining Complex
3.1. Description and Implementation Aspects

The proposed framework is implemented at a copper–gold mining complex, summa-
rized in Figure 5. The mining complex comprises two open-pits, whose supply material is
extracted by four shovels and transported by twelve trucks to the appropriate destinations:
waste dump, mill or leach pad. Table 1 presents information regarding the mining equip-
ment and processors. The shovels are placed at the mining facies following pre-defined
extraction sequences, where the destination of each block was also pre-established before-
hand. The mining complex shares the truck fleet between pits A and B. The waste dump
receives waste material from both mines, whereas the leach pad material only processes
supply material from pit B due to mineralogical characteristics. The truck going to the leach
pad dumps the material into a crusher, then transported it to the leach pad. Regarding the
milling material, each pit is associated with a crusher, and the trucks haul the high-grade
material extracted from a pit and deliver it to the corresponding crusher. Next, a conveyor
belt transfers this material to the mill combining the material from the two sources. Both
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the mill and the leach pad are responsible for producing copper products and gold ounces
to be sold.
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Table 1. Mining complex equipment and processors.

Equipment Description

Trucks
12 in total

6 of payload capacity of 200 tons
3 of payload capacity of 150 tons
3 of payload capacity of 250 tons

Shovel
4 in total

2 of bucket payload of 80 tons
1 of bucket payload of 60 tons
1 of bucket payload of 85 tons

Mill Capacity 80,000 ton/day, with 2 crushers.
Leach Pad Capacity 20,000 ton/day, with one crusher.

Waste Dump 1 Waste Dump with no limitation on capacity.

The discrete event simulation, described in Section 2.1, emulates the loading, hauling
and dumping operations in the mining complex. Each event is governed by uncertainties
that impact the truck cycling times. Table 2 presents distributions used for the related
uncertainty characterization. For simplicity, these stochastic distributions are approximated
from historical data; however, a more interesting approach would have been to use the
distribution directly from historical data. When the truck dumps material into a destination,
a new dispatching decision must be taken by the DDQN dispatching policy. This generates
samples that are used to train the DDQN dispatching policy. During the training phase,
each episode lasts the equivalent of 3 days of continuous production, where the truck-agent
interacts with the discrete event mine simulator environment, taking actions and collecting
rewards. In total, the computational time needed for training, for the present case study, is
around 4 h. For the comparison (testing) phase, the method was exposed to five consecutive
days of production. This acts as a validation step, ensuring that the agents observe the
mining complex’s configurations which were unseen during training. The results presented
show the five days of production, and the performance obtained illustrates that the method
does not overfit regarding the three days of operation but maintain a consistent strategy
for the additional days.

Table 2. Definition of stochastic variables considered in the mining complex.

Stochastic Variable Probability Distribution

Loaded truck speed (km/h) Normal (17, 4)
Empty truck speed (km/h) Normal (35, 6)

Dumping + maneuver time (min) Normal (1, 0.15)
Shovel bucketing load time (min) Normal (1.1, 0.2)

Truck mean time between failures (h) Poisson (36)
Truck mean time to repair (h) Poisson (5)

Shovel mean time between failures (h) Poisson (42)
Shovel mean time to repair (h) Poisson (4)
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Note that although the DDQN policy provides dispatching decisions considering a
different context from the one it was trained, the new situations cannot be totally different.
It is assumed that in new situations, the DDQN experiences are sampled from the same
distribution observed during training. In the case where the sequence of extraction changes
considerably and new mining areas as well as other destinations are prioritized, the model
needs to be retrained.

Two baselines are presented to compare the performance of the proposed approach.
The first one, referred to as fixed policy, is a strategy that continually dispatches the truck
to the same shovel path throughout the episode. The performance comparison between
the DDQN and fixed policy is denoted Case 1. The second approach, referred to as greedy
policy, sends trucks to needy shovels with the shortest waiting times to decrease idle shovel
time, denoted Case 2. Both cases start with the same initial placement of the trucks.

The environment is stochastic, in the sense that testing the same policy for multiple
episodes generates different results. Therefore, for the results presented here, episodes
of 5 days of continuous production are repeated 10 times for each dispatching policy. To
assess uncertainty outcomes beyond the ones arising from operational aspects, geological
uncertainty is also included in the assessment by considering 10 orebody simulations
(Boucher and Dimitrakopoulos; 2009) characterizing the spatial uncertainty and variability
of copper and gold grades in the mineral deposit. The graphs display results in P10, P50
and P90 percentile, corresponding to the probability of 10, 50 and 90%, respectively, of
being below the value presented.

3.2. Results and Comparisons

Figure 6 presents the daily throughput obtained by running the DES over the five days
of production, which is achieved by accumulating all material processed by the mill within
each day. Note that here the P10, P50 and P90 are only due the equipment uncertainty.
Overall, the proposed model delivers more material to the mill when compared to both
cases. The DDQN method adapts the dispatching to move trucks around, relocating them
to the shovels that are more in need, which constantly results in higher throughput.
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The throughput in day five drops compared to previous days, mostly due to a smaller
availability of trucks as the DES considers failures in the trucks; Figure 7 presents the
average number of trucks available per day. During the initial three days, the availability
of trucks hovers between 10 and 12 trucks, but this rate drops in the last 2 days, which
decreases the production. However, the trained policy can still provide a higher feed rate
at the mill, even in this adversity. The availability of trucks on days 4 and 5 is smaller than
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the period for which the DDQN based method was trained, which shows an adapting
capability of the dispatching approach.
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Figure 7. Availability of trucks during the five days of operation.

The framework is also efficient in avoiding queue formation. Figure 8 presents the
average queue sizes at the mill and the sulphide leach. The queue at different locations is
recorded hourly and averaged over each day. The plot shows that, for most of the days,
the proposed approach generates smaller queues. Combined with the higher throughput
obtained, this reduction in queue sizes demonstrates better fleet management. For example,
during the initial three days, the DDQN approach improves the dispatching strategy
by forming smaller queues at the mill. At the same time, the amount of material being
delivered is continuously higher. On the 4th day, the proposed approach generates a larger
queue size at the mill, which is compensated by having considerably higher throughput at
this location.
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Figure 9 displays the cumulative total copper recovered at the mining complex over
the five days. Interestingly, during the first three days of DES simulation, corresponding to
the training period of the DDQN approach, the total recovered copper profile between the
proposed method and the baselines is similar. However, this difference is more pronounced
over the last two days, which represents the situation that the trained method has not seen.
This results in 16% more copper recovered than the fixed policy and 12% more than the
greedy strategy. This difference in results is even larger when the total gold recovered is
compared. The DDQN method generates a 20 and 23% higher gold profile in Case 1 and
Case 2, respectively, Figure 10.
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4. Conclusions

This paper presents a new multi-agent truck-dispatching framework based on a
reinforcement learning framework. The approach involves the interaction between a DES,
simulating the operational events in a mining complex, and a truck-dispatching policy
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based on the DDQN method. Given a pre-defined schedule in terms of the sequence of
extraction and destination policies for the mining blocks, the method improves the real-
time truck-dispatching performance. The DES mimics daily operations, including loading,
transportation and dumping, and equipment failures. A truck delivers the material to
a processor or waste dump, and the truck-dispatcher provides it with a different shovel
path. At this point, the truck receives information about the mining complex, such as
other truck locations via GPS tracking, the amount of material feeding the processing plant
and queue sizes at different locations. This state information is encoded into a vector,
characterizing the state of the mining complex. This vector is inputted into the DDQN
neural network, which outputs action values, describing the likelihood to send the truck to
each shovel. Each dispatching decision yields a reward, which is received by the agent, as
a performance evaluation. Initially, the truck-agent acts randomly; as the agent experiences
many situations during training, the dispatching policy is improved. Thus, when new
dispatching decisions are requested, an assignment is quickly obtained by the output of
the DDQN agent. It differs from previous methods that solve a different optimization
repeatedly during dispatching. Instead, the only requirement is to collect information
regarding the state of the mining complex. With the digitalization of the mines, obtaining
the required information can be done quickly.

The method is applied to a copper–gold mining complex composed of two pits,
three crushers, one waste dump, one mill and one leach-pad processing stream. The
fleet is composed of four shovels, and twelve trucks that can travel between the two pits.
The DDQN-based method is trained for the equivalent of three days, while the results
are presented for five days of production. Two dispatching baseline policies are used for
comparison to assess the capabilities of the proposed method: fixed truck-shovel allocations
and a greedy approach that dispatches trucks to needy shovels with the smallest queue
sizes. The results show that the DDQN-based method provides the mill processing stream
with higher throughput while generating shorter queues at different destinations, which
shows a better fleet utilization. Over the five days of production, the proposed policy
produces 12 to 16% more copper and 20 to 23% more gold than the baseline policies.
Overall, the reinforcement learning approach has shown to be effective in training truck-
dispatching agents, improving real-time decision-making. However, future work needs
explore the development of new approaches that address the impact and adaptation
of truck-dispatching decisions to changes and re-optimization of short-term extraction
sequences given to the acquisition of new information in real-time and uncertainty in the
properties of the materials mind.
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Appendix A.

Appendix A.1. State Definition

The definition of the state of the mining complex vector Si
t encodes all attributes

relevant to characterize the current status of the mining complex. Table A1 presents where
the attributes are taken from and how it is represented in a vector format. Note that the
encoding used here simply transforms the continuous attributes into values between 0
and 1, by a division of a large number. For discrete ones, a one-hot-encoding approach
is used, where the number of categories defines the size of the vector, and a value of 1 is
placed in the location corresponding to the actual category. This strategy attempts to avoid
generating large gradients during gradient descent and facilitates the learning process.
This idea can be further generalized, and other attributes judged relevant by the user can
also be included.

Table A1. Attributes defining the current state of the mining complex.

Attribute in Consideration Representation

Shovel related attributes

Destination policy of the block being
currently extracted 1-hot-encoded vector (3-dimensional)

Destination policy of next 2 blocks 1-hot-encoded (6 dimensional in total)

Shovel capacity 1 value divided by the largest capacity

Variable indicating if the shovel is currently
in maintenance 1 value (0 or 1)

Current distance to destination 1 value divided by a large number

Number of trucks associated 1 value divided by a large number

Approximated queue sizes 1 value divided by a large number

Approximated waiting times 1 value divided by a large

Number of attributes per shovel 15

Destination related attributes

% target processed 1 value

Amount of material received at crushers 2 values divided by a large number

Distance to each shovel 4 values dived by a large number

Approximated queue sizes 1 value divided by a large number

Approximated waiting times 1 value divided by a large number

Number of attributes per destination 9

Truck related attributes

Truck capacity 1 value divided by the largest capacity

Current number of trucks currently in operation. 1 value divided by the total number of trucks

The last shovel visited 1-hot-encoded (4 values)

Number of attributes of each truck

Total of attributes 102

Appendix A.2. Neural Network Parameters

Table A2. Reinforcement learning parameters.

Neural Network
Input layer = 102 nodes with ReLU activation function;
Hidden layer 306 nodes with ReLU activation function;

Output layer: 4 nodes without activation function.

Gradient descent Adam optimization, with learning rate = 2 × 10−4.

DDQN parameters
γ = 0.99

ε = 0.25, with reduce_ f actor = 0.98
10,000 episodes of training.
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Abstract: Oil remains a major contributor to global primary energy supply and is, thus, fundamental
to the continued functioning of modern society and related industries. Conventional oil and gas
reserves are finite and are being depleted at a relatively rapid pace. With alternative fuels and
technologies still unable to fill the gap, research and development of unconventional petroleum
resources have accelerated markedly in the past 20 years. With some of the largest bitumen deposits
in the world, Canada has an active oil mining and refining industry. Bitumen deposits, also called
oil sands, are formed in complex geological environments and subject to a host of syn- and post-
depositional processes. As a result, some ores are heterogeneous, at both individual reservoir and
regional scales, which poses significant problems in terms of extractive processing. Moreover, with
increased environmental awareness and enhanced governmental regulations and industry best
practices, it is critical for oil sands producers to improve process efficiencies across the spectrum.
Discrete event simulation (DES) is a computational paradigm to develop dynamic digital twins,
including the interactions of critical variables and processes. In the case of mining systems, the
digital twin includes aspects of geological uncertainty. The resulting simulations include alternate
operational modes that are characterized by separate operational policies and tactics. The current
DES framework has been customized to integrate predictive modelling data, generated via partial
least squares (PLS) regression, in order to evaluate system-wide response to geological uncertainty.
Sample computations that are based on data from Canada’s oil sands are presented, showing the
framework to be a powerful tool to assess and attenuate operational risk factors in the extractive
processing of bitumen deposits. Specifically, this work addresses blending control strategies prior to
bitumen extraction and provides a pathway to incorporate geological variation into decision-making
processes throughout the value chain.

Keywords: discrete event simulation; digital twin; modes of operation; geological uncertainty; multi-
variate statistics; partial least squares regression; oil sands; bitumen extraction; bitumen processability

1. Introduction

With conventional oil and gas reservoirs being gradually depleted worldwide, activity
in the research and exploitation of unconventional resources has grown exponentially over
the past two decades. Global estimates of in-place bitumen and heavy oil resources are
on the order of 5.9 trillion barrels (938 billion m3), over 80% of which are concentrated
in Canada, Venezuela and the United States [1]. Boasting the largest collection of these
deposits globally with approximately 1.7 trillion barrels (270 billion m3) of in-place re-
sources [1], Canada is strategically positioned as an important source of unconventional
petroleum products. Of this total, roughly 165 billion barrels (26.3 billion m3) are con-
sidered technically recoverable and, thus, correspond to Canada’s estimated remaining
established reserves [1]. Unlike traditional light oil well drilling, which will decline over
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time, forecasts show an overall 12% increase in unconventional petroleum production over
the next 30 years, with peak rates reached in 2039 [2].

Bitumen and heavy oil reservoirs typically occur in unlithified sand deposits (also
called “bituminous”, “tar” or “oil” sands); however, heavy oil is also found within porous
siliciclastic and carbonate host-rock successions due to its relative mobility [1]. These
reservoirs are generally heterogeneous, containing a variety of different hydrocarbons
across the American Petroleum Institute (API) gravity spectrum (from light oil to bitumen).
By definition, heavy oil is marginally less dense than water (0.920 g/mL) and corresponds
to API gravities in the range of 10–20◦; conversely, bitumen and extra-heavy oils are
denser than water with API gravities of less than 10◦ [1,3]. Crude bitumen and heavy
oil resources are lacking in terms of lighter distillates, which significantly reduces their
market value; consequently, both must undergo upgrading to increase commercial value
and marketability. Upgrading to synthetic crude oil products (~20–40◦ API) involves the
addition of hydrogen in order to attain H:C ratios similar to those of conventional crudes,
as well as the removal of impurities such as nitrogen, sulphur, oxygen and heavy metals [1].

The current study is concerned with processes specific to the exploitation of oil sand
deposits. Typically, economical oil sands contain on the order of 9–13% bitumen (soluble
organic matter), 3–7% water and 80–85% mineral solids and insoluble organic matter [3,4].
Generally, 15–30% of the total solids are fines (mainly clays), less than 44 µm in diameter [4].
Most deposits are comprised of unconsolidated sand “bound” by a matrix of bitumen, with
or without secondary cements and clays [3]. Despite broad acceptance of the origin and
emplacement of bitumen reservoirs, oil sand deposits are subject to substantial levels of
geological uncertainty in terms of host formation characteristics, ore composition, grade
and overall processability. All of these process variables are strongly influenced by vari-
able and complex host-formation and hydrocarbon depositional histories, in addition to
post-depositional alteration processes such as biodegradation and in situ natural water
washing [5,6]. Each of these contributing factors can lead to significant variability in ore
feed particle size distributions, host-formation mineralogy and hydrocarbon chemistry and
quality, all of which have direct impacts on downstream processing.

As with many types of mining projects, there are a variety of processes along the
oil sands value chain; each of these streams may serve a particular function, but also
require coordination of inputs and outputs with both up- and down-stream processes.
This coordination can be difficult to maintain at times, even for systems that receive
relatively stable ore feeds, but is exponentially problematic for projects dealing with
heterogeneous ores. For example, blending strategies are common in mining for grade
control or to minimize undesirable impurities in ore feeds; however, oil sand operations
must also consider factors such as grain size distribution and mineral chemistry in order to
regulate the transfer of intermediate products (e.g., slurries or froths) within hydrotransport
pipelines. Furthermore, some complex ores may require additional treatment prior to, or
between, conventional processing methods. For instance, heavy gas oil phases partitioned
by distillation during upgrading are fed to fluid cokers and hydrocrackers to increase H:C
ratios and break down long-chain molecules [7]. Similarly, problematic high chloride oil
sands, often with elevated clay contents, could require ancillary control strategies (e.g.,
water content reduction, additives/inhibitors and blending) to reduce corrosive effects
or blockages (i.e., ammonium chloride) related to hydrolysis reactions in downstream
processes [8–11].

Improper process control strategies that do not suitably incorporate the geometallur-
gical profile of source ore feeds can result in major bottlenecks in mining and processing
operations, ultimately leading to increased operating costs, decreased efficiencies and, even,
potentially important reductions in project life. Several authors have emphasized the impor-
tance of establishing alternate modes of operation for mineral processing facilities [12,13].
Alternate modes are designed using mass balance and mathematical programming, and
the operational decision to switch between modes is triggered by changing conditions
or as critical thresholds are crossed [12,13]. The approach is particularly effective for
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complex mining systems dealing with heterogeneous ore feed and process variables, as
demonstrated by recent studies [14–17]. Continuous online material and system process
monitoring notwithstanding, a natural and powerful extension is to couple the devel-
opment of operational modes with robust predictive models that benefit from earlier
systematic sampling protocols. This type of integrated approach can lead to improved
planning and fine-tuning earlier in the value chain, rather than being forced to make
continual reactive adjustments based on process outputs (e.g., bitumen recoveries).

Given the high degree of variability inherent to oil sands mining and processing opera-
tions, it is evident that appropriate quantitative frameworks are needed in order to monitor
system performance and response under changing conditions. One such computational
intelligence tool is the digital twin, which is an integrated multidisciplinary probabilistic
simulation of a system that uses the best available data models, updates and history to
mimic the operational life of the corresponding physical system [18,19]. The development
of digital twins using discrete event simulation (DES) is an effective approach because it
allows for the simulation of interactions between critical parameters and processes with
respect to random natural variations, e.g., geological uncertainty. Furthermore, DES models
can also optimize trade-offs between available operational policies, as well as the limits
that dictate the timing of their execution [15–17]. By simulating extended operating peri-
ods, potential deficiencies or bottlenecks in the coordination of system processes can be
identified; strategic decisions can then be made to adjust operational policies, accordingly,
thereby pre-emptively assessing and managing risk factors. The drive to improve overall
system efficiencies is further amplified by increasingly stringent environmental regulations,
industry best practices and pressure from community stakeholders.

This work introduces an extended framework capable of integrating predictive mod-
elling using partial least squares (PLS) regression incorporated within a digital twin, for the
evaluation of system response to geological uncertainty. A case study using data derived
from Canada’s oil sands is presented for a conceptual surface mining operation to assess the
effect of implementing potential new ore blending schemes. The initial dataset was kindly
acquired through partnerships with the National Research Council Canada (Ottawa, ON,
Canada) and Syncrude Canada Ltd. (Research and Development–Edmonton, AB, Canada).

2. Background
2.1. Oil Sands Geology and Petrochemical Processing

Canada’s vast oil sand resources are located almost exclusively in northeastern Al-
berta, within three core areas, namely the Peace River, Athabasca and Cold Lake deposit
regions (Figure 1) [7,20]. Collectively, these accumulations span an area of approximately
142,000 km2 [7,21], the largest of which is the Athabasca region, containing ~75% of the
provincial reserves [20,22].
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graded Exshaw Shale sourced hydrocarbons [3,23,24]. Ores hosted within the McMurray 
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gional and individual reservoir scales. Key factors that affect the distribution and chemis-
try of bitumen include physical reservoir characteristics, mineralogy and mineral chemis-
try and fluid distribution and chemistry; these attributes are the result of dynamic host-
formation and hydrocarbon depositional histories, as well as complex post-depositional 
alteration processes [6]. For example, though the predominant host successions are 
thought to have been deposited in estuarine settings, reservoirs have also been identified 
in fluvial and shallow marine settings, each with differing host porosities and permeabil-
ities, mineral compositions, grain size distributions and related bitumen qualities 
[3,6,25,26]. Moreover, even broadly mappable geologic sequences (e.g., estuarine settings 
of the Middle McMurray Formation) may actually consist of multiple events overlapping 
in space and time, with each contributing several hierarchical heterogeneities [6,27]. Mi-
crobial degradation has been strongly linked to the quality of petroleum, having de-
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bulk physical characteristics of petroleum accumulations [1,5]. 

Open-pit mining has traditionally been the dominant method implemented in the 
Alberta Oil Sands Region (AOSR), but in situ production first surpassed surface mining 

Figure 1. Location map of the Alberta Oil Sands Region (AOSR), showing the relative positions of
the Peace River, Athabasca and Cold Lake oil sand deposit areas.

Generally, the Alberta oil sands have a thin overburden, and the deposits are concen-
trated within the early Cretaceous McMurray Formation (Mannville Group), which has
variable thickness related to an original depositional surface defined by karstic features
in underlying Devonian carbonates [3,4]. The present-day low API oils are the result of
degraded Exshaw Shale sourced hydrocarbons [3,23,24]. Ores hosted within the McMurray
Formation are subject to heterogeneities and related geological uncertainty, at both regional
and individual reservoir scales. Key factors that affect the distribution and chemistry of
bitumen include physical reservoir characteristics, mineralogy and mineral chemistry and
fluid distribution and chemistry; these attributes are the result of dynamic host-formation
and hydrocarbon depositional histories, as well as complex post-depositional alteration
processes [6]. For example, though the predominant host successions are thought to have
been deposited in estuarine settings, reservoirs have also been identified in fluvial and
shallow marine settings, each with differing host porosities and permeabilities, mineral
compositions, grain size distributions and related bitumen qualities [3,6,25,26]. Moreover,
even broadly mappable geologic sequences (e.g., estuarine settings of the Middle McMur-
ray Formation) may actually consist of multiple events overlapping in space and time, with
each contributing several hierarchical heterogeneities [6,27]. Microbial degradation has
been strongly linked to the quality of petroleum, having destroyed important proportions
of originally emplaced conventional oil through the removal of lighter distillates [4,6]. In
situ water washing, which removes the more water-soluble distillates through contact with
formation waters, is considered the second most important post-depositional alteration
process that affects the geochemistry, quality and bulk physical characteristics of petroleum
accumulations [1,5].
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Open-pit mining has traditionally been the dominant method implemented in the
Alberta Oil Sands Region (AOSR), but in situ production first surpassed surface mining
in 2012 and continued this trend into 2013 [1,28]. For aging open-pit mines to remain
competitive with the newer in situ operations, they must be ready to implement changes
to their process and, thus, adapt to their forecasted feeds. In oil sands surface mining,
overburden is stripped, and conventional truck-and-shovel methods are used to excavate
the ore, followed by a series of treatments to liberate the bitumen from the mineral grains
for subsequent recovery and cleaning. First, the ore is crushed and mixed with water
and additives to create a slurry, which is then pumped to the extraction facilities via
hydrotransport pipelines [7,20]. Upon exit, the slurry is subject to water addition and
gravity-settling separation processes, which produces a bitumen froth, a middlings stream
and a first round of tailings. The aerated bitumen froth (comprising ~60% bitumen, 30%
water and 10% fine solid particles) rises to the top of the separation vessel, meanwhile
flotation cells are used to recover bitumen from the middlings [7]. The separated froth
is deaerated and then sent to the froth treatment plant, where the addition of a light
hydrocarbon solvent helps reduce the viscosity of the bitumen; this allows for more
effective separation of any remaining impurities by centrifugation and inclined plate
(gravity) settlers. The final product of this froth treatment process is called diluted bitumen
(also referred to as “dilbit”) and is accompanied by another tailings stream.

Depending on the choice of hydrocarbon solvent, the generated dilbit can require
further upgrading (typical for naphthenic treatment) or head straight to the refinery market
(possible with paraffinic treatment); in either case, the diluent is removed prior to further
processing. Lighter hydrocarbon solvents yield cleaner dilbit products by reducing the
viscosity of the emulsion, which allows for gravity-based removal of water and solids.
Paraffinic solvents promote asphaltene (impurity) precipitation, whereas naphtha cannot
do this at practical dilution rates. Upgrading converts viscous, hydrogen-deficient hydro-
carbon with elevated impurity levels into high-quality synthetic crude oil products with
density and viscosity attributes similar to those of conventional light sweet crude oil [7].
The process first splits the bitumen into hydrocarbon streams (i.e., light and heavy gas
oil) in a vacuum distillation unit. The lighter distillates (“tops”) are fed into hydrotreaters
for stabilization and impurity removal (e.g., sulphur), meanwhile the heavier phases
(“bottoms”) are sent to fluid cokers (thermal conversion units) to remove carbon and to
hydrocrackers where hydrogen is added and long-chain molecules are broken down [7].

2.2. Multivariate Statistics and Partial Least Squares (PLS) Regression

Multivariate statistics is a branch of statistics dealing with methods that examine
the simultaneous effect of multiple variables [29]. Multivariate techniques extend the
approach of univariate and bivariate investigations to include the analysis of covariances
(or correlations) that reflect the extent of relationships between three or more variables, as
well as similarities indicated by relative distances in n-dimensional space [29]. This area of
research has expanded greatly over the past few decades due to significant technological
advances in computing power and data frameworks.

Partial least squares (PLS) regression is a multivariate statistical method that com-
bines and generalizes features from principal component analysis and multiple linear
regression, with the objective of predicting a set of dependent variables from a potentially
large set of independent variables [30,31]. The technique was pioneered in the 1960s by
Herman Wold for use in the social sciences but has since gained traction in a variety of
fields, including chemometrics, sensory evaluation and neuroimaging [30–33]. It is also
becoming popular in the biological and environmental sciences with applications in soil
and microbial ecology [34,35], biodiversity [36,37], paleo-climatological reconstruction [38]
and ecotoxicology [39,40]. More recent studies in the geological disciplines have identified
the use of near-infrared (NIR) or short-wave infrared (SWIR) reflectance measurements to
build predictive models of metal concentrations in soils [41,42].
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The main underlying computation for PLS is the singular value decomposition (SVD)
of a matrix, which gives the best reconstruction (in a least squares sense) of the original
data matrix by a matrix of lower rank (dimension reduction), while limiting the loss of
significance [43]. The SVD is closely related to the well-known eigen-decomposition for
non-symmetric matrices [44]. As a matter of notation, matrices are denoted by upper case
bold letters, column vectors by lower case bold letters, and the superscript “T” is used
to indicate transposition of either. Formally, the SVD of a given matrix, R, decomposes it
into three matrices, comprising the left singular vectors, the singular values and the right
singular vectors, as follows:

R = U∆VT =
L

∑
l

ulδlv
T
l (1)

where R is the J × K correlation matrix, derived from the cross-product of the two original
data tables (transpose m× n matrix of the independent variables, XT, and n× p matrix of
the dependent variables, Y), as:

n

∑
k=1

xT
ikykj (2)

U is the J × L matrix of the left singular vectors (L corresponds to the rank of R),
∆ is the L× L diagonal matrix of the singular values, V is the K × L matrix of the right
singular vectors, and ul , δl and vT

l are the lth left singular vector, singular value and right
singular vector, respectively [43]. The non-negative singular values are sorted in decreasing
order and represent the maximum covariance between each respective set of left and right
singular vectors [45]. Note that both original sets of data are typically made comparable
through statistical preprocessing (i.e., mean centering and rescaling each variable).

It is useful to explain the SVD from a geometric perspective as a series of orthogonal
axis rotations and scaling of unit matrices about the origin. As shown in the simplified
interpretation for a 2× 2 matrix (Figure 2; after [46,47]), the SVD can be summarized as a
linear transformation composed of three fundamental actions. These actions include: (1)
rotation of the right singular vectors {v1, v2} of matrix VT within the original unit sphere;
(2) scaling by the singular values {δ1, δ2} of matrix ∆, which correspond to the length
of the principal semiaxes of the new hyperellipse; (3) rotation of the left singular vectors
{u1, u2} of matrix U, oriented along the same principal semiaxes [47,48].
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Figure 2. Geometric interpretation of the singular value decomposition (SVD) for a 2× 2 matrix
showing the linear transformation induced by matrix R decomposed into three actions: a rotation, a
scaling and another rotation (after [46,47]).

The functional basis of PLS is to relate the information in two data tables that gather
measurements on the same set of observations (i.e., samples). The method works by deriv-
ing linear combinations of the original variables through the SVD of a correlation matrix,
such that covariance is maximized between each pair of the defining latent vectors (implied
orthogonality) [43]. These combined variables are also referred to as latent variables, di-
mensions or components. In PLS regression, the SVD simultaneously decomposes matrices

104



Minerals 2021, 11, 689

X and Y (by virtue of the correlation matrix R) and iteratively computes sets of orthogonal
latent variables and the corresponding regression weights [43].

Generally, this entire process is first carried out on subsets of training and validation
data (i.e., measured values exist for both independent and dependent variables) to build
and evaluate a regression model. The selection of training and validation splits is dependent
on a number of factors, including sample population size, the nature and variability of the
data and the scope of the prediction problem. Sample splits should generally be selected at
random but can also be stratified when there are constraints imposed by different sample
types (e.g., rock type); 80–20 training–validation splits are common in practice. Other
techniques, such as k-fold cross-validation, are also widely popular to further minimize bias;
one of these approaches is further detailed in Section 3.2.1. The final regression coefficients
are then subsequently applied to a test dataset (i.e., for which data are only available for
the independent variables) in order to predict the entire set of dependent variables.

By contrast with standard techniques, PLS regression can be used to predict a whole
table of data and can also handle multicollinearity, thereby eliminating the necessity to
remove certain predictor variables, which may not be linearly independent and would
normally cause overfitting [43]. This is particularly important in the context of mining
systems wherein a significant proportion of the data variables used for ore characterization
(e.g., geological, geochemical and mineralogical) are intimately linked. For example, ~50%
of the variables in the present study are strongly correlated (correlation coefficients > 0.75)
with one or more other variables (Appendix A). This multicollinearity among independent
variables renders the classic multiple linear regression (MLR) method inappropriate for
predictive modelling in most cases due to difficulties in distinguishing the effects of
individual variables [49]. This can lead to the inflation of standard errors, which may
cause incorrect variable significance classifications and/or numerical instabilities related to
the inversion of the covariance matrix (XTX) in the calculation of regression coefficients

(B = (XTX)
−1

XTY) [49]. In PLS regression, the multicollinearity problem is bypassed
by projecting the original variables to latent structures (linear combinations) and forcing
orthogonality between the new variables (t and u). The different approaches of MLR and
PLS are conceptualized in Figure 3. These attributes make PLS regression a powerful and
highly adaptable tool because unlike other methods, it can be used on large datasets with
an abundance of variables.
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To the best of the authors’ knowledge, there has been very little work done using
PLS regression in the areas of mining and system dynamics research to date. The most
relatable study successfully developed a predictive model for the amount of kaolinite (clay
mineral) in a deposit by linking earlier collected NIR spectroscopic data to confirmatory
geochemical data [51]. The current work aims to extend this approach of adapting modern
statistical methods for decision-making processes by integrating a predictive PLS model
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into a digital twin to evaluate operational risks within mining system processes. The digital
twin is constructed within a discrete event simulation (DES) framework.

2.3. Digital Twins and Discrete Event Simulations

Digital twins are a form of computational intelligence tool that describe and simulate
the comprehensive physical and functional aspects of integrated processes or systems
and utilize the most advanced and updated information models available to quantify
causal relationships between key variables and parameters [18,19]. Digital twin develop-
ment using DES is particularly useful in the design and testing of alternative operational
policies and associated trade-offs and can be applied to any or all lifecycle phases of an
engineering project.

DES frameworks are valuable tools to expedite and support decision making within
industrial systems. The key difference between mining and other industrial systems is
the notion of geological uncertainty, i.e., the natural variability associated with orebodies
and host geological environments. Because DES has the flexibility to incorporate random
distributions, i.e., it is a form of Monte Carlo simulation [52], it can be used to evaluate the
potential effects of geological uncertainty on mining system dynamics.

Paramount to the development of suitable digital twins is the establishment of al-
ternate modes of operation that can be engaged under changing conditions or as critical
thresholds are breeched [12,13]. Geometallurgical units are then defined based on the ex-
pected behaviour of classified mining blocks under each of the available modes [12,53,54].
Key performance indicators (KPIs) can also be tracked to observe system response to
unexpected trends in ore feed attributes; trade-offs are optimized by adjusting available
operational policies and the thresholds that control their timing [15,16,55].

Computer-based DES is a useful risk assessment tool, as it can simulate extended
periods of operation to identify potential bottlenecks or other deficiencies; these risk factors
can then be mitigated through implementation of operational buffers, such as stockpiling
or ore blending strategies. To further support decision making (e.g., installation of new
equipment), sets of validation or testing data can also be simulated in order to generate
confidence intervals.

In the mining industry, DES frameworks have generally been limited to equipment
selection [56], material management [57] and general transportation practices [58]. Appli-
cations related to availability and reliability data of mining equipment [59], underground
mine refuge station location planning [60] and continuous mine system simulation for
short-term planning and decision control [61] have also been explored to a lesser extent.

Recent mine-to-mill modeling studies include quantification of the effects of ore
type spectral imaging [62] and evaluation of coupling solar radiation energy with a semi-
autogenous grinding (SAG) mill [63]. As previously mentioned, some authors have devel-
oped alternate modes of operation for mineral processing via mass balance and mathemati-
cal programming [13]. Recent studies have applied this technique to mining contexts using
discrete event simulation (DES), including concentrator and smelter dynamics [14,15,55],
heap leach processes [16] and tailings retreatment applications [17].

There is a striking similarity between a two-mode mining system model and the RQ
problem from inventory theory [15,64]. When inventory levels fall below a given “re-order
point”, R (i.e., critical ore level), a replenishment order of quantity, Q, is made prior to
stockout. In mining systems, the critical ore level is directly proportional to the expected
rate of ore consumption and the lead time required to replenish the stockpile to sufficient
levels. However, this relationship does not account for potential natural variation (i.e.,
geological uncertainty), which could result in either surpluses or shortfalls, the latter of
which is a risk for stockout (see Wilson et al., 2021 [17] for examples). This operational
risk can be mitigated by raising the critical ore and/or total stockpile target levels, at the
expense of higher operating (handling) and capital (equipment/storage) costs. Thus, the
two-mode model is important to both risk management and multiobjective optimization
(e.g., balancing throughput vs. stockpile management).
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This type of framework can be formulated using commercial DES software to simulate
extended operating periods and assess the system-wide response to varied stockpile
management strategies. Mode A typically represents a consumption phase, whereas
Mode B constitutes a phase of replenishment. While the consumption mode is generally
more productive, it is not sustainable to activate indefinitely without an alternate mode
of replenishment due to stockout risk [15]. The timing for switching between modes
is governed by operational policy, which defines threshold crossing events (i.e., critical
ore level).

When the critical ore level is raised to act as an operational buffer, this threshold no
longer represents a true minimum, as the ore stock may continue to be consumed until the
next replenishment mode [15]. This can result in stockout if ore levels are insufficient to last
until the next planned shutdown and highlights the importance of building recourse actions
into the model. The current framework incorporates blending practices as a control measure
in response to geological uncertainty; ore types are blended and processed according to
different set proportions (dictated by operational policy) designed to maintain consistent
ore feed. In the event of stockout of one of the ore types, contingency modes are enacted
until the next planned shutdown and subsequent replenishment phase (depending on
mined ore supply).

The current study is an adaptation of recent DES modelling work by Navarra et al. [15,55]
and Wilson et al. [17], which focused on the implementation of alternate modes of operation
to balance plant ore feed types with respect to system-wide dynamics. By integrating
predictive PLS regression modelling into a DES framework, this work demonstrates the
potential benefits of using ore characterization data collected at an early stage to evaluate
the future performance of system processes under geological uncertainty.

3. Incorporation of Quantitative Methods into Discrete Event Simulation
3.1. Case Study: Predictive and System Process Modelling of Canada’s Oil Sands

An initial dataset derived from Canada’s oil sands was acquired through partnerships
with the National Research Council Canada (NRC) and Syncrude Canada Ltd. retrieved
from the NRC Office of Energy and Research and Development (OERD) database. The set
contains elemental, mineralogical and ore compositional data for a total of 60 samples col-
lected from multiple sources in the AOSR. Of the total number of samples, 40 were sourced
from various locations at the Syncrude operations, and permission has been graciously
granted to include these in the present conceptual study. The remaining 20 samples come
from a number of miscellaneous sources as part of smaller studies and are already available
to the public domain.

Ore compositions (i.e., bitumen, water and solids contents) were analyzed by the
standard Soxhlet-Dean and Stark method [65]. Separately, splits from the original sample
material were prepared for subsequent analytical determinations using a micronizing
procedure recently developed at NRC. In this method, ore samples are first homogenized
with a spatula at room temperature; isopropanol (4 mL) and toluene (6 mL) are then added
to an aliquot (~2–3 g) and micronized with agate beads in a McCrone micronizing mill.
The contents are strained into a weighed petri dish (any remainder is carefully rinsed with
isopropanol and toluene) and allowed to dry for 24 h in a fume hood prior to weighing.
Lastly, the dried mixture is scraped and transferred for further homogenization using a
mortar and pestle. Elemental compositions were determined by wavelength dispersive X-
ray fluorescence (WD-XRF) using a fusion-based procedure [66] and CHNS measurements
by combustion technique using an automatic elemental analyzer (Elementar Vario EL
Cube) for carbon and sulphur. Mineral phase ratios were acquired by X-ray diffraction
(XRD) with Rietveld refinement carried out on random orientation powder mounts. The
mounts were prepared using a zero-background specimen holder (Si crystal, P-type, B-
doped) with a cavity diameter of 20 mm and thickness of 0.2 mm; a glass slide was used to
remove excess powder and create a flat surface. Final mineralogical compositions were
based on the combined XRF, CHNS and XRD results and determined using the NRC-
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developed quantitative phase analysis (QPA) methodology parameterized with singular
value decomposition (SVD), collectively termed SVD-QPA [67].

Basic descriptive statistics were computed to summarize the original raw dataset
(Tables 1 and 2), which consists of data for 12 elements, 24 mineral phases and compounds
and 4 oil sand constituents (bitumen, water, solids and proportion of fines).

The data are highly heterogeneous and reflect ores likely hosted by formations span-
ning mainly estuarine and shallow marine settings, with a small number possibly from
fluvial settings. Because information on sample provenance was fairly limited, assumptions
had to be made in order to classify sample points for the sake of this conceptual study.
This actually works out reasonably well, as it highlights the importance of systematic data
collection and demonstrates the powerful information that can be gained by integrating
properly developed geometallurgical profiles into advanced quantitative frameworks and
digital twins.

Table 1. Summary of descriptive statistics for mineral phases analyzed by X-ray diffraction (XRD) in 60 samples.

Mineral Phase Concentrations (wt.%)

Mineral Max Min * Median Mean Standard Deviation Variance

Quartz + silica 87.94 33.30 77.43 74.96 11.22 125.82
Illite 25.63 0.01 5.31 5.89 5.20 27.06

Kaolinite 24.09 −1.49 2.18 3.90 5.15 26.48
Chlorite 1.42 −1.09 0.01 0.10 0.37 0.14
Calcite 3.15 −1.06 0.01 0.09 0.50 0.25

Dolomite 8.21 −0.03 0.12 0.83 1.69 2.85
Ankerite 0.98 −0.03 0.01 0.05 0.16 0.03
Siderite 5.09 0.00 0.61 1.04 1.15 1.33
Pyrite 1.05 −0.05 0.04 0.16 0.23 0.05
Zircon 0.44 0.00 0.06 0.09 0.08 0.01
Rutile 0.62 0.03 0.13 0.15 0.09 0.01

Anatase 1.13 0.00 0.11 0.26 0.29 0.09
Ilmenite 0.05 0.00 0.01 0.02 0.01 0.00

Lepidolite 0.05 0.00 0.01 0.02 0.01 0.00
Gypsum 0.29 −0.85 0.01 0.01 0.13 0.02
Bassanite 0.30 −0.90 0.01 0.01 0.14 0.02
Anorthite 3.65 −7.14 0.12 0.22 1.22 1.49
K-feldspar 4.16 −0.35 1.06 1.19 0.86 0.74

Albite 11.38 0.00 0.34 0.96 1.75 3.08
Iron oxide + hydroxide 5.25 −1.75 0.10 0.19 1.07 1.15

Apatite 0.49 0.00 0.05 0.10 0.09 0.01
Cristobalite 0.10 0.00 0.01 0.01 0.02 0.00

Organic carbon 13.15 0.58 8.24 7.63 3.18 10.09
Organic sulphur 1.03 −0.17 0.39 0.38 0.27 0.07

* Negative values are related to the SVD-QPA methodology used for mineralogical composition reconstruction based on combined
experimental results from elemental concentrations by XRF (Si, Al, K, Mg, Fe, Ti, Zr, Mg, Ca and P), carbon and sulphur contents and
mineral ratios determined by Rietveld analysis of XRD powder patterns [67]. The vast majority of these are well within tolerance; the
anomalous value noted for anorthite (minimum of −7.14) can be linked to a specific sample likely containing Ca-bearing smectite, which
was not one of the defined phases in the QPA due to low overall Ca phases in the analyzed sample population.
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Table 2. Summary of descriptive statistics for elemental and ore compositions analyzed by X-ray
fluorescence (XRF) and Soxhlet-Dean and Stark extraction (respectively) in 60 samples.

Elemental Compositions (wt.%)

Element Max Min Median Mean Standard Deviation Variance

Na 1.00 0.00 0.03 0.08 0.15 0.02
K 2.00 0.09 0.55 0.64 0.43 0.18
Si 42.01 26.75 38.42 37.98 2.77 7.69
Al 9.09 0.00 1.56 2.22 2.09 4.36
Fe 3.21 0.00 0.54 0.72 0.66 0.44
Mg 1.09 0.00 0.05 0.12 0.22 0.05
Ca 3.49 0.03 0.16 0.30 0.56 0.31
Ti 0.72 0.02 0.20 0.25 0.17 0.03
Zr 0.22 0.00 0.03 0.04 0.04 0.00
P 0.09 0.00 0.01 0.02 0.02 0.00
C 13.29 1.08 8.38 7.86 3.05 9.32
S 1.31 0.05 0.47 0.47 0.28 0.08

Ore Compositions (wt.%)

Phase Max Min Median Mean Standard Deviation Variance

Bitumen 16.28 0.00 9.53 9.16 4.48 20.04
Water 19.57 0.41 5.63 6.65 4.37 19.06
Solids 91.25 76.79 83.97 84.42 2.86 8.16
Fines 99.46 1.36 24.80 34.22 27.01 729.80

In positing the depositional settings from which the majority of the oil sand samples
came, the data were sorted based on total clay contents (illite–kaolinite–chlorite) and a
cut-off level of 6 wt.% was applied; samples with less than this limit were classified as
(fluvio-)estuarine and those with greater as marine. A broad inverse relationship is also
evident in the data between total clay and bitumen contents, consistent with previous
studies. Given that bitumen contents are generally higher in ores from fluvial and estuarine
settings than those from marine settings [7], this relationship could serve as a useful check of
the viability of assumed provenances. Bitumen contents in the classified (fluvio-)estuarine
samples average 11.74 wt.% (standard deviation of 2.81 wt.%), which coincides with
the stated range of ~9–13% for economic ores [3,4]. The average bitumen content for
marine samples is 6.52 wt.% (standard deviation of 4.52 wt.%), consistent with borderline
uneconomical ores [7,68]. Overall, the assumed depositional types appear fairly reasonable
compared to natural deposit settings and related variations.

The dataset was also expanded to include postulated bitumen recovery data that were
mostly unavailable. To this end, batch extraction unit (BEU) test data for 5 estuarine and
5 marine ore samples from previous work [69,70] were used to calculate appropriate bitu-
men recovery distributions for each depositional type. By applying these respective sample
population means and standard deviations to a random number generator, reasonable
spreads of recovery data were inferred for each sample type. This was deemed necessary
in order to classify ore types based on both depositional setting (clay content) and gener-
ally related ore processability, for subsequent predictive and system process modelling
(Sections 3.2.1 and 3.2.2, respectively). It is notable that the effect of fines on bitumen recov-
ery can vary considerably depending on the type of fines and water chemistry [7]; studies
have shown a depressive effect in the presence of degraded illite or smectitic clays [71], as
well as ultrathin illite [69] and interstratification [72].

For the purposes of this study, all samples are being treated as though they were
sourced from a single mining project, with each of 20 mining parcels (i.e., blocks) corre-
sponding to a minimum of 3 oil sands samples. The initial concept is to develop effective
predictive models using PLS regression such that bitumen recoveries could be estimated
with confidence earlier in the value chain. Subsequent incorporation of these predicted data
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into DES frameworks would then expedite the evaluation of system response to geological
uncertainty caused by heterogeneities in source ore feeds.

To demonstrate the overall concept, the classified ore types are blended according to
two different schemes established through mass balancing and mathematical program-
ming. Each of these schemes corresponds to a separate operational mode, whereby the
primary blend is considered the productive phase, and the secondary blend is considered
a replenishment phase. The mining parcel data, classified into proportions of each ore
type, are then incorporated into a DES framework to simulate system response to ore feed
availability for a designated tonnage of oil sands to be processed; bottlenecks or stockout
risk for either ore type can be identified and adjustments made to the potential modes of
operation (Figure 4).
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Notably, since fines content is generally linked to geological setting and processability,
a classification scheme based on depositional setting (and predicted recovery) actually runs
in parallel to a process recently developed by Syncrude for the control of solids distribution
in a bitumen froth [73]. Under this patented methodology, coarse oil sands (which normally
produce high bitumen recoveries) are blended with high-fines material prior to extraction
in order to improve the efficiency of pipeline transport from remote extraction sites to the
froth treatment plant (Figure 5) [73]. As a result, the current framework could help quantify
the effects of different ore blending strategies on downstream system processes and better
guide the implementation of alternate operational modes.

This type of integrated quantitative framework allows for well-planned adjustments
to process control strategies (e.g., ore blending), thereby streamlining risk-based decision
making, increasing efficiencies and, likely, extending operational life through improved
mine planning. The approach requires extensive sampling coupled with detailed analytical
work initially, particularly in newly discovered or poorly characterized resource areas.
With a sufficiently large population of sample points, robust predictive models can then
be developed and implemented with confidence; at this stage, the expensive and time-
consuming detailed analyses can be replaced with cheaper and faster tests earlier in the
planning stages.
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3.2. Sample Calculations
3.2.1. Partial Least Squares (PLS) Regression

For the predictive modelling portion of the study, elemental, mineralogical and ore
composition data, coupled with depositional type, were retained for a total of 46 inde-
pendent (explanatory) variables including 5 composite variables, e.g., total clays. The
depositional setting variable was one-hot encoded to map its categorical data to integer
values, represented as a binary vector [74]. Total bitumen recovery was reserved as the
lone dependent (response) variable for the sake of this conceptual study. A PLS regression
algorithm was written in Python coding and follows well-established theory after several
authors [43,75,76]. The methodology begins by calculating the SVD of the correlation ma-
trix R, as described for Equations (1) and (2), and iteratively computing sets of orthogonal
latent variables with the corresponding regression weights.

During each successive iteration, the first left and right singular vectors (wl and cl)
are used as weight vectors to calculate sets of scores (tl = Xwl and ul = Ycl) for X and Y,
respectively; loadings are then obtained by regressing X and Y against the same vector tl
(pl = XTtl and ql = YTtl) [75]. The last step of the iteration “deflates” the current data
matrices (i.e., removes information related to the lth latent variable) by subtracting the
outer products tpT and tqT from X and Y, respectively [75]. The next component (or latent
variable) can then be calculated starting from the SVD of the cross-product of the newly
deflated matrices (Xl+1 and Yl+1). The process continues until X is completely decomposed
into L components and a null matrix is obtained. After each iteration, vectors wl , tl , pl
and ql are stored as columns in their respective matrices W, T, P and Q. The matrix of
regression coefficients (BPLS) can then be calculated as:

BPLS = P(PTP)
−1

QT (3)

where (PTP)−1 is in fact the Moore-Penrose pseudoinverse for the generalized case of a
non-symmetric matrix [76]. Finally, the matrix of regression coefficients (BPLS) is multiplied
by the original set of independent variables prior to any deflations (matrix X0) to obtain
the predictions of the dependent variables (matrix Ŷ) [43]. A number of criteria can be
calculated to select the appropriate number of components to keep while limiting loss of
significance, evaluate the quality of prediction and validate the model, i.e., cross-validation.

Validation is critical to the development of robust predictive models; the quality of
prediction must be assessed, and model significance also determined. A common measure
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of prediction quality is called the residual estimated sum of squares (RESS) and is calculated
as follows:

RESS =
∣∣∣∣ Y− Ŷ

∣∣∣∣2 (4)

where || ||2 is the squared matrix norm and decreases as prediction quality improves [43].
However, RESS alone is not the most useful metric, as it will continue to decrease until
all components are added, i.e., it does not detect overfitting. An improved measure for
quality of prediction is the predicted residual estimated sum of squares (PRESS), computed
as follows:

PRESS =
∣∣∣
∣∣∣ Y− Ỹ

∣∣∣
∣∣∣
2

(5)

where Ỹ represents a predicted set of values generated from cross-validation and also
decreases with increasing prediction quality [43]. The selection of the optimal number
of components to extract is crucial to avoid overfitting the data. Since prediction quality
typically first increases then decreases upon successive component addition, a possible
approach is to begin with the first component and stop as soon as the PRESS reverses
direction [31]. A more intricate method is to compute the Q2 criterion for the lth component,
as follows:

Q2
l = 1− PRESSl

RESSl−1
(6)

and compare against an arbitrary critical value (e.g., 1− 0.952 = 0.0975); only compo-
nents with a Q2

l value greater than or equal to this threshold are generally kept in the
model [31,33].

Because the available dataset is limited to only 60 samples, it was decided not to
split the data into separate training and validation sets; instead, leave-one-out cross-
validation (LOOCV), also called the “jackknife” method, was utilized. In this technique,
each observation is iteratively dropped from the set, and the remaining observations then
comprise a training set used to estimate the left-out observation. All estimated observations
are stored in a final matrix denoted Ỹ, which then serves as the validation set for subsequent
prediction quality metrics (e.g., PRESS and Q2 criteria) [31].

The PLS regression model was run sequentially, and a series of quality of prediction
statistics were tabulated for each of 1, 2, 3, 4, 5 and 10 component scenarios (Figure 6).
The Q2 criterion indicates that only the first component should be kept in the prediction
model, with a value of 0.28, as all ensuing trials resulted in values less than zero. However,
not only was the coefficient of determination (R2) quite low for the 1 component scenario
(0.34), but root mean squared error (RMSE) and mean absolute residual values were also
relatively high. Furthermore, the first component alone only accounts for ~88% of the total
model variance, as determined by the sum of squares of the singular values. As a result,
the behaviour of the PRESS statistic was tracked upon successive trials in order to identify
an improved fit; ultimately, a total of 5 components was deemed appropriate for building
the regression model in relation to the available dataset. This was based upon the fact that
the PRESS value trended upwards over the first 4 components but dropped significantly
upon addition of the fifth; this reversal also coincided with a much higher R2 score of 0.72,
improved (decreased) RMSE and residual values and an explained variance of 99.65%.
Further addition of successive components (e.g., 10 components) did not greatly improve
prediction accuracy or error metrics, resulted in poorer PRESS and Q2 statistics and would
likely lead to severe overfitting to the present dataset. It is also noteworthy that residuals
were consistently greater for marine samples, which indicates greater variability in the
predicted set for this depositional type (as expected).
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assumptions made to finalize the original dataset, in addition to the significant geological 
variability inherent to oil sands deposits. As expected, the variability in marine sample 
residuals (standard deviation of 9.89%) is nearly double that of estuarine samples (stand-
ard deviation of 5.27%) and can likely be attributed to heterogeneities in clay contents and 
especially clay types. Overall, the PLS regression model has performed as intended and 
with a mere total of 60 samples from unknown and/or different mining projects altogether. 
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els, particularly for complex operations dealing with multiple and/or heterogeneous ore 
feeds. It is postulated that the predictive power of the present model would be greatly 
increased with these controls in place. 

Figure 6. Stacked panel line chart for a variety of quality of prediction statistics tabulated for each of
the 1, 2, 3, 4, 5 and 10 component scenarios. Abbreviation definitions: RMSE = root mean squared
error; RES = mean absolute residual (all samples); VAR = percentage of model variance explained;
R2 = coefficient of determination (×100); Q2 criterion (as in Equation (6)); PRESS statistic (as in
Equation (5)); RESS statistic (as in Equation (4)).

Predictions from the final 5-component model are shown in Figure 7, and compar-
ative descriptive statistics for the observed and predicted datasets are shown in Table 3.
Estimated bitumen recoveries were capped at 100%, and negative values were set to zero,
as crossing these thresholds is impossible in practice. The predicted values are generally
quite reasonable, within ~11% for the (fluvio-)estuarine samples and ~13% for marine
samples on average. This level of error (RMSE of 16.33) is not surprising on account of the
assumptions made to finalize the original dataset, in addition to the significant geological
variability inherent to oil sands deposits. As expected, the variability in marine sample
residuals (standard deviation of 9.89%) is nearly double that of estuarine samples (standard
deviation of 5.27%) and can likely be attributed to heterogeneities in clay contents and
especially clay types. Overall, the PLS regression model has performed as intended and
with a mere total of 60 samples from unknown and/or different mining projects altogether.
This highlights the importance of rigorous sampling campaigns and characterization of ap-
propriate geometallurgical profiles towards the development of robust predictive models,
particularly for complex operations dealing with multiple and/or heterogeneous ore feeds.
It is postulated that the predictive power of the present model would be greatly increased
with these controls in place.
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phases, in addition to depositional sample type and bitumen recovery, were determined 
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Figure 7. Plot of predicted vs. observed recoveries from the 5-component regression model. Samples
are sorted according to ascending observed values to better reflect residual distances; predictions
clearly improve in the middle to upper recovery ranges.

Table 3. Comparison of summary statistics for observed and predicted bitumen recoveries from PLS
regression model (5 components).

Metric Observed Values (Y) Predicted Values (Ŷ)

Max (%) 98.29 100.00
Min (%) 1.55 0.00

Median (%) 78.80 61.27
Mean (%) 64.91 65.17

Standard Deviation (%) 31.14 26.91
Variance (%2) 969.95 724.18

Once the regression model has been finalized with the appropriate number of compo-
nents, confidence intervals for the predicted values can be calculated using the “bootstrap”
cross-validation method. This technique involves the random re-sampling of the original
observations with replacement, i.e., each observation can be selected zero or multiple
times [43]. This is repeated many times (e.g., 1000 or 10,000), and regression coefficients
and corresponding predictions are computed for each bootstrapped sample set. The distri-
bution of predicted values from all of these iterations is then used to estimate confidence
limits for each variable; intervals that do not span zero (positive or negative) are considered
significant [43]. Similarly, bootstrap ratios can be calculated by dividing the mean of each
distribution by its standard deviation; akin to a student t-test, if the ratio is greater than a
critical value (e.g., >2, corresponding to an alpha value of approximately 0.05), the variable
is also considered significant [43].

Table 4 provides statistics computed from the distribution of 10,000 bootstrap sample
sets generated from the 5-component regression model; variable significance was deter-
mined based on both bootstrap ratios and 95% confidence intervals. Of the elemental
composition variables, only Na, Ca and Mg were deemed insignificant. Corresponding in-
significant minerals include albite for Na; gypsum, bassanite and anorthite for Ca; chlorite
for Mg; the carbonates (calcite, dolomite and ankerite) for both Ca and Mg. Interestingly,
both pyrite and amorphous Fe-oxides/hydroxides were also considered insignificant (oil
sands tend to contain significant heavy metals). All remaining elements and mineral
phases, in addition to depositional sample type and bitumen recovery, were determined as
statistically significant.
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Table 4. Summary of statistics from 10,000 replications of the bootstrap cross-validation method.

Independent (Explanatory) Variables

Variable No. of
Observations Mean (wt.%) Standard

Deviation (wt.%)
Bootstrap

Ratio
Lower CI

(95%)
Upper CI

(95%)

Sample type 60,000 0.57 0.22 2.54 0.20 1.00
Na * 60,000 0.08 0.05 1.57 0.03 0.21

K 60,000 0.64 0.13 5.12 0.45 0.95
Si 60,000 37.97 0.96 39.70 35.30 39.42
Al 60,000 2.22 0.64 3.48 1.34 3.99
Fe 60,000 0.72 0.24 2.98 0.35 1.42

Mg * 60,000 0.12 0.10 1.19 0.02 0.48
Ca * 60,000 0.30 0.31 0.99 −0.02 1.53
Ti 60,000 0.25 0.06 3.95 0.15 0.38
Zr 60,000 0.04 0.02 2.41 0.01 0.08
P 60,000 0.02 0.01 2.40 0.01 0.04
C 60,000 7.87 1.00 7.90 5.88 9.67
S 60,000 0.47 0.13 3.64 0.25 0.76

Bitumen 60,000 8.79 1.36 6.46 6.06 11.16
Water 60,000 6.64 1.42 4.69 4.25 9.97
Solids 60,000 84.42 1.11 76.29 82.27 86.83
Fines 60,000 34.27 7.91 4.33 22.22 52.30

Quartz + silica 60,000 74.94 3.46 21.64 64.62 79.82
Illite 60,000 5.89 1.66 3.55 3.43 10.21

Kaolinite 60,000 3.90 1.83 2.13 1.08 8.58
Chlorite * 60,000 0.10 0.14 0.73 −0.16 0.41

Calcite (Cal) * 60,000 0.09 0.28 0.33 −0.24 1.07
Dolomite (Dol) * 60,000 0.84 0.82 1.01 −0.03 3.67
Ankerite (Ank) * 60,000 0.06 0.07 0.85 −0.05 0.21

Siderite (Sid) 60,000 1.04 0.50 2.07 0.10 2.19
Pyrite * 60,000 0.16 0.11 1.40 −0.02 0.46
Zircon 60,000 0.09 0.04 2.41 0.02 0.17

Rutile (Rut) 60,000 0.15 0.04 3.73 0.07 0.22
Anatase (Ana) 60,000 0.26 0.10 2.64 0.12 0.49

Ilmenite 60,000 0.02 0.00 3.74 0.01 0.03
Lepidolite 60,000 0.02 0.00 3.72 0.01 0.03
Gypsum * 60,000 0.01 0.06 0.19 −0.12 0.11
Bassanite * 60,000 0.01 0.06 0.16 −0.13 0.10

Anorthite (Ano) * 60,000 0.22 0.61 0.36 −0.92 1.77
K-feldspar (Ksp) 60,000 1.20 0.38 3.17 0.39 1.96

Albite (Alb) * 60,000 0.96 0.61 1.57 0.29 2.36
Iron oxide/hydroxide

(AFE) * 60,000 0.19 0.44 0.42 −0.46 1.55

Apatite 60,000 0.09 0.04 2.34 0.04 0.22
Cristobalite 60,000 0.01 0.00 2.70 0.00 0.02

Organic carbon 60,000 7.63 1.00 7.63 5.61 9.41
Organic sulphur 60,000 0.39 0.13 2.96 0.14 0.67

Total clays 60,000 9.89 3.24 3.05 5.13 19.00
Sid + AFE 60,000 1.22 0.49 2.48 0.45 2.52
Rut + Ana 60,000 0.40 0.11 3.82 0.24 0.63

Cal + Dol + Ank * 60,000 0.98 1.01 0.97 −0.05 4.39
Ano + Ksp + Alb 60,000 2.37 0.82 2.91 1.09 4.76

Dependent (response) variables

Variable No. of
observations Mean (wt.%) Standard

deviation (wt.%)
Bootstrap

ratio
Lower CI

(95%)
Upper CI

(95%)

Total Recovery 60,000 64.84 28.86 2.25 1.52 109.53

* Insignificant variables determined from the distribution of 10,000 bootstrap sample sets.

115



Minerals 2021, 11, 689

The relationships between the independent variables can be observed visually by
plotting the stored X-loadings (matrix P) for the first two components (Figure 8). Bitu-
men content is clearly most strongly linked to elemental carbon and organic carbon (as
expected); it also appears in association to silicon (quartz–silica–cristobalite), sulphur (or-
ganic sulphur), titanium minerals (rutile and ilmenite) and lepidolite (Li-rich mica). The
first dimension also opposes the bitumen group from the clay minerals, water content and
carbonates (siderite). Notably, anatase (metastable form of TiO2) plots opposite the other
Ti-bearing phases. In the second dimension, the organic-related groups (bitumen, carbon
and sulphur) clearly oppose the related silicate and oxide minerals; there is also a broad
separation between silicates and carbonate + iron-bearing phases.
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Overall, the PLS regression model has proven to be a powerful prediction tool, capable
of providing additional useful information regarding process variables that can help
drive the characterization of geometallurgical profiles, sampling methodologies and other
planning processes.

3.2.2. Discrete Event Simulations

For the DES portion of the study, two ore types were classified according to docu-
mented depositional setting and predicted bitumen recoveries from the 5-component PLS
regression model. Ore type 1 consists entirely of marine samples (generally <75% recovery),
and ore type 2 includes (fluvio-)estuarine samples (>75% recovery) as well as a few of
marine type with recoveries also greater than 75%. Due to the limited nature of the dataset
(only 3 samples per mining parcel), natural background noise was added to the relative
proportions of ore types 1 and 2 via random number generation with a standard deviation
of 5%. Two modes of operation (A and B) are considered here to balance stockpile levels
against bitumen extraction rates and incoming ore feed from mining. While the conceptual
mine has been operating in areas predominantly containing ore type 2 (favourable due
to higher grades and recoveries) for some time, a large expansion of reserves comprising
mainly ore type 1 has recently been completed. With the expansion, longer term forecasts
suggest an overall deposit composition of 55–45% for ore types 1 and 2, respectively, with
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increased variability caused by geological heterogeneities; these values correspond to the
average proportions determined from ore classification based on the predictive modelling.

In order to sustain the availability of ore type 2 and improve the economics of certain
portions of the newly expanded area, the operation is evaluating possible adjustments to
current blending strategies and intends to implement a secondary alternate mode. Based on
the geological attributes of ore types 1 (high bitumen, low fines) and 2 (high fines), the new
strategy will also serve to control the distribution of solids in ore feeds to the froth treatment
plant, thereby improving amenability to transport via pipelines to the upgrader. As a result,
operational Mode A will consist of an approximate 40–60 blend of ores 1 and 2. Because
ore type 2 will generally be in shorter supply, a second operational Mode B, consisting
of an 80–20 blend of ores 1 and 2, is needed in order to avoid stockouts, or an eventual
shortage. This will ultimately stabilize feed balances, maximize equipment/infrastructure
selection and utilization and allow for improved production scheduling; collectively, these
factors can lead to significant reductions in operating and capital costs.

Both modes are expected to perform similarly in terms of downstream bitumen
recovery processes, except that Mode B requires a pre-treatment stage to control excess
chloride ions related to the marine origin and high fines content of ore type 1. Consequently,
bitumen extraction rates for Mode B are set 10% lower than those for Mode A; modal
parameters for each configuration are summarized in Table 5. Despite the fact that Mode A
is both more productive and economical, ore stockouts would be inevitable over extended
periods of usage because the weight fraction of ore type 2 (w2A) is 15% higher than that of
the deposit (w2D). To account for the possibility of stockouts prior to a planned shutdown,
contingency modes with adjusted configuration rates have been incorporated for each of
Modes A and B.

Table 5. Description of operational modes in relation to deposit forecast.

Throughput (t/h) Ore 1 in Feed (%) Ore 2 in Feed (%)

Algebraic Notation: rA,ACont,B,BCont w1A,1ACont,1B,1BCont w2A,2ACont,2B,2BCont

Mode A Regular 30,000 40 60

Contingency 19,500 100 0

Mode B Regular 27,000 80 20

Contingency 13,500 0 100

Deposit - 55 45

Appropriate weight fractions (w1A,2A,1B,2B) and throughput rates (rA,B) are assessed
with respect to geological estimations (w1D,2D) using deterministic mass balancing, as
follows [15,17]: (

tA

tB

)
=

(
w2Bw1D − w1Bw2D

−w2Aw1D + w1Aw2D

)(
rB

rA

)
(7)

where tA and tB denote the time elapsed under Modes A and B, respectively. Average
throughput between the two modes, or similarly between each mode and its corresponding
contingency configuration, can then be computed as follows [15,17]:

r =


 w1Aw2B − w2Aw1B(

w2B

(
rB
rA

)
− w2A

)
w1D −

(
w1B

(
rB
rA

)
− w1A

)
w2D


rB (8)

Equations (7) and (8), which ignore the risk of stockout, indicate that Mode A should
be applied 1.5 times as often as Mode B, with an average throughput of 28,800 t/h. The
framework aims to simultaneously maximize throughput and minimize target stockpile
levels, thereby increasing production efficiency and reducing overall costs; larger stockpiles
necessitate larger storage areas and equipment, as well as increased handling costs.
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The current framework is designed such that mining rates exceed plant capacity, hence
the plant acts as a bottleneck. To ensure stockpiles are adequately supplied to maintain
consistent ore feed to the plant, ore will be mined at minimum rates of 30 kt/h under Mode
A and 27 kt/h under Mode B. Target total stockpile level is a control variable that remains
constant (except during extended stockout periods); however, the relative proportions of
ore types 1 and 2 fluctuate contingent on the active operational mode. Mode A (productive
phase) causes a relative decrease in the proportion of ore type 2, meanwhile Mode B
(replenishment phase) has the opposite effect. The selection of operational mode is based
on the stockpile level of the limiting ore type (in this case, ore 2) at the end of a production
campaign during planned shutdowns every 4 weeks.

Under the present framework (Table 5), a naïve analysis indicates a critical threshold
of 2.916 Mt for ore type 2; this level is computed as a function of campaign length (27 days)
and rate of change under Mode A (108,000 t/d; plant capacity of 720,000 t/d × w2D
of 45% less relative critical ore 2 throughput from 40–60 blending strategy). Similarly,
the analysis indicates a minimum total target stockpile level (sum of ores 1 and 2) of
4.374 Mt, determined as the maximum rate of change between ore stockpiles 1 and 2 as a
function of campaign duration (under either mode). However, the digital twin is subject
to the geological uncertainty of the ore, which is not taken into account by Equations (7)
and (8). Unexpected fluctuations in ore feed attributes can indeed cause either overages
or shortfalls for a given ore type, potentially leading to stockout towards the end of a
production campaign [15]. To mitigate this risk, an operational buffer can be introduced by
raising the threshold for the critical (limiting) ore type; a similar control measure would be
to raise the target total stockpile level.

Because stockouts are nonetheless a real possibility, recourse actions are built into
the digital twin to maintain ore feed consistency. These recourse actions depend on the
timing of stockout; if an ore type is depleted during a production campaign, a contingency
mode is enacted that allows the exhausted stockpile to build back up. As indicated in
Table 5, Contingency Mode A only consumes ore type 1, and Contingency Mode B only
consumes ore type 2. These contingency modes are much less productive than the regular
configuration rates (65% for Mode A and 50% for Mode B); as a result, the duration of
these segments has been limited to 1 day, which causes alternations until the next planned
shutdown. If the critical ore level remains below the selected threshold at the end of a
campaign, the plant will employ the alternate mode of operation to re-equilibrate stockpile
levels. Time segment parameters for production campaigns, shutdowns and contingency
mode duration are summarized in Table 6.

Table 6. Summary of time segment parameters.

Segment Type Duration (Days)

Production campaign 27
Planned shutdown 1
Contingency modes 1

Regular modes Indeterminate

The current framework was implemented, and subsequent computational results
(Tables 7 and 8, Figures 9 and 10) generated, using commercial DES software (Rockwell
Arena©) with Visual Basic for Applications (VBA). Extended operating periods can be
simulated to assess system performance in response to geological uncertainty, with ad-
justments made to the critical ore and target stockpile levels as control variables. In its
present configuration, the simulation model assumes that ore is mined to completion
from a single parcel at a time. The framework has the flexibility to incorporate geological
uncertainty by reading data from external source files. For the purposes of this study,
uncertainty was introduced through Monte Carlo simulation; the proportions of ore types
1 and 2, determined from the classification of mining parcels based on depositional setting
and predicted recoveries, were used to generate 100 statistical replicas through random
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number generation with a standard deviation of 5%. The model is configured such that
792 Mt of ore are processed within each replica, corresponding to approximately 1200 days
of operation.

Table 7. Distribution of time spent in each mode type under varied target total stockpile levels.

Scenario: 1 2 3 4 5

Replications: 1 1 1 100 1 1
Critical Ore 2 Level (Mt): 2.916 2.916 2.916 2.916 2.916 2.916

Target Total Stockpile Level (Mt): 4.374 (1×) 6.561 (1.5×) 8.748 (2×) 8.748 (2×) 13.122 (3×) 21.870 (5×)

Portion of time (%)

Mode A Regular 45.6 54.8 59.7 60.1 58.4 59.4
Contingency 4.9 0.2 1.6 1.4 0.6 0.6

Mode B Regular 34.8 37.3 35 34.5 37.4 36.4
Contingency 11.1 4.2 0.1 0.4 0 0

Shutdown 3.6 3.5 3.6 3.6 3.6 3.6

Throughput (kt/h) 26.5 28.1 28.7 28.7 28.8 28.8
Replications with stockouts - - - 82 - -

Table 8. Distribution of time spent in each mode type under varied critical ore levels.

Scenario: 6 7 8

Replications: 1 100 1 100 1 100
Critical Ore 2 Level (Mt): 5.832 (2×) 5.832 (2×) 7.290 (2.5×) 7.290 (2.5×) 8.748 (3×) 8.748 (3×)

Target Total Stockpile Level (Mt): 11.664 11.664 14.580 14.580 17.496 17.496

Mode A Regular 58.7 59.6 58.6 60.0 58.6 60
Contingency 0 0.1 0 0.05 0 0

Mode B Regular 37.3 36.3 37.8 36.3 37.8 36.4
Contingency 0.4 0.4 0 0.05 0 0

Shutdown 3.6 3.6 3.6 3.6 3.6 3.6

Throughput (kt/h) 28.8 28.8 28.8 28.9 28.8 28.9
Replications with stockouts - 62 - 5 - 0
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Figure 10. Simulated mining surge caused by high variability of Canadian oil sands data in response
to geological uncertainty. Surges are indicated when the level of one of the ore types increases
above the total stockpile target and are required to provide feed directly to the plant as recourse to a
sustained stockout of the other ore type (e.g., ~1055–1065-day range).

A series of simulations were run to observe the effects of the selected control variable
levels on throughput and potential stockout risk, in response to geological uncertainty. The
first set of trials varied the total stockpile target levels, while holding the critical ore 2 level
constant at 2.916 Mt (deterministic value). A total of 5 scenarios were considered with
total stockpile levels set at 1× (“one times”), 1.5×, 2×, 3× and 5× the deterministic value
(4.374 Mt); simulated results for each are summarized in Table 7.

Consistent with Navarra et al. [15] and Wilson et al. [17], the results show that naïve
selection of the total stockpile target level does not perform well over extended operat-
ing periods, with Mode A being applied only 1.1× as often as Mode B for an average
throughput of 26.5 kt/h. This is clearly less productive than the deterministic result of
28.8 kt/h (Mode A applied 1.5× more than Mode B), and the simulated operation also
suffered from frequent sustained shortages of both ore types (Figure 9a). Increasing the
total stockpile level by just 1.5× (Scenario 2) already improves overall system response;
however, with Mode A applied 1.3× as often as Mode B for an average throughput of
28.1 kt/h, this is still worse than expected from Equations (7) and (8). Scenario 3, which
doubled the deterministic total stockpile level to 8.748 Mt, produced the best overall results
with Mode A applied 1.75×more frequently than Mode B for an average throughput of
28.7 kt/h; there was also a drastic reduction in the proportion of time spent in contingency
modes (Figure 9b). Successive increases to the stockpile targets (Scenarios 4 and 5) did not
show any marked changes, and system performance was actually slightly worse for both.
These results suggest that in order to maximize throughput and mitigate stockout risk, the
target total stockpile level is best maintained in the range of 2–3 times the selected critical
ore threshold.

Using the parameter values established from Scenario 3, the framework was subsequently
configured to simulate 100 replications, corresponding to approximately 120,000 days of
operation. Average results from this test mirrored those of the single replication (Table 7)
but highlighted repeated ore shortages as a significant operating risk under this scheme,
with 82% of the replications confronted by stockouts. While not apparent from the single
replication simulation, this outcome is directly related to the high variability of the dataset
and is entirely possible in the context of oil sands mining, particularly when dealing with
multiple and/or heterogeneous ore feed sources. Frequent and/or sustained stockout
periods (especially early in a campaign) require additional consideration; as a recourse
action, the possibility for mining surges has been incorporated into the framework in order
to supply ore feed directly to the plant to maintain production (Figure 10).

To attenuate the significant stockout risk observed under Scenario 3, a second set of
simulations were executed in which adjustments were made to the critical ore limit while
keeping the total stockpile target at 2× this level. Four scenarios were tested with critical
ore levels designated at 1.5×, 2×, 2.5× and 3× the deterministic value (2.916 Mt); results
for each simulation trial are summarized in Table 8. While variations in the critical ore
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threshold had no meaningful effect on throughput rates or modal proportions, important
reductions in the number and frequency of stockout periods were observed with the frame-
work configured for 100 replications (~120,000 operating days). At twice the deterministic
value (Scenario 6), the number of replications affected by ore shortages was reduced by 20%
(cf. Scenario 3); at 2.5× (Scenario 7), this number decreased to just 5%. Tripling the critical
value actually eliminated simulated stockout periods altogether; however, increased capital
and operating costs associated with exceedingly large stockpile levels must be weighed
against the risk of stockout in the decision-making process.

The time-averaged distribution of operational modes in response to geological un-
certainty can be useful to evaluate the effects of varied control parameters. Figure 11a
represents the naïve approach of Scenario 1, in which the deterministic values for the criti-
cal ore level (2.916 Mt) and total stockpile target level (4.374 Mt) were applied; Figure 11b
depicts the enhanced framework configuration established under Scenario 7 (described
above). The latter scheme is a significant improvement over the naïve setup, with an
8–9% increase in the proportion of time spent under Mode A, a much lower reliance
on contingency modes (~15%) and the virtual elimination of ore stockouts. All of these
factors contribute to improved production efficiencies; moreover, the enhanced configu-
ration is also more economical based on higher consumption rates for ore type 2, which
boasts higher overall grades and bitumen recoveries. Both framework applications benefit
from the ability to switch between modes relatively freely in response to data variability,
but the enhanced configuration is much less susceptible to operational risk caused by
geological heterogeneities.

Minerals 2021, 11, 689 23 of 31 
 

 

 Contingency 0.4 0.4 0 0.05 0 0 
Shutdown  3.6 3.6 3.6 3.6 3.6 3.6 

Throughput (kt/h)  28.8 28.8 28.8 28.9 28.8 28.9 
Replications with stockouts - 62 - 5 - 0 

The time-averaged distribution of operational modes in response to geological un-
certainty can be useful to evaluate the effects of varied control parameters. Figure 11a 
represents the naïve approach of Scenario 1, in which the deterministic values for the crit-
ical ore level (2.916 Mt) and total stockpile target level (4.374 Mt) were applied; Figure 11b 
depicts the enhanced framework configuration established under Scenario 7 (described 
above). The latter scheme is a significant improvement over the naïve setup, with an 8–
9% increase in the proportion of time spent under Mode A, a much lower reliance on 
contingency modes (~15%) and the virtual elimination of ore stockouts. All of these factors 
contribute to improved production efficiencies; moreover, the enhanced configuration is 
also more economical based on higher consumption rates for ore type 2, which boasts 
higher overall grades and bitumen recoveries. Both framework applications benefit from 
the ability to switch between modes relatively freely in response to data variability, but 
the enhanced configuration is much less susceptible to operational risk caused by geolog-
ical heterogeneities. 

 
Figure 11. Time-averaged distribution of operational modes in response to geological uncertainty in the context of Can-
ada’s oil sands, for (a) naïve framework using the deterministic critical ore 2 threshold of 2.916 Mt and target total stockpile 
level of 4.374 Mt; (b) enhanced configuration using a critical value of 7.290 Mt (2.5×) and target total stockpile level of 
14.580 Mt. 

Overall, these simulation results support the flexibility of DES digital twins to inte-
grate predictive modelling data generated through PLS regression (or other advanced 
methods) in order to assess the system-wide response to geological uncertainty. This 
quantitative framework is an extension of recent conceptual work by Navarra et al. (2019) 
and Wilson et al. (2021) and demonstrates its adaptation to evaluate operational risk fac-
tors associated with potential processing applications for Canada’s oil sands. Simulations 
indicate that ore stockouts are a very real possibility due to extreme geological heteroge-
neities inherent to oil sands; however, the current digital twin allows for the analysis of 
potential adjustments to control strategies at an earlier stage, which can help drive deci-
sion making and mitigate identified risk factors. The blending control strategies described 
in this study would necessitate significant stockpiling infrastructure and equipment, but 
these implied costs could easily be offset by higher throughputs, minimized downtime 
and extended operational life achieved through the implementation of alternate modes of 
operation. 

  

Figure 11. Time-averaged distribution of operational modes in response to geological uncertainty in the context of Canada’s
oil sands, for (a) naïve framework using the deterministic critical ore 2 threshold of 2.916 Mt and target total stockpile level
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Overall, these simulation results support the flexibility of DES digital twins to in-
tegrate predictive modelling data generated through PLS regression (or other advanced
methods) in order to assess the system-wide response to geological uncertainty. This quan-
titative framework is an extension of recent conceptual work by Navarra et al. (2019) and
Wilson et al. (2021) and demonstrates its adaptation to evaluate operational risk factors
associated with potential processing applications for Canada’s oil sands. Simulations indi-
cate that ore stockouts are a very real possibility due to extreme geological heterogeneities
inherent to oil sands; however, the current digital twin allows for the analysis of potential
adjustments to control strategies at an earlier stage, which can help drive decision making
and mitigate identified risk factors. The blending control strategies described in this study
would necessitate significant stockpiling infrastructure and equipment, but these implied
costs could easily be offset by higher throughputs, minimized downtime and extended
operational life achieved through the implementation of alternate modes of operation.
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4. Discussion and Future Work

Geological variability and related uncertainty are inherent to all ore deposit types.
These heterogeneities can range in intensity and generally vary both within and between
deposits and/or mining districts. This can lead to unexpected changes in ore feed attributes
(e.g., grade, mineralogy, grain size distribution), thereby affecting the mining and extractive
processes. All of these factors have a direct impact on the interplay of critical variables and
integrated coordination of processes within the overall system. Given that ore feeds are
exploited from complex and heterogeneous sources, it is clear that mining systems need
to be flexible, with the ability to respond to changes and communicate with all related
processes (both up and downstream). The availability of alternate operational modes, each
with its own set of instructions, is crucial to the sustained development of most orebodies,
particularly as a project matures and evolves.

The implementation of operational buffers and other control strategies is not uncom-
mon, but the development of suitable tools that incorporate predictive models to enhance
or optimize system processes is lagging behind. Efforts are sometimes made to capture
detailed information but then is not properly integrated into actual system process controls
due to interdisciplinary barriers. The current study focused on ore blending strategies
and overall feed management through the integration of predictive PLS regression models
into a DES framework within an oil sands context. The results confirm the approach as an
effective way to improve and stabilize plant throughput, despite challenges with significant
geological variation of source ore feeds inherent to Canada’s oil sands. Despite a small sam-
ple population and incomplete characterization (i.e., minimal depositional provenance and
bitumen recovery data), the integrated quantitative framework made reasonable predic-
tions and demonstrated how appropriate mineral and geochemical characterization could
positively impact process control strategies and decision making earlier in the value chain.

As ore compositional data are routinely collected in the industry via the Soxhlet-Dean
and Stark method, bitumen free solids (BFS) are readily available for geochemical and/or
mineralogical analyses that can be used for predictive modelling. This work proposes that,
with adequate sampling and characterization, expensive and time-consuming analytical
work (e.g., organic-rich solids separation) can be replaced by faster and cheaper alterna-
tives, such as WD-XRF and XRD executed on BFS streams [66]. The generation of robust
predictive models will require extensive systematic sampling and analytical campaigns to
properly characterize ore feeds and related downstream process responses; the degree of
sampling is difficult to anticipate in advance and ultimately depends on data variability
as well as the exact problem being addressed. Regardless, the ability to integrate reliable
predictions of bitumen processability into a DES digital twin earlier in the value chain
is of key importance to assess the effects of heterogeneous ore feeds on system process
performance. Adjustments can then be made to operating practices (e.g., alternate modes
of operation or the introduction of operational buffers) in order to mitigate the identified
risk factors.

Similar to other complex mining projects, oil sands operations are host to a variety
of treatments and processes. From mining to slurry and froth formation, froth treatment,
upgrading and pipeline transport (each possibly comprised of multiple sub-systems),
there are a large number of moving parts requiring both management and coordination.
The interaction of these parts can be a major source of bottlenecks and generate severe
deficiencies, which makes the oil sands context an ideal candidate for DES modelling.
However, coordinated efforts between academic, government and industry partners are
required in order to couple recent advances in quantitative methods with project-specific
problems and data; only then can detailed flowsheets, testing and full system optimization
with constraints proceed.

This conceptual study makes broad assumptions regarding ore characteristics and
recoveries for demonstrative purposes but shows the suitability of the approach for multi-
variate ore processing systems. In practice, the ability to collect a sufficient level of data for
appropriate ore characterization and build robust predictive models is challenging. This
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work is focused on analyzing operational risk related to oil sands mining and bitumen
extraction processes with respect to geological uncertainty; in reality, overall bitumen recov-
ery is not only based on ore characteristics, but also on changes in processing conditions,
e.g., temperatures, additives and densities [77]. As such, the extensibility of the framework
would allow for the eventual integration of other advanced quantitative methods, such as
non-linear machine learning algorithms. The flexibility of DES digital twins to incorporate
varying levels of detail makes it particularly well suited to multi-phase (re)engineering
projects and can help improve confidence at each stage of development.

Author Contributions: Conceptualization, R.W., P.H.J.M., B.P. and A.N.; methodology, R.W., P.H.J.M.
and A.N.; data curation, P.H.J.M.; investigation, R.W.; formal analysis, R.W.; validation, R.W.;
visualization, R.W.; writing—original draft preparation, writing—reviewing and editing, P.H.J.M.,
B.P. and A.N.; R.W.; supervision, P.H.J.M. and A.N.; funding acquisition, P.H.J.M. and A.N. All
authors have read and agreed to the published version of the manuscript.

Funding: Partial funding for this work was provided by NSERC, grant number 2020-04605, supported
by the Canadian government. Financial support from the Office of Energy and Research and
Development (OERD) is also acknowledged. The analytical portion of this work was performed
under the High Efficiency Mining program at the National Research Council Canada (NRC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. A portion of the
data was obtained from Syncrude Canada Ltd. (Research and Development–Edmonton, AB, Canada)
and is available from the authors with the permission of Syncrude Canada Ltd.

Acknowledgments: The authors thank Syncrude Canada Ltd. for permission to use data on some of
the ore samples analyzed here, as well as some constructive comments related to oil sands processing.
These acknowledgments do not imply endorsement.

Conflicts of Interest: The authors declare no conflict of interest.

Additional Comments: The map presented in Figure 1 was created using ArcGIS® software by
Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license.
Copyright © Esri. All rights reserved. For more information about Esri® software, please visit
www.esri.com.

123



M
in

er
al

s
20

21
,1

1,
68

9

A
pp

en
di

x
A

Ta
bl

e
A

1.
C

or
re

la
ti

on
m

at
ri

x
fo

r
al

l4
6

va
ri

ab
le

s
(i

nc
lu

di
ng

5
co

m
po

si
te

s)
us

ed
in

PL
S

re
gr

es
si

on
m

od
el

.C
oe

ffi
ci

en
ts

gr
ea

te
r

th
an

0.
75

ar
e

in
di

ca
te

d
by

re
d

te
xt

.

Q
T

Z
/

SI
L

IL
L

K
A

O
C

H
L

C
A

L
D

O
L

A
N

K
SI

D
PY

R
Z

IR
R

U
T

A
N

A
IL

M
LE

P
G

Y
P

B
A

S
A

N
O

K
SP

A
LB

A
FE

A
PA

C
R

I

Q
TZ

/S
IL

1.
00

IL
L

−
0.

89
1.

00
K

A
O

−
0.

91
0.

81
1.

00
C

H
L

−
0.

25
0.

21
0.

34
1.

00
C

A
L

−
0.

13
0.

04
−

0.
14
−

0.
04

1.
00

D
O

L
−

0.
57

0.
53

0.
26

−
0.

08
0.

57
1.

00
A

N
K

−
0.

59
0.

45
0.

66
0.

01
−

0.
01
−

0.
08

1.
00

SI
D

−
0.

30
0.

19
0.

26
0.

06
−

0.
05

0.
10

0.
20

1.
00

PY
R

−
0.

06
0.

20
0.

01
−

0.
15
−

0.
06

0.
29

−
0.

08
−

0.
23

1.
00

Z
IR

−
0.

22
0.

28
0.

30
0.

12
0.

00
−

0.
04

0.
13

0.
04

−
0.

16
1.

00
R

U
T

0.
13

−
0.

03
−

0.
12

0.
08

−
0.

11
−

0.
28
−

0.
06

0.
07

0.
02

0.
23

1.
00

A
N

A
−

0.
82

0.
83

0.
88

0.
39

−
0.

03
0.

28
0.

53
0.

25
−

0.
17

0.
44

−
0.

20
1.

00
IL

M
0.

45
−

0.
40
−

0.
40
−

0.
18
−

0.
07
−

0.
29
−

0.
23
−

0.
10

0.
13

−
0.

02
0.

37
−

0.
50

1.
00

LE
P

0.
38

−
0.

33
−

0.
33
−

0.
15
−

0.
18
−

0.
33
−

0.
20

0.
00

0.
11

0.
01

0.
45

−
0.

45
0.

75
1.

00
G

Y
P

0.
22

−
0.

36
−

0.
16

0.
07

0.
15

−
0.

23
−

0.
04

0.
03

−
0.

20
−

0.
01

0.
14

−
0.

22
0.

19
0.

28
1.

00
BA

S
0.

23
−

0.
37
−

0.
16

0.
08

0.
06

−
0.

29
−

0.
04

0.
04

−
0.

19
−

0.
02

0.
15

−
0.

23
0.

20
0.

30
0.

99
1.

00
A

N
O

0.
21

−
0.

35
−

0.
25

0.
08

0.
41

−
0.

17
−

0.
03

0.
19

−
0.

50
0.

04
0.

06
−

0.
06

0.
02

−
0.

01
0.

12
0.

08
1.

00
K

SP
−

0.
19
−

0.
05

0.
27

0.
51

0.
00

−
0.

06
0.

03
0.

17
−

0.
45

0.
01

0.
02

0.
28

−
0.

13
−

0.
06

0.
19

0.
18

0.
45

1.
00

A
LB

−
0.

85
0.

80
0.

75
0.

11
0.

13
0.

69
0.

37
0.

10
0.

31
0.

04
−

0.
20

0.
60

−
0.

35
−

0.
32
−

0.
18
−

0.
20
−

0.
46

0.
06

1.
00

A
FE

−
0.

59
0.

56
0.

44
0.

08
0.

34
0.

71
0.

14
−

0.
35

0.
24

0.
06

−
0.

35
0.

44
−

0.
46
−

0.
54
−

0.
20
−

0.
25
−

0.
37
−

0.
07

0.
71

1.
00

A
PA

−
0.

60
0.

61
0.

40
0.

07
0.

31
0.

71
0.

07
0.

11
0.

35
−

0.
05
−

0.
18

0.
38

−
0.

21
−

0.
19
−

0.
47
−

0.
48
−

0.
10

0.
01

0.
65

0.
45

1.
00

C
R

I
0.

35
−

0.
29
−

0.
36
−

0.
29

0.
00

−
0.

17
−

0.
20
−

0.
16

0.
04

−
0.

09
−

0.
02
−

0.
30

0.
16

0.
23

0.
16

0.
17

0.
05

−
0.

16
−

0.
27
−

0.
20
−

0.
15

1.
00

O
R

C
0.

63
−

0.
76
−

0.
67
−

0.
32
−

0.
15
−

0.
46
−

0.
22
−

0.
17
−

0.
11
−

0.
27

0.
13

−
0.

76
0.

35
0.

34
0.

20
0.

23
0.

08
−

0.
18
−

0.
64
−

0.
45
−

0.
53

0.
33

O
R

S
0.

29
−

0.
40
−

0.
45
−

0.
23

0.
28

0.
04

−
0.

16
−

0.
09
−

0.
18
−

0.
41

0.
02

−
0.

46
−

0.
04
−

0.
05

0.
07

0.
04

0.
18

−
0.

06
−

0.
22

0.
00

−
0.

26
0.

14
TO

TA
L

C
LA

Y
S

−
0.

94
0.

95
0.

95
0.

32
−

0.
05

0.
41

0.
58

0.
24

0.
10

0.
31

−
0.

07
0.

90
−

0.
42
−

0.
35
−

0.
27
−

0.
27
−

0.
31

0.
13

0.
81

0.
52

0.
53

−
0.

35
SI

D
+A

FE
−

0.
77

0.
64

0.
61

0.
13

0.
24

0.
69

0.
30

0.
61

−
0.

01
0.

09
−

0.
23

0.
59

−
0.

48
−

0.
45
−

0.
14
−

0.
17
−

0.
14

0.
10

0.
69

0.
52

0.
48

−
0.

32
R

U
T+

A
N

A
−

0.
79

0.
83

0.
86

0.
43

−
0.

06
0.

19
0.

51
0.

28
−

0.
17

0.
52

0.
12

0.
95

−
0.

38
−

0.
30
−

0.
18
−

0.
18
−

0.
04

0.
29

0.
55

0.
33

0.
32

−
0.

31
D

O
L+

C
A

L+
A

N
K
−

0.
56

0.
49

0.
24

−
0.

08
0.

72
0.

97
0.

01
0.

09
0.

22
−

0.
03
−

0.
27

0.
27

−
0.

28
−

0.
34
−

0.
16
−

0.
23
−

0.
05
−

0.
05

0.
64

0.
70

0.
68

−
0.

16
A

N
O

+K
SP

+A
LB

−
0.

66
0.

44
0.

58
0.

35
0.

35
0.

45
0.

30
0.

26
−

0.
21

0.
05

−
0.

13
0.

58
−

0.
33
−

0.
30
−

0.
01
−

0.
05

0.
38

0.
72

0.
59

0.
34

0.
49

−
0.

26
N

a
−

0.
85

0.
80

0.
75

0.
11

0.
13

0.
69

0.
37

0.
10

0.
31

0.
04

−
0.

20
0.

60
−

0.
35
−

0.
32
−

0.
18
−

0.
20
−

0.
46

0.
06

1.
00

0.
71

0.
65

−
0.

27
K

−
0.

92
0.

96
0.

86
0.

35
0.

04
0.

50
0.

45
0.

23
0.

07
0.

28
−

0.
02

0.
88

−
0.

42
−

0.
33
−

0.
30
−

0.
31
−

0.
22

0.
23

0.
79

0.
53

0.
60

−
0.

33
Si

0.
96

−
0.

79
−

0.
80
−

0.
15
−

0.
23
−

0.
62
−

0.
58
−

0.
32
−

0.
05
−

0.
15

0.
15

−
0.

69
0.

43
0.

37
0.

18
0.

20
0.

19
−

0.
11
−

0.
80
−

0.
59
−

0.
58

0.
32

A
l

−
0.

96
0.

93
0.

96
0.

33
0.

01
0.

43
0.

59
0.

26
0.

05
0.

30
−

0.
08

0.
92

−
0.

43
−

0.
36
−

0.
25
−

0.
26
−

0.
21

0.
22

0.
81

0.
51

0.
55

−
0.

35
Fe

−
0.

81
0.

70
0.

66
0.

22
0.

23
0.

72
0.

32
0.

52
0.

15
0.

08
−

0.
22

0.
61

−
0.

47
−

0.
45
−

0.
17
−

0.
19
−

0.
22

0.
08

0.
75

0.
60

0.
54

−
0.

34
M

g
−

0.
62

0.
58

0.
33

0.
08

0.
56

0.
99

−
0.

05
0.

11
0.

27
−

0.
02
−

0.
27

0.
35

−
0.

33
−

0.
36
−

0.
22
−

0.
28
−

0.
16

0.
02

0.
72

0.
73

0.
73

−
0.

22
C

a
−

0.
40

0.
27

0.
08

−
0.

03
0.

89
0.

81
−

0.
01

0.
13

0.
01

−
0.

02
−

0.
20

0.
18

−
0.

21
−

0.
27

0.
03

−
0.

05
0.

35
0.

13
0.

39
0.

48
0.

56
−

0.
10

Ti
−

0.
79

0.
83

0.
85

0.
43

−
0.

07
0.

18
0.

51
0.

28
−

0.
17

0.
53

0.
13

0.
94

−
0.

37
−

0.
29
−

0.
17
−

0.
18
−

0.
04

0.
29

0.
54

0.
32

0.
32

−
0.

31
Z

r
−

0.
22

0.
28

0.
30

0.
12

0.
00

−
0.

04
0.

13
0.

04
−

0.
16

1.
00

0.
23

0.
44

−
0.

02
0.

01
−

0.
01
−

0.
02

0.
04

0.
01

0.
04

0.
06

−
0.

05
−

0.
09

P
−

0.
60

0.
61

0.
40

0.
07

0.
31

0.
71

0.
07

0.
11

0.
35

−
0.

05
−

0.
18

0.
38

−
0.

21
−

0.
19
−

0.
47
−

0.
48
−

0.
10

0.
01

0.
65

0.
45

1.
00

−
0.

15
C

0.
60

−
0.

74
−

0.
66
−

0.
34
−

0.
09
−

0.
40
−

0.
22
−

0.
13
−

0.
11
−

0.
28

0.
12

−
0.

76
0.

33
0.

33
0.

20
0.

22
0.

09
−

0.
18
−

0.
61
−

0.
43
−

0.
49

0.
32

S
0.

30
−

0.
37
−

0.
47
−

0.
27

0.
27

0.
11

−
0.

20
−

0.
18

0.
22

−
0.

46
0.

06
−

0.
56

0.
06

0.
06

0.
18

0.
16

−
0.

02
−

0.
22
−

0.
11

0.
06

−
0.

20
0.

18

124



M
in

er
al

s
20

21
,1

1,
68

9

Ta
bl

e
A

1.
C

on
t.

Q
T

Z
/

SI
L

IL
L

K
A

O
C

H
L

C
A

L
D

O
L

A
N

K
SI

D
PY

R
Z

IR
R

U
T

A
N

A
IL

M
LE

P
G

Y
P

B
A

S
A

N
O

K
SP

A
LB

A
FE

A
PA

C
R

I

Bi
tu

m
en

0.
73

−
0.

80
−

0.
75
−

0.
30
−

0.
18
−

0.
47
−

0.
38
−

0.
20
−

0.
11
−

0.
32

0.
14

−
0.

82
0.

38
0.

36
0.

23
0.

25
0.

05
−

0.
16
−

0.
67
−

0.
48
−

0.
54

0.
37

W
at

er
−

0.
69

0.
73

0.
72

0.
33

0.
04

0.
36

0.
38

0.
10

0.
28

0.
22

−
0.

10
0.

70
−

0.
31
−

0.
25
−

0.
18
−

0.
18
−

0.
18

0.
14

0.
68

0.
43

0.
56

−
0.

21
So

lid
s

−
0.

17
0.

21
0.

16
0.

00
0.

24
0.

25
0.

07
0.

19
−

0.
26

0.
20

−
0.

09
0.

30
−

0.
18
−

0.
23
−

0.
11
−

0.
14

0.
18

0.
06

0.
10

0.
15

0.
03

−
0.

31
Fi

ne
s

−
0.

86
0.

86
0.

85
0.

41
0.

06
0.

41
0.

47
0.

27
−

0.
07

0.
31

−
0.

15
0.

91
−

0.
50
−

0.
45
−

0.
22
−

0.
23
−

0.
09

0.
27

0.
69

0.
46

0.
52

−
0.

37
To

ta
lR

ec
ov

er
y

0.
49

−
0.

46
−

0.
50
−

0.
17
−

0.
20
−

0.
33
−

0.
27
−

0.
11

0.
08

−
0.

33
0.

13
−

0.
56

0.
03

0.
13

0.
09

0.
12

−
0.

12
−

0.
24
−

0.
41
−

0.
28
−

0.
37

0.
28

O
R

C
O

R
S

TO
TA

L
C

LA
Y

S
SI

D
+

A
FE

R
U

T+
A

N
A

D
O

L+
C

A
L+

A
N

K

A
N

O
+

K
SP

+
A

LB
N

a
K

Si
A

l
Fe

M
g

C
a

Ti
Z

r
P

C
S

Bi
tu

m
en

W
at

er
So

lid
s

Fi
ne

s
To

ta
l

R
ec

ov
-

er
y

O
R

C
1.

00
O

R
S

0.
55

1.
00

TO
TA

L
C

LA
Y

S
−

0.
75
−

0.
45

1.
00

SI
D

+A
FE

−
0.

54
−

0.
09

0.
66

1.
00

R
U

T+
A

N
A

−
0.

73
−

0.
46

0.
89

0.
53

1.
00

D
O

L+
C

A
L+

A
N

K
−

0.
44

0.
09

0.
38

0.
67

0.
18

1.
00

A
N

O
+K

SP
+A

LB
−

0.
56
−

0.
10

0.
54

0.
53

0.
55

0.
48

1.
00

N
a

−
0.

64
−

0.
22

0.
81

0.
69

0.
55

0.
64

0.
59

1.
00

K
−

0.
79
−

0.
40

0.
96

0.
66

0.
89

0.
46

0.
63

0.
79

1.
00

Si
0.

46
0.

16
−

0.
83
−

0.
79
−

0.
65
−

0.
62
−

0.
60
−

0.
80
−

0.
80

1.
00

A
l

−
0.

77
−

0.
43

0.
99

0.
67

0.
90

0.
41

0.
64

0.
81

0.
97

−
0.

85
1.

00
Fe

−
0.

59
−

0.
14

0.
72

0.
98

0.
55

0.
68

0.
53

0.
75

0.
71

−
0.

82
0.

72
1.

00
M

g
−

0.
52

0.
00

0.
48

0.
72

0.
27

0.
96

0.
51

0.
72

0.
57

−
0.

66
0.

50
0.

76
1.

00
C

a
−

0.
35

0.
16

0.
18

0.
53

0.
12

0.
91

0.
58

0.
39

0.
30

−
0.

48
0.

25
0.

51
0.

81
1.

00
Ti

−
0.

73
−

0.
46

0.
89

0.
52

1.
00

0.
18

0.
55

0.
54

0.
88

−
0.

65
0.

90
0.

54
0.

27
0.

11
1.

00
Z

r
−

0.
27
−

0.
41

0.
31

0.
09

0.
52

−
0.

03
0.

05
0.

04
0.

28
−

0.
15

0.
30

0.
08

−
0.

02
−

0.
02

0.
53

1.
00

P
−

0.
53
−

0.
26

0.
53

0.
48

0.
32

0.
68

0.
49

0.
65

0.
60

−
0.

58
0.

55
0.

54
0.

73
0.

56
0.

32
−

0.
05

1.
00

C
1.

00
0.

57
−

0.
74
−

0.
48
−

0.
73
−

0.
37
−

0.
53
−

0.
61
−

0.
77

0.
41

−
0.

75
−

0.
53
−

0.
46
−

0.
28
−

0.
73
−

0.
28
−

0.
49

1.
00

S
0.

52
0.

90
−

0.
44
−

0.
12
−

0.
55

0.
14

−
0.

20
−

0.
11
−

0.
42

0.
17

−
0.

44
−

0.
11

0.
06

0.
16

−
0.

56
−

0.
46
−

0.
20

0.
55

1.
00

Bi
tu

m
en

0.
95

0.
50

−
0.

81
−

0.
58
−

0.
78
−

0.
47
−

0.
59
−

0.
67
−

0.
82

0.
58

−
0.

83
−

0.
64
−

0.
53
−

0.
38
−

0.
78
−

0.
32
−

0.
54

0.
94

0.
49

1.
00

W
at

er
−

0.
76
−

0.
51

0.
77

0.
46

0.
68

0.
34

0.
52

0.
68

0.
75

−
0.

57
0.

77
0.

55
0.

42
0.

23
0.

67
0.

22
0.

56
−

0.
76
−

0.
41
−

0.
80

1.
00

So
lid

s
−

0.
41
−

0.
05

0.
19

0.
30

0.
27

0.
27

0.
21

0.
10

0.
22

−
0.

12
0.

22
0.

24
0.

25
0.

29
0.

27
0.

20
0.

03
−

0.
40
−

0.
18
−

0.
44
−

0.
18

1.
00

Fi
ne

s
−

0.
82
−

0.
44

0.
91

0.
63

0.
87

0.
40

0.
63

0.
69

0.
91

−
0.

74
0.

92
0.

67
0.

49
0.

29
0.

87
0.

31
0.

52
−

0.
81
−

0.
50
−

0.
85

0.
73

0.
31

1.
00

To
ta

lR
ec

ov
er

y
0.

55
0.

37
−

0.
50
−

0.
34
−

0.
52
−

0.
35
−

0.
51
−

0.
41
−

0.
51

0.
41

−
0.

54
−

0.
35
−

0.
36
−

0.
35
−

0.
53
−

0.
33
−

0.
37

0.
54

0.
41

0.
57

−
0.

53
−

0.
15
−

0.
53

1.
00

125



Minerals 2021, 11, 689

References
1. Bata, T.; Schamel, S.; Fustic, M.; Ibatulin, R. AAPG Energy Minerals Division Bitumen and Heavy Oil Committee Annual Commodity

Report—May 2019; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2019.
2. Canada Energy Regulator (CER). Canada’s Energy Future 2020: Energy Supply and Demand Projections to 2050 (EF2020); Canada

Energy Regulator: Ottawa, ON, Canada, 2020.
3. Hein, F.J. Heavy oil and oil (tar) sands in North America: An overview & summary of contributions. Nat. Resour. Res. 2006,

15, 67–84.
4. Gray, M.R.; Xu, Z.; Masliyah, J. Physics in the oil sands of Alberta. Phys. Today. 2009, 62, 31–35. [CrossRef]
5. Algeer, R.; Snowdon, L.; Huang, H.; Oldenburg, T.; Larter, S. Is water washing an important petroleum system process? In

Proceedings of the AAPG Annual Convention and Exhibition, Calgary, AB, Canada, 19–22 June 2016.
6. Fustic, M.; Ahmed, K.; Brough, S.; Bennett, B.; Bloom, L.; Asgar–Deen, M.; Jokanola, O.; Spencer, R.; Larter, S. Reservoir and

bitumen heterogeneity in Athabasca oil sands. AAPG Search Discov. 2015, 20296, 15.
7. Masliyah, J.H.; Czarnecki, J.; Xu, Z. Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands, Volume 1:

Theoretical Basis; Kingsley Knowledge Publishing: Cochrane, AB, Canada, 2011.
8. Gray, M.R.; Eaton, P.E.; Le, T. Inhibition and promotion of hydrolysis of chloride salts in model crude oil and heavy oil. Pet. Sci.

Technol. 2008, 26, 1934–1944. [CrossRef]
9. Kaur, H.; Eaton, P.E.; Gray, M.R. The kinetics and inhibition of chloride hydrolysis in Canadian bitumen. Pet. Sci. Technol. 2012,

30, 993–1003. [CrossRef]
10. Li, X.; Wu, B.; Zhu, J. Hazards of organic chloride to petroleum processing in Chinese refineries and industrial countermeasures.

Progress Petrochem. Sci. 2018, 2, 204–207. [CrossRef]
11. Londono, Y.; Mikula, R.; Eaton, P.E.; Gray, M.R. Interaction of chloride salts and kaolin clay in the hydrolysis of emulsified

chloride salts at 200–350 C. Pet. Sci. Technol. 2009, 27, 1163–1174. [CrossRef]
12. Navarra, A.; Grammatikopoulos, T.; Waters, K. Incorporation of geometallurgical modelling into long–term production planning.

Miner. Eng. 2018, 120, 118–126. [CrossRef]
13. Navarra, A.; Rafiei, A.; Waters, K. A systems approach to mineral processing based on mathematical programming. Can. Metall.

Q. 2017, 56, 35–44. [CrossRef]
14. Navarra, A.; Wilson, R.; Parra, R.; Toro, N.; Ross, A.; Nave, J.-C.; Mackey, P.J. Quantitative methods to support data acquisition

modernization within copper smelters. Processes 2020, 8, 1478. [CrossRef]
15. Navarra, A.; Alvarez, M.; Rojas, K.; Menzies, A.; Pax, R.; Waters, K. Concentrator operational modes in response to geological

variation. Miner. Eng. 2019, 134, 356–364. [CrossRef]
16. Saldana, M.; Toro, N.; Castillo, J.; Hernandez, P.; Navarra, A. Optimization of the heap leaching process through changes in

modes of operation and discrete event simulation. Minerals 2019, 9, 421. [CrossRef]
17. Wilson, R.; Toro, N.; Naranjo, O.; Emery, X.; Navarra, A. Integration of geostatistical modeling into discrete event simulation for

development of tailings dam retreatment applications. Miner. Eng. 2021, 164, 106814. [CrossRef]
18. Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer

International Publishing: Cham, Switzerland, 2016; pp. 59–74.
19. Glaessgen, E.H.; Stargel, D.S. The digital twin paradigm for future NASA and U.S. Air Force vehicles. In Proceedings of the

53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin, Honolulu, HI, USA,
23–26 April 2012.

20. Kaminsky, H.A.W. Characterization of an Athabasca Oil Sands Ore and Process Streams. PhD Thesis, Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, AB, Canada, 2008.

21. Energy Resources Conservation Board (ERCB). Alberta’s Energy Reserves 2008 and Supply/Demand Outlook 2009–2018; Energy
Resources Conservation Board: Calgary, AB, Canada, 2009.

22. Zhao, S.; Kotlyar, L.S.; Sparks, B.D.; Woods, J.; Gao, J.; Chung, K. Solids contents, properties and molecular structures of
asphaltenes from different oilsands. Fuel 2001, 80, 1907–1914. [CrossRef]

23. Barson, D.; Bachu, S.; Esslinger, P. Flow systems in the Mannville Group in the east–central Athabasca area and implications
for steam–assisted gravity drainage (SAGD) operations for in situ bitumen production. Bull. Can. Pet. Geol. 2001, 49, 376–392.
[CrossRef]

24. Fowler, M.; Riediger, C. Origin of the Athabasca tar sands. In Hydrogeology of Heavy Oil and Tar Sand Deposits: Water Flow and
Supply, Migration and Degradation—Field Trip Notes (GSC Open File 3946); Barson, D., Bartlett, R., Hein, F.J., Fowler, M., Grasby, S.,
Riediger, C., Underschultz, J., Eds.; Geological Survey of Canada: Calgary, AB, Canada, 2000; pp. 117–127.

25. Hein, F.J.; Langenberg, C.W.; Kidston, C.; Berhane, H.; Berezniuk, T.; Cotterill, D.K. A Comprehensive Field Guide for Facies
Characterization of the Athabasca Oil Sands, Northeast Alberta (with Maps, Air Photos, and Detailed Descriptions of Seventy–Eight Outcrop
Sections): AEUB/AGS Special Report 13; Alberta Energy Utilities Board/Alberta Geological Survey: Edmonton, AB, Canada, 2001.

26. Hein, F.J.; Cotterill, D.K.; Berhane, H. An Atlas of Lithofacies of the McMurray Formation, Athabasca Oil Sands Deposit, Northeastern
Alberta: Surface and Subsurface: AEUB/AGS Earth Sciences Report 2000–07; Alberta Energy and Utilities Board/Alberta Geological
Survey: Edmonton, AB, Canada, 2000.

126



Minerals 2021, 11, 689

27. Wightman, D.M.; Pemberton, S.G. The Lower Cretaceous (Aptian) McMurray Formation: An overview of the McMurray Area,
Northeastern Alberta. In Petroleum Geology of the Cretaceous Lower Mannville Group: Western Canada: Canadian Society of Petroleum
Geologists Memoir 18; Pemberton, G.S., James, D.P., Eds.; Canadian Society of Petroleum Geologists (CSPG): Calgary, AB, Canada,
1997; pp. 312–344.

28. Alberta Energy Regulator (AER). Alberta’s Energy Reserves 2014 and Supply/Demand Outlook 2015–2024, Statistical Series ST98–2015;
Alberta Energy Regulator: Calgary, AB, Canada, 2015.

29. Marinkovic, J. Multivariate Statistics. In Encyclopedia of Public Health; Kirch, W., Ed.; Springer Publishing: Dordrecht, The
Netherlands, 2008; pp. 973–976.

30. Abdi, H. Partial least squares (PLS) regression. In Encyclopedia for Research Methods for the Social Sciences; Lewis-Beck, M., Bryman,
A., Futing, T., Eds.; Sage: Thousand Oaks, CA, USA, 2003; pp. 792–795.

31. Abdi, H. Partial least square regression and projection on latent structure regression (PLS regression). Comput. Stat. 2010,
2, 97–106. [CrossRef]

32. Hoskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [CrossRef]
33. Tenenhaus, M. La Regression PLS: Théorie et Pratique; Éditions Technip: Paris, France, 1998.
34. Ekblad, A. Forest soil respiration rate and delta C–13 is regulated by recent above ground weather conditions. Oecologia 2005,

143, 136–142. [CrossRef] [PubMed]
35. Allen, A.E. Influence of nitrate availability on the distribution and abundance of heterotropic bacterial nitrate assimilation genes

in the Barents Sea suring summer. Aquat. Microb. Ecol. 2005, 39, 247–255. [CrossRef]
36. Maestre, F.T. On the importance of patch attributes, environmental factors and past human impacts as determinants of perennial

plant species richness and diversity in Mediterranean semiarid steppes. Div. Distr. 2004, 10, 21–29. [CrossRef]
37. Palomino, D.; Carrascal, L.M. Habitat associations of a raptor community in a mosaic landscape of central Spain under urban

development. Landsc. Urban. Plan. 2007, 83, 268–274. [CrossRef]
38. Seppa, H. A modern pollen climate calibration set from northern Europe: Developing and testing a tool for palaeoclimatological

reconstructions. J. Biogeogr. 2004, 31, 251–267. [CrossRef]
39. Sonesten, L. Catchment area composition and water chemistry heavily affects mercury levels in perch (Perca fluviatilis L.) in

circumneutral lakes. Water Air Soil Pollut. 2003, 144, 117–139. [CrossRef]
40. Spanos, T. Environmetrics to evaluate marine environment quality. Environ. Monit. Assess. 2008, 143, 215–225. [CrossRef]

[PubMed]
41. Pandit, C.M.; Filippelli, G.M.; Li, L. Estimation of heavy metal contamination in soil using reflectance spectroscopy and partial

least–squares regression. Int. J. Remote Sens. 2010, 31, 4111–4123. [CrossRef]
42. Kun, W.; Keyan, X.; Nan, L.; Yuan, C.; Shengmiao, L. Application of partial least squares regression for identifying multivariate

geochemical anomalies in stream sediment data from Northwestern Hunan, China. Geochem-Explor. Environ. A 2017, 17, 217–230.
[CrossRef]

43. Abdi, H.; Williams, L.J. Partial least squares methods: Partial least squares correlation and partial least squares regression.
In Methods in Molecular Biology: Computational Toxicology; Reisfeld, B., Mayeno, A., Eds.; Springer: New York, NY, USA, 2013;
pp. 549–579.

44. Abdi, H. Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In Encyclopedia of Measure-
ment and Statistics; Salkind, N.J., Ed.; Sage: Thousand Oaks, CA, USA, 2007; pp. 907–912.

45. Melzer, T. SVD and Its Application to Generalized Eigenvalue Problems; University of Technology: Vienna, Austria, 2004.
46. Hern, T.; Long, C. Viewing some concepts and applications in linear algebra. In Visualization in Teaching and Learning Mathematics;

MAA Notes, No. 19; Mathematical Association of America: Washington, DC, USA, 1991; pp. 173–190.
47. Strang, G. The fundamental theoremof linear algebra. Am. Math Mon. 1993, 100, 848–855. [CrossRef]
48. Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra, 1st ed.; Society for Industrial and Applied Mathematics (SIAM): Philadelphia,

PA, USA, 1997.
49. Siegel, A.F. Chapter 12—Multiple Regression: Predicting One Variable from Several Others. In Practical Business Statistics, 7th ed.;

Siegel, A.F., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 355–418.
50. Egarievwe, S.U.; Coble, J.B.; Miller, L.F. Analysis of how well regression models predict radiation dose from the Fukushima

Daiichi Nuclear Accident. Int. J. Appl. Phys. Math. 2016, 6, 150–164. [CrossRef]
51. Huerta, M.; Leiva, V.; Liu, S.; Rodriguez, M.; Villegas, D. On a partial least squares regression model for asymmetric data with a

chemical application in mining. Chemometr. Intell. Lab. Syst. 2019, 190, 55–68. [CrossRef]
52. Altiok, T.; Melamed, B. Simulation Modeling and Analysis with Arena; Academic Press: Boston, MA, USA, 2007.
53. Alruiz, O.; Morrell, S.; Suazo, C.; Naranjo, A. A novel approach to the geometallurgical modelling of the Collahuasi grinding

circuit. Miner. Eng. 2009, 22, 1060–1067. [CrossRef]
54. Suazo, C.; Kracht, W.; Alruiz, O. Geometallurgical modelling of the Collahuasi flotation circuit. Miner. Eng. 2010, 23, 137–142.

[CrossRef]
55. Navarra, A.; Marambio, H.; Oyarzun, F.; Parra, R.; Mucciardi, F. System dynamics and discrete event simulation of copper

smelters. Miner. Metall. Process. 2017, 34, 96–106. [CrossRef]
56. Awuah–Offei, K.; Osei, B.A.; Askari–Nasab, H. Improving truck–shovel energy efficiency through discrete event modeling. In

Proceedings of the Society for Mining, Metallurgy & Exploration (SME) Annual Meeting, Seattle, WA, USA, 19–22 February 2012.

127



Minerals 2021, 11, 689

57. Vagenas, N. Applications of discrete–event simulation in Canadian mining operations in the nineties. Int. J. Surf. Min. Reclam.
Environ. 1999, 13, 77–78. [CrossRef]

58. Greberg, J.; Salama, A.; Gustafson, A.; Skawina, B. Alternative process flow for underground mining operations: Analysis of
conceptual transport methods using discrete event simulation. Minerals 2016, 6, 65. [CrossRef]

59. Gbadam, E.; Awuah–Offei, K.; Frimpong, S. Investigation into Mine Equipment Subsystem Availability & Reliability Data
Modeling Using DES. In Application of Computers and Operations Research in the Mineral Industry; Bandopadhyay, S., Ed.; Society for
Mining, Metallurgy & Exploration, Inc. (SME): Englewood, CO, USA, 2015.

60. Tarshizi, E. Using Discrete Simulation & Animation to Identify the Optional Sizes and Locations of Mine Refuge Chambers. In
Application of Computers and Operations Research in the Mineral Industry; Bandopadhyay, S., Ed.; Society for Mining Metallurgy &
Exploration Inc. (SME): Englewood, CO, USA, 2015.

61. Shishvan, M.; Benndorf, J. Performance optimization of complex continuous mining system using stochastic simulation. In
Engineering Optimization; Rodrigues, H.J., Mota, S.C., Miranda, G.J., Araujo, A., Folgado, J., Eds.; Taylor and Francis: Hoboken,
NJ, USA, 2014; pp. 273–278.

62. Nageshwaraniyer, S.; Kim, K.; Son, Y.J. A mine–to–mill economic analysis model and spectral imaging–based tracking system for
a copper mine. J. S. Afr. I Min. Metall. 2018, 118, 7–14. [CrossRef]

63. Pamparana, G.; Kracht, W.; Haas, J.; Diaz–Ferran, G.; Palma–Behnke, R.; Roman, R. Integrating photovoltaic solar energy and a
battery energy storage system to operate a semi–autogenous grinding mill. J. Clean. Prod. 2017, 165, 273–280. [CrossRef]

64. Winstin, W.; Goldberg, J. The EOQ with uncertain demand: The (r, q) and (s, S) models. In Operations Research: Applications and
Algorithms (Section 16.6); Cengage Learning: Boston, MA, USA, 2004; pp. 895–902.

65. Bulmer, J.T.; Starr, J. Syncrude Analytical Procedures for Oilsands and Bitumen Processing; Alberta Oil Sands Technology and Research
Authority (AOSTR): Edmonton, AB, Canada, 1974.

66. Patarachao, B.; Mercier, P.H.J.; Kung, J.; Woods, J.R.; Kotlyar, L.S.; Sparks, B.D.; McCracken, T. Optimizing XRF calibration
protocols for elemental quantification of mineral solids from Athabasca oil sands. Adv. X-ray Anal. 2010, 53, 220–227. [CrossRef]

67. Couillard, M.; Mercier, P.H.J. Analytical electron microscopy of carbon–rich mineral aggregates in solvent–diluted bitumen
products from mined Alberta oil sands. Energy Fuels 2016, 30, 5513–5524. [CrossRef]

68. Alberta Energy Regulator (AER). Operating Criteria: Resource Recovery Requirements for Oil Sands Mine and Processing Plant
Operations (AER Directive 082); Alberta Energy Regulator: Calgary, AB, Canada, 2016.

69. Mercier, P.H.J.; Patarachao, B.; Kung, J.; Kingston, D.; Woods, J.; Sparks, B.D.; Kotlyar, L.S.; Ng, S.; Moran, K.; McCracken, T. X–ray
diffraction (XRD)–derived processability markers for oil sands based on clay mineralogy and crystallite thickness distributions.
Energy Fuels 2008, 22, 3174–3193. [CrossRef]

70. Mercier, P.H.J.; Kingston, D.; Kung, J.; Woods, J.R.; Kotlyar, L.S.; Tu, Y.; Smith, T.; Ng, S.; Moran, K.; Sparks, B.D.; et al. Development
of an Innovative Method for Assessment of Oilsands Ore Processability by Measurement of Paramagnetic Signatures—Final Report to
CONRAD Bitumen Production Research Group (ICPET Report #PET–1570–06S); National Research Council Canada (NRC)—Institute
for Chemical Process and Environmental Technology: Ottawa, ON, Canada, 2007.

71. Wallace, D.; Tipman, R.; Komishke, B.; Wallwork, V.; Perkins, E. Fines/water interactions and consequences of the presence of
degraded illite on oil sands extractability. Can. J. Chem. Eng. 2004, 82, 667–677. [CrossRef]

72. Omotoso, O.E.; Mikula, R.J. High surface areas caused by smectitic interstratification of kaolinite and illite in Athabasca oil sands.
Appl. Clay Sci. 2003, 25, 37–47. [CrossRef]

73. Long, J.; Hoskins, S.; Reid, K. United States Patent Application Publication No. US 2020/0102505 A1; United States Patent and
Trademark Office: Alexandria, VA, USA, 2020.

74. Potdar, K.; Pardawala, T.; Pai, C. A comparative study of categorical variable encoding techniques for neural network classifiers.
Int. J. Comput. Appl. Technol. 2017, 175, 7–9. [CrossRef]

75. Mevik, B.-H.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007,
18, 1–24. [CrossRef]

76. Pell, R.J.; Ramos, L.S.; Manne, R. Themodel space in partial least squares regression. J. Chemom. 2007, 21, 165–172. [CrossRef]
77. Kresta, J. (Syncrude Canada Ltd., Edmonton, AB, Canada). Personal communication, 2021.

128



minerals

Article

Diagnosis of Problems in Truck Ore Transport Operations in
Underground Mines Using Various Machine Learning Models
and Data Collected by Internet of Things Systems

Sebeom Park 1 , Dahee Jung 1 , Hoang Nguyen 2,3 and Yosoon Choi 1,*

����������
�������

Citation: Park, S.; Jung, D.; Nguyen,

H.; Choi, Y. Diagnosis of Problems in

Truck Ore Transport Operations in

Underground Mines Using Various

Machine Learning Models and Data

Collected by Internet of Things

Systems. Minerals 2021, 11, 1128.

https://doi.org/10.3390/

min11101128

Academic Editors: Rajive Ganguli,

Sean Dessureault and Pratt Rogers

Received: 14 September 2021

Accepted: 12 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Energy Resources Engineering, Pukyong National University, Busan 48513, Korea;
sebumi1v@gmail.com (S.P.); 98dahee@naver.com (D.J.)

2 Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str.,
Duc Thang ward, Bac Tu Liem Distr., Hanoi 100000, Vietnam; nguyenhoang@humg.edu.vn

3 Innovations for Sustainable and Responsible Mining (ISRM) Group, Department of Surface Mining,
Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang ward, Bac Tu Liem Distr.,
Hanoi 100000, Vietnam

* Correspondence: energy@pknu.ac.kr; Tel.: +82-51-629-6562; Fax: +82-51-629-6553

Abstract: This study proposes a method for diagnosing problems in truck ore transport operations in
underground mines using four machine learning models (i.e., Gaussian naïve Bayes (GNB), k-nearest
neighbor (kNN), support vector machine (SVM), and classification and regression tree (CART)) and
data collected by an Internet of Things system. A limestone underground mine with an applied mine
production management system (using a tablet computer and Bluetooth beacon) is selected as the
research area, and log data related to the truck travel time are collected. The machine learning models
are trained and verified using the collected data, and grid search through 5-fold cross-validation is
performed to improve the prediction accuracy of the models. The accuracy of CART is highest when
the parameters leaf and split are set to 1 and 4, respectively (94.1%). In the validation of the machine
learning models performed using the validation dataset (1500), the accuracy of the CART was 94.6%,
and the precision and recall were 93.5% and 95.7%, respectively. In addition, it is confirmed that the
F1 score reaches values as high as 94.6%. Through field application and analysis, it is confirmed that
the proposed CART model can be utilized as a tool for monitoring and diagnosing the status of truck
ore transport operations.

Keywords: bluetooth beacon; classification and regression tree; gaussian naïve bayes; k-nearest
neighbors; support vector machine; transport route; transport time; underground mine

1. Introduction

Because the productivity and profits of mines can vary greatly depending on the
design and planning of the production process, optimal operation methods and equipment
utilization strategies are needed to maximize productivity and equipment efficiency and
minimize operating costs [1–5]. The cost of transporting ore and waste accounts for over
50% of the total mine operational cost, therefore, it is crucial to design and operate the
transport system efficiently [6]. Methods to improve the productivity and efficiency of the
mine transport system are divided broadly into two types: methods to properly establish
an operational plan so that the mine can be operated effectively, and methods to monitor
and manage the site to see whether the established plan is being well implemented.

Recently, various mathematical decisions and deterministic and probabilistic simula-
tion models have been proposed by researchers to establish an operational plan, such as
optimizing the operational method and equipment allocation plan of the mine transport
system and minimizing material handling costs [4,7–13]. Since the first implementation
of discrete event simulation by Rist to solve problems related to ore transport in mines,
many researchers have conducted research on discrete event simulation [14]. Salama and
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Greberg [15] performed a simulation of a loading-haulage-dumping machine (LHD) and a
truck to optimize the number of trucks used in haulage operation in an underground mine.
Choi [16] developed a discrete event simulation program to simulate the shovel-truck
transport system of an open-pit mine using the GPSS/H simulation language. Choi and
Nieto [3] extended this to analyze the optimal transport path of a truck. Subsequently,
they performed discrete event simulations of transport equipment and provided a function
to visualize the simulation results. Park and Choi [17–22] developed GPSS/H-based pro-
grams and user-friendly programs to simulate truck-loader transport systems, considering
various conditions such as fixed/real-time allocation, crusher capacity, and possibility of
truck failure.

If the operational plan of the transport system of the mine has been properly estab-
lished, it is also crucial to continuously monitor the operational status of the transport
system and to verify whether the established plan is properly implemented at the site. Until
now, research on monitoring and diagnosing the operating status of transport systems
or equipment has been conducted by various researchers. Thompson et al. [23] provided
the basis for mine maintenance management systems (MMS) by integrating data collected
through onboard multi-sensors that were installed on trucks with existing mine communi-
cation and asset management systems. Park and Choi [24] developed a system that could
collect truck travel time data using Bluetooth beacons and tablet computers. In addition,
a method for analyzing and diagnosing the transport route status of underground mines
was proposed using the collected data. Wodecki et al. [25] proposed a monitoring system
that could identify major possible causes of machine failure events using the operational
parameters of LHD in mines. Carvalho et al. [26] developed a system that could automati-
cally identify the failure of a roller, one of the important components of a belt conveyor, by
combining a thermal imaging camera with an unmanned aerial vehicle (UAV).

Recently, machine learning techniques have been actively utilized to monitor the
transport systems and assets of mines, diagnose failures, and perform proper maintenance.
Paduraru and Dimitrakopoulos [27] utilized neural networks and policy gradient reflection
learning in data-driven decision-making processes to optimize material flow in large
mining complexes. Ristovski et al. [28] used machine learning to predict the probability
distributions of equipment activity durations used in mining operations. Xue et al. [29] and
Sun et al. [30] used a machine learning model to predict truck travel time. Zhang et al. [31]
used the support vector machine (SVM), a machine learning technique, to diagnose and
classify the defects of the scraper conveyor in coal mine. D’Angelo et al. [32] proposed
a method for real-time diagnosis of defects in rollers of belt conveyors using an object
detection model based on a deep learning architecture.

Establishing operational plans, such as mine design, production forecasting, and
equipment allocation, is important to ensure productivity and efficiency of mines. In ad-
dition, identifying in advance the section in which the truck travel time is expected to be
abnormal is crucial because this makes it possible to prevent the occurrence of problems
in the section and vehicle, as well as in the future. However, no research case has been
reported thus far for monitoring and diagnosing the condition of a mine transport system
using machine learning techniques. Therefore, we propose a method to evaluate the sta-
bility of transport routes and to diagnose the operational status by combining the mine
production management system using a tablet computer and Bluetooth beacon with ma-
chine learning techniques. To this end, a limestone underground mine in Korea—to which
a tablet computer and Bluetooth beacon was applied—was selected as a research area,
and log data related to truck travel time were collected for a certain period. In addition,
machine learning models were trained using the collected data. Thereafter, the stability
of each section of the transport route in the study area was evaluated, diagnosed, and
analyzed using the learned model.
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2. Study Area and Data Collection

In this study, an underground mine (37◦17′12′′ N, 128◦43′53′′ E) owned by Seongshin
Minefield in Korea was selected as the research area. Figure 1 depicts an aerial view of the
study area and an underground tunnel. The mine uses the room and pillar mining method
to produce 1 million tons of high-quality limestone annually. They drill with a V-Cut
method using jumbo drills and crawler drills. It then produces approximately 4500 tons of
limestone, with an average of 8–9 blasts per day using ammonium nitrate fuel oil (ANFO),
emulite, and electric detonator (6 ms). The mined limestone is loaded into a 25–40 tons
dump truck with a loader (3.0–5.6 m3) and transported to the crusher located outside the
mine. The study area operates eight loading areas and three unloading points, and three
loaders and ten trucks are used to produce limestone.
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Figure 1. Map of the study area (Sungshin Minefield underground limestone mine, Jeongsun-gun,
Gangwon-do, Korea) showing the loading areas and dumping areas.

The underground mine selected as the study area is equipped with a tablet computer
and Bluetooth beacon-based mine production management system. This system provides
functions for navigation, equipment proximity warning, production log creation, and
measurement of truck travel time for each section of the underground mine [33]. The
operation of the system is performed in the following order: (1) Signals are received from
Bluetooth beacons installed at major points along the transport route, crusher, and loaders
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using a tablet computer mounted on the truck. (2) The tablet computer records the time
the signal was received and the location of the truck, and (3) transmits the data stored
in the internal memory to the cloud server in the area where wireless communication is
possible. (4) Finally, the cloud server continuously stores and manages data transmitted
from multiple trucks with tablet computers installed. For details on the operation of the
system, please refer to Park and Choi [33]. Tablet computers were installed in 10 trucks
used for transport operations. Bluetooth beacons were installed at loading and unloading
points (8 and 3, respectively) and at major points along the transport route (11). Figure 2
shows an example of a tablet computer and Bluetooth beacon installed in the study area.
Figure 3 depicts a schematic diagram showing the locations of the loading and unloading
points and the Bluetooth beacon installed on the main transport route.
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Figure 2. Example of Bluetooth beacon (Beacon i3) and Tablet PC (Galaxy A 8.0) installed for log data
collection: (a) tunnel wall on the transport route; (b) near the crusher at the crusher; (c) windshield in
the driver’s seat of the truck.
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points in the study area: (a) 2D maps; (b) schematic.
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The purpose of this study is to calculate the truck travel time for each section based
on the main points where Bluetooth beacons are installed, evaluate the stability of each
transport route using a machine learning model, and diagnose the status of the transport
route. The system developed by Park and Choi [33] uses a tablet computer to record the
time a truck passes through the point where a Bluetooth beacon is installed; however, it
cannot record the travel time of a truck traveling between the two beacons. Therefore, in
this study, the truck travel time for each section was calculated using the log data analysis
program developed by Park and Choi [24]. The program calls the log data files uploaded
to the cloud server at once, organizes the log data, and calculates the truck travel time for
each section.

In this study, log data collected from 9 November 2020 to 21 February 2021 (15 weeks)
were used to evaluate and diagnose the stability of each section of the transport route using
machine learning techniques. During this period, 361 log data files were uploaded to the
cloud server, and 33,435 truck travel time data by section were collected.

3. Methods

The purpose of this study is to evaluate and diagnose the stability of the transport
route by using the truck travel time for each section of the transport route and machine
learning techniques. To achieve the purpose of the study, the research was conducted in
the order of data collection for learning and verification, data processing, machine learning
model selection and application of the model.

3.1. Data Preprocessing for Machine Learning Model

Factors for diagnosing the status of each section of the transport route include physical
factors (location and slope of section, presence or absence of surrounding workplaces,
width of transport routes, whether or not ores are loaded, etc.) and environmental factors
(weather, presence or absence of groundwater, etc.) [24].

Therefore, the training data of the machine learning model for diagnosing the state of
the transport path was composed of six input features and a label that judges the status
of the transport path as shown in Table 1. Data types can be divided into categorical data
and continuous data. The categorical data include the origin and destination (consisting of
beacon IDs) of the transport route section and whether ores are loaded. Continuous data
include truck travel time, average daily temperature, and daily precipitation.

Table 1. Description and data type of data set for training machine model.

Dataset Description Data Type

Features

Origin beacon ID Integer (1–22)
Destination beacon ID Integer (1–22)

Transport time Seconds (sec)
Average daily temperature Celsius temperature (◦C)

Daily precipitation Millimeter (mm)
Whether ores are loaded 0: Loaded, 1: Empty

Label Truck transport time status on
transport route 0: Normal, 1: Abnormal

Coding of raw data to train the machine learning model was performed using log
data related to truck travel time, which was collected from the mine production manage-
ment system and weather data provided by the Korea Meteorological Administration.
The status of the transport route was determined by the mine production management
system installed in the research area. The truck driver judges whether the operation of the
truck was normal or abnormal by considering whether any irregularity of operation occurs,
such as natural causes, vehicle maintenance, tunnel closure, work interruption, accident,
or excessive waiting. The truck drivers use the application of the mine production man-
agement system to input whether the operation was performed normally or abnormally
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when the loading, transporting, and unloading work is completed once. In this study,
the case of normal operation was classified as 0, and the case of abnormal operation was
classified as 1. Of the 33,435 truck travel time data collected by section, 3314 were classified
as abnormal (1) by the truck driver.

The data types of input features used in this study consist of categorical data and
continuous data. Because data of different dimensions are not normalized, features with
small absolute values are ignored in the fault diagnosis system. Therefore, data were
normalized using the min-max scaling-normalization method (Equation (1)):

x′ i =
xi −min(x)

max(x)−min(x)
(1)

this method can effectively prevent overfitting when training a machine learning model [34]
and remove absolute differences between data items through data preprocessing, while
maintaining relative differences in data within the same item. It can also improve the
effectiveness of classification because it reduces the adjustment steps of parameters and
improves the training speed of the model.

The dataset for training the machine learning model sets the ratio of the data classified
as normal to the data classified as abnormal in the state of the transport path as 1:1, and
consists of a set of 6000 data (normal: 3000, abnormal: 3000). To validate the model trained
with the training dataset, the entire data was divided into a training dataset and a validation
dataset. The training and validation datasets were set to 75% and 25% of the total dataset,
respectively (i.e., training dataset: 4500, validation dataset: 1500).

3.2. Experimental Setup for Machine Learning Algorithms

In this study, the stability and status of each section in the underground mine was
evaluated and diagnosed by using machine learning algorithms. For this, Gaussian naïve
Bayes (GNB), k-nearest neighbor (kNN), support vector machine (SVM), and classification
and regression tree (CART) were used.

Naïve Bayes (NB) is a set of supervised learning algorithms that apply Bayes’ theorem
with the “naive” assumption of independence between every pair of features [35]. Naïve
Bayes can be trained efficiently in a supervised learning environment. Parameter estimation
for the naïve Bayes model uses the method of maximum likelihood. In many applications,
it has been confirmed that training is possible without accepting Bayesian probability or
Bayesian methods. In addition, there is an advantage in the quite small amount of training
data for estimating the parameters required for classification. NB can be mainly divided
into Gaussian naïve Bayes (GNB) and multinomial naïve Bayes according to the type of
data (i.e., continuous or categorical). GNB is an algorithm that calculates the continuous
values associated with each class, often assuming that they follow a Gaussian distribution.
For example, after dividing the training data including the continuous attribute x according
to the class, the mean and variance of x in each class are called µx and σk, respectively. Then,
assuming that a certain observation value v has been collected, the probability distribution
of the values of a given class can be parameterized with µx and σk and calculated through
the normal distribution equation (Equation (2)):

p(x = v|c) = 1√
2πσ2

c
e
− (v−µc)2

2σ2
c (2)

The kNN model is one of the most intuitive and simple supervised learning models
among machine learning models. The kNN does not learn in advance, but rather defers
this step and then performs classification when a task request for new data is received.
Therefore, it is also variously called instance-based learning, memory-based learning, or
lazy learning. The idea in the kNN method is to assign new unclassified examples to
the class to which the majority of its k nearest neighbors belong. It is effective to reduce
the error of misclassification when the number of samples in the training dataset is large;

134



Minerals 2021, 11, 1128

however, the classification accuracy depends on the value of k, the number of neighbors,
and depends greatly on the distance used to calculate the closest distance to the value of
k [36]. In simple kNN, the search is based on the number of class data classified closer to
the new data. Figure 4 shows the classification of the data according to different k values.
When the first data are found, as shown in Figure 4a, while expanding the virtual circle
(in case of two-dimensional) focusing on the new data to be known, the group to which the
data belong becomes the group to which the new data belong (k = 1). Similarly, a virtual
circle is extended until three data (k = 3) are found, and the largest group of the three data
found at this time determines the group to which the new data belong (Figure 4b).
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SVM was introduced by Boser et al. [37] in 1992 and has been popular in the learning
community since 1996. Recently, it has been successfully applied to various problems
related to pattern recognition in bioinformatics and image recognition [38]. In addition, it is
sufficiently powerful to be used for both linear and non-linear regression and classification
and is widely used by the public. SVM is basically a model that classifies data linearly like
linear logistic regression and classifies data in three stages as shown in Figure 5. Assuming
that there are two-dimensional data composed of two classes as shown in Figure 5a, there
can be an infinite number of straight lines separating these classes; however, using the
decision boundary selection condition of SVM, only one straight line can be selected. The
selection condition is to select a hyperplane that maximizes the distance between the data
points of each class that are closest to each other. First, as shown in Figure 5b, the closest
points between each class are selected, and when the margin between two parallel straight
lines including these points is maximized, two straight lines including these points are
selected. The points used to select two straight lines are called support vectors, and when
these two straight lines are determined, the central straight line located at the same distance
between the two straight lines becomes the decision boundary, as shown in Figure 5c.

The optimal hyperplane can be defined as the following equation [39]:

yi(ω·xi + b) ≥ for 1 ≤ i ≤ n, ω ∈ Rd, b ∈ R (3)

where xi is an instance with its corresponding label yi ∈ (−1, 1), and b is an intercept
term; that is, a normal vector to the hyperplane’, d is the number of properties of each
instance and the dimension of input vector, and n is the number of instances. A hyperplane
is defined by the instances that lie nearest to it; such instances are called support vectors.
By this definition, there should be no data points between the hyperplanes containing the
support vectors (hard margin classification); however, this classification cannot occur in the
real world. This is because real data often contain outliers that are significantly different
from other instances of the same class, in addition to the possibility of errors in data
entry, measurement errors, etc. Therefore, we used a definition (soft margin classification,
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Equation (4)) proposed by Tuba et al. [39] for the optimal hyperplane by overcoming this
problem and relaxing the conditions to use SVM for real data classification:

yi(ω·xi + b) ≥ 1− εi, εi ≥ 0, 1 ≤ i ≤ n (4)

here, εi is a slack variable that allows the corresponding instance to leave the margin. To
find the optimal hyperplane, we must solve the quadric programming problem as follows:

min
1
2
‖ω‖2 + C

n

∑
i=1

εi. (5)
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Here, C represents the parameter of the soft margin cost function, and the quality of
the SVM model largely depends on the choice of this parameter; that is, the larger the value
of C, the more similar the generated model obtained from the hard margin classification
definition. However, because the soft margin classification method can only be applied to
linearly separable data, a kernel function is used, rather than a dot product. The kernel
function maps the instances into a higher-dimensional space to ensure that they can be
linearly separated. There are various kernel functions, such as polynomial, Gauss (radial
basis function or RBF), and sigmoid functions, but RBF is the most commonly used and
can be defined as follows:

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(6)

where γ is a free parameter that significantly affects classification accuracy and this param-
eter defines the impact of each training instance.

CART is a decision tree (DT)-based algorithm that can be used for both classification
and regression problems [40]. The data are divided into uniform labels based on the
answers (yes/no) to the predictor values through an iterative procedure, and finally a
binomial tree is generated. If the dependent variable is qualitative, it is called a classification
tree, and if it is quantitative, it is called a regression tree. The node containing the entire
dataset is called the root node. Starting from the root node, it is divided into left and right,
and this process is repeated until the estimation error related to the dependent variable
is minimized to classify the data [41]. Because CART is inherently non-parametric, no
assumptions are made regarding the underlying distribution of values of the predictor
variables [42]. Therefore, CART can handle numerical data that are highly skewed or multi-
modal, as well as categorical predictors with either an ordinal or a nonordinal structure. In
addition, it identifies the “splitting” variable based on a thorough search for all possibilities.
Because efficient algorithms are used, CART has the advantage of being able to search for
all possible variables with splitters, despite the existence of hundreds of possible predictors.
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CART is a relatively automated machine learning method because the analyst’s input is
less than the complexity of the analysis.

Grid search through 5-fold cross-validation was utilized to improve the performance
of the machine learning model and the reliability of the performance evaluation on the
validation dataset. In general, the performance of a machine learning model depends
on parameters. Various parameters exist depending on the machine learning algorithm.
Therefore, to design a model with high accuracy, it is important to set the optimal param-
eters. 5-fold cross-validation is a method in which a dataset is divided into 5 pieces that
are used one by one as a validation dataset while the rest are combined and used as a
training dataset. Using this method, 100% of the data we have can be used as a validation
dataset. The grid search is originally an exhaustive search based on a defined subset of
the hyper parameter space [43]. That is, when creating a model, it is a search method to
find the variable with the highest performance after sequentially inputting the hyperpa-
rameters set by the user. Table 2 shows the parameters and parameter tuning used in each
model. The GNB predicted the accuracy of the model by setting the range of variance
(var) smoothing from 10–9 to 1 and increasing the parameter values by approximately
1.23 times because the accuracy of the model varies depending on the var smoothing. The
classification accuracy of the kNN depends on the k value, which means the number of
neighbors, and the accuracy was predicted by increasing the k value by 1 from 1 to 100.
Because the classification accuracy of the SVM model varies greatly depending on the
parameters C and γ, the optimal pair of parameters (C: from 10 to 100, γ: from 0.1 to 1) was
determined by increasing the values by 5 and 0.1, respectively. Finally, in the CART model,
the accuracy of the model is determined by the minimum samples leaf (min_samples_leaf)
and minimum samples split (min_samples_split). In this study, the optimal parameter was
determined by setting the minimum samples leaf from 1 to 10 and increasing by 1, and for
the minimum samples split, setting a range from 2 to 10 and increasing by 1.

Table 2. Values used in grid search for parameter tuning.

GNB kNN SVM CART

Parameter var_smoothing neighbors C/γ
min_samples_leaf/
min_samples_split

Min 10−9 1 10/0.1 1/2

max 1 100 100/1 10/10

Step (×) 1.232847 (+) 1 (+) 5/0.1 (+) 1/1

3.3. Validation of Machine Learning Models

The parameter showing the highest learning accuracy of the machine learning model
was determined using grid search through 5-fold cross-validation. Subsequently, the per-
formance of the model was verified using the validation dataset (25% of the total data,
1500). Performance indicators that can evaluate the performance of a model generally
depend on the type of supervised learning (regression or classification). In this study, the
performance of the model was verified using the accuracy, precision, recall, and F1 score,
which are typically used in classification problems. Accuracy refers to the number of
correct predictions among all predictions, precision refers to the probability of the state
actually being positive when a positive prediction is made, recall refers to the probability
of correctly predicting an actual positive, and F1 score refers to the weighted average of
precision and recall. The formula for each performance indicator is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

F1 score =
2× Recall× Precision

Recall + Precision
(10)

where, P (positive) and N (negative) denote whether the prediction of the model is positive
(yes) or negative (no), and T (true) and F (false) imply whether the prediction is correct
or wrong. When this is expressed as a matrix, it is called a confusion matrix and can be
expressed as shown in Table 3.

Table 3. Confusion matrix of a classifier.

Predicted Data

Negative (0) Positive (1)

Actual data
Negative (0) TN (True Negative) FP (False Positive)

Positive (1) FN (False Negative) TP (True Positive)

4. Results
4.1. Results of Data Preprocessing

For the learning and validation of machine models, 33,435 truck travel time data were
collected for 15 weeks using the mine production management system installed in the study
area. Except for the departure and arrival points for each section of the transport route and
the transport time of the truck that can be acquired using the system, additional features
such as daily average temperature, daily precipitation, ores loading of trucks, and labels to
determine abnormal status of transport routes were entered. The decision to load ores can
be divided into the case of empty truck or loaded truck. This was determined by judging
whether the truck is headed for the loading points (empty truck) or the crusher (loaded
truck) according to the sequence of beacon IDs for each section of the transport route. As a
result of judging the transport route status of the data collected during the 15-week period,
3314 data out of 33,435 truck travel time data were found to be abnormally measured.

When all 33,345 data are used as training data, the normal case is much larger than
the abnormal case, and a biased training result may appear. Therefore, the ratio of the data
classified as normal to the data classified as abnormal was set to 1:1 to prepare the training
dataset. A total of 6000 data were prepared by random sampling of 3000 data marked
as abnormal and 3000 data marked as normal. Before normalizing the training dataset,
the mean values, standard deviations, minimum and maximum values for truck travel
time, daily average temperature, and daily precipitation were calculated (Table 4). Figure 6
shows the histogram for statistical values. The average truck travel time was 95.55 s and
the standard deviation was 74.12 s. The average daily temperature was −2.71 ◦C and the
standard deviation was 5.03 ◦C. The average daily precipitation was 0.24 mm and the
standard deviation was 0.85 mm.

Table 4. Feature of data set for training machine learning model.

Truck Travel
Time (s)

Average Daily
Temperature (◦C)

Daily Precipitation
(mm)

Mean 95.55 −2.71 0.24

Standard deviation 74.12 5.03 0.85

Minimum value 1.00 −14.30 0.00

Maximum value 299.00 11.40 6.90
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4.2. Results of Model Training and Application

In this study, GNB, kNN, SVM, and CART models were used to evaluate and diagnose
the stability of truck transport routes. To design the most accurate predictive model, the
parameter values related to the learning accuracy of each model were optimized. For this
purpose, grid search through 5-fold cross-validation was used.

The classification accuracy of the GNB model depends on the parameter var smoothing.
The optimal model was determined by setting the parameter value range from 10−9 to
1 and increasing the parameter value by approximately 1.23 times. Figure 7 is a graph
showing the accuracy of the model according to the change of the var smoothing. The
accuracy of the model decreases rapidly when the parameter value exceeds 10−2. The GNB
showed the highest learning accuracy (0.60) when the var smoothing value was 0.000188.
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The accuracy of the kNN model depends on the value of k. Figure 8 shows the
prediction of the accuracy of the model while increasing the k value by 1 from 1 to 100. The
accuracy of the kNN model was higher as the k value was smaller (k = 1, 0.85).

The SVM model was optimized by changing the values of C and γ to determine the
parameter value showing the highest training accuracy. The parameter C was set in the
range from 10 to 100 and increased by 5, while γ was increased by 0.1 from 0.1 to 0.9 to
calculate the accuracy of the model. Figure 9 shows the training accuracy of the model
according to the change in parameter C and γ value. As the values of C and γ increased,
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the accuracy of the model also tended to increase. In the SVM model, when the C value
was set to 100 and the γ value was set to 0.9, the model accuracy was the highest at 0.78.
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Figure 9. Variations of training accuracy in the C change range of 10 to 100 and γ change range of
0.1 to 1.

The training accuracy of CART depends on the values of minimum samples leaf and
minimum samples split. In this study, the values of two parameters were optimized by
increasing min_samples_leaf by 1 from 1 to 10 and increasing min_samples_split by 1 from
2 to 10. Figure 10 shows the training accuracy of the CART model depending on the changes
in the two parameter values. When min_samples_leaf is 3 or less, the accuracy of the model
tends to decrease as min_samples_split increases; however, when min_samples_leaf was at
least 4, the accuracy did not change significantly even if min_samples_split was increased.
The training accuracy of CART showed the highest accuracy (0.94) when min_samples_leaf
was set to 1 and min_samples_split was set to 4.

The previously determined parameters were applied to each model, and verification
was performed. The validation of the machine learning models was performed using
the validation dataset (25% of the total data, 1500 pieces). Tables 5–8 shows the model
verification results as a confusion matrix.
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Table 5. Confusion matrix classified using the GNB model.

Normalization
varsmoothing = 0.000188

Predicted Data

Negative (0) Positive (1) Accuracy

Actual data

Negative (0) 687 (TN) 75 (FP) 0.90

Positive (1) 496 (FN) 242 (TP) 0.33

Accuracy 0.58 0.77 0.62

Training accuracy 0.60

Table 6. Confusion matrix classified using the kNN model.

Normalization
n Neighbors = 1

Predicted Data

Negative (0) Positive (1) Accuracy

Actual data

Negative (0) 642 (TN) 120 (FP) 0.84

Positive (1) 122 (FN) 616 (TP) 0.83

Accuracy 0.84 0.84 0.84

Training accuracy 0.85

Table 7. Confusion matrix classified using the support vector machine (SVM) model.

Normalization
C = 100, γ = 0.9

Predicted Data

Negative (0) Positive (1) Accuracy

Actual data

Negative (0) 655 (TN) 107 (FP) 0.86

Positive (1) 196 (FN) 542 (TP) 0.73

Accuracy 0.77 0.84 0.80

Training accuracy 0.79
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Table 8. Confusion matrix classified using the CART model.

Normalization
Leaf = 1, Split = 4

Predicted Data

Negative (0) Positive (1) Accuracy

Actual data

Negative (0) 713 (TN) 49 (FP) 0.94

Positive (1) 32 (FN) 706 (TP) 0.96

Accuracy 0.96 0.94 0.95

Training accuracy 0.94

Table 5 shows the verification results of the GNB as a confusion matrix. There were
687 cases (TN) where the section in which the truck travel time classified as normal was
predicted to be normal. Conversely, there were 242 cases (TP) where the section classified
as abnormal was predicted to be abnormal. In addition, it was found that there were
496 (FN) and 75 (FP) cases of predicting a section where the truck travel time was abnormal
as normal and predicting a section where the truck was normal as abnormal, respectively.
GNB’s verification accuracy was 0.62, and when predicting the data classified as normal as
normal, it showed relatively high accuracy (0.90); however, the accuracy of predicting data
classified as abnormal as abnormal was very low at 0.33.

In the case of the kNN model, TN and TP, which are cases of correct prediction of the
actual data among 1500 verification data, appeared 642 times and 616 times, respectively.
FN and FP, which were failed predictions, appeared 122 times and 120 times, respectively
(Table 6). The validation accuracy of the kNN model was found to be 0.84, and it showed a
similar level of accuracy in all cases.

Table 7 shows the verification results of the SVM model as a confusion matrix. There
were 655 cases (TN) where the section in which the truck travel time was classified as
normal was predicted to be normal. Conversely, there were 542 cases (TP) where the section
classified as abnormal was predicted to be abnormal. In addition, FN and FP, which were
failed predictions, appeared 196 times and 107 times, respectively. The verification accuracy
of the SVM model was 0.80, and it showed high accuracy (0.86) in the data classification
problem, which was actually abnormal; however, in the problem of classifying actually
normal data, the accuracy (0.73) was relatively low.

The verification results of the CART model are shown in Table 8. In fact, 713 times
(TN) were predicted to be normal where the section in which the truck travel time was
classified as normal, and 706 times (TP) were predicted to be abnormal where the section
classified as abnormal. In addition, FN and FP that failed prediction appeared 32 times
and 49 times, respectively. The verification accuracy of the CART model was very high at
0.95, and both the problem of classifying the actual normal sections (0.96) and the problem
of classifying the abnormal sections (0.94).

The performance of the model was evaluated based on the confusion matrix of each
model analyzed using the validation dataset. The performance assessment of the model was
conducted using accuracy, precision, recall, and F1 score. Table 9 shows the performance
index of each model. The prediction accuracy of the machine learning model was the
highest in CART (94.6%), followed by kNN (83.9%), SVM (79.8%), and GNB (61.9%). The
CART model also exhibited high precision, recall, and F1 score. Therefore, it can be said
that the CART model achieves the best performance in the problem of evaluating the
stability of the transport route for each section in the underground mine.
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Table 9. Performance assessment indicators of machine learning (ML) models.

Performance Assessment Indicators GNB kNN SVM CART

Accuracy (%) 61.9 83.9 79.8 94.6

Precision (%) 76.3 83.7 83.5 93.5

Recall (%) 32.8 83.5 73.4 95.7

F1 score (%) 45.9 83.6 78.2 94.6

5. Discussion
5.1. Analysis of Model Accuracy for Each Transport Route Section

The prediction accuracy of each section was calculated using 1500 pieces of data used
in the verification process of the CART model. Figure 11 shows the accuracy of the model
for each section when operating with empty or loaded trucks. The model achieved an
accuracy of at least 57.1% for all sections (45 sections) and exhibited an average accuracy of
93.3%. In the case of the route (23 sections) operating with empty trucks, the prediction
accuracy of the model was found to be very high with an average of 90.9%. Except for four
sections (beacon ID: 1→3, 5→21, 13→15, 16→17), all were confirmed to show an accuracy
of at least 80%. In the case of operating with loaded trucks (22 sections), the prediction
accuracy of the model was found to be very high, with an average of 95.9%. In addition,
20 of the 22 sections showed over 80% accuracy. The accuracy of the model for each section
of transport route tended to be generally higher as the amount of data for each section
included in the dataset used for learning increased (Table 10). Therefore, in the case of the
section where the prediction accuracy of the model is high, it is judged that the model can
be used sufficiently to evaluate whether the truck was operated normally in the section;
however, in the case of a section where the accuracy is low, it is judged that the machine
learning model should be improved through additional data collection for training the
model is necessary.

5.2. Further Verification of the CART Model Using Unused Data

The CART model was further verified using the remaining 27,435 data not used to
train the model. Table 11 shows the verification results of the CART model as a confusion
matrix. There were 26,027 cases (TN) where the section in which the truck travel time
was classified as normal was predicted to be normal. Conversely, there were 311 cases
(TP) where the section classified as abnormal was predicted to be abnormal. There were
three (FN) and 1094 (FP) cases of predicting a section where the truck travel time was
abnormal as normal and predicting a section where the truck was normal as abnormal,
respectively. The verification accuracy of the CART model using the remaining 27,435 data
was 0.96, which was similar to the result (0.95) of the CART model trained and verified with
6000 data in Table 8. Table 12 shows the performance index of the CART model verified
using the remaining 27,435 data. The prediction accuracy of the model was 96%, and the
precision, recall, and F1 score were 22.1%, 99%, and 36.2%, respectively. In general, in the
case of a classification problem using data with less data imbalance, it can be said that the
higher the performance index, the better the model performance [44]. However, when data
imbalance exists, even if precision is low, the model can be trusted when recall is high [45].
In the case of the remaining 27,435 data, there was an imbalance in the data because the
normal data takes up a much larger proportion than the abnormal data. Therefore, it can
be determined that the CART model is reliable when considers the value of Recall appears
as 99%.
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Figure 11. Prediction accuracy for each section of the CART model. (a) when operating with an
empty truck; (b) when operating with loaded truck.

Table 10. Relationship between the prediction accuracy and the average number of data used in machine learning for
each section.

Operation Type Prediction
Accuracy (%)

Number of
Sections

Average of the Number of Data Used for
Machine Learning for Each Section

Empty haul

91–100 14 105.9

81–90 5 90.2

71–80 3 59.3

61–70 0 N/A

57.1–60 1 26.0

Loaded haul

91–100 19 138.0

81–90 1 90.0

71–80 1 48.0

66.7–70 1 27.0
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Table 11. Confusion matrix for further verification of the CART model on the remaining 27,435 data.

Normalization
Leaf = 1, Split = 4

Predicted Data

Negative (0) Positive (1) Accuracy

Actual data

Negative (0) 26,027 (TN) 1094 (FP) 0.96

Positive (1) 3 (FN) 311 (TP) 0.99

Accuracy 1.00 0.22 0.96

Table 12. Performance assessment indicators for further verification of CART model on remaining
27,435 data.

Performance Assessment Indicators CART Model

Accuracy (%) 96.0

Precision (%) 22.1

Recall (%) 99.0

F1 score (%) 36.2

5.3. Practical Use at the Underground Mine Site

The proposed machine learning model can diagnose the operation status of the section
by determining whether the truck travel time for each section is normal or abnormal. In this
study, during the validation of the CART model, one section with high prediction accuracy
and one with low prediction accuracy were selected. Then, using the log data additionally
collected from the mine production management system, evaluation was performed on
whether the truck was operated normally in the relevant section. For this purpose, log
data collected during the 16th week (22–27 February 2021) were used for analysis. For the
section of the transport route, the section from beacon ID 11 to 6 and section from beacon
ID 13 to 14 were selected. In these sections, the validation accuracy of the model when
validating the machine learning model was 100% and 82%, respectively.

First, in the case of sections 11 to 6 of beacon IDs, three trucks operated the section a
total of 41 times in a week. By truck, truck A drove 1 time, truck B drove 25 times, and truck
C drove 15 times. Log data for the section showed that truck travel time was measured
within the normal range in 37 operations, and within the abnormal range in four operations.
This section is a transport route for empty trucks toward the loading point, and there is
no loading or dumping near the route. Therefore, most trucks have the characteristic of
moving without stopping in the relevant section. After converting the log data of the
relevant section (beacon ID 11→6) into the input data of the CART model, prediction was
performed on whether the truck travel time was measured normally or abnormally. As a
result, it was predicted that the truck travel time was measured within the normal range
in the case of actual normal operation. In addition, in the case of abnormal operation, it
was predicted that the operation was performed abnormally. In other words, it was found
that the actual data and the prediction results by the CART model were identical. Table 13
shows the prediction results of the CART model for the 16-week data by classifying them
by trucks that have operated the relevant section and is presented as a confusion matrix.
Table 14 is a visualization of the confusion matrix divided by time period. This means that,
during the period, trucks operated well reflecting the trend of the existing truck travel time.
Furthermore, it means that there are no problems in the truck or in the transport section
that will affect the truck travel time.
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Table 13. Confusion matrix classified using the CART model for beacon IDs 11 to 6.

Normalization
Leaf = 1, Split = 4

Predicted Data

Negative (0) Positive (1)

Actual data

Truck A
Negative (0) 1 (TN) 0 (FP)

Positive (1) 0 (FN) 0 (TP)

Truck B
Negative (0) 22 (TN) 0 (FP)

Positive (1) 0 (FN) 3 (TP)

Truck C
Negative (0) 14 (TN) 0 (FP)

Positive (1) 0 (FN) 1 (TP)

Table 14. Prediction result of the CART model by time/truck for beacon IDs 11 to 6.

Time

22 February 2021 23 February 2021 24 February 2021 25 February 2021 26 February 2021 27 February 2021

Truck Truck Truck Truck Truck Truck

A B C A B C A B C A B C A B C A B C

08:00 � • • • •

09:00 • • •
• • •

10:00 • • • • • •
11:00 • � •
12:00

(Break
time)

13:00 • • • • � •
14:00 • • • •

15:00 • • • •
•

•
•

16:00 • � • •
• TN Cases in which data that are actually normal are predicted to be normal. � TP: Cases in which data that are actually abnormal are
predicted to be abnormal.

Next, in the section from beacon ID 13 to 14, two trucks operated a total of 58 times
(Truck A: 34 times, Truck B: 24 times) during a week. In this section, 54 truck travel
times were measured within the normal range, but four times were measured within the
abnormal range. This section is a transport route where an empty truck goes to the loading
point. However, because the loading point (Area D) is located around the route, it is a
section where variations in truck travel time may occur. As a result of predicting the state
of truck travel time using the CART model for the section, the prediction accuracy was
found to be very low (86.2%). Normal data were predicted as normal 46 times (TN), and
abnormal data were predicted as abnormal (TP) four times. In addition, it was found that
there were eight (FP) cases of predicting a section where the truck was normal as abnormal
(Table 15). For this section, considering that the verification accuracy has already been
shown to be low, it can be confirmed that the prediction accuracy appears low even in
the prediction using the 16-week data. Table 16 is a visualization of the confusion matrix
divided by time period. In this section, some prediction failures of the CART model occur.
To improve the accuracy of the model, additional data collection is required for training
the machine learning model, and the model needs to be improved. In addition, because
some data show abnormal truck travel time, this section needs to be carefully monitored.
To improve the overall productivity of the mine and the efficiency of the trucking operation,
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and to reduce the time required to transport the ores, it is necessary to monitor and respond
to these sections in advance.

Table 15. Confusion matrix classified using the CART model for beacon IDs 13 to 14.

Normalization
Leaf = 1, Spli t= 4

Predicted Data

Negative (0) Positive (1)

Actual data
Truck A

Negative (0) 25 (TN) 7 (FP)

Positive (1) 0 (FN) 2 (TP)

Truck B
Negative (0) 21 (TN) 1 (FP)

Positive (1) 0 (FN) 2 (TP)

Table 16. Prediction result of the CART model by time/truck for beacon IDs 13 to 14.

Time

22 February 2021 23 February 2021 24 February 2021 25 February 2021 26 February 2021 27 February 2021

Truck Truck Truck Truck Truck Truck

A B A B A B A B A B A B

08:00 • • • • • • • •

09:00 •
•

•
�

•
• • • •

10:00 •
• � •

• • •
• • •

11:00 • • • •
12:00

(Break
time)

• • •

13:00 • •
• • •

14:00 • • •
• �

15:00 • • • • • � • • •
• •

16:00 • • •
• TN Cases in which data that are actually normal are predicted to be normal; � TP: Cases in which data that are actually abnormal are
predicted to be abnormal; • FP: Cases in which data that are actually normal are predicted to be abnormal.

If a case in which the truck travel time is abnormally predicted is observed only
in a specific truck, the possibility that the truck driver’s skill is insufficient, the truck’s
maintenance is poor, or the maintenance period has arrived should be suspected. In ad-
dition, the manager of the mine should take appropriate action in this regard. According
to what we have seen so far, the proposed CART model can predict the status of truck
travel time and then monitor the problem or possibility of occurrence in the transport
route or equipment in advance. In addition, it can help to analyze the cause and prepare
countermeasures. Therefore, the CART model can be used as a tool for mine managers to
improve the productivity and efficiency of transport operations.

5.4. Comparison between the Existing and Machine Learning-Based Methods

Various researchers are using machine learning techniques to monitor and diagnose
mine operating systems, equipment, and facilities. However, hitherto, no research case
has been reported on monitoring and diagnosing the condition of a mine transport system
using machine learning techniques. As a similar research case related to diagnosing and
predicting the status of transport routes using truck travel time data, Park and Choi [24]
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evaluated the stability and classified the types of transport routes using the statistics of
the truck travel time for each section of the transport route. The method of collecting log
data related to truck travel time is the same as that used in this study. However, Park
and Choi [24] used percentiles (P10, P90) of truck travel time to evaluate the stability and
condition of each section of the transport route. That is, if the newly collected truck travel
time was measured in the range between percentiles P10 and P90, the status of the transport
route was classified as normal; otherwise, it was classified as abnormal. The truck travel
time of the mine may vary depending on the production plan, vehicle dispatch plan, tunnel
maintenance and repair status, season (temperature), precipitation, and driver’s driving
skill. In this study, the truck travel time for each section was evaluated by considering
the beacon IDs (origin and destination), temperature, precipitation, and whether the truck
was loaded in addition to the transport time, and then the status of the transport route
was diagnosed. Therefore, the proposed method is considered to have a higher level of
reliability than the existing method used to evaluate the stability and condition of each
section of the transport route by considering the statistics of the truck travel time.

6. Conclusions

In this study, we proposed a method that can utilize log data related to truck travel
time and machine learning model (GNB, kNN, SVM, CART) to evaluate the stability of
the underground mine transport route and to diagnose the operation status. To this end, a
limestone mine that collects truck travel time data in underground mines using Bluetooth
beacons and tablet computers was selected as a study area, and truck travel time data were
collected for a certain period of time. In addition, learning and validation of models were
performed using the collected data, and the results of monitoring and diagnosis of the
transport route status in the study area were presented. As a result of performing grid
search through 5-fold cross-validation using the training dataset, the accuracy (94.1%) was
highest when the parameters min_samples_leaf and min_samples_split of the CART model
were set to 1 and 4, respectively. In the validation of the CART model performed using the
validation dataset (1500 data), data with normal truck travel time were predicted as normal
713 times, and abnormal data were predicted as abnormal 706 times. The performance
of the machine learning model was judged using accuracy, precision, recall, and F1 score.
The accuracy of the CART model was 94.6%, and the precision and recall were 93.5% and
95.7%, respectively, and it was confirmed that the F1 score was also high at 94.6%.

The proposed CART model proposed can be used for monitoring and diagnosing the
status of the transport route that constitutes the truck transport system in the underground
mine. In addition, it is judged that it can be used sufficiently as a tool to improve the
productivity and efficiency of mine transport operations. Because the truck travel time for
each section has variability depending on the driver’s driving skill, tunnel maintenance
and repair status, vehicle dispatch plan, etc., the truck travel time has a significant impact
on the efficiency and productivity of truck transport operations. Therefore, it is crucial
to know the section in which the truck transport operation is expected to be abnormal
and to prevent problems occurring in the section, the vehicle, or the future. The proposed
CART model showed an average prediction accuracy of 94.1% for all sections of the study
area. This means that the stability of the transport route can be evaluated and diagnosed
by judging whether the newly collected truck travel time data are measured within the
normal range or within the abnormal range at a relatively high level of reliability. However,
the prediction accuracy was relatively low in some sections. To improve the prediction
accuracy of this section, additional collection of truck travel time data for training the
machine learning model is required, and accordingly, the model will have to be improved.

In this study, it was confirmed that machine learning techniques can be used to diag-
nose and predict the condition of transport routes to maintain equipment and workplaces
in underground mines. To that end, a method for diagnosing and predicting mine transport
systems using machine learning techniques was proposed. We expect that the proposed
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method can be sufficiently applied not only in underground mines but also in open-pit
mines from a methodological perspective.
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Abstract: Mine workers operate heavy equipment while experiencing varying psychological and
physiological impacts caused by fatigue. These impacts vary in scope and severity across operators
and unique mine operations. Previous studies show the impact of fatigue on individuals, raising
substantial concerns about the safety of operation. Unfortunately, while data exist to illustrate the
risks, the mechanisms and complex pattern of contributors to fatigue are not understood sufficiently,
illustrating the need for new methods to model and manage the severity of fatigue’s impact on
performance and safety. Modern technology and computational intelligence can provide tools to
improve practitioners’ understanding of workforce fatigue. Many mines have invested in fatigue
monitoring technology (PERCLOS, EEG caps, etc.) as a part of their health and safety control system.
Unfortunately, these systems provide “lagging indicators” of fatigue and, in many instances, only
provide fatigue alerts too late in the worker fatigue cycle. Thus, the following question arises:
can other operational technology systems provide leading indicators that managers and front-line
supervisors can use to help their operators to cope with fatigue levels? This paper explores common
data sets available at most modern mines and how these operational data sets can be used to model
fatigue. The available data sets include operational, health and safety, equipment health, fatigue
monitoring and weather data. A machine learning (ML) algorithm is presented as a tool to process
and model complex issues such as fatigue. Thus, ML is used in this study to identify potential leading
indicators that can help management to make better decisions. Initial findings confirm existing
knowledge tying fatigue to time of day and hours worked. These are the first generation of models
and future models will be forthcoming.

Keywords: machine learning; mine worker fatigue; random forest model; health and safety management

1. Introduction

Heavy industries such as mining, which require rotational shift schedules of their
personnel, are exposed to fatigue risk. This risk manifests itself in health and safety dangers
presented by fatigued individuals operating heavy equipment. Fatigue is often a contribut-
ing factor to many health and safety incidents in mines, but, in addition, fatigue can also
affect cognition adversely, with a negative impact on the operational performance of mine
sites. These risks need improved modeling, which can enable a better understanding
and better management. Improved models can eventually lead to more progressive and
dynamic fatigue management with a positive impact on operational safety and efficiency.

Bauerle et al. (2018) recently discussed the limitations and lack of studies on fatigue in
the mining industry [1,2]. However, several devices and technologies have been developed
to identify and reduce fatigue-related risk. These tools are appealing as a risk control
approach that monitors behavioral and task performance indicators that potentially indicate
increases in fatigue risk [3]. Moreover, in mine operations, many real-time operational data
sets exist and have great potential to provide far more analytical insight to model future
undesirable events such as fatigue.
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This paper presents a method that uses operational data sets to model workers’ fatigue.
The goal is to better understand the factors, tracked in operational technology systems,
which could be used as predictors for fatigue events. The primary questions of this paper
are: (1) Are there indicators within operational and other common data sets at mines that
can be used to model fatigue events? (2) When these data sets are integrated and analyzed
on common dimensions, is there potential value in analyzing the data with advanced
computational tools such as machine learning algorithms? The approach presented in
this paper is different from previous studies of mining fatigue because we use a machine
learning model to identify predictor elements of workers’ fatigue. The proposed model and
future iterations may be useful in identifying environmental, operational and managerial
events that lead to fatigue events in mine workers. This approach, when fully developed,
has the potential to enhance safety and health management systems by quantifying areas
of managerial focus.

The first step of the data analysis is assessing the preliminary relationships of the data.
Based on the literature, there are some hypotheses around potential variables affecting
fatigue in operators, which are tested in the initial data analysis section. First, does the
average production or operational patterns of the mine influence the number of fatigue
events? Is there any relation between time, week, month or year and the number of fatigue
events? What are the differences between night and day shifts in terms of fatigue? Can
the distribution of the fatigue events by shift and hour give us insights into the fatigue
events? Lastly, are there any variables from weather data that cause a higher number of
fatigue events?

2. Literature Review

Fitness for duty in mining is influenced by an individual’s physical and psychological
fitness, such as drug- and alcohol-induced impairment, fatigue, physical fitness, health
and emotional wellbeing, including stress. Among these factors, fatigue is a strong driver
of fitness for duty in mining, which significantly is caused by excessive work hours or
insufficient rest periods associated with shiftwork [4,5]. Hence, while fatigue is identified
as an issue that mine sites must address, studying factors that are contributing to or
ameliorating fatigue issues is important. Fatigue in the workplace often results in a
reduction in worker performance. Fatigue must be controlled and managed since it causes
significant short-term and long-term risks. In the short term, fatigue can result in reduced
performance, diminished productivity, human error and deficits in work quality. These
effects might result in lower levels of alertness, coordination, judgment, motivation and
job satisfaction, which cause increased severe health and safety issues including accidents
and injuries [6–9]. Fatigue can also cause long-term negative health implications. These
outcomes will result in future mental and physical morbidity, mortality, occupational
accidents, work disability, excess absenteeism, unemployment, reduced quality of life and
disruptive effects on social relationships and activities [10,11].

Based on a study by Drews et al. (2020), fatigue in the mining industry is different
from other industries due to mining-specific environmental factors. Some of these factors
are repetitive and monotonous tasks, involving long work hours, shiftwork, sleep depri-
vation, dim lighting, limited visual acuity, hot temperatures and loud noise [2]. However,
Drews et al. (2020) also mention the high monotony of equipment operation in mining
haulage as a key contributor to fatigue. Various psychological and physiological issues
have effects on the fatigue of workers, which makes fatigue measurement and manage-
ment difficult. Drews et al. (2020) extended a conceptual model of fatigue, which added
sleep efficiency to a previously proposed model of fatigue [2]. This model shows that
distal and proximal factors have effects on fatigue including clinical factors such as, life
events and stressors, personality factors, previous shift conditions and sleep efficiency.
Their study was based on data collected with haulage operator focus groups. Participants
discussed factors that contributed to their fatigue, such as diet, shift schedule, travel time
to work, sleep amount and quality, domestic factors, physical fitness and the presence
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of sickness. Another finding from the study is that operators have a clear awareness of
fatigue’s impacts on their performance and how to reduce the impact through nutrition,
physical fitness, etc. [2]. Even considering this, other studies show that there is no clear
approach to control, monitor and mitigate the fatigue of workers by health and safety
management during mine operations [2]. Some technologies can monitor drivers of fatigue,
such as tracking eye movement and head orientation (PERCLOS monitoring system) or
hard hats with electroencephalogram (EEG) activity tracking. Each of these technologies
has its advantages and disadvantages [2]. Each can detect fatigue when worker fatigue
occurs; however, these systems do not necessarily prevent or mitigate fatigue [2]. Moreover,
users of these technologies, such as the PERCLOS system, expressed privacy concerns
regarding the system’s constant monitoring and mentioned a high number of false alarms
from the equipment, thus being a nuisance [2]. Bauerle et al. (2018) mentioned that, despite
the complexity and uncertainty regarding the fatigue of miners, some real solutions could
be developed for improving fatigue-related issues with fatigue assessment interventions,
looking beyond sleep and physical work, and shift work effects [1]. In the same vein,
Drews et al. emphasized that health and safety management should take a socio-technical
systems perspective, since a sole focus on technological solutions may create an illusion of
safety, while not necessarily improving safety performance. Moreover, these approaches
require user acceptance and high levels of trust in order not to have an adverse impact on
their functionality [2]. Successfully modeling fatigue will require a multi-faceted approach
and a variety of data inputs from the mining system.

In addition to the health and safety implications on workers, fatigue can result in
damage or loss of expensive mine equipment such as haul trucks. Therefore, the mining
industry has long focused on measuring operational risk losses for the purpose of capital
allocation and the process of managing operational risks. Operational risk results from in-
sufficient or failed internal processes, people, control, systems or external events, including
equipment health, individual health and safety and worker fatigue [12]. To manage the
health of equipment, organizations have deployed early warning systems through equip-
ment monitoring and modeling technology. These technologies depend on understanding
either machine design or empirical modeling methods to determine normal equipment
behavior and detect any signs of abnormal behavior [13]. These technologies learn the
dynamic operational behavior of equipment using equipment sensor data and create a
predictive model. The predictive model output, which is the equipment’s performance, will
be compared with actual measurements from sensor signals to detect any abnormalities
or failures [13].

The entire mine workplace could benefit from new technologies to collect and analyze
real-time safety data such as fatigue monitoring data. A critical issue is the ability to use this
information to react prior to an incident. The development of new technologies can assist
safety managers in providing timely measures to predict an increase in risk, resulting in the
prevention of serious incidents [14]. To manage the operational safety and health in mines,
it is necessary to have safety indicators. There are two different types of safety indicators:
lagging and leading indicators [15]. Lagging indicators evaluate safety and health using
incident and illness rates, while leading indicators measure workplace activities, conditions
and safety and health-related events [16]. In the case of fatigue, lagging indicators are
evident after fatigue has occurred, while leading indicators are measurements that could
prevent fatigue, such as sleep patterns or caffeine intake, and steps that help to lower
fatigue when it is not so high. Since lagging indicators have a reactive and delayed nature,
managers need to develop appropriate leading indicators to measure workplace safety and
health risk [16]. Leading indicators have a predictive value regarding unsafe workplace
conditions or behavior that is followed by an incident [17–20]. There are three main uses
of leading indicators: monitoring the level of safety, deciding where and how to take
action and motivating managers to take action [21,22]. Passive leading indicators (PLIs)
are measurements that can provide an indication of the probable safety performance [14].
On the other hand, active leading indicators (ALIs) are dynamic and more subject to active
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change in a short period of time [14,23]. To have predictive values, ALIs must be recorded
in a timely manner in order to obtain accurate measurements and observations.

ALIs are continually being advanced as new technology is introduced into production
systems. Internet of things (IoT), big data, artificial intelligence (AI) and machine learning
(ML) are being used to enhance the safety, efficiency and quality of the operations [24–26].
In high-risk environments such as mines, internet of things can be used to raise safety
and decrease the probability of human error and disasters [24–26]. In addition, IoT can
be a relatively inexpensive and effective approach for hazard recognition and sending
safety notifications [14].

Machine learning (ML) has been demonstrated to be a predictive tool to support
management to make better decisions [16,27]. In spite of the abundant leading indicators,
the use of ML to predict leading indicators is rare [16,27]. ML is flexible to operate, without
any statistical assumptions, and has the ability to identify both linear and non-linear
relationships within the phenomenon investigated [16,24,28]. Poh et al. (2018) used ML
to predict safety leading indicators on construction sites [16]. They used a data set that
was collected from a construction contractor to identify the input variables and develop
a random forest (RF) model to forecast the safety performance of the project [16]. They
mentioned that the occurrence and severity of incidents is not random, which means that
there is a pattern describing the incidents, and they can be predictable [16]. This pattern can
be used to explain the complexity of the leading indicators and long-term data collection
helps to elucidate the interactions of safety indicators over time [16,29].

The literature suggests that finding leading indicators to predict fatigue in the mining
industry is necessary [2]. Due to the complexity of fatigue, applying computational intelli-
gence methods such as machine learning (ML) algorithms on the real-time data captured
from current and future IoT technologies can benefit mine operations in modeling fatigue.
Such a model could identify ALIs and predictive elements of workers’ fatigue. Poh et al.
collected data sets for the purpose of modeling safety. However, their study was limited
to only safety data, likely neglecting other possible predictive factors. A comprehensive
study incorporating a wider range of data sets will extend possible independent features
in the model to identify the best predictive factors. If these factors can be developed as
leading indicators of fatigue, enhanced safety and health decisions can be made earlier in
the fatigue cycle.

3. Methodology
3.1. Data Set Characterization

The presented study uses 3.5 years of data at a single, large, operating surface mine.
Table 1 provides an overview of the data sets, the types of information encoded in the data
and the range of dates covered by each data set.

Table 1. Data sets’ details.

Data Source Key Factors Date Range

Fatigue monitoring Operator drowsiness,
micro-sleeps, etc. 2014–2017

Time and Attendance Hours worked, shift worked, etc. 2014–2017

Fleet management system
(production and status)

Production cycles, faulty equipment,
delayed equipment, etc. 2014–2017

Equipment health alarms
and events

Notification of equipment abuse, use
of equipment, etc. 2014–2017

Weather conditions
Temperature, wind speed, wind

direction, change,
precipitation, relative humidity, etc.

2014–2017
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The site utilizes a PERCLOS monitoring system, which has been in place since 2014.
This system uses cameras to track, monitor and model the eye movements of haul truck
operators [2]. The system detects certain eye movements and can determine if the eyes are
closed, blinking rapidly and other factors that indicate fatigue. If the system cannot detect
that the operator’s eyes are open for more than 3 s, it alerts the operator using seat buzzes
and vibration. In addition to a local alarm, the system also sends a message or alarm to the
dispatcher, supervisor and the company supporting the system.

Data captured from the system are categorized based on type of the events: micro-
sleep with a stable head posture, other eye closure (drowsiness), eyewear interference
(clear lenses), eyewear interference (sun glasses), normal driving, bad tracking, glance
down, glance away, driver leaning forward, camera covered, testing, IR pods covered, no
driving, video error, seat position change, partial distraction, other. Based on the study
by Drews et al. (2020), micro-sleep and drowsiness are signs of operator fatigue [2]. The
study assumes that the PERCLOS system is functioning and properly collaborated. Much
work has been done establishing the PERCOLS technology. Testing the viability of this
technology is beyond the scope of this paper. The literature shows that the fatigue events
captured by these systems are important indicators of fatigue [1,2]. Therefore, for the
purpose of our study, micro-sleeps and drowsiness have been used to demonstrate a
fatigue event, and other types of alarms are assumed to be system errors or because of
negative behaviors such as distracted driving. These are labeled in the PERCLOS systems
as “other eye-closure (drowsiness)” and “micro-sleep with stable head”. The operational
difference between these two categories is having a stable head posture at the time of
fatigue or not. In the case that the operator’s head is moving downwards, the fatigue event
is labeled as “other eye closure (drowsiness)”. On the other hand, when the operator has a
stable head posture at the time of fatigue, it is labeled “micro-sleep with stable head”.

More details of fatigue events are shown in Table 2. The average number of events
per day and the number of days with these fatigue events are provided for comparison.
The data show more drowsiness compared to micro-sleep, representing 60% of the fatigue
events that were captured by the system. The % of days with fatigue shows that on 98%
and 99% of the days, there was at least one micro-sleep and drowsiness fatigue event,
respectively. Therefore, fatigue is a critical daily hazard for those working in mines.

Table 2. Count of days and percentage of total days by fatigue type.

Fatigue Event Type
Average

Number of
Events per Day

Days with
Fatigue Events

Percentage of
Days with

Fatigue

Percentage
of Fatigue

Events

Micro-Sleep with
Stable Head 13 1313 98% 40%

Other Eye Closure
(Drowsiness) 20 1327 99% 60%

The surface mine maintains a fleet management system (FMS), which tracks the
production and status of equipment. The FMS data are made available in a business
intelligence (BI) database. Status event data provide details on the state of an asset. Status
event coding can be used to determine if a piece of equipment is down for maintenance,
in a production activity or in standby mode. This information is valuable to compare
against event rates, as well as show breaks and delays. Other information in the BI
database includes the load cycle data. A production cycle shows the load of a shovel or
truck. Detailed steps within a load, such as loading, dumping, running empty, running
loaded, etc., are shown. The most important data for this study are the production rate
by shift/hour, which can be used to normalize the data as well as understand the activity
levels of haul truck drivers.

Time and attendance data are provided via the hours worked by hourly employees.
The mine uses a swipe-in/swipe-out time keeping system, the data from which are pro-
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cessed and loaded into a time and attendance database. The data set was used to measure
shifts and hours consecutively worked by haul truck operators.

Mobile machinery such as haul trucks generates large amounts of equipment health
data. The data are produced by hundreds of sensors and are used to track the location,
production cycles, equipment status and equipment health alarms. The sensors can be
valuable predictors of production achievements and operator behavior. The surface mine
utilizes an equipment health database to capture and model the health and use of their
large capital assets. These databases track in detail how a given piece of equipment is being
operated at any given time. The sensors can detect if an operator is operating outside of
the safe boundaries of the machine and create an alarm. These alarms vary by severity and
location and generate massive amounts of data.

Lastly, weather data are gathered from a local weather station in the mine. This data
set includes information for the weather at the mine site. Over 10 variables are captured at
10 min intervals. Each interval contains information regarding temperature, temperature
change, wind speed, precipitation and air pressure.

Data Pre-Processing

In this step, data need to be pre-processed to make them appropriate for the application
of the chosen modeling approach. Initial data analyses are performed to identify possible
patterns of data with the identified fatigue events. This analysis informs the next modeling
step by identifying an appropriate approach to predict fatigue events with the data sets.

Fatigue data provided from the fatigue monitoring system were reviewed and divided
in different categories. Among them, drowsiness and micro-sleeps were identified as the
fatigue events occurring among workers, so they are considered to be the dependent vari-
ables of the model. All other data, including weather, production cycles, equipment health
alarms and time and attendance data, are modeled as predictors and criterion variables.

Each data set had to be cleaned and missing data removed prior to input to the
model. The process of cleaning data entails removing incorrect, duplicate, incomplete
and corrupted data. Updating data types is also a common cleaning activity. A list of
all variables used in the model is given in Table 3. After all data engineering, data are
prepared for two distinct models: shift-based and hourly-based models. Data sets were
thus grouped by shift ID and hour of data time.

3.2. Initial Data Analysis

As stated above, the primary questions posed by this study are: Are there new
indicators within existing mining data sets that can be used to model fatigue events? In
addition, what are potential patterns when these data sets are analyzed? In this section, the
available data sets are presented to explore how they can be used to test the hypothesis
of the research. Modern machine learning approaches require various levels of data
engineering to facilitate statistical analysis. This section presents the process and logic
used to identify key variables and the direction for further data engineering used in the
development of the ML model. More specifically, the analyses presented here cover the
distribution of the fatigue events, average production compared to fatigue events, number
of fatigue events during night and day shifts and temperature versus fatigue events.

Fatigue is first examined by analyzing its frequency distribution by shift, which
suggests non-normal distribution, as illustrated in Figure 1. This figure visualizes the
distribution of the fatigue events per shift, which is seemingly close to Poisson distribu-
tion, with a mean of approximately 17 events per shift. Calculation of the probability of
having 0 and >52 events per shift shows, respectively, very low probabilities p = 0.013 and
p = 0.0097. However, the probability of having 7–8 events per shift, which is the mode of
the distribution, is estimated to be p = 0.052. The next question is why some shifts have a
higher number of fatigue events compared to other shifts. Therefore, to find the potential
variables that drive this difference, aggregated data by shift are included in the model.
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Table 3. List of the variables based on the data source.

Data Source Variables Data Type and Example Data

Time and Attendance

Shift ID Integer (1 to 4140)
Shift of Day (shift type) Categorical Integer (0 and 1)

Crew Name Categorical Integer (1 to 4)
Days On Integer (0 to 4)

Year Integer (2014 to 2017)
Month Integer (1 to 12)
Week Integer (1 to 54)
Day Integer (1 to 31)

Day of week Integer (1 to 7)
Day of year Integer (1 to 365)
Hour of day Float (0 to 24)

Shift is end of month Categorical Integer (0 and 1)
Shift is start of month Categorical Integer (0 and 1)
Shift is end of quarter Categorical Integer (0 and 1)
Shift is start of quarter Categorical Integer (0 and 1)

Shift is end of year Categorical Integer (0 and 1)
Shift is start of year Categorical Integer (0 and 1)

Fleet management system
(production and status)

Mine Production Factor Integer (1335 to 589,201)
Mine Loaded Travel Distance Integer (37,884 to 37,797,788)
Mine Measured Production Integer (0 to 430,812)

Mean Measured Production (broken
down by fleet, creating 8 variables) Float (0 to 413.83)

Mine Load Capacity Percentage Float (0 to 1)
Mean Load Capacity Percentage (broken

down by fleet, creating 8 variables) Float (0 to 1)

Mean Loaded Travel Distance Float (3735.2 to 13,711.66)
Mean Loaded Travel Lift Float (272.25 to 1083.29)

Mean Loaded Travel Lift Distance Float (3735.2 to 13,711.66)
St Dev Loaded Travel Distance Float (604.55 to 16,118.27)

Weather

Mean Barometric Pressure Float (0 to 25.1)
Mean Precipitation Float (0 to 439.1)

Mean Temperature (2 m) Float (−6.8 to 34.8)
Min Barometric Pressure Float (0 to 25.01)

Min Precipitation Float (0 to 29.71)
Min Temperature (2 m) Float (−8.4 to 30.44)

Max Barometric Pressure Float (0 to 25.1)
Max Precipitation Float (0 to 756.9)

Max Temperature (2 m) Float (−4.435 to 36.82)
Sum Precipitation Float (0 to 5269.17)

Equipment health alarms and events

Both Alarm Count Integer (0 to 632)
Electrical Alarm Count Integer (0 to 892)
Lockout Alarm Count Integer (0 to 35)

Maintenance Alarm Count Integer (0 to 1094)
Mechanical Alarm Count Integer (0 to 1753)

None Alarm Count Integer (0 to 2608)
Normal Alarm Count Integer (0 to 121)

Operational Alarm Count Integer (0 to 819)
Undetermined Alarm Count Integer (0 to 1282)

Scheduled Down Count Integer (0 to 85)
Unscheduled Down Count Integer (0 to 141)
Operational Delay Count Integer (0 to 1126)
Operational Down Count Integer (0 to 80)

Ready Non-Production Count Integer (0 to 977)
Ready Production Count Integer (0 to 1322)

Fatigue
monitoring system

Drowsiness and Micro-Sleep Fatigue
Events Count (Normalized) Float (0 to 1)
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Figure 1. Fatigue events per shift frequency.

In order to analyze the effect of shift time on fatigue, Figure 2 shows the average
hourly production and hourly number of fatigue events per person (including drowsiness
and micro-sleep). Shift change times (7 am/pm) are indicated by substantial reductions in
fatigue events due to the relatively high levels of activities associated with shift changes.
In addition, the results illustrate that fatigue counts increase from the beginning of a night
shift until the shift end; however, during day shifts, the fatigue levels of the operators peak
at around 1 pm. Regarding the relationship between the numbers of fatigue events and
hourly production, the findings suggest no clear relationship. Figure 2 suggests that the
time of day and shift type could be included as additional variables in the model. This
figure also suggests a negative relationship between production and fatigue. Production
rates, disruptions and aggregate levels, to a certain extent, affect the operational behavior
of the site. A higher number of cycles or longer cycles have the potential to influence how
engaged operators are, which could provide an interesting additional measure to predict
fatigue. Information about production cycles and delays will be modeled against fatigue to
further explore this potential relationship.
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Figure 2. Hourly fatigue events and average hourly production.

To illustrate the relationship between hourly data and the frequency of fatigue events,
their distribution is provided in Figure 3. This right-skewed distribution shows that
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more than 50% of the hours contain at least one fatigue event. This suggests that further
exploration is needed to identify the variables contributing to the range of hourly fatigue
events. Therefore, a second model with hourly aggregated data is developed, which will
be introduced in the model section. In addition, Figure 4a shows that night shifts contain
significantly more events compared to day shifts. Moreover, the average event counts by
month indicate a seasonality effect, with lower rates of fatigue in spring and higher rates in
summer and winter (Figure 4b). To summarize, the above explorations demonstrate that
some variables, such as shift type, time of day and worked hours, have effects on fatigue.
At the same time, the findings suggest that advanced approaches will be required to model
fatigue events.

Minerals 2021, 11, x FOR PEER REVIEW 8 of 22 

To illustrate the relationship between hourly data and the frequency of fatigue 
events, their distribution is provided in Figure 3. This right-skewed distribution shows 
that more than 50% of the hours contain at least one fatigue event. This suggests that fur-
ther exploration is needed to identify the variables contributing to the range of hourly 
fatigue events. Therefore, a second model with hourly aggregated data is developed, 
which will be introduced in the model section. In addition, Figure 4a shows that night 
shifts contain significantly more events compared to day shifts. Moreover, the average 
event counts by month indicate a seasonality effect, with lower rates of fatigue in spring 
and higher rates in summer and winter (Figure 4b). To summarize, the above explorations 
demonstrate that some variables, such as shift type, time of day and worked hours, have 
effects on fatigue. At the same time, the findings suggest that advanced approaches will 
be required to model fatigue events. 

Figure 3. Hourly fatigue events frequency. 

Figure 4. (a) Fatigue events per shift; (b) Average monthly fatigue events. 

Next, we conduct an exploration of the influence of environmental variables on op-
erator fatigue. Figure 5 illustrates the monthly average ambient temperature and monthly 
fatigue events per person, without any clear pattern. Thus, there appears to be no obvious 
correlation between temperature and fatigue events in this plot. Therefore, for further ex-
ploration, weather data are added as independent variables to the model. 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10,000
11,000

0 1 2 3 4 5 6 7 >7

Fr
eq

ue
nc

y

Number of Hourly Fatigue Events

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

Day Shift Night Shift

Fa
tig

ue
 E

ve
nt

s

Shift

Other Eye-Closure (Drowsiness) Microsleep With Stable Head

870

920

970

1020

1070

1120

1170

Av
er

ag
e 

Fa
tig

ue
 E

ve
nt

s 

Month

Figure 3. Hourly fatigue events frequency.

Minerals 2021, 11, x FOR PEER REVIEW 8 of 22 
 

 

To illustrate the relationship between hourly data and the frequency of fatigue 
events, their distribution is provided in Figure 3. This right-skewed distribution shows 
that more than 50% of the hours contain at least one fatigue event. This suggests that fur-
ther exploration is needed to identify the variables contributing to the range of hourly 
fatigue events. Therefore, a second model with hourly aggregated data is developed, 
which will be introduced in the model section. In addition, Figure 4a shows that night 
shifts contain significantly more events compared to day shifts. Moreover, the average 
event counts by month indicate a seasonality effect, with lower rates of fatigue in spring 
and higher rates in summer and winter (Figure 4b). To summarize, the above explorations 
demonstrate that some variables, such as shift type, time of day and worked hours, have 
effects on fatigue. At the same time, the findings suggest that advanced approaches will 
be required to model fatigue events. 

 
Figure 3. Hourly fatigue events frequency. 

  

(a) (b) 

Figure 4. (a) Fatigue events per shift; (b) Average monthly fatigue events. 

Next, we conduct an exploration of the influence of environmental variables on op-
erator fatigue. Figure 5 illustrates the monthly average ambient temperature and monthly 
fatigue events per person, without any clear pattern. Thus, there appears to be no obvious 
correlation between temperature and fatigue events in this plot. Therefore, for further ex-
ploration, weather data are added as independent variables to the model. 

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000
11,000

0 1 2 3 4 5 6 7 >7

Fr
eq

ue
nc

y

Number of Hourly Fatigue Events

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Day Shift Night Shift

Fa
tig

ue
 E

ve
nt

s

Shift

Other Eye-Closure (Drowsiness) Microsleep With Stable Head

870

920

970

1020

1070

1120

1170

Av
er

ag
e 

Fa
tig

ue
 E

ve
nt

s 

Month

Figure 4. (a) Fatigue events per shift; (b) Average monthly fatigue events.

Next, we conduct an exploration of the influence of environmental variables on oper-
ator fatigue. Figure 5 illustrates the monthly average ambient temperature and monthly
fatigue events per person, without any clear pattern. Thus, there appears to be no obvious
correlation between temperature and fatigue events in this plot. Therefore, for further
exploration, weather data are added as independent variables to the model.

The main purpose of the above analyses was to explore relationships between fatigue
events and variables contained in the existing data sets. From our initial data analyses,
fatigue appears to have some relationship with variables such as weather, shift type, time
of day, etc. These analyses introduce more variables for the purpose of the modeling and
data aggregating methods. The full list of variables is shown in Table 3. However, these
preliminary analyses are not able to identify a pattern of fatigue based on these variables,
although they are able to provide a critical insight into the data. The literature shows that
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fatigue is a complex issue and different psychological and physiological variables influence
fatigue in workers [2]. Considering the limitations of the above analytical approaches, we
use machine learning (ML) approaches as an alternative to explore the data set to elucidate
relationships that are not easily identifiable. Because the above analyses show that shift
type and hour of day appear to have significant effects on the fatigue of haul truck drivers,
data were aggregated by shift and hour to create two different models. One approach
involves fatigue prediction using the shift-based data, and the other uses hourly data to
predict fatigue. The next section presents the modeling approach.
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Figure 5. Monthly fatigue events per person vs. average temperature.

3.3. Machine Learning Model

Figure 6 presents the procedure and methods of the modeling steps involved in the
development of the machine learning model. The process involved the following steps:

• Data collection;
• Data pre-processing;
• Data engineering;
• Training model;
• Testing model;
• Model evaluation;
• Making predictions.
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3.3.1. Random Forest Regression Algorithm

The machine learning model selected for this analysis is a random forest (RF) regres-
sion algorithm. Random forest algorithms were chosen for their tendency to generalize
well to a wide variety of problems, their rapid speed of training and because they are a
key feature of many well-known machine learning solutions. Another key benefit of using
random forests is the tooling that has been built in recent years to help researchers to gain
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insights into what has long been thought of as the black box of machine learning. These
new analytical tools allow researchers to see the features that the model relies upon the
most in order to make predications and determine how marginal changes in these features
impact the predicted outcomes [30,31].

When data are not linearly scattered, a regression tree, which is a type of decision
tree, can be used. In this type of decision tree, each leaf presents a threshold value (TV)
for each feature of the model. For the purpose of finding the best decision tree, the model
tries to find the best threshold value for each feature (independent variable) by finding the
minimum sum of square residuals (SSR). SSR is the sum of the squared difference of each
prediction value and actual value (Figure 7). For models with more than one feature, the
decision tree root is the feature with the lowest SSR. Figure 8 represents an example of a
random forest regression decision tree with five features.
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A random forest regression algorithm is an ensemble of randomized regression trees.
The random forest algorithm creates bootstrap samples from the original data. Bootstrap-
ping is a procedure that resamples a single data set to create many simulated samples. For
each of the bootstrap samples, the algorithm increases a classification or regression tree.
This algorithm chooses a random sample of the predictors and selects the best split among
variables. Then it predicts new data by aggregating the predictions of the trees. Models
can estimate the error rate based on the training data by each bootstrap iteration [30,31].

3.3.2. Model

Two models were created using available data subsets as dependent variables. For
the shift-based model, the dependent variable was the number of fatigue events in a 12 h
shift, which was normalized to scheduled haulage hours in the shift (labor hours). For the
hourly-based model, the dependent variable was the number of fatigue events in an hour,
which was normalized to scheduled haulage hours (labor hours). All independent variables
in these models, also known as features, are representations of the mine’s operation as
represented in the data sets. These features contain values such as the average production,
average temperature and equipment alarm (see Table 3).

For this model, data were divided into two sets: 80% constituted the training data set
and 20% constituted the validation data set. The goal of these models was to determine the
features that can predict fatigue in such a way that minimizes RMSE. In these models, only
data subsets with micro-sleeps and drowsiness containing fatigue were modeled. From
151,432 possible events, only 44,953 contained micro-sleep and drowsiness in the data sets
to train and validate the random forest algorithm. After exploratory data analysis, this
study focused on refining models to predict the fatigue of the operator.

The independent variables (features) in these models were minimally engineered.
Then, possible sample counts, means, sums, mins and maxes were used without combining
multiple fields from the underlying tables. The goal of these models was to predict fatigue
as well as the possibility of including all available feature sets, such as the hour of the day,
shift, month of the year, ambient temperature, wind speed, precipitation, etc. Data for
these models were constrained to the number of days contained in the fatigue data, which
was a dependent variable. Thus, the models were created using data from 1 January 2014
to 9 August 2017.

3.3.3. Evaluating Model Performance

One way to evaluate the model performance is out-of-bag error or OOB. The out-of-
bag set includes data not chosen in the sampling process when initially building a random
forest. The out-of-bag (OOB) error is the average error for each calculated prediction from
the trees not contained in the respective sample. Here, we used the Random Forest python
package, which can generate two optional information values, a value of the importance
of the predictor variables (feature importance) and a value of the internal structure of the
data (the proximity of different data points to one another) [30].

Next, the performance of the model was evaluated using the root mean squared errors
(RMSE) and coefficients of determination (R2). The coefficient of determination is the best
method to compare models that are trained using different dependent variables. Both RMSE
and coefficients of determination are important means of measuring performance between
models trained to predict the same dependent variable. The reason that R2 should be used
when comparing models trained on different dependent variables is that the coefficient of
determination is normalized to the mean of the dependent variable for each model.

3.3.4. Model Generalization

When creating machine learning models, it is important to ensure that the predictions
are generalizable to data that the model was not trained on. A model that has a very
low training error but a very high validation error is considered not to generalize well.
This scenario is known as overfitting [32]. The most common method to ensure that a
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model has not been overfit is splitting data into training and validation sets. The model
learns its parameters from the training data set. The performance of the trained model
is then determined by how well it predicts the outcomes of the validation data set. The
hyperparameters of the model can then be tuned by the developer, and the model is
retrained to improve its performance against the validation data set. Hyperparameters
are the values that define the model and cannot be learned from data; they are set by
the developer of the machine learning algorithm (number of estimators, max number of
features, etc.). The number of estimators and the max number of features for the best model
here are 1000 and sqrt (number of features), respectively. For each model here, the data sets
were split into training and validation sets. In this study, due to a lack of sufficient data for
a double hold-out (test set), there is only a validation set.

3.3.5. Feature Importance

Feature importance is the process of ranking the individual elements of a machine
learning model according to their relative importance to the accuracy of that model [33,34].
Feature importance is a means of determining the features that have the greatest magnitude
of effect in a model. Features that have a high feature importance value have a greater
impact on the model. Feature importance refers to a technique to assess the scores of
independent variables to a predictive model. It indicates the relative importance of each
independent variable (feature) when making a model prediction. These scores can be used
to better understand the data and model and reduce the number of input features. The
relative scores of feature importance can highlight which features are more useful to predict
fatigue and, conversely, which features are the least helpful to predict fatigue. This may be
used as the basis for gathering more or different data. Moreover, it shows that the model
has been fit to the most important features. In addition, feature importance can be used to
improve a predictive model. It can be used to eliminate the features with the lowest scores
or retain those with the highest scores. Therefore, it can help to select features and speed
up the modeling process.

4. Results

Differences between the two models were found after the analyses. The hourly-based
model does not perform as well as the shift-based model according to their R2 and RMSE.
The best model used the shift-based data to predict fatigue. Below, we discuss feature
importance and drop column tools to examine the feature set of the shift-based model.

In Table 4, the results of the best performed model are displayed. The best-performing
model predicted fatigue events across the site, with an R2 value of 0.36 and RMSE value of
0.006. All other models were deemed to have values too low to warrant further exploration
using this feature set. The best model used the shift-based data to predict fatigue. Below,
we discuss feature importance and drop column tools to examine the feature set of the
shift-based model.

Table 4. Refined model performance results.

Model
Root Mean Squared

Error (RMSE) Coefficient of Determination R2

Training Validation Training Validation OOB

Shift-based
model 0.002 0.006 0.93 0.36 0.47

4.1. Feature Importance of Best-Performing Model

Generally, feature importance provides a score that identifies the value of each feature
in creating the random forest model. Features that have a greater effect on key decisions
have higher relative importance. Table 5 shows the most important features and their values
for the fatigue event prediction model (shift-based model) with the best performance.
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Table 5. Permutation importance of features for shift-based model (most important features).

Data Category Dependent Variables Feature Importance
Score

Time and Attendance Shift type (day or night shift) 0.1650

Equipment health alarms
and events Unscheduled downtime count 0.0588

Fleet management system
(production and status)

Mine load capacity percentage 0.0297
Mine measured production 0.0293

Mine production factor 0.0248

Time and Attendance Year 0.0245

Weather Mean temperature (2 m) 0.0235

Equipment health alarms
and events None alarm count 0.0230

Fleet management system
(production and status)

Mine loaded travel distance 0.0226
Mean measured production of haul

truck (CAT 793D) 0.0226

Weather Maximum temperature (2 m) 0.0223

Equipment health alarms
and events

Ready production count 0.0222
Mechanical alarm count 0.0215

Fleet management system
(production and status)

Mean load capacity percentage of haul
truck (CAT 793D) 0.0213

Mean measured production of haul
truck (CAT 793C) 0.0211

Mean loaded travel distance 0.0209
Mean measured production of haul

truck (CAT 793B) 0.0209

Mean load capacity percentage of haul
truck (CAT 793C) 0.0208

Mean load capacity percentage of haul
truck (CAT 793B) 0.0207

Equipment health alarms
and events Scheduled down count 0.0206

The shift type (day/night shift) variable has the strongest effect on the model. Next,
the amount of unscheduled downtime of the equipment of the whole mine for a shift
affected the model. “Unscheduled downtime” is when a piece of equipment goes down
for maintenance reasons in an unplanned situation. Other factors that have effects on
fatigue are production variables. These outcomes corroborate with the initial data analyses
regarding the effects of day shifts and night shifts on the fatigue of workers. It also
demonstrates that production and equipment alarm variables such as equipment downtime
can aid in predicting the occurrence of fatigue events. Moreover, weather variables such as
maximum and average temperature can increase the rate of fatigue events among workers.

4.2. Drop-Column Feature Importance

With large data sets, there is always a risk of having variables that are covariates
or have co-dependences. Random forest tools recognize that this risk exists and include
mechanisms to address it, which can assess the individual effects of each feature on the
model. Co-dependencies stem from the fact that the trees are not independent since they
are sampled from the same data in the process of making the RF model. It is important
to see how the model works without individual features and how each feature impacts
the model, whether positively or negatively. Instead of carrying out different iterations,
random forest algorithms have a built-in tool which runs models with fewer features and
tracks the models’ performance. This is achieved by dropping out each column (or feature)
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from the model, retraining the entire model and then comparing the score with the base
score. Negative values show features that improve the model when removed. Positive
values show features that weaken the model when removed. Values that are close to zero
tend to indicate features that are correlated with other features; thus, removing them makes
little difference in the model’s ability to find relationships using the correlated variables. In
Table 6, the ten most and ten least important features are displayed.

Table 6. Drop-column importance for the best model.

Dependent Variables Feature Importance Score

Shift type (day or night) 0.2922
Unscheduled downtime count 0.0317

Mechanical alarm count 0.0235
Day on 0.0225

Day of week 0.0205
Mean measured production of haul truck (CAT 797F) 0.0139

Shift is end of year 0.0129
Electrical alarm count 0.0129

Mine measured production 0.0127
Undetermined alarm count 0.0125

. . . . . .
None alarm count −0.0022

Mean loaded travel distance −0.0025
Mean load capacity percentage of haul truck (CAT 793D) −0.0031

Year −0.0034
Mean Temperature (2 m) −0.0073

Mean load capacity percentage of haul truck (CAT 793B) −0.0073
Mean loaded travel lift distance −0.0074

Maintenance alarm count −0.0083
Mean loaded travel lift −0.0119

Mine load capacity percentage −0.0325

As shown in Table 6, shift type has the strongest effect on the model, followed by some
production and alarm variables, as indicated by their feature importance score. This score
shows that dropping, for example, shift type, from the features, causes the performance of
the model (R2) to drastically decrease by 0.2922. On the other hand, eliminating the mine
load capacity percentage increases the performance of the model by 0.0325.

4.3. ICE Plot

Another tool to visualize how marginal changes in features affect the predictions of
the model is an individual conditional expectation (ICE) plot. An ICE plot identifies the
dependence of the prediction on a feature for each instance independently. It generates one
line per instance, which can be compared to one line overall in partial dependence plots. A
partial dependence plot (PDP) is the average of the lines of an ICE plot. The value of a line
or model score is compared when all other features are kept the same. The result is a set of
points for an instance with a feature value from the grid and the respective predictions [35].
ICE plots for the four top features are displayed in Figure 9 and ICE plots of ten top features
are provided in Appendix A. They show how the models’ predictions change depending
on marginal changes to the top features. For instance, they illustrate that the prediction
difference in the model for shift of day decrease from the day shift to the night shift. The
ICE plot of unscheduled downtime count shows that the prediction difference of the model
for a small amount of unscheduled downtime of the equipment is not high, but it starts
to increase after 40 counts of unscheduled downtime of the equipment. Moreover, the
prediction difference of the model for mine measured production is small, but it increases
after 300,000 tons of production. Therefore, looking at the marginal changes in the top
features offers insights into how marginal changes affect the model prediction.
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4.4. Comparison

Table 7 shows the top features from two different generated models. Of the models
that were run, the best performance was demonstrated by the shift-based fatigue model
that is used to predict fatigue events based on shift data. This model achieved an R2 value
of 0.36, which is reasonably high for the prediction of outcomes that are the result of very
complex interactions. Fatigue is a complex issue and can occur for different psychological
and physiological reasons; therefore, it is difficult to predict it with high accuracy.

Table 7. Comparison of the top features for hourly-based and shift-based models.

Rankings Shift-Based Model Hourly-Based Model

1 Shift type (day or night shift) Mean temperature (2 m)
2 Unscheduled downtime count Hour of day

3 Mine load capacity percentage Mean measured production of haul
truck (CAT 793B)

4 Mine measured production Mean measured production of haul
truck (CAT 793D)

5 Mine production factor None alarm count
6 Year St Dev loaded travel distance
7 Mean temperature (2 m) Mean barometric pressure
8 None alarm count Maintenance alarm count
9 Mine loaded travel distance Undetermined alarm count

10 Mean measured production of haul
truck (CAT 793D) Mine production factor
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Another model, which is based on the hourly aggregated fatigue occurrence, identifies
that the time of day helps to predict the fatigue as expected, since this is one of the top
features in the hourly-based model. Moreover, ambient temperature has a notable effect
on fatigue, which is evidenced by the hourly-based model; however, it is obvious that
temperature is linked to the time of day. More work is needed to assess the potential role
of air conditioning in this. In addition to time and weather factors, some production and
equipment health alarm variables have effects on the fatigue of haul truck drivers, as the
hourly-based model shows (see Table 7).

5. Discussion

The model output identifies the variables that have the greatest impact on all fatigue
events. Table 8 illustrates the most important features and their data sources. The results
confirm our existing understanding of fatigue and offer some interesting insights into
additional factors that potentially cause fatigue. While it is not surprising that shift type
causes fatigue, it is interesting that maintenance processes such as unscheduled downtime
and production rates, as well as other operational variables, can affect fatigue among haul
truck drivers. Having identified these additional predictors for fatigue, these indicators
can be used by managers to prioritize safety management efforts. The ICE plots show how
marginal changes to specific variables affect the model. Therefore, they can be potentially
used as thresholds for KPIs. For example, if the mine is approaching a value of 40 for
unscheduled downtime, a higher risk of fatigue is indicated.

Table 8. Top features by data classification.

Data Category Feature Rank Feature

Time and attendance
1 Shift of day (day or night)
6 Year

Fleet management system
(production and status)

3 Mine load capacity percentage
4 Mine measured production
5 Mine production factor
9 Mine loaded travel distance

10 Mean measured production of haul
truck (CAT 793D)

14 Mean load capacity percentage of haul
truck (CAT 793D)

15 Mean measured production of haul
truck (CAT 793C)

16 Mean loaded travel distance

17 Mean measured production of haul
truck (CAT 793B)

18 Mean load capacity percentage of haul
truck (CAT 793C)

19 Mean load capacity percentage of haul
truck (CAT 793B)

Equipment health alarms
and events

2 Unscheduled down count
8 None alarm count
12 Ready production count
13 Mechanical alarm count
20 Scheduled downtime count

Weather
7 Mean temperature (2 m)
11 Maximum temperature (2 m)

In many fields of science, it is difficult to consider models that achieve R2 values of
high magnitude. Since fatigue is a complex issue, finding a comprehensive model with
a high R2 is challenging. However, the methodology and future iterations could provide
beneficial insights. The finding that 36% of fatigue events can be explained by shift type,
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weather and operational data indicates that 64% of the variance can be attributed to factors
that we currently are not modeling. Therefore, the next step in fatigue modeling would be
exploring additional contributors to operator fatigue. In this study, the mine’s data have
been aggregated according to shift or hour, but future models could examine fatigue in a
more individualistic way. Deeper integration of the data sets upon individual operators
could be one way of accomplishing this. Additional factors such as an individual’s habits
and sleep patterns could also provide another level to the model and would give a more
detailed view of the fatigue of the workers.

From the perspective of health and safety management, the most important features
found in this study can be considered potential leading indicators (ALIs) to reduce fatigue.
The surprising finding of unscheduled equipment downtime events is an aspect that needs
to be explored further. Process disruption’s impact on fatigue was one finding that was
consistent with the study by Drews et al. (2020) [2]. More research from a health and safety
perspective is needed to understand why some of the alarm and production variables of
different fleets have a greater effect on fatigue. However, fitness for duty could be one
reason behind the different fatigue events for different fleets. Mining companies can use
these indicators to anticipate increases in fatigue and to potentially mitigate fatigue. These
model outcomes can be utilized to implement health and safety policies, training programs
and mitigation practices. If mine operations can identify the times and shift types that are
more susceptible to fatigue, specific strategies could be implemented, such as mandatory
break times for the operators and supervisory support during this time. Management can
also train the operators to be more alert at specific times of the day and during specific
shifts. They also can train them to be more aware of how fitness can decrease fatigue. The
models’ output shows that ambient temperature has also significant effects on the fatigue
of haul truck drivers. This also must be studied further to understand the degree to which
this factor influences specific individuals’ fatigue states.

Moreover, the hourly-based model results provide an understanding of the effects of
the variables that impact fatigue for health and safety management. It demonstrates that
a leading indicator to predict fatigue is the time of day. Therefore, special attention and
planning is required for those times with a higher risk of fatigue. All of these outcomes can
be considered when prioritizing tasks by health and safety management.

6. Limitations and Future Work

This study shows the application of machine learning in health and safety management
using operational data sets of mining operations. The findings of this study confirm that
fatigue is caused by a wide variety of factors and many are likely very difficult to quantify,
but there may be a small but impactful percentage of factors that can be quantified. Fatigue
prediction is a matter of predicting the complex interactions between human behavior and
the ever-changing work environments at mines. In the social sciences, it is very common to
see situations where a low R2 value captures relationships that quantify a relatively high
amount of variance in a complex relationship [36]. Individual worker data can be added to
the model to increase the accuracy of the prediction model, since only operational data and
weather data are utilized in these models.

In all of the models developed, the training scores are substantially better than the
validation scores. This is most often attributable to overfitting of the model, but in this case,
it is likely largely due to the difficultly in generalizing a model that can predict fatigue due
to the complex psychological and physiological factors associated with fatigue. This line of
research will become more important as the fitness for duty of equipment operators takes
on greater significance in scheduling operator work shifts.

Even when using a fairly simple model with a small data set, the best-performing
model in this study is able to achieve excellent results. Many refinements were made to the
models during this study, but there are many avenues of exploration that could yield even
stronger predictive models. Some key areas to explore in future models could include:

• Looking at individual fatigue events instead of the aggregated fatigue events;
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• Using a machine learning method that can model more complex relationships, such as
a neural network;

• Increasing the size of the training data set—this could be accomplished by adding
more data either from the same mine or from another mine;

• Creating common naming conventions between data sets so that they can be linked
by location, operator and equipment;

• Adding more complex features such as the sleep pattern, health condition, fitness or
diet of the operator;

• Adding features that represent information collected during time periods prior to
when the fatigue occurred, such as downtime or production on the previous day;

• Adding some features related to the working schedule of the operator in terms of
fatigue at the time and the day or week before;

• Exploring more details of each feature to reduce the number of features that have a
lower impact on fatigue.
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Abstract: To achieve the goal of preventing serious injuries and fatalities, it is important for a mine
site to analyze site specific mine safety data. The advances in natural language processing (NLP)
create an opportunity to develop machine learning (ML) tools to automate analysis of mine health
and safety management systems (HSMS) data without requiring experts at every mine site. As
a demonstration, nine random forest (RF) models were developed to classify narratives from the
Mine Safety and Health Administration (MSHA) database into nine accident types. MSHA accident
categories are quite descriptive and are, thus, a proxy for high level understanding of the incidents. A
single model developed to classify narratives into a single category was more effective than a single
model that classified narratives into different categories. The developed models were then applied to
narratives taken from a mine HSMS (non-MSHA), to classify them into MSHA accident categories.
About two thirds of the non-MSHA narratives were automatically classified by the RF models. The
automatically classified narratives were then evaluated manually. The evaluation showed an accuracy
of 96% for automated classifications. The near perfect classification of non-MSHA narratives by
MSHA based machine learning models demonstrates that NLP can be a powerful tool to analyze
HSMS data.

Keywords: mine safety and health; accidents; narratives; machine learning; natural language pro-
cessing; random forest classification

1. Introduction

Workers’ health and safety is of utmost priority for the sustainability of any indus-
try. Unfortunately, occupational accidents are still reported in high numbers globally.
According to the recent estimates published by the International Labour Organization
(ILO), 2.78 million workers die from occupational accidents and diseases worldwide [1]. In
addition, 374 million workers suffer from non-fatal accidents, and lost work days represent
approximately 4% of the world’s gross domestic product [2,3]. It is, therefore, not surpris-
ing that researchers are constantly investigating factors that impact safety [4,5], or finding
innovations and technology to improve safety [6,7].

As to the U.S. mining industry, for years 2016–2019, the National Institute for Occupa-
tional Safety and Health (NIOSH), a division of the US Centers for Disease Control and
Prevention (CDC) reports 105 fatal accidents and 15,803 non-fatal lost-time injuries [8]. To
bring down the rate of serious injuries and fatalities, the industry analyzes incident reports
to conduct root cause analysis and identify leading indicators. Unfortunately, as noted
by the International Council on Mining and Metals, a global organization of some of the
largest mining companies of the world, the vast trove of incident data is not analyzed as
much as it could be due to lack of analytics expertise at mine sites [9]. With the advances in
natural language processing (NLP), there is now an opportunity to create NLP-based tools
to process and analyze such textual data without requiring human experts at the mine site.
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Natural language processing (NLP) has been explored as a tool to analyze safety
reports since the 1990s [10,11]. This paper, intended for a mining industry audience,
presents in this section, a brief history of NLP and its use in analyzing safety reports. NLP
is the automated ability to extract useful information out of written or spoken words of
a language. Exploring its application to safety is logical, as safety reports are valuable
information. If causation and associated details can be automatically extracted from
the safety reports, NLP can be used to quickly gain insight into safety incidents from
historical reports that are filed away in the safety management databases. Additionally,
with smartphone-based work site observations apps becoming popular, NLP tools can be
useful in providing real time insights as incidents and observations are reported in real time.
For example, in a confidential project, one of the authors of this paper advised an industrial
site about a hazardous practice at the operation using an NLP analysis of data collected
using a smartphone-based application. This hazard became apparent after evaluating the
data because several employees had noted the practice in their worksite observations.

The efforts to apply NLP to extract causation from safety reports received a major boost
when the Pacific Northwest National Laboratory (PNNL) put together a large team in the
early 2000s to apply NLP and analyze aviation safety reports from the National Aeronautics
and Space Administration’s (NASA) aviation safety program [12]. The “meaning” of a
sentence depends not just on the words, but also on the context. Therefore, PNNL used
a variety of human experts to develop algorithms to extract human performance factors
(HPF) from report narratives. HPF definitions were adopted from NASA [13]. The PNNL
approach consisted of artificial intelligence (AI) after the text was preprocessed using
linguistic rules. The linguistic rules, developed by human experts, considered specific
phrases and sentence structures common in aviation reports. When automated, these
rules were able to identify causes of safety incidents on par with human experts. The
PNNL team, however, noted the reliance of the algorithms on human experts with domain-
specific knowledge.

New developments have reduced human involvement in text analysis [14]. These
developments include identifying linguistic features such as parts of speech, word depen-
dencies, and lemmas. A million-sentence database (or “corpus” to use NLP terminology)
may only contain 50,000 unique words once words such as ‘buy’ and ‘bought’ (one is a
lemma of the other) are compressed into one; though that is also a choice for the human
expert. After vectorization, each sentence in the database is a vector of length 50,000, with
most elements being zero (a twelve-word sentence will only have ones in twelve places).
When the relative order of words in a sentence is taken into account, common phrases can
be identified easily. Thus, after preprocessing with NLP techniques, classical statistics and
machine learning techniques can be applied to classify text. Baker et al., 2020 [15] used a
variety of NLP and machine learning techniques to classify incident reports and predict
safety outcomes in the construction industry. Tixier et al., 2016 developed a rule based NLP
algorithm that depends on a library of accident related keywords to extract precursors and
outcomes from unstructured injury reports in the construction industry [16]. In another
study that was conducted on narratives from Aviation Safety Reporting System (ASRS),
NLP-based text preprocessing techniques along with k-means clustering classification were
used to identify various safety events of interest [17]. Baillargeon et al., 2021 [18] used
NLP and machine learning techniques to extract features of importance to the insurance
industry from public domain highway accident data. In an analysis conducted on infraction
history of certain mine categories, ML-based classification and regression tree (CART) and
random forest (RF) models were used on Mine Safety and Health Administration (MSHA)
database narratives in predicting the likely occurrence of serious injuries in near future
(the following 12-month period) [19].

The application of NLP-based machine learning to mining industry safety data is
relatively new. Yedla et al., 2020 [20] used the public domain (MSHA) database to test the
utility of narratives in predicting accident attributes. They found that vectorized forms
of narratives could improve the predictability of factors such as days away from work.
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Other researchers used NLP to analyze fatality reports in the MSHA database [21]. Using
co-occurrence matrices for key phrases, they were able to identify some of the common
causes of accidents for specific equipment.

2. Importance of this Paper

In safety-related research, it is typical to demonstrate NLP and machine learning
capabilities on public domain databases. Models are first developed on a public domain
database, after which its capabilities are demonstrated on an independent subset of the
same database. Since modeling and subsequent demonstration of model capabilities
happen on the same dataset, there is no certainty that these approaches or models would
be effective on databases created by other sources. For example, every entry in an MSHA
database is made by a federal employee. Would a federal employee describe an incident
the same way as a mining company employee? If yes, then there exists a specific language
for mine safety that is shared by safety professionals. This ‘language’, if it exists, can be
leveraged to make NLP-based machine learning of mine safety data very effective.

This paper advances the use and application of NLP to analyze mine safety incident
reports by demonstrating that machine learning models developed on public domain mine
safety databases can be applied effectively on private sector safety datasets. Therefore, it
demonstrates that there is a language of safety that spans organizations. Furthermore, this
paper identifies key attributes of specific categories of incidents. This knowledge can be
used to improve algorithms and/or understand their performance.

More generally, the paper advances the field of mine safety research. Currently,
data-mining-based mine safety researchers focus only on categorical or numerical data.
Therefore, gained insights are limited to statistical characterization of data (such as average
age, or work experience) or models based on these data [4]. If narratives are available with
incident data (as they often are), this paper will encourage researchers to evaluate them to
glean more insights into the underlying causes.

3. Research Methodology
3.1. MSHA Accident Database

The MSHA accident database [22] has 57 fields used to describe safety incidents
including meta-data (mine identification, date of incident, etc.), narrative description of
the incident, and various attributes of the incidents. Some of the data is categorical such
as body part injured and accident type. More than eighty-one thousand (81,298) records
spanning the years 2011 to early 2021 were used in this research. Any operating mine in
the United States that had a reportable injury is in the database. Thus, the database reflects
many types of mines, jobs, and accidents.

Accidents are classified in the database as belonging to one of 45 accident types.
Examples include “Absorption of radiations, caustics, toxic and noxious substances”,
“Caught in, under or between a moving and a stationary object”, and “Over-exertion in
wielding or throwing objects”. Looking at these definitions, it appears that MSHA defined
them to almost answer the question “What happened?” Thus, the category is simply the
high level human summary of the narrative, i.e., the category is the “meaning” of the
narrative. In this paper, the MSHA accident type is considered a proxy for the meaning of
the narrative. Narratives are typically five sentences or less.

3.2. Random Forest Classifier

The random forest (RF) technique was used to classify the narratives based on accident
types. Random forests are simply a group of decision trees. Though described here briefly,
those unfamiliar with decision trees are referred to Mitchell, 1997 [23], a good textbook on
the topic and the source for the description below. A decision tree is essentially a series
of yes or no questions applied to a particular column (“feature”) of the input data. The
decision from the question (for example, miner experience > 10, where miner experience is
a feature in the data set) segments the data. Each question is, thus, a “boundary” splitting
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the data into two subsets of different sizes. The segmented data may be further segmented
by applying another boundary, though the next boundary may be on another feature.
Applying several boundaries one after the other results in numerous small subsets of
data, with data between boundaries ideally belonging to a single category. The maximum
number of decision trees applied in the longest pathway is called the “tree depth”. The
method works by applying the sequence of boundaries to a sample, with the final boundary
determining its class. Note that while one boundary (also called “node”) makes the final
decision on the class for one sample, some other boundary may make the decision for
another sample. It all depends on the path taken by a particular sample as it travels through
the tree. When the final boundary does not result in a unanimous class, the most popular
class in the subset is used as the final decision of the class.

Boundaries are set to minimize the error on either side of the boundaries. The com-
bination of a given data set and given boundary criteria will always result in a specific
tree. In an RF, a decision tree is formed by randomly selecting (with replacement) the data.
Thus, while a traditional decision tree will use the entire modeling subset for forming the
tree, a decision tree in an RF will use the same amount of data, but with some samples
occurring multiple times, and some not occurring at all. Thus, the same data set can yield
multiple trees. In the RF technique, multiple trees formed with a random selection of data
are used to classify the data. One can then use any method of choice to combine predictions
from the different trees. This method of using a group of trees is superior to using a single
decision tree.

In this paper, an RF classifier was applied to model the relationship between a narrative
and its accident type. A non-MSHA database would contain narratives, but not any of
the other fields populated by MSHA staff. Since the goal of the project is to test it on
non-MSHA data, no other field in the database was used to strengthen the model. Half of
the records were randomly selected to develop the model. It was tested on the remaining
half of the records to evaluate its performance on the MSHA data. In the final step, the
model was tested on non-MSHA data. There is no standard for what proportion of data to
use for training and testing subsets, though it is expected that the subsets be similar [24]. A
50–50 split is a common practice [25,26]. RF models were developed using the function
RandomForestClassifier () in the SCIKIT-LEARN [27] toolkit. As is common practice in
machine learning [28], the authors did not code the RF but used a popular tool instead.

Modeling starts by making a list of non-trivial words in the narratives. As is typical
in NLP, the narratives were pre-processed before the list of non-trivial words is made.
Pre-processing consisted of:

• Changing case to lower case.
• Removal of specific words: This consisted of the removal of acronyms common in

MSHA databases, and a custom list of “stop words”. Stop words are words such as
stray characters, punctuation marks, and common words that may not add value.
These are available from several toolkits. The stop words list available from NLTK [29]
was modified and used in this paper.

• Lemmatizing: This was done using the lemmatizer in the spacy [30] toolkit. Lemma-
tizing is the grouping of similar words, or rather, identifying the foundational word.
This is done so that related words are not considered separately. For example, consider
the two sentences, “He was pushing a cart when he got hurt” and “He got hurt as he
pushed a cart”. The lemmatizer would provide “push” as a lemma for both pushing
and pushed, and push would replace pushed and pushing in the narrative.

The combined length of all narratives was 1.72 million words, consisting of 31,995 unique
words or “features”. The list of unique features is called the vocabulary. The input data set
is then prepared by selecting the top 300 most frequently occurring words (“max features”).
Essentially, the vocabulary is cut from its full length to just the words occurring most
frequently. These words are used to vectorize each narrative such that each narrative is
represented as a vector of size 300. The value at a given location in the vector would
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represent the number of occurrences of that word in that narrative. The top 5 words were:
fall, right, left, back, and cause.

The output for the narrative consisted of a 1 or a 0, indicating whether it belonged
(“1”) to a particular category of accident or not (“0”). “Max features” is a parameter in
RF modeling, and was set to 300 after trial and error exercises. Similarly, the number
of trees (“n_estimators”) was set to 100. Another parameter is “max_depth” (maximum
depth of tree). This parameter was not set. Whenever a parameter is not specified, the tool
uses default values. In the default setting for tree depth, data is continually segmented
till the final group is all from the same class. According to the user guide of the tool, the
main parameters are the number of trees, and max features. The rest of the parameters
were not set, i.e., default values were used. The interested reader can visit the provided
links for technical details about the toolkits in the footnotes, including the default val-
ues. The tool combines the outputs of the various trees by averaging them to obtain the
final classification.

Among the 45 accident types are some whose names start with the same phrase.
For example, there are four over-exertion (OE) types, all of which start with the phrase
over-exertion. They are (verbatim): Over-exertion in lifting objects, over-exertion in pulling
or pushing objects, over-exertion in wielding or throwing objects, and over-exertion NEC.
Accident categories whose names begin with the same phrase are considered to belong to
the same “type group”, with the phrase defining the grouping.

NEC stands for “not elsewhere classified,” and is used within some type groups.
When it exists, it is often the largest sub-group as it is for everything that is not easily
defined. There are 11 types that start with “Fall”, including two that start with “Fall
to”. Five types start with “Caught in”. Six start with “Struck by”. These accident type
groups contain 26 of the 45 accident types, but 86% of all incidents (35,170 out of 81,298).
Table 1 shows the four type groups that were modeled in this paper. Separate models were
developed for some of the sub-groups to get an understanding of these narrowly defined
accidents. These were:

• Over-exertion in lifting objects (OEL).
• Over-exertion in pulling or pushing objects (OEP).
• Fall to the walkway or working surface (FWW).
• Caught in, under or between a moving and a stationary object (CIMS), and
• Struck by flying object (SFO).

Table 1. The four type groups of accidents modeled in the paper.

Type Group: Caught in Type Group: Fall Type Group: Over-Exertion Type Group: Struck

Caught in, under, or between a
moving and a stationary object Fall down raise, shaft or manway Over-exertion in lifting objects Struck by concussion

Caught in, under, or between
collapsing material or buildings Fall down stairs Over-exertion in pulling or

pushing objects Struck by falling object

Caught in, under, or
between NEC

Fall from headframe, derrick,
or tower

Over-exertion in wielding or
throwing objects Struck by flying object

Caught in, under, or between
running or meshing objects Fall from ladders Over-exertion NEC Struck by powered moving object

Caught in, under, or between two
or more moving objects Fall from machine Struck by rolling or sliding object

Fall from piled material Struck by... NEC
Fall from scaffolds,

walkways, platforms
Fall on same level, NEC

Fall onto or against objects
Fall to lower level, NEC
Fall to the walkway or

working surface

Thus, a total of nine RF models were developed; four for the four type groups, and five
for the specific types. Table 2 shows the characterization of the training and testing subsets
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that went into developing the models. It is apparent that each category was represented
about the same in the two subsets.

Table 2. Various accident categories in the training and testing subsets. Each subset has 40,649 samples.

Subset Type Group:
OE

Type Group:
Caught in

Type Group:
Struck by

Type Group:
Fall OEP OEL FWW CIMS SFO

Training 8909 4563 10,216 4802 1290 2838 2130 3337 1586

Testing 8979 4524 10,226 4926 1275 2961 2130 3310 1590

In classification exercises, it is common to develop a single model to classify a data set
into multiple categories, rather than develop models for each category individually. The
reason for developing nine models instead of one is discussed in the next section.

4. Results
4.1. Performance within MSHA Data

Table 3 shows a summary of the modeling within the MSHA test set. To understand
the table, consider the OE type group. Of the 40,649 records in the test set, 8979 records
were from this type. The success of an RF model can be determined by identifying the OE
type as OE type and/or by classifying a non-OE type (31,670 records) as not belonging to
OE. This is shown below through a simple computation.

Table 3. Results of RF models in the MSHA test set.

Metrics Type Group:
OE

Type Group:
Caught in

Type Group:
Struck by

Type Group:
Fall OEP OEL FWW CIMS SFO

Records from
Category 8979 4524 10,226 4926 1275 2961 2130 3310 1590

Overall Success 92% 96% 90% 95% 98% 96% 96% 95% 97%
% from

Category
Accurately
Predicted

81% 71% 75% 71% 37% 59% 34% 55% 25%

False Positive 4% 1% 5% 2% <1% <1% <1% 2% <1%

• Total samples (n_samples): 40,649
• Total samples in target category (n_target): 8979
• Total samples in other categories (n_other): n_samples − n_target = 31,670
• Samples from target category predicted accurately (n_target_accurate): 7248
• Samples from other category predicted wrongly as target (false_predicts): 1331
• Samples from other category predicted correctly as other (other_accurate): 31,670 −

1331 = 30,339
• Percentage of targets accurately predicted: 100 × n_target_accurate/n_target = 100 ×

7248/8979 = 81%
• False positive rate: false_predicts/n_other = 1331/31,670 = 4%
• Total correct predictions (total_correct): n_target_accurate + other_accurate = 7248 +

30,339 = 37,587
• Overall success rate (%) = 100 × total_correct/_samples = 100 × 37,587/40,649 = 92%

The overall success was 92%, i.e., a very high proportion of narratives were classified
correctly as belonging to OE type group, or as not belonging to OE type group. Though
it is an indicator of overall success, this type of evaluation is not particularly useful, as
classifying a narrative as “not belonging to OE” is not helpful to the user. It is more useful
to look at how successful RFs were in correctly identifying narratives from the accident
type in question (OE type group in this example). As shown in the table and in the example
computation, 81% of these 8918 (7248) were accurately identified. The false positive rate
was 4%, i.e., 1331 of the 31,670 non-OE records were identified as OE. The low positive rate
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implies that if a narrative was classified as belonging to the OE type group, it was highly
likely to belong to that type. The success in the other type groups was lower, and ranged
from 71% to 75%, with false positives ranging from 1% to 5%. Thus, one could expect RF to
accurately identify about 75% of the narratives in the MSHA database from the four type
groups, with a good false positive rate.

The success rate takes a dramatic downturn with the individual models. Only 25% to
59% of narratives belonging to the individual types are correctly classified though with
a negligible false positive rate. The negligible false positive implies that when the model
classifies the narrative as belonging to a specific category, it is almost guaranteed to be in
that category. The low number of records in the individual categories is one part of the
explanation of the poor performance, as models would be less powerful if they are trained
on fewer records. For example, only about 3% of the records were from the OEP category.
This means that 97% of the data seen by the OEP model was not relevant to identifying OEP.
An additional explanation is obtained from trigram analysis of the narratives that belong
to these accident types. Trigrams explore the sets of three words that occur consecutively
the most. Trigram analysis was conducted using the NLTK collocations toolkit.

Table 4 shows the tri-word sequences that occur the most frequently in the OE acci-
dent types. They are listed in order of frequency. The overlap between the tri-words is
immediately apparent. Back, shoulders, knee, abdomen, and groin are injured most in
these types of accidents. The overlap between OEP and OEL would cause accidents to
be misclassified as belonging to the other category. This issue is also evident in the Fall
accident types (Table 5), where losing balance, slipping, and falling seem to be the major
attributes. Even the two types “Caught in” and “Struck by” have some overlap (Table 6).
Caught in makes it apparent that it is the fingers that are predominantly injured in this
type of accident. SFO highlights that eyes and safety glasses are impacted when someone
is struck by a flying object.

Table 4. Results of trigram analysis on OE accident types.

Type Group: OE OE Lifting OE Pulling

feel pain back feel pain back feel pain back
pain low back pain low back feel pain shoulder
feel pain low feel pain low feel pain right
feel pain right feel low back feel pain low

feel pain shoulder feel pain shoulder feel pain left
feel pain left feel pain right feel pain groin

feel pain knee feel pain left feel pain abdomen

Table 5. Results of trigram analysis on Fall accident types.

Fall FWW

lose balance fall lose balance fall
slip fall ground slip fall right

cause lose balance slip fall left
foot slip fall slip fall ground

slip fall backward cause lose balance
step lose balance place restrict duty

lose balance cause slip fall ice
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Table 6. Results of trigram analysis on Caught in and Struck by accident types.

Caught in . . . CIMS Struck by . . . SFO

right index finger right index finger piece rock fell wear safety glass
left index finger left index finger rock fall strike safety glass eye

right middle finger left ring finger cause laceration require eye safety glass
left ring finger right middle finger left index finder behind safety glass

right ring finger right ring finger strike left hand go safety glass
left middle finger pinch index finger right index finger safety glass face
pinch index finger left middle finger wear safety glasses safety glass left

The success rate for classification was dramatically lower when a single RF model
was developed to classify the narratives into separate categories. OEP, OEL, FWW, CIMS,
SFO had success rates of only 23%, 33%, 19%, 29%, and 17% respectively compared to
37%, 59%, 34%, 55%, 25% respectively. Multiple models for multiple categories would
require that multiple models be applied to the same data, resulting in multiple predictions
of category. It would be possible then for a particular narrative to be categorized differently
by the different models. In such situations, one could determine the similarity between the
narrative and the narratives from the multiple categories in the training set to resolve the
conflicting classifications. The features (words) of the category within the training set are
the foundation behind the model for the category. For example, the words in the “Struck
by” category in the training set play a key role in what RF trees are formed in the “Struck
by” model. Thus, when a test narrative is classified as “Struck by” by one model, and
“Caught in” by another, one could find the similarity between words in the test narrative,
and the words in the two categories of the training data, “Struck by” and “Caught in”, to
resolve the conflict. This is demonstrated in the next section.

4.2. Performance on Non-MSHA Data

The nine RF models were applied to data from a surface metallic mine in the United
States that partnered in this project. The data consisted of narratives that described various
safety incidents. Injury severity ranged from very minor incidents to lost time accidents.
Narratives were typically longer than MSHA narratives (about twice the length), and
formats were sometimes different (such as using a bulleted list). They usually had more
details about the incident. The narratives were written by a staff member from the safety
department. Narratives from the 119 unique incidents logged in 2019 and 2020 were
analyzed. Some narratives were duplicated in the database. Duplicates of narratives were
ignored. Each model was applied to the 119 narratives separately.

The RF models classified 76 out of the 119 narratives (Table 7) with a high degree of
success. 17 narratives were classified by multiple models, but not misclassified (explained
later). Forty-three (43) narratives were ignored by all nine models, i.e., they were not
classified as belonging to a particular category. The classifications were manually evaluated
by the authors to see if they would match the MSHA Accident Types. In many cases, the
MSHA database contained an accident that was not only similar to the narrative being
manually evaluated but was also classified into the same accident type as the narrative in
question. Therefore, the manual validation was easy. A narrative was deemed as accurately
classified if it was also classified as such by the authors. The 43 narratives that were not
classified by any of the nine models could possibly belong to one of the 19 MSHA accident
types not modeled in this paper. The overall success rate was 96%.

Table 7. Performance of RF models on non-MSHA data.

Metrics OE OEP OEL Fall FWW Caught in CIMS Struck by SFO Overall

Number 26 1 4 14 3 9 7 27 2 93
Validation 85% 100% 100% 100% 100% 100% 100% 100% 100% 96%
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The OE category is quite broad and, therefore, one would expect some narratives to
be wrongly classified as OE. Therefore, it is not surprising that 4 out of the 26 classified
as OE did not belong in that category. One narrative involved an employee who had a
pre-existing soreness in the wrist. The ‘incident’ was simply the employee reporting to
the clinic. Two incidents involved employees backing into or walking into a wall or object
while working. The fourth incident involved chafing of the calves from new boots. Some
of these incidents would perhaps have been also classified differently had models been
developed for the other accident types.

Table 8 shows examples of some of the narratives and the automated classifications.
Examples are shown for the narrowest categories as they would normally be the most
challenging to identify. Table 9 shows how the overlapping occurred in the 17 narratives.
Three narratives were classified as both Fall and FWW, while seven were categorized as
both “Caught in” and CIMS. Since nine models were used in parallel, it was possible
for each narrative to be categorized into nine different categories. Yet, no narrative was
categorized as belonging to three or more different categories. Except for one, these
overlaps should be expected. For example, OEL is a subset of OE. Therefore, a narrative
classified as OEL by the OEL model is expected to be also classified as OE by the OE model.
The overlap between a type group and one of its sub-type is a confirmation that models are
working properly. It is good that there was no overlap between OEL and OEP. The overlap
between “Caught in” and “Struck by” was surprising as they are different categories. The
narrative that was classified as both “Caught in” and “Struck by” is (verbatim): “while
installing a new motor/pump assy. using portable a cherry picker, the cherry picker tipped
over and the assembly caught the employee leg and ankle between the piping and the
motor assembly.” Tools and equipment that tip over and cause injury have been reported
in the “Struck by” category in the MSHA database. A limb caught in between two objects
is reported in the “Caught in” category in the MSHA database. Thus, the RF models were
correct in their classification of the narrative. However, the overlap in classification presents
a good opportunity to demonstrate how one could use “similarity scores” to resolve the
overlap. The steps of the process, to resolve conflicting classifications of “Caught in” and
“Struck by” are:

1. Consider the non-trivial words in the problem narrative: “instal new motor/pump
assy.use portable cherry picker cherry picker tip assembly catch leg ankle piping
motor assembly”. This list of non-trivial words was obtained after pre-processing.
Note that “instal” is not a typo but a product of the lemmatizer.

2. Consider the word frequencies of the training set when the accident category was
“Caught in”. There were 4894 unique words in the 4563 narratives from that category.
The top 5 words were finger (0.036), hand (0.021), right (0.015), pinch (0.0148), and
catch (0.0143) with the number in parenthesis indicating the proportion of times the
word occurred within that category of narratives.

3. Similarly, consider the list of words in the “Struck by” category. There were 7758
unique words in the 10,216 narratives. The top 5 words were strike (0.019), left (0.014),
right (0.014), cut (0.013), and fall (0.012).

4. Now obtain the similarity score between the narrative and a category by weighing
each word of the narrative by the proportion of occurrence within the category. This
makes sense as the frequency of occurrence of a word in a category is an indicator of
its importance to the category. For example, if “leg” gets “Caught in” less frequently
than “Struck by”, it will occur in lower proportion in “Caught in” than in “Struck
by”. The words in the “Struck by” list occurred 16 times in the narrative for a total
similarity score of 0.0168. There are 13 unique words in the 16 occurrences. The
top 3 contributors were “leg”, “/” and “install” with scores of 0.004, 0.0027, and
0.0023 for each occurrence in the narrative.

5. Similarly, obtain the total similarity score for all the other categories. For “Caught in”,
the score is 0.0338. The top 3 contributors in the narrative were “catch” (0.014), “tip”
(0.0045), and “install”. It is insightful to note how much more “catch” contributed as
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a top word than “leg” did as a top word. Clearly, “catch” is a bigger determiner of
“Caught in” than leg is of “Struck by”.

6. The decision as to which category the narrative belongs is the one with the highest
similarity score. In this case, the narrative is deemed to be of the category “Caught in”.

Table 8. Examples from the partner mine HSMS, and the automated classifications. Narratives
are shown verbatim, but some text has been deleted (identified by . . . ) to not disclose sensitive
information.

Accident Type Narrative

OEP Employee pulled a heavy bag with helper and felt sharp pain in mid
back area

OEL . . . Employee strained lumbar back while carrying a portable generator...

FWW
The operator . . . . began the pre-shift walk around, but did not notice the

slick ground conditions. The operator was not wearing any type of
traction device, and slipped and landed on their side/back.

SFO .. While doing so a small piece of shrapnel from shank guard struck
mechanic in the left inner thigh and was lodged into skin . . .

CIMS While moving a turbo charger rotor, employee pinched finger between
the rotor shaft and the crate . . .

Table 9. Counts of overlapping accident types.

Overlapping Types Count

Fall, FWW 3
Caught in, Struck by 1

OEL, OE 3
OEP, OE 1

Struck by, SFO 2
Caught in, CIMS 7

5. Discussion

Two thirds of the narratives in the partner database could be successfully classified
(96% accuracy) without any human intervention. The narratives that are not automatically
classified could belong to categories not modeled in this paper. At this time, they were not
manually analyzed to determine their nature. The nearly absent overlap in predictions
for distinct accident types is encouraging as that allows the multiple-model-for-multiple-
category approach to work. That is further strengthened by the low false positive rates
for the distinct categories, i.e., when a particular model for a distinct category (say OEP)
claims that a narrative belongs to that category, the classification is most likely valid. The
similarity score approach is presented to resolve cases where a narrative is classified into
multiple categories due to the use of multiple models.

The classifications done in the paper were not an empty computational exercise thanks
to how MSHA classified the accidents. An increase in narratives being classified as SFO
would tell management that foreign matter was entering the eyes of their employees.
This is the same as humans reading the narratives, understanding them, and reaching that
conclusion. Thus, in some sense, the RF models picked up what the narratives “meant”. The
high classification success rate also meant that there were specific ways safety professionals
describe incidents and that NLP tools can extract that language.

These tools have excellent applicability to help the mining industry reach the industry
goal of preventing serious injury and fatalities. On noting an increase in SFO classifications,
management can deploy eye protection related interventions. An increase in OEL incidents
could result in more training about safe lifting. The safety “department” in most mines
means a single person with no mandate or expertise to analyze data. These types of tools
can assist mines to analyze data without human intervention. As mines deploy smartphone-
based apps to collect employee reports on worksites, the volume of information will
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explode. However, these tools will help mines process that data and identify hazards
before they become incidents.

The detection rate for the narrowest of categories needs to be improved. Improving
this would be the most logical next step for this research. A reason why NLP tools were
not always effective may be how incidents are described in the narratives. A limitation of
the approach is that it is dependent on the terminology and the writing style. For example,
“roof bolter” related incidents may not be detected by NLP in narratives when the writer
uses the term “pinner” to refer to a bolter (though the diligent NLP developer would notice
the frequent occurrence of “pinner” in narratives involving “roof”). “Pinner” is a common
term for roof bolters in certain parts of the US. Terminology aside, writing style can vary
dramatically depending on the region and the English language abilities of the writer.
Considering all of these, the MSHA database may not be a great resource for English based
NLP tools in other parts of the world. Regardless, organizations (or nations) developing
their own NLP tools could provide training to standardize the writing of safety narratives,
so that data is generated to assist automation.

The extremely low false positive rate for the narrowest accident types is a wonderful
argument for considering these tools. The overall false positive rate across all accident
types is quite low, which is good.

6. Conclusions

Natural language processing based random forest models were developed to clas-
sify narratives in the MSHA database depending on accident types. Nine models were
developed. Four of the models, i.e., Over-exertion, Fall, “Caught in” and “Struck by”,
looked at type groups, i.e., groups of particular accident types. Five models looked at
specific accident types within these broad groups. They were: Over-exertion in lifting
objects, Over-exertion in pulling or pushing objects, Fall to the walkway or working surface,
“Caught in”, under or between a moving and a stationary object, and Struck by flying
object. All models had high overall success rates (typically 95% or higher) in classification
on MSHA data when considering both false positive and false negative rates. The success
in detecting an accident type within a narrative was higher for type groups (71–81%) than
for individual categories (25–59%). Detection was done with low false positive rates for
type groups (1–5%), and extremely low false positive rate (<1%) for individual categories.

When a single model was developed to classify narratives into multiple categories,
it did not perform as well as when a separate model was developed for each category.
A similarity score based method was developed to resolve situations where a particular
narrative may be classified differently according to different models.

When applied to non-MSHA data, the developed models were successful in classifying
about two-thirds of the narratives in a non-MSHA database with 96% accuracy. The
narratives that are not classified by the models could belong to accident types not modeled
in this paper. In classifying the non-MSHA narratives with near perfect accuracy, the
paper demonstrates the utility of NLP-based machine learning in mine safety research.
It also demonstrates that there exists a language for mine safety, as models developed
on narratives written by MSHA personnel apply to narratives written by non-MSHA
professionals. They also demonstrate that natural language processing tools can help
understand this language automatically.
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Abstract: This paper presents an advanced computational approach to assess the risk of damage to
masonry buildings subjected to negative kinematic impacts of underground mining exploitation.
The research goals were achieved using selected tools from the area of artificial intelligence (AI)
methods. Ultimately, two models of damage risk assessment were built using the Naive Bayes
classifier (NBC) and Bayesian Networks (BN). The first model was used to compare results obtained
using the more computationally advanced Bayesian network methodology. In the case of the Bayesian
network, the unknown Directed Acyclic Graph (DAG) structure was extracted using Chow-Liu’s
Tree Augmented Naive Bayes (TAN-CL) algorithm. Thus, one of the methods involving Bayesian
Network Structure Learning from data (BNSL) was implemented. The application of this approach
represents a novel scientific contribution in the interdisciplinary field of mining and civil engineering.
The models created were verified with respect to quality of fit to observed data and generalization
properties. The connections in the Bayesian network structure obtained were also verified with
respect to the observed relations occurring in engineering practice concerning the assessment of the
damage intensity to masonry buildings in mining areas. This allowed evaluation of the model and
justified the utility of the conducted research in the field of protection of mining areas. The possibility
of universal application of the Bayesian network, both in the case of damage prediction and diagnosis
of its potential causes, was also pointed out.

Keywords: mining exploitation; masonry buildings; damage risk analysis; artificial intelligence;
Bayesian network; Naive Bayes; Bayesian Network Structure Learning (BNSL)

1. Introduction

The mining process of underground resources significantly disturbs the structure of the
rock mass. This leads to negative effects manifested on the surface of mining areas. Usually,
these take the form of large-scale continuous deformations [1,2], mining tremors [3,4] and
local discontinuous deformations [5,6]. All these phenomena are a potential threat both
in the context of safety [7,8], and often they are the cause of a significant reduction in the
utility of buildings [9,10]. Regarding both of these issues, there have been efforts for many
years to optimize the possibility of extraction of resources with the lowest possible degree
of degradation of the existing buildings on the surface of the mining area. Today, apart from
the issues related to mining technology, the assessment of potential mining damage is one
of the most important problems conditioning the possibility of conducting underground
operations. It is a very complex socio-economic problem, which concerns both owners
or managers of buildings and mine officials. From a practical point of view, it is very
important to be able to reliably predict the expected damage to buildings before mining
activities start, as well as to diagnose the causes of the damage during the occurrence of
effects. An additional difficulty is the uncertainty occurring in the process of collecting
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information on the technical condition of buildings over a long period of exploitation and
imprecise impact forecasts for the planned exploitation. Awareness of the complexity of
this problem led the authors to undertake research using methods classified as artificial
intelligence (AI) [11,12]. Particular attention was paid to methods operating on the basis of
probabilistic notation of uncertainty, which include Naive Bayes Classifier and Bayesian
networks [13,14].

The research was carried out on a database created of masonry buildings, for which
information was established on the intensity of long-term impacts at the location of each
structure and on the structural and material features of buildings, the quality of mainte-
nance and the diagnosed range and intensity of damage. On this basis, two prognostic
models, understood as decision-making systems for damage risk assessment, were created
and compared. The first was the learned and tested structure of the Naive Bayes Classifier
(NBC) [15]. The second, methodologically more complex model, was the Bayesian network
structure [16]. During the construction of this model, an advanced technique involving the
optimal extraction of the Bayes network structure from data (TAN-CL Chow-Liu’s Tree
Augmented Naive Bayes) [17] was used. Thus, a method belonging to the field of Bayesian
networks structure learning from data (BNSL) [18] was used.

The research methodology adopted in this paper to establish a meaningful decision
system for damage risk assessment is currently under development, especially in the
areas of medical science [19], biology [20], genetics [21,22]. This type of methodology is
also used in civil engineering issues, especially in the context of safety [23], risk [24] and
reliability [14] assessment. In addition, a great number of scientific studies indicate the
effectiveness of this type of approach in issues related to hazards arising from the impact of
random phenomena of natural origin (floods [25], earthquakes [26], tsunami [27]). However,
recently one can also encounter implementation of this approach in the interdisciplinary
area combining mining and civil engineering [13,28]. The separation of a model for damage
risk assessment in buildings, in addition to the benefits in terms of optimizing the planning
of the mining process, can be used in a wide spectrum of socio-economic issues and the
digitalization of the construction industry—cf. Figure 1. It seems particularly important
to implement such a tool in the intensively increasing trend of BIM, as an important
component for the area of AEC (Architecture-Engineering-Construction) [29] and FM
(Facilities Management) [30,31]. On the other hand, integration of building issues with
the mining process allows us to include the problem of damage risk assessment into the
activities related to the development of the Industry 4.0 [32].
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Evaluating the issue addressed in this paper only through the narrow prism of the
development of digitalization and the need for optimal planning of the mining exploitation
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process, it is clear that there is a need to create a tool to improve the work of both mining
and civil engineers involved in the process related to the underground exploitation of
resources. An additional advantage of such a tool, based on AI methodology, is the ability
to update the model with access to new data resources. This is especially the case with
Bayesian networks, which, in addition to allowing inference in the mode of prediction of
the range and intensity of damage and diagnosis of its causes [13,28]. This significantly
extends the possibilities of implementing such a tool in other industrial sectors that coexist
with the mining industry.

2. Indicating the Innovation of the Methodological Approach Used for the Research

AI methods are currently used in many areas of science and technology, especially
where, due to the complexity of the issues, it is necessary to apply heuristic approaches.
Although individual tools belonging to this group are still being developed and improved,
the effectiveness of many of them has already been confirmed. The validity of AI methods
has also been justified by research conducted within the interdisciplinary field of mining
and civil engineering [9,13,28,33,34]. Among the available AI methods, the methods that
allow representation of formal uncertainty during inference are particularly useful for
describing the risk of building damage. To date, the most popular methods that allow a
mathematical representation of formal uncertainty are systems based on fuzzy logic [34]
and Bayesian inference principle using probabilistic formalism [35]. Currently, there are
also hybrids resulting from the combination of these two approaches [36,37].

From the point of view of the problem undertaken, there were two main criteria for
the choice of methodology for the construction of the damage risk model. The first criterion
was the use of a notation that would allow mathematical treatment of uncertainty during
the construction and subsequent operation of such a system. The second criterion was
dictated by the practice of making assessments, in which sometimes a prediction of damage
intensity is required for predicted mining impacts, and sometimes a diagnosis of the causes
of damage that has occurred. Therefore, it was decided to reduce the group of potential AI
methods to those based on probabilistic notation. This form of uncertainty description is
used every day by engineers and is found in international standards guidelines [38].

At this point, it should be indicated that other methods whose high efficiency in
relation to the analysis of building damage has been confirmed by numerous studies. The
main tool for failure analysis in building structures, from a mechanical point of view,
is the Finite Elements Method (FEM). With regard to the issues of mining impacts, it is
applicable and confirms its effectiveness, both in static issues related to the impact of land
subsidence [39–41], and in dynamic issues related to the impact of mining tremors [4,42].
However, this type of approach cannot be effectively applied when it is necessary to
forecast the intensity of damage for a large number of buildings. An additional aspect that
hinders this type of approach is often the differences between the structural arrangement of
individual buildings and the lack of transparency of their spatial static arrangements. For
this reason, with regard to the undertaken problem, with full awareness of the advantages
of the FE methodology, it was decided to undertake research based on in-situ data and
apply advanced statistical methods, which include machine learning tools.

In this paper, two methods using probabilistic uncertainty notation are used: Naive
Bayes Classifier (NBC) and Bayesian Network (BN) methodology. The NBC methodology
was used to obtain a reference model for the methodologically more complex approach
using Bayesian networks. The results obtained for NBC provided a reference basis for
assessing the quality of the established BN structure, which was considered the target
model for describing the issue addressed in this paper.

Although Bayesian networks have already been successfully applied in issues of risk
assessment of the occurrence of various types of negative natural or anthropogenic phe-
nomena [43,44], the main problem is to determine the appropriate structure of such a model.
Applications of Bayesian networks, whose structure is mostly arbitrarily determined by
an expert, are encountered in mining and civil engineering problems. This approach is
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efficient but is limited by finite human perception. This makes it impossible to build expert
systems for processes or phenomena with a large number of variables. The risk problem
related to the phenomenon of damage to existing buildings affected by mining exploitation
depends on dozens of factors, the influence of which cannot be neglected in the analysis.
Therefore, the application of a methodology based on the detection of the BN structure from
data is indispensable in this case. In this regard, the issue is still open and requires testing
various methods involving BN structure learning from data (BNSL—Bayesian Network
Structure Learning). Implementations of BNSL methods are not often seen in engineering
problems, especially civil engineering and mining. For this reason, the issue addressed in
this paper is considered original and innovative in the above engineering fields.

3. Characteristics of the Information Collected in the Building Database and
Description of Mining Impacts

Fulfilling the set research purposes, which consisted in building and verifying the
NBC classifier and the BN structure, at the beginning required collecting data on the
behavior of buildings subjected to the influence of mining exploitation. The most relevant
factor here was the observed damage in the buildings before the mining operation and the
actualization of the damage after it.

During the passage of underground exploration on the ground surface, deforma-
tion occurs. In general, vertical (w [mm]) and horizontal (u [mm]) displacements occur.
However, in order to relate the deformation of the terrain to the problem of the threat of
buildings, detailed measures are introduced, which are derived from vertical and horizon-
tal displacements. These measures are horizontal deformations (ε [mm/m]), inclinations
(T [mm/m]) and curvatures (R [km] of terrain. The values of these parameters may be
established on the basis of model tests or as a result of geodetic measurements [45].

In order to explain the meaning of variables used in the research, the process of
formation of a mining basin was presented and interpreted schematically in Figure 2.
However, the characteristic damage to buildings on the convex and concave margins of a
mining basin is illustrated in Figure 3.
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(T) inclination; (K) ground curvature; (ε) horizontal ground strain (own source).

Finally, a group of 207 buildings was qualified for further analysis. Next, “in-situ”
field research was carried out, during which information on the buildings was collected
and finally archived in the database. The “in-situ” field research for the selected group
of buildings concerned the determination of, among others, the geometrical parameters,
applied structural solutions, existing protection against mining influence and the range
and intensity of the existing damage. An example of two representative buildings from
among all those qualified for the survey is presented in Figure 4.
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Figure 4. Two examples of the 207 masonry buildings qualified for the study: (a) example of a
partially renovated building; (b) example building after full renovation.

Investigations of the state of damage to buildings taking into account the range and
intensity, as well as the threat to the safety of the structure and users, made it possible to
classify each case into one of four categories [47].

The description of the accepted building damage categories can be presented as follows:

• damage category 1: no structural damage, possible occurrence of damage in the form
of insignificant cracks on the plaster of walls and ceilings.

• damage category 2: more intensive damage to non-structural elements and finishing
elements, such as cracking or local separation of ceiling soffits, trimming of ceiling
and wall plaster, cracking of elevation and interior wall plaster.

• damage category 3: damage in structural elements, the range, intensity and location
of which, in the case of further ground deformation influences, may lead to the local
loss of load-bearing capacity or stability of structural elements

• damage category 4: damage threatening the local load-bearing capacity of its elements
(which could have already been subjected to temporary protective works), or buildings
in which there is large natural wear of structural elements, manifested by extensive
and advanced erosion of masonry or concrete and reinforcement.

The distribution of damage intensity to buildings in the period 2011–2017 according
to the adopted categorization is presented in Figure 5.
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Figure 5. Distribution of building damage categories determined during the inventory in the years 2011–2017.

In the period of research, i.e., in the years 2011–2017, the development in the study
was subjected to the influence of coal mining, carried out in the system with roof collapse,
whose characteristic parameters are summarized in Table 1.

Table 1. Summary of basic parameters of mining exploitation in the study area.

Deck Wall Height [m] Depth [m] Period of Exploitation

503 4 2.6–3.3 625–720 2011–2013

510 wg 30a and 31a 2.0–2.4 725–805 2013–2015

503 5 i 6 2.0–2.3 670–680 2015–2017

In the process of creating the database, information was collected on the occurring
values of the horizontal ground deformations (ε—cf. Figure 2) in the locations of particular
buildings. The basis for determining the values and directions of strains were the results
of surveying measurements conducted by the mine. In turn, approximation of values
and directions of strains to the location of each building was performed using dedicated
modeling methods based on Budryk–Knothe theory [48]. The quantity of buildings, which
were affected by horizontal tensile strain ε+, together with their values with the accuracy
of 0.5 mm/m, is presented in Figure 6. Whereas the quantity of buildings, which were
affected by horizontal compressive strain ε− is presented in Figure 7.
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of buildings from the period 2011–2017.
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Based on the horizontal deformation impacts collected above, the resulting mining
terrain categories were determined [46]. In this form, the intensity of influences from
continuous deformation of the mining area was classified and included in the database.

Finally, taking into account multiple inspections of the technical state for the same
buildings, a study material of 594 design cases was collected. A synthetic summary of
building data and meaningful mining impacts is presented in Table 2.

Table 2. List of variables with indication of their discretization (categories).

Variable Type Variable Code No. of Categories

Geometry

Length Geo1 8

Width Geo2 6

Building area Geo3 10

Number of overground storeys Geo4 5

Volume Geo5 11

Length of a series of compact buildings Geo6 12

Dilation method Geo7 3

The shape of the building’s body Geo8 4

Basement Geo9 3

Variable level of foundation Geo10 2

Variable building height Geo11 2

Construction

Foundation type Con1 3

Basement wall material Con2 3

Material of the walls of the ground floor
and above Con3 2

Ceiling above the basement Con4 5

Ceiling above the ground floor and above Con5 3

Lintels Con6 3

Protections for mining influence Con7 4

Protections—supplementary data Con8 3

Other technical data

Year of construction Otd1 8

Natural wear (technical condition) Otd2 5

Repair factor Otd3 2

Static (deformation) resistance category Otd4 3

Mining impacts Mining threat category of the terrain MC 3

Damage
Damage category before impacts Dmg1 4

Damage category after impacts Dmg2 4
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4. Characteristics of the AI Methods Used in the Research

As part of the research, it was decided to choose supervised learning as the optimal
method to achieve the purpose [49]. Within this area, the NBC (Naive Bayes Classification)
and BNs (Bayesian Networks) methods were qualified for further research. This choice was
dictated by the fact that these methods allow notation of risk in a probabilistic form, which
is in accordance with the functioning nomenclature in this area at an international level [50].
An additional advantage of these methods is the ability to capture uncertainty and, in the
case of BNs, additionally incompleteness of information concerning the input variables.
The last very important advantage from the utilitarian point of view, and concerning only
BNs, is the possibility of inference in any direction. In the problem of damage risk, this
proves that this model can be used both in the case of predicting the intensity of damage as
well as to diagnose its causes.

Finally, it was concluded that the target damage risk model would be created using
the BN method. The NBC method, on the other hand, would serve as a reference basis for
verifying the quality of the model described by the extracted optimal BN structure.

4.1. NBC—Naive Bayes Classification

The NBC method determines the probability of occurrence of particular classes/
labels/categories of the so-called decision variable depending on a given set of input
variables. On the basis of the probability value, the classification result is determined by
means of ranking. This result is called the classifier indication. Unlike BN, the assumption
of mutual independence of particular input variables is used here. Taking n input variables
described as x1, x2, x3, . . . , xn and the output variable y described by the number of
classes: c1, c2, c3, . . . , ck the mathematical form of the inference process expressed as [51] is
obtained (1):

P(Ck|x1, x2, x3, . . . , xn) =
P(Ck)∏n

j=1 P(xj|Ck)

P(x1, x2, x3, . . . , xn)
(1)

The assumption of independence is often overly optimistic (naive), but it allows for
significant simplification of the computational procedure.

The schematic diagram of the NBC network structure is presented in Figure 8.
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Two procedures are used to build an NBC classifier from the learning dataset: Max-
imum Likelihood Estimation (MLE), which maximizes the conditional likelihood P(c|x)
understood here as the verifiable claim of the existence of each class for the learning
data [51] (2):

hMLE = arg maxP(Ck|xj) (2)

or Maximum a Posteriori Estimation (MAP), which maximizes the posteriori probability of
occurrence of each class for the learning set [51] (3):

hMAP = arg maxP(xj|Ck) (3)

The main advantages of the NBC classifier include high learning speed with relatively
high classification accuracy. The quality of classification is not strongly determined by the
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number of learning data, which is also considered to be an advantage of this approach.
However, due to the assumption of mutual independence of all input variables, it can
be assumed that the model structure may not reflect the real relationships between the
analyzed variables in the issue of describing the risk of building damage. Therefore, in the
framework of the present research, the NBC model created will play a comparative role,
giving an idea about the effectiveness of a more complex model in the form of a separate
BN structure.

4.2. BN—Bayesian Network

The Bayesian network (BN) can be interpreted as a Directed Acyclic Graph (DAG).
The graph structure (G) encodes information about the interrelationships between the
variables X = {X1, . . . , XN}, k which is represented by graph edges (E) and nodes (V). In a
meaningful sense, the fixed BN represents the joint probability distribution over the set of
all random variables, which can be represented as [52] (4):

P(X|G, Θ) =
N

∏
i=1

P(Xi|ΠXi , ΘXi ) (4)

where:

G = G(X, E, V)—mathematical notation for describing the acyclic directed graph structure
X = {X1, . . . , XN}—the set of all variables that belong to the nodes of the graph

Xi = {x(1)i , . . . , x(ki)
i }—states of the i-th variable of X

E—set of all edges
V—set of all nodes

ΠXi = {x
(q1)
i , . . . , x(qi)

i }—the set of parents, i.e., all nodes of the graph that determine the
state of the node Xi
θ = {θX1 , . . . , θXN}—the set of all parameters of conditional relations between particular
nodes Xi, and a set of their parents ΠXi

In the case of discrete variables, the latent parameters of the model θXj = {θijk} are
represented in terms of a multinomial Conditional Probability Table (CPT) whose elements
are expressed as [51] (5):

θijk = P
(

Xj = x(i)j

∣∣∣ΠXj = π
(k)
j

)
(5)

According to relation (4), the joint distribution P(X|G, Θ) is decomposed based on
the conditional local distributions P(Xi|ΠXi , ΘXi ), described over each random variable
Xi relative to its corresponding set of conditional variables so-called parents ΠXi . This
formulation is possible due to the concept of conditional independence introduced by
Pearl [53]. This allows for a significant reduction in the number of links that do not show
cause-and-effect relationships. The introduction of the proposed linkage reduction allows
significant simplification of the calculations related to the modelling of the joint probability
distribution and simplifies the subsequent interpretation of the structure by the human user.

A diagram of an exemplary BN structure is presented in Figure 9. The provided
diagram illustrates in a simplified manner the coding within CPT and the meaning inter-
pretation of the nodes of the so-called parents.
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probabilities for a selected node (CPT).

The procedure for learning a BN from data consists of two interconnected steps:
Structure Learning and Parameter Learning [54], which can be written as (6):

P(Model|D) = P(G, Θ|D)︸ ︷︷ ︸
learning

= P(G|D)︸ ︷︷ ︸
structure learning

· P(Θ|G, D)︸ ︷︷ ︸
parameter learning

(6)

The self-contained extraction of BN structure from the data is much more difficult than
the implementation of an arbitrarily determined model, e.g., based on expert knowledge.
This approach is mostly used where it is required to extract relationships among a large
number of variables used to describe a given process. In such situations, determining the
network structure from the data based on expert knowledge is impossible. This is dictated
by the limited human perception when it comes to analyzing multivariate problems.

With respect to learning the BN structure from data, the unknowns are both the
network structure (G) and the parameters (θ) of the multinomial probability distribution
tables (CPTs). In general, there are three different approaches in learning BN structure
from data: constraint-based structure learning, score-based structure learning, and hybrid
algorithms [35].

The risk of damage to buildings is described by numerous factors with subtle contri-
butions, as demonstrated by years of research described, among others, in [10]. With these
considerations in view, it is important that as many of the variables as possible are included
in the model when extracting the BN structure. In turn, the basic criterion is that the
probability distribution represented by the BN has the highest possible agreement with the
information contained in the learning dataset. With this in mind, the research conducted
analyses through a number of available score-based and constraint-based algorithms. As
a result of these analyses, the optimal form of the DAG network was obtained for the
learning method using Chow-Liu’s tree Augmented Naive Bayes (TAN-CL) algorithm [17].

5. Results

In order to select the optimal method of building a damage risk assessment model,
the assembled database was adapted for analysis. Then the calculation stage was carried
out to obtain classifiers to assess the risk of damage to masonry buildings. In line with the
previous justification regarding the choice of research methodology, the NBC and BN ap-
proaches were used for further analysis. At the same time, as part of the BNs methodology,
an approach was used based on teaching the structure of BN from data (BNSL).

The classifiers were built in the R [55] development environment with the use of the
following packages: bnlearn [54], bnclassify [17], caret [56] oraz naivebayes [57].
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5.1. Preparation of Data for Analysis

At the initial stage of data preparation for further analysis, extreme cases were rejected,
the relative frequency of which for each of the variables did not exceed 5%. The data set
filtered in this way was used for the stage in which the training and testing of individual
models commenced.

Moving on to the learning stage, the data set was divided into training and test sets in
the proportion of 80:20. Additionally, in order to maintain the completeness of the patterns
for the learning and testing processes, the stratified sampling approach was applied [58].
In general, it forces the presence of patterns of the same category in both the training set
and the test set. Thus, the information is complete for both the learning process and the
subsequent testing.

Ultimately, the number of separated sets was 478 cases for the training set and 116 cases
for the test set.

The training set was used for learning, as required for each method included in the
research. The test set, which did not participate in the learning process, was used as
unbiased to evaluate the created models in the context of generalization properties.

5.2. Interpretation of the Results and the Adopted Method of Their Verification

In order to effectively compare the results of individual methods, a universal measure
of the classification correctness assessment was used, namely the confusion matrix. An
example of such a matrix in a binary (dichotomous) classification is presented in Table 3.

Table 3. Confusion matrix for a binary classifier.

Actual Positive Actual Negative

Predicted positive True positives TP False positives FP

Predicted negative False negatives FN True negatives TN

The basic comparative parameter here is the overall accuracy, which is the quotient of
the sum of correctly classified cases and their total number [59] (7):

ACC =
TP + TN

TP + FP + FN + TN
(7)

It is advisable that the chosen method should also be characterized by the highest
possible precision and sensitivity:

• Positive Predictive Value (PPV) [59] (8):

PPV =
TP

TP + FP
(8)

• True Positive Rate (TPR) [59] (9):

TPR =
TP

TP + FN
(9)

As part of building models from the AI group, a very important feature is the general-
ization of the knowledge obtained during the learning process, which can be verified on
the testing set. In this sense, knowledge generalization is defined as the ability of a model
to predict the right response for non-learning cases.

In order to compare the generalization abilities of individual models, the relative
difference in the accuracy of the classification for the training set and the test set ∆ACC was
calculated in relation to the results obtained on the training set.

Finally, after creating the NBC model and after extracting the structure for the BN
method, they were compared in terms of the quality of classification and generaliza-
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tion properties. These results, together with a detailed discussion, are presented in
Sections 5.3 and 5.4 of this work. As part of the presentation of the obtained results, error
matrices were used, taking into account the division into training and test sets. In accor-
dance with the formulas (7)–(9), these matrices also summarize the results on the accuracy
of classification as well as the average precision and sensitivity.

5.3. The Results Obtained for the NBC Method

The construction of the NBC classifier was carried out using four packages in the R
environment. The best classification accuracy was characterized by the classifier built using
the naivebayes package [57] and this model was taken into account in the further part of
the research.

In the selected package, the implemented algorithm detects and assigns classes to
individual variables, which allows the use of different distributions for each of them [60].
A multinomial distribution was assigned to 23 variables. For the remaining four variables,
with dichotomous values, Bernoulli distribution was proposed. In turn, the parameters for
the conditional probability distribution tables (CPT) were determined by the maximum
likelihood method (MLE—p. 4.1).

At the stage of building the NBC classifier, it is also necessary to use the Laplace
smoothing parameter. It is characterized by the fact that for its lower values, the accuracy
of classification increases, but its effectiveness deteriorates significantly in atypical cases [9].
Based on the multiple analyses carried out, it was found that when this parameter equal to
the value of pL = 10 was used, good classification accuracy was obtained while maintaining
appropriate generalization properties.

The created model was assessed in the context of the correctness of the classification
on the training and test sets as well as the generalization properties, in accordance with the
criteria specified in Section 5.2. The results in the form of a confusion matrix are presented
in Table 4.

Table 4. Confusion matrix of the NBC classifier—number of cases, precision, sensitivity and accuracy of classification.

Training Set—478 Cases

Damage State Category after
Impacts (Dmg2)

Observed
Σ PPV

1 2 3 4

Predicted

1 28 33 12 0 73 38.36%
2 12 216 1 8 237 91.14%
3 1 3 140 6 150 93.33%Predicted

4 0 1 0 17 18 94.44%

Σ 41 253 153 31 478 avg. PPV
79.32%

TPR 68.29% 85.38% 91.50% 54.84% avg. TPR
75.00%

ACC
83.89%

Test Set—116 Cases

Damage State Category after
Impacts (Dmg2)

Observed
Σ PPV

1 2 3 4
1 7 6 5 0 18 38.89%
2 4 58 1 3 66 87.88%
3 0 2 20 7 29 68.97%Predicted

4 0 0 0 3 3 100.00%

Σ 11 66 26 13 116 avg. PPV
73.93%

TPR 63.64% 87.88% 76.92% 23.08% avg. TPR
62.88%

ACC
75.86%

Table 4 shows that the constructed model is characterized by a good classification
accuracy of 83.89% for the training set. The results for the test set are satisfactory and the
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classification accuracy is 75.86%. Using the previously defined relative measure of ∆ACC,
the generalization abilities of the model were assessed as satisfactory (∆ACC = 9.57%).

5.4. The Results Obtained for the BN Method

The assumption of the possible mutual influence of individual variables allowed the
analyses to be carried out in accordance with the BNs methodology.

The BN approach results in a network structure that depends on the selected classifier
training method. The results for selected eight methods of learning the network structure
were analysed. Some of the methods studied qualified for the constraint-based approach,
and some for the score-based structure learning approach. These methods are available in
the bnlearn [54] and bnclassify [17] packages.

The best results were obtained using the Chow-Liu’s tree Augmented Naive Bayes
(TAN-CL) learning method. The chosen method of training the TAN-CL network is
the result of a combination of two methods. The Tree Augmented Naive Bayes (TAN)
method [61], which approximates the interactions between variables using a tree-shaped
structure, with the Chow-Liu junction detection algorithm [62].

The controlling parameter in the construction of the model is the measure of the fit of
the model acting as an objective function for score-based optimization. The impact of three
selected functions was analysed: Log-Likelihood (loglik), Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). Ultimately, the best results were obtained
for the AIC criterion.

The created model was assessed in the context of the correctness of classification and
generalization properties. For this purpose, the results obtained from the simulation of
the model response for the training and test set were used. As in the case of the NBC
classifier, the representation of the results in the form of a matrix of errors was used, which
is summarized in Table 5.

Table 5. Confusion matrix of the BN classifier—number of cases, precision, sensitivity and accuracy of classification.

Training Set—478 Cases

Damage State Category after
Impacts (Dmg2)

Observed
Σ PPV

1 2 3 4

Predicted

1 40 15 0 0 55 72.73%
2 1 220 29 5 255 86.27%
3 0 15 118 3 136 86.76%Predicted

4 0 3 6 23 32 71.88%

Σ 41 253 153 31 478 avg. PPV
79.41%

TPR 97.56% 86.96% 77.12% 74.19% avg. TPR
83.96%

ACC
83.89%

Test set—116 cases

Damage State Category after
Impacts (Dmg2)

Observed
Σ PPV

1 2 3 4

Predicted

1 11 2 0 0 13 84.62%
2 0 58 4 0 62 93.55%
3 0 5 22 3 30 73.33%Predicted

4 0 1 0 10 11 90.91%

Σ 11 66 26 13 116 avg. PPV
85.60%

TPR 100.00% 87.88% 84.62% 76.92% avg. TPR
87.35%

ACC
87.07%

Table 5 shows that the created BN network is characterized by a high classification
accuracy of 83.89% for the training set. The results for the test set are also high and the
classification accuracy is 87.07%. On the other hand, using the previously defined relative
measure ∆ACC, it can be concluded that the BN model has high generalization properties of
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the acquired knowledge from the learning stage (∆ACC = 3.79%). In this case, it proves an
advantage in terms of the separated structure of BN (DAG), as well as correctly determined
parameters in the learning process (θ).

5.5. Comparison of Established NBC and BN Models

Considering the fact that both models achieved a high degree of correct classification
for the training set, the main criterion for selecting a model to assess the risk of damage was
the verification of generalization properties. This was done by analysing the classification
accuracy of both models for the test set. In order to detail the verification process, the
obtained results were additionally analysed in terms of precision (PPV) and sensitivity
(TPR). The list of reliable criterion values is summarized in Table 6 and subjected to a
graphic interpretation, which is illustrated in Figure 10.

Table 6. Comparison of classification accuracy (ACC), mean precision (avg. PPV) and sensitivity
(avg. TPR) for selected artificial intelligence methods.

Model Building
Method

ACC for
Training Set

ACC for Testing
Set

Average PPV
for Testing Set

Average TPR
for Testing Set

NBC 83.89% 76.72% 74.55% 64.80%

BN 83.89% 87.07% 85.60% 87.35%
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Figure 10. Comparison of the criteria values used to verify the effectiveness of the created NBC and
BN models.

As a result of the comparative analysis of the NBC and BN models, it was found
that the separated structure of BN allows for the description of the modelled process,
obtaining better results than in the case of the NBC model. As shown in Tables 3 and 6,
the BN network obtained better results in relation to each of the verified criteria (ACC,
PPV and TPR). Additionally, by simulating both models on the data from the test set, it
was shown that the BN network has better generalization properties than NBC. This is
evidenced by the value of the defined measure ∆ACC, which for the BN model reached the
value of ∆ACC = 3.79%, and for the NBC model ∆ACC = 9.57%. In this case, the smaller
the value means the smaller the difference in the correctness of the classification for the
training set and the test set. Thus, a lower value of the ∆ACC measure indicates better
generalization properties.

Taking into account the results of the comparative analysis, it was found that a more
effective tool for modelling the risk of damage to masonry buildings is the separated
structure of the BN. In addition, implicit evidence was obtained that in order to model the
risk of damage, it is necessary to take into account the relationship between individual
variables, which is not taken into account in the NBC method.
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5.6. Analysis of Connections Occurring in the Separated Structure of the Bayesian Network

One of the advantages of the BN approach is the possibility of representing the model
in the form of a graph structure (DAG), which increases the interpretability of the model
itself, and also supports the user in making decisions (Decision Support Tool) [63].

During the process of learning the BN structure from the data, any external interference
in the relationships between the variables was abandoned. And so, for the TAN-CL
learning method, the definition of constraints (in the form of lists defining blocked or
forced connections) [54] was abandoned, thus giving full autonomy to the adopted method
of teaching the BN network structure. Figure 11 shows the structure of the Bayesian
network, indicating the direction of inference, and presents the variables taken into account
in the decision-making process.
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Based on the qualitative assessment of the relationships occurring in the separated BN
structure, created by applying the TAN-CL learning algorithm (Figure 11), it was found
that there are numerous cause-effect relationships:

• geometry variables (Geo) are linked together, as are the structure variables (Con),
• the variable on mining impacts MC is not related to other variables and has an impact

on the output variable Dmg2,
• out of 48 connections, 45 were positively assessed, and three connections were neutral.

To sum up, it is estimated that the network structure is coherent and logical, and
the obtained connections between the variables mostly coincide with those observed in
engineering practice.

6. Conclusions

This work presents an example of the use of selected tools from the group of artificial
intelligence (AI) methods to assess the risk of damage to masonry buildings located in
the mining area of active mining facilities. After taking into account a number of criteria
resulting from the practice of making these types of assessments for the protection of
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the development of mining areas, two AI tools belonging to the group of supervised
learning methods were selected for analysis: NBC—Naive Bayes Classification and BN—
Bayesian Networks.

Ultimately, using the “in-situ” data collected over many years of inspections of the
technical condition of buildings in the mining area, 574 cases were collected and recorded
in the form of a database. These data were used to train and test the NBC and BN models.
At the same time, as part of building the BN model, it was necessary to isolate the unknown
structure of connections between the variables describing the process under study. This
task was finally carried out using the TAN-CL algorithm, which belongs to the group of
methods for teaching the structure of BN from data (BNSL).

The obtained results were subjected to detailed individual and collective assessment.
On this basis, it was found that the BN methodology was more effective than the simpler
NBC approach. Thus, it has been shown implicitly that in order to describe a complex
process which is the risk of damage to buildings, it is necessary to involve dependencies
between individual variables, and thus to use BNSL methods.

The paper shows that better results in the context of mapping the information con-
tained in the original data set were obtained for the extracted DAG structure of the Bayesian
network compared to the simpler NBC model. This indicates the need to take into ac-
count the interrelationships between individual variables that are not taken into account
in other AI methods, including the NBC model. Moreover, during the process of ex-
tracting the DAG structure of the Bayesian network, the connection between the variable
describing the damage and the variable indicating the intensity of mining impacts was
spontaneously separated.

The authors of the paper have currently undertaken research in the context of deter-
mining the significance of the relationships between the individual variables. Establishing
the significance between individual nodes of the Bayesian network is necessary to complete
the description of the damage process and to enable a more effective application of such a
model in practice.

It should be emphasized that as in the case of all AI methods based on supervised
learning, the reliability of the results obtained is strictly dependent on the information
contained in the model data. This also means that a lot of emphasis should be placed
already at the stage of collecting and archiving the data saved in the database. The authors
dealt with the problem closely related to the issues of decision making under uncertainty.
For this reason, based on specific criteria (Chapter 2), two presented methods based on
the Bayesian inference formalism were distinguished for analysis. However, the choice of
method depends absolutely on the type of problem. And so, for example, in the analysis
of structural reliability assessment, other heuristic models, e.g., artificial neural networks,
can be successfully used as a supporting tool for the FORM or SORM methods (First and
Second Order Reliability Methods) [64,65].

As mentioned in chapter 1, the methodology of Bayesian networks is characterized by
a very wide range of applications, an example of which can be found in issues related to
threats of natural origin (e.g., floods, earthquakes, tsunamis, etc.).

The implementation of this type of tool may be implemented in the near future within
the developing BIM concept. In conjunction with the IoT technology [66], it will allow for
permanent monitoring of building structures along with the simultaneous assessment of
the risk from the impact of the industrial environment, which also includes the impact of
mining activities. In turn, automatic data archiving and updating the damage risk model
will contribute to a more detailed understanding of this phenomenon, which may bring
great socio-economic benefits.
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Abstract: Though multitudes of industries depend on the mining industry for resources, this industry
has taken hits in terms of declining mineral ore grades and its current use of traditional, time-
consuming and computationally costly rock and mineral identification methods. Therefore, this
paper proposes integrating Hyperspectral Imaging, Neighbourhood Component Analysis (NCA)
and Machine Learning (ML) as a combined system that can identify rocks and minerals. Modestly
put, hyperspectral imaging gathers electromagnetic signatures of the rocks in hundreds of spectral
bands. However, this data suffers from what is termed the ‘dimensionality curse’, which led to our
employment of NCA as a dimensionality reduction technique. NCA, in turn, highlights the most
discriminant feature bands, number of which being dependent on the intended application(s) of this
system. Our envisioned application is rock and mineral classification via unmanned aerial vehicle
(UAV) drone technology. In this study, we performed a 204-hyperspectral to 5-band multispectral
reduction, because current production drones are limited to five multispectral bands sensors. Based
on these bands, we applied ML to identify and classify rocks, thereby proving our hypothesis,
reducing computational costs, attaining an ML classification accuracy of 71%, and demonstrating the
potential mining industry optimisations attainable through this integrated system.

Keywords: hyperspectral imaging; multispectral imaging; dimensionality reduction; neighbourhood
component analysis; artificial intelligence; machine learning

1. Introduction

The adoption of advanced automated technology into various industries has proven
to be highly effective in improving sustainability and efficiencies. This is greatly due to the
optimisation of system designs, data collection methods and the overall implementation
of automation. With this said, the mining industry has been no stranger to this growing
trend. This industry strives for the improvement of safety regulations via increasing the
distance between miners and the environment [1]. This is where automated technology
plays its part, by improving site data collection methods followed by high accuracy analysis
methods [2]. One of such improvements has been demonstrated by researchers [2,3], where
they employed hyperspectral signatures of rocks and a neural network to classify rocks
based on their spectral signatures. With such studies have proved the advantages of using
these technologies in terms of safety and improved data analysis, they have highlighted
their main disadvantages. Though the hundreds of spectral bands in hyperspectral imaging
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provide a multitude of highly detailed data [4], this data suffers from what is referred
to as the ‘dimensionality curse’. This is defined as the inability to visualise such depth
possessing data structures [5].

Moreover, Tong et al. [6] highlight that though deep neural networks acquire high
accuracy results, executing them is computationally costly and time-consuming, deem-
ing them highly difficult to employ in rapid on-site investigations [7]. To counter these
shortcomings, this paper is a proposal whose attempt is to improve the application of
rock spectral imaging. By converting from hyperspectral imaging to multispectral imag-
ing [8], this will be performed through dimensionality reduction (DR) via Neighbourhood
Component Analysis (NCA). Lastly, employing different Machine Learning (ML) models
whose purpose is to access the attainable rock discrimination capabilities based on the
NCA selected bands as summarised in Figure 1.

Figure 1. Our proposed system design, consisting of hyperspectral imaging, dimensionality reduction via Neighbourhood
Component Analysis, Machine Learning classification of rocks and minerals to test system viability based on the selected
features, and finally employing those features together with the ML model in developing a unmanned aerial vehicle
drone-mountable multispectral camera.

The benefits of employing this proposed system within the mining industry are
endless. For instance, multispectral signatures of rocks are more than viable in the discrimi-
nation of rocks [9] for the purpose of determining the correct blasting procedures based on
the type and state of rocks. Moreover, mining engineers are always faced with tasks, such
as determining adequate slope angles within open pit mines, determining dilution ratios in
the processing of ore, and determining waste rock quantities, amongst other standards [10].
These all depend on rock information, this rock information being attainable via rock
multispectral signatures [9] without the need to employ expensive hyperspectral imaging,
hence achieving cost efficiency, fast data collection times, and quicker analysis rates.

Other than this, with NCA, engineers should hypothetically be able to convert from
using highly detailed hyperspectral data together with its often-redundant datasets [11],
to using more specialised multispectral datasets. This specialisation can be set such that
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the multispectral bands focus on detecting specific phenomena, these being specific rocks,
minerals, ores, tailings, dam metal contaminants, and more. Moreover, NCA can be
used in determining the most important criteria [12] in mining, ore processing, quarrying,
geological, and geotechnical assessments. This is through assigning feature weights [12]
to datasets, such as rock hardness, presence of clay minerals, weathering intensity and
water content, amongst others. These weights consequently allow for the elimination of
redundant data based on the intended applications of such data [13].

Having determined the specific bands viable to discriminate a certain rock and/or
mineral database, or equivalent via NCA, the selected features or multispectral bands can
be accessed via various machine learning (ML) models to determine the distinguishing
capabilities of such models. Their performances are usually judged based time required
to train, global accuracies and sub-class precisions [14,15]. Thereafter, engineers should
potentially be able to commission the construction of a multispectral sensing device built
using the best performing ML model. Consequently, making this integrated system a novel
method in which specific rocks, minerals and other phenomena can be classified via a
specialised multispectral sensor. Advantages of such would include improved remote
sensing, which in turn improves workplace safety, traceability of data and results, and
the overall optimisation of the classification system. As one can imagine, our proposed
method is not only limited to mining industry applications, and it has the potential to be
employed in multitudes of other industries, such as in agriculture, forensics, biology, and
banking, amongst others.

To understand the technicalities of this proposed integrated system (Figure 1), we will
explain each of these technologies and how they have been previously applied by other
researchers in Section 2. Having defined the ideal number of spectral bands whose posi-
tion within the electromagnetic spectrum will be determined by NCA, these said bands can
potentially be employed in multiple areas within the mining industry. One of such poten-
tial applications is the development of 5-band-multispectral sensing cameras mountable on
unmanned aerial vehicle (UAV) drones, because current industry standards for in-situ clas-
sifications related to the state of the environment are usually limited to 5-bands. Therefore,
our paper will aim to satisfy the current 5-band multispectral production camera and drone
trends, yet still demonstrate the different ways in which this integrated system can be taken
advantage of in mining, rock and mineral engineering industries and/or studies.

2. Methodology for Coupling NCA Dimensionality Reduction with Machine Learning

2.1. Hyperspectral Imaging

Hyperspectral imaging, as defined by researchers [2,14], refers to the collection of
hundreds of pixel-scale imagery information pertaining to a subject from within the elec-
tromagnetic spectrum. The collection of such data, which in our case was within the
Visible-Near-Infrared-Range (VNIR), numerically translates to the 400–1000 nm electro-
magnetic range [7]. Hyperspectral imaging is a graduation from multispectral imaging,
meaning that within the same spectral range, hyperspectral imaging has a higher reso-
lution, thereby facilitating the extraction of detailed spectral signatures [2,7,14]. Since
its discovery, it has seen various applications in fields, such as soil sciences, hydrology,
geology and the mining industry [7,15]. When an image is captured using hyperspectral
camera, such as our 204 band Specim IQ capturing camera, information pertaining to the
subject’s interaction with light is recorded [16]. This makes each of the 204 VNIR spectral
bands receive a specific signal within each of the approximately 3 nm wide spectral bands.
It should be mentioned that camera specifications may differ in terms of the number of
spectral bands per spectral range provided by a certain manufacturer. This, in essence,
affects the width of each spectral band, it however does not affect the underlying signatures
exhibited by specific rocks and minerals.

Having said this, it is evident that analysing hyperspectral data requires sophisticated
analysis software. This is because this type of data is computationally costly to analyse, due to
the depth of information bands it possesses—often referred to as dimensionalities [5], hence
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the term dimensionality-curse [5,17,18]. To counter this phenomenon, a method referred to
as DR needs to be applied to reduce or eliminate redundant information. Doing so requires
a selection of the most representative spectral bands, able to distinguish rocks within our
database without affecting or altering their inherent spectral signature differences.

2.2. Dimensionality Reduction

DR techniques have in the last couple of decades been a topic of interest for researchers
working in computational statistics [19]. It is a key technique in data analysis, aimed at
revealing expressive structures and unexpected relationships in multivariate data [20].
It should, however, be noted that, in general, it is not possible to preserve all pairwise
relationships between data points in the DR process [12]. DR is used for many purposes; it
is beneficial as a visualisation tool to present multivariate data in a humanly accessible form
(lower dimensions). Moreover, DR can be applied as a method of feature extraction, and
as a preliminary transformation applied to data, such as our rock hyperspectral database
prior to the usage of other analysis tools like clustering and classification [21].

There are many criteria that can be used to sort the various methods of DR. With
our objective being a classification task, the aim of our DR is, therefore, to project high-
dimensional data points in a low-dimensional subspace whilst keeping most of the ‘intrinsic
information’ contained in the original data preserved. This, in principle, keeps the within-
class-sample compactness and between class-sample distinguishability [22]. The success
of which means that low-dimensional presentation of original data may provide enough
information for classification.

2.2.1. Supervised vs. Unsupervised Methods

Several DR techniques that reduce the size of the data table, while minimising loss
of information have been studied, all of which can describe the essence of the primary
data generated. Among these numerous methods, principal component analysis (PCA),
linear discriminant analysis (LDA) and maximum margin criterion (MMC) are the most
famous ones because of their simplicity and effectiveness [23]. Due to the nature of our
data, we found that, geometrically, feature extractors based on maximum margin criterion
(MMC) maximise the (average) margin between classes after dimensionality reduction.
This would not improve our research as our goal is to use machine learning for this task [23].
On the other hand, the linear discriminant analysis (LDA) method operates by finding
a linear combination of input features. However, the performance of LDA is degraded
when encountering limited available low dimensional spaces and singularity problems,
which is one of the disadvantages of LDA [23]. Lastly, PCA is a linear dimensionality
reduction technique that transforms a set of correlated variables into a smaller number
of uncorrelated variables called principal components, while retaining as much of the
variation in the original dataset as possible [23–25].

In addition, sometimes the performance of these methods is limited, as these methods
are often unsupervised. Therefore, these methods only use the global structure of the
sample, while ignoring the local structure, which are extremely important in helping to
improve the discrimination of the sample in the projection space. To improve on this, we
have employed a supervised NCA method. The assumption being, with this supervised
method, the outcome of interest informs the DR solution—this occurs because this method
naturally considers the local structures and their labels [24].

2.2.2. Why Use NCA

While PCA is one of the most commonly used approaches for DR, the method does
not reduce the number of variables [25]. The analyst chooses the number of components
to include in analyses based on a prior defined criterion. For example, looking at the
screen plot, selecting components with eigenvalues above one, or selecting the number of
components that explain a prespecified proportion of the variance in the data [23]. Because
PCA forces orthogonality between components, it imposes a rigid structure [23,24].
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NCA, on the other hand, performs better both in terms of classification performance in
the projected representation and in terms of visualisation of class separation as compared
to the standard unsupervised methods. Moreover, regarding NCA, one can substantially
reduce the storage, search, running and time spent on waiting costs at the test phase by
forcing the learned distance metric to be low rank. This, therefore, favours its potential
application in real-time field analyses [26].

NCA is a distance-based feature weighting, non-parametric supervised method, it
works by automatically selecting the most significant features [11,25]. To calculate the
correlation between features and target, a Mahalanobis distance-based fitness function
is used. The weighting of features is carried out as follows; initial weights are assigned
randomly, thereafter, weights are updated using the stochastic gradient descent or ADAM
optimisation method and Mahalanobis distance-based function, hence positive weights are
generated for each feature [11,25,26].

Though Goldberger et al. [11] applied their NCA algorithm for face recognition, they
too mention that the NCA algorithm learns a training set distance metric, and can improve
k-NN classifications, hence achieving very good performance. Koren & Carmel [20] further
support the employment of an NCA model by saying it provides a linear transformation
model that optimises the performance of k-NN in the learnt low-dimensional space. These
said advantages influenced our desire to employ NCA in distinguishing rocks from within
our rock hyperspectral database.

However, researchers [11,20,26,27] note that unlike the common PCA method, which is
both convex and has an analytical solution, another key difference distinguishing the two
is that NCA is a non-convex optimisation problem. This means every time one runs NCA,
they may get a different solution, and like K-Means and other non-convex algorithms, it is
advisable to run it more than once and take the best solution. Hence, our paper presents the
best NCA bands from having run NCA multitudes of times and selected features that express
themselves most frequently. Researchers [20,26] explain this by noting that this occurs as NCA
components are not ordered nor dependent on the chosen target dimensions.

This, however, is not a drawback as run-times are extremely short. Moreover, once
the number and specific band positions have been specified, subsequent classification
tasks require significantly less storage, fewer test times, and the redundant bands are
eliminated along with their datasets. These chosen components (spectral bands) are,
therefore, assumed to be the most sufficient in determining the rocks within, or related to, a
said database. These said sample signatures may include mine, laboratory or environmental
rock spectral signatures, such as in our case.

2.3. Why Machine Learning?

Though NCA provides the opportunity to ignore redundant data-heavy bands, it
does not provide any information related to the retained classification accuracy, hence
the need to employ an ML algorithm(s). We use ML for multitudes of data-related tasks
or problems. It has grown as a subdomain of Artificial Intelligence (AI) that comprises
models capable of deriving useful information from data and utilising that information in
self-learning that aids in making good classifications or predictions [7,8]. ML has gradually
gained popularity, due to its accuracy and reliability [28]. Improved hardware and software
components of machine vision systems have aided in building ML algorithms that process
data faster and give reliable decisions in very little time [13]. Since we are dealing with a
classification problem with labelled data, we employed and compared several supervised
ML algorithms. Supervised learning requires learning a model from labelled training data
that helps in making classification or predictions about the future data [13,29]. Supervised,
in essence, indicates samples sets in which the desired output is known. In other words,
the labelling of data is done to guide the machine to look for the exact desired pattern.
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3. Practical Experiments
3.1. Capturing Rock Hyperspectral Signatures

To craft this proposed system, the approach involved a series of steps to be followed to
get to the ultimate goal of rock classification from integrating hyperspectral imaging, NCA
and ML. To develop, test and propose this system for rock engineering and classification
problems, we employed 32 different igneous rocks belonging to eight rock lithologies (four
samples per lithology), namely, granite, diorite, gabbro, granodiorite, rhyolite, andesite,
basalt and dacite. These samples were specimens of Akita Mining Museum, each with
several representative samples, such as shown in Figure 2.

Figure 2. Images of some of the 32 rock samples from eight rock lithologies used in building our rock
hyperspectral database.

To capture their spectral signatures, we used a Specim IQ hyperspectral camera
(VNIR 400–1000 nm, 204 bands) to record the pixel-by-pixel signatures from rocks; the main
components of the spectral data extraction setup are illustrated in Figure 3. As van der Meer [3]
has pointed out, gathering this data entails standardising the spectral signature recording
process. This was done by initialising the camera with a white reference board (provided
by the manufacturer, Specim), the purpose of which is to filter out the noise and verify sub-
sequent data is recorded under the same standardised conditions. The experimental setup
utilises tungsten-halogen lamps to illuminate the stage as they have high output capabilities
throughout the VNIR, which coincides with the camera capturing range.

Having captured the depth possessing, high dimensionality hyperspectral imagery
data of all rocks, this data is then converted to numerical data using hyperspectral analysing
software. Converting to numerical data entails the extraction of spectra from specific pixel
blocks. This is performed after having assigned a data extraction area to allow automatic
selection of pixel blocks with spectra to be considered for analysis (Figure 4). Since the
Specim IQ camera acquires images of 512 × 512 pixels from 204 bands, the software
randomly and automatically extracts 20 × 20-pixel information from these 204 band
images (Figures 4 and A1). Meaning, each spectrum is an average of the spectral reflectance
information from a 20 × 20-pixels (400 pixels) area; hence, each block becomes an average
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spectral strength with a depth of 204 bands (wavelength). The selection area boundaries
are set by the user to ensure the software extracts only relevant data.

Figure 3. A hyperspectral signature capturing setup is used in collecting and building a rock and/or mineral spectral
database. The curves are spectra in different spatial pixels of eight rock lithologies.

Figure 4. Automatic random extraction of rock pixel spectra captured via a Specim IQ camera that acquires 512 × 512 pixel
images from 204 bands within the Visible-Near-Infrared-Range. Extracted spectra are used to build a rock hyperspectral database.
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To extract 100% of the captured image spatial area of the 512 × 512 pixels = 262,144
total pixels, a total of approximately 655 spectra (the exact number is 655.36 pixels), each
with a spatial area of 20 × 20pixels = 400 pixels would have to be extracted. This is de-
rived from dividing 262,144 pixels by 400 pixels to get 655. However, since the spectral
extractor used in this study extracts 220 pixels per image, this results in approximately
30% [262,144/(220 × 400)] of the image area being used for analysis. This 30% (made up
of 220 spectra minus manual elimination of non-rock spectra) of the extracted whole image
area, however, can be placed anywhere on the image area using the spectral extraction
boundary controlled by the user. Therefore, should a perfect 88,000 pixels (220 × 20 × 20)
area be defined by the user, 100% of the selected rock spectral information without back-
ground noise (see Figures 2 and 4) would be extracted. However, this was not the case in
this study, as the extraction boundaries were randomly set judging from the area in which
actual rock resides within each image.

Performing manual elimination (by the user) of unwanted spectra from the automati-
cally extracted (by the software) 220 results in a lesser number of extracted spectra than the
initial 220. As a result, from the 32 rock samples, we now have a total of 6825 [(220 spectra
× 32 samples) minus unwanted background noise)] viable representative spectra from
eight rock lithologies, each with a 204-band depth having been extracted for analysis. This,
in essence, means the quantitative dataset has a matrix of size 204 × 6825 = 1,392,300
spectral information, which is used as input data in subsequent procedures. This data goes
through a preprocessing stage where each dataset is assigned a relevant label; hence, a
hyperspectral rock database was built based on the eight igneous rock lithologies. It should
be noted that this process can be performed on any rocks, minerals or the combination
or which. The choice or type of data used to develop a database depends entirely on the
purpose in which rock or mineral classification is intended to be based upon. This, as a
result, enables the AI coupled system to be highly specialised in classifying that which is
within or related to the database.

3.2. Selecting the Appropriate Feature Bands

As previously mentioned in Section 2.2, the common problem that may arise during
a DR process is to define how many features to select for analysis. This is often dictated
by the purpose of employing such a DR method. In this paper, based on the currently
available industry produced spectral imaging devices, such as the ‘DJI P4 multispectral
drone’ used in agricultural applications and environmental monitoring, our objective was
to identify the appropriate rock classifying multispectral bands. From these bands, it would
then be easier to develop a UAV drone-mountable multispectral sensing camera specialised
in classifying rocks and minerals.

To achieve this, we convert heavy hyperspectral imagery classification data to less
heavy multispectral classification data to meet weight restrictions, industry standards and
production costs of developing such a device. This conversion is performed in consideration
of the rocks and/or minerals from which subsequent multispectral data collection, such as
from a UAV drone-mounted multispectral camera, is to be recorded and classified for a
plethora of rock engineering purposes.

Transitioning from high dimensional hyperspectral to low dimensional multispectral data
is not without challenges. The selection of a suitable method according to the type of data is a
big issue that often needs to be addressed. It is essential to find a suitable mechanism to attain
the highest level of accuracy when comparing the outputs of different DR techniques. Since it
is well documented that supervised methods generally outperform unsupervised methods,
we employed the NCA DR technique as it is a supervised and highly acclaimed method. As a
way of determining the significance of employing the 204 spectral bands with all ‘redundant
features’, we used our NCA algorithm to eliminate and record the attainable output accuracies
in classifying the rocks. This was based on the full 204 feature bands, down to 100, 50, 25,
10, and finally, the current UAV drone-mountable multispectral 5-band feature classification
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bands. NCA DR eliminates redundant information by assigning each dimensionality from
within the hyperspectral signatures a feature weight.

As [11,25–27] researchers have mentioned before, finding the relevant and important
features is a problematic task. It entails domain knowledge, and human expertise to extract
the most relevant features for future processing and selection of ML models for classifi-
cation [8,13,28,29]. Employing NCA, however, makes this process easier as the algorithm
assigns feature weights to each of the dimensions, thereby highlighting the most relevant fea-
tures/bands for such a database. Having employed NCA to select the most relevant features
that contribute most to the prediction (dependent) variable, the final step entails exporting the
selected features into an ML model. The model is then trained, thereafter, we can determine
the classification capabilities based solely on these feature bands.

3.3. Post-NCA Classification via ML

To commence with the post-NCA classification task, we begin by preprocessing our
data based on the number of spectral bands intended to be used in the rock and mineral
classification task. For the initial training and classification, 100% of all the 204 spectral
band signature data is employed for classification—this acts as a control task. Thereafter,
depending on NCA feature weights, only the high-feature-weight possessing spectral
bands are employed in succeeding classifications, which in essence means discarding the
rest of the data that is deemed redundant. By doing this, we decrease data storage costs, as
well as take a step towards developing a field applicable multispectral band camera. The
classification was performed for 204-bands, 100, 50, 25, 10 and 5-bands using various ML
models, thereby allowing for classification accuracy checks for the various band reductions.

4. Experimental and Analytical Results
4.1. Findings Based on Hyperspectral Imaging

As a way of visualising the characteristic rock and light interactions at a pixel level from
within the VNIR, Figure 5 hyperspectral signatures are typical illustrations used to visualise
these inherent reflectance signatures. Each anomaly represents a given 20 × 20 pixels block
as an average spectral reflectance strength from the image scene. Based on Figure 5, one
can appreciate the differences in spectral reflectance strength signatures attainable from
different pixels within the same hyperspectral image. Moreover, the way different rock
sample variants of the same rock exhibit different signatures combined to form hyperspec-
tral signatures, hence, each of the eight rock lithologies shows dispersed hyperspectral
signatures. Taylor [30] employed VNIR spectroscopy on their ‘Mineral and Lithology Map-
ping of Drill Core Pulps’ problem and concluded that spectrometry, like XRD, provides
an evaluation of quantitative mineralogy that is very reliable. Hence, we are confident
in hyperspectral imaging is very useful in our rock identification problem, as has been
hypothesised. We see these inherent differences in the spectral signatures exhibited by the
rocks in our database (Figure 5).

Patterns can be drawn from hyperspectral signatures, enabling one to distinguish
individual rocks and/or minerals. However, it is difficult to extract a certain anomaly
from each of the eight hyperspectral rock signatures and deem it the most representative
spectral signature of a particular rock and/or mineral. This can be said when for example,
examining the general spectral patterns of granite with those of diorite. Their anomaly
shapes seem rather similar in terms of resembling ‘check marks’, with some of them
displaying comparable reflectance intensities even; the same can be said when comparing
gabbro signatures with those of andesite (Figure 5). Having seen the advantages and
disadvantages of hyperspectral signatures employed as a means for rock and/or mineral
classification, one can acknowledge that there is a need to employ a method by which
significant data is given priority over redundant data. This allows for better comparisons
and distinguishability of rocks and/or minerals via their spectral signatures, which is
where NCA improves on this method of rock discrimination.
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Figure 5. Reflectance hyperspectral signatures of eight rock lithologies employed in the construction
of a hyperspectral database. Each anomaly represents the interaction between each 20 × 20 pixels
2D area with a depth of 204 bands within a rock’s hyperspectral image with light, captured via a
Visible-Near-Infrared-Range hyperspectral camera.

4.2. Findings Based on NCA

NCA is a method that seeks to identify and down-scale global unwanted variability
within the data. The method changes the feature space used for data representation by a
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global linear transformation which assigns large weights to relevant dimensions, which
are the most discriminatory spectral bands. Consequently, low weights are assigned to
irrelevant dimensions, which we can, thus, refer to as less discriminatory spectral bands [26].
These relevant dimensions are estimated using a subset of points that are known to belong
to the same although unknown class, also referred to as chunklets [31]. These chunklets are
obtained from equivalence relations by applying a transitive closure within the algorithm.
This transformation is, therefore, intended to reduce clutter, so that in the new feature
space, the inherent structure of the data can be more easily unravelled [31,32].

Based on Figure 6, our NCA algorithm flawlessly reduced the dimensionality space of
the hyperspectral signatures. We are, therefore, able to compare the different projection
graphs of each of the 5-bands against one another in 2D spaces, hence mapping or visualis-
ing the manner in which the rocks plot at these chosen high classification dimensionalities.
Results from the NCA algorithm in Figure 6 show that there are multitudes of spectral
bands which one would refer to as relevant as they possess a substantial feature weight
relative to the rest. Depending on the computational resources an entity or individual
possesses, the number of spectral bands one desires to employ for future classifications
having done away with redundant bands, is upon the user. Having said this, we used
Figure 6 to select the most rated bands as we can indeed see the redundancy in some of the
feature bands.

Figure 6. Neighbourhood Component Analysis feature selection which assigns higher weights to
the most discriminatory hyperspectral bands by eliminating redundancy in data, with the top five
feature-bands being 14, 46, 116, 133 and 169.

As stated in Sections 1 and 3, our intended use of the most representative feature
bands requires 5-bands which, according to Figure 6, are located at positions 14, 46, 116,
133 and 169 from the 204 feature bands of the VNIR. From these selected feature band
positions, we can then convert these positions into electromagnetic wavelength bands.
Doing so, we get 441 nm, 535 nm, 741 nm, 791 nm and 897 nm as the most discriminatory
spectral bands for our rock database. It should be noted that, considering each of these
spectral bands are approximately 3 nm wide, a system designed to classify rocks based on
these five spectral bands would have an error of +/−3 nm, as stated in Section 2.1. Having
said this, we can safely say our NCA algorithm flawlessly assigns feature weights to high
dimensionality hyperspectral data. This allows the user to select the number of spectral
bands they wish to employ based on NCA assigned feature weights.

DR is the transformation of data from a high-dimensional space into a low-dimensional
space so that the low-dimensional representation retains some meaningful properties of
the original data, ideally close to its intrinsic dimension. From this statement and having
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selected the now five multispectral bands to employ in future classification problems
related to our data, our NCA breaks down the hyperspectral signatures. This allows for
visualisation in 2D spaces whose X and Y planes are the NCA-defined spectral bands with
the highest feature weights, as shown in Figure 7.

Figure 7. Projection of complex rock hyperspectral signature data points in dimensionality reduced
(via Neighbourhood Component Analysis feature selection) 2D planes showing the relative reflectance
spectral strength relationships between five different spectral bands for eight rock lithologies.
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It should be noted that there are numerous ways in which these (Figure 7) dimen-
sionally reduced band-by-band projections can be interpreted. Starting with the rela-
tive reflectance spectral strength scatter plots (normalised to 1), where each point repre-
sents the relative reflectance spectral strength of each rock sample’s previously extracted
20 × 20 pixels averages. The area within which every point plot within the scatter plots
is governed by the relative spectral strength between its (previously extracted 20 × 20
block averages) spectral reflectance strength within its respective spectral band (for ex-
ample, band 14), in relation to the other band (hence 2D), as well as in relation to the
other seven rocks (eight in total). Having said this, the point with the highest relative
spectral reflectance strength in these three categories (respective band, other band and
other rocks) would plot at the right most region of the scatter plot. Having plotted these
points, the relative frequency histogram sums and summarises the frequency densities of
the points from 4 scatter plots into 1. Since these histograms are also relative, the most
densely populated rock points are normalised to 1. From interpreting these relative scatter
and histogram plots, we can assess the spectral reflectance strengths of rocks in lower,
dimensionality reduced, 2D planes.

Here, is an example of interpretations deducible from Figure 7 where band 14 occupies
the x-axis, and bands 46, 116, 133 and 169 occupy the y-axis. From band 14′s histogram
(left most), we can make the following assumptions based on the number of rock spectral
reflectance strength points summarising the scatter plots directly below it. Gabbro has
the highest relative density of points (hence, the highest peak), meaning this rock has the
highest concentration of points located within the further right small patch area of band 14.
This is supported by the four scatter plot projections at bands 46, 116, 133 and 169, where
we can see a similar dense cluster of gabbro data points (pink colour) located at this said
location of the relative scatter plot projections (Figures 7 and A2). Within the same patch of
area, we see that the next densely populated points belong to basalt and andesite, where
basalt shows a slight edge over andesite. Below these point frequency densities, we find
diorite, followed by rhyolite, granodiorite, granite and dacite as the least dense.

However, we see a difference in the density of points for the histogram bar on the
immediate left to the previously described. The frequency of points starts from diorite
as the most densely populated within this small area. This is followed by basalt, dacite,
gabbro, granodiorite, a tie between andesite and rhyolite, and granite as the least dense.
Within the same band 14 projection against other bands, we can see a relatively equal
frequency density of data points within the first half (left to middle) of the projection for
seven rocks. This is with the exception of granite, which has a higher density of points
within this wide area. Therefore, we can make similar assessments of data points for the 46,
116, 133 and 169 band, as the x-axis and draw different patterns based on the frequency
and location of rock relative reflectance strength points. Having said this, we can safely
say, based on Figures 7 and A2 relative scatter and frequency histograms—thus, we can
make predictions on future rock identification problems related to those of our study.

Hence, should new data, related to our rock database with similar multispectral bands
(441 nm, 535 nm, 741 nm, 791 nm and 897 nm), be introduced, we expect such data to exhibit
similar patterns as the rocks we have assessed. This may be in terms of relative frequency
density relationships, or areas within which such rock relative reflectance spectral strength
points are expected to exist. From these density histograms and scatter plots, we can make
one more assumption. The more the frequency of data points exist within a small area, the
easier it is to identify with a naked eye such rock relative points based on the scatter plots.
The opposite is true for scattered data points. As much as NCA can reduce dimensionality,
visual rock identification based on Figures 7 and A2 patterns alone is time-consuming and
prone to some human error. Hence, there is a need to employ objective ML models which
can draw patterns faster and accurately. Moreover, ML models give feedback with regards
to the best rock delineation strategies.
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4.3. Classification with ML, Post-NCA

Supervised Learning uses an algorithm that requires external help. The provided
input database is automatically separated into training and testing datasets. The output
variable is predicted or classified from the training database. Algorithms try to learn some
shapes during training of the database and implement these learnt patterns to the testing
database, which provides results in relation to the learnt patterns [13,28,29]. From these
output results, we can evaluate the performance of each algorithm.

As shown in Figure 8, a 5-folds-cross-validation (6825 divided 5) was used to pro-
cess the data at all times, resulting in 1365 (Figure A1) samples (including all eight rock
lithologies) being used in each set. This ensures that every observation set (with each of the
eight rocks contributing) from the original dataset has the chance of appearing in training
and test sets as the ultimate goal is to classify entire rocks (Figure 8). This method generally
results in a less biased model compared to other methods, it is said to be one of the best
approaches whenever there is a limited amount of input data [29]. Since the number of
samples is 6825 (rows), it does not reduce, only the number of bands/features reduces
(columns, from 204 down to 5). Each row represents the spectral reflectance strength of each
rock signature, whilst each column represents the position of the wavelength band from
which the spectral strengths have been extracted, hence forming a 2D matrix. As a result, a
breakdown of the input dataset matrices is as follows; for 204 bands (full database), input
dataset is 204 (columns) × 6825 (rows) matrix = 1,392,300; for 100 bands, input dataset
is 100 × 6825 matrix = 682,500; for 50 bands, input dataset is 50 × 6825 matrix = 341,250;
for 25 bands, input dataset is 25 × 6825 matrix = 170,625; for 10 bands, input dataset is
10 × 6825 matrix = 68,250; for five bands, input dataset is 5 × 6825 matrix = 34,125.

Figure 8. Database handling of training and testing sets. A 5-fold-cross-validation was used in all instances.

Using MATLAB R2020b classification learner Machine Learning toolbox, we assessed
multiple ML algorithms and combined the best five classification performers in terms of train-
ing, average per class precision, and time taken to train the algorithm. These attributes are said
to be the most important classification evaluation criteria. Moreover, these attributes govern
industrial applicability, and the overall viability of the algorithm. Table 1 is a compilation of the
top-performing ML algorithms per given number of selected spectral bands from the pre-DR
204 spectral bands, down to 100, 50, 25, 10 and our intended goal of five spectral bands. It
demonstrates the differences in classification based on bands with the most feature weights.
Results from the ML models in Table 1 show that the highest performing model in all pre- and
postclassifications was Cubic Support Vector Machine (SVM).
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Table 1. Top five machine learning classification comparisons based on predimensionality reduction from 204-bands, to
postdimensionality reduction (using Neighbourhood Component Analysis) for 100, 50, 25, 10 and 5 rock spectral bands.

Number of Classification
Bands Post-NCA Machine Learning Algorithm Global

Accuracy (%)
Average per-Class

Precision (%) Training Time (s)

204-bands 1

SVM (Cubic SVM) 90.7 90.0 28.7
SVM (Quadratic SVM) 87.0 86.0 27.3

SVM (Linear SVM) 79.1 76.5 13.8
Linear discriminant 80.4 78.4 4.6

Ensemble (Subspace discriminant) 81.2 79.3 41.5

100-bands

SVM (Cubic SVM) 89.4 88.7 37.7
SVM (Quadratic SVM) 84.7 83.8 21.8
Quadratic Discriminant 77.9 77.5 1.0

SVM (Linear SVM) 76.9 76.0 5.9
Linear Discriminant 76.7 75.6 1.1

50-bands

SVM (Cubic SVM) 86.9 85.7 39.1
SVM (Quadratic SVM) 84.3 82.1 23.2
Quadratic Discriminant 79.1 78.9 1.1

SVM (Linear SVM) 76.1 75.4 5.3
Ensemble (Subspace KNN) 75.2 75.0 34.9

25-bands

SVM (Cubic SVM) 86.3 86.2 45.1
SVM (Quadratic SVM) 83.9 82.6 28.2

SVM (Fine Gaussian SVM) 75.9 70.6 6.7
Quadratic Discriminant 75.7 75.3 1.2

Ensemble (Subspace KNN) 75.4 70.0 29.2

10-bands

SVM (Cubic SVM) 81.0 80.3 78.2
SVM (Quadratic SVM) 78.2 76.0 40.7

SVM (Fine Gaussian SVM) 72.7 70.1 8.2
Ensemble (Bagged tress) 71.0 69.8 19.1

Ensemble (Subspace KNN) 70.6 70.3 17.9

5-bands

SVM (Cubic SVM) 70.9 72.0 182.1
Ensemble (Bagged trees) 68.6 67.0 12.3
SVM (Quadratic SVM) 68.4 65.8 76.7

SVM (Fine Gaussian SVM) 68.4 66.6 7.5
KNN (Fine KNN) 67.3 66.0 5.7

1 Predimensionality reduction.

A similar approach was applied by Galdames et al. [4] where they performed a fea-
ture selection from 2424 spectral channels to 73 spectral channels. Their study employed
colour images, a VNIR sensor, as well as a SWIR (900–2500 nm) sensor. They achieved a
classification performance of 99.73% using Conditional Mutual Information Maximisation
to select their most important features. Considering the tools and number of bands selected
at the most intrinsic bands, we would argue our methods achieves more for less. On the
other hand, Mei et al. [33] employed Unsupervised Spatial-Spectral Feature Learning by 3D
Convolutional Autoencoder for Hyperspectral Classification. Though with high classifica-
tion capabilities, we believe this method is computationally taxing as convolutional neural
networks are known to require a lot of training data and times, making CNNs invalid in
our five feature bands quest.

From the results compiled in Table 1, we can appreciate the differences in accuracies
acquired and elapsed times when training our ML models before and after DR. This
confirms our hypothesis, which stated that with NCA, ML will maintain rapid run times
and good accuracies, while maintaining without compromise, the fundamental differences
in the hyperspectral signatures of rocks within our database. Global accuracy refers to
the validation accuracy acquired during training. Average per-class precision refers to the
individual rock classification sum averages in testing the models. Lastly, training time
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refers to elapsed time in training the models to classify the rocks based on the number of
spectral band datasets.

As our goal was to reduce the number of hyperspectral bands to five multispectral
bands capable of distinguishing rocks at a substantial, industry applicable accuracy, we
assessed the highest performing Cubic SVM ML model for the 5-band classification. The
results are presented in Figure 9. To assess the viability of this Cubic SVM model, Figure 9
presents two performance metrics. The first is True Positive Rates (TPR), defined as the
probability that an actual positive will test positive (Equation (1)). The second is False
Negative Rates (FNR), defined as the probability that a true positive will be missed by
the test (Equation (2)). Both variables are highly viable in assessing the capability of
the ML model in classifying each rock. Another assessment that can be drawn from
Figure 9 confusion matrix is the average per-class precision of 72%. This is substantial
considering the magnitude of the DR from 100% of that hyperspectral data (204-bands)
to approximately 2.5% (5-bands), which we now refer to as multispectral data. We have,
therefore, determined an applicable classification model for this particular problem. In
addition to this, we gained a reduction in computational costs and storage requirements,
ease of data management, ease of data application and visualisation, and most importantly,
viability in rapid field applications.

Figure 9. Confusion matrix from a Cubic SVM machine learning model used in evaluating the
classification viability of post dimensionality reduction spectral bands.

In addition to the above-given assessment, Figure 9 illustrates the in depth classifica-
tion capabilities of the ML algorithm post-DR for each class of rocks employed in this study.
From the Figure 9 confusion matrix, 63.3% of the initial input andesite datasets (for 5-bands)
were correctly (TPR) classified as andesite. On the other hand, the remaining 36.7% (FNR)
was incorrectly classified as basalt (15.6%), dacite (4.8%), diorite (4.4%), gabbro (5.9%),
granite (1.1%), granodiorite (1.9%), and rhyolite (3.0). Similar assessments can be made for
all rocks, resulting in different ratios of both TPR and FNR. Comparing Figures 7 and A2
and nine results, we can make the following assumptions; the flatter the relative frequency
histograms (Figures 7 and A2), the higher the prediction precision (Figure 9), hence granite
has the highest ML prediction precision. On the other hand, the steeper the relative fre-
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quency histograms (Figures 7 and A2), the lower the ML prediction precision (Figure 9),
hence basalt and gabbro have lower ML prediction precision outcomes. By developing
algorithms on a particular type of rock, it is possible to improve any of the Figure 9 results
to favour that specific rock, mineral or environmental phenomenon of interest. This thereby
makes this system highly applicable in a magnitude of highly specialised classification
problems. Doing so simply requires importing the most discriminative hyperspectral
bands of any particular rock, mineral, or phenomenon, and giving them priority over other
spectral bands, hence improving their succeeding ML classification outputs. However, since
the goal of this paper was to classify eight igneous rock lithologies as a collective based on five
multispectral bands, our system was not preprogrammed to be biased towards any of the eight
igneous rock lithologies, but rather used the data as is, hence the true/unmodified results.

True Positive Rates (TPR):

TPR = (TP/TP + FN) × 100 (1)

False Negative Rates (FNR):

FNR = (FN/FN + TP) × 100 (2)

where FN is false negatives, and TP is true positives.

5. Significance of Proposed System

Therefore, given our findings, we can confirm that our proposed system, which
consists of DR of rock hyperspectral data and subsequently employing specific discriminant
features for our igneous rock database, performs extremely well. This, in essence, means
for rock engineering, problems requiring discrimination of rocks, minerals, soils and other
environmental phenomena based on their spectral signatures can indeed employ this
system. By setting desired attributes founded on preknowledge of a site, such as types
of rocks present within a mine site, rocks transported via a conveyer belt, or the general
mapping of the environment, it is possible to maximise data collection. Based on specific
multispectral bands, we can eliminate unnecessary storage, processing or classification
costs associated with massive data.

With our integrated system, here are several optimisations we were able to achieve:

• Through DR, we can reduce the storage capacity required to store and handle a
database, thereby reducing storage costs as we have proven there is no need to collect,
store and process redundant data;

• With DR, we were able to break down hyperspectral signature data into different
dimensionalities, hence the ability to plot such data in 2D planes, which as a result
allows for easy visual assessment;

• As proven with post-NCA specialised multispectral imaging, we can attain respectable
classification accuracies. This proves that multispectral imaging is a good enough
option as it can be programmed to be highly specialised, costs less, has lower operation
costs, has the flexibility of being applied in specialised multispectral imaging, such
as on a UAV drone. Having said this, it is important to note that samples used
in this study were clean and manually prepared before analysis, which is not the
state in which rocks are found in the field, due to dirt and other matter. Therefore,
classification accuracy variations in our envisioned identification of these rocks in the
field, compared to the study’s attained results, are likely to exist;

• Through ML, we can analyse and classify multispectral signatures produced by rocks
and minerals with high accuracies. By finding the right model for a particular dataset,
subsequent related data is relatively easier to classify as the training data always
assists the model in future predictions as proven;

• With our proposed combined system, we have proved that any industry looking
to cut spectral data (or equivalent) analysis costs whilst still retaining high classifi-
cation accuracies, DR via a feature selection supervised NCA algorithm to specify
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the most discriminative bands, and verifying the viability of selected bands via ML,
thereafter employing these 5-bands (or more, depending on application) in future
specialised classifications, could potentially be the key to achieving several system
design optimisations;

• Via a post-NCA 5-band rock and mineral classification specialised multispectral
camera mounted on a UVA drone, such as the ‘DJI P4 Multispectral drone used in
agricultural applications’, there is a plethora of applications in which this specialised
technology could find potential use. This, as a result, minimises purchase, operation
and data interpretation costs as compared to a hyperspectral imaging system. This
could aid in remote sensing from long distances without the need for physical presence,
as well as rapid in situ assessments of the state of the environment via the UAV drone,
possibilities are endless.

• Lastly, there is potential to employ such a post-NCA specialised multispectral cam-
era in the frequent monitoring of mine dams. This would allow quicker assessment
of contaminants based on spectral signatures produced by unexpected and/or an-
ticipated metal contaminants. Hence, we deem this proposed system viable in all
mining-related stages, from exploration, operation and closure.

6. Conclusions

This paper proposes the combination and DR of hyperspectral data via NCA to
multispectral imaging, coupled with ML as a method by which subsequent spectral charac-
teristics of rocks, minerals and the environment can be performed without unnecessary
processing of redundant data. With our NCA algorithm, we proved the viability of our
hyperspectral data DR from 204-bands, to 100, 50, 25, 10, and finally, the industry standard
5-band multispectral dimensionality. Thus, from NCA, we can conclude that the most
viable discriminative five multispectral bands viable in the classification of igneous rocks,
such as granite, diorite, gabbro, granodiorite, rhyolite, andesite, basalt and dacite, are
bands with the following wavelengths—441 nm, 535 nm, 741 nm, 791 nm and 897 nm.
With this DR, we were able to produce 2D data plots, which provide better interpretation,
visualisation and somewhat data prediction capabilities in the form band-against-band
scatter plots, as well as frequency density histograms. Therefore, it can be said that by
eliminating redundant features, DR can be a useful technique employable for various
datasets possessing the dimensionality curse.

The proposed method flawlessly merges with several ML models. Hence, we are
provided with quantitative outputs pertaining to the classification abilities of each ML
model, an example being our Cubic SVM model, which outperformed all other ML models
in the classification of igneous rocks in our database. This, in essence, deems the Cubic
SVM ML model the most viable as it attained a global classification accuracy of 71%, and
an average per-class accuracy of 72%, which is considerable given the magnitude of the
DR from 204-bands to 5-bands.
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Appendix A

Figure A1. Summary of rock spectral reflectance strength data accumulation and preprocessing prior to dimensionality
reduction via Neighbourhood Component Analysis and Machine Learning (a continuation from Figure 5).

Figure A2. Relative scatter and histogram plots of rock spectral reflectance strengths in 2D plane projections, where bands 441 nm is
the x-axis, and bands 535 nm, 741 nm, 791 nm and 897 nm are the y-axis. The position of each point (spectra) is based on the relative
intensities between bands, as well as between rocks.
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Abstract: The study of the petrographic structure of medium- and high-rank coals is important from
both a cognitive and a utilitarian point of view. The petrographic constituents and their individual
characteristics and features are responsible for the properties of coal and the way it behaves in various
technological processes. This paper considers the application of convolutional neural networks for
coal petrographic images segmentation. The U-Net-based model for segmentation was proposed.
The network was trained to segment inertinite, liptinite, and vitrinite. The segmentations prepared
manually by a domain expert were used as the ground truth. The results show that inertinite and
vitrinite can be successfully segmented with minimal difference from the ground truth. The liptinite
turned out to be much more difficult to segment. After usage of transfer learning, moderate results
were obtained. Nevertheless, the application of the U-Net-based network for petrographic image
segmentation was successful. The results are good enough to consider the method as a supporting
tool for domain experts in everyday work.

Keywords: coal; petrographic analysis; macerals; image analysis; semantic segmentation; convolu-
tional neural networks

1. Introduction

Coal petrography is a science that, despite the passage of many years, is developing
and updating its knowledge with a view to new directions for use in the energy industry.
Particular emphasis is placed on clean coal technologies as well as the recovery of critical
elements from coal [1–6].

Coal is a heterogeneous substance in terms of its chemical composition. Its hetero-
geneity is due to the variation in the peat-forming plant material from which it was formed
and the variation in the conditions, time, pressure, and temperature to which the organic
material was subjected during both its biochemical and geochemical phases [7]. The basic
units of the structure of coal, homogeneous in physical and chemical terms, are macerals.
The study of the petrographic structure of coal is important from both a cognitive and a
utilitarian point of view [7–11]. It is the petrographic constituents and their individual
characteristics and features that are responsible for the property of coal and the way it
behaves in various technological processes [7,8,12–15].

Knowledge of the percentage of individual petrographic constituents in coal is very
important, as the petrographic constituents differ in terms of their physical and chemical
properties, such as volatile matter content, elemental composition, vitrinite reflectance, and
specific density, all of which affect the chemical, physical and technological properties of
coal [7,13,16–18].

The knowledge of the petrographic and mineral composition of the coal deposit, and
the properties resulting from this composition, should be the basis for optimizing the
conditions in coal preparation plants [6,19,20]. Such an approach makes it possible to
control the properties of the final product in order to obtain concentrates with precisely
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defined parameters and properties, usable in clean coal technologies (CCT), especially in
combustion, coking, and gasification processes [21–27].

Petrographic studies are also used to determine the composition of coke mixtures and
to forecast coke quality. In addition, petrographic analyses of coal are used in research on
the production of liquid fuels by means of the direct hydrogenation method [13]. Another
important parameter in the selection of coal for various technologies is the degree of
coalification of the organic matter in coal, a measure of which is the reflectance value
determined on one of the most homogeneous macerals, namely vitrinite [16,28].

The petrographic composition of hard coals and their degree of coalification, deter-
mined by analyzing huminite reflectance for low-rank coals, and vitrinite reflectance for
medium- and high-rank coals, have become an important element in the classification of
coals, both according to the Polish classification PN-G-97002:2018:11 Hard coal. Types and
the international classification ISO 11760:2005 Classification of coals and international codifica-
tion system for medium and high-rank coals, ECE/COAL/115, United Nations Publication,
New York, 1998. The international classification and codification are based on both the mac-
eral content in coal and the degree of vitrinite carbonization, while the Polish classification
by type is based on the vitrinite reflectance value. Although huminite reflectance could
be a useful parameter for low-rank coal, the heterogeneous geochemical characteristics of
huminite macerals might also be problematic [7,29–33]. Based on the above information, it
can be concluded that petrographic studies of coal are very frequently used, and thus they
are becoming more and more important.

The microscopic analysis of composition is based on the identification of individual
petrographic constituents observed by the operator in the microscopic image. The method is
standardized and based on ISO 7404-3:1994 Methods for the petrographic analysis of bituminous
coal and antaracite–Part 3: Method of determining maceral group composition, as well as the
maceral classification of the International Committee for Coal and Organic Petrology
(ICCP) [9–11]. The determination is based on the identification of macerals at a minimum
of 500 points. Even though several attempts have been made to design automated systems,
this analysis is still commonly based on a manual method, which is very time consuming.
It requires a lot of knowledge and skill on the part of the operator.

The application of image analysis and computer vision in minerals science has a long
and successful history. The images were used for the identification of the minerals based
on their color and textural features [34–36]. There were also attempts at the determination
of grains sizes using the computer vision approach when the boundaries were used using
color [37,38] as well as texture [39,40] features. Computer vision was also used to analyze
the microscopic images of minerals. Martens et al. analyzed the microscopic pictures of
mortars to assess the distribution of the sand grains sizes [41]. Kazak et al. successfully
applied machine learning methods in the analysis of focused ion beam scanning electron
microscopy (FIB SEM) images for void space characterization of tight reservoir rocks [42].
Zhou et al. investigated the possibility of segmenting mineral grains in petrographic
images using various edge detection algorithms [43]. A similar problem, but with the
application of the level set method [44], was also considered in [45]. The attempts were
made to use image analysis in the petrography, macerals, cleat, and lithotypes of coal
samples as early as in the 1980s [46–48]. The researchers investigated different possibilities
to differentiate the organic and mineral matter. Hou et al. used the time-of-flight secondary
ion mass spectrometry to obtained images of the macerals and selected mineral matter [49].
Alphana et al., based on scanning electron microscope images (SEM) [50], calculated a set of
color and textural features for each image. The classification process is aimed at predicting
the coal quality, namely as best, good and poor. The application of radial base functions
neural networks (RBFNN) outperformed the other classification methods. However, there
was no attempt to identify the macerals composing the sample, and the application of
SEM complicated the image acquisition. The most interesting and desirable solution
should address the automation of coal petrography using the simplest image acquisition
procedure possible. In this direction, O’Braien et al. proposed the usage of full maceral
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reflectograms for maceral identification [51]. The coal samples were submerged in resin
and polished. After the resin regions were masked out in the image, the cumulative curve
of reflectance was computed using the gray values of the remaining pixels. The shape of
the curve reflects the composition of the coal. The method turned out to be successful, but
it required appropriate preparation of sample and imaging protocol (e.g., usage of red dye
for resin and green light for images acquisition). The gray level values had to be calibrated,
so that the resulting curve could be interpreted in terms of maceral’s containment. The
idea was further enhanced by using simultaneous analysis of optic and SEM gathered
images [52]. The idea of the usage of optical microscopy obtained images for automated
macerals identification was also considered by other researchers [53–58]. Młynarczuk and
Skiba proposed the usage of machine learning (ML) and artificial intelligence methods
in maceral identification [59]. The maceral group identification is based on the color
features vector computed for the square neighborhood of the selected pixel. The k nearest
neighbors (kNN) and multilevel perceptron (MLP) were used as the classifier. The results
were very promising, and the method was developed to identify the macerals within the
inertinite group [60]. The features vector was extended to include both color and texture
properties of the pixels. The results were satisfactory, but the effectiveness depended on
the maceral. However, none of the methods tried to semantically segment the image. One
of the attempts in this direction was made by Wang et al. [56]. In this attempt, the shapes of
macerals groups were identified using a clustering procedure, namely a modified k-means
algorithm. Then, the discovered objects were classified using morphological, color and
texture features. It should be emphasized that in addition to the analysis of images from
various types of microscopes, other methods were also used for carbon analysis, examples
of which can be found in [61,62].

Semantic segmentation is a topic of much research interest nowadays [63,64]. The
application of deep learning (DL) and convolutional neural networks (CNN) allowed
for achieving stunning results. The DL was used as a tool for microfossils, core images,
petrographic and rock images classification [65]. Attempts are being made to apply these
approaches to the analysis of coal characteristics and particularly its petrography using
visual information. The most fundamental characteristic of coal’s run-of-mine (ROM)
distinguishes between coal rocks and the accompanying gangue. Pu et al. used the VGG16
CNN for the classification of images presenting coal or gangue in different configurations
(as stockpiles, during transportation, photographed in laboratory conditions, etc.) with
satisfactory results [66]. Li et al. developed a solution for the identification of coal and
gangue rocks on images [67]. The proposed framework processed the Gaussian pyramid of
the input image. The rock grains were detected and classified as coal or gangue. The authors
reported impressive accuracy, exceeding 98%, in rock type recognition. The application
of semantic segmentation to maceral group identification was developed by Lei et al. [68].
The proposed network utilizes the U-Net [69] network enhanced with the attention gates.
The authors used the multi-class form of the output layer of the network. The segmentation
results were very good and proved the robustness of DL methods.

The identification of the macerals directly on the image by means of the direct as-
signment of the maceral label to every pixel would be beneficial in many ways. First of
all, it will allow the determination of maceral composition. Secondly, it would provide
the scientist with information allowing them to judge whether the individual parts of the
image have been correctly identified. Third, the calibration should not be critical in maceral
identification, because not only are the color statistics considered, but also the spatial
arrangement of pixels constituting the maceral groups (for medium- and high-rank coals).
Therefore, attempts were made to develop a method suitable for such coal petrographic
images analysis. The presented paper provides a proposition of such a method using the
deep learning approach. The highlights of the presented results include the development of
the coal petrographic images database, the method of image preparation and augmentation,
and the development of a U-Net [69]-based convolutional neural network for the semantic
segmentation of coal petrographic images. The proposed approach is based on using
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single-class classification—a separate model of the same architecture was trained for each
of the macerals.

2. Materials and Methods

The identification of macerals is based on the microscopic evaluation of grain mor-
phology and color. On this basis, three groups of macerals were distinguished: liptinite,
vitrinite, and inertinite (Figure 1) [9–11]. The color of liptinite changes from brown through
dark grey to light grey in the microscopic image. Under incident light, depending on coal
rank, the color of vitrinite changes from dark grey through light grey to almost white.
On the other hand, in the same light conditions, the color of inertinite in coal is always
the brightest and changes from light grey to white and bright white. The reflectance of
all macerals increases with the increasing carbonization of the organic matter of the coal
(Figure 2). At the vitrinite reflectance (%Rr) level of about 1.5%, the simultaneous differ-
ences in reflectance and in color between liptinite and vitrinite disappear, and with a %Rr
about 2.4%, the differences between vitrinite and inertinite also disappear.
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Figure 1. Maceral groups: (a) vitrinite; (b) liptinite and inertinite; (c) liptinite; (d) inertinite and vitrinite. Oil immersion,
magnification 500×.
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Figure 2. Variability of macerals’ groups reflectivity in coals of different carbonization degree [70].

For the purposes of this study, medium-sized samples were prepared for petrographic
analyses, according to the PN-ISO 7404-2:2005 Methods for the petrographic analysis of bi-
tuminous coal and anthracite–Part 2: Method of preparing coal samples, from selected coal
samples in which vitrinite reflectance did not exceed 0.8%. Coal samples were taken from
coals originating from Polish coal basins: the Upper Silesian Coal Basin and the Lublin
Coal Basin. Data on the tested coal samples (rank, the origin of the samples, and maceral
compositions are presented in Table 1. The microscopic specimens were prepared by the
immersion of coal dust in a mixture of epoxy resin and hardener, obtained by mixing the
components at a ratio of 8:1. The immersed microscopic specimens were left for at least
24 h until solidification. The solidified specimens were ground and polished using a Struers
LaboForce-3 grinding/polishing machine (Struers Inc., Cleveland, OH, USA). A Zeiss Axio
Imager Z 2m microscope (Carl Zeiss AG, Oberkochen, Germany) (Figure 3) was used for
the study. A magnification of 500 times and white light reflected in oil immersion were
used. Surfaces were selected for which photographs were taken using an Axiocam 506
color camera. The set of microscope photographs obtained showed different macerals for
which a mask set was developed. In the petrographic analysis, the participation of maceral
groups was most important. The results of the determination of the mineral substance are
rarely used. Therefore, they were omitted in the first stage of the research. We plan to take
care of this problem in the future.

The images were captured with the resolution 3072 × 2304 pixels with 8-bit RGB color
space. For further processing, the images were cut into 512 × 512 parts. Then, the manual
segmentation of the vitrinite, inertinite, and liptinite was performed by a domain expert.
The segmentation was used as the ground truth for further processing. There were separate
masks created for each of the macerals. The completed database consisted of 162 images
for which the masks were created (three masks were created for each input image). The
example image and masks are presented in Figure 4.

Table 1. Data on the tested coal samples.

Origin Samples Numer of
Samples

Maceral Groups (% vol.) Vitrinite
Reflectance (%)Vitrinite Liptinite Inertinite

Upper Silesian
Coal Basin 12 45–79 7–12 17–31 0.51–0.80

Lublin Coal Basin 10 58–72 6–15 18–35 0.58–0.75
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the inertinite; (c) mask for the liptinite; (d) mask for the vitrinite.

It was decided to use a separately trained single-class model for the maceral identi-
fication. This approach has its advantages, dictated by both practical and computational
considerations. In petrographic practice, the identification of macerals is used in various
variants. For example, as far as the analysis of the vitrinite reflectance index is concerned,
the recognition of only one maceral—collotelinite—is required. Similarly, the research
carried out in order to determine the coke-forming properties requires the recognition of
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two types of petrographic components, namely reactive ones, which include macerals from
the vitrinite and liptinite groups, and inert ones, which include macerals from the inertinite
group. Using a single-class approach gives the opportunity to make it possible to obtain a
network that is particularly sensitive to a specific group of macerals. Such a network is
expected to be easier to train than a multiclass network and will allow for the usage of
a simpler architecture without sacrificing the performance. The above is also true with
respect to the preparation of a set of training images. It also provides the possibility to
optimize the network architecture for each group of macerals. The usage of single-class
models does not limit the common analysis of all of the maceral groups simultaneously.
The outputs of the models can be combined into the result, showing all classes on a single
image using for example argmax function (argmax function returns the argument for which
the maximum value of output was achieved).

For the segmentation experiments, the U-Net convolutional semantic segmentation
network was used [71]. The architecture of the network is presented in Figure 5.
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Figure 5. The architecture of U-Net network [71].

The U-Net is an example of an autoencoder network. It can be divided into three parts:
the contraction part (4 blocks composed of two convolutional steps and pulling step), the
bottleneck (the convolutional layer with 1024 channels), and the expansion part (4 blocks
composed of two convolutional layers followed by upscaling layer). All convolutional
layers use the rectified linear unit (ReLU) as the activation function. The input layer in the
constructed U-Net-based network has a 512 × 512 resolution, which is in accordance with
the input image size. The output layer was constructed with a 1 × 1 convolutional layer
with a sigmoid activation function. The list of layers along with their shapes is presented
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in Table 2. The network architecture was implemented using the Tensorflow deep learning
framework library.

Table 2. The shapes of layers used for the U-Net-based maceral segmentation network.

Layer Shape Activation

Input 512 × 512 × 3 -
Convolutional 2D 512 × 512 × 16 ReLU
Convolutional 2D 512 × 512 × 16 ReLU

Max Pooling 256 × 256 × 16
Convolutional 2D 256 × 512 × 32 ReLU
Convolutional 2D 256 × 512 × 32 ReLU

Max Pooling 128 × 128 × 32
Convolutional 2D 128 × 128 × 64 ReLU
Convolutional 2D 128 × 128 × 64 ReLU

Max Pooling 64 × 64 × 64
Convolutional 2D 64 × 64 × 128 ReLU
Convolutional 2D 64 × 64 × 128 ReLU

Max Pooling 32 × 32 × 128
Convolutional 2D 32 × 32 × 256 ReLU
Convolutional 2D 32 × 32 × 256 ReLU

Up Sampling 64 × 64 × 256
Convolutional 2D 64 × 64 × 128 ReLU
Convolutional 2D 64 × 64 × 128 ReLU

Up Sampling 128 × 128 × 128
Convolutional 2D 128 × 128 × 64 ReLU
Convolutional 2D 128 × 128 × 64 ReLU

Up Sampling 256 × 256 × 64
Convolutional 2D 256 × 256 × 32 ReLU
Convolutional 2D 256 × 256 × 32 ReLU

Up Sampling 512 × 512 × 32
Convolutional 2D 512 × 512 × 16 ReLU
Convolutional 2D 512 × 512 × 16 ReLU
Convolutional 2D 512 × 512 × 1 Sigmoid

The input images were split randomly into training and validation sets. The validation
set was formed with 10% of all images. The binary cross-entropy function was used as
a loss function during the network training process. During the training, the pixel-wise
accuracy (PA), intersection-over-union (IoU), and mean intersection-over-union (MIoU)
were also monitored as effectiveness measures. The ADAM optimizer was chosen for
model learning [72]. The training of the network was performed in two stages. In the
first stage, the batch size and the learning rate range were estimated. The model training
was stopped after just a few epochs and the training results were analyzed. The upper
limit for learning rate was established by choosing the value at which the model improved
the performance in at least 4 consecutive epochs. The batch size was limited by the size
of the input dataset. The bigger the batch size, the fewer steps per epoch the training
procedure can make. It was assumed that the biggest batch size allowed for at least several
dozen steps for the epoch. The second stage was devoted to model training. During the
training, the decreasing learning rate was used. The model was trained for 50 epochs with
a constant rate. If no improvement to the loss function was observed, the learning rate was
decreased by 10 and the training process was repeated. The accuracy for the validation
set was observed as an indicator for possible overtraining. The training was stopped once
the validation set accuracy start to decrease. The presented learning procedure was used
for each of the macerals. During the training process, two kinds of data modifications
were performed:
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1. The images which do not show the given maceral were excluded from the training set.
For example, if the model was trained for vitrinite segmentation, all images where
vitrinite was not present were excluded from the training set;

2. Basic images augmentation was performed. The augmentation was limited to rotation
by π/2, π, 3π/2 and mirroring horizontally and vertically.

The order of the images during each epoch was randomized. All input images were in
RGB color space. All masks were binary. No image preprocessing except for the described
augmentation was performed.

All the calculations were performed on an MS Windows workstation equipped with
an Intel i7 processor running at 3.6 GHz (maximum), 32 GB RAM, and an NVIDIA GeForce
GTX 1080 graphic card. All software necessary for computation was prepared with the
Python programming language using the TensorFlow framework [73].

3. Results and Discussion

The learning rate during the first stage of experiments was changed from 10−1 to
10−6. It was observed that learning rates greater than 10−4 caused huge changes in the loss
function for consecutive epochs. The loss hardly shows any improvement. Therefore, the
rate of 10−4 was chosen as the largest learning rate used in the calculation. After every 50
epochs during the training, the results were examined and the learning rate decreased once
the loss function values started to oscillate from one epoch to another. The calculations
were stopped once the validation test accuracy started to increase. At this moment, the
learning rate was as low as 10−7.

The training for the inertinite started from the randomly initialized network, using
Xavier initializer [74]. During the 250 epochs of the training process, the learning rate
was changed from 10−4 to 10−6. The final accuracy computed for the validation set was
equal to 0.9385. The values of IoU and MIoU were equal 0.79 and 0.85, respectively. The
segmentation results compared with the input image and the ground truth for selected
images are presented in Figure 6.

The presented results of segmentation are indeed the output values from the last layer
in the used U-Net based network. The values, being the values of the sigmoid function,
vary from 0 to one, which is reflected by the grayscale level in the picture. The segmentation
quality can be assessed as very good, though not perfect. It may be noticed that some
minor artifacts are visible on each of the presented images. The network has difficulties
in recognizing the tiny structures of inertinite visible among other macerals of similar
greyscale and textures. In addition to that, vast structures were correctly noticed by U-Net
and marked.

The training procedure and the results obtained for vitrinite were similar to those
for inertinite. The learning process also lasted 250 epochs, though the learning rate was
changed in a wider range. It started at 10−4, but ended with 10−7. The selected results
of the segmentation are presented in Figure 8. The obtained accuracy computed for the
validation set was equal to 0.9176. The IoU was equal to 0.78 and the MIoU was equal to
0.75.

The analysis of the results shows that the quality of segmentation is similar to that for
inertinite; however, a slightly higher level of artifacts was observed, which is also visible in
the presented images (see Figure 7). The results can be considered very good and suitable
for practical applications.
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Figure 7. The results of vitrinite segmentation. (a,d,g) Input images; (b,e,h) segmentation results; (c,f,i) ground truth.

As expected for medium- and high-rank coals, the segmentation of liptinite turned
out to be the most difficult. There was no success with the training network beginning
with the randomly initialized weights. Moderately satisfactory results were obtained when
the training process for liptinite used the weights from the trained model for inertinite
segmentation. The application of such performed transfer learning made it possible to
obtain acceptable liptinite segmentation, but the errors and artifacts are clearly visible in
the resulting images. The accuracy value for the validation set was 0.9791. Such a large
value, with a relatively low quality of segmentation, results from the small area covered
by the liptinite on the analyzed images. The calculated values for the IoU (0.18) and the
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MIoU (0.58) show that the segmentation is indeed poor, and can be treated as a rough
identification of liptinite’s presence. The results of segmentation are presented in Figure 8.
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A summary of the obtained values of accuracy, IoU, and MIoU is presented in Table 3.
The quality of segmentation obtained for inertinite and vitrinite was good enough to be
used as the basis for the development of an autonomous maceral identification method.
The imperfections were small, not differing much from the ground truth. Moreover, during
the analysis of the results, it turned out that the network was able to identify the small
inertinite structures overlooked during manual segmentation. It seems reasonable to use
the U-Net-based convolutional network for the segmentation of the mentioned macerals
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with only a little attention from a domain expert. Unfortunately, this is definitely not true
for liptinite. The network was able to identify the liptinite only roughly. The result should
instead be treated as approximate, possible locations of liptinite structures which have to be
verified and corrected by a domain expert. The training for liptinite was also more difficult
than for other macerals. It is probably caused by its more varied appearance. In addition,
liptinite covered small areas in the images and was present only on relatively small numbers
of them. Nevertheless, such support in assessing the maceral can be useful in practice.
The obtained results can be related to others reported in the literature [56,68]; however,
the comparison is not obvious as the mentioned papers do not provide the measures for
the macerals’ groups separately. Therefore, it is reasonable to use the mean values for
the IoU and MIoU presented in Table 3 and the values of the same measures presented
in [68]. The presented U-Net-based network gives better results than the non-DL methods.
The results obtained by the improved U-Net (enhanced with the use of attention gates)
are better than presented in the paper, though the difference is small (IoU ~ 0.8554 and
MIoU ~ 0.631 for best enhanced network presented in [68]). However, it is impossible to
assess how it is divided into individual macerals groups. When the liptinite, with the worst
results, is omitted, the mean IoU and MIoU for inertinite and vitrinite are much greater.
As the proposed models address the segmentation of each of the macerals individually,
they should be treated as complementary to the model presented in [68]. Wang et al.
presents the results obtained using different deep learning networks architectures, such as
U-Net (standard multi-class architecture), SegNet, and DeepLab V3+ [57]. The results are
provided for each of the macerals separately. The comparison is presented in Table 4.

Table 3. The values of accuracy, IoU and MIoU obtained for validation images set.

Macerals’ Group PA IoU MIoU

Inertinite 0.9385 0.79 0.85
Liptinite 0.9791 0.18 0.58
Vitrinite 0.9176 0.78 0.75

Mean 0.9451 0.58 0.79
Mean without liptinite 0.9280 0.73 0.80

Table 4. The IoU values obtained for various deep networks architectures.

Macerals’ Group U-Net [57] SegNet [57] DeepLab V3+ [57] Simplified U-Net

Inertinite 0.57 0.66 0.71 0.79
Liptinite 0.52 0.37 0.83 0.18
Vitrinite 0.81 0.83 0.87 0.78

The proposed simplified U-Net-based network did very well in segmenting the inerti-
nite, achieving a better result than much more sophisticated DeepLab V3+ network (the
best from architectures compared in [57]). The results obtained for vitrinite are slightly
worse than for the other two networks. There are very large differences in the case of lipti-
nite. The network architecture was probably too simple to successfully cope with the most
difficult to recognize maceral groups. The results obtained for two other maceral groups
are optimistic. In particular, the IoU measure for the inertinite is good enough to contribute
to the assumptions made and present the network’s robustness. The proposed network
can be efficiently used for inertinite and vitrinite identification in the petrographic images.

The discussed approaches present different means to provide the solution for maceral
groups identification. The usage of different models trained for each maceral group
separately gives the opportunity for finetuning. This also allows the architecture of the net
to be kept relatively simple (e.g., simpler than in the original U-Net) while still providing
good performance, at least for inertinite and vitrinite. The results are also encouraging in
research targeted at discovering the simplest and most robust neural network structure for
the efficient analysis of petrographic images.
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4. Conclusions

The application of a U-Net-based CNN network for macerals segmentation on the
coal petrographic optical microscope images has been presented. The set of images was
manually segmented by experts and used further as the ground truth. The network was
trained to segment inertinite, liptinite, and vitrinite. During the training, basic image
augmentation was used (horizontal and vertical flipping, rotation by multiplicity of π/2
angle). The result show that very good results can be achieved for inertinite segmentation.
The vitrinite was segmented slightly worse, but also at a very good level. The liptinite was
most difficult to process. Moderately good results were obtained after the transfer learning
usage. Even so, the segmentation was noticeably worse than for inertinite and vitrinite.

The obtained results show that the proposed convolutional autoencoder could effec-
tively be used for maceral segmentation. Although the results for the liptinite were worse
than those for other macerals, due to the advanced rank of analyzed coal samples, the
network in most cases was able to locate the estimated maceral location. The inertinite
and vitrinite segmentation are good enough to be considered as a base for autonomous
petrographic processing. Although the results do not justify such a sentence in the case of
liptinite, it still can be a valuable tool supporting the expert during petrographic image
analysis. Data augmentation and transfer learning in particular proved their effectiveness
in at least partially solving the problems in difficult cases. The comparison of the results
with similar research showed that the obtained values of IoU and MIoU are better than
those reported in the literature for the ML models, and are similar to those achieved by
using the DL models (for inertinite and vitrinite). The segmentation of liptinite with the
simplified, U-Net-based network is still a challenge and requires further research. The ML
methods as well as image analysis methods are very promising, and have been utilized
for coal analysis by many scientists with satisfactory results. The approach proposed here,
though encouraging, fulfills only a tiny portion of the scientific challenges related to coal
petrography. Further research work in this field is required.
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Abstract: Fragmentation size distribution estimation is a critical process in mining operations that
employ blasting. In this study, we aim to create a low-cost, efficient system for producing a scaled 3D
model without the use of ground truth data, such as GCPs (Ground Control Points), for the purpose
of improving fragmentation size distribution measurement using GNSS (Global Navigation Satellite
System)-aided photogrammetry. However, the inherent error of GNSS data inhibits a straight-forward
application in Structure-from-Motion (SfM). To overcome this, the study proposes that, by increasing
the number of photos used in the SfM process, the scale error brought about by the GNSS error
will proportionally decrease. Experiments indicated that constraining camera positions to locations,
relative or otherwise, improved the accuracy of the generated 3D model. In further experiments,
the results showed that the scale error decreased when more images from the same dataset were
used. The proposed method is practical and easy to transport as it only requires a smartphone and,
optionally, a separate camera. In conclusion, with some modifications to the workflow, technique,
and equipment, a muckpile can be accurately recreated in scale in the digital world with the use of
positional data.

Keywords: point cloud scaling; fragmentation size analysis; structure from motion

1. Introduction

Fragmentation size is a key parameter to the efficiency of numerous mining operations
that makes use of explosives across all of the stages of production from mine (drill, blasting,
haulage, etc.) to mill (mineral processing). Several studies [1,2] going back to the late 1990s
have explored this particular correlation. It is vital for companies, therefore, to monitor
fragmentation size and make necessary changes to mine planning and execution. For the
purpose of maintaining a consistent optimal fragmentation size, the blasting products must
be monitored regularly, so that any necessary modifications to the drilling and blasting
process can be made.

However, the rock is usually heterogeneous in nature, and a large amount of material
is generally mined every day, so there are some difficulties in monitoring the fragmentation
size distribution regularly using traditional methods. These traditional methods include
manual sieving, boulder counting, and visual estimation. However, limitations on sampling
and bias make these methods relatively inefficient [3]. As such, there exists a need for a
quick and accessible method of rock fragmentation size distribution determination that can
surmount the limitations of physical sampling and laboratory analysis. A currently used
digital solution to this problem is to employ image-based particle size analysis software.
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Commercial products, such as WipFrag [4], make use of images of a muckpile or orthomo-
saics to measure fragmentation size distribution. In addition, other 3D modelling technologies,
such as lidar systems, have also been used in fragmentation measurement systems producing
good results and accurate measurements without the need for scale objects.

A previous study [5] was done using laser scanning to measure the blast fragmentation
in rockpiles in a mine. While specialized equipment was used to do this study, lidar is
becoming increasingly accessible in recent years, with newer generation smartphone
models including a lidar system. The study recognizes that this is also a good alternative
to perform fragmentation measurement as they are potentially effective in an underground
setting where lighting is limited, an issue that produces problems for traditional image-
based photogrammetry [6].

In a previous study [7], a 3-Dimensional Fragmentation Measurement (3DFM) system
was developed that makes use of 3D Photogrammetry to measure particle size distribution
at accuracies greater than that of conventional methods. A theoretical visualized workflow
for this particular system when applied to a mining operation is shown in Figure 1.

Figure 1. Whole image of a target system.

The developed system is divided into stages, utilizing multiple computational tech-
niques in order to achieve its purpose. In a hypothetical application of the system, pictures
of the muckpile from the products of blasting are taken. The sizes of muckpiles vary greatly
depend on the specifications of the hauling equipment as well as the mine plan that the
operation employs. In situations where the muckpile is too large or has parts that are
inaccessible to photo-taking, it is possible for the system to reconstruct only a representative
“slice” of the muckpile.

The images are then processed in a high-power computer by a sequence of 3D imaging
techniques that will ultimately output a scaled 3D model of the muckpile in the form of
a point cloud. A technique known as supervoxel clustering is then performed on the
3D model, which then undergoes supervoxel clustering in order to divide the individual
fragments into segments whose dimensions have been calculated. The dimensional data
can then be used in the computation of the fragment size distribution of the muckpile.
Using this information, the blasting product can be judged if it is up to the expected
specification. Adjustments are then made the blasting design, such as the amount and type
of explosive and blasting patterns in order to achieve the required distribution.

This study focuses on the 3D model scaling aspect of this system, as highlighted
with a red box in Figure 1. Specifically, the research will analyze how positional data can
affect scaling error when reconstructing using Structure-from-Motion. Scaling is a critical
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component of fragmentation size distribution measurement using photogrammetry as
this will directly determine the accuracy of the size estimation. In creating a 3D model,
extrinsic data, such as ground truths, are needed to create a properly-scaled reconstruction
of the scene. Traditionally, scale is resolved in photogrammetry by placing scale bars in the
scene or taking a measurement of two features and then scaling the generated model using
that information.

The study proposes a method that makes use of GNSS (Global Navigation Satellite
System) data to create scaled 3D models without the need for post-reconstruction rescal-
ing. GNSS positional data, and its sub-systems, such as GPS, Beidou, GLONASS, and
Japan’s own QZSS can be utilized. A previous study was performed with regards to
using GPS in reconstruction but mostly in the context of UAV (Unmanned Aerial Vehicle)
Mapping [8]. This study aims to create a system that does not need ground truth data,
such as GCPs (Ground Control Points) to create a properly scaled 3D model of a muckpile.
This would aid greatly in the fragmentation size distribution measurement of muckpiles
using photogrammetry.

It is a known fact that inherent error exists within GNSS and its subsets, and even
high-end geodetic GNSS receivers have errors in the centimeter range [9]. For this study, a
smartphone was used as a GNSS receiver for the digital camera. This decision was due to
the end-goal of this research, which is to be able use both image data and GNSS data from
a smartphone, as this practicality can be important in a mining operation environment.

This comes at a drawback to the GNSS accuracy, as recreational grade GNSS chips,
like those found in smartphones, typically have errors in the meter range [10]. To overcome
this error, the study proposes to make use of an increasing number of georeferenced images
to statistically decrease the scaling error of the constructed 3D model. Figure 2 shows a
general overview of the proposed system for this study. Utilizing a smartphone’s built-in
GNSS receiver, GNSS data can be logged and sent to a camera. At the moment an image is
taken, GNSS data can be embedded into the image’s metadata (EXIF).
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In a similar study [11], a Real Time Kinematic (RTK) GNSS receiver was used in
conjunction with a camera for a photogrammetric survey of a geological outcrop. The
method suggested in this study is a potentially cheaper alternative as it utilizes the built-
in GNSS receiver in a smartphone. In a similar fashion, the method used by this study
allows for greater flexibility as it is a point-and-shoot method that does not require external
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preparation. While this can mean that more photos will be needed to generate a 3D model,
the cost-efficiency and the practicality of not having to use GCPs or physical scales can be
desirable in some applications.

2. Materials and Methods
2.1. Structure-from-Motion—Multi View Stereo (SfM-MVS)

Mathematically speaking, SfM can be described as the conversion of four coordinate
systems, illustrated in Figure 3:

(1) An image pixel coordinate system, which concerns the pixels on the 2D image.
(2) An imaging plane coordinate system, which lie on the same plane of the previous

system, but whose origin is the plane’s intersection with the camera’s optical axis.
(3) A camera coordinate system, which concerns a pinhole camera’s point of view of

the image.
(4) A world coordinate system, which is a reference system to describe the position of

the camera and the objects being taken pictures of.
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Figure 3. An illustration of the coordinate systems. Described is the conversion of world point Pw to
camera point Pc, to imaging plane coordinates (x,y), and finally pixel coordinates (u,v) [12].

The conversion of these four coordinates systems can be described by Equation (1).
u and v describe the axes in the imaging planes. u0 and v0 are the coordinates of the origins
of the imaging plane in the pixel coordinate system. δx and δy represent the physical size
of each pixel in the image in the imaging plane (zoom ratio). f describes the focal length,
which is the distance from the optical center of the camera to the pixel plane. R ∈ R3×3

and t ∈ R3 describe the rotational and translational vectors that relate the camera and the
world coordinate systems. Xw, Yw, Zw are the actual coordinates of a point in the world
coordinate system [12].

Equation (1) represents the fact that, in order to estimate the position of a point in the
real world, the external parameter matrix of the camera (i.e., R and t) needs to be measured
first. Once R is known, the relative position of the object in the world coordinate system
can be estimated, and once t is known, the absolute position can also be acquired as well.

250



Minerals 2021, 11, 1301

Basic SfM can relatively estimate R and t. In this study, GNSS data is used as the absolute
value of t. The details of this method are described in Section 2.2.

It can be inferred that there is no single ‘correct’ workflow or process in the conversion
of 2D images into models. However, there are key processes that are present in almost all
applications of the method, as shown in Figure 4. The steps are briefly described in the
following sections.
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2.1.1. Keypoint Detection

The initial processing step after acquiring the images is feature detection, or extraction,
where possible common features (keypoints) in the individual images are identified as
shown in Figure 5. It is by these features that allow the different images in the dataset
to be matched at the next stage. There are several techniques that have been developed
for the solution of this step [13]; however, the most widely used amongst modern SfM
applications is the scale-invariant feature transform (SIFT) [14].

Figure 5. Keypoint detection on a pile of rocks.

The system recognizes feature points in the image set, which are uniform in scaling
and rotation and relatively uniform to changes in lighting and 3D camera view angles. The
number of keypoints that are extracted in an image relies heavily on the resolution and
texture of the images themselves with high-quality, original-resolution pictures returning
the most results [15].

2.1.2. Keypoint Matching

The next step is to match the keypoints and identify the correspondences between
them. Matches are found by identifying a keypoint’s nearest neighbor in the database.
The nearest neighbor is defined as the keypoint with the least Euclidean distance for its
descriptor vector, as shown in Figure 6 [14]. It is also important to note at this point that not
all keypoints are guaranteed to have a good match in the dataset. It is, therefore, necessary
to discard these unmatched keypoints, making use of the ratio between the Euclidean
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distance of the nearest neighbor with that of the second nearest at a certain minimum value
as a criterion for discarding false keypoint matches [13].

Figure 6. Graphical representation of image gradients and keypoint descriptors.

The inherent complexity of the keypoint descriptors gives rise to the need of an
efficient solution to the search process, as brute-force searching for nearest neighbors
proves to be computationally difficult and time-consuming. Several solutions, such as
k-dimensional trees (k-d trees), best-bin first (BBF), and approximate nearest neighbor
(ANN) searching, are used to solve this problem of efficiency by partitioning the data into
bins that are prioritized for match searching, thus, decreasing the number of recursions
needed to go through all the keypoints [13].

2.1.3. Keypoint Filtering

The third stage, also known as geometric verification or match filtering, is done
to further eliminate erroneous matches. Since the initial matching is solely based on
appearance, it cannot be guaranteed that the matched keypoints refer to the same point in
an image (e.g., images with symmetrical or similar features) [16]. SfM then needs to verify
matches by mapping keypoints across images using projective imagery. An example of
this step can be illustrated by the image pair in Figure 7. The two images are of the same
scene, taken at two different angles, and the keypoints found in both images are matched,
as shown by colored matching tracks.

Figure 7. Keypoint matching tracks over two different views.

2.1.4. Sparse Reconstruction: Structure-from-Motion

The fourth step, which also by itself is sometimes called SfM (Structure-from-Motion),
is to reconstruct the scene that was taken using 2D images into an initial sparse 3D structure.
Using the verified matched keypoints, SfM aims to simultaneously reconstruct the: (a)
3D scene structure, (b) camera position and orientation (extrinsic parameters), and (c)
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intrinsic camera calibration parameters. The intrinsic camera parameters are defined by a
camera calibration matrix that includes image scale, skew, and the principal point that is
defined as the location on the image plane that intersects the optical axis.

Further intrinsic parameters are also required to resolve additional internal aberrations,
such as distortion on non-pre-calibrated cameras. These intrinsic parameters are either included
in the camera’s image file format (e.g., EXIF) or will be resolved in additional intermediate steps.
After this, a process known as bundle adjustment is used to produce sparse point-clouds [16].
This process will be described further in another part of the paper below as it is in this step that
GNSS constraints will come to play in scaling the produced 3D model. A simplified illustration
of this process is described by the illustration in Figure 8.

Figure 8. SfM example showing common points.

2.1.5. Dense Reconstruction: Multi View Stereo

An additional, post-processing method known as MVS (Multi-View Stereo) can be
applied to the sparse 3D model from SfM in order to generate an enhanced “dense” 3D
model. The final output of MVS is a complete 3D scene reconstruction from a collection
of images of known intrinsic and extrinsic parameters, which is already resolved through
SfM. A variety of MVS algorithms are available but recent variants called clustering views
for MVS (CMVS), and patch-based MVS (PMVS) was observed to perform well against
other algorithms [13].

CMVS decomposes the camera poses from bundle adjustment into manageable clus-
ters, and PMVS is used to independently reconstruct the 3-dimensional model from these
clusters [15]. Most modern MVS pipelines, including the one in the software used for this
study, include features from both these variants of MVS. A comparison of the point density
between sparse and dense reconstructions is illustrated in Figure 9.

Figure 9. The sparse point cloud (a) and dense point cloud (b) of a scene.
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2.2. GNSS-Aided Scaling in Bundle Adjustment

In the bundle adjustment phase of SfM, the previous and imperfect solutions re-
garding camera positions and 3D features of the scene are refined [17]. More specifically,
bundle adjustment is a non-linear minimization procedure that jointly optimizes the camera
parameters and point position by minimizing the reprojection error between the image lo-
cations of observed and predicted image points. This minimization is done using nonlinear
least-squares algorithms [18].

Numerous studies have been done since its inception in the 1990s regarding bundle
adjustment, with most of the research going into reducing its computational burden and
accelerating the problem-solving process [19]. One of such propositions is the fusion
of positional data and bundle adjustment, with GNSS data being used as constraints
for solving reprojection errors [20]. This concept is what this research aims to produce:
accurately-scaled 3D reconstructions of muckpiles. GNSS data is used to provide position
and covariance estimates for the bundle adjustment process. The nominal form of these
solutions is:

rM
GNSS(τ) = rM

c (τ) + RM
c (τ)rc

GNSS +
(
bM

GNSS + dM
GNSS(τ − τ0)

)
(2)

where rM
GNSS(t) is the position of the GNSS receiver, rM

c (t) denotes the camera position,
RM

c (t) is the rotational matrix that aligns the camera and mapping space axes, and rc
GNSS is

the difference between the GNSS receiver and camera position. bM
GNSS and dM

GNSS denote
bias and drift terms and are included to account for data inconsistencies and the inherent
errors that exist within GNSS. A previous study [11] applied GNSS-assisted terrestrial
photogrammetry to model coastal areas without the use of GCPs. With bundle adjustment
being an error minimization problem with multiple factors, weights can be assigned to
them, as is the case in the study’s SfM workflow.

The software that was used for this study was developed with the aim of being able to
perform SfM without the need for any additional intrinsic or extrinsic data (such as GNSS)
aside from the image themselves. [21]. However, the software itself still allows for the
importation of GNSS data from images for the purpose of constraining camera positions.
Weights are assigned to this GNSS data and used in the bundle adjustment step [22].
As such, the study deems it necessary to initially prove if properly constraining camera
positions will help in creating a properly scaled 3D model. A preliminary experiment was
designed to test this theory, which is described in the proceeding section of this paper.

Preliminary Experiment for Validating Scaling Fundamentals

A preliminary photogrammetry experiment was performed before the main experi-
ment to test some core concepts regarding the study, specifically the effects of known and
constrained camera positions on scaling error and reconstruction quality. This small-scale
experiment involved taking photos of a scene that was set-up indoors in the laboratory
that consisted of a stuffed dog plush toy that was placed on the floor in such a way that it
was in the middle of a grid of nine carpet panels. The panels are 50 by 50 cm in size and
form a 3 × 3 grid measuring 150 by 150 cm in total. Figure 10 shows the general layout of
the scene. The purpose of this grid is to provide a spatial reference for the camera positions
when taking pictures of the scene. A detailed board was put on the middle of the scene to
provide enough feature points for SfM, as initial reconstructions without the board resulted
in distorted point clouds with missing parts.
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Figure 10. Grid layout of the first preliminary experiment (left) and a toy as the object (right). Red
dots indicate camera positions, and the blue rectangle indicates the board that was inserted for
improved feature detection.

The camera used for this preliminary and succeeding experiments was a Canon EOS
R equipped with a Canon 24–105 mm lens. The f-stop was set at 4 with variable exposure
times, automatic white balancing enabled, and the zoom was kept at a minimum to provide
a fixed focal length, which is required for SfM. A total of 32 photos were taken, two at
each of the intersection points of the grid at different heights (45 and 60 cm), with sample
images shown in Figure 11. The height was maintained by mounting the camera on an
adjustable tripod.

Figure 11. Data input and output of the preliminary experiment.

Along with the 50 cm spacing, this provided known relative camera positions. The cap-
tured images were then processed with a workflow that consisted of making the sparse
point cloud and a dense point cloud using photogrammetry software. Creating a textured
mesh was deemed unnecessary as it meant a longer processing time and larger project file
size and ultimately did not contribute to analyzing the results of the experiment. After this,
the camera positions were constrained to their known locations. The scaling error of the
reconstructed model was then analyzed.

Without any camera constraints, the software arbitrarily designated a scale, rotation,
and translation for the model, and the measurement of the dimension of the carpet panel
was about 10 units (since there are no constraints applied, this value cannot be assigned
a specific unit of measurement). However, upon adding constraints to the camera (at the
centimeter level) by importing a file describing each image’s distance from each other, the
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same dimension then measured at 51.2719 cm, with a difference of 1.2719 cm from the real
measurement of 50 cm.

This difference was attributed to human error during the shooting process. A possible
specific example is that the center of the tripod (and, by extension, the center of the camera)
was used to align the camera to the grid instead of the nodal point of the camera lens. This
means that the images were offset from the actual intended grid position depending on
the orientation of the camera and the tripod. Despite this difference, the study still proves
fundamentally that accurately constraining the camera positions to their real-world values
improved the scale accuracy of the constructed 3D model.

3. GNSS-Constrained SfM on Monuments of Known Dimensions

To perform quantitative evaluation of the effects of GNSS constraints on the scaling
error of 3D reconstruction using SfM, an analysis using monuments of known dimensions
outside Akita University was done. The experiment aims to correlate the scaling error
to the number of images used in SfM. The hypothesis of this experiment is that, as more
images are used, the scaling error due to GNSS error will decrease. In this scene, the
cube-shaped monument has sides measuring approximately 1 m. This dimension is used
to compute the scaling error. This particular scene was chosen for this reason, in addition
to the monuments being of simple 3D shapes, making analysis of measurements more
accurate for the purpose of quantitative evaluation.

For this experiment, around 200 images of the scene were taken across 2 days at
roughly the same time of the day, with sample images shown in Figure 12 and a map of the
depicted photo taking area and the recorded camera positions in Figure 13. For this and the
proceeding experiment, the camera was used freehanded without a tripod, with a Xiaomi
Mi 9T Pro smartphone placed close to the camera sending GNSS data to it via Bluetooth.
The dataset, as with the previous experiment, was used to create 3D reconstructions at
different image numbers, with an example shown in Figure 14. The scaling error when
varying number of images are used was noted and compared. For reconstruction purposes
in this and the following experiments, 3DF Zephyr was used, with a setting of 50% GNSS
data weight, as specified in the software’s manual [22].
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Figure 13. GNSS location of camera positions as logged by a smartphone (red dots) of the experiment
on monuments of known dimensions.

Figure 14. Mesh reconstructed 3D CG model of the monuments. The third picture (bottom) shows
the measured side of cube monument when using 100 images.

As shown in Table 1 and Figure 15, there is a trend that at increasing number of images
used in reconstruction, the difference from the real measurement decreases. This increase
in accuracy lends credence to the hypothesis that using more images for reconstruction has
the tendency to lessen scale error in 3D models. Using the trendline of the data, a model
with a difference from real measurement of 0.1 m (10% scaling error) can be hypothetically
created if 386 (385.93) images are used.

257



Minerals 2021, 11, 1301

Table 1. Results of the experiment on monuments of known dimensions.

Data Measured (m) Real Measurement
(m)

Difference from
Real Measurement

(m)

50 images 2.00 1 1.00
100 images 1.97 1 0.97
150 images 1.74 1 0.74
200 images 1.61 1 0.61

Figure 15. Graph detailing the results of the experiment.

4. Experiment on a Pseudo-Muckpile

For this test, the goal was to recreate a scene of a collection of boulder-sized rocks
found at a temple site near the university, shown in Figure 16. The aim of this case study is
to provide both quantitative and qualitative evaluation of the effects of GNSS constraints
on the scaling error of 3D reconstruction with a subject that is a close simulation of an
actual muckpile in a mining environment. The study conducted an experiment using a rock
pile located near Akita University. These rocks are similar in size and shape to a muckpile,
and, if the effectiveness of the method on this dataset can be confirmed, it can be assumed
that the method will be equally effective on an actual muckpile in a mine site.
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A total of 200 photos were taken and split into two datasets (Set #1 and #2) as shown
in Figures 16 and 17, with a map depicting the photo taking area and the recorded camera
positions found in Figure 18 The rockpile was divided into two parts, one with bigger,
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angular rocks and another with smaller, rounded rocks. Both piles were around 4 m wide
on their longest side and are less than a meter long. A wooden box measuring 30 by 30 by
17 cm was placed in the scene for reference, as shown in its reconstructed form in Figure 19.
In addition, measurement of the big, rectangular prism-shaped rock with dimensions of 35
cm× 40 cm× 30 cm were taken for reference as well, which can be seen in its reconstructed
form in Figure 20.
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Figure 18. GNSS location of camera positions as logged by a smartphone (red dots) of the experiment
on a pseudo-muckpile.
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Figure 19. Meshed 3D CG reconstruction of wooden box reference with measurement (at 100 images
used).

Figure 20. Close up of Set #2 meshed 3D CG reconstruction, with measurements on long rectangular
prism-shaped rock that was used as reference.

After the photos were taken, they were once more processed to produce several 3D
models at different image numbers. The scaling error and the reconstruction quality was
then observed in a similar fashion to the previous experiments. Since two sets of data were
used for this experiment, scaling errors between using 50 images (chosen at random) and
100 images for each set were used. An additional exploratory test using 200 images using
both sets was added for testing. The study’s initial hypothesis, however, was that this
will introduce some reconstruction errors as there are not enough images that are similar
between these two scenes.

The measurement comparison is shown in Table 2. For Set #1, at 50 images used, the
difference from the real measurement of the width of the box (0.3 m) was 2.6 m. At 100
images used, the difference was 1.3 m. This led to a decrease of 1.3 m in the scaling error
when using 50 more images. For Set #2, at 50 images used, the difference from the real
measurement of the width of the rectangular rock (1.4) was 4.8 m. At 100 images used, the
difference was 4.6 m. This led to a decrease of 0.2 m in the scaling error when using 50
more images.
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Table 2. Results of the experiment on a pseudo-muckpile.

Data Set and Image Count Measured (m) Real Measurement
(m)

Difference from
Real Measurement

(m)

Set #1 (50 images) 2.98 0.30 2.68
Set #1 (100 images) 1.60 0.30 1.30

Set #2 (50 images) 6.11 1.40 4.71
Set #2 (100 images) 6.09 1.40 4.69

Combined Set (200 images) 0.16 0.17 0.01

For a final, investigational set using 200 images combining both previous sets, a
surprising result was observed—even though there were significantly more reconstruction
errors (missing parts, duplicating parts, etc.) in this particular reconstruction, the wooden
box width in this reconstruction was measured at 0.167 m with a difference of 0.01 m from
the real measurement. A reconstruction is shown below in Figure 21. We considered that
this increase in accuracy can be attributed to not only the number of images increasing but
also the general area of the scene becoming larger as it includes both pseudo-muckpiles (the
effect of model size on GNSS error is discussed in a latter part of this section). However,
combining the datasets also means that the scene being reconstructed is contextually
different as it now includes both parts of the pseudo-muckpile.

Figure 21. 3D CG reconstruction results of the combined data sets.

From both experiments, we can see through the maps in Figures 14 and 17 the apparent
GNSS drift that occurs during the photo taking. Some of the recorded camera positions
are either outside the photo taking area or are in spots that are obstructed. The study
recognizes that these changing boundary conditions have an effect on the results, and
a separate investigation on this could provide insight for GNSS-aided photogrammetry.
Aside from the inaccuracies found in GNSS, several additional factors have been considered
to contribute to the drift. One of these is the effect of the partial tree cover in some of the
camera positions.

A previous study [23] in a similar setting (university campus) analyzed the effect of
not only partial tree cover but also nearby infrastructure on GNSS accuracy by comparing
GNSS data to total station survey data. The results showed that some points were no
longer suitable for GNSS positioning due to high GDOP (geometric dilution of precision),
and, where it was suitable, the GNSS recorded position differed by as much as 5.7 m from
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the total station data. This difference is consistent with what transpired in this study’s
experiments, as can be seen from the maps. In a mining site, where there is usually less
vegetation and obstruction, this effect should be diminished, except in situations such as
benches shadowing satellites.

Another factor that can be considered is the overall scale of the pseudo-muckpile.
A large majority of GNSS-aided photogrammetry applications are typically in the form
of aerial imagery and mapping with a scope and scale larger than both of the terrestrial
photogrammetry experiments performed in this study. A study [24] investigating the
application of terrestrial photogrammetry in field geology by using SfM-MVS aided by GPS
to model an outcrop that long observed scaling and rotational errors in their reconstruction.
Aside from concluding that GNSS contributed highly to these model errors, they suggested
that, at a larger scale, the error would be less of an issue.

In parallel to this, the study observed that the relatively small scale of the experiment
area affected the data; particularly the pseudo-muckpile whose size was smaller than a
muckpile that one would normally find in a mining operation. Ultimately however, the
results showed that, even at this scale, incremental improvements to 3D model scaling
have been made as shown in the data.

5. Conclusions

In this paper, we proposed a low-cost method of creating an accurately scaled 3D
model without the use of GCPs by constraining camera positions through the use of
georeferenced images as input for SfM. Monitoring fragmentation size is an important
procedure in optimizing mining operations that perform blasting. In recent years, a new
method that involves using 3D photogrammetry to measure fragment sizes has been
developed and has the potential to surpass traditional techniques. For this particular
process to be accurate, a method for properly scaling 3D model with georeferenced images
using GNSS was investigated.

To validate the method, several experiments were performed. As an initial test to
prove the fundamentals, an indoor scene involving a small object was recreated in 3D
space using SfM with photos of the known relative positions for constraining the camera
location, and good results that showed that the created 3D model had a scaling error of 1.27
cm were achieved. For the main experiment, the study took georeferenced photos of an
outdoor scene with a monument of known dimensions and made several reconstructions
at increasing number of images used (50, 100, 150, and 200 images, respectively). The
results showed a linear pattern with an R-squared value of 0.93 in which the scaling error
decreases as the number of images used increased.

Finally, an experiment was performed to verify the study’s hypothesis further using a
scene that included a pseudo-muckpile to simulate the usage of the proposed system for a
mining operation. In a similar fashion, the results showed increasing scale accuracy with an
increasing number of images used in reconstructions. Two observations can be drawn from
the experimental results: (1) constraining cameras to accurate positions in SfM resulted in
a properly scaled 3D model and (2) increasing the number of georeferenced images in SfM
incrementally improved the scaling error of the reconstruction. These observations can
help improve scale accuracy in GNSS-aided 3D fragmentation measurements. The method
described in this study will be of interest when cost-efficiency and practicality are desired
in a 3D fragmentation measurement system.
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Abstract: Rock fragmentation in mining and construction industries is widely achieved using drilling
and blasting technique. The technique remains the most effective and efficient means of breaking
down rock mass into smaller pieces. However, apart from its intended purpose of rock breakage,
throw, and heave, blasting operations generate adverse impacts, such as ground vibration, airblast,
flyrock, fumes, and noise, that have significant operational and environmental implications on mining
activities. Consequently, blast impact studies are conducted to determine an optimum blast design
that can maximize the desirable impacts and minimize the undesirable ones. To achieve this objective,
several blast impact estimation empirical models have been developed. However, despite being
the industry benchmark, empirical model results are based on a limited number of factors affecting
the outcomes of a blast. As a result, modern-day researchers are employing machine learning (ML)
techniques for blast impact prediction. The ML approach can incorporate several factors affecting
the outcomes of a blast, and therefore, it is preferred over empirical and other statistical methods.
This paper reviews the various blast impacts and their prediction models with a focus on empirical
and machine learning methods. The details of the prediction methods for various blast impacts—
including their applications, advantages, and limitations—are discussed. The literature reveals that
the machine learning methods are better predictors compared to the empirical models. However, we
observed that presently these ML models are mainly applied in academic research.

Keywords: machine learning; blast impact; empirical model; mining; fragmentation

1. Introduction

Rock fragmentation in mining involves the breakage of hard rock into appropriate
sizes to facilitate downstream handling and processing. Currently, the most economical
and widely accepted ground fragmentation technique is drilling and blasting that involves
the usage of commercial explosives (placed in blastholes) to break down a rock mass into
pieces upon detonation [1–3]. The technique is also common in many civil construction
projects, including the construction of tunnels, highways, subways, dams, and building
demolition [4–7].

Blasting has significant environmental, operational, and cost implications, and the
outcomes of a blast can impact the entire mining operation, from waste/ore transportation
through beneficiation. For instance, an optimized blast fragmentation process improves
excavator and dump truck production, minimizes equipment maintenance and repair
costs, maximizes crusher throughput, and ultimately, minimizes operating costs [3,8,9].
There are two types of impacts for every blasting event: desirable and undesirable (see
Figure 1). When an explosive detonates, it releases an enormous amount of energy in the
form of gases, pressure, heat, and stress waves [10], causing the surrounding rock mass
to develop cracks and get displaced. About 20–30% of the explosive energy released is
utilized to fragment and throw the material [11], while the remaining 70–80% generates
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undesirable outcomes [12]. The undesirable outcomes include airblast/air overpressure,
ground vibration, flyrock, noise, heat, fumes/dust, and backbreak. It should be noted that
heat, which is a part of the undesirable outcomes, does not necessarily produce adverse
effects; it is the portion of the released energy that is not fully utilized in breaking the
rock mass.

Minerals 2021, 11, x FOR PEER REVIEW 2 of 31 
 

 

develop cracks and get displaced. About 20–30% of the explosive energy released is uti-
lized to fragment and throw the material [11], while the remaining 70–80% generates un-
desirable outcomes [12]. The undesirable outcomes include airblast/air overpressure, 
ground vibration, flyrock, noise, heat, fumes/dust, and backbreak. It should be noted that 
heat, which is a part of the undesirable outcomes, does not necessarily produce adverse 
effects; it is the portion of the released energy that is not fully utilized in breaking the rock 
mass. 

 
Figure 1. Desirable and undesirable outcomes of a blasting operation. 

The undesirable outcomes can reach elevated levels causing discomfort to humans, 
a threat to human safety and health, and damage to building structures and equipment 
close to the blast zone. It can also affect groundwater, geological structures, and slope 
stability. Blasting affects groundwater when soluble substances from detonators and ex-
plosives that are not fully combusted permeate groundwater [13]. It may cause short-term 
turbidity and long-term changes to incumbent wells due to the expansion of fractures 
from loss of lateral confinement [14]. There are cases reported in the literature on ground-
water contamination, including elevated nitrate levels and turbidity [15]. Blasting near 
cave regions can cause damages to the structural integrity of caves due to vibrations and 
air overpressure [16]. Incidents of frequent complaints, which, in some cases, escalate into 
protests against mining operations due to blast impacts, have been reported in many min-
ing jurisdictions, including Ghana, India, Brazil, Turkey, and South Africa [17–21]. Thus, 
it is important to understand these phenomena and model the potential impacts of blast-
ing activities on catchment communities. 

Studies have been performed to ascertain the distance to which the adverse effects of 
blasting would affect the surrounding blast areas. McKenzie [22] conducted a detailed 
study to predict the projection range of flyrocks and suggested calculating maximum pro-
jection distance with an appropriate safety factor to establish clearance distance. The study 
found that the maximum flyrock distance is a function of hole diameter, shape factor, and 
velocity coefficient. The velocity coefficient is calculated using the scaled length of burial, 
which is a function of stemming length, explosive density, hole diameter, and charge 
length. Blanchier [23] suggested utilizing a flyrock model developed by Chiapetta et al. 
[24] to estimate the flyrock speed and maximum range. The model is a function of burden, 
linear energy of explosives, and a coefficient that expresses the probability of attaining 
estimated speed [23]. Richard and Moore [25] suggested using empirical formulae devel-
oped by Lundborg et al. [26] for predicting the maximum throw and projectile size of 
flyrock. 

Generally, mining regulations prescribe blast standards to ensure that blast impacts 
are maintained within a certain bound. For example, in the USA, the Title 30 Code of Fed-
eral Regulations (30 CFR) specifies that flyrock shall not be cast from the blasting site: 
more than one-half the distance to the nearest dwelling or other occupied structure, be-
yond the area of control required under, or beyond the permit boundary [27]. A similar 
regulatory requirement exists in other mining countries. It should be noted that blast 
standards are established following extensive empirical and field studies based on several 

Figure 1. Desirable and undesirable outcomes of a blasting operation.

The undesirable outcomes can reach elevated levels causing discomfort to humans, a
threat to human safety and health, and damage to building structures and equipment close
to the blast zone. It can also affect groundwater, geological structures, and slope stability.
Blasting affects groundwater when soluble substances from detonators and explosives that
are not fully combusted permeate groundwater [13]. It may cause short-term turbidity
and long-term changes to incumbent wells due to the expansion of fractures from loss
of lateral confinement [14]. There are cases reported in the literature on groundwater
contamination, including elevated nitrate levels and turbidity [15]. Blasting near cave
regions can cause damages to the structural integrity of caves due to vibrations and air
overpressure [16]. Incidents of frequent complaints, which, in some cases, escalate into
protests against mining operations due to blast impacts, have been reported in many
mining jurisdictions, including Ghana, India, Brazil, Turkey, and South Africa [17–21].
Thus, it is important to understand these phenomena and model the potential impacts of
blasting activities on catchment communities.

Studies have been performed to ascertain the distance to which the adverse effects
of blasting would affect the surrounding blast areas. McKenzie [22] conducted a detailed
study to predict the projection range of flyrocks and suggested calculating maximum
projection distance with an appropriate safety factor to establish clearance distance. The
study found that the maximum flyrock distance is a function of hole diameter, shape factor,
and velocity coefficient. The velocity coefficient is calculated using the scaled length of
burial, which is a function of stemming length, explosive density, hole diameter, and charge
length. Blanchier [23] suggested utilizing a flyrock model developed by Chiapetta et al. [24]
to estimate the flyrock speed and maximum range. The model is a function of burden, linear
energy of explosives, and a coefficient that expresses the probability of attaining estimated
speed [23]. Richard and Moore [25] suggested using empirical formulae developed by
Lundborg et al. [26] for predicting the maximum throw and projectile size of flyrock.

Generally, mining regulations prescribe blast standards to ensure that blast impacts
are maintained within a certain bound. For example, in the USA, the Title 30 Code of
Federal Regulations (30 CFR) specifies that flyrock shall not be cast from the blasting
site: more than one-half the distance to the nearest dwelling or other occupied structure,
beyond the area of control required under, or beyond the permit boundary [27]. A similar
regulatory requirement exists in other mining countries. It should be noted that blast
standards are established following extensive empirical and field studies based on several
factors, including geology, rock type, explosive type, ground condition, wind direction,
blast direction, and building types. Some of these factors (e.g., geology, rock type, and
building type) vary from one location to another; therefore, the blast standard for one
geological location or country may not necessarily be the same for another geological
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location or country. Table 1 presents a summary of blast standards for ground vibration,
airblast, flyrock, and noise for the USA, Canada, and Australia.

Table 1. Blast standards for the USA, Canada, and Australia.

Blast Impact
Country

USA Canada Australia

Ground vibration

Maximum allowable PPV:
0–300 ft for PPV ≤ 1.25 in./s

301–5000 ft for PPV ≤ 1.00 in./s
>5001 ft for PPV ≤ 0.75 in./s

Frequency:
0.03 in for 1–3.5 Hz

0.75 in./s for 3.5–12 Hz
0.01 in. for 12–30 Hz

2.0 in./s for 30–100 Hz

PPV ≤ 12.5 mm/s measured
below grade or less than 1 m

above grade.

Must not exceed a PPV of 5 mm/s for
nine out of any ten consecutive blasts

initiated, regardless of the interval
between blasts, but never over

10 mm/s for any blast.

Airblast

≤0.1 Hz: peak ≤ 134 dB
≤2 Hz: peak ≤ 133 dB
≤6 Hz: peak ≤ 129 dB

C-weighted–slow response: 105 dBC

≤128 dB

Must not be more than 115 dB(lin)
peak for nine out of any ten
consecutive blasts initiated,

regardless of the interval between
blasts, but never over 120 dB(lin)

peak for any blast.

Flyrock

Shall not cast:
More than one-half the distance to the

nearest dwelling.
Beyond the area of control required

under 30 CFR 816.66(c); or
Beyond the permit boundary.

The blaster must take
precautions for the

protection of persons and
property, including proper
loading and stemming of

holes, and where necessary,
the use of cover for the blast
or other effective means of

controlling the blast or
resultant flying material.

If debris from blasting in a surface
mining operation could constitute a

danger to any person or property,
each responsible person at the mine

must ensure that such precautions are
taken as are necessary to prevent

injury to persons and to minimize the
risk of damage to property.

Noise 70 dBA (EPA)
≤55 dBA daytime (Leq D)
≤45 dBA at (Leq N)

nighttime

No worker to be exposed to noise
with a level exceeding

140 dB(lin) peak

PPV is the peak particle velocity, dBA is the A-weighted decibel, dBC is the C-weighted decibel, dB(lin) or dBZ is the unweighted decibel,
and EPA is the U.S. Environmental Protection Agency.

Figure 2 indicates various zones of blast influence and the potential risk to people
and structures within these zones. The risk to people and equipment is highest at the
innermost circle, i.e., within the immediate vicinity of the blast zone. The blast zone is a
high-risk area with the highest degree of blast-induced impacts. However, the severity of
the impacts reduces as they travel outward from the blast zone towards the outer perimeter,
as depicted by the blast impact profile in Figure 2. The blast impacts are not confined to a
single direction; they can travel radially because the explosive energy act on all points of
the blasthole simultaneously [28]. However, the intensity of the associated impacts may
not be the same everywhere. Figure 2 is divided into three segments (S1, S2, and S3) to
illustrate the potential impact regions. Assuming the blast design is optimal in S1, then the
associated undesirable effects are limited to the buffer zone, and they would be harmless
even if they exceed the buffer zone. However, with the same buffer zone, increasing the
explosive charge (S2) or the number of blast shots (S3) can cause undesirable effects to
exceed the buffer zone, damaging structures in the concession and beyond. Usually, for a
good blast operation, it is expected that the magnitude of the blast impact beyond the buffer
zone will reduce below the damage threshold. In other words, blast impacts attenuate
with the increasing distance. The distances between the blast zone, buffer zone, and mine
concession are usually stated in the blast standards. For instance, in Ghana, the blast
standard prescribes a safe distance (buffer zone) of 500 m from the blast zone. Decreasing
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factors, such as the quantity of explosive charge and number of blast shots, could also
reduce the magnitude of blast impacts. Blast standards mandate that all employees and
equipment must be cleared from the blast area to a safe location before any scheduled blast
operation to prevent injury and equipment damage.
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magnitude and travel distance of undesirable blast effects.

Generally, there are two categories of factors that influence blast impacts: controllable
and uncontrollable parameters. Controllable parameters are those that a blast engineer
can modify and include the blast geometry (spacing, burden, blasthole depth, blasthole
diameter, and stemming) and explosive parameters (type, density, powder factor, charge
per delay/instantaneous charge, and delay time). The uncontrollable parameters include
geological (rock type, discontinuities, and groundwater) and geotechnical properties (rock
strength, density, etc.) of the rock formation that cannot be modified. Therefore, blasts
must be designed to suit the prevailing ground conditions to generate optimal fragmen-
tation with minimal environmental impact, fostering an excellent company–community
relationship. Mining regulations are also major deciding factors in blast design, providing
guidelines and blast impact threshold limits to ensure safe blast operations.

Over the years, studies have been conducted to examine blast impacts, which has
led to the development of several blast impact prediction models. These models, many of
which are based on empirical data, have primarily been applied in mining operations to
predict and model the potential impacts of blasting. Several empirical models are in the
literature for predicting blast-induced ground vibration, flyrock, dust/fumes, backbreak,
and fragmentation. Though most of these models have a long history of use in the mining
industry, they possess some inherent limitations, such as (1) a restriction to just two input
parameters, (2) inability to concurrently predict more than one outputs, and (3) unsuitability
to apply to all geological formations or mine conditions. Singh and Singh [29] noted that
empirical models are analyzed datasets along specific geometries, which may or may
not be favorable to understand the nonlinearity existing among various input/output
parameters. Additionally, there are too many other interrelated controllable (blast geometry
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and explosive) and uncontrollable (geological and geotechnical) parameters, which are not
incorporated in any of the available predictors [30]. In effect, the empirical models are not
able to identify the nonlinear relationships, and this weakness influences the performance
of these models.

A promising solution to this problem is the application of ML techniques in blast
impact prediction. With the recent popularity of artificial intelligence (AI) in both academia
and industry, many scholars are exploring machine learning as a robust tool to model blast
impacts. In recent years, numerous scientific papers have been published in this area, and
the number of new publications is ascending significantly. The wide application of ML can
be attributed to its ease in handling complex engineering problems with several variables.
ML is the study and application of computer algorithms to make intelligent systems that
improve automatically through the experience without being explicitly programmed. It is
classified as a subfield of AI, which is the science and engineering of making intelligent
machines. ML applies computer algorithms to analyze and learn from data and makes de-
cisions or predictions based on the data provided. Depending on the structure of available
data being analyzed, ML models are categorized as supervised learning, unsupervised
learning, or reinforcement learning [31].

In this paper, the authors performed a comprehensive review of scientific studies that
applied ML techniques to predict blast impact. This paper covered a detailed examination
of machine learning models for blast-induced ground vibration, flyrock, airblast, backbreak,
and fragmentation. It is worth noting that most of the studies conducted in this field are
related to blast-induced ground vibration.

The remainder of the paper is organized into five sections. Section 2 outlines the
review methodology, followed by a description of the rock breakage mechanism in Section 3.
Sections 4 and 5 discuss the empirical and ML blast impact prediction models, respectively.
Section 6 presents a discussion and future trends for ML applications, while Section 7
covers the concluding remarks.

2. Methodology

This review intends to summarize the existing knowledge on the application of ML
in blast-induced impact predictions and identify gaps in the current research to suggest
areas for further investigation. The review scope is mainly limited to only publications
related to blast-induced impacts associated with surface and underground mining and
quarry operations. The primary purpose of this review was to report the current status
of ML usage in predicting blast-induced impacts in mining. However, a few studies on
blast impacts resulting from blasting operations in dam and tunnel construction were
also considered.

Based on the stated review objective and purpose, we conducted an extensive liter-
ature search to identify relevant peer-reviewed publications indexed in major scientific
research databases, such as Web of Science, Google Scholar, Scopus, and ScienceDirect.
To limit the search scope, we used keywords, including “blasting”, “rock fragmentation”,
“machine learning”, “blast impacts”, “ground vibration”, “airblast or air overpressure”,
“flyrock”, “backbreak”, “soft computing”, “neural networks”, “deep learning”, and “sup-
port vector machines”. Boolean operators and strings were adopted to improve the search
results. Another search strategy employed was snowballing (e.g., forward and backward
snowballing), where the original search results led to the discovery of more papers. We
screened the search results for relevance by reviewing the titles and abstracts of the publi-
cations. The published articles were required to be original, peer-reviewed, and recognized
in the field.

The search scope covered research articles published from 2004 to 2020. However, a
few recent articles published in early 2021 were also included. This review was mostly
focused on peer-reviewed journal publications, since the intention was to rely on rigorous
research addressing the subject matter. Some of the notable journals where the search results
were retrieved were Engineering with Computers, Safety Science, Environmental Earth Sciences,
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International Journal of Mining Science and Technology, Rock Mechanics and Rock Engineering,
Neural Computing and Applications, and Natural Resources Research. From the research results,
we noticed that the majority of the articles were published in Engineering with Computers,
followed by Natural Resources Research, as evident in Figure 3. In a few cases, relevant
papers in peer-reviewed conference proceedings and a thesis report were included.
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Figure 3. Journals with the most counts of publications in the machine learning application in the blast-induced impact
predictions in this review.

Out of the 193 articles reviewed, approximately 112 focused on the prediction of
blast-induced impacts using machine learning, while the remaining articles covered blast
phenomenon and empirical prediction models. This is by no means an exhaustive list of
all blast-induced impacts and ML-related articles published in this field within the period
under consideration. Figure 4 illustrates the yearly distribution of publications on ML
applications in blast-induced impact predictions. The distribution (Figure 4) shows an
increasing trending in publications of ML techniques in this field. This positive trend can
be attributed to the growing interest in ML applications in academia and the industry in
recent years.
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Figure 4. Publication trend for machine learning applications in blast-induced impact predictions.

Table 2 presents a summary of the number of ML applications in each blast-induced
impact considered in this review. Most of the studies reviewed predicted only one blast-
induced impact. It is interesting to note that a significant portion of ML applications
were about ground vibrations, likely due to the drive to accurately measure and mitigate
blast-induced vibration levels. Since blast-induced ground vibrations can cause structural
damage to buildings, resulting in contention between mining companies and host com-
munities, it is always prudent to ensure that the vibration levels are within the regulatory
requirements. Therefore, relatively cheaper and more rapid techniques that allow the blast
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engineer to predict the vibration level before blasting are helpful in pre-blast planning as
compared to field measurements. This may also indicate the importance placed on ground
vibrations compared to other blast-induced impacts and the research efforts to improve the
prediction results.

Table 2. Review statistics of blast-induced impacts predicted using machine learning.

Blast Impact Count

Ground vibration 58
Flyrock 15

Fragmentation 13
Airblast 11

Backbreak 3
Overbreak 1

Noise 1
Ground vibration and airblast 3

Flyrock and fragmentation 3
Backbreak and fragmentation 2

Flyrock and backbreak 1
Ground vibration, airblast, and fragmentation 1

ML application in flyrock prediction has also received significant research attention, as
flyrock is a potential hazard responsible for a large proportion of all blasting-related injuries
and fatalities. The fragment size analysis and airblast have also received considerable
attention, while backbreak and overbreak are blast-induced impacts with the least ML im-
plementations. It is worth noting that, apart from a single impact prediction, a few studies
have predicted two impacts, while one research predicted three impacts simultaneously.

3. Rock Fragmentation and Blast Impact Phenomena

The technique most commonly used for breaking rock with explosives involves drilling
blastholes into a rock mass, placing explosive substances in the blastholes, initiating the
fire sequence, and detonating the explosive, as illustrated in Figure 5. Upon initiation, the
explosive charge detonates (i.e., an intense and rapid chemical reaction occurs), producing
an enormous amount of energy in the form of gases at very high temperatures and pressure.
The energy released by an explosive during a blast can be categorized into seismic, kinetic,
backbreaks, heave, heat, or fragmentation energies [32]. The resulting detonation energy
has the following effects: pressurizes the blasthole and fractures the vicinity rock mass,
creates strong shock waves in the rock mass, which propagate as plastic and, ultimately,
elastic waves and appear as a seismic wave or ground vibration, and displaces and heaves
the fractured rock mass to form a muck pile that appears as kinetic energy imparted to the
rock [33–36].

According to Changyou et al. [37], the theory that rock damage is a result of the
coaction of the blast wave and explosive explosion is currently accepted by most scholars,
as it matches the actual process of blast-induced rock breakage favorably. Nevertheless, the
mechanism of rock breakage under explosive action is still being investigated, even after
many decades of advancement in explosive technology for mining and civil applications.
Recently, numerical modeling and simulation models have been applied to further the
understanding of blasting [38–40]. Generally, the fragmentation action has been attributed
to either the gases or shock waves generated or both [38,41,42].
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The detonation waves from the explosive (with the velocity of detonation between
2000 and 7000 m/s, depending on the type of explosive) induce intense stresses in the
blasthole due to the sudden acceleration of the rock mass by detonating gas pressure on
the blasthole wall [35]. Bendezu et al. [28] stated that the energy released is converted
into two main forms that are responsible for rock fracturing, creating new cracks and
widening the already existing ones: blast-induced stress waves (dynamic load) and the
overpressure of the explosive gases (quasi-static load). The strain waves transmitted to the
surrounding rock sets up a wave motion in the ground. The strain energy carried out by
these strain waves fragments the rock mass, resulting in different breakage mechanisms
such as crushing, radial cracking, and reflection breakage in the presence of a free face. The
crushed zone and radial fracture zone encompass a volume of permanently deformed rock.
When the stress wave intensity diminishes to the level where no permanent deformation
occurs in the rock mass (i.e., beyond the fragmentation zone), strain waves propagate
through the medium as elastic waves, oscillating the particles through which they travel.
These waves in the elastic zone are known as ground vibrations, which closely conform to
viscoelastic behavior. The wave motion spreads concentrically from the blast point in all
directions and attenuates as it travels farther from the origin through the rock medium.

The fragmentation action does not exhaust all the explosive energy; some portion of
it is transformed into ground vibration, airblast, and flyrock. Bendezu et al. [28] pointed
out that there is no clear indication about the amount of energy converted into stress wave
energy; how much is available as high-pressure gases; and how much is lost to other
sources, such as ground vibration, air blast, heat, and smoke/dust. The energy distribution
depends on the type of explosive. However, some studies have reported that approximately
20–30% of the explosive energy is utilized to fragment and throw the rock mass, while
the remaining 70–80% goes toward the generation of other blast-induced impacts [11].
Even though ground vibrations attenuate exponentially with distance, the large quantity
of explosives used means that ground vibrations can still be high enough to cause damage
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to buildings and other structures by causing dynamic stresses that exceed the material’s
strength [35]. The blast phenomena and the mechanisms of ground vibrations, airblast,
flyrock, and fragmentation have been well-documented. Figure 6 depicts a blast event
with its associated vibrations and undesirable effects, such as flyrock, ground vibrations,
and airblast.
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Prediction Model  Equation Reference 
USBM ܸܲܲ ൌ ݇ሺܦ √ܳ⁄ ሻିఉ [44] 

Langefors–Kihlstrom ܸܲܲ ൌ ݇ሺܳଵ/ଶ ⁄ଷ/ସሻܦ ఉ
 [45] 

General predictor ܸܲܲ ൌ ݇	 ൈ	ିܦఉ 	ൈ	ܳ [43] 
Ambraseys–Hendron ܸܲܲൌ ሺܦ ඥܳయ ሻ⁄ ିఉ

 [46] 

Indian Standard ܸܲܲൌ ݇ሺܳ ⁄ଶ/ଷሻܦ ఉ
 [46] 

Ghosh–Daemen 1 ܸܲܲ ൌ ݇ሺܦ ඥܳ⁄ ሻିఉ ൈ	݁ିఈൈ [43] 

Ghosh–Daemen 2 ܸܲܲൌ ݇ሺܦ ඥܳయ ሻ⁄ ିఉ ൈ	݁ିఈൈ [43] 

Gupta et al. ܸܲܲൌ ݇ሺܦ ඥܳయ ሻ⁄ ିఉ ൈ	݁ିఈൈሺ ொ⁄ ሻ [43] 

CMRI predictor ܸܲܲ ൌ ݊  ݇ሺܦ ඥܳ⁄ ሻିଵ [43] 

Figure 6. Blast waves and impacts.

4. Empirical Models

Empirical blast impact prediction models are established following rigorous and
extensive field studies; data collection; and site observations of several blast parameters,
including blast geometry, the geology of the area, rock type, blast direction, wind direction,
the location of building structures relative to a blast zone, etc. The empirical models are
based on two main factors: (1) the maximum charge per delay and (2) the distance from
the blast face to the monitoring point. The models are generally mine-specific due to the
heterogeneity of geological formations and variations in site conditions from one location
to another. To apply empirical models for site-specific predictions of blast impacts, the
models are calibrated using field measurements and established site constants. Tables 3–5
are summaries of some empirical models for predicting blast-induced ground vibrations,
airblast/air overpressure, and flyrock, respectively. The models presented in these tables
are not exhaustive, and references can be made to Murmu et al. [12] and Kumar et al. [43]
for a more comprehensive list, particularly for blast-induced ground vibrations.
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Table 3. Empirical models for predicting blast-induced ground vibrations.

Prediction Model Equation Reference

USBM PPV = k(D/√Q)−β [44]

Langefors–Kihlstrom PPV = k(Q1/2/D3/4)
β [45]

General predictor PPV = k× D−β ×QA [43]
Ambraseys–Hendron PPV = (D/ 3

√
Q)
−β [46]

Indian Standard PPV = k(Q/D2/3)
β [46]

Ghosh–Daemen 1 PPV = k(D/
√

Q)
−β × e−α×D [43]

Ghosh–Daemen 2 PPV = k(D/ 3
√

Q)
−β × e−α×D [43]

Gupta et al. PPV = k(D/ 3
√

Q)
−β × e−α×(D/Q) [43]

CMRI predictor PPV = n + k(D/
√

Q)
−1 [43]

Rai–Singh PPV = k× D−β ×QA × e−α×D [47]
PPV is the peak particle velocity (mm/s), D is the distance between the blast face to the monitoring point (m), and Q
is the cooperating charge (kg). The values k and β are the site-specific constants (coefficients) obtained through a
linear regression model by plotting the graph between the PPV versus scaled distance (SD) on a log–log scale [48].

Table 4. Empirical models for predicting the airblast or air overpressure.

Prediction Model Equation Reference

USBM P = β1 × (D/Q0.33)
β2 [49]

NAASRA P = 140 3
√

Q/200/d (kPa) [50]
Ollofson; Persson et al. P = 0.7×Q1/3/D(mbar) [51]

Holmberg-Persson P = k× 0.7×Q1/3/D (mbar) [51]
Mckenzie P = 165− 24 log D/Q1/3 (dB) [52]

P is the airblast or overpressure, Q is the mass of the explosive charge (kg), D is the distance from the charge (m)
to the monitoring point, and H and β are the site factors.

Table 5. Empirical models for predicting the flyrock.

Prediction Model Equation Reference

Lundborg et al. Lm = 260× d2/3 Tb = 0.1× d2/3 [53]

Chiapetta et al. R1 = V0 × (2sin 2θ /g)
R2 = V0 × cos(V0 sinθ + 2V0 sinθ + 2gH)/g [34]

Gupta L = 155.2× D−1.37 [54]
Lm is the flyrock range (m), d is the blasthole diameter (inch), Tb is the flyrock fragment size (m), L is the ratio
of the length stemming the column to burden, D is the distance traveled by the flyrock (m), R1 is the distance
traveled (m) by the rock along a horizontal line at the original elevation of the rock on the face, R2 is the total
distance traveled (m) by a fragment ejected from the blast, accounting for its height above the pit floor, V0 is the
initial velocity of the flyrock, θ is the angle of departure with the horizontal, and g is the gravitational constant.

5. Machine Learning Models

AI refers to a branch of computer science concerned with building smart machines ca-
pable of performing tasks that typically require human intelligence [55]. AI techniques have
been increasing steadily in many engineering fields, including image processing [56], min-
eral exploration [57], and mine planning [58,59]. Simeone [60] believes that the widespread
use of data-driven AI methods is motivated by the successes of ML-based pattern recogni-
tion tools. ML is a branch of AI that systematically applies algorithms to synthesize the
underlying relationships among data and information [61]. ML focuses on the application
of computer algorithms to process large amounts of data, detect patterns or regularities
in data, and improve their performance based on experience [62,63]. Such applications
may offer more understanding about a system and can be used to predict or modify the
future behavior of the system. Given sufficient input data and a sequence of instructions
(algorithms), a computer can perform the desired task of predicting an output. Algorithms
for some desired tasks can be developed easily using traditional programming (TP), and a
computer will be able to execute them following all the steps required to solve the problem
without learning. However, for more advanced tasks (e.g., prediction of consumer behavior
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or natural occurrences), it can be challenging for a human to manually create the needed
algorithms. In practice, it can turn out to be more effective to help the machine develop
its model rather than having human programmers specify every needed step [64–66]. It
may be impossible to develop an explicit program of such an advanced system, but the ML
models provide good and useful approximations. Unlike TP, ML automates the process
of learning a model (program) that captures and subsequently predicts the relationship
between the input and output variables in a dataset by searching through a set of possible
prediction models that best defines the relationship between the variables [67]. A good
prediction model must be able to predict events that are not in the current data, i.e., it must
generalize well.

Samuel [68] described ML as the “field of study that gives computers the ability to
learn without being explicitly programmed”. Alpaydin [65] also defined ML as program-
ming computers to optimize a performance criterion using example data or experience.
In other words, given a sufficient dataset (e.g., historical blast monitoring data), an ML
algorithm can identify patterns; predict blast impact values (e.g., PPV, frequency, flyrock,
fragment size, etc.); and improve the previous predictions as more data are made avail-
able. Once programmed, the algorithm can learn from the data and improve the learning
experience with little human interference. The algorithm synthesizes the various indepen-
dent variables, such as hole diameter, hole depth, blast size, spacing, burden, stemming
height, explosives blasted per delay, and distance between the blast zone and measuring
point, with weights that depict their influence on the dependent variable. A generalized
ML implementation procedure is presented in Figure 7. The first step in the ML model
development cycle (Problem definition) deals with an understanding of the problem, char-
acterizing it, and eliciting required knowledge in acquiring the relevant data. The second
step (Data collection) is the collection of all relevant and comprehensive data, followed by
data preparation and feature extraction. Next, the data is divided into training, validation,
and testing sets based on a predefined ratio (Data partition). Following that, an ML model
is selected, trained, validated, and tested using the partitioned datasets (Train model). Here,
the programmer can try different algorithms and compare their performances.
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Model evaluation involves the usage of some metrics or a combination of metrics to
measure the objective performance of the selected ML model (Evaluate model). The model
parameters can be revised (hyperparameter-tuned) until a satisfactory performance is
achieved; then, it is adopted for prediction. A few of the statistical criteria used to evaluate
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the performance of ML models include the mean absolute error (MAE), root mean square
error (RMSE), correlation coefficient (R), and determination coefficient (R2).

The ML methods that have been employed in blast impact prediction are the artificial
neural network (ANN), support vector machine (SVM), random forest (RF), gaussian
processes (GP), and fuzzy theory sets. These models have been successfully applied in
evaluating various blast impacts. The ANN is a computational network presenting a
simplified abstraction of the human brain. Conceptually, this computational network
mimics the operations of biological neural networks to recognize existing relationships in a
set of data. It consists of layers of interconnected nodes that represent artificial neurons.
The layers are categorized into three divisions: input layer (receives the raw data), hidden
layer (process the raw data), and output layer (processed data). The number of layers and
neurons (topology) in a network determines the structure of a neural network or network
architecture [66]. Figure 8 depicts an ANN architecture for predicting maximum flyrock
distance. The model comprises one input layer with seven neurons, two hidden layers
with eight and seven neurons, respectively, and one output layer with one neuron.
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SVM is an ML algorithm based on the structural risk minimization principle [69,70].
The algorithm uses the concept of decision planes that utilize decision boundaries to opti-
mally separate data into different categories [69]. SVM can solve classification, regression,
and outlier detection problems, and when it is applied to regression problems, it is called a
support vector machine (SVR). The process of training an SVM decision function involves
identifying a reproducible hyperplane that maximizes the distance (i.e., the “margin”)
between the support vectors of both class labels, and thus, the optimal hyperplane is that
which “maximizes the margin” between the classes [71].

RF is a supervised learning algorithm consisting of multiple independent decision
trees (DT) that are trained independently on a random subset of data [72,73]. It is an
ensemble method that uses bagging (bootstrapping and aggregation) to train several
DTs in parallel (i.e., uncorrelated forest of trees) whose prediction by committee is more
accurate than that of any individual trees [73,74]. RF can solve both classification and
regression problems.

GP is a “collection of random variables, any finite number of which have (consistent)
joint Gaussian distributions” [75]. It is characterized by mean and covariance functions.
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GPs are attractive because of their flexible nonparametric natures and computational sim-
plicity, and they are designed to solve regression and probabilistic classification problems.

The fuzzy set theory uses natural language to formulate a mathematical model of
vague qualitative or quantitative data by attributing a degree to which a certain object
belongs to a set [76,77]. The model is based on the generalization of the classical concepts
of the set and its characteristic functions. Fuzzy sets and fuzzy logic are an extension of
classical set theory and built around the central concept of a fuzzy set or membership
function [78]. The model provides a natural way of dealing with problems in which the
source of imprecision inhabits a precise definition of class membership criteria [76]. Fuzzy
set theory has been shown to cope well with the complexity of complicated and ill-defined
systems flexibly and reliably [79].

The following subsections review the application of these algorithms to blast impact
prediction problems. There is extensive documentation in the literature regarding the
assumptions, mathematical computations, and architecture of these techniques; thus, this
paper focused largely on their application.

5.1. Ground Vibration

Several ML models, including the ANN, RF, SVM, and logistic regression, have
been employed in predicting and modeling blast-induced ground vibrations. Currently,
ground vibrations are, by far, the most studied blast impact for many ML applications.
The prediction procedure involves the selection of input parameters, a training model,
and predicting the outcome. The input parameters can vary from two to as many as
possible, depending on the strength of the algorithm and the computing resources available.
Different studies have considered different sets of influential factors in predicting the
ground vibrations and designed varying ANN architectures to ensure the accuracy of these
predictions. Some of these studies only considered as few as two parameters, while others
considered as many as 13 parameters to predict the blast-induced ground vibrations [80].
In fact, due to the complexity of the blast phenomenon and the many factors involved,
it has been a challenge to identify the specific influential factors. Nevertheless, studies
have considered explosive characteristics, blast design parameters, geological conditions,
and rock mass properties as the major factors influencing blast-induced ground vibrations.
Among the main factors, the distances between the blast zone and monitoring point,
maximum charge per delay, velocity of detonation, blasthole depth, burden, spacing,
stemming height, powder factor, rock-quality designation (RQD) and p-wave velocity
were the most common factors in estimating blast-induced ground vibrations. Due to the
limitations of the parameters and datasets, studies have tried to change the number of
hidden layers and the hidden neurons to ensure the accuracy of their predictions [81]. For
instance, Amnieh et al. [82] designed an ANN model with four hidden layers (hidden
neurons in each layer: 20-17-15-10) and four influential parameters that showed better
performances in predicting the PPV for a problem with 25 datasets.

Most scholarly articles applied an ANN, particularly the feed-forward back-propagation
neural network (BPNN), for the prediction of blast-induced ground vibrations [29,32,48,80–89].
We present a review of some of these papers in this section. BPNN is a strong modeling
technique for input/output pattern identification problems and is a commonly used ANN,
often applied to solve nonlinear problems. The calculation process of BPNN is divided into
two steps: forward calculation and backward propagation. The connection weights and
bias values are adjusted by gradient descent algorithms. The weights of the interneuron
connections are adjusted according to the difference between the predicted and the actual
network outputs [81]. Normally, closer mapping is required to obtain more satisfactory
model performance [90], and it is recommended that the numeric values of the pertinent
parameters be normalized in a range of 0 to 1 to achieve a reasonable solution [46].

Singh et al. [91] used the ANN technique for the prediction of p-wave velocity and
anisotropy, taking chemical composition and other physicomechanical properties of rocks
as the input parameters. Due to data limitation, the leaving-one-out cross-validation
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method was used, and the network had three layers with six inputs, five hidden neurons,
and two output neurons. Using the Bayesian regulation, overfitting of the data was
mitigated, and the network was trained with 1500 training epochs, resulting in a high
correlation coefficient and low mean absolute percentage error between the predicted and
observed values, respectively. Khandelwal and Singh [80] used a BPNN consisting of three
layers to predict PPV and its corresponding frequency based on the rock mass mechanical,
explosive, and blast design properties. Khandelwal and Singh [92] evaluated and predicted
blast-induced ground vibrations and frequencies by incorporating the rock properties, blast
design, and explosive parameters into an ANN. Mohamed [93] determined the effect of
varying the number of input parameters (blast variables) on the performance of a neural
network for ground vibration prediction. Khandelwal et al. [94] incorporated the explosive
charges per delay and blast monitoring distance to evaluate and predict ground vibrations
using an ANN. With an optimum architecture of 4-10-5-1, Monjezi et al. [95] compared
the performances of a BPNN model with empirical predictors and a regression analysis.
The comparison revealed that the most influential parameter was the distance between the
blast zone and the monitoring point, while the least effective parameter was stemming
the height.

Other types of ANN applied in the prediction of blast-induced ground vibrations
include GRNN, quantile regression neural network (QRNN), wavelet neural network
(WNN), hybrid neural fuzzy inference system (HYFIS), adaptive neuro-fuzzy inference
system (ANFIS), and group method of data handling (GMDH). Arthur et al. [96] estimated
blast-induced ground vibrations by comparing five ANNs (WNN, BPNN, RBFNN, GRNN,
and GMDH) and four empirical models (Indian Standard, the United State Bureau of Mines,
Ambrasey-Hendron, and Langefors and Kilhstrom). The study revealed that WNN with
a single hidden layer and three wavelons produced highly satisfactory results compared
to the benchmark methods of BPNN and RBFNN. Xue and Yang [97] also predicted blast-
induced ground vibrations and frequencies by incorporating rock properties, blast design,
and explosive parameters using the general regression neural network (GRNN) technique.
The GRNN model provided excellent predictions with a high degree of correlation when
compared with multivariate regression analysis (MVRA). Nguyen et al. [98] argued that
MLP recorded the most accurate prediction over BRNN and HYFIS. They also observed
that not all ANN models (e.g., HYFIS) are useful for blast impact predictions in open-pit
mines, depending on the input parameters and training algorithms.

Generally, ANN-based models are better predictors with superior performances com-
pared to empirical models when it comes to predicting blast-induced ground vibration
levels. However, this is not to say that ANN results are always accurate and are without
challenges. ANN algorithms also have some weaknesses, such as overfitting [99], long train-
ing times, and falling easily into the local minimum [81]. According to Dreiseitl and Ohno-
Machado [99], ANN models are more flexible and, thus, more susceptible to overfitting.
This usually occurs when the ANN model begins “to memorize the training set instead of
learning them and consequently loses the ability to generalize” [48]. The methods proposed
for resolving it include early stopping, noise injection, cross-validation, Bayesian regular-
ization, and the optimization approximation algorithm [48,100,101]. Paneiro et al. [102]
employed bilevel optimization to avoid overfitting and reduce the complexity of an ANN-
based ground vibration model. The authors concluded that the improved ANN model
offered a much higher generalization ability than traditional and other ANN models ap-
plied to ground vibration predictions. Piotrowski and Napiorkowski [100] also cautioned
that the ANN architecture should be kept relatively simple, as complex models are much
more prone to overfitting. Dreiseitl and Ohno-Machado advised that, in constructing the
model, the network size can be restricted by decreasing the number of variables and hidden
neurons and by pruning the network after training. Alternatively, one can require the
model output to be sufficiently smooth through regularization [99].

Studies have integrated ANN with other soft computing techniques, such as data
mining and feature selection algorithms, to improve the accuracy and robustness of ANN-
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based ground vibration models. In some instances, preprocessing of the raw data involves
data mining to find relationships and patterns in the raw data. For example, before training
the ANN model, Amiri et al. [103] applied itemset mining (IM) to identify patterns and
extract frequently occurring sets of items in a database. Based on the extracted knowledge,
association rules were formed that helped select the best instance for training the neural
network model. The proposed itemset mining and neural networks (IM–NN) model
showed superior prediction results compared to the classical ANN.

To overcome the limitations associated with ANN in predicting blast-induced ground
vibrations, studies have also applied other ML algorithms that are without these short-
comings. Some of the algorithms applied included SVM [104–111], relevance vector regres-
sion [112], particle swarm optimization [113,114] Bayesian network and random forest [108],
Gaussian process regression [115], classification and regression trees, chi-square automatic
interaction detection, random forest [1,116,117], hybrid artificial bee colony algorithm [118],
fuzzy Delphi method and hybrid ANN-based systems [119], cuckoo search algorithm [120],
extreme learning machine [121], extreme gradient boosting (XGBoost) [122], and the firefly
algorithm [123–126].

5.2. Airblast

Airblast or air overpressure are among the undesirable effects of blasting operations.
They are explosion-induced large shock waves that are refracted horizontally by density
variations in the atmosphere. The atmospheric pressure waves of airblasts consist of a high
audible frequency and subaudible low-frequency sound [50,127]. Airblasts can impact
structures close to the blast zone by rattling windows and the roofing materials.

Several scholarly studies have attempted to predict airblasts based on some identified
influential factors, such as the maximum explosive charge per delay, burden, spacing,
stemming, wind direction, temperature, and distance from the blast zone to the monitoring
point. There are empirical models (see Table 2) for predicting airblasts, in addition to
more recent applications of machine learning techniques, such as the ANN, support vector
regression, particle swarm optimization, and adaptive neuro-fuzzy inference system.

Khandelwal and Singh [128] attempted to predict airblasts using an ANN by incor-
porating the maximum charge per delay and distance between the blast zone and the
monitoring point and demonstrated that the neural network model yields better predic-
tions when compared to a generalized equation and conventional statistical relations.
Mohamed [129] predicted airblasts using the fuzzy inference system and ANN. Compar-
ing the results of these methods with the values obtained by a regression analysis and
measured field data, Mohamed asserted that the neural network and fuzzy models had
accurate predictions compared to the regression analysis. Khandelwal and Kankar [130]
predicted airblasts using SVM and compared the values with the results of the generalized
predictor equation. They showed that the predicted values of airblasts by SVM were much
closer to the actual values as compared to the predicted values by the predictor equation.
Nguyen and Bui [72] developed and combined five ANN models with an RF algorithm to
form an ANN-RF model to predict blast-induced air overpressure. The input variables of
the model included the maximum explosive charge capacity, monitoring distance, vertical
distance, powder factor, burden, spacing, and length of stemming. The results indicate that
the proposed ANN-RF model was a superior model to the empirical technique, ANN, and
RF models.

Mohamad et al. [131] employed the empirical, ANN, and a hybrid model of the genetic
algorithm (GA-ANN) to estimate airblasts based on a maximum charge per delay and
the distance from the blast face input parameters. The results show that the GA-ANN
technique can provide a higher performance in predicting airblasts compared to the ANN
and empirical models. The superior performance of GA-ANN in airblast prediction was
also reported by Armaghani et al. [132]. They compared it with the ANN, USBM, and
MLR models and observed that, with a coefficient of determination of 0.965, GA-ANN
was a better airblast predictor than the other models implemented. Hajihassani et al. [133]
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developed a hybrid airblast model where the particle swarm optimization (PSO) algorithm
was used to train ANNs instead of the backpropagation algorithm. Using nine input
parameters, the proposed model had a correlation coefficient of 0.94, suggesting a superior
predictive strength compared to empirical models. AminShokravi et al. [134] evaluated
the acceptability and reliability of three PSO-based airblast models (the PSO-linear, PSO-
power, and PSO-quadratic models) and found that the PSO-linear model showed a higher
predictive ability than the PSO-power, PSO-quadratic, ANN, and USBM models.

Armaghani et al. [135] also optimized an ANN with an imperialist competitive algo-
rithm for airblast prediction. They also developed conventional ANN models to compare
the results with the new model. The results demonstrated that the proposed model could
predict airblasts more accurately than the other presented techniques. Nguyen et al. [136]
investigated the feasibility of three ensemble machine learning algorithms, including the
gradient boosting machine (GBM), random forest (RF), and Cubist, for predicting airblasts
in open-pit mines. The ensemble model results were compared with those of an empirical
model. Their findings revealed that the ensemble models yielded more precise accuracy
than those of the empirical model. Of the ensemble models, the Cubist model provided a
better performance than those of the RF and GBM models. Besides, they also indicated that
the explosive charge capacity, spacing, stemming, monitoring distance, and air humidity
were the most important inputs for the airblast predictive models using AI.

5.3. Flyrock

Flyrock is a loose rock fragment ejected from blasting processes that can travel over
long distances away from the zone of influence of the blast. The Institute of Makers of
Explosives (IME) defines flyrock as the rock propelled beyond the blast area by the force of
an explosion [137]. According to Amini et al. [138], there are three mechanisms via which
flyrock can occur (Figure 9): riffling, catering, and face bursting. Riffling occurs when the
stemming material is insufficient, causing blast gases to stream up the blast hole along
the path of least resistance, resulting in stemming ejection and, sometimes, ejection of the
collar rock. Catering is due to the venting of gasses through the stemming region (i.e.,
blasthole collar), which usually contains a weakened layer due to the previous blasting
from the bench above. Face bursting occurs when explosive charges are adjacent to the
major geological structures or zones of weakness, allowing high-pressure gases to jet along
the weakness zones [138].
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Flyrock has the potential to cause serious damage to the properties or cause injuries
and fatalities in communities located close to a blast zone. As a result, researchers have
made efforts to develop empirical models to predict and help mitigate flyrock. Equations
have also been formulated based on Newton’s law of motion with two possible solutions:
an approximate numerical solution and the application of the Runge-Kutta algorithm of
the fourth order to predict the maximum throw of flyrock fragments and estimate safe
distances [139]. More recently, ML has proven to be a useful tool with surging applications
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in predicting flyrock. Amini et al. [138] tested the capability of SVM in flyrock prediction
of a copper mine. Comparing the obtained results of the SVMs with those of an ANN,
they concluded that the SVM model was faster and more precise than the ANN model in
predicting flyrock. A new combination (FA-ANN) can be used as a powerful and practical
technique in predicting the flyrock distance before blasting operations. Li et al. [140]
selected the most important factor for flyrock predictions using the fuzzy Delphi method
and developed a firefly algorithm (FA) and ANN model to estimate the flyrock distance.
They observed that the FA-ANN model provided the best optimization of the weights and
biases and recorded the lowest network error compared to the other ANN-based models.

Manoj and Monjezi [141] also analyzed flyrock predictions using the support vector
machine and multivariate regression analysis. They found that the SVM results were more
accurate than those of the multivariate regression analysis. Rad et al. [142] also conducted
a similar study, comparing least squares support vector machines (LS-SVM) and support
vector regression (SVR), and based on the performances of the two models, they concluded
that the LS-SVM model was more useful than the SVR model in the estimation of blast-
induced flyrock. A sensitivity analysis of the model showed that the powder factor and
rock density were the most effective parameters on flyrock. Hasanipanah et al. [143] also
developed a flyrock prediction equation based on particle swarm optimization (PSO) in
quarry operations. For comparison purposes, multiple linear regression (MLR) was also
used. Five effective parameters (burden, spacing, stemming, rock density, and powder
factor) were used as the input parameters, while flyrock was considered as the output
parameter. The results revealed that the proposed PSO equation was more reliable than
MLR in predicting flyrock. Based on the sensitivity analysis results, it was also found that
the rock density was the most effective parameter on flyrock in the studied cases.

Recently, Lu et al. [144] presented two machine learning models, including the extreme
learning machine (ELM) and outlier robust ELM (ORELM), for predicting flyrock. To con-
struct and verify the proposed ELM and ORELM models, a database including 82 datasets
collected from three granite quarry sites was used. Additionally, the ANN and multiple
regression models were used for comparison. The results showed that both the ELM and
ORELM models performed satisfactorily, and their performances were far better compared
to the performances of the ANN and multiple regression models. Armaghani et al. [145]
estimated the flyrock distance using three machine learning methods: principal component
regression (PCR), support vector regression (SVR), and multivariate adaptive regression
splines (MARS). The SVR model showed a better performance in predicting the flyrock
distance compared to the other proposed models. Further, the SVR model was optimized
by gray wolf optimization (GWO), resulting in a 4% decrease in flyrock distance. The
authors asserted that the SVR prediction model can be used to accurately predict the flyrock
distance and properly establish the blast safety zone. An ELM was also optimized using
the biogeography-based optimization (BBO) algorithm to form a hybrid flyrock prediction
model [146]. Compared to the particle swarm optimization (PSO-ELM) and ELM models,
the BBO-ELM proved to be a powerful model for predicting flyrock, with a superior per-
formance. Dehghani et al. [147] used the gene expression programming (GEP) model and
cuckoo optimization algorithm to predict and minimize the flyrock range. In this study,
the burden, spacing, stemming, charge length, and powder factor were used as the input
parameters in the GEP model; then, the equation from the GEP was used as a cost function
for minimizing flyrock by the cuckoo optimization algorithm. They concluded that the
GEP model showed a good performance in predicting blast-induced flyrock using the
blast design parameters, and the cuckoo algorithm reduced the maximum flyrock distance
relative to the values obtained from the initial blast designs. This study also revealed
the powder factor as the input parameter sensitivity in the analysis and, hence, the most
effective parameter on the flyrock phenomenon.
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6. Discussion and Future Trends

The impacts of blasting operations have significant effects on mining in varied ways,
from mineral processing to environmental sustainability. Undesirable blast impacts, such
as ground vibration, airblast, and flyrock, pose severe risks, including human irritation,
structural damage, injury, and even fatalities to receptor communities if a blast is not
conducted properly [148]. In other words, blast results could increase a mine’s operating
cost and community complaints, which can escalate to contention between the management
and the community if not addressed early. Blast-induced ground vibrations, which are
measured in the PPV, are, by far, the most studied blast impact; consequently, most of the
blast impact models focus on this area. The popularity of ground vibrations in this field can
be attributed to the fact that ground motions accompanying blast events cannot be avoided,
and they often result in community complaints. It is one of the major concerns in mining
with stringent environmental standards, and a slight breach or incompliance with the
rules could impede production and deteriorate the cordial relationship (i.e., social license)
between a mining company and a host community. For example, the La Arena gold mine
in Peru owned by Tahoe Resources Inc. had to suspend operations temporarily following a
protest by some community members demanding compensation for unspecified damage
caused by dust and vibrations from blasting at the mine [149]. Given increasing concerns
about the environmental impacts of mining, it is now more crucial than ever to ensure
that blasting operations are conducted with greater precision. The goal of every blast
engineer is to conduct a blast that produces optimal fragmentation, good heave, and
minimal backbreak with minimal ground vibration, airblast, flyrock, and fumes. Thus,
blast impact studies are vital to determine the most appropriate blast design that would
optimize the desirable effects and minimize the undesirable ones. Blasting is a complex
phenomenon, and many factors influence its resulting impacts. Different methods based
on numerical, empirical, and, more recently, machine learning have been developed for
predicting blast impacts.

Several factors affect blast impacts. As highlighted by Yan et al. [81], some common pa-
rameters identified to influence blast impacts include the burden, spacing, free face, charge
structure, delays, blasthole dimension, charge parameters, stemming, and geological condi-
tions. It is often difficult to incorporate all the influential parameters in the blast impact
model, so the practice is to identify the important parameters peculiar to the problem being
addressed. Additionally, due to the heterogeneity of geological formations [150], there will
be variations in the site conditions (e.g., rock strength and discontinuities) from one mine to
another. Therefore, the prevailing local situation, mine plan, and environmental standards
must be considered when formulating a blast impact model. The parameter selections are
therefore very important, and they have a significant influence on the predictive powers of
a blast impact model. Indeed, a blast impact model is as powerful and accurate as the set
of parameters employed in developing the model. Studies expend significant resources in
deciding which parameters should be included in a model.

Even though empirical blast models are formulated following extensive field experi-
ments and data collection on various blast impact parameters, only a few parameters are
considered in the final model. Empirical models for predicting the PPV, for example, are
built using mainly the maximum charge per delay, the distance between blast zone and
monitoring point, and the geological conditions, which are accounted for as site-specific
constants [81]. Similar parameters are used in estimating airblasts and flyrock. The limited
number of parameters could result in inaccurate predictions. Cognizant of the limitations
of the empirical models, Monjezi et al. [151] modified the United State Bureau of Mines
(USBM) model by incorporating the effect of water in addition to the charge per delay
and distance from the blast face to develop a new predictive model based on gene expres-
sion programming (GEP). They observed that the proposed model was able to predict
blast-induced ground vibrations more accurately than the other developed techniques.
Nevertheless, empirical models remain the most widely used blast impact predictive tools
in the mining industry. This wide usage could be attributed to their computational simplic-
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ity and reasonable prediction results. Statistical blast impact models such as those used
by Hudaverdi [152] also consider only the blast design parameters and consider them as
ratios instead, using their actual values. Despite the wide application of the conventional
blast impact models, they possess inherent inefficiencies as a result of their inability to
accommodate more relevant parameters affecting the outcome of a blast.

In addressing this challenge, researchers have employed ML techniques to estimate
blast impacts. These are computer models that can accommodate several input variables
and deduce the relationships between them to predict an output. Considering the numer-
ous parameters involved in estimating blast impacts, ML has proven to be a formidable
tool in this area. Besides establishing complex relationships, machine learning tools are
also efficient in feature selection. Again, the literature has shown that, compared to the
conventional blast impact models, the ML approach is more robust and yields better
prediction results. For example, Bayat et al. [125] minimized the blast-induced ground
vibrations by decreasing the PPV to 17 mm/s (60%) using an ANN combined with a FA.
A burden of 3.1 m, spacing of 3.9 m, and charge per delay of 247 kg were reported as
the optimized blast design parameters. Similarly, the authors of [153] employed gene
expression programming (GEP) and the cuckoo optimization algorithm (COA) to optimize
the blast patterns in an iron mine, resulting in a considerable reduction in the PPV values
(55.33%). Armaghani et al. [145] achieved a 4% decrease in the minimum flyrock distance
by using SVR in a quarry operation. Table 6 summarizes some of the ML techniques used
to predict blast-induced impacts. The summary includes predicted impacts, techniques
that are usually compared with ML, the prediction parameters, the number of datasets,
and the ML model performance measure (coefficient of determination).

Table 6. Summary of the ML-based blast-induced impact prediction models.

ML Method Other Models Operation Parameter Dataset Impact Performance (R2) Reference

ANN

USBM, Langefors–
Kihlstrom,

Ambraseys–
Hendron, Bureau

of Indian Standard,
CMRI predictor

Coal mine Q, D 130 Ground
vibration 0.919 [94]

ANN MVR Coal mine

Q, D, HD, HZ,
B, ST CH, BI, E,

V, PV, VOD,
ED

150 Ground
vibration 0.9994 [80]

SVM

USBM, Ambraseys–
Hendron, Davies

et al., Indian
Standard

Dam
construction Q, D 80 Ground

vibration 0.957 [105]

GA-ANN ANN, USBM, and
MLR Quarry Q, D 97 Airblast 0.965 [132]

PSO MLR Quarry S, B, ST, PF, RD 76 Flyrock 0.966 [143]

PSO–ANN ICA, GA Quarry HD, HZ, BS, Q,
PF 262 Flyrock 0.943 [154]

ANN MVR Copper mine B, S, Q, PF, ST,
HD, NR, BH 135 Fragmentation 0.94 [155]

VOD is the velocity of detonation, Q is the maximum charge per delay, D is the distance from the blasting face, B is the burden, S is spacing,
ST is stemming, HD is the hole diameter, HZ is the hole depth, CH is the charge length, BI is the blastability index, E is the Young’s
modulus, V is Poisson’s ratio, PV is the P-wave velocity, ED is the explosive density, RD is the rock density, PF is the powder factor, BS is
the burden-to-spacing ratio, NR is the number of rows, and BH is the bench height.

The most common machine learning methods used for blast impact prediction are
the ANN, SVM, and PSO (Table 6). Hybrid models were also developed by combining
some of these algorithms. Among these algorithms, the artificial neural network remains
the most popular, with wide implementation in ground vibrations [29,80,85], airblasts [98],
flyrock [95,156–158], fragmentation [155,159–162], backbreak analyses [159,160,163–165],
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and noise [166]. We observed that these ML techniques were generally employed to predict
blast-induced impacts, just like the empirical models, and not necessarily to improve
or reduce the impacts. The performances of the models were judged based on a set of
statistical metrics, including the mean absolute error (MAE), root mean square error (RMSE),
correlation coefficient (R), and coefficient of determination (R2), which only showed the
prediction strength of the ML techniques compared to the other models. A summary of
the ML-based blast impact prediction models and common parameters is presented in
Figure 10.
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In implementing the machine learning algorithms, feature selection is considered the
first step and is usually achieved using the principal component analysis (PCA). The PCA
identifies the principal independent variables and eliminates irrelevant ones [153], and
it is one inherent feature of the classification and regression tree (CART) algorithm, as
applied by Hasanipanah et al. [167], in predicting ground vibrations. The selected features
are synthesized in the chosen machine learning algorithm to estimate the blast impact.
Currently, there seems to be consensus backing ANN as a suitable blast impact predictor.
However, studies have also highlighted some limitations of the ANN, including a long
training period and the possibility of easily falling into the local minimum [81]. Thus,
the ANN is combined with other algorithms to optimize and improve the accuracy of
predicting blast impacts.

This paper discussed mostly the undesirable impacts of blasting and how machine
learning models have been employed to predict these impacts. However, another aspect of
blasting is the desired outcomes in terms of fragmentation and heave. Mining companies
and quarries desire to produce fragment sizes that can be mucked easily and directly fed
into a crusher without the need for secondary blasting. At times, there are too many fine or
oversized boulders. The blast input parameters are altered to control the fragment sizes.
There are empirical equations [168–172] for predicting the fragment size distribution as
well. Examples of empirical models for predicting blast-induced fragment distribution
include Kuz-Ram models, Julius Kruttschnitt Mineral Research Centre (JKMRC) models,
the Bond comminution method, and the Swebrec function. Images of a blast muck pile can
be analyzed using digital image processing software such as Split-Desktop® and WipFrag
3 to determine the particle size distribution of the fragmented rock.

Additionally, attempts are being made by researchers to introduce new and improved
fragment distribution models, leveraging on the advances gained in computer power in
recent years. Studies such as An et al. [173], Tao et al. [174], and Yi et al. [123] have utilized
numerical modeling techniques and image processing to predict fragment size distribu-
tions. One merit of the numerical approach is that it allows the researcher to simulate
a series of fragment size distribution scenarios under various blast configurations and
fracture patterns [174]. It is worth noting that ML applications in this area are also gaining
interest in the scientific community. Generally, the process involves the provision of a set
of input data (e.g., blast design parameters and muck pile image), which is processed by
the ML model to generate a rock fragment size profile (Figure 11). The ML techniques
being applied for evaluating the fragment size distribution are different from those used
in the prediction of ground vibrations, airblasts, and flyrock. These new techniques are
deep learning, a subset of ML. Deep learning naturally takes advantage of automati-
cally discovering and extracting features and patterns from large datasets combined with
modeling structures capable of capturing highly complex behaviors [175]. Examples of
deep learning algorithms include convolutional neural networks (CNN), recurrent neural
networks (RNNs), long short-term memory networks (LSTMs), stacked auto-encoders,
deep Boltzmann machine (DBM), and deep belief networks (DBN). These algorithms
have tremendously improved image classification, object detection, and natural language
processing in many fields. Recent applications of deep learning in blasting include the pre-
diction of flyrock [157], rock fragment distribution [176], and classification of mine seismic
events, among others. Further, we observed that most common ML algorithms for blast-
induced fragment size predictions include the ANN [159–162], SVM [104,177], PCA [177],
fuzzy inference system [178–180], adaptive neuro-fuzzy inference system [177,181,182], bee
colony algorithm [162], PSO [183,184], ant colony optimization [185], and gaussian process
regression [186]. The ML-based fragment size prediction models performed significantly
better than the empirical models [187].
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From the literature, many of the proposed models could predict only one blast impact.
Only a few models were developed to predict ground vibrations and airblasts [188,189],
backbreak and rock fragmentation [160,162], and flyrock and rock fragmentation [190,191].
Meanwhile, all the blast impacts occur concurrently and are equally influenced by similar
blast parameters and geological conditions. Currently, only one study (a master of a
science thesis report) has been able to develop an integrated prediction model for rock
fragmentation, ground vibrations, and airblasts using an ANN with 7-13-3 architecture [8].
The input parameters were the charge per delay, distance from the blast zone to the
monitoring point, hole depth, stemming length, hole diameter, powder factor, and spacing-
to-burden ratio, while rock fragmentation, ground vibrations, and airblasts were the
corresponding output parameters. The ANN model proved to be more effective with
improved fragmentation and minimal blast impacts compared to the empirical equations
and multivariate regression. An integrated model of this kind saves resources and allows
the blast engineer to examine the influence of the input parameters on the blast outcome in
one attempt. Therefore, a more holistic and robust ML-based blast impact model should
integrate all the blast impacts, both desirable and undesirable. An improved ML model
development can be connecting the input (most influential blast design parameters) to the
output (blast outcomes). Subsequently, with sufficient training of the ML model using an
adequate dataset, the blast outcomes can be predicted before the actual blast event that
would inform further modification of the input parameters to achieve the desired outcome.
Compared to the other blast impacts, ML applications for blast-induced dust/fume and
noise prediction have not received intensive research attention. From the existing blast
features, ML models can be developed to estimate noise level and dust/fume volume
and direction.

Nowadays, with automation and the internet of things (IoT), mining companies can
receive real-time information on drill operations, including high-resolution rock images
and ground conditions. Similarly, several measurements, such as blast images and videos,
vibration results, fragment distribution, plume movement, and loading and crushing per-
formances, can be obtained during and after a blast. With the availability of such large
datasets combined with improvements in algorithms and computing power, we foresee a
field-wide implementation of big data analytics coupled with deep learning applications
to integrate all the aspects of mine operations, from exploration to reclamation, leading
to more efficient and accurate decision-making in the industry. These applications will
automatically learn from the result of each drilling and blasting operation and analyze
how the parameters such as the drill pattern, hole deviation, ground condition, timing,
and powder factor contribute to the resulting fragmentation and heave, material handling,
and crushing performance. In fact, unlike most traditional ML algorithms applied in this
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field, deep learning algorithms would automatically discover, extract, and optimize the
blast-induced features without human intervention. Deep learning could overcome some
of the deficiencies in traditional data-driven methods as more data becomes available. Deep
learning models can also make it possible for researchers to predict all blast-induced im-
pacts simultaneously. Integrating these applications into the current systems will form part
of the ongoing efforts to improve mine-to-mill processes and automate mining processes.

It is essential to mention that the foundation of a functional ML model rests upon
a rich dataset. The quality, size, and partition of the dataset used in implementing ML
influence the model’s performance in accuracy and generalization. Thus, the application of
various AI methods, including ML and deep learning, requires a reasonably large dataset
to work properly. Without an adequate dataset, the model’s usefulness and potential can
be undermined or negated completely. Generally, it is widely accepted within the research
community that AI demands an enormous dataset, and a too-little dataset will yield poor
results. However, what constitutes an adequate dataset size is not clearly defined, as the
amount of data required depends on different factors, such as the problem definition,
model complexity, and algorithm type [192]. Fortunately, renowned researchers working
in AI within the mining industry have put forth their experience in modeling problems
relating to the mining and mineral industry and recommended good practices, especially
when modeling with a sparse dataset.

Ganguli et al. [193] provided good practices regarding AI implementation in mining.
They recommended a thorough understanding of the modeling process before implemen-
tation and advised caution when using business intelligence tools and software products.
Their recommendation also included the random splitting of a dataset into training, test-
ing, and validation subsets and achieving similar characteristics among the three subsets,
irrespective of the data partition. Further, they suggested that the training subset should
contain the highest and lowest values, and samples should be assigned to the training
subset first, followed by validation and testing, during data grouping/segmentation. More-
over, the best data collection and processing practices should be observed during model
development to ensure the dataset is of high quality, sufficient, and representative of
the population.

7. Conclusions

A blast impact is a complex phenomenon with numerous influential factors that must
be incorporated into blast impact prediction models to predict accurate results. However,
the industry-accepted empirical models lack the computational capacity to accommodate
all the influential factors. Thus, these models may not be accurate in their predictions.
The importance of achieving accurate predictions is well-known, as it informs proper
blast design and helps allay doubts about compliance with the established blast standards.
Recent advances in computer power have ushered in soft computing tools that can address
some of the limitations of the empirical models used in blast engineering. ML algorithms
are powerful tools for solving both linear and nonlinear complex mining problems with
several influential factors. ML algorithms, such as the ANN, SVM, and CART, can take
several variables and predict blast impacts with high levels of accuracy. These models are
promising tools for optimizing the blast parameters and blast outcomes to increase the
production efficiency while reducing the costs. The models’ predictive powers could also
be improved by synthesizing with other algorithms.

Future models could focus on developing a one-shop model that could estimate all
the blast impacts, perhaps using deep learning, instead of predicting a single impact such
as ground vibrations or airblasts. Additionally, these new models should incorporate
the geological variability and consider datasets from different mine sites or operations to
develop a more holistic model. The models should be user-friendly and devoid of complex
mathematical language so that industry practitioners can easily implement them.
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Abstract: The accuracy of data-driven predictive mineral prospectivity models relies heavily on the
training datasets used. These models are usually trained using data for “known” deposit locations
as well as “non-deposit” locations that are based on randomly generated point patterns. In this
study, data related to the Seabridge Gold Inc Iskut project, an epithermal Au deposit in northwestern
British Columbia (BC), Canada, are used to test the utility of data-driven mineral prospectivity
modeling. The input spatial dataset is comprised mostly of publicly available data. Data for 18 vein
and epithermal Au known mineral occurrences (KMO) are obtained from the BC Geological Survey’s
MINFILE repository and selected as training deposit locations. A total of eleven sets of non-deposit
locations (NDL) were also created, including one set of selected non-prospective KMO for Au deposits
from the MINFILE and ten sets of random point patterns. Given the scale of this study, most of the
KMO recorded on the property are of the epithermal deposit type. Hence, they could not be used as
a selection criterion. Data-driven mineral potential models are generated using the random forest
(RF) algorithm and trained on multiple data sets. The comparison of RF models demonstrated that
using non-prospective KMO generates more accurate predictions than the random point pattern.
The produced mineral prospectivity maps delineated multiple areas with higher discovery potential,
which matched viable targets for the Au-Cu epithermal-porphyry system identified through previous
Seabridge Gold Inc. (Toronto, ON, Canada) field reconnaissance and drilling programs.

Keywords: mineral prospectivity mapping; random forest algorithm; machine learning; epithermal
gold; unstructured data

1. Introduction

With new mineral deposits becoming more challenging to find, geoscientists have
focused on development of novel methods to assist with mineral deposit discovery. De-
velopment of the geographic information system (GIS) technology, improved computing
power, and application of data-driven methods, such as machine learning, are enabling the
evolution of quantitative methods of geoscientific data analysis, including mineral potential
mapping (MPM) [1,2]. For instance, in 2018, Goldcorp Inc., Vancouver, BC, Canada (now
part of the Newmont Corporation) and IBM announced a partnership with a goal to utilize
the IBM Watson supercomputer and its artificial intelligence (AI) framework to aid mineral
targeting at the Red Lake Mines in northwestern Ontario, Canada.

MPM consists of combining multiple layers of geoscience data into a map identifying
areas favorable for mineral exploration. The process can be summarized into five main
steps: definition of the exploration model for the type of deposit sought, selection of the
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geospatial dataset to be used, processing of data, creation of the predictor maps, integration
of the predictor maps to create a predictive model [1,2].

There are three main categories of modeling methods using GIS-environment: knowledge-
driven, data-driven and hybrid.

The knowledge-driven approach requires “experts” to assign weights and to as-
sess the relative importance of each evidential layer as they relate to the specific ex-
ploration model being used. This method is subjective but has the advantage of being
well suited for greenfield areas with missing or scarce data and where few deposits are
known [3]. Examples of knowledge-driven approach include Boolean logic [1,2,4], index
overlays [1,2,4,5], fuzzy logic [6–10] and evidential belief [2,6].

The data-driven approach uses the spatial relationship between the geospatial features
and known mineral deposits (training set) to estimate the model parameters. It is well
suited for well-established mining areas where a large number of known mineral deposits
is available to quantify the spatial associations with evidential features and to guarantee the
performance and robustness of the model. Methods such as weights of evidence [4,7,11–13],
logistic regression [11,12], neural networks [11,14,15], support vector machine [15–18] and
random forest [3,13,19–22] are examples of data-driven approaches.

Since 2000, the number of publications on data-driven methods for MPM has largely
increased, especially articles using machine learning algorithms (MLA) [23]. In recent
years, the random forest (RF) algorithm has proven to offer a new approach to MPM.
Contrarily to other MLA, like artificial neural networks or support vector machine, RF is
not a ‘black-box’ algorithm, meaning that the inner workings of the algorithm are known
and can even be represented (i.e., decision trees). It is also simpler to parameterize, more
stable and computationally light [15,22,24,25].

For any data-driven method, the training dataset should contain a sufficient number
of samples to train a given model, and studies showed that RF can be accurate even with a
small training set (i.e., less than 20 deposit locations) [19,20,24,26,27]. Moreover, the train-
ing dataset should be balanced, meaning that the dataset must contain an equal number
of deposits and non-deposit, to avoid results to be biased for one class or the other [19].
Training deposit locations are usually discovered deposits or known mineral occurrences
(KMO) in the study area for the commodity and the type of deposit sought. On the other
hand, non-deposit locations are usually generated by random points following specific crite-
ria [19,20,24,25,27] or random locations in lithologies considered unprospective [3,15,22,26].

In this paper, the relative influence of the non-deposit locations in the training dataset
is assessed by the accuracy of the RF model to MPM. MPM models using the RF algorithm
were created with different training data set. We generated ten sets of the random point
pattern using a three criteria selection that we compared with KMO that were categorized
as non-prospective and distal to every deposit location. In a broader sense, this study is
testing whether non-prospective KMO (for one commodity but can be of similar deposit
type) should be preferably used instead of randomly generated locations in MPM, when
such data set is available.

2. RF Algorithm

The RF algorithm is a collection of decision tree classifiers trained to increase their
diversity and reduce generalization error of the aggregate classifier made of the individual
trees [28]:

{h(x, θk), k = 1, . . . }, (1)

where the {θk} are independent identically distributed random vectors, and each tree
casts a unit vote for the most popular class at input x. A RF can be composed of either
classification or regression trees.

The algorithm uses a modified version of the bagging (or bootstrap aggregating)
technique to create an ensemble of ntree decision trees [29]. This technique increases the
diversity of the trees. In the bagging process, each tree is trained on 2/3 of the input
samples. The training set is sampled randomly from the original dataset with replacement
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(i.e., no deletion of the data selected from the original dataset for the generation of the next
subset). In other words, to grow a tree, the input data can be used more than once or not at
all. This allows the RF to be more stable and robust to outliers in the input data set, as well
as increasing prediction accuracy [28].

The remaining 1/3 of the training samples are referred to as out-of-bag (OOB) samples.
The OOB samples can be used to evaluate performance, removing the need for cross-
validation. The resulting OOB error is an unbiased estimate of the generalization error and
converges as the number of trees increases; thus, RF does not over-fit the data [28].

Each tree is grown on a random subset of mtry features selected from the input
evidential features. This increases the diversity of trees within the forest and reduces the
correlations between the trees. The RF algorithm does not apply pruning on the grown
trees. The output of the RF is calculated differently depending on the type of decision trees.
For regression trees, the output is the average of the predictions from all the trees, whereas
for classification trees, the output is the majority vote of all the trees. A simplified diagram
of the RF algorithm is presented in Figure 1.

Figure 1. Workflow of the random forest algorithm.

The RF algorithm tries to maximize purity of the tree grown by making each child
nodes ‘purer’ than the parent node. The tree impurity I(T) is defined by [30]:

I(T) = ∑
t∈T

I(t), (2)

where I(t) = i(t)p(t) with p(t) an impurity function and i(t) the node impurity function.
The decision tree search through all candidate splits to find the optimal split to reduce

I(T) or, equivalently, maximizes the information gain [30]:

∆I(s, t) = I(t)− I(tL)− I(tR), (3)
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where I(t) is the impurity of the parent node, I(tL) is the impurity of the left leaf and I(tR)
is the impurity of the right leaf.

The Gini Index (IG) is the impurity function employed in this study. It is defined
as [30]:

IG = 1−
m

∑
j=1

p2
j , (4)

where pj is the proportion of samples that belongs to class m for a particular node and
m the number of classes. The decision tree splitting criterion is based on choosing the
attribute with the lowest Gini impurity index (IG).

The importance of each feature can be evaluated by the RF algorithm. To measure
the importance of the k-th feature, the values of the k-th feature are permuted among the
training data while keeping the rest constant. The OOB error estimation is used to measure
the decrease in accuracy [28].

3. Study Area: Iskut Project

The Iskut project has undergone mineral exploration since the early 1900s. Since the
discovery of the Snip Mine in 1964 (Skeena Resources: https://www.skeenaresources.com/
projects/snip; accessed on 21 October 2019), the property has had relatively systematic
exploration, which has led to the discovery of the Johnny Mountain Mine and the definition
of the Bronson Slope deposit. These discoveries, in conjunction with surface anomalies
across the property, have seen over C$38 million spent on exploration looking for analogs
to these deposits. Seabridge Gold acquired the property in 2016 and has since undertaken
exploration for porphyry and epithermal deposits on the property.

3.1. Geological Setting

The Iskut property is located in northwestern British Columbia (BC), in the metallo-
genically important Stewart-Iskut River area also known as the “Golden Triangle.

The Iskut Project lies on the western margin of the Stikine Terrane (Stikinia). Three
distinct units of the Stikine Terrane ranging in age from Upper Paleozoic to Middle Jurassic
were recognized in the area (Figure 2). The oldest rocks are Upper Paleozoic metamor-
phosed and deformed limestone, clastic sedimentary rocks, and polymodal volcanic rocks
of the Stikine Assemblage [31,32]. Two groups of the Mesozoic arc-related strata are present
in the area: Late Triassic folded marine volcanic and sedimentary arc-related strata with
some degree of alteration and low-grade metamorphism of the Stuhini Group and the Early
to Middle Jurassic subaerial and submarine volcanic and sedimentary rocks of the Hazelton
Group [31]. The two units are separated by a regional angular unconformity. The Bowser
Lake basin sedimentary rocks unconformably overly the Jurassic strata and cover mineral
deposits to the East of the study area. Quaternary basalts and local volcanism are observed
to the North and Northeast of the property along the Iskut river.

There are three major intrusive suites mapped on the property. Two of these are major
regional metallogenic events that occur in Stikinia during the late Triassic and over an
extended period from Early to Middle Jurassic [31,33]. The Stikine Plutonic Suite emerged
from a pulse of arc growth in the Late Triassic (221–236 Ma; [33]) and is coeval with the
Stuhini Group strata [31,33]. This intrusion is coincident with emplacement of Cu-Au-Ag
enriched pluton, an important metallogenic event within the Cordillera [31,33].
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Figure 2. Regional geology of the Iskut River area with the study area outlined in black from BC digital geology data repository.

Two magmatic events occurred between Early to Middle Jurassic and are associated
with two different mineralization styles. The first event, in Early Jurassic (187–195 Ma; [33]),
is associated with porphyry deposits (e.g., Kerr-Sulphurets-Mitchell, Galore Creek and Red
Chris) and epithermal gold-veins (e.g., Brucejack) that tend to occur in lower Hazelton
Group volcanic rocks [31,33]. The second event is associated with exhalative mineralization
(Eskay Camp deposits) and characterized by bimodal volcanic rocks coeval with the upper
volcanic sequence of the Hazelton Group [31]. These form as exhalative deposits within a
deep marine oceanic crust setting.

3.2. Au Mineralization

The Iskut project lies in the metallogenic rich “Golden Triangle” area. Two formerly
producing mines and a well defined mining project are located in the study area: the
Johnny Mountain mine, a vein hosted gold deposit with a production of 92,300 oz gold,
145,000 oz silver, 2,270,000 lbs copper, the Snip mine, a shear-vein gold deposit with a
production of 1,032,000 oz gold, 390,000 oz silver, 550,000 lbs copper and the copper-gold
Bronson Slope deposit (190Mt@0.36 g/t Au, 0.122% Cu) (Richards, 2005, unpublished).

Mineralization in the area is principally shear-hosted gold and base metal veins de-
posits like the Snip, Johnny Mountain (Stonehouse) or Inel deposits. They are associated
with brittle-ductile deformation and porphyritic stock and intrusion of the Early Jurassic
Texas Creek Plutonic Suite [31,33]. The structural style may be host-rock dependent: miner-
alized shear-veins are hosted by a clastic sequence of the Stuhini Group at the Snip and
the Inel deposits, while dilatant quartz-sulfide veins are hosted by Jurassic coarse volcanic
and intrusive rocks at the Stonehouse deposit (but are also present at the Snip and the Inel
deposits) [34]. From a comparison between the Stonehouse and the Snip deposit, Rhys [35]
suggests that intrusion, semi-brittle deformation, and a mineralizing hydrothermal system
were closely related temporally and genetically and that gold was deposited during the
formation of the vein and not by later mineralization or remobilization.
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3.3. Conceptual Exploration Model

Since epithermal ore deposits are formed by tectonic scale earth process systems that
concentrate hydrothermal fluids, the exploration model presented below accounts for
processes critical to the formation of that type of deposit: source-pathway-trap (physical
and/or chemical)-preservation. Based on the mineral system approach to exploration
targeting, Seabridge Gold defines the conceptual exploration model at a district-scale for
epithermal Au deposits at the Iskut project with the following criteria:

• Proximity to mineralized porphyritic intrusions;
• Proximity to faults;
• Presence of hydrothermal alteration zones;
• Geochemical enrichment in gold and associated pathfinder elements;
• Viability of host rock.

The most probable source of gold-bearing fluids in the area are the porphyry intrusives
of Texas Creek Plutonic Suite and Stikine Plutonic Suite. Mineralization is synchronic
with brittle-ductile deformation (i.e., faulting, folding, and shearing) characterized by
mineralized dikes and veins having similar orientation as tectonic structures. Faults and
fractures can serve two functions; they can be the both conduits taken by metal-rich
fluids and physical traps to those fluids. Lithologies from the Stuhini Group and the
Hazelton Group are the host lithologies of the known deposits in the area (e.g., Stonehouse,
Inel, Bronson slope). They can be considered chemical traps, due to a change in RedOx
conditions or geochemical assemblage for instance, as well as physical traps, because of a
change in density for example. Hydrothermal alteration and geochemical enrichment in
gold and associated pathfinder elements are evidence of chemical traps as the reaction of
the mineralized hydrothermal fluids with wall rock.

4. Methods
4.1. Spatial Data Input
4.1.1. Target Variable

For deposit location, we selected 18 vein and epithermal gold deposit locations (i.e.,
past producers and prospects) from the KMO depository (https://catalogue.data.gov.bc.
ca/dataset/minfile-mineral-occurrence-database), (accessed on 25 March 2019) a public
online data repository hosted at Data Catalogue by the Government of British Columbia)
(MINFILE) by the BC Geological Survey (See Appendix A).

For NDL, three selection criteria are used. First, all sets should have an equal number
of NDL to that of the deposit locations. Second, the NDL should be located far from
any known deposit to ensure different geospatial characteristics to nearby deposits [2,19].
The third criteria depend on the nature of the data: random locations or KMO.

Point pattern analysis was applied to define a buffer distance from every deposit
location. That buffer represents the distance beyond which there is a 100% probability of
finding another deposit from any deposit. In the study area given the selected deposits,
that distance is 8000 m (Figure 3). However, this length is too restrictive for this study,
as it would exclude more than half of the study area. Instead, a buffer distance of 2000 m,
representing a 78% probability of finding a neighboring deposit from that distance. Hence,
NDL are to be selected in the study area excluding a 2000 m buffer from every deposit
location (Figure 4).
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Figure 3. Result of point pattern analysis showing probability of finding another Au deposit from any given deposit for
different distances.

Figure 4. Location of deposits showing the buffer zone (in grey).
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Unlike deposit locations, which are ‘rare’ events and tend to cluster, the NDL should
be distributed randomly through the study area as they should not be representative of
any particular geological process [2]. Therefore, we generated ten sets of the random point
pattern containing 18 independent points, that we generated using the rpoint function
from the spatstat (v1.61-0) library in R software (R version 3.5.3 (Great Truth), released on
11 March 2019. Retrieved from R project website: (available online: https://www.r-project.
org/; accessed on 18 March 2019). The number of sets generated was chosen arbitrarily so
that the different models could be easily plotted and compared. The number of points was
chosen to be equal to the number of deposit locations, to obtain a balanced dataset (i.e.,
equal number of deposit to non-deposit location).

The second set of NDL constitutes of selected KMO from the MINFILE depository that
were considered non-prospective for the Au deposit. Every occurrence that has gold listed
as one of their first three listed commodities was discarded. A total of 19 locations were left
after this selection process (see Appendix A). However, due to the scale of the study area
(i.e., project-scale), the majority of the KMO in the area are related either to an epithermal
or a porphyry system. Therefore, the deposit type could not be used as a selection criterion
as it would have been too restrictive (i.e., not enough samples to conduct this study). Thus,
some selected non-prospective KMO can be pre or post-dating the selected prospective
KMO and have a similar geospatial signature (e.g., similar pathways, similar traps). It is
assumed that the source of fluids is different, which would explain the difference in metals
association between the prospective and non-prospective KMO (i.e., with or without Au).

Each sample in our training sets is attributed to a binary variable such as 1 s for
prospective locations and 0 s for non-prospective location.

4.1.2. Predictor Maps

The geospatial dataset for this study is selected based on availability of the data and
its usefulness to be used as proxy for our conceptual exploration model.

Geological data were derived from 1:50,000 British Columbia digital geology data
compilation that was last updated on 5 April 2018 [36] (original dataset related to this
article can be found at https://catalogue.data.gov.bc.ca/dataset/bedrock-geology, a public
online data repository hosted at Data Catalogue by the Government of British Columbia;
accessed on 25 March 2019). In the study area, Au-hydrothermal deposits are strongly cor-
related with intrusions from the Late Triassic-Early Jurassic and structurally controlled [34].
Therefore, we created predictor maps of distances to Texas Creek Plutonic Suite and Stikine
Plutonic Suite intrusions and distance to fault traces at 500 m intervals. Moreover, reactive
lithologies can act as a chemical trap for Au deposition. As such, reactive lithologies of the
Stuhini Group and the Hazelton Group were categorized as ‘favorable’ host-rock while the
other lithologies present in the study area were categorized as ‘non-favorable’ host-rock.

The geochemical data comes from a compiled database of soil samples from historic
geochemical surveys conducted by private companies from 1981 to 2011. The elements
analyzed and the analytical methods used in each survey varied and were not always ade-
quately reported. Exploration efforts focused on areas surrounding known prospects, thus
do not cover the entire study area. Only the twelve most present elements in the database
were kept for further analysis: Ag, Au, As, Ba, Co, Cu, Fe, Mn, Mo, Pb, Sb, Zn. Values
below the lower detection limit were replace by half the detection limit. No imputation was
performed on the missing data. Hence, our geochemical dataset contains some missing
data. The dataset was transformed using centered log-ratio (clr) [37]. Then, principal
component analysis (PCA) is applied to the transformed dataset. Principal components can
be interpreted as describing separate geological processes (i.e., differentiation, alteration,
mineralization, weathering) [38]. In this study, only PC1 and PC2 were kept as the varia-
tion between the loadings of the different elements decreased as the number of principal
components increased. They account for 34% and 14% of the variance respectively. Based
on the loadings of the different elements (Table 1), PC1 and PC2 seem to represent potential
metal associations (e.g., Ag-Au-Sb), and enrichment or depletion. The clr-transformed
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Au values and the PC1 and PC2 were interpolated using the Inverse Distance Weighted
(IDW) algorithm.

Table 1. Rotated component matrix of principal component analysis of clr-transformed soil samples.
Significant loadings (bolded values) are based on the absolute threshold of value 0.3.

Ag Au As Ba Co Cu Fe Mn Mo Pb Sb Zn

PC1 −0.41 −0.39 0.21 0.28 0.04 0.12 −0.26 0.35 −0.24 0.25 −0.29 0.39
PC2 0.09 0.28 0 0.21 0.1 −0.38 −0.38 0.40 −0.15 −0.46 −0.29 −0.30

The geophysical data consists of magnetic data only, as it was the only available
data in the area with a relatively small spatial resolution (200 m × 200 m) and was down-
loaded from the Canadian Aeromagnetic data base. Only processed data was available
for download, and we chose to use the first vertical derivative as it is useful to enhance
near-surface structure.

For remote sensing data, we used ASTER Level 1 Precision Terrain Corrected Reg-
istered At-Sensor Radiance (L1T) data, with a spatial resolution of 15 m, 30 m, and 90 m
for the NIR, SWIR and TIR bands respectively. The SWIR and TIR band images were
re-sampled to the VNIR band images resolution. The project study area is densely veg-
etated in the valleys but vegetation becomes scarce with altitude. The area is covered
by snow from October to April with presence of multiple glaciers. In order to maximize
bedrock exposure, we selected scenes acquired in summer to minimize snow cover and
with minimum cloud cover (Figure 5). The ASTER data was atmospherically corrected
and converted to relative reflectance using the Semi-Automatic Classification Plugin in
QGIS software.

Figure 5. False color ASTER image derived from Band 2, Band 4 and Band 7 as RGB color combination showing the glacier
and water (blue), vegetation (green) and exposed bedrock and sediments (yellow).
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Hydrothermal alteration can effectively be mapped with ASTER data [39–41]. Band
ratio (BR) and relative absorption band depth (RBD) methods are useful to enhance the
absorption feature of some characteristic alteration minerals [42,43]. In this study, the fol-
lowing ratios to map the main alteration present in a hydrothermal system are used [44,45]:

Argilic =
b4 + b6

b5
(5)

Ironoxides =
b4
b2

(6)

Phyllic =
b5 + b7

b6
(7)

Propylitic =
b7 + b9

b8
(8)

Silica =
b11
b12

(9)

A total of twelve predictor maps are generated to map the mineral potential of ep-
ithermal Au in the study area (Figures 6 and 7).

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Predictor maps of (a) distance to intrusions, (b) distance to fault, (c) favorable host-rock, (d) Au geochemical
anomaly, (e) PC1, and (f) PC2.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Predictor maps of (a) magnetic first vertical derivative, (b) argillic alteration, (c) iron oxides alteration, (d) phyllic
alteration, (e) propylitic alteration and (f) silica alteration.

4.1.3. Cell Size

Using the methodology laid out by Carranza [46], the unit cell size is determined
using point pattern analysis. First, the higher limit of a set of suitable cell size is determined
by finding the distance where the likelihood of finding deposits located next to one another
is null. That distance is 515 m. The lower limit depends on the predictor map with the
smallest scale and can be estimated using the following formula [47]:

x = MS× 0.00025, (10)

where MS is the map scale factor. In this study, the predictor maps were derived from
1:50,000 geological map and ASTER images (resolution of 15 m, 30 m, 90 m for the NIR,
SWIR and TIR bands respectively). Thus, 12.5 m is the lower limit. The most suitable cell-
size can be determined by fitting straight lines to the log-log plot of the rate of increase of the
ratio [N(D)] : [N(T)− N(D)] based on a cell-size to the next coarser cell-size, with [N(T)]
being the total number of cells and [N(D)] being the number of cells containing one
deposit [46]. The most suitable cell size for our study area is defined by the intersection of
the two straight lines fitted to the log-log plot (Figure 8); thus, we selected a 50 m cell size.

4.2. RF Algorithm Parameters

As presented in Section 2, RF requires only two essential parameters: k and mtry. The k
parameter represents the number of trees in the ensemble and mtry is the number of input
features selected to do the splitting at each node of a tree. In this study, various values of k
(from 500 to 5000) and selected k = 1000 as the generalization error started to converge
from k ≥ 1000. The lowest RMSE on the OOB samples was used to select the optimal value
of mtry.
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Figure 8. Log− log plot of rates (in %) of increase in the ratio [N(D)] : [N(T)N(D)] as a function of unit cell size.

4.3. Model Evaluation

After optimization of the RF parameter, the performance of the best-fit models
was comprehensively evaluated using confusion matrix, indices of predictive accuracy,
and success-rate curves.

A series of statistical indices are calculated from the confusion matrix and permit to
evaluate the predictive performance of the trained model:

Sensitivity =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Kappa =
(TP + TN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+FP+TN+FN)

(TP + FP + TN + FN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)
(TP+FP+TN+FN),

(14)

where TP is True Positive, TN is True Negative, FN is False Negative, and FP is False Positive.
The kappa index measures the fit between the predictor maps and the training

dataset [48], the sensitivity and specificity indicate whether the deposit cells or non-deposit
cells are correctly classified to their corresponding class respectively. Success-rate curves
can be employed to evaluate the overall performance of the models. The curve is generated
by calculating the percentage of correctly delineated training deposit in a prospective area
for a given threshold with an increment of 5-percentile of the likelihood value [22].
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5. Results
5.1. Relative Importance of Predictor Maps

As explained in Section 2, the RF algorithm measures the importance of each predictor
maps which provides insights on the best proxies for mineralization in the study area
(Figure 9).

Figure 9. Sum of the relative importance percentage of each predictor map from models gen-
erated with different set of random point pattern non-deposit location (R1 to R10) and selected
non-prospective KMO (Sel).

Overall, the five most important predictors are PC2, intrusion, host rock, fault, and Au
in respective order from higher to lower cumulated percentage. These features represent
the principal components of any epithermal Au exploration: source, pathway, physical
trap, and chemical trap.

The source of the mineralized hydrothermal fluids is represented by the proximity to
porphyritic intrusive bodies of Late Triassic to Early Jurassic age. The faults correspond
to the pathway taken by gold-bearing fluids and they can also act as physical traps for
those fluids. Lithologies from the Stuhini and Hazelton Group can act as a chemical
trap for mineralized fluids. Geochemical anomalies of Au and other pathfinder elements,
represented by Au and PC2 predictor maps, are also proxies of a chemical trap.

Among the different hydrothermal alteration mapped using the ASTER images,
the phyllic and silica alteration have the highest cumulated percentage.

5.2. Predictive Accuracy of the Model

The predicted values range between 0 and 1 and symbolize the probability of oc-
currence of Au mineral deposit. A threshold of 0.5 was used to classify predictions and
to calculate the statistical indices in Tables 2 and 3. Cells with a value higher than the
threshold are considered prospective, whereas values below the threshold are consid-
ered non-prospective.
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Table 2. Accuracy of models generated with different sets of random point pattern NDL (R1 to R10).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Accuracy 88% 67% 72% 78% 75% 81% 83% 83% 81% 72%
Kappa 78% 33% 44% 56% 50% 61% 67% 67% 61% 44%

Sensitivity 94% 61% 67% 78% 78% 78% 89% 83% 78% 67%
Specificity 83% 72% 78% 78% 72% 83% 78% 83% 83% 78%

Table 3. Accuracy of models generated with selected non-prospective KMO NDL and the mean
and standard deviation of accuracy indices of models generated with different sets of random point
pattern NDL.

Selected Mean Sd

Accuracy 84% 78% 6%
Kappa 67% 56% 13%

Sensitivity 79% 77% 10%
Specificity 89% 79% 4%

The average accuracy of the random models is lower than the selected model, with 78%
and 84%, respectively. The kappa values of 56% and 67% of the averaged random models
and the selected model respectively indicate that both models have a moderate fit between
the predictor maps and the training datasets [48].

Of all the random models, only R1 yields better results than the selected model,
but overall, the selected model is more accurate than the random models. Although the
results indicate that all models can capture the spatial relationship between the predictor
maps and the training datasets, the selected model is the most accurate.

5.3. Performance of RF Modelling

In the previous section, the predictive accuracy of each model is reviewed. However,
the models are not evaluated in a spatial context. For that purpose, success-rate curves,
describing the performance of the RF modeling based on the resulting predictive maps, are
used (Figure 10).

Figure 10. Success-rate curves of predictive map of Au prospectivity obtained by using training set
with random non-deposit location (R1–R10) and with selected non-prospective KMO.
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Of the eleven mineral prospectivity maps, the worst performing model is the R1 model
which requires 35% of the study area to delineate all of the training deposits. In contrast,
the best performing maps capture all of the training deposits in 15% of the study area.
Those maps are obtained with the Sel, R6 and R9 models (Figures 11–13).

(a) (b)

Figure 11. Mineral prospectivity map with Sel model (a) and delineated prospective area (b).

(a) (b)

Figure 12. Mineral prospectivity map with R6 model (a) and delineated prospective area (b).
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(a) (b)

Figure 13. Mineral prospectivity map with R9 model (a) and delineated prospective area (b).

6. Conclusions

In this study, different training sets using selected non-prospective KMO and ten sets
of randomly generated non-deposit location are compared. The type of deposit could
not be used as a selection criterion to select the KMO because the area is an extensive
epithermal system. Hence, some of the non-prospective KMO can have a similar geospatial
signature as our deposit training data set and introduce bias.

Across all the models, the five predictor maps with the highest cumulated relative
importance are representative of the source, pathway, and both physical and chemical traps
of an epithermal Au deposit. The different model predictive accuracy are compared and it
is found that the model using selected non-prospective KMO has higher accuracy than the
average accuracy of the models using random NDL with 84% and 78%, respectively. Thus,
using the listed commodities as a discriminant to select non-prospective KMO is enough to
have an accurate resulting model.

The predictive maps are evaluated using success-rate curves. The best mineral prospec-
tivity maps are obtained with the R6, R9,and Sel training sets that capture 100% training
deposits in 15% of the prospective area. Therefore, when available, it is recommended using
KMO classified as ‘non-prospective’ for the commodity sought rather than the randomly
generated non-deposit training set. However, for the larger study area were a diversity of
deposit types is present, it is recommended to use the commodities and the deposit type as
selection criteria to strengthen the predictive accuracy of the model further.

As found in this study, MPM using RF can be used in early stages of an exploration
project when only public data are available. By analyzing and interpreting the response of
the target variable to a set of predictor variables, RF is very similar to other knowledge-
guided data-driven methods such as evidential belief and weights of evidence modeling.
RF can also impute missing values, both continuous and categorical data, particularly when
handling heterogeneous datasets, which is the case in this study. This yields an out-of-bag
imputation error estimate without the need of a test set or elaborate cross-validation. These
characteristics make RF a non-black-box exploration method, which is more suitable for
mineral prospectivity modeling than other currently used machine learning approaches.
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Appendix A

Table A1. Deposit locations from the mineral occurrences depository (MINFILE). The coordinates
are in Universal Transverse Mercator (UTM) coordinate system (NAD83/zone 9N).

MINFILE # NAME STATUS DEPOSIT TYPE UTM NORTH UTM EAST

104B 077 BRONSON SLOPE Developed Prospect High-sulfidation epithermal 6,282,211 371,642
104B 089 SNIP NORTH - EAST ZONE Prospect Massive sulphide Cu-Pb-Zn 6,286,850 370,775
104B 107 JOHNNY MOUNTAIN Past Producer Subaqueous hot spring Ag-Au 6,277,401 373,149
104B 113 INEL Developed Prospect Massive sulphide Cu-Zn 6,275,679 380,178
104B 116 TAMI (BLUE RIBBON) Prospect Alkalic porphyry Cu-Au 6,272,714 384,430
104B 138 KHYBER PASS Prospect Massive sulphide Cu-Zn 6,273,715 379,627
104B 204 WARATAH 6 Prospect Au pyrrhotite veins 6,283,926 378,489
104B 250 SNIP Past Producer Au pyrrhotite veins 6,282,486 370,764
104B 264 C3 (REG) Prospect Au pyrrhotite veins 6,280,600 370,900
104B 300 BRONSON Prospect Au pyrrhotite veins 6,281,374 373,763
104B 356 GORGE Prospect Vein 6,287,500 369,050
104B 357 GREGOR Prospect Unspecified 6,288,962 369,467
104B 537 MYSTERY Prospect Au pyrrhotite veins 6,281,200 387,150
104B 557 AK Prospect Subaqueous hot spring Ag-Au 6,276,200 380,500
104B 563 CE CONTACT Prospect Au pyrrhotite veins 6,280,800 373,000
104B 567 SMC Prospect Massive sulphide Cu-Pb-Zn 6,280,450 369,850
104B 571 CE Prospect Au pyrrhotite veins 6,280,829 373,529
104B 685 KHYBER WEST Prospect Unspecified 6,273,802 378,627

Table A2. Selected non-deposit location from the mineral occurrences depository (MINFILE). The co-
ordinates are in Universal Transverse Mercator (UTM) coordinate system (NAD83/zone 9N).

MINFILE # NAME STATUS DEPOSIT TYPE UTM NORTH UTM EAST

104B 005 CRAIG RIVER Showing Cu skarn 6,2761,77 366,697
104B 205 HANDEL Showing Polymetallic veins 6,281,905 376,693
104B 206 WOLVERINE Showing Polymetallic veins Ag-Pb-Zn 6,277,250 377,150
104B 256 WOLVERINE (INEL) Showing Cu skarn 6,277,063 383,766
104B 268 HANGOVER TRENCH Showing Polymetallic veins Ag-Pb-Zn 6,275,185 369738
104B 272 DAN 2 Showing Polymetallic veins Ag-Pb-Zn 6,271,824 375,475
104B 292 GIM (ZONE 1) Showing Polymetallic veins Ag-Pb-Zn 6,281,770 383,605
104B 305 MILL Showing Porphyry Cu-Mo-Au 6,272,879 363,417
104B 306 NORTH CREEK Showing Polymetallic veins Ag-Pb-Zn 6,275,031 368,709
104B 324 IAN 4 Showing Cu-Ag quartz veins 6,286,725 379,485
104B 326 CAM 9 Showing Cu skarn 6,279,635 391,709
104B 327 CAM SOUTH Showing Polymetallic veins Ag-Pb-Zn 6,279,579 392,696
104B 331 IAN 8 Showing Cu skarn 6,286,038 383,655
104B 362 KIRK MAGNETITE Showing Fe skarn 6,276,565 389,635
104B 368 ELMER Showing Fe skarn 6,275,780 391,286
104B 377 ROCK AND ROLL Developed Prospect Massive sulphide Cu-Zn 6,288,261 363,286
104B 416 IAN 6 SOUTH Showing Massive sulphide Cu-Pb-Zn 6,286,900 382,200
104B 500 KRL-FORREST Showing Vein 6,288,950 393,400
104B 536 ANDY Showing Pb-Zn skarn 6,278,300 385,825
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