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Preface to ”Battery Systems and Energy Storage

beyond 2020”

Currently, the transition from using the combustion engine to electrified vehicles is a matter

of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries

as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g.,

the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries

even more.

The cost of lithium ion batteries has become competitive in the last few years, and lithium

ion batteries are expected to dominate the battery market in the next decade. However, despite

remarkable progress, there is still a strong need for improvements in the performance of lithium ion

batteries. Further improvements are not only expected in the field of electrochemistry but can also

be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction

methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue

addresses the progress in battery and energy storage development by covering areas that have been

less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in

concordance with progress in new materials and pack design solutions.

Kai Peter Birke, Duygu Karabelli

Editors
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Abstract: The environment has gained significant importance in recent years, and companies in-
volved in several technology fields are moving in the direction of eco-friendly solutions. One of
the most discussed topics in the automotive field is lithium-ion battery packs for electric vehicles
and their battery thermal management systems (BTMSs). This work aims to show the most used
lithium-ion battery pack cooling methods and technologies with best working temperature ranges
together with the best performances. Different cooling methods are presented and discussed, with a
focus on the comparison between air-cooling systems and liquid-cooling systems. In this context, a
BTMS for cylindrical cells is presented, where the cells are arranged in staggered lines embedded in a
solid structure and cooled through forced convection within channels. The thermal behavior of this
BTMS is simulated by employing a computational fluid dynamics (CFD) approach. The effect of the
geometry of the BTMS on the cell temperature distribution is obtained. It is shown that the use of
materials with additives for the solid structure enhances the performance of the system, giving lower
temperatures to the cells. The system is tested with air-cooling and water-cooling, showing that
the best performances are obtained with water-cooling in terms of cell packing density and lowest
cell temperatures.

Keywords: lithium-ion cells; battery thermal management systems; CFD simulations; liquid cooling

1. Introduction

Driven by the need to lower the pollution at street level, the interest in electric vehicles
is growing increasingly. Lithium-ion cells are the most commonly used batteries in electric
vehicles (EVs) due to their high power density (255 Wh/kg for commercial products, and,
in the short term, cells with 270 Wh/kg are expected on the market), low self-discharge rate,
high recyclability, light weight and compact size, which is very helpful when space is lack-
ing. They also have a longer life cycle with respect to the other rechargeable batteries [1–3].
On the other hand, Li-ion cells show highly non-isotropic thermal properties due to the
different layers of the electrodes [4]. In addition, the automotive field necessity of having
compact battery packs leads to modules with small space among the cells and between the
strings. This yields high temperatures and non-uniform thermal distribution situations,
which make the battery efficiency worse and can cause them to degenerate in dangerous
and uncontrolled environments. For instance, thermal runaway is caused by successive
processes that can lead to fire and combustion [5]. Today, 18,650 Li-ion cells (with diameter
18 mm and length 65 mm) are among the most used batteries in the automotive field
because of their small size: as the cells contain a limited amount of energy, if a failure event
occurs, the effect is much less than that expected from a larger cell [6]. These cells were
introduced by Tesla more than ten years ago on the pioneer Roadster model, and now they
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are massively used in the 21,700 format on Tesla Model X and Model 3. Recent diffusion of
cylindrical cells in realizing large packs are mainly driven by the exploitation of simple inte-
gration technology, allowing the realization of modules containing between 50 and 100 cells
in parallel. Many efforts have been made to increase the battery efficiency. Research in this
area started with investigations about why Li-ion batteries should have represented the best
choice for EVs [7], then proceeded with a considerable number of simulations (for example,
Huang et al. used 3D simulations to study the convection in the spacing between the cells
and what their best arrangement is [8]). The final step was the validation of the simulations
(for instance, experiments about the effects of different arrangements and shapes of the
cells [9–11]). In the context of battery pack cooling management, it is necessary to take
into consideration several methods and systems to control the temperature of a battery
pack, maintaining it in a precise range. In this work, battery thermal management systems
(BTMSs) are considered. Many approaches are involved in various aspects of BTMSs: air
cooling, hydrogen cooling, helium cooling, ammonia cooling, liquid cooling, phase change
materials [12,13], and hybrid cooling, all used to reduce energy waste and to achieve the
battery best performances. Each method has its own pros and cons and is more suitable
for a precise application rather than another. The best operating temperature range for
Li-ion batteries is between 15 ◦C and 40 ◦C, as suggested by many recent studies [14]. If
the temperature rises above 50 ◦C, the charging efficiency and the longevity of batteries
decreases [15]. The purpose of a BTMS is to keep the cell temperature within the optimal
range while maintaining the temperature’s uniformity within the modules [16]; heating
is also essential in those rare situations when the battery temperature is lower than the
minimum acceptable temperature. At low temperatures, discharging of a charged Li-ion
battery is easier than charging of a discharged one [17], and the capacity of Li-ion batteries
can decrease up to 95% when the Energy Storage System (ESS) is operating at −10 ◦C [18].
Due to the exothermic nature of the chemical reactions inside the batteries, few studies
have been done about heating [19]. However, there are some promising studies about
internal self-heating strategies to overcome the poor performances at low temperatures [20]
and the reduction of battery life [21]. While studying the heat dissipation performances of a
battery pack, two main indexes are usually taken into account: the maximum temperature
increase (Tris,max) and the maximum temperature difference (Tdi f ,max). The maximum tem-
perature rising is the maximum difference value between the battery pack temperature and
the environmental temperature. The maximum temperature difference is the maximum
difference value recorded inside the battery pack. If Tris,max is too high, it means that the
environmental temperature is relatively low for the battery pack and that it is not possible
to remove the heat generated by the battery pack through the cooling system. If Tdi f ,max is
too high, it means that there is no uniform temperature distribution inside the battery pack.
An appropriate cooling system design is necessary to reduce both Tris,max and Tdi f ,max. It is
desirable to have the maximum temperature increase be less than 10 ◦C and the maximum
temperature difference be less than 5 ◦C [22]. Concerning air-cooling methods, ref. [23],
Zhou et al. [16] show the advantages of an air distribution pipe thermal manage system,
and Xu et al. [22] studied the optimization of the forced air cooling, testing the effects of
different airflow duct modes; indeed, Xie et al. [24] do so by modifying factors such as the
air inlet-angle and the outlet-angle. There are also studies that propose a multi-parameter
control strategy for air-based BTMSs [25] to monitor the state of health (SOH) of the battery
and energy consumption in function of the temperature fluctuations and the air mass-flow
rates. Many experiments have been carried out on not only to optimize the whole BTMS,
but also to analyze the thermal conditions inside the single battery modules improving
the temperature uniformity. Several methods have been explored, with analytical and
experimental tests, such as the installation of a baffle plate [26], different cell arrangement
structures [10], the spacing optimization between the battery cells [27], and the installation
of a secondary vent [28] in an air-cooled BTMS. Other examples are the addition of an
inlet plenum [29], special axial-flow air-cooling systems [30], nanofluid-based cooling tech-
niques with forced air-flow to remove the heat from the battery arrangement [31]. Among
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all the liquid cooling BTMSs, the cooling plates are those on which it has been written less
considering to cool the cylindrical 18650 lithium-ion batteries often used in the automotive
field. Several studies have been carried on about prismatic cells cooled by cooling plates,
about how this system can be designed [32], improved, and optimized [33], focusing on
which parameters more influence the optimum working point. Recently, some studies [34]
have shown that it makes sense to compare cylindrical cells to much larger prismatic ones.
This is first because the governing chemistry reactions inside both kinds of the batteries are
the same. Secondly, it has to be assumed that the experiments are performed with strict
temperature control, which means considering an extensive thermal mass test system with
exceptional temperature control sensors. Cooling plates were shown to be a good solution
in particular for those applications where high thermal conductivity and compact design
are required. This is why they are a common choice in the automotive field. An advanced
liquid cooling system can involve the use of heat pipes [35,36], leading to energy saving
in electric vehicles, with better BTMS performances and increasing heat flux loads [37].
In particular, recent studies have explored heat pipes used in innovative systems such as
inclined U-shaped flat micro heat pipes [38] and hybrid oscillating heat pipes (OHPs) with
an ethanol aqueous solutions of carbon nanotubes as working fluid [39]. Other innova-
tive studies have focused their attention on the thermal performance achievable using a
two-phase refrigerant BTMS, comparing it with an ordinary liquid cooled one [40]. The
thermal performances of liquid-based BTMSs coupled with heat-pump air-conditioning
systems (HPACSs) were investigated by Tang et al. [41] to predict the cooling capability
of the liquid system on a basis of a machine learning method. Hydrogen-based cooling
systems were realized by Alzareer et al. [42] to maximize the BTMS cooling efficiency in
hybrid fuel cell electric vehicles (HEVs) with prismatic battery packs. These systems are
also able to increase the driving range of these vehicles in which the hydrogen is used both
as coolant in aluminum cold plates and as fuel. Among the HEV BTMSs, Alipour et al. [43]
studied the cooling capability of a helium-based cooling system (suitable for EVs as well)
on pouch cells, comparing it with an ordinary air-based BTMS and optimizing its efficiency
in function of several factors such as the inlet flow rate (the most influential one), the flow
direction, and the inlet and outlet diameters. Ammonia is also considered as a refrigerant
to cool the future HEV batteries: Al-Zareer et al. [44] create an electrochemical thermal
model to study an innovative semi-immersive ammonia-based system for cylindrical cells.
The system exploits the ammonia boiling process that involves the parts of the batteries
immersed into the coolant, and then the natural convection process when the ammonia
vapor cools the part of the cells out from the ammonia pool. Recently, hybrid BTMSs that
combine natural air convection with liquid and thermoelectric cooling systems (TEC) have
been introduced [45], together with innovative cooling methods such as the adoption of
liquid immersive solutions by TESLA: these systems perform well both in hot and in cold
environments [46]. Finally, a panoramic view of several emergency strategies needed to
prevent the thermal runaway (TR) is given. The inception of TR is generally a consequence
of an internal short circuit (ISC) inside a single cell that is caused by either mechanical or
electrical abuse. It is important in that case to lower the damages or, in the worst cases, to
extinguish fire [47–49]. This paper aims to give an overview of the different approaches
for thermal management of lithium battery packs. In this context, a BTMS for cylindrical
cells is presented, where the cells are arranged in staggered lines and embedded in a solid
structure between wavy channels. A Computational Fluid Dynamics (CFD) approach is
presented to simulate the thermal behavior of battery cells and to optimize the distance
between the cells and the width of the channels with different materials used for the cells
support and with different cooling fluids. The arrangement shown in this work is novel,
both for the characteristics of the solid material in which the cells are embedded and for the
coupling between thermal conduction and convective cooling methods adopted. Moreover,
the CFD-based optimization approach to find the best performances of the BTMS is original
and shows interesting results for a cells arrangement typical for automotive and that can
be easily generalized. The temperature distribution on the cells is obtained with very high
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heat loads. The optimal coolant conditions that give the best thermal performances for the
arrangement of the cells are obtained. It is shown that the use of materials with additives
to increase the thermal conductivity enhances the heat overall heat transfer for this type
of BTMS and gives lower temperatures of the cells. The best performances are obtained
by using water instead of air, with small channel widths and with an optimal distance
between cells in the direction parallel to the flow.

2. A Survey of the Battery Thermal Management Systems

In this section, some aspects concerning battery cooling with a focus on innovative
systems are described. A comparison between some air-cooling technologies and liquid-
cooling systems is introduced.

2.1. Air Cooling—Prismatic Cells

One of the easiest ways to control the battery pack temperature is by utilizing air-
cooling systems. These can be realized with natural ventilation or with forced ventilation.
Several simulations and experimental tests are available in the literature, which evidence
the effect of different airflow duct modes [22] or important construction details such as
the air-inlet angle, the air-outlet angle, and the width of the airflow channel between
battery cells [16]. Many studies deal with the temperature distribution and streamlines
obtained in different arrangements of the air-flow for battery pack made with densely
packed prismatic cells.

Interesting results can be extrapolated from the research of Xu et al. [22]. In a parallel
flow arrangement, the air flows parallel to the battery cells and is expelled by the fans from
the air-outlets. The highest temperature areas are inside the battery near the air-outlet.
With this configuration, the heat dissipation performance requirements are not satisfied
with any of the environmental temperatures considered (Tenv,1 = 20 ◦C, Tenv,2 = 27 ◦C,
Tenv,3 = 40 ◦C).

In a cross-flow arrangement, the air flows perpendicularly to the battery cells and
the shorter air-flow paths improve the heat dissipation. The temperature peaks are lower,
showing that this configuration is better than a parallel-flow one in terms of heat dissipation.
Mixed approaches, such as adding double-passage or U-passage channels at the bottom of
the battery pack, can increase the heat transfer performances. Using the double-passage
channel, the temperature values are lower with respect to the previous tests but not
enough to satisfy the heat dissipation performance requirements for all the environmental
temperatures considered (only for 27 ◦C and 40 ◦C). In the last case of a bottom U-passage,
it clearly appears that the temperature field distribution is more uniform with respect to
the double passage. Using the U-passage, the temperatures are lower with respect to all
the previous cases, satisfying the heat dissipation performance requirements for all the
environmental temperatures considered (the value of Tris,max = 10.10 ◦C for Tenv = 20 ◦C is
sufficiently close to the specification). In Table 1, the values of Tris,max (A) and Tdi f ,max (B)
in the parallel flow test are compared with those recorded during the other tests in terms
of temperature decreasing.

With the U-passage, the heat dissipation requirements are satisfied for SOC = 70%
and SOC = 100%, but the results are better for the lowest SOC percentage: this means
that in case of insufficient heat dissipation condition, it could be helpful to work with
lower SOC values [22]. The heat dissipation requirements are satisfied for the charge and
discharge rates of 0.6C, 0.8C and 1C with the best results for the lowest of these values:
this means that, in the case of insufficient heat dissipation condition, it could be helpful to
work with lesser charge and discharge rates [22]. The angle between air-inlet and air-outlet
channels and the battery cells, as well as the air-flow channel width, are crucial for different
aspects. Xie et al. [24] focus their attention on these aspects of prismatic lithium-ion cells
arrangements. The environmental temperature for the experimental tests is set at 25 ◦C.
During the tests, the air-inlet angle and the air-outlet angle are changed on the basis of the
size of the inlet and outlet channels, respectively, while the layout of the air-flow channels is
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changed by the gap in the battery pack. Another important factor considered is the distance
between the cells [24]. By taking into account all these parameters, the lowest values of
Tris,max and Tdi f ,max are obtained for the cases of the air-inlet angle of 2.5◦ and air-outlet
angle of 2.5◦, with evenly-spaced air flow channel between battery cells. The values of
Tris,max and Tdi f ,max are dropped by 12.82% and 29.72%, respectively, by the optimization
approach [24].

Table 1. Temperature decreasing obtained moving from a parallel flow cooling method to a U-passage technology at
different environmental temperatures [22].

Environmental Temperature (◦C) 20 27 40

Parallel flow Maximum temperature rise (◦C) A20 A27 A40
Maximum temperature difference (◦C) B20 B27 B40

Cross-flow Maximum temperature rise (◦C) −2.25% −1.98% −1.50%
Maximum temperature difference (◦C) −7.91% −7.27% −5.75%

Double passage Maximum temperature rise (◦C) −36.80% −37.04% −37.55%
Maximum temperature difference (◦C) −63.83% −63.84% 63.87%

U-passage Maximum temperature rise (◦C) −38.38% −39.03% −38.97 %
Maximum temperature difference (◦C) −72.58% −73.03% −72.15%

Air Cooling—Cylindrical Cells

In this section, some air-cooling techniques tested on cylindrical-cell bricks are de-
scribed. Zhou et al. [16] take into account 18,650 Li-ion batteries, monitoring the tempera-
ture of every single cell with k-type thermocouples in three different points: the top, the
middle, and the bottom. The air distribution pipes have orifices arranged all along with the
axial direction of the pipes themselves. Three kinds of pipes are tested: the first one presents
three orifices with 1 mm diameter, the second one has four orifices with 15 mm diameter,
and the third pipe has five orifices with 2 mm diameter. The air enters into the pipes from
their inlets and flows out from the orifices. Considering a constant discharge rate process,
it is shown that the temperature increases from the negative pole to the positive one, and
this is explainable with a high battery cap internal resistance (high heating due to the
Joule’s effect). After this observation, four main factors are considered to optimize the air
distribution pipe system: the number and the diameter of the orifices, the air inlet pressure,
and the discharge rate. For all the diameters of the orifices, the temperature obtained in
the middle of the cells is lower than that on the top and the bottom, and, in particular, it
decreases as the orifice diameter increases. This is the effect of an enhanced heat transfer
area between the battery surface and the airflow. Choosing pipes with bigger orifices leads
to an increase in the forced cooling air inlet area. At the same time, the power consumption
increases but it is not a significant effect. The effect of inlet pressure is considered. Higher
inlet pressure values lead to higher inlet airflow rates and, consequentially, by increasing
the inlet pressure, Tdi f ,max decreases, while the power consumption increases [16]. As
shown by the experiments of Xu et al. [22] on prismatic cells, the discharge rate affects
the temperature. This is because as the heat dissipation rate remains the same, the heat
generation rate changes. There is a degree of discharge (DOD) value for each discharge rate
from which the temperature starts to drop, but, at the same time, the higher the discharge
rate is, the higher the maximum temperature of the battery: the cooling rate declines with
the increase of the discharge rate. The maximum temperature difference also increases
with the discharge rate. The effect of baffle installation is important. Jiaqiang et al. [26]
study the influence of the air-flow inlet and outlet positions and the benefits of a baffle in
terms of heat dissipation. The tested module is made of 18,650 Li-ion batteries. The battery
cells are 2 mm spaced from the others, 5 mm from the case bottom, and 20 mm from the
case top. The inlet airflow speed is 2 m/s. Figure 1 shows the temperature distribution
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obtained within the brick under different forced ventilation conditions: lateral inlet and
outlet, same side, lateral inlet and outlet, opposite side, and a baffle installation.

Figure 1. Temperature distribution obtained under different forced-convection conditions obtained in [26]. From left to
right: lateral inlet and outlet, same side, lateral inlet and outlet, opposite side, and a baffle installation.

In the first condition, the cells near the air inlet have the lower temperatures, but the
highest peaks are obtained on the right, where the inlet air hardly flows through the cells.
Tris,max and Tdi f ,max are still unacceptable. In the second condition, with the inlet and outlet
air intakes in these positions, the temperature distribution remains the same, and the higher
temperatures obtained before decrease but not enough to consider the values of Tris,max
and Tdi f ,max acceptable. In the third condition, it is possible to narrow and concentrate the
airflow with the installation of a simple and cheaper baffle: the result is an improved airflow
cooling ability. The temperature distribution is the same as the previous cases without
the baffle with optimal working temperature range with Tris,max = 38.9 ◦C. Problems of
temperature uniformity still have to be fixed to let the battery work in the optimum
temperature range and, at the same time, to satisfy the requirement of Tdi f ,max < 5 ◦C.

2.2. Liquid Cooling

The liquid cooling methods show promising performances thanks to the high thermal
conductivity of refrigerant fluids. Indeed, the high weight (including the liquid coolant
and the sealing elements to avoid the fluid leakage) and the high manufacturing costs for
the fluid coolant circulation system represent some penalties [16], but when high cooling
performances are required, air cooling is not sufficient. Here, two leading liquid cooling
technologies are presented: cooling plates and heat pipes.

2.2.1. Cooling Plate Technology

A typical cooling plate is made of a metal plate on which flow paths are machined. The
cooling liquid flows along the flow paths absorbing the cells’ heat waste and dissipating
it through the plate (by means of conduction and convection heat transfer). The factors
that influence the efficiency of this technology are the shape and the size of the flow paths,
the available contact surface between the coolant and the flow path walls, the type of
coolant, the flow rate, and the material of the plates. Cooling plates can be divided into two
categories: the ice plates, which show the best performances and are placed between the
battery cells, and the cold plates, which have lower performances but are easier to install
because they are placed as a floor under the cells. Ice plates are often preferred in BEVs for
their high efficiency, but the tight spaces represent a hard challenge. Darcovich et al. [50]
compare the two technologies showing what happens to the maximum cell temperature if
we change the cell case material and the coolant. They also take into account two different
drive cycles: the US06, an urban-like driving-cycle, and the HWY, for cars which drive along
the highways. They also obtain the maximum cell temperature and the battery lifetime as
a function of a range of values of SOH. They obtain better temperature uniformity with
ice plates than with cold plates. The higher the value of the heat transfer coefficient is, the
lower the maximum temperature of the battery is for any kind of cell case materials and
driving cycles. This means a longer battery lifetime of about 2 years if we consider US06
driving-cycles, 1 year for HWY driving-cycles. Studies about new technologies suitable to
improve cold plates’ cooling systems have been done on new kinds of channels such as
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leaf-like channels [51]. The design project provides four collection channels arranged along
diagonal lines where the decrease in the temperature gradient is required. After many
simulations on the channels analyzing the influence of width and length ratio, as well as
channel thickness, and also investigating the optimum inlet mass-flow rate, optimal values
of heat dissipation and power consumption have been found. Leaf-like channels can be
helpful in the study of fractal networks for cold plates [51].

2.2.2. Heat Pipes

Heat pipes (HP) are passive capillary-driven two-phases systems that represent an-
other solution to manage the temperature of electric vehicles battery packs. The two-phase
system means that the heat transfer occurs due to a phase change and, in this case, due
to the liquid–vapor one. A heat-pipe based cooling system is made of three main parts:
the evaporator (heat source), the adiabatic section (which links the first and the third parts
and along which the heat transport happens), and the condenser (heat sink). Evaporation
and condensation rule the thermodynamic cycle: the coolant within the pipes (usually
made of copper) absorbs the heat of the battery cells, which causes the evaporation of the
cooling liquid itself, then the fluid moves along the pipes, towards the condenser, with an
efficient heat transfer thanks to the latent heat of vaporization. Once the vapor reaches the
condenser, another phase change occurs, and it turns to liquid again and heat is dissipated.
Simulations [35] have shown that BTM systems based on heat pipes provide energy savings
in electric vehicles, keeping the maximum temperature of the battery under 50 ◦C, the
temperature difference under 5 ◦C, and a good temperature distribution. The possibility
to curve and bend the pipes makes them suitable in almost any battery design, realizing
unique and efficient cooling systems. Figure 2 shows a scheme of a heat-pipe-based BTMS,
equipped with a further U-pipe system (remote heat transfer heat pipe system, RHE-HP)
which helps in transporting heat away.

Figure 2. Schene of a heat pipe-based BTMS assembly equipped with a RHE-HP system, as studied
in [52].

The interface plate connects the heat pipe cooling plates system (HPCP) and the RHE-
HP one. Several types of research have been carried on studying the influence of many
factors on the efficiency of HP systems. For their experiments, Putra et al. [37] use different
coolants and modify the heat flux load studying the maximum temperature and the best
system performance. The coolants chosen are distilled water, alcohol 96%, and acetone 95%
with a filling ratio of 60%. Looking at the evaporator temperatures during the transient
case, it is shown that they increase quickly followed by a drop. This is due to super-heating,
which occurs when the boiling point is reached. As the heat flux load increases, the duration
of the transient decreases. Another factor that influences the transient is the capacitance of
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the system, which is a function of the mass of the system itself. For all the evaporator and
condenser temperatures, the shortest transients are obtained with acetone and alcohol as
coolants. During the steady-state case, the same temperature distribution can be seen for
distilled water and alcohol, except when the highest heat flux load is reached: in that case,
alcohol and acetone have an equal temperature distribution. The evaporator temperature
is always under 50 ◦C for all the heat flux loads and almost all the coolants. The lowest
temperature difference between the evaporator and the condenser is obtained with acetone
in all the experiments carried out. Another consideration is that as the heat flux load
increases, at the beginning, it is possible to see the alcohol evaporator temperature close
to the distilled water one and then closer to the acetone one. This is because a rise in heat
flux load is followed by a pressure increase, which is the cause of higher temperatures.
Depending on the coolant, the evaporator temperature will be different. It has been found
that, for the highest heat flux load, the acetone condenser temperature is very different
from the other coolant ones: this is due to super-heating in the evaporator and for the
vapor infiltration with a consequent increasing of the liquid temperature and much more
heat transported towards the condenser. However, the lowest temperature difference is
obtained with acetone for the most moderate heat flux load. The best performance is
reached using acetone as a coolant and with the highest heat flux load. Wang et al. [53]
studied cylindrical cells’ battery performances, taking into account the effect of several
structural parameters such as the spacing, the thickness of the conductive elements, and
the angle between the battery and the conductive elements. Simulations show that the
height of the conductive element is the parameter that most influences the temperature
distribution. Moreover, the angle is a second influencing factor, while the thickness of the
conductive element and the spacing have a minimum effect.

2.2.3. Immersive Solutions

This method helps to make the performance of the heat pipes system more efficient.
Adopted by Tesla, it puts about 25% of the cell lateral surface in direct contact with the
cold plate, with the cooling liquid circulating inside. The liquid circulates in metal thin
pipes embedded in an extruded compound with the function of the thermal interface layer
and electric insulation between the cells and the cooling medium. The remaining internal
volume among cells is filled by a thermal interface that is constituted by intumescent gel,
which is not electrically conductive. This material coats the sidewall of the cell casing,
which is not in contact with the cold plate, and the space at both cell sides between the
terminal and the metal connection plate.

2.3. Innovative Cooling Strategies

Among the different cooling systems, the most common ones are the air-based and
the liquid-based BTMSs. Innovative studies brought to new promising cooling systems
(carbon-fiber-based phase change materials, hybrid cooling systems) which, however, are
not yet as widespread due to high costs.

Phase Change Materials

Phase change materials (PCMs) are materials that change their physical state, from
solid to liquid and vice versa, to store and release heat. A solid-phase PCM starts absorbing
heat from the battery and, at a certain temperature (it depends on the specific PCM), the
melting begins. As the PCM absorbs heat, the battery is maintained to a target temperature.
When the PCM is cooled by the environmental changes, the phase changes to solid again,
releasing energy in the form of latent heat. There are around 200 different PCMs that can
target temperatures between −50 ◦C and 150 ◦C [54]. For electric vehicle BTMSs, it should
be necessary to test PCMs in a smaller temperature range, but the starting costs are still
high. This is one of the reasons why PCMs are not as common in BTMSs. On the other hand,
PCMs are shown to be one of the most efficient coolants thanks to their high heat storage
capacity. The operating costs are quite low, and the retention of properties in sequential
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cycles is a very appreciable characteristic [55]. There are several kinds of PCMs, different
in their composition and for the temperatures at which they change their phase. The
most used are water-based PCMs, salt hydrates, paraffin, or innovative and eco-friendly
plant-based PCMs. There are also innovative methods to improve PCMs’ characteristics
such as loading them with composite materials and metal foams. Samimi et al. studied
innovative PCM loaded with carbon fiber [56] to increase the PCMs’ thermal diffusivity
(which is usually low) and, consequently, improving the temperature uniformity in the
battery cells. Carbon-based materials have been chosen as proper conductive fillers because
of their excellent thermal and electrical properties, their chemical stability, and their lower
density than metals. For the experiments, different cooling media (air, wax as unloaded
PCM, carbon-fiber-loaded PCM) have been compared during the discharge of a lithium-ion
battery, provide evidence for the results of the research. It is shown that the higher the
percentage of carbon fiber loading is, the lower the resulting cell temperature is. Then,
PCMs not only act like heat sinks but, if loaded with carbon fiber, also lead to a better
temperature distribution in the cells thanks to their improved thermal conductivity.

2.4. Hybrid Cooling Systems

Some hybrid BTMSs combine natural air convection with liquid and thermoelectric
cooling systems [45]. With a thermoelectric cooler (TEC), all the processes concern trans-
formations from electricity to heat and vice versa. These systems can work like coolers as
well as like heaters (useful for those technologies that have to work in the extremely low-
temperature environment). Lyu et al. compare the temperature reached by a cylindrical
lithium-ion cell if it is cooled with air, with liquid, and finally with a hybrid BTMS, which
combines air and liquid cooling methods and a TEC system. Results show that during
the test with air-cooling, the cell temperature increases with the voltage, and the higher
is it, the faster the temperature rising. With the liquid-cooling, it is shown that the cell
temperature and the water temperature rise almost together and with a more moderate
trend. Lower cell temperatures can be obtained using the hybrid TEC system.

2.5. Fire-Prevention Strategies

The incredible spread of lithium-ion battery packs seen in recent years is easily un-
derstandable if we think about their specific capacity, energy density, and power density.
All these characteristics are higher in Li-ion batteries rather than in the outdated batteries,
but this new technology leads to some issues. One of the hardest challenges in the use of
lithium-ion batteries is to find valid methods to prevent or face the so-called thermal run-
away. It is a dangerous phenomenon during which the temperature rises and exothermic
reactions are triggered, and these could lead to fires or explosions. There may be several
causes that generate the thermal runaway: short circuits, battery overcharging, and design
and manufacturing defects [49].

2.5.1. Methods to Prevent Thermal Runaway

There are several ways of acting against the thermal runaway and these can be
divided into three categories, taking into account the effects on the process. The first
category regards preventive measures, such as the addition of flame retardants. The second
category involves fail-safe measures that stop or decrease the damage caused by thermal
runaway, such as separators or cell venting techniques. The third category concerns actions
for extinguishing fires once the thermal runaway has occurred [49]. There is another
classification about the way to prevent thermal runaway or reduce its damages. Three main
ways of acting corresponding to three levels of protection have been identified: cell-to-cell,
module-to-module, and battery pack level.

• Cell-to-cell. This is the highest level of protection using engineered materials be-
tween every single cell. Obviously, if we consider space constraints, this represents
a challenge but the advantages are relevant: in case of thermal runaway, the ma-
terial surrounding the cells absorbs heat and minimize the propagation of thermal
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effects to the adjacent cells [47]. Thanks to their heat-absorbing nature, phase-change
materials (PCMs) are often used in cell-to-cell protection. Moreover, if they change
phase from liquid to gas, they also bring with them the cell gases out from the battery
modules. The shape of the cells has to be taken into account because it influences
the PCM that it is possible to use. For cylindrical cells, the PCM can be solid; it is
not the same for pouch batteries that need liquid phase material as they expand and
contract continuously.

• Module-to-module. This kind of protection follows the same philosophy of the cell-
to-cell one, but it separates the modules one from the other. This is a lower level
of protection with respect to the previous one but it is lighter and easily fittable on
several kinds of batteries.

• Battery pack. This represents the lowest level of protection because it does not work
against the heat propagation between the cells or between the modules, but it only
gives more time to the car occupants to put themselves in safe.

2.5.2. Emergency Spray Cooling

There are some emergency situations during which rapid battery pack cooling is
required. With a common BTMS, it is usually hard to deal with these events with the right
timing. An efficient solution for these issues is adding a supplemental refrigerant spray
cooling system [48], not only useful to let the temperature drop fast but also to suppress
oxygen, one of the possible causes of the exothermic reaction. When the thermal sensors
detect an incoming thermal runaway, the refrigerant is sprayed inside the battery box, and
it gasifies due to the high temperature strengthening the heat convection. In this way, a
rapid temperature decrease occurs and the generated refrigerant gasses push the oxygen
out of the box. Vents positioned in the right places can also contribute to the oxygen flow
out. Several tests have been carried on about different spray modes: continuous, fixed-
interval intermittent, and non-fixed-interval intermittent mode. With the continuous mode,
the result is the most efficient cooling method and the maximum value of temperature
difference uniformity. On the other hand, oxygen suppression is not better than the one
obtained with the intermittent modes. With intermittent modes, the higher is the frequency
of the spray, the better is the efficiency of the cooling. Concerning the temperature differ-
ence uniformity, the non-fixed-interval intermittent mode is less influenced by the spray
frequency than the fixed-interval intermittent one. Another advantage of the intermittent
modes is that using them it is easier to maintain the low-oxygen status.

3. CFD Analysis of a Hybrid Solution

The battery arrangement studied in this section is a hybrid solution with staggered
cylindrical cells embedded in solid support and cooled by a fluid that flows in wavy
channels. This study is part of a deep investigation of the performances of battery packs
conducted by our research group in the automotive field, with dedicated experimental
campaigns in which the theoretical results shown in this work are deployed and validated
in the laboratory. The novelty of this solution is the strict coupling of solid plastic matrix
and channels for liquid cooling [57]. The geometry of a portion of the hybrid solution is
shown in Figure 3.

In the figure, the gray part is the solid plastic support with the function to fix the
cells, and the blue zones are the wavy channels where the coolant flows. This study aims
to optimize the distance p between two cells and the width c of the channels. Twelve
combinations of p and c have been chosen for the optimization, shown in Table 2.
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Figure 3. Section of a portion of the battery arrangement (left) and a zoomed-in image of the sketch (right).

Table 2. Parameters chosen for the optimization of the parameters p and c.

Geometry Number p (mm) c (mm)

1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 3

10 1 5
11 2 5
12 3 5

A representative part of the battery pack has been chosen for the simulations, as
shown in Figure 4, with two lines of cells cut in their symmetry plane, with the channel
between the two lines.

Figure 4. Fundamental unit analyzed in the simulations.

The real geometry of the battery is obtained by repeating periodically this part in the
direction perpendicular to the flow. The number of cells in the direction parallel to the
coolant flow was varied from 8 to 16 to show the linear behavior of the cell temperature as a
function of the distance from the coolant inlet. In the present paper, the cells have a format
21,700, but the approach can be easily up-scaled to cells with a different format. The Li-ion
cells are considered as made by homogeneous material with density 2680 kg/m3, thermal
conductivity 3.4 W/(m K), and heat capacity 1280 J/(kg K). Two materials are compared
for the cell support, a common plastic with thermal conductivity k1 = 0.28 W/(m K) and
density 1380 kg/m3 (here called “plastic 1”), and a conductive plastic with additives with
thermal conductivity k2 = 1 W/(m K) and density 1450 kg/m3 (here called “plastic 2”).
The two materials have specific heat 1100 J/(kg K). These values refer to plastic material
that are used in our laboratory to realize the support for the cell in the battery pack. The
CFD code STAR-CCM+ has been employed to solve the steady-state Reynolds-averaged
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Navier–Stokes (RANS) equations with realizable k-ε turbulence model. Bidimensional
meshes with polygonal elements have been created for each configuration, as shown in
Figure 5.

Figure 5. Mesh of a portion of the battery arrangement (top) and zoom of the mesh refinement and prism layer (bottom).

A base size of 0.8 mm and a surface grow rate of 1.3 have been set for each mesh.
Once the target surface size is defined, a mesh refinement is necessary to concentrate
spacial resolution in the fluid flow zone. The mesh in the fluid zone mesh has a finer
resolution with a base size of 0.5 mm in order to get at least 10 elements along the channel
height. In addition, a boundary layer has been modeled in the fluid zone with five layers
with a total thickness of 33% of the base size, as shown in Figure 5. The final mesh has
14,939 cells. The studied cases are steady-state problems for incompressible flows, with
conjugate heat transfer. The equations that describe this problem are the incompressible
Navier–Stokes equations, together with the energy conduction for the solid region and
convection equations for the fluid region. The continuity equation, together with the
momentum balance equation, were solved for the liquid phase:
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The energy equation in temperature formulation has been solved for the flow region:
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where α = k
ρc is the fluid thermal diffusivity and Ψ = νφ is called the Dissipation Function

and is defined as νφ = Dijτij. The governing equation for the solid is

k
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i
= 0 (3)

where k is the fluid thermal conductivity and c is the specific heat. The temperature at
the interface between the solid and liquid region is equal, while the heat flux entering
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one region at one side of the interface is equal to the flux leaving the other region on the
other side of the interface. A heat source is defined at the center of each cell so that the
temperature of the system rises according to the governing equations and the materials’
properties. Contact interface conditions are applied at interfaces between solid and fluid
regions. Additionally, a thermal contact resistance of 0.001921 W/m2K is considered
between the plastic support and the cells for mechanical backlash. In all the cases, the
inlet fluid has a temperature of 20 ◦C. The cases of air-cooling and water-cooling have
been considered in order to evidence the main strengths and challenges related to the
two approaches. Different cooling-fluid velocity ranges have been considered in the two
cases in order to have similar pressure drop ranges along the channels. A steady thermal
power Q = 4 W has been assigned to each cell, because these values were measured in our
laboratory for some extreme automotive regimes [57].

3.1. Air-Cooling

In the first case the cooling fluid is air. The inlet velocities considered in this case
are v = 13.9 m/s, v = 27.8 m/s, and v = 38.9 m/s, which correspond to the Reynolds
number is in the range (900–13,000). The characteristic length for the Reynolds number is
the channel width c. The maximum temperature of the cells obtained for the case of plastic
1 with air-cooling are summarized in Figure 6.

Figure 6. Maximum temperature of the cells obtained for the case of plastic 1 and air as a cooling fluid. Inlet velocities are
v = 13.9 m/s (grey), v = 27.8 m/s (orange), and v = 38.9 m/s (blue).

The figure shows that the maximum temperature of the cells decreases as the air
velocity increases. Moreover, the maximum temperature of the cells decreases as the
channel width c increases, while its dependence on the axial distance between the cells
is weak. The best geometry is n. 12, with c = 5 mm and p = 3 mm. These results can be
compared with the maximum temperatures on the cells obtained for the case with plastic 2,
as shown in Figure 7.

Figures 6 and 7 show similar trends, but the values of the maximum temperatures
obtained with plastic 2 are about 10 ◦C lower than those obtained with plastic 1. The
best geometry with air-cooling is again the n. 12 for low velocities (v = 13.9 m/s or
v = 27.8 m/s), while for high velocities (v = 38.9 m/s) the geometry with c = 3 mm and
p = 2 mm is the one which gives the lowest maximum temperature of the cells. The
temperature distribution on the cells and in the channel, obtained for the geometry n. 12, is
shown by Figure 8 for the case of plastic 1.
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Figure 7. Maximum temperature of the cells obtained for the case of plastic 2 and air as a cooling fluid. Inlet velocities are
v = 13.9 m/s (grey), v = 27.8 m/s (orange), and v = 38.9 m/s (blue).

Figure 8. Temperature of the cells obtained for the case of geometry n. 12 and air as cooling fluid. Inlet velocities are
v = 13.9 m/s (top), v = 27.8 m/s (middle), and v = 38.9 m/s (bottom).

The figure shows that the maximum temperature difference between the first and the
last cell is 9 ◦C for the case with v = 13.9 m/s, while it is 6 ◦C for the case with v = 27.8 m/s
and 5 ◦C for the case with v = 38.9 m/s. The number of cells along the direction of the flow
has been varied from 8 to 16 to show that the cell temperature is a linear function of the
cell number. Figure 9 shows the cell temperature as a function of the cell number obtained
for geometry n. 12.
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Figure 9. Temperature of the cells as a function of the cell number, obtained for the case of geometry
n. 12, and air as cooling fluid. Inlet velocities are v = 13.9 m/s (blue line), v = 27.8 m/s (red line),
and v = 38.9 m/s (grey line).

The slope of the central part of the curves shown in Figure 9 is a crucial parameter for
the battery design, which has to be minimized to find the optimal parameters. For the case
of air-cooling, the results of the simulations can be summarized as follows:

• The maximum temperature of the cells decreases weakly as the axial distance between
the cells, and it strongly decreases with the channel width,

• The temperature of the cells linearly increases with the number of the cells in the direc-
tion of the flow, and the trend is a function of the air-flow velocity within the channels,

• By changing the solid material in which the cells are embedded, one obtains similar
trends with lower absolute values of the temperature distribution as the thermal
conductivity increases.

3.2. Water-Cooling

In the second case the cooling fluid is water. The inlet velocities considered in this
case are v = 0.1 m/s and v = 1 m/s; i.e., the Reynolds number is in the range (100 ÷ 6000).
The characteristic length in the Reynolds number is the channel width c. The results for the
case of plastic 1 with water cooling are summarized in Figure 10.

The figure shows that the maximum temperature of the cells increases as the channel
width c increases and decreases as the axial distance p between the cells increases. The best
geometry is n. 7, with p = 3 mm and c = 1 mm. These results can be compared with the
results obtained with plastic 2 with the same geometry, as summarized in Figure 11.

The Figures 10 and 11 show similar trends but the values of the maximum temperature
are about 6–7 ◦C lower with the plastic 2. The best geometry with water cooling is the
n. 7, i.e., the one with the smallest channel. The temperature difference on the cells for the
geometry n. 7 is shown by Figure 12 for the case of plastic 1.
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Figure 10. Maximum temperature of the cells obtained for the case of plastic 1 and water as a cooling fluid. Inlet velocities
are v = 0.1 m/s (blue) and v = 1 m/s (orange).

Figure 11. Maximum temperature of the cells obtained for the case of plastic 2 and water as a cooling fluid. Inlet velocities
are v = 0.1 m/s (blue) and v = 1 m/s (orange).

The figure shows that the maximum temperature difference between the first and the
last cell is 4 ◦C for the case with v = 0.1 m/s, and it is 2 ◦C for the case with v = 1 m/s.
The number of cells along the direction of the flow has been varied from 8 to 16 to show
that the cell temperature is a linear function of the cell number. Figure 13 shows the cell
temperature as a function of the cell number obtained for a channel width c = 1 mm. The
inlet velocity is v = 0.1 m/s.

The slope of the central part of the curves shown in Figure 13 is a crucial parameter
for the battery design, which has to be minimized to find the optimal parameters. For the
case of water-cooling, the results of the simulations can be summarized as follows:

• The maximum temperature of the cells decreases as the axial distance between the
cells, and it increases with the channel width;

• The temperature of the cells linearly increases with the number of the cells in the
direction of the flow, and the trend is a function of the water-flow velocity within the
channels and of the axial distance between the cells;
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• By changing the solid material in which the cells are embedded, one obtain similar
trends with lower absolute values of the temperature distribution as the thermal
conductivity increases.

Figure 12. Temperature of the cells obtained for the case of geometry n. 7 and water as cooling fluid. Inlet velocities are
v = 0.1 m/s (top) and v = 1 m/s (bottom).

Figure 13. Temperature of the cells as a function of the cell number, obtained for the case of channel
width c = 1 mm and water as cooling fluid. The distances between the cells are p = 1 mm (blue line),
p = 2 mm (red line) and p = 3 mm (grey line).

4. Conclusions

A survey of the existent thermal management systems for lithium batteries has been
presented, showing, in particular, some air-cooling and liquid-cooling approaches. The
benefits resulting with the installation of a baffle plate and the importance of the design of
the cell arrangements’ structures have been shown. In this context, a hybrid system that
combines heat conduction between cells in the longitudinal direction and forced convection
in channels between the cells lines is presented. This approach is studied numerically
using a CFD approach. It is shown that a combination between cooling fluid, solid material
that connects the cells, and distances between the cells leads to the determination of the
optimal thermal management arrangement. This means that the lowest temperature of
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the cells and the lowest temperature differences within the battery are obtained by this
methodology. The best dimensions of the channels with air-cooling and water-cooling are
discussed, showing that with air-cooling the best choice is to increase the width of the
channel, while with water-cooling, the best choice is to reduce it. A linear temperature
increase in the cells along the direction of the flow is found, and the dependence on the
solid matrix thermal conductivity is found. These results show that a multi-parameter
optimization approach gives the best arrangement in terms of number of cells and their
packing density, as a function of the thermal characteristics of the solid matrix where the
cells are embedded.
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Abstract: Tracking the cell temperature is critical for battery safety and cell durability. It is not
feasible to equip every cell with a temperature sensor in large battery systems such as those in electric
vehicles. Apart from this, temperature sensors are usually mounted on the cell surface and do not
detect the core temperature, which can mean detecting an offset due to the temperature gradient.
Many sensorless methods require great computational effort for solving partial differential equations
or require error-prone parameterization. This paper presents a sensorless temperature estimation
method for lithium ion cells using data from electrochemical impedance spectroscopy in combination
with artificial neural networks (ANNs). By training an ANN with data of 28 cells and estimating
the cell temperatures of eight more cells of the same cell type, the neural network (a simple feed
forward ANN with only one hidden layer) was able to achieve an estimation accuracy of ΔT = 1 K
(10 ◦C < T < 60 ◦C) with low computational effort. The temperature estimations were investigated
for different cell types at various states of charge (SoCs) with different superimposed direct currents.
Our method is easy to use and can be completely automated, since there is no significant offset
in monitoring temperature. In addition, the prospect of using the above mentioned approach to
estimate additional battery states such as SoC and state of health (SoH) is discussed.

Keywords: lithium-ion batteries; temperature estimation; sensorless temperature measurement;
artificial intelligence; artificial neural network

1. Introduction

The performance of lithium ion batteries (LIBs) is strongly dependent on the cell
temperature, particularly with regard to battery aging and safety issues. With low tem-
peratures there is a risk of lithium plating due to reduced reaction kinetics, which results
in decreased lithium availability. However, operating LIBs at a high temperature can
cause a rise in undesirable side reactions that cause rapid degradation, including capacity
and power loss [1]. Furthermore, there is a risk of material decomposition which can
trigger a so-called thermal runaway and may lead to self-ignition and even an explosion [2].
High temperature issues are caused by cell-internal heat generation, and low temperature
operation is generated due to environmental temperatures.

There are various temperature indication methods in existence. Raijmakers et al.
provided a broad overview on various temperature indication methods for LIBs [3]. The
most common approach uses a conventional temperature sensor, such as a thermocouple
or thermistor, placed on the housing of the cell. However, the core temperature varies
widely from the surface temperature in cases of heavy loading, and the temperature rise
can only be detected with a time-shift or requires extensive thermal models [4–6]. Moreover,
the accuracy varies with thermal contact and the position of the temperature sensor. In
addition, in most cases not every cell is equipped with a sensor, and therefore the pack
design needs to be considered to detect feasible hot spots [7]. Thus, a thermal runaway
can only be detected stochastically [2]. By placing temperature sensors internally, these
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problems can be avoided. This might lead to an increase in costs, more complexity for
manufacturers and possible negative effects in terms of battery life [1,8].

The impedance based methods have gained substantial interest because of their
characteristic of measuring the average internal temperature without using internal or
external hardware [9]. Therefore, the method is also known as sensorless temperature
measurement. Figure 1 clarifies the temperature’s strong dependency on the battery’s
characteristic impedance response. Additionally, with increased temperature, a significant
reduction in impedance response can be observed. Such measurements were conducted
by the authors. EIS measurements were performed on Samsung INR18650-15L cells at
different temperatures. Details about the experimental process are described in Section 2.1.
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Figure 1. Nyquist plot for 3 Samsung INR18650-15L1 cells at different temperatures from 0 to 60 ◦C.

The impedance can also be detected in other battery states, such as the state of health
with respect to nominal capacity (C/CN, SoHC) and the state of charge (SoC); therefore,
those other states can be crucial input variables for battery management systems [3,10].
In Figure 2 the progression of the impedance for different cycles and three different cells
are presented, and it points out the continuous increase in impedance with over the life-
cycle. Details about the experimental process are described in Section 2.1. However, it is
important to distinguish the various influence factors from each other and find the optimal
basis for predictions [11–14].

Srinivasan et al. were the first to find the relation between impedance at a specific
frequency and the temperature—more precisely, the phase shift at a frequency that is
associated with the solid electrolyte interface [12]. Contrarily, Schmidt et al. made use
of the real part of the impedance measurement at higher frequencies, because the time
constant has a significantly lower level of correlation with the SoC, which enables improved
temperature estimation at unknown SoCs [11]. Similarly, Richardson et al. analyzed the
influence of internal thermal gradients on the impedance. It can be shown that this
technique estimates the volume-average temperature and is therefore able to detect internal
hotspots without any time delays [8].
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Most publications in this field either show a correlation between a measurable value
(e.g., impedance) and the state of interest (e.g., SoC or temperature), or present the state
estimation results for a single cell. The state estimation of a number of cells of the same
cell type is more complicated due to the existence of variations among individual cells. In
this case it is crucial to select the required input parameters. Several studies have raised
concerns regarding the question of finding the optimum input variable for determining
the temperature. Beelen et al. compared some of these approaches and performed a
sensitivity analysis to optimize the prediction accuracy [15]. In the case of an unknown
SoC, the achieved average bias was ±0.4 K with an average standard deviation of ±0.7 K.
The study highlights the importance of selecting the appropriate input parameters for
temperature determination.

This study investigates an approach using ANNs, which are promising for handling
multidimensional feature problems. The procedure can be automated and can be easily
transferred to other cell chemistries. There are only a few studies available which present
data based temperature estimation methods using artificial neural networks. Feng et al.
combined the advantages of physical models with artificial neural networks to enhance
the performance for estimating the SoC and temperature [16]. Hasan et al. estimated cell
temperature based on a nonlinear, autoregressive exogenous artificial neural network and
time series data, namely, current and ambient temperature for a battery container [17].
However, there are a number of studies that present ANN based methods for estimating
the SoC and SoH [18–21]. Khumprom et al. confirmed ANNs’ ability to approximate a
nonlinear system by comparing a deep ANN against other machine learning algorithms
for SoH prediction; the former could either match or outweigh the other algorithms’ per-
formances [22]. Furthermore, some researchers have used impedance data in combination
with ANNs. Messing et al. used impedance data for equivalent circuit parameterization
and input data for the ANN [23]. However most approaches use methods which require a
lot of computational effort due to the need for solving partial differential equations and the
fitting of physical models or time series.

For this study, we chose an approach using impedance data from directly measurable
indicators (voltage, current, time) as input data and linking impedance based temperature
estimation with ANNs. The implied advantage is that error-prone parameterization may
be dispensed with. Since it is necessary to monitor the voltage of a lithium ion cell
constantly, it should be possible to perform a four-point measurement on each cell by
using an AC current source in the battery system to create the EIS spectra. Our main focus
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lies in demonstrating the technical feasibility of this concept. In contrast to many other
publications, the state estimation was not performed for a single cell but for a number
of cells. We show that it is possible to train an ANN with data from a number of cells
to estimate the temperatures of other cells of the same cell type. An advantage of the
EIS-ANN method is that once the ANN is trained, the temperature estimation is completed
within milliseconds since there is no need to solve partial differential equations. In addition,
a perspective is given on the possibility of utilizing this method of impedance based state
estimation using ANNs to estimate the SoC and the SoHC.

In Section 2, we describe the data acquisition and the architecture of the ANN. In
Section 3 we present the results of the temperature, SoC and SoHC estimations and discuss
the limitations of the ANN method.

2. Materials and Methods

Lithium ion cells were set to well defined states, where SoHC, SoC and temperature
parameters were varied. For each state, an electrochemical impedance measurement (EIS)
was performed; every EIS spectrum is related to a defined state. To simulate dynamic
working conditions, the EIS measurements were performed as soon as the SoC was adjusted,
without relaxation. Since it was not possible to perform EIS measurements for every
possible combination of SoHC, SoC and temperature, different series of measurements
were performed; each series mainly focused on one state, e.g., temperature. These series of
measurements are described in the following subsections. The EIS datasets were separated
into a training dataset and a test dataset. The training dataset was used to train the ANN.
In the first step, the ANN was trained by using the EIS spectra as input and the related
data of the cell states as target values. After the training process, the ANN was evaluated
with the test data set. The ANN needed to estimate the related state by itself, and at last the
estimated states were compared with the measured states to evaluate the estimation quality.

2.1. Electrochemical Impedance Spectroscopy

EIS involves a non-destructive technique for characterizing electrochemical systems
by applying a sinusoidal excitation and measuring the corresponding response, as shown
in Figure 3.

Figure 3. Schematic figure of a sinusoidal current excitation and the voltage response of the system
with the phase shift.

The impedance was calculated using the complex voltage, complex current and the
phase shift between those values:

Z =
u
i
= R + jX ; (1)

and from the complex impedance equation, the real part R and the imaginary part jX were
calculated. Applying AC currents at different frequencies (usually between 10 kHz and
10 mHz) creates an electrochemical impedance spectrum. The results of an EIS measure-
ment are usually plotted in a Nyquist plot, as shown in Figure 4.
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Figure 4. Nyquist plot of a single impedance spectrum for a lithium ion cell.

In order to test the performance in different loading conditions and guarantee charge
conservation, the galvanostatic mode was chosen. All EIS measurements were performed
using a Gamry reference 3000 AE potentiostat multiplexed on a Basytec CTS. Each internal
process can be allocated a characteristic time constant. Therefore, the operating frequency
range was varied between 1 Hz and 10 kHz with 15 frequencies per decade (61 frequencies
in total). Moreover, the frequency band is limited to the change of charge while running
a possibly superimposed current. As a compromise, the AC current was set to a C-rate
of 1/10 C for all measurements, in order to guarantee linearity while achieving a good
noise-to-signal ratio. The temperature was controlled by a Memmert ICP 110 thermal
chamber (ΔT = ±0.1 K). The SoC adjustment was performed by charging/discharging
with constant current/constant voltage (CC/CV) (current limit: C/30). The selected
voltage corresponds to the open circuit potential. For measurements with superimposed
DC current during the EIS measurements, the SoC was set to be 5% higher than the SoC
of interest by CC/CV. From there, the cell was discharged by CC with the same value
of current, which was used for the superimposed EIS measurement. After reaching the
target SoC, the EIS measurement was performed without relaxation, to simulate dynamic
working conditions.

To make sure that the presented results can be generalized, cells of different types, such
as cylindrical high power and prismatic high energy cells, were investigated. To evaluate
the impact of the cell to cell variance, at least nine cells per cell type were measured using
the same load. The investigated cell types are shown in Table 1.

Table 1. Cells investigated for state estimation.

Cell Capacity [mAh] Design

Samsung INR18650-15L1 1500 cylindric
Sony US18650VTC6 3000 cylindric

Panasonic NCA 103450 2350 prismatic

2.1.1. Temperature Estimation

Investigations were performed on the Samsung INR18650-15L1 1500 mAh lithium ion
cells. Therefore, 36 cells at different SoHCs (SoHC = state of health regarding actual capacity
to nominal capacity C/CN) were used. The cells were aged by cycling (at T = 40◦C,
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constant current charge at 2C, discharge at 3C) using a PEC ACT0550. More detailed
information about the SoHC of all 36 cells is shown in Table 2.

Table 2. State of health with respect to nominal capacity (C/CN). Thirty-six cells were investigated.
For each SoHC range, the data of 2 cells were defined as test data; the data of the other cells were
used as the training dataset for the neural network (ANN). This guaranteed that each SoHC range
would be taken into account. The labels Hx refer to the investigated cells.

SoHC C/CN
Number of Cells Used for

ANN Training ANN Test, (Cell Label)

98–102% 12 2, (H18, H38)
93–97% 5 2, (H31, H39)
88–92% 4 2, (H1S, H3S)
83–87% 7 2, (H41, H42)

Figure 5 shows the measurement procedure. EIS measurements were performed at
14 temperatures (T in ◦C: 10, 15, 20, 25, 30, 35, 40, 45, 50, 52, 54, 56, 58, 60), with 5 different
SoCs for each temperature (SoC: 90%, 70%, 50%, 30%, 10%).

Figure 5. Procedure of data acquisition.

For each temperature and SoC state, EIS measurements were performed with 8 differ-
ent superimposed DC-currents (C-rate: 0C, −1/4C, −1/2C, −3/4C, −1C, −3/2C, −7/8C,
+1C). For the training and testing process, a multi-dimensional dataset was created by
performing more than 20,000 EIS-measurements at different states. A relaxation time of
1 hour was used after changing the temperature to ensure that the cells were at the same
temperature as the thermal chamber. To simulate a real application, there was no relaxation
time between charging/discharging and EIS measurements.

A shorter series of measurements for the temperature estimation were created on the
Panasonic NCA 103450 (9 cells SoHC = 100%, CN = 2350 mAh, prismatic high energy)
and on the Sony US18650VTC6 (9 cells SoHC = 100%, CN = 3000 mAh, cylindrical high
energy). The temperature was varied from 10 to 50 ◦C in 5 K steps. For each temperature,
the SoC was varied from 10% to 90% in steps of 20%. For each temperature setting and
SoC state, EIS measurements were performed with 4 different superimposed DC-currents
(C-rate: 0C, −1/4C, −1/2C, −1C).

2.1.2. State of Charge Estimation

The SoC estimation was performed for all cell types shown in Table 1. The SoHC of
every cell was nearly 100%. EIS measurements were performed at 4 different temperatures
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(20, 25, 30, and 35 ◦C). To take the charging/discharging history (hysteresis) of the cells
into account, the cells were discharged in steps from 95% to 5% (in total 36 SoCs: 95%, 92%,
90%, 87%, 85%, 82%, . . . , 5%) and then went through the same SoCs for charging (again
36 SoCs). During the EIS measurement, there was no DC applied, but only an AC of C/10.

2.1.3. State of Health Estimation

The SoHC estimation with respect to total capacity (SoHC = C/CN) was performed
only for the Samsung INR18650-15L1 cells. To generate the training data, three lithium ion
cells were aged by cycling (at T = 40 ◦C, constant current: charge at 2C, discharge at 3C,
1400 cycles) using a Basytec CTS. After every hundredth cycle, the capacity was determined
(charge constant current C/10 constant voltage C/20, discharge constant current C/10)
and EIS measurement was performed (at 25 ◦C, at 70% SoC, 0C DC-current). The data of
the investigated cells are described in Section 2.1.1 (at 25 ◦C, at 70% SoC, 0C DC-current).

2.2. Artificial Neural Network Architecture

The ANN used in this study is based on the MATLAB NN toolbox. The architecture
consists of a feed forward architecture with a single output depending on the state of
interest (temperature, SoHC, SoC), as shown in Figure 6 .

Figure 6. Schematic figure of the used artificial neural network. The real and/or imaginary part of
the impedance measurement is used as the input

The used ANN is subcategorized into three main layers: input layer, hidden layer and
output layer. Each neuron is connected with a neuron at the following layer in the forward
direction. In the context of this work, the number of hidden layers was limited to a single
layer. When the number of hidden layers used is more than one, the network is a deep
neural network. Within the layer, the number of neurons was varied. In order to determine
the optimal number of neurons, a grid search approach was used, where the number of
neurons was continually increased until the prediction accuracy was no longer improving
without restricting the generalization ability. The number of neurons within the hidden
layer is presented in the discussion for each investigated case separately. In the hidden
layers, a hyperbolic tangent sigmoid transfer function is used, which is given by:

tansig(n) =
2

(1 + exp(−2n))− 1

As an input parameter, the real or imaginary portion of the EIS measurements with
respect to the frequency domain was used. The training dataset was selected in such a
way that the generalization of the battery cell variance can be verified and validated. The

27



Batteries 2021, 7, 85

bias values and weights were updated according to two different optimization strategies:
Bayesian regularization backpropagation optimization (BRBP) and Levenberg–Marquardt
backpropagation optimization (LMBP). The prediction accuracy was assessed using the
root mean square error and the coefficient of determination. The code was developed based
on ANN toolbox.

3. Results

The following discussion shows the results of the state estimations of the temperature,
SoC and SoHC predictions. Note that the test dataset was separated from the training
dataset before training the neural network in order to ensure that the test data were
completely unknown to the ANN.

3.1. Temperature Estimation

Figure 7 presents more than 4000 temperature estimations by the neural network for
the EIS data of eight Samsung INR18650 15L1 cells at five different SoCs, eight superim-
posed DC currents during the EIS measurements and different SoHCs. The SoHC of each
cell is shown in Table 2. For each investigated SoHC, two cells were selected for testing. By
including various DC currents, SoHCs and SoCs, the realistic performance of a cell was
simulated. The overall root mean square error (RMSE) was less than 1 K. The maximum
RMSE for a single temperature estimation was about 5 K.

Figure 7. More than 4000 temperature estimations by a neural network using EIS data as input are
presented. The estimated temperature is plotted over the measured temperature. The black line is a
guide to the eye for the target values. The overall RMSE for 8 Samsung INR18650-15L1 cells was less
than 1 K. The legend shows the RMSE for each cell.

Only the real part of the impedance was used as an input parameter, since the influence
of the temperature was much greater on the real part than on the imaginary part, as shown
in Figure 1. A combination of real and imaginary parts and only using imaginary part as
input were investigated. However, as expected, the temperature estimation became more
inaccurate when using the imaginary part. For the presented results, the actual SoHCs,
the SoCs and the applied DC current during the EIS measurement were used as input
parameters. The ANN was able to estimate the cell temperature without additional input
parameters. However, the time required to train the ANN increased significantly, and the
overall RMSE increased to 1.5 K. During the measurements, there were no temperature
sensors attached to the cells. The temperature was taken directly from the thermal chamber.
The self heating effect in Samsung 18650-15L cells by applying DC current was not taken
into account for the state estimation. When using temperature sensors within the cells,
center measurements showed that the temperature difference between the center and the
surface was less than 2 K. For our proof of concept study, this temperature discrepancy
was assumed to be negligible, since every measurement was performed in the same way.
The results show that in general the ANN was able to estimate the temperature from a
corresponding EIS spectrum.
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Figure 8 shows the evolution of the ANN during training. After 230 epochs, the RMSE
reached its lowest value and was stabilized. The RMSE evolution was used to find a suitable
configuration of the ANN. For the presented results, only one hidden layer consisting of
11 neurons within the hidden layer was used in a Bayesian regularization-backpropagation
neural network. Using more than 11 neurons in the hidden layer had a tendency to overfit.

Figure 8. RMSE evolution during training epochs of the temperature estimation of the Samsung
INR18650-15L.

Additional investigations were performed on prismatic Panasonic NCA 103450 high
energy cells and cylindrical Sony US18650VTC6 high energy cells to show that the presented
method is independent of cell geometry and cell type (high energy/high power).

Figure 9a presents the results for the Panasonic NCA 103450 cells with an overall
RMSE of 0.7 K, and Figure 9b shows the results for the Sony VTC6 cells with an overall
RMSE of 0.5 K. Each figure shows 360 temperature estimations at different SoCs and
different applied superimposed DC currents. For both cells, a Bayesian regularization-
backpropagation neural network with one hidden layer consisting of five neurons was
used. As input parameters, both the real and the imaginary parts of the impedance were
fed to the ANN; the information about SoHC, applied DC current and SoC were restrained.

The SoHC of every Sony and Panasonic cell was about 100%. The temperature estima-
tions for different SoHCs were performed only for the Samsung cells.

Nevertheless, we showed that the temperature estimation by an ANN using EIS data
can be realized for different cell types. However, it is necessary to create an individual
ANN for each cell type with individual hyperparameters. To finally generalize this method,
more cells with different aging profiles and higher DC currents need to be investigated.
Due to the self heating effect of the cells through high currents, temperature sensors should
be installed within the cells to measure the exact temperature in real time.

The superimposed DC current affects the EIS spectrum, especially at low temperatures.
Therefore, the presented ANN method is a powerful tool, especially at high temperatures
where the influence of the DC current is reduced. This makes it perfectly suitable for
real-life applications. In comparison to other sensorless temperature estimation methods,
the main advantages are that there is no need for storing time series data, and that the
computational effort is reduced, since there is no need to solve complicated equations, such
as partial differential equations. It is suitable for different cell types, and it also takes a
superimposed DC current and actual SoHC into account.
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Figure 9. Temperature estimations for (a) Panasonic NCA 103450 with an RMSE of 0.7 K, and (b) Sony
US18650VTC6 with an RMSE of 0.5 K. In both figures, 360 temperature estimations are shown. The
estimated temperature is plotted over the measured temperature. The black line is a guide to the eye
of the target values. The legend shows the RMSE for each cell.

The use of EIS data greatly improved the estimation accuracy. Various internal pro-
cesses in the lithium ion cell show different temperature dependencies. These processes can
be allocated to various frequency domains measured via EIS [24]. For some electrochemical
processes in lithium ion cells, the influence of the temperature predominates over the
influence of the cell to cell variance. The estimation accuracy can be further improved by
adding impedance data at various frequency domains in addition to the cell resistance.

3.2. State of Charge Estimation

The state estimation methodology using EIS data and ANN was investigated for the
estimation of the SoC. Figure 6 shows the results for the Panasonic NCA 103450 cells. Since
the influence of the SoC on the impedance varies, it was necessary to split the SoC into
area 1 from 5% to 45%, as shown in Figure 10a, for which the RMSE was 1.9%; and area 2
from 48% to 95%, as shown in Figure 10b, for which the RMSE was 2.2%. In both cases, a
Bayesian regularization-backpropagation neural network with one hidden layer consisting
of four neurons was used. For the lower SoCs, only the imaginary part was used as input
parameter, and at higher SoCs the real and the imaginary parts were used. Using only one
network for the whole SoC area increased the RMSE significantly.

The RMSE shows higher deviations in the mid SoC range (30–70%), where the EIS
data mostly overlap. This makes it harder for the ANN to distinguish SoCs.

For the Sony VTC6 cells it was also necessary to split the SoC in two areas. For
the lower SoCs from 5% to 35% the RMSE was 3.1%, as shown in Figure 11a. Figure 11b
presents the results from 40% to 95% with an overall RMSE of 2%. In both cases a Levenberg–
Marquardt backpropagation artificial neural network with one hidden layer and five
neurons was used. Only the real part of the impedance was used as an input parameter.
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Figure 10. SoC estimation for Panasonic NCA 103450 cells with an RMSE of about 2%. The SoC was
split into (a) 5% to 45% and (b) 47% to 95% and estimated by individual neural networks. Overall,
almost 600 SoC estimations are shown. The estimated SoC is plotted over the measured SoC. The
black line is a guide to the eye of the target values. The legend shows the RMSE for each cell.

Figure 11. SoC estimation for Sony US18650VTC6 cells with an RMSE of about 3%. The SoC was
split into (a) 5% to 35% and (b) 40% to 95% and estimated by individual neural networks. Overall,
more than 300 SoC estimations are shown. The estimated SoC is plotted over the measured SoC. The
black line is a guide to the eye of the target values. The legend shows the RMSE for each cell.

The RMSE was increased for the estimation of lower SoCs because the impedance
varies only slightly with low SoC.
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The SoC estimation for the Samsung 15L cells is not shown, since the best overall
RMSE was about 8%, with a maximum estimation discrepancy up to 20%, which is not
sufficient for any application. This was caused by the influence of the SoC on the impedance
spectra being in the same order of magnitude as the influence of the cell to cell variance.
The presented results for the SoC estimation clearly show that it is necessary to create an
individual ANN for each cell type. If there is a clear dependency between the SoC and the
EIS spectra and only a little cell to cell variance, the signal to noise ratio is big enough to
allow the state estimation, as shown for the Panasonic NCA 103450 cells.

In general, SoC estimation is much more complex than temperature estimation. The
reason is the behavior of the EIS spectra depends on the state. As shown in Figure 1, an
increase in temperature causes a decrease in impedance. The SoC dependency of the EIS
spectra varies among different cell types. For some cell types, an increase in SoC causes a
decrease in the value of impedance at a low SoC or an increase in value at a high SoC. For
such a case, several ANNs for different SoC ranges are required.

The advantages of this method compared to other methods are, again, the little
computational effort, since no partial differential equations to be solved and no error-prone
parameterization needs to be performed. Furthermore, there is no need for storing and
handling time series data. The utilizable capacity of a cell depends strongly on the cell
temperature. Therefore, the SoC varies with the temperature. The SoC was calculated by
the ANN using an EIS spectrum that is characteristic of the measured state.

3.3. State of Health Estimation

Another interesting application is the estimation of the SoHC with respect to the
capacity (SoHC). Therefore, three cells were aged and characterized (EIS and capacity)
and used to train the ANN. The cells which were aged and used for the investigation
of the temperature estimation were characterized afterwards and used to test the SoHC
estimation. Figure 12 shows the estimated cell SoHC and the measured SoHC. The RMSE
for every SoHC estimation was below 2%.

A Bayesian regularization-backpropagation neural network with one hidden layer
consisting of four neurons was used. Both the real and the imaginary part of the impedance
were used as input parameters. We were unable to estimate the SoHC at the very beginning
of life because the shape and the value of the EIS spectrum varies strongly for the first
cycles. The impedance spectrum first decreases and than increases. After a number of
cycles, stabilization of impedance growth was achieved, as shown in Figure 2. Only the
data of cells which performed 100 or more cycles were used. Since the cells that were
used to collect the training data were characterized only for 1400 cycles, data from cells
with more cycles could not be used for testing, because the ANN is not able to extrapolate.
The aging profiles of the cells that were used to collect training data and the cells for the
test data were partially comparable. After aging, the testing cells experienced further
aging during measurements at different temperatures and currents. Nevertheless, to
generalize this system it will be necessary to investigate the presented state estimation
method with data from different aging profiles. The advantage of the SoHC estimation
method compared to other algorithms is the ability to estimate the total utilizable capacity
from an EIS spectrum within a few seconds. Unlike the current pulse method where only
one data point is determined, the impedance spectrum offers many data points belonging
to a single state. That increases the estimation accuracy and reduces other influences, such
as that of contact resistances.
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Figure 12. SoHC estimates for Samsung INR18650-15L1 cells by a neural network using EIS data as
input are presented. Here the SoHC is defined as the actual capacity related to the nominal capacity.
The estimated SoHC is plotted over the measured SoHC. The black line is a guide to the eye of the
target values. The overall RMSE was less than 2%. The legend shows the RMSE for each cell.

3.4. Further Discussion

We have developed a sensorless ANN-method based on EIS data to estimate the
temperature of a lithium ion cell. The temperature estimation was performed with different
SoCs, SoHCs and discharge currents. Furthermore, we have given a perspective on the
possibility of using the presented method to estimate the SoC and the SoHC. One of the
biggest advantages of the presented method is that a well-known ANN with a very simple
architecture which requires little computational effort is able to estimate the cell temper-
ature successfully. This fact makes it even more interesting and practical for industrial
applications. The ANN was trained within minutes for each system. The time needed to
train the ANN depends on the availability of supplementary input data, such as SOC, SOH
or applied DC current. Once the ANN is trained, the calculations for the state estimation by
the ANN are performed within milliseconds. The EIS measurement from 1 Hz to 10 kHz
was performed in less than 1 min. However, we predict that the measurement time could
be reduced to milliseconds by selecting suitable frequencies. The calculations for the state
estimation by the ANN were performed in less than a second.

Further, we showed that the presented model is independent of the cell geometry by
investigating cylindrical and prismatic cells. The focus of this study lay in the investigation
of 18,650 lithium ion cells. To generalize the presented method, we will investigate larger
cells with higher capacity in future work. Furthermore, we will use temperature sensors
in the cell core for data acquisition and investigate connected cells in battery modules.
Due to its data-driven nature, we suggest that it is possible to adapt the model to every
other cell chemistry, as long as there is a strong correlation between the EIS spectrum
and the investigated state. We were able to achieve reasonable results with LFP cells. As
our data-driven model is easily applicable to other systems, it is attractive for practical
applications, since cell manufacturers usually do not reveal exact cell chemistry.

4. Conclusions

In this work we presented a sensorless method for predicting the temperatures of
lithium ion cells that uses ANNs which take electrochemical impedance spectra as input
data. Investigation were performed on Samsung INR18650-15L1, Sony US18650VTC6
and Panasonic NCA 103450 cells. To simulate real applications, the SoC was varied; a
superimposed DC current during the EIS measurement was applied; and for every cell
type at least nine cells were investigated to include the cell to cell variance. In addition,
Samsung 15L cells with different SoHCs were investigated. The RMSE for all temperature
estimations were around 1 K, which makes the presented method attractive for practical
applications. SoC estimation was also investigated likewise. For the Sony VTC6 and the
Panasonic NCA 103450 cells, the RMSE was about 3%. Different cell temperatures during
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the EIS measurement were taken into account. The SoC estimation for the Samsung 15L
cells was not successful, with an RMSE of above 8%. In this case the influence of the SoC
on the impedance spectrum was of the same order of magnitude as the influence of the
cell to cell variance. Therefore, for the SoC estimation, it is necessary to investigate each
cell system individually for its applicability. At last, the ANN was applied to estimate
the SoHCs of Samsung 15L cells. Since the estimation errors for all cells were below 2%,
this seams to be a feasible use of the method as well. However further investigations
on cells with different aging profiles are necessary to give a definitive evaluation of the
suitability. Its advantages compared to other temperature estimation methods are that
there is no need to fit a battery model to the data, and no differential equation needs to
be solved. Furthermore, the ANN needs only a single EIS spectrum to estimate the cell
temperature. There is no need for handling time series data. The presented prediction
method seems to be a promising way to estimate the inner cell temperature with high
accuracy in a short time period, as little effort regarding measurements and calculations
is required. Further work is suggested to investigate the ability of the neural network to
estimating the temperatures of cells within electrical circuits. Furthermore, a reduction in
the number of input parameters will be investigated to improve this method by reducing
and simplifying the computational effort and the measurement time.
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Abstract: The concept of Digital Twin (DT) is widely explored in literature for different application
fields because it promises to reduce design time, enable design and operation optimization, improve
after-sales services and reduce overall expenses. While the perceived benefits strongly encourage the
use of DT, in the battery industry a consistent implementation approach and quantitative assessment
of adapting a battery DT is missing. This paper is a part of an ongoing study that investigates
the DT functionalities and quantifies the DT-attributes across the life cycles phases of a battery
system. The critical question is whether battery DT is a practical and realistic solution to meeting
the growing challenges of the battery industry, such as degradation evaluation, usage optimization,
manufacturing inconsistencies or second-life application possibility. Within the scope of this paper,
a consistent approach of DT implementation for battery cells is presented, and the main functions
of the approach are tested on a Doyle-Fuller-Newman model. In essence, a battery DT can offer
improved representation, performance estimation, and behavioral predictions based on real-world
data along with the integration of battery life cycle attributes. Hence, this paper identifies the efforts
for implementing a battery DT and provides the quantification attribute for future academic or
industrial research.

Keywords: digital twin; battery model; battery management system; Doyle-Fuller-Newman model;
equivalent circuit model; parameter estimation

1. Introduction

Digital Twin (DT) is a virtual dynamic model of a system, process, or service, with
real-world data interactions that facilitate improved system analysis and comprehensive
representation [1]. NASA defined DT as an integrated multi-physics, multi-scale simulation
of a system that uses the best available physical models, sensor data, and historical data
to mirror the life of its physical twin [2]. The applications of DT are: (1) to simulate the
behavior of the physical twin before its usage, where even without the benefit of continuous
sensor updates, the DT can study the effects of various parameters, determine the various
anomalies and validate the degradation mitigation strategies; (2) to simulate the system
behavior during operation, through the continuous update of actual load, temperature,
and other environmental factors, as input to the models, enabling continuous predictions
for the physical twin; (3) to perform diagnostics in the event of a fault or damage; (4) to
serve as a platform where the effects of parameter modifications, not considered during
the design phase, can be studied. In practice, DT implementation involves allocating real-
world data to the virtual model or platform. Boschert et al. [3] identified that simulation
would become the primary tool for decision support once a DT is fully integrated. Likewise,
Kunath et al. [4] summarized the three main functions of a DT: Prediction—execution of
studies ahead of the system run; Safety—monitoring and control of the system state in terms
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of a continuous prediction during the system run; Diagnosis—analysis of unpredicted
disturbances during the system run.

By definition, a model is a simplified abstraction of the structure or processes that
define a real system. In that sense, models do not aim to replicate the original system in
intensive detail [5]. The idea of moving a digital model closer to the real system is in fact a
basic rationale for building computer models. Some models are extreme simplifications
of the real system, while some are much closer to the real system, through multiscale
simulations and interdisciplinary collaborations. The difference between a DT and a
simulation model has been discussed previously [1,6], but it is essential to address the
features that qualify a model as a DT: (1) model of the product—physical or data-driven;
(2) evolving set of real-world data about/related to the product; (3) method of adjusting
the model in accordance with the data. According to [7], the DT evaluation framework
consists of four metrics, autonomy, intelligence, learning, and fidelity.

Some articles [8,9] describe seemingly similar concepts to DTs, such as digital shadow,
virtual model, product avatar and digital thread, but they do not necessarily indicate the
complete concept of DT, but rather fragments of overlapping functions. DT implementation is
often mapped to IoT (Internet of Things) devices and CPS (Cyber-Physical Systems) [10,11],
due to its high dependence on a compatible mode of data acquisition. A DT can have
single or multiple stakeholders and may make use of 3D simulations, IoT devices, 4G and
5G networks, blockchain, edge computing, cloud computing, and artificial intelligence.
Depending on the complexity, a DT may have access to past and present operational data
along with predictive capabilities.

A multitude of literature [12,13] has been published, defining and characterizing the
concept of DT in a variety of domains. However, missing from the literature is a consistent
view on what the DT is and how the concept is helping to meet the challenges of the many
use-cases to which it is being associated as a solution approach [14]. Some articles [15–17]
suggest the methodologies, frameworks, and interpretation of DT for specific use cases.
While this may help understand the system boundaries, it also leads to inconsistent ideas
of the requirements of DT implementation and thus generating the risk of diluting the
concept. The potential costs, infrastructure challenges, clarity of return on investments
for product/process DT are not transparent. Without substantial effort to describe and
quantify the DT benefits, it is challenging even to suggest that the concept itself may be the
most appropriate solution to the challenges faced by each particular industry [14].

DT is generally perceived with the core idea that it is a model that can replicate the
behavior of an existing system through the acquisition of real system data. This highlights
the importance and completeness of the phrase “replicate the behavior”. To which extent is
the replication satisfactory? DTs at first may appear to be a replica but replicating every
behavioral aspect might not necessarily be realistic. For example, in battery DTs, it is
unnecessary to digitally replicate each of the molecular, fluid, and structural behavior
of each cell component. DTs need not attempt to mirror everything about the original
system [5]. Hence, the reality of an exhaustive high-fidelity DT, which replicates every
aspect of the physical system and maximizes services while minimizing expense and
technical difficulty of implementation, is ambiguous. The level of model fidelity, cost, and
effort for implementation is subject to limitations which will vary depending on the use
case and its applications. Furthermore, the idea of DTs across the lifecycle is not yet fully
understood. The number of DTs required across the entire lifecycle, or the transitions and
interactions between the software components of the DT are yet to be explored.

Therefore, the stakeholders in industries or academia looking to invest in or develop a
DT face the following challenges:

• Limited use cases and implementation results available to learn from others;
• No clear guidance on how much to budget;
• Difficult to know where to start to get value quickly;
• Initiatives that are misleadingly branded as “Digital Twin”;
• Limited know-how.
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The hypothesis that DT would be a driver for product lifecycle management and
smart manufacturing in the future needs to be tested. This paper is a part of an ongoing
study that investigates the DT functionalities and quantifies the DT attributes across
the life cycle phases of a battery system. Essentially, the pressing question is whether
battery DT is a practical and realistic solution to meeting the growing challenges of the
battery industry, such as degradation evaluation, usage optimization, manufacturing
inconsistencies, second-life application possibility, etc. Within the scope of this paper, the
concept of DT will be explicitly explored for battery cells and the functionalities it can offer
during the operation and end-of-life (EoL) phases. Research on battery DT has already
gained much popularity, and with this paper, we aim to provide a consistent approach to
DT implementation for battery cells. In doing so, we identify the efforts for implementing
a battery DT. The contributions of this paper are as follows: (1) literature-analysis of
the potential functionalities of a battery DT during operation and EoL; (2) battery DT
implementation approach; (3) KPIs (Key Performance Indicators) to quantify the value-
add of battery DTs; (4) testing the main functions of the implementation approach on a
DFN model.

This paper is structured as follows: Section 2 reviews past literature followed by a
discussion about battery DT functionalities during operation and EoL. Section 3 outlines the
approach of battery DT implementation with subsections elaborating each step. Section 4
demonstrates the results of the application of the described approach in Python. Lastly,
Sections 5 and 6 is a discussion of the contributions of the paper and its future scope.

2. Battery DT Functionalities during Operation and End-of-Life

The number of literature specific to DTs has increased drastically in the last decade [8,18].
The topic is explored in various domains, such as product optimization, production plan-
ning/control, layout planning, maintenance, or product lifecycle. However, a microscopic
look into the implementation of product DT, i.e., battery DTs has become prevalent since
the past decade with increased utilization of IoT devices, CPS, and cloud-based services.
Sometimes battery model implementation learns from real-time operational data to eval-
uate the battery states but is not necessarily defined as a battery DT [19]. So, is it crucial
to even understand if a model is, in fact, a DT? Generally, at the initial stage of product
development, it is not an essential requirement. However, at the business level i.e., in
order to draw profits and innovation in the existing business model, a DT can facilitate
effective R&D.

In the context of battery systems, it is uncertain whether battery DT insinuates a
single cell DT, module-level DT, or pack-level DT. Currently, DTs are the result of custom
technical solutions that are difficult to scale [20]. The scalability of battery DTs depends on
the extrapolation of cell behavior through physical, physics-based, or data-driven battery
models. For this purpose, the term battery DT referred to in this paper implies the DT of
a battery cell. However, module and pack-level battery DTs are worth pursuing in the
later stages.

The literature review in this paper takes only those published literature into account,
which consists of practical implementations of battery DTs with defined DT-functionalities
and implementation methods. The focus is on reviewing the latest literature on DTs
concerning applications in the battery industry, published in the past 5 years (starting from
2016 to 2021). With Google Scholar as the research literature database and the following
logical expression of keywords: (“digital twin”) AND (“battery”) AND (“lithium-ion”),
updates until July 2021, the total number of resulting articles were 392 (39 google scholar
pages), among which several articles had to be excluded due to the following reasons:

• Some articles only mentioned battery DTs as a possible application
• Some of them did not explain the architecture to support battery DTs
• Others were only theoretical articles.

However, in combination with advanced search for the keywords (“battery digital
twin”) or (“digital twin” AND “battery”) in the title, the literature was filtered down to
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9 articles. As a result, Table 1 elaborates the available literature, their reported method of
DT implementation, and the corresponding DT functionality.

Table 1. Literature review of DT-implementations relevant for battery system.

Reference Implementation Method 1 DT Functionality

[21] HI and LSTM algorithm Estimation of battery’s actual
discharge capacity

[22]
Cloud BMS with AEHF-based SOC

estimation algorithm and PSO-based
SOH estimation algorithm

Estimation of SOC, SOH, capacity
fade, power fade

[23]

On-board diagnosis to cloud
environment; ECM model parameter
fitting, curve fitting and SOC-OCV

curve

SOC, capacity, internal resistance,
SOH-R, SOH-C

[24] Visual software in LabVIEW; ECM
with SVM and filter algorithms

DT platform for spacecraft
lithium-ion battery pack degradation

assessment; SOC estimation

[25]
Cloud connected BMS;

electric-thermal model and empirical
ageing model

Cell voltage and temperature

[26] ECM and EFK algorithm SOC estimation

[27] Review paper on battery DT Battery DT framework and its
cyber-physical elements

[28]

Offline—Regression model using
sparse-Proper Generalized

Decomposition (s-PGD);
Online—Dynamic Mode
Decomposition technique

Cell voltage, anode/cathode bulk
SOC, anode/cathode surface SOC

[29] Linking reduced order model with
ECM in Ansys Twin Builder

Real-time temperature of the battery
pack at different locations; What-if

scenarios for root cause analysis
1 HI—Health Indicator; LSTM—Long Short-Term Memory; BMS—Battery Management System; AEHF—adaptive
extended H-infinity filter; PSO—Particle Swarm Optimization; SOC—State of Charge; SOH—State of Health;
OCV—Open Circuit Voltage; ECM—Equivalent Circuit Model; EKF—Extended Kalman Filter; SVM—Support
Vector Machines.

While some of the references identified in Table 1 are pioneering attempts to map
real-time battery data to the battery models through cloud services, the others have yet
again used simulated driving cycle data to validate the state estimation algorithms. This
procedure of using drive cycle simulations such as WLTP (Worldwide Harmonized Light
Duty Vehicles Test Procedure) or UDDS (Urban Dynamometer Driving Schedule) for valida-
tion of battery state estimation algorithms is a state of the art state estimation approach [30].
Nevertheless, this is not ideal for designing battery DT because simulated driving cycles
can only validate the algorithm accuracy of static models while battery DTs are dynamic.
Additionally, a common observation among all the DT functionalities in Table 1 is that
they all have approximately the same output, i.e., SOC, SOH, internal resistance, or ca-
pacity. Evaluation of the battery state through these output variables has already been an
established requirement from electrical models, electric-thermal models, electrochemical
models, and until recently, data-driven (or NN) battery models. In this context, it is worth
noting the conundrums that this raises regarding the argument about the need for a battery
DT only for performing state estimations. Other than the fact that if implemented correctly,
a battery DT should deliver those output variables to the users, developers or testers in
real-time, there are no significant utilities that only a battery DT can implement. So, what
additional value-add does a battery DT contribute? In an attempt to answer this, the
following 2 aspects are now elaborated:

• Battery DT influence on life cycle phases;
• Current BMS functionalities.
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To achieve competitiveness with the internal combustion engine, the key requirement
for battery development is high driving ranges, low-charging times, and low battery pack
cost. The performance indicators of batteries during usage are characterized by cost,
specific energy (Wh kg−1), energy density (Wh L−1), specific power (W kg−1), and power
density (W L−1), and charging time (=fast charging ability) [31]. While a DT cannot take
the responsibility of improving the energy density or specific power of a battery, it can
significantly aid the design optimization process and EoL assessment process. Sensing the
battery data and uploading that to a storage server gives the opportunity to easily access
the battery data and create learning models, which directly guide the product design,

and optimization process [27]. The battery data storage platform stores the design and
usage history, which supports behavioral integration in consequent life cycle phases and
simplifies the prediction of the remaining useful life (RUL) during operation and also at
EoL for second life assessment [32].

The Battery Management System (BMS) is the central element for protecting, mon-
itoring, and controlling the battery-powered system by ensuring safety, efficiency, and
reliability [33]. BMS measurements are performed for cell voltages, pack current, pack
voltage, and pack temperature and it usually uses these measurements to estimate SOC,
SOH, DOD (Depth of Discharge) [34]. Battery DT requires the onboard-BMS to work
together with the battery data storage platform.

The potential functionalities of a battery DT in combination with an onboard-BMS are
identified in the literature. Identifying the stress factors from the time-series measurement
data and calculating its effect on the model parameters facilitates evaluating battery aging

indicators during operation [25]. Besides, the model update integrated with the charging
data enables a battery DT to maximize the optimization objective and select the best
parameters for an optimal charging strategy such as multi-stage constant current charging,
pulse charging, multi-stage constant heat charging and AC charging [35]. Similarly, thermal

management based on battery DT relies on prediction of aging effect of temperature
distribution across the battery pack using thermal models. Detection and traceability of
sensor faults, electrical faults, and thermal runaway in a battery DT can allow integration
of fault diagnosis procedure of the BMS with the battery DT functionalities [32].

In order to identify the functionalities and potentially the value add of a battery DT,
the above discussion is encapsulated in Figure 1. The black circle lists the functionalities of
a BMS, taken from the datasheets of two commercial BMSs found in [36,37]. The extended
blue block lists the battery DT outputs taken from Table 1. These are the applied battery
DT functionalities. Lastly, the green block lists the potential DT functionalities identified
from the literature (as highlighted above). Thus, Figure 1 compares the existing BMS

functionalities with the applied battery DT functionalities and the potential battery

DT functionalities.

The BMS functionalities taken from the referenced datasheets are to monitor the
current and temperature sensors. It uses programmed settings to control the current flow
into and out of the battery pack by broadcasting the charge and discharge current limits,
cell balancing, and monitoring each cell tap to ensure that cell voltages are not too high or
too low. Using the programmed values in the battery pack profile, the BMS calculates the
pack and individual cell’s internal resistance (SOH) and OCV. Current sensor data is used
to calculate the battery pack’s SOC (via coulomb counting CC).
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Figure 1. Comparison of BMS functionalities with the applied battery DT and the potential battery DT functionalities.

The SOC estimation method in the studied BMSs is CC. Literature shows alternative
methods with higher estimation accuracy, such as adaptive EKF, impedance method,
fuzzy logics, SVM, hybrid method (EKF combined with ANN) [38–40]. Here a DT can
complement the current BMS functionalities by applying estimation algorithms with higher
accuracy. Moreover, the main functionality of the BMS is to ensure that the battery stays
with its specified limits. It takes immediate measurements to analyze the voltage and
temperature of the cell to estimate the SOC. It does not consider the degradation effect
of the charge/discharge cycles on the battery from an electrochemical perspective. The
immediate battery user may not be interested in understanding the degradation effects
of the battery, such as loss of lithium, diffusivity of electrolyte or SEI resistivity at the
anode. However, for deeper knowledge and future innovations by the battery designers,
this would serve as a stepping-stone towards ensuring that the battery lasts until its
maximum possible capacity and optimal performance. Hence, a DT can complement the
functionalities of a BMS by taking the load for large computation requirements. BMS
diagnostics over a long period can be enhanced and even simplified by using a DT.

To sum up, the added value that battery DTs can offer is improved representation,
performance estimation, behavioral predictions, optimization strategies, and integration of
battery life cycle attributes to the remaining DT functions.

3. Approach

In this section, an approach for implementing a battery DT is introduced. The purpose
is to define a functional procedure to move from battery model to battery DT systemat-
ically. Figure 2 illustrates the 5-step approach, and each step is then further elaborated.
By piecing together the existing methodologies of battery modeling, model parameter
estimation, battery state prediction, the efforts needed for implementing a battery DT will
be investigated.
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Figure 2. Approach for battery DT implementation.

3.1. Step 1: Lightweight or Heavyweight Battery Model Development

The first step to implement a battery DT is inevitably the development of a reliable
battery model. Battery models have become an essential tool in battery-powered applica-
tions, which are safety and performance-critical. Depending on how the model inputs and
outputs are related, battery models can be classified as empirical, semi-empirical, physical
and, data-driven [41,42], while the different types of battery models are:

• Electrical model (ECM);
• Electrochemical model (P2D);
• Thermal model;
• Mechanical model;
• Interdisciplinary combined model.

Fast and accurate identification of the BMS model parameters is a vision for battery
developers and engineers. With the outlook of computational expense, the battery model
types can be differentiated as either lightweight battery models or heavyweight battery
models. Based on [43], the factors which differentiate between the two are as follows:

• Battery dynamics represented by the model
• Number of parameters
• Computation time
• Accuracy
• Ease of understanding and complexity for implementation.

We limit discussion to only electrochemical and electrical models for this paper. As a
lightweight model, ECM of a battery is relatively easy to scale to the module or pack level
and is widely used in BMS algorithms. They are derived from the empirical measurements
of external characteristics of the cell [44]. However, by observing only the external behavior
of the battery, the internal electrochemical dynamics cannot be entirely represented, and it is
challenging to provide insights into electrochemical or life-reduction phenomena occurring
inside the battery. Additionally, ECMs are developed based on data obtained from specific
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operating conditions of the target batteries, and their accuracy abruptly decreases while
performing calculations on other operating conditions or if the battery is replaced [45].

As heavyweight models, the electrochemical models mainly fall into two categories,
single particle model or pseudo two-dimensional (P2D) model (also known as the Doyle-
Fuller-Newman—DFN model). DFN model for lithium-ion batteries use the combination of
the porous electrode theory and the concentrated solution theory [46]. Compared to ECM,
which has less physically relevant parameters, a DFN model contains a large number of
parameters with a physical meaning. It calculates electrical, chemical, and electrochemical
phenomena occurring inside the battery to predict its performance and lifespan Hence,
DFN models provide the opportunity for a deep understanding of lithium-ion batteries’
aging mechanisms, accurately predicting battery performance by considering the material
characteristics and the electrode design.

Experimental Parameter Identification Techniques

Accurate fitting of the battery model with experimental data is not the focus of this
paper, so the authors rely on the existing techniques. Instead, the focus is parameterizing the
model once the battery is in the usage phase and eventually at EoL (discussed in Section 3.3).
Experimental parameter identification is naturally the first step to model development.

ECM or DFN model development requires the human and hardware effort to set up
the experiments and perform the necessary tests followed by the subsequent calculation
of the battery parameters and its state [47]. The state of the art method of optimizing the
parameter set consists of: (1) initially solving the model for a given set of model parameters;
and (2) finding the parameter set that minimizes the sum of squared error between the
simulated voltage response of the cell and the experimentally observed voltage for a specific
drive cycle [48]. It is worth noting that, many techniques have been proposed to identify the
necessary parameters for electrical models, but a lower number of identification techniques
are available in the literature for electrochemical and aging models.

The term parameter refers to the characteristic of the battery, including chemical (solid-
phase conductivity, diffusion coefficients, etc.) and electric quantities (internal resistance,
capacitance, etc.), while the term state refers to the variables which illustrate the behavior
of the battery such as SOC and SOH.

In the conventional battery model parameter identification methods, experimental
data is used to reference the model parameters, which are then brought closer to the
experimental results using the following methods: Kalman filter (KF) method, the gradient
method, and the gradient-free method. KF approach is usually applied in the parameter
estimation of ECMs due to its recursive computation process, while gradient and gradient-
free methods are often employed for a DFN model. Evolutionary computation-based
identification methods such as particle swarm optimization (PSO) and genetic algorithm
(GA) are gradient-free methods, immune to local minimum traps and are usually used to
solve the cell’s governing equations faster.

The objective or fitness function for parameter identification via GA, PSO, DE, and KF
algorithms is defined by Equation (1) [49–52]:

L2 =
1
N

min
N

∑
i=1

[
Vexp(ti)− Vsim(θ, ti)

]2 (1)

where, Vexp and Vsim are the experimental and simulated cell output voltage with the same
input current, N is the total number of input current data samples, and i is the time index,
L is a representation of the RMS error.

However, the estimations done using these methods may deviate from the actual val-
ues due to the fact that the degradation physics caused by SEI (solid electrolyte interphase)
layer or lithium plating is not included. Moreover, the variations of the concentration-
dependent parameters are usually ignored or assumed as the constant values, which makes
the battery state estimation deviate further from reality.
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3.2. Step 2: Impact Analysis of Real-World Charge/Discharge Cycles on Battery Model Parameter

Voltage, current, and temperature are the real-world charge/discharge data types
collected from the battery. Data in the time-series comes directly from the BMS. Direct
connection with the BMS, plug-and-play devices, or cloud servers are some of the data
interaction methods. Although the data interaction method is not standardized, cloud
services have been integrated with onboard-BMS in the past (Table 1) for seamless data
exchange. Initial investment and time for implementation have made real-work data
interactions and control of battery systems challenging.

The simulated experimental inputs used for model parameterization (as described
in Section 3.1) in contrast with real-world charge/discharge cycles do not have the same
effect on battery model parameters. While driving procedures such as WLTP or USSD
are used to validate the accuracy of model parameter identification, after prolonged use
of the battery, the battery model parameters do not always mimic the actual state of the
battery. Hence, with continued usages, the state estimation results of the battery model
go farther and farther away from the actual battery state. The effect of prolonged real-
world charge/discharge cycle on the battery behavior and the changes that it causes in
the inherent characteristics are experimented and researched by academics [53]. However,
these effects are not transparent or readily available.

For the impact analysis, first, the governing equations of both DFN model and ECM
model are obtained (Tables A1 and A2). Based on these, the list of parameters of both
models is summarized in Table 2. For a battery DT, it is essential to identify the parameters
that undergo drastic change due to a long period of usage. Hence, step 2 of the approach is
to understand the impact of charge/discharge cycles on battery model parameters. The
argumentations provided in this section are based on Uddin et al.’s work [48], which
applies non-destructive experimental techniques to quantify the detailed degradation
associated with different aging stress factors. Model parameter estimation was done using
a non-linear fitting algorithm i.e., minimizing the square of the error between simulated
and measured voltage. The authors assert that since model parameters are connected to
intrinsic properties of the battery, the evolution of these parameters will highlight physical
changes within the battery. Thus, by tracking the evolution of model parameters, it will be
possible to deduce the mechanisms by which the battery has degraded over time.

Factors that are known to cause degradation effects on Li-ion batteries are: calendar
age (tage), cycle number (N), temperature, SOC, DOD, cycle bandwidth (ΔSOC), charge
voltage, C-rate, cycle frequency. Expected parameter changes reviewed in the reference
paper and further published literature is depicted in Table 2. Knowing the factors that
affect the battery life during cycling is essential to design a DT model that evolves along
with the degradation of the actual battery. Hence, the model parameters which are directly
and most largely affected by the cycling of the battery system are identified.

For reduced-order modeling of DFN model, no particular consensus exists on which
parameter needs to be estimated. Some of the parameters are considered while keeping the
others at a nominal value. A systematic approach for selecting which parameters can be
reliably estimated is presented in [54] in the form of parameter sensitivity analysis. The
parameter sensitivity analysis determines how sensitive is the output of the model with
respect to variation in values of parameters. Rather than looking into the sensitivity of
the model output with variations in values of the parameters, in the following Table 2,
we look into the sensitivity of model parameters with respect to cycling data. Table 2
mainly elaborates the effect of high cycle number and charging current (C-rate) on the
parameters of the DFN model and the ECM—based on the referenced literature. High
cycle number is a primary factor for cyclic aging, and high C-rate directly impacts the
cell temperature, which in turn influences battery degradation. Hence, only these two
stress factors are considered and not all the mentioned battery degradation factors because
the experimental and quantitative sensitivity analysis for each model parameter will be
too large to handle in this paper. With the outlook for battery DTs, understanding the
sensitivity of model parameters to the environmental conditions and usage practices is
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a requisite. This implies experimental or simulative confirmation of effect of prolonged
cycling on model parameters.

Table 2. Impact analysis of model parameters vs. battery degradation factors based on [48,54,55]. Legend for the table:
x—impact identified in the reference article, but the impact level is not specified; C—Constants; Text—impact level identified
by the reference article; Blank (-)—No direct information found on the sensitivity or dependency for this parameter.

Parameters Symbol (Unit) 1 High Cycle Number High C-Rate

DFN

Thickness Lp, Ln, Ls (μm) x [55] Moderate [55]

Surface area Ap, An, As, (m2) x [48] Moderate [55]

Particle radius Rp
+, Rp

− (μm) x [54] x [54]

Active/Inactive material volume fraction εs
p, εs

n x [55] Moderate [55]

Electrolyte phase volume fraction εe
p; εe

n - -

Maximum Li+ concentration cs
p,n,se (mol cm−3) x [48] Moderate [55]

Average electrolyte concentration ce (mol cm−3) - x [48]

Stoichiometry of n, p at 0% and 100% SOC xp,n
0,100 - -

Diffusion coefficient in solid and liquid phase Ds
p, Ds

n, De (m2 s−1) x [54] -

Solid phase conductivity σs
p, σs

n (μm) x [48] x [48]

Li transference number t+
0 Not sensitive [54] Not sensitive [54]

Resistivity of film layers (including SEI) Rf (Ω) Not significant [54] x [48]

Negative electrode potential, U− coefficients - x [48] -

Positive electrode potential, U+, coefficients - x [48] -

Open circuit potential V x [48] -

Overpotential η Not significant [55] -

Reaction flux at the solid particle surface j (mol cm−1 s−1) - -

Exchange (electrolyte and solid) current
density ie (A cm−2) - -

Electrolyte activity coefficient ±f C C

Bruggeman porosity exponent p C C

Anodic/Cathodic charge transfer coefficient αa, αc C C

Intercalation/deintercalation reaction-rate
coefficient kn,p (A cm2.5 mol−1.5) C C

Universal gas constant R C C

Absolute temperature T C C

Faraday’s constant F C C

ECM

Internal ohmic resistance RO (Ω)

Sensitive [56] Sensitive [56]OCV VOCV (V)

Polarization Resistances R1, R2 . . . (Ω)

Polarization Capacitances C1, C2 . . . (F)

Coulomb efficiency η Almost constant [57] Sensitive [57]

Hysteresis voltage, hysteresis decaying factor H (V), k Not significant [58] Impact of overvoltage
[59]

1 n = Negative electrode; p = Positive electrode; se = Separator; s = Solid phase; e = liquid phase.
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A natural question here is that after continued usage of the battery, shouldn’t all the
parameters change. Not all the coefficients are majorly altered, and the constants do not
change. Also, based on the usage practice, only a particular subset of parameters may undergo
significant changes, such as the performance parameters or the structural parameters.

Knowledge of the impact of cyclic aging on model parameters helps in model reduc-
tion, intermediate battery state estimation at different stages of battery lifecycle, and control
algorithms for the BMS. Additionally, it helps the battery designers evaluate how the cell
degrades for various applications in different working conditions because the model is
up-to-date with the real system in battery DTs. Thus, supporting product optimization for
designers and product state estimation during battery usage and end of life.

3.3. Step 3: Model Parameter-Update Estimation

The third step of the approach should not be mistaken as the parameter identification
described in step 1. The first parameter identification of a battery requires an experimental
setup, i.e., testing the cell in a battery cycler and temperature chamber. However, for
identifying the parameters of partially (in operation) or completely aged cells (at EoL),
the option of removing the cell from its application and testing it does not necessarily
exist. Instead, the sensor measurements from the BMS and knowledge of how the battery
has been used (charge/discharge cycles and environmental data) are the basis for the
parametrization of the battery DT.

The procedures used to estimate the model parameters and states primarily limit
the model usability. From the existing parameter identification techniques for ECM and
DFN models, what role do they play when identifying the parameters of a battery DT that
continuously needs to evolve as the battery is aging? Ultimately, the parameter estimation
procedure that can track model parameters evolution as the cell ages is ideal for battery DT.

The battery DT parameter-update estimation procedure cannot entirely rely on the
existing identification methods (Equation (1)) because, with the battery-DT-workflow, a
cell in operation cannot be dismounted in order to perform experiments. Although the first
step of accurate model development involves estimating parameters using experimental
datasets and validation datasets, in practice, many parameters are constantly changing. For
battery DT the parameter-update estimation needs to be repeated during operation after a
certain number of cycles (N) or time (t). The input data from the BMS is not necessarily
retrieved continuously in real-time. N and t will differ based on the battery application
(EV, grid storage) and its usage practices. We leave the evaluation of optimal values
of N and t for future studies, but an apparent range of N as evaluated from [60,61] is
500–1000 cycles, after which a significant change in electrochemical model parameters is
observed. Parameter update for DTs during battery operation and at EoL includes but is
not limited to the following methods:

• Calculate the model parameters at the end of N cycles, and repeat the update pro-
cess iteratively. Identify the reduced set of parameters (such as in Table 1) directly
influenced by the number of cycles and operating conditions. The initial conditions
(from the governing equations) of the model are certainly updated. Thus, new param-
eters set and initial conditions are available to the model for its next simulation (N
cycles). For DFN, the mathematical estimations of parameters mainly involves reval-
uating the governing equations which employs Fick’s law of diffusion, charge and
mass conservation, concentrated solution theory and Butler-Volmer electrochemical
kinetic expression.

• Calculate the rate of degradation physics caused by lithium plating and SEI growth
through the reaction equations and rate expressions [62]. Lithium-plating passive film
layers formed by consuming of cyclable Li-ions is influenced by the charge transfer
mechanism. The rate of SEI formation reaction is affected by mass transport within
the anode and by surface kinetics. Effects of degradation physics are integrated in the
model after every N cycles.
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• Utilize the fast minimization algorithms such as Gauss-Newton method, prediction er-
ror minimization by estimating the parameter-update through synthetic experimental
data [63]. Synthetic experimental data can be obtained using simulated battery out-
put with computer-generated randomness. However, this method has an unjustified
validation scheme because the input would also be simulated; hence this approach is
mainly beneficial for initial testing purposes of the battery DT.

• Apply data-driven parameter identification methods estimation which employs the
terminal voltage and load current for parameter update (partially applied in [64]). A
comprehensive literature survey of the data-driven parameter identification methods
is not conducted. Therefore, this paper does not attempt to review the data-driven
parameter identification methods thoroughly. Instead, we choose to review if data-
driven approaches can support the parameter-update step. There is no doubt that
a large amount of training data (collected at the beginning of life) is a requirement
for data-driven parameter-update during usage. Nonetheless, the cost and computa-
tion time of the data-driven algorithms [65,66] for application in battery DT need to
be compared.

Looking at the state of art parameter estimation algorithms, the gaps between the
currently used battery models and the proposed battery DT are as follows; (1) Availability
of cycling data to the battery model; (2) Model parameter-update method that does not
entirely rely on experimental inputs, but instead on the charge/discharge characteristics
and environmental data. Nevertheless, the state estimation algorithms would inherently
remain the same in both battery model and DT.

3.4. Step 4: Adaptive Model Update

Step 4 of the approach addresses the execution efforts applied on the software segment
for implementing a battery DT. The commonly used software and programming languages
of battery modeling are MATLAB, COMSOL or Python. Irrespective of the chosen platform,
the flowchart of the implementation steps is shown in Figure 3. The green arrows denote
the workflow of battery DT while the blue arrows denote that of a battery mode.

Figure 3. Software segment for implementation steps.

The conventional steps of building a battery model using experimental inputs for its
parameter identification followed by the state estimation is the preliminary implementation
step for battery DT. Real-world battery data (i.e., terminal voltage, load current and temper-
ature) is then integrated with the model, which means they are added as time series input
by importing the battery data (in .csv or other compatible formats). The parameter-update
estimation step can be computationally handled in a dedicated code or in the differential
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solver tools in MATLAB or Python. A standard method in MATLAB for accessing the
parameters is through lookup tables (LUT). For model parameter-update in MATLAB, the
parameter (in the required format) is uploaded to the workspace and directly imported to
the LUT. Alternatively, in Python, re-assigning or updating an input parameter is relatively
easy by direct access and assignment of the parameter in its respective object. Finally, the
battery DT is subjected to the state estimation algorithm.

3.5. Step 5: Battery DT KPI Quantification

Lastly, but most importantly, it is necessary to identify the benefits of the battery
DT to draw light on its significance for the battery industry. Referring to the problem
identified in the Section 1 of the paper that without substantial effort to describe and
quantify benefits, it is challenging to suggest that the DT concept itself may be the most
appropriate solution to the challenges faced by each particular industry. To support a
holistic battery DT implementation in the future, both qualitative and quantitative KPIs
are identified and elaborated below:

1. Investment

◦ Effect on optimization cost due to battery DT functionalities.
◦ Cost to establish data acquisition from BMS to the battery model. Here, we assume

the preexisting cost of sensors installed on the BMS and the cells.
◦ Cost of data storage method, i.e., cloud server, memory drive, etc.
◦ Computational cost of simulating the algorithms of the battery DT.

2. Time

◦ Time needed for the state estimation algorithms, optimization algorithms and
other battery DT functionalities

◦ Time to retrieve battery data from its application and assign it to the DT
◦ Speed of battery DT alignment with actual battery, i.e., total time for executing the

parameter-update step.

3. Accuracy

◦ Accuracy of parameter identification.
◦ Accuracy of parameter-update estimation parameter identification.
◦ Accuracy of state estimation

4. Functionalities

◦ DT functionalities that support the battery designers (battery design optimization)
◦ DT functionalities that support the battery users
◦ DT functionalities that support the battery EoL handler (RUL assessment)

Note: Functionalities is a qualitative KPI. We determine the services that a DT is
capable of providing its users through the battery DT functionalities. The accuracy of those
services across the battery lifecycle is a KPI for evaluating the benefits of using a battery DT.

4. Results

Here, we highlight the usage of approach in Section 3. The number and variety of ex-
isting open-source battery modeling software packages (MATLAB, COMSOL, DUALFOIL,
fastDFN, to name a few) have made it convenient for academics and industrial battery
designers to begin with partially developed and functional models rather than building
the battery model from scratch.

Utilization of experimental results for estimating the battery model parameters is
necessary during initial design of the model. However, for estimating the battery state
that is already in use for N cycles, experimental validation of terminal voltage followed
by a minimization optimization algorithm is impossible. Here, the alternative is that
either the BMS provides the voltage values of each cell through the voltage sensor or the
parameter-update is identified through the aging physics of the battery.
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PyBaMM (Python Battery Mathematical Modelling) is an open-source Python package
that can solve continuum models. It can be coupled with other software packages and is
capable of solving standard electrochemical battery models. Documentations for using
PyBaMM are available [67,68] and the results show that PyBaMM can facilitate the model
parameter-update estimation.

The data structure of battery models in PyBaMM is a collection of symbolic expression
trees (variable, parameter, addition, multiplication, and gradient). These enable mathe-
matical representation of the model components. The addition of a new battery model
in PyBaMM requires initialization of attributes such as: (1) variable boundary conditions;
(2) governing equations; (3) initial conditions; (4) output variables of the model; (5) other
optional attributes (geometry, computation solver, parameter values, termination events,
and battery region).

PyBaMM provides parameter sets based on experimental data provided in litera-
ture [69,70] which are used as the reference parameter values in this paper. Types of
parameter for all the components (cells, electrolytes, negative electrode, positive electrode,
SEI, separators) includes, macroscale geometry [m] or microstructure, current collector
conductivities [S m−1], current collector density [kg m−3], current collector specific heat
capacity [J· kg−1 K−1], current collector thermal conductivity [W m−1 K−1], nominal cell
capacity [A.h], current function [A], electrode properties, and interfacial reactions.

According to Figure 3, the model is first fed with the charge/discharge cycle data
through an excel file. In the following execution, a high acceleration aggressive driving
schedule—US06 is used to discharge the DFN model. Code segments (2), (3) and (4) are
the cycle integration steps.

Experiment1 = pybamm.Experiment ([“Charge at 1 A until 4.1 V”, “Hold at 4.1 V until 50 mA”]) (2)

Experiment2 = pybamm.Experiment([(“Discharge at 1C for 0.5 h”, “Discharge at C/20 for 0.5 h”)] × 2 +
[(“Charge at 0.5 C for 45 min”,)]

(3)

Experiment3 = pybamm.Experiment([(“Discharge at 2C until 3.3 V”, “Rest for 0.5 h”,
“Charge at 1 A until 4.1 V”, “Hold at 4.1 V until 50 mA”)])

(4)

The Python program was written based on the provided examples in the documen-
tation, hence the results can be reproduced. PyBaMM operates with respect to a defined
set of input parameters (~97) and output variables (~400). The PyBaMM program steps
highlight the ease of following the implementation steps of Figure 3. It can be considered
the means to develop battery DTs, mainly due to fast access to the model parameters in
Python. Further analysis and research with different input data and parameter identifica-
tion are definitely needed in order to implement a holistic battery DT. The correctness of
the findings in these results are dependent on the precision of the PDE and ODE solvers
in PyBaMM.

In Figure 4, the default DFN model is assigned with the two types of charging
preconditions—(2) and (3). The battery model is fully charged using 2, followed by
the final state of the experimental solution being mapped to the initial conditions of the
next discharge cycle. Similarly, using (3), the battery model is completely discharged
followed by slow charge at 0.5 C for 45 min. Likewise, the final state of the experimental
solution is mapped as the initial condition for the consequent discharge cycle. The surface
concentration, electrode potentials, and terminal voltage values are compared for the three
scenarios, i.e., default battery initial state, fully charged, and slow charged. The compar-
ison implies that the effect of charging under varying conditions can be mirrored to the
consequent discharge cycle. This helps in running the state estimation procedures after
certain discharge cycles with relevant initial conditions.
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Figure 4. DFN model discharge results with different preconditions. Fully charged—code statement
(2). Complete discharge and slow charge—code statement (3).

Code segment (4) is a variation of (3), where the model is discharged at 2 C until
3.3 V, followed by 30 min rest and full charge until 4.1 V. Figures 5 and 6 show that a
discharge/charge cycle with respect to (4) is followed by the US06 drive cycle. Similar
to the processing of Figure 4, the final state of the model at the end of the charge cycle
(Experiment 3) is used to update the initial conditions at the beginning of the discharge
cycle. Figure 5 compares the model behavior with direct discharge and discharge after
the Experiment 3. The plot of terminal voltage reflects that an accurate terminal voltage
estimation is possible when the model parameters are appropriately updated with respect
to the operation of the actual battery. Figure 6 partially repeats a section of Figure 5. It
mainly shows the DFN model output variables for charge and discharge cycle based on
code segment (4) and the US06 drive cycle.

Figure 5. Comparison between output parameters of two discharge characteristics.
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Figure 6. DFN model output variables for discharge based on code statement—(4).

Some of the variables are two-dimensional, with respect to time and the distance from
the anode current collector (x). Thus, the graphs change as time is modified. From Figure 5,
the output variables for both the scenarios (i.e., only discharge and charge followed by
discharge) are retrieved in MATLAB files in 1D or 2D arrays. The output variable set shown
in the following code segment can be used to calculate the degradation mechanisms of the
electrode, separator, and electrolyte.

solution.save_data(“Output_AfterDischarging.mat”,
[“Time [h]”, “Current [A]”, “Terminal voltage [V]”,“x [m]”,
“Electrolyte concentration [mol.m-3]”,
“Electrolyte potential [V]”,
“Negative particle surface concentration [mol.m-3]”,
“Negative electrode potential [V]”,
“Positive particle surface concentration [mol.m-3]”,
“Positive electrode potential [V]”,
“Negative electrode surface area to volume ratio [m-1]”,
“Positive electrode surface area to volume ratio [m-1]”,
“Positive electrode active material volume fraction”,
“Negative electrode active material volume fraction”], to format=“matlab”)
Hence, the first parameter-update method of 3.3 is realizable in PyBaMM. This exam-

ple was based on only a small range of driving schedules, while the input charge/discharge
cycles are much longer in reality. There also arises an alternative of a straightforward
implementation through continuous concatenation of the driving cycles. While that will
work for small durations, a very high computation power will be needed to cycle the
model through the complete usage phase using a single concatenated file. The model
parameter-update during usage keeps the battery DT up-to-date with the actual cell after
every N cycle.

Knowledge of which driving cycle parameters affects the model parameters might not
always be computationally practical because evaluating the exact values of each parameter
is not practically possible. Model reduction is, therefore, an important component, espe-
cially of electrochemical battery models. However, understanding potential dependencies
will directly impact the formulation of the estimation algorithms’ objective function and
cost functions.

The output files generated from the results contribute to parameter retrieval and
comparison, it can further be integrated with existing battery state estimation techniques.
The extensive parameter set that the DFN model provides complements the requirements
of the high fidelity prediction algorithms that aim for high accuracy, irrespective of the
computation costs. Additionally, the output parameter set can be used for generating
training data for data-driven predictions in real-time applications.
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Due to the unavailability of operational data, the KPIs identified in Step 5 of the
approach are not be quantified for this implementation. However, comprehensive testing
and KPI quantification will be investigated in future research.

5. Discussion

The following points focus on the unaddressed issues that remain unresolved but are
considerably broad in scope to be handled in one paper:

• Level of fidelity expected from a battery DT—A model that captures the electrical,
thermal, electrochemical, mechanical and aging aspects of a battery is deemed a high
fidelity model. The reality and practicality of such a model are not clear. The cost and
time needed for an exhaustive high-fidelity battery DT are high, and the estimate of
accuracy improvement is also missing;

• Number of DTs across the battery lifecycle—The idea of a DT across the lifecycle of a
product is not entirely understood. This is due to the uncertainty of the number of
DTs needed in such cases. Either there is one DT with a large capacity, or there are
many small-sized DTs coupled together. For battery DT, the coupling of process and
product DT is a possible use case during manufacturing;

• Scaling the battery DT to module and pack-level DT—Achieving battery DTs at scale
will require a reduction in technical barriers for their adoption. This implies that for a
pack-level battery DT, the number of sensors and the amount of data retrieved will
drastically increase. Hence, the data acquisition and storage needs to be seamless;

• Accuracy of behavioral prediction using battery DT—For commercial utilization of
battery DTs, it is necessary to compare and quantify the accuracy of existing BMS pre-
dictions vs. the prediction of battery DT. Quantification and comparison of percentage
error in DT estimations should be the primary focus in future works.

6. Conclusions

An approach for battery DT implementation was presented. The 5-step approach
allows the readers to recognize the difference between a battery model and battery DT
implementation. The first challenge recognized for battery DT implementation is making
the battery operational data available to the model. Cloud services have been integrated
with onboard-BMSs in the past, but this is not common. In the coming years, the data
integration method for battery DTs has to be standardized, even though it might entail
initial investment and implementation time. The second challenge recognized for battery
DT implementation is that the method of model parameter-update during usage is not well
established and still needs further research. The results of the paper indicate that, if tracked,
the DFN model parameters will keep changing after a certain period of usage and cycling.
The other methods proposed for parameter-update in the paper will be investigated in
future work.

This paper provides a consistent view of a battery DT and the added value, i.e., its
functionalities that it offers during battery operation and EoL. The benefits of battery DTs
are: improved representation, performance estimation, behavioral predictions, optimiza-
tion strategies, and integration of battery life cycle attributes to the remaining DT functions.
Based on the results provided in this paper, a battery DT can widen the scope of current
BMS functionalities by evaluating the degradation effect that the driving cycle has on the
battery from an electrochemical or electrical perspective.

The quantitative uncertainty of the potential costs, infrastructure challenges, and
return on investments for battery DTs still exist. However, the KPIs identified in this
paper will play a significant role in quantifying the battery DT attributes. Promising future
scope exists in evaluating the KPIs for DT across the life cycle phases of a battery. As part
of the ongoing research to evaluate the feasibility of battery DTs, its functionalities and
quantification of its attributes across the lifecycle will be explored in future works.
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Appendix A

Table A1. Governing equations of DFN model along with the phenomenon that describes the diffusion, charge/mass
conservation and flux density in DFN model [46,71].

DFN Model Derived through Governing Equations 1

Solid phase mass transport
equation—Li+ concentration in

electrodes and separator
Fick’s law of diffusion ∂cs(x,r,t)

∂t = Ds
r2

∂
∂r

(
r2 ∂cs(x,r,t)

∂r

)
Liquid phase mass transport

equation—Li+ concentration in
electrolyte

Conservation of Li+ ions
(Conservation of mass) εe

∂ce(x,t)
∂t = ∂

∂x

(
De f f

e
∂ce(x,t)

∂x

)
+
(
1 − t0

+

)
As j(x, t)

Solid phase charge transport
equation—Potential in electrode

Ohm’s law (Conservation of
charge)

∂
∂x

(
σe f f ∂φs(x,t)

∂x

)
− AsFj(x, t) = 0

Liquid phase charge transport
equation—Potential in electrolyte

Ohm’s law and Kirchhoff’s
law (Concentrated solution

theory, conservation of charge)
∂

∂x

(
κe f f ∂φe(x,t)

∂x

)
+ ∂

∂x

(
κ

e f f
D

∂ ln(ce(x,t))
∂x

)
+ AsFj(x, t) = 0

Flux density between solid and
liquid phase Butler-Volmer Equation

j =
k0c1−α

e (cs,max − cs,e)
1−α cα

s,e

(
exp

(
(1−α)F)

RT η
)
− exp

(
− αF

RT η
))

1 Concentration of lithium in the solid phase cs(x, r, t) and electrolyte ce(x,t). Electric potential in the solid phase φs(x,t) and electrolyte
φe(x,t). Flux density between solid phase and electrolyte j(x,t). Remaining symbols are described in Table 1.

Table A2. Equations of ECM model in the time domain for pulse current [72].

ECM Model Equations Variables

pi = fi(SOC, SOH, T, I)
p1 = {VOCV, R1, C1, RS}

i is the i-th parameter of the model. R1 and C1 are the polarization resistance and
capacitance and RS is the ohmic resistance. VOCV is the open circuit voltage

Vt = VOCV − V1 − VRs; VRs = I * RS where VRs refers to the voltage reduction from Rs and Vt is the terminal voltage

SOC = SOC0 − ∫ t
0

Ib
C dt

SOC calculation using CC, where C is capacity, Ib is current, and SOC0 is the initial
SOC
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Abstract: In this paper, a method for monitoring SoC of a lithium-ion battery cell through continuous
impedance measurement during cell operation is introduced. A multi-sine signal is applied to the
cell operating current, and the cell SoH and SoC can be simultaneously monitored via impedance at
each frequency. Unlike existing studies in which cell impedance measurement is performed ex situ
through EIS equipment, cell state estimation is performed in situ. The measured impedance takes into
account cell temperature and cell SoH, enabling accurate SoC estimation. The measurement system
configured for the experiment and considerations for the selection of measurement parameters are
described, and the accuracy of cell SoC estimation is presented.

Keywords: lithium-ion battery; battery management system; state monitoring; state-of-charge

1. Introduction

A Li-ion battery is a type of secondary battery in which lithium ions move from
a negative electrode to a positive electrode through an electrolyte during a discharge
process. Lithium is the lightest solid element and has the lowest standard reduction
potential. Therefore, when applied as an electrode material, the battery cell can obtain an
electromotive force higher than 3 V, and a high energy density per weight and a high energy
density per volume can be obtained. Li-ion batteries have less memory effect and less
self-discharge as well. In addition to these advantages, due to their reliable performance,
long life cycle, and advantages such as reduced pollution, Li-ion batteries are one of the
most promising power sources for portable electronics, electric vehicles, renewable energy
storage devices, et cetera [1,2]. However, high energy density batteries with low thermal
stability electrode materials may have low safety performance [3–5]. In particular, battery
failure caused by extreme conditions such as excessive external force, high temperature,
low temperature, overcharge, and over-discharge becomes a serious problem [6–8].

Overcharging the Li-ion battery can be one of the most important safety issues. Over-
charging occurs when a charging current is forced in after the battery reaches its upper
cutoff voltage or state of charge (SoC) limit. It is usually caused by a malfunction of the
battery charger or by an inaccurate estimate of the condition of the battery in the battery
management system (BMS). When the Li-ion battery is overcharged, in addition to the
increase in internal resistance, decomposition of the binder and electrolyte, formation of
insoluble products, blocked electrode pores, and gas generation may occur sequentially [9].
Especially, severe expansion of the battery may occur due to gas accumulation [10], and
when the internal pressure exceeds the limit, structural deformation, rupture, and an
internal short circuit may occur [11,12]. Lithium metal and moisture in the air may react
after the battery ruptures, and even flammable gases may ignite [8,13]. Heat generated by
side reactions and internal short circuits can accelerate battery failure mechanisms through
natural positive feedback, leading to thermal runaway, eventually causing battery ignition
or explosion [8,14,15]. In the case of over-discharge, a significant loss of active lithium and
positive electrode material occurs [16], and a decrease in battery capacity occurs [17,18].
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Battery over-discharging also results in a change in the solid electrolyte interphase (SEI)
on the anode surface and an increase in impedance [18]. Gas is also generated from the
decomposition of the SEI, which can cause battery swelling [19].

Accurate SoC estimation has the following advantages:

• Battery cells can be used longer by preventing overcharging and over-discharging,
which can cause permanent damage.

• It enables more aggressive cell operation. If the reliability of the SoC estimation is
low, it must be operated conservatively in order to avoid overcharging and over-
discharging the cell and to make the operation as safe as possible.

• As it shows reliable estimation results for any usage profile of the cell, it improves the
reliability of the use of the battery cell in the application system.

• As the battery pack design does not have to be overengineered, it enables the produc-
tion of smaller and lighter battery packs. It eventually lowers the price of the battery
pack. In addition, the reliable battery system reduces battery maintenance costs.

Nonetheless, there is still no way to directly measure the SoC of a battery cell. There-
fore, it must be estimated or inferred indirectly from the measured current, voltage,
and temperature.

Li-ion cell SoC estimation methods can be listed as follows [20–22]:

• SoC estimation method based on open circuit voltage (OCV)

In order to represent the thermodynamic state of the energy of the cell electrode, the
OCV according to the chemical composition of the electrode is used. OCV is the voltage
of the electrode when it has been stable for a sufficient time without flowing current. Cell
voltage is related to temperature and electrode particle surface concentration, whereas cell
SoC is related to particle average concentration. In other words, OCV is measured when
the electrodes of an electrochemical cell reach equilibrium and there is no voltage deviation
depending on the position inside the electrode, which reflects the Gibbs free energy at
thermodynamic equilibrium. The OCV represents a strong dependence on SoC in most
batteries. Nevertheless, it is impractical for real-time or continuous state estimation since a
relaxation time of several hours is generally required to reach electrochemical equilibrium.
This is especially problematic for battery applications where resting time can never exist.
Furthermore, Li-ion batteries have a flatter OCV compared to lead-acid batteries, making
SoC estimation difficult. In addition, cell temperature and cell state of health (SoH) can
also lead to SoC estimation errors based on OCV.

• SoC estimation method based on ampere counting

In the SoC estimation method based on ampere counting, the accumulated amount
of charging and discharging current relative to the discharging capacity is defined as
ΔSoC and calculated with the set initial SoC. Since only cumulative current information
is used for SoC estimation, it has the advantage of requiring relatively low performance
for the hardware and software of the BMS. However, this method also has weaknesses in
estimating cell SoC. It becomes a problem if the SoC of the battery cell is entirely dependent
on the initial SoC. Since only ΔSoC is calculated, it is unavoidable to misestimate the SoC if
the initial SOC setting is incorrect. In addition, it is impossible to know exactly the total
capacity and coulombic efficiency of a cell, which should be approximated, and both of
these approximations contribute to the error in cell SoC estimation. Self-discharge currents
and leakage currents from electronic circuits for measuring cell performance increase errors
as well. Furthermore, errors in voltage, current, and temperature measurements contribute
to increasing the estimation error. These errors are more integrated and intensified as
battery cell operating time increases. As a result, the uncertainty in the SOC estimate is
exacerbated by the accumulated measurement errors. Therefore, this method can show
reliable estimation results for a short period of time only if the initial conditions are well
known, unless there is a feedback mechanism for error correction.
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• SoC estimation method based on heuristic data

The heuristic based SoC estimation method is a method based on experimental data.
Statistical rules or patterns found from data obtained through various cell charge and
discharge experiments are used. These methods include fuzzy logic, neural networks,
and support vector machines (SVM). Reliable estimation results can be obtained when
the learning technique is implemented with a large amount of experimental data under
different conditions. However, it takes a lot of time for the necessary experimental data to
be properly secured.

• SoC estimation method based on adaptive control

An adaptive control based SoC estimation method such as a Kalman filter (KF) [23]
or a sliding mode observer [24,25] compares the actual SoC measurement result with the
estimated value and gradually reduces the difference according to the feedback principle.
Although this method has a high estimation performance, it is relatively complicated to
implement and thus has a disadvantage of high cost.

• SoC estimation method based on equivalent circuit model

The electrochemical impedance spectroscopy (EIS) method is a well-established tech-
nique for determining the dynamic behavior of electrochemical systems [26,27]. It is used
to characterize battery impedance behavior over a wide frequency range [28,29]. Using EIS,
the measured spectrum in an electrochemical system can be interpreted as an impedance
spectrum of a lumped element model consisting of resistors, inductors, and capacitors.
It can be used to implement dynamic simulation models [30]. The SoC [21,22,31] and
SoH [28,32,33] of the battery cell can be estimated through the equivalent circuit model
obtained through EIS. Moreover, the commonly used definition for battery end of life (EoL)
is the predefined battery impedance increase at nominal conditions [34–36]. Nevertheless,
EIS equipment is generally used in laboratories for general propose impedance measure-
ments [3], which are not suitable for battery monitoring purposes. For EIS measurements,
battery cells need to be detached from the operating load, and it is usually time consuming
for impedance measurements in a wide frequency range. In addition, EIS equipment can
be an excessive investment for battery monitoring systems, especially heavy and bulky for
portable devices. Moreover, without algorithms for cell state estimation, EIS measurements
alone cannot estimate cell SoH and SoC.

Unlike the method using EIS, the proposed method can be used to estimate the SoC
of the cell during operation. There is a growing interest in the use of cell impedance to
monitor the condition of batteries. The papers by Qahouq [37] and Waag et al. [38] deal
with the impedance measurement of the operating cell but do not cover cell SoC and SoH
estimation using the measured impedance. In the paper by Do et al. [39], the measured
impedance is not adjusted according to the temperature change, and the computational
complexity increases by using the extended KF. In addition, this paper does not deal with
the method of estimating the cell SoH and SoC from the measured impedance. In the
papers by Huang et al. [40] and Howey et al. [41], the cell SoC is estimated by measuring
the cell impedance, but the effect of temperature on the cell impedance is not considered.
The paper by Fleischer et al. [33] shows a good result of estimating the state of a cell in
operation. However, a physical model and an equivalent circuit model are used, and
so-called mutation algorithms are used. Since nonlinear differential equations and matrix
operations are required, the complexity of the operation is increased. On the other hand,
the proposed method is relatively simple but accurate. Using the cell temperature and
impedance at two frequencies, SoH and SoC of the cells in operation can be estimated.

61



Batteries 2021, 7, 76

Proposed Cell State Estimation Method

Battery cell SoC can be estimated by continuously measured impedance during dis-
charge. To estimate the cell state, a multi-sine signal with a small amplitude is applied to
the cell operating current, and the cell impedance is measured through the amplitude of
the voltage response. The multi-sine signal is the sum of two different frequencies, and
each frequency is used to estimate the cell SoH and SoC.

If the current i expressed by Equation (1) flows through the battery cell, the cell voltage
e can be expressed by Equation (2).

i = Idc + ΔIf· sin(2πft) (1)

e = Edc + ΔEf· sin(2πft +φf) (2)

where Idc is direct current (DC) bias, ΔIf is the amplitude of the excited test frequency
f, Edc is the offset voltage, ΔEf is the amplitude of the output voltage, and φf is the
phase difference.

Dividing the voltage by the current as Equation (3) produces a complex impedance Zf.

Zf =
ΔEf
ΔIf

·ejφf = |Zf|·ejφf = Z′
f + j·Z′′

f (3)

The electrochemical impedance of batteries depends on frequency and characterized
by its modulus |Zf| and phase angle ejφ. Another expression is given as the real and
imaginary parts of the complex impedance.

EIS measurements usually use a single-sine signal in which individual frequencies are
measured sequentially, which is also known as stepped sine or frequency sweep. Therefore,
single-sine EIS has the disadvantage that it takes a long time to acquire impedance in a wide
frequency range. This disadvantage can be overcome by measuring several frequencies
simultaneously. The method of measuring multiple frequencies at the same time is called
multi-sine EIS. Multi-sine signals have already been used for impedance spectroscopy and
transfer function measurements in biomedical applications [42,43], material characteriza-
tion [44], and other fields such as battery measurements [26,28]. Nonetheless, multi-sine
EIS is not a common method for estimating the in situ state of a battery cell. In general, the
multi-sine EIS, like the single-sine EIS, requires the cell to be separated from the application
circuit for impedance measurements. In the proposed battery SoC monitoring method, the
sum signal of two test frequencies is excited to the cell operating current and its response
voltage is measured. A Fourier transform is used on the sampled cell voltage to obtain
the amplitude at each test frequency. The impedance at each test frequency is obtained by
substituting the amplitude of each response voltage into Equation (3).

2. Experiment

2.1. Measurement System

The measurement system is configured to measure cell impedance by applying a multi-
sine signal to the operating current. Table 1 shows the specifications of the Li-ion battery cell
used and Figure 1 shows a block diagram and a picture of the measurement system.

Table 1. Specifications of the Li-ion cell.

Item Description

Anode Based on intercalation graphite
Cathode Based on lithiated metal oxide 1

Product name Samsung ICR 18650-26F
Battery system Li-ion

Nominal voltage 3.7 V
Rated capacity 2.6 Ah

1 Consists of cobalt, nickel, and manganese.
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(a) (b) 

Figure 1. (a) A block diagram of the measurement system; (b) a photo of the measurement system.

The test battery cell is placed in the temperature chamber of the Binder GmbH set to
25 ◦C. NXP’s silicon temperature sensor KTY 81-110 is attached to the cell to measure the
actual cell surface temperature. The voltage signal output port of USB-6212, which is a
data acquisition (DAQ) module of the Natural Instruments, is connected to an electronic
load to apply test frequencies to the cell operating current. This DAQ module also acquires
cell voltage, current, and temperature data. Experiments are controlled by adjusting
measurement parameters through a graphical user interface (GUI) created using LabVIEW
from National Instruments. Measured and calculated data is displayed on the monitor
and can also be written to the hard disk. The analog inputs of the DAQ module have
16-bit analogue to digital converter (ADC) resolution, a maximum sample rate of 400 kS/s,
and an input range of ±10 V. The analog output has 16-bit digital to analog converter
(DAC) resolution, an output range of ±10 V, and a maximum update rate of 250 kS/s. The
operation of the electronic load is described in the author’s previous paper [45].

2.2. Definition of Key Terms

There is no standard definition that defines SoC and SoH for battery cells and may be
defined differently depending on the battery application system. Therefore, it is necessary
to clarify the terms defined in this paper before discussing cell state estimation.

• Definition of C-rate

In general, C-rate is used to indicate the rate of charge and discharge of a battery cell.
The relationship shown in Equation (4) is given between the cell nominal capacity CN and
the operating current i.

h = CN/i (4)

where h is the time (hour) taken to completely discharge the battery cell, i is the current
at which the cell operates, and CN is the nominal capacity of the battery (Ah). Here, the
reciprocal of the h value is defined as the C-rate.

• Definition of SoC

In this paper, the cell SoC is set through the following three steps:
(1) Full charge of the battery cell. The constant-current (CC) charging procedure at

1C and the constant-voltage (CV) charging procedure at 4.2 V are followed in sequence,
where 4.2 V is the upper cut-off voltage specified by the cell manufacturer. This first step is
complete when the charging current drops below C/10. Subsequently, each cell is given
90 min of relaxation time.
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(2) Discharge the cell at 1C until it reaches a lower cut-off voltage. From this step, the
actual cell capacity Ccell is obtained.

(3) Set the cell to the target SoC. To fully charge the cell, Stage 1 is performed again, and
then the charge of the cell is consumed until the target SoC is reached. Since different cell
relaxation times can introduce errors, the same relaxation times must be observed [46,47].
Each cell is given 90 min of relaxation time after the target SoC is set and before it is used
in the experiment.

The SoC is then defined as Equation (5).

SoC = Cresidual/Ccell × 100 (%) (5)

The SoC of a cell is the ratio of the residual capacity (Cresidual) to the total available
capacity when the battery cell is fully charged (Ccell). The Ccell can be obtained from
the second step of the procedure for setting up the cell SoC mentioned above. Depth of
discharge (DoD) has the exact opposite definition of SoC, i.e., a cell of 80% SoC has the
same meaning as a cell of 20% DoD.

• Definition of SoH

Battery cell SoH is defined as the ratio of the cell actual total available capacity Ccell to
the cell initial total available capacity Cinit and expressed by Equation (6).

SoH = Ccell/Cinit × 100 (%) (6)

In this paper, cell impedances from 100% to 80% SoH of cells are measured and
compared. The EoL of a battery is reached when the energy content or power capacity is no
longer sufficient for the application. This can vary depending on battery application; thus,
there is no universal definition of how many cell SoHs have reached EoL. Nonetheless,
publications assume that EoL is reached when the battery cell SoH is less than 80% [48–50].

2.3. Measurement Parameters
2.3.1. Selection of Test Amplitude

Depending on the battery cell application, the amplitude of the test frequency should
be selected taking into account the trade-off between measurement accuracy and invest-
ment costs for battery management. In order for the appropriate test amplitude to be
selected for impedance measurements, it must be selected to be small enough not to violate
the linear criteria of the electrochemical battery system but large enough to obtain a suitable
signal-to-noise ratio for robust measurements. The amplitude of the test signal must be
small enough to satisfy the pseudo-linearity of the cell response voltage. This is crucial
because the current–voltage curve of a Li-ion cell shows a nonlinear relationship that
follows the Butler–Volmer kinetics. An excitation amplitude of 5 to 10 mV is generally
recommended [51], e.g., if it is used for CC measurement (galvanostatic), the excitation
amplitude of the current must be set so that the maximum absolute value of the voltage am-
plitude does not exceed 10 mV. Especially when a multi-signal signal is used, the maximum
amplitude of the applied signal should be considered. Because the amplitudes at each
frequency increase the total amplitude of the test signal, pseudo-linearity can be violated.
For more test frequencies to be used, the amplitude of each frequency must be lowered,
i.e., if a multi-sine signal of N frequencies is used, the output voltage amplitude at each
frequency must be reduced to a maximum 10/N·mV. Amplitudes that are too small can be
a problem as well. This is due to the finite resolution of the hardware that acquires and
generates the test signal. Moreover, impedance measurements are not possible when the
output voltage amplitude at individual frequencies becomes less than the system noise.
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2.3.2. Selection of Test Frequencies

In a Li-ion battery cell, charged particles containing lithium ions are always involved
in the electrode process. It is generally believed that the time constants of the movement or
reaction of charged particles in these processes are different. Thus, impedance at different
frequencies is related to different processes [52]. The influence of mass transfer, whose time
constant is slower, is dominant at impedance at lower frequencies. Mass transfer (including
diffusion) becomes faster as the temperature is higher and as the concentration of Li-ions
increases (as DoD is lower). Faster transfer speed can be interpreted as lower impedance.
On the other hand, the lower the cell temperature or the higher the DoD, the slower the
mass transport [53], which appears to be a higher impedance in the lower frequency. This
means that impedance at lower frequency can be more advantageous as it is used for cell
SoC estimation. Studies on battery cell impedance consistently show that impedance at lower
frequencies is more dependent on changes in cell SoC. However, since the frequency is the
reciprocal of the period, the lower the frequency, the longer the period required to measure
each continuous impedance. For example, if 1 mHz is used for the measurement, it takes
about 17 min to collect only one period of signal. Therefore, the test frequency should be
selected considering the time interval required for state estimation depending on the battery
application. There is one more problem: the longer the measurement of one period, the greater
the change in the internal state of the cell such as SoC and cell internal temperature. This
also increases the error in impedance measurements. In this paper, 1 Hz where one period of
signal can be collected per second is used as an example for SoC estimation.

There are also some considerations for higher frequencies to be used. In this case,
the achievable sampling rate in the hardware can be a constraint. In theory, satisfying
the Nyquist-Shannon criteria is sufficient for the signal to be restored, but, generally,
oversampling is required due to noise and non-ideal properties in analog filters. Another
problem is that the cell impedance is generally lower at higher frequencies, which can lead
to the same problems when the test amplitude is too low. Most cell degradation results
in an increase in internal resistance [54–57], and the 1 kHz impedance of the cell used
in this paper represents the ohmic resistance of the cell in which the imaginary part of
the impedance becomes 0. In paper [46], the accuracy of SoH estimation with impedance
at different frequencies is compared, which shows that impedance at higher frequencies
is more advantageous for use in SoH estimation, which is less affected by cell SoC and
temperature. In this paper, a frequency of 1 kHz is used for SoH estimation as an example.

3. Measurement Results

The measurement system and parameters described in Section 2 are used for cell
impedance measurements. The overall process of cell state estimation in this paper is
shown in Figure 2 as a flow chart.

Table 2 shows the experimental conditions. Cell impedance is measured every second
while discharging from 0% to 100% DoD for each cell with 100% to 80% SoH. A DC bias
of 1C and an excitation amplitude of 130 mA are applied, i.e., an amplitude of 65 mA is
given at each frequency of 1 Hz and 1 kHz. This amplitude is chosen for the cell output
voltage amplitude to be less than 10 mV. The multi-sine test signal, the sum signal of
the two frequencies, applies to the cell DC bias, and the impedance at each frequency is
measured simultaneously.
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Figure 2. Flow chart showing the cell state estimation process.

Table 2. Experimental conditions for measuring cell impedance during discharge.

Parameter Description

Chamber temperature 25 ◦C
Depth of discharge From 0 to 100%

DC bias 2600 mA (1C)
f1, f2 1 Hz, 1 kHz

ΔI1, ΔI2 65 mA (each)

Figure 3 shows continuous 1 Hz and 1 kHz impedance during discharging of cells
with different SoHs.

Figure 3. 1 Hz and 1 kHz cell impedance during discharge of cells with different SoHs. The solid
lines represent the 1 Hz impedance, the dotted lines represent the 1 kHz impedance, and the different
brightness of the line represents the different cell SoH.

As shown in Figure 3, the lower the cell SoH, the higher the cell impedance, and while
1 kHz impedance is relatively constant for DoD changes, 1 Hz impedance is more affected
by cell DoD. While the cell is completely discharged, the increased rate of the highest value
to the lowest value of 1 kHz impedance is 3.74%. At the same time, for 1 Hz impedance, the
increased rate of the highest value to the lowest value between DoD 5% and 95% is 10.16%.
The 1 kHz impedance shows a smaller increased rate, and it indicates less susceptibility
to changes in cell DoD. Therefore, the 1 kHz impedance is more suitable to be used for
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SoH estimation of cells for which the cell SoC is unknown. Contrastively, 1 Hz impedance
shows larger increase rate, which means that it is more suitable for cell SoC estimation.

For the calculation of the increase rate, 1 Hz impedance between DoD 5% and 95%
in Figure 3 are used (if the full range of DoD 0% to 100% is considered, the difference in
impedance deviation at 1 Hz and 1 kHz will be more prominent.). The reason is that at
the beginning and end of cell discharge, the 1 Hz impedance is not measured correctly
and cannot be used for cell SoC estimation. The voltage response of an electrochemical
cell is not only affected by the cell impedance. The cell discharge process causes an
overpotential, which is the voltage loss described by polarization. Polarization refers to
a phenomenon in which the electrode potential becomes excessive or insufficient in an
equilibrium state. During the reaction process in a battery cell, the rate of charge transfer
process occurring in each cell component is not the same. If this rate is relatively slow
for a particular process, it becomes the rate-limiting process for the entire reaction of the
cell. As the cell discharges, current flows between both terminals, causing the voltage
to be measured below its equilibrium potential. In this case, the difference between the
voltage at both terminals and the equilibrium voltage is called overpotential, indicating
the degree of polarization. Figure 4 shows the three polarization regions appearing in the
typical discharge curve of a Li-ion battery cell. In the cell discharge process, polarization
can be classified into three categories: activation polarization, concentration polarization,
and ohmic polarization [58].

Figure 4. Typical discharge curve of a battery cell, showing three different regions of polarization.

Ohmic polarization, also referred to as ohmic loss, is caused by the current flowing
through the internal resistance of the battery cell. The greater the cell internal impedance,
the greater the operating voltage drop as the ohmic losses increase proportional to the
current density. Therefore, in this region, it has a slope related to the cell impedance and
shows the most linearity when charging and discharging the cell. Due to this linearity,
impedance can be measured accurately; hence, it is the most suitable region for cell state
estimation through impedance measurement. Meanwhile, the cell output voltage in the
activation and concentration polarization regions has nonlinearity. Activation polarization
is due to various delay factors inherent in the dynamics of electrochemical reactions, such
as the work function that ions must overcome at the junction between the electrode and
the electrolyte. It has a dominant effect at the beginning of cell discharge. Concentration
polarization takes into account the resistance that ions face in the process of mass transfer
(e.g., diffusion) as they move across the electrolyte and from one electrode to another. This
polarization has a dominant effect at high cell DoD. In conclusion, the cell voltage drops
significantly non-linearly as the cell discharges in the region of activation and concentration
polarization. Because this nonlinearity is based on slow response, especially in battery cells,
the lower the frequency, the more difficult it is to obtain an accurate cell impedance. As
shown in Figure 3, the effect of activation and concentration polarization at a frequency
of 1 Hz is more pronounced than at 1 kHz, because slow transport processes are well
represented at lower frequencies. On the other hand, slow transport reactions cannot be
detected at higher frequencies, but the effects of fast kinetics can be revealed.
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3.1. Cell SoH Estimation

The measured 1 kHz impedance in Figure 3 is used to estimate the cell SoH. Figure 5
shows the average of the 1 kHz impedance at each SoH and the fitted line.

Figure 5. Averages of 1 kHz impedance at each cell SoH (dotted line) and linear fit (solid line).

The fitted line in Figure 5 is obtained through linear regression of these 1 kHz
impedances measured at each SoH, and it is expressed as Equation (7).

Zf2 = −0.1355·SoH + 64.2 (7)

The measured 1 kHz impedance can be used to estimate the cell SoH using Equation (7).
Here, root mean squared error (RMSE) is 0.21 mΩ and R2 is 0.99. R2 represents the good-
ness of fit of the estimated model. The closer this value is to 1, the better the estimate
matches the target value.

3.2. Cell SoC Estimation

The cell 1 Hz impedance is greatly influenced by not only the cell SoC but also the
cell SoH and cell temperature. Therefore, to be used for cell SoC estimation, the 1 Hz
impedance is adjusted as cell temperature in Section 3.2.1 and normalized as cell SoH in
Section 3.2.2.

3.2.1. Consideration of Cell Temperature

The change in temperature of a battery cell mainly depends on the C-rate, discharge
time, relaxation time, and ambient temperature [59]. Figure 6 shows the cell temperature
that rises when the cell is discharged at 1C current from DoD 0% to 100% in a temperature
chamber set to 25 ◦C (same experimental conditions as shown in Table 2).

Figure 6. The temperature change of the battery cell during discharging at 1C current.

To measure the cell impedance at each constant temperature, cell impedances are
measured through an EIS instrument (IM6ex from Zahner-Elektrik GmbH & CoKG) in a
temperature chamber set to 20, 25, 30, and 35 ◦C. The measurement conditions are shown
in Table 3.
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Table 3. Parameters for EIS measurement (Galvanostatic).

Parameter Description

Cell temperature 20, 25, 30, 35 ◦C
State of health 80%
State of charge 50%

DC bias 0 mA
Frequency range 0.2 to 2 kHz

AC amplitude 100 mA

The measurement results are shown in Figure 7 as a Nyquist plot and a Bode plot.

(a) (b) 

Figure 7. Cell impedance at each frequency at 20, 25, 30, and 35 ◦C. (a) Nyquist plot (O: 1 Hz, X: 1 kHz); (b) Bode plot.

As shown in Figure 7, the higher the cell temperature, the lower the cell impedance,
and the 1 Hz impedance is more affected by temperature than the 1 kHz impedance.
Figure 8 shows the 1 Hz impedance measured at each temperature and a curve fitted with
a quadratic equation.

Figure 8. 1 Hz impedance measured at 20, 25, 30, and 35 ◦C (dotted line) and fitted curve (solid line).

Equation (8) is the quadratic equation fitted in Figure 8, where R2 is 1.00 and RMSE is
0.19 mΩ.

Z(T)fitted = −0.03717·T2 − 3.217·T + 133.3 (8)

where T is the cell temperature, and Z(T)fitted is the impedance obtained through the
equation at the cell temperature T.

The measured 1 Hz impedance at various cell temperatures is uniformly adjusted to
the cell impedance at 25 ◦C through Equation (9).

Z(T)adjusted = Z(T)measured − (Z(T)fitted − Z(25)fitted) (9)

where Z(T)adjusted is the adjusted impedance to 25 ◦C and Z(T)measured is the measured
impedance at temperature T.
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The result of Equation (9) applied to the 1 Hz impedance in Figure 3 is shown in
Figure 9.

Figure 9. 1 Hz impedance adjusted to 25 ◦C.

In Figure 9, the 1 Hz impedance increases with increasing cell DoD. The higher the cell
DoD, the higher the cell temperature (Figure 6), and as the cell temperature increases, the
cell impedance decreases (Figure 8). Figure 9 shows the impedance when the impedance of
Figure 3 is adjusted to a lower temperature of 25 ◦C. Therefore, the temperature-adjusted
1 Hz impedance in Figure 9 becomes higher than the 1 Hz impedance in Figure 3.

3.2.2. Consideration of Cell SoH

As mentioned above, cell 1 Hz impedance is affected by cell SoH as well as cell
temperature. The cell SoH can be estimated via the 1 kHz impedance even if the cell SoC is
unknown (Section 3.1). The cell SoH obtained in Equation (7) is used for normalizing the
1 Hz impedance. The measured cell 1 Hz impedance (Zmeasured) can be normalized to
Znorm by Equation (10).

Znorm = (Zmeasured − Zmin)/(Zmax − Zmin)× 100 (10)

In Equation (10), Zmax and Zmin represent the maximum and minimum values of the
impedance between DoD 10% and 90% and can be obtained by Equations (11) and (12),
respectively. In Equation (11), R2 is 1.00 and RMSE is 0.12 mΩ, and in Equation (12), R2 is
1.00 and RMSE is 0.26 mΩ.

Zmax = −0.00593·SoH2 + 0.79922 SoH + 63.09 (11)

Zmin = −0.2969·SoH + 103.1 (12)

The result of applying Equation (10) to the 1 Hz impedance in Figure 9 is shown in Figure 10.

Figure 10. Normalized 1 Hz impedance vs. DoD.
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The average of the normalized impedance at each SoH is fitted with a cubic equation
and plotted as a curve in Figure 10. This fitted curve is expressed by Equation (13) and has
an R2 of 1.00 and an RMSE of 1.51.

Znorm = −0.00014·SoC3 + 0.032·SoC2 − 0.85·SoC + 7.58 (13)

Table 4 shows each R2 and RMSE when Equation (13) is applied to cells with different SoHs.

Table 4. Accuracy of SoC estimation in cells with different SoHs.

SoH R2 RMSE

100% 0.99 2.42
95% 0.99 2.66
90% 0.99 2.02
85% 0.99 2.51
80% 0.98 3.85

Average 0.99 2.69

Because of the cell nonlinear response mentioned above, SoC estimation using 1 Hz
impedance is made here between DoD 10% and 90%.

3.2.3. Battery Cell SoC Estimation at Different Initial SoCs

Section 3.2.2 shows the results of SoC estimation when a fully charged cell is fully
discharged. However, battery cells are not always operated in a fully charged state. Here,
battery cell SoC estimation at different cell initial SoCs is emulated. A total of 10 min of cell
discharge and 60 min of cell relaxation are repeated until the cell is completely discharged.
The cell impedance is measured every second while the cell is discharging, and each cell
state after the relaxations represents the cell state at different initial SoCs. The experimental
conditions are shown in Table 5.

Table 5. Experimental conditions for SoC estimation of cells that start operating at different SoCs.

Parameter Description

State of health 80%
Chamber temperature 25 ◦C

Discharge time 10 min (each)
Relaxation time 60 min (each)

Depth of discharge From 0 to 100%
DC bias 2600 mA (1C)

f1, f2 1, 1000 Hz
ΔI1, ΔI2 65 mA (each)

Figure 11a shows the cell voltage and cell temperature for the cell DoD, and Figure 11b
shows the 1 Hz and 1 kHz impedances.

As shown in Figure 11a, the cell voltage drops while the cell is discharging and increases
during each relaxation. At the same time, the cell temperature increases while the cell is dis-
charged and decreases during the relaxation time. Figure 11b shows that cell 1 Hz impedance is
more affected by DoD than 1 kHz impedance. The cell 1 kHz impedance is relatively constant
for DoD changes and can be used for cell SoH estimation as shown in Section 3.1, while the
1 Hz impedance is highly influenced by DoD, and it is used for SoC estimation.
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(a) (b) 

Figure 11. (a) Cell voltage (solid line) and cell temperature (dotted line) vs. DoD; (b) 1 Hz impedance (solid line) and 1 kHz
impedance (dotted line) vs. DoD.

In Figure 11b, the DoD ranges where the 1 Hz impedance cannot be measured correctly
are shown in gray. As explained earlier in Chapter 3, the cell 1 Hz impedance is not
measured correctly at the beginning of each discharge, especially due to the nonlinearity
of the cell discharge curve due to activation polarization shown in Figure 4. Each of
these gray ranges in Figure 11b corresponds to 265 s. In addition, the range from DoD
95% in Figure 11b is also included in these gray ranges, as this range corresponds to the
concentration polarization region in Figure 4. However, it should be noted that in most
cell operations where cells are rarely fully discharged, a range that cell impedance cannot
be measured correctly only appear once in the beginning of cell discharge. In Figure 11b,
multiple gray ranges are shown because the impedance at the beginning of the discharge
in different initial SoCs is shown in a single figure.

The 1 Hz impedance of Figure 11b adjusted to the cell temperature is shown in
Figure 12a. Equation (9) is used to take into account the effects of cell temperature. The
temperature-adjusted 1 Hz impedance is then normalized to the cell SoH, and the result is
shown as a dotted line in Figure 12b. Equation (10) is used to normalize the temperature-
adjusted impedance to the cell SoH.

 

(a) (b) 

Figure 12. (a) 1 Hz impedance adjusted to cell temperature vs. DoD; (b) temperature-adjusted 1 Hz impedance normalized
to cell SoH (dotted line) and expected value (solid line) vs. DoD.

The cell SoC can be estimated by applying Equation (13) to Figure 12b, where R2 is 0.99
and RMSE is 3.07 mΩ. Cell impedance in grayed-out ranges is excluded from SoC estimation.
These ranges include a range of 265 s after the start of the discharge and a range of cell DoD
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exceeding 95%. The purpose of this experiment is to show that SoC estimation is possible
even when discharges are initiated from different cell SoCs, so it can lead to misunderstanding
that there are too many grayed-out ranges where SoC estimation is impossible. Again, in
most cases when battery cells are used, this grayed-out range appears only once a battery cell
begins to discharge and rarely twice when the cell is completely discharged.

4. Conclusions and Discussion

This paper introduces a SoC monitoring method of Li-ion battery cells using impedance
measurement. For accurate SoC estimation, the estimated cell SoH is considered with the
measured temperature. Unlike traditional EIS measurement methods, the proposed method
does not require impedance at wide frequencies, saving measurement time and simplifying
measurement saves hardware costs. Especially, a multi-sine signal is applied to measure
the cell impedance at two frequencies simultaneously. The cell impedance at 1 kHz for
SoH estimation and the cell impedance at 1 Hz for SoC estimation are used. As a result,
the proposed cell SoC monitoring method enables simultaneous estimation of unknown
cell SoH and SoC. This is verified through an experiment in several different initial SoCs in
a cell as well.

One problem to be pointed out is that at the start of battery cell discharge (ca. 265 s
at 1C) and in the high DoD range (over ca. 95%), accurate cell impedance measurement
is not possible due to the large nonlinearity in the cell voltage response; hence, the SoC
cannot be correctly estimated. Nonetheless, the proposed SoC estimation method using
impedance can be used together with the SoC estimation method using cell voltage without
any additional hardware or measurement. This is because the proposed method already
measures the cell voltage response to obtain cell impedance. At the same time, this SoC
estimation method using cell impedance can compensate for the weaknesses of the existing
SoC estimation methods using cell voltage. The voltage of the Li-ion battery cell drops
significantly at the beginning and end of the discharge. This enables SoC estimation as a
simple method through cell voltage measurement. However, the decrease in voltage in the
middle region of the cell discharge curve, the so-called “flat plateau”, is not significantly
noticeable, and this is one of the factors that makes it difficult to estimate SoC simply with
the measured cell voltage. In particular, this flat plateau is notorious for estimating the
SoC of lithium iron phosphate (LFP) battery cells. Contrariwise, this flat plateau makes
impedance measurements more accurate. This is because accurate impedance measurement
is possible when the target system is linear. That is, when the proposed method is used,
SoC and SoH estimation is possible on this flat plateau and even more accurate.

In this paper, only the experimental results of lithium nickel manganese cobalt oxide
(NMC) type cells are shown. The proposed method is based on EIS, which has already
been validated in other types of battery cells through numerous literatures. Thus, it can be
expected to be applied to other types of Li-ion cells. Nevertheless, it is worth comparing
the results of applying this method to other types of cells in future studies.

This paper only deals with SoC estimation during battery cell discharge. Accurate
SoC estimation during cell charging is also worth studying. However, there is the problem
that this method is only possible during CC charging. This is because the offset current
changes frequently during CV charging, making it impossible to measure the impedance
correctly. If SoC estimation is possible only during CC charging, the range of SoC that
can be estimated is limited. The authors evaluate that monitoring SoC under this limited
condition does not have a definite advantage; hence, this is not covered in this paper.

Lastly, the experiments in this paper consider the estimation of the state of a cell
discharged at room temperature. Therefore, the experiment is conducted between 20 and
35 ◦C. However, since the cell state estimation method in this paper has the advantage of
considering the effect of cell temperature on impedance, experiments will be conducted in
a wider temperature range for wider application of this method in the future.

73



Batteries 2021, 7, 76

Author Contributions: Conceptualization, methodology, validation, software, hardware imple-
mentation, writing—original draft preparation J.K. (Jonghyeon Kim); writing—review and editing,
supervision, counseling J.K. (Julia Kowal); All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by DAAD (German Academic Exchange Service), Research
Grants—Doctoral Programmes in Germany.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy; Nature
Publishing Group: Berlin, Germany, 2011; pp. 171–179. [CrossRef]

2. Goodenough, J.B.; Kim, Y. Challenges for rechargeable batteries. J. Power Source 2011, 196, 6688–6694. [CrossRef]
3. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J.

Power Source 2013, 226, 272–288. [CrossRef]
4. Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [CrossRef]
5. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [CrossRef] [PubMed]
6. Biensan, P.; Simon, B.; Peres, J.P.; de Guibert, A.; Broussely, M.; Bodet, J.M.; Perton, F. On safety of lithium-ion cells. J. Power Source

1999, 81, 906–912. [CrossRef]
7. Doughty, D.H.; Roth, E.P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface 2012, 21, 37.
8. Belov, D.; Yang, M. Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem. 2008, 12, 885–894.

[CrossRef]
9. Yuan, Q.; Zhao, F.; Wang, W.; Zhao, Y.; Liang, Z.; Yan, D. Overcharge failure investigation of lithium-ion batteries. Electrochim.

Acta 2015, 178, 682–688. [CrossRef]
10. Tobishima, S.; Yamaki, J. Aconsideration of lithium cell safety. J. Power Source 1999, 81, 882–886. [CrossRef]
11. Leising, R.A.; Palazzo, M.J.; Takeuchi, E.S.; Takeuchi, K.J. Abuse testing of lithium-ion batteries: Characterization of the overcharge

reaction of LiCoO2/graphite cells. J. Electrochem. Soc. 2001, 148, A838. [CrossRef]
12. Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; di Michiel, M.; Hinds, G.; Brett, D.J.L.; Shearing, P.R. Investigating lithium-ion

battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study. Phys. Chem. Chem.
Phys. 2016, 18, 30912–30919. [CrossRef] [PubMed]

13. Sun, J.; Li, J.; Zhou, T.; Yang, K.; Wei, S.; Tang, N.; Dang, N.; Li, H.; Qiu, X.; Chen, L. Toxicity, a serious concern of thermal runaway
from commercial Li-ion battery. Nano Energy 2016, 27, 313–319. [CrossRef]

14. Larsson, F.; Mellander, B.-E. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J.
Electrochem. Soc. 2014, 161, A1611. [CrossRef]

15. Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power
Source 2012, 208, 210–224. [CrossRef]

16. Zheng, Y.; Qian, K.; Luo, D.; Li, Y.; Lu, Q.; Li, B.; He, Y.-B.; Wang, X.; Li, J.; Kang, F. Influence of over-discharge on the lifetime and
performance of LiFePO4/graphite batteries. RSC Adv. 2016, 6, 30474–30483. [CrossRef]

17. Zhang, L.; Ma, Y.; Cheng, X.; Du, C.; Guan, T.; Cui, Y.; Sun, S.; Zuo, P.; Gao, Y.; Yin, G. Capacity fading mechanism during
long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. J. Power Source 2015, 293, 1006–1015. [CrossRef]

18. Maleki, H.; Howard, J.N. Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Source 2006, 160,
1395–1402. [CrossRef]

19. Li, H.-F.; Gao, J.-K.; Zhang, S.-L. Effect of overdischarge on swelling and recharge performance of lithium ion cells. Chin. J. Chem.
2008, 26, 1585–1588. [CrossRef]

20. Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Source 2001, 96, 113–120.
[CrossRef]

21. Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L. State-of-the-art of battery state-of-charge determination. In
Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2008; pp. 11–45. [CrossRef]

22. Rodrigues, S.; Munichandraiah, N.; Shukla, A.K. A review of state-of-charge indication of batteries by means of ac impedance
measurements. J. Power Source 2000, 87, 12–20. [CrossRef]

74



Batteries 2021, 7, 76

23. Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. J. Power Source 2004,
134, 277–292. [CrossRef]

24. Kim, I.-S. The novel state of charge estimation method for lithium battery using sliding mode observer. J. Power Source 2006, 163,
584–590. [CrossRef]

25. Kim, I.-S. Nonlinear State of Charge Estimator for Hybrid Electric Vehicle Battery. IEEE Trans. Power Electron. 2008, 23, 2027–2034.
[CrossRef]

26. Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; Barsoukov, E., Macdonald,
J.R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-119-07408-3.

27. Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 383–389.
28. Tröltzsch, U.; Kanoun, O.; Tränkler, H.-R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy.

Electrochim. Acta 2006, 51, 1664–1672. [CrossRef]
29. Buller, S.; Thele, M.; Karden, E.; de Doncker, R.W. Impedance-based non-linear dynamic battery modeling for automotive

applications. J. Power Source 2003, 113, 422–430. [CrossRef]
30. Buller, S. Impedance-Based Simulation Models for Energy Storage Devices in Advanced Automotive Power Systems; Shaker Verlag GmbH:

Düren, Germany, 2003; ISBN 3832212256.
31. Huet, F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J.

Power Source 1998, 70, 59–69. [CrossRef]
32. Fleischer, C.; Waag, W.; Heyn, H.M.; Sauer, D.U. On-line adaptive battery impedance parameter and state estimation considering

physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation. J. Power Source
2014, 262, 457–482. [CrossRef]

33. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.;
Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Source 2005, 147, 269–281. [CrossRef]

34. Abraham, D.P.; Knuth, J.L.; Dees, D.W.; Bloom, I.; Christophersen, J.P. Performance degradation of high-power lithium-ion
cells—Electrochemistry of harvested electrodes. J. Power Source 2007, 170, 465–475. [CrossRef]

35. Thomas, E.V.; Bloom, I.; Christophersen, J.P.; Battaglia, V.S. Statistical methodology for predicting the life of lithium-ion cells via
accelerated degradation testing. J. Power Source 2008, 184, 312–317. [CrossRef]

36. Belt, J.R.; Ho, C.D.; Miller, T.J.; Habib, M.A.; Duong, T.Q. The effect of temperature on capacity and power in cycled lithium ion
batteries. J. Power Source 2005, 142, 354–360. [CrossRef]

37. Qahouq, J.A.A. Online battery impedance spectrum measurement method. In Proceedings of the 2016 IEEE Applied Power
Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3611–3615, ISBN 1467395501.

38. Waag, W.; Fleischer, C.; Sauer, D.U. On-line estimation of lithium-ion battery impedance parameters using a novel varied-
parameters approach. J. Power Source 2013, 237, 260–269. [CrossRef]

39. Do, D.V.; Forgez, C.; Benkara, K.E.K.; Friedrich, G. Impedance observer for a Li-ion battery using Kalman filter. IEEE Trans. Veh.
Technol. 2009, 58, 3930–3937.

40. Huang, W.; Qahouq, J.A.A. An online battery impedance measurement method using DC–DC power converter control. IEEE
Trans. Ind. Electron. 2014, 61, 5987–5995. [CrossRef]

41. Howey, D.A.; Mitcheson, P.D.; Yufit, V.; Offer, G.J.; Brandon, N.P. Online measurement of battery impedance using motor
controller excitation. IEEE Trans. Veh. Technol. 2013, 63, 2557–2566. [CrossRef]

42. Ojarand, J.; Min, M.; Annus, P. Crest factor optimization of the multisine waveform for bioimpedance spectroscopy. Physiol. Meas.
2014, 35, 1019. [CrossRef]

43. Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J. Optimal multisine excitation design for broadband electrical impedance
spectroscopy. Meas. Sci. Technol. 2011, 22, 115601. [CrossRef]

44. Breugelmans, T.; Tourwé, E.; van Ingelgem, Y.; Wielant, J.; Hauffman, T.; Hausbrand, R.; Pintelon, R.; Hubin, A. Odd random
phase multisine EIS as a detection method for the onset of corrosion of coated steel. Electrochem. Commun. 2010, 12, 2–5. [CrossRef]

45. Kim, J.; Krüger, L.; Kowal, J. On-line state-of-health estimation of Lithium-ion battery cells using frequency excitation. J. Energy
Storage 2020, 32, 101841. [CrossRef]

46. Barai, A.; Gael, H.C.; Guo, Y.; McGordon, A.; Jennings, P. A study on the impact of lithium-ion cell relaxation on electrochemical
impedance spectroscopy. J. Power Source 2015, 280, 74–80. [CrossRef]

47. Frank, M.K.; Noel, A.; Simon, V.E.; Jossen, A. Long-term equalization effects in Li-ion batteries due to local state of charge
inhomogeneities and their impact on impedance measurements. Electrochim. Acta 2015, 185, 107–116. [CrossRef]

48. Wood, E.; Alexander, M.; Thomas, H.B. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. J. Power
Source 2011, 196, 5147–5154. [CrossRef]

49. Faria, R.; Marques, P.; Garcia, R.; Moura, P.; Freire, F.; Delgado, J.; de Aníbal, T. Primary and secondary use of electric mobility
batteries from a life cycle perspective. J. Power Source 2014, 262, 169–177. [CrossRef]

50. Han, X.; Ouyang, M.; Lu, L.; Li, J. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity
loss estimation. J. Power Source 2014, 268, 658–669. [CrossRef]

51. Stoynov, Z.B.; Vladjkova, D.E. Measurement Methods | Electrochemical: Impedance spectroscopy. In Encyclopedia of Electrochemi-
cal Power Source; Elsevier: Amsterdam, The Netherlands, 2009; pp. 632–642. [CrossRef]

75



Batteries 2021, 7, 76

52. Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A review of modeling, acquisition, and application of lithium-ion
battery impedance for onboard battery management. eTransportation 2021, 7, 100093. [CrossRef]

53. Jiang, K.; Liu, X.; Lou, G.; Wen, Z.; Liu, L. Parameter sensitivity analysis and cathode structure optimization of a non-aqueous
Li–O2 battery model. J. Power Source 2020, 451, 227821. [CrossRef]

54. Liu, L.; Zhu, M. Modeling of SEI Layer Growth and Electrochemical impedance spectroscopy response using a thermal-
electrochemical model of li-ion batteries. ECS Trans. 2014, 61, 43–61. [CrossRef]

55. Liu, L.; Guan, P. Phase-field modeling of solid electrolyte interphase (SEI) evolution: Considering cracking and dissolution during
battery cycling. ECS Trans. 2019, 89, 101–111. [CrossRef]

56. Stiaszny, B.; Ziegler, J.C.; Krauß, E.E.; Zhang, M.; Schmidt, J.P.; Ivers-Tiffée, E. Electrochemical characterization and post-mortem
analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging. J. Power Source 2014, 258, 61–75. [CrossRef]

57. Kim, J.-H.; Woo, S.C.; Park, M.-S.; Kim, K.J.; Yim, T.; Kim, J.-S.; Kim, Y.-J. Capacity fading mechanism of LiFePO4-based lithium
secondary batteries for stationary energy storage. J. Power Source 2013, 229, 190–197. [CrossRef]

58. Bagotsky, V.S. Fundamentals of Electrochemistry; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 9780471741985.
59. Liu, S.; Liu, X.; Dou, R.; Zhou, W.; Wen, Z.; Liu, L. Experimental and simulation study on thermal characteristics of 18,650

lithium–iron–phosphate battery with and without spot–welding tabs. Appl. Therm. Eng. 2020, 166, 114648. [CrossRef]

76



batteries

Article

Optimization of Disassembly Strategies for Electric Vehicle
Batteries

Sabri Baazouzi 1,*, Felix Paul Rist 1, Max Weeber 1 and Kai Peter Birke 1,2

Citation: Baazouzi, S.; Rist, F.P.;

Weeber, M.; Birke, K.P. Optimization

of Disassembly Strategies for Electric

Vehicle Batteries. Batteries 2021, 7, 74.

https://doi.org/10.3390/

batteries7040074

Academic Editor: Catia Arbizzani

Received: 21 July 2021

Accepted: 2 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobel Str. 12,
70569 Stuttgart, Germany; felix@rist.net (F.P.R.); max.weeber@ipa.fraunhofer.de (M.W.);
kai.peter.birke@ipa.fraunhofer.de (K.P.B.)

2 Chair for Electrical Energy Storage Systems, Institute for Photovoltaics, University of Stuttgart,
Pfaffenwaldring 47, 70569 Stuttgart, Germany

* Correspondence: sabri.baazouzi@ipa.fraunhofer.de

Abstract: Various studies show that electrification, integrated into a circular economy, is crucial to
reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs)
is particularly relevant because of the resource intensity during manufacturing. After reaching the
end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require
the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck
process. At the same time, extremely high return volumes have been forecast for the next few years,
and manual disassembly is associated with safety risks. That is why automated disassembly is
identified as being a key enabler of highly efficient circularity. However, several challenges need
to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is
ensuring that optimal disassembly strategies are determined, considering the uncertainties during
disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated
disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining
optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly
sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the
component level. Finally, we apply the proposed method to derive optimal disassembly strategies
for one selected battery system for two condition scenarios. The results show that the optimization of
disassembly strategies must also be used as a tool in the design phase of battery systems to boost
the disassembly automation and thus contribute to achieving profitable circular economy solutions
for EVBs.

Keywords: electric vehicle battery; disassembly; disassembly planner design; disassembly strategy
optimization

1. Introduction

Electrification of the transport sector is mandatory to achieve the Paris climate targets,
as it currently accounts for around 24% of all global CO2 emissions [1]. However, battery
electric vehicles (BEVs) currently cause almost twice the greenhouse gas emissions in the
manufacturing phase compared to equivalent combustion vehicles, mainly due to the
resource-intensive production of the battery [2]. Nevertheless, electric vehicle batteries
(EVBs) show a significantly better environmental performance if, first, renewable energy
is used to charge the battery during the use phase and, second, if electrification occurs
within a circular economy. In this context, the battery plays the most important role, as it is
the most expensive component in BEVs and contains valuable materials and components
suitable for reuse A battery pack generally consists of several modules made up of battery
cells. Currently, Li-ion cells are the most common. They can be found in three shapes
(cylindrical, pouch, and prismatic) with different cell chemistries (NMC, LCO, LMO, LFP,
and NCA). However, the general structure of a Li-ion battery cell is independent of the cell
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format and the used chemistries. Its main components are anodes, cathodes, a separator,
an electrolyte, and housing. In batteries for the automotive sector, all cell formats and a
wide range of chemistries are used. Thereby, materials’ purchase costs are the primary
cost driver.

The circular use of components and materials offers big economic opportunities and
has great potential to secure the supply of strategic raw materials for cell manufacturers [3].
The work of Sato and Nakata [4] showed that by 2035, high quantities of critical materials
for the production of new Li-ion batteries in Japan will be obtained from the recycling of
batteries at the end-of-life (EoL) stage (34% of lithium (Li), 50% of cobalt (Co), 28% of nickel
(Ni), and 52% of manganese (M)). However, according to Kotak et al. [5], alternative circular
economy strategies such as reuse and remanufacturing would extend the use phase of
batteries and thus avoid the resource-intensive production of new batteries. Furthermore,
they allow postponing recycling, which will result in improving the recycling efficiency due
to the fact that the recycling processes are continuously being developed. In this context,
disassembly plays a key role in the implementation of all alternative circular economy
strategies at the EoL phase [6]. In addition, by using advanced disassembly technologies
and strategies, material recyclers can significantly reduce the mix of materials to be handled
in resource-intensive downstream material recycling processes.

Nevertheless, today, disassembly represents a bottleneck process that has to be per-
formed faster [7]. Currently, EVB disassembly is done manually [8], which leads to high
costs and poses safety risks to human workers. For these reasons, industrial and highly
automated disassembly is mandatory in the future [6]. Automated disassembly is required
to handle future quantities of returning battery systems in an economically viable and
secure manner. Based on the review of several literature sources, Tan et al. [9] divided the
battery disassembly process at the module-level into four steps. It starts with removing the
battery casing, followed by the extraction of the battery management system (BMS), power
electronics, and the thermal management system. After that, wires, cables, and connectors
are removed. Finally, the modules are obtained after disassembling the securing holders.
The modules can be further disassembled to obtain the battery cells. Thereby, the five main
components have to be removed from the modules. These are cell contacting, cell fixation,
housing, thermal management, and the BMS [10]. Gerlitz et al. [10] classified the challenges
for automated disassembly at the module level into product-related and process-related
challenges. Thereby, the main challenge posed by the product is the design variety. The
main process-related challenges are the non-detachable joints and the hazards related to
Li-ion batteries.

Figure 1 shows the different players in the life cycle of EVBs and their role in im-
plementing a circular economy. Thereby, disassemblers specify the material flow at the
EoL phase. Remanufacturers are very important for implementing high-value circularity
solutions at the different system levels. Recyclers are obligatory to close the loop. Here,
it is worth mentioning that there are different opinions in the ongoing research projects
on who will carry out disassembly, remanufacturing, and recycling. It is assumed that
these operations will either be performed by the same stakeholder, such as recyclers, or
that new actors will be established due to the expected enormous return volumes and the
diversified skills necessary to establish economic and high-quality circularity of EVBs. In
this work, we adopt the second opinion. Disassemblers play a decisive role, whatever the
recovery option at the EoL phase is. However, EVB disassemblers have to deal with several
challenges in the future, such as:

• The increasing return volumes, the uncertainties in timing, quality, and quantity
leading to uncertainties concerning the economic viability of future circular econ-
omy strategies,

• The wide range of battery system designs and cell chemistries and the short innovation
cycles for new cell chemistries causing potential technological obsolescence and rapid
decay of economic value of battery technologies currently prevalent in the field.
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Figure 1. Participants along the life cycle of battery systems and their role in establishing a circular economy.

At the EoL phase, remanufacturers and recyclers are also crucial to extend the life
of battery components or to recycle the battery parts if recycling is the only recovery
option due to advanced aging or if recycling is the most suitable recovery option. The big
challenge here is to find out the optimal route for an EVB at the EoL phase, as there are
multiple alternative circular economy strategies and diverse recycling paths. Furthermore,
this decision depends on the market demand. Therefore, a multicriteria decision platform
is extremely essential [1].

Once the optimal EoL strategy has been determined, how should the battery be
disassembled to implement the selected route economically? This question leads to an
optimization problem that must be solved for individual batteries to significantly increase
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the economic efficiency of disassembly as the most expensive processing step in the current
state [11]. Ke et al. [12] performed disassembly tests on the same battery type with the
same skilled workers. They observed that the workers could disassemble the battery at
least 11.5% faster when they had an optimized disassembly sequence.

Disassembly cannot be seen as the reverse of assembly because, first, disassembly is
subject to many uncertainties and, second, there are different ways to perform disassembly.
Here, different disassembly modes can be distinguished using several criteria. such as the
disassembly depth (Complete/incomplete), the disassembly techniques (Destructive/non-
destructive), the number of used manipulators (Sequential/parallel), and the automation
level (Manual/automated). Thereby, the disassembly of complex products cannot be per-
formed when it is only experience-based. Disassembly planning solutions that are adaptive
and use optimization algorithms are necessary to determine optimal disassembly strategies.

This paper aims to contribute to designing adaptive disassembly planners for battery
systems by combining the autonomous disassembly planner presented by Choux et al. [13]
with a disassembly strategy optimizer, which will be implemented and tested using an Audi
A3 Sportback e-tron hybrid battery pack. The battery, instructions about its disassembly,
and several essential data for the disassembly planning, such as the disassembly times and
revenues at component level after applying a specific circular economy strategy, have been
described in detail in [14]. In this paper, the optimal disassembly strategy maximizes the
optimal economic profit. It consists of the following decisions: (1) the optimal disassembly
sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy
for each component (reuse, remanufacturing, repurposing, and recycling). The proposed
disassembly planner can significantly contribute to implementing high-value circularity
levels at the EoL phase of EVBs in automated disassembly solutions in the future.

The following sections are organized as follows: Section 2 describes the main com-
ponents of an automated disassembly solution. Thereby, the disassembly planner with
an integrated disassembly strategy optimizer represents a core building block. Section 3
describes our methodology by presenting our design for an adaptive disassembly planner
and a disassembly strategy optimizer. Finally, we present and discuss our use case results
in Section 4.

2. Building Blocks of an Automated Disassembly Station

An automated disassembly station for EVBs can be reduced to two building blocks:
(1) a mechanical system that directly interacts with the EoL products, and (2) a disassembly
planner that adaptively calculates and updates the disassembly strategies (see Figure 2).
The subcomponents are described in the following sections to show the big picture of
our work. Thereby, publications in the context of battery disassembly are assigned to the
respective subcomponent.

2.1. Mechanical System
2.1.1. Manipulators

Manipulators are responsible for moving several components during the disassembly
process. These components can either be part of the battery or the disassembly station, such
as tools and sensors. Robot arms are typical manipulators. The disassembly process can be
carried out using a single manipulator resulting in a sequential disassembly, in which the
parts are removed one by one. However, multiple manipulators have a great potential to
reduce the disassembly time if parallel disassembly activities are possible. This is known
as corporative disassembly. The disassembly sequence planning is more complicated if
more than one manipulator is used [15].
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Figure 2. Building blocks of disassembly stations.

2.1.2. Disassembly Tools

EVBs are complex products whose disassembly is associated with multiple difficul-
ties. Screw connections are frequently found in batteries. This allows the application of
non-destructive disassembly. However, different screw types are often used, which are not
accessible from the same direction [16]. This means that disassembly involves frequent tool
and direction changes, which have to be considered while planning the disassembly process.
Furthermore, many non-detachable connections are used in EVBs, such as welded joints.
This is especially the case at the module level when connecting the cells [17], where weld-
ing processes have become established because they increase the electrical performance
and improve the joints’ thermal properties and long-term stability [18]. However, these
joints are difficult to disassemble, especially when alternative circular economy strategies
are targeted.

Moreover, various other joining techniques are used in the battery, such as adhesive
bonding and riveting. In addition, there are several connector systems and flexible com-
ponents that have to be disconnected or cut. That is why an automated disassembly of
EVBs can only be achieved with a wide range of disassembly tools. In the literature, vari-
ous tools have been presented that can be used in automating individual steps of battery
disassembly. Tan et al. [9] presented a pneumatically actuated separation tool suitable for re-
moving covers and stack holders and an unscrewing device with integrated torque sensors.
Kay et al. [19] proposed a cost-effective cutting instrument based on a high-speed rotary
cut-off wheel, which can be integrated into a disassembly station for battery modules.
However, according to their evaluation, laser cutting is more suitable to achieve lower heat
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generation and vibration amplitudes and higher cutting accuracy. Li et al. [20] proposed
an automated disassembly system for Z-folded pouch cells consisting of three modules
for the pouch trimming, housing removal, and electrode sorting. Thereby, they presented
a pouch trimming module consisting of a trimming blade set, a trimming base set, and
a conveyor roller set. In this context, the main challenge in designing disassembly tools
will be to develop universal tools that are, first, suitable for different battery variants and,
second, capable of performing more than one disassembly task to reduce the number of
tool changes during disassembly.

2.1.3. Handling Devices

They can be divided into three categories: grippers, product fixtures, and logistics sys-
tems [21]. The tool changer can also be seen as a handling device for the disassembly tools.

• Grippers: These are placed at the end of the manipulator and are used to handle the
disassembled parts. They have to deal with objects with different geometries, volumes,
weights, and surfaces, as well as with uncertainties concerning these properties, such
as modifications in the surface due to usage and aging or contaminations during the
disassembly. In the context of battery disassembly, handling flexible parts, such as
cables, is a challenging task [16]. In addition, the extraction of the cells is associated
with difficulties. This is due to the different cell types (pouch, cylindrical and prismatic
cells) and the various design features, such as differences in volume, arrester position,
and cell housing. Schmitt et al. [22] presented a flexible gripper with integrated
voltage and internal resistance metering for automated handling of pouch cells. The
gripper can grasp different cell geometries if the arresters are placed on the same
side. Kay et al. [19] proposed a two-finger gripper with integrated force regulation
to not damage the battery cells. From these publications, some essential features and
requirements for battery cell gripper systems can be derived. These are the ability of
condition assessment and monitoring, the handling of different cell formats and sizes,
and controlling the gripping force.

• Product fixtures: These are necessary elements of an automated disassembly solution.
They are needed to fix the product to be disassembled in a specific position and
orientation so that the required forces are transmitted and to increase the process
accuracy. Product fixtures can be designed to be stationary or movable. Thereby, the
movement can take place with limited degrees of freedom, such as by means of a
rotatable or translatory fixture table. They can also be seen as manipulators when
they are mounted on a robot arm. In this case, they offer higher degrees of freedom in
the positioning and orientation of the products to be disassembled. However, in the
context of battery disassembly, this could be associated with technical difficulties. The
weight of many EVBs can reach several hundreds of kilograms, which could pose a
challenge for their mobile handling by means of robot arms during the disassembly
process. Other challenges include the flexibility to clamp as many battery variants as
possible. In addition, it must be ensured that the design features of the fixture devices
do not prevent the detection of the product parts [21]. Detailed designs of fixture
systems for EVBs cannot be found in the literature. This can be explained by the fact
that battery disassembly is performed manually in the current state of the art.

• Logistics systems: These are in charge of transporting the products to be disassembled
to the disassembly stations and transporting the disassembled parts and subassemblies
in and from the disassembly net. Herrmann et al. [23] defined three disassembly
scenarios for EVBs dependent on a product analysis and return quantities. In the
present scenario, the batteries are disassembled in a single disassembly place. Thereby,
the material transportation is carried out by forklifts, which also play a role in the near
future and remote future scenarios. They transport the batteries to the disassembly
net. The main difference to the present scenario is that the material transport inside
the disassembly net is performed by roll conveyors.
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2.2. Disassembly Planner
2.2.1. Database

The appropriate disassembly strategy for an individual EVB is the result of an opti-
mization problem under consideration of a wide range of data, which must be available
to the disassembly factories in order to increase the efficiency of a circular economy for
battery systems. Therefore, structuring and managing these data in a database is of funda-
mental importance. Thereby, the need-based availability of some information is essential to
protect the competitive advantages of battery manufacturers. Relevant data can be divided
into process-related data and product-related data. Process-related data are, for example,
disassembly times and costs and needed disassembly tools. The product-related data can
be further classified into master data, transaction data, status data, and market data [24].
Master data comprise general information about the battery, such as the cell format and
chemistry, the number of cells and modules, and information about other battery compo-
nents, such as the battery management system. For disassembly, the precedence constraints,
the joining techniques, the position of parts, and information about their accessibility are
particularly important. Transaction data include information about the history of the
battery. Status data provide information about the condition of the different components of
the battery, such as the state of health of the modules and the cells. Market data are also
essential to find out the optimal disassembly strategy. In particular, the potential revenues
from selling components after applying a specific EoL strategy, such as remanufacturing,
play a role.

2.2.2. Sensorial System

Before disassembly, the information from the database can be expanded with addi-
tional data using other sources, such as battery measurements or employees’ experience.
Nevertheless, not all the information may be available before starting the process. This is
due to the variety of uncertainties during automated disassembly. Therefore, the sensorial
system in an automated disassembly solution is mandatory to plan the process and to
adapt it at the operational level [21]. Thereby, a vision system is needed to detect the
components and their positions and monitor the progress of the disassembly process. In
addition, other sensors are required, such as torque and force sensors, which can be used
for both process control and monitoring.

2.2.3. Adaptive Planner

The adaptive planner is responsible for planning and optimizing the disassembly
strategy. This process is known in the literature as disassembly sequence planning (DSP),
and was described in detail in [25]. It finds application in both the planning and operating
of disassembly lines, in addition to being used in the product development phase to ensure
the guidelines of design for circularity (DfC). DSP starts with selecting the disassembly
mode, followed by the modelling step, consisting of the two phases pre-processing and
model building. Finally, the disassembly sequence can be optimized while considering
a predefined objective function. Many publications have addressed only deriving dis-
assembly sequences. Here, complete disassembly has been considered more frequently
than incomplete disassembly [25]. However, the optimal circular economy strategies are
supposed to be predefined in the literature and, therefore, are not seen as part of the
disassembly planning [26]. An adaptive disassembly planner in an automated disassembly
solution consists of an autonomous disassembly process planner that ensures the disas-
sembly execution even when the required data are incomplete and a disassembly strategy
optimizer to support decision-making by ensuring that data gaps are eliminated. In this
way, different decisions can be made with the help of the optimizer, such as the optimal
number of tool and direction changes as well as optimal circular economy strategies at
the component level. In the context of battery disassembly, Ke et al. [12] proposed a
disassembly sequence planning approach for EVBs based on a genetic algorithm using
a frame-subgroup structure. The presented method has better convergence properties
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compared to other genetic algorithm implementations. However, it requires the existence
of a frame (one component) that has connection and precedence relationships with all other
parts (subgroups). In addition, only disassembly sequences for a complete disassembly
are considered. Incomplete disassembly and decisions about the optimal circular economy
strategies at the component level were not taken into account. Choux et al. [13] proposed
an autonomous disassembly task planner, which can generate disassembly sequences
autonomously. Thereby, no information about the battery to be disassembled is required.
However, the completeness of the automatically detected precedence relationships in [14]
was not guaranteed. Thus, possible disassembly sequences that may represent an im-
proved disassembly strategy cannot be considered by the adaptive planner. In addition,
the proposed task planner cannot make decisions about the disassembly depth and cannot
provide information about the circular economy strategies for the different components,
while it has been shown in [14] that they are decisive factors for the disassembly planning
for EVBs. These disadvantages can be overcome by extending the autonomous disassembly
process planner by a disassembly strategy optimizer. This represents the main research
focus of this paper.

3. Methodology

3.1. Disassembly Planning Using an Adaptive Planner

The disassembly task planner presented by Choux et al. [13] consists of four steps:
(1) image capturing by the installed vision system, (2) detection of the different components
of the battery, (3) autonomous decision making about the possible disassembly sequences,
and (4) position and path calculation to remove the components by the mechanical system
of the disassembly station. Considering the identified issues in the previous section, we
present our design for an adaptive disassembly planner (see Figure 3). Thereby, we extend
the steps presented by Choux et al. with a disassembly strategy optimizer. However,
disassembly strategy optimization requires a lot of data about the product, the disassembly
process, and the market. For this reason, the disassembly strategy optimizer can be ignored
if these data are not available.

Nevertheless, these gaps can be minimized in a disassembly factory after gaining
some experience, e.g., by performing several disassembly experiments with autonomous
decision-making or by taking advantage of the expertise of disassembly experts gained
from past similar batteries. Once these data are available, an optimal disassembly strategy
can be determined. In this way, the autonomous disassembly decision can be avoided. The
component i to be disassembled is thus specified by the optimizer. After the calculation of
the positions, disassembly operations can be performed.

If the disassembly proceeds normally, the disassembly strategy only needs to be calcu-
lated once. In case of failure, due to the many uncertainties during the disassembly process,
or when complications occur that complicate the execution of disassembly with the existing
strategy or pose any safety risks, alternative actions must be initiated. Here, two cases can
be distinguished. The first case occurs when there is no optimized disassembly strategy
due to incomplete data. In this case, the disassembly task planner must make an additional
autonomous decision, such as changing disassembly tools or adjusting the disassembly
sequence. The second case occurs if the disassembly strategy optimizer is active. The status
data will then be updated if any components were damaged during the disassembly action.
This is an important step, since it significantly impacts the optimized disassembly planning,
as the appropriate circular economy strategy depends on the component condition. After
that, a new disassembly strategy can be calculated to proceed with the disassembly by
removing component i. If the disassembly is not yet complete, new images are captured
to detect component i + 1 of the computed disassembly strategy. Thereby, it is necessary
to check if the previous disassembly step of component i was performed correctly. If any
connections were damaged or if the component i was destructively removed, that would
require an update of the disassembly strategy. In this case, new precedence constraints may
arise that need to be calculated. Moreover, the status data must be updated to calculate
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the next steps of the disassembly subsequently. In the next section, the design of the
disassembly strategy optimizer implemented in this work is addressed.

Figure 3. Concept of the adaptive planner.

3.2. Disassembly Optimizer

The first step in the disassembly strategy optimizer is selecting the most suitable
optimization method depending on the available data and the objectives of the disassembly
(see Figure 4). The technique chosen will then be applied to calculate an optimal disas-
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sembly strategy. Disassembly sequence planning (DSP) is a non-deterministic polynomial
(NP) problem [25]. Here, the solution space is huge, especially for large products such
as EVBs. Furthermore, the solution space becomes larger when further decisions have to
be made when planning the disassembly strategy, such as the disassembly depth and the
circular economy strategy at the component level. That is why primarily nature-inspired
heuristic optimization methods are used in the literature to solve the DSP problem, such as
genetic algorithms, particle swarm optimization, ant colony optimization, scatter search,
and artificial bee colony optimization [25]. In this work, we will focus on the use of a
modified genetic algorithm, since genetic algorithms are the most widely used optimization
method for finding optimal disassembly strategies [25]. Furthermore, they offer multiple
advantages compared to other metaheuristic methods, such as a wide application range,
strong expansibility, and high robustness, since they usually do not fall into local optimal
solutions [12]. In addition, genetic algorithms are attractive because, first, they quickly
and cost-effectively produce high accuracy solutions, even when the solution space is
huge, and second, they are easy to understand and implement since simple mathematics is
involved [27].

Figure 4 shows the structure of the disassembly strategy optimizer designed in this pa-
per. Here, the steps of the implemented genetic algorithm are shown in detail. It starts with
generating the initial population of potential disassembly strategies coded in chromosomes.
The chromosome structure will be described in the following subsection. Subsequently,
the individuals of the first population are evaluated using an objective function, which
can consist of different sub-objectives. In this context, Alfaro-Algaba and Ramirez [14]
proposed a combined objective function composed of economic and environmental sub-
objectives to maximize the economic profit while minimizing the environmental impact
during the disassembly process of EVBs. A lot of data at the component level are needed,
such as the disassembly costs, the costs to recondition disassembled components in order
to implement a selected circular economy strategy, and environmental data.

Next, the selection step takes place to find out the fittest chromosomes to build a
mating pool. The subsequent step is the mutation phase. Here, it should be ensured that
all chromosome sections have the opportunity to mutate in order to increase the chances of
discovering new solutions with higher performance.

The steps of the genetic algorithm are then performed until a termination condition
is satisfied, such as a predefined number of generations or the fulfillment of specified
convergence criteria.

In the following subsections, we describe our methodology for the different steps of
the implemented genetic algorithm to optimize disassembly strategies for EVBs in terms
of the disassembly sequence, disassembly depth, and circular economy strategies at the
component level.

3.2.1. Generating the Initial Population

The initial population consists of feasible disassembly strategies coded into chromo-
somes. Thereby, one chromosome consists of three sections. The first section represents
a disassembly sequence, taking into account the precedence constraints. In the second
section, all battery components are assigned a circular economy strategy dependent on their
condition. The third section consists of only one gene, representing the disassembly depth.

• First chromosome section

A precedence-matrix (P) is used to derive feasible disassembly sequences. It describes
the order of precedence of the disassembly steps and can be obtained from carrying out
manual disassembly experiments or by using the computer-aided design (CAD) models of
the product to be disassembled [28]. Another approach to determining possible precedence
relationships in an automatic way based on computer vision was presented in [13]. This
can avoid the disadvantages of the two mentioned methods: while manual pre-processing
is error-prone and time-consuming, pre-processing using CAD data is often inaccurate.
This is because CAD models can rarely still reliably describe the product at their EoL

86



Batteries 2021, 7, 74

phase, for example, due to corrosion or changes that have been applied to the product
during the usage phase. We used the disassembly precedence graph (DPG) to generate
the P matrix for the use case in this paper. It allows a simple one-to-one comparison of all
components. If a component i is the predecessor of the component j, the value Pij gets the
value 1, otherwise 0. The numerical method to derive feasible disassembly sequences from
the P matrix is illustrated in Figure 5.

Figure 4. Disassembly strategy optimizer using a genetic algorithm.
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Figure 5. Method to generate feasible disassembly sequences from a given precedence matrix.

• Second chromosome section

The transfer of battery components into a circular economy takes place via the im-
plementation of circular economy strategies. Here, there are different strategies, which
mainly differ in preparing the components and the application field. The waste hierarchy
of the European Commission contains five priorities [29]. In this work, we focus on the
priorities on the top, as they should be preferred in a circular economy. The highest one is
prevention, for example, by extending the life of products through predictive maintenance
or simple repair operations. The second priority is repair for reuse, followed by recycling.
These priorities can be achieved by applying diverse circularity strategies. Potting et al. [30]
identified ten strategies and divided them into three categories: (1) smarter product use
and manufacture, (2) extend lifespan of product and its parts, and (3) useful application of
materials. Here, we consider only the strategies, which can be applied at the EoL phase.
Circularity solutions during the stages of design, manufacturing, and use are ignored. In
this scope, the EoL strategies can be reduced to four strategies: reuse, remanufacturing, re-
purposing, and recycling. The integration of these strategies in the waste hierarchy and the
material flows after their application are illustrated in Figure 6. In the literature, different
definitions can be found for these strategies [24]. In this paper, we adopt the definitions
of Potting et al. [30]. Reuse means the utilization of a discarded battery or a set of its
components by another user in the automotive field. Remanufacturing is the treatment
of battery parts so that they can at least meet the requirements of newly manufactured
products and their utilization for the manufacturing of EVBs. If the battery or its parts
are reconditioned and used in another application field, such as stationary energy storage,
this is called repurposing. Recycling is the recovery of materials. In this case, pure and
high-quality materials for use in the automotive sector should be targeted.

Figure 6 shows that disassembly is of central importance for the implementation of
all these circularity strategies. The components of the EVBs can be allocated to different
strategies depending on their condition. However, the selection of the optimal circular
economy strategy does not depend exclusively on this. Other factors, such as the disassem-
bly costs and the market constraints, such as the potential revenues, also play an important
role. Therefore, we consider the selection of the EoL strategy as a part of the disassembly
planning. This paper assumes that the feasibility of a circular economy strategy for a given
component depends on its condition. That is why the second section of the chromosome
must fulfill the condition constraints defined by a condition vector S containing the feasible
circular economy strategies CESi for every component i—see Equation (1). Here, the prior-
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ity of the circular economy strategies is taken into account. If a component i is in excellent
condition, it can be allocated to all strategies (reuse, remanufacturing, repurposing, and
recycling). In this case, CESi is assigned the value 1. If CESi equals 2, the reuse option will
be excluded. Part i can be neither reused nor remanufactured if CESi equals 3. CESi is
assigned the value 4 if recycling is the only possible recovery option.

S =

⎛⎝ CES1
. . .

CESn

⎞⎠; CESi ∈ {1; 2; 3; 4} (1)

Figure 6. Overview about the considered end-of-life strategies.

The S vector cannot just be seen as a collection of testing results. Other factors can play
a role in determining the potentially possible circular economy strategies for the different
battery parts, such as the employees’ experience in the disassembly factory. Testing results
include the state of health (SoH) and state of charge (SoC) of battery cells and modules and
additional parameters for the rest of the components.

• Third chromosome section

This section consists of a single gene and is used to define the disassembly depth.
An EVB could be entirely disassembled by separating all its parts. However, this ap-
proach is neither economically nor environmentally practical in an industrial context [16].
Therefore, EVBs are more likely to be subject to incomplete disassembly. Here, there are
two methods to perform incomplete disassembly: (1) the selective method and (2) the
unrestricted method. The selective method means that specific components are selected to
be disassembled. Subsequently, the disassembly planner needs to calculate a strategy for
the optimal extraction of these parts. Here, the high-value strategy and the high-impact
strategy can be distinguished [31]. For EVBs, the removal of the modules could present
a high-value disassembly strategy. The high-impact strategy applies when, for example,
a module with safety risks is identified and has to be replaced before reusing the battery.
In contrast, no target components are selected in the unrestricted incomplete disassembly.
The disassembly planner can freely calculate the optimal disassembly strategy based on an
objective function. This method is considered in this paper. Thereby, the gene representing
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the disassembly depth is randomly generated with values between 0 (no disassembly) and
the maximum number of components n while generating the initial population.

In Fehler! Verweisquelle konnte nicht gefunden werden, a disassembly precedence
graph of a theoretical product, the associated precedence matrix, and the entire structure of
a possible chromosome depending on a given condition vector are presented. In this case,
one feasible disassembly sequence is 1-2-3-5-6-4, possible circular economy strategies at
the component level are 1-2-4-1-2-4, and the disassembly is complete, since the last gene
matches the component number.

3.2.2. Evaluation Method

The performance of the disassembly strategies, coded in chromosomes, has to be
evaluated using an objective function, which depends on several parameters. Thereby,
different evaluation criteria can be involved, such as the economic and social performance
or the environmental impacts. In this paper, we focus on the economic performance of the
disassembly strategies by implementing the following objective function to maximize the
economic profit (see Equation (2)).

y =

(
DL

∑
i=1

RVi,j − RCi,j − OCi,j − F · DTi,j

)
+

(
q·

n

∑
i=DL+1

RVi,4 − RCi,4

)
(2)

y: Economic profit
i: Index of components
j: Circular economy strategy
DL: Disassembly depth
RVi,j: Revenues from component i while applying the circular economy strategy j
RCi,j: Recovery costs for component i to apply the circular economy strategy j, for

example, costs of cleaning, further mechanical treatment, replacement of elements, py-
rometallurgical and hydrometallurgical treatment, etc.

OCi,j: Overhead costs for component i to apply the circular economy strategy j
F: Machine and personnel hourly rate for the disassembly process
DTi,j: Disassembly time of component i while applying the circular economy strategy j
q: Value reduction factor for the achievable yield from recycling in case of incom-

plete disassembly
n: Number of components.
It is assumed that the revenues, recovery costs, and overhead cost depend on the

selected circular economy strategy. This also applies to the disassembly times because, in
the case of recycling, disassembly operations can be performed faster due to destructive
disassembly techniques.

3.2.3. Selection and Crossover

During the selection phase, parents are selected based on their fitness value. The
candidates with higher fitness will subsequently mate to produce new generations. In
the literature, there are several selection procedures. Ke et al. [12] used the roulette wheel
selection method to select the fittest disassembly sequences for EVBs. In this work, a
tournament selection technique is used. In a tournament, each chromosome competes
twice against two random other chromosomes. The winners move into a mating pool
consisting of parents of the same size as the initial population.

Afterward, the crossover phase takes place, usually with high probability (Pc). During
this phase, children representing new solutions are generated using the genetic material of
two parents. In the context of the disassembly planning task in this paper, it is essential
to ensure that the created chromosomes during the crossover phase represent feasible
solutions by not violating the precedence relationships and the condition constraints.
Therefore, the precedence preservative crossover method described in [27] was chosen and
adapted to the characteristics of our chromosome structure. Thereby, two parents generate

90



Batteries 2021, 7, 74

two children whose chromosome structure is determined by two randomly generated
masks. The first child is recombined by using mask 1, and the second one by mask 2.
The chromosomes of the children are built up step by step. If the used mask has the
value 1 at position i, parent 1 is used to specify the gene i of the child. Here, the leftmost
element of parent 1 will be deleted from both parents and placed in the position i of the
child. Otherwise, parent 2 is used to define the gene i. Figure 7 shows two possible
disassembly sequences of the theoretical product presented in Figure 8, as well as two
randomly generated masks, which were used to create new feasible disassembly sequences.
The section of the chromosome, representing the circular economy strategies, is recombined
simultaneously with the disassembly sequence using the same masks. However, the masks
do not play any role in the definition of the disassembly depth. Here, child 1 gets the
disassembly depth from parent 1 and child 2 from parent 2.

Figure 7. Using randomly generated masks to produce new feasible disassembly sequences during the crossover phase of
the genetic algorithm.

Figure 8. Structure of the chromosomes of the initial population.

3.2.4. Mutation

The mutation phase plays a crucial role in enhancing the quality of the solution. It
increases the diversity in a population and the possibility of discovering new candidates
with high performance [27]. In addition, mutation increases the robustness of genetic
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algorithms concerning local optima [15]. In the context of disassembly planning, the
feasibility of mutated solutions must be guaranteed. In this work, the disassembly strategy
involves three decisions: the disassembly sequence, the circular economy strategies, and
the disassembly depth. Therefore, we chose a three-step mutation by applying the swap
mutation method to sections 1 and 2 of the chromosome, representing the disassembly
sequence and the circular economy strategies, respectively, and a random resetting of the
third chromosome section describing the disassembly depth.

• Step 1: With a mutation probability Pm,1, two randomly selected genes in the first
chromosome section are swapped. Thereby, the associated circular economy strategies
in the second chromosome section must be swapped in the same manner to ensure
the satisfaction of the condition constraints. The mutation is only accepted if the
precedence relationships described by the precedence matrix P are not violated.

• Step 2: With a mutation probability Pm,2, two randomly selected genes in the second
chromosome section are swapped. The mutation is only accepted if the condition
constraints given by the condition vector S are not violated.

• Step 3: With a mutation probability Pm,3, the last gene of the chromosome is reset by
randomly adding or subtracting up to 20% of the number of components.

Figure 9 shows an exemplary execution of the three-step mutation based on a dis-
assembly strategy of the theoretical product presented in Figure 7. During the first step,
the fifth and last genes of the first section, as well as the corresponding circular economy
strategies, were changed. The mutation is accepted because the disassembly sequence
1-2-3-5-4-6 is feasible. The mutation in step 2 is rejected because part 3 cannot be reused (see
condition vector S in Figure 7). The mutation during the last step consists of substracting
16.7% of the total number of components (one part).

Figure 9. Three-step mutation in the chromosome sections of the defined theoretical product: (a) step 1: swap mutation in the
disassembly sequence and the corresponding circular economy strategies; (b) step 2: swap mutation in the circular economy
strategies; (c) step 3: random resetting mutation of the gene representing the disassembly depth DL (DL = DL ± random x;
x ∈ [0, 20% · n]; DL ∈ [0, n]; n: number of components).

4. Results and Discussion

4.1. Case Study

The Audi A3 Sportback e-tron hybrid Li-ion battery pack was chosen as the use case
in this paper to demonstrate our approach to planning disassembly strategies for battery
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systems. The selected battery was described in detail by Alfaro-Algaba and Ramirez [14].
The selected disassembly steps are presented, and most of the data required for our pro-
posed disassembly strategy optimization method are available. The relevant assumptions
for our use case are listed below:

• Currently, we cannot quantify how diverse disassembly techniques for implementing
different circular economy strategies affect disassembly times. Therefore, we assume
in the following that the disassembly time per component does not depend on the
selected route.

• From interviews with two battery recyclers in Germany, we found out that two
workers need 30 min on average to remove the modules manually from a medium-
sized battery. This is consistent with the assumption made by Alfaro-Algaba et
Ramirez [14]. However, the disassembly times for each component were not given
in [14]. In this work, we have estimated the disassembly times for the selected
battery based on the experience of Rallo et al. [32] during the disassembly of a similar
battery. In Figure 10, the component-specific disassembly times are integrated into the
precedence graph of the considered battery. Thereby, disassembly times are coded as
follows: x[number of units]; [disassembly time per unit]; [total disassembly time].

• We only consider a disassembly station with two workers with 100% availability. This
means that 3300 units can be disassembled per year (see Table 1).

• We used the same overhead costs and their allocation at the component level as in [14].
However, we assume that the overhead costs do not depend on the applied circular
economy strategy.

• No components are disposed of. If components are in very poor condition, they must
be recycled.

• Processing costs to repurpose the components are assumed to be 25% of the revenues.
• Repurposing revenues are 10% lower than remanufacturing revenues.
• In case of incomplete disassembly, the non-disassembled parts will be recycled. Here,

the profit is reduced by 10% due to the missing separation resulting in impure mate-
rial composition.

• It is assumed that the overhead cost per battery is EUR 96.97 on average (see Table 1).
The total overhead costs (OCT) are taken from [14].

• The economic input data and additional assumptions for the cost structure can be
found in [14] in order to reproduce the results presented in the next subsection.

Table 1. Throughput of a disassembly station and overhead costs.

Variable Formula Parameters

Throughput a a = (nd · nh)/tB = 3300
nd = 220 days: Working day per year

nh = 7.5 h: Working hours per day
tB = 30 min: Average disassembly time per battery

Overhead costs per battery OCB OCB = OCT/a = 96.97€ OCT = 320,00€: Total overhead costs per year
data data

In the following, we consider two scenarios for disassembly planning of the considered
battery. The upper and lower housing shells and the cooling plates are in poor condition
in the first scenario and can, therefore, only be recycled. In the second scenario, they can
be assigned to all possible circular economy strategies. The eight modules are in different
conditions: two modules must be recycled (CESi = 4), two modules can be reprocessed
for second-life applications (CESi = 3), such as stationary energy storage, two modules
can be remanufactured for automotive applications (CESi = 2), and the last two modules
can be directly reused in the automotive sector with little effort, for example for cleaning
and packaging (CESi = 1). In addition, we assume that all connecting elements cannot be
reused and consequently have to be recycled in both scenarios. All other components of
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the considered have the same condition in both scenarios; see the condition vectors of both
scenarios in Equations (3) and (4).

ST
1 = [4 4 1 1 1 1 1 1 1 1 1 4 4 4 4 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4] (3)

ST
2 = [1 4 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4] (4)

Figure 10. Li-ion battery of the Audi A3 Sportback e-tron hybrid: disassembly precedence graph
and disassembly times at the component level. The disassembly times are specified by the following
format: x[number of units]; [disassembly time per unit]; [total disassembly time].
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4.2. Results

A disassembly strategy in this work consists of three decisions: (1) the optimal dis-
assembly sequence, (2) the optimal circular economy strategy for each component, and
(3) the optimal disassembly depth, which represents the stopping point of the disassembly
process. These three decisions for both defined scenarios are shown in Figure 11. The used
parameters for the initialization of the implemented genetic algorithm are listed Table 2.
In the first scenario, the result is an incomplete disassembly with a disassembly depth of
90.63%. We see that the disassembly stops immediately after the modules are removed. In
this case, two modules are reused, and two modules are recycled. This represents the best
possible route due to the condition constraints. However, the remaining four modules are
repurposed, although two modules could be remanufactured. This is because remanufac-
turing is not economically feasible in our use case. In the first scenario, an economic profit
of EUR 553 can be achieved (see Figure 12). In the second scenario, it can be increased
by 3.16% to EUR 570.5, although the disassembly costs are higher due to the complete
disassembly. This is due to the fact that the upper and lower casing shells, as well as the
cooling plates, are reused, and thus higher revenues can be realized. It is worth mentioning
here that although the modules are the most valuable components on a battery, other parts
contribute in a significant way to increasing the profitability of the disassembly. In the
course of our research, we spoke with an EVB recycler in Germany. He said that recycling
some EVB variants is particularly attractive because of massive busbars made of copper.
Figure 12 shows the evolution of the objective function and the disassembly depth over
the 100 generations. Thereby, the algorithm converges after few generations (<20), which
means that the optimization can be terminated earlier and thus performed faster.

4.3. Discussion

Optimizing disassembly strategies for EVBs shows a key role in making the circularity
of these systems more efficient by targeting higher priorities from the waste hierarchy
presented in Figure 6. Here, selecting the optimal circular economy strategies at the
component level must be considered as part of the disassembly process planning, since
the chosen strategy influences the disassembly techniques and thus the disassembly times
and costs.

Disassembly planning and optimization are becoming increasingly complex due to
several factors: first, disassembly is subject to many uncertainties, which makes disassembly
planning an adaptive and iterative process. Second, disassembly can be performed using
different modes (sequential/parallel, complete/incomplete, destructive/non-destructive,
automated/manual). Third, on the one hand, disassembly planning is a data-intensive
process, and on the other hand, it must be ensured that disassembly is executed even when
data are lacking. Fourth, there are multiple variables to optimize the defined objective
function, such as the number of tool and direction changes and disassembly times, which
depend on other factors such as the joining methods, the disassembly techniques, and
the accessibility of the parts. Finally, disassembly strategies do not only consist of a
disassembly sequence but also include other decisions, such as the disassembly depth
and circular economy strategies for the different components. These three decisions are
considered in our proposed adaptive disassembly planner with an integrated disassembly
strategy optimizer.

Table 2. Used parameters for the genetic algorithm.

Parameter Value

Population size Np 300
Number of generations T 100
Crossover probability Pc 0.9

Mutation probability for the first chromosome section Pm,1 0.1
Mutation probability for the second chromosome section Pm,2 0.1
Mutation probability for the third chromosome section Pm,3 0.1
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Figure 11. Optimal disassembly strategies consisting of three decisions (1—optimal disassembly sequence, 2—optimal
disassembly depth, and 3—optimal circular economy strategies at the component level): (a) upper and lower housing shells
and the cooling plates are in a bad condition and have to be recycled; (b) upper and lower housing shells and the cooling
plates are in perfect condition and can be assigned to every circular economy strategy.

However, in the context of this paper, we only addressed sequential disassembly, since
the aim of our current research is to develop an automated disassembly solution for battery
packs down to the module level using a robot arm as a single manipulator. Our proposed
disassembly strategy optimization method still needs to be extended to the following
aspects: (1) including planning methods for cooperative disassembly, which can be applied
by using at least two manipulators in fully automated disassembly solutions or by employ-
ing a human–machine collaboration, (2) taking into account the tool and direction changes,
as they definitely influence the disassembly time, and (3) integrating adaptive methods
for updating the condition and precedence constraints in case of complications during
the disassembly process or when destructive disassembly steps are used. Furthermore,
the adaptive planner should consider further factors, such as the configuration and the
availability of the stations. On the one hand, the stations in a disassembly factory may
have to be designed differently to be able to disassemble different battery variants and are
therefore not suitable for carrying out all disassembly strategies and, on the other hand, a
high-capacity utilization should be achieved. This means that EVBs have to be assigned to
stations that cannot perform the best possible disassembly strategy in some cases. However,
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this measure can significantly improve capacity utilization and consequently contribute to
establishing highly automated and flexible disassembly factories in the near future, which
will become more and more profitable with increasing return volumes. In the literature,
there are no concepts for highly flexible disassembly factories for EVBs. In the following
publications, we will present several future layouts for disassembly factories under consid-
eration of the presented building blocks of an automated disassembly station in section 0
and show potential challenges for the adaptive disassembly planner with respect to the
proposed layouts.

Figure 12. Model results: (a,b) optimal economic profit and disassembly depth for scenario 1; (c,d) same results for scenario 2.

Lastly, optimization of disassembly strategies, often described as disassembly se-
quence planning (DSP) in several literature sources, should be addressed in the product
design phase. This will clearly contribute to achieving fully automated, cost-effective,
and environmentally efficient disassembly for battery systems in the automotive sector.
In particular, the modules, as the most valuable components in the battery, should be
removable after only a few disassembly steps. This is obviously not the case for the battery
considered in this paper.

5. Conclusions

An adaptive disassembly planner with an integrated disassembly strategy optimizer
for electric vehicle batteries is presented in this paper. It serves to adaptively plan disassem-
bly strategies and optimize them using heuristic optimization algorithms. A disassembly
strategy consists of three decisions about the optimal disassembly sequence, disassem-
bly depth, and circular economy strategy for each component. The disassembly strategy
optimizer is implemented using a modified genetic algorithm and tested on a selected
battery. Thereby, two condition scenarios were considered. In both scenarios, all modules
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are removed. The disassembly of the remaining components depends on their subsequent
route. The presented optimization method is computationally efficient and can be further
improved by applying a convergence termination condition. The introduced disassembly
planning method can be used at the end-of-life phase to plan the disassembly depending
on components’ state and market conditions. Furthermore, our approach is also suitable
for use in the begin-of-life stage to ensure the guidelines of “design for disassembly” in the
design stage. Nowadays, there is a need for action in both application cases because, first,
disassembly processes are mainly carried out based on experience, and second, battery
treatment at the end-of-life phase is hardly considered when designing these systems.
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Abstract: This study presents tributyl acetylcitrate (TBAC) as a novel ecofriendly high flash point and
high boiling point solvent for electrolytes in lithium-ion batteries. The flash point (TFP = 217 ◦C) and
the boiling point (TBP = 331 ◦C) of TBAC are approximately 200 K greater than that of conventional
linear carbonate components, such as ethyl methyl carbonate (EMC) or diethyl carbonate (DEC).
The melting point (TMP = −80 ◦C) is more than 100 K lower than that of ethylene carbonate (EC).
Furthermore, TBAC is known as an ecofriendly solvent from other industrial sectors. A life cycle
test of a graphite/NCM cell with 1 M lithium hexafluorophosphate (LiPF6) in TBAC:EC:EMC:DEC
(60:15:5:20 wt) achieved a coulombic efficiency of above 99% and the remaining capacity resulted
in 90 percent after 100 cycles (C/4) of testing. As a result, TBAC is considered a viable option for
improving the thermal stability of lithium-ion batteries.

Keywords: ecofriendly electrolyte for lithium-ion batteries; increased thermal stability of electrolytes;
enhanced electrolyte safety based on high flash point; tributylacetylcitrate; acetyltributylcitrate

1. Introduction

Lithium-ion cells are the technological standard for portable devices such as smart-
phones, notebooks, and electric vehicles, and as a result, they are viewed as a key for
the global transition to electro-mobility. In terms of thermal stability, the electrolyte of
a lithium-ion cell is considered a critical component, which is responsible for ionic con-
ductivity. The electrolyte is mainly composed of solvents, lithium conducting salts, and
various additives [1,2]. The usage of conventional solvents for electrolytes with low boil-
ing points and flash points (TFP) like dimethyl carbonate (DMC, TFP < 20 ◦C [3]), EMC
(TFP ≈ 22 ◦C [4]), or DEC (TFP ≈ 25 ◦C [5]) bear an increased risk to ignite lithium-ion
cells [6–8]. The low boiling point generates high pressure gradients at moderate temper-
atures (<100◦C), which can lead to the explosion of the cell. The chemical products of
burned fluorine-containing electrolytes are highly toxic [9–12]. Therefore, an expensive
thermal management system and a massive casing for lithium-ion batteries are required.
This heavy casing for battery packs for electric vehicles lowers the gravimetric density of
the pack and increases the weight of the vehicles. Increasing the intrinsic thermal stability
is a key factor to lower costs for cell protection and increase the gravimetric density of
the battery pack. Investigations on new electrolyte formulations have been considered
before, for example by using flame retardant additives like organic phosphates [13] or
phosphonates [14]. However, using these additives to improve the thermal stability reduces
the cell performance [15]. Investigations show that the use of ionic liquids can increase the
flash point of electrolytes however, these ionic liquids are linked with high costs [16–19].
Another promising approach is to investigate co-solvents with higher flash points like
adiponitrile (ADN, TFP ≈ 163 ◦C [20]) by Isken et al [21]. Co-solvents were able to increase
the flash point significantly from TFP,EC:DEC ≈ 36 ◦C of the EC:DEC (3:7 wt) mixture to
TFP,EC:ADN ≈ 149 ◦C of the EC:ADN (1:1 wt) mixture. This indicates that it is possible to
formulate electrolytes with higher flash points by replacing volatile carbonates. However,
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the melting points (MP) of EC TMP,EC ≈ 36 ◦C and ADN TMP,ADN ≈ 2 ◦C are extremely
high for low temperature applications. To lower the working temperature applicability
T < 0 ◦C research has shown many different classes of solvents like sulfones [22,23].
Unfortunately, most of these solvents are ecologically harmful.

Therefore, we investigated tributyl acetylcitrate as a solvent to formulate an electrolyte
composition with a high flash point and a wide operating range from very low to high
temperature. TBAC has a high flash point of TFP ≈ 217 ◦C [24], its melting point is very
low with TMP ≈ −80 ◦C and the boiling point is at TBP ≈ 330 ◦C. Another noteworthy
advantage of TBAC is that it is ecofriendly [25], nontoxic [26], and therefore safe to handle.
For example, it is well known as a plasticizer in the nail polish industry [27].

This study presents tributyl acetylcitrate as a novel solvent for lithium-ion cells. The
combination of conventional solvents like EC and DEC with TBAC creates an electrolyte
with improved thermal stability.

2. Materials and Methods

2.1. Materials

Tributyl acetylcitrate (TBAC, purity > 98% Sigma Aldrich, Germany) was dried over a
molecular sieve (mesh size ≈ 0.3 nm) inside a glovebox exposed to argon atmosphere over
night (moisture content of less than 0.5 ppm). Figure 1 shows the chemical structure of
TBAC [24]. Ethylene carbonate (EC), ethyl methyl carbonate (EMC, purity > 99.9%), propy-
lene carbonate (PC, purity > 99.7%), diethyl carbonate (DEC, purity > 99.9%),
lithium tetrafluoroborate (LiBF4 purity > 99%, all from Sigma Aldrich), lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI, purity > 99%), lithium bis(fluorosulfonyl)imide
(LiFSI, both fromIOLITEC GmbH, Germany), and lithium hexafluorophosphate (LiPF6,
BASF) were opened in the glovebox and were used as received.

Graphite electrodes (3 mAh/cm2, provided by Varta AG) and lithium nickel man-
ganese cobalt oxide electrodes (NCM 622, 1.3 mAh/cm2, provided by Münster Electro-
chemical Energy Technology) were punched to 18 mm coins and dried in a vacuum oven
(Buechi Labortechnik AG B-585, p < 50 mbar, T = 120 ◦C). The separator Freudenberg
2190 (thickness = 176μm) was punched to coins with 21 mm in diameter and dried in a
vacuum oven (p < 50 mbar, T = 120 ◦C).

Figure 1. Chemical structure of tributyl acetylcitrate [24].

2.2. Electrolyte Preparation

The electrolytes were prepared in an argon-filled glovebox (H2 and O2 content lower
than 0.5 ppm). TBAC was combined with different well-known solvents like EC and
EMC. The formulated solvent mixtures and the amount of each solvent (in wt) is shown
in Table 1a. Table 1b shows the combination of the solvent mixtures and the investigated
lithium salts with a salt concentration of 1 M.
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Table 1. (a) Formulated solvent-mixtures wt. (b) Investigated combinations of lithium salts and
solvent-mixtures (concentration of 1 M).

(a)

Mixture TBAC EC EMC PC DEC

F1 85% 15% 0% 0% 0%
F2 80% 15% 5% 0% 0%
F3 60% 15% 5% 20% 0%
F4 60% 15% 5% 0% 20%

(b)

Salt Solvent-Mixtures

LiBF4 F2
LiTFSI F1 F2 F3 F4
LiPF6 F2 F3 F4
LiFSI F2

2.3. Cell Preparation

Cells were assembled as coin cells in PAT-Cell or ECC-Ref cells from EL Cell. For
constant current cycling and C-rate tests, cells were assembled with NCM as the working
electrode and graphite as the counter electrode. The polypropylene separator (Freudenberg
FS2190) was moistened on both sides with a total of 120 μL of the selected electrolyte before
the electrodes were added. For cyclic voltammetry measurements, two electrode cells were
assembled with stainless steel or aluminum as working electrode and stainless steel as
counter and reference electrode.

2.4. Electrochemical Characterization

All tests were done in a Memmert IPP110 thermal chamber at a constant temperature
of T = 25 ± 0.1 ◦C. The cell performance was evaluated by cycling tests with constant
current charge and discharge with the battery tester CTS from BaSyTec. At the beginning,
three preliminary formation cycles were performed at I = C/10 in a potential range from
U = 2.5 V to U = 4.2 V. Subsequently lifecycle tests were performed at C/4.

The cyclic voltammetry measurements were performed with a reference 3000 AE from
Gamry. The electrochemical stability was measured by linear sweep voltammetry. The scan
rate was set to 1 mVs−1, the potential limits were set from −4.3 V to 4.3 V vs. stainless steel.

3. Results

Table 2 shows the melting, flash, and boiling point of TBAC, EC, EMC, PC, and DEC.
The boiling point as well as the flash point TFP = 217 ◦C of TBAC is almost 200 K higher
than that of EMC and DEC. The melting point is more than 100 K lower than that of EC.
The high boiling point and the high flash point are the main advantages of TBAC as a
solvent for lithium-ion batteries. However, during cell preparation, TBAC showed a higher
viscosity than the other solvents, which could cause a lower conductivity. Therefore, the
solvent-mixtures shown in Table 1 were investigated to find a composition with adequate
cycling behavior and a high amount of TBAC.

Table 2. Physical properties of TBAC [24], EC [28], EMC [4], PC [29], and DEC [5]. Symbols used:
TMP, melting point; TFP, flash point; TBP, boiling point.

TMP (◦C) TFP (◦C) TBP (◦C)

TBAC −80 217 331
EC 36 143 248

EMC −55 23.9 101
PC −49 123 243

DEC −43 25 126
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The following discussion is structured by presenting the results for each investigated
conducting salt in combination with TBAC-based solvent mixtures from Table 1.

The main focus lies in combining TBAC with LiTFSI since other conducting salts are
thermally less stable [30]. However, other possible combinations of salts are presented to
give an overview of further possibilities.

3.1. TBAC Solvent-Mixtures with LiTFSI

The lithium salt concentration of 1 M LiTFSI seems to be completely dissolvable in
F1 = TBAC:EC (85:15 wt). However, in a cell with NCM as positive electrode and graphite
as a negative electrode with LiTFSI in F1, the coulombic efficiency of the life cycle test
was only about ηcoul = 80% and the ionic conductivity limits the current to a maximum
of C/10 at T = 25 ◦C. By adding EMC to the solvent-mixture, the coulombic efficiency
increased above ηcoul = 99%. To increase the life cycle performance, DEC was added to
the electrolyte. This resulted in an increase of conductivity that allowed to cycle the cells
with C/4. Figure 2 shows the results of the cycling test of a graphite/NCM cell with the
electrolyte formulation with 1 M LiTFSI in the solvent mixture F4 = TBAC:EC:EMC:DEC
(60:15:5:20 wt) at a C-rate of C/4 at T = 25 ◦C.

Figure 2. Cycling performance of a graphite/NCM cell with 1 M LiTFSI in TBAC:EC:EMC:DEC
(60:15:5:20 wt) electrolyte at T = 25 ◦C. The cell was charged and discharged at C−rate C/4.

The coulombic efficiency achieved was ηcoul = 99.6%. After 100 cycles there was about
88% of the initial capacity left. Different lithium salt concentrations between 0.8 M and
1.2 M were investigated. The best cycling performance was achieved with a concentration
of 1 M. Therefore, all further tests were done with a salt concentration of 1 M.

C-rate tests were performed to investigate the electrode performance in combination
with the novel electrolyte composition for different currents. Figure 3 shows the capacity
obtained at different C-rates for a graphite/NCM cell with 1 M LiTFSI in the solvent-
mixture F4.
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Figure 3. C-rate performance of a graphite/NCM cell with 1 M LiTFSI in TBAC:EC:EMC:DEC
(60:15:5:20 wt) electrolyte at T = 25 ◦C in the potential range of 2.5–4.2 V.

The applied currents were: C/10, C/5, C/3, C/2, 0.75C, 1C, 1.5C, and 2C. At a current
rate of 1C, the usable capacity dropped to 70% of the initial capacity. Higher C-rates
decrease the usable capacity significantly.

Figure 4 shows the discharge capacity and the potential profiles at different tempera-
tures between T = 30 ◦C and T = 70 ◦C. Until 60 ◦C the voltage profile seems to be nearly
independent of temperature. At 70 ◦C there was a small drop in voltage observed.

Figure 4. Voltage profiles at different temperatures of a graphite/NCM cell with 1 M LiTFSI in
TBAC:EC:EMC:DEC (60:15:5:20 wt) electrolyte.
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The solvent mixture F3 = TBAC:EC:EMC:PC (60:15:5:20 wt) was investigated in combina-
tion with LiTFSI. However, as expected from the literature, the combination of PC and LiTFSI
is not compatible and it is not possible to cycle a lithium-ion cell with this electrolyte [31].

3.2. TBAC Solvent-Mixtures with LiBF4

A total of1 M LiBF4 was investigated in TBAC:EC:EMC (80:15:5 wt). However, LiBF4
did not dissolve. It was not possible to cycle the electrolyte formulation in a graphite/NCM
cell. We assume that TBAC is incompatible with LiBF4.

3.3. TBAC Solvent-Mixtures with LiFSI

The results for the electrolytes with LiFSI as conducting salt are comparable to LiTFSI.
Graphite/NCM cells with 1 M LiFSI dissolved in F2 showed a coloumbic efficiency of about
ηcoul = 98%. The results of the cycling tests are shown in Figure 5 with three formation
cycles at C/10 and 100 cycles at C/4.

Figure 5. Cycling performance of a graphite/NCM cell with 1 M LiFSI in TBAC:EC:EMC (80:15:5 wt)
electrolyte at T = 25 ◦C. The cell was charged and discharged at C−rate C/4.

However, it was not possible to achieve a durable coulombic efficiency above
ηcoul = 99%. Therefore TBAC-LiFSI electrolytes were not further investigated.

3.4. TBAC Solvent-Mixtures with LiPF6

Similar to LiTFSI and LiFSI, the conducting salt LiPF6 does dissolve in F2. The coulombic
efficiency of 1 M LiPF6 in F2 in a graphite/NCM cell was about ηcoul = 98%. It was necessary
to add DEC or PC to improve the ionic conductivity to cycle cells at C-rate C/4. Figure 6
shows the cycling results for a graphite/NCM cell with 1 M LiPF6 in F4 at T = 25 ◦C with
C-rate of C/4. The results of the electrolyte formulation with PC (F3) are comparable to the
DEC electrolyte. Therefore, we will discuss only the DEC containing electrolyte..

The coulombic efficiency after 100 cycles is above ηcoul = 99.5%, the remaining
capacity is about 93% of the initial capacity. Compared to TBAC-LiTFSI electrolytes, the
coulombic efficiency and the remaining total capacity are increased.

106



Batteries 2021, 7, 72

Figure 6. Cycling performance of a graphite/NCM cell with 1 M LiPF6 in TBAC:EC:EMC:DEC
(60:15:5:20 wt) electrolyte at T = 25 ◦C. The cell was charged and discharged at C−rate C/4.

3.5. Cyclic Voltammetry

To determine the electrochemical stability window, CV measurements between electro-
chemical inert stainless steel electrodes were observed. Figure 7a shows the electrochemical
stability window of LP40 electrolyte as reference. Therefore, the potential of a stainless steel
working electrode connected to the electrolyte LP40 against stainless steel was scanned at
1 mVs−1. The electrolyte is stable up to 3.5 V vs. stainless steel.

The stability window of LiPF6 dissolved in TBAC:EC:EMC:DEC (60:15:5:20 wt) is
shown in Figure 7b. For the second cycle, the TBAC based electrolyte seems to be stable
over the total potential range. Compared to the LP40 reference electrolyte the stability is
improved. At 3.5 V vs. stainless steel, the current begins to rise but is still below 3 μA/cm2.

Figure 7c shows the electrochemical stability window for LiTFSI dissolved in
TBAC:EC:EMC:DEC (60:15:5:20 wt) between two stainless steel electrodes and Figure 7d be-
tween aluminum as working electrode and stainless steel as the counter electrode. Between
two stainless steel electrodes, the stability window of the LiTFSI-TBAC based electrolyte is
comparable to the LP40 reference. The electrolyte decomposes above 3.5 V vs. stainless
steel. However, after the second cycle the decomposition current is still below 4 μA/cm2.

Since aluminum is used as a current collector in commercial lithium-ion cells the
electrochemical stability window was investigated for an aluminum working electrode. CV
measurements with LP40 and LiPF6-TBAC based electrolytes in contact with aluminum
were comparable to CV measurements without aluminum. Figure 7d shows the result for
the LiTFSI-TBAC based electrolyte in contact with aluminum. Above 3 V vs. stainless steel,
the decomposition current is increased by an order of one magnitude compared to the
sample without aluminum. This effect is described in the literature as aluminum corrosion
by the LiTFSI conducting salt [32,33].

LiFSI-TBAC based electrolytes were not further investigated since the tendency to
allow aluminum current collector corrosion beyond 3.8 V vs. Li+/Li0 is also described in
literature [34].
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Figure 7. Electrochemical stability window of (a) LP40, (b) 1 M LiPF6 dissolved in TBAC:EC:EMC:
DEC (60:15:5:20 wt), (c) 1 M LiTFSI in TBAC:EC:EMC:DEC (60:15:5:20 wt) (all with stainless steel as
working and counter electrodes), and (d) 1 M LiTFSI in TBAC:EC:EMC:DEC (60:15:5:20 wt) (with
aluminum as working electrode). Scan rate 1 mVs−1. The electrochemical stability of LiPF6 in TBAC
seems to be improved compared to LP40. LiTFSI−TBAC based electrolytes in contact with aluminum
show higher decomposition rates, which is assumed to be linked to aluminum corrosion by LiTFSI.

4. Discussion

TBAC in combination with EC and EMC dissolves the conducting salts LiTFSI, LiFSI,
and LiPF6. The main focus of this study lays in the combination of TBAC with LiTFSI
to create an electrolyte with high thermal stability and high flash point, since the thermal
stability and the ionic conductivity of LiTFSI are improved compared to LiPF6. By dissolving
1 M LiTFSI in TBAC:EC:EMC:DEC (60:15:5:20 wt) a coulombic efficiency of 99% at a C-rate
of C/4 was achieved. However, the coulombic efficiency of LiTFSI in life cycle tests was
slightly reduced compared to LiPF6. To determine the reason for the efficiency reduction CV
measurements were performed. They showed that the electrochemical stability window of
LiPF6-TBAC based electrolytes is improved compared to the LP40 reference. Furthermore,
the electrochemical stability window of LiTFSI-TBAC based electrolyte between stainless steel
is comparable to LP40. CV measurements of the LiTFSI-TBAC based electrolyte connected to
an aluminum working electrode show decomposition reactions beyond 3.5 V vs. stainless
steel. In literature this is referred to as aluminum corrosion by LiTFSI.

TBAC itself seems to be electrochemically stable in the same window as LP40.

5. Conclusions

In this paper we have investigated tributyl acetylcitrate as a novel and ecofriendly
electrolyte-solvent for lithium-ion cells. Compared to conventional solvents, the flash point
and the boiling point are almost 200 K higher than that of EMC or DEC. The melting point
is more than 100 K lower than that of EC. In combination with LiPF6 and other solvents
(TBAC:EC:EMC:DEC, 60:15:5:20 wt), TBAC shows good electrochemical stability between
−4 V and 3 V vs. stainless steel. In graphite/NCM cells the coulombic efficiency is above
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ηcoul = 99%. After 100 cycles the remaining capacity is still above 90%. Therefore, TBAC
when compared to other solvents is a promising alternative to improve the intrinsic thermal
stability of lithium-ion cells.
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Abstract: The thermal runaway model used is a semi-empirical model based on a kinetic equation,
parametrised by three parameters (m, n, p). It is believed that this kinetic equation can describe any
reaction. The choice of parameters is often made without justifications. We assumed it necessary to
develop a method to select the parameters. The method proposed is based on data coming from
an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for
cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out
using the parameters obtained, we have shown that the ageing mechanisms have a major impact on
the parameters.

Keywords: Li-ion battery; thermal runaway; model; post-mortem analysis

1. Introduction

Lithium ion battery technology is more and more widespread due to its high energy
density and good cyclability. However, this technology can suffer from safety issues. Most
Li-ion battery electric vehicles catch fire due to thermal runaway of the battery. Therefore,
safety is a key issue in the development of this technology.

Thermal runaway of the battery results from a chain of reactions, some of which
are exothermic. Chemical reactions occur one after another, raising the temperature and
triggering new reactions. The different exothermic reactions are as follows: first, the
decomposition of the solid electrolyte interphase (SEI); then, the reaction of the anode
active material and the electrolyte and the reaction between the anode active material
and the binder. Next, the cathode active material decomposes and can release oxygen as
the battery temperature goes higher. The released oxygen can oxidise the electrolyte or
react with the anode active material bringing the battery temperature to a higher value.
Combustion of the flammable gases, such as the gas-state solvents and the gases released
from the chemical reactions, would happen at a high temperature if an ignition source
occurred (short-circuit), resulting in fire and explosion [1].

Most of the studies concerning safety are conducted on new/fresh cells. However,
different ageing mechanisms inside the cell can induce physical and chemical modifications
of the internal components that could influence the initiation of possible combustion.
Ageing can be an important factor that must be taken into account for safety. Few studies
investigate the influence of ageing on safety and most of them are conducted from an
experimental point of view. Cells are cycled and tested in order to exhibit different ageing
mechanisms that impact the safety. For example, Friesen et al. [2] studied the impact
of low-temperature cycling on safety, and Borner et al. [3] or Larson et al. [4] showed
the correlation between ageing and thermal stability of batteries. All existing studies
use the runaway temperature and the heat rate to determine the thermal stability. This
article proposes to better understand the correlation between ageing and safety. Several
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accelerating rate calorimeter (ARC) tests on cells ageing in different conditions have been
realised. The results of the experiment have been crossed with a model.

Thermal runaway models are based on the kinetic equation parametrised by the
temperature (T) and α (0 ≤ α ≤ 1), the fractional conversion degree of the reactants.
The kinetic model has different forms. Avrami–Erofeev introduced the semi-empirical
model parametrised by three constants (m, n, p). Frequently, the more general Sestak and
Berggren [5] model is used.

It is believed that this kinetic equation can describe any reaction. The choice of the
parameters (m, n, p) is often made without justifications and the parameters (m = 1, n = 1,
p = 0) are classically chosen.

We assumed it necessary to develop a method to select the parameters; the parameters
are calculated from the ARC test data. The test protocol will be described in Section 2 and
the model in Section 3. Section 4 will expose the results of the crossing of the test results
with the model. The data-crossing proves that ageing mechanisms have a major impact on
the parameters that is confirmed by the post-mortem analysis.

2. Test Protocol Description

The commercial Li-ion 18650 cell format was chosen for this protocol. Tests were
performed on INR18650-30Q cells (from Samsung DI Co., Yongin, South Korea). The cell
chemistry is a blend of graphite/silicon (approximately 2–3% Si) in the negative electrode
and a blend of NCA (LiNi0.89Co0.10Al0.01O2) and NCO (Ni0.8Co0.2) in the positive electrode.
Performance of each cell batch was measured at 1C: capacity was 3000 mAh and energy
density was 230 Wh/kg. Cells were aged using a battery electric vehicle (BEV) protocol
with representative ageing cycles at various temperatures and calendar ageings according
to the international standard “IEC 62660-1”. The temperature tests were (−20 ◦C, 0 ◦C,
25 ◦C, 45 ◦C) and the calendar ageing was realised at 45 ◦C at constant voltage (CV) at 4.2 V
and at 45 ◦C in an open circuit voltage (OCV). Ageing profiles contained current pulses in
charge or discharge that simulated car breaking and acceleration. For each condition 15
cells were aged on a battery tester (PEC® SBT 05250). The choice of these conditions was
guided by the IEC 62660 standard.

During the test, the state of health (SOH) was followed via an electrical performance
measurement realised at 25 ◦C every 28 days for cells aged by cycling and every 6 weeks
for calendar ageing on a battery cycler. This electrical test allowed us to track the evolution
of some relevant characteristics of the cell: capacity, internal resistance [6,7], and nominal
voltage. The internal resistance was evaluated by the current pulse method (10 s, I discharge
max = 15 A).

In order to identify the favoured ageing mechanism in each condition, aged cells were
dismantled in a glove box under argon (>99.999%) for post-mortem analyses. Scanning
electronic microscopy (SEM) and electrochemical analyses were performed on both positive
and negative electrodes recovered from the aged cells. Glow discharge-optical emission
spectroscopy (GD-OES) and solid state 7Li NMR were realised in addition on the negative
electrodes to clearly identify the main ageing mechanisms. Indeed, different studies [8–10]
have shown that the NCA positive electrode has no significant changes after ageing. The
only suspect ageing mechanism on such NCA active material is the transition metal (Ni,
Co, Al) dissolution during high-temperature ageing.

To help in the comprehension of mechanisms of ageing, electrochemical impedance
spectra (EIS) measurements were carried out on cells at 60% SOC. EIS was performed using
a VMP3 multi-potentiostat (Biologic Science Instruments) equipped with an EIS option.
The frequency range used was from 1 mHz to 500 kHz, starting from high frequency to
low frequency in a logarithmic scan. The alternating voltage amplitude was set to 5 mV at
25 ◦C.

Finally, an accelerated rate calorimetry (ARC) test was performed. An ARC test is
a technique that allows measurement of the self-heating of a cell. The cell is heated in
5 ◦C steps. After a 35 min break, if the heat rate β is not over 0.02 ◦C/min, a new step is
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started. As soon as the heat rate reaches over 0.02 ◦C/min, the so-called “onset temperature”
is identified.

In this study, only the beginning of self-heating was studied. Tests were stopped at
90 ◦C in order not to damage the cell and allow further investigations. Two cells per ageing
condition were tested. A fresh cell was also used as a reference in order to compare the
different safety behaviours.

3. Model

The thermal runaway model is based on the kinetic equation parametrised by the
temperature (T) and α (0 ≤ α ≤ 1), the fractional degree of conversion of the reactants:

∂α

∂t
= k(T) f (α) (1)

The temperature dependence of the process rate is typically parametrised through the
Arrhenius equation:

k(T) = A exp− Ea
RT (2)

where A and Ea are kinetic parameters. A is the pre-exponential factor, Ea the activation
energy, and R the universal gas constant.

The fractional degree of conversion of the reactants α is determined experimentally as
the fraction of the overall change in the physical properties that go with the process (ex:
loss of mass). The overall transformation can generally involve more than a single reaction
or, in other words, multiple steps, each of which has its specific extent of conversion. This
is why some authors have proposed to model all the different steps of reactions. This is the
case for Coman et al. [11] or Hatchard et al. [12]. Hatchard et al. [12] built their model by
distinguishing the reaction of the SEI, the anode, and the cathode, and also introduced the
state of charge (SOC). A couple (A, Ea) was identified for each reaction.

Generally, models consider only the total reaction. First, because the various reactions
are quite differentiated during the first steps, each reaction has its own kinetics. For
example, a reaction can be described by:

∂α

∂t
=

{
k1(T) f1(α1) if T ∈ [T0, T1]
k2(T) f2(α2) if T ∈ [T1, T2]

(3)

α1 and α2 are the specific conversion rates of the two individual reactions and their
sum is α = α1 + α2 with: {

α1 = 0 if T ∈ [T1, T2]
α2 = 0 if T ∈ [T0, T1]

Second, even if the mechanism involves several steps, one of them can determine the overall
kinetics. For instance, this would be the case for a mechanism composed of two consecutive
reactions when the first reaction is significantly slower than the second. Then, the first
process would determine the overall kinetics that would obey a single step, whereas the
mechanism involves two steps.

In this study, ARC tests were stopped at 160 ◦C (for new cells) and 90 ◦C (for aged cells).
The aged cells were subjected to post-abusive characterisation. The use of this temperature
range guarantees keeping the cell intact. The principal reactions at this temperature are
first the SEI and then anode reactions: consumption of Li in the anode when the tests stop
at 90 ◦C, and the consumption of active materials in the anode for tests stopped at 160 ◦C.
It seems reasonable to model the process as a single-step equation.

f (α) is the kinetic model. This function is based on physical-geometrical assump-
tions of regularly shaped bodies. We understand that these assumptions cannot describe
heterogeneous systems. Therefore, the idea is to describe as easily as possible more
complex reactions.
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The first expression of f (α) comes from the experimental fitting of α through relation (1)
under isothermal conditions:

f (α) = ∑
k

akαk (4)

Sestak and Berggren [5] introduced a semi-empirical model (SB model) that esti-
mates this:

f (α) = lαm(1 − α)n(−ln(1 − α))p (5)

Several variations of this model exist. The three principal ones are as follows:
The Avrami–Erofeev model:

f (α) = n(1 − α)(−ln(1 − α))(n−1)/n (6)

The Prout–Tompkins model:

f (α) = αm(1 − α)n (7)

and the Prout–Tompkins regular model, where (p = 0, m = n = 1).
The lack of information regarding the estimation of these parameters led us to propose

a way to estimate them. In the following sections, a method to build a thermal runaway
model is proposed. To model it some parameters are required:

1. the onset temperature T0 and so the degree of reactants converted α0;
2. the parameters (l, m, n, p) of the kinetic model f (α);
3. the parameters of the Arrhenius law: Ea and A;
4. the time of simulation.

The following sections describe how to obtain these parameters from ARC tests.

3.1. Determination of Parameters T0 and α0

The first step is to determine the onset temperature. A new definition is proposed.
Rather than defining the temperature onset as the temperature at the instant when the heat
rate is over 0.02 ◦C/min, we will say that it is the temperature at the instant when the heat
rate starts to increase.

The heat rate is defined as:

β(t) =
∂T(t)

∂t
(8)

ans so the time onset t0 is defined as:

∀t ≤ t0,
∂β(t)

∂t
≥ 0 (9)

This instant is denoted t0. Different parameters can be evaluated at this instant:

• the temperature onset T0 = T(t0);
• the degree of reactant converted α0 = α(t0);

• the heat rate β0 = β(t0) =
∂T(t)

∂t (t0).

In Figure 1, an example of heat rate measured during an ARC test on a new cell is
given. On the left side (Figure 1a), the different heating levels (black peaks) can be observed.
On the right side (Figure 1b), a zoom on the plot is chosen as the onset temperature. In
orange is the trend.
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(a)

(b)

Figure 1. Location of onset temperature. (a) Example of heat rate measured during an ARC test on a
new cell. (b) Example of situation of the onset temperature.

3.2. Estimation of Parameters (l, m, n, p)

Once the onset temperature of each cell is determined, the parameters of the model
can be identified.

The demonstration is realised under adiabatic conditions. The energy conservation
equation for an adiabatic reaction guarantees:

∂T
∂t

=
ETot
Ctot

∂α

∂t
(10)

where ETot (J) is the total heat that can be produced by the reaction and Ctot is the total
capacity (JK−1).

The heating rate is denoted by:

β(t) =
∂T
∂t

(11)

With this notation the thermal runaway model (1) becomes:

ln
(

β(t)
Ctot

ETot

)
− ln( f (α)) = ln(A)− Ea

RT
(12)

Therefore:

ln( f (α)) =
Ea

RT
+ ln(

β(t)
A

Ctot

ETot
) (13)
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At the start of the reaction t = t0, α = 0. The reactants begin to transform and we can
consider that the heat rate is constant:

β(t) = β (14)

Therefore, the SB kinetic model can be approached by a limited development:

ln( f (α)) ∼
α→0

ln(l) + (m + p)ln(α)− nα (15)

Therefore, when α → 0 Equation (13) is:

Ea

RT
+ ln(

β(t)
A

Ctot

ETot
) = ln(l) + (m + p)ln(α)− nα (16)

By deriving Equation (16) by T:

− Eaβ

RT2 = (m + p)
∂α

∂t
1
α
− n

∂α

∂t
(17)

Due to the adiabatic condition ∂α
∂t verifies (10) so:

− EaETot

RCtotT2 = (m + p)
1
α
− n (18)

Three cases are possible at the beginning of the reaction (α → 0):

• Ea = 0. The reaction is instantaneous. Then:

m + p
n

= 0

• Ea > 0 then:
m + p

n
< 0

• Ea < 0. The phenomenon occurs in a chain reaction. Then:

m + p
n

> 0

At the beginning of the reaction, it seems reasonable that Ea be positive or null.
This implies:

m + p
n

≤ 0 (19)

Gorbatchev [13] has shown that no more than two kinetic exponents are necessary to
describe any kinetic schema, so we choose p = 0.

n is considered as the order of the reaction, so n > 0, and therefore:

m ≤ 0 (20)

Let us study the Gibbs free energy of activation, defined as:

ΔG = ΔH − TΔS = −RT ln
(

kh
kBT

)
(21)

where kB is the Boltzmann constant and h the Planck constant and so kB
h = 2.084 × 1010. k

is the constant reaction.
Chemical thermodynamics explains that if

• ΔG < 0: the reaction is thermodynamically favourable and will occur spontaneously;
• ΔG = 0: the reaction is at its state of equilibrium;
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• ΔG > 0: additional energy must be input for the reaction to occur.

In ARC tests, the cell is heated for a few minutes and then there is a 35 min break: if
the heat rate is not over 0.02 ◦C a new step is started. During these first steps additional
energy is necessary to trigger the reactions. Therefore, ΔG must be positive. At the onset
temperature: T0, the thermal runaway starts and reactions become spontaneous so ΔG < 0.

We consider that at t0, when T = T0 the reaction is at its state of equilibrium. The free
enthalpy is then equal to 0.

Therefore, at t = t0:

ln
(

kh
kBT0

)
= 0 ⇐⇒ k0 =

kBT0

h
(22)

From (1) and (10):

ln(k) = ln
(

β(t)Ctot

ETot

)
− ln( f (α)) (23)

At T0:

ln(k0) = ln
(

β(t0)Ctot

ETot

)
− (ln(l) + m ln(α0) + n ln(1 − α0)) (24)

Then:

m ln(α0) = ln
(

β(t0)Ctot

ETot

)
− ln(k0)− n ln(1 − α0)− ln(l) (25)

m ≤ 0 and α0 < 1 so:

ln
(

β(t0)Ctot

ETot

)
− ln(k0)− n ln(1 − α0)− ln(l) ≥ 0 (26)

Therefore:⎧⎪⎨⎪⎩
ln(l) ≤ ln

(
β(t0)Ctot

ETot

)
− ln(k0)− n ln(1 − α0) = ln(lmax)

m =
ln
(

β(t0)Ctot
ETot

)
−ln(k0)−n ln(1−α0)−ln(l)

ln(α0)

(27)

l will be chosen so that the Gibbs free energy is positive before T0 and negative after,
and so that ln(l) ≤ ln(lmax) is verified. Until these conditions are verified, ln(l) is reduced
per step to 1.

For a fixed n, Algorithm 1 can be used to choose the parameter (l, m).

Algorithm 1 Calculate l.

Require: n, idx0 the onset index and ln(lmax)
Calculate m thanks ln(lmax)
Calculate G thanks (m, ln(lmax))
while G[0 : idx0] ≤ 0 do

ln(l) = ln(l)− 1
Calculate new m
Calculate new G

end while

3.3. Estimation of (Ea, A)

Energy activation (Ea) and pre-exponential factor A are calculated thanks to
Equation (13) and the calculated parameters (l, m) (Figure 2).
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Figure 2. Estimation of Ea and A for fresh cell data: ln(k(T)) = ln(A)− Ea
RT .

The pre-exponential is defined as:

ln(A0) = ln(A) + ln(l) (28)

3.4. Remarks about the Temperature Effects

The rate constant k is defined by the Arrhenius law, where energy of activation is
considered a constant parameter (independent of the temperature). This approximation
proves to be a very good one, at least over a moderate temperature range. In this case,
kinetic phenomena can be interpreted as a set of elementary reactions. This theory is totally
adapted for gas phases where chemical transformations take place in a series of isolated
binary collisions of molecules, but less for solid or liquid phases or when the reactions are
blended [5,14].

There is another way of calculating the rate constant. The expression comes from the
transition state theory defined by Equation (21). In this case the energy of activation Ea and
pre-exponential factor A are dependent on the temperature. It is this theory that is used to
determined the values of (m, l). It seems well-adapted because in the system the reactions
are blended and are in different phases. Pulses of heat impact the progress of the reaction
(α) and so the transitory state of equilibrium. The level of energy of activation required to
realise the reaction will change.

3.5. Remarks about the Precision of Measurements

Algorithm 1 updates lmax until all the values of G are negative before T0. Sometimes,
due to the precision of the measurement, few points are not under 0 during several
iterations. For example, in Figure 3, 20 iterations more were performed because 3 points
were still positive. lmax was then overvalued.

To avoid this kind of problem, instead of verifying G[0 : idx0] ≤ 0, a tolerance is
added. In theory no value can be positive. In this case, we accepted a maximum of 10
positive values.
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Figure 3. Number of negative G points as function of the number of iterations for a cell aged at 45 ◦C.

4. Results

All the parameters described were calculated on aged cells in order to appreciate the
impact of the ageing on the kinetics model. The values were crossed with experimental
results to verify the coherence of the values obtained.

4.1. Post-Mortem Analysis

The negative electrode is the site of the exchangeable lithium loss (SEI, Li-plating, ...).
This is why the post-mortem analyses (GD-OES, Li-NMR and EIS) were focused on it. The
results are presented in the next paragraph.

4.1.1. GD-OES and Li-NMR

Figure 4a presents the composition of the negative electrode surface after the different
ageing conditions obtained by GD-OES. GD-OES allows us to study the chemical composi-
tion of the surface in the first 1.5 μm (total thickness of electrode is 44 μm) and allows us to
understand which ageing mechanism takes place for each ageing condition.

For all aged cells, GD-OES measurements show that Si particles, initially well dis-
tributed in the negative electrode depth, are concentrated on the electrode surface. This
migration should be related to the formation of Li-silicates [15], which consume cyclable Li.

Compared to fresh cells, the quantity of Li increases whereas the quantities of O
(oxygen) and P decrease for cells aged at −20 ◦C. This shows that SEI does not grow on
the electrode surface and it reveals the presence of metallic Li on its surface. Li-NMR
measurements presented in Figure 4b confirm this observation.

When cells are aged at 25 ◦C and 45 ◦C, Li increases while O decreases and P increases,
which reveals SEI growth by salt degradation [16].

At 45 ◦C calendar ageing, the observations are the same for both CV and OCV condi-
tions. The increase in Li coupled with the increase in O and the decrease in P reveals that
SEI grows by solvent degradation [16]. The mechanism is more pronounced for CV than
OCV conditions.

Cells aged at 0 ◦C have no preponderant ageing mechanism considering the very
small change in O and P quantities. 7Li-NMR MAS (Figure 4b) shows that the observed Li
is not in a metallic state. The Li detected here by the GD-OES analysis is not contained in
the SEI layer and not in a metallic state.

119



Batteries 2021, 7, 68

(a) (b)

Figure 4. GD-OES and Li-NMR measurements. (a) Elementary composition of negative elec-
trode surface by GD-OES analyses after ageing. (b) Li-NMR measurements of negative electrodes
after ageing.

4.1.2. EIS

Figures 5 and 6 present the results of the impedance spectroscopy conducted on half
of the cells built from the aged negative electrodes. The results are for a cell charged at 60%.

EIS spectra can be fitted by an equivalent circuit:

L1 + R1 + Q2//R2 + Q3//R3 (29)

• R1 is the resistance at high frequency associated to the ohmic resistance of the cell. It
reflects the lithium ion transfers in the electrolyte.

• Q2//R2 is linked to the first semi-loop. The frequency range of apparition is related
to the migration of the lithium ion through SEI.

• Q3//R3 is associated to the second semi-loop. The frequency range of apparition is
related to the charge transfer through the electrode/electrolyte interface.

Values are summarised in Table 1.
Figure 5 represents the results in the Nyquist plan of the different cells.
Figure 6 presents the parameter values of the fitted models on each plot.

Figure 5. Nyquist plot of the different cells at SOC = 60%.

No ageing cell has the same resistance and capacitance, which reflects a difference in
the morphology of the “electrodes”.

The cells aged at −20 ◦C, 0 ◦C, and by calendar ageing at CV keep an interface
resistance (R1) in the same order as the fresh cells. These cells may not have developed
extra SEI, or the thickness of the SEI has not increased.
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(a) (b)

(c) (d)

Figure 6. EIS results based on equivalent circuit L1 + R1 + Q2//R2 + Q3//R3 at SOC = 60%. (a)
Comparison of inductance values. (b) Comparison of ohmic resistances. (c) Comparison of the
interface resistance according to the interface capacitance. (d) Comparison of the charge transfer
resistance according to the charge transfer capacitance.

Table 1. EIS results based on equivalent circuit L1 + R1 + Q2//R2 + Q3//R3 at SOC = 60%.

Test R1 R2 R3 Q2 Q3 a2 a3 L

Fresh 1.26 × 10−2 0.037 0.58 × 10−2 412.23 0.69 0.70 0.73 1.4 × 10−7

0 ◦C 1.2 × 10−2 0.036 1.37 × 10−2 31.72 7.50 0.23 0.99 1.2 × 10−7

−20 ◦C 1.34 × 10−2 0.706 0.87 × 10−2 227.35 1.71 0.42 0.62 1.3 × 10−7

25 ◦C 1.33 × 10−2 0.008 6.69 × 10−2 3.34 5.25 0.54 0.91 1.2 × 10−7

45 ◦C 1.2 × 10−2 0.079 5.01 × 10−2 50.93 6.52 0.19 0.97 1.2 × 10−7

CV 1.84 × 10−2 0.012 4.73 × 10−2 2.30 5.94 0.42 0.90 1.3 × 10−7

OCV 1.2 × 10−2 0.036 1.08 × 10−2 31.72 7.50 0.23 0.99 1.2 × 10−7

The interface capacitance Q2 of the fresh cells and the cells aged at −20 ◦C are quite
the same, which confirms the results of GD-OES: no extra SEI has been formed.

The interface capacitance of cells aged at 0 ◦C and by calendar ageing at OCV is
more important than that of the fresh cells, but the resistance is in the same order of
value. It induces a transformation in the morphology of the SEI for these cells. The SEI is
less compact.

EIS confirms that cells aged at 25 ◦C and 45 ◦C have the same kind of SEI morphology.
The resistance and capacitance interfaces are closed (Figure 6c).

Cells aged by a calendar process at CV have a resistance R2 and Q2 close to the one of
cells aged at 25 ◦C and 45 ◦C. GD-OES has shown that the extra SEI developed is not of
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the same nature. One growth is due to salt degradation, the other to solvent degradation.
Compared to cells aged at OCV the resistance is higher, which means that the thickness
developed by the CV process is greater than the one developed by an OCV process. This is
confirmed by GD-OES.

Regarding charge transfer resistance R3, cells aged at 25 ◦C, 45 ◦C, and by calendar
ageing keep the same order of value as the fresh cells. However, charge transfer capac-
itances (Q3) are lower than for the fresh cells. The interface film solution might be less
porous certainly due to the growth of SEI.

The cells aged by calendar ageing at constant voltage tend to have the same morphol-
ogy as cells aged at 25 ◦C and 45 ◦C regarding the values of R3, R2, Q2, Q3.
Nevertheless, the ohmic resistance (Figure 6b) is more important, which means that the
properties of the electrolyte are different. The GD-OES shows that the processes of SEI
generation are not similar. One is based on the decomposition of salt and the other on the
degradation of the solvents. Components present in the electrolyte might be different.

Cells aged at −20 ◦C and 0 ◦C have an important resistance charge transfer R3. The
growth of the resistance value, in the case of the cells aged at −20 ◦C, can be explained
by the development of metallic lithium. In the case of the cells aged at 0 ◦C, the GD-OES
analysis exhibits the presence of lithium (Figure 4a). The analyses show that lithium is not
contained in the SEI layer and is not in a metallic state. It is as if lithium was blocked on
the the film interface.

4.2. Model Results

Kinetic parameters have been calculated from the ARC tests. Results are presented
in the following paragraphs and compared to the results of the post-mortem analysis
summarised in Table 2.

Table 2. Summary of the conclusion of the tests.

Test 0 ◦C −20 ◦C 25 ◦C 45 ◦C CV OCV

GD-OES Li available � Fresh SEI by salt
degradation

SEI by salt
degradation

SEI by solvent
degradation
(+)

SEI by solvent
degradation

Li-NMR Li metal

EIS R1 � Fresh � Fresh � Fresh � Fresh + �Fresh

EIS interface/SEI � Fresh porous ++ morpho 1 morpho 1 thickness (+)
than OCV porous +

EIS charge trans-
fer/film interface porous − − − porous − − porous − − − porous −

Kinetic parame-
ters G1 G1 G2 G2 G2 G2

4.2.1. Onset Temperature

The onset temperature was calculated for each cell (Figure 7) thanks to the criteria
described before. The instant when T0 is measured represents the start of the reaction. Once
the beginning of the reaction is defined, the fractional degree of conversion of reactants α0
and the temperature rate (β0) can be evaluated.

Two groups appear. One group has a lower temperature onset than the fresh cells:
cells aged at (0 ◦C, −20 ◦C). A second group has a higher onset temperature than the
fresh cells: cells aged at (25 ◦C, 45 ◦C) and cells aged by a calendar process. The frac-
tional degree of conversion of reactants follows the same order, which is totally normal in
adiabatic conditions.
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Notice that the dispersion of the fractional degree of conversion of reactants for cells
aged at 45 ◦C is more pronounced even if the temperature onset is identical. One more
temperature pulse has been applied to one of the cells, which explains a larger degree of
conversion. Yet it has no impact on the measure of the onset temperature.

The temperature rate is quasi-identical at the beginning of the reaction for each test.
Reactions start at the same speed.

Figure 7. Onset temperature for different ageing conditions (new/fresh, 0 ◦C, −20 ◦C, 45 ◦C, 25 ◦C,
at constant voltage (calendar ageing) at 4.2 V and OCV after charge at 4.2 V at room temperature).
Fractional degree of conversion (α0) of reactants at t0 and temperature rate (β0) at t0.

4.2.2. Parameters (l, m)

Thanks to Algorithm 1, parameters (lmax, l, m) are calculated on all the aged cells with
n = 2. The results are presented in Figure 8.

(a) (b) (c)

Figure 8. Kinetic parameters. (a) lmax parameter for different ageing conditions. (b) l parameter for
different ageing conditions. (c) m parameter for different ageing conditions.

The dispersion of parameter lmax is very small: 0.007 (Figure 8a). Conversely, l
(Figure 8b) does not have the same value depending on the ageing process.
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Parameter m follows the same trend as l (Figure 8c). Two groups are formed:

• G1: cells aged at (−20 ◦C, 0 ◦C) and fresh cells;
• G2: cells aged at (25 ◦C, 45 ◦C), and cells aged by a calendar process at constant

voltage and at OCV.

The dispersion per condition observed for parameters m and l is due to the quality of
reproduction of the ARC test and the precision of the measurements previously explained.

Post-mortem analyses show that the main difference between the two groups formed
here is the development of extra SEI. Group G1 has not developed extra SEI contrary
to group G2. That is in accordance with the interpretation of the m parameter. The
m parameter contains information regarding the basic geometrics of nuclei (spherical,
prismatic. . . ) and the physico-chemical aspects of processes (nucleation, diffusion, trans-
port process. . . ) [5]. The development of extra SEI changes the morphology of the cell.

Cells aged at 0 ◦C have the smallest m in group G1, although no ageing mechanism is
preponderant. The EIS study shows that the property of interface capacitance is different.
The morphology is different.

In group G2, the values of m are dispersed, which makes interpretation difficult.

4.2.3. Parameters (Ea, A0)

Energy of activation Ea and pre-exponential factor A0 were calculated thanks to
Equation (13) and the calculated parameters (l, m) (Figure 9).

Figure 9. Ea and pre-exponential factor A0 for different ageing conditions.

Group G1 has the smallest energy of activation. The energy required to start the
reaction is smaller than the energy of activation of the other cells. No extra SEI has been
formed in this group and it is well known than SEI plays a protector role in the thermal
stability. However we can notice that the activation energy values within this group are
not identical (Figure 9).

Cells aged at 0 ◦C have the highest energy of activation in group G1. A high energy of
activation means that the reaction is slow. This can be explained by the fact that these cells
have a different morphology (as shown by parameter m) and so require more energy to
trigger the reaction. Post-mortem analyses confirm that these cells have been transformed.
GD-OES exhibits that lithium is available at the surface of the electrode. EIS has shown
that the interface capacitance has grown, revealing a more porous morphology. The
porosity may create an imbalance in the concentration distribution of Li. SEI can be formed
irregularly on the pores and so creates zones with Li and zones without Li [17].
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In group G2, cells have quite the same energy of activation but the pre-exponential
factor is different. The pre-exponential factor of the cell aged at CV is lower than for one
the other cells of group G2. The pre-exponential factor includes many constants describing
the initial state of the sample, such as three-dimensional shape factors of initial particles,
molecular mass, density, stoichiometric factors of chemical reaction, active surface, number
of lattice imperfections, etc. EIS shows that the structure of the interface is closer to the
structure of cells aged at 45 ◦C and the cells aged at 25 ◦C. Extra SEI formed in these
conditions is formed by solvent degradation like for the cells aged at the OCV. The EIS and
the GD-OES analyses show that the quantity of SEI is more important in the case of the CV
ageing process. This can explain the differences in the value A0.

4.2.4. Simulation

It is often considered that the combination of all the parameters (m, n, l, Ea, A) de-
scribes the kinetics of the reaction.

To illustrate this, a simulation using the parameters estimated previously (m, n, l, Ea, A)
was realised for each ageing process (Figure 10b). To do so, the initialisation of the temper-
ature and α is required. Two algorithms are proposed.

The simulations in Figure 10 were performed with the true α0 and T0. In Figure 10b,
the simulation performed with Algorithm 2 is compared to the true data. The parameters
estimated previously (m, n, l, Ea, A) are representative of the kinetics. The kinetics seem to
be well reproduced except for the cells aged at 0 ◦C. One possible explanation is that only
one energy of activation is considered. In fact, several reactions occur at the same time. The
kinetics can change over the time due to a new group of reactions, which will impose their
kinetics. This is why the kinetics must be studied on a range of temperatures to improve
the results, which verifies an isokinetic relationship.

By applying the second Algorithm 3, it is possible to evaluate the time of reaction.
In this case no extra reaction occurs. The parameters (m, n, l, Ea, A) represent the whole
reaction. This is the most optimistic case. The most reactive cells are the cells aged at 25 ◦C
and cells aged in open circuit voltage (OCV). They are considered more thermally stable
because the onset temperature is high and yet the time of reaction is shorter. Cells aged
at 0 ◦C and −20 ◦C are less stable (onset temperature small) but their time of reaction is
longer. Therefore, mitigation solutions can be set up more easily. The most thermally stable
cells are the fresh cells and the cells aged at constant voltage.

Algorithm 2 Calculation of T.

Require: n, m, Ea, A0, Tmax, T0,α0, dt
T0 = T0
α0 = α0
while T ≤ Tmax do

αi+1 = A0 exp(−Ea/RTi)α
m
i (1 − αi)

n ∗ dt + αi

Ti+1 = ETot
Ctot

(αi+1 − αi) + Ti
end while

Algorithm 3 Calculation of T.

Require: n, m, Ea, A0, Tmax, T0,α0, dt
T0 = T0
α0 = α0
while αi ≤ 1 do

αi+1 = A0 exp(−Ea/RTi)α
m
i (1 − αi)

n ∗ dt + αi

Ti+1 = ETot
Ctot

(αi+1 − αi) + Ti
end while
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(a)

(b)

Figure 10. Simulation. (a) Simulation of the different kinetics for a time of simulation corresponding
to the tests. Comparison with the test data. (b) Simulation of the different kinetics considering that
no other reaction occurs until the end.

5. Conclusions

Thanks to the ARC tests realised on cells aged by different processes, we have shown
that (m, l) parameters must be chosen carefully. Indeed these parameters vary according to
ageing and what the cell experienced.

The values of (m, l) impact the energy of activation and the pre-exponential factor. The
transition state theory shows that energy of activation and pre-exponential factor cannot
be considered constant. They vary according to the history of the cell. First, the ageing
changes the morphology of the cell and consequently the reaction that will be produced.
Secondly, the rise in the temperature will change the equilibrium of the reaction, therefore
the energy required to trigger the reaction will not be the same.

Once all the kinetic parameters are calculated, simulations can be used to reproduce
the rise in temperature. Simulations confirm that the kinetic parameters must be estimated
at different temperatures but with constant kinetics. One reaction can impose its kinetics
but a new reaction can take over and in turn impose its own kinetics. In this case all the
kinetic parameters must be re-evaluated, for each range of temperatures.
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Simulations have exposed another problem: some cells are considered more stable
thermally because the reaction starts at a higher temperature. However, in this case, the
reaction will be realised faster. Other cells have a lower temperature onset but the reaction
will be slower, which gives time to find solutions to a thermal runaway. Should we focus
on stability in order to minimise the risk of thermal runaway, or should we focus on the
time response in case of thermal runaway?
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SOH State of health
BEV Battery electric vehicle
ARC Accelerating rate calorimeter
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GD-OES Glow discharge-optical emission spectroscopy
SB kinetic model Sestak–Bergam kinetic model
EIS Electrochemical impedance spectra
SEI Solid electrolyte interphase
OCV Open circuit voltage
CV Constant voltage
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Abstract: Lithium metal anodes have again attracted widespread attention due to the continuously
growing demand of cells with higher energy density. However, the lithium deposition mechanism
and the affecting process of influencing factors, such as temperature, cycling current density, and
electrolyte composition are not fully understood and require further investigation. In this article,
the behavior of lithium metal anode at different temperatures (25, 40, and 60 ◦C), lithium salts,
electrolyte concentrations (1 and 2 M), and the applied cell current (equivalent to 0.5 C, 1 C, and
2 C). is investigated. Two different salts were evaluated: lithium bis(fluorosulfonyl)imide (LiFSI)
and lithium bis(trifluoromethanesul-fonyl)imide (LiTFSI). The cells at a medium temperature (40 ◦C)
show the highest Coulombic efficiency (CE). However, shorter cycle life is observed compared to
the experiments at room temperature (25 ◦C). Regardless of electrolyte type and C-rate, the higher
temperature of 60 ◦C provides the worst Coulombic efficiency and cycle life among those at the
examined temperatures. A higher C-rate has a positive effect on the stability over the cycle life of
the lithium cells. The best performance in terms of long cycle life and relatively good Coulombic
efficiency is achieved by fast charging the cell with high concentration LiFSI in 1,2-dimethoxyethane
(DME) electrolyte at a temperature of 25 ◦C. The cell has an average Coulombic efficiency of 0.987
over 223 cycles. In addition to galvanostatic experiments, Electrochemical Impedance Spectroscopy
(EIS) measurements were performed to study the evolution of the interface under different conditions
during cycling.

Keywords: lithium battery; temperature dependency; ether based electrolyte, insitu deposited
lithium-metal electrode; Coulombic efficiency; lithium deposition morphology

1. Introduction

1.1. Motivation

Lithium metal has always been one of the most attractive candidates for anode ma-
terials in lithium batteries. This is due to its potential to extend the energy density of
conventional lithiumion batteries. State-of-the-art Li-ion cells, depending on the cell chem-
istry, can deliver a specific energy density of 130 Wh·kg−1 to 250 Wh·kg−1 [1]. This is
already behind the U.S. Department of Energy’s (DOE) target for advanced batteries for
electric vehicles [2]. Lithium has a theoretical specific capacity of 3860 mAh·g−1 and
a higher redox potential of φLi||H2 = −3.04 V versus standard hydrogen electrodes in
comparison to electrodes based on graphite. This means using lithium (Li) instead of
conventional intercalating anode materials like graphite (LiC6), which has a theoretical
specific capacity of 372 mAh·g−1 that can increase the specific energy and volumetric
energy density of cells significantly. In one study, researchers reported a 35% increase in
specific energy and 50% increase in volumetric energy density when the graphite electrode
is replaced with a Li metal electrode [3]. In addition to the aforementioned change in
electrode material, they considered a solid electrolyte for the Li-metal cell and a liquid
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electrolyte for the conventional Li-ion cell in their estimates [3]. However, commercializ-
ing Li-metal batteries has been paused due to various challenges in both production and
performance of lithium cells [4]. The issues with the production are that the Li surface is
highly reactive and sensitive to humidity, oxygen and nitrogen, which are all present in the
air atmosphere [5,6]. The challenges of the performance are given by the unstable and dif-
ferent Li growth morphology, low Coulombic efficiency, and considerable volume change
during cycling [1]. Lithium metal cannot be utilized with known carbonate electrolytes
because its electrochemical potential causes the electrolyte to continuously decompose until
a passivating solid electrolyte interface (SEI) is built up [7]. One approach to utilizing the
Li-metal is creating a stable and uniform SEI layer on the lithium surface that can withstand
significant volumetric changes of Li during cycling. This is of critical concern to ensure
safe and efficient lithium metal cells. Local variations in the SEI layer’s composition might
cause uneven Li deposition, resulting in changes in Li-ion conductivity across the electrode
or SEI rupture, which can facilitate the creation of Li dendrites. Another approach is to use
solid membranes, such as solid polymer electrolytes (SPE), which are less reactive to the
Li [8] and their soft nature could withstand the extensive volume change of the Li anode [9].
In this study we focus on compatible liquid electrolytes in lithium cells. More experiments
investigating the influence of different electrolyte compositions and the cycling conditions
on effective SEI layer formation are much needed.

1.2. Relevant Literature

The high reactivity of metallic Li, which causes difficulty during the production
process, can also be a source of performance challenges. Potential corrosive reactions at
the surface of Li metal often lead to an increase in interfacial resistance, a reduction in
Coulombic efficiency (CE) and a poor lifetime. Additionally, the large volume expansion
of the electrode during repeated Li deposition/dissolution will seriously deteriorate the
interfacial stability and in general increase the gap between theoretical and practical
energy density of the Li cells. Continuous interface reactions, together with the surface
enlargement due to new depositions, consume the fresh Li more and more during the cycle
life of an Li metal anode. This means that an excess of lithium and electrolytes are strongly
needed to increase the cycle life and improve the stability of Li metal cells [10]. There are
studies implying that 20% is the optimum excess of lithium; a greater excess of lithium
will increase the possibility of side reactions and consequently shorten the cycle life of the
cells [11]. This required excess of Li and electrolytes is another limitation to increasing
practical energy density in Li-metal cells.

The function and properties of Li cells are strongly dependent on the growth mor-
phologies. However, predicting the kinetic structures is difficult as they are influenced
by different parameters. There are studies [12–15] investigating the parameters that have
an influence on the shape, morphology and growth of metal particles. Tao Yang et al. [12]
proposed three different growth modes: reaction limited, diffusion limited and the so-
called reaction–diffusion balance mode. The reaction limited mode is dominated by a slow
reaction rate. The reaction in the case of Li cells, which is the focus of this paper, is the
nucleation and transformation of an Li ion to deposited Li metal:

Li+ + e− → Li. (1)

The slow reaction rate combined with a sufficient mass transport diffusion in the
electrolyte from the cathode to the Li metal anode leads to a rich concentration of reactants
(Li ions) around the nucleus which further leads to a classic crystallization process. The
diffusion limited mode is dominant if the reaction rate is much faster compared to the mass
transport diffusion, which causes a lack of reactants around the nucleus. In both mentioned
conditions—reaction limited and diffusion limited—the particles’ growth is slow. However,
in the reaction–diffusion balance mode, the morphology is dendritic and the growth speed
is fast. In this region, there is a concentration gradient around the nucleus. Yang and his
group [12] examined the morphology evolution on silver, gold and copper, coming to the
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same conclusion that the relation between diffusion and reaction rate is the key factor in
predicting the shape of particle growth. With this as the background, the importance of
operation temperature and applied current, as the key kinetics definers for the performance
of lithium metal anodes, should be emphasized.

There are studies showing that a local temperature rise can have healing effects on Li
dendrites at different current densities [13,14]. By increasing the temperature, the diffusion
of Li ions in the bulk of the electrolyte will be faster [15]; therefore, based on Tao Yang’s
model, in comparison to the cell performed at TCell = 25 ◦C, elevated temperature should
move the cells either in the direction of reaction limited or to a balanced region. Yehu
et al. [13] investigated the temperature influence on the stability and efficiency of the Li
metal anode. They found out that in their studied system, temperature rise has a positive
influence on the efficiency and life time of the cells. They also studied the impact of
different temperatures and electrolyte compositions on the morphology of Li depositions.
They found out that bigger Li spheres form at the initial stage of deposition at elevated
temperatures, leading to a lower specific area of plated Li and consequently to reducing
the probability of dendritic formation [13].

At the same time, there are studies showing that the temperature rise leads to more
unstable lithium deposition [16–18]. The structural uniformity and mechanical strength of
the Solid Electrolyte Interface (SEI) play important roles in defining the type of deposition
as they directly influence the dynamic of Li plating and stripping [19]. As the SEI layer
consists of reduced and decomposed electrolyte components, different electrolytes induce
totally different SEI layers. One influencing component in the electrolyte is the used Li salt.
The salt lithium hexafluorophosphate LiPF6 exhibits poor thermostability [20]; Lithium per-
chlorate LiClO4 can strongly oxidize the Li metal [21] and causes low safety. An alternative
salt given by lithium bis(fluorosulfonyl)imide (LiFSI) is reported to form a robust SEI pro-
tecting layer [22]. In this work, the influence of LiFSI and lithium bis(trifluoromethanesul-
fonyl)imide (LiTFSI) and their concentrations in electrolytes on the cycle life of Li metal
cells is studied.

1.3. Structure and Technical Contribution

In this article, the influences of temperature, C-rate, type, and concentration of Li salt
in the electrolyte on the lithium deposition were studied. A variety of electrolytes including
LiFSI in 1,2-dimethoxyethane (DME) with a molar concentration of c = 1 M, LiFSI in DME
with c = 2 M and lithium LiTFSI in DME, also with a concentration of c = 1 M, were
investigated. In addition to the Coulombic efficiency, EIS measurements were carried out
to evaluate the stability and aging behavior. The best performance is achieved by a high
concentration of LiFSI-DME electrolyte at 25 ◦C. The remainder of this article is structured
as follows. Section 2, presents the materials and methods for evaluating the degradation
of the cells. The cell preparation, the measurement procedure and matrix are discussed
in detail. The results of the conducted experiments, including the data on the Coulombic
efficiency and the Electrochemical Impedance Spectroscopy (EIS) measurements, are shown
and discussed in Sections 3 and 4. Finally, an outlook of the future work and a conclusion
are given.

2. Materials and Methods

In this section, the preparation of the cell structure consisting of the electrolyte and
the electrodes will be discussed first. Thereafter, the measurement procedure of the cycling
tests and the boundary conditions of the conducted experiments will be presented.

2.1. Material and Cell Preparation

Electrolytes preparation: LiTFSI and LiFSI (with a chemical purity of xLiTFSI,LiFSI > 99% ,
manufactured by Ionic Liquid Technologies GmbH (Heilbronn, Germany), were purchased
and used as received. The electrolyte DME with a chemical purity of xDME > 99% manufac-
tured by Thermo Fisher GmbH (Kandel, Germany) was used as the solvent. Three different
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ether-based electrolytes were prepared as follows: (1) LiTFSI 2M in DME, (2) LiFSI 2M in
DME and (3) LiFSI 1M in DME.

Electrode preparation: An oxygen-free copper (Cu) foil from SCHLENK Metal Foils
GmbH & Co. KG. (Roth, Germany) with a thickness of hCu = 6 μm was purchased and
used as received. Current collector (CC) disks with a diameter of dCC = 18 mm were
punched out of the foil to be used as working electrodes. Lithium metal foil manufactured
by Sigma Aldrich (St. Louis, MO, USA) with a thickness of hLi foil = 320 μm was used as
the counter electrode. The lithium surface was cleaned of an oxide layer before punching.
Disks with a diameter of dLi foil = 18 mm were made. All handling was performed inside
an argon-filled glove box from M. Braun Inertgas-Systeme GmbH (Garching, Germany)
with an oxygen (O2) and water (H2O) concentration cO2,H2O < 0.5 ppm. Both counter and
working electrodes had an effective surface area of A = 2.54 cm2.

2.2. Cell Degradation Experiments

Cell degradation experiments were conducted using EL-CELL PAT-Cell cases manufac-
tured by EL-Cell GmbH (Hamburg, Germany). Before cell assembly, Cu current collectors
were dried under vacuum for tdry = 16 h at Tdry = 120 ◦C and were transferred into the
glove box. Celgard 2500 from Celgard (North Carolina, USA) was used as a separator
and was also dried under vacuum for tdry = 16 h at Tdry = 80 ◦C prior to use. Prepared
electrolytes were poured on both sides of the separator and the amount was determined
depending on the measurement temperature and applied current density. For the mea-
surements performed at TCell = 25 ◦C, an electrolyte amount of Velec = 50 μL was used
for the current densities of J = 0.5 mAh · cm−2 and J = 1 mAh·cm−2. The amount of
electrolyte was increased to Velec = 100 μL for the experiments with an applied current
density of J = 2 mAh·cm−2. Regardless of current density, Velec = 100 μL was used for the
measurements at TCell = 40 ◦C and TCell = 60 ◦C.

In order to evaluate the degradation behavior, cycling tests were conducted. A segment
of the measurement procedure is visualized in Figure 1 with a C-rate of ICell = 1 C. The
current is presented in Figure 1a and the corresponding voltage in Figure 1b.
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Figure 1. Segment of the measurement procedure of the conducted cycling tests example at ICell = 1 C.
The current data are presented in (a) and the corresponding voltage data are visualized in (b). Before
the first cycle and after each 20 full charge/discharge cycles, EIS measurements were conducted.
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The tests were conducted using a battery cell tester from Basytec GmbH (Asselfingen,
Germany) in combination with a Reference 3000 from Gamry Instruments (Warminster,
PA, USA) in a climate chamber manufactured by Memmert GmbH (Schwabach, Germany).
Prior to cycling, cells were relaxed at the considered measurement temperature for t = 4 h
to achieve a homogeneous electrolyte distribution and a steady state temperature. The
Cu/Li cells showed an open circuit potential (OCP) of UOCP ≈ 2.7 V which is observable
during the relaxation period in the first 4 h of the procedure.

The cells were continuously charged and discharged at the considered C-rate with the
maximum voltage limit of Umax = 1.5 V. In this set of experiments, no minimum voltage
limit (Umin) was defined and instead the specified time period based on the applied current
density limited the discharge process. The cells were not relaxed between the charge and
discharge cycles. After each 20th full charge/discharge cycle the impedance of the cells was
evaluated via EIS measurements. To consider the initial impedance behavior of the cells, an
EIS was also conducted after the first deposition period (discharge process) prior to 20 full
cycles repetition. The segment including the 20 full cycles and the EIS was repeated up to
20 times depending on the degradation level of the cells.

The cell current and the cell voltage were controlled and captured by the mentioned
battery tester. The EIS measurements were conducted using the Reference 3000 from Gamry.
The frequency of the EIS was varied between fEIS, min = 0.1 Hz and fEIS, max = 100 kHz.

The purpose of this article is to investigate the influence of the C-rate, cell temperature,
used salt and salt concentration on the aging behavior of the cells. The set boundary conditions
of the conducted experiments are given by the measurement matrix in Figure 2. The different
salts used are separated by color; orange measurement points correspond to experiments
with LiTFSI and for the measurement points colored blue, LiFSI was used as the salt.

25

60

40

0.5

1

2

21 Concentration/M

TCell/
◦C

C-rate/h−1

LiFSI

LiTFSI

Figure 2. Matrix of the conducted measurements. For the salt LiFSI the c-rate was varied with
Iε{0.5, 1, 2} C at a salt concentration of c = 2 M and a cell temperature of TCell = 25 ◦C. The
temperature was varied with TCell = {25, 40, 60} ◦C at the same concentration and Iε{1, 2} C. At a
concentration of c = 1 M measurements at I = 1 C and TCell = {25, 40, 60} ◦C for two salts: LifTSI
and LiFSI.

As presented in the measurement matrix, the C-rate was varied with ICellε{0.5, 1, 2} C
in order to evaluate the influence of the C-rate. For the current stress of ICellε{1, 2} C the
cell temperature was varied with TCell = {25, 40, 60} ◦C. All mentioned measurements
were conducted with LiFSI and a salt concentration of c = 2 M. To evaluate the impact of
the salt and salt concentration experiments at a molar concentration of c = 1 M and two
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different salts—LiFSI (blue) and LiTFSI (orange)—were performed. Some measurement
points were repeated in order to check the reproducibility and to determine the standard
deviation of the experimental data due to the measurement setup, procedure and cell
production. The number of measurements for each measurement point is listed in Table 1.

Table 1. Number of measurements for each condition considered.

LiFSI LiTFSI
2 C 1 C 0.5 C 1 C

2 M
25 ◦C #1 #3 #3
40 ◦C #1 #2
60 ◦C #1 #2

1 M
25 ◦C - #1 - #1
40 ◦C - #2 - #1
60 ◦C - #2 - #2

3. Results

In this section, the results of the experimental data will be presented. First, the
reproducibility will be analyzed. Thereafter, the influence of the C-rate, temperature and
electrolyte composition will be shown.

3.1. Reproducibility of Measurements

To validate the reproducibility of the galvanostatic cycling measurements on Cu/Li
cells for selected points in the measurement matrix, up to three different EL-CELLs with
exactly the same cell chemistry were assembled and the cycling results of the conducted
measurements were compared (see Table 1). As an example, the cycling results of three
cells at one specific measurement point are illustrated in Figure 3, with the areal capacity
in Figure 3a and the Coulombic efficiency in Figure 3b. The cells contained LiFSI based
electrolyte with a concentration of c = 2 M in DME and the measurements were performed
at a current density of J = 1 mAh·cm−2 and a temperature of TCell = 25 ◦C.
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(a) (b)

Figure 3. Galvanostatic cycling performance of three identical cells with Cu/Li structure. Electrolyte
used in all cells is LiFSI 2M in DME. (a) areal capacity and (b) Coulombic efficiency over life time is
shown for cells running at TCell = 25 ◦C with the current density of J = 1 mA·cm−2.

Both the areal capacity (Figure 3a) and the Coulombic efficiency (Figure 3b) of all three
cells show a high comparability at the first 100 cycles. This is indicated by the calculated
standard deviation of σCE ± 0.005 for the Coulombic efficiency and the corresponding value
of σA.Cap ± 0.011 mAh · cm−2 for the areal capacity. Only cell 1 shows an instability from
cycle number 80 onward, which is not the case for cell 2 and cell 3. The ideal discharge
capacity that the cells could reach is 1 mAh·cm−2. The average Coulombic efficiency of
ηCE-mean ≈ 0.99 indicates the average areal capacity with a value of 0.99 mAh·cm−2 as
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well. For cell 1 there were four cycles which had a areal capacity and Coulombic efficiency
above the theoretical maximum: ηCE > 1. It has been reported that micro shorts can
happen during the Li deposition period using Li metal electrodes, which could be seen as
tiny fluctuations in the voltage behavior of the cell [23]. The micro shorts happen when
local dendrites can penetrate through the separator and contact the other electrode. In
these cases, the cell locally experiences the occurrence of charge and discharge processes
simultaneously. Due to this effect, the cell could show a longer deposition period, as
under normal conditions, causing values above the theoretical maximum. In the following,
only the Coulombic efficiency is presented and discussed as the areal capacity and the
Coulombic efficiency correlate to each other.

3.2. Influence of C-Rate

In Figure 4, the influence of the C-rate on the Coulombic efficiency is presented for
the measurements using LiFSI with a concentration of c = 2 M and varying C-rates of
ICellε{0.5, 1, 2} C at TCell = 25 ◦C.

Figure 4. Galvanostatic cycling performance of cells with Cu/Li structure using LiFSI 2M in DME as
the electrolyte. Cells are run each with an individual C-rate of ICellε{0.5, 1, 2} C and are shown with
orange, black and blue colors, respectively. The cell temperature for all three experiments was set to
TCell = 25 ◦C.

Interestingly, the cycling results presented in Figure 4 show that increasing the current
density of charging and discharging positively influence the cyclability of insitu deposited
lithium electrodes. All three cells during the initial cycles have a relatively low Coulombic
efficiency which increases gradually with increasing cycle number for all three cells until
a Coulombic efficiency of ηCE ≈ 0.99 is reached. This could be caused by a rapid SEI
formation during the initial cycles. Interface reactions consume electrolytes and a part of
the cyclable Li, which negatively influences the Coulombic efficiency during the formation
cycles, as can be seen in Figure 4. The cell with the lowest C-rate (ICell = 0.5 C), which is
highlighted with the orange color, illustrates an instability at the early cycles (ηCE > 1).
Further, a fast drop of the Coulombic efficiency was found and already after 50 cycles
the cell reached an efficiency below the set threshold value of ηCE < 0.95. Due to this
reason, the cycling of the cell was stopped after 100 cycles. The cell with the medium
C-rate (ICell = 1 C) presented in the black color is more stable at the first cycles and the
Coulombic efficiency of the cell is very high with ηCE ≈ 0.99 for the first 160 cycles. This
leads to an increase of the maximum number of cycles by a factor of 3.2 compared to the
cell cycled at ICell = 0.5 C. Finally, the cell with the highest C-rate (ICell = 2 C, blue) shows
the most stable behavior. This is visible in the Coulombic efficiency, which drops below the
set reference value of ηCE < 0.95 not until the 220th cycle.
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3.3. Influence of Temperature

In order to investigate the effect of temperature on the kinetics of Li deposition and
consequently the stability and cyclability of insitu deposited lithium electrodes, experiments
were performed at three different temperatures with TCell = {25, 40, 60} ◦C on the Cu/Li
cells using LiFSI with a concentration of c = 2 M in DME as the electrolyte. The Coulombic
efficiency results obtained from cycling tests are shown in Figure 5. Two different C-
rates of ICellε{1, 2} C were investigated, and the corresponding results are displayed in
Figure 5a,b, respectively. The cells cycled at a temperature of TCell = 25 ◦C are presented
in the orange color, the results at TCell = 40 ◦C and TCell = 60 ◦C are visualized in black
and blue colors, respectively.

(a) (b)

Figure 5. Cycle performance of cells with Cu/Li structure having LiFSI 2M in DME as the electrolyte.
(a) Cells are running with the C-rate of ICell = 1 C and each at the different temperatures of
TCell = {25, 40, 60} ◦C shown in orange, black and blue colors, respectively. (b) Cells are running
with the C-rate of ICell = 2 C and each at the different temperatures of TCell = {25, 40, 60} ◦C shown
with orange, black and blue colors, respectively.

In both investigated C-rates, the most stable cycling results were reached at a temper-
ature of T = 25 ◦C. At this temperature, the cell cycled with ICell = 1 C shows 160 smooth
cycles with a high average Coulombic efficiency of ηCE > 0.99. After 160 cycles the
Coulombic efficiency drops below the threshold value of ηCE < 0.95. The cell cycled at
TCell = 40 ◦C shows an instability at earlier cycles and reached a Coulombic efficiency
of ηCE < 0.95 already after 130 cycles. The worst cycling performance was obtained at a
temperature of TCell = 60 ◦C. The instability starts at the initial cycles and no smoothing
behavior, as was found at TCell = 40 ◦C, could be achieved during the 70 cycles for which
the cell was running. The same trend is observable for the cells running with a C-rate of
ICell = 2 C. The positive influence of higher C-rates is reflected in an increase of the number
of cycles reached for all three cells at the considered temperatures.

3.4. Influence of Salt, Concentration and Temperature

Motivated by the enhanced cycle life at lower temperatures of the cells containing
LiFSI with a concentration of c = 2 M in the DME electrolyte, the influence of the salt
concentration and the used salt on the degradation was investigated. Therefore, the
concentration was reduced from c = 2 M to c = 1 M and the used salt was changed from
LiFSI to LiTFSI at a concentration of c = 1 M. In Figure 6 the impact of the electrolyte
composition is visualized. The influence of the concentration is presented in Figure 6a,c,e.
The graphs differ for the considered cell temperatures. In Figure 6b,d,f, the effects of the
used salt are also given at different temperatures.

Independent of the operating temperature, decreasing the LiFSI concentration from
c = 2 M to c = 1 M in the electrolyte drastically impaired the cell’s performance. This
is clearly evident in the reduced cycle life of the cell with lower concentrations. The
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limiting value of ηCE > 0.95 is reached after 50 cycles for the experiments with c = 1 M at
TCell = 25 ◦C. This is three times less than the lifetime of an equivalent cell at a concentration
of c = 2 M. Similar results were found at a cell temperature of TCell = 40 ◦C. The maximum
number of cycles increased from nmax = 40 to nmax = 130 as a consequence of the increased
concentration. The cells performing at TCell = 60 ◦C showed, in general, the worst stability.
The cell with 1 M LiFSI reached a cycle number of nmax = 20. The maximum number of
cycles was minimally increased to nmax = 60 by increasing the concentration to c = 2 M.

(a) (b)

(c)

(e)

(d)

(f)

Figure 6. Cycle performance of cells with Cu/Li structure. All cells ran with the C-rate of ICell = 1 C.
(a,c,e) Both cells use LiFSI Li salt in electrolyte with the different concentrations of c = {1, 2} M
represented by orange and blue colors, respectively. (b,d,f) Both cells use a salt concentration of c = 1
M. Blue points represent the cell using LiFSI salt, and black points show the results of a cell using
LiTFSI. (a,b), cell temperature is set to TCell = 25 ◦C. (c,d), cell temperature is set to TCell = 40 ◦C.
(e,f), cell temperature is set to TCell = 60 ◦C.

Replacing LiFSI at a concentration of c = 1 M with LiTFSI at the same concentration
affects the cells’ performances drastically. Similar to the effects seen by reducing the salt
concentration, the use of LiTFSI negatively influences the cell degradation. At none of the
investigated temperatures did the experiments using LiTFSI show stable behavior, not even
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for a small number of cycles. Independent of the applied temperature, the cells show low
and random values for the CE and no trend in the degradation behavior is evident. The cells
with LiTFSI also frequently show values above the theoretical maximum value of ηCE > 1,
which is a sign of the inhomogeneous, poor and weak SEI formation potential of LiTFSI
salt [24]. This might be because of the lower LiF content formed during the degradation of
LiTFSI, which plays a major role in stabilizing the cell performance, resulting in a longer
cycle life [25]. A general trend of CE development observed in Figures 4–6 is that the
random behavior (noise-like) is a sign of instability. The longer cells run smoothly, the
better the cycling performance and lifetime get. A CE value of higher than one could be a
sign of micro Li plating, while a CE value of lower than one could be caused by the loss of
deposited lithium in the form of SEI or dead lithium. A common behavior in all cells is
that the cell cyclability reduces significantly as soon as noises start.

4. Discussion

It has been realized that the type of lithium salt as well as its concentration can strongly
influence the performance and cycle life of Li-metal cells. To further investigate this issue,
EIS measurements were performed on the cells with different electrolytes of (1) LiFSI 2M
in DME, (2) LiFSI 1M in DME, (3) LiTFSI 1M in DME, different measurement temperatures
of TCellε{25, 40, 60} ◦C and different C-rates of ICellε{0.5, 1, 2} C.

As explained in Figure 1, the first EIS measurement was carried out after the first Li
deposition on Cu and then was repeated every 20 cycles until the Coulombic efficiency of
the cell reached the value of 0.95. The spectra of cells with different electrolytes after the first
Li plating performed at TCell = 25 ◦C and an applied current density of j = 1 mAh·cm−2

(C-rate = 1 C) are presented in Figure 7a. The EIS spectra of cells after the first Li plating
performed at different measurement temperatures, having LiFSI 2M in DME electrolyte
and a C-rate of ICell = 1 C, are presented in Figure 7b. The influence of aging on the EIS
spectra of a Cu/Li cell with LiFSI 2M in DME electrolyte, performed at TCell = 25 ◦C and a
C-rate of ICell = 1 C, is visualized in Figure 7c. The spectrum #1 is the first EIS performed
after the first Li deposition, #2 is assigned to the second EIS performed after 20 full cycles,
#3 is the third EIS after 40 full cycles and so on.

(a)

(b)

(c)

Figure 7. EIS spectra of Cu/Li cells: (a) Three cells with different electrolytes after the first Li plating.
Orange represents LiFSI 2M in DME, black is LiTFSI 1M in DME, and blue shows LiFSI 1M in DME at
TCell = 25 ◦C and j = 1 mAh·cm−2. (b) Three cells at different temperatures TCellε{25, 40, 60} ◦C after
the first Li plating. Electrolyte: LiFSI 2M in DME with an applied current density of j = 1 mAh·cm−2.
(c) EIS spectra of a single cell, performed every 20th cycle during the degradation test with LiFSI 2M
in DME, TCell = 25 ◦C and j = 1 mAh·cm−2. EIS # 1 is after first plating, EIS # 2 is after 21 cycles and
EIS # 7 is after 121 cycles.

138



Batteries 2021, 7, 67

The correlation of EIS measurements with cycling results could be better realized by
considering the induced overpotentials of Li deposition nucleation μnucleation and particle
growth μgrowth during one full cycle. The initial voltage drop at the beginning of plating
on Cu is considered to be nucleation overpotential and the steady potential during the
rest of deposition period is considered to be growth overpotential [13]. These values are
illustrated in Figure 8. The influence of the electrolyte variation is presented in Figure 8a,
the influence of temperature variation is visualized in Figure 8b, and at last the impact of
the applied current density is displayed in Figure 8c. The cells presented in Figure 8a,b are
identical to the cells shown in Figure 7a,b.

(a) (b)(c)

Figure 8. Potential–Capacity profile at cycle number 10 for Li/Cu cells, (a) with different electrolytes
of LiFSI 1M in DME (orange), LiTFSI 1M in DME (black), and LiFSI 2M in DME (blue). Measure-
ments are performed at TCell = 25 ◦C and with an applied current density of j = 1 mAh·cm−2.
(b) performed with different C-rates of ICell = 0.5 C (orange), ICell = 1 C (black) and ICell = 2 C
(blue), with LiFSI 2M in DME as electrolyte at TCell = 25 ◦C. (c) performed at different temperature
of TCell = 25 ◦C (orange), TCell = 40 ◦C (black) and TCell = 60 ◦C (blue), using LiFSI 2M in DME as
electrolyte and a current density of j = 1 mAh·cm−2.

All three cells presented in Figure 7a show a comparable ohmic resistance (Rohmic),
which is mainly correlated to electrolyte and contact resistances. This was expected as
the cells consist of the same electrodes and the cells are still too fresh to be influenced by
different aging rates due to different used electrolytes. The typical semi-circle is easily
noticeable in the EIS data of all cells. Additionally, all three cells in Figure 7a show a
second semi-circle at lower frequencies, which are partly overlapped with the first ones.
The semi-circles at higher frequencies are formed in a similar frequency range for the cells
having an LiFSI based electrolyte (see Figure 7a). The frequency values are different for the
cells containing the LiTFSI based electrolyte.

These results indicate that the first semi-circle is based on the interface or SEI related
impedance. The second semi-circle shows the impedance related to the charge transfer Rct.
The consequence of a different impedance behavior of the cells due to the used electrolyte
can also be seen in the overpotential of cells during cycling. The voltage behavior of
one charge and discharge process (at cycle number #10) is illustrated in Figure 8a; these
are the cells identical to those presented in Figure 7a. As expected, the cell with the
LiTFSI based electrolyte shows the highest overpotentials (μnucleation = −6.5 mV and
μgrowth = −2.6 mV) and irreversible capacity among the rest. The two LiFSI based cells
show comparable overpotentials of μnucleation = −5.2 mV and μgrowth = −1.4 mV for
LiFSI 2M and of μnucleation = −4.5 mV and μgrowth = −1.5 mV for LiFSI 1M. The high
concentrated LiFSI based cell shows the minimum of irreversible capacity.

By varying the temperature it can be noticed that the cells have the most stable
performance at T = 25 ◦C (see Figure 7b). By increasing the temperature, the frequency
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which corresponds to a maximum of the semi-circle moves to higher values (from 5 kHz
at TCell = 25 ◦C to 12.5 kHz at TCell = 40 ◦C and to 20 kHz at TCell = 60 ◦C). The second
semi-circle at elevated temperatures is not distinct anymore and is hardly noticeable at
TCell ≥ 40 ◦C. This effect can be explained by the fact that with increasing temperature the
charge transfer resistance decreases and consequently the correlated semi-circle is more
overlapped to the SEI based semi-circle. The ohmic resistances (Rohmic) are comparable
in both cells at elevated temperatures and are smaller compared to the resistance of the
cell performed at TCell = 25 ◦C. The cell cycled at TCell = 40 ◦C has the smallest length of
the SEI related semi-circle. This is a consequence of the improved kinetic at TCell = 40 ◦C
in comparison to TCell = 25 ◦C. This is in line with the seen voltage profile of the cells
presented in Figure 8b. The data at TCell = 40 ◦C show the lowest overpotentials of
μnucleation = −4 mV and μgrowth = −0.7 mV. The cell cycled at TCell = 60 ◦C also has
a low nucleation overpotential of μnucleation = −4 mV; however, μgrowth in contrast to
the rest of the cells is increasing during the plating period and approaches bigger values
(μgrowth = −2.8 mV). Cycling at a temperature of TCell = 60 ◦C has the maximum growth
overpotential and the worst cycling stability among all considered temperatures.

Another influencing parameter on the kinetics of Li deposition is the applied current
density. We have noticed that cells with a higher C-rate achieve a longer cycle life. This
can be seen in Figure 8c, which shows the data extracted from three Li/Cu cells containing
LiFSI 2M in DME electrolyte at TCell = 25 ◦C with different current densities. As expected,
the overpotential increases with increasing current density which causes a higher deviation
from equilibrium. However, the better cycling performance of the cells cycled at a higher
C-rate could be due to fewer interfacial side reactions as the cycling time is shorter. On the
other hand, however, the higher current density could be a trigger to side reactions. More
interfacial investigation (EIS and insitu observation) is needed for a better understanding of
this process. EIS measurements on the cell with LiFSI 2M in the DME electrolyte performed
at TCell = 25 ◦C show that, after 20 cycles, the interface resistance significantly decreased.
This could be due to the SEI layer not being formed homogeneously and completely after
the first deposition. By continuing the cycling, however, the layer becomes denser and more
uniform and therefore after 20 cycles the semi-circle is significantly smaller than that after
the first deposition. By continuing the cycling, the second semi-circle at low frequencies
is still noticeable. This was not the case for the cells cycled at higher temperatures. By
cycling the frequency corresponding to the maximum of the first, the semi-circles move
towards higher values (similar to the high temperature behavior). The Rct increases by
cycling but is still smaller than that of the very first cycle. The ohmic resistance is also
slightly increased by cycling. A relatively sharp increase of Rohmic is noticeable between
cycle 100 and cycle 120. It is worth mentioning that, based on cycle performance results,
the cell starts to show slight instabilities in the CE trend from the 110th cycle. It can be
concluded that both Rohmic and Rct influence the cycle behavior and the cycle life of the
Li-metal cells.

5. Future Work

Another method for investigating lithium deposition during cycling is insitu observa-
tion using special cell holders. Insitu observations in the ECC-Opto Stud, manufactured by
EL-Cells GmbH (Hamburg, Germany), on battery cells were made in [26–33] using Raman
spectroscopy, X-ray diffraction (XRD) and optical analytics. Observations were made using
Raman spectroscopy [27,31,32] and XRD [26,28,33] to observe changes in electrodes and
SEI during aging. Merryweather et al. [29] used the above-mentioned cell housing for
optical interferometric scattering measurements to detect single-particle ion dynamics, and
Rittweger et al. [30] observed the reflectivity of cathodes during charge and discharge.

In future work, the above-mentioned cell holder ECC-Opto-Std cell, manufactured by
EL-Cell, will be used to conduct insitu measurements. The cell setups, like those described
in this article, consisting of Cu/Li, will be used. The experiments will also investigate the
influence of C-rate, temperature, used salt and salt concentration on the morphology of
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lithium deposition. Additionally, in order to better understand the behavior of the lithium
at different conditions, a fully developed model will be included.

6. Conclusions

In summary, the electrochemical performance of Cu/Li cells was investigated with
the motivation of understanding the kinetics of the deposition mechanism of Li metal
electrodes. The influence of temperature TCellε{25, 40, 60} ◦C and C-rate ICellε{0.5, 1, 2} C
was examined. Additionally, the variety of electrolytes, including LiFSI 2M in DME, LiFSI
1M in DME, and LiTFSI 1M in DME, were utilized to address the impact of type and
concentration of Li salt on the electrolyte. Coulombic efficiency and induced depositions
overpotential, as well as EIS measurements, were used to evaluate the aging behavior
of cells under different conditions. Based on our results, it is confirmed that cycling at
a temperature of TCell = 40 ◦C has the best kinetics in comparison to the cycling data
with TCell = 25 ◦C and TCell = 60 ◦C, as it shows minimum deposition overpotentials and
impedance. However, the best performance regarding the stability and long cycle life is
achieved at TCell = 25 ◦C. The LiFSI in general showed better cyclability in Cu/Li cells
compared to LiTFSI and the best performance could be gained by a high concentration of
the LiFSI-DME electrolyte.
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Abbreviations

The following abbreviations are used in this manuscript:

A Effective surface area
c Molar concentration
cH2O water concentration
cO2 oxygen concentration
CC Current Collector
CE Coulombic efficiency
Cu Copper
dCC Diameter of the current collector
dLi foil Diameter of the Lithium foil
DME 1,2-dimethoxyethane
DOE US Department of Energy
e− electron
EIS Electrochemical Impedance Spectroscopy
fEIS, max Maximum frequency of EIS
fEIS, min Minimum frequency of EIS
H2 Hydrogen
H2O Water
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hCu = 6 Thickness of the Copper foil
hLi foil Thickness of the Lithium foil
ICell Cell current
j Current density
Li Lithium
Li+ Lithium Ion
LiFSI Lithium bis(fluorosulfonyl)imide
LiTFSI Lithium bis(trifluoromethanesul-fonyl)imide
n Number of cycles
nmax Maximum number of cycles
O2 Oxygen
OCP Open Circuit Potential
Rct Charge transfer resistance
Rohmic Ohmic resistance
SEI Solid Electrolyte Interface
SPE Solid Polymer Electrolyte
t Time
TCell cell temperature
tdry Time of drying
Tdry Temperature of drying
Umin Lower voltage limit
Umax Upper voltage limit
Velec Amount of electrolyte
xLiTFSI,LiFSI Purity of LiTFSI and LiFSI
XRD X-ray diffraction
Zimag Imaginary part of the impedance
Zreal Real part of the impedance
ηCE Coulombic efficiency
ηCE-mean Average Coulombic efficiency
μnucleation overpotential of Li deposition nucleation
μgrowth overpotential of particle growth
φLi||H2 Potential of Li versus H2
σCE Standard deviation of the Coulombic efficiency
σA.Cap Standard deviation of the areal capacity
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Abstract: Integration of renewable energy sources such as solar photovoltaic (PV) generation with
variable power demand systems like residential electricity consumption requires the use of a high
efficiency electrical energy system such as a battery. In the present study, such integration has been
studied using vanadium redox flow battery (VRFB) as the energy storage system with specific focus
on the sizing of the power and energy storage capacities of the system components. Experiments
have been carried out with a seven-day simulated solar insolation and residential load characteristics
using a 1 kW VRFB stack and variable amounts of electrolyte volume. Several scenarios have been
simulated using power and energy scale factors. Battery response, in terms of its power, state of
charge and efficiency, has been monitored in each run. Results show that the stack power rating
should be based on peak charging characteristics while the volume of electrolyte should be based
on the expected daily energy discharge through the battery. The PV source itself should be sized at
about 25% more energy rating than the average daily load. The ability to design a VRFB with a high
power-to-energy ratio makes it particularly attractive for PV-load integration.

Keywords: solar photovoltaic energy; redox flow battery; residential load; renewable energy integra-
tion; battery sizing; battery efficiency

1. Introduction

Use of renewable energy sources is one of the best solutions to reduce society’s
dependence on fossil fuels so as to reduce emission of both conventional pollutants and
greenhouse gases. Amongst various renewable energy sources, solar photovoltaic (PV)
panels are the most commercially viable due to the ease in installation, cost and scalability,
especially in countries close to the equator [1]. Wide adoption of renewable energy as
a power generation source is only possible if the power can be delivered on and as per
the demand of the consumer. In case of solar or wind energy, there is uncertainty with
the amount of energy available at any given time as the exploitable energy depends on a
number of factors that include location of the PV panel or wind turbine, time of the day,
and seasonal and weather conditions [1,2]. Energy storage systems coupled with these
energy sources can reduce the impact of their natural fluctuations and can provide power
needed by the consumer. An energy storage system used for solar PV applications requires
specific properties to aid this integration while maintaining the good performance and
long life of the system. High cycle life, high capacity appreciation at slow rate of discharge,
good reliability under cyclic discharge conditions, low equalizing and boost charging
requirements, high watt-hour (round-trip energy) efficiency and ampere-hour (coulombic)
efficiency at different states of charge (SOC) levels, low self-discharge, wide operating
temperature range, robust design and low maintenance and cost effectiveness are some
of the necessary characteristics anticipated from a battery for storing solar energy [3,4].
Energy storage integrated with a renewable energy source can serve as a stand-alone power
generation system for a variety of applications [5,6].
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Lead acid or lithium ion type batteries have been conventionally used as battery
storage devices in integration studies. These batteries are best operated in their safe
operating range; in the context of solar PV applications, the life of these batteries degrades
considerably due to varying input from solar energy and due to their limited range of
operating depth of discharge (DOD) and operational conditions. Lead acid battery is
economical, sustainable and has good operational safety and quick response time, but it
suffers from low efficiency, low energy density (30–50 Wh/kg) and has limitations on low
power rating and DOD for assured life. Lithium ion battery has higher energy density and
higher efficiency than lead acid battery but is expensive and prone to thermal runaway
and can thus be a fire hazard [7]. In addition, solid state batteries have a fixed power to
energy (P/E) ratio due to fixed volume of electrolyte.

A number of studies have been reported recently on improving the characteristics
and performance of integrated renewable energy source-energy storage systems. An-
genendt et al. [8] studied stringent control strategies based on forecast for a PV-battery
system to improve the system performance and battery life. PV self-consumption im-
provement using frequency restoration reserves was analyzed by Litjens et al. [9] for both
residential and commercial applications. Hybridization is another way of improving the
system robustness and enhancing its performance with improved life. Single energy source
with multiple storage systems (for example, PV with lead acid battery and supercapacitor
for improved battery life) has been studied by Jing et al. [10]. Multiple energy sources, for
example, solar PV, wind turbine, diesel generator coupled with single or multiple storage
systems such as lead acid batteries, lithium ion batteries, flow batteries, reversible fuel cells,
etc. have been investigated extensively and various algorithms and optimization models
have been employed for better energy management and reduced system cost [11–18].

The present work focuses on redox flow batteries as energy storage system. A redox
flow battery (RFB) is an electrochemical energy storage device that has several attractive
features especially for large-scale stationary storage, such as independent scalability in
energy and power levels, large number of life cycles and absence of fire hazard [19–23].
The energy storage capacity of a typical redox flow battery is determined by the volume of
the electrolyte taken, while the power at which the energy can be delivered or absorbed is
controlled by combination of active area and number of cells in a stack [20–22]. The positive
(catholyte) and negative (anolyte) electrolyte species are stored in separate reservoirs. Each
electrolyte is circulated through the respective electrodes of a stack for either charging
or discharging of the battery. There is broad consensus that RFBs can be highly cost-
competitive when used in large scale power applications such as microgrids, power islands,
peak shaving and renewable energy applications [24]. The integration of solar cell and redox
flow battery offers a unique advantage, namely, the liquid electrolytes of redox flow battery
system can also be used as a coolant for the photovoltaic panels and the battery stacks so as
to have integrated thermal management capabilities. Vanadium based redox flow batteries
have gained significance and market penetration compared to other flow battery systems
in view of its same chemical species on positive and negative redox couples and ease of
recyclability [3,20]. Although the VRFB has considerable capacity fade induced by cross-
over of vanadium species through membrane, either the cross-over can be reduced using
operating protocols or the active state can be reversed back by remixing schedules [25–27].
Compared to a lithium-ion battery, it suffers from relatively low efficiency, low energy
density and high electrolyte cost. It is considered is to be cost-competitive for GWh-
scale energy storage applications [24] and several studies have recently reported on its
integration with renewable energy sources. Garcia-Quismondo et al. [23] reported on a
nine-month performance analysis of a 5 kW/ 5kWh VRFB system coupled to a PV system.
Bhattacharjee and Saha [28] designed an electrical equivalent model of 1 kW/6 kWh
VRFB system, validated it in MATLAB/SIMULINK and later integrated with solar PV
for residential application. Zhang et al. [29] studied an integrated solar PV- VRFB system
for residential applications using MATLAB and brought out the importance of battery
sizing considering cost and battery efficiency. Sarkar et al. [30] designed an integrated solar
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PV, wind turbine, biomass and VRFB system and studied its performance using Homer
software. A virtual power plant was designed by Behi et al. [31] using solar PV (810 kW)
with VRFB (700 kWh, 350 kW) to cater to 67 dwelling power requirements.

Several design/ simulation studies [12–17,29] have highlighted the importance of
optimal sizing of battery energy storage system to ensure uninterrupted energy availabil-
ity, improved life span of battery, less maintenance and cost, etc. The present work on
simulation of the integrated system is primarily experimental and is focused on dealing
with natural fluctuations that arise both from supply side (solar PV) and demand side
(residential load) in a solar PV-VRFB integrated system. By running different scenarios
with a VRFB stack over a seven-day solar PV-load profile, the study brings out how the
power and energy characteristics influence the sizing of VRFB and the PV systems in terms
of power and energy ratings.

2. System Lay-Out and Experimental Details

2.1. Conceptual System and Experimental Set-Up

The system being studied consists of a set of PV panels, residential electrical load, a
vanadium flow battery system and a charge controller power electronics module to link
the three. The conceptual model is shown in Figure 1a. At every instant of time, the charge
controller determines the residential load, assesses the available power output from the PV
panels and the state of charge of the battery and aims to serve the load demand from PV to
the extent possible. When this is not feasible, it attempts to source power from the battery
to meet the demand may be partly or fully. Any excess power from the PV will be sent
to the battery to the extent possible. The charge controller will, in practice, regulate the
power drawn from the PV panels to meet the combined demand from residential load and
battery charging. It will also regulate the power going to (and coming from) the battery
by operating the latter within its safe operating voltage window. The present study deals
with the VRFB system only, and the roles of load, PV panels and power electronics module
are taken over by a battery charger (Bitrode Model), as shown in Figure 1b. The time-wise
continuous load and PV output profiles are replaced by discrete time steps (of 11 min)
during which the power going to or coming from the battery is held constant, subject to the
battery lying within its pre-set voltage limits. The battery power is the difference between
the PV output and the load, both averaged over the 11-min interval. The battery power
may be positive (when the PV output is higher than the load) or negative (when the load is
higher than the PV). At the end of the time step (of 11 min), the power is held at zero for
one minute so as to measure the open circuit voltage (OCV) of the battery which is used
to monitor its state of charge (SoC).Each experiment simulated the continuous running of
the VRFB system over a seven-day period with natural variations of solar irradiations and
residential power demand incorporated into the profiles. Setting up of these profiles is
discussed below.

2.2. Construction of PV Output Profile

A number of factors such as time of the day, location of PV, season of the year,
atmospheric conditions, cell temperature, etc. influence solar insolation at a particular
point of time and location. In order to get a realistic simulation of these natural factors in
the PV output, solar insolation was simulated using the NREL software SAM for the year
2019 and was compared with global horizontal irradiation (GHI) data for a solar park site
in Tumkur, Karnataka, India obtained from Meteonorm 7.0 database [32]. Weekly variation
from the first method was found to be between 6.7 and 3.3 kWh/m2 while that from the
latter was between 7.7 and 1.98 kWh/m2 over a week in the month of June. In view of
the fairly good agreement between the two, seven successive days of insolation data from
Meteonorm 7.0 database was chosen to construct the PV output profile for the present
study. These give only the total PV output over the day. In order to get a minute-by-minute
variation, measurements were carried out over several days using a set of WAAREE WS-
325 solar PV panels. These profiles were then normalized by dividing the instantaneous
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output power by the maximum daily output over all these days. These normalized profiles
would then show how insolation might vary over the day so as to give a total daily output
which would be less than the expected (clear day) value. These normalized profiles were
then used to create a minute-by-minute profile of PV output over seven consecutive days
such that their daily output agreed with that obtained from the Meteonorm database [32].
Figure 2a shows the modeled instantaneous PV output over seven consecutive days in the
month of June. Salient numerical values of this output profile are listed in Table 1. It can be
seen that the peak to average ratio of solar power is rather high at about 3.

Figure 1. (a) Schematic diagram of the solar PV-flow battery-residential load integrated system.
(b) Modelled system for the experimental study.

2.3. Construction of Residential Load Profile

Typical residential load demand variation in India has two noticeable time periods
where the load requirement is high. The morning time of 6 a.m. to 10 a.m. where the
residents are getting ready for school and office is a period of relatively high power
consumption as is the time period from around 6 p.m. to 11 p.m. wherein the family
comes back home to regroup. The power requirement during weekends is also more
than that during weekdays. According to the weather conditions prevailing in India, the
average household electricity consumption increases further during summer seasons as air
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conditioning is required. There will be a noticeable dip in the power consumption in the
night during the winter months [33,34].
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Figure 2. Seven day profile of June 2019 (a). Solar PV variation and load demand (b). Expected battery charge and discharge cycle.

Table 1. Summary of June 2019 profile (no scale down, SE = 1).

PV Load Battery

Power (W) Power (W) Charge Power (W) Discharge Power (W)

Max–1670 Max–303 Max–1432 Max–303

Min–0 Min–156 Min–2.9 Min–5.9

Avg–640 Avg–238 Avg–769 Avg–238

Energy per day (Wh) Energy per day (Wh) Charge energy per
day (Wh)

Discharge energy per
day (Wh)

Max–11,110 Max–5944 Max–9240 Max–4316

Min–2600 Min–3716 Min–1720 Min–1840

Avg–7144 Avg–5713 Avg–5450 Avg–4029

Solar insolation to
load (%) 23.4 Solar insolation to

battery (%) 76.6%

In the present work, realistic variation of electricity consumption has been incor-
porated by sourcing data from real-time measurements (https://.prayaspune.org/ ac-
cessed on 15 January 2020 of the load requirement of a residential apartment complex of
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120–145 dwellings in Pune, India [34,35]. Prayas energy group is a non-governmental and
not-for-profit Indian organization. As part of one of its projects, the organization recorded
real time power demand of residential apartment based in Pune for various appliances,
weekends and weekdays over an extended period. The data collected at fifteen-minute
intervals over a full week in June 2019 was used to construct the power demand profile.
The data were numerically interpolated to generate minute-by-minute variation which is
shown in Figure 2a in the form of average value per household. Because of aggregation
over a large number of dwellings, the average consumption of power per dwelling does
not show sudden spikes associated with the switching on or off of large power consuming
devices such as the air conditioner or the washing machine [36].

Salient features of the load variation over the week are listed in Table 1. It can be seen
that the maximum load per household over the seven-day duration is 303 W while the
minimum is 156 W, that is, a ratio of about 2. This is in contrast to the PV output which
has a maximum power of 1670 W, i.e., more than five times the maximum load. This wide
disparity between source output and load is characteristic of solar PV-residential load
applications. The battery needs to be capable of tackling these wide variations.

2.4. Salient Features of the Redox Flow Battery

An in-house vanadium redox flow battery stack has been used as the battery in the
present study. The stack is rated at 1 kW power and has 8 cells of 900 cm2 active area in each
cell and features a specially designed flip-flop serpentine flow field [37] on the graphite
plates. Nafion 117 membrane is used between the porous electrodes (SGL GFD4.6 4.6 mm
thickness) with 35% compression as separator between anode and cathode. Full details of
the stack construction can be found in [38–40]. Furthermore, 1.6 M vanadium electrolyte,
procured from Oxkem, UK in an oxidation state of 3.5 is used as the electrical energy storage
medium. In all the experiments, a constant flow rate of electrolyte, which corresponds to
a stoichiometric factor of 9 at a current density of 60 mA/cm2, was maintained on each
side [22,39]. Comprehensive testing over a range of flow conditions and state of charge
(SoC) shows that, over a wide range of SoC, the stack can deliver 1200 W in charging and
750 W in discharging when operated at a current density of 100 mA/cm2. The maximum
amount of energy stored in the battery depends on the electrolyte volume. Experiments
have been conducted with electrolyte volumes of 30, 35 and 40 liters on each side. At a
rated discharge energy of 25 Wh/litre, these electrolyte volumes amount to energy rating
of 750 to 1000 Wh and about 50% more in charging.

A couple of runs have also been done with a commercially available lead-acid battery
having a rating of 150 Ah, 12 V with a recommended C-rating of 10. Two of these batteries
were connected in series thus giving a nominal power and energy rating of 360 W and
3.6 kWh, respectively for the lead-acid battery system. Compared to the VRFB, the lead-
acid battery has one-third power and about four times energy storage capacity. Thus, the
P/E ratio of the two storage systems varies by more than an order of magnitude.

2.5. Estimation of State of Charge (SoC) of the Battery

State of charge (SoC) of the battery, which represents the fractional energy remaining
in the battery for discharge, is an important parameter in assessing battery integration
with upstream and downstream equipment. In the present study, SoC has been estimated
from measurements of the open circuit voltage (OCV) of the stack at frequent intervals
during each run. A single cell using the same materials and methods used to construct the
stack was assembled and charge-discharge cycling was done at constant current densities
for a single VRFB cell with 1 liter of vanadium electrolyte each as positive and negative
electrolyte. OCV of the cell was measured with specified amount of change in SoC inter-
mittently during charge and discharge. At moderate current densities, the overpotential
during charge and discharge at a particular SoC value was found to be nearly the same in
the SoC range of 20 to 80%. An average of the two curves is taken to be OCV and these
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data have been used to obtain a correlation between SoC and OCV which then has been
used to estimate the SoC dynamically using measured value of the OCV.

2.6. Set-Up of the Experimental Study

A comparison of the load and supply profiles over a seven-day period is shown
in Figure 2a. Figure 2b shows the difference between the two; this is the power that
would be drawn from or sent to the battery. As remarked earlier, the residential load is
fairly constant compared to the large spikes in solar output. There is also considerable
variation in the day-to-day energy output from the PV. The integrated PV-battery-load
system should be able to work with these typical variations and still deliver as much power
as demanded by the consumer at every moment. For the integrated system to perform
effectively, the individual systems should be properly scaled so that the systems are not
too oversized nor too undersized. The performance of the integrated system—in terms of
being able to meet the load demand at any instant, being able to use PV output for either
meeting the load or charging the battery and for the battery to operate at high charging
/discharging efficiencies—and its relation to the sizing of the components is of interest to
the present study.

Examination of the load and supply profiles shows that on the whole, there is con-
siderable overlap between the two. In energy terms, this PV self-consumption (PVSC)
amounts to about 23.4% of PV output that can go directly to the load during the sunshine
hours; the rest of the 76.6% of load needs to be met through battery which is charged
by the PV, assuming the system to be working independently of the grid. Keeping these
numbers in view, the sizing of the PV and the battery is done as follows. Over the seven-day
period in consideration, the residential load amounts to 39.9 kWh. Assuming the PV to
be oversized by a factor of 25% (given the rather wide variations in the day-to-day energy
output from the PV), the PV system is nominally rated at 50 kWh. The energy output per
day is scaled as per Figure 2a which reflects measured day-to-day variation over a week
in June 2019. The battery power profile is simulated as the difference between the power
from PV and load demand and is shown in Figure 2b. This data (see also Table 2), with a
scale factor, constitutes the input to Bitrode battery cycler to simulate the dynamic changes
in PV-battery-load integrated system.

Table 2. Daily energy variations for PV, load and battery in Wh with an energy scaling factor, SE, of
1/4 (C-charge, DC-discharge).

Cycle PV Load Battery

1 half DC 47 697 653

1 C 650 232 −419

2 DC 51 1004 957

2 C 1545 373 −1173

3 DC 35 1065 1035

3 C 2066 421 −1648

4 DC 70 1090 1025

4 C 1494 354 −1142

5 DC 66 1095 1034

5 C 1521 317 −1205

6 DC 36 1005 973

6 C 2082 425 −1660

7 DC 52 979 931

7 C 2775 486 −2291

8 half DC 13 454 443
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The experiments were designed to operate the battery with scaled down factors and
varying electrolyte volumes to understand the stack performance for varying energy and
power demand. Keeping in mind different power and energy characteristics of the two
battery systems used in the present study, a power scale factor, SP, an energy scale factor, SE,
and a time scale factor, ST, have been varied independently while maintaining the relation
that SE = SP × ST. Thus, having SP = 1/2, SE = 1/2 and ST = 1 will simulate an integrated
system with a total weekly solar energy input of 50/2 = 25 kWh. If ST is changed to 1/2

while keeping SP to be 1/2, the energy input to the system will be reduced to 12.5 kWh over
the week. Given that the VRFB system has a high power to energy ratio, for VRFB studies,
experiments were conducted with SP of 1 (full scale) or 1/2, ST of 1/2 or 1/3 or 1/5 resulting
in SE of 1/4 or 1/5 or 1/6. The lead-acid battery has a rated P/E of 1/10. Therefore, it has
been operated at SP of 1/6 and 1/8 with ST of 1 giving an SE of 1/6 or 1/8. It may be noted
that these scale factors refer only to traded energy; the inherent maximum energy storage
capacity or power delivery capacity depend on the state of the battery and the operating
conditions, including the volume of electrolyte and stack size and cell characteristics in the
case of VRFB and nominal factory rating in case of the lead-acid battery.

In the experiments, the actual power vs. time profiles of the battery (shown typically
as in Figure 2b) are imposed on the battery through a battery cycler such that the pre-
determined power is held constant for 11 min in case of ST = 1 (and 5.5 min in case of
ST = 1/2). The experiment is designed such that when the battery is not able to deliver the
intended power, it goes to rest for a time period of 1 min. Open circuit voltage (OCV) of
battery was also monitored over a one-minute rest period after every power step, whether
or not the power step was a failure. The OCV data was later used to evaluate the battery
efficiency characteristics. Such experiments have been conducted for different scale factors
and electrolyte volumes. Results from these simulation runs, together with initial redox
flow battery characterization study, are discussed in the next Section 3.

3. Results and Discussion

3.1. Battery Performance for the Baseline Case

As a baseline case, the VRFB stack was operated at power scale factor (SP) of 1/2 and
time scale factor (ST) of 1/2 with electrolyte volume of 30 L in each tank. The 7-day battery
profile shown in Figure 2b was discretized into constant power time steps of 5.5 min and
was imposed on the stack using the battery cycler. OCV was measured after every time step
over a period of 1 min during which the battery power was set to zero. The battery cycler
was programmed in such a way that if the intended power during a particular time step
could not be delivered to or drawn from the battery, then that power step would be aborted,
and the testing would continue to the next step which would be the OCV measuring step.
At the end of the OCV step, the next power step would be imposed. Thus, battery failure
would be indicated by a power step that did not last the full duration of 5.5 min. During
the whole experiment, the voltage and current across the battery were measured at 5 s
intervals. Prior to each run, the battery was charged until the stack voltage reached the
pre-set value of 1.7 V per cell.

The response of the battery to the imposed power steps is depicted in Figure 3a which
shows the variation of power and SoC over the seven-day period. (It may be noted that
the total duration of each experiment would depend on the time scale factor as well as on
the number of failures and the number of OCV steps and would therefore change from
run to run. For ST of 1/2, if the OCV measurement steps are discounted and if there are
no charging or discharging failures, then the duration would be 84 h). The experiment
started at midnight of the first day, and thus, with a discharge step and would then go
continuously over a series of charging and discharging steps and would finish with a
partial discharge of the 7th day. The SoC obtained using measured OCV is also plotted in
the figure. One can see that the power variation follows the expected variation and that
the steep changes in power are easily handled by the battery. The repeated variation of
SoC over a wide range without lasting ill effects on the battery is also noteworthy. The full
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range of SoC of the battery is thus being utilized and this is an important feature of the
vanadium flow battery.

One can also see in Figure 3a several instances of failure of the stack to deliver or
absorb the required amount of power. Charging failures occur when the SoC is very high
and discharging failures occur at very low SoC values. An expanded view of one such
discharging failure is shown in Figure 3b which shows repeated failure to execute discharge
power step over the simulation period of 13.6 h to 14.3 h. During this period, the SoC is
particularly low (~9%) and the stack was unable to discharge even 120 W of power. (More
power could have been extracted from the battery by increasing the electrolyte circulation
rate or decreasing the power; however, such active management of the electrolyte was
not done in the present study). An instance of battery failure during charging is shown in
close-up view in Figure 3c which shows charging failure towards the end of charging on
the 7th day over the period 74.3 to 75 h. One can see that the SoC is rather high at around
92%. Figure 3d shows the nomenclature used in the present study to characterize battery
failure to deliver by time and energy. Typically, the stack will be able to meet the power
demand for part of a power step and it may then fail for the rest of the duration of the
time step. Cumulative amounts of time during which the power demand has not been met
is used to determine battery failure by time. The shaded areas in Figure 3d represent the
amount energy demand that has not been met. This is used to determine the cumulative
battery failure % by energy.
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Figure 3. VRFB performance for SP = 1/2 and ST = 1/2 showing with 30 L electrolyte: (a) Complete 7-day profile with SoC
variation. (b) Discharge failure in 1st discharge cycle. (c) Charge failure in 7th day charge. (d) Schematic diagram of battery
with failure to deliver power and without failure.

The daily changes in energy flows during charge and discharge are listed in Table 2.
One can see the amount of energy output from the battery during the 1st charge is only
419 Wh and the profile requires the battery to discharge up to 1100 Wh on certain days. Due
to depletion of stored energy, its SOC becomes so low that it has been unable to deliver the
load demand requirement. The battery is able to accommodate the charge energy from PV
during the 2nd day of insolation but is not able to deliver again during the early morning
of the 2nd night discharge as the intended discharge energy is 10% higher than what the
battery has been able to absorb during the 2nd charge while the amount of energy put in
during the 2nd day charging is only 10% higher than what battery is expected to discharge
in the night. Third day’s charging is of high energy content and the battery fails briefly
towards the end of the charging time because the SoC has reached 95% and it is unable to
accommodate the amount of energy coming in at the high power of 570 W. The high energy
input during the third day means no discharge failures on the 3rd night. The relatively
lower amounts of charge on the 4th and the 5th day of charging lead to discharge failures
on the succeeding discharging events. The amount of energy charged on the 6th day is the
highest among the seven-day profile; as a result, the battery gets fully charged resulting in
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no discharge failure on the 6th day. The last day’s charge too is considerable and due to the
high SoC at the beginning of charge (~25%), the battery soon gets fully charged leading to
extensive charging failure on the last day and no discharge failure during the last night.

Table 3 shows the details of energy delivered and charged for various charge and
discharge cycles. Energy-based % failure and time-based % failure for each case is also
tabulated. Minor (1–2%) energy-based failures without corresponding time-based failures
can be neglected as errors due to fluctuations in battery power supplied by the battery
cycler. One can see that significant discharge failure has occurred in 1st, 2nd, 4th, and
5th discharges and significant charge failures in the 3rd, 6th, and 7th charges. The first
discharge failure may be attributed to the exceptionally low insolation on the first day from
an already depleted battery and is thus caused by initial conditions of the set-up. (In view
of this, subsequent runs have been done with second day’s half discharge.) The 3rd and
the 4th discharge failures may be attributed to the large amount of discharge that needed
to be done. The more severe 5th discharge failure is somewhat surprising as the amount
of discharge energy is smaller and the amount of charge energy in the preceding charge
is higher. However, as can be seen in Figure 3a, the SoC at the beginning of discharge is
lower than that at the corresponding stage of the 3rd and 4th discharges. Thus, discharge
failures are associated with low SoC rather than high power under typical residential
load conditions. In contrast, charge failures are a combination of high power and high
SoC (compare the conditions of the 3rd, 6th, and 7th day charge failures in Figure 3a) as
the charging power is significantly higher than the average discharging power in solar
PV-residential load integration applications.

Table 3. VRFB energy during charge/discharge cycle 30 L for SP = 1/2, ST = 1/2.

Cycles Intended Wh Experimental Wh
Energy Based

% Failure
Time Based
% Failure

0th Discharge 653 643 2 0

1st Charge 419 415 1 0

1st Discharge 957 677 29 28

2nd Charge 1173 1172 0 0

2nd Discharge 1035 850 18 16

3rd Charge 1648 1606 3 1

3rd Discharge 1025 1011 1 0

4th Charge 1142 1136 1 0

4th Discharge 1034 977 5 5

5th Charge 1205 1199 0 0

5th Discharge 973 877 10 8

6th Charge 1660 1550 7 4

6th Discharge 931 912 2 0

7th Charge 2291 1288 44 40

7th Discharge 443 437 1 0

3.2. Power and Energy Scaling Studies

In order to study the influence of electrolyte volume, and hence the battery system’s
energy storage capacity, on the dynamic performance of the integrated system, experiments
have been carried out with the electrolyte volume increased from 30 liters to 35 liters on
each side and then once again from 35 liters to 40 liters. The same stack operated with the
same voltage limits and electrolyte circulation rates was used in these simulations. Thus,
compared to the baseline case, the power scaling remains the same but energy storage
capacity has been increased by 16.6% and 33%, respectively. As mentioned earlier, the
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ordering of the days has been changed from 1-2-3-4-5-6-7 to 2-3-4-5-6-7-1 to remove the
anomalous influence of the starting day. The battery response in terms of power and SoC
in these two cases is compared in Figure 4. It can be seen the first day discharging failures
have disappeared but mid-week discharge failures are still there, though with reduced
intensity, especially in the case with 40 L electrolyte volume on each side. In both cases,
the mid-week discharge failures are associated with the battery reaching very low SoC
despite increased storage capacity compared with the baseline case. Thus, increasing the
electrolyte volume is beneficial in reducing discharge failures. Charge failures too have
come down significantly, especially in the 40 L case in which instances of high SoC have
reduced considerably.
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Figure 4. Battery performance with SoC variation for SP = 1/2 and ST = 1/2 for (a) 35 L electrolyte (b) 40 L electrolyte and
(c) with 40 L electrolyte with SOC variation for SP = 1/2 and ST = 1/3.

In the above two cases, the total energy intended to be traded is the same as that
in the baseline case; only the energy storage capacity of the battery system is increased
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by increasing the electrolyte volume. Figure 4c shows the response for a stack with 40 L
of electrolyte which is run on the same power scaling of SP = 1/2 but with a time scaling
of ST = 1/3. This system has the same energy storage capacity as that of Figure 4b but
the energy traded is reduced by 1/3rd. Thus, this experiment is equivalent to SP = 1/2

with ST = 1/2 scaling with 60 L of electrolyte at initial SoC of around 60% for the same
battery stack. As can be seen from Figure 4c, there are no discharge failures as the SoC
remains comfortably high (>40%) throughout the equivalent seven-day cycle. However, the
battery has more charging failures because the SoC reaches high values (>90%) repeatedly.
However, this failure to charge does not translate to failure to meet load demand because
the system has high storage capacity (twice as much as that of the reference case).

Figure 5 compares the energy traded (charged or discharged) in every charge/discharge
cycle over the seven days for the three cases shown in Figure 4. In addition, given here
is the intended amount of energy to be traded in each cycle. All the three cases (of 35 L
with SP = 1/2 and ST = 1/2, 40 L SP = 1/2 and ST = 1/2 and 40 L with SP = 1/2 and ST = 1/3)
have been non-dimensionalized by dividing the energy by the maximum energy traded in
that seven-day period (this corresponds to the charging energy on the 6th day). It can be
seen that the combination of (40 L, SP = 1/2 and ST = 1/3) is able to deliver discharge energy
as intended over the entire period; however, there is considerable wastage of PV output.
This is borne out by the SoC variation which is mostly in the range of 60 to 99% showing
underutilization of the electrolyte. The intermediate case of (40 L, SP = 1/2 and ST = 1/2) is
better at utilizing the PV output with occasional discharge failure while the case with (35 L,
SP = 1/2 and ST = 1/2) may be said to be undersized with respect to energy storage capacity.
Proper energy sizing of the energy system is necessary to optimally use its storage capacity.
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Figure 5. Comparative plot showing traded energy (%) in each charge/discharge cycle over a seven-day period for a VRFB
with (electrolyte volume, SP and ST) combinations of (35 L, 1/2, 1/2), (40 L, 1/2, 1/2) and (40 L, 1/2, 1/3).

In order to bring out the effect of stack sizing, a further simulation has been carried
with an electrolyte volume of 40 L but with SP = 1. In view of the limited energy storage
capacity associated with 40 L electrolyte volume, the time scale factor is reduced such that
ST = 1/5 leading to SE of 1/5 compared to that of 1/4 for the baseline case. The reduced
energy scaling is consistent with anticipated higher efficiency losses associated with higher
powers of charge and discharge due to doubling of power compared to the baseline case.
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The response of the battery system for the first two days is summarized in Figure 6. One can
see that high power charging leads to significantly higher overpotential so that charging
failure occurs on the first day itself even for SoC < 80% and the SoC remains less than 90%
at the end of first day’s charging. As a result, there is a hint of failure at the far end of
the first full discharge. Due to high charging losses, the SoC does not even reach 80% at
the end of 2nd day’s charging. This is in contrast to the corresponding case in Figure 4b
where the SoC is well in excess of 90% at the corresponding stage. Coupled with this low
SoC, higher discharge losses due to higher average discharge power leads to extensive
failure in the next discharge cycle (not shown) which has a knock-on effect on subsequent
charge and discharge cycles, each of which suffers from extended periods of battery failure
to meet power demand. This case, which is representative of an undersized stack, thus
illustrates the importance of power sizing of the integrated system. The battery should be
able to tackle high charging powers; otherwise, subsequent discharge and charge cycles
will suffer.
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Figure 6. Battery performance with 40 L electrolyte with SoC variation for SP = 1 and ST = 1/5.

3.3. Charging and Discharging Efficiency

From measured OCV at the end of every power step, the average overpotential
for every step could be determined. From this, the charging efficiency and discharging
efficiency could be computed over the entire seven-day period for a given integrated
system. For a given VRFB stack operating at a constant electrolyte circulation rate, both
efficiencies depend primarily on the power at which charge or discharging takes places and
the SoC of the electrolyte, both of which vary dynamically in a given situation. Figure 7
shows the data of charging and discharging efficiencies over the seven-day period wherein
data from for all the three cases shown in Figure 4 are plotted together. One can see that the
discharge efficiency is not strongly influenced by power (probably because the discharging
power is low and varies in a rather narrow range) and remains relatively high (~0.95) for
SoC > 30%. On the contrary, the charging efficiency is a strong function of power and
almost varies linearly with charging power. Since charging power is about three times
higher than the discharging power, the average charging efficiency is lower at about 0.9.
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(a) 

(b) 

Figure 7. Efficiency variation with SoC and operating power of VRFB for (a) discharging and
(b) charging for the three runs shown in Figure 4.

3.4. Lead Acid Battery Performance

The same 7-day profile is operated using a lead-acid battery for understanding its
performance to dynamically changing requirements. A new lead-acid battery of 150 Ah
capacity at 12 V was used for these experiments. Since the commercial lead acid battery has
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a power rating of 180 W and energy rating of 1800 Wh, a power scaling factor, SP, of 1/8 and
a time scale factor, SF, of 1 were used giving energy scaling factor, SE, of 1/8. Since ST = 1,
each power step lasted 11 min; this was followed by a one-minute OCV measurement step.
Figure 8 shows the battery response for the seven-day profile in terms of power step by
power step response (Figure 8a) and in terms of normalized cumulative energy traded in
each charge/discharge step (Figure 8b) where the data for the VRFB case of 40 L electrolyte
volume, SP = 1/2 and ST = 1/2 are also given. One can see from Figure 8a that the lead-acid
battery suffers charging failures on each of the first six days; however, due to its high energy
storage capacity (and favorable power scaling), it shows no failures in discharge. Figure 8b
shows that in comparison with VRFB, the energy charged in each cycle is significantly less
in charging cycle. On the other hand, it outperforms the VRFB in discharge as it is able
to meet the discharge demand in every cycle. However, it must be kept in mind that the
lead acid battery case has an energy scaling factor of 1/8 whereas SE for the VRFB is 1/4.
Given that the rated energy storage capacity of the former is 1800 Wh compared to about
1000 Wh for the latter, the lead acid battery system is grossly underutilizing its energy
storage capacity.
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It may further be noted that the VRFB system worked well for about 50 consecutive
charge + discharge cycles without noticeable degradation in performance whereas the
new lead acid battery showed signs of rapid degradation. After three seven-day profile
experiments were conducted with SP of 1/8, 1/6 and 1/4, the battery was found to have
retained a capacity of only 50 Ah. When the seven-day profile was repeated with SP of
1/8, the reduced capacity was found to have led to extensive failures in both charging and
discharging. Although this cannot be considered as a well-controlled study of degradation
behavior of the lead acid battery (which was procured off-the-shelf from a commercial
store), the VRFB system does have the advantage of long life under repeated cycles which
is necessary for solar PV applications.

4. Conclusions

A 1 kW-rated 8-cell stack of 900 cm2 cell active area vanadium redox flow battery has
been investigated to serve as electrical energy storage system in a conceptually integrated
PV-battery-residential load system intended to run as a stand-alone system. A series of
seven-day profile runs of battery power have been made to simulate different energy
storage and power delivery capacities. The following conclusions can be drawn from
the study:

1. Typical insolation and load profiles for an integrated solar PV-battery-residential load
system have about a quarter of the PV output going directly to meet the load demand
during sunshine hours. This means that nearly three-quarters of energy flow to the
load occurs through the battery. Account must therefore be taken of charging and
discharging energy efficiencies.

2. The seven-day power profiles for the integrated system show the vast differences
between charging and discharging conditions for the battery of such an integrated
system. Average charging power is about three times that of average discharge power.
Further, due to the different nature of variations of solar insolation and aggregated
residential load, ratio of peak power in charging to that in discharging of the battery
is 4.7. Thus, charging conditions are much more severe than discharging. The stack
power rating should therefore be based on the charging condition during peak solar
insolation. Too low stack power rating can lead to considerable charging failures
which can subsequently translate into discharging failures.

3. For residential load applications, the daily energy variation is not highly variable.
The energy rating of the VRFB system, i.e., electrolyte volume, should be based on
the maximum daily discharge load and the range of operable SoC.

4. Due to the rather mild discharging conditions of the battery, favorable discharging
efficiencies can be maintained in a properly-sized stack for SoC variations in the range
of 20 to 90%. A stack operating over this range may be expected to have, given that it
is designed for harsh charging conditions, net discharge efficiency of 90% or higher.

5. The sizing of the PV plant should be based on both charging and discharging efficien-
cies of the battery. Given that the stack should be designed for peak charging power,
and given that the peak-to-average charging power is nearly two, the stack charging
efficiency is likely to between 85 to 90%. With discharge efficiency being in the range
of 90 to 95%, a net round trip energy loss of about 80% may be expected.

6. Considering the fact that about 75% energy flow occurs through the battery (with
a round-trip efficiency of 80%) with the rest going through to load directly with a
considerably higher efficiency, and making some allowance for failure to charge, the
PV plant should be rated at about 25% more energy than the average daily energy
demand from the load.

The present analysis does not include transmission and distribution losses and con-
sideration of these may increase about 10% power and energy storage requirements. In
summary, it can be concluded that the ability to design a VRFB with a high ratio of power-
to-energy makes it particularly attractive for PV-load integration.
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Abstract: This paper presents the non-uniform change in cell thickness of cylindrical Lithium (Li)-ion
cells due to the change of State of Charge (SoC). Using optical measurement methods, with the aid
of a laser light band micrometer, the expansion and contraction are determined over a complete
charge and discharge cycle. The cell is rotated around its own axis by an angle of α = 10◦ in each
step, so that the different positions can be compared with each other over the circumference. The
experimental data show that, contrary to the assumption based on the physical properties of electrode
growth due to lithium intercalation in the graphite, the cell does not expand uniformly. Depending
on the position and orientation of the cell coil, there are different zones of expansion and contraction.
In order to confirm the non-uniform expansion around the circumference of the cell in 3D, X-ray
computed tomography (CT) scans of the cells are performed at low and at high SoC. Comparison of
the high resolution 3D reconstructed volumes clearly visualizes a sinusoidal pattern for non-uniform
expansion. From the 3D volume, it can be confirmed that the thickness variation does not vary
significantly over the height of the battery cell due to the observed mechanisms. However, a slight
decrease in the volume change towards the poles of the battery cells due to the higher stiffness can
be monitored.

Keywords: lithium-ion battery cell; volumetric expansion; mechanical degradation; state of charge
dependency; cell thickness; mechanical aging; non-uniform volume change

1. Introduction

The mechanical properties of commercial Li-ion cells are increasingly coming into
focus, especially considering the steadily growing requirements. Higher energy and power
densities, less space consumption, and longer service life—these are the challenges that
need to be overcome. However, many promising material combinations are limited by
their mechanical properties or are not suitable for real applications. For example, silicon
has a significantly higher energy density and specific capacity (QSi = 4200 mAh g−1 [1])
than graphite (QC6 = 372 mAh g−1 [1]), is available in sufficient quantities in nature, and is
reasonably priced [1,2]. However, the volume change of 100% ≤ ΔVSoC ≤ 300% compared
to the initial volume due to lithium intercalation is problematic. This can lead to cracking
in the lattice structure and thus to delamination of the active material from the current
collector [3], which leads to a faster aging. For this reason, an alloy or a compound of
different materials is usually used to combine the most favorable properties [1–5].

In order to understand which underlying mechanical processes take place inside the
battery cell, suitable measurement methods are necessary for recording and analyzing
parameters such as electrode thickness and volume change of the cell components. Various
methods of measuring electrode thickness have already been implemented and show a
volume change of electrode materials and battery cells caused by the intercalation and
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deintercalation of Li-ions [6–9]. Depending on the material, the electrodes expand dif-
ferently with lithium migration. Compared to silicon, graphite as an anode material is
significantly inferior when considering the specific capacity, but it expands only up to
ΔVSoC = 12% [6,7,10] of the initial volume during lithiation and delithiation and thus exerts
significantly less mechanical pressure on the cell components. Cathode materials, metal
oxides frequently, also show a volume change due to lithiation and delithiation. In this pro-
cess, Nickel Cobalt Manganese Oxide (NCM) expands by up to 1% ≤ ΔVSoC ≤ 2% [7,8,10]
and Nickel Cobalt Aluminium Oxide (NCA) by up to ΔVSoC = 5% [10] of the initial volume.

Other factors influencing the cell volume are the Solid Electrolyte Interface (SEI)
layer thickness growth due to electrolyte decomposition products forming a covering
layer on the electrodes [11,12] and Li-plating (especially for Lithium Metal cells) [8,11].
These effects lead to a reduction in volume due to irreversible layer thickness growth
and, together with the gassing that takes place due to side reactions [13,14], leads to an
increase in pressure inside the cell on the housing, resulting in a measurable change of
the cell thickness. This was measured using dilatometry [7,8], imaging techniques such as
computed tomography [6] and neutron imaging [15], or strain gauges glued to the cells [9],
among other methods. In some cases, besides reversible expansion due to the migration of
lithium ions, irreversible expansion was also shown, which also correlates with the loss of
cyclizable lithium.

In addition, measurement of the internal gas pressure has already been realized
for different cell formats [13,14,16]. Aiken et al. [13] performed tests according to the
Archimedes principle on clamped and unclamped pouch cells and demonstrated reversible
volume expansion as a function of SoC for initial cycling of battery cells with different
electrolytes. In unstrained cells, the volume change built up via charge could be dissipated
upon discharge and was thus almost completely reversible. In the case of clamped cells,
the pressure no longer decreased completely, since the gas collects on the outer sides of the
electrode stack due to the static pressure caused by the clamping. The results obtained from
the measurements suggest that, depending on the electrolyte, reversible gas formation is
also possible, with the gas formed as the reactant in the chemical reactions taking place.
Schmitt et al. [14] showed for the first time that internal gas pressure measurement is
possible with commercial pressure sensors on large-sized cells. The results show that
during formation the gas pressure in the cell increases irreversibly. Afterwards, a clear
SoC dependence can be seen, from which a correlation between the expansion and the
graphite stages (pressure increase correlates with the calculated volume change due to
lithiation of the graphite and stagnates with restructuring of the crystal lattice) can also be
established. Schmitt et al. [14] also showed the irreversible increase in internal gas pressure
with decreasing State of Health (SoH). This is also evident in work by Schiele et al. [16],
which shows an irreversible increase of internal pressure with increasing number of cycles
because of gas evolution attributed to the thermal decomposition of the conducting salt
LiPF6 using a multichannel in situ pressure measurement system.

While measurable changes in cell thickness are obvious for pouch cells, having a
flexible aluminum composite foil housing, reversible, and irreversible cell thickness growth
can also be observed for cylindrical cells, although to a much lesser extent due to the rigid
housing [9]. Considering all mentioned effects and investigations, as well as due to the rigid
housing and the cylindricity of the commercial cylindrical battery cells, the assumption of
a homogeneous expansion of the battery cell over the entire surface is reasonable. The irre-
versible cell thickness growth due to the mentioned causes and the increase of the internal
gas pressure due to side reactions would thus have to lead to an increasing load on the cell
housing. Figure 1a schematically shows the assumed cell thickness growth of a cylindrical
cell with increasing SoC as a result of the lithiation of the anode, which expands much more
than the cathode. The increase in the radius of the cell is shown in blue. During discharge,
the cell completely returns to its original shape as the lithium delithiates completely from
the graphite. In Figure 1b, the assumed cell thickness growth of the cylindrical battery cell
with decreasing SoH (marked in green) is visualized. The red area marks the aging, which
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increases with higher number of cycles over lifetime. The increase in battery cell radius
ΔrSoH is directly related on the residual capacity, as already proven by Willenberg et al. [9].
Thus, by correlating with the SoC and the SoH, a state variable estimation can also be
attempted by measuring the battery cell thickness change. However, a requirement for this
is the uniform expansion of the battery cell over the entire circumference.
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Figure 1. Theoretical schematic representation of (a) reversible and (b) irreversible cell thickness
growth (ΔrSoC) compared to the initial diameter (d0). (a) As a result of the volume expansion of
graphite with increasing lithiation, the radius of the battery cell increases over every single cycle.
The battery cell returns to its original shape when discharged. (b) Due to SEI layer thickness growth,
defects in graphite, and pressure rise due to side reactions over the lifetime of a cylindrical Li-ion
cell, the radius of the battery cell increases irreversibly by ΔrSoH with decreasing SoH (green) and
increasing irreversible aging (red) until the end-of-life (EoL) of the cell.

The central question of this work was whether the cell really expands uniformly as
expected. Both manufacturing and geometric variables are important here – the position
and thickness of the current collector tabs that connects the electrodes, the number of layers
of electrodes, and the position in the housing. How these influence and what difficulties
can arise in measuring battery cell thickness growth are discussed below. It remains to be
tested whether cell thickness growth can be used for cell state estimation.

2. Materials and Methods

The study of battery cell thickness growth is performed on a commercial cylindrical
Li-Ion cell, LG INR18650 M29. The battery cell has a positive electrode made of nickel-
rich NCM active material and a negative electrode made of graphite. The specifications
of the battery cell are listed in Table 1. The battery cell has a usable voltage range of
2.5 V ≤ U ≤ 4.2 V according to the producer’s datasheet [17].
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Table 1. Product specification of the cylindrical Li-ion battery cell applied [17].

LG INR18650 M29

Nominal Specification

Nominal Capacity 2850 mAh
Charging Voltage 4.20 V
Nominal Voltage 3.67 V
Discharge Cut-off Voltage 2.50 V
Max. Charge Current 1.0 C (2.850 A)
Max. Discharging Current 6 A (for continuous discharge)

10 A (not for continuous discharge)
Operating Temperature Charge: 0 ◦C to 50 ◦C

Discharge: −30 ◦C to 60 ◦C

Dimensions

Diameter 18.3 + 0.1/−0.3 mm
Height 65.0 ± 0.2 mm
Weight 45.00 g

2.1. Experimental Setup

To investigate the punctual radial expansion of the LG INR18650 M29 battery cell,
an optoCONTROL ODC2600 light band micrometer with a high-resolution CCD camera
for measuring geometric quantities from Micro-Epsilon Messtechnik GmbH & Co. KG
(Ortenburg, Germany) is used. The light band micrometer is shown schematically in
Figure 2. The measuring range (red band between laser and acquisition unit) has a total
height of lrange = 40 mm. The linearity l, i.e., the deviation between an ideal straight
characteristic curve and the real characteristic curve, is max. l = 3μm. The resolution dres
of the measurement signal is dres = 0.1μm, at a measurement rate f of up to f = 2.3 kHz.
The micrometer operates on the principle of shading or light quantity measurement and
thus detects the dimension and position of the object to be measured.

Begin of measuring range

End of measuring range

lrange lmeas

Top edge

Cell

Figure 2. Schematic measurement setup with the light band micrometer from Micro-Epsilon
Messtechnik GmbH & Co. KG for investigating the punctual expansion of the cylindrical Li-Ion cell
(LG INR18650 M29) at the top edge of the cell located in the lrange high light band marked in red.
In fact, the distance between the LG INR18650 M29 and the end of the measuring range is measured
(lmeas). As the cell expands, the distance decreases and vice versa. The cell is cycled in the light band
micrometer and rotated 10° after charge and discharge, until the complete circumference has been
measured with a total of 36 cycles.
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To examine the expansion of the battery cell, the cell is clamped at the poles in a
holder for contacting so that it is free and orthogonal to the light band in the measuring
area marked in red, as shown in Figure 2. The light band micrometer has different setting
modes. The transition between the shading by the cell and the adjacent light edge of the
laser is used as a reference point. Either the path between the upper edge of the battery
cell and the lower edge of the measuring range, or the path between the lower edge of
the battery cell and the upper edge of the measuring range can be measured. As the
battery cell expands, the top edge of the cell shifts, resulting in increased shading and thus
increased measurable distance. In addition, the diameter of the shading through the cell or
a gap between two shadings can be determined. However, this mode is not suitable for
the following investigations because the expansion of one position and a contraction at
the opposite position can cancel each other out. Therefore, the change of the battery cell
radius is always indicated in the following. The acquisition can only be performed for one
position or one diameter at a time. To examine the cell thickness growth over the entire
circumference, the battery cell must be rotated manually.

2.2. Measurement Procedure

The cylindrical Li-ion battery cell is subjected to the same measurement procedure
at each position around the circumference. An ACT0550 battery tester from PEC Corp.
(Leuven, Belgium) is used to cycle the battery cell. The battery cell tester can provide
currents up to 50 A per channel and apply a voltage of 5 V maximum. All measurements
are performed in a climatic chamber of Memmert GmbH & Co. KG (Schwabach, Germany)
at a temperature of T = 25 ◦C. To investigate the effect of temperature, a temperature
sensor PT100 is attached to the outside of the cell and connected to the battery tester.

The cell is always clamped in the cell holder with the position to be examined facing
upwards. The battery cell is first fully charged with a current of I = 1C (1C ≡ 2.85 A)
and also fully discharged again with I = 1C in the voltage range of 2.5 V ≤ U ≤ 4.2 V.
Charge and discharge period consist of a CC phase and a CV phase as listed in Table 2.
The termination criterion for the CV phase is when the current drops below 1/100 C, which
corresponds to a current of Ilim = 28.5 mA. For the following investigations, only this
one current rate is used. Willenberg et al. [9] showed that expansions also occur at lower
current strengths. The influence of the current strength on the uniformity of the expansion
has yet to be shown in subsequent work.

The cell is rotated manually by α = 10◦ after each charge and discharge cycle and
measured again. During the measurement, voltage, current, and temperature are logged
with one data point per second, averaged from the last 1000 recorded values at a frequency
of f = 1000 Hz. After a total of 36 cycles, the individual positions can be compared with
each other.

Table 2. Consistent measurement procedure for each measured position around the circumference of
the battery cell.

Step Parameter Termination Criterion

1 CC-Charging Ich = 2.85 A V = 4.2 V
2 CV-Charging Uconst = 4.2 V I ≤ 28.5 mA
3 CC-Discharging Idch = − 2.85 A V = 2.5 V
4 CV-Discharging Uconst = 2.5 V I ≥ −28.5 mA

2.3. Computed Tomography

In order to verify the measurements with the light band micrometer, a 3D non-
destructive measurement was needed with high spatial resolution. X-ray computed to-
mography is one such method with the capability of providing high resolution 3D scans of
objects. The combination of non-destructive methodology and high resolution makes it apt
for analyzing the non-uniform expansions of Li-ion cells. A cone-beam X-ray computed
tomography is used specifically in our experiment as shown in Figure 3. In this setup,
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at one end is an X-ray source radiating a cone shaped beam and on the other end there is a
flat-panel X-ray detector. The object to be scanned is placed on a high precision rotation
stage between the source and the detector. During the scan, the object is rotated slowly over
360° and, in this duration, several thousand 2D images called the projections are captured
by the detector. This stack of 2D projections of the object to be measured is then fed into a
tomographic reconstruction algorithm to generate the 3D volume of the scanned object.
The resolution of the scan depends on how close the object is to the source. Like a shadow
approach, the closer the object is to the source, the higher is the scan resolution; however,
the field of view is smaller. If we move away from the source, we have a greater field of
view but at the cost of resolution.

X-Ray source

Detector

CT rotation plate

Figure 3. Computed tomography setup for 3D measurement of the battery cell for different loading
conditions to compare the mechanical structure of the cylindrical cell.

The Li-ion cell is scanned in two states, once with SoC = 0 and once with SoC = 1.
In both of the cases, the resolution of the 3D reconstructed volume was 10 μm. This was
followed by a surface determination on the 3D volume data to determine the surface of the
cell in the two states. These generated surfaces from both scans were then used to calculate
the non-uniform expansion of the cell walls in 3D. In order to have an absolute co-relation
between the two states, a reference metal tube was fixed to the setup, which was used
to register the 3D volumes of both scans. This would ensure that there is no geometric
shift or rotation influencing the measurement of the non-uniform expansion of the cells.
Although CT has been used to study various effects in batteries [9,18–20], to the best of
the author’s knowledge, a 3D non-uniform expansion of Li-ion cells measured with CT
is investigated for the first time in this work. Figure 3 shows the setup of the computed
tomography for the 3D measurement of the battery cell with the source for the X-rays and
the detector.

In order to be able to evaluate which local expansions belong to which geometrical
influences within the cell later on also during the measurements with the light band
micrometer, a picture of the cell examined in the light band micrometer was also taken
with the computed tomography. In addition, the position of the anode current collector
was marked on the housing of the battery cell to assign the corresponding positions.

3. Results

3.1. Position-Dependent Volume Change

Figure 4a shows the schematic illustration of a Li-ion cell as well as the examined
positions over the circumference of the cell, starting at pos. 0, where the negative current
collector (marked A in Figure 4b) is located inside the cell. Each further position is offset
by α = 10◦ from the previous one (pos. 1 =̂ 10◦, pos. 2 =̂ 20◦, ...).
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Figure 4. (a) Schematic drawing of a cylindrical Li-Ion cell, marked with the points measured in the
light band micrometer, which are located at an angle of α = 10◦ to each other. The start position from
the measurement (position 0) corresponds to the position of the negative current collector tab, which
was marked in the CT (marked A in Figure 4b; (b) 100-fold amplified expansion of the cell thickness
in steps of ΔSoC = 2.5% at the corresponding positions including a CT image of the cell to assign
the corresponding positions on the cell circumference. A marks the negative current collector tab,
B the positive current collector tab. C highlights one of two spots, where a small gap between the
jelly role and the housing is located, where the jelly role is not pressed against the housing. D marks
the end of the jelly roll.

Figure 4b shows the change of the radius of the respective position ΔrPos over the
circumference of the battery cell per SoC change of ΔSoC = 2.5% amplified by a factor of
100. Between positions 0 and 5, a clear expansion of the cell is evident, which continues
to flatten and reverses at position 7. The battery cell also shows significant expansion
directly opposite the negative current collector tab and at the position of the positive
current collector tab (marked B). The marks C (associated measurement positions: 30–35)
and D (associated measurement positions: 8–11) each highlight locations where the jelly
roll is not as tight as at the other locations and thus does not press against the housing.
Both locations show a contraction of the cell over a wide range. Whether the cell wrap is
more densely or less densely packed is determined by the distance between the cell wrap
and the housing. If the cell coil lies directly against the housing, a denser packing can be
assumed then if there is still a cavity between the cell coil and the housing (as in mark C in
Figure 4b).

The results of the change in radius over the circumference of the battery cell suggest
that, in particular, expansion occurs at those locations where the packing of the jelly roll
is significantly tighter than normal due to the current collector tabs. Contraction occurs
mostly at locations where the jelly roll is significantly looser. This ultimately leads to a
potato-shaped cell form, also visualized in Figure 5.

Figure 5a shows the radial change Δr (amplified by a factor of 100) over time t added
to a fixed cell radius rmean to visualize the change in cell volume of each circumferential
position over time. Each line reflects the recorded expansion or contraction of the battery
cell Δr in the light band micrometer at that point. The contraction at the bottom of the
cell and the bulge near the negative current collector tab can be seen particularly clearly.
The plane in gray shows the section plane applied at different states of charge to study the
volume change of the battery cell for different states of charge.

Figures 5b–e show the sectional views at different states of charge (SoC = 0.25 ... 0.5
... 0.75 ... 1), which once more clearly show the potato-shaped form of the battery cell.
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The change in radius at the position of the negative current collector tab is marked in green.
The top view of the battery cell in gray reflects the initial shape of the cell.

SoC = 0.25 SoC = 0.5
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Figure 5. (a) 100-fold amplified change of cell thickness growth over the time t in h of charge and
discharge cycle in α = 10◦ steps added to a fixed cell radius (mean diameter of the cell with SoC = 0)
for each position measured in the light band micrometer over the circumference of LG INR18650
M29. The gray area is the intersection for plots (b–e), showing sectional views of relevant SoCs
(SoC = 0.25 ... 0.5 ... 0.75 ... 1). The current collector position is marked by a green line/dot in every
plot. The blue dots belong to the charge of the battery cell, the red marks to the discharge, revealing a
visible hysteresis of the volume change of the cell.
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The change in radius during charging is shown in blue, and the change when the
corresponding SoC is reached during discharging is shown in red.

An increase in the extreme points over the SoC can be clearly seen: the expansion
becomes larger as the charge increases, but the contraction also becomes stronger as
other regions expand. The hysteresis of the voltage due to the applied load has already
been investigated many times [21–23]. However, the expansion also has a hysteresis,
recognizable by the non-overlapping points especially at the extreme points.

3.2. Detailed Radial Change and Influencing Factors

For a better understanding of the volume change, a detailed consideration of the
alteration of the radius is useful. This also allows for identifying any influencing factors.
Figure 6a shows the change in radius Δr over time t for the entire cycle of the position that
expands the most, as well as current (I), voltage (U), and temperature (T) characteristics of
the test.

The change in radius over the CC charge phase is about Δr = 27 μm. It decreases
somewhat as the cell enters the CV charging phase. At the start of the discharge, there is
a very brief increase in radius until the decrease in cell thickness due to the mechanical
processes predominates and the cell contracts again. At the end of the CC discharge phase,
respectively at the beginning of the CV discharge phase, a kink in the curve is visible.

a) b)

0 1 2 3
−10

0

10

20

30

Δ
r/
μ
m

10◦

CC CV CC CV

C
h
ar
gi
n
g

D
isch

argin
g

0 1 2 3
−10

0

10

20

30

Δ
r/
μ
m

10◦ 20◦ 30◦ 40◦

50◦ 60◦ 70◦ Ideal

0 1 2 3
−3.5

0

3.5

I
/A

0 1 2 3
2

3

4

5

U
/V

U

I

0 1 2 3
−30

−20

−10

0

10

t/h

Δ
r/
μ
m

80◦

320◦

c)

0 1 2 3
20

30

40

t/h

T
/◦
C

T

Figure 6. (a) Radial expansion Δr in μm of the LG INR18650 M29, the corresponding current I in A
and voltage U in V, and the temperature T in ◦C over the time t in h for charge and discharge cycle
for position 1 (α = 10◦ from the current collector tab). The area highlighted in yellow marks the end
of the CC phase or the beginning of the CV phase at which the temperature inside the cell continues
to increase despite the falling current, resulting in a change of the cell thickness; (b) radial expansion
Δr in μm of position 1–7 (α ε {10, 20, ..., 70}◦) from the current collector tab; (c) comparison of the
radial expansion of position 8 and 32 with negative expansion over the charge and discharge cycle.
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If only the voltage was decisive for the expansion of the battery cell, the change in
the radius would correspond to the voltage curve. Looking at the voltage curve and the
expansion of the cell in Figure 6a, this means that other effects besides lithiation have
an influence on the expansion. Particularly noticeable is the sharp peak between the CC
and CV charging phases, which is marked in yellow here. Although the applied current
drops and the voltage remains constant, the expansion continues to rise. Looking at the
temperature curve, the peak of the expansion correlates with the temperature increase of
the cell. This is due to the ideal gas law, according to which the gas pressure increases with
increasing temperature while the volume remains constant. The increase in gas pressure
also causes the battery cell to expand further, although no further electrode growth takes
place. By decreasing temperature and thus also gas pressure, the expansion also decreases
to an almost constant level until the end of the CV discharge phase.

At the beginning of the discharge phase, the expansion initially decreases analogously
to the voltage due to the delithiation of the graphite, which leads to a contraction of the
electrode. Shortly after the start of the CC discharge phase, the radius increases again
despite progressive delithiation. The reason is presumably the increasing temperature,
which causes the internal gas pressure to rise again and superimposes the reduction in the
radius, thus leading to expansion again until the effect of delithiation predominates and
the radius of the battery cell decreases again. Due to the temperature effect, the slope of
the radius change is smaller during discharge than during charge.

Figure 6b,c show that the above effects also apply to lower expansions and even to
locations where contraction of the battery cell occurs. At points where the cell contracts,
an additional contraction occurs as the temperature rises. This is due to the strong expan-
sion at other points (see positions 1–7 in Figure 6b), which causes the spaces between the
bulges to contract due to the mechanical rigidity of the housing.

As already indicated in Figure 5, the expansion exhibits a hysteresis. Figure 7a shows
the voltage for charging Uch and discharging Udch as well as the corresponding change in
radius Δrch and Δrdch plotted versus SoC.

As expected, the voltage exhibits hysteresis due to structural changes in graphite and
non-uniform distribution of lithium ions [24,25]. The expansion also shows this hysteresis,
with the curves of the radius change for charge and discharge intersecting at SoC = 0.08.
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Figure 7. (a) Change in radius Δr in μm for charge and discharge and the associated voltage U in V
versus State of Charge SoC showing the hysteresis between charging and discharging; (b) temperature
curve T in ◦C during charging and discharging versus the state of charge SoC.
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This hysteresis shows that the lithiation and delithiation of the electrodes results in an
asymmetric volume change.

The overlap of the curves of the radius progression can be explained with regard to
the temperature. The temperature increases with decreasing SoC due to the high applied
current at a discharge rate of 1C to a temperature of T > 33 ◦C at the corresponding SoC.
This causes the internal gas pressure to increase, which results in the radius not decreasing
as fast as it increased during charging. This causes the two curves to meet. This is also the
reason why the hysteresis becomes smaller for SoCs close to 1.

3.3. Investigations with the Help of Computed Tomography

To validate the measurements with the light band micrometer, computed tomography
was used to determine battery cell thickness growth, as shown in Figure 8.

Therefore, images of the cell in a fully discharged state and in a fully charged state are
generated, creating two three-dimensional models of the battery cell.

Figure 8. (a) Cross−section of the 3D CT image of the battery cell with magnified extent. Contraction
of the battery cell is colored in pink; (b) representation of the absolute surface of the recorded battery
volume, which changes over the charge according to the indicated expansion. The largest proportion
of the battery surface expands between 10μm and 20 μm while charging.
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By superposing these models, the difference in the shape of the outside of the casing
between the two states of charge of the battery cell can be visualized. Figure 8a shows a
sectional view of the three-dimensional scan of the cell and the 50-fold amplified change
on the outer side of the cell. The figure confirms the clear expansion of the cell housing
in the area of the anode current collector tab and at the opposite position of the cell (180◦
offset). The maximum absolute radius change at expanding regions of the cell is also
of the same order of magnitude. In contrast to the measurements with the micrometer,
the expansion in the area of the anode current collector tab does not go directly into a
contraction of the surrounding positions around the circumference of the battery cell.
Overall, there is a smaller number of contraction positions seen around the circumference
of the cell. The absolute change in radius also lags well behind the maximum contraction
that occurred in the micrometer. While the averaged radius change of the cell in the light
band micrometer measurement is only about ΔrLBM = 1μm, it is about ΔrCT = 12μm in
the computed tomography measurements. Nevertheless, the inhomogeneous expansion
of the cell is clearly emphasized. The potato shape due to the increased expansion is also
clearly recognizable. In addition to the differently expanding areas, a sinusoidal shape of
the change of the cell housing can be seen in the images. It is possible that this is due to
the manufacturing process of the cell housing. Confirmation of this effect by subsequent
measurements is still to be conducted. Figure 8b shows how much area of the outer housing
expands or contracts. It is clear that the largest proportion of the surface of the housing
exhibits a radius change of Δr = 20μm during charging compared to the discharged state
of the cell.

Figure 9a shows a representation of the 3D image of the cell including the analysis.
The coloring clearly shows an area of contraction on the left side and areas of varying
degrees of expansion on the remaining surface. The color scale can be found in Figure 8.
Figure 9b shows the expansion of a cross-section over the height of the cell, proving that
there is no significant change in cell thickness growth over height. Only the absolute
expansion decreases in the direction of the poles. In addition, the left side of the plot shows
that, even after the end of the current collector tab, there is a reduction in the absolute
expansion of the cell over the height of the battery cell.

a) b)

Figure 9. (a) 3D representation of the recorded battery volume analyzed for expansion; (b) longitudinal
section through the battery cell over the recorded height with the corresponding expansion analysis.

4. Discussion

As shown in the section Results, the use of a light band micrometer is a stable and
reliable method to study cell thickness growth. During the cycling of LG INR18650 M29,
the change in radius of a single position could be measured with an accuracy of aacc =
99.67%. The operating temperature of the light band micrometer is between 0 ◦C ≤ T ≤
50 ◦C, so, when measuring in a climatic chamber at a constant temperature of T = 25 ◦C,
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a temperature effect of the environment on the measuring device and the battery cell can
be neglected.

The measurement of the volume change over the complete circumference of the
battery cell shows that a non-uniform change in the shape of the cell takes place. Instead
of the expected uniform expansion, the cell takes on a potato shape, putting it simply.
The roundness of the cell decreases and bulges and valleys form around the circumference
depending on the position and orientation of the jelly roll inside the housing. Where the
negative current collector tab is located, the cell expands at an above-average rate, while it
contracts more than average at points where the jelly roll is not directly against the housing
and a cavity is created.

The measured change in radius, caused by the intercalation and deintercalation of
Li-ions in the electrodes, is up to a maximum of Δrmax,ex = 27 μm on expansion of the cell
(as seen in Figure 6a) and up to Δrmax,con = −25 μm on contraction (as seen in Figure 6c).
A SoC dependent volume change behavior was observed at all locations of the battery
cell. The averaged diameter of the battery cell with a low SoC is dSoC=0 = 18.15 mm.
The change in radius over charge averages Δrmean = 1.1 μm for each position by the
circumference of the cell, respectively Δdmean = 2.2 μm, resulting in an averaged diameter
of the battery cell in the fully charged state of dSoC=1 = 18.152 mm. As shown by the
small difference between the average diameter when fully discharged and the average
diameter when fully charged, the volume change of the battery cell is non-uniform because
the areas of expansion and the areas of contraction compensate each other. The actual
change of radius of different zones around the circumference of the cell is up to 12 times
higher than the average expansion. Since the expansion of the individual positions was
investigated in 36 consecutive cycles, deviations due to forming processes, aging processes,
and possibly existing influences due to different relaxation of expansion and pressure are
to be expected. The absolute values are therefore to be considered critically and must
be validated elsewhere with an extended setup that allows the investigation of all of the
different positions within a single cycle for multiple samples and different cell chemistries.
In addition, the influence of the current and the ambient temperature on the uniformity of
the expansion still need to be considered in future studies.

The CT scan could confirm the non-uniform change in the shape of the cell and the
potato-shaped expansion. The absolute maximum radius change of both measurement
methods is between 29μm < Δrmax < 37μm. However, there is a significant difference
between the absolute surface area expanding and the absolute surface area contracting. It
should be noted that the resolution of computer tomography is much higher than that of
manual measurement or rotation by α = 10◦ in the light band micrometer. In addition,
there is a risk that peaks or valleys near the area of interest will falsify the measurement
due to the arrangement of the measurement area with the light band micrometer. Therefore,
optimization of the measurement setup is mandatory for further investigations.

By analyzing a section of a battery cell with a height of h = 1 cm, computed tomogra-
phy is able to confirm the initial assumption that the change in radius of the cell does not
change significantly with height. Only the absolute value of the expansion or contraction
decreases in the direction of the poles.

As shown in Figures 6 and 7, a correlation of the radius change with the SoC is very
well possible. This correlation between the lithiation of the electrodes and the change
in radius can be established regardless of whether the cell expands or contracts at the
corresponding position. The characteristic points, for example, the end of the CC charging
and discharging phase, as well as the influence of the temperature rise and the relaxation at
the respective CV phases, can be seen over almost all of the examined positions. However,
this correlation is much clearer for positions where the absolute value of the change in
radius is higher. Figure 7 also shows that the intercalation and deintercalation of Li-ions
result in different swelling and contraction, which leads to a visible hysteresis. The variation
in the slope of the radius change in Figure 6 is probably related to the stage formation
during the lithiation of graphite. Further investigation of this will be reported elsewhere.
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In addition, investigation of the influence of the SoH on the expansion at various locations
is still outstanding.

5. Conclusions

It has been shown that spatially resolved measurement of the expansion of battery
cells is limited with a light band micrometer and very feasible with the aid of computed
tomography. The investigated battery cells show significant deviations from the expected
uniform expansion and form areas of expansion and contraction over their circumference,
depending on the orientation of the jelly roll in the case.

Hence, the use of volume change to study aging or predict SoC, as indicated by
different authors [9,12], requires special caution, since the expansion varies significantly
depending on the measurement position and the measurement results may be biased
depending on the measurement method.
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Abstract: Although a battery is a DC device, AC current is often necessary for testing, preheating,
impedance spectroscopy, and advanced charging. This paper presents a versatile control technique to
inject AC current to a battery. Synchronous buck and H-bridge topologies are operated in bidirectional
mode and controlled by uni-polar and bi-polar pulse width modulation techniques for the AC current
injection. The input and output passive circuits are specially designed considering AC current and
the properties of the battery. A controller is proposed considering a small internal impedance, small
AC ripple voltage, and variable DC offset voltage of a battery. The controller is capable of maintaining
stable operation of AC current injection in two power quadrant within a small DC voltage boundary
of a battery. The controller is comprised of a feedback compensator, a feedforward term, and an
estimator. The feedback gain is designed considering the internal impedance. The feedforward gain is
designed based on estimated open circuit battery voltage and input voltage. The open circuit voltage
estimator is designed based on filters and battery model. For validation, AC current is injected to a
Valence U-12XP battery. The battery is rated for 40 Ah nominal capacity and 13.8 V nominal voltage
The controller successfully injected AC current to a battery with +10 A, 0 A, and −10 A DC currents.
The magnitude and frequency of the AC current was up to 5 A and 2 kHz respectively.

Keywords: lithium ion battery; AC current injection; bi-directional control; charger

1. Introduction

Batteries are DC electrochemical energy storage devices which are mainly utilized as
DC source or load in applications. However, AC current injection in a battery is necessary
to preheat in cold weather, to measure the internal impedance, to balance the capacity based
on impedance, and to charge by sinusoidal ripple current method [1–4]. Conventionally,
AC current is injected to rechargeable batteries using linear circuits which work offline
(the batteries are disconnected from the applications) [5,6]. Recently, power converters
are being used to inject AC current to rechargeable batteries which can be operated either
offline or online (the battery is connected to the applications) [1–4,7–13]. A buck converter
topology was used to inject AC current on top of DC charging current in [9]. AC current
was imposed on top of discharging current in [10]. The methods available in the existing
literature for AC current injection using power converters can be operated either offline or
online (either while charging or discharging). A versatile AC current control technique is
proposed in this manuscript which can be operated in both offline and online conditions
for a broad frequency spectrum.

The AC current injection using power converters for AC system (grid tied inverter) is
an well established technology where the power flows unidirectionally and has a significant
voltage variation corresponding to current [14,15]. The unidirectional power flow of a
single phase inverter is depicted in Figure 1a. Vout and Iout are the output voltage and
current. The arrow line depicts the steady state operating condition. The tilted arrow
indicates the AC signal. Power converters can operate beyond the steady state for transient
conditions which is depicted as control range by shaded area. Compared to AC systems, AC
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current injection to a DC system (rechargeable battery) using a power converter is a recent
idea [16,17]. Power can flow bidirectionally in a rechargeable battery. The power flow of a
conventional bidirectional converter is shown in Figure 1b, which can control DC current
for a constant voltage. A controller for conventional bidirectional converter is not enough
to inject AC current into a battery. This is because a battery has a small internal impedance
and a variable DC voltage offset. A significant amount of AC current causes a small voltage
ripple in a battery. The AC injector for rechargeable batteries should be able to control large
current within a small voltage window as shown in Figure 1c. Therefore, AC current control
for rechargeable batteries is more challenging than conventional bidirectional converters.

Figure 1. Power converters output: (a) AC current injector using an inverter for AC systems (b) fixed
voltage bi-directional converter for DC bus, and (c) AC current injector required for batteries.

A versatile control technique to inject AC current into a rechargeable battery is pre-
sented in this manuscript which can inject AC current up to a magnitude of 5 A and
a frequency of 2 kHz for a 40 Ah 13.8 V battery. The controller is capable of injecting
AC current using two topologies: synchronous buck and H-bridge. In addition, the key
contributions in this manuscript are listed as follows:

• A versatile controller is proposed which can inject AC current to a battery for zero,
positive, and negative DC current i.e., it works for both offline and online (while
charging and discharging).

• A controller gain selection method and controller architecture is developed for AC
current injection considering small internal impedance and variable DC offset voltage
of a battery.

• A procedure is developed to select topology, modulation, and passive components for
AC current injection.

The modes of AC current injection to a battery is discussed in Section 2. Power
converter topologies, small signal analysis, and controller architecture are in Sections 3–5.
Finally, results are presented in Section 6.

2. Operational Modes for AC Current Injection

AC current can be injected to a rechargeable battery on top of DC charging and
discharging current. AC current can also be injected solely without DC current. The modes
of AC current injection in a battery are expressed by (1).

Iout(t) = Ibat(t) =

⎧⎪⎨⎪⎩
Idc + Imsin(ωt), if Mode 1
0 + Imsin(ωt), if Mode 2

−Idc + Imsin(ωt), if Mode 3

(1)

where, t is the time, Ibat is the battery current, Idc is the DC offset current, Im is the
magnitude of AC signal, and ω is the angular frequency for AC signal. Idc is positive
for mode 1 where AC current is injected to the battery while charging. Idc is negative for
discharging condition. Idc is zero for offline AC injection. The waveforms of each mode
of AC current injection are shown in Figure 2a. The existing methods available in the
literature for AC current injection using power converters can operate in only one mode
at a time. All three modes can be operated using proposed controller which is unique in
this manuscript.
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The voltage vs. current of a battery during different modes of operation shown in
Figure 2b. The power converters output is bounded by the rated operating range of the
battery (shaded in area in Figure 2b). The rated maximum and minimum operating voltage
of a battery is Vmax and Vmin. The rated currents are Imax and Imin. The control range for
different modes are also shaded and has dashed boundary line. The steady state operating
conditions are within the control range and shown as tilted arrow lines. The tilted arrow
indicates AC voltage and current for different modes. The magnitude of AC current in
Figure 2b is corresponding to the magnitude of of current in Figure 2a. To perform all
modes of operation, the power converter should be capable of operating within the right
half plane of the power quadrant (two quadrant as in Figure 2b).

Figure 2. Modes of operation for AC current injector: (a) waveform of converter current and
(b) operating conditions and control ranges.

3. Topologies and Modulation

An AC current injector for batteries was implemented using buck, synchronous buck,
boost, and resonant power converters [1–4,7–10]. A synchronous buck converter for AC
current injection to battery was used in this paper as shown in Figure 3. In addition, a
technique is proposed to use H-bridge topology to inject AC current as shown in Figure 4. Q1,
Q2, Q3, and Q4 are SiC MOSFETs with anti-parallel diodes. An input network was used to
deploy three modes of operation for the versatile control which consists of a DC voltage
source Vin, a resistor Rin, and a capacitor Cin. Iin is input current which could have three
parts ivin, irin, and icin. S1 and S2 are used to control the network as source and/or load
which determines online charging/discharging mode or offline mode of operation for AC
current injection. The AC injection modes and corresponding possible switch states are
in Table 1.

Table 1. Operating modes and input switches.

Switches S1S2 S1S2 S1S2 S1S2

State 00 10 01 11
Mode 2 1 3 1, 2, 3
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+-

Figure 3. AC injector using synchronous buck converter (2 MOSFTETs).

-+

Figure 4. AC injector using H-bridge converter (4 MOSFTETs).

3.1. Design

Vin depends on the available input power source. For the buck mode of operation, Vin
must be greater than open circuit battery voltage, Vbat. For maximum control flexibility, the
duty cycle is 50% and Vin can be selected based on (2).

Vin = 2Vbat_n (2)

where, Vbat_n is the nominal battery voltage from datasheet.
Rin depends on the value of DC load current in mode 3. For maximum control

flexibility, Rin can be selected by (3).

Rin =
Vin
irin

=
Vin

Iin_dc
=

2Vbat_n
Idc/2

=
4Vbat_n

Idc
(3)

The input capacitor should be capable to store the charge and energy for half cycle
of the injected AC current and discharge in rest of the half cycle. The value of Cin is
determined based on the allowable input ripple voltage Δvcin and the magnitude, Im, and
frequency, ω, of AC current. The charge storage, sinusoidal ripple current, and ripple
voltage across input capacitor is depicted in Figure 5. Cin is used to bypass most of the AC
current. Therefore, AC current through Rin and Vin should be negligible. Input capacitor
current, icin, can be represented by (4).

icin ≈ Imsin(ωt) (4)
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Figure 5. AC states at input capacitor: current, charge, and voltage.

The voltage and the charge of the input capacitor is determined based on the initial
conditions and AC current. The charge of the input capacitor, qcin, can be presented by (5).

qcin = qin +
∫

icindt (5)

where, qin is the steady state stored charge in capacitor. The designed nominal input
voltage, Vin can be considered is initial condition for capacitor voltage, vcin. Therefore, vcin
can be represented by (6).

vcin = Vin + Δvcinsin(ωt + π/2) (6)

By the definition of capacitance, the relationship between voltage and charge can be
presented by (7).

icin =
dqcin

dt
= Cin

dvcin
dt

(7)

Equation (7) can be rewritten as (8) by linearization. The linearization is shown in
Figure 5.

Δqcin
Δt

= Cin
Δvcin

Δt
(8)

For 1/4th of the period, Δqcin is determined by (9).

Δqcin
Δt

=

∫ T/4
0 icindt

T/4
=

∫ T/4
0 Imsin(ωt)dt

T/4
=

Im

8π
(9)

where, T is period. Therefore, (8) can be represented by (10).

Cin
Δvcin
T/4

=
Im

8π
(10)

Rearranging (10), Cin can be calculated from (11).

Cin =
ImT

32πΔvcin
=

Im

32π f Δvcin
=

Im

16ωΔvcin
(11)

where, f is the frequency of the AC current and ω = 2π f .
The output inductor, L, is selected based on the standard design as in (12) [18].

L =
Vout × (Vin − Vout)

ΔIL × fSW × Vin
(12)

where, ΔIL is the allowable inductor switching ripple current, and fSW is the pulse width
modulation switching frequency. Switching ripple current, ΔIL, is different than controlled
AC injection current. The frequency of ΔIL, is much higher than AC injection current and
the magnitude should be almost negligible. A larger inductor gives better attenuation to
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switching ripple current. However, it reduces the control bandwidth. Considering (2) and
control bandwidth, the design guideline for L can be presented in (13).

L =
Vbat_n × (2Vbat_n − Vbat_n)

ΔIL × fSW × 2Vbat_n
=

Vbat_n
2 × ΔIL × fSW

(13)

The output capacitor, C, reduces the switching ripple voltage. C can be selected by the
standard design as in (14) [18].

C =
ΔIL

8 × fSW × ΔVout
(14)

A higher value of C provides lower switching ripple. However, the battery itself has
very high capacitance. Therefore, a smaller value of C can be used.

The passive components for the topologies are calculated using (2), (3), (11), (13),
and (14) considering Vbat_n = 13.8 V, Im = 5 A, and f = 20 Hz, fSW = 100 kHz,
ΔVout = 7.5 mV, and ΔIL is 5% i of Im. Available standard components are selected for
experiments. The calculated and selected value of components are in Table 2.

Table 2. Passive Components for Topologies.

Vin Rin Cin L C

Calculated 27.6 V 5.5 Ω 1800 μF 276 μH 41 μF
Selected 27.6 V 4.5 Ω 2200 μF 198 μH 24 μF

3.2. Modulation

The midpoint voltage, Vmid, is the voltage across L and C shown in Figures 3 and 4.
Vmid determines the direction and magnitude of output current Iout. Vmid is controlled by
pulse width modultion (PWM) of the gate driver signal. The output voltage, Vout, depends
on internal impedance, Z, output current, Iout and open circuit battery voltage, Vbat as
in (15).

Vout = Vbat + IoutZ (15)

The PWM signals to drive the MOSFETs are shown in Figure 6. The gating signal
and midpoint voltage for synchronous buck converter is in Figure 6a. Q1 and Q2 are
complementary. Deadtime is considered between on states of Q1 and Q2. The estimated
average midpoint voltage is expressed by (16).

Vmid ≈ dVin ≈ Vout (16)

where, d is the duty cycle. The effect of synchronous operation and deadtime are excluded
from calculation in (16).

Figure 6. Gate driver PWM signal for power converters: (a) synchronous buck (b) H-bridge with
unipolar switching (c) H-bridge with bi-polar switching.
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The unipolar PWM signal for H-bridge topology is shown in Figure 6b. Vout is always
positive. Therefore, Q3 is always off and Q4 is always on for unipolar switching. Q1 and Q2
are complementary with deadtime. The estimated average voltage for unipolar switching
is approximately the same as the synchronous buck converter in (16).

Vmid ≈ duniVin ≈ Vout (17)

where, duni is the duty cycle of Q1 for unipolar PWM. The relationship between duni and d
is represented by (18).

duni = d (18)

The bipolar PWM signal for the H-bridge is in Figure 6c. The estimated average
midpoint voltage for bipolar PWM is expressed by (19).

Vmid ≈ dbiVin − (1 − dbi)Vin ≈ Vout (19)

where, dbi is the duty cycle of Q1 for bipolar switching. 1 − dbi is applied to Q3. Q1 and Q2
are complementary with deadtime. Q3 and Q4 are also complementary. dbiVin represents
positive parts of Vmid and (1 − dbi)Vin represents the negative part. Vout is always positive,
therefore dbiVin is always significantly higher than (1 − dbi)Vin. The relationship between
dbi and d is represented by (20)–(22).

d = dbi − (1 − dbi) (20)

dbi =
1
2
+

d
2

(21)

1 − dbi =
1
2
− d

2
(22)

PWM techniques are selected based on the topologies used to inject AC current
injection. Regardless of the topology chosen, Vmid is controlled by the duty cycle, d. d is
converted to duni and dbi for the H-bridge using unipolar and bi-polar switching. For both
topologies anti-parallel diode ensures the reverse current flow i.e., discharging condition
of the battery.

4. Small Signal Analysis

The output current of synchronous buck and H-bridge converters can be analyzed by
a simplified average mode small signal model and transfer functions.

4.1. Simplified Model and Feedforward

Both synchronous buck and H-bridge converters can be represented by a simplified
form as shown in Figure 7a. Modulation techniques are used to get the desired value of the
midpoint voltage, Vmid. The direction of average output current, Iout, depends on value
of Vmid and Vbat. Iout(t) determines the mode of operation for the controller. In the steady
state equilibrium condition, Iout=0 and Vmid=Vout=Vbat. A feedforward duty can maintain
the power converters in equilibrium. The feedforward duty, d f f , in averaged control mode
can be expressed by (23) and (24).

Vmid = Vind f f = Vbat (23)

d f f =
Vbat
Vin

(24)
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Figure 7. Small signal modeling: (a) simplified model of power converters, and (b) AR-ECM model
of a battery.

4.2. Transfer Function of Switching Power Pole

The average midpoint voltage for a PWM cycle at any instant can be expressed by (25).

Vmid(t) = Vind(t) (25)

where, d is average duty for that cycle and the value of d is updated for every cycle based
on control requirement. A small perturbation to steady state duty causes perturbation to
average midpoint voltage. The small perturbations can be expressed by (26) and (27).

d(t) = d f f (t) + d̃(t) (26)

Vmid(t) = Vind f f (t) + Ṽmid(t) (27)

Considering the average mode control perturbation and steady input voltage, fre-
quency domain interpretation of the midpoint voltage can be expressed by (28).

Vmid(s) = Vind(s) (28)

where, s = jω, and ω is angular frequency.

4.3. Battery Model

A Li-Ion battery has a small AC voltage ripple for large AC current ripple due to small
internal impedance. The adaptive Randle equivalent circuit model (AR-ECM) of a Li-Ion
battery can explain the internal impedance. AR-ECM is shown in Figure 7b. It consists of
an open circuit voltage source, Vbat , battery inductance, Lbat, Ohmic resistance, RΩ, charge
transfer resistance, RCT , double layer capacitance, CDL, Warburg impedance, ZW , solid
electrolytic interface resistance, RSEI , and capacitance, CSEI . The overall internal battery
impedance in frequency domain, Z(s) is expressed by (29) [19].

Z(s) = sLbat + RΩ +
1

1
RSEI

+ sCSEI
+

1
1

RCT+σ
√

2
s

+ sCDL
(29)

where, σ is Warburg coefficient, and Warburg impedance ZW=σ
√

2/s. Z(s) is taken into
account for versatile current controller design.

For a Valence U-12XP 40 Ah 13.8 V Li-Ion battery, the model components are
L = 0.34 μH, RΩ = 5.65 mΩ, CDL = 4.29 F, RCT = 1.23 mΩ and σ = 2.05 × 10−3 at
25% state of charge [9]. The bode plot of the battery impedance is shown in Figure 8.
The magnitude is calculated by 20log10(|Z|/Rbase), where Rbase is 1 Ω. The magnitude of
impedance is ≈ −40 dBΩ i.e., a small voltage perturbation will cause large current pertur-
bation. The phase plot indicates that at low frequency perturbation the battery behaves in
capacitive manner. However, at high frequency the inductive part becomes dominant.
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Figure 8. Bode-plot of internal impedance: (a) magnitude, (b) phase [9].

4.4. Open Loop Transfer Function

The output current is controlled by duty perturbation. Therefore, output current to
duty transfer function is defined by Gid as in (30).

Gid =
Iout(s)
d(s)

(30)

Gid can be determined by circuit analysis from Figure 7a. The overall impedance at the
midpoint can be expressed by (31).

Zmid(s) = sL +
1

sC Z(s)
1

sC + Z(s)
(31)

The impedance at the output node can be expressed by (32).

Zout(s) =
1

sC Z(s)
1

sC + Z(s)
(32)

The inductance current, IL(s), can be expressed by capacitor current, IC(s), and output
current, Iout(s), based on Kirchhoff’s current law as in (33).

IL(s) = IC(s) + Iout(s) (33)

The equation for output voltage to midpoint voltage can be derived by (34) and (35).

Hv(s) =
Vout(s)
Vmid(s)

=
IL(s)Zout(s)
IL(s)Zmid(s)

(34)

Hv(s) =
1

1 + sL
Z(s) + s2LC

(35)

The battery ripple voltage transfer function, Gvd, can be expressed by (36)

Gvd =
Vout(s)

d(s)
=

1
1 + sL

Z(s) + s2LC
Vin (36)
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The Vout(s) can be expressed by (37).

Vout(s) = Iout(s)Z(s) (37)

Using (34) and (37), we can write (38).

Hv(s) =
Iout(s)Z(s)

Vmid(s)
(38)

For average mode control, (38) can be expressed by (39)

Hv(s) =
Iout(s)Z(s)

Vind(s)
=

Z(s)
Vin

Gid (39)

Using (35) and (38), Gid can be determined by (40)

Gid =
1

Z(s) + sL + s2LCZ(s)
Vin (40)

The bode plot of Gid is shown in Figure 9 for the proposed system. The bode plot is
based on selected parameters of Table 2 and Z(s) from Figure 8. The LC resonance peak
is not visible in bode plot due to small internal impedance. The internal parameters of a
battery changes with state of charge and aging. Therefore, the nominal value of internal
resistance can be used as an alternative to Z(s). At lower frequency, Gid has a very high
gain (≈70 dB). This means a very small duty perturbation causes a very high current
perturbation which leads to instability i.e., 1% duty perturbation at 5 Hz would cause 31 A
current perturbation whereas recommended current is only 20 A. This instability happens
because of very low magnitude of internal impedance (≈−40 dBΩ). The instability is
removed by designing a proper feedback and feedforward controller.

4.5. Feedback Compensator Design

Stability, steady state error, and response time are three important criteria for feedback
compensator design. The feedback compensator is designed based on the following steps:

Figure 9. Bode-plot of open loop and compensated loop transfer functions: (a) magnitude, (b) phase.
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4.5.1. Crossover Frequency Selection

The first step of controller design is to select crossover frequency, fc. To make a stable
controller fc must be slightly higher than the resonance frequency of LC filter, fLC. The
resonance frequency for the LC filter is defined by (41).

fLC =
1

2π
√

LC
(41)

The rule of thumb to design an efficient and stable controller is to choose crossover
frequency less than 1/10th of switching frequency fSW . The crossover frequency selection
criterion can be expressed by (42).

fLC < fc ≤ 1
10

fSW (42)

Considering the value of fLC and fSW the value of fc = 2.5 kHz is selected.

4.5.2. Gain Adjustment

The compensated loop gain at cross over frequency, |GidGc| f c, should be 0 dB which
can be expressed by (43).

|GidGc| f c = 1 (43)

where, Gc is controllers transfer function. (43) can be re-written as (44)

k = |Gc| f c =
1

|Gid| f c
(44)

where, k is the factor for gain adjustment.
The value of |Gid| f c is 18.96 dB i.e., 8.87, therefore the value of k is 0.11. This system is

reducing gain instead of boosting. Gain reduction is necessary to improve stability.

4.5.3. Phase Adjustment

Phase adjustment is done through controller selection. A proportional integral (PI)
controller is selected for that purpose. The transfer function of the PI controller is expressed
by (45).

Gc = kp +
ki
s

(45)

The value of kp and ki are selected in such a way so that |Gc| is 0 dB at fc and frequency
can be swept for all the frequency less than fc.The value of kp could be ≈k and the value of
ki can be determined by (46).

ki = kpωz (46)

where, ωz is the angular form of zero frequency fz. The value of fz should be less than
the desired control frequency, f , of injected AC current. The relationship can be expressed
by (47).

fz < f < fc (47)

The parameters used for phase and gain adjustment are in Table 3. The loop controller
transfer functions are shown in Figure 9.

Table 3. Parameters for proposed controller.

fLC fc fSW |Gid| f c |GidGc| f c fz kp ki

2.3 kHz 2.5 kHz 100 kHz 18.96 dB 0 dB 1 Hz 0.11 0.7

191



Batteries 2021, 7, 47

5. Controller Architecture

The proposed controller is designed to inject AC current for all three modes as de-
scribed in Section 2. The proposed versatile controllers architecture is shown in Figure 10.
The overall proposed closed loop control system consists of references, feedback controller,
sensing gain (H), feedforward term, estimator, PWM modulation transfer function, GPWM,
output current transfer function, Gid, and voltage transfer function, Gvi. The current
reference, I∗out, is selected based on desired mode of operation and frequency as in (48).

I∗out(t) = I∗dc + I∗msin(ω∗t) (48)

where, I∗dc is the DC level of the current based on the desired mode, I∗m is the desired
amplitude of the AC signal, and ω∗ is the desired angular frequency of the AC signals.

Vǻ

Figure 10. Structure of the proposed controller for AC current injector.

The value of reference current, I∗out, is compared with the output current Iout and the
current error, Ierr, is calculated by (49). The error is compensated by a PI feedback controller.
The feedback controller gives feedback duty, d f b, by (50).

Ierr(t) = I∗out(t)− Iout(t) (49)

d f b(t) = kp Ierr(t) + ki

∫
Ierr(t)dt (50)

The saturation blocks of the proposed controller keep the value of d f b within the range
of −1 to +1. The feedforward duty, d f f , is calculated in (51) using the estimated open
circuit voltage, V̂bat, and input voltage, Vin.

d f f (t) =
V̂bat(t)

Vin
(51)

The feedback and feedforward terms are combined by (52).

d = d f f + d f b (52)

The value of V̂bat is estimated using an estimator as shown in Figure 11. The estimator
takes Vout and Iout as input. It uses low pass filters to estimate V̂dc and Îdc. A high pass
filter is used to estimate v̂ac and îac. From the value of v̂ac and îac, the magnitude of battery
impedance |̂Z| is calculated. The saturation block is used to limit the unexpected values.
Using Îdc, |̂Z| and V̂dc, the value of V̂bat is calculated by (53).

V̂bat = V̂dc − Îdc |̂Z| (53)
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VǻVǻ Vǻv̂

Figure 11. Proposed estimator for the open circuit voltage of a battery.

6. Experimental Results

Experiments were conducted for all three modes using Synchronous buck and H-
bridge topologies for a Valence U-12XP 40 Ah 13.8 V Li-Ion battery [20].

6.1. Experimental Setup

A re-configurable test bed was set up for both synchronous buck and H-bridge topolo-
gies as shown in Figure 12. The topologies are shown in Figures 3 and 4. The switch, SH
was used to configure the options between synchronous buck and H-bridge topologies. SH
connected or disconnected the Q3Q4 leg of H-bridge. The switches S1 and S2 were to con-
nect and disconnect the input source, Vin and input resistor, Rin. The value of Vin, Cin, Rin,
L, and C were selected based on the discussion of III.A and Table 2. These MOSFETs were
controlled by 100 kHz PWM signal generated by the Simulink based Opal-RT controller.
The Opal-RT controller gets voltage and current as feedback through Op-Amp based offset
clipping and scaling interface circuits. The proposed controller was implemented with a
sample time of 20 μS using Opal-RT (OP4510).

Figure 12. The re-configurable testbed of AC current injector for synchronous buck and
H-bridge topologies.

6.2. Waveforms and Analysis

The steady state battery voltage and current for different modes of operation using
the synchronous buck converter are shown in Figure 13. The DC current of the battery
for different modes were +10 A, 0 A, and −10 A. The same operation was verified using
the H-bridge converter also. The amplitude of the AC injection current was 5 A and the
frequency was 100 Hz. The battery voltage was 13.5 V as DC average. The battery had a
very small internal impedance (maximum 15 mΩ). Therefore, small battery voltage ripple
due to AC injection was not visible by DC coupling in an oscilloscope. The battery voltage
ripple is shown in Figure 14 using AC coupling. In this case the battery was operated
in mode 1 for 100 Hz. The AC current peak was changed from 2 A to 5 A to observe
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the transient response and the effect of AC current to battery voltage. The controller was
successfully able to regulate the current.

Figure 13. Voltage and current of the battery in steady state for: (a) mode 1, (b) mode 2, and (c) mode 3.

Figure 14. Transient response: magnitude change (from 2 A AC peak to 5 A) of battery current in
mode 1 at 100 Hz.

The AC part of the battery current was changed from 0 to 2 kHz for all three modes of
operation using both synchronous buck and H-bridge converters. The battery voltage and
current for 10 Hz, 100 Hz and 1 kHz for mode 1 using the synchronous buck converter is
shown in Figure 15. The dynamic response for mode change using the proposed controller
is shown in Figure 16. In these cases, both S1 and S2 were turned on. The proposed versatile
controller was validated by successfully testing the additional conditions listed in Table 4.
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Figure 15. Voltage and current of the battery in steady state in mode 1 for: (a) 10 Hz, (b) 100 Hz, and
(c) 1000 Hz.

Figure 16. Dynamic response: mode change (for 100 Hz 5A AC peak) of battery current: (a) mode 1
to 2, (b) mode 2 to 1, (c) mode 2 to 3, (d) mode 3 to 2, (e) mode 1 to 3, and (f) mode 3 to 1.
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Table 4. The test conditions for controller validation.

Condition Sync-Buck H-Bridge

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Steady
State 0, 2, 3, & 5 A AC peak

0, 0.1, 10, 50, 100, 300, 500, 1k, 1.5k, & 2k Hz AC

Dynamic
Response

Mode change: 1-2, 2-1, 2-3, 3-2, 1-3, & 3-1.
Maximum mode transition time: 2 mS

Maximum overshoot current for mode change: 2.5 A

Magnitude change of AC current:
transient response for 0-5 A, 5-0 A, 2-5 A, & 5-2 A

Frequency change of AC current:
frequency transition for 0–50 Hz, 50–100 Hz, 100–50 Hz, & 0–2 kHz

7. Discussion

A passive component selection guideline and controller design method for AC current
injection to battery is presented in this manuscript. The novelty in this manuscript is to
operate power converters for batteries in two quadrant applying the proposed guideline
and method. The novelty is justified by comparing the AC current injection method for
batteries in the recent journals as in Table 5.

Table 5. Comparison of AC current injection method for batteries.

Reference Year Power Quadrant DC Current AC Waveform Topology Control Notes

[10] 2017 1 - 0.1–1.9 kHz DC/DC discharge, voltage
multisine boost/buck feedback control

[9] 2020 1 + 0.1 Hz–5 kHz DC/DC charge feedback

[21] 2021 1 + 20 mHz–2 kHz DC/DC, charge feedback

[22] 2021 2 ± <60 Hz AC/DC/DC charge/discharge distort if
sine grid-tied feedback f > 60 Hz

This 2021 2 ±, 0.1 Hz–2 kHz DC/DC, charge/discharge, passive
work 0 sine Sync-buck, feedback, component

H-bridge feedforward selection

8. Conclusions

A complete controller design method for AC current injection to a battery is devel-
oped in this manuscript. This method includes the passive component selection, controller
gain selection, and controller architecture. The controller was able to operate for both
synchronous buck and H-bridge converters. The proposed versatile controller successfully
controlled the AC battery current for offline and online modes (while charging/discharging)
over a range of frequencies and magnitudes as expected from the bode plot of the simula-
tion. The proposed controller and design method will be useful for internal impedance
measurement, advanced charging, and preheating applications. The advantage of the
proposed technique is that it does not require any changes in the control architecture
for different mode of operation for various topologies over a range of frequencies. The
disadvantage of the proposed controller is that it requires voltage feedback for optimized
operation. The performance of this controller with AC/DC/DC grid tied application is not
verified yet and will be investigated in the future.
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Abstract: Considering the literature for aqueous rechargeable Zn//MnO2 batteries with acidic
electrolytes using the doctor blade coating of the active material (AM), carbon black (CB), and
binder polymer (BP) for the positive electrode fabrication, different binder types with (non-)aqueous
solvents were introduced so far. Furthermore, in most of the cases, relatively high passive material
(CB+BP) shares ~30 wt% were applied. The first part of this work focuses on different selected BPs:
polyacrylonitrile (PAN), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), cellulose
acetate (CA), and nitrile butadiene rubber (NBR). They were used together with (non-)aqueous
solvents: DI-water, methyl ethyl ketone (MEK), and dimethyl sulfoxide (DMSO). By performing
mechanical, electrochemical and optical characterizations, a better overall performance of the BPs
using aqueous solvents was found in aqueous 2 M ZnSO4 + 0.1 M MnSO4 electrolyte (i.e., BP LA133:
150 mAh·g−1 and 189 mWh·g−1 @ 160 mA·g−1). The second part focuses on the mixing ratio of
the electrode components, aiming at the decrease of the commonly used passive material share of
~30 wt% for an industrial-oriented electrode fabrication, while still maintaining the electrochemical
performance. Here, the absolute CB share and the CB/BP ratio are found to be important parameters
for an application-oriented electrode fabrication (i.e., high energy/power applications).

Keywords: zinc ion batteries; stationary energy storage; polymer binder; solvent; doctor blade
coating; manganese dioxide; mixing ratio; electrochemical impedance spectroscopy; SEM+EDX;
electrode fabrication

1. Introduction

The research on aqueous battery technologies for stationary applications such as
the aqueous rechargeable zinc-ion battery (ARZIB) is getting more and more attention.
The ARZIB technology combines inherent safety, environmental friendliness, material
abundance, low active material costs, and promising cycling stabilities. This publication
focuses on the Zn//MnO2 chemistry with zinc on the negative electrode side and man-
ganese dioxide on the positive electrode side, together with an acidic ZnSO4 + MnSO4-
based electrolyte.

Recent publications show different ways of fabrication procedures for the positive
electrode with doctor blade coating on a current collector foil, electrodeposition of the active
material or pasting of the electrode material (summary in Supplementary Figure S1) [1–24].
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As the literature shows, the doctor blade coating is the most prominent fabrication proce-
dure. For this, an electrode slurry with active material (MnO2, AM), a conductive agent
such as carbon black (CB), and a binder polymer (BP) in different fractions, most com-
monly 70/20/10 wt% (AM/CB/BP), is coated on the current collector sheet using a doctor
blade [4,5,8–10,13,14,25–28].

Different polymer binders such as LA133 (based on polyacrylonitrile (PAN)), car-
boxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polytetrafluoroethylene
(PTFE), and polyvinylidene fluoride (PVDF) based on different solvents such as DI-water
or non-aqueous N-methyl-2-pyrrolidone (NMP) were used in the literature so far ( sum-
mary in Supplementary Figure S1) [3,23]. Generally, an aqueous slurry processing enables
inexpensive, safe, and environmentally friendly fabrication of the positive electrode. Still,
a better understanding of the relation between the binder solvent (aqueous/non-aqueous)
and the aqueous electrolyte, together with the reaction mechanism of ARZIBs, can enable a
targeted electrode fabrication and an improved cell performance.

For a reasonable and application-oriented electrode fabrication, the consideration
of the underlying reaction mechanism of the ARZIB cell chemistry is of high impor-
tance: So far, the reaction mechanism for the positive electrode seems to be a combina-
tion of multi-step chemical reactions such as a Zn2+ intercalation [12,26–36], a H+/Zn2+-
Co-intercalation [17,20,37–39], a dissolution of the MnO2 active material loading and
their re-deposition on the positive electrode surface together with the deposition of pre-
dissolved Mn2+ ions from the electrolyte (as far as MnSO4 is pre-dissolved in the elec-
trolyte) [19,33,37,40,41]. The reactions are often accompanied by a pH-dependent zinc
hydroxide sulfate (ZHS) formation [14,19,28,33,37,39–44]. Furthermore, the formation
of inert ZnxMnyOz-species (i.e., ZnMn2O4) on the positive electrode were introduced in
the recent literature [11,39,40]. For the negative electrode, there is a reversible Zn plat-
ing/stripping at the zinc electrode [9,14,20,42,45,46] as a consequence of the acidic pH
value in accordance to the potential-pH diagrams for zinc [36,47]. This is in contrast to the
alkaline Zn//MnO2 batteries with the formation of irreversible Zn phases [36,48,49].

In consideration of the different characteristics (intercalation and conversion reac-
tions) of the reaction mechanism, there are various requirements for the positive electrode.
For example:

• Stability of the binder polymer in aqueous electrolyte (no peeling of the coating from
the current collector due to dissolution or strong swelling of the binder polymer).

• Porosity of the coating for high specific surface area to provide a high (electrochemi-
cally active) surface area.

• Wetting of the coating by the aqueous electrolyte to enable deposition and intercalation
processes of the dissolved components of the electrolyte.

• Advantageous transport characteristics of the porous electrode for the ions and electrons.

Herein, selected BPs (polyacrylonitrile (PAN), carboxymethyl cellulose (CMC), styrene
butadiene rubber (SBR), cellulose acetate (CA), nitrile butadiene rubber (NBR)) with aque-
ous and non-aqueous solvents (DI-water, methyl ethyl ketone (MEK), and dimethyl sulfox-
ide (DMSO), for details see Section 4.1. Materials) are compared by applying a mechanical
stress test (MST) on the positive electrode sheet and rate capability tests (RCT), together
with electrochemical impedance spectroscopy (EIS) measurements, on experimental battery
cells. The experimental results are compared with SEM+EDX images of cross-sections of
pristine and cycled electrode sheets, giving further insights into the homogeneity, material
distribution and morphology of the coatings. Furthermore, the mixing ratio of the elec-
trode components is systematically investigated by using a ternary plot visualization to
evaluate the influence of the different shares of the positive electrode ingredients on the
mechanical stability of the coating and the cycling performance. Finally, recommendations
for the selection of the binder polymer and the mixing ratios for the utilization in ARZIBs
are made.
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This study, besides well-known binder polymers such as CMC, SBR and LA133, also
considers new BP/solvent combinations such as PAN+DMSO, NBR+MEK and CA+MEK
for the utilization in ARZIBs.

As there are only few publications dealing with a comparison of different binder
polymers for ARZIBs in literature (to our knowledge, only [4]), this publication is intended
to provide a basis for comparing different BP/solvent combinations as well as different
mixing ratios for the positive electrode fabrication. Hereby, the focus is set on NMP-free
solvents, as NMP-free processing enables lower safety precautions (note: reproductive
toxicity of NMP) and a clean-room-free processing, lowering the production costs and
being a decisive advantage over the lithium-ion battery technology.

2. Results and Discussion

2.1. Binder Polymer Variation

For the binder polymer (BP) variation, different BPs based on aqueous solutions
or dispersions, as well as non-aqueous solutions, were investigated. Since an aqueous
electrolyte is used in the cell, the mechanical stability and structural integrity, especially of
those electrodes produced with an aqueous binder preparation, were of interest.

In the following, the BPs based on aqueous solvent preparations are summarized
as aqueous electrodes, whereas the BPs based on non-aqueous solvent preparations are
summarized as non-aqueous electrodes.

2.1.1. Mechanical Stress Test (MST)

For the evaluation of the stability and structural integrity of the electrode coating with
different BPs, the electrode coins were first mechanically tested by applying a mechanical
stress test (MST).

Interestingly, after the MST, the aqueous electrode coatings are washed off and dis-
solved in DI-water (see Table 1a–d) leading to a turbidity of the solution (see Figure 1a).
For the electrolyte solution, the MST shows no dissolution of the coating. Only the PVP
binder flakes off the current collector in the electrolyte solution, but still does not dissolve.
In contrast, the non-aqueous electrode coatings are stable in both DI-water and electrolyte
solutions (see Table 1e–g and Figure 1b). The results of the MST follow the observations
seen in Chang et al. (2020) for the non-aqueous binder (here: PVDF+NMP) and the aqueous
CMC binder [4].

  
(a) (b) 

Figure 1. Example side views of the beakers after the MST with an aqueous (here: PAN-based
LA133, (a) and non-aqueous (here: CA (MEK), (b) electrode coating in DI-water, respectively. For
the aqueous coatings, the MST leads to a dissolution of the coatings and a turbidity of the solutions
(the stirring bar is still inside the beaker but not visible anymore), whereas the non-aqueous coatings
show no damages.
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Table 1. Mechanical stress test of the electrode coatings with different binder polymers in DI-water
and electrolyte (2 M ZnSO4 + 0.1 M MnSO4), respectively.

Binder (aq) DI-Water Electrolyte
Binder

(non-aq)
DI-Water Electrolyte

(a) PAN (e) PAN
(DMSO)

(b)
CMC/SBR

 

(f) NBR
(MEK)

(c) CMC

 

(g) CA
(MEK)

(d) PVP

 

For the aqueous binders, the different behaviour in DI-water and electrolyte solution
could be referred to the reduced solvation free energy of the water molecules in consequence
of the ZnSO4 and MnSO4 addition in the electrolyte ([50] and Supplementary Figure S12),
retarding and reducing the BP dissolution: Instead of a dissolution, the BP could only swell
while still maintaining the structural integrity of the coating.

For the non-aqueous binders, as was expected, both the DI-water and the aqueous
electrolyte solution are not affecting the structural integrity of the coating during the MST.
Furthermore, in consequence of the non-aqueous processing of the coating, no swelling of
the coating should occur here, in contrast to the previous aqueous binder coatings.

Based on the observations of the MST, a different behaviour during the cycling of the
aqueous and non-aqueous electrodes in the aqueous ZnSO4/MnSO4 electrolyte is expected
and shown in the following section.

2.1.2. Rate Capability Test (RCT)

For the evaluation of the electrochemical performance of the electrode coatings with
different BPs and solvents (see Table 2), a rate capability test (RCT) was performed under
various current rates. The current rates are given in mA·g−1 based on the active material
mass loading. The RCT results are shown by plotting both the specific discharge (DCH)
capacity as well as the specific discharge energy, together with the efficiency values, over
the cycle number, which allows a more in-depth analysis of the effects of the different
binder types.

The results of the RCT with specific capacities (see Figure 2a) shows significantly
higher capacity values for all the aqueous binders compared to the non-aqueous binders.
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Table 2. Overview of the slurry preparations with aqueous- and non-aqueous-based binder polymer
(BP), active material (AM), and carbon black (CB).

#
Ratio

AM/CB/BP
Binder #1 Binder #2 Solvent Comment

1 70/20/10 PAN (LA133) DI-water aqueous suspension
2 70/20/10 CMC DI-water aqueous solution

3 70/20/10 50 wt% CMC 50 wt% SBR DI-water aqueous
solution/suspension

4 70/20/10 PAN DMSO solution
5 70/20/10 NBR MEK solution
6 70/20/10 CA MEK solution
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Figure 2. Results of the RCT plotting the specific discharge (DCH) capacity (a) and energy (b) under
variation of the current rate over the cycle number for the non-aqueous electrode coatings.

The aqueous PAN-based electrode shows the highest specific capacity for all current
rates with ~150 mAh·g−1 at 40 mA·g−1 and ~90 mAh·g−1 at 640 mA·g−1. Both the
CMC+SBR and the CMC binders show lower capacity values, with the lowest values for
the pure CMC binder. The better performance of the CMC binder with SBR addition could
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be related to the better adhesion of the coating on the current collector, as well as a better
flexibility of the coating through the addition of the SBR elastomer [51]. The PVP binder,
which showed a flaking off the current collector in the MST, was not able to finish the
RCT, which can be related to the low stability of the electrode coating (see RCT results in
Supplementary Figure S6). Therefore, the PVP binder will not be discussed further in the
following sections.

The non-aqueous binders show low-capacity values <20 mAh·g−1 in the first cycles,
but interestingly it is with an increasing trend, even if the current rate increases. This is
especially prevalent during the last cycles with 80 mA·g−1, as the increasing discharge
capacity trend becomes clearly visible. This behaviour can be related to the surface deposi-
tion/dissolution of MnO2 as the predominant reaction mechanism for the non-aqueous
electrode, whereby a growing MnO2 surface layer could be formed on the positive elec-
trode [19,33,37,40,41]. The lower overall discharge capacity of the non-aqueous binders
compared to the aqueous binders could be related to the observations of the MST results
of the previous section, where a swelling and wetting of the electrodes in the electrolyte
was suggested for the aqueous but not (or to a lesser extent) for the non-aqueous electrode
coatings. In consequence, the MnO2 active material loading of the electrode coating could
only become available for the aqueous binders by dissolution/deposition processes during
charging/discharging, leading to additional capacity. This suggestion is confirmed by
the latest literature for ARZIBs [19,33,37,40,41]. For the non-aqueous binders, the active
material loading could mainly be isolated by the binder.

The coulombic efficiencies (CE, see Figure 2a) for all the binder types are located
above or at ~100%, which again can be related to the MnO2 deposition/dissolution process.
The dissolution of the MnO2 active material loading as well as the additionally deposited
MnO2 could lead to an additional discharge capacity, which results in CE values >100%.
The CE values for the non-aqueous binders are generally located above the values for the
aqueous binders, indicating a more dominant MnO2 deposition/dissolution mechanism.
This could be related to the inactivity of the isolated MnO2 loading within the positive
electrode coating, as no swelling of the binder is suggested (see MST section), which could
enable a material deposition/dissolution only on the surface of the electrode with better
efficiency values.

The RCT results showing the specific energy (see Figure 2b) additionally reveal the
effects of overpotentials during charge/discharge by also considering the potential value
(besides the capacity value, see the equation in Supplementary Figure S5) of the particu-
lar cycle. As the energy output of a battery system is of even higher importance for the
application than only the capacity output, this way of plotting can be regarded as being
a more application-oriented plot. For the specific energy plots, the comparison of the
aqueous/non-aqueous binder types show the same characteristics as the specific capacity
plots. Nevertheless, distinctions in terms of the energy efficiency (EE) values are noticeable:
the EE values decrease for increasing current rates. This indicates an increasing inner resis-
tance and overpotential of the cell [52]. For the non-aqueous binders, the energy efficiency
values are generally located above the values of the aqueous binders, as seen before in the
capacity plot, again indicating a more dominant MnO2 deposition/dissolution mechanism.

In Figure 3, the potential curves for the 10th and 30th cycle, respectively, each with the
current rate of 80 mA·g−1, are shown for the non-aqueous binders. Generally, the shape
of the discharge curves of all binder/solvent combinations show two potential plateaus
divided by a potential bend (see exemplarily Figure 3, marker 1). The charge curve
again shows two potential plateaus (see Supplementary Figure S11 for more details). The
potential curves of the non-aqueous binders (see Figure 3b) each have a significant increase
in the specific capacities compared to the aqueous binders (see Figure 3a). Nevertheless,
the potential curves characteristics stay the same, as the characteristic potential bend for
ARZIBs (with MnO2 active material) indicates (see Figure 3, marker 1). The potential
curves also show that the capacity increase from the 10th to the 30th cycle is the highest for
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both of the PAN-based electrodes (aqueous and non-aqueous), which could explain the
good overall performance of the aqueous PAN-based electrode in the RCT (see Figure 2a).
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Figure 3. Overview over the potential curves of the aqueous (a) and non-aqueous (b) binder polymers
for the 10th and 30th cycle, each with the current rate of 80 mA·g−1.

By performing SEM+EDX characterizations (see Figure 4), the cross-sections of elec-
trode coatings of PAN (aq) and PAN (DMSO), prepared by ion-polishing, were compared
in a pristine state and in discharged state after the RCT procedure (post-mortem state). This
way, the influence of an aqueous and non-aqueous BP could be investigated in more detail.

For both the pristine PAN (aq) and (DMSO) electrodes, the MnO2 particles (coloured
green) and the CB content (coloured orange) show comparable morphology characteristics
such as the homogeneity, the porosity, and the material distribution (see Supplementary
Figure S7 for EDX images of the single elements, respectively).

Interestingly, after the RCT procedure (post-mortem) in the discharged state, both
electrodes show a surface layer deposition, which is thicker for the PAN (aq) electrode and
could be attributed to a MnO2 deposition (see Figure 4d,h, marker 1), as described in the pre-
vious literature [19,33,37,40,41]. Furthermore, both electrodes in a post-mortem state (dis-
charged state) show a new flake structure inside the electrode coating (see Figure 4c,d,g,h,
circle), which is not visible in the pristine state (see Figure 4a,b,e,f). This could be attributed
to ZHS precipitations filling the pores of the electrode coating, as described in the previous
literature [14,19,33,37,40–44]. However, this precipitation seems to be less distinctive for the
PAN (DMSO) coating. This could be explained by the previously mentioned assumption
of less wetting of the electrode coating by the electrolyte and thus a smaller active inner
surface, as the CB-containing, electrically conductive coating could mainly act as an elec-
trochemically active surface. Hence, this could result in a lower capacity by the dissolution
of the (mostly unavailable) MnO2 active material loading during discharge, compared to
the PAN (aq) coating. The flake structure (see Figure 4c, marker 2) on the surface of the
electrode can be referred to the separator with electrolyte salt residues, which was stuck on
the electrode coating surface (possibly due to the aforementioned MnO2 deposition).
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(a) 
PAN (aq) pristine 

(b) 
PAN (aq) pristine 

  
(c) 

PAN (aq) post-mortem 
(d) 

PAN (aq) post-mortem 

  
(e) 

PAN (DMSO) pristine 
(f) 

PAN (DMSO) pristine 

  
(g) 

PAN (DMSO) post-mortem 
(h) 

PAN (DMSO) post-mortem 

  

1 

1 

2 

Figure 4. SEM and EDX images of the PAN (aq) electrode in a pristine (a,b) and post-mortem
(c,d, discharged state) state, and the PAN (DMSO) electrode in a pristine (e,f) and post-mortem
(g,h, discharged state) state. The MnO2 particles are coloured green, and the carbon black is coloured
orange, respectively. For the post-mortem state, the PAN (aq) and PAN (DMSO) both show a MnO2

surface deposition, but with a thinner layer thickness for the PAN (DMSO) electrode.
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Altogether, the comparison of the SEM+EDX images in a pristine and post-mortem
(discharged) state could confirm the existence of a MnO2 deposition during the charge
steps, which takes place both in the pores of the electrode coating (if available, depending
on the binder/solvent combination, as previously discussed) as well as on the surface of
the electrode. In the following discharge steps, the previous MnO2 deposition dissolves
again, releasing capacity, which should be higher for those electrodes whose MnO2 active
material loading is available for the deposition/dissolution mechanism (here: PAN (aq)
electrode coating, see RCT results). Due to efficiency reasons of the dissolution, MnO2
deposition residues seem to stay, leading to an accumulating MnO2 (surface) deposition
layer (here: thicker surface layer for PAN (aq) than for PAN (DMSO) coating).

For a better understanding of the MnO2 deposition/dissolution mechanism, further
SEM+EDX characterizations of cross-sections of the positive electrode coatings in different
states of charge should be carried out to further prove the latter assumptions of this study.

To underline the findings of the RCT tests for the aqueous and non-aqueous electrodes,
the electrical impedance spectroscopy (EIS) measurements of the positive electrode (vs.
Zn/Zn2+ reference) were analysed for the PAN (aq) and PAN (DMSO) binder in a charged
(CH) and discharged (DCH) state to compare the effects of the different solvent categories
as an example (for all the EIS results, see Supplementary Figure S8). The choice of these two
binder combinations allowed for a direct comparison of the influence of the non-aqueous
solvent (DI-water vs. DMSO) without the influence of the binder polymer (here, the LA133
binder is considered as a PAN-based binder since the specification of PAN in the safety
data sheet is >95 wt% of solid content). In Figure 5, the EIS results of the positive electrode
are shown.
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Figure 5. Results of the EIS measurements of the positive electrode for charged (CH, 1.7 V vs. Zn/Zn2+) and discharged
(DCH, 0.8 V vs. Zn/Zn2+) state following both the 80 mA·g−1-RCT-steps after 10 and 30 cycles, respectively.
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For the different PAN binder solvents and state of charges, the following qualitative
interpretations of the Nyquist plot can be made:

• In charged state after 10 cycles (see Figure 5a), there is a lower impedance for the
PAN (aq) than for the PAN (DMSO) electrode: The double layer (DL) capacity and
the charge transfer (CT) resistance of the PAN (aq) binder are both clearly visible as a
semi-circle, whereas the DL capacity and CT resistance of the electrode PAN (DMSO)
binder is stretched, which indicates a higher CT resistance and could refer to the
inactive and isolated MnO2 active material particles in the electrode coating.

• In charged state after 30 cycles (see Figure 5c), the impedance spectra show quite
comparable semi-circles, again representing the DL capacity and the CT resistance.
This could be explained by the growing deposition layer of MnO2 on the positive
electrode surface of the PAN (DMSO) coating. This assumption is supported by the
capacity increase of the PAN (DMSO) electrode in Figure 2a.

• In discharged state after 10 and 30 cycles (see Figure 5b,d), the overall impedances
increase by about two orders of magnitude for both PAN (aq) and PAN (DMSO).
This can be explained by the precipitation of ZHS as a consequence of the MnO2
dissolution, as discussed in [19]. The precipitation results in a new DL capacity
with a higher CT resistance, which is shown by the large low frequency half circle.
Still, the impedance spectra for the lower impedance values are visible (see insets in
Figure 5b,d), which were previously discussed for the charged state representing the
MnO2 active material layer. Relating to the PAN (DMSO) binder, the capacitive part
of the impedance spectra is still below the PAN (aq) spectra, which can be explained
by the thinner MnO2 deposition layer and less ZHS precipitation (less wetting of the
coating), resulting in lower specific capacity values (see Figure 2a).

Altogether, the comparison of the aqueous/non-aqueous electrodes generally shows
higher discharge capacities/energies for the aqueous binders, which is related to the
availability of the MnO2 active material loading. The MnO2 active material loading is not
available in the non-aqueous electrodes, as the electrolyte should not lead to an electrode
coating swelling as suggested, in contrast, for the aqueous electrodes. Nevertheless, the
non-aqueous electrodes show increasing discharge capacities/energies with proceeding
cycles, underlining the major role of MnO2 deposition/dissolution processes (also on
the surface of the electrode) for the ZIB with ZnSO4/MnSO4-based electrolytes being
introduced in the recent literature.

As the aqueous PAN-based LA133 binder shows the best cycling results, this binder
was chosen for the mixing ratio variation shown in the following section.

2.2. Mixing Ratio Variation

Beside the variation of the BP itself (with fixed mixing ratios of AM/CB/BP 70/20/
10 wt%), the influence of different mixing ratios was systematically investigated. The goal
of the variation was to improve the energy density of the positive electrode. Therefore,
this variation aimed at finding an advantageous mixing ratio with maximized active
material share while still maintaining the electrochemical performance (i.e., the electrical
conductivity driven by the CB content). The investigated mixing rations are graphically
summarized using a ternary plot visualization in Figure 6.

The following criteria were considered for the positive electrode coatings:

• An active material proportion as high as possible to reduce the share of the passive
materials (carbon black, binder polymer) in the electrode coating.

• A binder polymer proportion as low as possible to reduce the share of a passive and
electrically non-conducting coating component.

• A carbon black proportion as low as possible, while still enabling a sufficient electrical
conductivity of the coating.

• Good cycling performance in the RCT considering different application fields such
as high-power (current rates >1 C, here: >160 mA·g−1 based on an experimen-
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tally determined capacity of ~160 mAh·g−1 of MnO2) and high-energy (<1C, here:
<160 mA·g−1) applications.

Table 3. Overview over the mixing ratios being tested using LA133 as the BP.

# Name
Active Material

(AM)/wt%
Carbon Black

(CB)/wt%
Binder Polymer

(BP)/wt%
CB/BP Ratio

1 70/20/10 70 20 10 2
2 75/20/05 75 20 5 4
3 75/15/10 75 15 10 1.5
4 80/15/05 80 15 5 3
5 80/10/10 80 10 10 1
6 82/15/03 82 15 3 5
7 85/10/05 85 10 5 2

Figure 6. Graphical scheme with the mixing ratios being tested using the ternary plot visualization.
The black squares represent the seven different mixing ratios of Table 3.

In Figure 7, the results of the RCT are shown by plotting the specific capacities
and energies for different current rates over the cycle number. Here, the specific values
were calculated by dividing the absolute capacity values by the total mass loading of the
electrode (AM, CB, and BP, instead of only considering the AM mass loading as for the
binder polymer variation in Section 2.1). This calculation method was chosen to be able
to identify the influences of the different mixing ratios of the electrode coatings on the
resulting capacity and energy values, respectively.

The results of the RCT with the specific discharge capacities (see Figure 7a) show
that a low polymer binder percentage of 3 wt% is possible in the electrode coating, still
enabling a cycling with a discharge capacity of ~140 mAh·g−1 @ 40 mA·g−1. Nevertheless,
the CB share, especially, and its ratio to the BP share has a high influence on the current
rate stability:

• Lowering the CB share allows reducing the BP share.
• Reducing the CB share without reducing the BP share results in poor cycling behaviour

due to insufficient conductivity within the electrode.
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Therefore, a higher ratio of CB to BP improves the performance, as for the 75/20/05
mixture with a CB/BP ratio of 4 (20 wt% divided by 5 wt%) the performance for all current
rates is significantly better compared to the 80/10/10 mixture with a CB/BP ratio of 1
(10 wt% divided by 10 wt%). For the other mixtures with ratio values between 1.5 to 3, the
performances are located between the above-mentioned mixtures. The interpretation of
the results by analysing the CB/BP ratio can be explained as the lower the CB/BP ratio,
the lower the electrical conductivity of the electrode coating—resulting in a higher share of
electrically isolating BP.
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Figure 7. Specific discharge (DCH) capacity (a) and energy (b) with the efficiency values, respectively,
for the investigated mixing ratios (the mixing ratios are given in the order AM/CB/BP and in wt%).
The markers 1 and 2 show the efficiency values of the first cycle and after a change of the current rate,
respectively, whereas they do not represent a typical efficiency value for the chosen current rate (see
Supplementary Figure S9).
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This observation leads to the differentiation of the interpretation of different CB shares
depending on the application, i.e., high-power (HP) and high-energy (HE) applications.

• For HP applications, a CB share of >15 wt% is necessary to still enable a good RCT
capacity also at higher current rates >320 mA·g−1. The CB/BP ratio should be >2 (see
70/20/10 or 75/20/05).

• For HE applications, an AM loading as high as possible is important for lower the
specific costs of the battery, and therefore lower CB loadings are preferable. Consider-
ing this, a CB loading of 10 wt% and a CB/BP-ratio of ~2 (s. 85/10/05) still enables a
good cycle performance at lower current rates <160 mA·g−1.

The RCT showing the specific discharge energies (see Figure 7b) also considers the
potential, in addition to the capacity value, which provides a better insight into the inner
resistance of the battery cell during cycling (see the previous section and Supplementary
Figure S11). Although basically showing the same characteristics of the results of the
different mixing ratios as the capacity representation (regarding the order of the different
electrode material compositions, see marker 1), slight differences of the capacity vs. energy
level order of the different mixture ratios can be observed, especially for the last RCT step
with 80 mA·g−1, herein for the PAN (aq) binder as an example. The differences of the order
of capacity/energy plots can refer to the different potential plateau levels during cycling,
which is only considered by the energy representation (see the equation in Supplementary
Figure S5).

Basically, this type of energy representation is introduced as a useful and more
application-oriented alternative to the established capacity representation. This applies, in
particular, to the aqueous battery chemistries such as the ARZIB technology with significant
distinctions in the potential plateaus as a consequence of various cell constructions, as the
literature shows.

Finally, it must be noted that the results were generated with the aqueous PAN-based
LA133 binder. For other binder polymers, the results could differ. Still, the characteristics
of the variation of the mixing ratio of the electrode components should stay comparable.

3. Conclusions

3.1. Binder Variation

Mechanical stress tests of the positive electrode coatings revealed the maintenance of
the structural integrity of the coatings based on aqueous binders in the electrolyte solution
but not in DI-water, in comparison to the non-aqueous binders showing a stability in both
DI-water and electrolyte. This could refer to the lower solvation free energy of the water
molecules in the electrolyte in consequence of the ZnSO4 and MnSO4 addition, stabilizing
the aqueous binders.

Rate capability tests (RCT) showed a lower capacity/energy of the positive electrodes
for the binder polymers with non-aqueous solvents compared to those with aqueous
solvents, with the best results achieved for the aqueous binder PAN. This could be ex-
plained by the availability of the MnO2 active material loading of the coating: The aqueous
binders allow a swelling of the coating by the electrolyte in contrast to the non-aqueous
binders. The coating swelling makes the active material loading available for MnO2 de-
position/dissolution mechanisms in relation to the suggested reaction mechanism of the
ARZIB, resulting in higher capacity/energy values. Still, the non-aqueous binders show an
increasing capacity/energy with the proceeding cycle number. This could be explained
by a MnO2 deposition/dissolution mechanism on the electrode surface being confirmed
by SEM+EDX characterizations of electrode cross sections. EIS measurements show that
the characteristics of the spectra of the non-aqueous binder (here: PAN (DMSO)) in the
charged state also changes by increasing the cycle number, which might indicate a growing
MnO2 deposition layer for proceeding cycling.
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3.2. Mixing Ratio Variation

Considering the results, the optimized mixing ratios must be chosen following the
favoured application of the battery. Here, the absolute carbon black (CB) share of the coating
and the ratio of the CB and the binder polymer (CB/BP-ratio) shares were investigated as
important parameters for the electrode coatings of ARZIBs. For a CB share ≤15 wt% and
CB/BP-ratios ≤2, the cycling performance decreases, whereas for a CB share >15 wt% and
CB/BP-ratios >2 and up to 5, the cycling performance increases, respectively, also for high
current rates. Therefore, higher CB shares qualify the positive electrode for usage in high-
power applications, while reduced CB shares (but high active material shares) are suitable
for high-energy applications. Furthermore, in terms of an industrial production approach,
the proportion of the passive materials (CB+BP) was successfully reduced to 15 wt% in
total, and the BP proportion to 3 wt%, still enabling the cycling of these battery cells.

This study sheds light on the influence of the binder polymer/solvent combination on
the cell performance of ARZIBs through comparing (non-)aqueous solvents, as well as on
the influence of the mixing ratio by minimizing the passive material share of the positive
electrode. The results of this study can be used for application-oriented cell fabrication
of ARZIBs.

4. Materials and Methods

4.1. Materials

For the positive electrode preparation, manganese dioxide (AM, Manganese(IV) oxide,
99.9% (metals basis), 325 mesh powder, Alfa Aesar, Heysham, United Kingdom), Carbon
black (CB, Carbon black, acetylene, 100% compressed, 99.9+%, Alfa Aesar, Heysham,
United Kingdom), binder polymer (BP) and solvent were mixed in different combinations
in a speed mixer (DAC 150.1 FVZ-K, Hauschild and Co.KG, Hamm, Germany) at 3000 rpm
for 2 min. Subsequently, the positive electrode aqueous slurry was homogenized in a three-
roll mill (EXAKT 80E, EXAKT Advanced Technologies GmbH, Norderstedt, Germany)
with a final roll gap of 10 μm to control and unify the particle sizes. Due to the evaporation
and security characteristics of the solvents, the non-aqueous slurries were homogenized
for 30 min at least at 2000 rpm in a laboratory dissolver (DISPERMAT CN10, VMA-
GETZMANN GmbH, Reichshof, Germany) instead of being processed in the three-roll mill.
The slurry was coated with a doctor blade and 200 μm wet layer thickness on a stainless-
steel foil (1.4301/AISI 304, thickness 25 μm, TBJ Industrieteile GmbH, Leipzig, Germany).
The AM mass loading was ~2.5–4.6 mg/cm−2 and the electrode coating thickness ~40 μm
(see Supplementary Figure S10). Afterwards, the coating was dried for 24 h at 40 ◦C.
Then, 16 mm coins were used as positive electrodes. As the negative electrode, a 25 μm
thick zinc foil with the diameter of 16 mm was used (zinc foil 99.95%, Goodfellow GmbH,
Hamburg, Germany). The separator (18 mm diameter) was made of glass fibre filter
(Whatman® GF/A, Cytiva Europe GmbH, Freiburg, Germany). For the electrolyte, zinc
sulfate heptahydrate (AnalaR NORMAPUR® Reag. Ph.Eur., ACS for analysis, VWR
International GmbH, Darmstadt, Germany) and manganese sulfate tetrahydrate (99%,
metal basis, Alfa Aesar, Heysham, United Kingdom) were used. A zinc wire (99.9% pure
zinc wire, Goodfellow GmbH, Hamburg, Germany) was used as the reference electrode.

For the BP study, the following binders have been investigated:

• LA133 (polyacrylonitrile (PAN)-based aqueous binder dispersion, GELON LIB Group,
Linyi, China)

• SBR (styrene-butadiene rubber, SSBR 100, aqueous suspension, Targray, Kirkland,
QC, Canada)

• CMC (carboxymethyl cellulose, average MW ~250,000, degree of substitution 0.9,
sodium salt, powder, Sigma-Aldrich, Merck KgaA, Darmstadt, Germany)

• PVP (polyvinylpyrrolidone, MW 1,300,000, powder, Alfa Aesar, Heysham,
United Kingdom)

• CA (cellulose acetate, MW ~100,000, powder, Acros Organics, Thermo Fisher Scientific,
New Brunswick, NJ, USA)
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• NBR (nitrile butadiene rubber, acrylonitrile 37–39 wt%, chunk, Sigma-Aldrich, Merck
KgaA, Darmstadt, Germany)

• PAN (polyacrylonitrile, copolymer 99.5% AN/0.5% MA, MW 230,000, powder, Good-
fellow GmbH, Hamburg, Germany)

For the slurry preparation, aqueous and non-aqueous binder solutions/suspensions
were prepared: For the aqueous slurry preparation, DI-water and for the non-aqueous
slurry preparation, methyl ethyl ketone (MEK, for NBR and CA) or dimethyl sulfoxide
(DMSO, for PAN) were used. The binder preparations are listed in Table 2.

In order to evaluate the material shares of active material, conductive agent and binder
polymer, different mixing ratios were tested. For this purpose, the PAN-based aqueous
LA133 was used exemplarily as the binder. The share combinations listed in Table 3 have
been tested.

4.2. Cell Assembly

Cells were assembled using EL-Cell® ECC-Aqu experimental cells. A glass fibre
separator with a diameter 18 mm was used. Two hundred μL of an aqueous electrolyte
containing 2 M ZnSO4 and 0.1 M MnSO4 was used (pH~4). The zinc wire was used as
the reference electrode in the EL-Cell® ECC-Aqu. As the current collector on the positive
electrode, an 18 mm stainless steel coin was used. As the current collector on the negative
electrode, an 18 mm copper coin was used. The cell setup is shown in Supplementary
Figure S2.

4.3. Characterization Methods

The cell cycling was performed by making a rate capability test (RCT) with 5 cycles,
each at 40, 80, 160, 320, 640, and 80 mA·g−1 (related to active material loading of the
manganese dioxide electrode) from 0.8 to 1.7 V with a VMP3 potentiostat from Biologic
Science Instruments, Seyssinet-Pariset, France. The charging process included a constant
current (CC) step followed by a constant voltage (CV) step until 10% of the current in the
CC-step was reached. The discharge process was performed at CC. EIS measurements
were performed between 10 kHz and 20 mHz at 1.7, 1.25 and 0.8 V cell voltage after the
five 80 mA·g−1 charge/discharge cycles, respectively. The test plan procedure is shown in
detail in Supplementary Figure S3.

For the mechanical stress test (MST), the electrode coins were put into a transparent PP
beaker (20 mL, ø31 × 48 mm) filled with the same amount (~10 mL) of either DI-water or
electrolyte solution together with a magnetic stirring bar on top of the electrode sheet. The
stirring bar (PTFE, cylindrical, length 20 mm) was operated for 60 s at 200 rpm, respectively.
The experimental setup is visualized in Supplementary Figure S4.

For analysing the distribution of the different components in the positive electrode,
SEM-EDX images were realized with selected positive electrodes. The positive electrodes
were dipped into deionized water and dried overnight before being ion polished. The
cutting edges were prepared by ion milling (IM4000 Ion Milling System, Hitachi High-Tech
Europe GmbH, Mannheim, Germany) and characterized by SEM (Zeiss Auriga 60, Carl
Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany) and EDX (Bruker Quantax
XFlash 6160, Bruker Corporation, Billerica, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/batteries7020040/s1, Figure S1: Overview of the experimental cell setup inside the EL-Cell®

ECC aqu, Figure S2: Graphical overview of the test plan procedure for the rate capability test of
the herein tested cells, Figure S3: Experimental setup of the mechanical stress test with a magnetic
stirring bar in a PP beaker (20 mL, ø31 × 48 mm) filled with ~ 10 mL of liquid, Figure S4: RCT results
including the PVP (aq) binder polymer, which is not finishing the RCT due to stability issues of the
electrode coating (s. MST), Figure S5: Potential curves including the PVP binder, which was not able
to finish the RCT, Figure S6: Comparison of the PAN (aq) and the PAN (DMSO) coating in pristine
state. MnO2 particles are coloured green, carbon black is coloured orange, Figure S7: Comparison
of the PAN (aq) and the PAN (DMSO) coating in post mortem state. MnO2 particles are coloured
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green, carbon black is coloured orange, Figure S8: Overview of the EIS spectra for all investigated
binder polymers in charged (CH) and discharged (DCH) state after 10 and 30 cycles, respectively,
Figure S9: Diagrams of the RCT showing the specific capacity and energy, respectively, together with
the efficiency values, Figure S10: SEM+EDX images of the coating with aqueous LA133 (PAN-based)
binder with the mixing ration 70/20/10 (AM/CB/BP, wt%) in pristine state. The electrode thickness
is ~40 μm, Figure S11: SEM+EDX images of the coating with aqueous LA133 (PAN-based) binder
with the mixing ration of 80/15/05 (AM/CB/BP, wt%) in pristine state. The electrode thickness
is ~40 μm. (green coloured = MnO2 particles, orange coloured = carbon black (CB)), Figure S12:
Comparison of the 70/20/10 and 80/15/05 binders in pristine state. For the 80/15/05 coating,
smaller distances of the MnO2 active material particles (coloured green) and a more compact visual
impression of the coating could be assumed, which could be referred to the lower CB content and the
lower overall passive material (CB+BP) share (20 wt% instead of 30 wt% for the 70/20/10 coating),
Figure S13: Overview over the charge/discharge curves of the 10th cycle (80 mA·g−1) of the RCT
shown in Figure S4 for the binder variation (a) and mixing variation (b) with insets showing the IR
drops directly after the switchover from charge to discharge (marker 1) and the first potential plateau
during discharge (marker 2), Table S1: Brief literature research on binder materials, solvents, mixing
ratios and current collectors. This literature search was carried out as an example and does not claim
to be complete, Table S2: Detailed Overview of the test plan procedure for the RCT.
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Abstract: The safety requirements in vehicles continuously increase due to more automated functions
using electronic components. Besides the reliability of the components themselves, a reliable power
supply is crucial for a safe overall system. Different architectures for a safe power supply consider
the lead battery as a backup solution for safety-critical applications. Various ageing mechanisms
influence the performance of the battery and have an impact on its reliability. In order to qualify
the battery with its specific failure modes for use in safety-critical applications, it is necessary to
prove this reliability by failure rates. Previous investigations determine the fixed failure rates of lead
batteries using data from teardown analyses to identify the battery failure modes but did not include
the lifetime of these batteries examined. Alternatively, lifetime values of battery replacements in
workshops without knowing the reason for failure were used to determine the overall time-dependent
failure rate. This study presents a method for determining reliability models of lead batteries by
investigating individual failure modes. Since batteries are subject to ageing, the analysis of lifetime
values of different failure modes results in time-dependent failure rates of different magnitudes. The
failure rates of the individual failure modes develop with different shapes over time, which allows
their ageing behaviour to be evaluated.

Keywords: lead batteries; safety concept; safety battery; battery monitoring; electronic battery sensor;
failure modes; failure distribution; failure rates; field battery investigation; safe supply; power
supply system

1. Introduction

The change in individual mobility is particularly evident in the electrification and
automation of vehicles. The electrification of the powertrain leads to an increase in the
weight of the vehicles. In addition to automation functions, this leads to higher safety
requirements especially for electric braking and steering power assistance. Apart from
these essential safety-relevant consumers steering (e.g., steer-by-wire) and braking (e.g.,
brake-by-wire), automated driving functions require sensors and actuators for position
and environment detection as well as for control [1]. These components are supplied via
the 12 V on-board power supply system (also known as powernet) of the vehicle and need
a safe power supply to ensure a safe operation.

Therefore, knowing the failure behaviour and failure rates of the components and
the power supply is crucial for the overall safety concept of the power supply system
and the vehicle itself. Dominguez-Garcia et al. have already dealt with this increasing
problem of safety-relevant consumers and their power supply in [2] by designing safe
power supply system topologies. Subsequently, Kurita et al. also addressed the design of
on-board power supply systems in [3] and placed the focus on the importance for future
driving applications, which supports the actuality of the topic.

In such on-board power supply systems, the power supply is provided during normal
operation by the alternator or DCDC converter in hybrid or electric vehicles. In addition,
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the 12 V battery is a main component of the power supply system and, besides buffering
peak loads and supplying the vehicle with standby power, e.g., when parking, it also acts
as a backup power supply. This backup function of the 12 V battery in the on-board power
supply system is now becoming very important and the search for a safe power supply at
the 12 V level with proof of reliability must be conducted.

Modern vehicle architectures consist to a large extent of electrical and/or electronic
(E/E) systems. These systems are crucial for the safe operation of the vehicle and must
therefore meet functional safety standards. The vehicle power supply system, as an oblig-
atory component for safe operation, must therefore be developed according to the ISO
26262 standard [4,5]. Batteries are not in the scope of the ISO 26262 standard although the
battery is a main component of the power supply system and its failure rates need to be
included. In contrast to electrical components with constant failure rates, electrochemical
components such as batteries are subject to ageing and thus do not have constant failure
rates over time. Nevertheless, this failure behaviour and the resulting increasing failure
rates must be included in the functional safety concept. Therefore, a method for determin-
ing battery failure rates must be established and checked for plausibility with the failure
mechanisms investigated.

The lead battery can be part of a safe power supply system architecture if its ageing
mechanisms and faults are manageable. In an early stage Albers et al. identified in [6] the
necessity for further investigations of batteries in the context of functional safety require-
ments in the changing environment of vehicles with new functions. Proving reliability
is difficult for electrochemical components such as the lead battery due to their ageing
behaviour over time. Previous investigations on the reliability of the lead battery, such as
those carried out by Albers et al. in [7], examined the batteries by tear down analysis to
obtain a probability distribution of the failures that occurred. With the failure distribution,
they were able to calculate fixed failure rates for the lead battery by using the corresponding
ADAC failure statistics [8]. However, the ageing behaviour and thus the failure rate of
electrochemical elements such as the lead battery does not follow the bathtub curve like
electronic components, which are dominated by random failures in terms of time. The
ageing process of electrochemical components starts with first use and batteries can be
considered as wear out components. This means that the ageing behaviour behaves like
the third area of the bathtub curve with increasing failure rate and therefore a fixed failure
rate is less appropriate for wear out components.

In [9], Mürken et al. chose the approach of using workshop data on the battery ex-
change of the vehicle battery and its lifetime values. With the help of the individual lifetime
values, it was possible to determine an ageing model based on a Weibull distribution for the
failure of the battery. This made it possible to calculate the reliability of the overall battery
over time and thus time-dependent failure rates. A consideration of the different failure
modes and thus corresponding failure rates could not be investigated in this study due to
lack of knowledge about the occured failure mechanisms. Furthermore, many batteries
are replaced without faults and thus these functioning batteries are included in the failure
rates in this approach.

Varying ageing mechanisms lead to different ageing behaviour; this was already
recognised by Kumar et al. in [10]. It was shown that lifetime estimates of batteries are
possible with Weibull analyses and that the Weibull parameters determined differ for
varying failure mechanisms. Thus, an assignment of the failure mechanisms to the gradual
faults or the sudden faults was possible. However, it remains open how the failure rate for
certain failure modes develops over time and whether this is plausible with the knowledge
of the ageing mechanism.

Since recent studies by the ADAC in [11] again show that the battery is responsible
for a large number of vehicle failures as well as increasing safety requirements for future
driving applications, it is important to include specific battery failure rates. Therefore, this
article presents a method to calculate time-dependent failure rates of different investigated
battery failures to get a better understanding of the progressing of ageing mechanisms.
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For this purpose, the knowledge about the dominant failure mechanism is required in
addition to the lifetime values of the failed batteries. With the knowledge gained about
the development of the failure mechanisms over time, the diagnostic mechanisms of the
electric battery sensor can be prioritised and further developments can be made to ensure
a safe power supply from the battery.

The main focus of this study is on the methodology for determining time-dependent
failure rates and not on absolute values of the failure rates. The reason for that is the data
available so far from 12 V lead batteries come from conventional combustion vehicles and
were partly operated without any energy management and therefore do not cover the future
application of a safety battery in backup operation at all. The failure criterion in previous
studies is the ability to start the vehicle by providing the high starting current, whereas the
requirement for a safety battery is the safe supply in the event of a safe stop scenario. For
future investigations, the current profile required in a safe stop scenario would therefore be
more suitable as a failure criterion. Nevertheless, in order to present the methodology with
real field data, the collected field data of the Battery Council International (BCI) are used,
which, however, come from such conventional vehicles. The BCI publishes a Report on
Battery Failure Modes every five years; the most recent one from 2020 [12] is only available
for purchase, which is why the methodology in this paper is shown using the example of
the study from 2015 [13].

This study begins with an introduction to the methodology for determining time-
dependent failure rates for different failure modes based on field data. Subsequently,
a database is presented to demonstrate the methodology. Finally, the results of time-
dependent failure rates are presented in normalised format and then discussed.

2. Methodology

This section presents the methodology for determining time-dependent failure rates
of different failure modes using field data. For this purpose, the lifetime distribution is
presented, which can be used to represent the field data. In order to be able to examine
different failure modes in relation to each other, censoring methods are introduced and
bias correction is applied due to limited sample sizes in some cases. Finally, the derivation
of the failure rate from the obtained parameters is presented, which can then be used to
calculate the time-dependent failure rates.

2.1. Lifetime Distribution

The raw data of lifetime values are the basis for lifetime analyses. For statistical esti-
mations, these empirical data need to be represented by functions. The failure probability
F(t) can represent such empirical lifetime values in a continuous matter. There are different
types of lifetime distributions to properly represent various failure behaviours. A widely
used distribution function that can be adapted to a large variety of shapes is the Weibull
distribution. The Weibull distribution as the 2-parametric version has a shape parameter
b and a scale parameter T to vary its behavior. The distribution also has the statistical
variable t, which is in this case the lifetime value [14,15].

The failure probability F(t) of the 2-parametric Weibull distribution is given by:

F(t) = 1 − e
−
(

t
T

)b

(1)

The derivative of the failure probability F(t) of the 2-parametric Weibull is the proba-
bility density function f(t):

f (t) =
b
T
·
(

t
T

)b−1
· e

−
( t

T

)b

(2)
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Both the shape parameter b and the scale parameter T have to be estimated so that the
Weibull distribution represents the collected lifetime values well. A widely used robust
analysis method is the maximum likelihood estimation (MLE). The likelihood function is
maximised to find the most likely values of the distribution parameters for a given data set.
The logarithmic likelihood function, which is easier to maximize, is based on the probability
density function f (t) for a chosen lifetime distribution, in this case the 2-parametric Weibull
distribution from Equation (2) with the parameters b and T to be estimated:

Λ = ln L =
n

∑
i=1

ln f (ti; b, T) (3)

Subsequently, the values for the parameters must be found, which result in the highest
value for this function. The partial derivatives of the likelihood function are set equal to
zero for each parameter:

∂Λ
∂b

= 0 &
∂Λ
∂T

= 0 (4)

These determined Weibull parameters represent the lifetime behaviour for the given
data set [16].

In a previous work, Mürken et al. already investigated the failure behaviour of the
entire battery based on workshop data on battery replacement. In this approach, however,
there was no information about the reason for the failure and consequently aged batteries
in a still functional state were also included [9].

The approach presented in this paper allows individual failure modes to be investigated
separately but in relation to the entire sample. For this purpose, a methodology is presented to
determine ageing models for individual ageing mechanisms from individual lifetime values
of batteries, which are verified with the knowledge of the ageing mechanisms.

In order to perform separate Weibull analyses for different failure modes, the data
must be censored with respect to the different failure modes. Furthermore, the approach
is shown on a data set that shows the details of the individual failure modes only for a
certain period of time, so additional censoring with respect to time must be applied. These
adjustments are explained in the following section.

2.2. Censoring Data

This approach is shown with lifetime values of batteries with different failure modes;
therefore, censoring according to the investigated failure modes is necessary. This censoring
according to individual failure modes is shown in Table 1; the Failure mode A, B as well
as Functional are listed next to the lifetime values in hours. The “1” indicates which
lifetime values are to be assigned to the failure mode and accordingly the “0” indicates
which lifetime values are censored for the specific reliability analysis. This approach
is shown on lifetime values based on the BCI Report on Battery Failure Modes 2015 in
which the breakdown into individual failure modes covers only a period up to 4 years,
although the entire sample contains batteries that survived beyond these 4 years up to
12 years. Therefore, the BCI study, used to present this approach, is considered to be a
study performed over a certain period of time, in this case for 4 years, and the batteries
that survive this period are censored. Thus a censoring according to time has to be
applied, which is known as a right censoring of type 1. The censoring according to time
is applied for lifetime values from 4 years onwards, thus all remaining lifetime values
of the batteries that survived longer than these 4 years are assigned a lifetime value of
tcensored = 4 years = 35,040 h as shown in Table 1.
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Table 1. Example of a table to censor data according to the failure mode and time.

Lifetime [h] Failure Mode A Failure Mode B Functional

10,000 1 0 0
20,000 1 0 0
15,000 0 1 0
25,000 0 1 0
5000 0 0 1

15,000 0 0 1
35,040 0 0 0
35,040 0 0 0
35,040 0 0 0

With both censoring methods the Table 1 is an example of a censoring table as used
for reliability analysis and ageing model building in this work.

The censoring of the data with regard to different failure modes may result in only
a small sample number for rarely occurring failure mechanisms. For such small subsam-
ples, the accuracy of the Weibull distribution fitting suffers and the Weibull parameters
determined in the reliability analysis are overestimated. To avoid this, a bias correction is
applied to the reliability analyses carried out in this work. The unbiased shape parameter
bu is obtained by multiplying the shape parameter b determined by MLE with the bias
correction factor U:

bu = b · U (5)

Since multiple failure modes are investigated, censored data are examined; the bias
correction factor U according to Zhang et al. [17] is given by:

U =
1

1 +
1.37

r − 1.92

√
N
r

(6)

The calculated bias correction factor U varies with the number of failures considered r
and the total sample size N. If a bias correction is carried out, first the biased shape parame-
ter b determined in Equation (4) is unbiased by Equation (5). Then the corresponding scale
parameter T is calculated using Equation (4). According to Tevetoglu et al. this provides
valid results for reliability analysis even for small sample sizes and recommends the use of
bias correction methods [18]. However, even with larger samples it is advisable to apply a
bias correction to increase accuracy [19].

The techniques presented in this section can be used to determine characteristic
Weibull parameters for individual failure modes using the Weibull distribution from
Section 2.1. In Section 2.3, time-dependent failure rates can be calculated with these
determined shape parameters b and scale parameters T.

2.3. Derivation of Time-Dependet Failure Rates

Since Weibull analyses have been carried out and the specific shape parameters
b and scale parameter T have been determined, time-dependent failure rates can now
be calculated. With the probability density function f(t) in Equation (2) and the failure
probability F(t) in Equation (1) the failure rate λ(t) is obtained with Equation (7). By
using the determined shape parameters b and scale parameter T, the failure rate λ can
be calculated for different times t. This also applies to Weibull parameters, which were
determined using bias correction as described in Section 2.2.

λ(t) =
f (t)

1 − F(t)
=

b
T
·
(

t
T

)b−1
(7)
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In addition to the shape parameter b, the development of the failure rate over time
gives an indication of the ageing and failure behaviour due to different failure modes of
a component. In order to be able to show the presented methodology for batteries with
different failure modes, it is applied to lifetime values derived from the field investigations
of the BCI with the Report on Battery Failure Modes 2015. Therefore, in the following
Section 3, this database is presented and the individual failure modes are explained for a
better understanding in relation to the development of the failure rate over time.

3. Database of Lifetime Values

The presented methodology in Section 2 requires a suitable database to prove its
validity. The Battery Council International presented a field investigation of lead batteries
in Report on Battery Failure Modes in 2015 [13]. This study is used to prove the presented
approach from Section 2 with real battery data and thus the applicability to electrochemical
elements and their different ageing mechanisms. Therefore, the database and the major
battery failure modes are presented in this section.

3.1. Field Data of Batteries

The BCI collected a total sample of 1454 batteries from different locations in the USA
and presented the results in [13]. The batteries were collected within five months between
August and December 2014 and analysed using a teardown analysis to find the dominant
failure mode that led to the battery failure. Although several ageing mechanisms can occur
in parallel and in total can affect the performance of the battery, there is one failure mode
that is most pronounced and has thus been identified as the dominant failure mode for this
battery failure. If this dominant ageing mechanism did not occur to the same extent, the
battery would possibly still be functional at this time.

The sample reflects the different influences of temperature on batteries because of the
different climatic conditions of the sample locations. Due to the large climatic differences
in the USA between the North and the South, the sample can be divided into North and
South accordingly. In the North with lower mean temperatures 857 batteries were collected;
in the South with higher mean temperatures 597 batteries were collected.

In addition to climatic differences due to the locations where the batteries were
collected, the sample contains batteries of varying quality and from a wide variety of cars.
With an age of up to 12 years, the oldest batteries date back to 2002 and thus come from
vehicles that rarely had energy management or start-stop function. Furthermore, besides
the manufacturing quality of the batteries, nothing is known about the type, so the sample
contains few or no advanced lead batteries such as absorbent glass mat or enhanced flood
batteries but mainly older flood batteries.

Furthermore, the design of the batteries differs. For example, the sample includes
battery housings according to the European standard with a protective terminal niche [20].
However, this type of housing represents a maximum of about 20% of the sample, most bat-
teries are built according to the US standard or the Japanese Industrial Standards (JIS) [21].
This means that the majority of the batteries in the sample have a battery housing without
terminal niche and the battery terminals are exposed. This makes mechanical impacts
on the battery housing, e.g., during installation or removal or even during transportation
when stacked, much more critical. Due to improper handling, the battery terminals are
prone to mechanical damage. This can cause fractures between the battery terminal and
the cell, which partially or directly destroys the battery.

All in all the lead batteries investigated in this sample are no longer relevant for
today’s driving applications with high safety requirements. Since the operational demands
on the battery were different back then, energy management was rarely implemented and a
wide variety of qualities and types of lead batteries can be found in the sample. For future
driving applications, however, only high-quality lead batteries of the latest generation will
be used in combination with a powerful battery sensor and energy management.

222



Batteries 2021, 7, 39

In addition to the failure probability F(t) for the total sample, those of the sample parts
North and South over a time period of 12 years are also published. In this study, the data
of the total sample is used for the evaluation, because it covers locations from all over the
USA. In combination with batteries surviving up to 12 years, this sample can be recognised
as a representative sample of lead batteries in the field in 2014. These batteries represent
the various stress levels, qualities and types used at that time. To perform the statistical
approach the graphs are digitised again and converted into individual lifetime values of
the batteries. The total sample used for this analysis is shown in Figure 1 as probability of
failure F(t) for all failure modes including exchanged but functional batteries in one curve.
The failure probability F(t) always starts for t = 0 with F(t=0) = 0% failed parts and always
results after t = n until all parts of the sample failed in F(t=n) = 100%.

Figure 1. The total sample as a sum of all failures modes is shown in this graph for a time period of
12 years. On the left side the empirical probability of failure F(t) is shown [13].

Besides the failure probability F(t) of all failures modes as a sum, the failure probabil-
ities F(t) of the major five failure modes found by BCI while examining the batteries are
published as well. The probability of failures F(t) of each failure mode is separately pre-
sented for a time period of 4 years for the sample parts North and South by BCI. The failure
probabilities F(t) of these five failure modes are shown for the total sample in Figure 2.

Figure 2 shows the major failure modes. For a better differentiation of the individual
curves, they are mentioned in relation to the time of 4 years. Starting from the top, Service-
able, Short Circuit, Plates and Grids, Worn out and Abused and Open Circuit are displayed.

Both Figures 1 and 2 are based on single lifetime values derived from the Report on
Battery Failure Modes by BCI in 2015 [13]. In particular, the data of the five major failure
modes in Figure 2 are the basis to present the methodology for determining time-dependent
failure rates λ(t) in Section 2.

In order to discuss the time-dependent failure rates of the individual failure modes
in relation to their ageing behaviour, the five major failure modes are presented in the
following sections.
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Figure 2. The major five failure modes found by BCI are shown for the total sample. The individual
probability of failures F(t) is displayed for a time period of 4 years [13].

3.2. Failure Modes of Lead Batteries

Various ageing effects influence the performance of batteries and contribute to battery
failure. Ruetschi investigates the ageing mechanisms of lead batteries in [22], where more
detailed explanations of the failure modes mentioned in this section can also be found.
Brik et al. presented their causal relation structured in a fault tree in [23]. However, the
focus of this work is on the statistical consideration and the principle development of the
different failure modes. The field data with the failure modes presented by BCI in [13] are
only used to show the methodology. For safety applications, higher requirements apply
for the design of a safety concept. This also includes the 12 V battery as a safe power
supply. Therefore, suitable monitoring with energy management is a premise for safe
operation of the battery. However, this cannot be assumed for the BCI sample, and hence
this sample only serves to demonstrate the methodology. In addition to very old batteries,
this sample includes various technologies that were operated with different load scenarios,
that cannot be derived from the published data. However, the operation was rarely done
with a suitable energy management. Moreover, the failure criterion used for this sample
is the ability to start the vehicle. Nevertheless, this database is used to demonstrate the
methodology and for this purpose the failure modes are described again in this section.
These failure modes summarise different battery ageing mechanisms and can thus be
categorised as sudden faults and gradual faults. The sudden faults occur abruptly and
without notice and thus cannot be detected or predicted by diagnostic functions with a
battery sensor. The sudden faults lead to a complete loss of power. The gradual faults
refer to battery failures caused by ageing mechanisms and wearing out that occurs slowly
during use and can thus be detected by appropriate diagnostic functions [10,24].

3.3. Open Circuit

The failure mode Open Circuit can be caused by broken connections at various parts
of the battery. The electrical connection between the battery terminal and the connected
cell can break due to massive mechanical impact from outside the battery housing and
especially the battery terminals. As a result, the battery directly loses its full performance
capability. Since many battery housings do not have terminal niches and the battery
terminals are exposed, they are probably very prone to unintentional mechanical influences
from the outside. This can lead to more frequent occurrences of Open Circuit, whereas
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terminal niche may protect the battery terminal from careless handling and prevent frequent
Open Circuit. The individual cells of the lead battery are electrically contacted internally
via solid inter-cell connectors to connect the six individual cells to one battery. If one of
these inter-cell connectors between the cells breaks, there is also an Open Circuit. Finally,
within each of the six individual cells, there are connections from the positive and negative
electrodes to the respective inter-cell connector. These partial elements of the electrodes,
known as electrode lugs, can break as well and thus make this electrode inactive. However,
this means that only one part of a cell and thus one part of its capacity is no longer available;
the remaining electrodes and cells work as usual. Due to the failure of Open Circuit the
battery can lose its entire performance, as its circuit is interrupted. The Open Circuit
happens suddenly without prior indication and thus is not detectable. Consequently it is
allocated to the sudden faults and clearly defined by BCI with Open Circuit.

3.4. Plates and Grids

The failure mode Plates and Grids summarises ageing mechanisms that contribute to
the increase of the internal resistance. Besides the main ageing mechanism corrosion in
this category, this is to some extent also sulphation. Corrosion is favoured by a low acid
concentration in the electrolyte, i.e., at low states of charge. However, high charging voltage
and especially operation at high temperatures have a major influence. The general cycling
of the battery also leads to corrosion over time. Corrosion mainly affects the positive
electrode. In this case, corrosion leads to a reduction of the grid cross-section and thus
to less active area for electron transport between the active mass of the electrode and the
grid itself, and thus the grid resistance increases. With the decreasing grid cross-section,
the mechanical stability also decreases. If the battery is very corroded, even parts of the
active mass can lose contact with the grid and thereby no longer be reached and contribute
to the reaction. In extreme cases, this can also reduce the available capacity. Primarily,
however, corrosion leads to an increase in internal resistance. In addition to corrosion,
sulphation can contribute to an increase in internal resistance. Sulphation occurs when the
battery is frequently operated in states of partial charge and when the battery is rarely fully
charged. This operation sometimes also leads to the occurrence of acid stratification. In
addition to the operating conditions, high temperatures favour the formation of sulphation
on the one hand but also lead to good dissolution of fine sulphate crystals if the charging
voltage is sufficiently high. Low temperatures, on the other hand, have negative effects on
the charging ability and can lead to the already mentioned rare full charges and frequent
partial states of charge. In particular, the low states of charge lead to a higher solubility
of Pb2+ ions due to a lower acid concentration in the electrolyte, which form a sulphate
layer by recrystallisation to PbSO4. The sulphate layer develops on both electrodes during
discharge; as the pores of the negative electrode are larger, the sulphate crystals can become
much larger than on the positive electrode. The larger the sulphate crystals are, the more
difficult it is to dissolve them again by extensive full charging; during normal charging
processes in the vehicle, reversible dissolution of the fine sulphate crystals hardly takes
place. Due to the coarse sulphate crystal structure on the active electrode surface, this is
reduced and loses conductivity. The lower conductivity increases the internal resistance.
The binding of active material in the sulphate crystals reduces the available active mass
and leads to a lower acid density of the electrolyte. The lower acid density means that
very high maximum open-circuit voltages can no longer be achieved, thus limiting the
capacity from above. This influence is assigned to the next category Worn out and Abused as
well. Overall, the failure mode Plates and Grids with its ageing mechanisms corrosion and
sulphation is to be assigned to the gradual faults, as they can only arise through extensive
use over time.

3.5. Worn out and Abused

This failure mode covers the ageing mechanisms that lead to loss of capacity. The
capacity of the battery determines to a large extent how much electrical energy it can store.
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If it loses capacity, it may no longer be able to supply enough energy for an application.
This process thus has a decisive influence on the lifetime of a battery. The loss of capacity
is primarily influenced by loss of active mass and due to cycling and sulphation. The
sulphation has already been shortly explained in the previous Section 3.4, but decrease
is mainly due to the processes described in the following. During the normal use of the
battery, it is discharged and charged, that means cycled. This leads gradually to the wearing
out of the active mass, mainly at the positive electrode, which is decisive for the capacity.
This cycling stress is intensified by deep discharging or discharging with high currents,
because the mechanical stress for the active material is correspondingly higher. When
charging or discharging, parts of the electrode material are transformed and the volume
changes. If large rapid volume changes take place, parts of the active material can become
internally decontacted and thus can no longer contribute in the reaction. The porosity
and conductivity decreases, which mainly reduces the available capacity but also slightly
increases the internal resistance. In summary, cycling in particular contributes significantly
to the loss of capacity, as does sulphation to some extent. These processes only become
apparent when the battery is used or remains in a low state of charge and therefore Worn
out and Abused is allocated to gradual faults.

3.6. Short Circuit

The failure mode Short Circuit implies an additional electrical path between positive
and negative electrodes within a cell of the battery [25]. This additional connection has a
resistance that varies depending on the characteristics of the short circuit and can discharge
the cell at different rates. In addition to a changed open-circuit voltage, a short circuit can
be recognised by an increased overall resistance of the battery. In principle, there are four
possibilities for internal short circuits in lead batteries. Due to strong corrosion, the grid
can change considerably and grow together above the active electrode surface in the area
of the busbar. In addition, due to severe corrosion and accompanying change in volume of
the electrodes, the separator can be damaged, causing a connection between the positive
and negative electrodes. The mechanism of corrosion has already been explained in the
previous Section 3.4. On the other hand, deep discharge of the battery and operation out
of the specification can cause dendrites to grow, which can create a connection between
the electrodes. Similarly to sulphation, at low states of charge and accompanying low
acid density, the solubility of the lead increases and fine nonconductive dendrites of lead
sulphate can form. Frequent use of the battery outside the specification at very low states
of charge can cause the dendrites to grow and form fine filaments which can grow through
the separator. At higher states of charge, the nonconductive lead sulphate is reduced
to electrically conductive metallic lead, which can create an electrical connection. The
fine short-circuit thus develops slowly during use, as do the other ageing mechanisms,
and it can be avoided by appropriate operational management and monitoring. Only the
hard short-circuit, by penetration with, e.g., a nail, could produce a sudden hard short-
circuit, which, however, can only be achieved by external action and is not possible by
normal operation.

3.7. Serviceable

The last failure mode listed is labelled Serviceable, which defines actually still good,
functional batteries whose ageing progress has not yet led to failure. These batteries were
replaced prematurely, presumably due to customer request. This failure mode is therefore
not a failure mode of the battery but only indicates how many batteries have been replaced
before the end of their lifetime.

These five major failure modes presented in the previous sections can be found in the
field data in Figure 2 and in Section 3.1. The following Section 4 presents the results of the
Weibull analysis and the calculated time-dependet failure rates λ(t).
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4. Results

Since this work is about the methodology for determining time-dependent failure rates
for individual failure modes and no field data from batteries are available that represent
future load scenarios and failure criteria, the results are presented in normalised form. This
section shows the results of the Weibull analysis performed with the field data derived
from the Report on Battery Failure Modes by BCI 2015 as described in Section 3.

Nevertheless, the older database is used to demonstrate the methodology from
Section 2, but the absolute failure rates λ(t) are not relevant for the reasons mentioned
above. The Weibull parameters are presented, but the scale parameter T is normalised
with respect to a typical vehicle lifetime. Subsequently, the calculated time-dependent
failure rates λ(t) are also presented normalised. The time is normalised with respect to
a typical vehicle lifetime τvehicle. The failure rates λFailureMode(t) of the individual failure
modes from Section 3 are normalised to the failure rate λS(t) of the still functional batteries
of the failure mode Serviceable after τvehicle,0.6 = 0.6 · τvehicle vehicle lifetimes according to
the following Equation (8):

λFailureMode,normalised(t) =
λFailureMode(t)
λS(τvehicle,0.6)

=
λFailureMode(t)

λS,0.6
(8)

The parameters determined by Weibull analyses are summarised in a table in the fol-
lowing section and the determined time-dependent failure rates λ(t) are listed individually.

4.1. Estimated Weibull Parameters

The results of the Weibull analyses are obtained by parameter estimation with maxi-
mum likelihood estimation (MLE) and the application of bias correction. Table 2 shows
the results of the estimated Weibull parameters. For the available five failure modes, the
determined shape parameters b and the normalised scale parameter T are listed.

Table 2. Determined Weibull parameters for the failure modes of the total sample. The table shows
the estimated shape parameter b for each failure mode and the normalised scale parameter T by a
typical vehicle lifetime τvehicle. (Analysis method: MLE; Rank method: Median ranks; Confidence
bounds method: Fisher matrix; unbiasing parameters)

Failure Mode Shape Parameter b Normalised Scale Parameter T

Serviceable 1.239 1.134
Open Circuit 1.819 2.127

Plates & Grids 2.812 0.582
Worn out & Abused 2.255 0.826

Short Circuit 2.637 0.596

The parameters listed in Table 2 give an indication for the failure behaviour of the
obtained component. In general, components can fail due to different reasons. The classic
bathtub curve is divided into three areas that show different stages of failure behaviour
and thus are linked to different magnitudes of the shape parameter b. Early failures with a
decreasing failure rate λearly and a shape parameter b << 1 are often due to manufacturing
defects, incorrect storage and long storage times. Random failures with a constant failure
rate λrandom and a shape parameter b ≈ 1 are often encountered in electronic components.
The third area of the bathtub curve is indicated as wear out or ageing failures with an
increasing failure rate λageing and a shape parameter b >> 1. As batteries age with first
use, their failure rate is expected to be continuously or exponentially increasing during
use like λageing with a shape parameter b >> 1. The second parameter determined is the
scale parameter T . This parameter indicates the time at which the probability of failure
F(T) = 63.2% is reached and a corresponding amount of parts of the sample have failed.
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In the following Section 4.2, the results of the Weibull analyses are presented as time-
dependent failure rates for the different failure modes listed in Table 2 and its parameters
and failure behaviour are discussed.

4.2. Failure Rates of Lead Battery Failure Modes

The Weibull parameters listed in Table 2 are obtained by Weibull adaptions according
to the methodology presented in Section 2 to lifetime values of the different failures modes
as presented in Section 3. According to Section 2.3 the failure rate λ(t) can be calculated
with Equation (7). By using the determined shape parameters b and scale parameter T, the
failure rate λ can be calculated for different times t. The five failure modes and their Weibull
parameters from Table 2 are used to calculate these failure rates λ(t). In the following, this
is shown individually with the Weibull parameters from Table 2 in normalised graphs by a
typical vehicle lifetime τvehicle. All failure rates are displayed with their upper and lower
confidence interval for a confidence level of 95% (on time, type 1).

The failure rates are normalised by failure rate λS,0.6 of the functional batteries of the
failure mode Serviceable according to Equation (8). Consequently the still good batteries
and their failure rate λS(t) is displayed at first in Figure 3.

Figure 3. The normalised failure rate λS(t) of the failure mode Serviceable with a shape parameter
b = 1.239 and a normalised scale parameter T = 1.134 is shown. In addition, the upper and lower
confidence limits for a confidence level of 95% are displayed.

The pattern of the failure rate λS(t) of the failure mode Serviceable in Figure 3 clearly
belongs to the category of random failures with a shape parameter very close to b = 1. This
makes sense with the information about this failure mode according to Section 3.7. Since
the batteries are still functional and there is no fault due to ageing, the battery changes in
car workshops due to Serviceable are highly random and logically there is no progression,
as expected with an ageing mechanism.

The failure rate λOC(t) of the first real failure mode Open Circuit is shown in Figure 4.
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Figure 4. The normalised failure rate λOC(t) of the failure mode Open Circuit with the estimated
shape parameter b = 1.819 and a normalised scale parameter T = 2.127 is shown. In addition, the
upper and lower confidence limits for a confidence level of 95% are displayed.

The failure rate λOC(t) in Figure 4 shows a pattern that cannot be clearly assigned to
either random or ageing mechanisms. The failure rate λOC(t) increases with time for the
shape parameter b = 1.819 determined by Weibull analysis. However, no clear assignment
to ageing effects with linear or exponential increase and shape parameter b ≥ 2 or to
completely random failures with shape parameter b ≈ 1 is possible. This uncertainty is also
shown by the wide confidence bounds. Only a few batteries failed with this failure mode,
as can be seen in Figure 2. The small sample size of this failure mode results in very wide
confidence bounds. Thus, on the one hand, the progression of the failure rates could be
rather exponential, as shown by the upper confidence limit. On the other hand, it could be
almost randomly distributed, as the lower confidence limit shows. This could be explained
by the knowledge of the failure mode Open Circuit from Section 3.3. It can be assumed that
the Open Circuit is mainly caused by a mechanical impact from the outside and only in
rare cases, e.g., corrosion inside leads to such strong instabilities that a rupture can occur
due to normal vibrations in the vehicle. Before an Open Circuit occurs, a failure of the
battery is more likely due to its greatly increased internal resistance. This Weibull statistical
analysis shows that for the Open Circuit failure mode, different ageing mechanisms overlap
and the failure rate does not show a consistent failure behaviour. According to the failure
description in Section 3.3, an assignment of the failure mode Open Circuit to the sudden
failures would fit but cannot be done definitively with this database. For this purpose, a
larger sample and a longer observation period would make sense in order to obtain more
meaningful results.

The next failure mode according to Table 2 is Plates and Grids and the corresponding
failure rate λPG(t) is shown in Figure 5.

The development of the failure rate λPG(t) in Figure 5 shows a moderate exponential
increase. The shape parameter b = 2.812 clearly belongs to the ageing effects, which are
characterised by a shape parameter b >> 1. With the knowledge of the ageing mechanism
Plates and Grids from Section 3.4, the curve in Figure 5 is understandable. When the battery
is not in use, only minor ageing takes place. Only with increasing time and use of the
battery does the ageing effect become apparent and eventually lead to a failure of the
battery due to increased internal resistance. The allocation of the failure mode Plates and
Grids to the gradual faults is suitable for the curve according to Figure 5, resulting from the
shape parameter b.
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Figure 5. The normalised failure rate λPG(t) of the failure mode Plates and Grids with a shape
parameter b = 2.812 and a normalised scale parameter T = 0.582 is shown. In addition, the upper and
lower confidence limits for a confidence level of 95% are displayed.

The following Figure 6 shows the normalised failure rate λWOA(t) of the failure mode
Worn out and Abused.

Figure 6. The normalised failure rate λWOA(t) of the failure mode Worn out and Abused with a shape
parameter b = 2.255 and a normalised scale parameter T = 0.826 is shown. In addition, the upper and
lower confidence limits for a confidence level of 95% are displayed.

The shape of the failure mode Worn out and Abused in Figure 6 is almost linear with a
shape parameter close to b ≈ 2. This clearly indicates a wear failure or ageing mechanism.
In addition, the scale parameter T shows that many batteries survive for a very long
time of a typical vehicle lifetime until this failure mode becomes sufficiently dominant to
cause the battery to fail. This can be well explained by Section 3.5, since capacity loss is
decisively caused by cyclisation of the battery, which requires the battery to be used for a
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long time. The clear assignment of the failure mode to the ageing effects fits well with the
gradual faults.

The failure mode Short Circuit is shown in Figure 7.

Figure 7. The normalised failure rate λSC(t) of the failure mode Short Circuit with a shape parameter
b = 2.637 and a normalised scale parameter T = 0.596 is shown. In addition, the upper and lower
confidence limits for a confidence level of 95% are displayed.

The development of the failure rate λSC(t) in Figure 7 shows a slightly exponential
increase with the shape parameter b = 2.637. This indicates a strongly use-dependent
ageing mechanism. According to Section 3.6, the failure mode Short Circuit can occur for
different reasons. It can only occur completely randomly due to misuse from the outside or
extreme operation out of specifications with frequent severe deep discharges, so dendrites
can grow at an early stage. In normal use, energy management should protect the battery
from frequent deep discharge conditions so that dendrite growth, if it occurs at all, takes
a long time to develop. The comparatively small scale parameter T indicates vehicles in
which the energy management is poor from the start and the battery is thus exposed to
frequent deep discharges early on.

The results of the Weibull adaptation and the Weibull parameters determined on the
basis of the BCI 2015 Report on Battery Failure Modes field data and the visualised failure
rates λ(t) for the individual failure modes are summarised and discussed in the following
Section 5.

5. Conclusions

Reliability analyses in vehicles are becoming increasingly important due to the com-
plexity of vehicles. To ensure safe operation, proof of reliability must be provided for more
components. In this study, an approach to determine failure rates for lead batteries from
field data is presented. It has been shown that the statistical reliability analysis can also be
applied to electrochemical components to derive appropriate failure rates. In particular,
by knowing the reason for the failure of the lead battery, the developments of the failure
modes over time as shown can be understood but also justified.

Batteries with the failure mode Serviceable show a progression of the failure rate over
time, which clearly indicates random failures, as the failure description indicated. The
failure mode Open Circuit, on the other hand, shows a failure behaviour over time that
cannot be clearly assigned to random or ageing failures. The small sample size and the
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short observation period can have a negative influence on the accuracy of the Weibull
analysis. For a longer observation period, a clearer result could emerge for the failure mode
Open Circuit and a clearer assignment to sudden faults or gradual faults could be possible.
The two failure modes, Plates and Grids as well as Worn out and Abused, show progressions
of the failure rates over time, which can clearly be assigned to the ageing mechanisms. The
last investigated failure mode Short Circuit can, according to the description in Section 3.6,
arise due to dendrites slowly developing through deep discharges, also called soft short, or
due to hard short circuits caused by external rather random influences. The determined
failure rate for the failure mode Short Circuit shows an exponential progression over time
and is rather to be assigned to the wear or ageing mechanisms for these data.

With the presented approach, ageing models for the investigated failure modes can be
determined from field data, which are useful for the safety analysis in the power supply
system and the entire vehicle. The field data examined are still based on conventional
vehicles in which the lead battery is used as a typical starter battery. In future driving
applications, however, a 12 V battery will be needed in the power supply system, which
will not be used for starting the engine anymore but much more for the safe supply of
energy in critical cases. This means that the 12 V battery must provide the energy and
power for a so-called safe stop scenario, which brings the vehicle to a safe stop at the
emergency lane by a double lane change. These requirements are of course different from
those of a conventional, mainly manually driven vehicle. Thus, the battery is continuously
monitored and operated in a favourable operating range for the battery. By monitoring the
battery’s condition and ageing progress, it is possible to replace the battery before it fails,
so that critical failures can be avoided.

Nevertheless, this study used these old field data from outdated batteries just to show
the approach for future field investigations on batteries to determine relevant failure rates
for future driving applications. Therefore, in further investigations, the collected lead
batteries could be tested with the new failure criterion of a defined safe stop scenario when
collecting field data. Furthermore, the determination of the failure mode by tear down
analysis is prone to subjective evaluations. One possibility would be to electrically test the
collected batteries and evaluate their ageing progress with objective criteria. This would
be useful for assessing the reliability of 12 V batteries such as lead batteries for future
driving applications.
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Abstract: The distribution of relaxation times (DRT) analysis of impedance spectra is a proven
method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs),
their polarization contributions and characteristic time constants. Direct measurement of a spectrum
by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure
of time for low-frequency impedances and a lack of general availability in most online applications.
In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a
current pulse. The method was experimentally validated using both EIS and the proposed pulse
evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The
DRT derived from time domain data provided improved resolution of processes with large time
constants and therefore enabled changes in low-frequency impedance and the correlated degradation
mechanisms to be identified. One of the polarization contributions identified could be determined as
an indicator for the potential risk of plating. The novel, general approach for batteries was tested with
a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in
battery management systems and contributes to improving the reliability and safety of LIBs.

Keywords: lithium-ion battery; DRT by time domain data; pulse evaluation; relaxation voltage;
online diagnosis; degradation mechanisms; EIS

1. Introduction

The use of energy storage systems is essential for the transition to renewable energies.
Due to the unsteady energy supply from renewable energies such as wind power and
photovoltaics, energy storage devices are required to compensate for fluctuations in output
and to reliably provide energy at all times. For the electrification of the transport sector,
energy storage systems are required in order to move vehicles independently of an external
energy supply and without burning fossil fuels. In battery electric vehicles in particular,
LIBs are by far the most frequently used battery technology due to their high energy and
power density.

Large batteries are required in electric vehicles (EVs) and stationary energy storage
devices, which are therefore the main cost factor in these applications. Accordingly, the
requirements for the service life of the LIBs are high and a high degree of reliability is
a prerequisite.

Therefore, non-invasive investigation methods are used to achieve a comprehensive
understanding of the underlying degradation mechanisms of LIBs to enable system op-
timizations with regard to the service life. In addition, the non-invasive methods are
required for the online diagnosis of LIBs and to identify potential risks during operation in
order to ensure safe operation.

In current studies, the continous determination of the changes in kinetic parameters
of LIBs made it possible to draw conclusions about progressive aging and degradation
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mechanisms [1–5]. Compared to recording of the open-circuit-voltage (OCV) or to directly
determining the capacity, measuring the dynamic behavior of LIBs is usually less time-
consuming [1].

EIS as a non-invasive technique is widely used for aging studies in order to measure
the impedance directly and thus to determine the kinetic parameters of the LIBs [6–9].
Aging processes such as lithium plating [3] and the formation of the solid electrolyte
interface (SEI) [4] could be investigated using EIS.

The derivation of the DRT on the basis of the EIS measurement data as well as the
further DRT analysis is a common method for the investigation of LIBs and other batteries.
In [10–15] methods are investigated and described to obtain the DRT from impedance data.
In several publications, the number of dominant electrochemical processes of LIB as well
as their time constants and polarization contributions could be quantified by analyzing
the DRT of the measured spectra [14–17]. Changes in the time constants and polarization
contributions during the aging of the LIBs under investigation can also be determined
using the DRT, as recently shown by Sabet et al. [5].

The main disadvantage of EIS is the long measurement time, especially for low fre-
quencies. The measurement time ranges from several hours for frequencies in the millihertz
range to several days for frequencies in the microhertz range. Therefore the bandwidth and
resolution of the impedance measurement data available for the DRT is limited [15]. Addi-
tionally, only small signal amplitudes are permitted to ensure that the steady state condition
is not violated during the EIS. The long measuring times and low signal amplitudes cannot
be implemented under operating conditions and with commercially available measuring
electronics [18], which is why DRT analyzes have so far been limited to laboratory tests.
But even under laboratory conditions, when measuring lower frequencies, maintaining the
steady state and current drift are becoming increasingly critical [19].

Due to the general availability in online applications, the characterization of cell
impedance based on pulse data is of great interest and the subject of some current studies
(e.g., [20,21]). The time domain data of current and voltage curves can be evaluated in
the event of pulse excitations in order to determine the impedance of the LIB and other
battery types. The calculation on the basis of time domain data is generally faster than the
direct measurement of the impedance, since several frequencies are excited simultaneously
with excitations in the time domain [19]. Thus, on the basis of time domain data, a
higher frequency resolution and wider bandwidth of the impedance measurements can be
achieved, which is of particular interest with regard to the DRT.

An overview of the options for calculating the impedance using time domain data
is given in [22]. In [19,23], the time domain data resulting from pulse measurements
were brought into the frequency domain using a fast Fourier transform (FFT) in order
to calculate the low frequency impedance. However, the excitation of a pulse is non-
periodic. A window function must therefore be used for the transformations, which in
turn generates an offset of the signal [18]. To avoid additional sources of error, as an
alternative to the FFT or Laplace transformation, a pre-selected equivalent circuit model
(ECM) can be parameterized using the time domain data [19]. The impedance is obtained
by transforming the ECM into the frequency domain. The ECM is chosen in a manner that
the impedance behavior of the battery can be reproduced. Therefore, the model must be
selected individually for each battery type, cell chemistry and the electrochemical processes
to be expected [24]. In addition, the impedance of the batteries can change significantly
with aging, state of charge (SOC) as well as temperature and thus also the dynamic behavior
in the time domain. For this reason, prior knowledge of the electrochemical processes
involved and of the aging behavior and further dependencies is required in order to select
a suitable model.

The DRT can be derived from the calculated impedance. If the selected ECM consists
only of RC elements (parallel connection of resistance and capacitor) and an internal resis-
tance (Thévenin model), the DRT is given directly by the model in the time domain and
a transformation to frequency domain is not necessary. Analytical methods have already

236



Batteries 2021, 7, 36

been proposed for the online parameterization of a Thévenin model [20,25] but the number
of RC elements is limited and too small to be able to derive a DRT with adequate resolu-
tion. The sufficient number of RC elements can be characterized by iterative numerical
optimization methods such as genetic algorithms and method of least squares. Compared
to the analytical methods, however, the computationally intensive iterative calculations
are disadvantageous for online applications [25] and the number of RC elements is limited
again due to the computing power available [26]. The initial values to be determined
also require prior knowledge of the electrochemical processes and their approximate time
constants and polarization contributions.

In summary, it can be stated that based on the analysis of the DRT, aging mechanisms
have already been examined in numerous investigations. The DRT is determined according
to the state of the art on the basis of the impedance. The direct measurement of the
impedance by means of EIS cannot be implemented in current online applications without
adaptations and at low frequencies, even under laboratory conditions, it is time-consuming
and subject to inaccuracies. The indirect determination of the impedance based on the
evaluation of time domain data leads to additional inaccuracies or requires an individual
definition of a model for different cell chemistries and types. A direct derivation of the DRT
based on time domain data, which can also be used online, would therefore be desirable.

In this study a method is proposed and described to derive the DRT directly from
the measured voltage course during cell relaxation. The method is validated experimen-
tally by comparing the results with a DRT obtained from EIS measurements. In an aging
study, the introduced method and a subsequent DRT analysis are used to identify the time
constants and polarization contributions of the electrochemical processes of LIBs. The
method is shown to be sufficiently sensitive to quantify the changes in these parameters
during aging without the need for EIS equipment or other devices not available in on-
line applications. The study demonstrates that the DRT derived from time domain data
offers significantly more insights into processes with large time constants respectively
low-frequency impedance with less expenditure of time than a DRT derived from EIS
measurements. In addition, a correlation between a polarization contribution of one of the
processes with a large time constant and a degradation mechanism could be established.
Thus, the proposed method offers a time-effective estimate of the kinetic parameters of a
LIB, provides insights into battery degradation and is offline and online applicable.

2. Methods

Multiple electrochemical processes with a wide range of time constants occur in LIBs.
In addition to the the charge transfer processes of the individual electrodes, diffusion
processes such as solid state diffusion and diffusion of lithium ions through the surface
films of the electrodes also influence the dynamic characteristics of LIBs [9]. Some processes
have similar time constants and are therefore not easy to distiguish from each other only
considering the spectra obtained by EIS. In Figure 1a, a spectrum of the cells examined in
this research is shown.

The diffusion branch at low frequencies can be clearly assigned to the solid state
diffusion as the time constant of these processes is usually a few decades larger compared
to other dynamic processes [9]. The semicircle in the spectra is caused by charge transfer
processes and the diffusion trough the SEI [27]. Since the time constants are of a comparable
order of magnitude, these processes show overlapping effects in the impedance spectra
and only a single semicircle is visible. Changes of the polarization contribution and time
constants of the various processes during aging can therefore not be reliably separated and
assigned to the specific processes. An approach to identify the single processes and their
parameters is an analysis of the DRT [14].
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2.1. DRT of Frequency Domain Data

Since the DRT analysis of frequency domain data is well-established and the focus of
this study is the DRT of time domain data the method is only briefly described. We refer
to [15] for a more detailed explanation of the procedure used.

Figure 1. (a) Impedance spectra of pristine cell at 40 % SOC. (b) Corresponding DRT.

In order to calculate the DRT using frequency domain data, the resistive–capacitive
part of the given spectra is reconstructed with a series of m RC-elements, a parallel circuit
of an ohmic resistor and a capacitor.

ZRC,single =
R

1 + jωRC
=

R
1 + jωτ

(1)

ZRC,series =
m

∑
k=1

h(τk)

1 + jωτk
(2)

where h(τk) are the RC-elements unknown polarization contributions. By pre-defining
the time constants τ = R · C, the equation of the RC elements and thus the optimization
problem become linear. In view of the nature of electrochemical processes, an equidistant
distribution on a logarithmic scale is assumed for the time constants. The range of time
constants is expanded by two decades and the number of RC-elements per decade is
increased by a factor of three compared to the measured frequencies in order to enhance
the accuracy and to obtain an adequate resolution of the DRT (see e.g., [15]).

Since the number of RC-elements per decade is higher than the resolution of the
impedance data, the optimization problem becomes ill-posed. Therefore, a regularization
technique which was introduced by Tikhonov [28] is used to enable an analytical solution.
The Tikhonov regularization for determining the DRT has already been shown in some
publications [11,13–15]. The regularization parameter was elected according to [15]. The
value is kept constant for the evaluation of all spectra, since the results of the DRT analysis
are sensitive to the parameter. Thus, the DRTs of the different spectra are comparable and
changes in the dispersion due to the aging process which can be tracked.

The parts of the measured spectra with positive imaginary values cannot be modelled
by a series of RC-elements and have to be discarded. Additionally, the internal resistance
Ri is subtracted from impedance values of the measured spectra prior to the fitting pro-
cedure. It is assumed that Ri is equal to the zero crossing of the imaginary axis [9]. After
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preprocessing of the measurement data, the spectra mainly consist of resistive–capacitive
contributions, which can be modelled by RC-elements.

The optimization problem is solved with a non-negative least squares fit because only
positive resistances are physically meaningful. Figure 1b depicts the DRT of the spectrum
shown in Figure 1a. The position of the peaks indicate the time constants of the processes
involved and the area under the peaks correlates to the polarization contribution of the
process [14–16]. In contrast to the Nyquist diagram, which shows only a single semicircle
at moderate frequencies, various processes with different polarization contributions and
time constants are visible in the same frequency range.

2.2. DRT of Time Domain Data
2.2.1. General Approach

Figure 2a shows the simulation of the cell voltage of an LIB during a charge pulse
with constant current and the subsequent relaxation period. The impedance of the battery
was modelled by three RC-elements and internal resistance. White noise was added to the
voltage signal to take measurement inaccuracies of real-world applications into account.
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Figure 2. (a) Simulated cell voltage of a LIB during a pulse test. (b) DRT derived from the voltage relaxation.

For the proposed method of an DRT analysis of time domain data, the voltage relax-
ation is evaluated. Similar to the DRT analysis of frequency domain data, an attempt is
made to reconstruct the voltage behaviour with a series of RC-elements. The voltage course
of a single RC-element during a relaxation period can be described as follows:

uRC(t) = U0 · e
− t

τRC (3)

where τRC = R · C, the characteristic time constant of a RC-element. The voltage of the
RC-element at the beginning of the relaxation period U0 at t = 0 s can be calculated if the
duration tcp and current Icp of the previous pulse are known:

U0 = R · Icp

⎛⎜⎝1 − e
− tcp

τRC

⎞⎟⎠ (4)
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Equation (4) is only valid if the cell has been sufficiently relaxed before the current
pulse and any overvoltages can be neglected. Assuming a finite number m of RC-elements,
the overall voltage response can be computed numerically:

URC,series(t) =
m

∑
k=1

Rk · Icp

⎛⎜⎝1 − e
− tcp

τk

⎞⎟⎠ · e
− t

τk (5)

By defining fixed time constants τk, the optimization problem becomes linear. The
values of the resistances Rk must be set in such a way that the error between the voltage
prediction by the series of RC-elements and the measured voltage data (or in this case the
simulated voltage data) is minimized. Using the sum of squared errors as a cost function
leads to the following optimization problem min{J}:

J = ‖A · Rvec − Uvec‖2 (6)

where the vector Rvec corresponds to the unknown polarization contributions of the RC-
elements

Rvec = [R1. . .Rk . . .Rm]
T (7)

and Uvec is the vector of the measured (or simulated) voltage course:

Uvec = [U1. . .Un] (8)

The number n corresponds to the number of measurement points. The measurement
data should be preprocessed in advance. In Section 2.2.3, a detailed description of the
process is given. The dimension of the matrix A is n · m and the matrix is calculated for the
different predefined constants and the time after the end of the pulse t which corresponds
to the respective voltage measurement in Uvec.

A = Icp ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝1 − e
− tcp

τ1

⎞⎟⎠ · e
− t1

τ1 · · ·

⎛⎜⎝1 − e
− tcp

τm

⎞⎟⎠ · e
− t1

τm

...
. . .

...⎛⎜⎝1 − e
− tcp

τ1

⎞⎟⎠ · e
− tn

τ1 · · ·

⎛⎜⎝1 − e
− tcp

τm

⎞⎟⎠ · e
− tn

τm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

2.2.2. Predefinition of Time Constants τ

A logarithmically uniform distribution is defined for the time constants [τ1 · · · τm].
The minimum and the maximum time constants τmin and τmax are determined based on
the maximum sampling rate fs,max = 1

Δtmin
and the duration of the relaxation process tmax.

The Shannon theorem states that frequencies that are higher than half of the sampling rate
cannot be evaluated without further processing of the measured signal.

feval,max ≤ 1
2 · Δtmin

(10)

Taking into account the transient frequency ft =
1

2·π·τ of a RC-element, the following
relationship result for the smallest observable time constant τeval,min [29]:

1
2 · π · τeval,min

≤ 1
2 · Δtmin

(11)
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⇒ τeval,min =
Δtmin

π
(12)

The largest evaluable time constant τeval,max is limited by the duration of the relaxation
phase according to [19].

feval,min ≥ 4
tmax

(13)

⇒ τeval,max =
tmax

8π
(14)

The minimum and maximum time constants of the distribution τmin and τmax are
chosen to be two decades smaller, respectively, andlarger than the evaluable time constants
in order to increase the accuracy at both ends of the frequency dispersion:

τmin =
τeval,min

100
= τ1 (15)

τmax = τeval,max · 100 = τm (16)

This procedure was similarly proposed by [15] for the DRT analysis of frequency
domain data. In order to obtain a smooth DRT curve within the evaluated frequency range,
the number of RC elements or time constants m must be selected to be high enough. A
number of one hundred τ per decade was used for the analysis of the DRT in this study.

2.2.3. Pre-Processing of Measurement Data

Before calculating the DRT, the existing measurement data should be checked for
usability and preprocessed. According to the Equation (12), the sampling rate must be
high enough (or the timestep between two successive voltage measurements Δtmin small
enough) to enable a meaningful evaluation of the DRT down to the time constant τeval,min.
Therefore, when selecting the the sampling rate beforehand, the minimum time constant
relevant for the investigation should be taken into account. If the maximum sampling rate
of the measurement device is lower, the DRT can only be evaluated for time constants that
satisfy Equation (12). This consideration is particularly important for BMS, as they often
have sample rates of 10 Hz or less.

The processes with low time constants only have measurable contributions at the
beginning of the relaxation phase and quickly subside. Therefore, the sampling rate does
not necessarily have to be constant over the entire measurement period and can be reduced
in order to avoid large amounts of measurement data. With very high sampling frequencies
and the evaluation of very small time constants, the speed of the current control needs to
be considered. As long as the current has not dropped to zero, Equation (5) is not valid.
These voltage measurements should therefore be discarded and only larger time constants
evaluated. Apart from that, only the voltage values should be evaluated that were recorded
at least one time step after the load drop. Since pure ohmic resistances cannot be modelled
with Equation (5), the influence of internal resistance on the voltage response should not
be taken into account.

The OCV UOCV must be subtracted from the voltage measurements umeas(t) before
determining the DRT. Assuming a completely relaxed cell at the end of the relaxation phase,
this can be achieved by subtracting the last measured voltage value umeas(tmax) from all
measurements. A considerably long relaxation phase is therefore imperative.

uprocessed(t) = umeas(t)− UOCV = umeas(t)− umeas(tmax) (17)

At the beginning of the relaxation process, all processes contribute to changes in cell
voltage. As relaxation progresses, only processes with larger time constants are relevant.
Following the measurement data should be interpolated on a logarithmic scale in order to
weigh the single measurement points accordingly. Due to the low impedance of automotive
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cells, the signal-to-noise ratio is usually rather low. As the cell becomes increasingly relaxed,
the signal-to-noise ratio deteriorates further, as can be seen in Figure 2. Forming the moving
average before interpolation smooths the measured values and can therefore improve
the ratio.

2.2.4. Calculation of the DRT

Due to the long measurement time for low-frequency impedances, the number of
time constants m usually exceeds the number of frequencies measured. In contrast to
frequency domain data, the resolution in the time domain is comparatively high. The
number of interpolation points can also be selected to be higher than m in order to use
the additional information provided by the high-resolution pulse measurement. To solve
the over-determined system, the Tikhonov regularization is applied again. Equation (6) is
extented by the regularization term:

J = ‖A · Rvec − U‖2 + ‖I · λU‖2 (18)

where λ is the regularization parameter and I is the m · m indentity matrix. The value of
the regularization parameter is optimized with respect to the sum of the square errors of
the reconstructed voltage signal. A non-negative least square algorithm is proposed to
solve the optimization problem. Due to the restriction to positive results, only physically
possible polarizations can be calculated. Using the determined polarizations Rvec and
the predefined time constants τ, the spectrum can be reconstructed for different angular
frequencies ω:

ZDRT =
m

∑
k=1

Rvec(k)
1 + jωτk

(19)

If a measured or modelled spectrum is available, the sum of the squares of errors of
the capacity-resistive part can be calculated and used as an additional selection criterion
for the regularization parameter. This method for the evaluation of the parameter was
already proposed by [15] for the DRT calculation of frequency domain data.

In Figure 2b, the DRT is given; this was derived from the voltage course during the
relaxation period shown in Figure 2a. The DRT reveals three processes vizualized by
the peaks. The area under the peaks corresponds to the polarization contribution of the
process and the position of the peak to the time constant. The time constants as well as
the polarizations of the identified processes are consistent with the parameters of the RC-
elements used in the battery model. Table 1 shows the calculated values and the original
parameter set of the battery model as well as the relative deviation.

Table 1. Comparison of the parameter set of the battery model and the values derived by the DRT.

Parameter Calculated Value Model Value Relative Error

R1 31.5 mΩ 30 mΩ 5 %
τ1 0.328 s 0.3 s 9.2 %
R2 37.5 mΩ 39 mΩ 3.8 %
τ2 2.046 s 1.95 s 4.9 %
R3 116.9 mΩ 117 mΩ <0.1 %
τ3 296.899 s 292.5 s 1.5 %

The relative error of the parameters with larger time constants decreases due to the
diminishing influence of the superimposed noise signal. The processes with short time
constants only contribute to voltage changes for a short time and their voltage contribution
quickly drops to zero. The voltage drop is also most pronounced in processes with the
long time constants at the beginning of the relaxation, but it lasts longer. Therefore, the
effect of these processes is visible at more measuring points, which enables an increasing
averaging of the noise. In Figure 3a, the reconstructed voltage signal is plottet together
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with the simulated voltage course in order to prove the accuracy of the DRT. Figure 3b
shows the reconstructed impedance, derived by using the calculated distribution function
and Equation (19), alongside the impedance spetrum of the battery model.
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Figure 3. (a) Comparison of simulated and reconstructed voltage during the relaxation period. (b) Comparison of modeled
and reconstructed impedance spectrum.

Regardless of whether the real part or the imaginary part is considered, the relative
deviation between the two spectra of Figure 3b is less than 1% for the frequency range
[ feval,min · · · feval,max]. In general, the accuracy is higher for lower frequencies within the
specified frequency range. Because of the added noise in the simulation, the relative error
of the reconstructed voltage signal (Figure 3a) cannot be used as an indicator for the quality
of the distribution function. However, the reconstructed voltage follows the mean value of
the simulated signal, even with dynamic behavior in the first seconds. Despite the good
reconstruction of the dynamics, the impact of the noise is substantially minimized, which
proves that no overfitting has taken place.

Based on the sampling rate of commercially available BMS, the resolution of the
simulated values was only 100 ms. Since the impedance of automotive sized cells is usually
very low and hence the voltage response, a strong noise signal has been added compared to
the excitation. Nevertheless, processes with time constants that are only slightly larger than
the resolution can be identified and their contributions determined. The results therefore
show that the method introduced is theoretically suitable for determining the DRT and the
cell impedance and examining the dynamics and processes parameters of an LIB.

3. Experimental

In order to further investigate the applicability and accuracy of the introduced method
under real conditions, an experimental study was carried out. To validate the introduced
method, automotive LIBs were characterized with both EIS and pulse tests and the resulting
DRT and derived process parameters were compared.

The automotive cells were then cyclically aged under various conditions. The changes
in processes and their parameters were determined using both methods. Thus, the results
obtained through time and frequency domain data can be directly compared and evaluated
with regard to the traceability of degradation mechanisms.

For experimental investigations, large format pouch-type LIBs with a nominal capacity
of 50 Ah were used. The anode of the examined cells are made of graphite and the cathode
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consists mainly of nickel–manganese–cobalt-oxide (NMC). All cells were taken from the
same batch to minimize the impact of manufacturing tolerances.

3.1. Experimental Validation

For the experimental validation of the method introduced one of the cell was fully
charged and subsequently discharged to determine the available cell capacity. In order to
minimize the influence of the cell impedance, a constant-current–constant-voltage (CCCV)
protocol was used for both charging and discharging. The CV phases were held until the
current dropped below 50 mA. In the CC phase, 25 A were applied during charging and
50 A during discharging. According to the determined capacity the cell was then charged
with a constant current of 25 A to certain SOC values (20/40/60/80%). After reaching the
desired SOC level, the current was set to zero. The relaxation of the voltage was recorded
in high resolution with a sampling rate of 2 MHz in the first six seconds after the load jump.
After six seconds, the sampling rate was reduced down to 1 Hz and the voltage relaxation
recorded for 4 h.

The pulse tests were followed by EIS measurements. Galvanostatic excitation with
an amplitude of 3 A was applied. The frequency was varied in the range from 50 kHz to
0.5 mHz. For frequencies above 100 Hz, 16 measurements per decade were carried out,
otherwise only eight were performed. According to Barai et al. [30] the relaxation phase of
the previous pulse test is long enough to meet stationary conditions.

3.2. Aging Study

As part of the aging study, the LIBs were cycled under certain operating conditions
that are within the manufacturer’s cell specifications. A total of three aging scenarios were
carried out, with the average SOC value being varied between the individual scenarios.
With the exception of the charging current and the state of charge, the other operating
conditions like the depth of discharge (DOD) (30%) and the discharge current (1.6 C) were
set to be the same for all scenarios. Table 2 gives an overview about the deviating operating
conditions for each scenario.

Table 2. Different operating conditions.

Cycling Scenario SOC [%] Ich [A]

Sc1 60 37.5
Sc2 20 37.5
Sc3 80 18.75

The SOC range of each scenario was set in such a way that, according to [31], different
degrees of capacity depletion and deterioration of the individual electrodes could be
expected. The aging study thus enables an assessment of whether the sensitivity of the
introduced method is sufficient to determine aging mechanisms qualitatively or even
quantitatively.

Before starting the cycling, a checkup was carried out for each cell in order to deter-
mine the initial cell parameters. During the cycling of the cells, the long-term tests were
occasionally interrupted and further checkups were carried out. The checkup procedure
contains a CCCV capacity measurement. In addition, at 20/40/60 and 80% a pulse test
and an EIS measurement are performed, following the procedure described in Section 3.1.
However, the maximum sampling rate during the pulse test is limited to 10 Hz, which is
more realistic for online applications such as battery management systems.

4. Results

4.1. Experimental Validation

In this section, the results of the pulse tests and the EIS measurements of the experi-
mental validation are shown and evaluated.
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Figure 4 depicts the recorded cell voltage during the relaxation at 20%. In addition to
the originally measured signal, the moving average of the signal is given in order to be able
to assess the accuracy of the reconstructed signal. It can be stated that the deviation between
the reconstructed and the averaged signal over the entire range under consideration is less
than 0.5 mV.
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Figure 4. Pulse test: Voltage relaxation at 20 % SOC.

The high measurement resolution reveals the inductive behavior of the cell voltage.
Due to the inductance, the voltage over the cell connectors and current collectors drop
to negative values immediately after the load jump. For less than 0.1 ms, the voltage
rises again as the voltage across the inductive components drops quickly. Therefore, the
voltage measurements for t < 0.1 ms have been omitted, as electrochemical processes
(time constants of usually larger than 1 ms) are of interest for this study. However, it is
pointed out that the inductive behavior can also be simulated by expanding the matrix
A (Equation (9)) by the mathematical description of several parallel circuits of ohmic
resistance and inductance (RL-elements).

Equation (19) is used to calculate the impedance of the cell for the pulse test at 20%
percent. For better comparability with the spectrum measured directly after the pulse test,
Figure 5a,b show the imaginary and real parts of both spectra over frequency.
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Figure 5. Comparison of measured and reconstructed impedance at 20 % SOC (a) Imaginary part of impedance. (b) Real
part of impedance.
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Figure 5a shows that the imaginary part coincides with frequencies below 50 Hz. Due
to the limited measuring range, only impedances at frequencies above 0.5 mHz can be
specified for the measured spectrum.

The plot of the real part of the impedance in Figure 5b provides similar insights.
The course of the reconstructed spectrum deviates at high frequencies, but follows the
measured spectrum at frequencies of ≤5 Hz.

The increasing deviations at >5 Hz can be explained by the Butler–Volmer kinetics.
The current excitation at relaxation period was set to zero, while the excitation during the
direct measurement of the impedance was set between −3 A and 3 A. According to the
Butler–Volmer equation, the kinetics of charge transfer processes are not linear. Thus, due
to increasing charge transfer resistances, the potential response does not decrease linearly
with the current excitation [32]. In addition, it has been experimentally proven in some
publications that the relaxation time, which differs between the pulse test and the EIS,
influences the charge transfer resistances [30,32]. It is known that charge transfer processes
at the anode [4,15] and at the cathode [5,33] occur at moderate frequencies of 1–100 Hz.
The deviations at frequencies of 5–100 Hz between pulse test and EIS were therefore to
be expected.

The ranges of the spectrum at frequencies above 100 Hz could not be adequately
reconstructed because the optimization function is limited to resistive–capacitive elements.
The impedance values measured at over 100 Hz were therefore discarded and not plotted
in Figure 5.

Figure 6 shows the DRT obtained from time domain data and the DRT determined
from frequency domain data. The resolution of the DRT from time domain data is twice
as high. Therefore, the heights of peaks in one DRT cannot be compared directly with
those in the other DRT. In order to compare the polarization contributions of the identified
processes, the sum of all polarization contributions within a peak must be determined
instead. When calculating the polarization contributions for the first (peak at smallest time
constant) to fifth peak, the same orders of magnitude result for the respective peak for both
DRTs. In addition, both DRTs show that the contribution of the first and fifth peaks are
greatest, followed by the fourth and second peaks. The third peak has a comparatively
small contribution in both DRTs.
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Figure 6. DRT derived from frequency domain data (a) and from time domain data (b).

Both distributions reveal four relevant processes with time constants in the range of
2 · 10−3 s < τ < 2 · 100 s. According to fT = 1

2·πτ , these time constants approximately
correspond to frequencies between 0.1 Hz and 100 Hz. Processes in this frequency range
were assigned to charge transfer [4,5,15,33] and surface films of the electrodes [4,34]. Due
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to the Butler–Volmer kinetics, time constants and polarization contributions differ between
the two distributions, which explains the discrepancy that occurs in the first four peaks.

For time constants >10 s, the DRT obtained from time domain data shows a compara-
tively better resolution of the processes. The DRT based on frequency domain data only
indicates a single process for time constants between 10 and 1000 s. In contrast, the DRT
obtained through time domain data reveals the existence of three different processes. In
addition, time constants that are two orders of magnitude higher can be resolved. If the
spectrum is recorded via EIS, the measurement takes more than a day to resolve large time
constants. The evaluation of pulse data with the method introduced can therefore be ad-
vantageous for examining processes with large time constants such as solid state diffusion.

4.2. Aging Study
4.2.1. EIS Measurement Evaluation

In Figure 7 shows the measured spectra and the corresponding DRT against frequency
of an examined cell as well as the development during aging. The measurements from one
cell from aging scenario Sc1 were selected for the exemplary representation. The upper
diagrams show the values determined at 20% and the lower part at 80% SOC.
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Figure 7. Measured impedance spectra and corresponding DRTs over aging (a) At 20 % SOC; (b) At 80 % SOC.

In the Nyquist diagram, two major changes can be seen as the cell ages:

• An increase of the internal cell resistance Ri during aging (Shifting of the zero crossing
of the imaginary axis to higher real parts)

• Disappearance of the second semicircle at 20% SOC during the first 1050 cycles of the
long-term test

According to the second bullet point, the DRT at 20% reveals distinct changes in the
polarization contribution and the time constant for a process at moderate frequencies. This
peak can be assigned to the second semicircle in the spectrum because it occurs particularly
when the SOC is low and the cell is new. As already mentioned, this peak can be assigned
to a charge transfer process due to the range of the time constant.

In contrast to the observation of the spectra, the analysis of the DRT shows a slight
increase in the contribution of this process during the last cycles. Furthermore, slight
increases in the polarization of the charge transfer processes are visible at moderate fre-
quencies and 80%. In addition, small changes in the parameters of the process with the
smallest time constant are visible, but they do not follow a clear trend. Due to the frequency
range, this process can be assigned to the transfer through the SEI of the anode [4,34].
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For frequencies <0.1 Hz, a single process is visible. At low SOC, the polarization of
the process remains almost constant during the first 4950 cycles. After the first 4950 cycles,
a continuous increase can be observed. At 80% SOC, this continuous increase begins with
the start of the long-term test.

The mentioned changes in the process parameters were recognizable for all cells,
except for the increase in polarization contribution at low frequencies. This behavior was
not pronounced in the cells of scenario Sc2. Changes of the process parameters were made
at a similar rate within a scenario. However, there were deviations in the rate of change
between the scenarios, especially with regard to the increase in polarization contribution at
frequencies below 0.1 Hz.

4.2.2. Pulse Test Evaluation

Figure 8 shows the cell voltage course during the relaxation period and the DRT
derived from the time domain data. Again, the values at 20% (upper graphs) and 80% SOC
(lower graphs) are given and the same cell as in Section 4.2.1 is evaluated.

Figure 8. Measured voltage relaxation and derived DRTs over aging (a) At 20 % SOC; (b) At 80% SOC.

The voltage courses show a slowdown of the relaxation process as aging progresses.
The DRT derived by the time domain data reveals changing parameters of processes with
large time constants as the reason. A strong increase of polarization contributions can be
observed for low frequencies. Compared to the DRT obtained from frequency domain data,
not only a more pronounced increase can be observed. In addition, more processes with
large time constants can be identified, since the DRT can also be specified for frequencies
that are lower than 1 mHz.

According to Equation (10), the DRT only provides representative values for the frequen-
cies ≤5 Hz. The DRT is cut off accordingly for frequencies above 5 Hz. The process with the
smallest time constant shown in Figure 7 (assigned to the SEI) is therefore not visible.

The disappearance of a polarization contribution of a process at moderate frequencies
and 20% SOC can be confirmed. The number of processes in the range of moderate
frequencies between 0.1 and 5 Hz corresponds to the number determined on the basis
of frequency domain data. However, the greater spread of the time constants and the
polarization with no discernible trend shows that due to the lower sampling frequency
the accuracy is too low to reliably quantize the parameters of the identified processes at
moderate frequencies.
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4.2.3. Comparison of DRT by Time and Frequency Domain Data

The results of the experimental studies can be summarized as follows:

• Processes with characteristic time constants that do not meet Equation (12) cannot be
identified with the set sampling rate using the time domain data alone.

• Already with a maximum sampling rate of 10 Hz, which is realistic for online applica-
tions, the DRT by time domain data can be used to identify charge transfer processes
and to provide a qualitative description. However, the change in process parameters
during aging can only be traced to a limited extent.

• Quantitative statements for charge transfer processes, even if higher sampling rates
are used, differ between the two methods due to the Butler–Volmer kinetics. In fact,
due to the strongly non-linear excitations in real applications, the better transferability
of the results obtained from frequency domain data is questionable.

• The DRT based on time domain data is more sensitive for processes with large
characteristic time constants such as solid state diffusion.

• When using frequency domain data, either longer measuring periods are required or
the measuring range is limited to higher frequencies, since different frequencies have
to be excited successively during EIS.

4.2.4. Correlation of the Capacity and the Identified Process Parameters

Figure 9a shows the capacity course during the aging of a cell and the corresponding
polarization contribution of the process with the largest time constant, which is determined
by time domain data at 60% SOC. The polarization contribution is referred to below as
Rtaumax . The results belong to the cell that has already been evaluated in the previous
Sections 4.2.1 and 4.2.2.
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Figure 9. (a) Capacity course and polarization contribution Rtaumax vs. cycles. (b) Correlation between
capacity and Rtaumax .

For a better overview of the correlation between the two parameters, the development of
Rtaumax is plotted over the capacity. A strong negative correlation can be found for≥2250 cycles.
During the first cycles, the increase in polarization in relation to the capacity fade is less
pronounced. Regardless of which scenario, a significantly weaker increase in Rtaumax could
be confirmed for all cells at the beginning of the aging tests. Thus, the average correlation
coefficients Ccoe f f for each scenario and for the cycles ≥2250 are given in Table 3.
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Table 3. Different operating conditions.

Cycling scenario SOC [%] CCoe f f [%]

Sc1 60 99.1
Sc2 20 92.8
Sc3 80 98.0

Taking into account the measurement data only for cycles ≥2250, a Pearson correlation
coefficient of ≥98% can be specified for scenarios Sc1 and Sc3, which indicates a high
negative correlation between the two parameters. For scenario Sc2, the correlation is
weaker, but still noticeable.

Figure 10 shows the capacity courses over the cycles for all cells examined.
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Figure 10. Capacity course vs. cycles during the long-term cycling.

For scenario Sc2, a recovery of cell capacity can be seen. After 2250 cycles, the
capacity remains relatively constant at around 48 A h. Because of the flat curve, the accurate
correlation is more difficult to determine because of the corresponding small changes in
polarization Rtaumax are difficult to detect. This could be one reason why the correlation
coefficient is lower in scenario Sc2.

To further investigate the reasons for the lower correlation coefficient, the correlation
between the capacity of the anode and the polarization Rtaumax was determined. The determi-
nation of the loss of active material at the anode (LAMAn) on the basis of the non-invasive
measurements during the checkups was carried out in [27]. The correlation between the
LAMAn and Rtaumax was ≥ 96% for each cell of scenario Sc1 from cycle 0 to 9050. Taking into
account the uncertainties in the estimation of the LAMAn, 96% is a high value and it can be
stated that the increase in Rtaumax is associated with the LAMAn. For all cells of scenario Sc1
the decrease in capacity at the anode was more pronounced compared to the cells of Sc2.
Gantenbein et al. has already experimentally confirmed a higher LAMAn for cells that were
cycled at SOC levels above 65%, while the LAMAn for cells that were cycled below 45% was
neglible [31]. The lower LAMAn provides a further reason for the lower correlation in Sc2 and
the lower capacity fade during aging. For the cells of Sc3, the LAMAn after 3850 cycles could
not be determined due to a change in the electrode balance [27]. According to the results
of [31] a comparatively high LAMAn is to be expected. This statement is supported by the
correlation factor determined for scenario Sc3 (see Table 3).

In contrast to the correlation to the cell capacity (see Figure 9), the linear relationship
between LAMAn and increase in Rtaumax is visible from the first few cycles of the long-
term test. It is known from the literature that the cell capacity can be limited by different
degradation mechanisms in different aging stages of a LIB (e.g., [35,36]). In a previous
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publication, the loss of lithium inventory (LLI) was identified as the main aging mechanism
during the first few cycles of the aging study described [27]. The LAMAn becomes the
limiting factor for the capacity of the cells of scenarios Sc1 and Sc3 after 2250 cycles.
Therefore, a correlation between the cell capacity and the Rtaumax only becomes visible after
2250 cycles. It is thus assumed that the correlation between the cell capacity and Rtaumax

originates from the correlation of LAMAn and Rtaumax .

5. Discussion

In the context of the aging study, the method introduced has proven to be advanta-
geous for investigating processes with time constants in the range of minutes to hours. In
addition to the more precise resolution of the low-frequency processes compared to the
DRT, which is derived from frequency domain data, the time required for the measure-
ments is significantly lower. Besides higher resolution and lower time efforts, the steady
state criterion with regard to the SOC is not violated during the relaxation period. In order
to avoid a change in the SOC during the EIS at low frequencies, the excitation current must
be limited, which leads to a comparatively poor signal-to-noise ratio.

However, high sampling rates are required in order to investigate frequency-dependent
processes with characteristic time constants in the range of a few seconds or even millisec-
onds such as charge transfer and SEI. According to the Shannon theorem, time constants in
the range of milliseconds should theoretically be able to be evaluated with a sampling rate
of 10 Hz, which is realistic for an online application. In contrast to this, the aging study has
shown that only the parameters of processes with time constants of almost two decades
higher (τ ≥ 1.6 s) can be quantified with sufficient accuracy using the aforementioned
sampling rate. In many applications, and especially in most online applications, the method
presented is therefore limited to the aging monitoring of processes with time constants in
the range of seconds to several hours, such as solid state diffusion.

Therefore, for applications in which both pulse tests and EIS are possible, a combined
use of both techniques is proposed. By merging the impedance data obtained through time
and frequency domain data as suggested by [19], the impedance spectrum and DRT can be
determined for a wide frequency range.

Using the DRT derived from the time domain data, a correlation between the polar-
ization contribution and LAMAn could be determined at low frequencies around 35 μHz.
Due to the limited frequency range of the EIS, this connection could not be established
using the frequency domain data. A correlation between a degradation mechanisms and
the impedance of LIBs could already be established in earlier studies. In a comprehensive
experimental study, the correlations between kinetic parameters of an LIB and degrada-
tion mechanisms could be derived [1]. Recently, a correlation between low frequency
impedance and the LLI was found in [24] and Schindler et al. [37] confirmed a correlation
between the low frequency impedance and LAM. Using cell kinetics to gain insights into
the degradation mechanisms is beneficial because measuring impedances at high and
moderate frequencies is fast compared to deriving the mechanisms by recording open
circuit voltage curves [1]. However, EIS measurements suffer from long measurement
durations for low-frequency impedances and a lack of availability in most state-of-the-art
online applications. In contrast, relaxation periods occur in every online application. As a
result, the introduced method enables a time-effective investigation that can be used online
in order to obtain the relevant parameters of the processes with large time constants and
thus enable an online estimate of the degradation mechanisms.

It is known that LIBs can suffer from accelerated capacity loss towards the end of life
due to lithium plating originally caused by a lack of anodic material [35,36]. For online
applications, an early detection of an increasing capacity reduction and lithium plating
is of great importance for the reliability and safety of LIBs. Many publications like [38]
have therefore dealt with the prediction of the sudden reduction in capacity. As a further
outcome of this study, the correlation found could be used to identify an advanced LAMAn
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online and thus the risk of lithium plating and the resulting rapid loss of capacity at an
early stage.

In summary, this work showed that the evaluation of the voltage relaxation after a
current pulse is suitable for investigating the kinetic parameters of a LIB even without
prior knowledge of the polarization processes involved. The DRT obtained from the time
domain data offers a time-effective determination of processes with large characteristic
time constants and enables the parameters to be estimated online. The correlations found
provide insights into the degradation mechanisms both offline and online and thus support
the future battery design and enable optimization of the operating strategies. The findings
about the early detection of a potential risk of lithium plating are available for subsequent
studies and contribute to improving the reliability and safety of LIBs.

In a future step, Post-Mortem analyses will be carried out to directly quantify the
LAMAn and validate the assumptions made. In addition, the transferability of the results
to other cell chemistries and formats must be checked.
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Abbreviations

The following abbreviations are used in this manuscript:

DRT Distribution of relaxation times
LIB Lithium-ion battery
EIS Electrochemical impedance spectroscopy
EV Electric vehicle
OCV Open circuit voltage
SEI Solid electrolyte interface
FFT Fast Fourier transform
ECM Equivalent circuit model
SOC State of charge
NMC Nickel-manganese-cobalt-oxide
CCCV constant-current-constant-voltage
DOD Depth of discharge
LAMAn Loss of active material at the anode
LLI Loss of lithium inventory
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Abstract: Novel intelligent battery systems are gaining importance with functional hardware on the
cell level. Cell-level hardware allows for advanced battery state monitoring and thermal management,
but also leads to additional thermal interactions. In this work, an electro-thermal framework for
the modeling of these novel intelligent battery cells is provided. Thereby, a lumped thermal model,
as well as a novel neural network, are implemented in the framework as thermal submodels. For
the first time, a direct comparison of a physics-based and a data-driven thermal battery model is
performed in the same framework. The models are compared in terms of temperature estimation
with regard to accuracy. Both models are very well suited to represent the thermal behavior in novel
intelligent battery cells. In terms of accuracy and computation time, however, the data-driven neural
network approach with a Nonlinear AutoregRessive network with eXogeneous input (NARX) shows
slight advantages. Finally, novel applications of temperature prediction in battery electric vehicles
are presented and the applicability of the models is illustrated. Thereby, the conventional prediction
of the state of power is extended by simultaneous temperature prediction. Additionally, temperature
forecasting is used for pre-conditioning by advanced cooling system regulation to enable energy
efficiency and fast charging.

Keywords: lithium-ion battery; electro-thermal model; smart cell; intelligent battery; neural network;
temperature prediction

1. Introduction

In the past few decades, the transport mobility sector, and especially the automotive
industry, has experienced considerable changes. In order to address the climate change
problems and particularly, to reduce CO2 emissions, among other technologies, Electric
Vehicles (EVs) are becoming increasingly important [1]. Due to their high energy and
power density, lithium-ion (li-ion) batteries are the most preferred battery type for EV
applications [2]. Nevertheless, the challenges and limitations related to costs, safety and
aging need to be addressed and are part of current research [3]. One important factor
influencing performance, safety and life time of the battery pack, is temperature [2,4,5].
Low temperatures lead to less available power and capacity and can result in irreversible
battery degradation when reaching subzero values. High temperatures outside the optimal
range of 15–35 °C [4] lead to accelerated aging and may result in a thermal runaway when
exceeding the safety limit of 60 °C [4,5]. Monitoring battery cell temperatures is, therefore,
necessary, which is a task of the Battery Thermal Management System (BTMS) as part of
the Battery Management System (BMS) [4]. The basic approach in commercial vehicles is
to measure the temperature at a few discrete points at the surface or tab of li-ion cells in
the system [6]. In large format battery cells this temperature may greatly differ from the
temperature reached in the battery cell core [7–9], which is the critical temperature in terms
of performance and safety. Therefore, the temperature estimation by using thermal models
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is a first step and a necessary part to enable precise thermal state monitoring. In addition,
predictive thermal management with several advantages, such as the core temperature
information, can be utilized [10–13].

The development of next generation intelligent battery systems takes this into account
by advanced monitoring of the individual cell states [14,15]. Sensors are integrated in
cell-level electronics and intelligent algorithms determine the cell state, detect faults or
perform bad-block management [16–18]. In our previous work [19], a prismatic cell was
equipped with electronics for single cell data acquisition and system reconfiguration.
The use of sensors integrated in mass-produced electronics in combination with thermal
models enables the core temperature of the battery cells to be monitored. This avoids the
need to integrate additional temperature sensors into the cell, as proposed by [5,7], which
would lead to increased production costs and safety issues [8]. However, for thermal state
monitoring, the internal cell behavior needs to be modeled and the developed models
have to be integrated in the vehicle architecture. Cell-level modeling is necessary, since
cooling system gradients and cell-to-cell variations lead to different thermal conditions
for cells in a system [20]. A substantial thermal gradient also arises due to the thermal
coupling between cells. Therefore, the thermal states of multiple cells differ and need to be
monitored individually.

Many different approaches for thermal models for conventional battery cells can be
found in the literature. The modeling approaches can generally be separated into physics-
based and data-driven models. Another common designation is white-box and black-box
modeling depending on the way the results are derived from the inputs. In general, the
prediction of a white-box model is physically and geometrically motivated and can be
understood more intuitively compared to black-box models which are solely data-driven.
There are detailed physical-based electrochemical-thermal models that are coupled, e.g.,
with geometries modeled by Computational Fluid Dynamics (CFD) or Finite Element
Method (FEM) approaches [21,22] or even in combination with mechanical models [23].
Those models are useful for battery design but their main drawback is their low compu-
tational speed, which does not allow using them for online temperature estimation in a
BTMS [24,25]. Lumped thermal models consider the relevant physical phenomena and
simplify the differential equation system by concentrating the important cell characteristics
on a few points [24,25]. The model parameters can be derived analytically for known
material parameters [24,26,27] or fitted to experimental measurements [25,28]. The latter
are a first step towards data-driven models and, therefore, one representative of the so
called gray-box approaches. Completely data-driven models do not represent the cell
internal physical and geometrical properties and model the output behavior implicitly.
Thereby, mostly with the help of machine learning methods mathematical relations be-
tween inputs and outputs are trained [29]. Examples are models using Support Vector
Machines [30] and Artificial Neural Networks (ANNs) [9,29,31]. The latter are a novel topic
of research in the field of thermal battery modeling and have proven to have advantages in
modeling non-linear dynamic relations as they can be found in batteries [9]. Nevertheless,
the ANN approaches found in the literature are mainly simple network architectures,
such as Feedforward (FF) [29,31], and none of them considers integrating the ANN as
thermal model in a total model system. Data-driven time-series prediction, implemented,
for example, as Nonlinear AutoregRessive with eXogeneous input (NARX) architecture, is
particularly reported in the literature to be adequate as thermal parameter forecasting in
energy systems [32,33] or surface temperature predictions of cylindrical cells [34]. However,
there are currently no models that use NARX networks for core temperature modeling of
large format cells, neither for conventional, nor for intelligent batteries.

Since both approaches, physical-based and data-driven modeling, seem to be adequate
as thermal battery models, it is important to compare the modeling approaches related
to the application in Battery Electric Vehicles (BEVs). Thereby, the latest developments in
terms of hardware and structure of intelligent cells are taken into account in this work.
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Currently, there are neither physical-based nor data-driven models that consider the
hardware influences within intelligent cells on the battery’s temperature.

The application of cell individual temperature monitoring by using a thermal model
in a real BEV system creates an additional opportunity to estimate the core temperature,
and also the new possibility to predict the temperature for future events and to utilize
corresponding operation strategies. Only a few approaches exist for using battery temper-
ature prediction in BEV scenarios [10,12,35,36]. The results are promising with thermal
models that can be used to improve the prediction of the driving range [35], control the
regulation of an air- and liquid-dual cooling system [10], or predict the future available
battery power [36]. However, there are certainly more applications in which real-time
thermal modeling can lead to advances in the specific prediction scenario. In this work,
the cases of State-Of-Power (SOP) prediction and advanced cooling system regulation
are proposed.

Prediction functionalities, such as SOP prediction, are important for the BEV appli-
cation as a means of knowing the available power in situations such as user acceleration
requirement or long-term performance availability without fear of overcharging or over-
discharging [37]. Current publications focus on the calculation of the available SOP based
on current, voltage and State-Of-Charge (SOC) limitations of the cells [37–43]. For low
SOCs, the discharge current is the limiting factor, while for high SOCs, the charging current
is taken accordingly. At the same time, the maximum permissible load and the voltage
limits of the cell restrict the maximum power output. However, in reality, the SOP is
also limited by the rising temperatures during maximum performance. For that purpose,
temperature estimation for an adequate SOP prediction is necessary, as performed in
this work.

Another investigated use case of temperature prediction is related to the cooling
system regulation. Amini et al. [44] argue that temperature prediction achieves a planning
horizon to activate or deactivate the cooling system which is necessary as the cooling
system contains high thermal masses. By reducing the initial phase for a battery thermal
management system, the power necessary for cooling can be reduced in general [45].
Additionally, the goal of the cooling system is always to keep all cells in the optimal
thermal range. However, there are applications discussed in the literature that prefer
increased temperatures. For example, heating the battery to 40 °C instead of cooling it
to 25 °C is known to reduce the stress and degradation caused by the intercalation and
deintercalation processes and, therefore, aging [46]. Another application is the thermally
challenging fast charging of EVs. Yang et al. [47–49] reveal slow preheating as favorable
for fast charging procedures, leading to much less heat generation during the fast charging
and, therefore, to less energy demand for the cooling. Collin et al. [50] mention, in their
work on advanced fast charging technologies, the first approaches in commercial BEVs
that perform defined pre-conditioning to improve fast charging.

In this work, the focus is on developing a thermal model for an intelligent prismatic
25 Ah cell prototype, including electronics for a BEV application. The aim is to represent the
thermal interactions within the large format cell and the actual influence of the electronics.
For the first time, the existing approaches for conventional battery cells, e.g., a physics-
based and a data-driven model using the example of a Thermal Equivalent Circuit Model
(TECM) and an ANN respectively, are implemented and compared. The two thermal
modeling methods are parametrized and implemented for an existing intelligent cell
hardware published in our former work [19] and integrated in a total framework for
a BEV application. The models are used for the cell-level temperature estimation of
different local temperatures and are compared in terms of parametrization, accuracy and
computation time. Using intelligent cells and the thermal models for advanced thermal
management, novel temperature prediction applications in a realistic BEV scenario are
presented. Improvements for SOP prediction are then presented by considering the thermal
cell state. In a second application, an predictive cooling system regulation is presented that
enables pre-conditioning for fast charging.
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2. General Modeling Approach

The general electro-thermal model framework is shown in Figure 1. It consist of
three submodels: an electrical model, a heat generation model and a thermal model. The
goal of the total model is to estimate the core temperature of the battery cell. Therefore,
a commonly used electro-thermal co-simulation is performed to capture the temperature
dependency of several model parameters [21,24,25,27]. The core temperature as and output
of the thermal submodel is fed back to the other two submodels, which are described in
the following sections. For the integration of the model in BEV applications, an observer is
implemented that is described in detail in Section 3.4. The current I, which is determined
via measurement in a realistic BEV system, is the input to the total model structure, as well
as the observer. For the investigation in this work, two thermal models are implemented
and compared that both fit in the same framework. The thermal models are described in
detail in Section 3.
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Figure 1. Schematic representation of the modeling framework of an electro-thermal battery cell
model, consisting of an electrical, a heat generation, a thermal submodel, and an observer. Two
different thermal models are implemented for comparison.

2.1. Electrical Model

An Equivalent Circuit Model (ECM) is used as an electrical model, as frequently seen
in thermal modeling of battery cells [27,51]. In this work, the model consists of a voltage
source, representing the Open Circuit Voltage (OCV) of the cell, a series resistance R0
corresponding to the cell’s ohmic resistance and two RC-elements, which stand, for the
voltage drop due to overvoltages, e.g., charge transfer, diffusion, phase change overvoltages
and other losses. The cell terminal voltage U can be calculated from Equation (1) below.

U = OCV + R0 · I + URC1 + URC2 (1)
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All the components of the ECM, e.g., resistances, capacitances and the OCV are
dependent on the cell core temperature and the SOC. The temperature is fed back from the
thermal submodel and the SOC is calculated inside the electrical submodel using coulomb
counting. The resistances and capacitances used for the model parametrization were
determined analytically for the 25 Ah cell and published in a previous publication [52].

2.2. Heat Generation Model

The heat generation model comprises two parts. It separately calculates the heat
generation in the cell and the electronics components. For the heat generation in the jelly
roll, Equation (2) is used based on the simplified energy balance in electrochemical systems
by Bernardi et al. [53]:

Q̇gen = Q̇irr + Q̇rev = I2 · R0 +
U2

RC1

R1
+

U2
RC2

R2
+ I · T · dOCV

dT
(2)

In Equation (2), the first three terms stand for the irreversible heat generation resulting
from the voltage drop at the electrical resistances shown in the electrical submodel. It is
always positive and therefore, leads to the heating of the cell. The last term in Equation (2)
is reversible heat generation, which results from the entropy change during intercalation
and the deintercalation of the lithium ions. It may be positive or negative, depending on the
SOC and the direction of the current and, therefore, may heat or cool the cell, respectively.
The entropy coefficient dOCV/dT is dependent on the temperature and was also determined
experimentally in [52].

The second part of the heat generation model calculates the heat generation in the
electronics based on joule heating by

Q̇elec =
n

∑
i=1

I2
i · Relec,i (3)

Relec,i is the ohmic resistance of the electronics’ pieces, respectively, and is strongly
dependent on each components’ temperature. Thereby, n is the number of all different
electronics segments. A detailed description of the electronics and the corresponding
model is given in Section 3.1 .

3. Thermal Models of an Intelligent Cell

The purpose of the thermal models is to estimate the jelly roll temperature for the
given heat input by the heat generation model. In order to compare a physics-based
to a data-driven model, a TECM and an ANN are implemented for the example of a
prismatic cell prototype for intelligent batteries published in [19]. Thereby, the geometrical
as well as boundary conditions for this prototype are defined by the reference system and
taken into account for the modeling. Since the focus of this work is on the differences
of the two approaches, they are implemented in the same electro-thermal framework to
compare accuracy, computational effort and time and applicability to an in-use temperature
estimation in a BTMS.

3.1. Reference System

The cell under investigation is a prismatic 25 Ah cell from SANYO/Panasonic with a
Nickel-Mangan-Cobalt-Oxide (NMC) cathode and graphite anode material. The dimen-
sions of the cell are 14.8 cm, 2.65 cm and 9.1 cm.

In our previous work [19], the cell was combined with electronics to form an intelli-
gent cell prototype. A schematic representation of this setup is shown in Figure 2a. For
the prismatic cell equipped with electronics, a detailed electro-thermal 3D CFD model
was implemented to investigate the specific influences of the electronics to the cell. The
shown cell with electronics is utilized for parametrization of the models of the cell and the
electronics in this work. The dataset of the previous investigation is used as target data for
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both simplified real-time modeling approaches. Considering that no measurement data of
the jelly roll core temperature are available, the neural network is trained using the highly
resolved and already experimentally validated CFD model. This teacher approach, using a
detailed model for the training of a simplified real-time model, is similarly done for other
applications, e.g., by Fang et al. [54]. In addition, the neural network uses independent
datasets for training and validation. For this purpose, datasets for the temperature range
of 15–45 °C are available, which contain many different static and dynamic load profiles, as
well as the information about local heat generation and temperatures. Figure 2b shows, as
an example, a part of the data for a reference temperature of 25 °C.

(a) Cell prototype and schematic geometry for detailed 3D CFD model in [19].

(b) Example investigation results used as training or target data.

Figure 2. Reference system based on our previous investigation [19]: (a) Cell prototype with electron-
ics and corresponding schematic geometry for the detailed 3D spatially dependent electro-thermal
CFD model. (b) Example results for the temperature and heat generation behavior of the prototype
cell for 25 °C starting temperature. Various comparable datasets in the range of 15–45 °C are used as
a training or target profile.

For a meaningful scenario, BEV boundary conditions are considered [21]. The cell is
assumed to be adiabatic in all directions with the exception of the connection to the cooling
system at the bottom with the temperature Tcool. For the investigation on a system level,
cells are additionally thermally coupled via the casing and the busbars, which are described
in Section 3.4. For a realistic cooling system behavior, a simplified model is introduced that
is comparable to [55–57]. Thereby, the cooling system is regulated stepwise and rule-based
which is an extension of the thermostat controller [58,59]. The maximum heat flow per cell
Q̇max, that can be dissipated by the cooling system, is controlled in three steps as shown
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in Figure 3. Starting with a deactivated cooling system for an optimal cell temperature
below 30 °C in step 0, the cooling system performance rises stepwise to a maximum of 9 W
at 38 °C for step 3. A hysteresis of 0.3 K , visualized by the marked line, is used for the
regulation of the cooling power [60]. Excessive heat production of the cell, exceeding the
cooling power limit, leads to an increase in the cooling system temperature.

Figure 3. Overview of stepwise cooling system regulation with a hysteresis of 0.3 K for decreasing
and increasing temperatures.

3.2. Physics-Based Thermal Equivalent Circuit Model

A commonly used physics-based modeling approach for conventional cells is a
lumped thermal model, also called TECM. The basic structure of TECMs is symbolized
in the left-hand section of the thermal submodel in Figure 1. In general, in a TECM, the
component to be observed is discretized by small volumes. Each volume is represented
by a thermal node, which contains the thermal capacity and parameters of the volume
respectively. The thermal capacity of one volume i is calculated using Equation (4).

Cth,i = ρi · Vi · cp,i (4)

where ρi and cp,i are the averaged density and specific heat capacity of the volume i, and
Vi is its geometric volume. Thermal capacities, therefore, describe the heat accumulation
analogously to electrical capacitances [24]. In each thermal node, the volumetric fraction of
the total heat generation is used as a heat source, which is analogous to a current source
in electrical models. The thermal nodes are connected by thermal resistances defining the
heat transfer between them [24]:

Rth,cond =
L

λ · A
(5)

L is the distance between two thermal nodes, λ is the heat conduction coefficient of
the respective material and A is the cross-sectional area of the heat transfer path between
two nodes.

The total TECM for the cell and the detailed electronics model is shown in the left-hand
section of Figure 4. Significant temperature gradients can result in large format prismatic
battery cells [21]. Therefore, the cell-internal structure is included in the TECM to model
a more realistic temperature distribution through a physics-based model in comparison
to other implemented lumped thermal models [28]. For that purpose, 3 × 3 × 3 nodes
standing for volumes of the same size are arranged in the mid of the jelly roll. In order
to model the complex curved geometry of the jelly roll, three nodes are added below and
above the 3 × 3 × 3 cuboid, respectively, resulting to a total number of 33 nodes inside
the jelly roll. In the same manner, the case is discretized by each of the nine nodes on the
x-y-side, three nodes on the y-z-side and two nodes for cell top and one for the bottom.
Additional nodes are added for the current collectors and the cell terminals. Computer
tomography scans have shown that electrolyte is remaining at the bottom of the case [21].
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Therefore, the connection between the jelly roll and the bottom case is considered via heat
conduction through the electrolyte.
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(a) Extensive overview of cell-level thermal models (b) TECM details

Figure 4. Real-time thermal models for a intelligent cell in a BEV battery system: (a) Overview of the
TECM and the ANN modeling details. (b) Bottom view of the electronics hardware geometry and
the related TECM model.

The electronics can have significant influence on the jelly roll temperature [19]. There-
fore, the thermal influences of the specific electronics are considered by a lumped electronics
model of the real hardware. In Figure 4a the general positioning and thermal connection of
the electronics is revealed. Additionally, Figure 4b depicts a detailed view of the electronics
components and the modeling scheme. An one-dimensional heat conduction and tempera-
ture distribution along the current path in x-direction is considered. Three thermal nodes
are integrated representing the thermal masses of the current conducting copper inlays.
Temperature and current dependent heat generation is located in all current carrying parts.
The information of the current and the SOC are provided by the framework emulating a
BMS, but they are not further used in the present implementation. The TECM calculates
the temperature at the thermal nodes and also at the positions where thermistors are
integrated on the hardware prototype. Using this presented structure of the TECM makes
it possible to estimate the temperature in multiple positions and dimensions of the cell
which is advantageous for the later system level implementation described in Section 3.4.
The TECM is implemented in MATLAB/Simulink Version 2020a using Simscape.

Thermal masses and thermal resistances are determined analytically on the basis of
material parameters, dimensions and manufacturers data of the investigated prismatic cell
and electronics. The initial material parameters used are listed in Table 1.

Table 1. General physical and thermal parameters of the used components for the TECM model.

Component Material
ρ cp λ

[kgm−3] [Jkg−1K−1] [Wm−1K−1]

Case 1 aluminum 2700 900 220
Pos. Term./Col. 1 aluminum 2700 900 220
Neg. Term./Col. 1 copper 8700 385 400
Jelly Roll 2 mixed 2043 1371 33(‖)/0.7(⊥)
Insulation 1 plastic foil 1190 1470 0.18
PCB inlay 1 copper 8700 385 400
Electrolyte 3 solvent 1130 2055 0.6
Therm. Interface Material (TIM) 4 silicone 2300 1000 3.5

1 [61], 2 Cell manufacturer data sheet (25 °C), 3 [21], 4 manufacturer data sheet.
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3.3. Data-Driven ANN-Based Thermal Model

In comparison to the physics-based approach, a data-driven model is implemented
by means of an ANN shown in the right part of the thermal model in Figures 1 and 4a.
ANNs mimic the information processing in human brains by modeling of the nonlinear
input-output-relations, which explicitly occur in battery cells [29,62]. Their main advantage
is that complex correlations do not have to be physically modeled as networks can be
trained to represent the correlations. It is, therefore, necessary to provide the data basis
that includes the data correlations to be trained.

Regarding the model architecture and implementation, a network consists of a number
of neurons that are arranged in layers. The neurons are connected via edges that contain
weights that indicate the strength of the connection. In every neuron, its weighted inputs
and a bias are summed, and the sum is mapped, in a nonlinear manner, to the output by
the activation function [29,54,62] in Equation (6).

yj = f

(
n

∑
i

wi · xi + bj

)
(6)

In Equation (6), xi are the inputs to one neuron, wi are the respective edge weights of
the inputs, bj is the bias in the neuron, f is the activation function and yj is the neuron’s
output. In the training process the weights and biases are updated using known output
results. The goal is to minimize the difference between the network output and the target
data. The difference is mostly described by the Mean Squared Error (MSE) and is termed the
loss function. Several optimizations exist in the literature for minimizing the loss function.

The total ANN thermal model developed in this work is depicted in detail in the right-
hand section of Figure 4a. As already mentioned, the implementation of an ANN a dataset
containing the input–output correlations to be learned is necessary. The present network is
trained based on a dataset generated by the reference system described in Section 3.1. The
underlying load profile contains different static (constant charge/discharge) and dynamic
load profiles (e.g., the ECE, EUDC, US06, RTS95, FTP72, Artemis Motorway cycles), as
well as fast charging and cooling sections without load. In order to simulate varying
ambient and cooling conditions, the dataset is generated for different starting temperatures
of 15–45 °C in steps of 5 °C leading to a total of over 273 k timesteps. A dataset provides
information of current, SOC, heat generation in cell and electronics, the local temperature
of electronics, terminal and core as well as the removed heatflux by cooling for every
second. The network inputs are scaled in a range between 0 and 1 using the minimum
and maximum values of each feature in the training dataset. This makes the later training
more robust and efficient [9,33] and prevents it from putting more emphasis on signals
with higher absolute value [45].

The network architecture consists of one input layer, one hidden layer and one output
layer. The NARX architecture is implemented for the situation of an cell equipped with
electronics. As characteristic of the NARX as recurrent network, the outputs are fed back to
the input layer. In contrast to conventional FF networks, this enables the representation of
temporal dynamics, which improves the modeling of the thermal cell behavior. Thus, the
outputs of different timesteps y(t − 1), y(t − 2) . . . , y(t − dOutput) are stored in a Tapped
Delay Line (TDL) and used as inputs for the current timestep y(t). In the same manner, the
inputs form different timesteps x(t), x(t − 1), x(t − 2), . . . , x(t − dInput), which are stored
in a TDL and used as inputs to calculate the output y(t) at the current timestep. dInput and
dOutput are the maximum backward timesteps stored in the TDL of the inputs and outputs,
respectively [33]. The activation function used for the hidden layer is the Rectified Linear
Unit (ReLU) function (Equation (7)):

f (x) = ReLU(x) = max(0, x) =
{

x if x ≥ 0
0 if x < 0

(7)
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The ReLU function is advantageous because of its lower computing time requirements,
compared to other activation functions, such as logsig or tansig [62], which makes it more
suitable for the current application in a vehicle BMS.

The main advantage of the NARX approach compared to other data-driven regression
networks is the network architecture. A NARX network is implemented with neurons and
a structure as simple as a FF network. Therefore, it can be trained with the fast and accurate
FF training procedures and algorithms with good convergence. The training algorithm used
in this work is the Levenberg-Marquardt (LM) algorithm, which offers a fast convergence
for small networks [29]. The network is trained open-loop and independent of the other
two submodels, meaning that the loop from the outputs to the inputs is opened by utilizing
the known target temperatures. The open-loop configuration allows to efficiently train
the NARX net, analogous to FF nets and stable inputs are available [33]. This is the main
advantage compared to other recurrent network approaches.

Important features influencing the training time and especially the accuracy of the
results are the NARX hyperparameters, such as number of hidden neurons or input delays.
In order to determine a suitable architecture for the network, the authors applied the grid-
search method [63], meaning that the number of input and output delays and the number of
neurons on the hidden layer are varied between 0 to 10, 1 to 10 and 3 to 10 respectively. The
span of the parameters was found with prior investigations on testing many parameters
on a large scale. For measuring the quality of the current network topology, another
independent validation dataset containing different profiles to the training dataset is
used. The network with the lowest MSE on the validation set is used as the current best
configuration at the initialization by chance. For this application, a net is chosen, which
consists of seven neurons on the hidden layer, and TDLs lengths of 7 and 3 for the inputs
and outputs respectively. The net and training parameters are summed up in Table 2. In
order to avoid extrapolation scenarios, the training profiles are chosen and combined in a
way that the physically possible limits of SOC, cell voltage and load are reached. The total
dataset generated is split into 70%, 15% and 15% for the training, validation and testing,
respectively. In order to avoid overfitting, the early-stopping method is used by means
of stopping the training if the MSE on the validation dataset increases in six consecutive
epochs [33]. The maximum number of epochs is limited to 150, whereby an epoch is one
representation of the total training dataset with adaptation of the weights afterwards [45].
The whole setup and training of the network is performed utilizing the MATLAB Deep
Learning Toolbox.

Table 2. Parameters for the neural network applied as thermal model.

Parameter Variation Result

Training dataset 39 k timesteps per
temperature

Starting temperatures 15–45 °C in 5 °C steps
Training, validation, test ratio 70 %, 15 %, 15 %
Training algorithm LM
Activation function ReLU (hidden layer)

identity (output layer)
Max. number of epochs 150
Max. input delays 0 to 10 7
Max. output delays 1 to 10 3
Number of hidden neurons 3 to 10 7

3.4. BEV Integration and System Level Simulation

In order to compare the two modeling approaches, the two thermal submodels are
integrated into the presented model framework, including electrical and heat generation
submodels. There is a need to avoid drifting of the total model, as the three submodels are
strongly intercoupled. An observer is, therefore, included, as shown by the components in
gray color in Figure 1. Generally, the observer compares estimated and measured values
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and the difference is fed back to adopt the estimation [64]. A few approaches can be
found in the literature which make use of an observer to estimate the battery cell core
temperature by measuring the surface temperature of a battery cell [64–66]. In this work,
a different observer structure is implemented that compares the temperatures measured
and estimated at the electronics Telec and a terminal Tterm. The difference in the electronics’
temperatures Telec,Sim − Telec,Meas is used to update the heat generation at the electronics
Q̇elec and the difference in the terminal temperatures Tterm,Sim − Tterm,Meas for adaption of
heat generation in the jelly roll Q̇gen.

Obviously, there are multiple cells in a battery system that require multiple single cell
models. The cells in the system thermally interact with each other [67], and this needs to be
considered in system-level modeling. To achieve a fast computing system level simulation,
a possible coupling scheme is presented in Figure 5. Temperatures at the boundary of the
cell model are used as a boundary condition between the individual cell models connected
in series. The coupling can be performed by temperature signal routing instead of full
physical coupling to reduce the computational effort. In the system simulation approach,
based on single cell models, either the TECM, or the ANN, or another compatible cell-level
model, can be used at any time. Possible system representations are that every cell within
a module receives data from the case and terminal temperatures of its neighboring cells
in order to represent the thermal interactions within a module. The cells at the border of
the modules can be assumed to be adiabatic or are also coupled. The modeled boundary
conditions depend on the specific application. Overall, the approach is able to represent the
thermal coupling or cooling conditions in state-of-the-art battery systems. Nevertheless,
system simulation is an ongoing field of research and part of future work.

Figure 5. System simulation approach based on thermal coupling of multiple cell models via busbar
and casing connections.

4. Results and Discussion

4.1. Spatial Temperature Estimation of TECM and ANN

In order to compare the temperature estimation of the real-time thermal models to
the target results of the reference system in Section 3.1, an independent dataset of the
reference system based on the ADAC electric vehicle cycle is chosen. The corresponding
2000 s current profile is repeated until the lower cut-off voltage of 3 V is reached. For
adequate comparison, a homogeneous constant temperature of 25 °C is defined for the
starting and cooling condition. To emulate realistic application conditions, the target data
for the observer contain a normally distributed noise with a mean value of 0 K and a
standard deviation of 0.2 K. Figure 6 displays the estimated transient temperatures of
the core, the electronics and a terminal, as well as the related temperature deviation ΔT
of the real-time models. The need for spatial resolution modeling is clearly illustrated
by the differences between the local measurement points. At the point of the maximum
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temperature, differences of up to 4 K are detected. However, there are differences for
the modeling approaches and the positions. At high thermal loads, the TECM slightly
overestimates the core temperature and underestimates the terminal temperature. For
the temperature estimation at the electronics, the dynamic changes in the electronics
heat generation in combination with the three representative thermal masses lead to a
maximum deviation of 2.7 K for the TECM. The deviation of the electronics results from the
lumped representation. Thereby, thermal masses and resistances are based on the initial
geometries and material properties. Thus, parameter deviations and contact resistances
lead to differences. Corresponding model deviations can be reduced by simple optimization
procedures, which is a step towards data-driven models. Overall, the TECM model reveals
a good temperature estimation with the highest mean deviation of 0.15 K at the electronics.

The ANN shows in total very small deviations with a maximum difference of −0.67 K
at the electronics temperature. The low noise on the deviation also shows that the dynamics
of the specific location is represented accordingly. The advantage of the ANN compared
to the TECM is due to the training with comparable datasets, which contain the dynamic
behavior. For all locations, the mean deviation is below 0.05 K without any static offset
or time-dependent drift of the estimation results. Other comparison differences are sum-
marized in Table 3. The overall estimation accuracy of both models is very good within
a RMSE of 0.23 K for the TECM and 0.08 K for the ANN. Regarding the computation of
the results, the total solving time with the same commercial laptop is 30 s for the ANN
model and 60 s for a maximum timestep of 1 s. Thus, both approaches are adequate for
real-time estimation with calculation times of 20 ms and 10 ms per timestep. However, the
computation time will differ for realistic BEV hardware, which needs to be the focus of
future work.

(a) Core (b) Electronics (c) Terminal

Figure 6. Transient temperature profiles of the TECM and the ANN and the related estimation
deviation in comparison to the target data of the reference system. The locations of (a) the cell core,
(b) the electronics and (c) the terminal.

Table 3. Comparison of the TECM and the ANN model for the estimation scenario of Figure 6.

TECM ANN

Parameter Core Elec. Term Core Elec. Term

Max. local deviation 0.6 K 2.7 K 0.06 K 0.15 K −0.67 K 0.3 K
Mean local deviation 0.06 K 0.15 K −0.04 K 0.01 K 0.04 K 0.03 K
Overall RMSE 0.23 K 0.08 K
Computation effort
per timestep 1

20 ms 10 ms

Modeling approach physical-based data-driven
1 On a commercial laptop with Intel i5 CPU.
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In general, physics-based or data-driven approaches can be used for estimation and
prediction applications, as outlined in the introduction. Both have proven high accuracy
for the challenging task of a large format prismatic cell with electronics. Nevertheless, the
general concept of the models offers certain advantages and disadvantages for use. The
present ANN is more accurate and provides at least small benefits related to the computa-
tion time. However, adequate training datasets must exist for training and parametrization.
Additionally, changes in the hardware and materials that have not been part of the training
data would generate discrepancies in the estimated results. With the physics-based TECM
model hardware changes can be implemented easier or the area of application can be
extended. The parametrization does not need multiple datasets for different behavior, but a
detailed analysis of corresponding geometries and materials. For example, using the model
for thermal runaway investigations can be provided by implementing the corresponding
Arrhenius-based heat generation equations above the normal temperature range of 60 °C,
as proposed, e.g., in [68]. Since the lumped approach does not represent all physical
phenomena, estimation deviations arise with the present model. However, these can be
reduced by suitable optimization processes. The use of both models is discussed in the
second part of this paper, which describes the implementation of new BTMS functionalities.

4.2. Prediction Applications

One important task of the BMS is to estimate different battery states [3,8]. A statement
about the current state, e.g., the SOP, often requires a prediction of future situations.
More information about the present and future behavior can improve the state prediction
and regulation procedures. In the current work, precise thermal models are available and,
based on their temperature prediction capability novel BTMS, functionalities are developed.
Thereby, an optimization of existing SOP prediction approaches is demonstrated by taking
into account the thermal cell state. On the other hand, a novel battery pre-conditioning
approach for fast charging optimization is presented.

4.2.1. Improvement of the SOP Prediction

Present SOP prediction strategies are based primarily on current, voltage, and SOC
limits [37,40]. The thermal battery state is largely neglected [69]. Taking the example of a
common scenario of highway driving followed by fast charging, the importance of taking
the temperature into account is presented. Figure 7 depicts the current profile and the
related temperature increase in the target data of the reference system. While driving,
both thermal models are used to estimate the core temperature of a cell. Both models
conform very well to the target data with a small deviation of less than 0.1 K for the ANN
and a maximum of 0.8 K for the TECM. The maximum deviation appears in both cases
during fast charging at the highest thermal stress of the cell. Subsequently, a conventional
power prediction is performed without the observer for the upcoming continuation of the
driving and the expected thermal behavior is predicted for different permissible current
scenarios. A detailed view of the mid-term prediction scenario is displayed on the right
side of Figure 7. As revealed by the results of both models, the only electrical-based
conventional calculation of the SOP will exceed the safety temperature limit of 60 °C. In
addition, predicting the point in time for reaching the voltage or SOC limit is not performed
correctly without taking into account the temperature dependency of the corresponding
electrical parameters. Bearing in mind the temperature limit, one may reduce the total
permissible output current so that the maximum allowable temperature is not reached
during the total discharging (see dashed lines in both cases). This, in turn, restricts the
available power in the early stage.
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Figure 7. Highway driving and fast charging scenario with in-use SOP prediction in various ways:
ANN/TECM approaches are used for the temperature estimation while driving, as well as the
prediction of the temperature during SOP determination.

An optimized SOP prediction by an individual output current limitation based on
temperature prediction is, therefore, desirable. Multiple output current scenarios can be
calculated in advance and the resulting temperature is predicted, which enables maximized
performance, while staying within the battery safety limits. Both modeling approaches
reveal comparable predicted temperature results. The differences arise from the model’s
specific absolute temperature predictions.

On the basis of the detailed models, multiple different reference temperatures can
be combined with adaptive and intelligent algorithms for safe prediction optimization.
Nevertheless, concrete algorithms are beyond the scope of this work and form part of
future investigations. In the present investigation, a simple optimization of the point in
time for limiting the output current and the current value after limitation is performed
(Figure 7). Once a thermally safe scenario has been found, the associated current profile
can be used to calculate the available power. Thus, the investigation clearly shows that
considering the temperature development is necessary for an accurate, safe and maximized
performance SOP prediction.

4.2.2. Predictive Thermal Management

In addition to advanced state monitoring and prediction, detailed thermal models also
enable the specific control of the cooling system. Conventional cooling system approaches
for BEVs normally react to measured temperatures, e.g., at the cell terminals, and do not act
predictively to achieve target temperatures. There are already approaches in the literature
for novel BTMS that use model-based temperature prediction in order to react to varying
conditions [10,11]. At this point, we add another approach to the existing ones, which
relates to the thermal pre-conditioning of batteries. In their work, Collin et al. [50] propose
to elevate the battery system temperature in order to enable an optimized fast charging. To
meet this goal, the future cooling regulation does not only depend on static temperature
rules but also needs to be adjusted.

For the same BEV driving scenario as for the SOP prediction, the step-wise cooling
system behavior (see Figure 3) and the resulting terminal temperature are shown in Figure 8.
The current profile, the related temperature increase and the cooling system behavior of
the target data are depicted in black until the end of fast charging at 3200 s.
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Figure 8. Temperature estimation and predictive cooling system regulation based on ANN/TECM
thermal model integrated with an observer in a BEV environment.

The models show comparable estimation behavior with good representation of the
transient temperature development. In both cases, the largest deviation arises at the
beginning of fast charging. The terminal temperature is underestimated for the initial
fast charging section with a maximum deviation of 0.7 K for the TECM and 0.5 K for the
NARX. Afterwards, the NARX converges to the target temperature more quickly, while the
TECM requires the period towards the end of charging. The increased deviation for the
terminal temperature estimation compared to the core temperature estimation in Figure 7
corresponds with the findings from the validation. Subsequent to the fast charging, the
models are used to predict the temperature for the basic cooling system behavior of Figure 3
for continued highway driving after fast charging stops.

Here, it should be mentioned that a key aspect of thermal prediction is load prediction.
However, the prediction of the future current is a stand-alone field of current research
and, for example, performed based on navigation profiles and geographical data [70].
In this work, we assume that the future vehicle velocity profile on a motorway contains
comparable elements in the same order of magnitude as the previous highway driving.
Based on this velocity profile and a simplified vehicle model, a load profile is calculated.
In a real BEV application, this simple prediction can be optimized, e.g., by navigation
information or driver behavior models.

It can be seen in the case of both models, that the present terminal temperatures
lead to the activation of the cooling system and a transient temperature decrease towards
30 °C. However, if the destination is the next fast charging stop, raising the temperature
towards the end could be more suitable [48]. Using the thermal models, in a simple
optimization procedure, temperature development during dynamic driving towards the
next charging stop can be predicted while testing different pre-conditioning timelines. The
resulting differences in the transient temperature development of the core temperature
are visualized in gray color. Using the simple battery cooling model in combination with
model-based temperature prediction, the resulting temperature at the next charging station
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can be increased. In such a case, the range of the variation depends on concrete application,
including the thermal mass of the battery, the ambient temperature and the distance to
the next charging stop. It is shown that, depending on the respective cooling step and the
switching time, the resulting cell temperature can be varied. Using thermal models for
predictive thermal management in applications of this type has several advantages. The
favored target temperatures can be reached precisely. In addition, unnecessary cooling
power to temporarily reduce the cell temperature is available as electrical energy [44]
and, therefore, extends, e.g., the vehicle’s range. Furthermore, the thermal conditions for
fast charging procedures can be optimized to improve the performance and extend the
lifetime [50].

A possible enhanced BTMS needs to evaluate and weight the different influencing
factors, e.g., battery temperature, future driving state and effect on driving range, to
choose an optimal strategy for cooling system power regulation. In contrast to the already
described approaches in the introduction, monitoring the cells’ individual temperatures
also enables a new degree of freedom for reacting to maximum temperatures inside the
battery system and specific cooling regulation.

5. Conclusions

In this work, a physics-based TECM and a data-driven ANN model have been im-
plemented as thermal models for a prismatic li-ion cell equipped with electronics for the
application of intelligent battery systems. For the TECM, a lumped thermal model of
the cell has been combined with a lumped electronics model. The novel ANN approach
with a NARX network is implemented with the same model interfaces as the TECM to
fit into an electro-thermal model framework for a BEV application. Both models are
parametrized/trained with datasets based on a reference hardware setup of our previous
work [19]. Subsequently, the model behavior is validated and several applications of
temperature estimation and prediction are investigated. The following conclusions can
be made:

• The temperature estimation of both modeling approaches is in good accordance with
the reference temperatures for multiple locations. Thereby, the RMSE is 0.23 K for
the TECM and only 0.08 K for the ANN for a dynamic BEV driving cycle. Thus, for
the first time, thermal models are presented, that are able to represent the thermal
interactions in novel cell assemblies for intelligent batteries. The detected cell internal
temperature differences of 4 K confirm the need of cell level thermal modeling.

• Comparing physical-based and data-driven modeling, the advantages of the data-
driven ANN lie in its high accuracy and fast computation time. The TECM offers
advantages in parametrization and the flexibility of the configuration, since it does
not need to be trained with target data. Since both models reveal adequate estimation
results, the selection depends on the application of intelligent batteries.

• In addition to thermal state estimation, thermal models in combination with the
present model framework enable prediction functionalities for a BTMS. The informa-
tion base for SOP prediction can be enlarged through the consideration of the thermal
state. As a result, the thermal safety limits are respected and the available short-term
power is maximized.

• In a second prediction application, predictive cooling system regulation is presented.
Thereby, pre-conditioning for special BEV applications, e.g., fast charging, for maxi-
mizing the BEV energy efficiency and aging conditions is possible.

The focus of future work is on the development and optimization of the corresponding
algorithms for SOP prediction and advanced thermal management functionalities and
related verification on an intelligent battery system hardware.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BEV Battery Electric Vehicle
BMS Battery Management System
BTMS Battery Thermal Management System
CFD Computational Fluid Dynamics
EV Electric Vehicle
ECM Equivalent Circuit Model
FF Feedforward
FEM Finite Element Method
li-ion lithium-ion
LM Levenberg-Marquardt
MSE Mean Squared Error
NARX Nonlinear AutoregRessive with eXogeneous input
NMC Nickel-Mangan-Cobalt-Oxide
OCV Open Circuit Voltage
ReLU Rectified Linear Unit
SOC State-Of-Charge
SOP State-Of-Power
TDL Tapped Delay Line
TECM Thermal Equivalent Circuit Model
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Abstract: Due to the increasing demand for battery electric vehicles (BEVs), the need for vehicle
battery raw materials is increasing. The traction battery (TB) of an electric vehicle, usually a lithium-
ion battery (LIB), represents the largest share of a BEV’s CO2 footprint. To reduce this carbon footprint
sustainably and to keep the raw materials within a closed loop economy, suitable and efficient
recycling processes are essential. In this life cycle assessment (LCA), the ecological performance of a
waterjet-based direct recycling process with minimal use of resources and energy is evaluated; only
the recycling process is considered, waste treatment and credits for by-products are not part of the
analysis. Primary data from a performing recycling company were mainly used for the modelling.
The study concludes that the recycling of 1 kg of TB is associated with a global warming potential
(GWP) of 158 g CO2 equivalents (CO2e). Mechanical removal using a water jet was identified as
the main driver of the recycling process, followed by an air purification system. Compared to
conventional hydro- or pyrometallurgical processes, this waterjet-based recycling process could be
attributed an 8 to 26 times lower GWP. With 10% and 20% reuse of recyclate in new cells, the GWP of
TBs could be reduced by 4% and 8%, respectively. It has been shown that this recycling approach can
be classified as environmentally friendly.

Keywords: lithium-ion battery; traction battery; waterjet-based recycling; direct recycling; life cycle
assessment; global warming potential

1. Introduction

Since the development of lithium-ion batteries (LIBs) in the 1970s, and due to the
exclusive attributes of a long lifespan and high energy capacity, LIBs have grown to be
important in the field of portable electronic devices [1,2]. In 2015, at least 5.6 billion LIB
cells were traded globally [3,4], and the market size of LIBs has been predicted to grow
by another 12% from 2016 to 2024, achieving a market value of USD 56 billion by 2024 [3].
Due to their significantly higher energy density, economic, and ecological advantages over
other cell technologies, LIBs are particularly suitable as traction batteries, and therefore are
predestined to be used in electric vehicles. The shift from internal combustion engines (ICEs)
to e-mobility is expected to lead to even greater increases in registrations of electrically
powered vehicles in the coming years. Kosai et al. claimed that, by 2050, up to 56 million
battery electric vehicles (BEVs) are expected to be registered, 28 times as many as in 2016,
which increases the demand for LIBs significantly [5].

After reaching their end of life (EOL), because they become hazardous materials in
the waste stream of the environment, EOL LIBs need to be managed responsibly [6,7]. In
Europe, between the years 2013 and 2014, the LIB market reported a total consumption
of 65,500 tons of LIBs [8], while only about 1900 tons was recycled in the same period [3].
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In another report, Wang et al. [9] claimed that the number of waste LIBs in vehicles that
would need to be recycled, in an optimistic case, would be 6.76 million in 2035. Through a
combination of innovations in recycling technologies and proactive regulations regarding
collection and disposal of spent batteries, a significant fraction of the materials required for
production of new LIBs could be supplied by EOL LIBs [10]. With the recently published
proposal concerning batteries and waste batteries, the European Union (EU) aims to
boost the circular economy of the battery value chain to reduce the environmental impact
of batteries. To achieve this, the EU is striving for directives that set minimum rates
for the recycling of EOL batteries and usage of recyclate within the production of new
batteries for the EU market [11]. Therefore, the development of applicable technologies
for LIB recycling, to recover particularly the elements that are low in the earth crust,
are necessary [9]. Another aim of recycling LIBs is to keep hazardous materials from
entering landfills [12] and to close the loop of raw materials utilized in LIBs for long-term
sustainability and resource conservation [13]. In other words, since recycling processes
enable internal material flows, it is considered to be a fundamental aspect of the circular
economy [3].

Apart from reusing the batteries, recycling of LIBs can be categorized into the fol-
lowing three different technologies [9], used alone or in combination—namely, hydromet-
allurgy (e.g., retrieve technologies); pyrometallurgy (e.g., Umicore); and direct recycling
(example—On to tech) [10,14,15], as shown in Figure 1. The pretreatment process includes
discharging by immersing in a salt solution (e.g., NaCl), dismantling, which must be done
in a sealed environment for safety reasons, and separating of damaged spent LIBs [9]. The
hydrometallurgy route involves the leaching of valuable elements from a solid matrix into
ions formed in a solution of inorganic or organic acid [16] and, subsequently, recovery of
these metals by selective separation, electrochemical deposition, solvent extraction [16] into
mono-metal material, or a precursor for the fabrication of new electrode materials [9,17].
Before hydrometallurgical treatment, the spent LIBs usually get shredded for an easier
leaching procedure. The pyrometallurgical route is a smelting process which concentrates
metal species such as Co, Cu, and Ni in the molten phase, while other constituents such
as Li, Al, Si, Ca, and some Fe in the slag phase [9,14]. In order to obtain pure metals
or metal salts, the slags are processed using the hydrometallurgical technique. In direct
recycling, battery material is recovered without breaking it down into its components [6,18].
The aim is to reuse this material in new cells with minimal effort and without additional
processes [6]. The most important battery material for direct recycling is considered to
be the cathode material, as it is usually the most valuable component of an LIB cell with
33% of the total cost [19]. The most important question, however, is whether the recovered
material can have comparable quality properties to virgin material [6]. While recovered
material from direct recycling methods might not perform the same as primary material,
however, compared to the hydrometallurgy and pyrometallurgy, direct recycling methods
appear to be more environmentally friendly with lower amounts of emissions and energy
consumption [10].

Figure 1. Battery recycling routes [20].
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Beside these, recently, there have been other methods for battery recycling reported.
These methods, include cathode healing, which combines two simple steps of hydrothermal
processing of the spent cathode material followed by heat treatment in a cost-effective
way [21], deagglomeration of polyvinylidene fluoride binder from cathode composite,
which is based on a degree of surface hydrophobicity using the froth flotation method [14],
and an oxalic coprecipitation method, which is a closed-loop regeneration method for
LiNi5Co2Mn3O2 material of spent LIBs using mixed acid leaching, oxalate co-precipitation
and solid-phase reaction [16].

Sieber et al. [17] claimed that, as we move into the future, resource- and energy-
inefficient hydrometallurgy and pyrometallurgy recycling methods must be avoided. Since
there are no reports on waterjet-based battery recycling processes to the best of our knowl-
edge, the here-presented procedure is new in the field of battery recycling. This new
approach involves a waterjet-based direct recycling method (or functional recycling) with
minimal use of chemicals and energy for separation of the cathode-coating layer, which
contains LiNixMnyCozO2 (NMC), carbon black, and organic binder from the Al substrate
foil, while preserving their chemical, physical, and morphological characteristics [17]. This
recycling process does not use energy-intensive shredding or melting down of the cells, as
is otherwise used in conventional recycling processes for LIBs. Instead, the process focuses
on dismantling the battery and the cell itself as far as possible. The separated electrode
then goes on a conveyor belt through a water jetting process, whereby the electrode coating
is separated from the collector foil by a high-pressure water jet. The intention of this
direct (or functional) recycling approach is to add recovered battery-grade cathode material
to new NMC active material up to a certain proportion. Doose et al. [22] claimed that
recycling processes must be flexible and adaptable to future cell chemistry and production
technologies. Whether or not this waterjet-based recycling can meet these criteria, and can
be used for production of new cells, must be examined.

In this study, this new waterjet-based direct recycling approach was ecologically
evaluated with the help of a life cycle assessment (LCA) to evaluate its potential eco-
logic performance. The structure of this LCA is divided into four sections according to
the standards DIN EN ISO 14040:2006 [23] and ISO 14044:2006 [24]—the objectives and
methodology of the study, life cycle inventory (LCI), life cycle impact assessment (LCIA),
and life cycle evaluation.

2. Objectives and Methodology of the Study

2.1. Objective of the Study

In November 2019, the joint project “Industrial Disassembly of Battery Modules and
E-Motors to Secure Economically Strategic Raw Materials for E-Mobility (DeMoBat)” [25]
was approved by the government of Baden-Wuerttemberg in Germany. The aim is, inter
alia, to investigate the feasibility of a waterjet-based recycling process for traction batteries
(TBs), to explore the limits of possible admixtures and to identify the potentials for reuse in
the TB manufacturing process. Part of this project is to assess the environmental impacts of
such an approach. Therefore, we modelled a waterjet-based recycling method for TBs to
create an LCA, as well as to be able to draw conclusions about the environmental impacts
associated with the recovered cathode coating. Furthermore, comparisons with indirect
recycling processes should be made where possible, as well as to investigate possible
impacts on new cathode coatings through different admixtures. The focus of this study
is primarily based on the impact category of the global warming potential (GWP), which
represents an excerpt from a complete LCA.

2.2. Methodology of the Study
2.2.1. Product Sustainability Software: GaBi

For modelling the LCI and calculating the LCIA, the GaBi product sustainability
software tool from Sphera Solutions, Inc. (Chicago, IL, USA) with version 10.0.0.71 and the
professional database was used. With the help of GaBi, the preparation of the LCI and the
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determination of the LCIA was significantly simplified. After all processes were modelled,
the desired method of impact assessment was selected from various available methods.
GaBi assigned the impact indicator values taken from the LCI for the selected categories,
calculated the corresponding values, and displayed the results [26].

2.2.2. Function and Functional Unit

The function of the system is the recovery of the cathode material of TBs according to
the described waterjet-based recycling process. Therefore, the functional unit is defined
as the recycling of one kilogram of TBs and the associated reference flow is defined as the
path of the cathode material from one kilogram of TBs. The amount of cathode material
depends on the battery composition. In this study, the amount corresponds to 171 g of
NMC cathode material.

2.2.3. System Boundaries and Cut-Off Criteria

Figure 2 shows the system boundaries which define the valid assessment space for the
LCA of the waterjet-based TB recycling. This system represents a gate-to-gate constellation,
because only the production of the recyclate cathode material is considered [27]. Impacts on
an environmental balance can be distributed as a result of by-products recovered through
a recycling process, such as metals from the battery housing and others. Those impacts
are resulting from primary extractions, which could be avoided for the materials of those
by-products. Therefore, credits can be distributed to this extent, which usually leads to a
positive impact on the environmental balance [27]. In this LCA, by- products of the battery
are not further treated or evaluated. Since no credits are to be collected for the LCIA for the
resulting by-products, their further treatments are outside the system boundary. The same
applies to transport and waste treatments. The remaining electrical energy from the TBs is
not considered, and therefore leaves the system boundary. Thus, the system boundaries
only include the environment of the battery recycling plant. The geographical boundaries
of this system are defined as Germany. The time frame of the study is set to the publication
date of this study. For this study, in terms of mass, energy, or environmental relevance, no
cut-off criteria are set.

Figure 2. System boundaries of the life cycle assessment (LCA) for the waterjet-based direct traction batteries (TBs) recycling
process. Processes outside of the system boundary are not included in this study.

2.2.4. Method of Impact Assessment

The LCI of this ecological study is evaluated according to the CML2001 method [28].
The CML method is an impact-oriented approach that assigns the data of the LCI to the
environmental impacts. This multidimensional approach aims at the direct material and
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energetic allocation of all impact flows between the environment and the production
system [29]. In this study, only the impact category of the GWP, measured in kg CO2
equivalents (CO2e), is discussed, and evaluated.

2.2.5. Types and Sources of Data

For modelling, various LCA data sources such as primary and secondary data were
used. For the energy demand and the amount of auxiliary and operating materials required,
primary data were available from the pilot plant in operation at the industrial partner’s site.
Generic data sets from the GaBi balancing software were used for modelling the auxiliary
and operating materials as well as the energy supply. For material quantities, for which no
primary data were available, reasonable assumptions were made.

To represent the material flows of the individual battery components, data on the
battery composition were required; the material composition of the battery was taken
from the LithoRec II study [30], a generic battery composition, which was developed by
a consortium of various battery manufacturers and other experts within the framework
of that project. This battery composition represented the average battery composition
commonly used at that time and is shown in Table 1. As this battery composition was
also used in other projects, the comparability of the different recycling approaches was
simplified [30].

Table 1. Generic battery composition created by expert panels within the LithoRec II study. The
battery composition is intended to represent an average traction battery at this time. The battery
contains LiNixMnyCozO2 (NMC) cells and LiPF6 as the electrolyte [30].

Complete Battery 100%

Cathode 25.2%

Manganese 7.4%

Lithium 1.2%

Cobalt 1.0%

Nickel 2.0%

Aluminium 6.2%

Oxygen 5.5%

Others 1.9%

Anode 20.4%

Separator 4.4%

Electrolyte 9.6%

Cell housing 5.1%

Pack and Module 34.7%

Others 0.6%

3. Life Cycle Inventory (LCI)

3.1. Waterjet-Based Recycling: Process Description

This process for recycling TBs is a direct recycling process that aims to recover the
electrode coatings of a lithium-ion cell and is currently being practiced in a pilot plant of the
industrial DeMoBat project partner Erlos GmbH. In addition to LiNixMnyCozO2 (NMC)
cells, other cell chemistries with liquid electrolytes are processable with this recycling
approach. The recycling process is described below using an NMC cell with a liquid
electrolyte. The stoichiometry of the cathode coating is irrelevant and the NMC material
recovered by this approach should subsequently be able to be used directly to produce
new TBs. To clarify whether this is possible or not is currently being investigated as part of
the DeMoBat project. The graphite of the anode can also be recovered, but in this case is

279



Batteries 2021, 7, 29

not. Due to the usual cathode material recovery rate of at least 90%, or usually higher, this
value has been used for this LCA. The other battery components can be recovered almost
completely, except for the electrolyte, as this is not treated and therefore not recovered. In
Figure 3, the waterjet-based recycling process flow is illustrated with its material input
flows. Material flows leaving the process are not shown, due to the defined system
boundary. The waterjet-based recycling process can be divided into six process steps as
shown in Figure 3, which shows the energy, compressed air, and cathode material flows.
Most of the process steps are automated and some are carried out manually. The entire
recycling process requires 0.486 MJ of electrical energy for processing 1 kg of TBs.

Figure 3. Process flow chart with material input flows and route of the recyclate, with 1 kg of traction batteries as the
initial value.

When delivered, the TBs are opened manually and completely deep discharged. In
this step, electrical energy recovered by the deep discharge can be fed into the production
grid. To minimize the dangers posed by TBs, they remain short-circuited for 24 h.

After the step of complete deep discharge, the TBs are manually dismantled to the cell
level and the separated components, such as the battery housing, the cooling system, the
electric and electronics are fed into the usual recycling channels. The energy required for
dismantling is low, as it is largely carried out manually at the present time. After removal of
the modules, the cells can be separated individually from the battery modules, and, due to
the manual disassembly, this step is not energy-intensive. The required energy is allocated
to pneumatic, electric power tools and the production environment. Since the compressed
air requirement cannot be divided more concretely, it is divided equally between the two
sub-process steps of dismantling, as shown in Figure 3. Then, these cells are automatically
opened and further disassembled using different methods, depending on the cell typ. In
pouch cells, the electrodes and the separator are usually stacked, while in prismatic cells, a
stack of cathode, separator, and anode is rolled up. This step is mainly automated. During
the cell disassembly, there is no direct treatment of the electrolyte and therefore, some of
the electrolyte is trapped in the activated carbon filter.

Since the saturated activated carbon filter is not desorbed in the pilot plant, these
materials are replaced regularly. The gases obtained through the opening of the cell, the
water jetting, and the drying are captured by a permanent suction system, filtered by
activated carbon, and released into the air.
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After separation of these components, the anode and cathode are each fed separately
into the electrode decoating process. Separating the anode and the cathode significantly
increases the purity of the recyclate and eliminates the need of inerting the process, and
therefore leads to energy and cost savings. The decoating of the electrodes is primarily
a mechanical removal of the electrode coatings with the aid of a water jet, where the
anode and cathode are passed through this process step separately, and this is described as
water jetting.

High-pressure water jetting processes are being used more and more [31]. The pos-
sible applications include cleaning processes, decoating processes, cutting processes and
others [32]. When the water flows through the nozzle, the pressurised flowing water is
accelerated. The radius of the water jet becomes larger the further the nozzle is positioned
from the target. In addition, the water jet speed decreases with increasing distance from
the nozzle. This enables using waterjet processes for various applications. For cutting
processes using a waterjet, the distance between the nozzle and the target workpiece is
kept small, while decoating processes are carried out at a greater distance. This is because
as the distance to the workpiece increases, the difference in jet speed between the center of
the water jet and the outer edge of the water jet decreases. In this way, a more consistent
removal result can be achieved over a larger area [32].

For this process step, the entire electrode is placed on a conveyor belt, which moves at
a constant speed through a washing system. In this washing system, a water jet removes
the coating from the cathode and anode collector foil. This process water circulates within
the washing system and is rarely exchanged, which is why the total water requirement can
be classified as low. During this process, the coating material sediments in the catch basin
of the washing system can be recovered by filtration. No special temperature is required for
water jetting of the electrodes, therefore, this process step is carried out at room temperature.
The remaining electrolytes in the coatings of anode and cathode are washed out during the
water jetting, thus, they mix with the process water. Those remaining electrolytes cause
the process water to become acidic, which is neutralized by adding sodium hydroxide
(NaOH). Since the pH value of process water is kept in a slightly basic range, the amount of
NaOH required depends on the pH value of the process water. This process step is highly
automated, and it is the most energy-intensive process step in this recycling process. In
addition to the electrode coating, the water jetting process also recovers the carrier foil,
which can then also be specifically recycled.

Then, the recovered electrode material is dried in an oven for 3 h. Dust produced in
the process step is also treated by an air purification system. Packaging and sampling are
the final steps in the process chain which require the least amount of energy. In this step,
the recyclate is ground to a desired particle size and examined according to its composition.
The amount of recovered cathode or anode coating depends mainly on the processed TBs,
as there are differences in coating thickness and resistance to water jetting.

3.2. Greenhouse Gases and Cumulative Energy Consumption

Figure 4 shows the LCI of the described process flow with a selection of greenhouse
gases, particulate matter (PM10), the cumulative energy consumption, and the water
consumption, each subdivided into the different process steps. A cumulative energy
input (primary energy demand from regenerative and non-regenerative resources) of
3.3 MJ is calculated. As shown in Figure 4, water jetting and air purification are the
most energy-intensive process steps, and they are also the biggest emitters of NMVOCs,
methane, carbon dioxide, and nitrogen oxides. A closer look at the water jetting step reveals
that both NaOH (50%) and the necessary electrical energy are the biggest contributors
to gas emissions. For the entire recycling process, a water consumption of 4.6 L could
be determined, and water jetting has the largest share of water consumption among all
process steps, with approximately 3 L. Although this recycling approach is a waterjet-based
process, the water consumption required for water jetting plays only a minor role, with
0.909 L. The remaining water consumption is mainly attributable to the provision of electric
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energy and the NaOH. The relatively high impacts of the air purification process step for
many emissions are mainly attributable to the filter material (activated carbon), while the
necessary energy consumption is less decisive. For the nitrous oxide and fluorinated and
chlorinated hydrocarbons, more than 50% of the emitted gas belong to the water jetting
step, because of its high energy consumption. The second largest contributor is dismantling,
which is due to the high energy requirements and the necessary protective equipment, such
as gloves and respiratory protection, as shown in Figure 4. Since sampling and packaging
only require a very small amount of electrical energy, this step produces up to 1% of the
emitted gases, which is the lowest share as compared with other steps.

Figure 4. Life cycle inventory (LCI) with selected emissions and cumulative energy consumption of the waterjet-based
recycling with the functional unit of 1 kg traction batteries. Amounts smaller than 1% are not shown.

4. Life Cycle Impact Assessment: Global Warming Potential (LCIA-GWP)

A GWP of 158 g CO2e is calculated for the entire recycling process of 1 kg of TBs. This
implies that the recovery of 171 g of NMC cathode material with the recycling process
described here results in the abovementioned GWP (158 g CO2e) or 924 g CO2e for recycling
of 1 kg NMC active material with the battery composition shown in Table 1. Figure 5 shows
the LCIA, and thus presents the GWP of the entire process for 1 kg of the TBs. The largest
share of the GWP is attributable to the water jetting step, which emits 76 g CO2e for the
defined functional unit and thus causes 48% of the total process and the lowest share of
the GWP, which is 1 g CO2e (<1%), belonging to the packaging and sampling step. The
water used for water jetting contributes only a small share (approximately 1.5 g CO2e or
2% of the water jetting step). Two other factors, the electrical energy required for water
jetting the electrodes and NaOH (50%), contribute significantly to the GWP with shares of
30 and 41 g CO2e, respectively. In the case of air purification, which is the second largest
emitter of greenhouse gases with 27% of the whole process, the required electrical energy
causes approximately 3 g CO2e (7%) of the GWP, while the remaining 40 g CO2e (93%) is
due to the filter medium, which is the activated carbon. The drying oven is powered by
electricity, which is why this is fully responsible for the GWP in this process step, with a
share of 9% of the whole recycling process. In the packaging and sampling step, there are
no emitters of greenhouse gases, except the electrical energy, which leads to a share of 1%
of the total process.
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Figure 5. Life cycle impact assessment (LCIA) as the breakdown of the global warming potential
according to the process steps of the waterjet-based recycling method for 1 kg of traction batteries.

5. Life Cycle Evaluation

5.1. Comparison between Systems

It is reasonable to compare this waterjet-based recycling approach with the recycling
processes presented by Buchert et al., namely LithoRec II, EcoBatRec and LiBRi [30,33,34],
however, the comparability of the systems should be ensured beforehand or the differences
should be considered. By considering the scope definitions, because of differences in the
system boundaries, it is difficult to compare the different systems. One of these differences
is based on the studies by Buchert et al. [30,34] that evaluated material flows which leave
the system boundary via credits, which was deliberately omitted in this study. Table 2
shows the pure direct debits from the cited studies. It is worthwhile mentioning that,
in this study, transportation was considered, and therefore, debits for transportation of
TBs are not included in the values presented here. More important than the comparison
of the abovementioned methodological framework conditions, is the function of these
recycling approaches. This is because the recyclates from the LithoRec II, EcoBatRec and
LiBRi processes are not comparable with the recyclate from the recycling process presented
here. By comparing the LithoRec II process and this waterjet-based recycling process, the
differences are clearer. As described in Section 3.1, this waterjet-based recycling process
separates cathode coating from the rest of the cell and aims to proportionately add the
obtained recyclate directly to a new cathode coating. In contrast, the products of the
LithoRec II process are nickel, manganese and cobalt in a sulphate solution, and lithium as
lithium hydroxide [30], which can be used again for cathode coating production.

Table 2. A comparison of the global warming potential (GWP) and the cumulative energy consump-
tion of different recycling approaches using the functional unit of 1 kg of traction batteries. The
system boundaries are adjusted to each other.

Studies GWP Cumulative Energy Consumption

LiBRi (indirect recycling) [33] 4.248 kg CO2e 61.3 MJ

EcoBatRec (indirect recycling) [34] 1.282 kg CO2e 14.5 MJ

LithoRec II (indirect recycling) [30] 2.133 kg CO2e 35.5 MJ

DeMoBat (direct recycling) 0.158 kg CO2e 3.3 MJ

Therefore, the comparison in Table 2 must be considered carefully and is not intended
to be a benchmark, but rather to highlight the possible advantages of a direct recycling
process as compared with the indirect recycling route. Buchert et al. [30,33,34] focused
on indirect battery recycling that used pyrometallurgical or hydrometallurgical processes
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to recover the raw materials of the cathodes, which contributed the most to the GWP
of these recycling processes. In the LithoRec II process, hydrometallurgical processing
caused about 70% of the total GWP of this process, while in the LiBRi process, the pyromet-
allurgical process step and the slag preparation caused 77% of the total GWP [33]. The
biggest driver in the EcoBatRec study was mechanical treatment with 33%, however, the
product of the EcoBatRec recycling approach required further treatment, for example by
the hydrometallurgical process as used in the LiBRi approach [34].

5.2. Comparison between Products

The benefits of this method of adding recovered battery-grade cathode material to the
new NMC active material up to a certain proportion are that almost the entire production
chain of new cathode coating can be avoided for this proportion, and furthermore, the
mining of primary raw materials is not necessary to this extent. While the DeMoBat
project determines whether such an approach is possible and, if so, up to what proportion
admixtures can be realised without having to record too great a loss of quality in the
product (new traction batteries), this study quantifies the possible savings for the GWP of
cathode coatings through this procedure.

Since significant production steps to produce cathode coating from primary materials
could be neglected, a comparison of the active material recycled in the way described here
with cathode coating from primary production is reasonable. Accardo et al. [35] claimed
that the stoichiometric composition of the NMC materials played a minor role for the
GWP, which was why, in this study, only the addition of recyclate to NMC111 material is
illustrated. Dai et al. [36] reported a GWP of 16.1 kg CO2e for 1 kg of NMC111 cathode
material [36], which is 100 times higher GWP potential than the cathode material (recyclate)
obtained through the waterjet-based battery recycling. The savings that can be achieved by
blending different mass fractions of recyclate to the primary cathode material are described
in Figure 6, which shows that blending 10% and 20% recyclate can save 9.3% and 18.6%
CO2e, respectively. Due to the very low GWP of the recyclate, the GWP of the cathode
material can be reduced by approximately the same percentage as the recyclate content.
The NMC111 cathode material studied by Dai et al. [36] has a share of about 40% in the
GWP of the entire TB, which makes it possible to estimate the impact of the admixture for
the GWP of the entire battery. Consequently, the GWP of a traction battery with NMC111
cells can be reduced by 4–8% by blending the abovementioned proportions. While Accardo
et al. [35] illustrated that there are no significant differences in the GWP of different NMC
compositions, at the same time, their study also showed that NMC111 material has the
highest GWP, which suggests that the savings shown in Figure 6 represent the highest
possible savings among the cathode coatings NMC111, NMC622, and NMC811.

Figure 6. Impact of recyclate admixture in different proportions on the GWP of NMC111 cathode
material and the production stage of a traction battery.
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6. Conclusions

In this study, a new waterjet-based recycling process for traction battery cells is
presented. This direct recycling process detaches the cathode material of a battery cell from
the carrier foil with the aid of a water jet. An advantage of this procedure over indirect
approaches is that the recovered recyclate can be mixed with new cathode material directly,
and therefore energy-intensive manufacturing steps for the admixed fraction can be saved.
In addition, the cells or modules are not shredded or melted down, as in conventional
recycling processes, but are dismantled to the cellular level, and therefore the pure battery
components can be separated by type.

Furthermore, the waterjet-based recycling approach was ecologically evaluated with
the help of a life cycle assessment (LCA). The aim is to evaluate its potential ecological
performance as compared with indirect recycling approaches and virgin cathode material
with the focus on global warming potential (GWP). The results from this study provide an
initial assessment of the ecological performance of this recycling approach. A comparison
with indirect recycling processes shows that the GWP associated with indirect recycling of
traction batteries (TBs) can be reduced by a factor up to 26 through substitution with this
direct recycling approach. Compared to cathode coating from production with primary raw
materials, the recyclate obtained through the waterjet-based recycling process shows 100
times less GWP. Consequently, the GWP of new battery cells can be significantly reduced
through admixture of recyclate obtained through the waterjet-based recycling process.
The data basis of the water-based recycling process for the LCA is consistent, as the data
are provided first-hand from the recycling company. However, a critical review of the life
cycle analysis in this study shows that with the focus on recycling the cathode material, the
further battery components are not included. They should be added to the assessment scope
in upcoming LCAs to gain a holistic picture of the ecological performance of this process.

From an ecological point of view, the waterjet-based recycling approach can be clas-
sified as more environmentally friendly than conventional hydro- or pyrometallurgical
recycling processes. Due to the effective ecological performance of this recycling approach,
the technical limits should be explored and tested. It also needs to be clarified whether
the process can be used for future cell chemistry to fully exploit the given potential of this
recycling approach in the long term.
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Abstract: Although titanium dioxide has gained much attention as a sodium-ion battery anode
material, obtaining high specific capacity and cycling stability remains a challenge. Herein, we report
significantly improved surface chemistry and pseudocapacitive Na-ion storage performance of TiO2

nanosheet anode in vinylene carbonate (VC)-containing electrolyte solution. In addition to the
excellent pseudocapacitance (~87%), the TiO2 anodes also exhibited increased high-specific capacity
(219 mAh/g), rate performance (40 mAh/g @ 1 A/g), coulombic efficiency (~100%), and cycling
stability (~90% after 750 cycles). Spectroscopic and microscopic studies confirmed polycarbonate
based solid electrolyte interface (SEI) formation in VC-containing electrolyte solution. The superior
electrochemical performance of the TiO2 nanosheet anode in VC-containing electrolyte solution is
credited to the improved pseudocapacitive Na-ion diffusion through the polycarbonate based SEI
(coefficients of 1.65 × 10−14 for PC-VC vs. 6.42 × 10−16 for PC). This study emphasizes the crucial
role of the electrolyte solution and electrode–electrolyte interfaces in the improved pseudocapacitive
Na-ion storage performance of TiO2 anodes.

Keywords: electrolyte; additive; interface; pseudocapacitance; intercalation; energy storage; sec-
ondary battery; sodium-ion

1. Introduction

Lithium-ion batteries (LIBs) are widely used in the current generation of portable
electronics, electric vehicles, and smart grids coupled with renewable energy sources [1–4].
Despite their high energy density, moderate power density, and good cycle life, there
are concerns regarding the future large-scale implementation of LIBs due to the limited
availability of expensive ($17,000 per metric ton) lithium resources, where market demand
will be up to two to six times extraction capacity in the next two decades [5,6]. Rechargeable
sodium-ion batteries (SIBs) are very attractive in this regard, due to the abundance of
inexpensive sodium resources [3,5,7,8]. Moreover, the similar electrochemistry and redox
potentials of lithium and sodium (−3.02 and −2.71 V vs. SHE, respectively), make it a
suitable candidate for efficient electrochemical energy storage [9–11]. However, the larger
size of Na-ions compared to Li-ions (1.02 and 0.76 Å radius, respectively) hinders their
intercalation in the most commonly used Li-ion battery anode material, graphite (interlayer
d-spacing of 3.4 Å) [1,12,13]. Shuttling of solvated Na-ions between individual electrodes
is also sluggish, leading to the poor rate performance and cycling stability of Na-ion
batteries [14]. Hence, numerous studies have focused on the development of alternative
high-performance anode materials [15–20].

Carbonaceous materials with large interlayer spacing, such as hard carbon, graphene,
and amorphous carbon have been widely investigated as anode materials [16,17]. How-
ever, these anodes exhibited low specific capacities, poor rate performances, and mediocre
cycling stability. Despite the high specific capacity of conversion (Co3O4, SnO2, Fe3O4,
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NiO, CuO, MnO2, etc.) and alloying type (Sn, Ge, Sb, etc.) anodes, rapid capacity fading
associated with huge volume changes make them less attractive for Na-ion battery applica-
tions [18–20]. Insertion type metal oxides, such as Nb2O5, Na2Ti3O7, TiO2, and Li4Ti5O12
are another class of Na-ion battery anodes [21,22]. Titanium dioxide (TiO2) has received
much attention among anode materials due to its high chemical stability, non-toxicity, abun-
dance, low volume change during Na-ion intercalation, and inexpensive nature [23–26].
Amorphous and different crystalline (anatase, bronze, rutile, etc.) polymorphs of TiO2
have been investigated as promising Na-ion battery anodes [7,27–30]. The existence of
2D intercalation channels in crystalline polymorphs make them superior to amorphous
TiO2 for Na-ion storage [4,9,31]. Hence, anatase TiO2 composed of TiO6 octahedra and
zigzag edges of the 3-D network have become the most studied polymorph [4,32]. Bronze
polymorph of TiO2 has recently attracted a lot of attention as a Na-ion battery anode due
to the presence of more open channels and layered crystal structure [29,33]. The Na-ion
intercalation kinetics’ dependence on crystal structure and orientation has also been proved
in recent studies [22,33]. Nevertheless, TiO2 anodes suffer from low electronic conductivity,
mediocre specific capacity, poor rate-performance, and low cycling stability [25,34].

Numerous strategies such as carbon coating, doping with other transition metal
ions, and the synthesis of different morphologies in the nanoscale have been established
for improving the Na-ion storage performance of TiO2 anodes [23,26,34]. Nevertheless,
these methods have only resulted in a trivial improvement of specific capacities and cy-
cling stabilities. Another advanced approach to improve the electrochemical performance
is to increase the diffusion independent pseudocapacitive-type Na-ion storage [14,21].
This surface/near-surface ion storage is independent of the electronic and ionic conductiv-
ity of the electrode material [21]. In addition to the excellent rate performance and cycling
stabilities, due to negligible structural changes during the charge–discharge process, high
specific capacities can also be achieved due to the synergy with diffusion limited Na-ion
storage [30,35]. Improved pseudocapacitance can usually be achieved by either precise
nanostructuring, or the formation of hybrids with carbonaceous materials. These ap-
proaches were recently demonstrated for enhancing the intrinsic (~4%) pseudocapacitive
Na-ion storage of TiO2 anodes [22]. For instance Chen et al. demonstrated the excellent
electrochemical performance of TiO2-nanosheets grown on RGO [36]. Our recent study
demonstrated the significantly improved pseudocapacitance of nanointerface engineered
anatase-bronze hybrid TiO2 nanosheets [9]. The formation of additional Na-ion diffusion
pathways, and efficient charge separation were responsible for the improved pseudocapac-
itance of these electrodes [37].

Solid electrolyte interface (SEI) characteristics are crucial in deciding the electro-
chemical performance, in addition to the physiochemical properties of an electrode ma-
terial [38,39]. Carefully engineered electrode–electrolyte interfaces can enable producing
batteries with superior energy/power densities and cycling stabilities [38,40]. Since SEIs
are formed as a result of electrolyte decomposition, the most appropriate approach to
engineer SEI properties is to tune the electrolyte composition [39,40]. Carbonate based elec-
trolyte compositions usually contain solvents such as ethylene carbonate (EC), propylene
carbonate (PC), ethyl methyl carbonate (EMC), etc., and a suitable sodium salt (NaPF6,
NaTFSI, NaClO4, etc.). Electrochemical decomposition of these electrolytes results in
the formation of an electrode–electrolyte interface composed of sodium alkyl carbonates,
sodium alkoxides, polyenes, polycarbonates, and inorganic salts [5,38,41,42]. Excess elec-
trolyte decomposition, due to the extreme reactivity of high surface area nanostructured
electrodes, can often lead to increased SEI formation, which deteriorates the Na-ion storage
performance [24,39]. Only a thin SEI layer capable of protecting the electrode from continu-
ous reaction with the electrolyte solution is necessary to maintain optimal Na-ion diffusion,
and a high degree of reversibility [43]. The chemical stability of SEI components is also
critical to prevent dissolution in the electrolyte solution, which can lead to continuous SEI
formation at the expense of electrolyte decomposition, and cell failure [38,41,44].
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Using electrolyte additives is one widely employed strategy to endow the SEIs with
superior electrochemical properties [40,44]. Vinylene carbonate (VC) is one of the most
commonly used electrolyte additives in the case of Li-ion batteries [41,44,45]. This has been
mainly aimed at flexible SEI formation in large volume expansion conversion/alloying
type anodes, and at preventing metal-ion leaching from high voltage cathodes [38,42,46].
The high electrochemical reactivity of VC results in the preferential formation of polymeric
SEIs, which prevent further reaction of the electrode material with the electrolyte solution
during extreme operating environments, including high temperature, and large volume
change [40,44,47]. Use of VC in the case of Na-ion batteries is also mainly aimed at improv-
ing the cycling stability of high capacity conversion/alloying type anodes [46]. However,
none of these studies investigated SEI composition tuning to enhance the pseudocapacitive
Na-ion storage of TiO2 anodes.

Herein, we report significantly improved pseudocapacitive Na-ion storage and sur-
face chemistry of TiO2 nanosheet anodes in VC-containing electrolyte solution. Vinylene
carbonate, a widely used Li-ion battery additive was chosen in this case due to its ability to
form SEIs with superior passivation and Na-ion diffusion properties. The presence of a
double bond is mainly responsible for the preferential decomposition/polymerization of
VC associated with the generation of polycarbonate based SEIs. Ultrathin, mesoporous,
and high surface area TiO2 nanosheets were selected as the preferred anode material in
this case, to improve the contact with the electrolyte solution and thereby amplify the
effect of the electrolyte additive on the surface chemistry and electrochemical performance.
The excellent electrochemical performance of TiO2 nanosheet anode in VC-containing
electrolyte solution is credited to the superior pseudocapacitance, resulting from the faster
Na-ion diffusion through the polycarbonate based surface film.

Figure 1 shows the different solid electrolyte interface (SEI) composition on TiO2
nanosheet anodes formed in vinylene carbonate (VC)-containing and VC-free electrolyte
solutions.

Figure 1. Schematic of the different solid electrolyte interface (SEI) composition on TiO2 nanosheet anodes formed in
vinylene carbonate (VC)-containing and VC-free electrolyte solutions.

2. Experimental

2.1. Materials Synthesis

TiO2 nanosheets were synthesized through a solvothermal method [48]. In a typical
synthesis, 4 mL of deionized water and 20% aqueous TiCl3 (99.99%, Acros Organics)
each were added dropwise in 50 mL of ethylene glycol (99.99%, Fisher Scientific) under
continuous stirring. The dark brown solution was then heated to 150 ◦C for 6 h in a
PTFE-lined stainless steel autoclave. The subsequent slurry was washed several times with
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deionized water and ethanol, and dried at 80 ◦C for 24 h to obtain bronze TiO2 (TiO2-B)
nanosheets. Hierarchical anatase-bronze hybrid TiO2 nanosheets were obtained by heat-
treating TiO2-B nanosheets at 400 ◦C for 2 h under air flow (heating and cooling rates of
10 ◦C/min).

2.2. Materials Characterization

X-ray diffraction (XRD) patterns of the samples were collected using a PANalytical
Empyrean high-resolution diffractometer equipped with a Cu-Kα X-ray source (λ = 1.5406 Å).
The average crystallite size of the TiO2 nanosheets was calculated using the Debye–Scherrer
equation (D = K λ/β cosθ), where D is particle size, K is the shape factor 0.9, λ is the
wavelength of the X-ray radiation of Cu-Kα, and β is the full width at half maximum
(FWHM) of the highest intensity peak. Room temperature Raman analysis was performed
with a Renishaw PLC Raman spectrometer equipped with a 532 nm Nd: YAG laser. Sample
damage was avoided by limiting the laser power to 5 mW. FTIR spectra of pristine and
cycled electrodes after washing with anhydrous acetonitrile (Sigma-Aldrich, 99.9%) were
recorded using a Thermo Scientific Nicolet iS50 in attenuated total reflectance (ATR) mode,
in the range of 4000–400 cm−1. FTIR spectra of pristine, cycled and non-washed electrodes
were also collected for comparison. Microstructural characterization of TiO2 nanosheets
was performed using a scanning electron microscope (FEI Helios NanoLab 600i) and high-
resolution transmission electron microscope (FEI Talos F200X FEG). X-ray photoelectron
spectroscopy (XPS) measurements were performed using a SPECS PHOIBOS 150 9MCD
instrument equipped with a Multi-Channeltron detector and a monochromatic X-ray
source of twin Mg anodes. The binding energies of elements in the XPS spectra were set
accordingly to the CC/CH component of the C 1s peak at 284.8 eV. For the quantitative
analysis of SEI, high-resolution core-level spectra were used after removing the nonlinear
Shirley background.

2.3. Electrochemical Measurements

A Vigor glovebox filled with high-purity (≥99.999%) Ar-gas (H2O and O2 < 1.0 ppm)
was used to fabricate 2032 type Na-ion half-cells. Metallic sodium foil was used for
the counter and reference electrodes. The separator consisted of Whatman glass fiber
(GF/B type) soaked in 1 M NaClO4 (≥98.0%, Sigma-Aldrich,), in propylene carbonate (PC,
99.7%, Sigma-Aldrich), and 3% vinylene carbonate (VC, 97%, Sigma-Aldrich). Working
electrodes contained 70wt.% TiO2 nanosheets, 20wt.% acetylene black (MTI Chemicals),
and 10wt.% of polyvinylidene fluoride (PVDF, MW: 600.000, MTI Chemicals) binder. N-
methylpyrrolidone (NMP, 99.9%, Aladdin Chemicals) solvent was used for preparing
the slurry containing the active material, conductive additive, and binder, followed by
coating on a 10 μm thick copper foil. Working electrodes consisted of an active material
loading of 2–3 mg/cmA Neware BTS4000 model multichannel battery tester was employed
to galvanostatically cycle the assembled half-cells between 0.01–3.0 V (vs. Na+/0) at
25 ◦C. Specific capacities were expressed, calculated according to the active material
weight, within a 3% error limit. A ZIVE SP1 electrochemical workstation was used for
electrochemical impedance spectroscopy (EIS) measurements (1 MHz to 10 mHz) and
for cyclic voltammetry (CV) measurements (0.1 to 100 mV/s). EIS measurements were
performed using a 3-electrode coin-cell configuration. Diffusion-controlled and diffusion-
independent processes were calculated according to Equation (1).

i(V) = k1v + k2v
1
2 (1)

k1v and k2v represent current contributions for diffusion-independent and diffusion-
controlled processes, respectively. k1 and k2 coefficients are the slope and intercept from the
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linear fit of the plot i(V) vs. v, respectively. Na-ion diffusion coefficients of TiO2 nanosheets
were determined using Equation (2).

D =
1
2

(
RT

AF2σwC

)2
(2)

where D is Na-ion diffusion coefficient at absolute temperature T, and R denotes the gas
constant. Faraday’s constant, Na-ion concentration in electrolyte, and electrode area are
represented as F, C and A, respectively. Warburg impedance, σw, was calculated from the
slope of the linear plot of Z’ vs. ω−1/2.

3. Results and Discussion

3.1. Synthesis and Characterization of TiO2 Nanosheets

Hierarchical TiO2 nanosheets composed of anatase and bronze nanocrystallites were
synthesized through a solvothermal method, followed by controlled heat treatment. Ethy-
lene glycol was used as solvent to facilitate nanosheet formation through the interaction of
OH groups of glycol with Ti-OH groups [48,49]. This resulted in the free energy change
of the TiO2 crystallographic planes and an associated anisotropic crystal growth [29,49].
Selection of a less reactive precursor TiCl3 was aimed at controlled hydrolysis and con-
densation, which is necessary for the nanosheet formation [50]. The uniform size/shape
distributions and ultrathin nature of the sheets were also assisted by the high viscosity of
ethylene glycol [9]. Reaction between TiCl3 and ethylene glycol resulted in the formation
of Ti-glycolate complex during the hydrothermal reaction. Further hydrolysis and conden-
sation formed TiO2 bronze nanosheets, which was transformed to anatase-bronze hybrid
nanosheets upon controlled heat treatment. Scanning electron microscopy (SEM) images
of the TiO2 nanosheets demonstrated their 2D morphology and (Figure 2a) hierarchical
flower like microstructure, composed of numerous petals. High-resolution transmission
electron microscopy (TEM) images (Figure 2b,c) of individual nanosheets verified the
existence of nanograins of 7 ± 2 nm size. Lattice spacings of 0.34 and 0.62 nm represent
the (101) and (110) planes of anatase and bronze phases, respectively. The presence of
well-defined anatase-bronze nanograin boundaries is also evident from these images [9].
This was anticipated, due to the mismatch between anatase and bronze crystal structures.
Nanograin boundaries present in metal oxides often result in unique physical/ chemical
properties, including excellent catalytic and electrochemical performance [51]. Nanoint-
erfaces present in these hierarchical TiO2 nanosheets can also act as additional sites for
Na-ion storage. Our previous study confirmed the advantages of such nanointerfaces for
enhancing pseudocapacitive type Na-ion storage [9].
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Figure 2. (a) SEM image, (b,c) TEM images, (d) X-ray diffraction pattern, (e) Raman spectrum, (f) N2 adsorption–desorption
isotherm, and pore size distribution (inset) of TiO2 nanosheets.

The X-ray diffraction pattern of the TiO2 nanosheets (Figure 2d) also confirmed the
coexistence of anatase and bronze polymorphs in the sample. Peaks designated as (101),
(004), (200), (105), (211), (204) corresponded to anatase phase (JCPDS 21–1272). Whereas,
(001), (110), (002), (310), (103), (003), and (204) signals represented bronze phase (JCPDS
46-1237) [9]. The anatase and bronze content, calculated from the relative intensity of the
(310) bronze peak and (004) anatase peak, was found to be 83% and 17%, respectively.
Particle size calculation, using a Debye–Scherrer equation also revealed the existence of
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7 ± 2 nm sized crystallites, which was in good agreement with the TEM results. A more
surface sensitive technique, Raman spectroscopy was used to further confirm the phase pu-
rity and uniform nanoscale distribution of the anatase and bronze polymorphs (Figure 2e).
Raman active modes were 144, 197, 399, 514, and 639 cm−1 for anatase, and 123, 145, 161,
172, 196, 201, and 259 cm−1 for bronze polymorphs [52]. These results and the quantifi-
cation of anatase/bronze content from high-resolution Raman spectra (Figure S1) were
also in line with the XRD results, confirming the coexistence and nanoscale distribu-
tion of anatase and bronze nanocrystallites [52]. The textural property investigation of
TiO2 nanosheets was performed through N2 adsorption–desorption analysis (Figure 2f).
This active material exhibited a high surface area of 106 m2/g. Type IV isotherms and H3
type hysteresis, characteristic of a mesoporous structure were identified in this case [13].
Mesoporosity was also evidenced by the higher steepness of the isotherm at high relative
pressure (P/P0 = 0.4–1.0) [13]. Barrett-Joyner-Halenda (BJH) method pore size distribution
measurements (Figure 2f inset) further confirmed the mesoporosity of the TiO2 nanosheets.
Such high surface area and mesoporosity of the active material are advantageous for im-
proved Na-ion storage due to the superior contact with the electrolyte solution, and the
possibility of pore/defect assisted pseudocapacitive type ion storage [49]. Thus, it can
be summarized that controlled hydrolysis and condensation of TiCl3 in ethanol water
mixture followed by calcination resulted in the formation of mesoporous hierarchical
anatase–bronze hybrid TiO2 nanosheets.

3.2. Electrochemical Performance of the TiO2 Nanosheets

The sodium-ion storage electrochemical performance of the TiO2 nanosheets was
investigated in VC-containing (PC-VC/NaClO4) and VC-free (PC/NaClO4) electrolyte
solutions. Second galvanostatic voltage profiles at different current densities (Figure 3a,b)
indicated the marginally superior specific capacities of the TiO2 nanosheet anodes in PC-
VC/NaClO4 electrolyte at various charge–discharge rates. First cycle coulombic efficiencies
of 36% and 44.5% were observed in the PC/NaClO4 and PC-VC/NaClO4 electrolyte
solutions, respectively (Figure S2). Irreversible capacity loss in the first cycle was attributed
to unavoidable electrolyte decomposition, and irreversible Na2O formation associated
with sodiation. Coulombic efficiency reached ~100% after the first charge–discharge in PC-
VC/NaClO4 electrolyte, demonstrating the complete formation of high quality SEI during
the first cycle. However, coulombic efficiency never reached ~100% on extended cycling in
PC/NaClO4 electrolyte, which indicated the formation of an SEI with inferior passivation
properties. This is also apparent from the consecutive cyclic voltammograms presented
(Figure 3c,d). The TiO2 nanosheet anodes exhibited a similar electrochemical response,
irrespective of the electrolyte composition. Three different electrochemical processes
constitute the first cathodic response in both systems. The high-voltage region between
2.25 and 0.7 V represents diffusion-independent pseudocapacitive Na-ion intercalation [53].
SEI formation resulting from the electrolyte decomposition could be identified from the
cathodic response between 0.7 and 0.5 V [9]. Lack of this signal in the second cathodic scan
confirmed complete SEI formation in the first charge–discharge cycle [32,54]. A low voltage
region between 0.2 and 0 V corresponded to the diffusion controlled Na-ion intercalation
into the anatase and bronze crystal structure [36]. These electrochemical responses were
in line with the plateau at low potential and sloping voltage profiles. Anodic response in
the voltage range of 0.2 V, and a broad signal between 0.5 and 2.25 V represented Na-ion
deintercalation through pseudocapacitive and diffusion dependent process, respectively.
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Figure 3. Galvanostatic voltage profiles of TiO2 nanosheet anodes in Na-ion half-cells containing: (a) PC/NaClO4, and (b)
PC-VC/NaClO4 electrolyte solutions at various current densities. Cyclic voltammograms of TiO2 nanosheet anodes at a
scan rate of 1 mV/s in (c) PC/NaClO4, and (d) PC-VC/NaClO4 electrolyte solution.

Sodiation over a wide voltage range was observed in this case, which was noticeably
different from the intercalation reaction at specific potentials for previously reported TiO2
anodes [27]. Distinct Na-ion storage was also evidenced by the marginally different
shape of the voltammograms compared to earlier reports [37]. Although cathodic signals
corresponding to SEI formation disappeared in the first cycle, there was a clear indication
of irreversibility and incomplete SEI formation during the consecutive cycles of the VC-
free battery, which was not observed in the case of the VC-containing Na-ion half-cells.
This was a clear indication of efficient SEI formation on the TiO2 nanosheet anodes in
the VC-containing electrolyte solution. Thus, disappearance of the SEI formation peak
in the first cycle and stable consecutive cycles confirmed the highly reversible Na-ion
intercalation reactions of the TiO2 nanosheet anodes in VC-containing electrolyte solution.
The galvanostatic rate performance of the TiO2 nanosheet anodes in both VC-free and VC-
containing electrolyte solutions is presented in Figure 4a. Second cycle specific capacities
were 247 and 219 mAh/g, respectively. Slightly higher capacities were identified in the case
of VC-containing electrolyte solution during the following cycles at 25 mA/g. Capacity
differences became more prominent at higher current densities, and also increased on
reducing the current density to 25 mA/g. This was a clear indication of the capacity fading
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of TiO2 anode in VC-free electrolyte, which was further verified during the extended
galvanostatic cycling (Figure 4b).

 

Figure 4. (a) Galvanostatic rate performance, and (b) cycling performance of TiO2 nanosheet anodes in PC/NaClO4 and
PC-VC/NaClO4 electrolyte solutions. Nyquist plots and equivalent circuit (inset) of TiO2 nanosheets in (c) PC/NaClO4 and
(d) PC-VC/NaClO4 electrolyte solutions.

Both cells demonstrated ~100% coulombic efficiency after 750 cycles at a current
density of 100 mA/g. Galvanostatic long-cycling performance of electrolyte solutions
containing different amounts of VC confirmed 3% as the optimum concentration (Figure S3).
For instance, at a current density of 100 mA/g, TiO2 nanosheet anode in Na-ion half-cell
configuration retained 90% of the initial capacity, with ~100% coulombic efficiency after
750 galvanostatic charge–discharge cycles. On the other hand, Na-ion half-cells containing
VC-free electrolyte solution retained only 16% of the initial capacity, with ~98% coulombic
efficiency.

Electrochemical impedance spectroscopy (EIS) of pristine and cycled electrodes (Fig-
ure 4c,d) is performed to gain further insights into the effect of SEI films on the charge
transfer, and Na-ion diffusion characteristics. High-to-medium frequency part of the EIS
pattern can be assigned to the sum of SEI/contact resistance and charge-transfer resistance
and represented as RΩ and Rct respectively in the Randles-like equivalent circuit (Figure 4d
inset). Low frequency sloping line corresponds to solid-state diffusion kinetics of Na-
ions shown as Warburg impedance (Zw) while constant phase element (CPE) is used to
model the surface storage of Na-ions [7,49,55]. Charge transfer resistances of pristine TiO2
nanosheet anodes in VC-free and VC-containing electrolyte solutions, obtained by fitting
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the Nyquist plot to the equivalent circuit, are 39 Ω and 171 Ω respectively. It is interesting
to observe such impedance difference in pristine batteries as VC is supposed to influence
SEI formation only during the first charge-discharge cycle. This could be related to the
spontaneous SEI formation resulting from the increased reactivity of high surface area TiO2
nanosheets with the electrolyte solution even in the absence of applied potential. Such
surface film formations were also observed previously in the case of pyrolytic graphite,
carbon and silicon nanowire electrodes [41,56,57]. Charge transfer resistance in VC-free
electrolyte solution increased to 517 Ω after 30 galvanostatic cycles. In contrast, resistance
decreased to 105 Ω in the case of VC-containing half-cells. Na-ion diffusion coefficients
of TiO2 nanosheet anodes after 30 galvanostatic cycles in VC-free and VC containing
electrolyte solutions calculated from the Nyquist plot are 6.42 × 10−16 and 1.65 × 10−14

correspondingly. Hence it is clear that VC-addition significantly reduces the charge transfer
resistance and enhances the Na-ion diffusion kinetics, facilitating improved Na-ion diffu-
sion into the TiO2 nanosheets. These results are also in good agreement with the superior
cycling performance of TiO2 nanosheet electrodes in VC-containing electrolyte solution.

The sodium-ion storage mechanism of TiO2 nanosheets in VC-free and VC-containing
electrolyte solutions was further investigated by collecting cyclic voltammograms at various
scan rates (Figure 5a,b). Considerable differences existed in the voltammograms in the two
different electrolyte solutions. High peak current and area were identified for the TiO2
nanosheets in the VC-containing electrolyte, which is in line with their improved Na-ion
storage performance observed from the galvanostatic rate performance and cycling studies.
The shapes of the voltammograms were also different suggesting different Na-ion storage
mechanisms. Anodic and cathodic current increased with an increase of scan rate in both
electrolyte solutions, which is indicative of pseudocapacitive type Na-ion storage [21].

Sodium ion intercalation of TiO2 nanosheets, especially at higher scan rates, occurs
over a wide voltage range in VC-containing electrolyte solution. Such broad signals indicate
the increased diffusion independent behavior of Na-ion intercalation, which is typical in
capacitive type electrode materials [58].

The sodium-ion storage of TiO2 nanosheet anodes consists of both diffusion limited
and surface controlled process [59]. These components can be differentiated from the
relationship between peak current density and scan rates, as presented in Equation (3) [21]

i = avb (3)

where current shown as i, the scan rate as v, and a and b are adjustable variables. If b = 0.5,
storage process is identified as diffusion-controlled, and surface controlled if b = 1.0 [60].
Moreover, as the Randles–Ševcik equation dictates, the increase of current is proportional
to the square root of scan rate [55,61,62]. The slope of peak current density vs. scan rate
plot (Figure 5c,d) represented dominant pseudocapacitive type Na-ion storage (increased
slope) in TiO2 nanosheets, with a high degree of pseudocapacitance in the PC-VC/NaClO4
electrolyte solution.

The diffusion limited and pseudocapacitive contributions of specific capacities were
quantified to further investigate the effect of electrolyte solutions on the Na-ion storage
mechanism. Capacitive and diffusion controlled contributions of Na-ion half-cells con-
taining PC/NaClO4 and PC-VC/NaClO4 electrolyte solutions at different scan rates are
presented in Figure 6a,b. TiO2 nanosheet anode exhibited superior pseudocapacitive Na-ion
storage in PC-VC/NaClO4 electrolyte solution (83% @ 1 mV/s) compared to PC/NaClO4
(63% @ 1 mV/s). Capacitance calculations were also performed after 30 galvanostatic cycles
(Figure 6c,d) in order to investigate the capacity fading on extended cycling. The pseudoca-
pacitance contribution of the TiO2 nanosheets reduced considerably (37% @ 1 mV/s), and
slightly increased (87% @ 1 mV/s) in the PC/NaClO4 and PC-VC/NaClO4 electrolyte solu-
tions, respectively (Figure 6e,f). The entirely different shape of the cyclic voltammograms
also signified different Na-ion storage mechanisms in these TiO2 nanosheet anodes during
extended cycling. It is worth noting that these results are in agreement with the EIS results
presented earlier, where the impedance of the TiO2 anodes continually increased during
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galvanostatic cycling in PC/NaClO4, and decreased in the PC-VC/NaClO4 electrolyte so-
lutions. These observations led to the conclusion that the SEI formed in the VC-containing
electrolyte solutions facilitated improved pseudocapacitive Na-ion diffusion into the TiO2
nanosheet anode. Hence, it is clear that the electrolyte composition played a crucial role
in the cycling stability, impedance, and Na-ion storage mechanism of the TiO2 nanosheet
anodes.

 

Figure 5. Cyclic voltammograms of TiO2 nanosheet anodes at various scan rates in (a) PC/NaClO4 and, (b) PC-VC/NaClO4

electrolyte solutions. Scan rate dependence of peak current density for TiO2 nanosheet anodes in (c) PC/NaClO4, and (d)
PC-VC/NaClO4 electrolyte solutions.
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Figure 6. Pseudocapacitance contributions of the TiO2 nanosheet anodes (a,b) before cycling, and (c,d) after cycling in
PC/NaClO4 and PC-VC/NaClO4 electrolyte solutions. Pseudocapacitance contributions at a scan rate of 1 mV/s after
30 cycles in (e) PC/NaClO4, and (f) PC-VC/NaClO4 electrolyte solutions.

3.3. Surface Chemical Characterization of TiO2 Nanosheets

It is crucial to understand the surface chemistry of TiO2 nanosheet electrodes cycled in
VC-free and VC-containing electrolyte solutions due to the significant role of surface films
on electrochemical performance. Surface chemical characterizations of these electrodes
cycled in PC/NaClO4 and PC-VC/NaClO4 electrolyte solutions were performed using
ex-situ XPS and FTIR techniques. Electrodes were thoroughly washed with acetonitrile
and dried under vacuum to make sure that there was no residual NaClO4 salt and solvent
left to interfere with these spectroscopic measurements. The quantification of elements
present in the surface films formed in VC-free and VC-containing electrolyte solutions
(Table 1) indicated the contribution of both solvent and Na-salt towards SEI formation.
Higher oxygen and carbon concentrations found in the surface film confirmed solvent
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reduction as the major reaction responsible for SEI formation. Surface films formed in
VC-containing electrolyte had a higher carbon and oxygen content, signifying the increased
formation of numerous oxygen containing species, such as Na-carbonate, Na-alkyl carbon-
ate, Na-alkoxides, and Na-polycarbonates, due to PC and VC reduction [63]. Lower Na and
Cl content in this case was a clear indication of reduced Na-salt decomposition, which is
vital to maintain good ionic conductivity during extended cycling. Increased Ti-content
signifies the formation of surface films that allow superior X-ray/ electron penetration and
detection of Ti-atoms underneath.

Table 1. Quantification of elements present in the TiO2 nanosheet electrode surface film after 30 cycles
in VC-containing and VC-free electrolyte solutions (based on XPS measurements).

Composition
C Content

(at.%)
O Content

(at.%)
Cl Content

(at.%)
Na Content

(at.%)
Ti Content

(at.%)

PC/NaClO4 21.101 33.412 0.706 44.590 0.191
PC-VC/NaClO4 27.711 37.928 0.496 33.614 0.251

XPS spectra of the elements of interest present in the TiO2 anode surface films
formed in both electrolyte solutions (PC/NaClO4 and PC-VC/NaClO4) are presented
in Figures 7 and 8. These spectra demonstrated a significant difference in the chemical
composition of surface films. Alkyl carbonate solvents (PC and VC in this case) can be
easily reduced to organic and inorganic Na-salts under an applied potential [64].

 

Figure 7. High-resolution XPS spectra of TiO2 nanosheet electrodes after 30 cycles in PC/NaClO4 electrolyte solution for (a)
survey, (b) C 1s, (c) O 1s, (d) Cl 2p, (e) Na 1s, (f) Ti 2p.
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Figure 8. High-resolution XPS spectra of TiO2 nanosheet electrodes after 30 cycles in PC-VC/NaClO4 electrolyte solution
for (a) survey, (b) C 1s, (c) O 1s, (d) Cl 2p, (e) Na 1s, (f) Ti 2p.

As presented in Scheme 1, two electron PC reduction in the presence of Na-ions
leads to sodium carbonate (Na2CO3) and propylene (CH2=CH-CH3), whereas one electron
reduction results in sodium alkyl carbonate (CH2OCO2Na)2 and ethylene (CH2=CH2)
formation. On the other hand, PC reaction with perchlorate anion (ClO4

−) forms hydrogen
perchlorate (HClO4), carbondioxide, and acetaldehyde radical [65]. The sodium alkyl
carbonate produced interacting with the trace amounts of water present in the electrolyte
could produce more sodium carbonate (where R = -CH3, or CH3-CH2), carbondioxide,
sodium hydroxide, and/or ROH species [66]. Protons generated by the dissociation of
HClO4 could react with NaClO4 to form HCl, and sodium hydroxide (NaOH). Previously
formed NaOH species reacted with the PC solvent to produce sodium alkyl carbonates [67].
Initially formed sodium alkyl carbonates react with the sodium carbonate and hydrochloric
acid (HCl), and in the following steps generating sodium chloride (NaCl), desodiated alkyl
carbonate (ROCO2H), and carbonic acid (H2CO3). This step can also form sodium bicar-
bonate (NaHCO3) instead of carbonic acid [66]. Most importantly, the increased reactivity
of VC due to the presence of a double bond could form higher complexity sodiated poly-
mers, such as sodium ethylene dicarbonate (NaO2CO-C2H4-OCO2Na), sodium butylene
carbonate (CH2CH2OCO2Na)2, and poly-vinylene carbonate [41,64,66].
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Scheme 1. Reduction reactions of PC-VC/NaClO4 electrolyte solution.

Hence, the effect of solvents on the salt reduction can be investigated by comparing the
Cl-concentration in the surface film. Among the carbonate solvents used in this case, VC is
more reactive than PC towards electrochemical reduction, which leads to the difference in
the SEI composition and properties [47]. In the case of PC/NaClO4 electrolyte solution,
high-resolution C 1s spectrum (Figure 7b) consisted of three distinct peaks located at
284.8 eV, 286.4 eV, and 289.6 eV, and characteristic of elemental carbon (C-C bonds), C-O-C/
C-O groups of RONa, and C=O groups of ROCO2Na/ Na2CO3 species, respectively [28,68].
Signals corresponding to alkoxy groups were absent in the case of the VC-containing
electrolyte solution (Figure 8b). The relative intensity of the ROCO2Na peaks was also less,
which clearly indicated difference in the surface film composition. The O 1s spectra of the
TiO2 anodes cycled in VC-free electrolyte solution (Figure 7c) could be deconvoluted into
individual peaks located at 531.0 eV, 532.6 eV, and 533.3 eV, corresponding to alkoxides,
ether, and carbonate groups present in the surface film [49,68,69].

Due to the presence of similar functional groups, it was difficult to distinguish
ROCO2Na present in VC-free and polycarbonate groups formed in VC-containing elec-
trolyte solutions. However, slightly increased O 1s binding energies (531.2, 532.8, 533.5 eV,
respectively) and increased width in the case of PC-VC/NaClO4 indicated (Figure 8c) the
presence of higher carbonate concentration in the SEI, possibly due to polycarbonate for-
mation resulting from VC-decomposition. Increased oxygen and carbon content quantified
from the high-resolution spectra (Table 1) also indicated the presence of higher carbonate
content in the case of the VC-containing electrolyte solution. Hence, it can be concluded
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that the surface films formed in both VC-free electrolyte solutions consisted of alkoxides,
carbonates, and ether species. Whereas alkoxides were absent in the polycarbonate rich
surface film formed in the VC-containing electrolyte solution.

High-resolution Cl 2p spectra related to both the VC-free and VC-containing electrolyte
solutions exhibited similar features (Figures 7d and 8d). Individual peaks at 198.1 and
199.7 eV correspond to the Cl 2p3/2 and Cl 2p1/2 components, respectively, of inorganic
chlorides (mainly NaCl) present in the surface film [70]. Signals corresponding to organic
chlorides were not identified in the case of both electrolyte solutions. Increased salt
(NaClO4) decomposition in the case of the VC-free electrolyte solution is also evidenced
by the lower relative amount (Table 1) of inorganic chlorides in the surface film. This can
be credited to the more pronounced ClO4

− reduction in the absence of highly reactive VC
electrolyte additive. High-resolution Na 1s spectra in the case of both electrolyte solutions
(Figures 7e and 8e) were identical, with a prominent peak at 1071.4 eV indicating the
presence of NaCl in the surface film [70]. High-resolution Ti 2p spectra in the case of the
surface films formed in both electrolyte solutions (Figures 7f and 8f) exhibited signals at
458.1 eV and 463.9 eV, which are characteristic of the Ti 2p3/2 and Ti 2p1/2 components of
Ti4+ ions [53].

This is in good agreement with the intercalation-type pseudocapacitive Na-ion storage
mechanism we reported earlier for these anatase–bronze hybrid nanosheets [9]. Identical
Na 1s and Ti 2p signals also verified a similar Na-ion storage mechanism of TiO2 nanosheets
in both VC-free and VC-containing electrolyte solutions. Increased Na and Ti concentration
in the case of PC/NaClO4 and PC-VC/NaClO4 can be attributed to the enhanced NaClO4
decomposition in the absence of VC, and superior transparency of polycarbonate based
surface film for X-rays/electron beam, correspondingly.

Further surface chemical studies of the TiO2 were performed by ATR-FTIR spectral
measurements. FTIR spectra of non-cycled TiO2 nanosheet electrodes, after cycling in
VC-free and VC-containing electrolyte solutions (Figure 9a), exhibited clear differences
in the surface chemical composition. Presence of ROCO2Na and Na2CO3 as the ma-
jor components resulting from PC reduction was evident from these spectra [64,67,70].
Peaks indicative of the symmetric and asymmetric stretch mode of C-O bond (v C-O)
present in ROCO2Na appeared in the 1450–1360 cm−1 and 1650–1540 cm−1 regions, respec-
tively [67,71]. Scissoring vibrations for OCO2

− (δ OCO2
−) from the same species appeared

at 871/877 cm−1 for both electrolyte compositions [67,72]. C-H stretching (v C-H) bands
appear at higher frequencies between 2999 and 2930, which were identical to the previous
reports for electrodes cycled in VC-free electrolytes [57,67]. Signals in the 2340–2350 cm−1

range indicated the presence of atmospheric CO2 [41]. Peaks at 1295 cm−1, 1075 cm−1,
and 1067 cm−1 belong to CO stretching/ CH3 deformation coming from the organic
species containing –ONa and/or –OCO2Na functional groups and double bonds [57,71].
Peaks originating from the carbonate group of Na2CO3 (v CO3

−2) were clearly visible at
1398 cm−1/1400 cm−1 in the spectra [72]. These signals were absent in the spectra of the
pristine TiO2 electrode, confirming surface film formation only during the electrochemical
charge–discharge process. Interestingly, additional peaks corresponding to PC/VC sol-
vents and NaClO4 salts are not visible in the case of the non-washed electrodes (Figure S4).
This could be due to the dominant FTIR intensities of the SEI components compared to trace
amounts of solvent and Na-salt. Similar FTIR spectra before and after washing confirmed
that the SEI components were not damaged by acetonitrile solvent.
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Figure 9. (a) ATR-FTIR spectra of non-cycled TiO2 nanosheet electrodes, and after cycling in PC/NaClO4 and PC-
VC/NaClO4 electrolyte solutions. Post-cycling SEM images of TiO2 nanosheet electrodes in (b,c) PC/NaClO4, and
(d,e) PC-VC/NaClO4 electrolyte solution. (f) SEM image and (g–j) corresponding SEM-EDX elemental mapping of TiO2

nanosheet electrodes after 30 cycles in PC-VC/NaClO4 electrolyte solution.

Thus, the FTIR signals clearly demonstrated the formation of alkoxides and carbon-
ates formed as a result of electrolyte decomposition (Scheme 1). The spectra related to
PC/NaClO4 and PC-VC/NaClO4 electrolyte solutions are somewhat similar. The major dif-
ference between these spectra is the presence of polycarbonate peaks at around 1780 cm−1

in the case of the VC-containing electrolyte [57]. It is indeed clear that VC-addition to
PC/NaClO4 electrolyte solution resulted in the formation of a polycarbonate rich surface
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film, along with Na2CO3 and ROCO2Na species. Post-cycling SEM images (Figure 9b–e)
of the TiO2 nanosheet anode confirmed their structural stability during the sodiation–
desodiation process. Individual petals of the agglomerated TiO2 nanosheets were clearly
visible through the surface films formed in both electrolyte solutions. EDX mapping of
the TiO2 nanosheet anodes cycled in PC-VC/NaClO4 electrolyte solution (Figure 9f–j) also
verified homogeneous SEI formation. Hence, it is clear that the difference in pseudocapac-
itance and cycling stabilities was a consequence of the different chemical compositions
of the surface films rather than their thickness. This should be expected, considering the
minimal volume changes of the TiO2 anode during the charge–discharge process, which
is unlikely to form thicker SEI due to limited electrolyte consumption only in the initial
cycles.

Surface chemical analysis results obtained from the ATR-FTIR measurements were in
line with the XPS results discussed above. These spectral studies enabled us to differentiate
the surface chemical aspects responsible for the increased pseudocapacitive Na-ion storage
in VC-containing electrolyte solution. Surface film formation in the two different electrolyte
solutions can be described as follows: In PC/NaClO4 electrolyte, PC reduction into Na2CO3
and ROCO2Na are the primary processes contributing to the surface film. There exists a
competition between the PC and VC reduction in the case of PC-VC/NaClO4 electrolyte
solution [47]. VC is the most reactive component, and surface films formed in this case
constitute both VC polymerization and PC reduction products. Polycarbonates formed
during the initial charge–discharge cycles, as a result of VC-decomposition, protect the
highly reactive TiO2 anode from further reaction with the electrolyte solution. Improved
passivation also resulted in the reduced decomposition of the NaClO4 salt, which is crucial
for maintaining good ionic conductivity during extended charge–discharge cycles. Signifi-
cantly improved pseudocapacitance resulted from the ultrafast Na-ion diffusion through
the polycarbonate based surface film. It should be noted that improved electrochemical
performance of graphite and silicon nanowire anodes in VC/ FEC containing electrolyte
solutions has been observed previously [41]. Nevertheless, such drastic difference in the
pseudocapacitive Na-ion storage mechanism has never been identified. In conclusion VC
electrolyte additive resulted in excellent long term cycling stability and pseudocapacitive
Na-ion storage, a consequence of the superior passivation and Na-ion transport properties
of the polycarbonate-rich surface film.

4. Conclusions

The effects of vinylene carbonate (VC) as an electrolyte additive on the surface chem-
istry and Na-ion storage mechanism was thoroughly investigated. TiO2 nanosheet anodes
achieved enhanced long-term cycling stability and pseudocapacitance in VC-containing
electrolyte solution compared to VC-free composition. FTIR and XPS surface chemical char-
acterizations of TiO2 nanosheets cycled in VC-containing electrolyte solution confirmed
the formation of polycarbonate rich surface film. Whereas, the VC-free electrolyte solution
resulted in the formation of a sodium alkyl carbonate and sodium carbonate based surface
film. The superior electrochemical performance of the TiO2 nanosheets in VC-containing
electrolyte solution is credited to the faster pseudocapacitive Na-ion diffusion through
the polycarbonate-based surface film. These results demonstrated that TiO2 nanosheet
anodes in VC-containing alkyl carbonate electrolyte solutions can be utilized for advanced
high-performance Na-ion batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/2313-0
105/7/1/1/s1. Figure S1: High-resolution Raman spectra, Figure S2: Galvanostatic long cycling
performance with different amount of VC additive, Figure S3: First cycle charge-discharge profiles of
TiO2 nanosheet anodes, Figure S4: FTIR spectra of cycled TiO2 laminates without washing.
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Abstract: In this work, optimal siting and sizing of a battery energy storage system (BESS) in
a distribution network with renewable energy sources (RESs) of distribution network operators
(DNO) are presented to reduce the effect of RES fluctuations for power generation reliability and
quality. The optimal siting and sizing of the BESS are found by minimizing the costs caused by
the voltage deviations, power losses, and peak demands in the distribution network for improving
the performance of the distribution network. The simulation results of the BESS installation were
evaluated in the IEEE 33-bus distribution network. Genetic algorithm (GA) and particle swarm
optimization (PSO) were adopted to solve this optimization problem, and the results obtained
from these two algorithms were compared. After the BESS installation in the distribution network,
the voltage deviations, power losses, and peak demands were reduced when compared to those of
the case without BESS installation.

Keywords: battery energy storage; renewable energy; distribution network; genetic algorithm;
particle swarm optimization

1. Introduction

Nowadays, renewable energy sources (RESs) have been widely connected to distribution networks
according to the advantage of electricity generation from RESs, which is clean energy, to respond to the
high increasing demand in electrical power. However, RESs also consist of a major drawback, which is
a fluctuation of power generation, due to the uncertainty of natural sources that cannot be controlled,
causing an imbalance between the supply and demand of electrical power. As a result, electrical power
flows in a reverse way and power loss occurs in distribution networks [1–4], especially the connection
of privately-owned RESs to the distribution network systems of distribution network operators (DNO).
Owners of RES companies usually sell electrical energy to the distribution networks based on electricity
generation depending on the natural sources at that time. In particular, photovoltaics (PVs) can
generate electricity only during the daytime, which is an example of the above-mentioned problem.

The important factors for a distribution network is the reliability of the power system and that the
power quality meets the standards. Therefore, energy storage systems (ESSs) have an important role
and have been used in distribution networks with the connected RESs to overcome the drawbacks of
RES. Additionally, the ESS can balance the electrical power supply and demands [5], improve voltage
deviation [6,7], reduce power loss [8–11], reduce peak demand by storing electrical energy during an
off-peak time and supplying electric power during peak time [12,13], and use for many objectives
including voltage deviation improvement, power loss reduction, and peak demand reduction [14–16].
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The optimal location and sizing of an ESS installation can improve the power system’s efficiency
and reliability [17]. I. Naidji et al. proposed the optimal sizing of an ESS installation that considered
the minimum cost at the weakest position by considering the contingency sensitivity index (CSI) [18].
M. Nick et al. introduced the minimum investment cost of an ESS together with the optimal siting
and sizing of an ESS to reduce the expenses incurred in the power system by using second-order
cone programming (SOCP) [19]. The installation of a battery energy storage system (BESS) cannot
only improve the power system efficiency, but also increase the flexibility of dealing with the
management (purchase and sell) of electric power for the maximum profit of an electricity supplier [20].
The installation of a BESS, together with the connection of RESs to manage power systems, can support
the increasing electricity consumption [21–24]. In addition to the installation of the ESS in the optimal
siting and sizing, the appropriate schedule control of an ESS plays an important role in improving the
efficiency of power systems and is also able to increase the profits from the sale of electricity for the
electricity seller [25–27].

N. Jayasekara et al. proposed an appropriate method to find the optimal siting, sizing,
and operation pattern of a BESS [14]. However, the costs—consisting of the battery cost, installation
cost and maintenance cost of the BESS—are included in the objective function. Therefore, the obtained
siting and sizing of the BESS are not truly appropriate in the aim of improving the efficiency such as
minimizing voltage deviation, power loss, and peak demand of the distribution network. Moreover,
the comparison of different optimization algorithms has not been investigated to verify the obtained
simulation results. Hence, this work aimed to find the optimal siting and sizing of a BESS in distribution
networks with the connected RES where the load demand is varied across a day. The objective function
was to minimize costs incurred in the distribution networks including the costs of voltage deviation,
power loss, and peak demand. Therefore, the truly appropriate optimal siting and sizing of the BESS
in distribution networks can be provided. The BESS installation was evaluated in the IEEE 33-bus
distribution network. The simulation results were provided by two algorithms comprising of the
genetic algorithm (GA) and particle swarm optimization (PSO) and were compared to both verify the
simulation results and obtain the appropriate algorithm.

The main contribution of this work includes:

1. The optimal siting and sizing of a BESS in distribution networks with the connected RESs can be
provided when the objective function is to minimize the costs incurred in distribution networks
that comprise of the costs of voltage deviation, power loss, and peak demand.

2. A performance comparison between the genetic algorithm (GA) and particle swarm optimization
(PSO) was undertaken to verify the simulation results and choose the appropriate algorithm.

2. Battery Energy Storage Systems Formulation

ESS technology can store electrical energy in several forms. For instance, electrical energy
can be stored in the mechanical form such as pumped hydro, compressed air and flywheel; in the
electromagnetic form such as a supercapacitor; in the thermal form such as steam accumulator,
molten salt storage, and liquid nitrogen engine; and in the electrochemical form such as flow battery,
rechargeable battery, and ultra-battery. The selection of each ESS technology depends on the purpose
and physical suitability. In this work, the BESS was chosen to be installed in the distribution network
with RESs, and the operation of the BESS was simulated by using the Fourier series.

2.1. Battery Energy Storage Systems (BESSs)

Various types of BESSs such as lead-acid, UltraBattery, NaS, Li-ion, Ni-Cd, and vanadium
redox batteries have been widely used for storing electrical energy [28–31]. Li-ion batteries are more
popularly used to store electrical energy in many countries such as Germany [32]. Additionally,
the price of Li-ion batteries has tended to decrease due to the development of their use in electric
vehicles (EVs) [33]. The important characteristics of Li-ion batteries are their high capacity and energy
per volume, fast charge and discharge, and low self-discharge rate. From the characteristics of the
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Li-ion battery above-mentioned, it requires less installation space, has a rapid response to supply or
store the electrical energy, and has low energy loss rate from self-discharging. Therefore, this work
applied a Li-ion battery as the BESS.

Several factors affecting the lifespan of a Li-ion battery that should be considered include the
temperature, number of duty cycles of the battery, and depth of discharge (DOD). Therefore, for a long
life Li-ion battery, good heat dissipation is required where the optimum temperature for the Li-ion
battery is around 15–35 ◦C. Frequent charging and discharging should be avoided, and the a suitable
value of DOD is 80% of the total capacity of the battery. Charging or discharging rates should not be
too high because the higher charging or discharging rates cause a higher battery temperature, which
results in the short lifespan of the battery [34]. In addition, the imbalance charging of each battery cell
of the BESS due to the initial unequal state of charge (SOC), which is defined by the battery’s present
amount of charge divided by its rated charge capacity, may cause some damage to the BESS, a capacity
reduction of the BESS, and the deterioration of the BESS. However, this can be avoided by using battery
charge equalization systems (BCEs) [35].

2.2. Battery Energy Storage System Simulation

The BESS simulation presented in this work considered the rates of charge or discharge of the
BESS at equal intervals within the considered period of 24 h. These 24 h can be equally divided such as
1 h, 30 min, or 15 min, which can obtain the rate of charge or discharge of BESS at m values including
24, 48, and 96, respectively. Therefore, the rates of charge and discharge in the considered period (CiT)

can be formulated as the following equation.

CiT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
EB(1)

...
EB(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where EB(t) is the electrical energy in BESS (MWh) at time t = 1, 2, 3, . . . , m.
To find the values of EB(t) at each time t, the Fourier series is applied to express the state of energy

(SOE) in the total considered intervals. The state of energy of the BESS can be obtained by substituting
the Fourier coefficient (CiF) from Equation (2) into Equation (3) to find the values of EB(t).

CiF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1, b1

...
an, bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

EB(t) = a0 + a1 cos
(2πt

T

)
+ b1 sin

(2πt
T

)
+ . . .+ an cos

(2πnt
T

)
+ bn sin

(2πnt
T

)
(3)

where a0, an, bn, n, and T are the constant Fourier coefficient, Fourier cosine coefficients, Fourier sine
coefficients, the number of Fourier coefficients (set to 8 [14]), and total period, respectively.

The constant Fourier coefficient (a0) does not affect the charge or discharge power of BESS due to
its constant value. It can be added after calculating the Fourier coefficients (CiF) to ensure that the SOE
of BESS is not negative or lower than the minimum depth of discharge (DODmin).

To compute the rate of charge and discharge from the SOE of BESS (EB(t)) at each time t, Equations
(4)–(6) are calculated. Suppose PB(t) is the charge rate or discharge rate at time t. The positive value of
PB(t) means the BESS is charging while a negative value means the BESS is discharging.

ΔEB = EB(t) − EB(t− 1) (4)

PB(t) = ΔEB/(Δt× ηc), PB(t) > 0 (5)

PB(t) = (ΔEB × ηd)/Δt, PB(t) < 0 (6)
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where ηc = ηd =
√
ηbat, ηbat = 0.9 (the total efficiency of the BESS), PB, Δt are battery charging efficiency,

battery discharging efficiency, battery round trip cycling efficiency, battery power (MW), and sampling
time interval, respectively.

The optimal size of the BESS can be found by Equation (7).

BatterySize (unit.h) =

∣∣∣Emax
B − Emin

B

∣∣∣
DODmax

(7)

where DODmax = 0.8 is the maximum depth of discharge value; and Emax
B and Emin

B are the maximum
and minimum battery energy values, respectively. The unit of the energy capacity of the BESS depends
on the unit of Emax

B and Emin
B .

Generally, each round of battery discharge where the energy discharging is equal to the battery
capacity is called one operation cycle of a battery. However, to simply calculate the battery cycle,
the summation of both charging and discharging energies for all considered time intervals are included,
and its average value is instead computed by dividing by 2 (charging and discharging) as in Equation
(8) [14]. The lifespan of the BESS can then be evaluated from Equation (9) [14].

Cycles =
1
2
×
⎛⎜⎜⎜⎜⎜⎝
∑T

t=1

∣∣∣EB(t) − EB(t− 1)
∣∣∣

DODmax × BatterySize

⎞⎟⎟⎟⎟⎟⎠ (8)

Lifespan (years) = CycleLife/(Cycles × D) (9)

where Cycles is the daily cycles of BESS; CycleLife = 3221 is the nominal cycles life of the Li-ion
battery [34]; D = 365 is the number of operating days of BESS; and Lifespan is the lifespan of the
BESS (years).

3. Problem Formulation

The installation of the BESS in distribution networks with RESs can improve the efficiency,
reliability, and power quality of the distribution networks. The considered objective functions to be
minimized include voltage deviation, power loss, and peak demand for providing the optimal siting
and sizing of thee BESS under the constraints of distribution networks.

3.1. Objective Functions

The major objective function of this work was to minimize several costs incurred in distribution
networks (Csystem) consisting of voltage regulation cost (CVR), power loss cost (CLoss), and peak demand
cost (CP) in terms of infrastructure development deferrals. Equation (10) represents the objective
function and several costs can be found by Equations (11)–(14).

f (CiF) = min
(
Csystem

)
(10)

Csystem = CVR + CLoss + CP (11)

CVR = (
T∑

t=1

N∑
i=1

|Vi −Vref|) × γVR (12)

CLoss = (
T∑

t=1

M∑
i=1

(LineLoss) × γloss (13)

CP = Pmax × Δt× γP (14)

where N, Vi, Vref, M, LineLoss, Pmax, γVR, γloss, and γP are total bus number, voltage magnitude (per unit)
at the ith bus, reference voltage which is equal to 1 p.u., total branch number, active power loss in each
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branch, maximum active power at slack bus over the considered period, rate of voltage regulation cost,
rate of power loss cost, and rate of peak demand cost (γVR = 0.142 $/p.u. [15], γloss = 0.284 $/kWh [14],
γP = 200 $/kWh/year [14]), respectively.

3.2. Constraints

(1) Voltage Constraint: Voltage of each bus must be limited within the lower and upper limit
throughout the consideration period set at ±5% of the reference voltage as the expressed equation.

Vlower ≤ Vt
i ≤ Vupper (15)

where Vlower and Vupper are the lower bound and upper bound of voltage at ith bus, respectively,
and Vt

i is the voltage magnitude at ith bus in time t.
(2) Battery Constraint: The power and capacity of the battery are bounded to ensure that the

battery operation does not exceed the boundary limits during charging or discharging, which can be
presented as the equation below.

PB−min ≤ Pt
cha, Pt

dis ≤ PB−max (16)

EB−min ≤ Et
B ≤ EB−max (17)

where PB−min, PB−max are the minimum and maximum power of BESS, respectively. Pt
cha, Pt

dis are the
power charge rate and power discharge rate of BESS at time t, respectively. EB−min, EB−max are the
minimum and maximum capacity of BESS, respectively.

4. Methodology

The optimal siting and sizing of the BESS in distribution networks with RESs are presented in this
work. The simulation of distribution networks was conducted in MATLAB and MATPOWER was also
adopted. For the optimization process, genetic algorithm (GA) and particle swarm optimization (PSO)
were both applied to find the minimum value of the objective function for finding the optimal siting
and sizing of BESS and the performance of these algorithms were compared.

4.1. Test System

The distribution network used to evaluate the optimal siting and sizing of the BESS was the
IEEE 33-bus distribution network shown in Figure 1, and the detailed data can be obtained from [14].
The values of load power at each bus can be obtained from the voltage magnitude at each bus (in per
unit) without any RES connection according to Equations (18) and (19).

PL−i = P0i
(
ap + bp|Vi|+ cp|Vi|2

)
(18)

QL−i = Q0i
(
aq + bq|Vi|+ cq|Vi|2

)
(19)

where PL−i, QL−i are the active power and reactive power at the ith bus, respectively. P0i, Q0i are
the initial active power and reactive power at the ith bus, respectively, ap + bp + cp = 1, aq + bq +

cq = 1, base voltage (Vbase) = 12.66 kV, base power (MVAbase) = 10 MVA. The two types of RESs,
wind turbines (WTs) and photovoltaics (PVs), were connected in the distribution network. Two WTs
(1 MW) were each located at buses 18 and 24, three PVs (400 kVA) each were installed at buses 5, 21,
and 31, and four PVs (500 kVA) each were installed at buses 8, 12, 28, and 33. In this test system,
the parameters were set as ap = aq = 0.4, bp = bq = 0.3, and cp = cq = 0.3. Peak active and reactive
powers of the test system were 3.556 MW and 2.191 MVar, respectively. The detailed data of load
magnitude and the output generations of WTs and PVs can be found in [14,21].
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Figure 1. IEEE 33 bus distribution network [14].

4.2. Genetic Algorithm (GA)

Genetic algorithm is inspired and operated by mimicking Charles Darwin’s evolution method.
First, the initial populations are randomly generated, which are binary numbers. Each population has
equal binary numbers to the decision variables (nVar) multiplied by the bit number (nBit) assigned for
each decision variable. The binary numbers for each population are then converted to decimal numbers.
Following this, the decimal numbers are compared with the range of each decision variable (lb, ub)
to obtain the real values for each decision variable and then substituting them to find the objective
function. After that, three main steps comprising of population selection, cross over, and mutation
are considered. In the first step, two populations are randomly selected from the parents’ generation,
and the cross over is operated between the selected populations in step two where the number of
cross over is according to the cross over percentage (pc). In the last step, the mutation is proceeded
based on the mutation rate (mu), and binary numbers are converted to decimal numbers to evaluate
the objective function. The best fitness value is updated until the max iteration (itermax) is reached [36].

4.3. Particle Swarm Optimization (PSO)

Particle swarm optimization is inspired by the behavior of bird flocking and fish schooling [36].
Initially, the particles are generated with random positions and zero velocity, and the objective function
is then evaluated. In the next step, the best positions of each particle, which is called the personal best
position (PPbest(i)), are updated and the best position among all particles, which is called the global
best position, is updated (PGbest). The velocity and position of each particle can be updated according
to the PPbest(i) and the PGbest by the following equations.

VP(i) = wP(i) + c1r1(PPbest(i) − P(i)) + c2r2(PGbest − P(i)) (20)

P(i)new = P(i) + VP(i) (21)

where VP(i) is the velocity of the ith particle; P(i) is the current position of the ith particle; PPbest(i) is the
personal best position of the ith particle; PGbest is the global best position among all particles; P(i)new
is the updated position of the ith particle, w = 0.9 − (((0.9− 0.4) ∗ it)/itermax); it is the itth iteration;
c1 = c2 = 2 and r1, r2 are random numbers randomly generated between 0 and 1.

4.4. Application of the Optimal Siting and Sizing of the Battery Energy Storage System (BESS)

The application of the optimal siting and sizing of BESS in this work consisted of the following steps.

1. Define the input data comprising of Vrated, RL, XL, PV, WT, and MVAbase to simulate the considered
distribution network in MATPOWER [37,38], and impose candidate buses to find the best location
of the BESS installation.
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2. Initialize parameters of the algorithm (GA or PSO) and Fourier coefficients, where lb and ub of
the Fourier coefficients are proportionally reduced with the rate 1/n2 [39] (n is the number of
Fourier coefficients).

3. Choose one candidate bus as the location of the BESS installation.
4. Operate the algorithm (as in Section 4.2 for GA or Section 4.3 for PSO) to solve the

optimization problem.
5. Conduct power flow where the BESS is installed at one candidate bus.
6. Evaluate the objective function and update the best solution.
7. If the maximum iteration is reached, go to step 8; otherwise, go to step 4.
8. Obtain optimal Fourier coefficients where the BESS is installed at the chosen candidate bus from

step 3.
9. If the candidate bus is the last candidate, go to step 10; otherwise, go to step 3.
10. Obtain the optimal siting of the BESS installation, which is the candidate bus providing the

minimum value of the objective function.
11. Provide the information of the BESS by substituting the obtained Fourier coefficients in

Equations (1)–(9).

The flowchart of the optimal siting and sizing of the BESS method is shown in Figure 2.

Figure 2. Flowchart of the proposed method.
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4.5. System Performance Evaluation

To evaluate the system performance after the BESS installation based on the objective function,
voltage deviation, power loss, and peak demand were investigated. The details are as follows.

4.5.1. Voltage Deviation Index (VDI)

To evaluate the voltage profile improvement, the VDI was applied to represent the voltage
deviation of each case. The VDI compared the voltage level of each bus (Vbi in p.u.) with the
reference voltage (Vref = 1 p.u.) and is presented in percent (%VDI). The VDI can be calculated by the
expressed equations.

%VDIi = maxT
i

( |Vref −Vbi|
Vref

)
× 100 (22)

%VDI =
N∑

i=1

%VDIi (23)

where %VDIi is the VDI of the ith bus, and %VDI is the total VDI of the distribution network.

4.5.2. Power losses

Power losses including real, reactive, and apparent power losses of the distribution network were
compared in the cases with BESS and without BESS. The following equations are computed.

PL =
T∑

i=1

M∑
l=1

Pl
L (24)

QL =
T∑

i=1

M∑
l=1

Ql
L (25)

SL =
T∑

i=1

M∑
l=1

Sl
L (26)

where PL, QL, and SL are the active power loss, reactive power loss, and apparent power loss,
respectively. l is the number of branches. T is the total period. M is the total number of branches.

4.5.3. Peak Demand Comparison

In this research, the direction of the active power flow at the slack bus of the distribution
network was investigated. If the active power flow is positive, the power flows into the distribution
network while the negative active power flow represents the power flow flowing out from the
distribution network.

5. Simulation Results

This work aimed to find the optimal siting and sizing of the BESS for a distribution network
by minimizing the costs incurred in the distribution network, consisting of voltage regulation costs,
costs due to power losses, and peak demand costs within 24 h. The simulation was operated in
MATLAB interfaced with MATPOWER 7.0, and the computer specification was an Intel® Core™

i3-6100U 2.30 GHz, RAM 8 GB, Windows 10 Pro 64-bit Operating System. GA and PSO were applied
to solve the optimization problems, and their performance was compared. The parameters of the
algorithms were as follows: population = 60, maximum iterations = 1000, crossover percentage = 50%,
and mutation rate = 0.02. The simulation results are provided in the following subsections.
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5.1. Comparison of the Optimal Siting and Sizing of the BESS Installation

The BESS was chosen to be installed at one bus from the 2nd to 33rd bus to find the best location
of the BESS installation providing the minimum objective function value. After the BESS installation
simulation, three locations providing the minimum objective function values of the GA and PSO are
shown in Table 1. It can be seen that the best location of the BESS installation of both GA and PSO was
the 6th bus. The power of the BESS of GA was more than that of PSO of about 0.01 MW while the
energy capacity of GA was less than that of PSO at around 0.75 MWh. The lifetime of the BESS of each
algorithm was equal to 8.8 years.

Table 1. Optimal siting and sizing of the battery energy storage system (BESS) installation.

Case Location (Bus)
BESS

Lifetime of BESS (Years)
Power (MW) Capacity (MWh)

GA 6 1.99 14.23 8.8
16 2.09 15.58 8.8
8 2.11 15.84 8.8

PSO 6 1.98 14.98 8.8
7 1.98 14.73 8.8
27 1.85 14.72 8.8

In addition to obtaining the optimal siting and sizing of the BESS, the appropriate operation of
the BESS is also important to consider. From Figure 3a, the state of energy (SOE) of the BESS indicating
the stored energy in the BESS for 24 h is illustrated. The power of the BESS is shown in Figure 3b,
presenting the charging rate or discharging rate of the BESS at each hour. It was noticeable that from
1 a.m. to 8 a.m., the energy of thee BESS gradually decreased because the BESS was in a discharging
state at a low rate, and energy was at the minimum capacity from 8 a.m. to 9 a.m. From 9 a.m. to 6 p.m.,
the BESS changed status from discharging state to charging state, and during this time, the BESS had a
maximum charging rate that was equal to 1.99 MW at 2 p.m. for GA and 1.98 MW at 1 p.m. for PSO.
The BESS changed status again from 6 p.m. to 12 p.m. where a maximum discharging rate occurred at
10 p.m. for both GA and PSO that was equal to 1.67 MW for GA and 1.73 MW for PSO.

Figure 3. Cont.
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Figure 3. Battery energy storage system (BESS) operation. (a) State of energy (SOE) of BESS; (b) Power
of BESS.

5.2. Comparison of Voltage Deviation and Power Losses before and after the BESS Installation

After the BESS installation at the 6th bus, it was found that the value of %VDI was maximum at
the 33rd bus for the base case (without BESS), GA, and PSO at 6.50%, 4.23%, and 4.22%, respectively.
The %VDI values of the overall distribution network for all three cases are expressed in Table 2.
The BESS installation by using PSO gave the minimum %VDI value, which means that PSO could
better improve the voltage profile in the distribution network than those of the base case and GA.
In Figure 4, the voltage profiles at the 33rd bus for 24 h for all three cases are presented to show how the
voltage profile was improved when the BESS was installed by comparing the performance of GA and
PSO to the base case. It was observed that the voltage profile of the distribution network was below
the lower limit for the base case while it was improved to be within the constraint after the installation
of the BESS for both GA and PSO. For the power losses shown in Table 2, it was noticed that power
losses could be significantly reduced after the BESS installation compared to the base case. It could
also be noticed that the BESS installation by GA provided the minimum values of active power and
apparent power while the reactive power loss obtained from GA was equal to that of PSO. However,
the power losses obtained from GA and PSO after the BESS installation were slightly different.

Table 2. System performance evaluation.

Case %VDI PL (MW) QL (MVar) SL (MVA)

base 117.56 1.66 1.15 2.02
GA 71.35 1.38 0.98 1.69
PSO 70.40 1.39 0.98 1.70
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Figure 4. Voltage profile at the 33rd bus.

5.3. Comparison of Peak Demand

In this work, the peak demand was considered in terms of the active power flowing at the slack
bus. The higher peak demand represents the higher power flow in the transmission line, so the
transmission line of the distribution network needs to be able to support the high power flow in the
transmission line. However, if the peak demand can be reduced, the power flow in the transmission
line is also decreased. This results in a longer time to improve the transmission line for supporting the
higher peak demand in the future. Figure 5 compares the peak demand provided by the base case
and presents how the peak demand can be improved after installing a BESS by using GA and PSO.
It can be seen in Figure 5 that power flowed in both directions (into and out from the network) for the
base case. The maximum active power that was equal to 2.71 MW at 10 p.m. flows into the network,
and the maximum active power which was equal to −1.05 MW at 1 p.m. flowed out from the network.
After the BESS installation, the active power flow had only one direction (only positive value), which
flowed into the distribution network for all 24 h for both GA and PSO. The maximum active power
provided by GA was 1.10 MW at 10 a.m. and 1.04 MW at 7 p.m. for PSO, which is depicted in Figure 5.
Thus, the BESS installation by using PSO could reduce the peak demand more than that of the GA.
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Figure 5. Peak demand profile at the slack bus.

5.4. The Efficiency Comparison between GA and PSO for the Objective Function Optimization

The result comparison of the efficiency for providing the minimum value of the objective function
between GA and PSO are shown as the iteration curves in Figure 6. It was observed that during
the 0–400 iterations, GA could more quickly find the less objective function value than PSO, but the
values were slightly different. After that, the objective value of GA almost remained constant while the
objective value of PSO continued decreasing until the 800th iteration before facing a very small decrease
until the maximum iteration. At the maximum iteration, PSO could obtain a superior objective value
to that of GA, as evident in Table 3. When comparing the number of iterations and the operation time
of each algorithm used for the optimization process, it was found that PSO took less time than that of
GA, as presented in Table 3. Thus, regarding the overall efficiency for providing the minimum value of
the objective function for the considered problem, PSO is more appropriate than GA in terms of both
objective value and operation time.

Table 3. The comparison results between a number of iterations and time of use of Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO).

Iteration
GA PSO

Csystem ($) Time (s) Csystem ($) Time (s)

200 1017.33 1225 1073.11 1219
400 996.57 2465 998.84 2431
600 996.42 3670 979.66 3657
800 996.42 4892 968.13 4864
1000 995.96 6140 967.71 6048
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Figure 6. The comparison results between GA and PSO.

After the simulation of the BESS installation in the IEEE 33-bus distribution network with RES by
using GA and PSO, the optimal siting of the BESS installation was the 6th bus obtained by both GA
and PSO. The size of the BESS was 1.99 MW power and 14.23 MWh capacity provided by GA and 1.98
MW power and 14.98 MWh capacity provided by PSO. It could be observed that the size of the electric
power and electric power capacity of the BESS provided by both algorithms had similar values. Thus,
the optimal siting and sizing of the BESS for the distribution networks could be chosen by considering
the minimum objective value that PSO can find as a better objective value than that of GA. For the
BESS operation, it was noticeable that charging and discharging statuses given by GA and PSO for all
24 h were similar, and the electric powers of charging or discharging provided by GA and PSO were
slightly different in each time duration.

After the BESS installation by using GA or PSO, it was found that the voltage level in the system
could be improved to be in the range of the constraint (±5%), and the voltage deviation was enhanced
compared to the base case. Additionally, power losses including active, reactive, and apparent power
losses were significantly decreased when compared with the base case. In terms of the peak demand by
considering power flow at the slack bus, it could be seen that after the installation of BESS, the power
only flowed into the distribution network (one direction) while the power flowed into and out from the
network for the base case. This is because the charging and discharging operations of the BESS could
balance between the electricity generation and demand. Therefore, the investment in the distribution
network expansion to support the increasing electricity demands in the future can be retarded by using
the BESS installation.

To compare the efficiency of GA and PSO to solve the problem, the minimum objective function
value and operation time were evaluated. From the simulation results, it was found that PSO could
provide better objective value than that of GA. PSO also spent less optimization operation time than
that of GA to provide the better final solution at the maximum iteration. Therefore, PSO is more
appropriate than GA for solving the problem in this work.
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6. Conclusions

The optimal siting and sizing of BESS in the distribution network with RESs was presented.
The objective function considered to be minimized is the total costs incurred in the distribution
network consisting of the costs of voltage deviations, power losses, and peak demands. The BESS
installation was operated in an IEEE 33-bus distribution network by using the GA and PSO algorithm
for optimizing the objective function, and the results received from both algorithms were compared
to verify the accuracy. The results provided by both GA and PSO showed that the BESS installation
could improve the efficiency of the distribution network in terms of cost minimization, the reduction
of voltage deviations, power losses, and peak demand. It can also well support the RES connection
that has a fluctuation in electricity generations. It was also found that PSO is more efficient than GA in
terms of the objective function optimization for this problem.
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