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Preface to ”The Convergence of Human and Artificial

Intelligence on Clinical Care - Part I”

Artificial intelligence is gradually becoming a go-to technology in clinical care, from diagnosing

a wide range of diseases to predicting outcomes and selecting the best treatment at a personalized

level. In the past few years, intelligent systems have contributed to building prediction models and

identifying patients at higher risk of certain high-impact conditions such as heart failure, sepsis,

and ischemic stroke. In this edited book, key areas that are pushing the forefront of innovation in

healthcare are presented by leading experts. The studies showcase the power of technology, its limits,

and the value of collaboration, all with a core mission of tackling healthcare’s changing landscape

using AI. This edited book contains twelve studies, large and pilots, in five main categories: (i)

adaptive imputation to increase the density of clinical data for improving downstream modeling;

(ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome

prediction; (iv) innovative use of AI to improve our understanding of the public view; and (v)

understanding of the attitude of providers in trusting insights from AI for complex cases.

Overall, the studies used an array of data modalities, including data from electronic health

records, imaging data, voice signals, resource utilization, Twitter data, and questionnaire, in addition

to a wide range of modeling frameworks, designs, and algorithms. This edited book is an excellent

example of how technology can add value in healthcare settings and hints at some of the pressing

challenges in the field, including attitudes towards technology and the quality of the data used in

predictive modeling. As we move toward implementing these tools in clinical settings, the experts

from different fields need to work together to better understand the technological challenges, the

needs of care providers and patients, and to ensure there are no unintended consequences which are

introduced by integrating AI into the clinical workflow.

I believe that our future is in partnering with intelligent systems to solve complex

multidimensional problems in many fields, including health care, and shifting from

performance-driven outcomes to risk-sensitive model optimization, improved transparency,

and better patient representation for more equitable healthcare for all.

Vida Abedi

Editor
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Abstract: Background. The imputation of missingness is a key step in Electronic Health Records
(EHR) mining, as it can significantly affect the conclusions derived from the downstream analysis
in translational medicine. The missingness of laboratory values in EHR is not at random, yet
imputation techniques tend to disregard this key distinction. Consequently, the development of an
adaptive imputation strategy designed specifically for EHR is an important step in improving the
data imbalance and enhancing the predictive power of modeling tools for healthcare applications.
Method. We analyzed the laboratory measures derived from Geisinger’s EHR on patients in three
distinct cohorts—patients tested for Clostridioides difficile (Cdiff) infection, patients with a diagnosis of
inflammatory bowel disease (IBD), and patients with a diagnosis of hip or knee osteoarthritis (OA).
We extracted Logical Observation Identifiers Names and Codes (LOINC) from which we excluded
those with 75% or more missingness. The comorbidities, primary or secondary diagnosis, as well as
active problem lists, were also extracted. The adaptive imputation strategy was designed based on a
hybrid approach. The comorbidity patterns of patients were transformed into latent patterns and
then clustered. Imputation was performed on a cluster of patients for each cohort independently
to show the generalizability of the method. The results were compared with imputation applied to
the complete dataset without incorporating the information from comorbidity patterns. Results. We
analyzed a total of 67,445 patients (11,230 IBD patients, 10,000 OA patients, and 46,215 patients tested
for C. difficile infection). We extracted 495 LOINC and 11,230 diagnosis codes for the IBD cohort,
8160 diagnosis codes for the Cdiff cohort, and 2042 diagnosis codes for the OA cohort based on the
primary/secondary diagnosis and active problem list in the EHR. Overall, the most improvement
from this strategy was observed when the laboratory measures had a higher level of missingness.
The best root mean square error (RMSE) difference for each dataset was recorded as −35.5 for the
Cdiff, −8.3 for the IBD, and −11.3 for the OA dataset. Conclusions. An adaptive imputation strategy
designed specifically for EHR that uses complementary information from the clinical profile of
the patient can be used to improve the imputation of missing laboratory values, especially when
laboratory codes with high levels of missingness are included in the analysis.
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1. Introduction

Given the complexity and high dimensionality of Electronic Health Records (EHR), the
need for imputation is an inevitable aspect in any study that attempts to use such data for
downstream analysis or building advanced machine learning models for decision support
systems for clinical applications. The EHR or any other administrative dataset is not
designed for research purposes, even though the breadth and depth of the information can
be used to improve care at many levels [1]. Furthermore, the level and extent of the missing
values in healthcare systems are typically not at random. Three main categories explain the
missingness in clinical settings [2,3]—incompleteness, inconsistency, and inaccuracy—and
these can capture a variety of situations, including the following: the patient could have
been cared for outside of the healthcare system where the data are collected, the patient
did not seek treatment, the health care provider did not enter the information, the patient
expired, and the missing value was not needed.

Given the complexity of the clinical data and the advanced analytics that can be
applied on such data, it is important to account for any sources of bias in the data that
will be used to drive predictive models. Imputation is an example of data preprocessing
that could lead to biased results. Furthermore, excluding variables or patients with a
high-level of missingness can also introduce bias and reduce the scope of the study. From a
recent review article, 85 out of 316 studies reported some form of missing data, and only 12
studies actively handled the missingness; as the authors showed, the majority of researchers
exclude incomplete cases, causing biased outcomes [4]. Furthermore, imputation could
boost the statistical power for data-poor patients who tend to be minorities and low-
income patients with more restricted access to primary and specialty care and rehabilitation
programs.

Imputation has been an ongoing solution in many fields, but only recently, the research
has been focused on medical applications. Twelve different imputation techniques applied
to laboratory measures from EHR were compared [5]. In general, the authors found
that Multivariate Imputation by Chained Equations (MICE) and softImpute consistently
imputed missing values with low error [5]; however, in that study, the analysis was
restricted to 28 most commonly available variables. In another study, the authors assessed
the different causes of missing data in the EHR data and identified these causes to be the
source of unintentional bias [6]. A comparative analysis of three methods of imputation
(a Singular Value Decomposition (SVD)-based method (SVDimpute), weighted K-nearest
neighbors (KNNimpute), and row average for DNA microarrays showed that, in general,
KNN and SVD methods surpass the commonly accepted solutions of filling missing values
with zeros or row averages [7]. However, comparing imputation for clinical data with a
DNA microarray can be misleading. The missingness in a DNA microarray is likely at
random due to technical challenges unlike missingness in the EHR. In another study, fuzzy
clustering was integrated with a neural network to enhance the imputation process [8].

Research has also been done to evaluate imputation methods for non-normal data [9].
Using simulated data from a range of non-normal distributions and a level of missingness
of 50% (missing completely at random or missing at random), it was found that the linearity
between variables could be used to determine the need for transformation for non-normal
variables. In the case of a linear relationship, transformation can introduce bias, while
the nonlinear relationship between variables may require adequate transformation to
accurately capture the nonlinearity. Furthermore, many of the techniques are optimized
for smaller levels of missingness (the most commonly available measurements), yet most
clinical datasets (including the EHRs) have a significant level of missingness for many
of their important variables that are routinely used for diagnosis purposes. To address

2



J. Clin. Med. 2021, 10, 103

this problem, machine learning methods have also been proposed [10]. There are more
examples of imputation applied to simulated than real-life EHR data; however, few studies
focused on imputing laboratory values. For instance, Ford E. and colleagues [11] proposed
using logistic regression models with and without Bayesian priors representing the rates of
misclassification in the data. However, in that study, the authors focused on misclassified
diagnoses rather than laboratory values. The challenges of imputation for EHRs are unique,
and if left unaddressed, the utility of the data becomes limited [12]. Consequently, even
though, for smaller targeted studies, it could be possible to integrate additional modalities
or perform an analytical evaluation through a chart review to determine a likely cause
of missingness, for larger studies, this becomes infeasible. For example, the missingness
level for very important variables, such as hemoglobin A1C or HbA1c (LOINC ID: 17856-6)
levels, a common biomarker for diabetes can easily reach 50% or more in many realistic
large datasets. At last, in a more recent study, the integration of genetic and clinical
information was shown to improve the imputation of data missing from the Electronic
Health Records [13]; however, genetic data integrated with the EHR is still scarce.

Finally, given the complexity and the scale of the problem, in many studies, MICE [14]
remains the method of choice. The MICE fully conditional specification (FCS) algorithm
imputes multivariate missing data on a variable-by-variable basis [15]. An imputation
model is specified for each incomplete variable, and the imputation of missingness in one
variable is conducted iteratively based on the other variables. There are also variations
of MICE that have been proposed [16]; however, the need for imputation for data from
EHR poses its challenges, especially when targeting less commonly measured variables.
Nonetheless, given the high level of redundancy and the presence of highly correlated
entities in the EHR, imputation by MICE still performs relatively well for large clinical
datasets. A comprehensive overview of handling missing data in the EHR is presented
in [12].

In this study, we created three unique cohorts from the EHR data, with varying sizes
and heterogeneity, and developed a hybrid imputation strategy that we applied to these
cohorts. We selected the inflammatory bowel disease cohort because of its heterogeneity
and the fact that a clear understanding of IBD’s risk factors is still lacking. We selected
the Clostridioides difficile, because understanding of the recurrent infection is important,
and the existing data from the EHR can help us identify clinical biomarkers; finally, we
created the osteoarthritis (OA) cohort to test the limits of this model, as the OA diagnosis
is not based on any laboratory measurements known today. Our imputation model was
based on using comorbidity information to cluster patients prior to the imputation of their
laboratory values.

2. Methods

In the following section, we will (1) describe our cohort definition and data extraction
for the laboratory values and comorbidities from our EHR data warehouse and (2) outline
our imputation design.

2.1. Study Cohort

The cohort in this study consisted of 67,445 patients from the Geisinger Health System
with three different phenotypes. This study was exempted by the Geisinger Institutional
Review Board for using deidentified information.

Clostridioides difficile (Cdiff) Infection case and control cohort: Clostridioides difficile
(C. difficile) is an anaerobic, Gram-positive, and spore-forming bacterium and a major cause
of intestinal infection and antibiotic-associated diarrhea. Toxins are the major virulence fac-
tors of C. difficile [17]. Toxins A (TcdA) and B (TcdB) are large, secreted glucosyltransferase
proteins that target intestinal epithelia cells and disrupt the epithelial barrier, leading to
secretory diarrhea. The diagnosis of C. difficile at Geisinger is captured and documented
by Polymerase Chain Reaction (PCR) confirmation, which is highly sensitive. The latter
is also considered the gold standard by the eMERGE algorithm for EHR mining [18]. We
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identified the C. difficile cohort, which includes patients tested for C. difficile, from the EHR
of the Geisinger Health System. The cohort includes both cases and controls. Cases are
defined as having laboratory positive PCR test results. Controls are patients tested for
C. difficile with negative PCR test results. Case/control ratio is 1:8. We are interested in
the combined case and control cohort, since patients tested for C. difficile, irrespective of
their test results, share some of the signs and symptoms (such as diarrhea); furthermore,
using a case and control combined cohort increases our sample size, an important factor for
imputation, while providing a framework for building predictive models that can benefit
from the integration of a large number of laboratory-based features.

Inflammatory Bowel Disease (IBD) cohort: We identified the IBD cohort from the
EHR of the Geisinger Health System. Inclusion criteria of this cohort were based on the
extraction of the patient population based on the diagnosis recorded for patients under
their visits, admissions, and currently active problems listed based on the ICD9 and ICD10
codes for Crohn’s disease (CD) and ulcerative colitis (UC) (see Table A1 in Appendix A).
To have a higher fidelity regarding the diagnosis in the EHR, qualifying criteria included
either two or more outpatient encounters, or one or more inpatient admissions, or an entry
into the problem list with an active flag.

Osteoarthritis (OA) cohort: We identified an osteoarthritis (OA) cohort from the EHR
of the Geisinger Health System; the cohort includes a knee or hip OA diagnosis, either
primary or secondary diagnosis (see Table A1 in Appendix A for the OA diagnosis ICD
codes).

2.2. Data Extraction

We extracted clinical laboratory measurements for this cohort using the Logical Ob-
servation Identifiers Names and Codes (LOINC) system. For comorbidities, we extracted
all the diagnosis codes for all the patients based on the ICD9, as well as ICD10, codes.
Comorbidity data included details from out-patient visits, in-patient admissions, and
problem lists. The latter was used to capture conditions identified outside of the Geisinger
Health System but discussed and assessed during the patient’s care management. We
excluded laboratory codes with more than 75% missingness. To further clarify, in this study,
missingness is defined as the laboratory measure “not resulted”. Therefore, if an order was
placed but the results were not available (or not valid), we considered that as a missing
value. We analyzed the data in three batches, including only laboratory measures that have,
at most, (a) 25% missingness, (b) 50% missingness, and (c) 75% missingness.

2.3. Data Processing

Quality Control (QC) and outlier detection strategy: Geisinger has implemented a
rigorous process to continuously extract, transform, organize, and store EHR data and
remove erroneous entries for research purposes. For example, we currently have access to
quality-controlled laboratory values with the reconciliation of units. Median laboratory
values for each patient were calculated to be used for this study. It is important to mention
that, especially for less common laboratory values, the frequency of measurements and
the window between the first and last measurements per patient is relatively narrow. We
analyzed the frequency patterns and reported the results in our descriptive section.

As part of the added data processing and outlier detection and removal, the distri-
bution of each laboratory value was analyzed and fit to a tri-modal gaussian distribution
model (see Equation (1)). The rationale for using this strategy, as opposed to the assump-
tion of normality, is driven by the nature of the laboratory measures. Laboratory orders,
especially those with a higher level of missingness, are typically missing not at random
(MNAR), and there are mainly three groups of patients for whom there is a measurement
recorded (those with higher or lower than average measures, as well as patients with
average measurements). However, the average measurement is not necessarily associated
with a larger group in all the cases, especially for laboratory measures that are specific
to a phenotype, such as an iron-binding capacity. The latter is ordered for patients if the
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physician needs that information to make a diagnosis/management decision. Two cut-off
values are created to filter outliers based on the three distributions model. The automated
process to generate data-driven cut-off values is proposed for large-scale data mining,
where limited manual curation is applied in the data preparation and preprocessing.

f = N1

(

µ1, σ
2
1

)

+N2

(

µ2, σ
2
2

)

+N3

(

µ3, σ
2
3

)

(1)

where µ is the mean and σ is the standard deviation. The lowest boundary to filter out
the outliers is set to c_low = max (min(µ1 − 3σ1,µ2 − 3σ2, µ3 − 3σ3), 0), and the highest
boundary is set to c_high = max(µ1 + 3σ1,µ2 + 3σ2, µ3 + 3σ3).

Data processing of the comorbidity dataset was performed to remove noise by ex-
cluding the ICD9/10 codes that were recorded only once in the patient’s chart (rule of 2).
The resulting matrix was then converted to binary to represent the presence or absence of
an ICD9/10 code for each patient. This is important, since the count does not necessarily
correlate with the severity or duration of the condition. Therefore, a binary comorbidity
matrix for each cohort was created for imputation modeling.

2.4. Data Abstraction and Imputation Strategy

The comorbidity dataset was used to compute an encoding matrix for each dataset
(Cdiff, OA, and IBD) using singular value decomposition (Equation (2)).

APT_ICD_cohort = APT X ICD_cohort = USVT (2)

where APT_ICD_cohort is the matrix encompassing all the ICD9/10 codes (presence of absence)
for all the patients for each dataset, U is an mxm square matrix, S is an mxn diagonal
matrix with m rows and n colums, and V is an nxn square matrix. The columns of V are
eigenvectors of ATA, and the columns of U are eigenvectors of AAT. The diagonal elements
of S are the square root of the eigenvalues of ATA or AAT.

The encoding matrix was then used to create different levels of data abstraction by
retaining only 100 or 1000 of the encoding using the dimensionality reduction technique
(Equation (3)) for each dataset. We used these predefined cut-off values based on our
preliminary assessment [19], as well as empirical studies [20,21]. For comparison, the full
rank was also used in the modeling. Note that the approximation matrix is referred to as
the data abstraction. The finalized output is referred to as latent comorbidities.

APT_ICD_g = UreducedSreducedVT
reduced (3)

where g is the level of abstraction (100 or 1000) corresponding to the level of reduced
matrices. APT_ICD_cohort_g is an approximation of the initial matrix (APT_ICD_cohort).

As a final step in the data abstraction process, a baseline noise reduction is performed
by removing the ICD codes if the sum of all the values for a given code in the latent
comorbidity matrix is less than 1. This strategy reduces noise that is due to irrelevant (very
rare) comorbidities in the model. The imputation method presented in this work is a hybrid
method—that is, based upon concurrently applying dimensionality reduction and a clus-
tering strategy—to efficiently capture relationships among the features (or variables) and
reduce noise (through dimensionality reduction) while providing an adaptive mechanism
to perform imputation for any complex phenotype or trait. Using latent comorbidity data,
patients are clustered using the k-mean clustering technique with K set to 2, 4, 8, and 16
clusters, depending on the heterogeneity of the cohort.

Imputation was applied using the MICE fully conditional specification (FCS) algo-
rithm [5], which imputes multivariate missing data on a variable-by-variable basis. An
imputation model is specified to each incomplete variable, and the imputation of missing-
ness in one variable is conducted in an iterative fashion using the Markov Chain Monte
Carlo (MCMC) method. More specifically, we selected the predictive mean matching
(pmm) algorithm, which is the default method of mice() for imputing continuous incom-
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plete variables. For each missing value, pmm finds a set of observed values (default is
5) with the closest predicted mean as the missing one and imputes the missing value by
a random draw from that set. In other words, pmm is restricted to the observed values.
We also used Random Forest (rf), which is based on imputing missingness by recursively
subdividing the data based on values of the predictor variables in the predictive model by
a bootstrap aggregation of multiple regression trees to reduce the risk of overfitting and
improve the predictions through a combination of prediction from many trees [22]. The
latter does not rely on distributional assumptions and can better accommodate nonlinear
relations and interactions.

Imputations using MICE-pmm and MICE-rf were applied to each subgroup indepen-
dently to predict the missing values. The results were compared when MICE-pmm and
MICE-rf were applied to estimate the missing in the laboratory values in three cohorts
without any consideration of the comorbidity information. The reader is referred to the
work [15] by S. van Buuren and K. Groothuis-Oudshoorn for more details about imputation
by MICE.

2.5. Evaluation Strategy

Model evaluation is performed by randomly selecting variables and predicting them
using the hybrid strategy. A total of 100 values from each laboratory measure was randomly
withheld for testing. For example, for the Cdiff cohort, where we identified 48 laboratory
codes with less than 75% missingness, we held out 100 values for each of the 48 laboratory
codes and estimate these 10 times. The root mean square error (RMSE) was also calculated
and averaged over the 10 runs. Comparison was based on calculating the difference
between running imputation using the hybrid model and the standard MICE algorithm,
without any consideration of the comorbidity information, using both the pmm and rf
models implemented in the MICE package. The presented results were, therefore, the
RMSE differences, where the negative values represent a reduction in the root mean square
error.

3. Results

In the following section, we will (1) describe our cohorts, pattern of missingness, and
frequency of available data for different levels of missingness and (2) present imputation
results for the three datasets.

3.1. Description of Laboratory Values for the Three Cohorts

We identified a total of 67,445 patients in three different cohorts (Cdiff, OA, and IBD)
from Geisinger’s electronic data warehouse. Further, we identified 495 LOINC codes from
this cohort. We selected the LOINC codes for which we had, at most, 75% missingness (i.e.,
the number of patients without any measurement divided by the total number of patients
is less than or equal to 75%) in each of the three cohorts.

We identified a total of 46,215 patients tested for C. difficile. We extracted comorbidity
and laboratory data from the EHR for this cohort. A total of 48 laboratory codes and
8160 ICD codes for comorbidities were used. Specifically, we identified a total of 48 of the
laboratory codes from the 495 codes that had at least 25% of the 46,215 patients with at least
one measurement in their records. It is important to highlight that many of the LOINC
codes can be very specific (<1% of the patients have such measurements) or were used for a
narrow period and may not be actively in use. The dimensionality reduction was set to 100
and 1000. The Cdiff cohort had high heterogeneity, since the dataset contained both cases
(tested positive for C. difficile) and controls (tested negative for C. difficile). The number of
clusters tested was 4, 8, and 16.

Similarly, we further identified 11,230 IBD patients with both comorbidity and labora-
tory data from the EHR. A total of 48 laboratory codes and 7916 ICD codes for comorbidities
were identified. The dimensionality reduction was set to 100 and 1000. The number of
clusters tested was two, four, and eight, given the smaller sample size of this cohort.
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Finally, we identified 187,040 patients with a primary or secondary diagnosis of the
knee or hip OA from which we randomly selected 10,000 patients for imputation modeling.
A total of 44 laboratory codes and 2042 ICD codes for comorbidities were used. The OA
cohort had high heterogeneity, since the dataset was large (almost 200,000 cases from the
initial pool) and contained both hip and knee OA. We selected a random set of 10,000
patients, as it is impractical to use an extremely large cohort of patients for optimizing an
imputation, as the optimization alone is a computationally extensive process. The number
of clusters tested was 4, 8, and 16.

The distribution of missingness in the laboratory values was different for the different
cohorts. Table A2 summarizes the percentage missing for the laboratory measures. Our
results showed that the pattern and frequency of the laboratory measurements were
dependent on the missingness level. Briefly, for laboratory values with high missingness, a
larger percentage of patients (30–60%) had only one resulted value; therefore, the median
that we calculated in our experiment was practically the exclusively reported value for the
patient (see Figure 1A). We further observed that the laboratory values with a high level
of missingness (when a patient had more than one value) tended to have an observation
window of approximately two to six years (see Figure 1B) and a frequency that was below
five measurements (see Figure 1C). However, for more common laboratory values, we
observe a window of approximately 5 to 12 years and a frequency above 10 (see Figure 1C).

The outlier detection using a multimodal gaussian distribution function was applied
to each laboratory measure for each cohort separately. Figure 2 highlights that, for labora-
tories with higher missingness levels, the distribution is different for the different cohorts,
and therefore, the accepted range is adjusted accordingly. For more common laboratory
measures (such as the example presented in Figure 3), the distributions are similar. The
accepted range for these laboratory measures is within the calculated range. To further
help the reader to better understand the pattern of laboratory data, we created distribution
plots for all the laboratory values used in this study for the three cohorts (see Figure A1
and Table A2).

3.2. Imputation Applied to Laboratory Values

C. difficile (Cdiff) infection case and control cohort: Using adaptive imputation for the
Cdiff cohort showed improved performance, especially for the high missingness group
(laboratory measures that have, at most, 75% missingness). An average RMSE difference
(comparing the proposed imputation with the standard imputation model, without any
consideration of comorbidity information using MICE) was −31.47 for a level of abstraction
g = 1000 and a cluster number k = 4. The average RMSE difference was −8.75 for g = 100
and k = 4, demonstrating that, at a high missingness level, additional information from
the patient comorbidity information can play an important role in improving the accuracy
of the imputation prediction. A total of 27 combinations (or nine combinations for each
missingness threshold) were tested, and for each missingness level (Table 1), the tradeoff
between the sample size and clustering approach resulted in one or two instances where
clustering was associated with improved performance. Since the dataset is of fixed size,
the higher number of clusters will reduce the power of the imputation method, especially
when the number of clusters is increased to eight or beyond. However, as each dataset has
its unique characteristics, the best set of parameters must be empirically determined prior
to performing the imputation using the adaptive strategy. Using MICE and the random
forest model (rf), the RMSE differences were negative for the majority of the combinations.
The missingness group of <75% had seven out of the nine parameter combinations that
were in favor of the novel method (See Table 1 and Figure 4).
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Figure 1. The pattern of missingness for the three cohorts. A generalized additive model was used for smoothing. The gray
area around the smoothing curve represents a 95% confidence interval. (A) The percentage of patients with one laboratory
measurement versus the missingness percentage for the three datasets. (B) The average number of years between the
first and last laboratory measurements (calculated for patients with two or more measurements) versus the missingness
percentage for the three datasets. (C) The frequency of the laboratory measurements calculated for patients with two or
more measurements versus the missingness percentage for the three datasets. Cdiff: Clostridioides difficile, IBD: inflammatory
bowel disease, and OA: osteoarthritis.
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Table 1. The root mean square error (RMSE) difference from imputation is applied with and without the integration of
comorbidity information for the three datasets. Negative RMSE correspond to improvements by the hybrid approach. The
predictive mean matching (pmm) and Random Forest (rf) model in Multivariate Imputation by Chained Equations (MICE)
were used in this study. The reader is referred to Tables A3–A5 for a more comprehensive results, with p-values reported
from multiple runs.

C. difficile (Cdiff) Infection

MICE-PMM MICE-RF

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness
< 50%

Missingness
< 75%

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness
< 50%

Missingness
< 75%

4
100 −0.77 7.12 −8.76

4
100 0.35 −1.47 −4.92

1000 7.42 6.93 −31.47 1000 2.07 0.50 −12.72

8160 −3.09 2.06 8.37 8160 −4.40 −3.28 0.49

8
100 0.11 9.19 12.39

8
100 1.40 11.06 −16.75

1000 0.14 6.69 4.02 1000 1.24 4.04 9.73

8160 4.63 10.09 6.99 8160 −0.88 −7.32 −5.11

16
100 −2.12 −3.00 5.03

16
100 −0.04 14.73 −2.36

1000 5.92 16.21 23.33 1000 −0.19 5.98 −9.16

8160 4.91 12.37 2.41 8160 0.63 −19.66 −9.50

Inflammatory Bowel Disease (IBD)

MICE-PMM MICE-RF

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness<
50%

Missingness
< 75%

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness
< 50%

Missingness
< 75%

2
100 0.94 0.22 −6.49

2
100 0.76 0.68 −3.19

1000 1.28 0.08 5.44 1000 −1.14 0.23 −4.84

7916 −0.89 1.97 0.24 7916 0.18 1.17 −8.35

4
100 1.26 0.17 −3.43

4
100 0.20 2.09 0.76

1000 1.13 1.46 1.66 1000 −0.53 2.25 0.33

7916 0.31 1.92 −4.15 7916 −0.91 1.97 −4.03

8
100 −0.36 2.85 6.60

8
100 0.97 −0.06 −4.16

1000 −2.70 −0.74 −7.03 1000 1.08 2.15 1.17

7916 0.01 4.40 3.76 7916 0.26 3.31 −8.24

Osteoarthritis (OA)

MICE-PMM MICE-RF

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness
< 50%

Missingness
< 75%

Cluster
Number

Dimensionality
Level (g)

Missingness
< 25%

Missingness
< 50%

Missingness
< 75%

4
100 0.04 0.08 −0.13

4
100 2.45 −4.23 6.83

1000 0.03 0.11 −0.08 1000 3.35 10.16 −4.70

2042 0.08 0.18 0.05 2042 1.70 −2.70 −0.75

8
100 −0.07 0.22 0.12

8
100 4.73 1.13 −0.10

1000 −0.07 −0.07 0.16 1000 3.86 −1.27 −0.34

2042 0.00 −0.01 −0.09 2042 4.42 −11.30 1.87

16
100 −0.02 0.10 0.20

16
100 −0.52 3.08 −2.33

1000 0.08 0.15 −0.05 1000 1.41 −0.33 −6.45

2042 −0.02 0.09 0.24 2042 1.60 3.23 10.93
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Figure 4. Violin plots representing the root mean square error (RMSE) differences—comparing the performance of
Multivariate Imputation by Chained Equations (MICE) with and without the comorbidity information. Two algorithms,
predictive mean matching (pmm) and Random Forest (rf), were compared. A Negative RMSE difference indicates a
performance improvement when the comorbidity information is utilized.

Inflammatory Bowel Disease (IBD) cohort: Using adaptive imputation for the IBD
cohort showed improved performance, especially for the high missingness group (lab-
oratory measures that have, at most, 75% missingness). An average RMSE difference
when compared to the standard model using MICE alone was −8.35 with no abstraction
and cluster number k = 2. Similarly, an average RMSE difference when compared to the
standard model using MICE alone was −8.24 for k = 8. The results highlighted that, at
a high missingness level, additional information from the patient comorbidity data can
play an important role in improving the accuracy of the imputation prediction, even as
the sample size is significantly smaller (in this case, 11 K versus 46 K for the Cdiff cohort).
A total of 27 combinations (or nine combinations for each missingness threshold) were
tested. The tradeoff between the sample size and clustering approach resulted in parameter
combinations that were associated with improved performance. Additional analyses were
performed with the random forest model in MICE, and an RMSE difference of −2.70 was
recorded for a missingness level of 25% (see Table 1 and Figure 4). Our results corroborate
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the value of parameter optimization on the dataset using various modeling frameworks.
Thus, the best set of parameters should be empirically determined for each dataset.

Osteoarthritis (OA) cohort: Using adaptive imputation for the OA cohort showed
that the best performance improvement was for missingness at 50% (Table 1 and Figure 4).
The tradeoff between the sample size reduction, when clustering is utilized, and the use
of additional information from comorbidities did show benefits even for this smaller and
more heterogeneous dataset. The rf model in MICE was best fitted for this dataset.

4. Discussion

This study is a first step towards improving our many layers of data analytics and
quality control pipelines to help enhance the quality of data extracted from the EHR that is
ingested in machine learning applications for precision medicine. The use of heterogeneous
and large-scale clinical datasets, such as EHRs, provides an avenue for the exploration of
strategies to improve care at individualized levels, which include developing personalized
models of responses to therapy and the prediction of disease onset, among others [1].
However, the data extracted from EHRs are noisy and have many missing values. In the
majority of studies, variables suffering from missingness are excluded from models and
analyses [4], even for some variables with high discriminative ability according to the
clinical knowledge. As we showed in this work, it is not recommended to solely rely on the
redundancy of EHR laboratory data to conduct imputation for realistic applications. That
is because the majority of redundancy from laboratory measurements are associated with
variables that are missing at high levels. However, laboratory data is highly associated with
comorbidity, as the latter is based on laboratory values in realistic settings. For instance,
besides the commonly ordered laboratory tests (20–30 laboratory measures), the remaining
values are missing at very high rates, even in a healthcare system with a stable population
(Geisinger is an integrated healthcare system with a drop-out rate <5%). However, the
laboratory measures are highly correlated with comorbidities and diagnosis. Therefore, our
intuitive modeling strategy is focused on using this redundancy to improve the imputation
for laboratory values.

Furthermore, many diagnoses are based on laboratory values; however, due to the
challenges associated with mining laboratory measures, many models ignore this important
parameter or only include the ones that are not missing at high levels to reduce the noise
and bias due to poor imputation predictions. We created three diverse datasets to test this
intuitive strategy of imputation designed specifically for EHR laboratory data by including
information from the comorbidities.

The IBD dataset was used, because IBD is a heterogeneous disease and a clear un-
derstanding of its risk factors is still lacking. Recent advances in the knowledge of IBD’s
pathogenesis have led to the implication of a complex interplay between metabolic re-
programming and immunity [23]. Furthermore, the response to treatment in IBD varies
significantly among individuals and disease subtypes based on demographic characteris-
tics, diet, comorbidities, underlying immunological factors, and genetic polymorphisms.
Thus, there is an urgent unmet need to replace the current imputation approaches with
personalized strategies that consider individual variability, diversity, and more balanced
patient representation. Therefore, building predictive models for treatment outcomes for
IBD is an important step in utilizing the available data on drug responses to provide better
care for this patient population. Thus, the integration of laboratory measures in a predictive
model for IBD has clinical value.

We created the Cdiff dataset, because the understanding of recurrent C. difficile infec-
tion is important, and the existing data from EHR can help us identify clinical biomarkers
and help in building a decision support system for physicians to target the patients at a
higher chance of recurrence for more targeted preventive care.

Finally, the OA dataset was added to test the limits of this model. An OA diagnosis is
not based on any laboratory measure known today. An OA diagnosis is based on imaging
alone. Therefore, we did not expect the OA cohort to have any special patterns in their
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laboratory profile, yet we observed that, even in this situation, the use of a comorbidity
pattern can help in improving the imputation of laboratory values. The OA dataset was
also the smallest dataset tested in this study.

Overall, our results showed that each dataset is unique, and a one-size-fits-all ap-
proach does not apply when selecting the imputation model. On simulated datasets with
interactions between variables, the imputation of missing data using MICE with regression
trees resulted in less biased parameter estimates than MICE with linear regression. [24]
In the CALIBER study, MICE random forest showed more imputation efficiency with
narrower confidence intervals for the error metric [25]. Through a simulation of a dataset
in which the partially observed variable depended on the fully observed variables in a
nonlinear way, MICE-RF showed less bias in parameter estimates and better confidence
interval coverage. In our study, rf also performed well; however, the best performance was
observed when pmm was used in the Cdiff cohort. Nonetheless, because the RMSEs were
calculated across all laboratory variables, the improvement may be contributed by a few
variables that were imputed better in perhaps some, but not all, cases. Further analysis will
be needed to address this assumption.

The method presented here is an intuitive approach for any given complex disease
where biosignatures or risk factors are only partially known and the relationship among
the variables can be convoluted given the large dimensionality of the dataset. Even though
the level of missingness can vary, the best results are typically obtained when the level of
missingness is low or moderate. The improvement over conventional methods without
the consideration of comorbidity information can be achieved when the missingness level
is high. Our strategy was to ensure that (1) our experiment aligned with the current
methodologies in practice and (2) others can easily adapt this modification to their work. In
future directions, we will explore if advanced modeling frameworks such as the generative
adversarial network [26] (GAN) or the newly proposed generative adversarial imputation
nets (GAIN) framework [27] can be optimized for imputing laboratory values from EHRs.

Finally, our study provided a step in what we believe is a pipeline of data quality
improvements for empowering machine learning models using EHRs. The main limitation
of this approach is the need for large datasets. This is due to the nature of this approach, as
the clustering step will reduce the sample size for the imputation, thus reducing its power.
Therefore, this approach is ideal for machine learning applications where the sample size
tends to be large and comprehensive. Our smallest cohort consisted of 10,000 OA patients.
Our best prediction improvement was observed for the largest dataset of 46,215 patients.
Another limitation of this study that we could not address is based on our masking strategy
for the evaluation, which was done at random, even though we knew that the missingness
in the EHR was not at random. However, given that we did not know a priori the reason
for missingness for each patient, given the complex nature of the data, masking at random
was the most sensible strategy in this case. As of now, we do not have a better strategy to
simulate MNAR to withhold values. The contributing factors to MNAR are multifactorial
and largely unknown.

This study had several other limitations. First, by converting the comorbidity infor-
mation into binary, we may have lost important information. This study design can be
enhanced further to answer a specific research question by optimizing the pattern of ICD
codes recoded (both the frequency and time intervals) to capture the duration and severity
of the conditions. Second, we withheld a relatively small number of values to evaluate our
model. This is because we included laboratory codes with as high as 75% missingness and
applied clustering prior to imputing; thus, withholding a higher level of laboratory values
may further increase the sparsity of the dataset and introduce further bias. As a future
direction, we plan on applying the algorithm several times to random subsamples of the
data of size n/2 (n = number of samples). This repeated double randomization, similar to
the concept of bagging and sub-bagging [28,29] algorithms, could further help optimize our
strategy. Third, we are not limiting the window with respect to the diagnosis index event,
as it should be for a carefully designed study [30,31]. However, the identification of pre-
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and post-index windows should be thoroughly planned based on the research question,
the sparsity of the data, the healthcare system, and the variables under consideration [30].
However, as this is a proof-of-concept study, we did not limit our observation window
in order to help improve our data availability so that we could experiment with different
levels of missingness. Even though this is a limitation of this study, we showed what, in
many instances, were only a few laboratory values for each patient for the less commonly
used laboratory codes. Fourth, as this was a pilot study, we wanted to corroborate the
generalizability and scalability of the proposed strategy. Therefore, we did not exhaustively
vary the abstraction level nor the size of the clusters; however, we applied the model on
three different cohorts that were created specifically for this study. Finally, by combining
the laboratory codes into three groups (<25% missing, <50% missing, and <75% missing),
we were unable to determine if this improvement was due to one or a few laboratory
variables. Further assessments will be needed to study the improvement of imputation for
each laboratory on a case-by-case basis for more targeted evaluations and improvements.

To conclude, the advantages of imputing missingness are manifold; imputation can be
used for increasing the data density, improving the representation of data-poor patients,
thus reducing the implicit algorithmic bias. Patients with limited access to healthcare and
specialty care may be prone to be less-represented in models, because their data footprint is
lower. The inclusion of more laboratory values is important as a prediction of a diagnosis;
if it is not at least partially based on laboratory information, it could be weak. Predicting
a future disease by only focusing on past diagnoses (i.e., using only information based
on the ICD codes) is not taking full advantage of the information in electronic health
records. Laboratory measurements, similar to imaging and imaging reports, are at the core
of diagnosis and care management. The novelty of this study is in its intuitive design and
relatively simple implementation in incorporating information from a patient’s comorbidity
to improve the imputation of laboratory values.

As a future direction, we will investigate how best to impute longitudinal laboratory
measures to better inform clinical studies. In addition, we will also explore integrating
additional features, such as demographic information, age, gender, and medication usage,
as well as genetic information when available, to further enhance the imputation outcome.
Finally, we will evaluate various preprocessing and normalization strategies and evaluate
if these manipulations can improve the outcome of our predictions, especially for variables
with skewed distributions, and explore the impact of imputation on each laboratory
value and further investigate any potential patterns or trends that can help improve
predicting the missing values. To conclude, we optimized the level of abstraction needed
to improve the imputation for three cohorts of varying sizes and complexities. This study
demonstrates that the use of shared latent comorbidities can facilitate improvements
in imputing laboratory measures from EHRs for downstream analysis and predictive
modeling.
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Figure A1. Distribution of the laboratory values normalized for all the LOINC included in this study. 
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Figure A1. Distribution of the laboratory values normalized for all the LOINC included in this study.
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Table A1. Diagnosis codes used for inflammatory bowel disease and osteoarthritis.

Diagnosis Inclusion Criteria Using ICD Codes

ICD9 Diagnosis: Crohn’s and Ulcerative Colitis
555, 55.0, 555.1, 555.2, 555.9, 556, 556.0, 556.1, 556.2, 556.3, 556.5, 556.6,

556.8, 556.9

ICD10 Diagnosis: Crohn’s and Ulcerative Colitis

K50.00, K50.011, K50.012, K50.013, K50.014, K50.018, K50.019, K50.10,
K50.111, K50.112, K50.113, K50.114, K50.118, K50.119, K50.80, K50.811,
K50.812, K50.813, K50.814, K50.818, K50.819, K50.90, K50.911, K50.912,
K50.913, K50.914, K50.918, K50.919, K51.80, K51.00, K51.011, K51.012,
K51.014, K51.018, K51.019, K51.20, K51.211, K51.212, K51.213, K51.218,
K51.219, K51.30, K51.311, K51.313, K51.314, K51.318, K51.319, K51.411,
K51.414, K51.419, K51.50, K51.511, K51.513, K51.514, K51.518, K51.519,
K51.80, K51.811, K51.812, K51.813, K51.814, K51.818, K51.819, K51.90,

K51.911, K51.912, K51.913, K51.914, K51.918, K51.919

ICD9 Diagnosis: Osteoarthritis
715; 715.0; 715.00; 715.09; 715.1; 715.10; 715.15; 715.16; 715.30; 715.35;

715.36; 715.8; 715.80; 715.85; 715.86; 715.89; 715.9; 715.90; 715.95; 715.96;

ICD10 Diagnosis: Osteoarthritis
M15.0; M15.9; M16.0; M16.10; M16.11; M16.12; M16.2; M16.30; M16.31;

M16.32; M16.9; M17.0; M17.10; M17.11; M17.12; M17.9; M19.91
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Table A2. Various summary statistics for the laboratory variables included in this study. The empty cell represents a percentage missing that is higher than 75%.

Percentage Missing
Percent of Patient
with 1 Lab Value

Average Number of Years between First and Last Laboratory
Measurement, for Patient with 2 or More Measurements

(in Years)

Frequency of the Laboratory Measurements Calculated for
Patients with Two or More Measurements

LOINC ID Short Description Cdiff IBD OA Cdiff IBD OA

Cdiff IBD OA Cdiff IBD OA
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14957-5 Microalbumin in Urine 75% 73% 31% 28% 26% 7.1 6.0 2.8 10.6 6.8 5.8 2.6 10.1 7.4 6.3 3.0 11.0 5 3 1 8 5 3 1 7 6 4 1 8

14959-1
Microalbumin/

Creatinine in Urine
73% 31% 28% 25% 7.1 6.1 2.8 10.6 6.8 5.8 2.7 10.1 7.3 6.3 3.0 11.0 5 3 1 8 5 3 1 7 6 4 1 8

13969-1
Creatine kinase.MB in

Serum/Plasma
54% 73% 26% 20% 24% 3.6 1.4 0.0 5.9 3.6 1.1 0.0 6.0 3.9 1.5 0.0 6.7 7 4 2 9 6 3 1 7 6 3 2 7

18262-6
Cholesterol in LDL in

Serum/Plasma (by direct
assay)

70% 67% 42% 38% 35% 5.5 4.7 2.1 8.2 5.5 4.6 1.9 7.9 5.9 5.2 2.3 8.7 4 2 1 5 3 2 1 4 4 2 1 5

6768-6
Alkaline phosphatase in

Serum/Plasma
5% 11% 10% 6% 9% 8.5 7.8 3.1 13.4 8.9 8.2 3.5 13.7 10.1 9.7 4.9 15.1 18 11 5 22 14 8 3 18 14 9 4 17

2284-8 Folate in Serum/Plasma 65% 73% 74% 34% 33% 35% 3.2 1.1 0.0 5.1 3.5 1.4 0.0 5.6 3.4 1.2 0.0 5.5 3 2 1 3 3 2 1 3 3 2 1 3

3024-7
Thyroxine (T4) free in

Serum/Plasma
60% 70% 74% 49% 45% 43% 5.7 4.2 1.4 8.9 6.0 4.4 1.7 9.4 6.3 4.6 1.8 9.8 3 2 1 4 3 2 1 3 4 2 1 4

1798-8 Amylase in Serum/Plasma 61% 73% 51% 50% 57% 3.9 2.3 0.2 6.5 4.5 3.1 0.8 7.2 4.5 3.0 0.4 7.7 3 1 1 3 3 1 1 3 2 1 1 2

2502-3
Iron saturation in

Serum/Plasma
63% 73% 73% 45% 41% 41% 2.9 1.8 0.3 4.7 3.2 2.1 0.6 5.1 2.8 1.6 0.2 4.6 4 2 1 4 3 2 1 3 3 2 1 3

27353-2
Glucose mean value in Blood

Estimated from glycated
hemoglobin

59% 59% 72% 39% 33% 31% 4.6 4.2 1.8 7.2 4.5 4.1 1.8 7.3 4.9 4.7 2.1 7.8 7 3 1 9 6 2 1 7 7 3 1 10

2157-6
Creatine kinase in

Serum/Plasma
46% 61% 71% 37% 25% 29% 4.4 2.6 0.1 7.3 4.5 2.8 0.2 7.5 4.9 3.4 0.2 8.0 7 4 1 8 5 2 1 5 5 3 1 6

2340-8
Glucose in Blood by
Automated test strip

43% 62% 68% 23% 14% 22% 3.8 1.9 0.1 6.2 3.8 1.6 0.0 6.3 4.1 2.3 0.0 6.8 77 25 3 92 40 7 2 33 41 8 2 39

17856-6
Hemoglobin

A1c/Hemoglobin.total in
Blood

50% 50% 67% 37% 30% 29% 7.5 6.3 2.7 11.4 7.1 5.8 2.4 10.8 7.8 6.8 3.0 11.8 9 3 1 12 8 2 1 8 10 3 1 13

2777-1 Phosphate in Serum/Plasma 42% 60% 67% 28% 18% 29% 4.0 1.9 0.1 6.4 4.4 2.3 0.1 7.2 5.2 3.3 0.5 8.2 14 7 2 17 10 4 1 10 8 3 1 8
19123-9 Magnesium in Serum / Plasma 43% 66% 67% 30% 19% 33% 3.0 1.2 0.1 4.5 3.6 1.6 0.1 5.6 3.4 1.5 0.0 5.3 13 6 2 16 10 3 1 10 7 3 1 7

2501-5
Iron binding

capacity.unsaturated in
Serum/Plasma

52% 65% 64% 43% 38% 39% 4.2 2.8 0.6 6.5 4.8 3.2 1.1 7.3 4.3 2.8 0.6 6.5 4 2 1 4 3 2 1 4 3 2 1 4

2276-4 Ferritin in Serum/Plasma 55% 67% 63% 42% 42% 46% 4.5 3.2 0.9 6.8 4.9 3.6 1.3 7.3 4.7 3.4 1.1 7.1 4 2 1 4 4 2 1 4 3 2 1 3

2132-9
Cobalamin (Vitamin B12) in

Serum/Plasma
51% 59% 61% 31% 29% 32% 4.5 2.8 0.2 7.2 5.1 3.1 0.4 8.3 4.9 3.3 0.2 7.8 3 2 1 4 4 2 1 4 3 2 1 4
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Table A2. Cont.

Percentage Missing
Percent of Patient
with 1 Lab Value

Average Number of Years between First and Last Laboratory
Measurement, for Patient with 2 or More Measurements

(in Years)

Frequency of the Laboratory Measurements Calculated for
Patients with Two or More Measurements

LOINC ID Short Description Cdiff IBD OA Cdiff IBD OA

Cdiff IBD OA Cdiff IBD OA
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2498-4 Iron in Serum/Plasma 50% 62% 60% 40% 36% 37% 4.4 3.0 0.7 6.7 5.0 3.5 1.2 7.5 4.5 3.1 0.6 6.9 4 2 1 4 4 2 1 4 3 2 1 4

1988-5
C reactive protein in

Serum/Plasma
74% 58% 39% 56% 58% 3.6 2.3 0.5 5.8 4.5 3.5 1.3 7.0 3.8 2.3 0.5 5.8 3 1 1 3 4 2 1 5 2 1 1 2

3040-3 Lipase in Serum/Plasma 42% 69% 56% 38% 36% 45% 4.5 3.0 0.6 7.1 5.1 3.7 1.2 7.9 5.0 3.5 0.9 8.0 4 2 1 4 4 2 1 4 3 2 1 3

13457-7
Cholesterol in LDL in

Serum/Plasma (by calculation)
28% 20% 40% 23% 19% 13% 9.5 8.9 4.2 14.5 9.4 8.8 4.0 14.7 10.7 10.7 5.5 16.0 8 5 2 11 7 4 2 9 10 7 3 14

2085-9
Cholesterol in HDL in

Serum/Plasma
27% 19% 40% 22% 18% 13% 9.6 9.2 4.3 14.8 9.6 9.0 4.1 15.0 11.0 11.0 5.7 16.3 8 5 2 12 7 4 2 10 10 7 3 14

1968-7
Bilirubin.direct in

Serum/Plasma
24% 43% 40% 25% 19% 26% 6.0 4.5 1.0 9.8 6.6 5.3 1.8 10.4 7.2 6.2 2.1 11.6 8 4 2 9 7 3 2 8 6 3 1 7

2093-3 Cholesterol in Serum/Plasma 26% 18% 39% 22% 18% 12% 10.0 9.6 4.5 15.5 10.0 9.6 4.2 15.7 11.4 11.5 5.9 16.9 9 5 2 12 8 4 2 10 10 7 3 15
2571-8 Triglyceride in Serum/Plasma 25% 19% 37% 21% 18% 13% 9.4 8.9 4.1 14.6 9.2 8.5 3.5 14.7 10.8 10.9 5.6 16.2 8 5 2 12 7 4 2 10 10 7 3 14

1975-2
Bilirubin.total in
Serum/Plasma

5% 11% 11% 10% 6% 9% 8.4 7.6 3.0 13.1 8.8 8.1 3.5 13.5 9.9 9.5 4.8 14.8 17 11 5 22 14 8 3 17 14 9 4 17

30239-8
Aspartate aminotransferase in

Serum/Plasma
5% 10% 10% 10% 6% 8% 8.8 8.1 3.2 13.9 9.1 8.5 3.7 14.1 10.4 10.2 5.2 15.7 19 12 5 24 15 9 3 19 15 10 4 20

1743-4
Alanine aminotransferase in

Serum/Plasma
5% 10% 10% 10% 6% 8% 8.6 8.0 3.2 13.5 9.0 8.3 3.8 13.8 10.2 10.0 5.2 15.2 19 12 5 25 15 9 4 20 16 11 5 22

2885-2 Protein in Serum/Plasma 5% 10% 9% 10% 6% 9% 7.9 7.2 2.9 12.4 8.3 7.6 3.3 12.8 9.3 9.1 4.6 14.0 17 11 5 22 14 8 3 17 14 9 4 17
10466-1 Anion gap 3 in Serum/Plasma 6% 11% 8% 9% 3% 4% 6.3 6.3 2.5 10.2 6.4 6.4 2.7 10.4 7.3 7.9 3.9 11.1 39 25 10 51 22 11 4 27 26 16 7 32

2028-9
Carbon dioxide, total in

Serum/Plasma
2% 4% 7% 7% 2% 3% 9.6 9.2 3.8 15.1 9.5 8.9 3.7 15.0 11.3 11.6 6.0 16.9 45 29 12 59 26 13 5 31 31 20 9 40

2951-2 Sodium in Serum/Plasma 2% 4% 7% 7% 2% 3% 9.6 9.2 3.8 15.2 9.6 9.1 3.8 15.1 11.3 11.7 6.0 16.9 45 30 12 60 26 13 5 32 31 20 9 40

3094-0
Urea nitrogen in
Serum/Plasma

2% 4% 7% 7% 2% 3% 9.7 9.3 3.9 15.3 9.6 9.1 3.7 15.2 11.4 11.8 6.1 17.1 45 30 12 60 26 13 5 32 32 20 9 41

17861-6 Calcium in Serum/Plasma 2% 4% 6% 7% 2% 3% 8.8 8.5 3.5 14.0 8.9 8.5 3.5 14.0 10.4 10.8 5.5 15.6 44 29 12 58 25 13 5 31 30 19 9 38
777-3 Platelets in Blood 2% 6% 6% 6% 2% 4% 9.5 9.1 3.7 15.1 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.6 40 25 11 52 25 13 5 31 27 16 7 33
789-8 Erythrocytes in Blood 2% 6% 6% 6% 2% 4% 9.5 9.1 3.7 15.1 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.7 40 25 11 52 25 13 5 31 27 16 7 33
788-0 Erythrocyte distribution width 3% 6% 6% 6% 2% 4% 9.5 9.1 3.7 15.0 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.6 40 25 11 52 25 13 5 31 27 16 7 33
6690-2 Leukocytes in Blood 2% 6% 6% 6% 2% 4% 9.5 9.1 3.7 15.1 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.7 41 25 11 53 25 13 5 31 27 16 7 33

18



J. Clin. Med. 2021, 10, 103

Table A2. Cont.

Percentage Missing
Percent of Patient
with 1 Lab Value

Average Number of Years between First and Last Laboratory
Measurement, for Patient with 2 or More Measurements

(in Years)

Frequency of the Laboratory Measurements Calculated for
Patients with Two or More Measurements

LOINC ID Short Description Cdiff IBD OA Cdiff IBD OA

Cdiff IBD OA Cdiff IBD OA
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2345-7 Glucose in Serum/Plasma 2% 3% 6% 7% 2% 3% 9.7 9.4 3.9 15.4 9.7 9.2 3.8 15.4 11.5 12.0 6.1 17.3 46 30 13 61 27 14 5 32 32 21 9 41
2075-0 Chloride in Serum/Plasma 2% 4% 6% 7% 2% 3% 9.6 9.2 3.8 15.1 9.5 9.0 3.7 15.0 11.3 11.7 6.0 16.9 45 30 12 59 26 13 5 31 31 20 9 40
32623-1 Platelet mean volume in Blood 2% 6% 5% 7% 2% 4% 9.4 9.0 3.6 15.0 9.7 9.3 3.9 15.4 11.0 11.0 5.5 16.6 39 25 11 51 25 13 5 31 26 15 7 32
2823-3 Potassium in Serum/Plasma 2% 3% 5% 6% 2% 3% 9.7 9.3 3.9 15.4 9.6 9.1 3.7 15.2 11.5 11.8 6.1 17.2 47 31 13 62 27 14 5 33 32 21 9 41
785-6 MCH 2% 5% 5% 6% 2% 4% 9.5 9.1 3.7 15.0 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.6 40 25 11 52 25 13 5 31 27 16 7 33
786-4 MCHC 2% 5% 5% 6% 2% 4% 9.5 9.1 3.7 15.0 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.6 40 25 11 52 25 13 5 31 27 16 7 33
2160-0 Creatinine in Serum/Plasma 2% 3% 5% 6% 2% 3% 9.8 9.4 3.9 15.4 9.6 9.1 3.8 15.2 11.6 12.0 6.4 17.2 46 31 13 62 27 14 5 33 33 21 9 42
718-7 Hemoglobin in Blood 2% 4% 4% 6% 2% 3% 9.6 9.2 3.7 15.3 9.9 9.5 4.0 15.7 11.0 11.2 5.5 16.8 43 27 11 56 27 14 6 32 29 17 8 35

4544-3
Hematocrit of Blood by

Automated count
2% 5% 4% 6% 2% 3% 9.5 9.2 3.7 15.2 9.8 9.4 3.9 15.5 11.0 11.1 5.5 16.7 42 26 11 55 26 14 5 32 28 16 8 34

787-2
Mean corpuscular volume,

or MCV
2% 5% 4% 6% 2% 4% 9.5 9.1 3.7 15.1 9.8 9.4 3.9 15.4 11.0 11.1 5.6 16.7 40 25 11 52 25 13 5 31 27 16 7 33
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Table A3. The RMSE difference from imputation is applied with and without the integration of comorbidity information for
the Cdiff dataset. Negative RMSE correspond to improvement by the hybrid approach. The pmm and rf models in MICE
were used in this study. The p-value is reported based on 10 runs.

Cdiff-PMM Cdiff-RF

Missingness
Level

Dimensionality
Level (g)

Cluster
Number

RMSE
Difference

p-Value
RMSE

Difference
p-Value

25% 100 4 −0.774 0.376 0.349 0.625
25% 100 8 0.110 0.739 1.402 0.532
25% 100 16 −2.121 0.306 −0.189 0.629
25% 1000 4 7.417 0.456 2.066 0.391
25% 1000 8 0.141 0.584 1.238 0.581
25% 1000 16 5.916 0.139 −0.035 0.233
25% 8160 4 −3.088 0.419 −4.397 0.582
25% 8160 8 4.628 0.150 −0.882 0.868
25% 8160 16 4.910 0.493 0.631 0.594
50% 100 4 7.117 0.459 −1.470 0.789
50% 100 8 9.189 0.759 11.064 0.796
50% 100 16 −3.005 0.351 14.731 0.472
50% 1000 4 6.934 0.920 0.503 0.675
50% 1000 8 6.695 0.230 4.044 0.432
50% 1000 16 16.207 0.087 5.976 0.196
50% 8160 4 2.060 0.481 −3.279 0.865
50% 8160 8 10.087 0.435 −7.323 0.502
50% 8160 16 12.366 0.190 −19.655 0.476
75% 100 4 −8.756 0.386 −4.916 0.662
75% 100 8 12.386 0.174 −16.748 0.487
75% 100 16 5.026 0.392 −2.362 0.513
75% 1000 4 −31.468 0.017 −12.722 0.982
75% 1000 8 4.024 0.266 9.729 0.405
75% 1000 16 23.333 0.139 −9.162 0.258
75% 8160 4 8.368 0.569 0.488 0.787
75% 8160 8 6.993 0.515 −5.113 0.631
75% 8160 16 2.414 0.957 −9.496 0.979

Table A4. The RMSE difference from imputation is applied with and without the integration of comorbidity information for
the IBD dataset. Negative RMSE correspond to improvement by the hybrid approach. The pmm and rf models in MICE
were used in this study. The p-value is reported based on 10 runs.

IBD-PMM IBD-RF

Missingness
Level

Dimensionality
Level (g)

Cluster
Number

RMSE
Difference

p-Value
RMSE

Difference
p-Value

25% 100 2 0.938 0.565 0.756 0.759
25% 100 4 1.264 0.948 0.200 0.695
25% 100 8 −0.359 0.273 0.969 0.339
25% 1000 2 1.284 0.583 −1.145 0.425
25% 1000 4 1.134 0.234 −0.526 0.733
25% 1000 8 −2.696 0.196 1.083 0.132
25% 7916 2 −0.886 0.974 0.176 0.944
25% 7916 4 0.313 0.210 −0.906 0.249
25% 7916 8 0.005 0.307 0.264 0.177
50% 100 2 0.218 0.336 0.682 0.448
50% 100 4 0.168 0.196 2.094 0.281
50% 100 8 2.851 0.072 −0.057 0.428
50% 1000 2 0.080 0.411 0.230 0.561
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Table A4. Cont.

IBD-PMM IBD-RF

Missingness
Level

Dimensionality
Level (g)

Cluster
Number

RMSE
Difference

p-Value
RMSE

Difference
p-Value

50% 1000 4 1.465 0.601 2.246 0.569
50% 1000 8 −0.745 0.609 2.145 0.604
50% 7916 2 1.973 0.338 1.165 0.912
50% 7916 4 1.922 0.188 1.973 0.676
50% 7916 8 4.401 0.078 3.309 0.288
75% 100 2 −6.485 0.256 −3.192 0.447
75% 100 4 −3.428 0.632 0.756 0.580
75% 100 8 6.598 0.825 −4.165 0.624
75% 1000 2 5.436 0.721 −4.835 0.306
75% 1000 4 1.664 0.511 0.329 0.584
75% 1000 8 −7.031 0.581 1.175 0.771
75% 7916 2 0.239 0.378 −8.353 0.175
75% 7916 4 −4.155 0.470 −4.033 0.689
75% 7916 8 3.760 0.468 −8.244 0.096

Table A5. The RMSE difference from imputation is applied with and without the integration of comorbidity information for
the OA dataset. Negative RMSE correspond to improvement by the hybrid approach. The pmm and rf models in MICE
were used in this study. The p-value is reported based on 10 runs.

OA-PMM OA-RF

Missingness
Level

Dimensionality
Level (g)

Cluster
Number

RMSE
Difference

p-Value
RMSE

Difference
p-Value

25% 100 4 0.035 0.317 2.449 0.245
25% 100 8 −0.074 0.444 4.734 0.385
25% 100 16 −0.017 0.375 −0.518 0.525
25% 1000 4 0.035 0.687 3.351 0.247
25% 1000 8 −0.066 0.363 3.859 0.183
25% 1000 16 0.085 0.706 1.414 0.172
25% 2042 4 0.081 0.889 1.705 0.161
25% 2042 8 0.004 0.595 4.417 0.460
25% 2042 16 −0.019 0.202 1.602 0.810
50% 100 4 0.081 0.700 −4.229 0.199
50% 100 8 0.218 0.079 1.132 0.970
50% 100 16 0.101 0.087 3.082 0.357
50% 1000 4 0.106 0.653 10.161 0.843
50% 1000 8 −0.066 0.577 −1.271 0.480
50% 1000 16 0.147 0.620 −0.328 0.891
50% 2042 4 0.178 0.252 −2.703 0.946
50% 2042 8 −0.013 0.216 −11.300 0.409
50% 2042 16 0.092 0.643 3.229 0.376
75% 100 4 −0.131 0.186 6.828 0.213
75% 100 8 0.118 0.507 −0.098 0.434
75% 100 16 0.197 0.142 −2.326 0.889
75% 1000 4 −0.077 0.092 −4.702 0.222
75% 1000 8 0.157 0.428 −0.343 0.653
75% 1000 16 −0.053 0.508 −6.447 0.651
75% 2042 4 0.055 0.649 −0.749 0.430
75% 2042 8 −0.089 0.549 1.865 0.768
75% 2042 16 0.237 0.014 10.926 0.061
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Abstract: Voice changes may be the earliest signs in laryngeal cancer. We investigated whether
automated voice signal analysis can be used to distinguish patients with laryngeal cancer from
healthy subjects. We extracted features using the software package for speech analysis in phonetics
(PRAAT) and calculated the Mel-frequency cepstral coefficients (MFCCs) from voice samples of a
vowel sound of /a:/. The proposed method was tested with six algorithms: support vector machine
(SVM), extreme gradient boosting (XGBoost), light gradient boosted machine (LGBM), artificial neural
network (ANN), one-dimensional convolutional neural network (1D-CNN) and two-dimensional
convolutional neural network (2D-CNN). Their performances were evaluated in terms of accuracy,
sensitivity, and specificity. The result was compared with human performance. A total of four
volunteers, two of whom were trained laryngologists, rated the same files. The 1D-CNN showed the
highest accuracy of 85% and sensitivity and sensitivity and specificity levels of 78% and 93%. The two
laryngologists achieved accuracy of 69.9% but sensitivity levels of 44%. Automated analysis of voice
signals could differentiate subjects with laryngeal cancer from those of healthy subjects with higher
diagnostic properties than those performed by the four volunteers.

Keywords: voice change; larynx cancer; machine learning; deep learning; voice pathology classification

1. Introduction

Laryngeal cancer is one of the most debilitating forms of malignancy, with an average incidence
of 3.3 per 100,000 from 2012 to 2016 in the USA [1]. In 2019, there were 12,370 new cases diagnosed in
the USA alone. Despite the rising incidence, early diagnosis remains challenging, resulting in delayed
treatment [2,3]. With a delay of diagnosis, laryngeal cancer may lead to the most severe debilitating
disabilities in phonation, swallowing [4] and overall quality of life. An automated voice analysis tool
could advance the time of diagnosis regardless of patients’ location, in line with the idea of telemedicine.
Though voice changes can indicate the first clinical signs of disease, subjective perception of early voice
changes can be listener dependent and subject to intrajudge variations [5].
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Image analysis based on the use of computational algorithms in radiology is now expanding to
signal processing in other fields such as electrodiagnosis [6]. Furthermore, the popularity of these
new techniques has led to the use of automated detection of pathological voices using machine and
deep learning algorithms. A voice pathology detection was reported successful using a deep learning
model [7]. Algorithms based on feature extraction, such as the Mel-frequency cepstral coefficients
(MFCCs) from the acoustic signals have been used for many years to detect vocal fold disorders and
dysphonia [8–10]. For example, Chuang et al. [9] have used normalized MFCCs features and have
shown that a deep neural network (DNN) can detect abnormal voice changes in voice disorders.
Another study by Fang et al. [10], which included laryngeal cancer data, have reported that the results
of a DNN were superior to other machine learning algorithms.

However, in past studies, the number of cancer patients was either too small [10,11] or often
assessed as a single group together with other voice disorders. Most recent studies that investigated the
role of automatic detection of voice disorders [8–10] were based on open voice databases such as the
Massachusetts Eye and Ear Infirmary Database [12] or Saarbrucken Voice Database [13], and laryngeal
cancer voices were rated together as one group in combination with other voice disorders. In addition,
past algorithms have not been validated against the clinicians’ judgement of voice change. Subjective
perception of early voice changes can be difficult [5]. The possibility of an algorithm that can distinguish
pathological voice changes at the early stages in laryngeal cancer from normal healthy voices with
the potential to overcome the limitations imposed by inter-subject human perception remains to
be explored.

Therefore, this study aims to investigate the role of computational algorithms including a support
vector machine (SVM), extreme gradient boosting (XGBoost) and the recent popular convolutional
neural network (CNN) in distinguishing voice signals of patients with laryngeal cancer against those
obtained from healthy subjects. We also compared the performance levels of these algorithms to those
obtained by four human raters who rated the same voice files.

2. Materials and Methods

2.1. Study Subjects

A retrospective review of medical records was performed at a single university center from
July 2015 to June 2019. We identified patients who had undergone voice assessments at the time of
laryngeal cancer diagnosis. Only the preoperative records were collected, whereas those obtained
postoperatively or after radiotherapy were excluded.

Normal voice samples were acquired from otherwise healthy subjects who had undergone voice
assessments for the evaluation of their vocal cords prior to general anesthesia for surgical procedures
involving sites other than the head and neck region, such as the hands or legs. Any subject subsequently
diagnosed with any benign laryngeal disease, sulcus vocalis, or one-sided vocal palsy were excluded
from the data analysis of the healthy subjects. Any additional diagnosis of voice disorders was excluded
by a detailed review of patients’ medical records.

Patients’ demographic information, including gender, age, and smoking history, were collected.
In those diagnosed with laryngeal cancer, additional clinical information such as the TNM (Tumor Node
Metastases Classification of Malignant Tumors) stage, a global standard for classifying the anatomical
extent of tumor cancers, was recorded. The study protocols were approved by our institutional review
board [HC19RES10098].

2.2. Datasets from Voice Files

The dataset comprises recordings of normal subjects and cancer patients. Voice samples were
recorded with a Kay Computer Speech Lab (CSL) (Model 4150B; KayPENTAX, Lincoln Park, NJ, USA)
supported by a personal computer, including a Shure-Prolog SM48 microphone with Shure digital
amplifier, located at a distance of 10–15 cm from the mouth and an angle of 90◦. Background noise
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was controlled below 45 dB. Analysis of a voice sample, directly recorded using digital technology
and with a sampling frequency of 50,000 Hz, was carried out using MDVP 515 software (version 2.3).
Patients phonated vowel sound /a:/ for over 4 s at a comfortable level of loudness (about 55–65 dB).
The operator’s experience dates back to 2011, and the voice testing protocol in the hospital was
established in 2015.

2.3. Experimental Setups

The study used a NVIDIA GeForce RTX2080 Ti (11GB) graphic card. We examined the normal
and cancer voice signal classification and tested the performance of the SVM, XGBoost, light gradient
boosted machine (LightGBM), artificial neural network (ANN), one-dimensional convolutional neural
network (1D-CNN), and 2D-CNN. The performance was evaluated via five-fold cross-validation.
The accuracy, sensitivity, specificity, and area under the curve (AUC) values were used as performance
metrics. This study strictly used male voice samples to exclude gender effects in that all laryngeal
cancer cases were male and that male and female voices have different frequency range. Otherwise,
some factors that are not directly related to cancerous voice can undermine the integrity of the
study design.

2.4. Feature Extraction

In this study, two common features in speech analysis were selected. First, a term named after the
word “talk” in Dutch, PRAAT is a speech analysis program (Paul Boersma and David Weenink, Institute
for Phonetic Sciences, University of Amsterdam, The Netherlands) in phonetics designed to extract
key features in the voice [14]. The raw voice input was 4 s of 50,000 Hz signal. The PRAAT features
were extracted under a minimum value of 10 Hz and a maximum value of 8000 Hz to account for the
spectral range of a human voice. Fourteen audio features include mean and standard deviation of the
fundamental frequency, harmonic to noise ratio (HNR), and jitter and shimmer variants. The HNR
denotes the degree of acoustic periodicity in the aspect of energy. The last two sets of features are
measures of perturbation in acoustic analysis, where jitter demonstrates the frequency instability,
whereas shimmer represents the amplitude instability of a signal. In other words, jitter refers to
the frequency variation from cycle to cycle, and the shimmer represents the amplitude variation of
the sound wave. Following is a description of the jitter and shimmer variants [14]. The localJitter
is the average absolute difference between consecutive intervals, divided by the average interval,
and localabsolutejitter uses absolute difference. The rapJitter is the relative average perturbation of
itself and the two adjacent, and ppq5jitter accounts for four neighbors. Ddpjitter is the difference
between differences of consecutive difference. In a similar fashion, six shimmer variants were defined:
localshimmer, localdbshimmer, apq3shimmer, apq5shimmer, apq11shimmer, and ddashimmer.

Second, MFCCs, a collection of numerical values resulting from the transformation of time series
data, were obtained [15]. The principle of MFCCs is based on a short-time Fourier transform and
additional consideration for the distinct nature of a human voice in the lower frequency range, set by
the biased bandpass filter design. Forty triangular bandpass filters were used. Initially, we down
sampled the input signal to 16,000 Hz, accounting for the Nyquist frequency of the human voice range.
As a result of the transformation, 200,000 data points of the input signal were converted to 64,000
points, and then into a 40 × 126-time spectral image. The graphic presentation of down sampling,
normalization, and MFCCs transformation is shown in Figures 1 and 2. In addition, short time
Fourier transform (STFT), another common time-spectral representation, was obtained for comparative
evaluation. For this conversion, we down sampled the input signal to 4000 Hz and processed with a
frame size of 0.02 without overlap, in order to match with the height size of the MFCCs. As a result,
a 40 × 199-time spectral image was produced.
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(a) (b) (c) 

−

Figure 1. The graphic presentation of transformation from raw signal into Mel-frequency cepstral
coefficients (MFCCs) image, a necessary process to comply with the two-dimensional convolutional
neural network input shape. (a) Plot of signals down sampled to 16,000 Hz; (b) plot of signals
normalized between −1 and 1; (c) image of signals after MFCCs transformation.

 

−

(a) (b) 

Figure 2. The flowchart of Mel-frequency cepstral coefficients (MFCCs) transformation. (a) and
presentation of Mel filter banks (b). The triangular filter banks are densely located towards low
frequency range, reflecting the distinctive nature of the human voice in that range. Abbreviations: FFT,
fast Fourier transform; DFT, discrete Fourier transform.

2.5. Preprocessing

A series of preprocessing steps are introduced for the effective representation of the signal.
The recordings represent continuous sounds. Normalization was performed to change the value of
numerical voice signals to a common scale, because the magnitudes vary depending on the measuring
distance of the record. Each signal was divided by the maximum absolute value of the recording per
patient while taking account of the peak outliers.

For accurate validation, the data set was divided into two parts in each validation: one for training
and another for testing. Performance metrics were only calculated with the testing dataset, the signals
that the model did not process during its training. A five-fold validation method is used for reliable
results, which divides the dataset into five subsets. For each validation fold, four subsets were used to
train a model for appropriate representation and generalization power, and the model was validated
with the remaining subset. Overall, five validations were conducted, and the performance matrix
represented the average of all results. The process can be seen in Figure 3.
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Figure 3. Illustration of five-fold validation. A given data set is split into five subsections where each
fold is used as a testing set, a useful method to use all data where data is limited.

2.6. Machine Learning Algorithms

We tested three machine learning algorithms: SVM, XGBoost, LightGBM, and ANN. The SVM is
the most frequently practiced method used in the classification task. The SVM resolves the classification
task by drawing a decision boundary hyperplane that divides space with the maximum distance from
each class. However, not all cases can be resolved similarly, as clusters often require a non-linear
boundary. The kernel trick facilitates by warping spaces. In machine learning, the hyper-parameter is a
high-level configurator empirically chosen to control complexity, conservativeness, and overfitting of a
model before training the networks [16]. The governing decision-making equation and its classification
decision is shown in the equations below, where ω0 and ω represent bias and weights of the boundary.

ω0 + ω
Tx > 0 → x belongs to normal (1)

ω0 + ω
Tx < 0 → x belongs to pathological (2)

The LightGBM and XGBoost are classifiers derived from a decision tree family known to perform
best in many practices. The decision tree is named after its shape comprising of a series of dividing
rules. The model learns the optimal rules based on information gain and entropy. Information gain is a
quantified value based on information generated by a certain event. Entropy is a relative degree of
disorder [17]. Since a signal decision tree can easily overfit, a series of techniques are implemented to
boost performance such as bagging, boosting, tree-pruning, and parallel processing. The techniques
effectively combine predictions from multiple trees and multiple sequential models.

An ANN is a basic form of a DNN. A series of fully connected layers constitute an ANN.
The model predicts the label of input data with trained weights and biases through a forward
propagation. We consider this ANN model to be a machine learning model since the input is
hand-crafted feature and the propagation mostly performs classification tasks only.

2.7. Deep Learning Algorithms

The human voice exhibits distinct characteristics in the lower frequency range, so biased filters
are used in the MFCCs. Although a recent study has shown that MFCCs are consistent metric
constraints [18], an inevitable information loss occurs at the conversion. Ten pieces of size 40 × 40 are
randomly cropped per image to lower the computational cost and to elicit a data augmentation effect.
In a similar fashion, ten pieces of size 40 × 40 segments from a STFT spectrogram are prepared from
each signal.

Zero padding and down sampling are implemented for the 1D-CNN. Zero padding ensures stable
frequency conversion and provides better resolution. Further, a recent study showed that the most
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contributive bands in both detection and classification ranged between 1000 and 8000 Hz [7]. Down
sampling is set at 22,050 Hz for 1D-CNN and 16,000 for 2D-CNN preprocessing.

The 1D-CNN structure is composed of six convolution blocks and three fully connected layers
(Figure 2). The number of kernels is 16, 32, 64, 128, and 256. A kernel is equivalent to a filter.
For example, the first layer represents the filtered signals from 16 kernels. Max pooling sizes used are
8, 8, 8, 8, and 4 to compress the long signal, which choose the maximum single value from a given
window size to progressively reduce the spatial size and to provide abstract representation. The dense
layer is composed of 1536, 100, 50, and 2 nodes. Batch normalization and ReLU activation are used for
faster and stable training [19]. The detailed structure of the algorithm is shown in Figure 4.

 

Figure 4. Illustration of one-dimensional convolutional neural network model structure.

The 2D-CNN structure is composed of three convolution blocks and three fully connected layers.
The number of kernels is 64, 64, and 128. The dense layer is composed of 500, 50, and 2 nodes.
A dropout of 0.3 is used twice at a dense layer to prevent overfitting. A Glorot uniform initializer and
ReLU activations are used [20]. Maximum pooling is done conservatively, only once, because the input
image is already small. The detailed structure of the algorithm is shown in Figure 5.

 

 

Figure 5. Illustration of two-dimensional convolutional neural network model structure.
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2.8. Human Interpretation

Two laryngologists with 3–10 years of experience in laryngoscopy and laryngeal cancer were
asked to listen to the same files and classify the voice sounds as either normal or abnormal. In addition,
two volunteers with no medical background were asked to perform the same tasks. All volunteers were
informed that abnormal voices are from laryngeal cancer patients, prior to the evaluation. No prior
demographic information was provided. All volunteers were allowed to hear the voice files multiple
times. The diagnostic parameters obtained from the four volunteers were calculated.

2.9. Statistical Analysis

Data are expressed as mean ± standard deviation for continuous data and as counts (%) for
categorical data. Bivariate analyses were conducted using a two-tailed Student’s t-test for continuous
data and a two-tailed χ2 or Fisher’s exact test for categorical data when appropriate.

All these statistical analyses were performed using IBM SPSS Statistics 20.0 (IBM Corp., Armonk,
NY, USA), and p-values less than 0.05 were considered to indicate statistical significance.

Group differences between patients with cancer and healthy participants were determined using
non-parametric tests. The AUC values, which reflect the diagnostic accuracy and predictive ability,
were calculated for each parameter. The performance of laryngeal cancer classification was evaluated
with an AUC of receiver operating characteristic (ROC) curves using roc_curve and auc functions of
the Scikit-learn library and the matplotlib library in the Python 3.5.2. and R 2.15.3 package software
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Demographic Features

Using the medical records, we identified a total of 50 laryngeal cancer patients who had undergone
voice analysis preoperatively. From the normal voices (n = 180), only the male voice data were selected
(n = 45) and used for analysis. All cancer subjects were male. Laryngeal cancer included glottic (84%)
and supraglottic (16%) types of cancer. The majority (84%) of patients were diagnosed at the T1–T2
stages when the voice recordings were performed. The characteristics of cancer and their staging are
shown in Table 1. Compared with the healthy group, subjects with laryngeal cancer were significantly
older, and showed higher smoking rates than the healthy subjects, as shown in Table 2.

Table 1. Clinicopathological characteristics of the cancer patients.

Characteristic No. of Patients [%]

Gender Male 50 100
Primary site Glottis 42 84

Supraglottic 8 16
Differentiation SCC 46 92

Papillary SCC 2 4
CIS 2 4

T classification 1 35 70
2 7 14
3 5 10
4 3 6

N classification 0 42 84
1 1 2
2 4 8
3 3 6

TNM stage Early 39 78
Advanced 11 22

Abbreviations: SCC; Squamous Cell Cancer, CIS; Carcinoma in Situ, TNM; Tumor Node Metastases Classification of
Malignant Tumors.

31



J. Clin. Med. 2020, 9, 3415

Table 2. Demographic data from the 95 subjects, including the glottic cancer patients.

Clinical Variables Normal Male (n = 45) Larynx Cancer (n = 50) p-Value *

Age (year) 49.7 ± 2.1 (24~83) 65.5 ± 1.3 (50~88) <0.001
Smoking (yes) 12 (26.7) 37 (74.0) <0.001 †

Smoking amount (packs per year) <30 7 (58.3) 8 (21.6)
≥30 5 (41.7) 29 (78.4) <0.001 ‡

Values are presented in mean ± standard deviation (min~max) or number (%). * Group comparison between normal
cases versus laryngeal cancer patients. † Hazards ratio: 14.8. ‡ Hazards ratio: 11.6.

3.2. Feature Selection

Figure 6 shows the contribution of each PRAAT 14 feature obtained from the XGBoost for the
classification of voice changes. The HNR, standard deviation of F0, and apq11shimmer were major
features in the classification of abnormal voices.

 

≥

Figure 6. Feature importance analysis of XGBoost. The plot demonstrates the relative information
gains based on the feature importance classification task of male voice samples.

3.3. Accuracy of the Automatic Detection in Male Voice Samples

We performed the analysis with no female data for two reasons. First, male and female voices
are known to fall within different ranges of frequency [21]. Secondly, females rarely have larynx
cancer, which is directly reflected in our data set that no female data exist in cancer class. Especially in
East Asian countries, the proportion of female patients with laryngeal cancer is reported to be less
than 10%. Therefore, voice signals comprising only the male dataset were analyzed. Among the
algorithms, the 1D-CNN again showed good accuracy levels with sensitivity levels up to 85% (Table 3).
Of interest was that five out of eight supraglottic cancer patients were correctly diagnosed with the
1D-CNN model.

The accuracy values and receiver operating characteristic (ROC) curves for a set of evaluations
are demonstrated in Table 3 and Figure 7.
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Table 3. Evaluation metrics table of only male voice samples for classification task of abnormal voice
signals in laryngeal cancer (n = 50) from normal healthy subjects (n = 45).

Algorithms Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM 70.5 (67.9–73.0) 78.0 (75.6–80.3) 62.2 (58.0–66.3) 0.708
XGBoost 70.5 (68.2–72.8) 62.0 (58.5–65.4) 80.0 (77.3–82.6) 0.731

LightGBM 71.5 (68.2–74.8) 70.0 (66.6–73.3) 73.3 (69.9–76.6) 0.739
ANN 69.4 (67.6–71.2) 62.0 (60.4–63.5) 77.7 (75.3–80.2) 0.744

1D-CNN 85.2 (83.8–86.6) 78.0 (76.0–79.9) 93.3 (92.2–94.4) 0.852
2D-CNN * (MFCCs) 73.3 (72.0–74.7) 69.6 (66.9–72.2) 77.5 (74.2–80.8) 0.778

2D-CNN * (STFT) 67.1 (65.6–68.6) 58.6 (55.6–61.5) 76.6 (75.1–78.2) 0.707

Abbreviations: AUC, area under curve; SVM, support vector machine; XGBoost, extreme gradient boosting;
LightGBM, light gradient boosted machine; ANN, artificial neural network; MFCCs, Mel-frequency cepstral
coefficients; STFT, short-time Fourier transform. *: with 10 times augmented data.

 

 

Figure 7. ROC (receiver operating characteristic) curve analysis of the different models for the
classification of laryngeal cancer. ROC curves algorithms for classification task of only male
voice samples. Abbreviations: LGBM, LightGBM; XBG, XGBoost; SVM, support vector machine;
ANN, artificial neural network; 1D-CNN, one-dimensional convolutional neural network; 2D-CNN,
two-dimensional convolutional neural network; MFCCs, Mel-frequency cepstral coefficients; STFT,
short time Fourier transform.

3.4. Accuracy in Human Rating

Results show large variance in the sensitivity levels across the four raters with levels as low as
29% and the highest at 50%. The two experts showed higher accuracy levels than the two non-experts,
but compared to the machine learning and deep learning algorithms, they showed low sensitivity and
accuracy levels. Table 4 summarizes the result.

Table 4. Evaluation metrics table of only male voice samples for classification task of abnormal voice
signals in laryngeal cancer (n = 50) from normal healthy subjects (n = 45).

Rater Accuracy [%] Sensitivity [%] Specificity [%] AUC

Non-expert 1 68.8 (58.3–78.2) 50.0 (35.5–64.7) 88.9 (75.9–96.3) 0.6944
Non-expert 2 56.7 (46.3–67.2) 29.1 (16.9–44.0) 86.6 (73.2–94.9) 0.5792

Expert 1 68.9 (58.7–78.0) 43.7 (29.4–58.8) 95.5 (84.8–99.4) 0.7930
Expert 2 70.9 (60.1–79.9) 43.7 (29.4–58.5) 100 (92.1–100) 0.7188

Experts Mean 69.9 (59.9–79.0) 43.7 (29.4–58.6) 97.7 (88.4–99.7) 0.7559
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4. Discussion

The results of our study provide high accuracy levels of automated algorithms using machine
learning and deep learning techniques that assess voice change in laryngeal cancer. The results are
promising since the majority of the cancer subjects (84%) were at early stages of cancer. Among the
algorithms, the 1D-CNN showed better performance than other algorithms, with accuracy levels of 85%.
All the other computational algorithms showed promising levels of performance and some showed
higher accuracy levels compared with the results obtained from two laryngologists, who showed
sensitivity levels of 44%. To the best of our knowledge, this is one of the first studies that has compared
the performance of automated algorithms against those performed by both clinicians and non-clinicians.
Based on our results, automatic detection using the 1D-CNN and other computational algorithms may
be considered as potential supplementary tools to distinguish abnormal voice changes in patients with
laryngeal cancer.

Past studies have already used several machine learning techniques in attempts to distinguish
pathological voice disorders in laryngeal cancer. Gavidia-Ceballos and Hansen [22] demonstrated
accuracy levels of 88.7% in patients with vocal fold cancer, but their sample was limited to 20 glottic
cancer and 10 healthy subjects. Previous studies employed an ANN in laryngeal cancer with accuracy
levels of 92% [9]. However, their data included patients who were recovering from laryngeal cancer,
mostly following surgery. The voice signals in the present study were obtained from laryngeal cancer
patients preoperatively, and thus, our results are more appropriate for assistance in screening laryngeal
cancer rather than detection of postoperative voice changes. The results are even more promising since
our study also provided detailed clinical information about laryngeal cancer, mostly at the early stages.

Our results are also in accordance with previous studies that have suggested better performance
of DNNs in some datasets compared with a SVM or Gaussian mixture model (GMM) in detecting
pathological voice samples [9,10,23]. An unexpected finding was that the 1D-CNN showed better
performance than the 2D-CNN, a more sophisticated algorithm. The processed signals contained
64,000 (4 [s] × 16000 [Hz]) data points representing acoustic information, whereas the MFCCs carried
15,640 (40 × 391) points. In addition, the 2D-CNN model has a limited scope of 40 by 40 kernel
windows at a time. Through a series of feature conversion and windowing, the 2D-CNN method leads
to unfortunate information loss. Thus, the 1D-CNN is associated with a higher resolution than the
2D-CNN in the presence of appropriate hyper parameters such as learning rate, kernel size, and the
number of layers. Although the 1D-CNN is more difficult to optimize, higher resolution implies higher
learning capacity. Although our results are consistent with recent studies that showed the superior
performance of the 1D-CNN compared with the 2D-CNN in a heart sound classification study [24],
one has to be conscious of the fact that performance of these algorithms may change depending on the
nature of the data.

Laryngeal cancer is known to show a skewed gender distribution [25,26] with an approximately
four- to six-fold higher risk in males [27] and poor prognosis compared with females [28]. Based on this
gender difference, we assessed the performance levels of these algorithms when the analysis of voice
features in laryngeal cancer was limited to males. In such gender-restricted analysis, the 1D-CNN
showed good performance with accuracy levels of 85.2%. This phenomenon is discrepant to those
observed by Fang et al. [10], who showed that the SVM outscored the GMM and ANN when the data
were analyzed separately without the female subjects. Therefore, it was unexpected that the 1D-CNN
performed well even with the limited sample of male voices. Despite our results favoring the 1D-CNN,
due to the uneven gender distribution in laryngeal cancer, the gender composition of the data should
be considered with caution when developing future deep learning algorithms since the female voice
has broader distributions in cepstral domain analysis [29]. Furthermore, one has to be mindful that the
performance of these algorithms may be different depending on the feature selection and amount of
data, and therefore, caution is needed before making direct comparison of which algorithm is superior
to the other.
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In this study, among the many PRAAT features that played significant roles in helping to classify
the voice changes, of interest, the HNR was shown to be an essential feature, followed by the F0
standard deviation and apq11shimmer from the XGBoost algorithms. Past studies [30,31] have shown
changes in some acoustic parameters including the HNR, jitter, and shimmer in laryngeal cancer due
to the structural effects on the vibration and wave movement of the vocal cord mucosa but have
not shown which parameter contributes more than the other in the classification of laryngeal cancer.
Abnormal HNR values reflect an asthenic voice and dysphonia [32], which may be expected with
the mass effects. Controversies surrounding the role of fundamental frequencies exist, with some
suggesting these values decrease in laryngeal cancer and smokers [31], compared to healthy groups [33].
Instead, this feature is a more prominent marker in voice change observed in smokers [34]. Of interest
is that no study has yet emphasized the role of the apq11shimmer values in classifying these voice
changes with high accuracy. The clinical implication of the apq11shimmer value in combination with
changes of the F0 standard deviation, which reflects changes in voice tone, needs to be verified with
future studies, including those related to other voice disorders.

Voice changes that do not improve within two weeks are known to be one of the earliest signs of
laryngeal cancer and mandate a visit to the laryngologist. Our results indicated that the average time
from onset of voice change to the first visit to the laryngologist was 16 weeks. Though most patients in
our study were in the early stages of cancer, in reality, patients failed to consult with the laryngologist
within the initial month when the voice changes develop. Subjective perception of voice change can be
challenging and our results from the ratings by the four volunteers showed that half of the early stage
cases could also be missed by the human ear, even by expert laryngologists. The diagnostic parameters
from the four volunteers showed overall high specificity levels, which indicate good performance
levels in discerning those with normal voices. However, the low sensitivity levels indicate that human
perception of subtle voice changes within the short 4 s voice file may be insufficient to discern the
initial voice changes in laryngeal cancer. Though the two experts showed better performance than the
two non-experts, the low sensitivity levels of this latter group are of concern and reflect real-world
situations where the patients may misjudge and miss the initial changes as normal. Voice change can
be the only first symptom, and if not considered as a serious sign, it can inadvertently result in a delay
when making the initial visit to the laryngologist. Automated algorithms may be used to alert the
“non-expert” patients when these voice changes appear to seek medical advice. Higher sensitivity
levels are ideal for screening tools. Therefore, the higher sensitivity levels from the deep learning
algorithms may support the use of these automated voice algorithms in the detection of voice changes
in early glottic cancer. Though based on a limited number of data, our results show the potential of
future applications of these algorithms in digital health care and telemedicine.

One interesting point to consider is that the 1D-CNN showed good accuracy levels, even when
most were at the early stages. In addition, the inclusion of these supraglottic cancer patients who
usually remain asymptomatic in the early stages and are difficult to diagnose [35] may be clinically
relevant. Voice changes in advanced laryngeal cancer stages can be evident because of the involvement
of the vocal cord or thyroid cartilage. By contrast, in the T1 stage, these changes may be too subtle and
may go unnoticed. The encouraging results of classifying those, even in the early laryngeal cancer
stages, show the opportunity of automatic voice signal analysis to be used as part of future digital
health tools for the noninvasive and objective detection of subtle voice changes at the early stages of
laryngeal cancer. Future studies with more detailed separate analysis among the different tumor types
and stages could be promising.

Significant new work has been reported recently using artificial intelligence techniques in the
early detection of cancer, including skin and gastric cancer [36,37]. Similar attempts have also been
made in oropharyngeal cancer with mixed results. A few studies have used features associated with
hypernasalance in oropharyngeal cancer [38] and glottal flow in glottic cancer [39] and employed
ANNs with mixed results. Recent studies have shown that the CNN can be used to predict the outcome
automatically [40] or detect laryngeal cancer based on laryngoscope images with accuracy levels of
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86% [41], which are similar to our accuracy levels of 85.2%. Our work differs from these past studies in
that we employed voice signals rather than imaging data and compared the accuracy levels of the
1D-CNN to those rated by the human ear.

The algorithms presented in this study showed promising results. However, a few limitations
remain to be addressed. First is the non-inclusion of other voice disorders such as those related to
more common benign disorders, such as, vocal polyps or vocal fold palsies. The main objective was
to determine the accuracy of various algorithms including the 1D-CNN against those performed by
human raters. The use of these algorithms to classify other voice disorders may require rebuilding
the algorithm structure based on additional hyper parameters. Ongoing studies by our research
group are currently attempting to design new CNN algorithms that may be used to distinguish voice
changes in cancer patients from other various voice disorders, such as those related to vocal palsy or
polyps. Another factor to consider is the limited number of cancer cases. Machine learning requires
a large amount of processed data, and its performance depends heavily on how well the feature is
crafted. The limited number of data is a problem often encountered in medical data acquired from
sources other than image files. It is even more challenging to obtain voice data from patients with
laryngeal cancer during the preoperative period. However, the number of cancer patients was similar
to past studies [9–11] that employed automated algorithms in voice pathologies. The voice, a signal
carrying infinite information, can be represented in a simpler form by introducing digital signal
processing tools such as PRAAT or MFCCs, which improves optimization potential despite the small
datasets [15]. Second, the proposed algorithms performed well for datasets comprising only males.
The inclusion of females in the analysis may inadvertently provide a clue to the model with all cancer
data comprising male subjects and therefore excluded female data. Although our results supported
the high-performance levels of the 1D-CNN, the model proposed in this study may lose its diagnostic
power when female cancer patients are included. Therefore, our algorithms require re-validation when
adequate data are collected from female patients in the future. Furthermore, prospective studies are
needed for large-scale validation of our model. Third, since the cancer group showed more elderly
males with a higher proportion of smokers, one could question whether our algorithm classified voice
changes related to the presence of laryngeal cancer or related to smoking and old age. Smoking and
old age are the cardinal risk factors of laryngeal cancer. However, these two conditions manifest in
distinctive voice changes. For example, according to a recent meta-analysis study [34] voice changes in
smoking are manifested mostly in the fundamental frequency (F0). Likewise, voice changes in elderly
males are characterized by an increase of jitter values [42]. Had our algorithms classified based solely
on senile and smoking changes, these two features would have been the two most important features.
Instead, other features, which may reflect the tumor effects on the voice, played a more prominent
role. Nevertheless, the skewed distribution of gender, age, and smoking status are important factors to
consider in future studies that intend to employ artificial intelligence in voice disorders that include
laryngeal cancer. Finally, our results are by no means intended to replace current diagnostic tools
and future studies using voice signals as a supplementary screening tool in the age of telemedicine in
conjunction with current laryngoscope studies in laryngeal cancer are warranted.

The results presented in our study demonstrate the ability of the proposed computational
algorithms to distinguish voice changes in early laryngeal cancer from healthy voices in normal
participants. However, this study did not include other voice disorders, which may be more common
in clinical practice than laryngeal cancer patients. Therefore, a high degree of prudence is required
in interpreting the results. Nevertheless, the application of voice signals to digital algorithms as
alternative methods to assess patients at difficult times [43] when direct physical contact with the
laryngologist is not feasible may have important social implications in the future.

5. Conclusions

This study has shown that automated voice detection based on both machine learning and deep
learning algorithms facilitates detection of voice changes in laryngeal cancer in a noninvasive yet
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objective manner with accuracy levels that may surpass human performance. Future studies are
warranted on techniques to implement and adopt these automated voice analyses using the 1D-CNN,
as part of the digital health system [44].
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Abstract: Background: Developing a decision support system based on advances in machine learning
is one area for strategic innovation in healthcare. Predicting a patient’s progression to septic shock is
an active field of translational research. The goal of this study was to develop a working model of
a clinical decision support system for predicting septic shock in an acute care setting for up to 6 h
from the time of admission in an integrated healthcare setting. Method: Clinical data from Electronic
Health Record (EHR), at encounter level, were used to build a predictive model for progression from
sepsis to septic shock up to 6 h from the time of admission; that is, T = 1, 3, and 6 h from admission.
Eight different machine learning algorithms (Random Forest, XGBoost, C5.0, Decision Trees, Boosted
Logistic Regression, Support Vector Machine, Logistic Regression, Regularized Logistic, and Bayes
Generalized Linear Model) were used for model development. Two adaptive sampling strategies
were used to address the class imbalance. Data from two sources (clinical and billing codes) were
used to define the case definition (septic shock) using the Centers for Medicare & Medicaid Services
(CMS) Sepsis criteria. The model assessment was performed using Area under Receiving Operator
Characteristics (AUROC), sensitivity, and specificity. Model predictions for each feature window
(1, 3 and 6 h from admission) were consolidated. Results: Retrospective data from April 2005 to
September 2018 were extracted from the EHR, Insurance Claims, Billing, and Laboratory Systems to
create a dataset for septic shock detection. The clinical criteria and billing information were used to
label patients into two classes-septic shock patients and sepsis patients at three different time points
from admission, creating two different case-control cohorts. Data from 45,425 unique in-patient visits
were used to build 96 prediction models comparing clinical-based definition versus billing-based
information as the gold standard. Of the 24 consolidated models (based on eight machine learning
algorithms and three feature windows), four models reached an AUROC greater than 0.9. Overall,
all the consolidated models reached an AUROC of at least 0.8820 or higher. Based on the AUROC
of 0.9483, the best model was based on Random Forest, with a sensitivity of 83.9% and specificity
of 88.1%. The sepsis detection window at 6 h outperformed the 1 and 3-h windows. The sepsis
definition based on clinical variables had improved performance when compared to the sepsis
definition based on only billing information. Conclusion: This study corroborated that machine
learning models can be developed to predict septic shock using clinical and administrative data.
However, the use of clinical information to define septic shock outperformed models developed
based on only administrative data. Intelligent decision support tools can be developed and integrated
into the EHR and improve clinical outcomes and facilitate the optimization of resources in real-time.
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1. Introduction

Sepsis is a life-threatening condition that arises when the body’s response to an
infection injures its tissues and organs as defined by the 1991 consensus [1–3]. Sepsis is a
complex syndrome that is difficult to identify early, as its symptoms, such as fever and low
blood pressure, overlap with those of other common illnesses. Without timely treatment,
sepsis can progress to septic shock, which has a hospital mortality rate greater than 40%.
Identification of sepsis patients who are at high risk of septic shock will be helpful for
clinicians to prioritize preventive care and improve the survival rate. Early diagnosis,
prompt antibiotic, and supportive therapy are associated with improved outcomes [4–6].
Severe sepsis and septic shock are the leading causes of morbidity and mortality in the
Intensive Care Unit (ICU) [7]. Septic shock is a subset of sepsis with significantly increased
mortality due to severe circulation and/or cellular metabolism abnormalities. During
septic shock, the heart and circulatory system begin to fail and blood pressure drops. Septic
shock, the leading cause of morbidity and mortality in the Intensive Care Unit (ICU), is
costing the United States’ healthcare system more than $20 billion per year [8].

Translating recent advances in Artificial Intelligence (AI) to patient outcomes is an
active area of research [9–11]. A few examples where AI has shown promise are interpret-
ing chest radiographs [12], identifying malignancy in mammograms [10], and detecting
incidental lung nodules analyzing computer tomography scans among others [13,14].
Leveraging data collected from the EHRs offers clinical insight, which can better augment
favorable patient outcomes [15]. Data-driven AI models can also assign risk scores to trans-
fer high-risk patients to intensive care units [16]. More and more advanced ML models
are used to develop clinical decision systems, predicting in-hospital mortality, length of
stay, readmission risk, and discharge diagnoses [17] and sepsis management [18,19]. In
this study, we developed a working model for predicting septic shock in an acute care
setting up to 6 h from the time of admission using real-time data. Predicting septic shock is
challenging yet highly impactful, as timely diagnosis and prompt antibiotic and supportive
therapy are associated with improved outcomes. This paper presents a practical working
model for using ML to develop predictive models of septic shock in an Intensive Care Unit
environment. The findings highlight how ML and large clinical and administrative data
lakes can be leveraged to address practical challenges.

2. Related Works

Recent works have highlighted the unmet need for data-driven clinical decision
systems for the identification of at-risk patients. For instance, in 2018, researchers [20]
leveraged high-resolution time-series data to predict septic shock onset in the Intensive
Care Unit, 4 to 12 h before the event. In 2019, it was demonstrated that [21] an expert AI
system could outperform clinicians to predict sepsis onset. In 2020, Kim et al. [22] the
possibility of predicting septic shock within 24 h using ML-based models was explored.
Even though septic shock has higher mortality than sepsis [23], identification of both sepsis
and septic shock patients in such a way to give the care providers more time (even a
few hours) can lead to improved outcomes. Although there are many use cases of ML-
based models of sepsis and septic shock, there is limited literature focusing on a working
model in an integrated healthcare system focusing on scalability, real-time data access, and
standardization of the sepsis and septic shock evolving phenotype definition. Previous
works have focused on clinical models using various datasets and characteristics [24],
focusing on the effect of ML algorithms on outcomes of sepsis patients.

This project was part of an initiative to build a translational and interpretable decision
support system as an assistive technology for our providers. In particular, we aimed to
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develop a prediction model of sepsis and severe sepsis to septic shock by using clinical
data and comparing the model performance when only billing data are used to define
the cohort. Data extraction from administrative sources (such as billing codes), which
are in a structured form, is easier compared to data extraction from unstructured clinical
sources (such as notes for extraction of the source of infection). The latter requires more
complex queries, including the integration of natural language processing pipelines. It
was [25] reported that identifying sepsis or septic shock patients based on clinical data,
as compared to administrative data, is more accurate; however, many studies still rely
mainly on administrative data. For septic shock, administrative data can be inaccurate as
the patient’s progression to septic shock can occur at any time. While earlier works [26,27]
have demonstrated moderate success using tree-based models for visit level prediction,
recent works [26] leveraging temporal neural network-based models have shown promising
results for predicting septic shock at visit and event levels. However, one of the challenges
while defining cases and control revolves around the lack of consensus for defining sepsis
and septic shock [7]. Cohort definition is the first and most important step of the modeling
pipeline. In this study, we used clinical variables to map our cohort definition (cases: septic
shock; controls: sepsis and severe sepsis [28]) with the Systemic Inflammatory Response
Syndrome (SIRS) [29] criteria. The SIRS, as outlined by the Centers for Medicare & Medicaid
Services [30], is outlined in Figure 1.

2021, , x FOR PEER REVIEW 3 of 17 
 

 
Figure 1. Case and control definition based on the SIRS criteria and Centers for Medicare & Medicaid Services (CMS)
definition.

3. Methods

3.1. Data Sources

This study was approved by the Geisinger Institutional Review Board (IRB). Geisinger,
an integrated multi-site health system in North Eastern Pennsylvania with a catchment
population of approximately 2.5 million citizens, has been known for being one of the
most “wired” and innovative healthcare systems in the United States. Thirteen years of
retrospective data between April 2005 to September 2018 from EHR (EPIC), Insurance
Claims and Billing (AMISYS), and Laboratory Systems (Sunquest) were used to create a
sepsis dataset for this study. The systemic inflammatory response syndrome (SIRS) [30]
criteria, outlined by Centers for Medicare & Medicaid Services (CMS) [31], were used to
assign patients into the case and control groups—septic shock patients (case group) and
sepsis and severe sepsis patients (control group). In production, the system was designed
to detect septic shock using real-time data to assist clinicians when treating high-risk sepsis
patients in ICU. In addition to the EHR data, billing codes were utilized to ascertain the
correct diagnosis for a patient at a given encounter for comparative assessment.
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The initial assessment of clinical features, which was based on input from the clinicians
and the literature, resulted in 65 features in six different categories from the structured
sources. The features included during the first assessment were broadly in the following
categories: demographics, vitals, pathology and laboratory measurements, medications,
comorbidities, and procedures. Additional variables, which are critical in sepsis and septic
shock, were also considered. In particular, (1) use of vasopressors was part of the criteria
to define septic shock (persistent hypotension), (2) use of antibiotic administration was
also included in the study (to suspect infection), and (3) creatinine level was utilized to
evaluate kidney function since the use of urine output data, also an important parameter,
was challenging; the latter is associated with a high error rate, given the needs for visual
assessment and manual data recording.

Data from structured and unstructured sources were extracted and processed. Clinical
notes (unstructured sources) were used to ascertain clinical states, including the source of
infection, focused exam, documentation of septic shock, and severe sepsis documentation.
Medical ontology from the Unified Medical Language System (UMLS) [31] meta-thesaurus,
including SNOMED [32], LOINC [33] and ICD-9/ICD-10 [34] were used in the data model
abstraction. Technical details of the natural language processing (NLP) pipeline are pro-
vided in the data extraction section.

3.2. Feature Assessment

The list of features was further evaluated for the clinical implementation to ensure
clear workflow integration. Stakeholders from the data management, EHR vendor (EPIC),
Laboratory Medicine, and clinicians reviewed the comprehensive feature list, and a decision
was made to include actionable features with high clinical value. The final list included
the following features: blood culture, diastolic and systolic blood pressure, creatinine,
lactic acid, mean arterial pressure (MAP), platelet count, pulse, respiration, temperature,
white blood cell count, age, gender, height, and weight. Association Rule Mining [35] was
also performed as part of the feature exploration strategy to investigate the relationship
between comorbidities using diagnosis codes. Results from this additional assessment are
included in the Appendix A (Figure A1) for the interested reader.

3.3. Cohort Selection

Cohort definition involves establishing a reproducible process by which data elements
from the EHR (both structured and unstructured) can be used to develop a longitudinal
view of the patient. Deep phenotyping was performed to create different case and control
cohorts based on structured and unstructured data sources. The Systemic Inflammatory
Response Syndrome (SIRS) [30] criteria were used to group patients into the case (septic
shock) and control (sepsis and severe sepsis) group (See Figure 1). Three different sets of
case-control were also designed based on the adult patients (>18 years old) progressing
from sepsis to septic shock at three different proceeding time frames from admission—
T = 1, 3, and 6 h from the time of admission to septic shock progression (visit level early
diagnosis—based on a left-align design). Since vitals are extracted directly from sensors
and fed into the system as they are generated, our data was time-stamped, which allowed
us to collect data points preceding the observation window. For instance, if there were
three data points at 0.5 h, 2.5 h, and 3.5 h for a patient, for T = 3 h window, data at 2.5 h
was utilized, similarly, for the T = 6 h, data point collected at 3.5 h was used and so forth.

3.4. Data Extraction

Analytics Infrastructure: Unified Data Architecture (UDA) is the Enterprise Data Lake
providing core integration, storage, and user-specific access and retrieval information at
Geisinger. It is an in-house 50-node cluster running with the capability to ingest, store, and
transform big data using a combination of Apache Spark and Apache Hive on an Apache
Hadoop cluster. Data from heterogeneous source systems and vendors (e.g., clinical, billing,
radiology, laboratory) are ingested into an Enterprise Data Warehouse daily (EDW). The

44



J. Clin. Med. 2021, 10, 301

data model is used extensively for clinical reporting and advanced analytics. EDW was
used as the source for the extraction of retrospective data and clinical features.

Data extraction from unstructured sources: Patient notes, specifically nursing notes,
were used to determine the source of infection, chronic conditions, fluid bolus, and acute
kidney disease. Apache cTAKES [36] was used as the natural language processing (NLP)
engine. The NLP engine was modified to be utilized in a big data environment using
the Apache Spark framework on Hadoop [37]. Concepts related to chronic conditions,
fluid bolus, and acute kidney disease were identified from in-patient provider notes using
entities from the UMLS meta-thesaurus. Notes with the relevant concepts were selected for
downstream analysis. A custom regular expression-based NLP pipeline was applied to
extract additional information for the three SIRS criteria, including the source of infection,
chronic conditions, and fluid bolus.

Data extraction from structured sources: Various data elements, including vitals,
flowsheets, and medications were processed, enhanced, and integrated into Geisinger’s
UDA platform. An Extract Transform Load (ETL) pipeline consolidated the data and
aggregated clinical measures along with patients’ encounters and demographic information.
This data was aggregated with unstructured patient notes to determine various events such
as SIRS and Organ Dysfunction (OD). Sepsis, severe sepsis, and septic shock classification
are performed based on these medical events’ chronology as defined by the CMS guidelines.
The classified data was integrated with patients’ additional historical data such as chronic
conditions and medical history. Finally, a longitudinal chronological narrative of various
clinical measures and medical events from the time of admission was generated and used
for model development.

3.5. Data Processing

Various data processing, such as exploratory data analysis, imputation, and sampling,
were performed before training and testing the various models.

3.5.1. Outlier Removal

The distribution of unique features was assessed to identify noise or outliers in the
data. Units of the numeric variables and the bounds of lower and upper limits were applied
(see Table A1). Furthermore, values identified outside of the six standard deviations were
manually verified and removed if considered dubious.

3.5.2. Imputation

Variables with more than 40% missing were excluded from the analysis. The only
exception is lactic acid, which had an overall higher missingness; however, given the
importance of this variable, a decision was made to include this key variable. The MICE
package in R with the random forest implementation was used to impute missingness [38].
Given the large dataset, a custom pipeline was implemented using Apache Spark [39] and
optimized for scalability. The distribution of variables before and after imputation was
assessed to ensure consistency.

3.5.3. Class Imbalance

Given that the percentage of patients with septic shock (cases) is significantly smaller
than patients with sepsis and severe sepsis (controls), three sampling strategies were
applied. Statistical techniques were applied in the following specific order. First, Edited
Nearest Neighbors (ENN) [40] was used to smooth the data distribution by removing
misclassified samples based on nearest neighbors from the majority class. The ENN was
followed by the Synthetic Minority Over Sampling Technique (SMOTE) [41] to increase
the size of the minority class. Two different variations of SMOTE (SMOTE and Synthetic
Minority Over-sampling Technique for Nominal and Continuous (SMOTE-NC)) were used
for numeric and categorical features. Finally, under-sampling was addressed by using a
random under-sampling (RUS) algorithm, applied to balance the classes [42]. Up-sampling,
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synthetically increasing the sample size of the minority class, was performed separately for
labels from the Billing and CMS-based cohorts.

3.6. Modeling Strategy

Geisinger’s big data environment used for our modeling consisted of 34 physical
nodes with 1140 vCores using 11.07 TB of memory. We also used the Yet Another Resource
Negotiator (YARN) [37] cluster manager for jobs that are configured to use 200 executors
with 5 GB memory container size. The technology stack used consisted of running spark
jobs submitted to the YARN cluster resource manager.

As the list of features was limited to actionable features with the highest clinical utility,
we did not perform data-driven feature selection; however, we used Pearson pairwise
correlation analysis to corroborate that features in the cohort were not highly correlated.
We split the data into training and testing (80/20 split) while retaining the proportion of
classes. Model development was performed on 80% of the data, while model testing was
performed on 20% of the data. During the model development (on the 80% of the data),
5-fold cross-validation was utilized. Furthermore, synthetic sampling was used only on
the training data. Model performances were evaluated on the holdout test data set (20%
of the data) using the area under the receiver operating characteristic curve (AUROC),
specificity, and sensitivity. Consolidated metrics for 1, 3, and 6-h feature windows were
also calculated. Thus, if the patient was assigned a septic shock label in any of the three
time intervals, the consolidated prediction was selected as septic shock.

The models were derived from the two cohorts (cohort designed based on CMS criteria
and billing information). Predicting the onset of septic shock in the proceeding T hours
after admission was designed for T = 1, 3 and 6 h. Time-dependent features (dynamic
features) were collected for each window, and the results of the model performance were
compared.

A total of eight different algorithms were trained: Logistic Regression [43], Regularized
Logistic Regression [44], Bayes General Linear Model [45], Boosted Logistic Regression [46],
C5.0 [46], Decision Trees [47], Support Vector Machine (SVM) [48], and Random Forest [49].
Grid search [50] was used to tune the hyperparameters for the classification models. Twenty
node cluster, running Apache Spark, was used for tuning the models in conjunction with
sparkR and R [39].

4. Results

4.1. Patient Characteristics

This study includes a total of 46,651 distinct adult patient (>18 years old) visits,
extracted from Geisinger’s data warehouse between April 2005 and September 2018. Each
record corresponds to a unique encounter. A set of 1226 records were excluded due to data
quality and the excessive missing of static features such as height, gender, and age. The
remaining 45,425 records met the inclusion criteria.

Sepsis data sets for 1, 3, and 6 h feature windows had labels from CMS and Billing,
depending on the data extraction process. There was a total of 3179 encounters from CMS
(7% of the cohort) while billing-based septic shock records accounted for 6127 encounters—
14% of the total records analyzed. Among the 45,425 records, 5784 were identified as a septic
shock while 30,192 were identified as sepsis and severe sepsis (control) within a T = 1 h
window; similarly, 5845 cases were classified as septic shock (cases) while 31,668 records
were identified as controls within a window of T = 3 h. A total of 5852 records (cases) were
septic shock while 32,329 records were sepsis (controls) within a T = 6 h window. Overall,
51% of all the cases and controls were men. The mean age was higher in the case group
compared to the control group for the three case-control designs (T = 1, 3, and 6 h from
admission). The same trend was observed for the average weight of the patients; however,
the difference was marginal. Table 1 illustrates the cohort statistics for the T = 1, 3 and
6 h prediction windows. This study was based on 15 features, including vitals, laboratory
values, and baseline demographics.
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Table 1. Cohort Statistics based on CMS criteria.

SEPSIS DATASET 1 H 3 H 6 H

Cases Controls Cases Controls Cases Controls

PATIENTS, N 5784 30,192 5845 31,668 5852 32,329
ENCOUNTERS, N 6409 40,242 6475 42,475 6486 43,332

MALE, N(%) 3322(51) 18,468(51) 3355(51) 19,130(51) 3360(51) 17,984(49)
MEAN AGE(SD) 51(27) 48(29) 65(19) 62(21) 65(19) 62(21)

MEDIAN AGE(IQR) 56(11–101) 50(5–95) 67(44–90) 67(42–92) 69(46–92) 66(41–91)
MEAN WEIGHT(SD) 166.55(76.46) 158.13(81.50) 179.34(67.18) 178.75(71.28) 179.30(67.26) 178.51(71.51)

VITALS, MEAN(SD)

DIASTOLIC BP 72.3(16.6) 73.8(16.9) 63.2(20.8) 67.4(17.9) 63.2(20.8) 67.3(17.9)
SYSTOLIC BP 129.8(26.3) 129.2(25.6) 111.0(29.4) 123.5(28.1) 110.9(29.5) 123.3(28.2)

PULSE 95.80(27.06) 101.54(28.30) 108.20(26.23) 100.89(24.65) 108.22(26.26) 100.83(24.69)
RESPIRATION 20.90(8.04) 21.92(9.08) 23.46(8.53) 21.64(7.85) 23.49(8.64) 21.65(7.93)

TEMPERATURE 98.59(1.91) 98.84(1.99) 99.32(2.94) 99.44(2.33) 99.29(2.93) 99.41(2.32)
MAP 1 92.14(18.02) 92.55(17.73) 79.91(22.15) 86.59(19.20) 79.66(22.30) 85.96(19.58)
GCS 2 4.93(0.40) 4.95(0.32) 4.76(0.76) 4.88(0.51) 4.75(0.77) 4.88(0.51)

LABORATORY MEASURES, MEAN(SD)

CREATININE 1.446(1.445) 1.459(1.470) 1.912(1.637) 1.645(1.605) 1.914(1.650) 1.645(1.610)
LACTIC ACID 2.59(2.49) 2.07(1.38) 4.48(3.53) 2.15(1.50) 4.51(3.54) 2.12(1.46)

APTT 3 35.17(12.56) 35.17(11.57) 37.24(13.86) 36.49(12.38) 37.45(14.09) 36.56(12.43)
PLATELET COUNT 231.20(101.84) 237.76(106.06) 221.66(126.62) 231.20(120.81) 220.82(126.11) 231.10(121.14)

PT/INR 4 1.55(0.94) 1.53(0.90) 1.74(1.09) 1.61(0.95) 1.77(1.12) 1.61(0.96)
WBC 15.33(10.82) 13.98(9.34) 15.47(11.12) 13.99(9.93) 15.47(11.12) 13.95(9.93)

1 Mean Arterial Pressure; 2 Glasgow Coma Score; 3 Activated Partial Thromboplastin Time; 4 Prothrombin Time Test.

Our data showed that the average levels of lactic acid and creatinine were lower as
the feature window is reduced to T = 3 h and T = 1 h. The average pulse followed the same
trend (higher in the cases at T = 6 h versus T = 1 h). The average blood pressure had an
opposite pattern; septic shock patients had on average lower blood pressure (both diastolic
and systolic) at T = 6 h. The average temperature was lowest in the T = 1 h window for
both case and control groups. Finally, the whole blood count (WBC) was lower in the case
group compared to the control group for the three feature windows.

4.2. Machine Learning Models Can Be Trained for the Detection of Septic Shock Using
Administrative Datasets

In this study, we used different case-control designs by focusing on different prediction
windows, as well as labeling strategies—CMS versus billing information to label the cases.
We also used a sampling technique to address the data imbalance. Overall, consolidated
results demonstrated that clinical decision support systems can be developed for the
detection of septic shock in ICU using administrative or clinical data. In the consolidated
results, the final prediction label was determined based on whether at least one of the
three case-control designs (based on the T = 1, 3, or 6 h windows) was able to detect septic
shock (Table 2). Overall, four of the modeling algorithms resulted in an AUROC above
0.92, with an average AUROC of 0.91. The parameters for the grid search for the different
models are also listed in Table 2. The average sensitivity and specificity of the consolidated
results were 0.82 and 0.86 respectively. Finally, the best performance (AUROC of 0.943)
was when Random Forest was used (Figure 2 and Table 2). The 95% confidence interval of
the AUROC, sensitivity, and specificity are provided in Appendix A Figure A2.
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Table 2. Performance metrics for the best model for each machine learning algorithm.

MODELS AUROC SENSITIVITY SPECIFICITY HYPER PARAMETERS
TUNED HP

VALUES

RF 0.9483 0.8392 0.8814 mtry, maxTree, maxdepth 2, 1000, 4

C5.0 0.9474 0.8087 0.8944
Model, Winnowing,
Boosting Iterations

Rules, False, 20

DT 0.9436 0.8553 0.8577 Complexity Parameter 0.000351617
BL 0.9239 0.8328 0.8448 Boosting Iterations 31

SVM 0.8962 0.8336 0.851 Sigma, Cost 0.01898621, 16
LR 0.8839 0.8304 0.8622

RLR 0.8821 0.8288 0.8615 Cost, Loss Function, Epsilon 2, L1, 0.001
BGLM 0.882 0.828 0.8625

RF: Random Forest, DT: Decision Trees, BL: Boosted Logistic, SVM: Support Vector Machine (Radial), LR: Logistic Regression, RLR:
Regularized Logistic Regression, BGLM: Bayes Generalized Logistic Regression, HP: hyper-parameters.
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Figure 2. Receiver Operating Characteristic plots for the best machine learning algorithms.

4.3. Model Prediction Performance Improves as the Time from Admission Widens

Analysis of performance metrics, comparing the different case-control designs based
on the feature window, demonstrated that the average model performance—in terms of
AUROC, accuracy, sensitivity, and specificity—increased monotonically as time elapsed
from admission increased from T = 1 h to 3 and 6 h (Figure 3). Furthermore, our results on
the best performing model using Random Forest also corroborated that the models based
on the longer time frame (T = 6 h) consistently outperformed the others in terms of all
performance metrics used in this study (Figure 3).

The prediction of models (at T = 1, 3, 6 h) are aggregated, such that the final prediction
is true even if only one of the models labels that as true. This strategy reduced false
negatives at the cost of false positives. Model AUROC, Specificity, Sensitivity, are reported
in Table 2. It is important to indicate that the aggregate models for the best performing
model are presented in Table 2 and the model performance metrics, especially model
sensitivity and specificity, are above 0.8 for all the models.
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Figure 3. Consolidated Metrics, using Random Forest-based models, comparing CMS and Billing-based cohort as well as
models based on the different windows, T = 1, 3, and 6 h.

4.4. Models Based on CMS-Derived Information Have Better Detection Power

Our results highlight that the prediction models when used in conjunction with
labeling rules that are derived from CMS information (clinical information), rather than
billing data (administrative information), can improve the performance metrics in terms of
model AUROC, model accuracy, sensitivity, and specificity. Figure 3 shows that on average,
model AUROC, sensitivity, specificity, and accuracy were higher for the CMS-based cohort
for all three different case-control designs (T = 1, 3 and 6 h). Model AUROC had the highest
improvement for the 6 h window, with CMS-cohort reaching an average of 0.87, while
billing-cohort for the same time frame reached an average of 0.77. Similarly, average model
accuracy was highest for the same T = 6 h cohort when CMS information was used to
define the cohort (0.90 versus 0.78 average accuracies). Model sensitivity and specificity
were also higher with the CMS-based cohort (model sensitivity for T = 6 h is 0.66 versus
0.56; model specificity for T = 6 is 0.92 versus 0.82). The same pattern was observed for the
cohorts where the time from admission was defined as T = 1 and T = 3 h.

4.5. Important Clinical Markers of Septic Shock

Our results (Figure 4) demonstrated that the eight ML algorithms were able to identify
lactic acid as the most important feature. Furthermore, there was a consensus in feature
importance ranking in three out of the eight algorithms (logistic regression, regularized
logistic regression, and Bayes generalized logistic regression). Overall, the dynamic features
including laboratory features and vitals were important clinical markers for the majority
of the algorithms. Demographic variables such as sex, age, and weight were the least
discriminative variables by most of the models.
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Figure 4. Feature Importance Profile for the eight machine learning models, based on aggregated measures.

5. Discussion

This study demonstrated that machine learning models can be used to predict septic
shock within the first 6 h of admission. Furthermore, model performance can be improved
by aggregating the temporal models from each prediction window. Even when the rate
of septic shock was between 7–14% (depending on how the septic shock is defined), the
presented pipeline achieved a good balance of sensitivity and specificity at 1, 3, and 6 h
from the time of admission. The major contribution of this study, is the use of a well-
established framework, big data analytics and solid infrastructure in building interpretable
decision support systems that can be integrated into clinical workflow in EHR.

5.1. Design Consideration for Building a Clinical Decision Support System for Detection of Septic
Shock Using Healthcare Data

Our findings highlighted the value of data density for building predictive models.
As the time from admission increases from T = 1 h to 3 and 6 h, more clinical variables
were available for each patient. The latter had an impact on model performance. This
observation, even though expected, (a) can help design models with a balance between
performance improvement versus how much time in advance a practitioner could be able
to be notified of a patient’s declining condition, (b) corroborated the value of advances
in laboratory technologies that can reduce the turn-around time, which could eventually
facilitate the development of models that could target narrower windows as the data
becomes available.

Our findings also demonstrated that the cohort definition for a clinical application can
benefit if clinical information is leveraged as opposed to relying only on administrative
(billing) information. The latter might be counter-intuitive, as billing codes may be more
robust, at least for some conditions. Administrative data tend to be considered in many
studies as a gold standard since billing codes are entered after chart review and have legal
implications. However, as our results corroborated, clinically derived criteria using data
from structured and unstructured sources, such as SIRS criteria, can exhibit higher fidelity
in identifying septic shock patients when compared to leveraging only diagnostic codes.

Besides a carefully-designed cohort definition and selection of the optimal prediction
window (based on clinical workflow settings and turn-around time to have patient-level
data for the model), we discussed important technical considerations for building a suc-
cessful ML-enabled decision support system. One such consideration was to address the
class imbalance between cases and controls. Our results denoted the value of applying

50



J. Clin. Med. 2021, 10, 301

robust sampling strategies to address the challenges due to the imbalanced nature of the
dataset. Even though we did not compare our model performance with and without
sampling as a pre-processing step, evidence suggests that this design strategy likely aided
our model performance. Fleuren et al. [51], in their systematic review of ML-based models
of sepsis, identified that some of the studies [51] potentially suffered from selection bias. In
particular, to label septic shock patients, authors [5] used discharge ICD9 codes for acute
infection to identify acute organ dysfunction and complemented that information with
the need for vasopressors within 24 h of ICU transfer. In another study [27], authors used
deep learning models to assess risk score 4 h before onset. In essence, since many patients
present themselves in the Emergency Department with imminent or overt symptoms of
septic shock, it is important that a decision support system, when integrated into the
clinical workflow, can detect septic shock patients; therefore, in our design strategy, we
ensured patients with imminent or overt septic shock were included to mimic a realistic
situation. Finally, as EHR provides a valuable resource, it is important to leverage scalable
analytical frameworks (such as pre-processing, data augmentation, use of ontologies, etc.)
for providing assistive tools to providers in real-time.

5.2. Lactic Acid and Other Laboratory Measurements are Highly Important Indicators of
Progression to Septic Shock

Epidemiological studies have established that the initial hypotension and lactic acid
levels are important indicators of the progression of sepsis to septic shock [52,53]. Our
results also highlighted that lactic acid is the most important indicator of septic shock
followed by blood culture, creatinine level, and systolic blood pressure. However, it should
be mentioned that lactic acid demonstrated higher than 40% overall sparsity, yet, it was
decided to include this important variable in the model. In our dataset, lactic acid was
not missing completely at random, as the missing level in the control group was higher;
our data included 25,352 encounters out of 43,332 with lactic acid data available in the
control group, versus 6037 encounters out of 6486 with lactic acid in the case group, for the
6-h window. Our team is leading comprehensive studies in the imputation of laboratory
values [54] and we hope in the follow-up study we can better address this challenge.

Overall, other laboratory values were found to be relevant to the decision support
system. Early warning scores do not consider laboratory values, however, in a recent
meta-analysis of 28 studies [53] it was observed that overall laboratory values play an
important role. Static features (age, sex, height, and weight) are the least important
variables in the majority of the models used in this study. Furthermore, as different
algorithms demonstrated different patterns (see Figure 4), it is imperative to not only rely
on one modeling algorithm but an ensemble of models [55] when building prediction
models based on a limited set of variables for time-critical conditions.

5.3. Strengths, Limitations, and Future Work

This study had several strengths and some limitations. Using a large dataset from an
integrated healthcare system was a clear strength; however, Geisinger’s patients’ cohort
were predominantly Caucasians, therefore, models developed in this study may not be
generalizable to other healthcare systems without further fine-tuning and optimization.
Furthermore, the use of large clinical data leads also to a study limitation. Data from
the EHR tend to be noisy; however, with the proper data extraction pipeline and close
collaboration with the clinical team, it is possible to augment data quality and reduce
systemic bias. However, models developed using EHR-based data can be integrated and
deployed into the same healthcare system more effectively, as ML models trained on
the data specific to a particular healthcare system (and population) can provide better
specificity and sensitivity.

Another strength and key contribution of this study is the development and compari-
son of two cohorts, based on administrative and clinical data, using billing information and
clinical information based on CMS guidelines. Other studies have relied on using clinical
markers such as lactic acid levels in combination with hypotension for determining septic
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shock [53]; however, the progression from sepsis to septic shock occurs on a spectrum
and there are specific criteria that define this progression, from sepsis to severe sepsis and
eventually to septic shock, the latter is clearly defined by the CMS guidelines [53,56]. Our
results showed that the clinically derived cohort is more robust and leveraging guideline
recommendations can improve the performance of the models. However, since the use of
SIRS criteria may also lead to labeling bias (over-diagnosed cases), it is important to work
closely with the clinical team and consider additional guidelines and metrics as needed. It
is also important to perform a careful evaluation and comparative analysis (such as targeted
chart review, etc.). Also, given the study limitation around the use of SIRS criteria, the
strategy in this study was to align our decision support system with the contemporaneous
roll-out of the CMS sepsis protocol, which did not include qSOFA or SOFA at the time this
study was conceptualized. As in any healthcare system, with changing recommendations
and guidelines, we are working on adapting our models with clinical workflow accordingly.
Finally, since we use a multi-level approach in defining our cohort, our strategy is robust
and can be updated relatively efficiently based on new guidelines. In particular, we use
ICD codes as the first level, complemented with clinical data from notes and other sources
of structured data. It is important to emphasize that diagnosis codes may have a systemic
bias as they are intended for billing purposes. Furthermore, our case/control ratio had a
significant imbalance, which typically leads to a reduction in model performance. However,
as the field of machine learning is advancing at an unprecedented rate, we are exploring the
use of novel strategies (such as the use of the generative adversarial network (GAN)) [57],
which could be used to address data imbalance and to improve our models.

As future directions, our team is actively working on further refining our septic
early detection models based on technical and clinical advances. In particular, (1) some
of the important data elements such as SOFA score (and different variations of SOFA
score) were not captured in our EHR routinely at the time of this study. Given the clinical
utility of such data elements, our system is now capturing these important variables more
consistently. Therefore, as part of future work, we will be integrating these new variables
and assessing their predictive utility. (2) Certain variables, especially laboratory variables
(such as blood cultures), have a higher turn-around time (sometimes ranging between 48
to 72 h). In this study, we used the presence of blood culture order as a binary variable;
however, having the actual test results could improve the detection of septic shock. We
are working on integrating more laboratory-based features as their turn-around time
improves. Finally, (3) many other laboratory variables could be included in the model;
however, laboratory values tend to suffer from non-at-random missing and at high rates,
and imputing them is a challenging task. Our team is developing imputation modeling that
is designed specifically for laboratory-based features [54]. We believe better imputation
and more targeted hyperparameter tuning, including sensitivity-based analysis, could
further improve model performance.

One of the main limitations of this study design is that some patients who progress
to septic shock might be mislabeled as controls in the cohort. Even though this can be
avoided by taking a large time window and leveraging pathology results, the technical and
clinical steps needed to address this study limitation are manifold and beyond the scope of
this study. Currently, the turnaround time for pathology reports makes it impractical for
the integration of such data into a decision support system that is aimed at assisting ICU
providers in real-time-few hours after the patient is admitted to ICU. Another potential
source of noise is the intervention by care providers e.g., administration of fluid bolus
based on capillary refill, which would suppress clinical markers e.g., SBP, lactate to baseline,
thus misleading the model during training.

Furthermore, it is difficult to know the impact of antibiotics on the specific trajectory
of an individual patient as infection types are different and outcomes of progression are
predicated based on many dynamic variables. For instance, it has been shown that 30% of
patients who received appropriate anti-infective before the onset of hypotension continued
to develop septic shock [12]. Thus, more targeted research is needed to assess the impact of
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medication at a personalized level before such information can be used for practical and
time-sensitive applications.

Finally, this study is unique as it operates directly on the multiple sources of clinical
data to build an ML-based decision support system for the detection of septic shock. This
study also demonstrated that high-resolution and large heterogeneous data sets from
administrative sources can be used to develop assistive tools for time-sensitive conditions
such as the progression of sepsis or severe sepsis to septic shock. Such technologies could
be integrated into the electronic healthcare system to improve the detection of septic shock
and enable optimization of resources. The models have the potential to improve clinical
outcomes in real-time.
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Appendix A

Table A1. Upper and lower limits on variables as part of the data pre-processing for variables that
had outliers after considering six standard deviations.

MEASURE LOWER_LIMIT UPPER_LIMIT

Temperature 96.8 101

Heart rate (pulse) 90

Respiration 20

White blood cell count 4000 12,000

Systolic blood pressure (SBP) 90

Mean arterial pressure 65
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Table A1. Cont.

MEASURE LOWER_LIMIT UPPER_LIMIT

SBP decrease Baseline-40

Creatinine 2

Urine output 0.5

Bilirubin 2

Platelets 100,000

INR 1 1.5

APTT 2 60

Lactate 2
1 Prothrombin Time and International Normalized Ratio; 2 Activated Partial Thromboplastin Time.

2021, , x FOR PEER REVIEW 14 of 17

Figure A1. Graphical Representation of Association Rules with Septic Shock (ICD9 = 785.52) as
a consequent. Diagnosis codes for the patients in the cohort were obtained and Association Rule
Mining [35] was run to mine for relationships between comorbidities. In the study, “items” are
diagnosis codes. Items are connected to rules using directional edges. For nodes representing
rules, edges pointing from codes to rule vertices indicate antecedent items and an edge from a
rule to an item indicates the consequent item. The reader is referred to [58] for more details about
the visualization. 511.9: Unspecified pleural effusion; 401.9: Unspecified essential hypertension;
995.2: Severe sepsis; 038.9: Unspecified septicemia; 518.81: Acute respiratory failure; EP751: Other
congenital anomalies of digestive system: 584.9: Acute kidney failure.
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Figure A2. Comparison Performance Profiles based on aggregated data.

References

1. Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and
organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992, 101, 1644–1655. [CrossRef] [PubMed]

2. Gul, F.; Arslantas, M.K.; Cinel, I.; Kumar, A. Changing Definitions of Sepsis. Turk. J. Anesth. Reanim. 2017, 45, 129–138. [CrossRef]
[PubMed]

3. Marik, P.E.; Taeb, A.M. SIRS, qSOFA and new sepsis definition. J. Thorac. Dis. 2017, 9, 943–945. [CrossRef] [PubMed]
4. Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al.

Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic
shock*. Crit. Care Med. 2006, 34, 1589–1596. [CrossRef] [PubMed]

5. Rivers, E.P.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early Goal-Directed
Therapy in the Treatment of Severe Sepsis and Septic Shock. N. Engl. J. Med. 2001, 345, 1368–1377. [CrossRef] [PubMed]

6. Mayr, F.B.; Yende, S.; Angus, D.C. Epidemiology of severe sepsis. Virulence 2014, 5, 4–11. [CrossRef]
7. Ruokonen, E.; Takala, J.; Kari, A.; Alhava, E. Septic shock and multiple organ failure. Crit. Care Med. 1991, 19, 1146–1151.

[CrossRef]
8. Paoli, C.J.; Reynolds, M.A.; Sinha, M.; Gitlin, M.; Crouser, E. Epidemiology and Costs of Sepsis in the United States—An Analysis

Based on Timing of Diagnosis and Severity Level. Crit. Care Med. 2018, 46, 1889–1897. [CrossRef]
9. Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development and

Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.
Radiology 2019, 290, 218–228. [CrossRef]

10. Wu, N.; Phang, J.; Park, J.; Shen, Y.; Huang, Z.; Zorin, M.; Jastrzebski, S.; Fevry, T.; Katsnelson, J.; Kim, E.; et al. Deep Neural
Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans. Med. Imaging 2020, 39, 1184–1194.
[CrossRef]

11. Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care. Am. J. Med.

2019, 132, 795–801. [CrossRef] [PubMed]
12. Singh, R.; Kalra, M.K.; Nitiwarangkul, C.; Patti, J.A.; Homayounieh, F.; Padole, A.; Rao, P.; Putha, P.; Muse, V.V.; Sharma, A.; et al.

Deep learning in chest radiography: Detection of findings and presence of change. PLoS ONE 2018, 13, e0204155. [CrossRef]
[PubMed]

13. Karunakaran, B.; Misra, D.; Marshall, K.; Mathrawala, D.; Kethireddy, S. Closing the loop—Finding lung cancer patients using
NLP. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017;
pp. 2452–2461.

55



J. Clin. Med. 2021, 10, 301

14. Zheng, L.; Wang, Y.; Hao, S.; Sylvester, K.G.; Ling, X.B.; Shin, A.Y.; Jin, B.; Zhu, C.; Jin, H.; Dai, D.; et al. Risk prediction of stroke:
A prospective statewide study on patients in Maine. In Proceedings of the 2015 IEEE International Conference on Bioinformatics
and Biomedicine, BIBM, Washington, DC, USA, 9–12 November 2015; pp. 853–855. [CrossRef]

15. Escobar, G.J.; Turk, B.J.; Ragins, A.; Ha, J.; Hoberman, B.; LeVine, S.M.; Ballesca, M.A.; Liu, V.; Kipnis, P. Piloting electronic medical
record—based early detection of inpatient deterioration in community hospitals. J. Hosp. Med. 2016, 11, S18–S24. [CrossRef]
[PubMed]

16. Brun-Buisson, C.; Doyon, F.; Carlet, J.; Dellamonica, P.; Gouin, F.; Lepoutre, A.; Mercier, J.-C.; Offenstadt, G.; Régnier, B. Incidence,
Risk Factors, and Outcome of Severe Sepsis and Septic Shock in Adults. JAMA 1995, 274, 968–974. [CrossRef] [PubMed]

17. Raghu, A.; Komorowski, M.; Ahmed, I.; Celi, L.; Szolovits, P.; Ghassemi, M. Deep reinforcement learning for sepsis treatment.
arXiv 2017, arXiv:1711.09602.

18. Lagu, T.; Rothberg, M.B.; Shieh, M.-S.; Pekow, P.S.; Steingrub, J.S.; Lindenauer, P.K. Hospitalizations, costs, and outcomes of
severe sepsis in the United States 2003 to 2007. Crit. Care Med. 2012, 40, 754–761. [CrossRef]

19. Vogel, T.R.; Dombrovskiy, V.Y.; Lowry, S.F. Trends in Postoperative Sepsis: Are We Improving Outcomes? Surg. Infect. 2009, 10,
71–78. [CrossRef]

20. Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine Learning Model for
Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [CrossRef]

21. Giannini, H.M.; Ginestra, J.C.; Chivers, C.; Draugelis, M.; Hanish, A.; Schweickert, W.D.; Fuchs, B.D.; Meadows, L.R.; Lynch, M.;
Donnelly, P.J.; et al. A machine learning algorithm to predict severe sepsis and septic shock: Development, implementation, and
impact on clinical practice. Read Online Crit. Care Med. Soc. Crit. Care Med. 2019, 47, 1485–1492. [CrossRef]

22. Kim, J.; Chang, H.; Kim, D.; Jang, D.-H.; Park, I.; Kim, K. Machine learning for prediction of septic shock at initial triage in
emergency department. J. Crit. Care 2020, 55, 163–170. [CrossRef]

23. Schoenberg, M.H.; Weiss, M.; Radermacher, P. Outcome of patients with sepsis and septic shock after ICU treatment. Langenbeck’s

Arch. Surg. 1998, 383, 44–48. [CrossRef] [PubMed]
24. Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a machine learning-based severe sepsis

prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir. Res. 2017, 4,
e000234. [CrossRef] [PubMed]

25. Iwashyna, T.J.; Odden, A.; Rohde, J.; Bonham, C.; Kuhn, L.; Malani, P.; Chen, L.; Flanders, S. Identifying Patients With Severe
Sepsis Using Administrative Claims. Med. Care 2014, 52, e39–e43. [CrossRef] [PubMed]

26. Khoshnevisan, F.; Ivy, J.; Capan, M.; Arnold, R.; Huddleston, J.; Chi, M. Recent Temporal Pattern Mining for Septic Shock Early
Prediction. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA,
4–7 June 2018; pp. 229–240.

27. Lin, C.; Zhang, Y.; Ivy, J.; Capan, M.; Arnold, R.; Huddleston, J.M.; Chi, M. Early Diagnosis and Prediction of Sepsis Shock
by Combining Static and Dynamic Information Using Convolutional-LSTM. In Proceedings of the 2018 IEEE International
Conference on Healthcare Informatics (ICHI), New York, NY, USA, 4–7 June 2018; pp. 219–228.

28. Klompas, M.; Rhee, C. The CMS Sepsis Mandate: Right Disease, Wrong Measure. Ann. Intern. Med. 2016, 165, 517. [CrossRef]
[PubMed]

29. Allison, M.G.; Schenkel, S.M. SEP-1: A Sepsis Measure in Need of Resuscitation? Ann. Emerg. Med. 2017, 71, 18–20. [CrossRef]
[PubMed]

30. Davies, M.G.; Hagen, P.-O. Systemic inflammatory response syndrome. BJS 1997, 84, 920–935. [CrossRef] [PubMed]
31. Bodenreider, O. The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 2004, 32,

D267–D270. [CrossRef]
32. Spackman, K.A.; Campbell, K.E.; Côté, R.A. SNOMED RT: A reference terminology for health care. In Proceedings of the AMIA

Annual fall Symposium, Nashville, TN, USA, 25–29 October 1997; p. 640.
33. McDonald, C.J.; Huff, S.M.; Suico, J.G.; Hill, G.; Leavelle, D.; Aller, R.; Forrey, A.; Mercer, K.; Demoor, G.; Hook, J.; et al. LOINC, a

Universal Standard for Identifying Laboratory Observations: A 5-Year Update. Clin. Chem. 2003, 49, 624–633. [CrossRef]
34. World Health Organization. Enth Revision of the International Classification of Diseases Chapter V (F: Mental, Behavioural and

Developmental Disorders, Clinical Descriptions and Diagnostic Guidelines, Rev. 2 1988 Draft; Verlag Hans Huber, Ed.; World Health
Organization: Bern, Switzerland, 1991. Available online: https://apps.who.int/iris/handle/10665/61362 (accessed on 1 October
2020).
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Abstract: The accurate diagnosis of chronic myelomonocytic leukemia (CMML) and acute myeloid
leukemia (AML) subtypes with monocytic differentiation relies on the proper identification and
quantitation of blast cells and blast-equivalent cells, including promonocytes. This distinction can
be quite challenging given the cytomorphologic and immunophenotypic similarities among the
monocytic cell precursors. The aim of this study was to assess the performance of convolutional
neural networks (CNN) in separating monocytes from their precursors (i.e., promonocytes and
monoblasts). We collected digital images of 935 monocytic cells that were blindly reviewed by five
experienced morphologists and assigned into three subtypes: monocyte, promonocyte, and blast.
The consensus between reviewers was considered as a ground truth reference label for each cell. In
order to assess the performance of CNN models, we divided our data into training (70%), validation
(10%), and test (20%) datasets, as well as applied fivefold cross validation. The CNN models did
not perform well for predicting three monocytic subtypes, but their performance was significantly
improved for two subtypes (monocyte vs. promonocytes + blasts). Our findings (1) support the
concept that morphologic distinction between monocytic cells of various differentiation level is
difficult; (2) suggest that combining blasts and promonocytes into a single category is desirable
for improved accuracy; and (3) show that CNN models can reach accuracy comparable to human
reviewers (0.78 ± 0.10 vs. 0.86 ± 0.05). As far as we know, this is the first study to separate monocytes
from their precursors using CNN.

Keywords: digital imaging; artificial intelligence; improving diagnosis accuracy; monocytes;
promonocytes and monoblasts; chronic myelomonocytic leukemia (CMML) and acute myeloid
leukemia (AML) for acute monoblastic leukemia and acute monocytic leukemia; concordance
between hematopathologists

1. Introduction

The classification of the monocytic subpopulations (monoblasts, promonocytes, and
monocytes) is important for the proper diagnosis and classification of various monocytic-
lineage leukemias, namely, chronic myelomonocytic leukemia (CMML) and acute myeloid
leukemia (AML), including acute monoblastic leukemia and acute monocytic leukemia,
and acute myelomonocytic leukemia [1].

To meet the World Health Organization (WHO) diagnostic criteria, the peripheral
blood (PB) or bone marrow (BM) of patients with acute monoblastic and monocytic
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leukemia must have ≥20% blasts (including promonocytes), and ≥80% of the leukemic
cells must be of monocytic lineage, including monoblasts, promonocytes, and monocytes.
Differentiation between acute monoblastic leukemia and acute monocytic leukemia is
based on the relative proportions of monoblasts and promonocytes. In acute monoblastic
leukemia, the majority of the monocytic cells (≥80%) are monoblasts, whereas in acute
monocytic leukemia, the predominant populations are mature monocytes and promono-
cytes [1–3].

The diagnostic criteria for CMML include PB monocytosis (≥1 × 109/L), in which
>10% of the PB leukocytes are monocytes. In addition, the PB and BM blast count of <20%
of blasts and promonocytes (a blast equivalent cell) must be ascertained [4,5]. Beyond
diagnosis, CMML can be stratified into three subcategories based on accurate enumeration
of blasts and equivalents (i.e., promonocytes) in the PB and BM. CMML-0: <2% in PB and
<5% in BM, CMML-1: 2–4% in PB or 5–9% in BM, CMML-2: 5–19% in PB and 10–19% in
BM [2,6].

As seen from the diagnostic criteria listed above, distinction between CMML and
AML, and the staging of CMML, depend on accurate differentiation between blast equiv-
alents (monoblasts and promonocytes) and mature monocytes. WHO classification still
uses cytomorphology as the gold standard for the definition of blasts. In many cases, the
expression of immature marker CD34 is used to supplement the enumeration of blasts.
However, monoblasts are frequently negative for CD34 [7], and there are no other re-
liable immunophenotypic markers to distinguish monoblasts and promonocytes from
mature monocytes. As a result, the differential diagnosis in these cases relies solely on
cytomorphology.

In general, monocytes are mature cells with minimal morphologic atypia. However,
atypical monocytes can be present with abnormal cellular features such as unusually
fine chromatin but with prominent nuclear folds or convolutions that partially overlap
with more immature forms, including monoblasts and promonocytes [8,9]. This renders
distinguishing them from the immature forms notoriously difficult and might lead to
under- or overestimation of blast cell numbers [10].

In this article, we present the applicability of artificial intelligence using convolutional
neural network architecture for separating monocytes from the spectrum of monocyte
precursors (i.e., promonocytes and monoblasts) with reference labels generated based
on experts’ morphologic review consensus. Differentiating myeloblasts from monoblasts
solely on optical cytology can be very difficult; therefore, we will refer to monoblasts as
blasts (monoblasts and/or myeloblasts) in this manuscript.

2. Methods

We trained convolutional neural network (CNN) architecture on digital images of
monocytes, promonocytes, and blasts to separate monocytes from monocyte precursors
(i.e., promonocytes and monoblasts). We experimented and evaluated several data pre-
processing configurations and assessed the performance of well-known CNN architecture
in order to find the best-performing CNN model and preprocessing strategy for this
classification task. The data were imbalanced; therefore, we used the weighted categorical
cross entropy loss function (see Equation (1)) to penalize loss for each category during
the training [11–13]. We used the Adam optimizer [14] and initialized the learning rate to
1 × 10−4.

L =
1
n

n

∑
i=1

m

∑
j=1

−yijlog
(

ŷij

)

wij (1)

where n is number of samples, m is number of classes, y is the true labels, ŷ is the predicted
labels, and wij is the weighting for each sample of classes. wij = max

{

n0 . . . nj

}

/nj is
defined to balance the impact of each class in the loss function.
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2.1. Data Collection

After approval by the Mayo Clinic institution review board (IRB protocol #19-001950),
935 consecutive monocytic cell images were acquired from the PB smear samples of
10 patients diagnosed with AML with monocytic differentiation and CMML using a
100× objective lens under immersion oil using an Olympus BX53 microscope with Olympus
DP74 camera to obtain digital images. Each cell was manually cropped by an experienced
hematopathologist (M.E.S.) into 200 × 200 pixel images using HyperSnap V7 software
(Hyperionics Technology, Murrysville, PA, USA). In order to eliminate the impact of non-
relevant background information that might include red blood cells, artifacts, and platelets,
a manually segmented mask was provided for each monocytic cell. The cytoplasm and
nucleus were labelled separately in each segmentation mask. All collected cells were split
into 3 categories (i.e., monocyte, promonocyte, and blast) by 5 hematopathology experts.
The consensus between the five experienced morphologists (four hematopathologists, D.J.,
P.L.N., S.R. and M.E.S., and an experienced pathologist assistant, D.R.) was considered as a
ground truth reference label for each cell.

2.2. Experiments and Evaluations

We split the data into 70%, 10%, and 20% for training, validation, and testing purposes,
respectively, and assessed the performance of five well-known CNNs architectures: In-
ceptionV3 [15,16], Resnet50 [17], Inception_resnet [18], VGG16 [19], and Densenet121 [20].
The training set was used for learning about the data. The validation set was employed to
establish the reliability of learning results, and the test set was used to assess the gener-
alizability of a trained model on the data that were not seen by the model. Furthermore,
we applied stratified 5-fold cross validation to the best-performing model configuration to
further assess the generalization ability of the model. In the 5-fold cross validation, the data
were divided randomly into 5 equal sized pieces and samples of each class were equally
distributed to each piece. One piece was reserved for assessing the performance of a model,
and the remaining 4 pieces were utilized for training models.

We generated five configurations based on pre-processing input data and assessed
the impact of data pre-processing to select the best configuration for our classification task.
In configuration 1, cell masks were applied to image patches to suppress the background
(i.e., assigning zeros to non-cell pixels) and leave only the cell content in image patches.
Afterwards, color normalization (i.e., RGB color channels values were normalized as a
percentage of sum of RGB values) was applied to image patches and cells were centered
and resized into 200 × 200 pixels. In configuration 2, cell masks were applied to image
patches to suppress the background and leave only the cell content in image patches.
Next, z-scoring, which is also called the standard score, was applied to image patches. In
z-scoring, RGB image channel values were scaled with 0 mean and unit variation. Lastly,
cells were centered and resized into 200 × 200 pixels. In configuration 3, image patches
without suppressing background (i.e., whole image patched including all the background
information) were used as the input data for CNN models. In configuration 4, cell masks
were also applied to image patches to suppress the background, leaving only cell content
(Figure 1). Lastly, in configuration 5, cell masks were applied to suppress the background
as well as the cells of interest but excluding their nuclei, leaving only the nuclei content in
image patches (Figure 1). We then centered and resized only the nuclei of each cell into 200
× 200 pixels and applied to them z-scaling to standardize RGB color distribution. For each
configuration, we presented accuracy, precision, recall, and F1-score metrics. In addition,
we also generated t-SNE plots using the features of the last convolution layer of the best
model to show the separation of monocytic cells on the test dataset.
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Figure 1. Examples of monocytes, promonocytes, and monoblasts with criteria.
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In order to assess the inter-reviewer variability (i.e., the variability between the five
expert reviewers), we compared the labels of each reviewer to consensus labels and the
average performance and standard deviation were presented. Similarly, to assess the
intra-reviewer variability, reviewer 5 labeled the cells a second time (one month later) and
a correlation matrix was calculated, as shown in the results section below.

3. Results

The performance of the five CNN models with different configurations and the re-
sulting classification of the monocytic cells (i.e., monocyte, promonocyte, and blast) on
the validation and test datasets are shown in Tables 1 and 2. Table 1 shows the results of
CNN models with configurations 1–5 for the three-subcategory classification (monocyte vs.
promonocyte vs. blast), while Table 2 shows results of CNN models with configurations
1–5 for the two-subcategory classification (monocyte vs. blast + promonocyte). Overall,
the Inception_resnet model [18], which is a version of the inception model with residual
connection, using configuration 2, gave the best performance in terms of accuracy, precision,
recall, and F1-score in the validation and test datasets of both the two-subcategory and the
three-subcategory classifications. Densenet121 using configuration 2 was the second-best
performing model.

Using configuration 2, the accuracy of CNN models for predicting three subcategories
(Table 1) on the test dataset ranged from 42% to 58%, while it ranged from 70% to 85% for
predicting two subcategories (Table 2). In the three-subcategory classification (Table 1), the
Inception_resnet model achieved 81% accuracy in the validation dataset, but its perfor-
mance dropped to 53% in the test dataset. In the two-subcategory classification (Table
2), the accuracy of CNN models using configuration 2 ranged from 79% to 88% on the
validation dataset. Inception_resnet using configuration 2 provided the most consistent
performance in the two-subcategory classification as well in terms of accuracy, precision,
recall, and F1-score in the validation and test datasets.

Color Key for Tables 1–5:

Relatively Lower
Performance

Relatively Higher
Performance

Table 1. Performance of CNN models using five pre-processing configurations on 3-subcategory (monocytes, promonocytes,
and blasts) classification task.

CNN Models Validation Dataset Test Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Configuration 1 (Centered and resized whole cell only and color normalization—cell mask applied)
Inception_resnet 0.67 0.41 0.64 0.50 0.41 0.36 0.48 0.33
InceptionV3 0.33 0.43 0.41 0.30 0.49 0.46 0.53 0.39
Resnet50 0.62 0.69 0.52 0.50 0.55 0.47 0.49 0.42
VGG16 0.63 0.59 0.68 0.60 0.57 0.54 0.62 0.51
Densenet121 0.68 0.42 0.67 0.51 0.42 0.39 0.50 0.34
Configuration 2 (Centered and resized whole cell only and z-score pre-processing—cell mask applied)
Inception_resnet 0.81 0.83 0.80 0.76 0.53 0.50 0.58 0.45
InceptionV3 0.63 0.73 0.62 0.48 0.42 0.36 0.47 0.33
Resnet50 0.63 0.55 0.65 0.56 0.49 0.53 0.56 0.44
VGG16 0.69 0.67 0.74 0.69 0.50 0.54 0.57 0.46
Densenet121 0.72 0.81 0.71 0.63 0.58 0.40 0.60 0.44
Configuration 3 (Image patch including monocytic cell and surrounding red blood cells—no cell mask applied)
Inception_resnet 0.71 0.70 0.70 0.59 0.45 0.41 0.52 0.36
Configuration 4 (Only whole cell presented after applying cell mask)
Inception_resnet 0.73 0.71 0.73 0.64 0.44 0.41 0.51 0.35
Configuration 5 (Centered and resized nucleus only and z-score pre-processing—mask applied excluding nucleus)
Inception_resnet 0.74 0.73 0.76 0.74 0.66 0.65 0.70 0.62

Table 1 shows the Inception_resnet model using configuration 2 performing the best in terms of accuracy, precision, recall, and F1-score in
the validation and test datasets of the 3-subcategory classification.
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Table 2. Performance of CNN models using five pre-processing configurations on 2-subcategory (monocytes and promono-
cytes + blasts) classification task.

CNN Models Validation Dataset Test Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Configuration 1 (Centered and resized whole cell only and color normalization—cell mask applied)
Inception_resnet 0.84 0.88 0.83 0.83 0.70 0.75 0.71 0.69
InceptionV3 0.46 0.46 0.46 0.45 0.63 0.63 0.63 0.63
Resnet50 0.63 0.79 0.61 0.55 0.66 0.68 0.65 0.64
VGG16 0.76 0.76 0.76 0.76 0.79 0.82 0.80 0.79
Densenet121 0.87 0.90 0.87 0.87 0.72 0.79 0.73 0.71
Configuration 2 (Centered and resized whole cell only and z-score pre-processing—cell mask applied)
Inception_resnet 0.88 0.91 0.88 0.88 0.80 0.83 0.81 0.80
InceptionV3 0.87 0.87 0.87 0.87 0.70 0.74 0.71 0.70
Resnet50 0.80 0.80 0.80 0.80 0.76 0.83 0.77 0.75
VGG16 0.79 0.79 0.79 0.79 0.76 0.83 0.77 0.75
Densenet121 0.79 0.86 0.78 0.77 0.85 0.85 0.85 0.85
Configuration 3 (Image patch including monocytic cell and surrounding red blood cells—no cell mask applied)
Inception_resnet 0.87 0.89 0.87 0.87 0.77 0.84 0.78 0.76
Configuration 4 (Only whole cell presented after applying cell mask)
Inception_resnet 0.91 0.92 0.91 0.91 0.76 0.83 0.77 0.75
Configuration 5 (Centered and resized nucleus only and z-score pre-processing—mask applied excluding nucleus)
Inception_resnet 0.79 0.79 0.79 0.79 0.83 0.85 0.83 0.83

Table 2 shows the Inception_resnet model using configuration 2 performing the best in terms of accuracy, precision, recall, and F1-score in
the validation and test datasets of the 2-subcategory classification.

In Tables 1 and 2, CNN models with configuration 1 showed less consistency be-
tween validation and test datasets and had worse performance compared to those with
configuration 2. The Inception_resnet model using configurations 3 and 4 showed poor
performance compared to the model using configuration 2 (Table 1). However, their perfor-
mance improved with two-subcategory classification (Table 2). The overall performance of
Inception_resnet using configuration 5, which included the nucleus only in image patches,
was slightly lower than the performance of the best model in both the two-subcategory
and three-subcategory classification tasks, as shown in Tables 1 and 2.

Figure 2 shows the t-SNE plots for the learned features of the last convolutional layer
of the Inception_resnet model with configurations 1 and 2 that were generated from the
test dataset. As shown in the t-SNE plot of the Inception_resnet model with configuration
1, all promonocytes demonstrated similar features to blasts, and some of monocytes were
also not discernable from blasts. In the t-SNE plot of the model with configuration 2,
promonocytes were distributed across monocyte and blast classes. There was a narrow
band to differentiate promonocytes from both other classes.

The average performance of the fivefold cross validation using the best performing
model, Inception_resnet, is shown in Table 3. The average accuracy of the model and its
standard deviation across the fivefold cross validation were 0.66 ± 0.12 and 0.78 ± 0.10
for three-subcategory and two-subcategory classifications, respectively. The performances
in the first two iterations, were the lowest while the performance in iteration three was
the highest. In the two-subcategory classification, the average performance of the fivefold
cross validation (Table 3) was slightly lower than the performance of the Inception_resnet
model (Table 2) on the test dataset (78% vs. 80%, respectively).
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Figure 2. t-SNE plots for the performance of the Inception_resnet model using configurations 1 and 2
on the test. In the configuration 1 plot, all promonocytes demonstrated similar features to blasts and
some of monocytes were also not discernable from blasts. In the configuration 2 plot, promonocytes
were distributed across monocyte and blast classes.

Table 3. Overall performance of fivefold cross validation using the Inception_resnet CNN model.

5-Fold Cross
Validation

3-Subcategory (Monocytes vs. Promonocytes
vs. Blasts)

2-Subcategory (Monocytes vs. Promonocytes +
Blasts)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Iteration 1 0.56 0.60 0.46 0.47 0.67 0.67 0.67 0.67
Iteration 2 0.57 0.55 0.45 0.45 0.68 0.72 0.67 0.66
Iteration 3 0.81 0.79 0.78 0.77 0.89 0.90 0.88 0.89
Iteration 4 0.77 0.75 0.78 0.77 0.83 0.83 0.83 0.83
Iteration 5 0.58 0.56 0.62 0.53 0.81 0.84 0.82 0.81
Mean ± STD 0.66 ± 0.12 0.65 ± 0.11 0.62 ± 0.16 0.60 ± 0.16 0.78 ± 0.10 0.79 ± 0.09 0.77 ± 0.10 0.77 ± 0.10

The performance of the five human expert reviewers compared to the consensus
reference labels is shown in Table 4. The mean and standard deviation of the performance
of the reviewers were 0.81 ± 0.07 and 0.86 ± 0.05 for the three-subcategory and two-
subcategory classifications, respectively. Apart from reviewers 3 and 5, there was a strong
consensus between the other three reviewers. The performance of reviewer 3 was 72%
accurate, which was the lowest performance among the other reviewers. As seen in Table 4,
human performance could be as low as 72% and 80% accurate for the three-subcategory
and two-subcategory classifications, respectively. The overall results in the fivefold cross
validation test (Table 3) were slightly lower than the human reviewers’ performance in the
two-subcategory classification task (0.78 ± 0.10 vs. 0.86 ± 0.05).
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Table 4. Performance of human experts compared to consensus reference labels.

Reviewers vs. Consensus Reference

3-Subcategory (Monocytes vs. Promonocytes vs.
Blasts)

2-Subcategory (Monocytes vs. Promonocytes +
Blasts)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Reviewer 1 0.86 0.83 0.88 0.85 0.90 0.90 0.90 0.90
Reviewer 2 0.86 0.87 0.84 0.85 0.89 0.89 0.89 0.89
Reviewer 3 0.72 0.77 0.64 0.67 0.80 0.81 0.79 0.79
Reviewer 4 0.86 0.86 0.85 0.85 0.89 0.89 0.88 0.89
Reviewer 5 0.76 0.75 0.80 0.76 0.80 0.82 0.81 0.80
Mean ± STD 0.81 ± 0.07 0.82 ± 0.05 0.80 ± 0.10 0.80 ± 0.08 0.86 ± 0.05 0.86 ± 0.04 0.86 ± 0.05 0.85 ± 0.05

A Pearson’s correlation matrix between reviewers and consensus reference labels is
displayed in Table 5. The Pearson’s correlation between the five reviewers ranged from
0.5 to 0.75. The correlation between reviewers and consensus reference labels ranged from
0.67 to 0.86. The correlation between the two labels of reviewer 5 (reviewer 5 vs. reviewer
5R) is 0.92 and represents the intra-reviewer variability.

Table 5. Pearson’s correlation matrix between reviewers. Reference: consensus of 5 reviewers. Reviewer 5R: second
repetition of reviewer 5.

Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Reviewer 5 Reviewer 5R Reference

Reviewer 1 1 0.73 0.58 0.75 0.74 0.76 0.86
Reviewer 2 0.73 1 0.61 0.73 0.65 0.66 0.84
Reviewer 3 0.58 0.61 1 0.58 0.5 0.49 0.67
Reviewer 4 0.75 0.73 0.58 1 0.62 0.63 0.86
Reviewer 5 0.74 0.65 0.5 0.62 1 0.92 0.73
Reviewer 5R 0.76 0.66 0.49 0.63 0.92 1 0.73
Reference 0.86 0.84 0.67 0.86 0.73 0.73 1

4. Discussion

Monocyte assessment is frequently used in day-to-day practice to differentiate neo-
plastic processes from reactive monocytosis such as infections. According to the WHO
criteria, the diagnosis of monocytic neoplasms is dependent on quantitating monoblasts,
promonocytes, and monocytes [2]. Specifically, for the accurate recognition and quantifi-
cation of the two subtypes (promonocytes and monoblasts) most characteristic of acute
leukemia, we are required to distinguish between the subtypes of AML with monocytic
differentiation and CMML [2,21]. In addition, quantification of monoblasts is necessary for
CMML staging, and quantification of monocytes is important for the differential diagnosis
of other chronic myeloid neoplasms, including atypical CML [22].

Microscopic evaluation and enumeration of monoblasts, promonocytes, and mono-
cytes by an experienced hematopathologist remains to be the only accepted gold standard;
however, morphologic assessment alone can be difficult and subject to significant inter-
and intra-observer variability. In fact, monocytes and monocytic precursors are the most
difficult cells to identify and classify with confidence in the peripheral blood or in the bone
marrow [8]. Other modalities such as multiparameter flow cytometry have been attempted
to determine whether immunophenotypic expressions such as anti-CD14 antibodies, which
recognize the MO2 and MY4 epitopes, can identify monoblasts, promonocytes, and mono-
cytes [23]. However, the adoption of alternatives to morphology requires technical expertise
and remains limited in terms of widespread applicability.

It is imperative that diagnoses distinguish accurately between CMML, including the
correct subcategory, and AML with monocytic differentiation, because incorrect diagnosis
has significant therapeutic ramifications. For instance, management of CMML is guided by
risk categories (high or low risk) based on a CMML-specific scoring system [24] that incor-
porates the percentage of PB and BM blasts as an important factor determining survival
and prognosis [25]. Accordingly, high-risk groups are more subject to hematopoietic cell
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transplantation—which is associated with significant morbidity and mortality—than the
low-risk groups, which are more subject to symptom-directed therapy (e.g., hydroxyurea,
hypomethylating agents, and/or supportive care) [26]. Likewise, patients with AML have
a different therapeutic approach, because their treatment regimen usually begins with
intensive remission–induction chemotherapy, which generally includes a seven-day contin-
uous infusion of cytarabine along with anthracycline treatment on days 1–3 (the so-called
“7 + 3” regimen) [27]. This induction therapy can be highly toxic and typically entails
hospitalization for several weeks. Hence, precise identification and detailed characteriza-
tion of monocytic cells is of major relevance not only for diagnosis, but also for treatment.
Other neoplastic myeloid conditions have been associated with monocytic abnormalities
including juvenile myelomonocytic leukemia, chronic myeloid leukemia with p190 fusion,
and myeloid neoplasm with rearrangements of PDGFRA, PDGFRB, FGFR1 and PCM1-
JAK2. In addition, monocytosis could be a sign of progression of Philadelphia-negative
myeloproliferative neoplasms [28].

The evolution of digital imaging and AI application provides a promising potential in
cell-based classification. As such, we thought to evaluate the applicability in monocytic
cell-type classification. In this study, we assessed the performance of five well-known
CNN architectures for separating monocytes from the spectrum of monocyte precursors
(i.e., promonocytes and monoblasts). As mentioned before, ground truth reference labels to
train these models were generated based on the consensus of five expert reviewers. Table 4
shows that the percentage of agreement between expert reviewers ranged from 72% to 86%
for the three-subcategory classification task, which is a good concordance for such a difficult
task. These results were in line with previously reported concordance rates in the literature
(76.6%) between expert hematopathologists [8,10]. This agreement was further improved
when monocyte precursors were combined. Importantly, consensus on the classification
of cells, which is used as the gold standard, was achieved by individual classification of
each cell by each one of the evaluators. This is a higher standard than applied in a regular
clinical practice, where there are other parameters which could be helpful in reaching the
correct percentage of blast-equivalents (for example: similarity between individual cells,
bone marrow cellularity, absence of other hematopoietic lineages).

The performance of CNN models did not reach the level of the performance of hu-
man experts in separating monocytic cells in the three-subcategory classification, while
their performance was significantly improved in the three-subcategory classification,
and hence more comparable to the performance of human experts. The improvements
in the inter-observer agreement and CNN model support the practice of combining
blasts/promonocytes into a single subcategory. As shown in our experiment in the three-
subcategory classification (Table 1)—to find the best model and preprocessing approach—
we conclude that Inception_resnet using configuration 2 provides the best overall results
in validation and test datasets. However, the performance of the other models and con-
figurations, apart from configuration 1, was comparable with small differences in the
two-subcategory classification, as shown in Table 2. Even though the results are compa-
rable, configurations using cell masking to suppress the impact of irrelevant background
information on the prediction outcome are more reliable. Configuration 5 using nucleus
only data also showed consistent results of cross-validation and test datasets, both in the
two-subcategory and three-subcategory classifications (Tables 1 and 2). The impact of the
cytoplasm and nucleus on predicting monocytic cells could be further investigated in a
larger study to validate our preliminary findings.

The scope of this study was limited to the applicability of monocytic classification
based on the morphologic assessment by our expert hematopathology reviewers. Other cell
types, immunohistochemical, or flow cytometric immunophenotyping features were not
collected to address the reproducibility of the results presented in this article and its direct
impact on the diagnosis. Even though we obtained promising results in the identification
of monocytes and its precursors using CNNs, these results still need to be validated with a
larger study population. We used high-resolution cell images which required the manual
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acquisition of images. Both image acquisition and cell classification posed challenges that
limited the number of cells used in our study.

A larger study with higher numbers of cells could also help further improve the
performance of CNN models and obtain a better generalization ability. A larger cohort
will likely improve training of the CNN models and could possibly provide an improved
ground truth reference. Furthermore, additional work is needed to explore the clinical
applicability and clinical validity of such CNN models. Finally, our results underline the
fact that monocytic cell differentiation is a difficult task, with relatively low concordance
between expert reviewers.

5. Conclusions

In summary, we present that CNN models could perform almost as well as human
experts in separating monocytes from their precursor cells. To the best of our knowledge,
this is the first study to separate monocytes from their precursors using deep learning. Our
promising results demonstrate that CNN models could be adopted for this task and further
improved with a larger study population.

Author Contributions: Conceptualization, M.E.S., A.N. and M.M.P.; methodology, M.E.S., M.O.
and Z.A.; software, Z.A.; validation, M.E.S., M.O., Z.A., D.J., P.L.N., D.R. and S.R.; formal analysis,
M.E.S., M.O. and Z.A.; investigation, M.E.S., M.O. and Z.A.; resources, M.E.S., M.O. and Z.A.; data
curation, M.E.S., M.O., D.J., P.L.N., D.R. and S.R.; writing— original draft preparation, M.E.S., M.O.
and Z.A.; writing—review and editing, M.E.S., M.O., Z.A., D.J., P.L.N., D.R., S.R., A.A.-K., M.M.P.
and A.N.; visualization, M.E.S. and M.O.; supervision, M.E.S.; project administration, M.E.S.; funding
acquisition, M.E.S. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the division of hematopathology research funds at Mayo
Clinic, Rochester, MN, USA.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Mayo Clinic (IRB
protocol #19-001950).

Informed Consent Statement: Informed consent was waived per (IRB protocol #19-001950).

Data Availability Statement: The data presented in this study are contained within this article.

Conflicts of Interest: Mohamed Salama serves on the Board of Directors and has stock option at
Techcyte Inc.

References

1. Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127,
2391–2405. [CrossRef] [PubMed]

2. Campo, E.; Harris, N.L.; Pileri, S.A.; Jaffe, E.S.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid

Tissues; IARC Who Classification of Tum: Lyon, France, 2017; ISBN 9789283244943.
3. Arber, D.A. Acute myeloid leukaemia, not otherwise specified. In World Health Organization Classification of Tumours of Haematopoi-

etic and Lymphoid Tissues, Revised 4th ed.; Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Eds.; IARC Press:
Lyon, France, 2017; pp. 156–166.

4. Arber, D.A.; Orazi, A. Update on the pathologic diagnosis of chronic myelomonocytic leukemia. Mod. Pathol. 2019, 32, 732–740.
[CrossRef] [PubMed]

5. Bain, B.; Bain, B.J.; Matutes, E. Chronic Myeloid Leukaemias; Clinical Publishing, Atlas Medical Pub Ltd.: New York, NY, USA, 2012;
ISBN 9781846920943.

6. Orazi, A.; Bennett, J.M.; Germing, U.; Brunning, R.D.; Bain, B.J.; Cazzola, M. Chronic myelomonocytic leukemia. In WHO

Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; Campo, E., Jaffe, E.S., Stein, H., Thiele, J., Harris, N.L.,
Pileri, S.A., Eds.; International Agency for Research on Cancer: Lyon, France, 2017; pp. 82–86.

7. Naeim, F.; Rao, P.N. Chapter 11—Acute Myeloid Leukemia. In Hematopathology; Naeim, F., Rao, P.N., Grody, W.W., Eds.; Academic
Press: Oxford, UK, 2008; pp. 207–255, ISBN 9780123706072.

8. Goasguen, J.E.; Bennett, J.M.; Bain, B.J.; Vallespi, T.; Brunning, R.; Mufti, G.J. International Working Group on Morphology
of Myelodysplastic Syndrome Morphological evaluation of monocytes and their precursors. Haematologica 2009, 94, 994–997.
[CrossRef] [PubMed]

68



J. Clin. Med. 2021, 10, 2264

9. Lynch, D.T.; Hall, J.; Foucar, K. How I investigate monocytosis. Int. J. Lab. Hematol. 2018, 40, 107–114. [CrossRef] [PubMed]
10. Foucar, K.; Hsi, E.D.; Wang, S.A.; Rogers, H.J.; Hasserjian, R.P.; Bagg, A.; George, T.I.; Bassett, R.L., Jr.; Peterson, L.C.;

Morice, W.G., 2nd; et al. Concordance among hematopathologists in classifying blasts plus promonocytes: A bone marrow
pathology group study. Int. J. Lab. Hematol. 2020, 42, 418–422. [CrossRef] [PubMed]

11. Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art
and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [CrossRef] [PubMed]

12. Akkus, Z.; Kostandy, P.; Philbrick, K.A.; Erickson, B.J. Robust brain extraction tool for CT head images. Neurocomputing 2020, 392,
189–195. [CrossRef]

13. Akkus, Z.; Kim, B.H.; Nayak, R.; Gregory, A.; Alizad, A.; Fatemi, M. Fully Automated Segmentation of Bladder Sac and
Measurement of Detrusor Wall Thickness from Transabdominal Ultrasound Images. Sensors 2020, 20, 4175. [CrossRef] [PubMed]

14. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent.
(ICLR), San Diego, CA, USA, 5–8 May 2015.

15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

16. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. Conf. Proc.

2016, 2818–2826. [CrossRef]
17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
18. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning.

In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
20. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
21. International Agency for Research on Cancer. World Health Organization WHO Classification of Tumours of Haematopoietic and

Lymphoid Tissues; World Health Organization: Geneva, Switzerland, 2008.
22. Xubo, G.; Xingguo, L.; Xianguo, W.; Rongzhen, X.; Xibin, X.; Lin, W.; Lei, Z.; Xiaohong, Z.; Genbo, X.; Xiaoying, Z. The role

of peripheral blood, bone marrow aspirate and especially bone marrow trephine biopsy in distinguishing atypical chronic
myeloid leukemia from chronic granulocytic leukemia and chronic myelomonocytic leukemia. Eur. J. Haematol. 2009, 83, 292–301.
[CrossRef] [PubMed]

23. Yang, D.T.; Greenwood, J.H.; Hartung, L.; Hill, S.; Perkins, S.L.; Bahler, D.W. Flow cytometric analysis of different CD14 epitopes
can help identify immature monocytic populations. Am. J. Clin. Pathol. 2005, 124, 930–936. [CrossRef] [PubMed]

24. Elena, C.; Gallì, A.; Such, E.; Meggendorfer, M.; Germing, U.; Rizzo, E.; Cervera, J.; Molteni, E.; Fasan, A.; Schuler, E.; et al.
Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood

2016, 128, 1408–1417. [CrossRef] [PubMed]
25. Such, E.; Germing, U.; Malcovati, L.; Cervera, J.; Kuendgen, A.; Della Porta, M.G.; Nomdedeu, B.; Arenillas, L.; Luño, E.; Xicoy, B.;

et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood 2013,
121, 3005–3015. [CrossRef] [PubMed]

26. Patnaik, M.M.; Tefferi, A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am.

J. Hematol. 2018, 93, 824–840. [CrossRef] [PubMed]
27. Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [CrossRef]

[PubMed]
28. Bain, B.J.; Horny, H.-P.; Arber, D.A.; Tefferi, A.; Hasserjian, R.P. Myeloid/lymphoid neoplasms with eosinophilia and rearrange-

ment of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2. In WHO Classification of Tumours of Haematopoietic and Lymphoid

Tissues, 4th ed.; Campo, E., Jaffe, E.S., Stein, H., Thiele, J., Harris, N.L., Pileri, S.A., Eds.; International Agency for Research on
Cancer: Lyon, France, 2017; pp. 71–78.

69





Journal of

Clinical Medicine

Article

Using Bayesian Networks to Predict Long-Term
Health-Related Quality of Life and Comorbidity after
Bariatric Surgery: A Study Based on the Scandinavian
Obesity Surgery Registry

Yang Cao 1,* , Mustafa Raoof 2, Eva Szabo 2, Johan Ottosson 2 and Ingmar Näslund 2

1 Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70182 Örebro,
Sweden

2 Department of Surgery, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden;
mustafa.raoof@regionorebrolan.se (M.R.); eva.szabo@regionorebrolan.se (E.S.);
johan.ottosson@regionorebrolan.se (J.O.); ingmar.naslund@regionorebrolan.se (I.N.)

* Correspondence: yang.cao@oru.se; Tel.: +46-19-602-6236

Received: 27 May 2020; Accepted: 15 June 2020; Published: 17 June 2020
����������
�������

Abstract: Previously published literature has identified a few predictors of health-related quality
of life (HRQoL) after bariatric surgery. However, performance of the predictive models was not
evaluated rigorously using real world data. To find better methods for predicting prognosis in
patients after bariatric surgery, we examined performance of the Bayesian networks (BN) method in
predicting long-term postoperative HRQoL and compared it with the convolution neural network
(CNN) and multivariable logistic regression (MLR). The patients registered in the Scandinavian
Obesity Surgery Registry (SOReg) were used for the current study. In total, 6542 patients registered
in the SOReg between 2008 and 2012 with complete demographic and preoperative comorbidity
information, and preoperative and postoperative 5-year HROoL scores and comorbidities were
included in the study. HRQoL was measured using the RAND-SF-36 and the obesity-related
problems scale. Thirty-five variables were used for analyses, including 19 predictors and 16 outcome
variables. The Gaussian BN (GBN), CNN, and a traditional linear regression model were used for
predicting 5-year HRQoL scores, and multinomial discrete BN (DBN) and MLR were used for 5-year
comorbidities. Eighty percent of the patients were randomly selected as a training dataset and 20%
as a validation dataset. The GBN presented a better performance than the CNN and the linear
regression model; it had smaller mean squared errors (MSEs) than those from the CNN and the linear
regression model. The MSE of the summary physical scale was only 0.0196 for GBN compared to
the 0.0333 seen in the CNN. The DBN showed excellent predictive ability for 5-year type 2 diabetes
and dyslipidemia (area under curve (AUC) = 0.942 and 0.917, respectively), good ability for 5-year
hypertension and sleep apnea syndrome (AUC = 0.891 and 0.834, respectively), and fair ability for
5-year depression (AUC = 0.750). Bayesian networks provide useful tools for predicting long-term
HRQoL and comorbidities in patients after bariatric surgery. The hybrid network that may involve
variables from different probability distribution families deserves investigation in the future.

Keywords: machine learning-enabled decision support system; improving diagnosis accuracy;
Bayesian network; bariatric surgery; health-related quality of life; comorbidity

1. Introduction

Over the past two decades, obesity has been continuously increasing worldwide, which has
become a major health issue worldwide and raised public concern across the globe [1]. Severe obesity,
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defined as body mass index (BMI) over 35 kg/m2 with obesity-related comorbidities, or BMI > 40 kg/m2,
has been associated with impaired health-related quality of life (HRQoL) and multiple comorbidities,
including type 2 diabetes (T2D), hypertension, and cancer [2–4]. Gastric bypass and other weight-loss
surgeries, known collectively as bariatric surgery, are currently considered the most effective treatment
options for morbid obesity to help severe obese patients to lose excess weight and reduce potentially
life-threatening risk of weight-related health problems, such as heart disease and stroke, hypertension,
T2D, nonalcoholic fatty liver disease, and sleep apnea [5,6].

Based on the findings from several long-term (follow-up time ranging between 5 and 10 years)
prospective studies, bariatric surgery patients’ HRQoL improved considerably after surgery and much
of the initial HRQoL improvement was maintained over the long term [7]. While bariatric surgery can
offer many benefits, all forms of weight-loss surgery are major procedures that can pose serious risks
and side effects, including acid reflux, chronic nausea and vomiting, infection, obstruction of stomach,
failure to lose weight, low blood sugar, malnutrition, and hernias, which in turn may have adverse
impacts on HRQoL of the patients with morbid obesity after surgery [8–10].

Previously published literature has identified a few predictors of HRQoL after bariatric surgery,
including baseline demographic data and depression severity score [11–14]. However, none of these
studies evaluated the models’ performances or the predictors’ predictive abilities rigorously using
real world data. In our previous study, we have examined the performance of the convolution neural
network (CNN) for predicting 5-year HRQoL after bariatric surgery based on the available preoperative
information from the Scandinavian Obesity Surgery Registry (SOReg) [15]. We found that, although the
CNN is better than the traditional multivariate linear regression model at predicting long-term HRQoL
after bariatric surgery, the overfitting issue is still apparent and needs to be mitigated [15]. In the
two recently published studies, using the same database, we found that patients with postoperative
complications had significantly less improvements in all aspects of HRQoL compared to those without
any form of postoperative complication [16], and the ability of multilayer perceptron and CNN for
predicting the postoperative serious complications after bariatric surgery is limited [17].

To find better methods for predicting prognosis and provide evidence for patient management after
bariatric surgery, in this study, we examined the performance of the Bayesian networks (BN) method
in predicting long-term postoperative HRQoL and compared it with the CNN and multivariable linear
regression. At the same time, we also evaluated the performance of the BN in predicting postoperative
comorbidities and compared it with multivariable logistic regression (MLR) model.

2. Materials and Methods

2.1. Subjects and Variables

The patients registered in the Scandinavian Obesity Surgery Registry (SOReg) were used for the
current study. The registry was launched in 2007 and covers 98% of bariatric surgery in Sweden since
2009. It is validated regularly and shows high data quality [18–21]. In total, 6542 patients registered in
the SOReg between 2008 and 2012, operated with primary Roux-en-Y gastric bypass, with complete
demographic and preoperative comorbidity information; and preoperative and postoperative 5-year
HROoL scores and comorbidities were included in the study. HRQoL was measured using the
RAND-SF-36 [22] and the obesity-related problems (OP) scale [23] for the patients. In the present
study, 35 variables were used for analyses, including 19 predictors (i.e., sex, and preoperative age,
BMI, physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality
(VT), social functioning (SF), role emotional (RE), mental health (MH) scale, summary physical scale
(PCS), summary mental scale (MCS), OP, sleep apnea syndrome (SAS), hypertension, pharmaceutically
treated T2D, depression, and dyslipidemia), and 16 outcome variables (i.e., postoperative 5-year PF,
RP, BP, GH, VT, SF, RE, MH, PCS, MCS, OP, SAS, hypertension, T2D, depression, and dyslipidemia).
All scale scores ranged from 0 to 100, with higher scores indicating better health status, except for OP,
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for which low values represent good health; comorbidity variables are binary, with 1 indicating yes
and 0 no.

The characteristics of the patients are shown in Table 1. Briefly, the average age and body mass
index (BMI) of the patients were 42.7 years and 42.3 kg/m2, respectively. More than three quarters
(78.8%) were female and 45% had at least one of the five comorbidities before bariatric surgery.
Prevalence for all the comorbidities was reduced except for depression, and all the HRQoL scores were
improved except for MCS after five years of bariatric surgery (Table 1).

Table 1. Characteristics of the patients (n = 6542) included in the study, mean ± SD or n (%).

Preoperative 5-Year Postoperative

Age (year) 42.7 ± 11.0 47.7 ± 11.0
BMI (kg/m2) 42.3 ± 5.2 30.3 ± 5.2

Female 5154 (78.8%) 5154 (78.8%)
SAS 668 (10.2%) 188 (2.9%)

Hypertension 1817 (27.8%)) 1420 (21.7%)
T2D 973 (14.9%) 452 (6.9%)

Depression 855 (13.1%) 1162 (17.8%)
Dyslipidemia 732 (11.2%) 429 (6.6%)

PF 61.7 ± 21.9 84.2 ± 20.7
RP 60.3 ± 38.9 77.9 ± 36.5
BP 56.0 ± 26.9 65.2 ± 30.7
GH 58.2 ± 21.4 68.1 ± 24.7
VT 47.4 ± 23.0 54.5 ± 26.9
SF 74.9 ± 26.1 79.6 ± 26.4
RE 76.0 ± 36.2 76.9 ± 37.8
MH 71.5 ± 19.4 72.0 ± 23.0
PCS 38.3 ± 10.7 47.6 ± 11.1
MCS 46.8 ± 11.7 44.6 ± 13.8
OP 61.0 ± 26.4 25.6 ± 27.4

SD, standard deviation; BMI, body mass index; SAS, sleep apnea syndrome; T2D, type 2 diabetes;
PF, physical functioning; RP, role-physical; BP, bodily pain; GH, general health; VT, vitality; SF, social
functioning; RE, role-emotional; MH, mental health; PCS, summary physical scale; MCS, summary mental
scale; OP, obesity-related problems.

The study was approved by the Regional Ethics Review Committee in Stockholm (approval
number: 2013/535-31/5). The data that support the study are not publicly available because they contain
information that could compromise research subjects’ privacy and confidentiality. However, the data
may be available upon reasonable request and with permission of the Committee of Scandinavian
Obesity Surgery Registry in Örebro, Sweden.

2.2. Statistical Methods

A BN is a probabilistic directed acyclic graphical model that represents a set of variables and their
conditional dependencies via a directed acyclic graph (DAG). In particular, each node in the DAG
represents a random variable, while the edges between the nodes represent probabilistic dependencies
among the corresponding random variables. A BN takes an event that occurred and predicts the
likelihood that any one of its parent nodes was the possibly contributing factor [24]. Applications
of BN have multiplied in recent years, spanning such different topics as systems biology, economics,
social sciences, and medical informatics [25,26].

In the current study, prediction for 5-year HRQoL scores was conducted using a Gaussian BN (GBN)
because it follows or approximates a normal distribution [25]. GBN is a specially directed graphical
model, which offers algorithms for prediction and inference when all variables could be defined
by a Gaussian prior distribution or a Gaussian conditional distribution [27,28]. Binary predictors
were transformed into continuous propensity scores using MLR before they entered the GBN [29].
Performance factors of the GBN were all compared with those from the previous CNN [15] and a
traditional linear regression model.
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Prediction for 5-year comorbidities was conducted using both multinomial discrete BN (DBN) and
MLR, and the results from the two methods were compared. Before entering the DBN, the continuous
predictors were discretized into ten categories using the information-preserving discretization method
introduced by Hartemink [30]. Although at the cost of losing some information, the discretization may
accommodate skewness of the variables and nonlinear relationships between them, and speed up the
computation substantially [25,31].

2.3. Model Training and Validation

In total, 80% of the patients were randomly selected as a training dataset for learning the structure
of the GBN and the DBN. When learning the structure of the networks, only a black list was used to
block the edges directing from the postoperative variables to the preoperative variables, and no other
constraints were used. The hill-climbing (HC) algorithm was used to learn the structure of the networks,
which starts from a network with no edges, and then adds, removes, and reverses one edge at a time and
picks the change that increases the network’s Bayesian information criterion score the most [25].

The remaining 20% of the patients were used as the validation dataset to evaluate the performance
of the Bayesian networks, CNN, multivariable linear, and logistic regression models. Performance of
the GBN was evaluated using the mean squared error (MSE) in view of the existence of zero values in
the outcome variables [32]. MSE from the min-max normalized scores (between 0 and 1) was used to
compare the results from the GBN and those from the previous multivariable linear regression and the
CNN [33]. Performance of the DBN and MLR was evaluated using accuracy, sensitivity, specificity,
and area under the receiver operating characteristic (ROC) curve. Terminology and derivations of
the metrics were given in detail elsewhere [33]. A successful prediction model for comorbidities was
defined as with an area under the ROC curve (AUC) greater than 0.7 [33–35].

2.4. Software and Hardware

The descriptive statistical analyses were performed using Stata 16.0 (StataCorp LLC, College
Station, TX, USA). The Bayesian networks were constructed using package bnlearn [25,36] in software
R version 3.62 (R Foundation for Statistical Computing, Vienna, Austria), and the multiple linear and
logistic regression models were achieved in R as well.

All of the computation was conducted in a computer with a 64-bit Windows 7 Enterprise operation
system (Service Pack 1), Intel® Core TM i5-4210U CPU @ 2.40 GHz, and 16.0 GB random access memory.

3. Results

3.1. Structure of the GBN

The structure of the GBN for predicting the postoperative 5-year HRQoL is shown using the DAG
in Figure 1. It shows all the edges based on the HC algorithm. The DAG looks complicated and messy
because it indicates all the contributors to each postoperative 5-year variable at the same time. For
example, the possible direct contributors for the 5-year OP are preoperative T2D, BMI, age, OP, and
PCS, and 5-year GH, PCS, SF, PF, and MH. The conditional distribution of the 5-year OP, therefore, can
be presented as:

OP_5y
∣

∣

∣

∣

(

agep = x1, BMIp = x2, DMp = x3, OPp = x4, PCSp = x5, GH5y = x6,

PCS5y = x7, SF5y = x8, PF5y = x9, MH5y = x10) ∼ N(β0 + β1x1+

β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9 + β10x10, ε2
)

where N means a normal distribution with a variance ε2.
The probability distribution above is just one of the conditional Gaussian distributions proposed

by the DAG in Figure 1, and we can construct the conditional distribution for any one of the eleven
postoperative 5-year HRQoL scores based on the edges pointing to them.
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Figure 1. The directed acyclic graph (DAG) of the GBN for predicting postoperative 5-year HRQoL
scores. DAG, directed acyclic graph; GBN Gaussian Bayesian network; PF, physical functioning; RP,
role physical; BP, bodily pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional;
MH, mental health; PCS, summary physical scale; MCS, summary mental scale; OP, obesity-related
problems; BMI, body mass index; SAS, sleep apnea syndrome; HT, hypertension; DM, diabetes; Depr,
depression; Dyslip, dyslipidemia; _p, preoperation; _5y, 5-year.

3.2. Performance of the GBN in the Validation Dataset

When the models were evaluated using the validation data that were not seen previously by the
GBN, in general, the GBN presented a better performance than the CNN and the linear regression
model (Table 2); all MSEs were smaller than those from the CNN and eight of eleven MSEs were
smaller than those from the linear regression model (Table 2). For example, MSE of PCS was only
0.0196 for GBN compared to the 0.0333 seen in the CNN (Table 2), which means the average prediction
error of the GBN accounted for less than 3% of the normalized mean of the postoperative 5-year PCS
(which is 0.653). In general, the GBN could provide better prediction for postoperative 5-year HRQoL
than the CNN and multivariable linear regression did.

Table 2. Mean squared errors of the GBN, the CNN, and the multivariable linear regression model.

HRQoL Scores GBN CNN Linear Regression

PF 0.0335 0.0350 0.0343
RP 0.1166 0.1324 0.1211
BP 0.0813 0.0898 0.0772
GH 0.0499 0.0618 0.0508
VT 0.0590 0.0914 0.0625
SF 0.0599 0.0995 0.0588
RE 0.1230 0.2118 0.1269
MH 0.0436 0.0807 0.0416
PCS 0.0196 0.0333 0.0219
MCS 0.0356 0.0584 0.0305
OP 0.0597 0.0750 0.0608

GBN, Gaussian Bayesian network; CNN, convolutional neural network; PF, physical functioning; RP, role physical;
BP, bodily pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional; MH, mental health; PCS,
summary physical scale; MCS, summary mental scale; OP, obesity-related problems.
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3.3. Structure of the DBN

The structure of DBN for predicting postoperative 5-year comorbidities is shown using the DAG
in Figure 2, which is much simpler than the GBN. The comorbidities might be predicted using much
less preoperative variables. For example, the conditional probability of 5-year depression (Depr_5y)
depended only on sex and preoperative depression (Depr_p), which could be predicted by conditional
probability tables between preoperative and postoperative depression for men or women separately.
The conditional probability tables needed for men and women were estimated in a Bayesian setting in
the DBN. When a comorbidity involved more predictors, such as 5-year dyslipidemia, there were more
conditional probability tables to be referred to for prediction. Interestingly, preoperative BMI was
not involved in any potential causal relationships in the network regarding the postoperative 5-year
comorbidities (Figure 2).

Figure 2. The DAG of the DBN for predicting postoperative 5-year comorbidities. DAG, directed
acyclic graph; DBN, discrete Bayesian network; PF, physical functioning; RP, role physical; BP, bodily
pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional; MH, mental health;
PCS, summary physical scale; MCS, summary mental scale; OP, obesity-related problems; BMI, body
mass index; SAS: sleep apnea syndrome; HT, hypertension; DM, diabetes; Depr, depression; Dyslip,
dyslipidemia; _p, preoperation; _5y, 5-year.

3.4. Performance of the DBN in the Validation Dataset

The DBN showed excellent predictive ability for 5-year T2D and dyslipidemia (AUC = 0.942 and
0.917, respectively), good ability for 5-year hypertension and SAS (AUC = 0.891 and 0.834, respectively),
and fair ability for 5-year depression (AUC = 0.750) (Figure 3).
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Figure 3. Receiver operating characteristic (ROC) curve of the discrete Bayesian network (DBN) for
predicting 5-year comorbidity after bariatric surgery.

Compared with the results from the MLR, the DBN presented significant improvement in
predicting 5-year comorbidities. All the AUCs from the DBN were larger than those from the MLR,
and the differences were statistically significant (p < 0.05), except for SAS (Table 3). The sensitivity
and specificity of the DBN in predicting postoperative 5-year T2D could be as high as 0.96 and 0.89,
in contrast to the 0.78 and 0.68 of the MLR, respectively (Table 3).

Table 3. Performance metrics of the DBN and MLR model for predicting the 5-year comorbidities.

Comorbidity
DBN MLR

Sen Spe Acc AUC (95% CI) Sen Spe Acc AUC (95% CI)

SAS 0.64 0.92 0.91 0.83 (0.76, 0.91) 0.90 0.73 0.73 0.90 (0.86, 0.94)
Hypertension 0.83 0.83 0.84 0.89 (0.87, 0.91) 0.73 0.67 0.68 0.76 (0.73, 0.79)

T2D 0.96 0.89 0.90 0.94 (0.92, 0.96) 0.78 0.68 0.69 0.76 (0.72, 0.81)
Depression 0.51 0.95 0.87 0.75 (0.72, 0.78) 0.66 0.55 0.57 0.61 (0.67, 0.65)

Dyslipidemia 0.78 0.91 0.90 0.92 (0.88, 0.95) 0.76 0.67 0.68 0.77 (0.74, 0.82)

DBN, discrete Bayesian network; MLR, multivariable logistic regression; Sen, sensitivity; Spe, specificity; Acc,
accuracy; AUC, area under the ROC curve; CI, confidence interval; SAS: sleep apnea syndrome; T2D, type 2 diabetes.
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4. Discussion

In this study, we explored application of Bayesian networks for predicting long-term outcomes after
bariatric surgery in a national registry. They showed promising predictive ability for both continuous
and binary outcomes. For predicting the postoperative 5-year HRQoL, the GBN had smaller MSEs than
those seen from the CNN for all scores and from the traditional multivariable linear regression for most
scores. The most accurate predictions from the GBN were seen for PCS, and followed by PF and MCS;
average prediction errors were lower than 3%, 4%, and 6% of their normalized means, respectively.
For predicting the postoperative 5-year comorbidity, the DBN showed statistically significantly better
performance compared with the MLR. It showed good and even excellent predictive ability for four of
the five comorbidities, with an AUC as high as 0.942 in postoperative T2D.

Bayesian networks use Bayesian inference to model conditional dependence, and therefore
causation, via a DAG. They are ideal for taking an event that occurred and predicting the likelihood
that any one of several possible known causes was the contributing factor. Experience has shown
that Bayesian networks and associated methods are geared to reasoning with uncertainty in a way
closely resembling physicians [37–39]. Physicians who aim to develop computer-assisted systems for
making clinical decisions are frequently confronted by the complexity and uncertainty in the models
and prediction. In many cases, the situation is even worse, as many of the processes in medicine are
only partly known [38]. During the past decade, Bayesian networks have become important tools for
building decision-support systems in medical sciences and are now steadily becoming mainstream in
some areas [40]. However, we should notice that DAGs are not designed to capture cyclic patterns,
such as depression causing increased BMI [41]. Potential cyclic causal relationships may be explored
using cyclic structural equation models [42] or Markov networks [43].

Many methods have been applied to predict the outcomes in patients after bariatric surgery,
including stepwise multivariable linear regression [44,45], MLR [46], and machine learning methods
such as the decision tree [47] and CNN [15,33]. Although an intelligent decision-making support
system involving Bayesian networks has been reported for the nutrition diagnosis of bariatric surgery
patients [48], according to our literature search, there is no study that has used the method for predicting
outcomes after bariatric surgery. In our previous study, we illustrated that CNN might be a useful tool
to predict long-term HRQoL after bariatric surgery; however, its overfitting on external validation
dataset was still noticeable. To further mitigate the overfitting issue commonly seen in the machine
learning field, we explored the application and performance of Bayesian networks in the current study
and achieved desired results.

A significant advantage of the study in clinical sense is that it provides a solution with which to
predict outcomes as far as 5 years after bariatric surgery. To give realistic and relevant information
about the long-term prognosis of bariatric surgery is currently challenging. This type of knowledge
can be used in clinical practice when it comes to giving scientifically-based preoperative information
to patients considering the surgery. The knowledge can also be helpful in giving scientifically-based
information to policy makers in health care to explain the expected positive effects of bariatric surgery.
This information can also be used to customize the follow-ups of the individual patients. However,
we would also note that this kind of prediction should not be used to exclude individual patients,
who otherwise fulfil criteria for surgery, from having an operation. Meanwhile, while limited by the
relatively small sample size compared to those usually recommended in statistical learning studies,
it would be premature to use the models presented in the study in clinical decision-making right now.

There are several advantages in Bayesian networks. First, commonly used methods in
epidemiological studies such as logistic regression and related methods do not take account of
causal relationships that may exist between the covariates. Causal relationships between some of the
risk factors may be already known, or may be regarded as plausible on biological grounds [49,50].
However, such information was incorporated into our BN models to reveal the potential relationships
between the health or disease status and the associated risk factors [51]. Second, high correlation
among predictors has long been an annoyance in regression analysis. The crux of the problem is that
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the linear regression model assumes each predictor has an independent effect on the response that
can be encapsulated in the predictor’s regression coefficient. As opposed to creating problems of
multicollinearity, the associations between candidate predictor variables are naturally accounted for
when defining a BN’s conditional probability distributions. The HC algorithm used in the study may
search a structure starting from either an empty, full, or possibly random DAG, or an initial DAG
chosen according to existing knowledge. The main loop then consists of attempting every possible
single-edge addition, removal, or reversal relative to the current candidate network. The change that
increases the score the most then becomes the next candidate. The process iterates until a change in a
single-edge no longer increases the score. By gradually taking into account the relationships between
the variables, the problem of multicollinearity, therefore, can be reduced in a BN analysis [52]. Third, the
DAG proposed by the BN method captures the dependence structure of multiple variables, and used
appropriately, allows more robust conclusions about the direction of causation. BN analysis revealed a
richer structure of relationships than could be inferred using the traditional multivariable regression
methods, such as logistic regression, and highlight a potential pathway unseen previously for further
investigation [53]. Fourth, compared with the deep learning method CNN used in our previous
study for predicting HRQoL scores, the GBN provided much faster computing, better performance,
and interpretable results. Finding the final DAG with the HC algorithm using 35 variables and 6542
observations only took 2 min in GBN analysis, in contrast to about 10 min in CNN analysis [33].
Except for the output HRQoL scores, the contributions of and relationships between the variables
could not be explained or were hard to explain in the CNN analysis. In contrast, the GBN showed us all
the potential causal relationships between the variables and estimated the strength of the relationships
using liner regression coefficients.

However, there are limitations in our study. Our dataset includes both continuous and binary
variables. To reduce the complexity of the networks and computing time, we converted the binary
variables to continuous propensity scores for the GBN analysis, and discretized the HRQoL scores
to categorical variables for the DBN analysis, which may involve tortuous information or lose some
information in the analyses. A better solution would be a hybrid BN with use of Markov chain
Monte Carlo techniques [25]. Although limited by the software packages available and adopting
the compromising methods so far, we would like to explore the hybrid BN in the future and see
whether it could improve the performance of prediction further. Besides, even though HRQoL
and comorbidities are of importance, we have not tested hard endpoints, such as survival, heart
attack, stroke, and cancer, which warrants a subsequent study when more detailed data are available.
We should also notice that this study only included patients from Roux-en-Y gastric bypass, since
this was almost the only operation method used in Sweden during the study period. Whether the
results could be applied to other methods, such as sleeve gastrectomy, is not known yet. However,
we will be able to investigate this in the future, since SOReg has contained a large number of sleeve
gastrectomy patients in recent years. Besides, there are many more females than males in the database
(80% vs. 20%). The generalizability of the BN models might be limited by the gender imbalance.
Meanwhile, the menopausal transition can be an important factor related to HRQol in women [54].
In view of the average age with a wide standard deviation at 5 years after surgery, which is right around
the menopause of women, this issue deserves clarification and assessment by incorporating with the
menopause information in women. Therefore, the applicability and validity of the models need be
further explored using a larger representative dataset with more covariates and longer follow-up.

5. Conclusions

Bayesian networks provide useful tools for predicting long-term HRQoL and comorbidities in
patients after bariatric surgery, based on their preoperative health and disease status. The GBN and
DBN used in our study outperformed the deep learning method CNN and multivariable logistic
regression. However, the hybrid network that may involve variables from different probability
distribution families deserves investigation in the future.
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Abstract: Background: The long-term risk of recurrent ischemic stroke, estimated to be between
17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether
machine-learning can be trained to predict stroke recurrence and identify key clinical variables
and assess whether performance metrics can be optimized. Methods: We used patient-level data
from electronic health records, six interpretable algorithms (Logistic Regression, Extreme Gradient
Boosting, Gradient Boosting Machine, Random Forest, Support Vector Machine, Decision Tree),
four feature selection strategies, five prediction windows, and two sampling strategies to develop
288 models for up to 5-year stroke recurrence prediction. We further identified important clinical
features and different optimization strategies. Results: We included 2091 ischemic stroke patients.
Model area under the receiver operating characteristic (AUROC) curve was stable for prediction
windows of 1, 2, 3, 4, and 5 years, with the highest score for the 1-year (0.79) and the lowest score for
the 5-year prediction window (0.69). A total of 21 (7%) models reached an AUROC above 0.73 while
110 (38%) models reached an AUROC greater than 0.7. Among the 53 features analyzed, age, body
mass index, and laboratory-based features (such as high-density lipoprotein, hemoglobin A1c, and
creatinine) had the highest overall importance scores. The balance between specificity and sensitivity
improved through sampling strategies. Conclusion: All of the selected six algorithms could be trained
to predict the long-term stroke recurrence and laboratory-based variables were highly associated with
stroke recurrence. The latter could be targeted for personalized interventions. Model performance
metrics could be optimized, and models can be implemented in the same healthcare system as
intelligent decision support for targeted intervention.

Keywords: healthcare; artificial intelligence; machine learning; interpretable machine learning;
explainable machine learning; ischemic stroke; clinical decision support system; electronic health
record; outcome prediction; recurrent stroke

1. Introduction

Predictive modeling of stroke, the leading cause of death and long-term disability [1],
is crucial due to high individual and societal impact. Each year, about 800,000 people
experience a new or recurrent stroke in the United States [2]. It has been estimated that
the 5-year risk of stroke recurrence is between 17% and 30% [3,4]. Recurrent stroke has a
higher rate of death and disability [5]. Therefore, the identification of patients who are at a
higher risk of recurrence can help the care-providers prioritize and define more vigorous
secondary prevention plans for those at risk, especially when there are limited resources.
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To date several predictive models of recurrent stroke, using regression or other statis-
tical methods, have been developed; however, the clinical utility of these models tends to
be limited due to the narrow scope of variables used in these models [6]. In a recent study,
multivariable logistic models of 1-year stroke recurrence, developed based on 332 patients,
using clinical and retinal characteristics (using 20 variables) have shown promising results
with an area under the receiver operating characteristic (AUROC) curve of 0.71–0.74 [7].
Large real-world patient-level data from electronic health records (EHR) and machine learn-
ing (ML) methods can be leveraged to capture a greater number of features to help build
better prediction models [8]. In a recent study of 2604 patients, ML has been successfully
used to predict the favorable outcome following an acute stroke at three months [9]. We also
showed that ML can be used for flagging stroke patients in the emergency setting [10–12].

The present study aimed at using rich longitudinal data from EHR to construct an
ML-enabled model of long-term (up to 5-years) recurrent stroke. We evaluated Extreme
Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest (RF),
Support Vector Machine (SVM), and Decision Tree (DT), and benchmarked these algorithms’
performance against Logistic Regression (LR) as these are interpretable models and feature
importance can be extracted for further validation and assessment by care providers. We
hypothesized that (1) all of the modeling algorithms can be trained to predict long-term
stroke recurrence, (2) A wide range of clinical features associated with stroke recurrence can
be identified, and (3) performance metrics can be improved through sampling processes.

2. Methods

All of the relevant codes developed as well as summary data generated for this
project can be found at https://github.com/TheDecodeLab/GNSIS_v1.0/tree/master/
ModelingStrokeRecurrence (accessed on 19 March 2021).

2.1. Data Source

Database description and processing: this study was based on the extracted data
from the Geisinger EHR system, Geisinger Quality database, and the Social Security
Death database to build a stroke database called “Geisinger Neuroscience Ischemic Stroke
(GNSIS)” [13]. GNSIS includes demographic, clinical, laboratory data from ischemic stroke
patients from September 2003 to May 2019. The study was reviewed and approved by
the Geisinger Institutional Review Board to meet “non-human subject research”, for using
de-identified information.

The GNSIS database was created based on a high-fidelity and data-driven phenotype
definition for ischemic stroke developed by our team. The patients were included if they
had a primary hospital discharge diagnosis of ischemic stroke; a brain magnetic resonance
imaging (MRI) during the same encounter to confirm the diagnosis; and, an overnight
stay in the hospital. The diagnoses were based on International Classification of Diseases,
Ninth/Tenth Revision, Clinical Modification (ICD-9-CM/ICD-10-CM) codes. For each
index stroke, the following data elements were recorded: (1) date of the event, (2) age
of the patient at the index stroke, (3) encounter type, (4) ICD code and corresponding
primary diagnosis of index stroke, (5) presence or absence (and date) of recurrent stroke,
and (6) ICD code and corresponding primary diagnosis for the recurrent stroke. Other
data elements include sex, birth date, death date, last medical visit within the Geisinger
system, presence or absence of comorbidities, presence or absence of a family history of
heart disorders or stroke, and smoking status. In the case of multiple encounters due
to recurrent cerebral infarcts, the first hospital encounter was considered as the index
(first-time) stroke. To improve the accuracy of comorbidity information based on ICD-9-
CM/ICD-10-CM diagnosis, either two outpatient visits or one in-patient visit were used
to assign a diagnosis code to a patient. Our database interfaces with the Social Security
Death Index on a biweekly basis to reflect updated information on the vital status. The
manual validation of a random set of patients, including reviewing the MRI, to ensure all
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patients in the GNSIS database had a correct diagnosis of acute ischemic stroke indicated a
specificity of 100%.

Data pre-processing: Units were verified and reconciled if needed and distributions
of variables were assessed over time to ensure data stability. The range for the variables
was defined according to expert knowledge and available literature—and outliers were
assessed and removed. To ensure that patients were active, the last encounter of patients
was recorded.

2.2. Study Population

For this study, we excluded patients with recurrent stroke within 24 days of the index
stroke. We organized the included patients into six groups. One control group and five
case groups. The control group consisted of patients who did not have a stroke recurrence
during the 5-year follow-up. Case groups 1, 2, 3, 4, and 5 comprised of patients who
had a recurrent stroke between 24 days and 1, 2, 3, 4, and 5-years, respectively. The
24 day cut-off was selected to ensure that the recurrent stroke was independent of the
index stroke; as our data demonstrate, the number of stroke recurrences stabilizes after
approximately 24 days (Figure 1A). Nevertheless, we repeated the analysis by including
the patients with a stroke recurrence within the 24 days for comparison. Patients with
stroke-related or other vascular death might be excluded from this study if they did not
meet the inclusion/exclusion criteria stated above.

Figure 1. (A) Flow-chart of inclusion-exclusion of subjects in cases and control group in the study. Patients in the control
group had available records in the electronic health record for at least 5 years and no documented stroke recurrence within
5 years. Distribution panel shows the number of recurrences over time. At 24 days, the number of recurrent cases can be
seen to approach a plateau. (B) The design strategy for predicting stroke recurrence using electronic health records (EHR),
Geisinger Quality database as well as Social Security Death database.

2.3. Data Processing, Feature Extraction, and Sampling

Training-testing set: Each of the cases and control groups was randomly split into
80:20 training and testing sets.

Imputation: A total of 53 features were used. Table 1 includes data on the missingness.
Imputation of the missing values was performed separately on training and testing sets
using Multivariate Imputation by Chained Equations (MICE) package [14]. The quality
of the imputations was examined using t-test, summary statistics, as well as strip and
density plots of the missing features to ensure distribution of the variables was comparable
before and after imputation. Only four variables suffered from missingness at relatively
higher levels.
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Table 1. Patient demographics, past medical and family history in different groups. Detailed description of the variables is provided in the Geisinger Neuroscience Ischemic Stroke
(GNSIS) study [13]. IQR: interquartile range; HDL: high-density lipoprotein; LDL: low-density lipoprotein.

Patient Characteristics % Missing
Statistics (All
Patients)

Control
Group

Case Group 1 Case Group 2 Case Group 3 Case Group 4 Case Group 5

Total number of patients - 2091 1654 210 306 375 411 437

Age in years, mean (SD) - 67 (13) 66 (13) 71 (14) 71 (13) 71 (13) 71 (13) 71 (13)

Age in years, median (IQR) - 68 (58–77) 67 (57–76) 73 (62–83) 72 (63–81) 73 (63–81) 73 (63–81) 73 (63–81)

Male, n (%) - 1079 (52%) 53% 47% 46% 46% 47% 47%

Body mass index (BMI) in kg/m2, mean (SD) 2.63% 30 (7) 30 (7) 29 (6) 29 (6) 29 (6) 29 (7) 29 (6)

Body mass index (BMI) in kg/m2, median [IQR] 2.63% 29 (26–33) 29 (26–33) 28 (24–32) 28 (25–32) 28 (25–32) 28 (25–32) 28 (25–32)

Diastolic Blood Pressure, mean (SD) 31.90% 76 (12) 76 (12) 75 (13) 75 (12) 75 (12) 75 (12) 74 (12)

Systolic Blood Pressure, mean (SD) 31.90% 137 (22) 136 (22) 139 (26) 139 (25) 140 (24) 139 (24) 139 (24)

Hemoglobin (Unit: g/dL), mean (SD) 1.82% 14 (2) 14 (2) 13 (2) 14 (2) 14 (2) 14 (2) 14 (2)

Hemoglobin A1c (Unit: %), mean (SD) 25.11% 7 (2) 7 (2) 7 (2) 7 (2) 7 (2) 7 (2) 7 (2)

HDL (Unit: mg/dL), mean (SD) 5.40% 47 (15) 47 (15) 45 (13) 45 (14) 45 (14) 45 (14) 45 (14)

LDL (Unit: mg/dL), mean (SD) 5.79% 102 (40) 103 (40) 103 (44) 100 (43) 101 (42) 101 (41) 100 (41)

Platelet (Unit: 103/uL), mean (SD) 1.82% 232 (77) 233 (76) 227 (70) 229 (73) 231 (80) 230 (78) 229 (78)

White blood cell (Unit: 103/uL), mean (SD) 1.82% 9 (3) 9 (3) 8 (3) 8 (3) 9 (3) 9 (3) 9 (3)

Creatinine (Unit: mg/dL), mean (SD) 2.58% 1 (1) 1 (0.5) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

Current smoker, n (%) - 288 (14%) 14 (1) 12 (6) 12 (4) 13 (3) 13 (3) 13 (3)

Difference in days between Last outpatient visit
prior to index date and index date, mean (SD)

26.16% 347 (726) 345 (691) 371 (882) 354 (846) 369 (855) 352 (826) 354 (840)

MEDICAL HISTORY, n (%)

Atrial flutter 41 (2%) 28 (2%) 4 (2%) 9 (3%) 11 (3%) 13 (3%) 13 (3%)

Atrial fibrillation 319 (15%) 230 (14%) 35 (17%) 55 (18%) 72 (19%) 82 (20%) 89 (20%)

Atrial fibrillation/flutter 324 (15%) 233 (14%) 36 (17%) 56 (18%) 74 (20%) 84 (20%) 91 (21%)

Chronic Heart failure (CHF) 159 (8%) 103 (6%) 33 (16%) 42 (14%) 49 (13%) 53 (13%) 56 (13%)
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Table 1. Cont.

Patient Characteristics % Missing
Statistics (All
Patients)

Control
Group

Case Group 1 Case Group 2 Case Group 3 Case Group 4 Case Group 5

Chronic kidney disease 223 (11%) 142 (9%) 55 (26%) 68 (22%) 74 (20%) 78 (19%) 81 (19%)

Chronic liver disease 35 (2%) 23 (1%) 2 (1%) 7 (2%) 10 (3%) 11 (3%) 12 (3%)

Chronic liver disease (mild) 33 (2%) 21 (1%) 2 (1%) 7 (2%) 10 (3%) 11 (3%) 12 (3%)

Chronic liver disease (moderate to severe) 7 (0.3%) 5 (0.3%) 0 (0%) 1 (0.3%) 1 (0.3%) 2 (0.5%) 2 (0.5%)

Chronic lung diseases 391 (19%) 296 (18%) 51 (24%) 70 (23%) 83 (22%) 92 (22%) 95 (22%)

Diabetes 615 (29%) 439 (27%) 86 (41%) 122 (40%) 151 (40%) 165 (40%) 176 (40%)

Dyslipidemia 1298 (62%) 994 (60%) 142 (68%) 211 (69%) 258 (69%) 285 (69%) 304 (70%)

Hypertension 1495 (72%) 1150 (70%) 168 (80%) 240 (78%) 293 (78%) 327 (80%) 345 (79%)

Myocardial infarction 215 (10%) 159 (10%) 30 (14%) 43 (14%) 51 (14%) 53 (13%) 56 (13%)

Neoplasm 284 (14%) 211 (13%) 35 (17%) 49 (16%) 61 (16%) 65 (16%) 73 (17%)

Hypercoagulable 29 (1%) 24 (1%) 4 (2%) 4 (1%) 5 (1%) 5 (1%) 5 (1%)

Peripheral vascular disease 313 (15%) 219 (13%) 46 (22%) 65 (21%) 75 (20%) 88 (21%) 94 (22%)

Patent Foramen Ovale 241 (12%) 184 (11%) 30 (14%) 41 (13%) 47 (13%) 53 (13%) 57 (13%)

Rheumatic diseases 76 (4%) 53 (3%) 11 (5%) 14 (5%) 18 (5%) 21 (5%) 23 (5%)

FAMILY HISTORY

Heart disorder 943 (45%) 747 (45%) 85 (40%) 130 (42%) 165 (44%) 182 (44%) 196 (45%)

Stroke 361 (17%) 279 (17%) 39 (19%) 60 (20%) 72 (19%) 77 (19%) 82 (19%)
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Feature selection: We performed feature selection using different strategies. The
feature sets were: Set 1: all features; Set 2: all features except medication history; Set 3:
features selected by at least two data-driven strategies; and Set 4: minimum set, obtained
as the intersect of Set 2 and Set 3 (Table S1). The full set of features (Sets 1, 2) were selected
based on clinical expertise and previous studies [6,15]. Feature selection (Sets 3, 4) was
performed based on three data-driven approaches for each set of case-control.

The data-driven approaches were: (1) filter-based methods including Pearson corre-
lation [16] and univariate filtering; (2) embedded methods including RF [17] and Lasso
Regression [18]; and (3) wrapper methods including the Boruta algorithm [19] and recur-
sive feature elimination. Feature importance scores were scaled between zero and 100, with
higher scores representing higher variable contributions. Using the reduced set of features
will ensure variables with high collinearity are removed.

Sampling: The training dataset after applying the case-control definition was imbal-
anced. Many of the classification models trained on class-imbalanced data are biased
towards the majority class. To avoid poor performance of minority class (recurrent stroke)
compared with the dominant class, we balanced out the number of cases and controls
by up-sampling and down-sampling methods. We applied the up-sampling method to
the prediction window with the lowest and median rate of stroke recurrence and down-
sampling to the prediction window with the median rate of stroke recurrence. In the
up-sampling, we used the Synthetic Minority Over-sampling Technique (SMOTE) [19]. In
the down-sampling, we randomly selected patients from the control group.

2.4. Model Development and Testing

We used six interpretable ML algorithms and four feature sets to develop a classi-
fication model for 1, 2, 3, 4, and 5-year recurrence prediction window. We developed
24 models for each prediction window. The ML algorithms included LR [20], XGBoost [21],
GBM [22], RF [17], SVM [23], and DT [24]. We included SVM, LR, and DT as these could
provide benchmarking metrics as well as better flexibility in terms of implementation into
cloud-based EHR vendors. Therefore, simpler and faster models could provide strategic
alternatives for future implementation if the results from this study indicate, similar to
other studies [25], that by including a large number of features, models can reach conver-
gence to the point of algorithm indifference (or marginal improvements). A parameter grid
was built to train the model with 10-fold repeated CV with 10 repeats. Furthermore, 5-fold
repeated CV for the prediction window with the median rate of stroke recurrence was also
performed. Model tuning was performed by an automatic grid search with 10 different
values to try for each algorithm parameter randomly. For each model, we used 20% of
the data for model testing and calculated specificity, recall (sensitivity), precision (positive
predictive value, PPV), AUROC, F1 score, accuracy, and computation time for model
training. The modeling pipeline is summarized in Figure 1B.

3. Results

All of the detailed summary results with comprehensive performance metrics, fea-
ture importance and computation time for the 288 models this project are provided as
Supplementary Information (see Tables S1–S3).

3.1. Patient Population and Characteristics

A total of 2091 adult patients met the inclusion criteria; 114 patients had a recur-
rent stroke within 24 days from their index stroke and were excluded from the analysis
(Figure 1A). Out of 2091 patients, 51.6% were men. The median age was 68.1 years (IQR
(interquartile range) = 58–77). The three most common comorbidities were hypertension
(72%), dyslipidemia (62%), and diabetes (29%). Table 1 includes the patients’ demographics
and past medical history. The rate of stroke recurrence was 11%, 16%, 18%, 20%, and 21%
at 1, 2, 3, 4, and 5-year window, respectively.
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This study was based on 53 features. Table S1 summarizes the results from the
feature selection process. Age, sex, BMI, systolic blood pressure, hemoglobin, high-density
lipoprotein (HDL), creatinine, smoking status, chronic heart failure, chronic kidney disease,
diabetes, hypertension, and peripheral vascular disease were selected by all of the different
data-driven approaches for the five different case-control designs.

3.2. Models Can Be Trained to Predict the Long-Term Stroke Recurrence

Model AUROC was stable for the five case-control designs with the highest score
for the 1-year prediction window and the lowest score for the 5-year window (Figure 2,
Table S2). The best AUROC for the 1-year prediction window was 0.79 (Table S2, model#63).
The top ten models (AUROC: 0.79–0.74) were from the 1-year prediction window. The
best AUROC for the 2, 3, 4 and 5-year prediction windows were 0.70, 0.73, 0.73, and 0.69
respectively. Furthermore, when comparing features included in the models, the AUROC
was highest when all of the features were used. The variation in AUROC was higher
across the various study window and feature sets for DT, while the score variance was
lowest for RF. The ROC curve for the different models is shown in Figure 3 for the 1-year
prediction window.

Based on the accuracy, RF (RF, mtry = 14) model, using 26 features (Set3), had the
best performance for a 1-year prediction window (accuracy: 90% (95% CI: 86%–92%), PPV:
80%, specificity: 100%). The average accuracy by using the six models and four sets of
features was 88% (Table S2, model numbers 1–24). The prediction accuracy decreased as
the prediction window widened to 2-years (average accuracy: 85%) with the best accuracy
score reached by LR (86%, 95% CI: 82%–89%) and PPV of 80% with a specificity of 99%,
Table S2 model number 79. The average accuracy of the 3-year prediction window was 82%
for the 4-year prediction window. The average accuracy of the 5-year prediction window
was 78%.

Out of the 24 models for the 1-year prediction window, one model reached a perfect
PPV, while 11 models reached a 100% specificity. For the 2-year prediction window, 7 out
of the 24 models reached a PPV of 100% while 9 reached a specificity of 100%. Overall,
models based on all features had higher PPV. Model sensitivity and specificity had the best
tradeoff when GBM was used. The highest model sensitivity was achieved using both DT
and GBM, while the best specificity was achieved using RF, SVM, and XGBoost. When we
compared the 3-year prediction window with and without the 24 days cut-off, the average
AUROC, sensitivity, and specificity were unaffected; however, the average model accuracy
was reduced by 5% when excluding the 24 days interval. Detailed performance metrics for
the 288 models are presented in Table S2.
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Figure 2. Model performance summaries for the five different prediction windows, six different classifiers, and four feature
selection approaches. Performance metrics for (A–F) Decision tree, (G–L) Gradient Boost, (M–R) Logistic Regression,
(S–X) Random Forest, (Y–AD) SVM, and (AE–AJ) XGBoost.
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Figure 3. Area under the receiver operating characteristic (AROC) curve using six classifiers for the 1-year prediction
window. The feature Set 3 is used for this figure. (A) Model without sampling; (B) Model with up-sampling at a 1:2 ratio;
(C) Model with up-sampling at a 1:1 ratio. The best performer model (AUROC of 0.79) is when up-sampling is used with
Random Forest algorithm (panel B).

3.3. Age, BMI, and Laboratory Values Highly Associated with Stroke Recurrence

Age and BMI had the highest overall feature importance at 90% ± 5% and 58 ± 10%,
respectively. Laboratory values specifically LDL, HDL, platelets, hemoglobin A1c, crea-
tinine, white blood cell, and hemoglobin were highly ranked in our different modeling
frameworks. The feature importance of laboratory-based features ranged from 49% ± 10%
to 39% ± 11% for HDL and platelet, respectively. Laboratory values had an average feature
importance score of 44%, the highest among the different feature categories. Medications
(statin, antihypertensive, warfarin, and antiplatelet), were also important features. Figure 4
(and Table S3) includes the feature importance of different models and the overall average
feature importance across the models and different prediction windows. The difference in
days between the last outpatient visit before the index date and index date (45% ± 12%)
and certain comorbidities were other important features for the recurrence models.
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Figure 4. Feature importance based on the different trained models. (A–E) Six different classifiers (Gradient Boost, Random
Forest, Extreme Gradient Boosting (XGBoost), Decision Trees, Support Vector Machine (SVM), and Logistic Regression)
and five different prediction windows were used. (F) Average feature importance score across the different models and
prediction windows.

3.4. Models’ Performance Metrics Improved through Sampling Strategies

Given the low prevalence of recurrent stroke in our dataset (11–21%), we applied
up- and down-sampling to the training dataset for the prediction window prior to the
model training.

The application of up-sampling the minority class using 1:2 and 1:1 ratio for the
1-year prediction window improved the sensitivity to 55% while only slightly affecting
the specificity to 91%. The model AUROC averaged 0.67 before up-sampling to 0.68 after
up-sampling with five of the models reaching an AUROC above 0.75. The AUROC of the
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test set for the 3-year prediction window remained at 0.69 while the AUROC of the training
set improved as expected with up-sampling (Figure 5, Table S2).

Figure 5. Model Performance summaries with sampling-based optimization for the 1 and 3-year prediction window.
Up-sampling using was performed using the Synthetic Minority Over-sampling Technique (SMOTE). The feature Set 3 is
used for this figure. (A–F) Model without sampling; (G–L) Model with down-sampling; (M–R) Model with up-sampling.

4. Discussion

We have taken a comprehensive approach to develop and optimize interpretable
models of long-term stroke recurrence. We have shown that (1) the six algorithms used
could be trained to predict the long-term stroke recurrence, (2) many of the clinical features
that were highly associated with stroke recurrence could be actionable, and (3) model
performance metrics could be optimized.

There have been multiple clinical scores developed for predicting recurrence after
cerebral ischemia with limited clinical utility [6]. Among all, only Stroke Prognostic
Instrument (SPI-II) [26] and Essen Stroke Risk Score (ESRS) [27] were designed to predict
the long-term (up to 2-years) risk of recurrence after an ischemic stroke. SPI-II can be
applied to patients with transient ischemic attack (TIA) and minor strokes; yet, ESRS
application focuses on stroke. The main limitations of SPI-II are focusing on patients with
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suspected carotid TIA or minor stroke, developed using a cohort of 142 patients. The ESRS,
derived from the stroke subgroup of the clopidogrel versus aspirin among patients at risk
of ischemic events (CAPRIE) trial, includes only eight parameters. In a validation study,
the PPV for each tool were low, raising questions about their utility [28–30]. Previous
validation studies of SPI-II demonstrated a c-statistic of 0.62 to 0.65, which can be judged
as only fair [26,31,32]. In addition, SPI-II has poor performance in stratifying recurrent
stroke in isolation as compared with the composite of recurrent stroke and death. The
above demonstrates that the SPI-II score’s performance is driven mostly by its ability to
predict mortality not a recurrence. There is an unmet need for better predictive measures
of long-term prediction given the high rate and devastating consequences of a recurrent
stroke. Other studies over the past few years have shown the power of ML in predicting
short and long-term outcomes in various complex diseases [8,9,25].

4.1. Models Could Be Trained to Predict the Long-Term Stroke Recurrence

Our results showed that a high-quality training dataset with a rich set of variables can
be utilized to develop models of recurrent stroke. Among the 288 models, prediction of
stroke recurrence within a 1-year prediction window had an AUROC of 0.79, an accuracy
of 88% (95% CI: 84%–91%), PPV of 42%, and specificity of 96% using RF with up-sampling
the training dataset (Table S2, model number 63). The LR-based models have similar results
when compared to more complex algorithms such as XGBoost or RF. Our results showed
that 21 (7%) models reached an AUROC above 0.73 while 110 (38%) models reached an
AUROC above 0.7. Furthermore, the AUROC for the training and testing dataset were
within a similar range which corroborates that models were not suffering from over-fitting.
As expected, a model based on LR took a fraction of the time for training when compared
to XGBoost, RF, or SVM (Table S2).

We tested the prediction window for up to 5-years. Our results showed that the
average model accuracy declined from 85% for the 1-year window to 78% for the 5-year
window. However, the shorter prediction window provided the lowest rate of recurrence
and therefore highest data imbalance, affecting model performance. The average model
sensitivity increased as the prediction window widened, likely due to the increase in
sample size and recurrent stroke rate. The optimal prediction window could depend on
the richness of longitudinal data used for model training, in our dataset, that was between
2 and 4-years.

4.2. Clinical Features Highly Associated with Stroke Recurrence

In this study, 53 features were used as the full set (set1), followed by a subset of features
excluding medication history (Set 2, 31 features). We also applied feature selection and
created data-driven features (Set 3) and a minimum set of features (Set 4) for comparison. In
most of the experiments more comprehensive feature set led to higher model performance,
even though some features had some level of collinearity. In general, baseline clinical
features, such as age, BMI, and laboratory values were among the most important features.
Our results also highlighted that the last outpatient visit before the index stroke was
important for the prediction of recurrence; patients in the control group had the lowest
average number of days when compared to the five different case groups.

Analyzing the feature importance revealed that in general laboratory values were
highly influential in the prediction models. The pattern of the importance of features was
similar when considering different prediction windows, with many comorbidities and
medications having the lowest relative impact. Laboratory values (LDL, HDL, platelets,
HbA1c, creatinine, and hemoglobin), and blood pressure have shown to be high-ranking
for all of the five different prediction windows and all of the different modeling framework
with few exceptions. This finding highlights the fact that these potentially actionable
features (e.g., HbA1c) may have more importance when compared to the corresponding
comorbidities in the patient’s chart. The binary nature of medical history without the
corresponding measures may have limited power in predicting recurrence. However, one
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of the main limitations of using more comprehensive laboratory values is missingness,
especially when the missing is not completely at random.

4.3. Model Performance Metrics Optimized Based on the Target Goals

We have also shown that model performance metrics, such as specificity and sensitivity
can be optimized based on the availability of resources and institutional priorities. We
were able to improve the sensitivity of the models for the 1 and 3-year prediction window
by sampling the training dataset to address the data imbalance. The tradeoff between
specificity and sensitivity was of special interest given that different healthcare systems
likely have different constraints, availability of resources, and infrastructures to implement
preventive strategies to reduce stroke burden. Some of the resources may include, the
number of providers needed to schedule follow up appointments or to discuss medication
plans and ensure that the patient is compliant; or availability of resources to provide
home-care or telehealth for patients needing those services for continuity of care. Thus,
optimizing sensitivity and specificity should be aligned with the institution’s priorities.
Here we demonstrated that sampling strategies could be useful tools in achieving optimal
tradeoffs by increasing the sensitivity of the models up to 55% even with a low rate of
stroke recurrence.

4.4. Study Strengths, Limitations, and Future Directions

The EHR data used in model development was longitudinally rich. However, that
also leads to some of the study limitations. There is an inherent noise associated with the
use of administrative datasets such as EHR, including biased patient selection and lack
of information regarding stroke severity captured for approximately half of the patients.
However, separate logistic regression models were employed to study the association
of NIHSS with one-year stroke recurrence and did not show any association (OR: 1.01,
95% CI: 0.97–1.05, p = 0.625). Our phenotype definition to extract patients with stroke
was strict, leading to 100% specificity on a randomly selected sample, which also means
that our criteria likely missed some of the cases (for instance, if the patient had some
MRI contraindication). Nevertheless, MRI is part of our stroke order-set and is performed
for every stroke patient unless the patient refuses or has a contraindication (e.g., non-
compatible pacemaker, etc.). We also did not include transient ischemic attacks since it is
associated with significant misdiagnosis [33].

As future directions, we are expanding this study at two different levels by includ-
ing additional layers of data and improving the model and model optimization. We are
expanding the GNSIS dataset by incorporating a larger number of laboratory-based fea-
tures; unstructured data from clinical notes such as signs and symptoms during the initial
phases of patient evaluation; information about stroke subtypes; and genetic information
from a subset of patients enrolled in the MyCode initiative [34]. We are also expanding
our modeling strategies by (1) improving the imputation for laboratory values for EHR-
mining [35,36], which could improve patient representation and reduce algorithmic bias;
(2) applying natural language processing to expand the feature set from clinical notes;
(3) developing polygenic risk score [37] using genetic information from a subset of our
GNSIS cohort; (4) improving model parameter optimization using sensitivity analysis (SA)-
based approaches [38–41]; and (5) expanding the study by incorporating more advanced
methodologies, including deep learning models to compare with binary classification
developed in this study. Finally, we are planning on developing models that account for
the competing risk of death and other major vascular events in addition to ischemic stroke.

In conclusion, predicting long term stroke recurrence is an unmet need with high
clinical impact for improved outcomes. Using rich longitudinal data from EHR and opti-
mized ML models, we have been able to develop models of stroke recurrence for different
prediction windows. Model performance metrics could be optimized and implemented in
the same healthcare system as an intelligent decision support system to improve outcomes.
Even though validating the model in patients recruited at a later time point could be
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done within the Geisinger system, external validation will be necessary to predict how the
model predictions may be affected with regard to other health care systems and patient
demographics. External validation to assess generalizability and identify potential biases
will be an important next step of this study as well. Finally, based on our findings, we
recommend that studies aimed at using ML for the prediction of stroke recurrence should
leverage more than one modeling framework, ideally including also logistic regression as
benchmarking framework for comparison.
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383/10/6/1286/s1, Table S1. Feature selection applied to cases and controls based on four criteria.
Set 1: all features; Set 2: all features except medication history; Set 3: features selected by at
least two data-driven strategies; Set 4: minimum set, obtained as the intersect of Set 2 and Set
3; Table S2. Comprehensive model performance measures for the 288 prediction models. https:
//www.dropbox.com/s/4h4qr6ivi1z9bt9/Final_Table_A2.xlsx?dl=0 (accessed on 19 March 2021).
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modeling frameworks.
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EHR Electronic Health Records
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GBM Gradient Boosting Machine
GNSIS Geisinger Neuroscience Ischemic Stroke
HbA1c Hemoglobin A1c
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HDL High-Density Lipoprotein
ICD-9/10-CM International Classification of Diseases, Ninth/Tenth Revision, Clinical Modification
IQR Interquartile Range
LDL Low-Density Lipoprotein
LR Logistic Regression
MICE Multivariate Imputation by Chained Equations
ML Machine Learning
MRI Magnetic Resonance Imaging
NIHSS National Institutes of Health Stroke Scale
OR Odds Ratios
PPV Positive Predictive Value
RF Random Forest
SA Sensitivity Analysis
SMOTE Synthetic Minority Over-sampling Technique
SPI-II Stroke Prognostic Instrument
SVM Support Vector Machines
XGBoost Extreme Gradient Boosting
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Abstract: Background. SARS-CoV-2 infected patients are suggested to have a higher incidence of
thrombotic events such as acute ischemic strokes (AIS). This study aimed at exploring vascular
comorbidity patterns among SARS-CoV-2 infected patients with subsequent stroke. We also investi-
gated whether the comorbidities and their frequencies under each subclass of TOAST criteria were
similar to the AIS population studies prior to the pandemic. Methods. This is a report from the
Multinational COVID-19 Stroke Study Group. We present an original dataset of SASR-CoV-2 infected
patients who had a subsequent stroke recorded through our multicenter prospective study. In addi-
tion, we built a dataset of previously reported patients by conducting a systematic literature review.
We demonstrated distinct subgroups by clinical risk scoring models and unsupervised machine
learning algorithms, including hierarchical K-Means (ML-K) and Spectral clustering (ML-S). Results.
This study included 323 AIS patients from 71 centers in 17 countries from the original dataset and
145 patients reported in the literature. The unsupervised clustering methods suggest a distinct cohort
of patients (ML-K: 36% and ML-S: 42%) with no or few comorbidities. These patients were more
than 6 years younger than other subgroups and more likely were men (ML-K: 59% and ML-S: 60%).
The majority of patients in this subgroup suffered from an embolic-appearing stroke on imaging
(ML-K: 83% and ML-S: 85%) and had about 50% risk of large vessel occlusions (ML-K: 50% and ML-S:
53%). In addition, there were two cohorts of patients with large-artery atherosclerosis (ML-K: 30%
and ML-S: 43% of patients) and cardioembolic strokes (ML-K: 34% and ML-S: 15%) with consistent
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comorbidity and imaging patterns. Binominal logistic regression demonstrated that ischemic heart
disease (odds ratio (OR), 4.9; 95% confidence interval (CI), 1.6–14.7), atrial fibrillation (OR, 14.0; 95%
CI, 4.8–40.8), and active neoplasm (OR, 7.1; 95% CI, 1.4–36.2) were associated with cardioembolic
stroke. Conclusions. Although a cohort of young and healthy men with cardioembolic and large
vessel occlusions can be distinguished using both clinical sub-grouping and unsupervised clustering,
stroke in other patients may be explained based on the existing comorbidities.

Keywords: cerebrovascular disorders; stroke; SARS-CoV-2; COVID-19; cluster analysis; risk fac-
tors; comorbidity

1. Introduction

Since the emergence of the Coronavirus Disease 2019 (COVID-19) pandemic, many
cerebrovascular events have been reported among patients with SARS-CoV-2 infection.
Some reports have highlighted strokes in critically ill and older patients with a higher
number of comorbidities, while others have suggested a higher risk in younger and healthy
individuals [1–5]. Studies have suggested that stroke patients with SARS-CoV-2 present
with multiple cerebral infarcts [2,4,6], systemic coagulopathies [7], uncommon thrombotic
events such as aortic [8] or common carotid artery thrombosis [9], and simultaneous arterial
and venous thrombus formation [10].

Considering the hypercoagulable state as one of the main etiologies of stroke among
the SARS-CoV-2 infected patients, we would expect a similar increased rate for cardio-
vascular thrombotic events and acute coronary syndrome after the pandemic. However,
higher acute coronary syndrome case fatality rate and other adverse outcomes among
cardiac patients compared with the pre-pandemic era have been attributed to public fear
and reluctance to call for medical aid and increased pre-hospital delay. A dramatic decline
in the guideline-indicated care, hospitalization rate, and revascularization procedures are
other possible factors attributing to adverse outcomes in patients with acute coronary
syndrome [11–15]. Studies have failed to show any difference among cardiovascular pa-
tients in terms of age, sex, comorbidities, clinical presentation, and diagnosis pre- and
post-pandemic era [14,16]. Similarly, a higher rate of coronary stent thrombosis in com-
parison with the pre-pandemic era [17,18] was reported among the patients with multiple
comorbidities (about 44% with at least four vascular risk factors) and a median age of
65 years [18]. Acute myocardial injury (defined as a substantial increase in cardiac tro-
ponin level) is associated with the underlying cardiac pathology in the majority of the
SARS-CoV-2 infected patients [19] rather than a thrombotic event.

The first report from our Multinational COVID-19 Stroke Study Group and recent meta-
analyses on reported infected patients presented a stroke incidence rate of 0.5–1.4% [20–22].
The odds of stroke after SARS-CoV-2 may not be greater than in non-infected patients [23].
In addition, meta-analyses of the reported patients presented that SARS-CoV-2 infected
patients who experienced a stroke had a mean age of over 65 years, carried a load of
comorbidities, and were affected by more severe infections [21,22]. Thereby, in some
patients, stroke may be a coincidence or an indirect consequence of critical illness [24,25]
and not a direct complication of the SARS-CoV-2 infection. As an example, there is an
increased risk of ischemic stroke (odds ratio (OR) > 28) and hemorrhagic stroke (OR > 12)
within two weeks of sepsis [26]. This might be due to new-onset atrial fibrillation (6%) that
put the patient at risk of in-hospital stroke (2.6%) [24].

Understanding the population at risk for having a stroke after SARS-CoV-2 infection
can promote timely diagnosis and proper management of these patients.

We designed this study to explore the pattern of traditional vascular risk factors and
stroke etiology among stroke patients with prior SARS-CoV-2 infection. We leveraged
unsupervised hierarchical and spectral model-based clustering in addition to clinical risk
scoring models to decipher patterns of comorbidity among stroke patients with prior
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SARS-CoV-2 infection. We further expanded our analysis to corroborate whether the
comorbidities under each subclass of TOAST (the Trial of Org 10172 in Acute Stroke
Treatment [27]) were similar to the AIS population studies prior to the pandemic.

2. Methods

This report presents a multicenter prospective and observational study from our
Multinational COVID-19 Stroke Study Group [20] and a cohort of patients extracted from
the literature.

2.1. Original Dataset

Collaborators from 71 centers of 17 countries (Brazil, Canada, Croatia, Egypt, France,
Germany, Greece, Iran, Israel, Italy, Portugal, Republic of Korea, Singapore, Spain, Switzerland,
Turkey, and the United States) reported data on their patients for this study. We included
consecutive SARS-CoV-2 infected adult patients who had imaging confirmed subsequent
acute ischemic stroke.

The study protocol, details of eligibility criteria, data elements, and neurological in-
vestigations have been previously published [20]. The demographics, vascular risk factors,
and comorbidities—i.e., hypertension, diabetes, ischemic heart disease, atrial fibrillation,
carotid stenosis, chronic kidney disease, congestive heart failure with cardiac ejection
fraction <40%, active neoplasms, rheumatological diseases, smoking status, and history of
transient ischemic attack (TIA) or stroke—were recorded for the stroke patients [28–31].
We also recorded the neurological examinations, the National Institute of Health Stroke
Scale (NIHSS), TOAST [27] subclasses, presence of large-vessel occlusions (LVOs), and
brain imaging findings.

The study protocol was designed at the Neuroscience Institute of Geisinger Health
System, Pennsylvania, United States, and received approval by the Institutional Review
Board of Geisinger Health System and participating institutions, as needed. The study was
conducted and reported according to the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) [32], and Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [33].

2.2. Systematic Literature Review

To compare our results with the available literature, we searched PubMed for reports of
patients with subsequent stroke after SARS-CoV-2 infection. Different terms in addition to
Medical Subject Headings (MeSH) were utilized to build the search protocol (Document S1).
The search was last updated on 15 October 2020, with no limitation to study design,
language, or document type. The search was augmented by forward and backward citation
tracking in PubMed and Google Scholar. We additionally searched medRxiv to track the
documents ahead of publication and communicated with the corresponding authors to
include them under peer review or in press studies prior to publication. Two reviewers (EK
and SS) independently evaluated the titles/abstracts of the retrieved results and reviewed
the full texts of candidate articles. Data available from the literature were extracted per the
same datasheet as the data collected in our original multicenter case series when possible.
The extracted data were further reviewed by two neurologists (G.F. and R.Z.).

2.3. Comorbidity-Based Subgrouping: Expert Opinion

The details of the subgroups are available in Document S2. In the risk scoring models
based on the EXpert opinion (EX), we considered the number of present stroke-related
comorbidities—either All the 11 collected comorbidities (EX-A) as mentioned above, or
eight Selected comorbidities (EX-S, excluding congestive heart failure, active neoplasm,
and rheumatological disorders) [27–30]. We considered equal weights for all comorbidities.
We divided the patients based on EX-A and EX-S scores into two subgroups (EX-A2 and
EX-S2); Subgroup “a” included patients who had a history of zero or one stroke-related
comorbidity, and subgroup “b” included the patients with >1 comorbidity. In addition,
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we divided the patients based on EX-A and EX-S scores into three subgroups (EX-A3
and EX-S3). In this second classification, subgroup “a” represented the patients without
any known comorbidity, subgroup “b” with one or two comorbidities, and subgroup “c”
included the patients with more than two comorbidities.

2.4. Comorbidity-Based Subgrouping: Unsupervised Modeling

We explore the probable similarities among the patients based on the presence of
comorbidities in a data-driven approach. These patterns might have been remained
hidden by clinical risk scores to the experts. For this purpose, we leveraged unsupervised
algorithms and Machine Learning models (ML) (Document S2). We applied hierarchical
(complete linkage method) and K-means (Hartigan-Wong algorithm) clustering (ML-K
models) to group the patients into 2 (ML-K2) and 3 (ML-K3) subgroups. We also used
Spectral clustering [34] (ML-S models) and clustered the patients into two (ML-S2) and
three subgroups (ML-S3). Tables S1 and S2 present the clustering of the patients into four
and five subgroups. Patients from the original dataset and literature review were clustered
independently.

We used the contingency matrix (also known as a contingency table) [35] to demon-
strate the subgroups of each model versus other models. The average similarity of the

models in clustering the patients was calculated as Sim = ∑
i
1 Maximum Value in Column i

∑
k
1 Value in Cell k

;

where i is the number of columns and k is the total number of cells in the contingency ma-
trix. Similarities among the models were considered as mild (50–65%), moderate (65–80%),
and strong (80–100%). The packages stat [36] and gplots [37] in R version 3.6.3, and the
scikit-learn package [38] in Python version 3.7 were used.

2.5. Statistical Analysis

We used descriptive statistics to summarize the data. Demographic data, comor-
bidities, laboratory findings, and neurological investigations were reported as medians
(interquartile range (IQR)) and mean (standard deviations (SD)). Categorical variables were
reported as absolute frequencies and percentages. The comparison between categorical
variables was conducted with the Pearson chi-square test, while the differences among
continuous variables were assessed by an independent t-test. We explored the association
of comorbidities with each subclass of TOAST criteria by binary logistic regression. A
p-value < 0.05 was considered significant in all analyses.

3. Results

3.1. Patients Characteristics

This study included 323 AIS patients from our original prospective multicenter case
series, with a mean age of 67 ± 15 years and 60% men (Table S3). The most prevalent
comorbidities were hypertension (63%), diabetes (35%), and ischemic heart disease (24%).
In addition, through our systematic review of the literature, we retrieved data from an ad-
ditional 412 stroke patients (including dural sinus thrombosis) post-SARS-CoV-2 infection
(Figure 1). The data from the 412 patients were extracted from 81 articles (in 18 countries).
Among the 412 patients, individual-level data of 145 AIS patients were reported from 36
centers in nine countries. The mean age of the retrieved AIS patients was 63 ± 14 years,
and 57% were men (Table S3).

In comparison with our original multicenter dataset, patients reported in the literature
were younger (mean age of 63 versus 67 years, p < 0.01), with a higher proportion of LVOs
(83% versus 45%, p < 0.0001), and strokes of undetermined (38% versus 22%, p < 0.01)
or other determined etiologies (31% versus 8%, p < 0.001). Although not statistically
significant, reported patients in the literature had more severe strokes (median NIHSS of
15 versus nine, p = 0.11). Fewer patients of this cohort were reported to have had vascular
risk factors; however, hypertension (55%), diabetes (37%), and atrial fibrillation (12%) were
the most prevalent reported comorbidities among the patients from the published reports.
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Figure 1. The process of literature review and main results.

3.2. Clinical Risk Scoring Models Revealed a Large Cohort of Young Men with No Comorbidities
Who Suffered from Large Vessel Occlusions (LVOs)

Among the 323 AIS patients from the original dataset, 65 (22%) patients reported
no known comorbidities, and 115 (39%) had at most one known comorbidity (Table 1).
Among the 117 patients from the literature review who had a completed comorbidity
panel, 33 (28%) reported no known comorbidity, and 71 (61%) had at most one known
comorbidity (Table S4).

In both datasets, we identified a cohort of patients with no vascular risk factors with
distinct features—subgroup “a” in all clinical risk scoring models; original dataset, EX-A3a:
22% and EX-S3a: 25% (Table 1); literature review, EX-A3a = EX-S3a: 28% (Table S4). These
cohorts included patients with (1) younger age (over 8 years in comparison with other
subgroups of the original dataset), (2) male predominance (original dataset, EX-A3a: 55%
and EX-S3a: 54%; literature review, EX-A3a = EX-S3a: 59%), and (3) a higher proportion of
embolic-appearing imaging stroke pattern (original dataset, 82%; literature review dataset
67%). About half of patients in the original dataset had LVOs (EX-A3a: 48% and EX-S3a:
49%), as did the majority of patients reported in the literature (EX-A3a = EX-S3a: 80%). In
comparison with patients who carried a high load of comorbidities (subgroup “c”), the
cohorts of patients without comorbidities (subgroup “a”) had a longer length of hospital
stay (original dataset EX-S3a, 16 days versus 11 days in EX-S3c, p = 0.03). Although not
statistically significant, patients in the subgroup “a” also had less severe strokes (median
NIHSS in the original dataset, eight versus 12 in subgroup “c”; median NIHSS in review
dataset, six versus nine in subgroup “c”), but a higher chance of a need for mechanical
ventilation (original dataset EX-A3a: 34% versus 28%, p = 0.39; EX-S3a: 37% versus 28%,
p = 0.16).
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Table 1. Characteristics of the patients grouped by clinical risk scoring models.

Parameters

Clinical Risk Scoring

EX-A2 (All Comorbidities) EX-S2 (Selected Comorbidities) EX-A3 (All Comorbidities) EX-S3 (Selected Comorbidities)

a
n = 115
(38.9%)

b
n = 181
(61.1%)

p-
Value

a
n = 137
(46.3%)

b
n = 159
(53.7%)

p-
Value

a
n = 65

(22.0%)

b
n = 140
(47.3%)

c
n = 91

(30.7%)

p-
Value

a
n = 74

(25.0%)

b
n = 147
(49.7%)

c
n = 75

(25.3%)

p-
Value

Age; Mean (SD); Years 61 ± 18 69 ± 14 <0.001 62 ± 17 69 ± 14 <0.001 60 ± 18 68 ± 14 70 ± 14 <0.001 59 ± 18 69 ± 13 71 ± 13 <0.001
Sex; Male; n (%) 66 (57.4) 113 (62.4) 0.29 72 (56.3) 107 (63.7) 0.61 36 (55.4) 87 (62.1) 56 (61.5) 0.63 36 (54.5) 98 (64.9) 45 (57.0) 0.46
Large Vessel Occlusion; n (%) 43 (43.9) 76 (44.4) 0.93 49 (41.2) 70 (46.7) 0.37 26 (48.1) 50 (39.4) 43 (50.0) 0.26 31 (49.2) 52 (39.1) 36 (50.7) 0.20
Intravenous Thrombolysis; n (%) 13 (7.4) 26 (12.4) 0.11 16 (8.0) 23 (12.3) 0.17 6 (9.2) 14 (10.0) 19 (20.9) 0.03 7 (9.5) 17 (9.5) 15 (20.0) 0.12
Mechanical Thrombectomy; n (%) 9 (5.1) 15 (7.1) 0.41 10 (5.0) 14 (7.5) 0.32 5 (7.7) 9 (6.4) 10 (11.0) 0.46 6 (8.1) 9 (6.1) 9 (12.0) 0.32
National Institutes of Health Stroke Scale
(NIHSS); Median (IQR)

11.0 ± 9.0 12.0 ± 9.0 0.95 11.0 ± 9.0 12.0 ± 8.0 0.87 8 (4–22) 9 (4–16) 12 (6–20) 0.18 9 (4–22) 8 (4–16) 12(6–19) 0.21

TOAST Criteria
2003 Large-Artery Atherosclerosis; n (%) 21 (30.4) 35 (34.7)

<0.001

21 (27.3) 35 (37.6)

<0.001

16 (43.2) 21 (26.9) 19 (34.5)

<0.001

16 (42.1) 24 (27.3) 16 (36.4)

<0.001
Cardio-Embolism; n (%) 10 (14.5) 36 (35.6) 12 (15.6) 34 (36.6) 5 (13.5) 13 (16.7) 28 (50.9) 5 (13.2) 20 (22.7) 21 (47.7)

Small-Vessel Occlusion; n (%) 7 (10.1) 10 (9.9) 8 (10.4) 9 (9.7) 1 (2.7) 12 (15.4) 4 (7.3) 1 (2.6) 12 (13.6) 4 (9.1)
Stroke of Other Determined Etiology; n (%) 11 (15.9) 2 (2.0) 11 (14.3) 2 (2.2) 6 (16.2) 7 (9.0) 0.0 (0.0) 7 (18.4) 6 (6.8) 0 (0.0)
Stroke of Undetermined Etiology; n (%) 20 (29.0) 18 (17.8) 25 (32.5) 13 (14.0) 9 (24.3) 25 (32.1) 4 (7.3) 9 (23.7) 25 (29.5) 3 (6.5)

Imaging Patterns
Embolic-Appearing; n (%) 76 (83.5) 195 (92.9)

0.43

189 (95.0) 173 (92.5)

0.56

41 (82.0) 97 (79.5) 67 (80.7)

0.31

42(82.4) 106 (80.3) 57 (79.2)

0.72
Lacune; n (%) 10 (11.0) 16 (9.8) 14 (12.5) 12 (8.4) 4 (8.0) 17 (13.9) 5 (6.0) 4 (7.8) 17(12.9) 5 (6.9)
Borderzone; n (%) 5 (5.5) 18 (11.0) 9 (8.0) 14 (9.8) 5 (10.0) 8 (6.6) 10 (12.0) 5 (9.8) 9 (6.8) 9 (12.5)
Vasculitis Pattern; n (%) 0 (0.0) 1 (0.6) 0 (0.0) 1 (0.7) 0 (0.0) 0 (0.0) 1 (1.2) 0 (0.0) 0 (0.0) 1 (1.4)

Interval Between Infection Onset to Stroke;
Median (IQR); Days

7.0 ± 8.0 5.0 ± 6.0 0.07 7.0 ± 7.0 5.0 ± 6.0 0.15 7.0 ± 8.0 5.0 ± 6.0 5.0 ± 7.0 0.19 7.0 ± 7.0 5.0 ± 6.0 6.0 ± 7.0 0.27

Mechanical Ventilation; n (%) 22 (33.8) 63 (27.3) 0.30 27 (36.5) 58 (26.1) 0.09 22 (33.8) 38 (27.1) 25 (27.5) 0.39 27 (36.5) 37 (25.2) 21 (28.0) 0.16
Disposition

Discharged Home; n (%) 66 (42.0) 77 (36.7)
0.46

75 (41.7) 68 (36.4)
0.44

31 (50.8) 60 (43.2) 36 (39.6)
0.39

32 (51.6) 62 (41.3) 33 (41.8)
0.16In Hospital Mortality; n (%) 45 (28.7) 72 (34.3) 52 (28.9) 65 (34.8) 14 (23.0) 33 (23.7) 30 (33.0) 14 (22.6) 35 (23.3) 28 (35.4))

Still in Hospital/Subacute Care; n (%) 46 (29.3) 61 (29.0) 53 (29.4) 54 (28.9) 16 (26.2) 46 (33.1) 25 (27.5) 16 (25.8) 53 (35.3) 18 922.8)
Length of Hospital Stay; Median (IQR); Days 14.0 ± 15.0 11.0 ± 11.0 0.46 16.0 ± 17.0 11.0 ± 9.0 0.04 14.0 ± 15.0 12.0 ± 12.0 10.0 ± 8.0 0.28 16.0 ± 17.0 11.0 ± 9.0 11.0 ± 8.0 0.03
Comorbidities

Hypertension; n (%) 22 (19.1) 158 (87.3) <0.001 30 (23.4) 150 (89.3) <0.001 0 (0.0) 95 (67.9) 85 (93.4) <0.001 0 (0.0) 104 (68.9) 76 (96.2) <0.001
Diabetes Mellitus; n (%) 5 (4.3) 93 (51.4) <0.001 8 (6.3) 90 (53.6) <0.001 0 (0.0) 37 (26.4) 61 (67.0) <0.001 0 (0.0) 41 (27.2) 57 (72.2) <0.001
Ischemic Heart Disease; n (%) 4 (3.5) 68 (37.6) <0.001 4 (3.1) 68 (40.5) <0.001 0 (0.0) 19 (13.6) 53 (58.2) <0.001 0 (0.0) 24 (15.9) 48 (60.8) <0.001
Atrial Fibrillation; n (%) 4 (3.5) 38 (21.0) <0.001 6 (4.7) 36 (21.4) <0.001 0 (0.0) 12 (8.6) 30 (33.0) <0.001 0 (0.0) 15 (9.9) 27 (34.2) <0.001
Carotid Stenosis; n (%) 1 (0.9) 37 (20.4) <0.001 1 (0.8) 37 (22.0) <0.001 0 (0.0) 11 (7.9) 27 (29.7) <0.001 0 (0.0) 11 (7.3) 27 (34.2) <0.001
Chronic Kidney Disease; n (%) 9 (7.8) 32 (17.7) 0.02 9 (7.0) 32 (19.0) 0.003 0 (0.0) 23 (16.4) 18 (19.8) <0.001 0 (0.0) 24 (15.9) 17 (21.5) <0.001
Cardiac Ejection Fraction <40%; n (%) 1 (0.9) 23 (12.7) <0.001 7 (5.5) 17 (10.1) 0.15 0 (0.0) 6 (4.3) 18 (19.8) <0.001 0 (0.0) 10 (6.6) 13 (16.5) 0.003
Active Neoplasm; n (%) 0 (0.0) 21 (11.6) <0.001 6 (4.7) 15 (8.9) 0.16 0 (0.0) 5 (3.6) 16 (17.6) <0.001 0 (0.0) 12 (7.9) 9 (11.4) 0.02
Rheumatological Disease; n (%) 0 (0.0) 5 (2.8) 0.07 3 (2.3) 2 (1.2) 0.45 0 (0.0) 2 (1.4) 3 (3.3) 0.27 0 (0.0) 4 (2.6) 1 (1.3) 0.35
Prior Stroke or Transient Ischemic Attack; n (%) 1 (0.9) 4 (2.2) 0.38 1 (0.8) 4 (2.4) 0.29 0 (0.0) 2 (1.4) 3 (3.3) 0.27 0 (0.0) 2 (1.3) 3 (3.8) 0.18
Smoking; n (%) 3 (2.6) 45 (24.9) <0.001 3 (2.3) 45 (26.8) <0.001 0 (0.0) 18 (12.9) 30 (33.0) <0.001 0 (0.0) 19 (12.6) 29 (36.7) <0.001

EX-A2: clinical risk-scoring (expert opinion) model including all comorbidities; a, 0–1 comorbidity; b, >1 comorbidity; EX-S2: clinical risk-scoring model including selected comorbidities; a, 0–1 comorbidity;
b, >1 comorbidity; EX-A3: clinical risk scoring model including all comorbidities; a, 0 comorbidity; b, 1–2 comorbidities, c, >2 comorbidities; EX-S3: clinical risk scoring model including selected comorbidities;
a, 0 comorbidities; b, 1–2 comorbidities, c, >2 comorbidities. Due to missingness, we provided the valid percentages in this table.
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3.3. Unsupervised Clustering Revealed Three Subgroups of Stroke Patients

In addition to clinical risk scoring, we used unsupervised algorithms to potentially
identify hidden comorbidity patterns among AIS patients. There were strong similari-
ties (Sim > 80%) among the models in grouping the patients, except two sets that were
moderately similar (Figure S1). Clustering the patients from the original dataset (Table 2)
demonstrated a subgroup of patients with no or few comorbidities—subgroup “a” in all
ML models (ML-K3a: 36% and ML-S3a: 42% of patients, Table 2). The latter is similar to
subgroup “a” in all EX models (22–46% of patients, Table 1). The patients in these groups
were (1) mainly men (ML-K3a: 59% and ML-S3a: 60%), (2) more than six years younger
than other subgroups, (3) had a higher risk of embolic-appearing stroke on imaging (ML-
K3a: 83% and ML-S3a: 85%), and (4) had about 50% risk of LVOs (ML-K3a: 50% and
ML-S3a: 53%). Patients in the second subgroup (ML-K3b: 30% and ML-S3b: 43%; similar
to EX-A3b: 47% and EX-S3b: 50%) presented with a high proportion of hypertension,
diabetes, chronic kidney disease, and smoking. These patients had a higher risk of large
artery atherosclerosis (ML-K3b: 40%, and ML-S3b: 31%). The third subgroup (ML-K3c:
34% and ML-S3c: 15% similar to EX-A3c: 31% and EX-S3c: 25%) presented mostly with
hypertension, diabetes, ischemic heart disease, atrial fibrillation, congestive heart failure,
carotid stenosis, neoplasm, and smoking. The majority of these patients (ML-K3c: 34% and
ML-S3c: 60%) had cardioembolic strokes based on TOAST and imaging patterns consistent
with an embolic ischemic stroke.

Similar patterns were observed among patients reported in the literature (Tables S4
and S5). The first group (subgroup “a” in all models, 28–61%) included the patients with
no or few comorbidities. These patients were more likely men (63–100%), with over 80%
LVOs, about 65% strokes of undetermined or other determined etiologies, and over 60%
embolic-appearing strokes. In the second subgroup identified by unsupervised clustering
(ML-K3b: 41% and ML-S3b: 66%, similar to EX-A3b: 33% and EX-S3b: 33%), the majority of
the patients presented with hypertension and diabetes. Strokes of undetermined (ML-K3b:
39% and ML-S3b: 33%) and other determined (ML-K3b: 33% and ML-S3b: 37%) etiologies
were more prevalent in these subgroups. The third subgroup (ML-K3c: 16% and ML-S3c:
26%, similar to EX-A3c: 39% and EX-S3c: 39%) included the patients with hypertension,
diabetes, ischemic heart disease, atrial fibrillation, smoking, and prior stroke or TIA. The
majority of the patients in the third subgroup of the literature review dataset had strokes of
undetermined (ML-K3c, 46% and ML-S3c, 50%) or other determined etiologies (ML-K3c:
27% and ML-S3c: 18%).

3.4. The TOAST Subtype Classification Was Consistent with the Patients’ Risk Profile

We observed significantly different proportions of hypertension, ischemic heart dis-
ease, atrial fibrillation, carotid stenosis, chronic kidney disease, and active neoplasms
among subclasses of TOAST (Table 3). Binominal logistic regression models demonstrated
that atrial fibrillation (OR: 0.2; 95% CI: 0.04–0.8) and carotid stenosis (OR: 6.9; 95% CI:
2.2–21.4) were associated with large-artery atherosclerosis; ischemic heart disease (OR: 4.9;
95% CI: 1.6–14.7), atrial fibrillation (OR: 14.0; 95% CI: 4.8–40.8), and active neoplasm (OR:
7.1; 95% CI: 1.4–36.2) with cardioembolic stroke; chronic kidney disease (OR: 6.23; 95% CI:
1.8–21.5) with small-vessel occlusion; and ischemic heart disease (OR: 0.1; 95% CI: 0.01–0.5),
carotid stenosis (OR: 0.1; 95% CI: 0.01–0.8), and chronic kidney disease (OR: 0.2; 95% CI:
0.04–0.9) with strokes of other determined etiology.

Among the AIS patients reported in the literature, 120 patients had available TOAST
criteria, 109 patients had available comorbidity panel, and 93 patients had data regarding
both the TOAST criteria and the comorbidities. Because of the small sample size under
each subgroup of TOAST, further analysis of the association of TOAST and comorbidities
among these patients was not performed.
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Table 2. Characteristics of the patients clustered with unsupervised machine learning algorithms.

Parameters

Unsupervised Machine Learning Models

ML-K2 (K-Mean) ML-S2 (Spectral) ML-K3 (K-Mean) ML-S3 (Spectral)

a
n = 112
(38.4%)

b
n = 180
(61.6%)

p-
Value

a
n = 173
(60.3%)

b
n = 114
(39.7%)

p-
Value

a
n = 106
(36.3%)

b
n = 87

(29.8%)

c
n = 99

(33.9%)

p-
Value

a
n = 120
(41.8%)

b
n = 123
(42.9%)

c
n = 44

(15.3%)

p-
Value

Age; Mean (SD); Years 62 ± 17 70 ± 13 <0.001 66 ± 17 68 ± 13 0.02 62 ± 17 68 ± 13 72 ± 13 <0.001 63 ± 17 70 ± 14 70 ± 14 <0.001
Sex; Male; n (%) 67 (59.8) 110 (61.1) 0.08 107 (61.8) 66 (57.4) 0.05 63 (59.4) 51 (58.6) 63 (63.6) 0.75 72 (60.0) 77 (62.6) 24 (53.3) <0.001
Large Vessel Occlusion; n (%) 46 (48.4) 73 (42.7) 0.37 64 (42.1) 54 (50.0) 0.21 46 (49.5) 36 (44.4) 38 (40.4) 0.47 55 (53.4) 41 (35.3) 22 (53.7) 0.64
Intravenous Thrombolysis; n (%) 16 (14.3) 23 (12.8) 0.71 17 (9.8) 23 (17.5) 0.06 14 (13.2) 15 (17.2) 10 (10.1) 0.36 15 (12.5) 10 (8.1) 12 (27.3) 0.01
Mechanical Thrombectomy; n (%) 10 (8.9) 14 (7.8) 0.73 12 (6.9) 12 (10.5) 0.28 10 (9.4) 8 (9.2) 6 (6.1) 0.63 13 (10.8) 7 (5.7) 4 (9.1) 0.34
National Institutes of Health Stroke Scale
(NIHSS); Median (IQR) 12.0 ± 9.0 11.0 ± 8.0 0.52 11.0 ± 8.0 13.0 ± 8.0 0.11 10 (5–19) 12 (6–18) 8 (4–16) 0.28 11 (5–19) 8 (4.16) 13 (7–20) 0.03

TOAST Criteria
Large-Artery Atherosclerosis; n (%) 25 (38.5) 31 (29.8)

0.03

32 (31.1) 24 (35.8)

0.002

23 (36.5) 19 (40.4) 14 (23.7)

0.08

27 (38.6) 23 (30.7) 6 (24.0)

0.003
Cardio-Embolism; n (%) 11 (16.9) 35 (33.7) 19 (18.4) 27 (40.3) 11 (17.5) 15 (31.9) 20 (33.9) 14 (20.0) 17 (22.7) 15 (60.0)
Small-Vessel Occlusion; n (%) 7 (10.8) 9 (8.7) 11 (10.7) 6 (9.0) 7 (11.1) 4 (8.5) 5 (8.5) 7 (10.0) 8 (10.7) 2 (8.0)
Stroke of Other Determined Etiology; n (%) 9 (13.8) 4 (3.8) 12 (11.7) 1 (1.5) 9 (14.3) 1 (2.1) 3 (5.1) 9 (12.9) 4 (5.3) 0 (0.0)
Stroke of Undetermined Etiology; n (%) 13 (20.0) 25 (24.0) 29 (28.2) 9 (13.4) 13 (20.6) 8 (17.0) 17 (28.8) 13 (18.6) 23 (30.7) 2 (8.0)

Imaging Patterns
Embolic-Appearing; n (%) 74 (83.1) 131 (79.4)

0.44
115 (79.3) 84 (80.8)

0.38

71 (82.6) 59 (77.6) 75 (81.5)

0.49

83 (84.7) 81 (73.6) 35 (85.4)

0.22
Lacune; n (%) 10 (11.2) 15 (9.1) 18 (12.4) 8 (7.7) 10 (11.6) 6 (7.9) 9 (9.8) 10 (10.2) 12 (10.9) 4 (9.8)
Borderzone; n (%) 5 (5.6) 18 (10.9) 12 (8.3) 11 (10.6) 5 (5.8) 10 (13.2) 8 (8.7) 5 (5.1) 16 (14.5) 2 (4.9)
Vasculitis Pattern; n (%) 0 (0.0) 1 (0.6) 0 (0.0) 1 (1.0) 0 (0.0) 1 (1.3) 0 (0.0) 0 (0.0) 1 (0.9) 0 (0.0)

Interval Between Infection Onset to Stroke;
Median (IQR); Days

6.0 ± 7.0 5.0 ± 6.0 0.19 6.0 ± 7.0 5.0 ± 7.0 0.38 7.0 ± 7.0 5.0 ± 7.0 5.0 ± 6.0 0.28 6.0 ± 7.0 5.0 ± 6.0 6.0 ± 8.0 0.37

Mechanical Ventilation; n (%) 36 (32.1) 47 (26.1) 0.27 51 (29.5) 32 (28.1) 0.80 34 (32.1) 24 (27.6) 25 (25.3) 0.55 39 (32.5) 31 (25.2) 13 (25.9) 0.27
Disposition

Discharged Home; n (%) 53 (48.6) 72 (40.2)
0.36

81 (47.4) 43 (37.7)
0.27

50 (48.5) 38 (43.7) 37 (37.8)
0.57

56 (47.1) 51 (41.8) 17 (38.6)
0.27In Hospital Mortality; n (%) 27 (24.8) 49 (27.4) 41 (24.0) 33 (28.9) 24 (23.3) 25 (28.7) 27 (27.6) 27 (22.7) 30 (24.6) 17 (38.6)

Still in Hospital/Subacute Care; n (%) 29 (26.6) 58 (32.4) 49 (28.7) 38 (33.3) 29 (28.2) 24 (27.6) 34 (34.7) 36 (30.3) 41 (33.6) 10 (22.7)
Length of Hospital Stay; Median (IQR); Days 14.0 ± 15.0 11 ± 9.0 0.14 13.0 ± 14.0 11.0 ± 9.0 0.23 14.0 ± 15.0 12.0 ± 9.0 10.0 ± 8.0 0.11 13.0 ± 15.0 12.0 ± 9.0 10.0 ± 7.0 0.56
Comorbidities

Hypertension; n (%) 0 (0.0) 179 (99.4) <0.001 65(37.6) 109 (94.8) <0.001 0 (0.0) 80 (92.0) 99 (100.0) <0.001 13 (10.8) 121 (98.4) 40 (88.9) <0.001
Diabetes Mellitus; n (%) 16 (14.3) 81 (45.0) <0.001 13(7.5) 83 (72.2) <0.001 10 (9.4) 87 (100.0) 0 (0.0) <0.001 11 (9.2) 51 (41.5) 34 (75.6) <0.001
Ischemic Heart Disease; n (%) 16 (14.3) 55 (30.6) 0.002 13(7.5) 58 (50.4) <0.001 10 (9.4) 36 (41.4) 25 (25.3) <0.001 26 (21.7) 1 (0.8) 44 (97.8) <0.001
Atrial Fibrillation; n (%) 10 (8.9) 31 (17.2) 0.05 14(8.1) 28 (24.3) <0.001 9 (8.5) 14 (16.1) 18 (18.2) 0.11 9 (7.5) 16 (13.0) 17 (37.8) <0.001
Carotid Stenosis; n (%) 4 (3.6) 34 (18.9) <0.001 10(5.8) 27 (23.5) <0.001 4 (3.8) 21 (24.1) 13 (13.1) <0.001 5 (4.2) 15 (12.2) 17 (37.8) <0.001
Chronic Kidney Disease; n (%) 14 (12.5) 27 (15.0) 0.55 28(16.2) 13 (11.3) 0.25 14 (13.2) 10 (11.5) 17 (17.2) 0.51 12 (10.0) 26 (21.1) 3 (6.7) 0.01
Cardiac Ejection Fraction <40%; n (%) 2 (1.8) 22 (12.2) 0.002 7(4.0) 17 (14.8) <0.001 2 (1.9) 10 (11.5) 12 (12.1) 0.01 3 (2.5) 13 (10.6) 8 (17.8) 0.003
Active Neoplasm; n (%) 6 (5.4) 15 (8.3) 0.34 7 (4.0) 14 (12.2) 0.009 4 (3.8) 9 (10.3) 8 (8.1) 0.19 6 (5.0) 5 (4.1) 10 (22.2) <0.001
Rheumatological Disease; n (%) 1 (0.9) 4 (2.2) 0.39 4 (2.3) 1 (0.9) 0.36 1 (0.9) 1 (1.1) 3 (3.0) 0.46 1 (0.8) 4 (3.3) 0 (0.0) 0.22
Prior Stroke or Transient Ischemic Attack; n (%) 2 (1.8) 3 (1.7) 0.94 2 (1.2) 3 (2.6) 0.36 1 (0.9) 3 (3.4) 1 (1.0) 0.33 1 (0.8) 2 (1.6) 2 (4.4) 0.28
Smoking; n (%) 7 (6.3) 41 (22.8) <0.001 19 (11.0) 27 (23.5) 0.005 7 (6.6) 17 (19.5) 24 (24.2) 0.002 10 (8.3) 24 (19.5) 12 (26.7) 0.006

ML-K2: machine learning model using K-mean, dividing the patients into two subgroups; ML-S2: machine learning model using spectral, dividing the patients into two subgroups; ML-K3: machine learning
model using K-mean, dividing the patients into three subgroups; ML-S3: machine learning model using spectral, dividing the patients into three subgroups. Please note a, b, and c in this table are not based on
the number of comorbidities and just indicated a distinct subgroup detected by unsupervised algorithms. Due to missingness, we provided the valid percentages in this table.
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Table 3. The proportion of comorbidities under each subgroup of TOAST in original dataset and literature review dataset. Due to missingness, the valid percentages are reported in
this table.

Parameter

Original Data from Multicenter Study Literature Review

Large Artery
Atherosclerosis
n = 56 (32.9%)

Cardio-Embolic
n = 46 (27.1%)

Small Artery
Occlusion

n = 17 (10.0%)

Other
Determined
Etiologies

n = 13 (7.6%)

Undetermined
Etiology

n = 38 (22.4%)
p-Value

Large Artery
Atherosclerosis
n = 12 (10.0%)

Cardio-Embolic
n = 17 (14.2%)

Small Artery
Occlusion

n = 8 (6.7%)

Other
Determined
Etiologies

n = 37 (30.8%)

Undetermined
Etiology

n = 46 (38.3%)
p-Value

Hypertension n (%) 30 (53.6) 35 (76.1) 10 (58.8) 4 (30.8) 25 (65.8) 0.025 6 (66.7) 7 (50.0) 2 (33.3) 15 (48.4) 19 (54.3) 0.762
Diabetes Mellitus n (%) 20 (35.7) 15 (32.6) 6 (35.3) 1 (7.7) 12 (31.6) 0.407 3 (33.3) 1 (7.1) 2 (33.3) 12 (38.7) 17 (48.6) 0.112
Ischemic Heart Disease
n (%)

11 (19.6) 21 (45.7) 3 (17.6) 1 (7.7) 2 (5.3) <0.001 3 (33.3) 1 (7.1) 0 (0.0) 1 (3.2) 3 (8.6) 0.063

Atrial Fibrillation n (%) 2 (3.6) 23 (50.0) 4 (23.5) 1 (7.7) 1 (2.6) <0.001 1 (11.1) 2 (14.3) 0 (0.0) 3 (9.7) 7 (20.0) 0.625
Carotid stenosis n (%) 16 (28.6) 6 (13.0) 1 (5.9) 0 (0) 2 (5.3) 0.005 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.2) 1 (2.9) 0.923
Chronic Kidney
Disease n (%)

8 (14.3) 3 (6.5) 6 (35.3) 1 (7.7) 3 (7.9) 0.028 1 (11.1) 0 (0.0) 0 (0.0) 1 (3.2) 0 (0.0) 0.296

Congestive Heart
Failure with Cardiac
Ejection Fraction < 40%
n (%)

5 (8.9) 8 (17.4) 1 (5.9) 1 (7.7) 5 (13.2) 0.612 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.90) 0.785

Active Neoplasm n (%) 2 (3.6) 9 (19.6) 1 (5.9) 0 (0) 0 (0) 0.003 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) *
Rheumatological
Disease n (%)

0 (0) 3 (6.5) 1 (5.9) 0 (0) 1 (2.6) 0.321 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) *

Previous
stroke/Transient
Ischemic Attack n (%)

0 (0) 0 (0) 0 (0) 0 (0) 1 (2.6) 0.479 2 (22.2) 0 (0.0) 0 (0.0) 2 (6.5) 3 (8.6) 0.315

Current Smoker n (%) 11 (19.6) 5 (10.9) 2 (11.8) 0 (0) 4 (10.5) 0.336 1 (11.1) 2 (14.3) 1 (16.7) 2 (6.3) 3 (8.6) 0.878

* Due to missingness, this value could not be computed. We provided the valid percentages in this table.
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4. Discussion

The results of our study indicated that SARS-CoV-2 infection could cause AIS among
a considerable number of young and majority male patients who did not have vascular
risk factors. The majority of these young patients had embolic-appearing stroke on their
neuroimaging. Stroke in older patients can be attributed to the existing vascular risk factors.

4.1. Unsupervised Clustering Identified Three Subgroups of SARS-CoV-2 Infected AIS Patients

Despite several reports of special features and probable underlying coagulopathy
in AIS with prior SARS-CoV-2 infection [2,4,6–10], similar reports are lacking in the lit-
erature regarding acute coronary syndrome and cardiovascular thromboembolic events.
The majority of adverse outcomes among patients with stroke [39,40] or acute coronary
syndrome [11–15] were related to the declining trend in seeking urgent care, hospitalization,
and receiving guideline indicated measures. On the other hand, the meta-analyses of AIS
infected patients presented a mean age of over 65 years and a high load of comorbidi-
ties [21,22]. Thereby, there might be a specific group of AIS patients with prior SARS-CoV-2
infection that can be attributed to the virus, while the incidence of stroke among other
patients, especially older patients, might be related to their vascular risk factors or critical
illness. On this basis, we analyzed the data from our Multinational COVID-19 Stroke Study
Group [20] and a dataset of reported patients in the literature. The two cohorts facilitated
the identification of three main subgroups. The first group includes patients with no or
very few comorbidities—EX-A3a, EX-S3a, ML-K3a, and ML-S3a. The majority of these
patients are young men who had an embolic-appearing stroke. The second subgroup was
distinguishable by having a high proportion of hypertension, diabetes, chronic kidney
disease, and carotid stenosis, large-artery atherosclerosis origin of stroke, and embolic-
appearing stroke on imaging—ML-K3b, ML-S3b, EX-A3b, and EX-S3b. The third group
presented with hypertension, diabetes, ischemic heart disease, atrial fibrillation, congestive
heart failure, smoking, and prior TIA or stroke—ML-K3c, ML-S3c, EX-A3c, and EX-S3c. The
majority of the patients in the third group had cardioembolic strokes based on the TOAST
classification and had a consistent imaging pattern. Subgroups of patients identified by
clinical risk scoring and unsupervised clustering based on the comorbidity panels were
similar in the original and literature review datasets. However, unlike the original dataset,
the etiology of the stroke in the majority of patients in the second and third subgroups
of the review datasets were reported as “strokes of undetermined etiology”. Overall, the
identified pattern demonstrated by all models may indicate that AIS in only a subgroup of
patients can be attributed to the SARS-CoV-2 infection (subgroup a in all models), while AIS
in the second and third group of patients may be explained by the existing comorbidities.

4.2. Higher Proportion of AIS Showed Lack of Comorbidities among SARS-CoV-2 Infected Patients

Our study indicated a subgroup of patients with no known comorbidities among the
SARS-CoV-2 infected patients (22.0%).The result of our systematic literature review on
SARS-CoV-2 infected stroke patients reported from 36 centers in nine countries similarly
demonstrated that 24% of the patients had no prior comorbidities. The proportion of the
patients without known comorbidities was not available from large-scale studies on SARS-
CoV-2 infected stroke patients reported from the UK [5] and the Global COVID-19 Stroke
Registry [41]. However, a case series from New York presented that among 32 infected AIS
patients, seven (22%) did not report hypertension, diabetes, dyslipidemia, coronary artery
disease, congestive heart failure, atrial fibrillation, prior stroke or transient ischemic stroke,
or active smoking [42]. A series of 22 AIS patients with SARS-CoV-2 infection from the
US demonstrated that 12 out of 22 (54%) of the patients did not report any comorbidities
(i.e., hypertension, congestive heart failure, chronic lung disease, chronic kidney disease,
diabetes, or atrial fibrillation) [43]. In a report of six consecutive SARS-CoV-2 infected
AIS patients from the UK, one patient (16%) had no prior medical history [44]. All of
these patients had LVO strokes and elevated D-dimer levels. Similarly, among the five
young patients in the US who had LVO stroke after SARS-CoV-2, 2 (40%) reported no prior
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comorbidities [1]. These findings may suggest that after SARS-CoV-2 infection, higher
percentages of patients without comorbidities are having a stroke.

4.3. The Proportion of Comorbidities under Each Subclass of TOAST Is Similar to Population
Studies Prior to the Pandemic

The second report from our Multinational COVID-19 Stroke Study Group [20] in-
dicated a lower rate of small-vessel occlusion and lacunar infarcts and a higher risk of
embolic-appearing stroke in patients with SARS-CoV-2 infection in comparison with pop-
ulation studies conducted prior to the pandemic. These findings were valid even after
considering the geographical regions and countries’ health expenditure. The results of
subgroup analyses and binary logistic regression in the current study presented that the
comorbidity panel of the patients from the original dataset is consistent with the stroke
subtypes. To see if the comorbidity panel of AIS patients infected with SARS-CoV-2 was
consistent with the large-scale population studies, we further investigated the proportion
of comorbidities under each subclass of TOAST (Table 3). We observed that in comparison
with population studies, AIS patients infected with SARS-CoV-2 have an almost simi-
lar rate of comorbidities under each subclass of TOAST [45–48]. Among patients with
large-artery atherosclerosis in our study, 54% had hypertension (versus 54–85%), 36%
had diabetes (versus 13–32%), and 20% were smokers (versus 17–50%). Among patients
with cardioembolism, hypertension was recorded in 76% (versus 59–86%), diabetes in 33%
(versus 13–32%), ischemic heart disease in 46% (versus 20–32%), and atrial fibrillation in
50% (versus 79–86%). Similarly, patients with small-vessel occlusion had 59% hypertension
(versus 54–58%), 35% diabetes (versus 12–35%), and 18% ischemic heart disease (versus
15–20%) [45–48]. The result of the literature review presented similar findings, although
we recognized a selective report of patients with a lower comorbidity panel (Table 3).
These findings suggest that the comorbidities under each stroke etiology are not highly
different from the population studies prior to the pandemic, and we should still consider
the possibility of bias in reporting the patients with SARS-CoV-2 infection and stroke before
concluding the role of the virus as an absolute direct cause of stroke.

5. Study Limitations

To build up the database of SARS-CoV-2 infected patients with stroke, several attempts
have been made in collaboration with multiple centers around the world. In addition, we
reviewed all available reports to present a comprehensive overview of the topic. Despite
this effort, these findings could largely be affected by selection and low sample size bias
as well as bias due to incomplete diagnostic workups. In addition, we could not include
dyslipidemia in the comorbidity list because data regarding lipid profile could not pass
the quality control phase. For instance, some of the included patients were reported before
comprehensive diagnostic tests, which may cause a bias in determining the subclasses
of TOAST criteria. We also detected publication bias among the reported patients in the
literature (significantly lower age, higher LVOs, more severe strokes, and strokes with
undetermined and other determined etiologies). In addition, clustering the patients in
this study is limited to the vascular risk factors, and we did not include the laboratory
findings. Lastly, the unsupervised algorithms tend to be susceptible to the presence of
outliers, especially when used for data with a small sample size.

6. Conclusions

Among patients with SARS-CoV-2 and acute ischemic stroke, there is a considerable
number of young and majority male patients who did not report vascular risk factors.
Therefore, young patients with SARS-CoV-2 infection should be monitors for the sign and
symptoms of vascular events, including ischemic stroke. It is reasonable to ensure that
these patients and their families are aware of early signs of stroke (BE-FAST) [49]. Stroke in
other patients can be attributed to the existing comorbidity panel. We also observed that
the proportions of comorbidities under each subclass of TOAST criteria were not different
from the population studies prior to the SARS-CoV-2 pandemic.
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Abstract: Whether a patient with severe coronavirus disease (COVID-19) will be successfully liberated
from mechanical ventilation (MV) early is important in the COVID-19 pandemic. This study aimed
to characterize the time course of parameters and outcomes of severe COVID-19 in relation to the
timing of liberation from MV. This retrospective, single-center, observational study was performed
using data from mechanically ventilated COVID-19 patients admitted to the ICU between 1 March
2020 and 15 December 2020. Early liberation from ventilation (EL group) was defined as successful
extubation within 10 days of MV. The trends of respiratory mechanics and laboratory data were
visualized and compared between the EL and prolonged MV (PMV) groups using smoothing
spline and linear mixed effect models. Of 52 admitted patients, 31 mechanically ventilated COVID-
19 patients were included (EL group, 20 (69%); PMV group, 11 (31%)). The patients’ median
age was 71 years. While in-hospital mortality was low (6%), activities of daily living (ADL) at
the time of hospital discharge were significantly impaired in the PMV group compared to the
EL group (mean Barthel index (range): 30 (7.5–95) versus 2.5 (0–22.5), p = 0.048). The trends in
respiratory compliance were different between patients in the EL and PMV groups. An increasing
trend in the ventilatory ratio during MV until approximately 2 weeks was observed in both groups.
The interaction between daily change and earlier liberation was significant in the trajectory of the
thrombin–antithrombin complex, antithrombin 3, fibrinogen, C-reactive protein, lymphocyte, and
positive end-expiratory pressure (PEEP) values. The indicator of physiological dead space increases
during MV. The trajectory of markers of the hypercoagulation status, inflammation, and PEEP were
significantly different depending on the timing of liberation from MV. These findings may provide
insight into the pathophysiology of COVID-19 during treatment in the critical care setting.

Keywords: COVID-19; mechanical ventilation; respiratory failure

1. Introduction

The number of patients with coronavirus disease (COVID-19) is increasing worldwide,
including in Japan. In Japan, 8.1% of all COVID-19 cases require mechanical ventilation
(MV), and the 30-day mortality rate has been reported to be 30% [1–3]. COVID-19 requires
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a longer treatment duration than other causes of viral pneumonia, with a median length
of stay in the intensive care unit (ICU) of 10 days [4]. Once the capacity of ICU services
for COVID-19 is overwhelmed, a significant increase in mortality and excess mortality
from any cause may be expected [3,5]. Furthermore, prolonged MV is a risk factor for
ICU-acquired weakness [6]. In this context, whether the patient with severe COVID-19 will
be liberated from MV is of particular interest for improving patients’ outcomes.

Thus far, little is known about the time course of COVID-19-related respiratory fail-
ure during ICU treatment. Previous studies have suggested that severe COVID-19 is
characterized by excessive inflammation and hypercoagulation [7–9]. In addition to the
conventional acute respiratory distress syndrome phenotype, there is another phenotype
of high pulmonary compliance and increased physiologic dead space, which is thought to
be due to pulmonary microthrombosis [10]. Meanwhile, lower compliance was reported
to be associated with prolonged MV, which is similar to findings in other causes of acute
respiratory distress syndrome [11]. Considering the complexity of the pathophysiology
of severe COVID-19, knowledge of how time series data of clinical parameter changes is
needed to assess the response to treatment and to make clinical decisions. However, it is
poorly documented how respiratory and laboratory findings—including respiratory com-
pliance, physiologic dead space, and inflammatory and coagulation biomarkers of severe
COVID-19—change in response to empirical treatment, including anti-viral medication
usage, anti-coagulation, or corticosteroid administration.

The aim of this study was to characterize the time course of the parameters and
outcomes of severe COVID-19 in relation to the timing of liberation from MV.

2. Materials and Methods

2.1. Ethics Statements

The Nagoya University Hospital Institutional Review Board approved this study
(registration number: 2020-0519), and informed consent of the participants was waived but
the opt-out method was adopted according to the ethics guidelines.

2.2. Study Design, Setting, and Population

To characterize the time course of the parameters and outcomes of severe COVID-19
in relation to the timing of liberation from MV, we conducted a retrospective observational
study at Nagoya University Hospital from 1 March 2020 to 15 December 2020. Nagoya
University Hospital is a quaternary academic medical center with 1035 beds, including
10 emergency and medical ICU (EMICU) beds and 30 surgical ICU beds, located in the Aichi
Prefecture, one of the epicenters of COVID-19 from the first wave of the pandemic in Japan.
The EMICU usually treats 10–20 patients with extracorporeal membrane oxygenation
(ECMO) annually for the management of severe respiratory failure or cardiogenic shock.
All severe COVID-19 cases in the hospital and transfers from other hospitals, which are
coordinated by the Infectious Disease Control Office in Nagoya City, were admitted to the
air-isolated beds of the EMICU. Patients requiring less than 4 L of oxygen were transferred
to another COVID-19 ward.

Eligible patients in this study had COVID-19 that required MV. Exclusion criteria
were patients introduced to venovenous (VV)-ECMO. The diagnosis of COVID-19 was
confirmed by real-time polymerase chain reaction test of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) from any specimen. Patients were categorized into the early
liberation from ventilation group (EL group) or prolonged MV group (PMV group). Early
liberation from MV was defined as successful extubation within 10 days of MV, since
10 days is the widely adopted duration of antiviral and steroid treatment [12,13].

2.3. Management of Coronavirus Disease

All mechanically ventilated patients with COVID-19 were initially managed with
pressure-controlled ventilation. Placement in the prone position was considered when
the PaO2/FiO2 ratio was less than 150, and was performed at the physicians’ discretion.
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Neuromuscular blockade was administered for less than 48 h when significant patient
ventilator desynchrony was observed. All patients received favipiravir or remdesivir as
antiviral medications, depending on clinical availability. A 10-day course of intravenous
dexamethasone (6.6 mg) once daily was initially started [12]. Antibiotics were administered
to patients with suspected bacterial co-infections. Unfractured heparin was administered
and titrated to maintain the activated prothrombin time ratio between 1.5 and 2.5 after MV
in all patients [14]. Tracheostomy was considered if patients could not be extubated within
10 days [15]. Because of inadequate personal protective equipment and concerns about
nosocomial infections, physiotherapists were unable to be directly involved in bedside
rehabilitation [16]. The bedside rehabilitation was performed by a physiotherapist after
negative conversion of the SARS-CoV-2 PCR test result, or it was performed by doctors and
nurses under the supervision of a physiotherapist after the patient was liberated from MV.

2.4. Data Collection

Demographic information was extracted from patients’ electronic medical records.
The details of the parameters during ICU management were extracted from the ICU patient
information system (Fortec ACSYS, Phillips Japan). Ventilator parameters were recorded
minutely by the IntelliVue MX800 (Philips Japan). Static compliance was calculated using
the tidal volume and driving pressure. As an indicator of physiologic dead space, the ven-
tilatory ratio was calculated using the following formula: [minute ventilation (mL/min)×
partial pressure of carbon dioxide (mm Hg)]/(predicted body weight × 100 × 37.5) [17,18].
The following laboratory parameters were routinely monitored daily during MV and ex-
tracted from the database: coagulation markers (D-dimer, thrombin-antithrombin complex
(TAT), plasmin-alpha2-plasmininhibitor-complex, fibrin degradation products (FDP), an-
tithrombin 3 (AT3), fibrinogen, activated partial thromboplastin time ratio, and platelet
count), biomarkers of inflammation and lung injury (C-reactive protein level, procalcitonin
(PCT) level, ferritin level, white blood cell count, neutrophil count, lymphocyte count, 50%
hemolytic complement activity (CH50), and Krebs von den Lungen-6 (KL-6)). Activities of
daily living (ADL) before admission and at the time of hospital discharge were measured
using the Barthel index, which was routinely evaluated by the nurses and recorded in the
nursing summary [19,20].

2.5. Statistical Analysis

Continuous data are summarized as median and interquartile range (25th–75th per-
centiles). Categorical variables are expressed as numbers (%). Non-parametric variables
were compared between the EL and PMV groups using the Mann–Whitney U test. The
Barthel index at hospital discharge was compared between the groups, and the median
Barthel index of each component in both groups was visualized using a Rader chart. Non-
parametric trending changes in each parameter in both groups were fitted by smoothing
splines. Additionally, multivariable mixed effect linear regression models were used to
evaluate the longitudinal associations between daily changes in each parameter during
initial 5 days and the EL group [21]. Variables were excluded from this evaluation when
the linearity assumption seems to be inappropriate, by judging from the spline regression
analysis. Within-subject changes were included in the model as random effects to adjust
for patient factors. Early liberation, days after MV, and their interaction were assumed
as fixed effects in the model. When the interaction term was statistically significant, we
considered that the trajectory of the parameter was different between the two groups.
Using the parameters that showed significant differences in daily changes that interacted
with early liberation in the linear mixed effect model, the trajectory of each parameter was
converted into the coefficient using linear regression model, and finally converted into
the EL prediction score. The cutoff of each coefficient was determined by the results of
the linear mixed effect model. Receiver operating characteristic (ROC) curve analysis was
subsequently used to evaluate the performance of the predictive score. For missing data,
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the number of missing values were reported and complete-case analysis was performed.
All analyses were performed using R software (version 4.0.2; The R Foundation).

3. Results

3.1. Patient Characteristics and Outcomes

Of the 52 patients with COVID-19 admitted to the EMICU during the study period, 31
of 32 mechanically ventilated patients were included in this study; one patient required VV-
ECMO and was excluded (Supplementary Figure S1: additional file S1). The details of the
baseline characteristics are shown in Table 1. The median age of the patients was 71 years.
Most patients did not require nursing care before admission (median Barthel index: 100)
and were more likely to be male (86%). Common comorbidities included diabetes mellitus
(58%) and hypertension (38%). Twenty cases were successful in early liberation from MV
(69%). The median worst partial pressure of oxygen/fraction of inspired oxygen (P/F)
ratio was found to be 96. The initial ventilatory parameters did not differ between the
groups. D-dimer levels were slightly elevated in the PMV group compared to the MV
group. Overall, in-hospital mortality was low (6%), and one patient developed massive
ischemic stroke after extubation and was withdrawn from care. Figure 1A,B shows the
Barthel indexes of both groups at hospital discharge. ADL at the time of hospital discharge
was significantly impaired in the PMV group compared to the EL group (median Barthel
index (range): 30 (7.5–95) versus 2.5 (0–22.5), p = 0.048).

Table 1. Patient characteristics.

Characteristic Total Patients (31)
Early Liberation from MV p Value

Success (20) Failure (11)

Age, years, median (IQR) 71 (64–76) 71 (64–77) 70 (56–73) 0.535

Male sex, n (%) 25 (81) 17 (85) 8(73) 0.546

BMI (kg/m2), median (IQR) 24.5 (21.8–28.5) 25.2 (21.5–28.5) 23.2 (22.4– 30.2) 0.67

Comorbidities, n, median (IQR) 1 (1–2) 1 (1–2) 2 (1–2) 0.118

HT, n (%) 11 (35) 6 (30) 5 (45) 0.452

DM, n (%) 18 (58) 10 (50) 8 (73) 0.275

Chronic heart failure, n (%) 3 (9.6) 1 (5) 2 (18) 0.281

End-stage renal disease, n (%) 5 (16) 2 (10) 3 (27) 0.317

Cancer, n (%) 2 (6.4) 1 (5) 1 (9.1) >0.99

Chronic pulmonary disease, n (%) 2 (6.4) 1 (5) 1 (9.1) >0.99

Dementia, n (%) 3 (9.6) 3 (15) 0 (0) 0.535

4C mortality score, median (IQR) 12 (11–14) 12 (11–13) 12 (11–14) 0.707

SOFA score, median (IQR) 7 (6–10) 7 (5–10) 7 (6–10) 0.802

APACHE II score, median (IQR) 13 (11–19) 13 (11–19) 15 (11–19) 0.521

Parameters at the time of MV

PaO2/FiO2 ratio 96 (82–114) 85 (81–114) 101 (89–113) 0.47

Static compliance, mL/cmH2O, median
(IQR)

38 (33–42) 38 (34–43) 38 (33–39) 0.614

Ventilatory ratio, median (IQR) 1.26 (1.17–1.41) 1.24 (1.17–1.32) 1.38 (1.18–1.58) 0.119

PEEP, cmH2O 11 (10–14) 10 (10–12) 14 (10–15)

NMB, n (%) 5 (16) 4 (20) 1 (9.1)

Prone positioning, n (%) 13 (42) 7 (35) 6 (55) 0.477
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Table 1. Cont.

Characteristic Total Patients (31)
Early Liberation from MV p Value

Success (20) Failure (11)

D-dimer level, µg/mL, median (IQR) 2.31 (1.52–4.54) 1.63 (1.09–4.18) 3.36 (2.35–10.1) 0.132

Treatment

Anti-viral, n (%)
Favipiravir 15 (48) 8 (40) 7 (64)
Remdesivir 16 (52) 13 (65) 3 (27)

Steroid, n (%) 26 (84) 19 (95) 7 (64) 0.0416

Initial antibacterial drug, n (%) 21 (68) 14 (70) 7 (64) >0.99

Tracheostomy, n (%) 7 (23) 0 (0) 7 (64) <0.001

Duration of mechanical ventilation (days),
median (IQR)

10 (5–20) 6 (4–9) 24 (20–30) <0.001

ICU stay, median (IQR) 12 (10–20) 11 (8–12) 27 (21–36) <0.001

In-hospital mortality, n (%) 2 (6.5) 1 (5) 1 (9.1) >0.99

Barthel index at discharge, median (IQR) 20 (0–65) 30 (7.5–95) 2.5 (0–22.5) 0.048

BMI, body mass index; HT, hypertension; DM, diabetes mellitus; SOFA, Sequential Organ Failure Assessment; APACHE II, acute physiology
and chronic health evaluation II; MV, mechanical ventilation; PaO2/FiO2, partial pressure of oxygen/fraction of inspired oxygen; PEEP,
positive end-expiratory pressure; NMB, neuromuscular blockade; ICU, intensive care unit.

μ

 

Figure 1. Comparison of the Barthel index at hospital discharge between the early liberation and
prolonged mechanical ventilation groups. (A) Comparison between the two groups. (B) Radar chart
of each component of the Barthel index. EL group, early liberation from ventilation group; PMV
group, prolonged mechanical ventilation group.

3.2. Ventilatory and Laboratory Parameters and Liberation from Mechanical Ventilation

Figure 2 shows the trends in ventilatory parameters in each group. The EL group was
managed with a lower PEEP throughout the period. Trends of compliance and the P/F
ratio were different between the EL and PMV groups with an inflection point on day 5
of MV. The ventilatory ratio was higher in the PMV group than in the EL group. Of note,
an increasing trend in the ventilatory ratio during MV until approximately 2 weeks was
observed in both groups.

Figures 3 and 4 show each trend of laboratory parameters according to the duration
of MV. Despite appropriate therapeutic anticoagulation, D-dimer and FDP levels were
gradually increased and the AT3 level was decreased until day 14 in the PMV group. A
decrease in the platelet count was not observed. In terms of inflammatory biomarkers,
CRP levels were continuously high in the PMV group. PCT levels were initially high in
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patients with successful early liberation, and then they immediately became negative. The
ferritin levels increased in both groups at about 2 weeks, but a significant difference in their
trajectory was not observed. While the CH50 level was decreased within the normal range,
it increased in the EL group. KL-6 levels were significantly high initially in the PMV group,
but elevation of KL-6 levels was observed in both groups.

Figure 2. Trend of respiratory mechanic parameters in relation to the timing of liberation from
mechanical ventilation. PEEP, positive end-expiratory pressure; EL group, early liberation from
ventilation group; PMV group, prolonged mechanical ventilation group. The number of study
timepoint: static compliance, 474,429; ventilatory ratio, 1813; PEEP, 474,941; PaO2/FiO2 ratio, 1778.

Figure 3. Trends of the coagulation parameters. FDP, fibrin degradation products; TAT, thrombin-antithrombin complex;
PIC, plasmin-alpha2-plasmininhibitor-complex; APTT-R, activated partial thromboplastin time ratio; AT3, antithrombin 3;
EL group, early liberation from ventilation group; PMV group, prolonged mechanical ventilation group. The number of
study timepoint: D-dimer, 393; FDP, 392; TAT, 355; PIC, 354; APTT-R, 394; AT3, 392; platelet, 394; FG, 394.
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Figure 4. Trends of the laboratory parameters of inflammation. CH50, 50% hemolytic complement activity; CRP, C-reactive
protein; PCT, procalcitonin; WBC, white blood cell; KL6, Krebs von den Lungen-6; EL group, early liberation from ventilation
group; PMV group, prolonged mechanical ventilation group. The number of study timepoint: CRP, 394; PCT, 392; Ferritin,
349; CH50, 198; WBC, 396; neutrophil, 393; lymphocyte, 393; KL6, 370.

The results of the longitudinal association between daily changes in each parameter
during the initial 5 days and early liberation from MV are shown in Supplementary
Figure S2 (Additional file S2). We found that CRP (p = 0.048), TAT (p = 0.019), fibrinogen
(p = 0.002), AT3 (p < 0.001), lymphocyte (p = 0.009), and PEEP (p < 0.001) values showed
significantly different daily changes that interacted with early liberation. An EL prediction
score was developed using the trajectory of these variables (Supplementary Figure S3:
Additional file S3). The area under ROC for the prediction of early liberation (95 %CI) was
0.913 (0.823–1), which was significantly higher than other severity scales (0.573 (0.34–0.802),
0.47 (0.262–0.679), and 0.457 (0.225–0.689) for the APACHEII, SOFA, and 4C mortality
scores, respectively).

4. Discussion

The main findings of this study are as follows: (1) prolonged MV was significantly
associated with poor ADL at discharge in the setting of rehabilitation-limiting situations;
(2) the trajectory of ventilator and laboratory data were characterized between patients
with early liberation and prolonged MV; and (3) early-phase differences in the trajectories
of hypercoagulability, inflammatory, and PEEP markers were observed depending on the
timing of liberation from MV, which can potentially be useful in identifying patients with
early treatment success.

In this single-center observational study, the mortality rate was low compared to that
in previous reports [1–3]. However, patients with prolonged MV showed significantly
poor ADL. The relationship between the length of MV and ADL is well-known [22]. The
ADL impairment may be due to clinical setting characteristics in the management of
severe COVID-19, i.e., bedside interventions of rehabilitation were significantly impaired
in our hospital because of physiotherapists’ concerns of exhaustion of personal protective
equipment and nosocomial infection. Although we could not evaluate the long-term
outcome of quality of life, our findings indicate that post-intensive care syndrome is
particularly important in COVID-19 patients with prolonged MV. This finding may aid
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in future clinical decision-making and policymaking in terms of staffing and resource
allocation in critical care settings during ongoing pandemics. Our findings indicate the
importance of direct intervention by physiotherapists in the management of COVID-19. The
duration of MV may be used as a surrogate marker for ADL impairment after treatment.

We observed a decreasing trend in respiratory static compliance despite the higher
PEEP setting after day 5 and a higher ventilatory ratio in patients with prolonged MV
than in those with early liberation. In patients with worsening COVID-19, two types of
pathophysiologies may explain this change: pulmonary micro-thromboembolism and
organizing pneumonia [23]. Our findings were consistent with those of previous reports
in that therapeutic anticoagulation was not fully controlled coagulopathy in COVID-
19 [24]. The decrease in the AT3 level and continuous elevation of the TAT suggests poorly
controlled thrombin activity during the treatment. The role of complement activation in
thrombotic tendency uncontrolled by heparin has been previously documented [25]. In
this study, complements were gradually consumed during the treatment phase, which
is consistent with previous findings [26]. Meanwhile, the combination of the elevation
of the KL-6 level, a marker of interstitial lung injury, worsening respiratory compliance
with poor recruitment, and increased physiologic dead space may be explained by the
ongoing fibrin deposition of organizing pneumonia [27,28]. This is consistent with the
pathologic findings of acute fibrinous and organizing pneumonia-predominant histology
in the later phase of treatment, and this may explain the downward trend in compliance
despite the higher PEEP setting [29,30]. To further understand the underlying mechanism
in the exacerbating conditions, prospective studies with computed tomography pulmonary
angiography and/or bronchoalveolar lavage evaluation may be warranted.

Notably, an increasing trend in the ventilatory ratio was also observed in patients
with early liberation and in patients with prolonged ventilation. Taken together, these
findings may indicate that empirical therapeutic anticoagulation and a 10-day course of
dexamethasone (6.6 mg) were not enough to manage the underlying mechanisms. Recently,
the CoDEX trial showed that administration of a higher dose of dexamethasone for severe
COVID-19 shortened the duration of MV [31]. Further evaluation of anticoagulation
and more intensive anti-inflammatory management may be warranted in patients with
prolonged ventilation. The trajectory of respiratory compliance and oxygenation was
different between the two groups after day 5 of MV. Early tracheostomy was associated
with early liberation from MV and preserved ADL [32,33]. It may be reasonable to make a
clinical decision for additional treatment or earlier tracheostomy by reviewing the clinical
time course until about day 5 of MV.

This study has several limitations. Firstly, because of the nature of the single-center
observational study with a small sample size, we mainly focused on descriptive analysis.
Furthermore, selection bias might have occurred in inter-hospital transfers, which may
limit the external validity of our study. The prognostic value of each parameter and the
predictive score should be evaluated in further multicenter studies. Secondly, the titration
of PEEP was not protocolized and carried out according to bedside clinicians’ preferences.
Although a higher PEEP setting was used in patients with prolonged MV, it is unclear
whether these patients require a higher PEEP setting because of poor oxygenation or if
an unnecessarily high PEEP setting was prescribed, as this may worsen the ventilation
perfusion mismatch [34–36].

5. Conclusions

Prolonged MV was associated with poor ADL at hospital discharge during COVID-19
infection. The indicator of physiological dead space increases during MV. The trajectory
of markers of the hypercoagulation status, inflammation, and PEEP were significantly
different depending on the timing of liberation from MV. These findings may provide
insight into the pathophysiology of COVID-19 during treatment in a critical care setting.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10112513/s1, Supplementary Figure S1: Flow diagram of patient selection, Supplementary
Figure S2: Association between daily change in each parameter during the initial 5 days and early lib-
eration from mechanical ventilation. CRP, C-reactive protein; FDP, fibrin degradation products; TAT,
thrombin-antithrombin complex; PIC, plasmin-alpha2-plasmininhibitor-complex; AT3, antirhombin3;
KL6, Krebs von den lungen-6; CH50, 50% hemolytic complement activity; EL group, early libera-
tion from ventilation group; PMV group, prolonged mechanical ventilation group. The number of
missing values were following: KL6, 13; _TAT, 16; PIC, 16; ferritin, 16; CH50, 63, Supplementary
Figure S3: The components of the EL prediction score and its performance. The cutoff coefficient
of each component was determined by the estimated effect of daily change and its interaction with
early liberation (A). The area under the receiver operating characteristic curve of the EL prediction
score was significantly high compared to other severity scales (B). PEEP, positive end-expiratory
pressure; TAT, thrombin-antithrombin complex; AT3, antirhombin3; CRP, C-reactive protein; EL,
early liberation; APACHE II, acute physiology and chronic health evaluation II; SOFA, Sequential
Organ Failure Assessment.
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Abstract: Background. Temporary artery clipping facilitates safe cerebral aneurysm management,
besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict
the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery.
Method. We devised a three-layer model to predict the safe clipping time for TAO. We considered age,
the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left
A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery,
mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left
ACAs, as well as the Fisher grading scale of brain CT scans as the input values for the model. Results.
This study included 125 patients: 105 patients from a retrospective cohort for training the model and
20 patients from a prospective cohort for validating the model. The output of the neural network
yielded up to 960 s overall safe clipping time for TAO. The input values with the greatest impact
on safe TAO were mean velocity of blood at left MCA and left ACA, and Fisher grading scale of
brain CT scan. Conclusion. This study presents an axillary framework to improve the accuracy of the
estimated safe clipping time interval of temporary artery occlusion in intracranial aneurysm surgery.

Keywords: aneurysm surgery; temporary artery occlusion; clipping time; artificial neural network

1. Introduction

Intracranial aneurysms have a prevalence of 3.2% in the general population [1]. Al-
though the majority of patients can remain asymptomatic, cerebral aneurysms have a
significant risk of rupture. Temporary artery occlusion (TAO) is an indispensable technique
to facilitate aneurysm dissection and clipping and to reduce the risk of intra-operative
rupture [2]. However, TAO may be complicated with detrimental consequences such as
cerebral ischemia and postoperative neurological deficits [3]. Thereby, estimating a safe
clipping time (SCT) for TAO is essential to give the surgeons the maximum window to
perform the surgery, and keep the patients safe from the complications of the surgery.
Although several intra-operative neurophysiologic monitoring and imaging methods have
been proposed for determining safe occlusion time [4,5], SCT is mostly estimated based
on clinicians’ expertise in real practice. The purpose of this study is to leverage machine
learning to identify the prominent clinical features determining the outcome of TAO and to
predict the SCT for intracranial aneurysm surgeries.

Machine learning can be used to extract meaningful relationships and patterns from a
set of features (model inputs) for estimating the future values of a phenomenon (model
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outcome). An artificial neural network (ANN) is a type of data mining and pattern
recognition method which reveals complex nonlinear relationships in addition to linear
correlations. ANNs have been widely used in a variety of neurosurgical applications,
such as predicting the occurrence of symptomatic cerebral vasospasm after aneurysmal
subarachnoid hemorrhage [6], traumatic brain injury outcome and survival [7,8], recurrent
lumbar disk herniation [9], and endoscopic third ventriculostomy success in childhood
hydrocephalus [10]. Regarding cerebral aneurysm surgeries, the majority of the studies
deployed these techniques to predict the aneurysm rupture [11,12], or for automated
detection of the aneurysms on imaging [13]. In this study, we aimed to evaluate the
feasibility and validity of ANN modeling in predicting the SCT and for determining the
prominent clinical features of cerebral aneurysm surgeries.

2. Methods

This study was conducted in Shariati Hospital, Tehran, Iran. To develop the ANN, we
used two separate datasets.

2.1. Retrospective Cohort, Training, and Testing Set of the Model

We retrospectively reviewed the medical records of all patients who underwent cran-
iotomy and clipping for aneurysm management between 2004 and 2011. Clinical data,
including demographic information, comorbidities, pre- and post-neurological exami-
nation, Fisher grading scale of computerized tomography (CT) scan imaging, pre- and
post-operative trans cranial doppler (TCD), location and diameter of the aneurysm(s),
and temporary artery clipping time and number(s), were extracted. The presence or
absence of flow-through vessels of the circle of Willis and possible anatomic variations
were indicated by either digital subtraction angiography (DSA), computed tomography
angiography (CTA), magnetic resonance angiography (MRA), or T2 weighted magnetic
resonance imaging (MRI). The mean velocity of flow in cerebral arteries was measured
from pre-operative TCD.

The information from the patients in the retrospective cohort was used to train the
model. To obtain the SCT, we excluded all patients with unfavorable outcomes or any signs
of ischemia. Patients with Glasgow coma scale (GCS) less than 11, presence of a neurologic
deficit in the pre-operative examination, post-operative decline in either motor or sensory
function, or any pathologic finding in neuroimaging other than the presence of aneurysm
were excluded from the training set.

2.2. Prospective Cohort and Validation Set of the Model

Between 2011 and 2013, we devised a protocol to prospectively include the patients
with surgical clipping of cerebral aneurysms (ruptured and un-ruptured). We only in-
cluded those with aneurysms of the anterior communicating artery (AcomA) or middle
cerebral arteries (MCA). Data were collected using the same protocol as the retrospective
cohort. In addition, all patients of the prospective cohort underwent diffusion weighted
imaging (DWI) MRI within 6 h and 24 h of the surgery to rule out cerebral ischemia. We
also measured the diameter of arteries in the circle of Willis (anterior cerebral arteries
(ACA), AcomA, and MCA) from CTA images. Image-J software (Image J 1.42q software,
U.S. National Institutes of Health, Bethesda, MA, USA) was used for this purpose. The
information obtained from the prospective cohort was used to test and validate the model.

2.3. Surgical Techniques

The surgical procedure for clipping of the aneurysms was either a standard pterional
craniotomy (MCA location) or frontotemporal craniotomy (AcomA location). For AcomA
aneurysms, the ipsilateral and contralateral A1 segments were exposed and temporarily
clipped. When the AcomA segment aneurysm was dissected and permanently clipped, the
temporal clipping of the A1 segments was subsequently removed. In MCA aneurysms,
the MCA was exposed from proximal to distal to identify the location of the aneurysm.
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Temporal clipping of the proximal MCA at the M1 segment was applied and then the
aneurysm was dissected. Subsequently, the temporal clip of the MCA was removed. The
duration of temporary vascular obstruction following clipping was measured in seconds.

2.4. Feature Selection for ANN Model

Through a comprehensive literature review and consultation with clinicians, a wide
variety of related clinical and physiological parameters with a possible impact on the SCT
were proposed. Based on the anatomical distribution of intracranial aneurysms and the
importance of compensatory blood flow mechanisms in each segment of the circle of Willis,
11 features were selected as the input for the ANN model.

Age, the diameter of the right and left MCAs, the diameter of the right and left A1
segment of ACAs, the diameter of AcomA, mean velocity of flow at the right and left
MCAs, mean velocity of flow at the right and left ACAs, and Fisher grading scale of brain
CT scan were considered as the input values for the model. The diameter of the P1 segment
of the right and left posterior cerebral arteries (PCAs) and flow in the posterior circulation
were excluded in our final model due to the low prevalence of posterior aneurysms.

2.5. Structure of the ANN Model

A three-layer structure neural network was used in this study: an input layer, one
hidden layer, and an output layer (Figure 1). The number of input values (units) in the
first layer of the model was equal to 11, the same as the number of selected features that
was proposed to affect the outcome of clipping and subsequent ischemia. For determining
the number and structure of the hidden layer, we considered the training accuracy and
generalization. The presence of too many hidden layers (which is needed for accuracy)
may cause overtraining, and this will result in a decline in generalization. To apply the
optimum number of neurons in the hidden layer, the model was run with different counts.
The architecture with five units on the hidden layer was accompanied by the lowest error.
The output layer consisted of only one neuron, representing the SCT as the outcome of
the model.

 

Figure 1. The structure of the artificial neural network. I, input unit; H, hidden unit.

The units within each layer of the model were connected with the units of the adjacent
layers through directed edges (weights). There were no connections between the units
within the same layer [14]. A nonlinear Sigmoid function was applied to the hidden layer,
and a linear function was applied to the output layer.

2.6. Training and Validating of the ANN Model

Five-fold cross-validation was used for this model. In each run of the modeling, 80%
of the retrospective cohort was randomly selected to train the ANN model. The remaining
20% of the dataset was used to test the performance of the model. During the training
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phase, the weights and interactions of the input variables were gradually determined
during each run. For this purpose, each set of input features was broadcast to every unit in
the hidden layer. After computing its activation, each unit in the hidden layer transferred
the signal to the unit of the adjacent output layer. In this way, the response of the network
was computed for a specific set of input values (feed-forward propagation phase). In the
backward propagation phase, the computed activation in the output layer (predicted SCT)
was compared with the observed SCT value (obtained from the patient’s medical record),
and the training error was calculated. The error was then propagated back to each unit of
the hidden layer and updated the weights between the output layer and the hidden units.
Correspondingly, the computed error in this layer was distributed to the input layer and
the weights between the hidden layer and input layer were updated as well. This process
was repeated several times, using different random sets of patients for training and testing
the ANN model.

Data from the prospective cohort of the patients were used to validate the model and
provide the performance metrics for the model. We used the trained ANN model (based
on data from the retrospective cohort) to predict the SCT for patients in the prospective
cohort. This cohort was kept unseen from the ANN algorithms in the training phase to
prevent bias and overfitting.

2.7. Importance of Each Clinical Feature in Predicting the SCT

To evaluate the importance of the input parameters in predicting the SCT, a model
sensitivity test was implemented. For this purpose, we considered a fixed weight of 1 for
all the input variables. In each turn, we increased the weight of one variable up to 10% and
evaluated the variation in the output value. After repeating this process for each input
parameter, we ranked the obtained sensitivity values.

2.8. Estimating the Errors

To evaluate the proposed pattern recognition model performance, two types of error
were proposed. The mean absolute deviation (Equation (1)) calculated the difference
between the clinical assigned SCT values in real practice and those predicted by the model.

Mean Absolute Deviation =
∑

Ntr
i=1

∣

∣SCTi − ˆSCTi

∣

∣

Nte
% (1)

where N is the total number of patients, Ntr =
4N
K the total number of training samples,

Nte =
N
K the total number of test samples, K = 5 the realization of the K-fold validation

algorithm in our model, SCT stands for safe clipping time, and ˆSCTi is the predicted value
as the outcome of the model.

For relative error (Equation (2)), the mean absolute deviation was adjusted by the
greatness of the error according to each value of the observed outcome. This criterion
resulted in a better perception of the bias on the model. The relative error was considered
to report the bias of the model in this study.

Relative Error =
1
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∣
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where the parameters are as above.
MATLAB software was used for mathematical modeling and designing the ANN.

The confidence interval of 95% was assigned to the outputs. We used a T-test to assess the
independence of the outputs by considering a p value less than 5% as significant.

3. Results

A total of 131 patients were evaluated for this study (105 patients from the retrospective
cohort and 26 patients from the prospective cohort). Six patients were excluded from
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the prospective cohort due to low GCS (4 patients) and positive DWI MRI indicating
postoperative cerebral ischemia (2 patients, none could be directly related to temporary
clipping). Demographic data of the included patients, location of the aneurysms, and also
details of the Fisher grading scale of each cohort are available in Table 1.

Table 1. Demographic and surgical characteristics of the patients in retrospective and prospec-
tive datasets.

Parameter
Retrospective Dataset

(n = 105)
Prospective Dataset (n = 20)

Age; Mean (Range); Years 48.7 (30–72) 50.2 (30–76)
Men; n (%) 32 (30.4%) 9 (45%)

Location of Aneurysm
Middle Cerebral Artery; n (%) 80 (76.1%) 14 (70%)

Anterior Communicating
Artery; n (%)

25 (23.9%) 6 (30%)

Fisher Grading Scale of CT
Scan Images
One; n (%) 28 (26.66%) 1 (5%)
Two; n (%) 46 (43.8%) 9 (45%)

Three; n (%) 23 (21.9%) 4 (20%)
Four; n (%) 8 (7.61%) 6 (30%)

The overall predicted TAO based on the prospective cohort was 90–960 s; 120–932 s in
AcomA, 240–960 s in right MCA, and 90–950 s in left MCA (Table 2). The average deviation
of predicted SCT by the ANN model in this study from the clinical observed SCT of the
unseen prospective cohort was 12%, leaving an 88% accuracy of the model.

Table 2. Output values. The safe clipping time interval is based on the aneurysm location.

Site of Obstruction Safe Time Interval (Seconds)

Overall 90–960
Right Middle Cerebral Artery 240–960
Left Middle Cerebral Artery 90–950

Anterior Communicating Artery 120–932

A sensitivity analysis of the input values showed that mean velocity of the left M1,
mean velocity of the left A1, and Fisher grading scale had the greatest impact on SCT
(Table 3).

Table 3. Ranked output of the sensitivity analysis.

Rank Input Value Sensitivity (%)

1 Mean velocity of flow at left MCA (middle cerebral arteries) 73.82 ± 1.95
2 Mean velocity of flow at left ACA (anterior cerebral arteries) 67.23 ± 2.74
3 Fisher grading scale of brain CT scan 65.71 ± 5.31
4 Mean velocity of flow at right ACA 63.87 ± 4.82
5 Diameter of right MCA 59.22 ± 5.24
6 Diameter of AcomA (anterior communicating artery) 57.56 ± 3.13
7 Diameter of left MCA 55.59 ± 3.13
8 Diameter of left A1 45.74 ± 2.47
9 Age 41.35 ± 1.78

10 Mean velocity of flow at right MCA 32.19 ± 3.62
11 Diameter of right A1 23.45 ± 2.15
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4. Discussion

Surgical management of aneurysms is among the most critical procedures in neuro-
surgery. Temporary artery occlusion (TAO) is a fundamental component in facilitating
aneurysm dissection. The main purpose of this study was to introduce an alternative
intelligent predictive tool besides the commonly accepted clinical experience, rather than
providing an absolute value for SCT. However, the ANN model in this study demonstrated
that the clipping time might be considered as safe for intervals longer than those practiced
in the clinic. We observed that mean velocity of flow at the left MCA and left ACA, in
addition to the Fisher grading scale of brain CT scans have the greatest impact on the
outcome of the TAO.

Although a detrimental consequence of clipping is ischemia, several mechanisms such
as redirection of blood flow from the contralateral side through communicating arteries
of the Willis circle, leptomeningeal and collateral vessels, and cortical anastomosis can
compensate for the hypo-perfusion and eliminate the cerebral ischemia [15–18]. Aging has
been shown to reduce the efficacy of collateral flow and cortical anastomosis capacity by
decreasing the collateral number and diameter, increasing tortuosity, and impairment of
remodeling capacity [19–21].

In addition, the difference in predicted SCT for different vessels might have a biological
basis. Predicted SCTs were higher in the left hemisphere. The difference in the origin of
right and left common carotid arteries (aortic arc versus the brachiocephalic artery on the
right side), the curvature of the vessels, carotid intima-media thickness (CIMT), and other
hemodynamic characteristics of the vessels in the right and left side may result in variation
between flow in the right and left circulation [22,23]. Blood flow in each vascular section
is a function of the velocity of blood and diameter of the vessel at that section (Flow =
Velocity × Diameter). Accordingly, by considering the similar diameter of vessels on both
sides, the higher velocity of the blood on the left side might be representative of the greater
flow in the left circulation. This might be the underlying reason why the velocity of the left
ACA and MCA has a major impact on the outcome. The higher incidence rate of aneurysm
formation and greater wall shear stress (WSS) and wall shear stress gradient (WSSG) on
the left side in comparison with the right in our study (not presented in this draft), may
verify this assumption. Additionally, the difference in blood flow may produce a higher
compensatory potential for the dominant side in case of vessel occlusion, by redirecting the
blood flow through the Willis circle toward the site of obstruction. Consequently, the extra
ten seconds of safe occlusion time in the right MCA TAO (960 s versus 950 s for left MCA
TAO), although clinically insignificant, may demonstrate this bonus reperfusion provided
by the contralateral dominant side.

4.1. Selected Features as Input of the Model

WSS and WSSG can affect the SCT by promoting aneurysm formation. Permanent
pathologic alteration of vasculature, such as disruption of the internal elastic lamina
or thinning of the media along with increasing the number and tortuosity of collateral
vessels, were introduced as complications of WSS and WSSG [19,24–27]. Alteration in
hemodynamic parameters such as the diameter of vessels and velocity of blood flow can
change WSS and WSSG [28–30]. Thereby, we considered the diameter of ACAs, MCAs,
and AcomA, and the mean velocity of ACAs and MCAs as an indirect measure of WSS
and WSSG.

Primarily, we considered the diameter of the P1 segment of right and left PCA and flow
in posterior circulation as other predictors of SCT. Previous studies suggested that AcomA
is more prominent in maintaining the blood flow after obstruction than the posterior
communicating arteries [25,31]. Besides this, aneurysms are not uniformly distributed [32].
Less than 1% of intracranial aneurysms occur at the vertebra–basilar junction, basilar artery,
and superior cerebellar artery bifurcation. ACA and MCA bifurcations together account
for more than 50% of intracranial aneurysms [33]. Consequently, we did not include the
diameter of right and left P1 and flow in the posterior circulation in our final model.
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4.2. Limitations and Error Estimation

The strength of this study was to include information of the patients from two different
cohorts in model training, using cross-validation from a retrospective cohort, and model
testing using a prospective cohort. Using a very select number of features with clinical
value was important to ensure our study did not suffer from missingness, which could have
introduced selection bias. We considered a comprehensive panel of clinical and imaging
features as the input to assess the feasibility of our approach. However, the Institutional
Review Board (IRB) prevented us from including sex as an input variable in the validation
cohort due to the deidentification process for datasets including less common pathologies
with fewer than 100 patients. Despite considering various imaging modalities to monitor
the possible post-operative ischemia, determining the exact underlying cause of ischemia
(e.g., impact of final clipping rather than temporary clipping, vasospasm, and other intra-
or post-operative complications) was challenging, and we did not include patients with
cerebral ischemia in our models. Adding intraoperative variables and patients with adverse
outcome could improve the predictive value of our ANN model.

The average deviation of predicted SCT from clinically assigned SCT (relative error
of our ANN) was equal to 12%. In the training phase, we used five-fold cross validation,
which resulted in average relative regression errors of 4.3% (training set) and 11.3% (test
set). This training error can be considered quite low and acceptable for training process.
After finalizing our regression model, we employed our final model to estimate SCT for the
validation set (prospective cohort). This result indicates that our model does not suffer from
overfitting or underfitting or unequal distribution over different subsets. Although, an 88%
accuracy is a promising result for our pilot study with a total of 131 patients, the model
would benefit from validation and justification over larger datasets. However, considering
the prevalence of cerebral aneurysms which need surgical intervention, including a large
cohort of patients is not simple. Furthermore, in this pilot feasibility study, we used
ANN as our machine learning framework, however; comparative analysis with other
modeling tools and deep learning methods may provide better performance. We will
employ commonly used regression models in our future study to better visualize the power
of our model compared to previously used linear models in the medical literature.

5. Conclusions

The main goal of this study was to present an axillary framework to improve the
accuracy of the estimated safe clipping time interval of temporary artery occlusion during
intracranial aneurysm surgery. The proposed method was an offline approach that can
provide a prediction for the SCT in TAO before the surgery. However, to provide an
accurate and precise SCT during the surgery, integration of online measurements and
frequent updates of the predicted clipping time is required. To design a model with higher
generalization, further studies with more clinical variables, larger sample size, and more
diverse demographics are recommended.
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25. Kulcsár, Z.; Ugron, A.; Marosfői, M.; Berentei, Z.; Paal, G.; Szikora, I. Hemodynamics of cerebral aneurysm initiation: The role of

wall shear stress and spatial wall shear stress gradient. Am. J. Neuroradiol. 2011, 32, 587–594. [CrossRef]
26. Metaxa, E.; Tremmel, M.; Natarajan, S.K.; Xiang, J.; Paluch, R.A.; Mandelbaum, M.; Siddiqui, A.H.; Kolega, J.; Mocco, J.; Meng,

H. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model.
Stroke 2010, 41, 1774–1782. [CrossRef]

132



J. Clin. Med. 2021, 10, 1464

27. Valencia, A.; Morales, H.; Rivera, R.; Bravo, E.; Galvez, M. Blood flow dynamics in patient-specific cerebral aneurysm models:
The relationship between wall shear stress and aneurysm area index. Med. Eng. Phys. 2008, 30, 329–340. [CrossRef]

28. Farnoush, A.; Qian, Y.; Avolio, A. Effect of inflow on computational fluid dynamic simulation of cerebral bifurcation aneurysms.
In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston,
MA, USA, 30 August–3 September 2011; pp. 1025–1028.

29. Hassan, T.; Hassan, A.A.; Ahmed, Y.M. Influence of parent vessel dominancy on fluid dynamics of anterior communicating artery
aneurysms. Acta Neurochir. 2011, 153, 305–310. [CrossRef]

30. Jou, L.-D.; Lee, D.H.; Mawad, M.E. Cross-flow at the anterior communicating artery and its implication in cerebral aneurysm
formation. J. Biomech. 2010, 43, 2189–2195. [CrossRef]

31. Silva, P.A.; Cerejo, A.; Vilarinho, A.; Dias, C.; Vaz, R. Regional variations in brain oxygenation during temporary clipping in
aneurysm surgery. Neurol. Res. 2012, 34, 971–976. [CrossRef]

32. Nixon, A.M.; Gunel, M.; Sumpio, B.E. The critical role of hemodynamics in the development of cerebral vascular disease: A
review. J. Neurosurg. 2010, 112, 1240–1253. [CrossRef] [PubMed]

33. Alfano, J.M.; Kolega, J.; Natarajan, S.K.; Xiang, J.; Paluch, R.A.; Levy, E.I.; Siddiqui, A.H.; Meng, H. Intracranial aneurysms
occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery 2013, 73, 497–505.
[CrossRef] [PubMed]

133





Journal of

Clinical Medicine

Article

Areas of Interest and Attitudes towards the Pharmacological
Treatment of Attention Deficit Hyperactivity Disorder:
Thematic and Quantitative Analysis Using Twitter

Miguel Angel Alvarez-Mon 1,2,*, Laura de Anta 1, Maria Llavero-Valero 3, Guillermo Lahera 2,4,5 ,

Miguel A. Ortega 2,6 , Cesar Soutullo 7 , Javier Quintero 1,8, Angel Asunsolo del Barco 6,9 and

Melchor Alvarez-Mon 2,6,10,11

����������
�������

Citation: Alvarez-Mon, M.A.; de

Anta, L.; Llavero-Valero, M.; Lahera,

G.; Ortega, M.A.; Soutullo, C.;

Quintero, J.; Asunsolo del Barco, A.;

Alvarez-Mon, M. Areas of Interest

and Attitudes towards the

Pharmacological Treatment of

Attention Deficit Hyperactivity

Disorder: Thematic and Quantitative

Analysis Using Twitter. J. Clin. Med.

2021, 10, 2668. https://doi.org/

10.3390/jcm10122668

Academic Editor: Vida Abedi

Received: 15 March 2021

Accepted: 13 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Service of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
lanta.79@gmail.com (L.d.A.); fjquinterog@salud.madrid.org (J.Q.)

2 Department of Medicine and Medical Specialities, University of Alcala, 28805 Alcala de Henares, Spain;
guillermo.lahera@gmail.com (G.L.); miguel.angel.ortega92@gmail.com (M.A.O.);
mademons@gmail.com (M.A.-M.)

3 Department of Endocrinology and Clinical Nutrition, Hospital Universitario Infanta Leonor, 28031 Madrid,
Spain; maria.llavero@salud.madrid.org

4 Department of Psychiatry, University Hospital “Principe de Asturias”, 28805 Alcala de Henares, Spain
5 CIBERSAM (Biomedical Research Networking Centre in Mental Health), 22807 Madrid, Spain
6 Institute Ramon y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; angel.asunsolo@uah.es
7 Louis A Faillace Department of Psychiatry and Behavioral Science, The University of Texas Health Science

Centre at Houston, Houston, TX 77054, USA; Cesar.A.Soutullo@uth.tmc.edu
8 Department of Legal Medicine, Psychiatry and Pathology, Complutense University, 28040 Madrid, Spain
9 Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of

Alcalá, 28805 Alcala de Henares, Spain
10 Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de

Lemos, 3-5, 28029 Madrid, Spain
11 Service of Internal Medicine and Rheumatology, Autoimmune Diseases University Hospital “Principe de

Asturias”, 28805 Alcala de Henares, Spain
* Correspondence: maalvarezdemon@icloud.com; Tel.: +34-918854505

Abstract: We focused on tweets containing hashtags related to ADHD pharmacotherapy between 20
September and 31 October 2019. Tweets were classified as to whether they described medical issues
or not. Tweets with medical content were classified according to the topic they referred to: side effects,
efficacy, or adherence. Furthermore, we classified any links included within a tweet as either scientific
or non-scientific. We created a dataset of 6568 tweets: 4949 (75.4%) related to stimulants, 605 (9.2%)
to non-stimulants and 1014 (15.4%) to alpha-2 agonists. Next, we manually analyzed 1810 tweets.
In the end, 481 (48%) of the tweets in the stimulant group, 218 (71.9%) in the non-stimulant group
and 162 (31.9%) in the alpha agonist group were considered classifiable. Stimulants accumulated
the majority of tweets. Notably, the content that generated the highest frequency of tweets was that
related to treatment efficacy, with alpha-2 agonist-related tweets accumulating the highest proportion
of positive consideration. We found the highest percentages of tweets with scientific links in those
posts related to alpha-2 agonists. Stimulant-related tweets obtained the highest proportion of likes
and were the most disseminated within the Twitter community. Understanding the public view of
these medications is necessary to design promotional strategies aimed at the appropriate population.

Keywords: ADHD; social media; Twitter; pharmacotherapy; stimulants; alpha-2-adrenergic agonists;
non-stimulants

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is one of the most common neuropsy-
chiatric disorders of childhood and adolescence, often persisting into adulthood [1]. The
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reported prevalence of ADHD in children varies from 2 to 18 percent [2,3]. ADHD is asso-
ciated with negative health outcomes and marked impairment in academic, occupational
and social functioning [4,5].

The treatment of ADHD is complex and may involve behavioral, psychological and
educational interventions, as well as medication [6]. Different pharmacological treatments
have shown efficacy in reducing ADHD symptoms and improving daily functioning [6].
As has been reported, however, the efficacy of these treatments is not homogenous, nor is
the frequency and pattern of associated side effects [6]. The choice of the initial medication
depends upon a number of factors, including the individual preferences of the clinician,
patient and family [6]. Furthermore, adherence to the treatment regimen is critical for
the efficacy of the medical intervention [7,8]. Determinants of patient behavior, includ-
ing adherence to medication and one’s own lifestyle habits, are influenced by patients’
experiences, attitudes and opinions with regard to their treatment [7,8]. In order to better
optimize medical treatments for the management of ADHD, analyses of the opinions of
patients and their families are therefore required.

Social media platforms are increasingly being leveraged by researchers for public
health surveillance, intervention delivery, the study of attitudes toward health behav-
iors and diseases, predictions on diseases, and insight into the medical experiences of
patients [9–12]. In particular, Twitter is the most commonly used social media platform
within health research, and content analysis is the most common approach [13,14]. In
this context, the exploration of tweets discussing perceptions of medications for better
understanding, compliance and therapeutic decision making has been sufficiently estab-
lished [15,16].

Moreover, research on patients’ beliefs and attitudes has traditionally relied on surveys,
interviews and clinical trials [17,18]. However, social media may also allow for a wider
range of patients’ voices to be heard, including those perspectives from patients reluctant
to participate in surveys or research. In addition, since social media posts are spontaneous
in nature, they may be more reflective of what patients truly experience than surveys
conducted by researchers, which rely on structured, formal interviews [19–21]. Moreover,
postings can be collected nearly in real time, thereby avoiding recall bias. Consequently,
platforms such as Twitter may provide a useful insight into patients’ beliefs.

Finally, the analysis of tweets on psychiatric disorders is a recently significant area of
study for understanding the sentiments of society, patients and health professionals [22–24].
That being said, topics of medical and non-medical interest among Twitter users with
relation to ADHD treatment have not yet been established, with the dissemination of
ADHD-related tweets remaining unknown.

In this study, we have hypothesized that, firstly, the pharmacological treatment for
ADHD is an area of interest for Twitter users and that, secondly, a diverse perception
towards the different drug treatments available can be observed. More specifically, the aims
of this multidisciplinary research were to investigate the interest and social considerations
of Twitter users towards approved pharmacological treatments for ADHD. In addition, we
investigated the dissemination of these tweets.

2. Materials and Methods

2.1. Data Collection

In this observational quantitative and qualitative study, we focused on searching
for tweets that referred to medications approved for the treatment of ADHD: Adderall,
Dexedrina, Dextrostat, Focalin, Metilin, Ritalin, Metadate CD (methylphenidate), Ritalin
LA (methylphenidate), Adderal-XR, Vyvanse (Lisdexamfetamine), Concerta, Daytrana,
Focalin XR, Quillivant XR (methylphenidate), Intuniv (guanfacine), Kapvay (clonidine) and
Strattera (Atomoxetine). The inclusion criteria for tweets were: (1) being posted publicly;
(2) using any of the previously mentioned hashtags; (3) being posted between 20 September
and 31 October 2019; (4) being written in English or Spanish. The six-week period was
chosen to avoid any potential bias in the content of the tweets. We collected the number of
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likes each tweet generated, the date and time of each tweet, a permanent link to the tweet
and each user’s profile description. In addition, we obtained a list of the ten hashtags most
frequently associated with the hashtags of our study.

2.2. Search Tool

We used the Twitter Firehose data stream, which is managed by Gnip and allows
access to 100% of all public tweets that match a certain criteria (query). In our study, the
search criteria were the previously mentioned hashtags.

2.3. Content Analysis Process

All 118,388 retrieved tweets were included in the dataset (Figure 1). First, we excluded
those tweets mentioning any of the aforementioned medications in an unrelated context.
For example, Concerta is also the name of a political party in Chile. In this case, any tweets
referring to the political party were omitted. Secondly, we excluded all tweets, including
hashtags and keywords, not related to health (e.g., political issues). Specifically, Concerta
and Ritalin generated 10,773 and 13,987 tweets, respectively, but 10,127 (94%) and 13,567
(97%), respectively, were not related to health. Indeed, most of them included hashtags
(#mesacentral, #apoyofirmado, #tumbamadre, #lamarchamasgrande, #Pinerarenuncia) or
keywords related to political conflict occurring in Chile. Similarly, Adderall generated
87,808 tweets, of which 86,052 (98.7%) included hashtags or keywords related to political
issues (e.g., Trump, impeachment).

Figure 1. Flowchart of data management.

All 8642 remaining tweets were inspected by two raters (M.A.A.-M. and L.d.A.). First,
we scanned all of the tweets and excluded 2074 that provided information that was too
limited, contained only images or included hashtags of more than one treatment. This
process led to the creation of a more concise dataset of 6568 tweets, which we divided
into three groups: 4949 (75.4%) stimulants, 605 (9.2%) non-stimulants and 1014 (15.4%)
alpha-2-adrenergic agonists.

Next, we created a codebook based on our research questions, our previous experience
in analyzing tweets and what we determined to be the most common themes. M.A.A.-M.
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and L.d.A. analyzed 300 tweets separately to test the suitability of the codebook. Dis-
crepancies were discussed between the raters and with another author (M.L.-V.). After
revising the codebook, the raters then proceeded to perform a content analysis of 50% of
the tweets in each group, limiting them to a maximum of 1000 tweets randomly selected.
Thus, we manually analyzed 1000 tweets from the stimulant group, 303 from the non-
stimulant group and 507 from the alpha-2 agonist group (Figure 1). Classification criteria
and examples of tweets are shown in Table 1.

Table 1. Category, definitions and examples of classification. Usernames and personal names were removed.

Category Examples of Tweets

EFFICACY
(refers to the ability or inability of a

treatment to provide a beneficial effect)

• I like to talk about meds. been on ADHD meds almost consistently from 8 yrs old
to now (19). im on Concerta right now and it’s working wonders for me. people
are very strung out about medicating kids and i get that but, i really needed it as
a kid and need it more as an adult.

• Unfortunately concerta didn’t work for me: (but everybody’s different! it was so
long ago i can’t remember what my problem with it was haha...i think it just
wasn’t strong enough for me. but it’s not a bad drug i know some ppl that take it!
make sure you’re eating ok?

SIDE EFFECTS
(refers to any effect that is secondary to

the one intended either adverse or
beneficial; we also included tweets
discussing tolerability of the drug)

• I just vividly remember going off Concerta as a kid because it killed my appetite
and I have a hard enough time keeping weight on as it is (this 3-week depressive
low has already ate away [haha] at 2 or 3 lbs) and I’m afraid of that happening
again

• Concerta makes me want to eat three leaves of lettuce a day and id still feel
bloated.

• I was diagnosed at an early age and was put on a few medications. I had some
medications that made me very emotional. The last medication I remember being
on was concerta and it flattened my mood waaay too much

• I was really thirsty, not eating, and super paranoid when I tried vyvanse.
• I remember taking my first concerta, it was the 18 mg and I was in matric. Stayed

up all night like a maniac

ADHERENCE
(refers to the degree of conformity to the
recommendations about the treatment
with respect to the timing, dosage or

frequency)

• I love the way you explained it! I was diagnosed in 2012, five years into my
serving in the military. I took concerta for the first 3 months after my diagnosis
and then stopped. I struggled with accepting this diagnosis. Now in 2019 I’ve
accepted it & want to get help.

• Uhm I’m not doing this willingly. I’m all for medicine. I’m not taking my meds
rn because I need to do a new examination of my diagnosis and I need to have 0
trace of concerta in my body by then. I legit can’t wait to get to take meds again.

• I have 72 mg Concerta, ive been on it for years but i dont take it every single day.

2.4. Measuring Influence and Interest on Twitter

We analyzed the number of likes generated by each tweet as an indicator of user
interest on a given topic. We also measured the potential reach and impact of all analyzed
hashtags. Impact is defined as a numerical value representing the potential views a tweet
may receive, while reach is defined as a numerical value measuring the potential audience
of the hashtag.

In addition, we measured how positive or negative a hashtag was on a scale from 1
(negative) to 100 (positive). Sentiment analysis tools analyze all words contained in a tweet,
and each word has its own score that can vary depending on the context. The average score
of all the tweets with a certain hashtag determines that hashtag’s overall sentiment score.

2.5. Ethical Considerations

This study was approved by the Research Ethics Committee of the University of Alcala
(OE 14_2020).
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2.6. Statistical Analysis

A descriptive study of the sample was performed, describing the variables by their
absolute and relative frequencies. The percentages found were compared using the chi-
square test. In the case of quantitative variables, it was checked whether they followed
a normal distribution using the Kolmogorof–Smirnof test. As this was not the case, non-
parametric tests were used. The Kruskal–Wallis test was used for comparisons of median
values among three groups, followed by post hoc testing using a Bonferroni-adjusted
alpha level.

3. Results

3.1. Stimulants Accumulated the Most Interest among Twitter Users

According to the codebook, 521 (52%) of the stimulant tweets, 85 (28.1%) of the
non-stimulant tweets and 345 (68.1%) of the alpha-2 agonist tweets were considered unclas-
sifiable. These tweets shared information or news either about the commercialization of
the medication, business-related information, or mentions of treatments for other disorders
apart from ADHD. In the end, 481 (48%) of the tweets in the stimulant group, 218 (71.9%)
in the non-stimulant group and 162 (31.9%) in the alpha agonist group were considered
classifiable (Figure 1). In terms of the content of these tweets, the mention of the specific
medications was related to their efficacy, side effects or adherence to treatment for ADHD
(Table 1). Moreover, these coding categories were not mutually exclusive in the sense that a
generated tweet could be listed under more than one category.

There were significant differences in the percentage of tweets with medical efficacy
content between the three groups of drugs (Table 2). The percentage of tweets related
to the efficacy of the alpha-2 agonist group was higher than that found in the stimulant
and non-stimulant groups. Furthermore, the alpha-2 agonist group also had the highest
percentage of tweets containing a positive description of the efficacy of their use (74.1%).
Similar results were observed in the percentage of tweets addressing efficacy, as well as the
valuation of that efficacy among the stimulant and non-stimulant groups.

Table 2. Descriptive characteristics of the tweets considered classifiable in the content analysis,
categorized by total amount per drug and category.

N

ALPHA-2
AGONIST

NON-
STIMULANT

STIMULANT p-Value

162 218 481

EFFICACY

No Mention
36

(22.2%)
84

(38.5%)
176

(36.6%)

Positive
120

(74.1%)
118

(54.1%)
270

(56.1%)

Negative
6

(3.7%)
16

(7.3%)
35

(7.3%)

p < 0.001

SIDE
EFFECTS

No Mention
40

(24.7%)
77

(35.3%)
239

(49.7%)

Positive
4

(2.5%)
3

(1.4%)
6

(1.2%)

Negative
118

(72.8%)
138

(63.3%)
236

(49.1%)

p < 0.001
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Table 2. Cont.

N

ALPHA-2
AGONIST

NON-
STIMULANT

STIMULANT p-Value

162 218 481

ADHERENCE

No Mention
148

(91.4%)
196

(89.9%)
451

(93.8%)

Positive
8

(4.9%)
12

(5.5%)
9

(1.9%)

Negative
6

(3.7%)
10

(4.6%)
21

(4.4%)

p = 0.1

LINK

No Mention
65

(40.1%)
145

(66.5%)
466

(96.9%)

Scientific
94

(58.0%)
68

(31.2%)
13

(2.7%)
Non-

Scientific
3

(1.9%)
5

(2.3%)
2

(0.4%)

p < 0.001
For each category, total number of tweets (n) and relative proportions (%) are provided. Chi-square tests were
conducted to assess for statistical differences.

The analysis of the content related to the side effects of the treatments also showed
significant differences between the three groups of drugs (Table 2). The alpha-2 agonist
group had the highest percentage of tweets with content related to side effects and ac-
cumulated the highest percentage of those tweets with a negative valuation (72.8%). In
contrast, the stimulant group had the lowest percentage of negative valuations towards
side effects (49.1%). There were not any significant differences in the percentages of those
tweets mentioning treatment adherence between the three groups of drugs, being that they
were all low.

3.2. Scientific Links Were Mainly Found in Alpha-2 Agonist-Related Tweets

We investigated the use of sources defined by the inclusion of links within the tweet.
The links were categorized as scientific or non-scientific sources. Of the tweets related to
ADHD, 185 out of the 861 (21.5%) included a reference source, the majority of which were
scientific in nature (94.6%). We found significant differences between the percentages of
tweets containing a reference link between the three groups of drugs (p < 0.001) (Table 2).
Those tweets related to alpha-2 agonists had the highest percentage of links, of which most
were scientific. In contrast, tweets related to the stimulant drug group had the lowest
percentage of links (3.1%).

We observed that the percentages of tweets with negative or positive content related
to the efficacy of treatments were different among those tweets both including and not
including a link (p < 0.001) (Table 3). The negative opinion of treatment efficacy was
higher in those without a link (8.1%). In contrast, the percentage of tweets related to side
effects was higher among those with a link than in those without one included (p < 0.001).
Interestingly, the use of links in tweets with adherence content was very low (0.5%).

We studied the use of links in the three groups of treatments. We found a different
pattern of distribution of links within the different categories. Within the group of alpha-2
agonist tweets, we observed that the majority of the tweets with a link were focused on
efficacy and side effects (Table 4). In contrast, within the non-stimulant group, references
to efficacy were mainly posted without a link. Lastly, within the stimulant drug group,
efficacy was mainly addressed using a link, whereas side effects were mainly addressed
without one.
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Table 3. Descriptive characteristics of the tweets considered classifiable in the content analysis,
categorized by either including or not including a link.

Total

WITHOUT
LINK

WITH LINK
p-Value

676 185

EFFICACY

No Mention
238

(35.4%)
57

(30.8%)

Positive
382

(56.5%)
126

(68.1%)

Negative
55

(8.1%)
2

(1.1%)

p < 0.001

SIDE EFFECTS

No Mention
320

(47.3%)
36

(19.5%)

Positive
10

(1.5%)
3

(1.6%)

Negative
346

(51.2%)
146

(78.9%)

p < 0.001

ADHERENCE

No Mention
611

(90.4%)
184

(99.5%)

Positive
29

(4.3%)
0

Negative
36

(5.3%)
1

(0.5%)

p < 0.001
For each category, total number of tweets (n) and relative proportions (%) are provided. Chi-square tests were
conducted to assess for statistical differences.

Table 4. Use of links in the different content categories of the tweets related to the three different groups of pharmacological
treatments.

ALPHA-2 AGONIST NON-STIMULANTS STIMULANTS

WITHOUT
LINK

WITH LINK
WITHOUT

LINK
WITH LINK

WITHOUT
LINK

WITH LINK

Total 65 97 145 73 466 15

SIDE EFFECTS

NM
26

(40%)
14

(14%)
66

(45.5%)
11

(15.1%)
288

(48.9%)
11

(73.3%)

+
1

(2%)
3

(3%)
3

(2.1%)
0

6
(1.3%)

0

−
38

(58%)
80

(82%)
76

(52.4%)
62

(84.9%)
232

(49.8%)
4

(26.7%)

p = 0.001 p < 0.001 p = 0.17

EFFICACY

NM
24

(37%)
12

(12%)
42

(29%)
42

(57.5%)
173

(37.1%)
3

(20%)

+
36

(55%)
84

(87%)
87

(60%)
31

(42.5%)
259

(55.6%)
11

(73.3%)

−
5

(8%)
1

(1%)
16

(11%)
0

34
(7.3%)

1
(6.7%)

p < 0.001 p < 0.001 p = 0.37
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Table 4. Cont.

ALPHA-2 AGONIST NON-STIMULANTS STIMULANTS

WITHOUT
LINK

WITH LINK
WITHOUT

LINK
WITH LINK

WITHOUT
LINK

WITH LINK

ADHERENCE

NM
52

(80%)
96

(99%)
123

(84.8%)
73

(100%)
436

(93.6%)
15

(100%)

+
8

(12%)
0

12
(8.3%)

0
9

(1.9%)
0

−
5

(8%)
1

(1%)
10

(6.9%)
0

21
(4.5%)

0

p < 0.001 p = 0.002 p = 0.60

Percentages (%) were calculated with respect to the total number of tweets generated without or with links in each group of treatments and
content category. NM = no mention. + = positive. − = negative.

3.3. Stimulant Related Tweets Were the Most Disseminated within the Twitter Community

We found that the probabilities of a tweet being liked among the three groups were
significantly different (p < 0.001). Alpha-2 agonists showed a statistically significantly lower
number of likes than both non-stimulant (p = 0.024) and stimulant (p < 0.001). Stimulant-
related tweets accumulated the highest median of likes per tweet. In addition, we analyzed
the number of likes received per tweet as classified by the inclusion or absence of a link.
We found that tweets not including a link had a significantly higher median of likes per
tweet than those tweets including a link (p = 0.041).

Furthermore, we found that stimulant-related tweets had the highest potential reach
and impact (Figure 2). Both parameters were markedly lower for non-stimulant and alpha-
2 agonist-related tweets. Regarding the sentiment analyses of the content of the tweets, we
found that it was positive for all three groups (Figure 3).

Figure 2. Potential reach and potential impact.
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Figure 3. Sentiment score comparisons between alpha-2 agonists, non-stimulants and stimulants. Sentiment analysis is
classifying the polarity of the tweet on a scale of 0 (very negative) to 100 (very positive).

4. Discussion

4.1. Principal Findings

In this study, we have found that Twitter users show a great interest in ADHD drugs,
mainly focusing on stimulants. These tweets are centered on the efficacy and side effects
of ADHD treatment. Tweets containing a positive consideration of efficacy were mainly
observed in those posts related to alpha-2 agonists. The frequency of tweets with content
related to adherence to treatment was marginal. The highest percentages of tweets with
scientific links were observed in those related to alpha-2 agonists. Furthermore, those
tweets referencing stimulants obtained the highest potential reach and impact.

The treatment of ADHD is complex, involving both the use of non-pharmacological
tools and the prescription of drugs [6]. Regarding pharmacological treatments, different
variables condition their clinical results. For instance, the efficacy of a drug for controlling
disease symptoms and the frequency and intensity of side effects are considered to be
critical for a treatment’s success [6]. Nevertheless, the subjective experience of a drug being
used by a patient is pivotal too in terms of adherence to treatment [7,8]. Furthermore, a
patient’s experience when consuming a drug is conditioned by any information or social
valuations received [25]. Thus, the study of patients’ experiences with regard to the efficacy
and side effects of, as well as adherence to, ADHD treatments is an area of intense focus,
having been previously assessed mainly through the use of qualitative studies such as
surveys and interviews [26,27]. However, contradictory results have also been reported on
the different drugs employed in ADHD treatment [28].

Currently, Twitter serves as one of the predominant social platforms for disseminating
perspectives publicly, giving anonymity to user testimonies and encouraging communica-
tion by people with real or perceived personal and social restrictions [29]. This anonymity
also prevents the potential stigmatization of a Twitter user for his/her attitudes towards a
disease, or for any physical or mental conditions they choose to disclose [30]. Thus, Twitter
has become a relevant tool for the dissemination of medical information and an interesting
resource for the study of individual experiences and opinions [31]. Furthermore, it has
been shown that young people tend to hide information from their doctors, especially
that information related to behaviors of which health care providers do not usually ap-
prove [32]. As a result, Twitter gives them the opportunity to express their experiences
anonymously [33].

In this study, we have demonstrated that the use of Twitter for sharing information
on patient experiences regarding ADHD treatment is significant, with tweets of this type
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maintaining a high frequency among those containing content more generally related to
medical treatment. Nevertheless, Twitter users tend to be younger than the population at
large; likewise, ADHD tends to affect a mostly younger demographic [1]. Moreover, the
majority of the tweets with medical content on ADHD drug treatments were related to the
stimulant group. Interestingly, these data uphold the elevated frequency of the use of these
drugs in the treatment of ADHD patients globally [34].

The high frequency of tweets with content related to the efficacy and side effects of
pharmacological treatments supports their significance to ADHD patients. Several studies
have also examined the efficacy of each treatment on ADHD symptoms; however, with
contradictory results [28]. Various reasons might explain such a discrepancy, yet this
strategy for obtaining patient information is critical regardless. Additionally, it has been
proposed that infodemiology may overcome the Hawthorne Effect as well as any memory
recall biases common to cross-sectional surveys and questionnaire-based studies [19,35]. In
terms of medical efficacy, our findings show that the alpha-2 agonist group of drugs accu-
mulated the highest frequency of tweets with a positive valuation, even though frequency
levels observed for both stimulants and non-stimulants ranked similarly. However, the
alpha-2 agonist group of drugs received the highest frequency of tweets related to their
side effects; interestingly, stimulants received the lowest frequency of tweets with regard to
tolerability. It has been previously shown that some of the side effects of stimulant drugs
have even been considered positive and actively pursued by patients [36]. These results
might support the designation of stimulant drugs as the first pharmacological option for
treating ADHD, as evidenced by several guidelines [6,37].

Our data also show that adherence to a pharmacological treatment is not a relevant
consideration for ADHD patients who are Twitter users. Additional to this point is the fact
that a similarly low frequency of tweets related to treatment adherence was found within
all three groups of drugs, with a positive valuation towards adherence uncommon but
slightly higher in the non-stimulant and alpha-2 agonist groups. Furthermore, the limited
interest for treatment adherence found among Twitter users confirms previous studies
carried out that employed other strategies [38,39].

Correct medical information is considered to be a cornerstone for the understanding of
disease and subsequent patient treatments [40,41]. Currently, access to medical information
has been generalized across the internet. For instance, we have found that one fifth of
the content related to medical treatment included a link, a majority of which was deemed
scientific in nature. This low frequency of the inclusion of links in tweets related to ADHD
pharmacological treatment contrasted with those found in a study on statins [19]. Moreover,
tweets including a link were twenty times more frequent in those posts referring to alpha-2
agonists than in those related to stimulants.

Different patterns in the use of links were also found between the different groups of
drugs analyzed. Within the group of alpha-2 agonist tweets, for instance, the majority of
tweets with a link were focused on efficacy and side effects. In contrast, among the non-
stimulant group, the majority of tweets mentioning efficacy did not include a link. These
results indicate the significant relevance of scientific information and medical research for
ADHD patients who are Twitter users. As an example, most alpha-2 agonist medications
have been approved for ADHD treatment over the last ten years, while stimulants have
been used for decades. This finding therefore supports Twitter’s value as a means of
communicating scientific content. However, it is worrying that only a limited number
of tweets referring to ADHD treatment adherence included a scientific link, especially
considering that adherence is pivotal to treatment success [7,8]. That being said, trends in
information exchanged over Twitter may still be important as studies have identified that
certain health behaviors can be affected [42,43].

Our study also shows that the names of those drugs used for ADHD treatment coin-
cided with tweets referencing political, social and other non-medical content. Furthermore,
we observed pejorative uses of these names by Twitter users. These findings suggest that so-
cial stigmatization towards mental health, as previously described, still persists, producing
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deleterious effects in the lives of people suffering from mental health conditions [44,45]. As
well, the non-medical use of psychostimulant drugs, which has not always been uncovered
via traditional surveys, has nevertheless been revealed through the analysis of Twitter
content [46].

Clinicians themselves should therefore take into consideration information posted
over social media with regard to pharmacological treatment that otherwise may not be
spontaneously reported during a patient interview. This is particularly important for
medications commonly abused or consumed over the counter, behaviors commonly hidden
by patients from doctors [47]. In this context, social media may be deemed a friendlier
place to discuss the effects of medications, especially those usually rejected by doctors. As
relates to this study, an increase in the dissemination of scientific information on ADHD
treatment and, in particular, the importance of the adherence to said treatment appears to
be a primary objective for the medical community at large.

4.2. Limitations

First, Twitter may not be reflective of the general population. Secondly, researchers
cannot directly measure clinical outcomes from tweets. Third, the codebook design and
text analysis imply a degree of subjectivity. However, this methodology is consistent
with previous medical research studies using Twitter. Furthermore, to address this last
issue, our study comprised a series of countermeasures including an initial review, design
of the codebook, and an agreement between coders. Although computerized machine
learning methods have been tested to automatically identify and classify topics in medical
research over social media, we used an analytical strategy based on raters’ clinical expertise
in psychiatry, which constituted a qualitative advantage compared to other automated
strategies [48]. Finally, we did not determine whether the date of FDA approval affected
Twitter activity differently when comparing more recent medication to older medication.

5. Conclusions

This study identified interesting beliefs and opinions regarding the pharmacological
treatment of ADHD that may affect patient behavior. Moreover, social media may be
useful for investigating the public’s prevailing attitudes when investigating particular
medications, as well as when patients report on adverse events and efficacy since both
issues can affect their choice of and adherence to treatment. Public perceptions about
medications could in turn help inform clinicians, particularly when developing treatment
guidelines. Specific to ADHD, public opinions elucidated by this study could be used to
help update guidelines, improve communication between health care professionals and
patients and ultimately help to build more viable bridges between both parties.
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Abstract: Artificial Intelligence (AI) systems could improve system efficiency by supporting clinicians
in making appropriate referrals. However, they are imperfect by nature and misdiagnoses, if not
correctly identified, can have consequences for patient care. In this paper, findings from an online
survey are presented to understand the aptitude of GPs (n = 50) in appropriately trusting or not
trusting the output of a fictitious AI-based decision support tool when assessing skin lesions, and to
identify which individual characteristics could make GPs less prone to adhere to erroneous diagnos-
tics results. The findings suggest that, when the AI was correct, the GPs’ ability to correctly diagnose
a skin lesion significantly improved after receiving correct AI information, from 73.6% to 86.8%
(X2 (1, N = 50) = 21.787, p < 0.001), with significant effects for both the benign (X2 (1, N = 50) = 21,
p < 0.001) and malignant cases (X2 (1, N = 50) = 4.654, p = 0.031). However, when the AI provided
erroneous information, only 10% of the GPs were able to correctly disagree with the indication of the
AI in terms of diagnosis (d-AIW M: 0.12, SD: 0.37), and only 14% of participants were able to correctly
decide the management plan despite the AI insights (d-AIW M:0.12, SD: 0.32). The analysis of the
difference between groups in terms of individual characteristics suggested that GPs with domain
knowledge in dermatology were better at rejecting the wrong insights from AI.

Keywords: artificial intelligence; trust; passive adherence; human factors

1. Introduction

Artificial Intelligence (AI)-based technologies used for medical purposes may have the
ability to change the healthcare landscape, providing opportunities for the prioritization
of patients who are most at risk [1] and for the support of clinicians making diagnostic
conclusions [2].

A growing field of development of AI systems is dermatology, in which early detection
of melanoma may benefit patients [3–5]. Every year in the UK, General Practitioners (GPs)
see over 13 million patients for dermatological concerns [6]; melanoma is one of the most
dangerous forms of skin cancer, with the potential to metastasise to other parts of the
body via the lymphatic system and bloodstream. The current standard of care for skin
cancer is set by the National Institute for Health and Care Excellence (NICE) [7], which
adopt a ‘risk threshold’ value of 3% positive predictive value (PPV) in primary care to
underpin recommendations for suspected skin cancer pathway referrals and urgent direct
access investigations in cancer. GPs are expected to refer under the 2WW if the probability
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of cancer is 3% or higher. Referral rates are also influenced by factors beyond clinical
suspicion of the lesion, such as a clinician’s individual risk tolerance and perceived patient
expectations or concerns [8]. Dermatology is the speciality with the highest referral rate
in the NHS [9]; however, of the half a million cases referred on this pathway, melanoma
and squamous cell carcinoma (SCC) only made up 6.5% of referrals in 2019/20 [10]. This
reflects the accepted behaviour amongst clinicians of referring with a very low threshold
to facilitate detection in the early stages of the disease. The same data from the National
Cancer Registration and Analysis Service (NCRAS) also indicate that only 64% of cancers
are detected through 2WW referrals, suggesting that considerable numbers of skin cancer
cases are detected through alternative pathways, potentially representing missed diagnoses
by GPs and risking delays in diagnosis. These professionals, given their role as generalists
rather than specialist dermatologists [11], represent the first line of defence against skin
cancer, and they might benefit from the support of an accurate AI solution for the early
detection of skin cancer and the identification of atypical presentations, with an overall
beneficial impact for patients and the NHS [12].

The number of studies assessing the efficacy of intelligent systems for dermatology
applications [13–18] is significant. However, to date, only a few of these AI-enabled medical
devices have made it through to real-world deployment. This is also a result of a lack of
randomized trials [18] and the absence of AI assessments for lesions with abnormal presen-
tation and clinical features similar to melanoma that may produce erroneous diagnoses [19].
These tools are dependent on the quantity and quality of training data [12,20]. The intro-
duction of algorithm-based tools into a complex socio-technical system may create friction
and conflict in decision making; this is due to the intrinsic tendency of artificial intelligence
to reach a certain ‘conclusion’ that may not be transparent to human decision-makers and
the consequent alterations in practices.

Ultimately, the key issue with AI is how much decision makers will trust these medical
devices once deployed in the market. The inclusion of AI systems in the healthcare field
should be supported by the awareness that these systems, like the existing workforce, are
imperfect. For decision support tools, the resilience of the diagnostic process is in the hands
of the clinicians, even when an AI is involved, as they are the only ones who have a holistic
view of each clinical scenario, and they can decide to agree or disagree with an AI [21].
Beyond the issue associated with having a ‘black box’ AI or a fully transparent tool to
support decisions [22], the main risk could also be that professionals might over-trust the
insights provided by these tools due to a lack of expertise in the use of the technology or
the complexity around the cases [4,23,24].

In this paper, we present results from an online survey conducted on a pool of GPs who
were presented with a combination of accurate and inaccurate results from a hypothetical
AI-enabled diagnostic tool for the early detection of skin cancer. This study aimed to
explore the attitudes of GPs when asked to trust (or not to trust) the AI diagnosis as
appropriate. We also explore ‘predicting factors to trust’ that would make GPs resilient
enough to prioritise their clinical opinion when an AI produces erroneous diagnoses.

2. Materials and Methods

A total of 73 GPs participated in the study. Among them, 23 were excluded because
they were not able to finalise or correctly complete the test. The final sample of 50 GPs
(mean age: 34.4, min = 26, max = 53; 76% female) completed the test online via QualtricsXM

between the 10 April 2020 and the 10 May 2020. Participants were directly informed of this
study and recruited by email through a clinical lead in primary care research at the NIHR
LIVD; also, the link to the survey was posted on social media (Twitter and LinkedIn) and
in a private WhatsApp group used by GPs and GPs with special interests working in the
Greater London area.

The online test was composed of the following sections:

• Demographics. This section was composed of 15 items. It included qualitative ques-
tions regarding individual characteristics (age, gender, years of practice etc.) and
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questions regarding the respondent’s interest in dermatology and attendance at der-
matology courses in the past three years, as well as their perceived confidence in der-
matology and familiarity with tools for early skin cancer diagnosis. Three questions
considered the GPs overall trust attitude toward innovations in medical devices [25].

• Main test. This was composed of questions on 10 lesions (See Appendix A) purposively
selected to be representative of commonly encountered lesions. The cases presented
are realistic. Cases of misclassification were modified to explore GPs’ attitudes when
their diagnosis conflicted with those from the AI.

Each lesion was accompanied by vignettes of hypothetical patient details likely to
be asked after in a routine GP consultation (age, gender, duration of the skin lesion,
evolution/changes of the lesion, sensory changes, bleeding, risk factors, body location).
Each lesion was associated with three questions pertaining to:

• The diagnosis, with a range of seven options (melanoma; squamous cell carcinoma;
basal cell carcinoma; intra-epidermal carcinoma; actinic keratosis; benign, other);

• The management plan, with a range of four options (two-week 2WW referral; routine,
but not 2WW; discharge with safety net advice; other);

• The confidence in their decision making, on a five-point Likert scale.

The 10 skin lesions were divided in terms of the type of decision making and type of
case (benign and malignant) as follows:

• Everyday cases (EC-5 lesions), including lesions whose features are commonly ob-
served in routine consultations and considered easy to interpret [26]; two of these
were benign and three were malignant skin lesions (cases 2–6);

• Cases with uncertainties (CU-3 lesions); i.e., cases in which the picture of the skin
lesion is hard to interpret or it contains a bias (marked for biopsy) and for which GPs
might be expected to ask for a second opinion. One of these CU cases was malignant
and two were benign (cases 1, 7 and 8). For all the cases from 1 to 8 (EC and CU), the
scenario was set up with the AI system presenting the correct diagnosis to the GPs;

• Dangerous scenarios (DS-2 lesions), including one benign case misclassified as malig-
nant and one malignant case misclassified as benign.

2.1. Procedure

The study was presented to participants as a simulation—with fictitious patients’
details—to assess their agreement with an AI system to better report diagnostic test results.
Once the study was completed, a disclaimer email was sent to each participant clarifying
that the provided combinations of lesions/diagnoses in the study were not always accurate;
the study aim of assessing GPs’ performance and attitudes with both accurate and inac-
curate AI diagnoses was fully explained. After the demographic survey, each participant
received ten blocks of questions (each related to one lesion) in a fully randomised order.
Participants completed these questions regarding the diagnosis, the management plan and
their confidence twice:

1. When they had access only to patient information and images of the skin lesions
(Figure 1);

2. When they had access to the AI insights, as shown in Figure 2, in addition to
this information;

GPs were then asked to decide whether to change or to maintain their answers
regarding the diagnosis, management plan and their confidence in their decision.
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Figure 1. Example of one lesion with only patient information (fictitious).

 

Figure 2. Example of one lesion with a fictitious AI assessment.

2.2. Data Analysis

Descriptive statistics were used to observe participants’ characteristics, the frequency
of correct diagnoses and management plans, and the GPs’ confidence in their decision
making before and after receiving the AI-enabled information. The pre-and post-AI per-
formance levels of the GPs, in terms of their diagnoses and management plans, were
dichotomised (correct/incorrect) and McNemar’s Chi-square test was used to analyse the
effect of AI information in each decision-making group (EC, UC, DS) by also accounting
for the type of case (benign and malignant). The percentage of confidence was tested using
a generalized linear mixed model.

The hit and false rates of the GPs for the diagnostic and management decision making
before and after the wrong AI insights were used to model GPs’ resilience when dealing
with erroneous AI information (i.e., DS cases). In line with signal detection theory [27],
a computation was used to compose a sensitivity index for when AI was wrong (d-AIW,
see Appendix B); the higher the index compared to zero, the better the GP’s ability to
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ignore the wrong indication of the AI. The index was used to distinguish two groups: one
included GPs who had a d-AIW over zero (hereafter called the ‘resilient group’) and the
other included GPs with an index below or equal to zero (hereafter called the ‘non-resilient
group’) for the management and diagnostics of patients with skin lesions. A Kruskal–
Wallis test was performed to check if resilient and non-resilient GPs performed significantly
differently when AI provided them with correct and incorrect answers and to observe the
differences between the two groups in terms of individual characteristics.

3. Results

3.1. Individual Characteristics

In total, 76% of the participants had less than 5 years of experience, 16% from 5 to
10 years and 8% had more than 10 years of experience. Overall, the GPs in our cohort
declared an average level of confidence in dermatology of 51.5 out of 100 (SD: 16.2),
although 34% of them had attended specialisation courses on the topic in the previous three
years. Seventy per cent of the participants stated that they had not used a dermatoscope
in the previous 12 months, with only 4% of the GPs declaring weekly use of such an
instrument. Thirty-eight per cent never used digital systems for skin lesions (e.g., taking
pictures of patients’ skin lesions to be uploaded into the system), while among those who
used such digital systems for diagnostic purposes, 2% declared daily usage, 10% weekly
and 50% stated that they used them at least once per month. The level of trust toward AI
support systems declared by GPs for this application domain was sufficient (M: 61.2%;
SD: 14.5%).

3.2. General Practitioners’ Correct Decision Making before and after AI Insights

Table 1 shows the statistics of GPs’ performances before and after receiving the ficti-
tious AI-enabled information, which suggests that GPs tended to adhere to the indications
of the AI. Specifically, when the AI was correct (EC and CU cases), there was a positive
effect on GPs’ performance and confidence. Correct diagnosis, supported by a trustworthy
AI, went up by 13.2 points for EC cases and 16.5 points for CU cases. Similarly, the selection
of the correct management plan went up by 7.6 points (EC) and 18.5 points (CU). GPs’
confidence in their decision making went up of 12.7 for EC cases after the insights of the
AI, while this aspect only increased by 1.5 points when dealing with CU cases. Conversely,
when the AI provided incorrect insights (DS cases), the correctness of diagnoses and man-
agement went down by 24 and 29 points respectively, with a positive boost of 5.7 points in
the GPs’ confidence in their decision making after receiving AI insights.

McNemar’s Chi-square test clarified how the AI insights affected the GPs’ decision
making for each group.

Table 1. Statistics for GP performance before and after receiving the fictitious AI assessment.

Decision Making
Groups

Before AI After AI

Correct
Diagnosis

(%)

Correct
Management

(%)

GP
Confidence

(%)

Correct
Diagnosis

(%)

Correct
Management

(%)

GP
Confidence

(%)

EC 73.6 82.4 66.8 86.8 90 79.5
Only benign 68 62 63.5 89 84 82.7

Only malignant 77.4 96 69.1 85.4 96 76.5

CU 37.5 44 61.8 54 62.5 63.3
Only benign 9 8 61.7 42 41 62.5

Only malignant 66 80 62.5 66 84 65

DS 46 54 60 22 25 65.7
Only benign 32 32 58.5 10 4 67

Only malignant 60 76 62.5 34 46 64
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Everyday cases: GPs’ ability to correctly diagnose a skin lesion significantly im-
proved after receiving the AI information from 73.6% to 86.8% (X2 (1, N = 50) = 21.787,
p < 0.001), with significant effects for both the benign (X2 (1, N = 50) = 21, p < 0.001) and
malignant (X2 (1, N = 50) = 4.654, p = 0.031) cases. The selection of the correct manage-
ment plan was also positively affected by the AI information, going from 82.4% to 90%
(X2 (1, N = 50) = 3.78, p < 0.001), and it was particularly relevant for the plans regarding
benign cases (X2 (1, N = 50) = 22, p < 0.001), while no major improvement was observed
for malignant cases. Confidence about decision making, independent of the type of skin
lesion, significantly improved from 66.8% to 79.5% after receiving the AI information
(X2 (1, N = 48) = 107.2, p < 0.001).

Cases with uncertainties (CU): GPs’ correct diagnosis improved significantly from
37.5% to 54% correct decision making when supported by the AI (X2 (1, N = 50) = 24.9,
p < 0.001). This difference was significant for benign cases (X2 (1, N = 50) = 31.03, p < 0.001),
while no significant differences emerged in malignant cases before and after receiving AI
information. Concurrently, the ability to correctly define a management plan significantly
increased from 44% to 62.5% thanks to the AI (X2 (1, N = 50) = 28.195, p < 0.001), and this
effect was significant for begin cases (X2 (1, N = 50) = 31, p < 0.001). GPs’ confidence was
not significantly affected by the AI information.

Dangerous situations (DS): When erroneous information was provided by the AI,
it seems that GPs were significantly pushed to adhere to the erroneous suggestions of
the AI. Correct diagnosis of the skin lesions significantly decreased from 46% to 22%
(X2 (1, N = 50) = 22.04, p < 0.001). Adherence to the wrong AI insights was significant
for both benign (X2 (1, N = 50) = 9.08, p = 0.026) and malignant (X2 (1, N = 50) = 11.7,
p = 0.009) cases. Similarly, decision making about management was significantly affected
by wrong AI insights, decreasing the ability of GPs to correctly decide the plan for the
patient from 54% to 25% (X2 (1, N = 50) = 25.290, p < 0.001). This significantly affected GPs’
decision making regarding both benign (X2 (1, N = 50) = 12.07, p = 0.005) and malignant
(X2 (1, N = 50) = 11.52, p = 0.007) cases. Confidence was not affected by the information
provided by the AI.

3.3. Resilience to the Erroneous Insights of the Artificial Agent

When the AI provided erroneous information (DS cases), only 10% of the GPs were
able to correctly disagree with the indication of the AI in terms of diagnosis (d-AIW M: 0.12,
SD: 0.37), and only 14% of participants were able to correctly decide the management
plan despite the AI insights (d-AIW M: 0.12, SD: 0.32). These GPs were categorized as the
resilient ones (i.e., the ones able to correctly reject the AI insights), as opposed to all the
others, who were categorized as less resilient to the wrong indications of the AI.

The Kruskal–Wallis test, when carried out on EC and CU cases (when the AI provided
correct results), suggested that the performance of the GPs in the resilient group was not
significantly different to the performance of the less resilient group. Conversely, when the
AI provided erroneous diagnoses (DS cases), a significant difference was found between
the two groups in terms of diagnostic decision making (X2 = 12.4, p < 0.001) and the correct
management plan (X2 = 6.8, p = 0.009).

The analysis of the differences between the groups in terms of individual character-
istics suggested that GPs who declared regular usage of the dermatoscope were better at
rejecting the wrong insights from the AI and making correct diagnoses (X2 = 7.8, p = 0.005)
and at managing patients (X2 = 5.1, p = 0.023) compared to less resilient GPs. Some
moderate but still significant effects also emerged concerning GPs’ overall confidence in
dermatology, indicating that resilient GPs were more confident than non-resilient doctors,
and this may have played a role in their ability to correctly diagnose (X2 = 3.8, p = 0.049)
and define a management plan (X2 = 5, p = 0.024) even when the AI provided erroneous
insights. The other individual factors (e.g., age, sex, training, predisposition to trust, etc.)
only showed some moderate tendencies.
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4. Discussion

The results demonstrate high levels of trust among GPs towards results attributed to
a fictitious AI system, a finding which has both positive and negative implications for the
healthcare system. Whilst an accurate clinical decision support tool may support GPs in
correctly identifying benign lesions, thus reducing the number of false positives referred to
2WW clinics, there is also a possibility that an erroneous result from the AI system could
lead to a patient’s case being under-triaged.

Adherence to an AI system that can provide correct insights about cases, even when
there are uncertainties, can significantly improve the decision making (diagnosis and plan)
of GPs. The correctness and confidence of GPs in their decision making were significantly
improved by using the AI when a case presented no uncertainties. Given the pressure
on the 2WW pathway, this result may be convenient for ruling out negative cases at the
triage stage, with benefits on patient flow and for the individual patients who will avoid
unnecessary anxiety associated with a suspected cancer referral. However, when dealing
with some uncertainties (CU cases) or when the AI was wrong (DS cases), the confidence
of the GPs in the final decision was not affected by the AI insights. This might suggest that
when GPs had doubts on how to treat a case (CU cases) or when they were not convinced
by the insights of the AI (DS cases), they were not completely reassured by the use of the
AI; however, a large majority of the GPs continued to adhere to the indications of the AI.
These findings are in alignment with previous studies [28] suggesting that over-reliance
on automated systems may be triggered by confirmatory bias when participants direct
their attention towards features consistent with the (inaccurate) advice. We also considered
the variability of personal expertise and attitudes towards automated systems as having
an influence by reducing passive adherence. The results suggest that the tendency to
adhere, even when the AI is inaccurate, may be due to a lack of experience with the
specific tasks or domain knowledge that may bring GPs to overestimate the insights of the
intelligent systems. The small number of resilient GPs who were able to critically interpret
the results of the AI declared significantly higher usage of essential dermatological tools
(i.e., dermatoscope) and confidence in the specific domain of dermatology compared to the
GPs who adhered to the suggestions of the mistaken AI.

The present pilot study is intended as an initial step in the understanding of the future
relationship between AI and clinicians in the domain of dermatology.

Limitations and Future Work

Three main limitations of the present work should be considered for future studies.
First, the small sample surveyed may not be representative of the variety of expertise,

exposure to dermatology cases and experience with similar technologies that GPs may
have. A power analysis using SAS revealed a 95.9% power to detect the difference in
correctness with and without AI support. Our sample size could have detected a minimum
difference of 6.5% with 80% power.

Secondly, the participants of the present study were aware that the test was a sim-
ulation and that no real AI technology was involved; therefore, we cannot rule out that
they may have changed their behaviour because of the attention they received [29] and
because of the absence of implications for patients. This effect may have implications for
the generalisability of our findings.

Finally, how information from an AI system is presented may impact the end-user.
In future studies, we advocate a larger group of GPs, with different expertise, varying
familiarity with AI systems, and different cultural backgrounds to expand the current
results. Concurrently, a larger number of cases should be tested with equal numbers of
different types of lesions in each group. This may bring further insights into the mechanism
that leads to adherence to information provided by AI. Mixed-methods studies [30] could
help in mitigating the effects of bias and changes in the behaviour of research participants
under the influence of observation and measurement. The risk of a passive adherence to
AI in the real world could also emerge due to the complexity of the healthcare system [21]
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and future longitudinal studies on real cases should be implemented to monitor such a
possibility. As well as the user interface, the role of training and documentation, such as
the ‘Instructions for Use’ (IFU), should be considered in future research, both academically
and from the perspective of regulatory applications.

5. Conclusions

Well-designed, accurate and intelligent systems may be able to support GPs in manag-
ing patients in primary care with suspicious skin lesions confidently and appropriately,
helping them to not only refer suspicious lesions but also manage other lesions in primary
care, thus relieving pressure on busy dermatology departments and saving patients from
the anxiety of an unnecessary 2WW referral.

Whilst standards of clinical evidence for AI systems should continue to improve, with
more emphasis on prospective clinical trials, it is fair to assume that, much like the existing
clinical workforce, no AI system will be 100% sensitive in a real-world deployment. Human
expertise can be amplified by AI systems, but human decision-makers need to have the
domain knowledge and confidence to disagree with such systems when it is necessary.

This counter-intuitively suggests that AI tools are better suited in the hands of clini-
cians with certain domain knowledge (senior or specialist clinicians) rather than less expert
professionals, and this should perhaps be reflected in early deployments. For the specific
case of skin cancer, the results suggested that the more clinicians practised dermatological
skills, the more they were able to maximize the benefit of the AI systems.

How the new relationship between healthcare professionals and AI systems will be
regulated in the future requires further exploration [31]. The risk of under-or overestimating
the usefulness of AI tools during clinical decision making might lead to severe consequences
for patients.

Designing safe, explainable, reliable and trustworthy AI systems based on fair, in-
clusive and unbiased data is a key element supporting the diffusion of such tools in the
medical field. However, medical professionals will need to adapt, learn and put in place
behaviour and strategies to accommodate the unavoidable uncertainties around the inter-
action with intelligent systems. In this sense, the diffusion and adoption of AI in clinical
practice will inevitably impact the training and education of clinicians, who should learn
how to interact with these systems, establish a practice to minimise and prevent system
failure and learn how to operate when the system fails, misbehaves or malfunctions.
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Appendix A

Table A1 shows the ten lesions used in the simulation study and their classification.

Table A1. The ten cases used in the simulation study.

Lesions Classification
 

 
 Case 2

 
 Case 3

Correct benign

 
 Case 4

 

 
 Case 5

 

 
 Case 6

Correct malignant

 

 
 Case 1

Borderline—correct benign

 

 
 Case 7

Borderline—correct malignant

 

 
 Case 8

Borderline—correct benign

 

 
 Case 9

Melanoma misclassified as
benign
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Table A1. Cont.

Lesions Classification
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Case 10

Benign misclassified as
Melanoma

Appendix B

Computation used to compose the sensitivity indexes:

d’ = z8 − z(False)

• Decision wrong before and correct after AI insights = Hit rate
• Decision correct before and wrong after AI insights = False rate
• Decision correct before and correct after AI insights = Correct rejection
• Decision wrong before and wrong after AI insights = Miss
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Abstract: Echocardiography (Echo), a widely available, noninvasive, and portable bedside imaging
tool, is the most frequently used imaging modality in assessing cardiac anatomy and function in
clinical practice. On the other hand, its operator dependability introduces variability in image acqui-
sition, measurements, and interpretation. To reduce these variabilities, there is an increasing demand
for an operator- and interpreter-independent Echo system empowered with artificial intelligence
(AI), which has been incorporated into diverse areas of clinical medicine. Recent advances in AI
applications in computer vision have enabled us to identify conceptual and complex imaging features
with the self-learning ability of AI models and efficient parallel computing power. This has resulted
in vast opportunities such as providing AI models that are robust to variations with generalizability
for instantaneous image quality control, aiding in the acquisition of optimal images and diagnosis
of complex diseases, and improving the clinical workflow of cardiac ultrasound. In this review, we
provide a state-of-the art overview of AI-empowered Echo applications in cardiology and future
trends for AI-powered Echo technology that standardize measurements, aid physicians in diagnosing
cardiac diseases, optimize Echo workflow in clinics, and ultimately, reduce healthcare costs.

Keywords: cardiac ultrasound; echocardiography; artificial intelligence; portable ultrasound

1. Introduction

Echocardiography (Echo), also known as cardiac ultrasound (CUS), is currently the
most widely used noninvasive imaging modality for assessing patients with various car-
diovascular disorders. It plays a vital role in evaluation of patients with symptoms of
heart disease by identifying structural as well as functional abnormalities and assessing
intracardiac hemodynamics. However, accurate echo measurements can be hampered
by variability between interpreters, patients, and operators and image quality. Therefore,
there is a clinical need for standardized methods of echo measurements and interpretation
to reduce these variabilities. Artificial-intelligence-empowered echo (AI-Echo) can poten-
tially reduce inter-interpreter variability and indeterminate assessment and improve the
detection of unique conditions as well as the management of various cardiac disorders.

In this state-of-the-art review, we will provide a brief background on transthoracic
echocardiography (TTE) and artificial intelligence (AI) followed by a summary of the
advances in echo interpretation using deep learning (DL) with its self-learning ability. Since
DL approaches have shown superior performance compared to machine-learning (ML)
approaches based on hand-crafted features, we focus on DL progress in this review and
refer the readers to other reviews [1,2] for ML approaches used to interpret echo. The AI
advances could potentially allow objective evaluation of echocardiography, improving
clinical workflow, and reducing healthcare costs. Subsequently, we will present currently
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available AI-Echo applications, delve into challenges of current AI applications using DL,
and share our view on future trends in AI-Echo.

1.1. Transthoracic Echocardiogram

Transthoracic echocardiogram transmits and receives sound waves with frequencies
higher than human hearing using an ultrasound transducer. It generates ultrasound waves
and transmits to the tissue and listens to receive the reflected sound wave (echo). The
reflected echo signal is recorded to construct an image of the interrogated region. The
sound waves travel through soft tissue medium with a speed of approximately 1540 m/s.
The time of flight between the transmitted and received sound waves is used to locate
objects and construct an image of the probed area. The recorded echo data can be either
a single still image or a movie/cine clip over multiple cardiac cycles. CUS has several
advantages compared to cardiac magnetic resonance, cardiac computed tomography, and
cardiac positron emission tomography imaging modalities. CUS does not use ionizing
radiation, is less expensive, portable for point-of-care (POCUS) applications, and provides
actual real-time imaging. It can be carried to a patient’s bedside for examining patients and
monitoring changes over time. Disadvantages of TTE include its dependence on operator
and interpreter skill, with variability in data acquisition and interpretation. In addition to
operator variability, it includes patient specific variability (e.g., signal-to-noise ratio and
limited acoustic window due to anatomical or body mass differences) and machine specific
variability (e.g., electronic noise and post-processing filters applied to acquired images).
Image quality plays an important factor for accurate measurements. Suboptimal image
quality can affect all measurements and can result in misdiagnosis.

Diverse image types are formed by using cardiac ultrasound (Figure 1). The most
common types used in clinics are:

B-mode: It is also called brightness mode (B-mode), which is the most well-known
US image type. An ultrasound beam is scanned across the tissue to construct a 2D cross
section image of the tissue.

M-mode: Motion mode (M-mode) is used to examine motion over time. For example,
it provides a single scan line of the heart, and all of the reflectors along this line are shown
along the time axis to measure temporal resolution of the cardiac structures.

Doppler ultrasound: A change in the frequency of a wave occurs when the source and
observer are moving relative to each other, this is called the Doppler effect. An US wave
is transmitted with a specific frequency through an ultrasound probe (the observer). The
US waves that are reflected from moving objects (e.g., red blood cells in vessels) return
to the probe with a frequency shift. This frequency shift is used to estimate the velocity
of the moving object. In blood flow, the velocity of red blood cells moving towards and
away from the probe is recorded to construct Doppler signals. The velocity of information
overlaid on top of a B-mode anatomical image to show color Doppler images of blood flow.

Contrast enhanced ultrasound (CEUS): CEUS is a functional imaging that suppresses
anatomical details but visualizes blood pool information. It exploits the non-linear response
of ultrasound contrast agents (lipid coated gas bubbles). Generally, two consecutive US
signals are propagated through the same medium, and their echo response is subtracted
to obtain contrast signal. Since the tissue generates linear echo response, the subtraction
cancels out the tissue signal, and only the difference signal from non-linear responses of
bubbles remains. This imaging technique is used to enhance cardiac chamber cavities when
B-mode US provides poor quality images. It is useful to detect perfusion abnormalities in
tissues and enhance the visibility of tissue boundaries.

Strain imaging: This technique detects myocardial deformation patterns such as
longitudinal, radial, and circumferential deformations, and early functional abnormalities
before they become noticeable as regional wall motion abnormalities or reduced ejection
fraction on B-mode cardiac images.
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Figure 1. Sample US images showing different US modes. (A) B-mode image of the apical 4 chamber view of a heart.
(B) Doppler image of mitral inflow. (C) Contrast enhanced ultrasound image of left ventricle. (D) Strain imaging of the
left ventricle.

1.2. Artificial Intelligence

Artificial intelligence (AI) is considered to be a computer-based system that can
observe an environment and takes actions to maximize the success of achieving its goals.
Some examples include a system that has the ability of sensing, reasoning, engaging,
and learning, are computer vision for understanding digital images, natural language
processing for interaction between human and computer languages, voice recognition
for detection and translation of spoken languages, robotics and motion, planning and
organization, and knowledge capture. ML is a subsection of AI that covers the ability of a
system to learn about data using supervised or unsupervised statistical and ML methods
such as regression, support vector machines, decision trees, and neural networks. Deep
learning (DL), which is a subclass of ML, learns a sequential chain of pivotal features from
input data that maximizes the success of the learning process with its self-learning ability.
This is different from statistical ML algorithms that require handcrafted feature selection [3]
(Figure 2).
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Figure 2. The context of artificial intelligence, machine learning, and deep learning. SVM: Support
Vector Machine. CNN: convolutional neural networks, R-CNN: recurrent CNN, ANN: artificial
neural networks.

Artificial neural networks (ANN) are the first DL network design where all nodes
are fully connected to each other. It mimics biological neurons for creating representation
from an input signal, including many consecutive layers that learn a hierarchy of features
from an input signal. ANN and the advance in graphics processing units (GPU) processing
power have enabled the development of deep and complex DL models with simultaneous
multitasking at the same time. DL models can be trained with thousands or millions
of samples to gain robustness to variations in data. The representation power of DL
models is massive and can create representation for any given variation of a signal. Recent
accomplishments of DL, especially in image classification and segmentation applications,
made it very popular in the data science community. Traditional ML methods use hand-
crafted features extracted from data and process them in decomposable pipelines. This
makes them more comprehensible as each component is explainable. On the other hand,
they tend to be less generalizable and robust to variations in data. With DL models, we
give up interpretability in exchange for obtaining robustness and greater generalization
ability, while generating complex and abstract features.

State-of-the-art DL models have been developed for a variety of tasks such as object de-
tection and segmentation in computer vision, voice recognition, and genotype/phenotype
prediction. There are different types of models that include convolutional neural networks
(CNNs), deep Boltzmann machines, stacked auto-encoders [4], and deep belief neural
networks [5]. The most commonly used DL method for processing images that are CNNs
as fully connected ANN is computationally heavy for 2D/3D images and requires extensive
GPU memory. CNNs share weights across each feature map or convolutional layers to
mitigate this. CNN approaches have gained enormous awareness, achieving impressive
results in the ImageNet [6–8] competition in 2012 [8], which includes natural photographic
images. They were utilized to classify a dataset of around a million images that comprise
a thousand diverse classes, achieving half the error rates of the most popular traditional
ML approaches [8]. CNNs have been widely utilized for medical image classification
and segmentation tasks with great success [3,9–12]. Since DL algorithms outperform ML
algorithms in general and exploit the GPU processing power, it allows real-time process-
ing of US images. We will only focus on DL applications of AI-powered US cardiology
in this review.
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To assess the performance of ML models, data are generally split into training, vali-
dation, and test sets. The training set is used for learning about the data. The validation
set is employed to establish the reliability of learning results, and the test set is used to
assess the generalizability of a trained model on the data that are never seen by the model.
When training samples are limited, k-fold cross validation approaches (e.g., leave-one-out,
five-fold, or ten-fold cross validation) are utilized. In cross-validation, the data are divided
randomly into k equal sized pieces. One piece is reserved for assessing the performance
of a model, and the remaining pieces (k-1) are utilized for training models. The training
process is typically performed in a supervised way, which involves ground truth labels
for each input data and minimizes a loss function over training samples iteratively, as
shown in Figure 3. Supervised learning is the most common training approach for ML,
but it requires a laborious ground truth label generation. In medical imaging, ground
truth labels are generally obtained from clinical notes for diagnosis or quantification. Fur-
thermore, manual outlining of structures by experts are used to train ML models for
segmentation tasks.

Figure 3. A framework of training a deep-learning model for classification of myocardial diseases. Operations between
layers are shown with arrows. SGD: Stochastic Gradient Descent.

2. Methods and Results: Automated Echo Interpretation

We performed a thorough analysis of the literature using Google Scholar and PubMed
search engines. We included peer-reviewed journal publications and conference proceed-
ings in this field (IEEE Transactions on Medical Imaging, IEEE Journal of Biomedical
and Health Informatics, Circulation, Nature, and conference proceedings from SPIE, the
Medical Image Computing and Computer Assisted Intervention Society, the Institute of
Electrical and Electronics Engineers, and others) that describe the application of DL to
cardiac ultrasound images before 15 January 2021. We included a total of 14 journal papers
and three conference proceedings that are relevant to the scope of this review (see Figure 4
for the detailed flowchart for the identification, screening, eligibility, and inclusion). We
divided reports into three groups on the basis of the task performed: view identification
and quality control, image segmentation and quantification, and disease diagnosis.
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Figure 4. The flowchart of systematic review that includes identification, screening, eligibility, and inclusion.

Current Echo-AI applications require several successive processing steps such as view
labelling and quality control, segmentation of cardiac structures, echo measurements, and
disease diagnosis (Figure 5). AI-Echo can be used for low-cost, serial, and automated evalu-
ation of cardiac structures and function by experts and non-experts in cardiology, primary
care, and emergency clinics. This would also allow triaging incoming patients with chest
pain in an emergency department by providing preliminary diagnosis and longitudinally
monitoring patients with cardiovascular risk factors in a personalized manner.

Figure 5. The flowchart of automated artificial-intelligence-empowered echo (AI-Echo) interpretation pipeline using a chain
approach. QC: Quality Control.
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With the advancing ultrasound technology, the current clinical cart-based ultrasound
systems could be replaced with portable point-of-care ultrasound (POCUS) systems or
could be used together. GE Vscan, Butterfly IQ, and Philips Lumify are popular POCUS
devices. A single Butterfly IQ probe contains 9000 micro-machined semiconductor sensors
and emulates linear, phased, and curved array probes. While the Butterfly IQ probe
using ultrasound-on-chip technology could be used for imaging the whole body, Philips
Lumify provides different probes for each organ (e.g., s4-1 phased array probe for cardiac
applications). GE Vscan comes with two transducers placed in one probe and can be
used for scanning deep and superficial structures. Using POCUS devices powered with
cloud-based AI-Echo interpretation at point of care locations could significantly reduce
the US cost and increase the utility of AI-Echo by non-experts in primary and emergency
departments (see Figure 6). A number of promising studies using DL approaches have
been published for classification of standard echo views (e.g., apical and parasternal
views), segmentation of heart structures (e.g., ventricle, atrium, septum, myocardium,
and pericardium), and prediction of cardiac diseases (e.g., heart failure, hypertrophic
cardiomyopathy, cardiac amyloidosis, and pulmonary hypertension) in recent years [13–
16]. In addition, several companies such as TOMTEC IMAGING SYSTEMS GMBH, Munich,
Germany and Ultromics, Oxford, United Kingdom have already obtained premarket FDA
clearance on auto ejection fraction (EF) and echo strain packages using artificial intelligence.
The list of companies and their provided AI tools is shown in Table 1.

Figure 6. A schematic diagram of AI (artificial intelligence) interpretation of echocardiography
images for preliminary diagnosis and triaging patients in emergency and primary care clinics.
POCUS: point of care ultrasound.
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Table 1. The list of commercial software packages that provides automated measurements
or diagnosis.

Company Software Package AI-Empowered Tools

Siemens Medical Solutions
Inc., USA

syngo Auto Left Heart,
Acuson S2000 US system.

Auto EF, Auto LV and LA volumes, Auto
Strain for manually selected views.

GE Healthcare, Inc., USA
Ultra Edition Package,

Vivid Ultrasound Systems
Auto EF, Auto LV and LA volumes,

Auto Strain for manually selected views

TOMTEC Imaging Systems
GmbH, Germany

Tomtec-Arena/
Tomtec-Zero

Auto EF, Auto LV and LA volumes,
Auto Strain for manually selected views

Ultromics Ltd.,
United Kingdom

Echo Go/Echo Go Pro
Auto EF, Auto LV and LA volumes,
Auto Strain, Auto identification of

CHD (Fully automated)

Dia Imaging
Analysis Ltd., Israel

DiaCardio’s LVivoEF
Software/LVivo Seamless

Auto EF and Auto standard echo view
identification (Fully automated)

Caption Health, Inc., USA
The Caption

Guidance software
AI tool for assisting to capture images

of a patient’s heart
EF: ejection fraction. CHD: coronary heart disease.

2.1. View Identification and Quality Control

A typical TTE study includes the acquisition of multiple cine clips of the heart’s cham-
bers from five standardized windows that are left parasternal window (i.e., parasternal long
and short axis views), apical window (i.e., two, three, four, five chamber views), subcostal
window (i.e., four chamber view, long axis inferior vena cava view), and suprasternal notch
window (i.e., aortic arch view), right parasternal window (i.e., ascending aorta view). In
addition to these, the study includes several other cine clips of color Doppler, strain imag-
ing, and 3D ultrasound and still images of valves, walls, and the blood vessels (e.g., aorta
and pulmonary veins). View identification and quality control are essential prerequisite
steps for a fully automated echo interpretation.

Zhang et al. [16,17] presented a fully automated echo interpretation pipeline that
includes 23 view classifications. They trained a 13-layer CNN model with 7168 labelled
cine clips and used five-fold cross validation to assess the performance of their model. In
evaluation, they selected 10 random frames per clip and averaged the resulting probabilities.
The overall accuracy of their model was 84% at an individual image level. They also
reported that distinguishing the various apical views was the greatest challenge in the
setting of partially obscured left ventricles. They made their source code and model weights
publicly available at [18]. Mandani et al. [19] presented the classification of 15 standard
echo views using DL. They trained a VGG CNN network with 180,294 images of 213 studies
and tested their model on 21,747 images of 27 studies. They obtained 91.7% overall accuracy
on the test dataset at a single image level and 97.8% overall accuracy when considering the
model’s top two guesses. Akkus et al. [20] trained a CNN inception model with residual
connections on 5544 images of 140 patients for predicting 24 Doppler image classes and
automating Doppler mitral inflow analysis. They obtained overall accuracy of 97% on the
test set that included 1737 images of 40 patients.

Abdi et al. [21,22] trained a fully connected CNN with 6196 apical four chamber (A4C)
images that were scored between 0 to 5 to assess the A4C quality of echo images. They used
three-fold cross validation and reported an error comparable to intra-rater reliability (mean
absolute error: 0.71 ± 0.58). Abdi et al. [23] later extended their previous work and trained
a CNN regression architecture that includes five regression models with the same weights
in the first few layers for assessing the quality of cine loops across five standard view
planes (i.e., apical 2, 3, and 4 chamber views and parasternal short axis views at papillary
muscle and aortic valve levels). Their dataset included 2435 cine clips, and they achieved
an average of 85% accuracy compared to gold standard scores assigned by experienced
echo sonographers on 20% of the dataset. Zhang et al. [16,17] calculated the averaged
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probability score of views classification across all videos in their study to define an image
quality score for each view. They assumed that poor quality cine clips tended to have a
more ambiguous view assignment, and the view classification probability could be used
for quality assessment. Dong et al. [24] presented a generic quality control framework for
fetal ultrasound cardiac four chamber planes (CFPs). Their proposed framework consists
of three networks that roughly classify four-chamber views from the raw data, determine
the gain and zoom of images, and detect the key anatomical structures on a plane. The
overall quantitative score of each CFP was achieved based on the output of the three
networks. They used five-fold cross validation to assess their model across 2032 CFPs and
5000 non-CFPs and obtained a mean average precision of 93.52%. Labs et al. [25] trained a
hybrid model including CNN and LSTM layers to assess the quality of apical four-chamber
view images for three proposed attributes (i.e., foreshortening, gain/contrast, and axial
target). They split a dataset of 1039 unique apical four-chamber views into 60:20:20% ratio
for training, validation, and testing, respectively, and achieved an average accuracy of 86%
on the test set.

View identification and quality assessment of cine clips are the most important pieces
of a fully automated echo interpretation pipeline. As shown in Table 2, there is an error
range of 3–16% in the current studies for both view identification and quality control. The
proposed models were generally trained with a dataset from a single or a few vendors or
a single center. Apart from the study of Zhang et al. [16,17], none of the studies shared
their source code and model weights for comparisons. In some studies, customized CNN
models were used, but not enough evidence or comparisons were shown to support that
their choices perform better than the state-of-the-art CNN models such as Resnet, Inception,
and Densenet.

Table 2. Deep-learning-based AI studies for view identification and quality assessment. MAE: mean absolute error.

Task DL Model Data/Validation Performance

Zhang et al. [16,17] 23 standard echo view
classification

Customized 13-layer
CNN model

5-fold cross validation/7168 cine
clips of 277 studies

Overall accuracy: 84% at
individual image level

Mandani et al. [19] 15 standard echo view
classification VGG [26] Training: 180,294 images of 213 studies

Testing: 21,747 images of 27 studies

Overall accuracy: 97.8%
at individual image
level and 91.7% at

cine-lip level

Akkus et al. [20] 24 Doppler image classes Inception_resnet [27] Training: 5544 images of 140 studies
Testing: 1737 images of 40 studies Overall accuracy of 97%

Abdi et al. [21,22]
Rating quality of apical

4 chamber views
(0–5 scores)

A customized fully
connected CNN 3-fold cross validation/6196 images MAE: 0.71 ± 0.58

Abdi et al. [23] Quality assessment for
five standard view planes

CNN regression
architecture

Total dataset: 2435 cine clips
Training: 80%
Testing: 20%

Average of 85%
accuracy

Dong et al. [24]
QC for fetal ultrasound

cardiac four
chamber planes

Ensembled three
CNN model 5-fold cross validation (7032 images) Mean average precision

of 93.52%.

Labs et al. [25] Assessing quality of apical
4 chamber view

Hybrid model including
CNN and LSTM layers

Training/validation/testing
(60/20/20%) of in total of 1039 images

Average accuracy of 86%
on the test set

2.2. Image Segmentation and Quantification

Partitioning of an identified view into the region of interests such as left/right ventricle
or atrium, ventricular septum, and mitral/tricuspid valves is necessary to quantify certain
biomarkers such as ejection fraction, volume changes, and velocity of septal or distal
annulus. Several studies have used DL methods to segment left ventricles from apical four
and two chamber views.

Zhang et al. [16,17] presented a fully automated echo interpretation pipeline that
includes segmentation of cardiac chambers in five common views and quantification of
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structure and function. They used five-fold cross validation on 791 images that have manual
segmentation of left ventricle and reported the intersection over union metric ranging from
0.72 to 0.90 for the performance of their U-Net-based segmentation model. In addition,
they produced automated measurements such as LV ejection fraction (LVEF), LV volumes,
LV mass, and global longitudinal strain from the resulting segmentations. Compared to
manual measurements, median absolute deviation of 9.7% (n = 6407 studies) was achieved
for LVEF; median absolute deviation of 15–17% was obtained for LV volume and mass
measurements; median absolute deviation of 7.5% (n = 419) and 9.0% (n = 110) was obtained
for strain. They concluded that they obtained cardiac structure measurements comparable
with values in study reports. Leclerc et al. [13] studied the state-of-art encoder–decoder type
DL methods (e.g., U-Net [28]) for segmenting cardiac structures and made a large dataset
(500 patients) publicly available with segmentation labels of end diastole and systole frames.
The full dataset is available for download at [29]. They showed that their U-Net-based
model outperformed the state-of-the-art non-deep-learning methods for measurements of
end-diastolic and end-systolic left ventricular volumes and LVEF. They achieved a mean
correlation of 0.95 and an absolute mean error of 9.5 mL for LV volumes and a mean
correlation coefficient of 0.80 and an absolute mean error of 5.6% for LVEF. Jafari et al. [30]
presented a recurrent CNN and optical flow for segmentation of the left ventricle in echo
images. Jafari et al. [14] also presented biplane ejection fraction estimation with POCUS
using multi-task and learning and adversarial training. The performance of the proposed
model for the segmentation of LV was an average Dice score of 0.92 and, for the automated
ejection fraction, was shown to be around an absolute error of 6.2%. Chen et al. [31]
proposed an encoder–decoder type CNN with multi-view regularization to improve LV
segmentation. The method was evaluated on 566 patients and achieved an average Dice
score of 0.88. Oktay et al. [32] incorporated anatomical prior knowledge in their CNN
model that allows following the global anatomical properties of the underlying anatomy.
Ghorbani et al. [33] used a custom CNN model, named EchoNet, to predict left ventricular
end systolic and diastolic volumes (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2 = 0.50).
Ouyang et al. [15] trained a semantic segmentation model using atrous convolutions
on echocardiogram videos. Their model obtained Dice similarity coefficient of 0.92 for
left ventricle segmentation of apical four-chamber view and used a spatiotemporal 3D
CNN model with residual connections and predicted ejection fraction with mean absolute
errors of 4.1 and 6% for internal and external datasets, respectively. Ouyang et al. [15]
de-identified 10,030 echocardiogram videos, resized them into 112 × 112 pixels, and made
their dataset publicly available at [34].

U-Net is the most common DL model used for echo image segmentation. As shown
in Table 3, the error range for LVEF is ranging between 4 and 10%, while it ranges between
10 and 20% for LV and LA volume measurements.

2.3. Disease Diagnosis

Several studies have shown that DL models can be used to assess cardiac diseases
(see Table 4). Zhang et al. [16,17] presented a fully automated echo interpretation pipeline
for disease detection. They trained a VGG [26] network using three random images per
video as an input and provided two prediction outputs (i.e., diseased or normal). The
ROC curve performance of their model for prediction of hypertrophic cardiomyopathy,
cardiac amyloidosis, and pulmonary hypertension were 0.93, 0.87, and 0.85, respectively.
Ghorbani et al. [33] trained a customized CNN model that includes inception connec-
tions, named EchoNet, on a dataset of more than 1.6 million echocardiogram images from
2850 patients to identify local cardiac structures, estimate cardiac function, and predict
systemic risk factors. The proposed CNN model identified the presence of pacemaker leads
with AUC = 0.89, enlarged left atrium with AUC = 0.86, and left ventricular hypertrophy
with AUC = 0.75. Ouyang et al. [15] trained a custom model that includes spatiotemporal
3D convolutions with a residual connection network together with semantic segmentation
of the left ventricle to predict the presence of heart failure with reduced ejection fraction.
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The output of the spatiotemporal network and semantic segmentation were combined to
classify heart failure with reduced ejection fraction. Their model achieved an area under
the curve of 0.97 for predicting heart failure with reduced ejection fraction. Omar et al. [35]
trained a modified VGG-16 CNN model on a 3D Dobutamine stress echo dataset to detect
wall motion abnormalities and compared its performance to hand-crafted approaches:
support vector machines (SVM) and random forests (RF). They achieved slightly better ac-
curacy with the CNN model: RF (72.1%), SVM (70.5%), and CNN (75.0%). In another study,
Kusunose et al. [36] investigated whether a CNN model could provide improved detection
of wall motion abnormalities. They presented that the area under the AUC produced by
the deep-learning algorithm was comparable to that produced by the cardiologists and
sonographer readers (0.99 vs. 0.98, respectively) and significantly higher than the AUC
result of the resident readers (0.99 vs. 0.90, respectively). Narula et al. [37] trained SVM, RF,
and artificial neural network (ANN) with hand-crafted echo measurements (i.e., LV wall
thickness, end-diastolic volume, end-systolic volume, and ejection fraction, pulsed-wave
Doppler-derived transmitral early diastolic velocity (E), the late diastolic atrial contraction
wave velocity (A), and the ratio E/A to differentiate hypertrophic cardiomyopathy (HCM)
from physiological hypertrophy seen in athletes (ATH). They reported overall sensitivity
and specificity of 87 and 82%, respectively.

Unlike other hand-crafted feature-based ML approaches, the DL approaches may
extract features from data beyond human perception. DL-based AI approaches have the
potential to support accurate diagnosis and discovering crucial features from echo images.
In the near future, these tools may aid physicians in diagnosis and decision making and
reduce the misdiagnosis rate.

Table 3. Deep-learning-based AI studies for image segmentation and quantification. MAD: mean absolute difference. LVEF:
left ventricle ejection fraction.

Task DL Model Data/Validation Performance

Zhang et al. [16,17]

LV/LA segmentation;
LVEF, LV and LA

volumes, LV mass, global
longitudinal strain

U-Net [28]

LV segmentation: 5-fold cross
validation on 791 images; LV
volumes: 4748 measurements;
LV mass: 4012 measurements;

strain: 526 studies

IOU: 0.72–0.90 for LV
segmentation; MAD of 9.7%

for LVEF; MAD of 15–17% for
LV/LA volumes and LV mass;

MAD of 9% for strain.

Leclerc et al. [13] LVEF, LV volumes U-Net [28] 500 patients LVEF: AME of 5.6%
LV volumes: AME of 9.7 mL

Jafari et al. [14] LV segmentation and
bi-plane LVEF

A shallow U-Net with
multi-task learning and

adversarial training

854 studies split into 80%
training and 20% testing sets

DICE of 0.92 for
LV segmentation;

MAE of 6.2% for LVEF

Chen et al. [31]
LV segmentation in

apical 2, 3, 4, or
5 chamber views

An encoder–decoder type
CNN with multi-view

regularization

Training set: 33,058 images;
test set: 8204 images Average DICE of 0.88

Oktay et al. [32] LV segmentation;
LVEF

Anatomically constrained
CNN model

CETUS’14 3D US challenge
dataset. (training set:

15 studies; test set: 30 studies)

DICE of 0.91 ± 0.23 for LV
segmentation;

correlation of 0.91 for LVEF

Ghorbani et al. [33]
LV systolic and

diastolic volumes;
LVEF

A customized CNN model
(EchoNet) for semantic

segmentation

Training set: 1.6 million images
from 2850 patients;

test set: 169,000 images from
373 studies

Systolic and diastolic volumes
(R2 = 0.74 and R2 = 0.70);

R2 = 0.50 for LVEF

Ouyang et al. [15] LVEF 3D CNN model with
residual connections

Training set: 7465 echo videos;
internal test dataset (n = 1277);
external test dataset (n = 2895)

MAE of 4.1% and 6% for
internal and external datasets
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Table 4. Deep-learning-based AI studies for disease diagnosis. AUC: area under the curve.

Task DL Model Data/Validation Performance

Zhang et al. [16,17]

Diagnosis of hypertrophic
cardiomyopathy (HCM),

cardiac amyloidosis
(amyloid), and pulmonary

hypertension (PAH)

VGG [26]

HCM: 495/2244
Amyloid:179/804

PAH:584/2487
(Diseased/Control)

5-fold cross validation

Hypertrophic
cardiomyopathy: AUC of 0.93;
cardiac amyloidosis: AUC of

0.87; pulmonary hypertension:
AUC of 0.85

Ghorbani et al. [33]

Diagnose presence of
pacemaker leads; enlarged

left atrium;
LV hypertrophy

A customized
CNN model

Training set: 1.6 million images
from 2850 patients;

test set: 169,000 images from 373
studies

Presence of pacemaker leads
with AUC = 0.89; enlarged left
atrium with AUC = 0.86, left
ventricular hypertrophy with

AUC = 0.75.

Ouyang et al. [15] Predict presence of HF
with reduced EF

3D convolutions with
residual connection

Training set: 7465 echo videos;
internal test dataset (n = 1277);
external test dataset (n = 2895)

AUC of 0.97

Omar et al. [35] Detecting wall motion
abnormalities Modified VGG-16 [26] 120 echo studies. One-leave-out

cross validation

Accuracy: RF = 72.1%,
SVM = 70.5%
CNN = 75.0%

Kusunose et al. [36] Detecting wall motion
abnormalities (WMA) Resnet [38]

300 patients with WMA +100
normal control. Training = 64%

Validation:16%
Test: 20%

AUC of 0.99

Narula et al. [37] Differentiate HCM
from ATH A customized ANN 77 ATH and 62 HCM patients.

Ten-fold cross validation
Sensitivity: 87%
Specificity: 82%

3. Discussion and Outlook

Automated image interpretation that mimics human vision with traditional machine
learning has existed for a long time. Recent advances in parallel processing with GPUs
and deep-learning algorithms, which extract patterns in images with their self-learning
ability, have changed the entire automated image interpretation practice with respect to
computation speed, generalizability, and transferability of these algorithms. AI-empowered
echocardiography has been advancing and moving closer to be used in routine clinical
workflow in cardiology due to the increased demand for standardizing acquisition and
interpretation of cardiac US images. Even though DL-based methods for echocardiography
provide promising results in diagnosis and quantification of diseases, AI-Echo still needs
to be validated with larger study populations including multi-center and multi-vendor
datasets. High intra-/inter-variability in echocardiography makes standardization of image
acquisition and interpretation challenging. However, AI-Echo will provide solutions to
mitigate operator-dependent variability and interpretability. AI applications in cardiac US
are more challenging than those in cardiac CT and MR imaging modalities due to patient-
dependent factors (e.g., obesity, limited acoustic window, artifacts, and signal drops) and
natural US speckle noise pattern. These factors that affect US image quality will remain as
challenges with cardiac ultrasound.

Applications of DL in echocardiography are rapidly advancing as evidenced by the
growing number of studies recently. DL models have enormous representation power
and are hungry for large amounts of data in order to obtain generalization ability and
stability. Creating databases with large datasets that are curated and have good quality
data and labels is the most challenging and time-consuming part of the whole AI model
development process. Although it has been shown that AI-echo applications have superb
performance compared to classical ML methods, most of the models were trained and
evaluated on small datasets. It is important to train AI models on large multi-vendor
and multi-center datasets to obtain generalization and validate on large multi-vendor
datasets to increase reliability of a proposed model. An alternative way to overcome
the limitation of having small training datasets would be augmenting the dataset with
realistic transformations (e.g., scaling, horizontal flipping, translations, adding noise, tissue
deformation, and adjusting image contrast) that could help improve generalizability of AI
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models. On the other hand, realistic transformations need to be used to genuinely simulate
variations in cardiac ultrasound images, and transformations-applied images should not
create artifacts. Alternatively, generative adversarial networks, which include a generator
and a discriminator model, are trained until the model generates images that are not
separable by the discriminator. This could be used to generate realistic cardiac ultrasound
B-mode images of the heart. Introducing such transformations during the training process
will make AI models more robust to small perturbations in input data space.

Making predictions and measurements based on only 2D echo images could be
considered as a limitation of AI-powered US systems. Two-dimensional cross section
images include limited information and do not constitute the complete myocardium.
Training AI models on 3D cardiac ultrasound data that include the entire heart or the
structure of interest would potentially improve the diagnostic accuracy of an AI model.

It is important to design AI models that are transparent for the prediction of any
disease from medical images. The AI models developed for diagnosis of a disease must elu-
cidate the reasons and motivations behind their predictions in order to build trust in them.
Comprehension of the inner mechanism of an AI model necessitates interpreting the activity
of feature maps in each layer [39–41]. However, the extracted features are a combination of
sequential layers and become complicated and conceptual with more layers. Therefore, the
interpretation of these features become difficult compared to handcrafted imaging features
in traditional ML methods. Traditional ML methods are designed for separable components
that are more understandable, since each component of ML methods has an explanation
but usually is not very accurate or robust. With DL-based AI models, the interpretability is
given up for the robustness and complex imaging features with greater generalizability.
Recently, a number of methods have been introduced about what DL models see and how
to make their predictions. Several CNN architectures [26,28,38,42,43] employed techniques
such as deconvolutional networks [44], gradient back-propagation [45], class activation
maps (CAM) [41], gradient-weighted CAM [46], and saliency maps [47,48] to make CNN
understandable. With these techniques, gradients of a model have been projected back to
the input image space, which shows what parts in the input image contribute the most
to the prediction outcome that maximizes the classification accuracy. Although making
AI models understandable has been an active research topic in the DL community, there
is still much further research needed in the area. Despite the fact that high prediction
performances were achieved and reported in the studies discussed in this review, none of
the studies have provided an insight on which heart regions play an important role in any
disease prediction.

Developing AI models that standardize image acquisition and interpretation with less
variability is essential considering that echocardiography is an operator- and interpreter-
dependent imaging modality. AI guidance during data acquisition for the optimal angle,
view, and measurements would make echocardiography less operator-dependent and
smarter, while standardizing data acquisition. Cost-effective and easy access of POCUS
systems with AI capability would help clinicians and non-experts perform swift initial
examinations on patients and progress with vital and urgent decisions in emergency and
primary care clinics. In the near future, POCUS systems with AI capability could replace
the stethoscopes that doctors use in their daily practice to listen to patients’ hearts. Clinical
cardiac ultrasound or POCUS systems empowered with AI, which can assess multi-mode
data, steer sonographers during acquisition, and deliver objective qualifications, mea-
surements, and diagnoses, will assist with decision making for diagnosis and treatments,
improve echocardiography workflow in clinics, and lower healthcare cost.
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