
Edited by

Computational
Optimizations for
Machine Learning

Freddy Gabbay

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Computational Optimizations for
Machine Learning

Computational Optimizations for
Machine Learning

Editor

Freddy Gabbay

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Freddy Gabbay

Faculty of Engineering

Ruppin Academic Center

Israel

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Comput Optim Mach Learn).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-3186-1 (Hbk)

ISBN 978-3-0365-3187-8 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Computational Optimizations for Machine Learning” ix

Weijia Shao, Lukas Radke, Fikret Sivrikaya and Sahin Albayrak

Adaptive Online Learning for the Autoregressive Integrated Moving Average Models
Reprinted from: Mathematics 2021, 9, 1523, doi:10.3390/math9131523 1

Gabriela Czibula, Andrei Mihai, Alexandra-Ioana Albu, Istvan Gergely Czibula,
Sorin Burcea and Abdelkader Mezghani

AutoNowP: An Approach Using Deep Autoencoders for Precipitation Nowcasting Based on
Weather Radar Reflectivity Prediction
Reprinted from: Mathematics 2021, 9, 1653, doi:10.3390/math9141653 31

Zhe Wu, David Rincon, Quanquan Gu and Panagiotis D. Christofides

Statistical Machine Learning in Model Predictive Control of Nonlinear Processes
Reprinted from: Mathematics 2021, 9, 1912, doi:10.3390/math9161912 53

Chaim Baskin, Evgenii Zheltonozhkii, Tal Rozen, Natan Liss, Yoav Chai, Eli Schwartz,
Raja Giryes, Alexander M. Bronstein and Avi Mendelson

NICE: Noise Injection and Clamping Estimation for Neural Network Quantization
Reprinted from: Mathematics 2021, 9, 2144, doi:10.3390/math9172144 91

Alberto Garces-Jimenez, Jose-Manuel Gomez-Pulido, Nuria Gallego-Salvador and

Alvaro-Jose Garcia-Tejedor

Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using
Real Data: A Comparative Study
Reprinted from: Mathematics 2021, 9, 2181, doi:10.3390/math9182181 103

Ricardo J. Jesus, Mário L. Antunes, Rui A. da Costa, Sergey N. Dorogovtsev, José F. F. Mendes

and Rui L. Aguiar

Effect of Initial Configuration of Weights on Training and Function of Artificial Neural
Networks
Reprinted from: Mathematics 2021, 9, 2246, doi:10.3390/math9182246 127

Freddy Gabbay and Gil Shomron

Compression of Neural Networks for Specialized Tasks via Value Locality
Reprinted from: Mathematics 2021, 9, 2612, doi:10.3390/math9202612 143

Bharathwaj Suresh, Kamlesh Pillai, Gurpreet Singh Kalsi, Avishaii Abuhatzera and

Sreenivas Subramoney

Early Prediction of DNN Activation Using Hierarchical Computations
Reprinted from: Mathematics 2021, 9, 3130, doi:10.3390/math9233130 177

Mehdi Dasineh, Amir Ghaderi, Mohammad Bagherzadeh, Mohammad Ahmadi
and Alban Kuriqi

Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and
Soft Computing Methods
Reprinted from: Mathematics 2021, 9, 3135, doi:10.3390/math9233135 195

v

Ruba Abu Khurma, Ibrahim Aljarah*, Ahmad Sharieh, Mohamed Abd Elaziz,
Robertas Damaševičius*, Tomas Krilavičius

A Review of the Modification Strategies of the Nature Inspired Algorithms for Feature Selection
Problem
Reprinted from: Mathematics 2022, 10, 464, doi:10.3390/math10030464 219

vi

About the Editor

Freddy Gabbay received his B.Sc., M.Sc. and Ph.D. in Electrical Engineering from Technion

– Israel Institute of Technology, Haifa, Israel. In 1998, he worked as a researcher at Intel’s

Microprocessor Research Lab. In 1999, he joined Mellanox Technologies and held various positions in

leading switch product line architecture and ASIC design. In 2003, he joined Freescale Semiconductor

as a senior design manager and led the design of baseband ASIC products. In 2012, he rejoined

Mellanox Technologies, where he served as Vice President of Chip Design. Today, he is the Dean of

the Engineering Faculty and an associate professor at the Ruppin Academic Center, Emek Hefer,

Israel. His research interests include VLSI design, computer architecture, machine learning and

domain-specific accelerators. Prof. Gabbay holds 19 patents and is a senior member of IEEE.

vii

Preface to ”Computational Optimizations for

Machine Learning”

In the recent decade, machine learning has emerged as a powerful tool for an incredible number

of applications, such as computer vision, medicine, fintech, autonomous systems, speech recognition,

traffic management and social media among many others. Machine learning models provide

state-of-the-art and robust accuracy in various applications. Beyond the major impact of machine

learning applications on our life and environment, machine learning introduces a revolutionary

approach in the method of developing algorithms. While past approaches rely on humans to develop

new algorithms, machine learning uses powerful computers to train algorithms based on large

datasets. Machine learning can thereby identify complex connections and relations between features

that cannot be handled using conventional methods.

The increasing deployment of machine learning algorithms introduces major computational

challenges due to the explosive growth in their model size and complexity. These challenges have

been further emphasized due to the diversity of hosting computational platforms, from edge devices

and cloud systems to high-performance computing. Given that each platform introduces different

computational and cost constraints, the need for computational optimizations that are fine-tuned to

the application and platform is crucial.

The present book contains the 10 articles accepted for publication among the 15 submissions

to the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal

Mathematics.

The 10 articles, which appear in the present book in the order in which they were published

in Volume 9 (2021) of the journal, cover a wide range of topics connected to the machine

learning computational optimizations theory and applications. These topics include, among others,

elements from convolutional neural networks, nature inspired algorithms, neural networks training,

quantization, predictive control of nonlinear processes, weather prediction and adaptive online

learning.

It is hoped that the book will be interesting and useful to those developing mathematical

algorithms and applications in the domain of artificial intelligence and machine learning as well

as for those having the appropriate mathematical background and willing to become familiar with

recent advances of machine learning computational optimization mathematics, which has nowadays

permeated into almost all sectors of human life and activity.

As the Guest Editor of the Special Issue, I am grateful to the authors of the papers for their

quality contributions, to the reviewers for their valuable comments toward the improvement of the

submitted works and to the administrative staff of the MDPI publications for the support to complete

this project. Special thanks are due to the Managing Editor of the Special Issue, Dr. Syna Mu, for his

excellent collaboration and valuable assistance.

Freddy Gabbay

Editor

ix

mathematics

Article

Adaptive Online Learning for the Autoregressive Integrated
Moving Average Models

Weijia Shao 1,*, Lukas Friedemann Radke 1, Fikret Sivrikaya 2 and Sahin Albayrak 1,2

Citation: Shao, W.; Radke, L.F.;

Sivrikaya, F.; Albayrak S. Adaptive

Online Learning for the

Autoregressive Integrated Moving

Average Models. Mathematics 2021, 9,

1523. https://doi.org/10.3390/

math9131523

Academic Editors: Freddy Gabbay,

Ioannis K. Argyros and Mihai

Postolache

Received: 19 April 2021

Accepted: 24 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Ernst-Reuter-Platz 7,
10587 Berlin, Germany; lukas.radke@dai-labor.de (L.F.R.); sahin.albayrak@dai-labor.de (S.A.)

2 GT-ARC Gemeinnützige GmbH, Ernst-Reuter-Platz 7, 10587 Berlin, Germany; Fikret.Sivrikaya@gt-arc.com
* Correspondence: weijia.shao@campus.tu-berlin.de

Abstract: This paper addresses the problem of predicting time series data using the autoregressive
integrated moving average (ARIMA) model in an online manner. Existing algorithms require
model selection, which is time consuming and unsuitable for the setting of online learning. Using
adaptive online learning techniques, we develop algorithms for fitting ARIMA models without
hyperparameters. The regret analysis and experiments on both synthetic and real-world datasets
show that the performance of the proposed algorithms can be guaranteed in both theory and practice.

Keywords: ARIMA model; time series analysis; online optimization; online model selection

1. Introduction

The autoregressive integrated moving average (ARIMA) model is an important tool
for time series analysis [1], and has been successfully applied to a wide range of domains in-
cluding the forecasting of household electric consumption [2], scheduling in smart grids [3],
finance [4], and environment protection [5]. It specifies that the values of a time series
depend linearly on their previous values and error terms. In recent years, online learning
(OL) methods have been applied to estimate the univariate [6,7] and multivariate [8,9]
ARIMA models for their efficiency and scalability. These methods are based on the fact
that any ARIMA model can be approximated by a finite dimensional autoregressive (AR)
model, which can be fitted incrementally using online convex optimization algorithms.
However, to guarantee accurate predictions, these methods require a proper configuration
of hyperparameters, such as the diameter of the decision set, the learning rate, the order of
differencing, and the lag of the AR model. Theoretically, these hyperparameters need to be
set according to prior knowledge about the data generation, which is impossible to obtain.
In practice, the hyperparameters are usually tuned to optimize the goodness of fit on the
unseen data, which requires numerical simulation (e.g., cross-validation) on a previously
collected dataset. The numerical simulation is notoriously expensive, since it requires
multiple training runs for each candidate hyperparameter configuration. Furthermore,
a previously collected dataset containing ground truth is needed for validation of the
fitted model, which is unsuited for the online setting. Unfortunately, the expensive tuning
process needs to be regularly repeated if the statistical properties of the time series change
over time in an unforeseen way.

Given a new problem of predicting time series values, it appears that tuning the
hyperparameters of the online algorithms can negate the benefits of the online setting.
This paper addresses this problem in the online learning framework by proposing new
parameter-free algorithms for learning ARIMA models, while their performance can still be
guaranteed in both theory and practice. A naive attempt for this would be to directly apply
parameter-free online convex optimization (PF-OCO) algorithms to the AR approximation.
However, the theoretical performance of the AR approximation and the parameter-free

Mathematics 2021, 9, 1523. https://doi.org/10.3390/math9131523 https://www.mdpi.com/journal/mathematics

1

Mathematics 2021, 9, 1523

algorithms rely on the bounded gradient vectors of the loss function, which is unreasonable
for the widely used squared error with an unbounded domain.

The key contribution of this paper is the design of online learning algorithms for
ARIMA models, avoiding regular and expensive hyperparameter tuning without dam-
aging the power of the models. Our algorithms update the model incrementally with a
computational complexity that is linearly related to the size of the model parameters and
the number of candidate models in each iteration. To obtain a solid theoretical foundation,
we first show that, for any locally Lipschitz-continuous function, ARIMA models with
fixed order of differencing can be approximated using an AR model of the same order
for a large enough lag. Based on this, new algorithms are proposed for learning the AR
model adaptively without requiring any prior knowledge about the model parameters.
For Lipschitz-continuous loss functions, we apply a new algorithm based on the adaptive
follow the regularized leader (FTRL) framework [10] and show that our algorithm achieves
a sublinear regret bound depending on the data sequence and the Lipschitz constant. A spe-
cial treatment on the commonly used squared error is required due to its non-Lipschitz
continuity. To obtain a data-dependent regret bound, we combine a polynomial regular-
izer [11] with the adaptive FTRL framework. Finally, to find the proper order and lag of
the AR model in an online manner, multiple AR models are simultaneously maintained,
and an adaptive hedge algorithm is applied to aggregate their predictions. In the previous
attempts [12,13] to solve this online model selection (OMS) problem, the exponentiated
gradient (EG) algorithm has been directly applied to aggregate the predictions, which
not only requires tuning the learning rate, but also yields a regret bound depending on
the loss incurred by the worst model. Our adaptive hedge algorithm is parameter-free
and guarantees a regret bound depending on the time series sequence. Table 1 provides
a comparison of the online learning algorithms applied to the learning of the ARIMA
models. In addition to the theoretical analysis, we also demonstrate the performance of the
proposed algorithm using both synthetic and real-world datasets.

Table 1. Algorithms for online learning of ARIMA.

Problem Algorithm Reference Tuning-Free Loss Function Regret Dependence

OL for ARIMA OGD [6–9] � any largest gradient norm
OL for ARIMA ONS [6–9] � exp-concave largest gradient norm
PF-OCO Coin Betting [14,15] � normalized gradient gradient vectors
PF-OCO FreeRex [16] � any largest gradient norm
PF-OCO SF-MD [17] � any gradient vectors
PF-OCO SOLO-FTRL [17] � any largest gradient norm
OL for ARIMA Algorithm 1 This Paper � Lipschitz data sequence
OL for ARIMA Algorithm 2 This Paper � squared error data sequence
OMS for ARIMA EG [12,13] � bounded loss of the worst model
OMS for ARIMA Algorithm 3 This Paper � local Lipschitz data sequence

For non-Lipschitz-continuous loss functions, the gradient norm can be unbounded. These algorithms with performance depending on the
gradient norm can fail without making further assumptions on the data generation. For OGD, the learning rate and the diameter of the
decision set need to be tuned in practice. ONS has an additional hyperparameter controlling the numerical stability. Applying SF-MD to
ARIMA, the diameter of the model parameter has to be tuned. To obtain optimal performance, the learning rate of EG has to be tuned.

The rest of the paper is organized as follows. Section 2 reviews the existing work
on the subject. The notation, learning model, and formal description of the problem are
introduced in Section 3. Next, we present and analyze our algorithms in Section 4. Section 5
demonstrates the empirical performance of the proposed methods. Finally, we conclude
our work with some future research directions in Section 6.

2

Mathematics 2021, 9, 1523

Algorithm 1 ARIMA-AdaFTRL.

Input: L1 > 0
Initialize θ1,i arbitrarily, η1,i = 0, Gi,0 = 0 for i = 1, . . . , m
for t = 1 to T do

for i = 1 to m do
Gi,t = max{Gi,t−1, ‖�dXt−i‖2}
ηi,t = ‖θi,1‖F +

√
∑t−1

s=1‖gi,s‖2
F + (LtGi,t)2

if ηi,t �= 0 then

γi,t =
θi,t
ηi,t

else
γi,t = 0

end if
end for
Play X̃t(γt)
Observe Xt and ht ∈ ∂lt(X̃t(γt))
Lt+1 = max{Lt, ‖gt‖2}
for i = 1 to m do

gi,t = gt�dX�
t−i

θi,t+1 = θi,t − gi,t
end for

end for

Algorithm 2 ARIMA-AdaFTRL-Poly.

Input: G0 > 0
Initialize θ1 arbitrarily, G1 = max{G0, ‖�dX0‖2, . . . , ‖�dX−m+1‖2}
for t = 1 to T do

ηt = ‖θ1‖F +
√

∑t−1
s=1‖�dXsx�s ‖2

F + (Gt‖xt‖2)2

λt =
√

∑t
s=1‖xs‖4

2
if ‖θt‖F �= 0 then

Select c ≥ 0 satisfying λtc3 + ηtc = ‖θt‖F
γt =

cθt
‖θt‖F

else
γt = 0

end if
Play X̃t(γt)
Observe Xt and gt = γtxt −�dXt
Gt+1 = max{Gt, ‖�dXt‖2}
θt+1 = θt − gtx�t

end for

3

Mathematics 2021, 9, 1523

Algorithm 3 ARIMA-AO-Hedge.

Input: predictor A1, . . . ,AK, d
Initialize θk,1 = 0, η1 = 0 for i = 1, . . . , K
for t = 1 to T do

Get prediction X̃i
t from Ak for i = 1, . . . , K

Set Yt = ∑d−1
i=0 �iXt−1

Set hi,t = l(Yt, X̃i
t) for i = 1, . . . , K

if η1 = 0 then
Set wi,t = 1 for some i ∈ arg maxj∈{1,...,K} hj,t

else

Set wi,t =
exp(η−1

t (θi,t−hi,t))

∑K
i=1 exp(η−1

t (θi,t−hi,t))
for i = 1, . . . , K

end if
Predict X̃t = ∑K

i=1 wi,tX̃i
t

Observe Xt, update Ai, and set zi,t = l(Xt, X̃i
t) for i = 1, . . . , K

θt+1 = θt − zt

ηt+1 =
√

1
2 log K ∑t

s=1‖ht − zt‖2
∞

end for

2. Related Work

An ARIMA model can be fitted using statistical methods such as recursive least square
and maximum likelihood estimation, which are not only based on strong assumptions
such as the Gaussian distributed noise terms [18], linear dependencies [19], and data gen-
erated by a stationary process [20], but also require solution of non-convex optimization
problems [21]. Although these assumptions can be relaxed by considering non-Gaussian
noise [22,23], non-stationary processes [24], or a convex relaxation [21], the pre-trained
models still cannot deal with concept drift [7]. Moreover, retraining is time consuming and
memory intensive, especially for large-scale datasets. The idea of applying regret minimiza-
tion techniques to autoregressive moving average (ARMA) prediction was first introduced
in [6]. The authors propose online algorithms incrementally producing predictions close to
the values generated by the best ARMA model. This idea was extended to ARIMA(p, q, d)
models in [7] by learning the AR(m) model of the higher-order differencing of the time
series. Further extensions to multiple time series can be found in [8,9], while the problem
of predicting time series with missing data was addressed in [25].

In order to obtain accurate predictions, the lag of the AR model and the order of
differencing have to be tuned, which has been well studied in the offline setting. In some
textbooks [20,26,27], Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are recommended for this task. Both require prior knowledge and strong
assumptions about the variance of the noise [20], and are time and space consuming as
they require numerical simulation such as cross-validation on previously collected datasets.
Nevertheless, given a properly selected lag m and order d, online convex optimization
techniques such as online Newton step (ONS) or online gradient descent (OGD) can
be applied to fitting the model in the regret minimization framework [6–9]. However,
both algorithms introduce additional hyperparameters to control the learning rate and
numerical stability.

The idea of selecting hyperparameters for online time series prediction was proposed
in [12,13]. Regarding the online AR predictor with different lags as experts, the authors
aggregate over predictors by applying a multiplicative weights algorithm for prediction
with expert advice. The proposed algorithm is not optimal for time series prediction,
since the regret bound of the chosen algorithm depends on the largest loss incurred by the
experts [28]. Furthermore, each individual expert still requires that the parameters are taken
from a compact decision set, the diameter of which needs to be tuned in practice. A series
of recent works on parameter-free online learning have provided possibilities of achieving
sublinear regret without prior information on the decision set. In [14], the unconstrained

4

Mathematics 2021, 9, 1523

online learning problem is modeled as a betting game, based on which a parameter-
free algorithm is developed. The algorithm was further extended in [15], so a better
regret bound can be achieved for strongly convex loss functions. However, the coin
betting algorithm requires that the gradient vectors are normalized, which is unrealistic
for unbounded time series and the squared error loss. In [16,17], the authors introduced
parameter-free algorithms without requiring normalized gradient vectors. Unfortunately,
the regret upper bounds of the proposed algorithms depend on the norm of the gradient
vectors, which could be extremely large in our setting.

The main idea of the current work is based on the combination of the adaptive FTRL
framework [10] and the idea of handling relative Lipschitz continuous functions [11], which
makes it possible to devise an online algorithm with a data-dependent regret upper bound.
To aggregate the results, an adaptive optimistic algorithm is proposed, such that the overall
regret depends on the data sequence instead of the worst-case loss.

3. Preliminary and Learning Model

Let Xt denote the value observed at time t of a time series. We assume that Xt is taken
from a finite dimensional real vector space X with norm ‖·‖. We denote by L(X,X) the
vector space of bounded linear operators from X to X and ‖α‖op = supx∈X,x �=0

‖αx‖
‖x‖ the

corresponding operator norm. An AR(p) model is given by

Xt =
p

∑
i=1

αiXt−i + εt,

where αi ∈ L(X,X) is a linear operator and εt ∈ X is an error term. The ARMA(p, q)
model extends the AR(p) model by adding a moving average (MA) component as follows:

Xt =
p

∑
i=1

αiXt−i +
q

∑
i=1

βiεt−i + εt,

where εt ∈ X is the error term and βi ∈ L(X,X). We define the d-th order differencing of the
time series as �dXt = �d−1Xt −�d−1Xt−1 for d ≥ 1 and �0Xt = Xt. The ARIMA(p, q, d)
model assumes that the d-th order differencing of the time series follows an ARMA(p, q)
model. In this section, this general setting suffices for introducing the learning model. In the
following sections, we fix the basis of X to obtain implementable algorithms, for which
different kinds of norms and inner products for vectors and matrices are needed. We
provide a table of required notation in Appendix C.

In this paper, we consider the setting of online learning, which can be described
as an iterative game between a player and an adversary. In each round t of the game,
the player makes a prediction X̃t. Next, the adversary chooses some Xt and reveals it to
the player, who then suffers the loss l(Xt, X̃t) for some convex loss function l : X×X → R.
The ultimate goal is to design a strategy for the player to minimize the cumulative loss
∑T

t=1 l(Xt, X̃t) of T rounds. For simplicity, we define

lt : X → R, X �→ l(Xt, X).

In classical textbooks about time series analysis, the signal is assumed to be generated by a
model, based on which the predictions are made. In this paper, we make no assumptions
on the data generation. Therefore, minimizing the cumulative loss is generally impossible.
An achievable objective is to keep a possibly small regret of not having chosen some
ARIMA(p, q, d) model to generate the prediction X̃t. Formally, we denote by X̃t(α, β) the
prediction using the ARIMA(p, q, d) model parameterized by α and β, given by (in this

5

Mathematics 2021, 9, 1523

paper, we do not directly address the problem of the cointegration, where the third term
should be applied to a low-rank linear operator):

X̃t(α, β) =
p

∑
i=1

αi�dXt−i +
q

∑
i=1

βiεt−i +
d−1

∑
i=0

�iXt−1. (1)

The cumulative regret of T rounds is then given by

RT(α, β) =
T

∑
t=1

lt(X̃t)−
T

∑
t=1

lt(X̃t(α, β)).

The goal of this paper is to design a strategy for the player such that the cumulative
regret grows sublinearly in T. In the ideal case, in which the data are actually generated by
an ARIMA process, the prediction generated by the player yields a small loss. Otherwise,
the predictions are always close to those produced by the best ARIMA model, independent
of the data generation. Following the adversarial setting in [6], we allow the sequences
{Xt}, {εt} and the parameters α, β to be selected by the adversary. Without any restrictions
on the model, this is no different than the impossible task of minimizing the cumulative
loss, since εt−1 can always be selected such that Xt = X̃t(α, β) holds for all t. Therefore, we
make the following assumptions throughout this paper:

Assumption 1. Xt = εt + X̃t(α, β), and there is some R > 0 such that ‖εt‖ ≤ R for all
t = 1, . . . T.

Assumption 2. The coefficients βi satisfy ∑
q
i=1‖βi‖op ≤ 1 − ε for some ε > 0.

Since we are interested in competing against predictions generated by ARIMA models,
we assume that εt is selected as if Xt is generated by the ARIMA process. Furthermore, we
assume the norm ‖εt‖ is upper bounded within T iterations. Assumption 2 is a sufficient
condition for the MA component to be invertible, which prevents it from going to infinity
as t → ∞ [27].

Our work is based on the fact that we can compete against an ARIMA(p, q, d) model
by taking predictions from an AR(m) model of the d-th order differencing for large enough
m, which is shown in the following lemma, the proof of which can be found in Appendix A.

Lemma 1. Let {Xt}, {εt}, α, and β be as assumed in Assumptions 1 and 2. Then there is some
γ ∈ L(X,X)m with m ≥ q log T

log 1
1−ε

+ p such that

‖�dX̃t(γ)−�dX̃t(α, β)‖ ≤ (1 − ε)
t
q R +

2R
T

holds for all t = 1 . . . T, where we define �dX̃t(γ) = ∑m
i=1 γi�dXt−i.

As can be seen from the lemma, a prediction X̃t(γ) generated by the process

X̃t(γ) =
m

∑
i=1

γi�dXt−i +
d−1

∑
i=0

�iXt−1

is close to the prediction X̃t(α, β) generated by the ARIMA process. In the previous
works [6,7], the loss function lt is assumed to be Lipschitz continuous to control the
difference of loss incurred by the approximation. In general, this does not hold for squared
error. However, from Assumption 1 and Lemma 1, it follows that both X̃t(α, β) and X̃t(γ)

6

Mathematics 2021, 9, 1523

lie in a compact set around Xt with a bounded diameter. Given the convexity of l, which is
local Lipschitz continuous in the compact convex domain, we obtain a similar property:

l(Xt, X̃t(γ))− l(Xt, X̃t(α, β)) ≤ L(Xt)‖�dX̃t(γ)−�dX̃t(α, β)‖,

where L(Xt) is some constant depending on Xt. For squared error, it is easy to verify that
the Lipschitz constant depends on ‖�dXt‖, the boundedness of which can be reasonably
assumed. To avoid extraneous details, we simply add the third assumption:

Assumption 3. Define set Xt = {X ∈ X|‖X − Xt‖ ≤ 4R}. There is a compact convex set
X ⊇ ⋃T

t=1 Xt, such that lt is L-Lipschitz continuous in X for t = 1, . . . T.

The next corollary shows that the losses incurred by the ARIMA and its approximation
are close, which allows us to take predictions from the approximation.

Corollary 1. Let {Xt}, {εt}, α, β, and l be as assumed in Assumptions 1–3. Then there is some
γ ∈ L(X,X)m with m ≥ q log T

log 1
1−ε

+ p, such that

T

∑
t=1

lt(X̃t(γ))− lt(X̃t(α, β)) ≤ LR(
1

1 − (1 − ε)
1
q
+ 2)

holds for all t = 1 . . . T.

Proof. It follows from Assumption 1 and Lemma 1 that X̃t(γ), X̃t(α, β) ∈ X holds for all
t = 1, . . . T. Together with Assumption 3, we obtain

T

∑
t=1

(lt(X̃t(γ))− lt(X̃t(α, β))) ≤ L
T

∑
t=1

‖X̃t(γ)− X̃t(α, β)‖.

Applying Lemma 1, we obtain the claimed result.

4. Algorithms and Analysis

From Corollary 1, it follows clearly that an ARIMA(p, q, d) model can be approxi-
mated by an integrated AR model with large enough m. However, neither the order of
differencing d nor the lag m is known. To circumvent tuning them using a previously
collected dataset, we propose a framework with a two-level hierarchical construction,
which is described in Algorithm 4.

Algorithm 4 Two-level framework.

Input: K instances of the slave algorithm A1, . . . ,AK. An instance of master algorithm
M.
for t = 1 to T do

Get X̃i
t from each Ai

Get wt ∈ ΔK from M � ΔK is the standard K-simplex
Integrate the prediction: X̃t = ∑K

i=1 wi
tX̃

i
t

Observe Xt
Define zt ∈ RK with zi,t = lt(X̃i

t)
Update Ai using zi,t for i = 1, . . . , K
Update M using zt

end for

The idea is to maintain a master algorithm M and a set of slave algorithms
{Am|m = 1, . . . , K}. At each step t, the master algorithm receives predictions X̃k

t from
Ak for k = 1, . . . , K. Then it comes up with a convex combination X̃t = ∑K

i=1 wi
tX̃

i
t for some

wt ∈ Δ in the simplex. Next, it observes Xt and computes the loss lt(Xk
t (γ)) for each slave

7

Mathematics 2021, 9, 1523

Ak, which is then used to update Ak and wt+1. Let {X̃k
t } be the sequence generated by

some slave k. We define the regret of not having chosen the prediction generated by slave
k as

RT(k) =
T

∑
t=1

lt(
K

∑
i=1

wi
tX̃

i
t)−

T

∑
t=1

lt(X̃k
t),

and the regret of the slave k

RT(Ak) =
T

∑
t=1

lt(X̃k
t)−

T

∑
t=1

lt(X̃t(γk)),

where X̃t(γk) is the prediction generated by an integrated AR model parameterized by
γk. Let Ak be some slave. Then the regret of this two-level framework can obviously be
decomposed as

RT(α, β) = RT(k) + RT(Ak) +
T

∑
t=1

lt(X̃t(γk))−
T

∑
t=1

lt(X̃t(α, β)).︸ ︷︷ ︸
Corollary 1

For γk, α, and β satisfying the condition in Corollary 1 (this is not a condition of having
a correct algorithm—with more slaves, there are more α, β satisfying the condition; we
increase the freedom of the model by increasing the number of slaves), the marked term
above is upper bounded by a constant, that is,

T

∑
t=1

lt(X̃t(γk))−
T

∑
t=1

lt(X̃t(α, β)) ∈ O(1).

If the regret of the master and the slaves grow sublinearly in T, we can achieve an overall
sublinear regret upper bound, which is formally described in the following corollary.

Corollary 2. Let Ai be an online learning algorithm against an AR(mi) model parameterized by
γi for i = 1, . . . , K. For any ARIMA model parameterized by α and β, if there is a k ∈ {1, . . . , K}
such that X̃t(γk), X̃t(α, β) and {Xt} satisfy Assumptions 1–3, then running Algorithm 4 with
M and A1, . . . ,AK guarantees

T

∑
t=1

(lt(X̃t)− lt(X̃t(α, β))) ≤ RT(k) +RT(Ak) +O(1).

Next, we design and analyze parameter-free algorithms for the slaves and the master.

4.1. Parameter-Free Online Learning Algorithms
4.1.1. Algorithms for Lipschitz Loss

Given fixed m and d, an integrated AR(m) model can be treated as an ordinary linear
regression model. In each iteration t, we select γt = (γ1,t, . . . , γm,t) ∈ L(X,X)m and
make prediction

X̃t(γt) =
m

∑
i=1

γi,t�dXt−i +
d−1

∑
i=0

�iXt−1.

Since lt is convex, there is some subdifferential gt ∈ ∂lt(X̃t(γt)) such that

lt(X̃t(γt))− lt(X̃t(γ)) ≤ gt(
m

∑
i=1

(γi,t − γi)�dXt−i),

8

Mathematics 2021, 9, 1523

for all γ ∈ L(X,X)m. Define gi,t : L(X,X) → R, v �→ gt(v�dXt−i). The regret can be
further upper bounded by

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1

gi,t(γi,t − γi). (2)

Thus, we can cast the online linear regression problem to an online linear optimization
problem. Unlike the previous work, we focus on the unconstrained setting, where γt is not
picked from a compact decision set. In this setting, we can apply an FTRL algorithm with
an adaptive regularizer. To obtain an efficient implementation, we fix a basis for both X

and X∗. Now we can assume X = X∗ = Rn and work with the matrix representation of
γ ∈ L(X,X). It is easy to verify that (2) can be rewritten as

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1

〈gt�dX�
t−i, γi,t − γi〉F,

where 〈A, B〉F = tr(A�B) is the Frobenius inner product. It is well known that the Frobe-
nius inner product can be considered as a dot product of vectorized matrices, with which
we obtain a simple first-order (the computational complexity per iteration depends linearly
on the dimension of the parameter, i.e., O(n2m)) algorithm described in Algorithm 1.

The cumulative regret of Algorithm 1 can be upper bounded using the following theorem.

Theorem 1. Let {Xt} be any sequence of vectors taken from X. Algorithm 1 guarantees

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ))

≤
m

∑
i=1

(
‖γi‖2

FLT+1

2
+ LT+1 +

L2
T+1
L1

)

√√√√ T

∑
t=1

‖�dXt−i‖2
2

+
m

∑
i=1

(LT+1Gi,T+1 + ‖θi,1‖F)‖γi‖2
F + ‖θi,1‖F

2
.

For an L-Lipschitz loss function lt, in which LT+1 is upper bounded by L, we obtain
a sublinear regret upper bound depending on the sequence of d-th order differencing
{�dXt}. In case L is known, we can set L0 = L, otherwise picking L0 arbitrarily from a
reasonable range (e.g., L0 = 1) would not have a devastating impact on the performance of
the algorithms.

4.1.2. Algorithms for Squared Errors

For the commonly used squared error given by

lt(X̃t(γt)) =
1
2
‖X̃t(γt)− Xt‖2

2,

it can be verified that gt can be represented as a vector

gt =
m

∑
i=1

γi,t�dXt−i −�dXt

for all t. Existing algorithms, which have a regret upper bound depending on ‖gt‖2, could
fail since ‖gt‖2 can be set arbitrarily large due to the adversarially selected data sequence
X1, . . . , Xt. To design a parameter-free algorithm for the squared error, we equip FTRL
with a time-varying polynomial regularizer described in Algorithm 2.

9

Mathematics 2021, 9, 1523

Define

xt =

⎛⎜⎝�dXt−1
...

�dXt−m

⎞⎟⎠
and consider the matrix representation γt =

(
γ1,t · · · γm,t

)
. Then we have gt = γtxt −

�dXt, and the upper bound of the regret can be rewritten as

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

〈(γtxt −�dXt)x�t , γt − γ〉F.

The idea of Algorithm 2 is to run the FTRL algorithm with a polynomial regularizer

λt

4
‖γ‖4

F +
ηt

2
‖γ‖2

F,

for increasing sequences {λt} and {ηt}, which leads to updating rule given by

γt = arg max
γ∈L(X,X)m

〈θt, γ〉F − λt

4
‖γ‖4

F −
ηt

2
‖γ‖2

F =
cθt

‖θt‖F
,

for c satisfying λtc3 + ηtc = ‖θt‖F. Since we have λt ≥ 0 and ηt > 0 for θ1 �= 0, c exists
and has a closed-form expression. The computational complexity per iteration has a linear
dependency on the dimension of L(X,X)m. The following theorem provides a regret upper
bound of Algorithm 2.

Theorem 2. Let {Xt} be any sequence of vectors taken from X and

lt(X̃t(γ)) =
1
2
‖Xt − X̃t(γ)‖2

2 =
1
2
‖�dXt −�dX̃t(γ)‖2

2

be the squared error. We define xt =
(
�dXt−1 · · · �dXt−m

)� and γ =
(
γ1 · · · γm

)
,

the matrix representation of γ1, . . . γm ∈ L(X,X). Then, Algorithm 2 guarantees

T

∑
t=1

(lt(X̃t(γt))− lt(X̃t(γ))) ≤
(
√

mG2
T+1 + ‖θ1‖F)‖γ‖2

F
2

+ ‖θ1‖F + (1 +
‖γ‖4

F
4

)

√√√√ T

∑
t=1

‖xt‖4
2

+ (1 +
GT+1

G0
+

‖γ‖2
F

2
)

√√√√ T

∑
t=1

‖�dXtx�t ‖2
F

for all γ ∈ L(X,X)m.

For squared error, Algorithm 2 does not require a compact decision set and ensures a
sublinear regret bound depending on the data sequence. Similar to Algorithm 1, one can
set G0 according to the prior knowledge about the bounds of the time series. Alternatively,
we can simply set G0 = 1 to obtain a reasonable performance.

4.2. Online Model Selection Using Master Algorithms

The straightforward choice of the master algorithm would be the exponentiated
gradient algorithm for prediction with expert advice. However, this algorithm requires
tuning of the learning rate and losses bounded by a small quantity, which can not be
assumed for our case. The AdaHedge algorithm [29] solves these problems. However, it

10

Mathematics 2021, 9, 1523

yields a worst-case regret bound depending on the largest loss observed, which could be
much worse compared to a data-dependent regret bound.

Our idea is based on the adaptive optimistic follow the regularized leader (AO-
FTRL) framework [10]. Given a sequence of hints {ht} and loss vectors {zt}, AO-FTRL
guarantees a regret bound related to ∑T

t=1‖zt − ht‖2
t for some time-varying norm ‖·‖t.

In our case, where the loss incurred by a slave is given by l(Xt, X̃k
t) at iteration t, we simply

choose hk,t = l(∑d−1
i=0 �iXt−1, X̃k

t). If l is L-Lipschitz in its first argument, then we have
|zk,t − hk,t| ≤ L‖�dXt‖, which leads to a data-dependent regret. The obtained algorithm is
described in Algorithm 3. Its regret is upper bounded by the following theorem, the proof
of which is provided in Appendix B.

Theorem 3. Let {X̃t}, {X̃k
t }, {zt}, {ht}, and {wt} be as generated in Algorithm 3. Assume l is

L-Lipschitz in its first argument and convex in its second argument. Then for any sequence {Xt}
and slave algorithm Ak, we have

RT(k) ≤ (
√

2 log K +

√
8

log K
)

√√√√ T

∑
t=1

L2‖�dXt‖2
2.

By Corollary 2, combining Algorithm 3 with Algorithms 1 or 2 guarantees a data-
dependent regret upper bound sublinear in T. Note that there is an input parameter d
for Algorithm 3, which can be adjusted according to the prior knowledge of the dataset
such that ‖�dXt‖2

2 can be bounded by a small quantity. In case no prior knowledge can be
obtained, we can set d to the maximal order of differencing used in the slave algorithms.
Arguably, the Lipschitz continuity is not a reasonable assumption for squared error with
unbounded domain. With a bounded ‖�dXt‖2

2, we can assume that the loss function is
locally Lipschitz, but with a Lipschitz constant depending on the prediction. In the next
section, we show the performance of Algorithm 3 in combination with Algorithms 1 and 2
in different experimental settings.

5. Experiments and Results

In this section, we carry out experiments on both synthetic and real-world data to
show that the proposed algorithms can generate promising predictions without tuning
hyperparameters.

5.1. Experiment Settings

The synthetic data was generated randomly. We run 20 trials for each synthetic
experiment and average the results. For numerical stability, we scale the real-world data
down so that the values are between 0 and 10. Note that the range of the data are not
assumed or used in the algorithms.

Setting 1: Sanity Check

For a sanity check, we generate a stationary 10-dimensional ARIMA(5, 2, 1) process
using randomly drawn coefficients.

Setting 2: Time-Varying Parameters

Aimed at demonstrating the effectiveness of the proposed algorithm in the non-
stationary case, we generate the non-stationary 10-dimensional ARIMA(5, 2, 1) process
using time-varying parameters. We draw α1, α2, and β1, β2 randomly and indepen-
dent, and generate data at iteration t with the ARIMA(5, 2, 1) model parameterized by
αt =

t
104 α1 + (1 − t

104)α2 and βt =
t

104 β1 + (1 − t
104)β2.

11

Mathematics 2021, 9, 1523

Setting 3: Time-Varying Models

To get more adversarially selected time series values, we generate the first half of the
values using a stationary 10-dimensional ARIMA(5, 2, 1) model and the second half of the
values using a stationary 10-dimensional ARIMA(5, 2, 0) model. The model parameters
are drawn randomly.

Stock Data: Time Series with Trend

Following the experiments in [8], we collect the daily stock prices of seven technology
companies from Yahoo Finance together with the S&P 500 index for over twenty years,
which has an obvious increasing trend and is believed to exhibit integration.

Google Flu Data: Time Series with Seasonality

We collect estimates of influenza activity of the northern hemisphere countries, which
has an obvious seasonal pattern. In the experiment, we examine the performance of the
algorithms for handling regular and predictable changes that occur over a fixed period.

Electricity Demand: Trend and Seasonality

In this setting, we collect monthly load, gross electricity production, net electricity
consumption, and gross demand in Turkey from 1976 to 2010. The dataset contains both
trend and seasonality.

5.2. Experiments for the Slave Algorithms

We first fix d = 1 and m = 16 and compare our slave algorithms with ONS and OGD
from [9] for squared error lt(X̃t) = 1

2‖Xt − X̃t‖2
2 and Euclidean distance

lt(X̃t) = ‖Xt − X̃t‖2. ONS and OGD stack and vectorize the parameter matrices, and incre-
mentally update the vectorized parameter respectively using the following rules

wt+1 = ΠW (wt − η(
t

∑
s=1

gtg�t + λI)−1gt)

and
wt+1 = ΠW (wt − ηgt),

where gt is the vectorized gradient at step t, W is the decision set satisfying supu∈W‖u‖2 ≤
c, and the operator ΠW (v) projects v into W . We select a list of candidate values for
each hyperparameter, evaluate their performance on the whole dataset, and select the
configuration with the best performance for comparison. Since the synthetic data are
generated randomly, we average the results over 20 trials for stability. The corresponding
results are shown in Figures 1–6 (to amplify the differences of the algorithms, we use log
plots for the y-axis for all settings; for the synthetic datasets, we also use log plot for the
x-axis, so that the behavior of the algorithms in the first 1000 steps can be better observed).
To show the impact of the hyperparameters on the performance of the baseline algorithm,
we also plot their performance using sub-optimal configurations. Note that since the error
term εt cannot be predicted, an ideal predictor would suffer an average error rate of at least
‖εt‖2

2 and ‖εt‖2 for the two kinds of loss function. This is known for the synthetic datasets
and plotted in the figures.

In all settings, both AdaFTRL and AdaFTRL-Poly have a performance on par with
well-tuned OGD and ONS, which can have extremely bad performance using sub-optimal
hyperparameter configurations. In the experiments using synthetic datasets, AdaFTRL
suffers large loss at the beginning while generating accurate predictions after 1000 itera-
tions. The relative performances of the proposed algorithms after the first 1000 iterations
compared to the best tuned baseline algorithms are plotted in Appendix D. AdaFTRL-Poly
has more stable performance compared to AdaFTRL. In the experiment with Google Flu
data, all algorithms suffer huge losses around iteration 300 due to an abrupt change in the
dataset. OGD and ONS with sub-optimal hyperparameter configurations, despite good

12

Mathematics 2021, 9, 1523

performance for the first half of the data, generate very inaccurate predictions after the
abrupt change in the dataset. This could lead to a catastrophic failure in practice, when
certain patterns do not appear in the dataset collected for hyperparameter tuning. Our
algorithms are more robust against this change and perform similarly to OGD and ONS
with optimal hyperparameter configurations.

Figure 1. Results for setting 1 (sanity check), using a stationary ARIMA(5,2,1) model.

Figure 2. Results for setting 2 (time-varying parameters), using a non-stationary ARIMA(5,2,1) model.

Figure 3. Results for setting 3 (time-varying models), using a combination of stationary ARIMA(5,2,1) and
ARIMA(5,2,0) models.

13

Mathematics 2021, 9, 1523

Figure 4. Results for stock data.

Figure 5. Results for Google Flu data.

Figure 6. Results for electricity demand data.

5.3. Experiments for Online Model Selection

The performance of the two-level framework and Algorithm 3 for online model
selection is demonstrated in Figures 7–12. We simultaneously maintain 96 AR(m) mod-
els of d-th-order differencing for m = 1, . . . 32 and d = 0, . . . 2, which are updated by
Algorithms 1 and 2 for squared error and Euclidean distance, respectively. The predictions
generated by the AR models are aggregated using Algorithm 3 and the aggregation algo-
rithm (AA) introduced in [13] with learning rate set to

√
T. We compare the average losses

incurred by the aggregated predictions with those incurred by the best AR model. To show
the impact of m and d, we also plot the average loss of some other sub-optimal AR models.

In all settings, AO-Hedge outperforms AA, although the differences are very slight in
some of the experiments. We would like to stress again that the choice of the hyperparame-
ters has a great impact on the performance of the AR model. In settings 1–3, the AR model
with 0-th-order differencing has the best performance, although the data are generated
using d = 1, which suggests that the prior knowledge about the data generation may not

14

Mathematics 2021, 9, 1523

be helpful for the model selection in all cases. The experimental results also show that
AO-Hedge has a performance similar to the best AR model.

Figure 7. Model selection in setting 1.

Figure 8. Model selection in setting 2.

Figure 9. Model selection in setting 3.

Figure 10. Model selection for stock data.

15

Mathematics 2021, 9, 1523

Figure 11. Model selection for Google Flu.

Figure 12. Model Selection for electricity demand.

6. Conclusions

We proposed algorithms for fitting ARIMA models in an online manner without
requiring prior knowledge or tuning hyperparameters. We showed that the cumulative
regret of our method grows sublinearly with the number of iterations and depends on the
values of the time series. The comparison study on both synthetic and real-world datasets
suggests that the proposed algorithms have a performance on par with the well-tuned
state-of-the-art algorithms.

There are still several remaining issues that we want to address in future research.
Firstly, it would be interesting to also develop a parameter-free algorithm for the cointe-
grated vector ARMA model. Secondly, we believe that the strong assumption on the β
coefficient can be relaxed for multi-dimensional time series by generalizing Lemma 2 in [7].
Furthermore, we are also interested in applying online learning to other time series models
such as the (generalized) ARCH model [30]. Finally, the proposed algorithms need to be
empirically analyzed using more real-world datasets and loss functions, and compared
with more recent predictive models such as recurrent neural networks and the models
combining neural networks and ARIMA models [31].

Author Contributions: Conceptualization, W.S.; methodology, W.S. and L.F.R.; validation, W.S.,
L.F.R., and F.S.; formal analysis, W.S.; investigation, W.S. and L.F.R.; writing—original draft prepa-
ration, W.S. and L.F.R.; writing—review and editing, W.S., L.F.R., F.S., and S.A.; visualization,
L.F.R.; supervision, F.S. and S.A. All authors have read and agreed to the published version of the
manuscript.

Funding: We acknowledge support by the German Research Foundation and the Open Access
Publication Fund of TU Berlin.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

16

Mathematics 2021, 9, 1523

Data Availability Statement: The source code for generating the synthetic data set, the implementa-
tion of the algorithms, and the detailed information about our experiments are available on GitHub:
https://github.com/OnlinePredictorTS/AOLForTimeSeries (accessed on March 2021). The stock
data are collected from https://finance.yahoo.com/ (accessed on March 2021). The Google Flu data
are available in https://github.com/datalit/googleflutrends/ (accessed on March 2021). The detailed
information about the electricity demand can be found in [32].

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

We prove Lemma 1 in this section. Consider the ARIMA model given by

�dXt(α, β) =
p

∑
i=1

αi�dXt−i +
q

∑
i=1

βiεt−i + εt

with �dXt(α, β) = �dXt for t ≤ 0. Let

Xt(α, β) = �dXt(α, β) +
d−1

∑
i=0

�iXt−1

be the t-th value generated by the ARIMA process. To prove Lemma 1, we generalize the
proof provided in [6]. To remove the MA component, we first recursively define a growing
process of the d-th-order differencing

�dX∞
t (α, β) =

p

∑
i=1

αi�dXt−i +
q

∑
i=1

βi(�dXt−i −�dX∞
t−i(α, β))

with �dX∞
t (α, β) = �dXt for t ≤ 0. Let

X∞
t (α, β) = �dX∞

t (α, β) +
d−1

∑
i=0

�iXt−1

be the t-th value generated by this process.

The next lemma shows that it approximates an ARIMA(p, q, d) process.

Lemma A1. For any α, β, and {εt} satisfying Assumptions 1 and 2, we have, for t = 1, . . . , T,

‖X∞
t (α, β)− X̃t(α, β)‖ ≤ (1 − ε)

t
q R.

Proof. First of all, we have

X∞
t (α, β)− X̃t(α, β) =�dX∞

t (α, β)−�dX̃t(α, β)

=
q

∑
i=1

βi(�dXt−i −�dX∞
t−i(α, β)− εt−i)

for t ≥ 0. Define Yt = �dXt − �dX∞
t (α, β) − εt. W.l.o.g. we can assume ‖εt‖ ≤ R for

t ≤ 0. Next, we prove by induction on t that ‖Yτ‖ ≤ (1 − ε)
τ
q R holds for all τ ≤ t. For the

induction basis, we have
‖Yτ‖ = ‖−εt‖ ≤ R

for all τ ≤ 0. We assume the claim holds for some t, then we have

17

Mathematics 2021, 9, 1523

‖Yt+1‖ =‖�dXt+1 −�dX∞
t+1(α, β)− εt+1‖

=‖�dXt+1 −
p

∑
i=1

αi�dXt+1−i −
q

∑
i=1

βiεt+1−i − εt+1‖+ ‖
q

∑
i=1

βiYt+1−i‖

=
q

∑
i=1

‖Yt+1−i‖‖βi‖op

≤(1 − ε)
t+1−q

q R
q

∑
i=1

‖βi‖op

≤(1 − ε)
t+1

q R,

which concludes the induction. Finally, we have

‖X∞
t (α, β)− X̃t(α, β)‖ =‖

q

∑
i=1

βi(�dXt−i(α, β)−�dX∞
t−i(α, β)− εt−i)‖

≤
q

∑
i=1

‖βi‖op‖Yt−i‖

≤(1 − ε)(1 − ε)
t−q

q R

=(1 − ε)
t
q R,

which is the claimed result.

Next, we recursively define the following process:

�dXm
t (α, β) =

p

∑
i=1

αi�dXt−i +
q

∑
i=1

βi(�dXt−i −�dXm−i
t−i (α, β)), (A1)

where �dXm
t (α, β) = �dXt for m ≤ 0. Let {Xm

t (α, β)} be the sequence generated as follows:

Xm
t (α, β) = �dXm

t (α, β) +
d−1

∑
i=0

�iXt−1. (A2)

We show in the next lemma that it is close to {X∞
t (α, β)}.

Lemma A2. For any α, β, {lt}, and {εt} satisfying A1–A2, we have

‖Xm
t (α, β)− X∞

t (α, β)‖ ≤ 2R
T

,

for m =
q log T
log 1

1−ε

.

Proof. Define Zm
t = �dXm

t (α, β)−�dX∞
t (α, β). We prove by induction on m that

‖Zm̃
t ‖ ≤ (1 − ε)

m̃
q 2R

holds for all t = 1, . . . , T and 0 ≤ m̃ ≤ m. For m = 0, we have for t = 1, . . . , T

‖Z0
t ‖ =‖�dX0

t (α, β)−�dX∞
t (α, β)‖

=‖�dXt −�dX∞
t (α, β)‖.

By the definition of the stochastic process {�dX∞(α, β)}, we have

18

Mathematics 2021, 9, 1523

−�dXt +�dX∞
t (α, β)

=−�dXt +
p

∑
i=1

αi�dXt−i +
q

∑
i=1

βi(�dXt−i(α, β)−�dX∞
t−i(α, β))

=−�dXt +
p

∑
i=1

αi�dXt−i +
q

∑
i=1

βiεt−i +
q

∑
i=1

βi(�dXt−i(α, β)−�dX∞
t−i(α, β)− εt−i)

=�dX̃t(α, β)−�dXt +
q

∑
i=1

βi(�dXt−i(α, β)−�dX∞
t−i(α, β)− εt−i)

=�dX̃t(α, β)−�dXt +
q

∑
i=1

βiYt−i,

where Yt−i is defined as in the proof of Lemma A1. From the assumption, we have
‖�dX̃t(α, β)−�dXt‖ = ‖εt‖ ≤ R, and, as we have proved in Lemma A1, ‖Yt‖ ≤ R holds.
Therefore, we obtain ‖Z0

t ‖ ≤ 2R, which is the induction basis. Next, assume the claim
holds for all 0, . . . , m − 1. Then we have

‖Zm
t ‖ =‖

q

∑
i=1

βi(�dXt−i −�dXm−i
t−i (α, β)−�dXt−i +�dX∞

t−i(α, β))‖

≤‖
q

∑
i=1

βi(�dX∞
t−i(α, β)−�dXm−i

t−i (α, β))‖

≤
m

∑
i=1

‖βi(�dX∞
t−i(α, β)−�dXm−i

t−i (α, β))‖

+
q

∑
i=m+1

‖βi(�dX∞
t−i(α, β)−�dXt−i)‖

From the induction hypothesis, we have

‖�dX∞
t−i(α, β)−�dXm−i

t−i (α, β)‖ ≤ (1 − ε)
m−i

q 2R.

From the proof of the induction basis, we have

q

∑
i=m+1

‖βi(�dX∞
t−i(α, β)−�dXt−i)‖ ≤ 2R

q

∑
i=m+1

‖βi‖op.

Therefore, ‖Zm
t ‖ can be further bounded using

‖Zm
t ‖ ≤2R

m

∑
i=1

‖βi‖op(1 − ε)
m−i

q + 2R
q

∑
i=m+1

‖βi‖op

≤2R
m

∑
i=1

‖βi‖op(1 − ε)
m−i

q + 2R
q

∑
i=m+1

‖βi‖op(1 − ε)
m−i

q

≤(1 − ε)
m−q

q 2R
q

∑
i=1

‖βi‖op

≤(1 − ε)
m
q 2R.

Choosing m ≥ q log T
log 1

1−ε

= q log1−ε(T)
−1, we have

‖Xm
t (α, β)− X∞

t (α, β)‖ ≤2R
T

,

which is the claimed result.

19

Mathematics 2021, 9, 1523

This process of the d-th-order differencing is actually an integrated AR(m + p) process
with order d, which is shown in the following lemma.

Lemma A3. For any data sequence {Xm
t (α, β)} generated by a process of the d-th-order differenc-

ing given by (A1) and (A2) there is a γ ∈ L(X,X)m+p such that

m+p

∑
i=1

γi�dXt−i +
d−1

∑
i=0

�iXt−1 = Xm
t (α, β)

holds for all t.

Proof. Let {�dXm
t (α, β)} be the sequence generated by (A1). We prove by induction on m

that for all m̃ ≤ m there is a γ ∈ L(X,X)m̃+p such that

�dXm̃
t (α, β) =

m̃+p

∑
i=1

γi�dXt−i

holds for all α and β. The induction basis follows directly from the definition that

�dX0
t (α, β) =

p

∑
i=1

αi�dXt−i.

Assume that the claim holds for some m. Let αi be the zero linear functional for i > p and
βi be the zero linear functional for i > q. Then we have

�dXm+1
t (α, β)

=
p

∑
i=1

αi�dXt−i +
q

∑
i=1

βi(�dXt−i −�dXm+1−i
t−i (α, β))

=
p

∑
i=1

αi�dXt−i +
m+1

∑
i=1

βi�dXt−i −
m+1

∑
i=1

βi�dXm+1−i
t−i (α, β)

=
p

∑
i=1

αi�dXt−i +
m+1

∑
i=1

βi�dXt−i −
m+1

∑
i=1

βi

m+1−i+p

∑
j=1

γm+1−i
j �dXt−i−j

=
p

∑
i=1

αi�dXt−i +
m+1

∑
i=1

βi�dXt−i −
m+p+1

∑
i=1

(
m+1

∑
j=1

β j

i−j

∑
k=1

γ
m+1−j
k)�dXt−i,

where the second equality follows from the fact that βi(�dXt−i − �dXm+1−i
t−i (α, β)) = 0

for i > m + 1, the third line uses the induction hypothesis and the last line is obtained by

rearranging and setting
n
∑

i=m
ai = 0 for m > n. The induction step is obtained by setting

γm+1
i = αi + βi −

m+1

∑
j=1

β j

i−j

∑
k=1

γ
m+1−j
k

for i = 1, . . . , m + p + 1, and the claimed result follows.

Finally, we prove Lemma 1 by combining the results.

Proof of Lemma 1. From Lemmas A1, A2, and A3, there is some γ ∈ L(X,X)m with
m ≥ q log T

log 1
1−ε

+ p such that

20

Mathematics 2021, 9, 1523

‖�dXt(γ)−�dX̃t(α, β)‖
=‖�dXm

t (γ)−�dX̃t(α, β)‖
≤‖�dXm

t (γ)−�dXt
∞(α, β)‖+ ‖�dX∞

t (γ)−�dX̃t(α, β)‖
≤(1 − ε)

t
q R +

2R
T

,

which is the claimed result.

Appendix B

In this section, we prove the theorems in Section 4. The required notation is sum-
marized in Appendix C. We apply some important properties of convex functions and
their convex conjugate defined on a general vector space, which can be found in [17]. The
proposed algorithms are instances of the adaptive optimistic follow the regularized leader
(AO-FTRL) [10], which is described in Algorithm A1.

Algorithm A1 AO-FTRL.

Input: closed convex set W ⊆ X

Initialize: θ1 arbitrary
for t = 1 to T do

Get hint ht
wt = �ψ∗

t (θt − ht)
Observe gt ∈ X∗
θt+1 = θt − gt

end for

Lemma A4. We run AO-FTRL with closed convex regularizers ψ1, . . . , ψT defined on W ⊆ X

satisfying ψt(w) ≤ ψt+1(w)s for all w ∈ W and t = 1, . . . , T. Then, for all u ∈ W , we have

T

∑
t=1

gt(wt − u) ≤ ψT+1(u) + ψ∗
1 (θ1) +

T

∑
t=1

Bψ∗
t
(θt+1, θt − ht),

where Bψ∗
t
(θt+1, θt − ht) is the Bregman divergence associated with ψ∗

t .

Proof. W.l.o.g. we assume hT+1 = 0, since it is not involved in the algorithm. Then we have

T

∑
t=1

(ψ∗
t+1(θt+1 − ht+1)− ψ∗

t (θt − ht))

=ψ∗
T+1(θT+1 − hT+1)− (θ1 − h1)w1 + ψ1(w1)

≥(θT+1 − hT+1)u − ψT+1(u) + h1w1 − θ1w1 + ψ1(w1)

≥θT+1u − ψT+1(u) + h1w1 − sup
w∈W

(θ1w1 − ψ1(w1))

=−
T

∑
t=1

gtu − ψT+1(u) + h1w1 − ψ∗
1 (θ1).

.

Furthermore, we have

ψ∗
t+1(θt+1 − ht+1)− ψ∗

t (θt − ht)

=ψ∗
t+1(θt+1 − ht+1)− ψ∗

t (θt+1) + ψ∗
t (θt+1)− ψ∗

t (θt − ht)

≤(θt+1 − ht+1)wt+1 − ψt+1(wt+1)− θt+1wt+1 + ψt(wt+1) + ψ∗
t (θt+1)− ψ∗

t (θt − ht)

≤ψ∗
t (θt+1)− ψ∗

t (θt − ht)− ht+1wt+1

21

Mathematics 2021, 9, 1523

Combining the inequalities above, rearranging and adding ∑T
t=1〈gt, wt〉 to both sides,

we obtain

T

∑
t=1

gt(wt − u)

≤ψT+1(u) + ψ∗
1 (θ1) +

T

∑
t=1

(ψ∗
t (θt+1)− ψ∗

t (θt − ht) + gtwt − htwt)

=ψT+1(u) + ψ∗
1 (θ1) +

T

∑
t=1

(ψ∗
t (θt+1)− ψ∗

t (θt − ht)− (θt+1 − θt + ht)�ψ∗
t (θt − ht))

=ψT+1(u) + ψ∗
1 (θ1) +

T

∑
t=1

Bψ∗
t
(θt+1, θt − ht),

which is the claimed result.

Proof of Theorem 1. First of all, since we have

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1

gi,t(γi,t − γi)

=
m

∑
i=1

(
T

∑
t=1

gi,t(γi,t − γi)),

the overall regret can be considered as the sum of the regrets ∑T
t=1 gi,t(γi,t − γi). Next,

we analyse the regret of each i = 1, . . . m. Define ψi,t(γi) =
ηi,t
2 ‖γi‖2

F. It is easy to verify
γi,t ∈ ∂ψ∗

i,t(θi,t) for t = 1, . . . , T. Applying Lemma A4 with ht = 0, we obtain

T

∑
t=1

gi,t(γi,t − γi) ≤ ψi,T+1(γi) + ψ∗
i,1(θi,1) +

T

∑
t=1

Bψ∗
i,t
(θi,t+1, θi,t).

From the updating rule of Gi,t, we have gi,t = 0 for Gi,t = 0. Let t0 be the smallest index
such that Gi,t0 > 0. Then we have

T

∑
t=1

Bψ∗
i,t
(θi,t+1, θi,t) =

T

∑
t=t0

Bψ∗
i,t
(θi,t+1, θi,t).

For Gi,t > 0, ψi,t is ηi,t-strongly convex with respect to ‖·‖F. From the duality of strong
convexity and strong smoothness (see Proposition 2 in [17]), we have

T

∑
t=t0

Bψ∗
i,t
(θi,t+1, θi,t) ≤

T

∑
t=t0

1
2ηi,t

‖gi,t‖2
F =

T

∑
t=t0

‖gi,t‖2
F

2
√

∑t−1
s=1‖gi,s‖2

F + (LtGi,t)2
.

From the definition of Frobenius norm, we have

‖gi,t‖2
F = ‖ht�dX�

t−i‖2
F = ‖ht‖2

2‖�dXt−i‖2
2 ≤ ‖ht‖2

2
L2

t
L2

t G2
i,t.

Then, we obtain

22

Mathematics 2021, 9, 1523

T

∑
t=t0

‖gi,t‖2
F

2
√

∑t−1
s=1‖gi,s‖2

F + (LtGi,t)2
≤

T

∑
t=t0

max{1, ‖ht‖2
Lt

}‖gi,t‖2
F

2
√

∑t
s=1‖gi,s‖2

F

≤max{1,
‖h1‖2

L1
, . . . ,

‖hT‖2

LT
}
√√√√ T

∑
t=1

‖gi,t‖2
F

≤(1 +
LT+1

L1
)

√√√√ T

∑
t=1

‖gi,t‖2
F

≤(LT+1 +
L2

T+1
L1

)

√√√√ T

∑
t=1

‖�dXt−i‖2
2,

where the second inequality uses Lemma 4 in [17] and the last inequality follows from the
fact that ‖gi,t‖F ≤ Lt‖�dXt−i‖2 ≤ LT+1‖�dXt−i‖2. Furthermore, we have

ψi,T+1(γi) ≤
‖γi‖2

F
2

√√√√ T

∑
t=1

‖gi,t‖2
F +

LT+1Gi,T+1‖γi‖2
F

2

≤‖γi‖2
FLT+1

2

√√√√ T

∑
t=1

‖�dXt−i‖2
2 +

LT+1Gi,T+1‖γi‖2
F

2
,

and ψ∗
i,1(θi,1) ≤ ‖θi,1‖F

2 . Adding up from 1 to m, we have

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ))

≤
m

∑
i=1

(
‖γi‖2

FLT+1

2
+ LT+1 +

L2
T+1
L1

)

√√√√ T

∑
t=1

‖�dXt−i‖2
2

+
m

∑
i=1

LT+1Gi,T+1‖γi‖2
F + ‖θi,1‖F

2

Proof of Theorem 2. Define ψt(γ) =
λt‖γ‖4

4 + λt‖γ‖2

2 . First of all, it is easy to verify that
γt ∈ ∂ψ∗

t (θt). Applying Lemma A4 with ht = 0, we have

T

∑
t=1

〈gtx�t , γt − γ〉F ≤ψT+1(γ) + ψ∗
1 (θ1) +

T

∑
t=1

Bψ∗
t
(θt+1, θt). (A3)

Define vt ∈ ∂ψ∗
t+1(θt). Then we have

Bψ∗
t
(θt+1, θt) =ψ∗

t (θt+1)− ψ∗
t (θt)− 〈γt, θt+1 − θt〉F

=〈θt+1, vt〉F − ψt(vt)− 〈θt, γt〉F + ψt(γt)− 〈γt, θt+1 − θt〉F

=〈θt+1, vt〉F − ψt(vt) + ψt(γt)− 〈γt, θt+1〉F

=〈θt+1, vt − γt〉F − ψt(vt) + ψt(γt)

=〈gtx�t , γt − vt〉F − ψt(vt) + ψt(γt) + 〈θt, vt − γt〉F

=〈gtx�t , γt − vt〉F −Bψt(vt, γt)

=〈γtxtx�t , γt − vt〉F + 〈−�dXtx�t , γt − vt〉F −Bψt(vt, γt)

=〈γtxtx�t , γt − vt〉F −Bψ̃t
(vt, γt)

+ 〈−�dXtx�t , γt − vt〉F −Bψ̄t(vt, γt),

(A4)

23

Mathematics 2021, 9, 1523

where we define ψ̃t(γ) =
λt
4 ‖γ‖4

F and ψ̄t(γ) =
ηt
2 ‖γ‖2

F. From the properties of the Frobe-
nius norm, we have

〈γtxtx�t , γt − vt〉F ≤‖γtxtx�t ‖F‖γt − vt‖F

≤‖xt‖2
2‖γt‖F‖γt − vt‖F

Following the idea of [33], we can upper bound ‖γt‖2
F‖γt − vt‖2

F as follows:

λt

2
‖γt‖2

F‖γt − vt‖2
F

=
λt

2
‖γt‖2

F(‖γt‖2
F + ‖vt‖2

F − 2〈γt, vt〉F)

≤λt

4
(‖γt‖4

F + ‖vt‖4
F − 2‖γt‖2

F‖vt‖2
F) +

λt

2
‖γt‖2

F(‖γt‖2
F + ‖vt‖2

F − 2〈γt, vt〉F)

=
λt

4
‖vt‖4

F +
3λt

4
‖γt‖4

F − λt‖γt‖2
F〈γt, vt〉F

=
λt

4
‖vt‖4

F −
λt

4
‖γt‖4

F + λt‖γt‖2
F〈γt, γt〉F − λt‖γt‖2

F〈γt, vt〉F

=
λt

4
‖vt‖4

F −
λt

4
‖γt‖4

F − λt‖γt‖2
F〈γt, vt − γt〉F

=Bψ̃t
(vt, γt)

Thus, for λt �= 0, we have

〈γtxtx�t , γt − vt〉F −Bψ̃t
(vt, γt) ≤2

√
‖xt‖4

2
2λt

Bψ̃t
(vt, γt)−Bψ̃t

(vt, γt)

≤‖xt‖4
2

2λt
,

where the second inequality uses the fact that 2ab − b2 ≤ a2. Let t0 be the smallest index
such that λt0 > 0. Then we have

T

∑
t=1

(〈γtxtx�t , γt − vt〉F −Bψ̃t
(vt, γt))

≤
T

∑
t=t0

‖xt‖4
2

2λt

=
T

∑
t=t0

‖xt‖4
2

2
√

∑t
s=1‖xt‖4

2

≤
√√√√ T

∑
t=1

‖xt‖4
2,

(A5)

where the last inequality uses Lemma 4 in [17]. Similarly, let t1 be the smallest index such
that ηt0 > 0. Then we obtain the upper bound

24

Mathematics 2021, 9, 1523

T

∑
t=1

(〈−�dXtx�t , γt − vt〉F −Bψ̄t(vt, γt))

≤
T

∑
t=1

(‖�dXtx�t ‖F‖γt − vt‖F −Bψ̄t(vt, γt))

≤
T

∑
t=t1

(

√
2‖�dXtx�t ‖2

F
ηt

Bψ̄t(vt, γt)−Bψ̄t(vt, γt))

≤
T

∑
t=t1

(2

√
‖�dXtx�t ‖2

F
2ηt

Bψ̄t(vt, γt)−Bψ̄t(vt, γt))

≤
T

∑
t=t1

‖�dXtx�t ‖2
F

2ηt

=
T

∑
t=t1

‖�dXtx�t ‖2
F

2
√

∑t−1
s=1‖�dXsx�s ‖2

F + L2
t ‖xt‖2

2

≤max{1,
‖�dX1x�1 ‖F

G1
, . . . ,

‖�dXTx�T ‖F

GT
}

T

∑
t=t1

‖�dXtx�t ‖2
F

2
√

∑t
s=1‖�dXsx�s ‖2

F

≤max{1,
‖�dX1x�1 ‖F

G1
, . . . ,

‖�dXTx�T ‖F

GT
}
√√√√ T

∑
t=1

‖�dXtx�t ‖2
F

≤(1 +
GT+1

G1
)

√√√√ T

∑
t=1

‖�dXtx�t ‖2
F

(A6)

Combining (A3)–(A6), we obtain

T

∑
t=1

〈gtx�t , γt − γ〉F ≤ (
√

mG2
T+1 + ‖θ1‖F)‖γ‖2

F
2

+ ψ∗
1 (θ1) + (1 +

‖γ‖4
F

4
)

√√√√ T

∑
t=1

‖xt‖4
2

+ (1 +
GT+1

G1
+

‖γ‖2
F

2
)

√√√√ T

∑
t=1

‖�dXtx�t ‖2
F.

For θ1 �= 0, it is easy to verify that ψ∗
1 (θ1) ≤ 〈w1, θ1〉F ≤ ‖θ1‖2

F
η1

≤ ‖θ1‖F. By putting this in
the inequality above, we obtain the claimed result.

Proof of Theorem 3

Proof. Define

ψt : Δ → R, w �→ ηt

K

∑
k∈Iw

wk log wk + ηt log K,

where Iw = {i = 1, . . . , k|wi �= 0}. It can be verified that wt ∈ ∂ψ∗
t (θt). Applying

Lemma A4, we obtain

T

∑
t=1

z�t (wt − u) ≤ ψT+1(u) + ψ∗
1 (θ1) +

T

∑
t=1

Bψ∗
t
(θt+1, θt − ht).

From the definition of ψt, it follows that ψT+1(u) ≤
√

log K
2 ∑T

t=1‖zt − ht‖2
∞ and ψ∗

1 (θ1) = 0
hold. Define vt ∈ ∂ψ∗

t (θt+1). Next, we bound the third term as follows:

25

Mathematics 2021, 9, 1523

Bψ∗
t
(θt+1, θt − ht)

=ψ∗
t (θt+1)− ψ∗

t (θt − ht)− (ht − zt)
� wt

=θ�t+1vt − ψt(vt)− (θt − ht)
�wt + ψt(wt)− (ht − zt)

� wt

=(ht − zt)
�(vt − wt)− (ψt(vt)− ψt(wt)− (θt − ht)

�(vt − wt))

=(ht − zt)
�(vt − wt)−Bψt(vt, wt)

=(ht − zt)
�(vt − wt)− ηt+1‖vt − wt‖2

1 + ηt+1‖vt − wt‖2
1 −Bψt(vt, wt)

≤(ht − zt)
�(vt − wt)− ηt+1‖vt − wt‖2

1 + (ηt+1 − ηt)‖vt − wt‖2
1

≤‖ht − zt‖∞‖vt − wt‖1 − ηt+1‖vt − wt‖2
1 + 4(ηt+1 − ηt)

≤‖ht − zt‖2
∞

4ηt+1
+ 4(ηt+1 − ηt),

where the first inequality uses the fact that ψt is 2ηt strongly convex w.r.t. ‖·‖1. Adding up
from 1 to T, we have

T

∑
t=1

Bψ∗
t
(θt+1, θt − ht) ≤

T

∑
t=1

(
‖ht − zt‖2

∞
4ηt+1

+ 4(ηt+1 − ηt))

≤
√√√√ log K

2

T

∑
t=1

‖ht − zt‖2
∞ + 4ηT+1

≤
√√√√ log K

2

T

∑
t=1

‖ht − zt‖2
∞ +

√√√√ 8
log K

T

∑
t=1

‖ht − zt‖2
∞.

Combining the inequalities, we obtain

T

∑
t=1

l(Xt,
K

∑
i=1

wi,tX̃i
t)−

T

∑
t=1

l(Xt, X̃k
t)

≤
T

∑
t=1

K

∑
i=1

wi,tl(Xt, X̃i
t)−

T

∑
t=1

l(Xt, X̃k
t)

=
T

∑
t=1

w�
t zt −

T

∑
t=1

l(Xt, X̃k
t)

≤(
√

2 log K +

√
8

log K
)

√√√√ T

∑
t=1

‖ht − zt‖2
∞,

where the first inequality follows from Jensen’s inequality. Furthermore, if l is L-Lipschitz
in its first argument, then we have

‖ht − zt‖∞ = max
i∈{1,...,K}

|zi,t − hi,t| ≤ L‖�dXt‖2.

Finally, we obtain the regret upper bound

T

∑
t=1

l(Xt,
K

∑
i=1

wi,tX̃i
t)−

T

∑
t=1

l(Xt, X̃k
t) ≤

(√
2 log K +

√
8

log K

)√√√√ T

∑
t=1

L2‖�dXt‖2
2,

which is the claimed result.

Appendix C

We summarize the main notations used throughout the article in Table A1.

26

Mathematics 2021, 9, 1523

Table A1. Nomenclature.

(X, ‖·‖) finite dimensional norm space
(X∗, ‖·‖∗) the dual space with dual norm of (X, ‖·‖)
L(X,X) vector space of bounded linear operators
‖α‖op = supx∈X,x �=0

‖αx‖
‖x‖ the operator norm of α ∈ L(X,X)

‖x‖2 =
√

∑d
i=1 x2

i 2 norm for x ∈ Rd

‖x‖1 = ∑d
i=1|xi| 1 norm for x ∈ Rd

‖x‖∞ = max{|x1|, . . . , |xd|} max norm for x ∈ Rd

〈A, B〉F = tr(A�B) Frobenius inner product
‖A‖F =

√〈A, A〉F Frobenius norm
Δd : {x ∈ Rd|∑d

i=1 xi = 1, xi ≥ 0} standard d-simplex
ψ : W → R closed convex function
∂ψ(w) = {g ∈ X∗|∀v ∈ W .ψ(v)− ψ(w) ≥ g(v − w)} the set of subdifferential of ψ at w
ψ∗ : X∗ → R, θ �→ supw∈W θw − ψ(w) convex conjugate of ψ
Bψ(u, v) = ψ(u)− ψ(v)− g(u − v), where g ∈ ∂ψ(u) the Bregman divergence

Appendix D

For the synthetic data, the relative performance of the proposed algorithms after
the first 1000 iterations are plotted in Figures A1–A3. For each setting, we calculate the
average loss after the first 1000 iterations and plot the difference of the proposed algorithms
compared to the average loss incurred by the best baseline algorithm.

Figure A1. Relative performance for setting 1.

Figure A2. Relative performance for setting 2.

27

Mathematics 2021, 9, 1523

Figure A3. Relative performance for setting 3.

Similarly, we plot the relative performance for the real-world data over the time
horizon in Figures A4–A6.

Figure A4. Relative performance for stock data.

Figure A5. Relative performance for Google Flu.

Figure A6. Relative Performance for electricity demand.

28

Mathematics 2021, 9, 1523

References

1. Shumway, R.; Stoffer, D. Time Series Analysis and Its Applications: With R Examples; Springer Texts in Statistics; Springer: New York,
NY, USA, 2010.

2. Chujai, P.; Kerdprasop, N.; Kerdprasop, K. Time series analysis of household electric consumption with ARIMA and ARMA
models. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 13–15
March 2013; Volume 1, pp. 295–300.

3. Ghofrani, M.; Arabali, A.; Etezadi-Amoli, M.; Fadali, M.S. Smart scheduling and cost-benefit analysis of grid-enabled electric
vehicles for wind power integration. IEEE Trans. Smart Grid 2014, 5, 2306–2313. [CrossRef]

4. Rounaghi, M.M.; Zadeh, F.N. Investigation of market efficiency and financial stability between S&P 500 and London stock
exchange: Monthly and yearly forecasting of time series stock returns using ARMA model. Phys. A Stat. Mech. Its Appl. 2016,
456, 10–21.

5. Zhu, B.; Chevallier, J. Carbon price forecasting with a hybrid Arima and least squares support vector machines methodology. In
Pricing and Forecasting Carbon Markets; Springer: Berlin/Heidelberg, Germany, 2017; pp. 87–107.

6. Anava, O.; Hazan, E.; Mannor, S.; Shamir, O. Online learning for time series prediction. In Proceedings of the Conference on
Learning Theory, Princeton, NJ, USA, 23–26 June 2013; pp. 172–184.

7. Liu, C.; Hoi, S.C.; Zhao, P.; Sun, J. Online ARIMA algorithms for time series prediction. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 1867–1873.

8. Xie, C.; Bijral, A.; Ferres, J.L. Nonstop: A nonstationary online prediction method for time series. IEEE Signal Process. Lett. 2018,
25, 1545–1549. [CrossRef]

9. Yang, H.; Pan, Z.; Tao, Q.; Qiu, J. Online learning for vector autoregressive moving-average time series prediction. Neurocomputing
2018, 315, 9–17. [CrossRef]

10. Joulani, P.; György, A.; Szepesvári, C. A modular analysis of adaptive (non-) convex optimization: Optimism, composite
objectives, variance reduction, and variational bounds. Theor. Comput. Sci. 2020, 808, 108–138. [CrossRef]

11. Zhou, Y.; Sanches Portella, V.; Schmidt, M.; Harvey, N. Regret Bounds without Lipschitz Continuity: Online Learning with
Relative-Lipschitz Losses. Adv. Neural Inf. Process. Syst. 2020, 33, 15823–15833.

12. Jamil, W.; Bouchachia, A. Model selection in online learning for times series forecasting. In UK Workshop on Computational
Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–95.

13. Jamil, W.; Kalnishkan, Y.; Bouchachia, H. Aggregation Algorithm vs. Average For Time Series Prediction. In Proceedings of the
ECML PKDD 2016 Workshop on Large-Scale Learning from Data Streams in Evolving Environments, Riva del Garda, Italy, 23
September 2016; pp. 1–14.

14. Orabona, F.; Pál, D. Coin betting and parameter-free online learning. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, Barcelona, Spain, 4–9 December 2016; pp. 577–585.

15. Cutkosky, A.; Orabona, F. Black-box reductions for parameter-free online learning in banach spaces. In Proceedings of the
Conference on Learning Theory, Stockholm, Sweden, 6–9 July 2018; pp. 1493–1529.

16. Cutkosky, A.; Boahen, K. Online learning without prior information. In Proceedings of the Conference on Learning Theory,
Amsterdam, The Netherlands, 7–10 July 2017; pp. 643–677.

17. Orabona, F.; Pál, D. Scale-free online learning. Theor. Comput. Sci. 2018, 716, 50–69. [CrossRef]
18. Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994; Volume 2.
19. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,

USA, 2015.
20. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
21. Georgiou, T.T.; Lindquist, A. A convex optimization approach to ARMA modeling. IEEE Trans. Autom. Control 2008, 53, 1108–1119.

[CrossRef]
22. Lii, K.S. Identification and estimation of non-Gaussian ARMA processes. IEEE Trans. Acoust. Speech Signal Process. 1990,

38, 1266–1276. [CrossRef]
23. Huang, S.J.; Shih, K.R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations.

IEEE Trans. Power Syst. 2003, 18, 673–679. [CrossRef]
24. Ding, F.; Shi, Y.; Chen, T. Performance analysis of estimation algorithms of nonstationary ARMA processes. IEEE Trans. Signal

Process. 2006, 54, 1041–1053. [CrossRef]
25. Yang, H.; Pan, Z.; Tao, Q. Online Learning for Time Series Prediction of AR Model with Missing Data. Neural Process. Lett. 2019,

50, 2247–2263. [CrossRef]
26. Ding, J.; Noshad, M.; Tarokh, V. Order selection of autoregressive processes using bridge criterion. In Proceedings of the 2015

IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 615–622.
27. Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2005.
28. Steinhardt, J.; Liang, P. Adaptivity and optimism: An improved exponentiated gradient algorithm. In Proceedings of the

International Conference on Machine Learning, PMLR, Bejing, China, 22–24 June 2014; pp. 1593–1601.
29. De Rooij, S.; Van Erven, T.; Grünwald, P.D.; Koolen, W.M. Follow the leader if you can, hedge if you must. J. Mach. Learn. Res.

2014, 15, 1281–1316.

29

Mathematics 2021, 9, 1523

30. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [CrossRef]
31. Deng, Y.; Fan, H.; Wu, S. A hybrid ARIMA-LSTM model optimized by BP in the forecast of outpatient visits. J. Ambient. Intell.

Humaniz. Comput. 2020. [CrossRef]
32. Tutun, S.; Chou, C.A.; Canıyılmaz, E. A new forecasting framework for volatile behavior in net electricity consumption: A case

study in Turkey. Energy 2015, 93, 2406–2422. [CrossRef]
33. Lu, H. “Relative Continuity” for Non-Lipschitz Nonsmooth Convex Optimization Using Stochastic (or Deterministic) Mirror

Descent. Informs J. Optim. 2019, 1, 288–303. [CrossRef]

30

mathematics

Article

AutoNowP: An Approach Using Deep Autoencoders for
Precipitation Nowcasting Based on Weather Radar
Reflectivity Prediction

Gabriela Czibula 1,*,†, Andrei Mihai 1,†, Alexandra-Ioana Albu 1,†, Istvan-Gergely Czibula 1,†, Sorin Burcea 2

and Abdelkader Mezghani 3

Citation: Czibula, G.; Mihai, A.;

Albu, A.-I.; Czibula, I.G.; Burcea, S.;

Mezghani, A. AutoNowP: An

Approach Using Deep Autoencoders

for Precipitation Nowcasting Based

on Weather Radar Reflectivity

Prediction. Mathematics 2021, 9, 1653.

https://doi.org/10.3390/math9141653

Academic Editor: Freddy Gabbay

Received: 31 May 2021

Accepted: 30 June 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
mihai.andrei@ubbcluj.ro (A.M.); alexandra.albu@ubbcluj.ro (A.-I.A.); istvan.czibula@ubbcluj.ro (I.-G.C.)

2 Romanian National Meteorological Administration, 013686 Bucharest, Romania;
sorin.burcea@meteoromania.ro

3 Meteorologisk Instittut, 0371 Oslo, Norway; abdelkader.mezghani@met.no
* Correspondence: gabriela.czibula@ubbcluj.ro or gabis@cs.ubbcluj.ro; Tel.: +40-264-405327
† These authors contributed equally to this work.

Abstract: Short-term quantitative precipitation forecast is a challenging topic in meteorology, as the
number of severe meteorological phenomena is increasing in most regions of the world. Weather
radar data is of utmost importance to meteorologists for issuing short-term weather forecast and
warnings of severe weather phenomena. We are proposing AutoNowP, a binary classification model
intended for precipitation nowcasting based on weather radar reflectivity prediction. Specifically,
AutoNowP uses two convolutional autoencoders, being trained on radar data collected on both
stratiform and convective weather conditions for learning to predict whether the radar reflectivity
values will be above or below a certain threshold. AutoNowP is intended to be a proof of concept
that autoencoders are useful in distinguishing between convective and stratiform precipitation. Real
radar data provided by the Romanian National Meteorological Administration and the Norwegian
Meteorological Institute is used for evaluating the effectiveness of AutoNowP. Results showed that
AutoNowP surpassed other binary classifiers used in the supervised learning literature in terms of
probability of detection and negative predictive value, highlighting its predictive performance.

Keywords: precipitation nowcasting; deep learning; autoencoders; radar data

1. Introduction

Forecast of severe weather phenomena, including the quantitative precipitation fore-
cast (QPF), represents a challenging topic in meteorology. Due to the increase in the number
of heavy rainfall events in most regions of the world, population safety could be affected
and significant damage may occur. The short-term weather forecasting is known as now-
casting and is of particular interest as it has an important role in risks management and
crisis control. The problem of weather nowcasting is a complex and difficult one, due to
its high dependence on numerous environmental conditions. Precipitation nowcasting
represents a challenging and actual research topic, referring to producing predictions of
rainfall intensities over a certain region in the near future, and playing an important role in
daily life [1].

At global scale, flood threat is increasing because of climate change impact of heavy
precipitation, as for instance the total urban area being exposed to flood has dramatically
increased in Europe over the past century. Also, various socioeconomic sectors are im-
pacted by climate change induced hazards, such as extreme rainfall, which amplify both the
intensity and probability of floods [2]. Research on the exposure of flood hazard, using cli-
mate models simulations, showed that the climate change presents the potential to actively
change the human, assets, and urban areas exposure to flood hazard, but nevertheless

Mathematics 2021, 9, 1653. https://doi.org/10.3390/math9141653 https://www.mdpi.com/journal/mathematics

31

Mathematics 2021, 9, 1653

considerable uncertainty in the magnitude of the climate change impact in different regions
around the globe exists [3].

Nowadays, integrating crowdsourced observations into research studies can con-
tribute to reducing the risk and the costs related to extreme events. Citizens around the
world have, currently, at their disposal a great number of sources of information and
amazing possibilities to report and to study meteorological phenomena. Hence, these
volunteers who collect, report and/or process the data they observe are citizen scientists.
They are active not only in the field of meteorology, but also in sciences as astronomy,
archeology, natural history and others [4]. Their contribution to science can have a practical
effect, especially by increasing the awareness and perception on climate change related
risks, thus helping in mitigating the effects.

Although significant progress has been made recently on nowcasting systems in
general, and precipitation nowcasting in particular, the challenges remain as, for instance,
severe convective storms are localized, occurring on a small spatial area (i.e., mesoscale)
and having an overall short lifecycle. Due to its high spatiotemporal resolution, radar data
is used both in the so-called expert nowcasting systems and in the less complex forms that
involve processing the radar data solely [5,6]. These systems blend radar data and other
observations with numerical weather prediction (NWP) models to generate forecasts up to
6 h [7]. Although NWP significantly improves the precipitation nowcasting, there are still
issues to be resolved, like the predictability of precipitation systems, the improvement of
rapid update NWP, and the need for improvement of mesoscale observation networks [8].

Some of the most used radar products in weather nowcasting are reflectivity (R) and
Doppler radial velocity (V). For instance, operational meteorologists are mainly using
the values of reflectivity and radial velocity to monitor the spatiotemporal evolution of
precipitating clouds, while operational radar algorithms use the reflectivity for rainfall
estimation and storm tracking and classification: R values above a certain threshold
(e.g., 35 dBZ [5,9]) indicate possible convective storms occurrence associated with heavy
rainfall. Estimating the values of the radar products based on their historical values is
important for QPF. NWP models [10] represent the main techniques for QPF, but there
are still errors in rainfall forecasting due to difficulties in modelling cloud dynamics and
microphysics [11].

Deep learning methods [12–14] are believed to have the potential to overcome the
limitations of NWP methods through modeling patterns in large amounts of historical
meteorological data. Deep learning methods offer data-driven solutions for the nowcasting
problem, by learning dependencies between radar measurements at consecutive time
steps [15]. A central characteristic of deep neural networks is represented by their ability to
learn abstract representations of the input data through stacking multiple layers and thus
forming deep architectures. Autoencoders (AEs) are a type of neural network that can be
trained to learn low dimensional representations that capture the relevant characteristics
of the input data [16]. AEs are trained to learn data representations by reconstructing
their inputs. They are built of two components, an encoder that maps the input to a latent
representation and a decoder that uses this representation to reconstruct the input. Typically,
the dimensionality of the latent representation is chosen to be smaller than the input space
dimensionality, thus obtaining a so-called undercomplete autoencoder. Autoencoders
can be trained using gradient descent methods to minimize the error between the input
data and the predicted reconstruction [16]. Convolutional autoencoders (ConvAEs) are
able to capture spatial patterns in the input data by using convolutions as their building
blocks. Convolutional encoder-decoder architectures have been extensively used in various
computer vision tasks and they are the typical choice for modeling the spatial characteristics
of meteorological measurements gathered along geographical locations [15,17,18].

The contribution of the paper is threefold. First, we aim at introducing a supervised
classifier AutoNowP that uses two convolutional autoencoders for distinguishing between
convective and stratiform rainfall based on radar reflectivity prediction. AutoNowP is
based on training two ConvAEs trained on radar data collected on both stratiform and

32

Mathematics 2021, 9, 1653

convective weather conditions. After the training step, AutoNowP will learn to predict
whether the radar reflectivity values will be higher than a certain threshold, and thus
indicating if a convective storm is likely to happen. AutoNowP is intended to be a proof of
concept that AEs applied on radar data are useful in distinguishing between convective
and stratiform rainfall. Secondly, the effectiveness of AutoNowP is empirically proven
on two case studies consisting of real radar data collected from the Romanian National
Meteorological Administration (NMA) and the Norwegian Meteorological Institute (MET).
The obtained results are compared to the results of recent similar approaches in the field of
precipitation nowcasting. As an additional goal we aim at analyzing the relevance of the
obtained results from a meteorological perspective, as a proof of concept that autoencoders
are able to capture relevant meteorological knowledge. To the best of our knowledge, an
approach similar to AutoNowP has not been proposed in the nowcasting literature so far.

To summarize, the research conducted in the paper is oriented toward answering the
following research questions:

RQ1How to use an ensemble of ConvAEs to supervisedly discriminate between severe
and normal rainfall conditions, considering the encoded relationships between radar
products values corresponding to both normal and severe weather events?

RQ2What is the performance of AutoNowP introduced for answering RQ1 on real radar
data collected from Romania and Norway and how does it compare to similar re-
lated work?

The rest of the paper is organized as follows. A literature review on recent deep learn-
ing methods for precipitation nowcasting is presented in Section 2. Section 3 introduces
our binary classification model AutoNowP for predicting if the radar reflectivity values are
above or below a specific threshold. The performed experiments and the obtained results
are described in Section 4, while a discussion on the results and a comparison to related
approaches is provided in Section 5. Section 6 presents the conclusions of our research and
highlights directions for future work.

2. Literature Review on Machine-Learning-Based Precipitation Nowcasting

A lot of work has been carried out lately in the field of machine-learning-based
precipitation nowcasting. We are reviewing, in the following, several recent approaches in
the field.

Shi et al. [19] have approached precipitation nowcasting by introducing an extension
of a long short-term memory (LSTM) network, named ConvLSTM, suitable for handling
spatiotemporal data by preserving due to the convolutional structure of the spatiotemporal
features. Their architecture is composed of two networks, a ConvLSTM encoder and a
ConvLSTM decoder. As precipitation nowcasting performance indicators, a Rainfall Mean
Squared Error (Rainfall-MSE) of 1.420, a Critical Success Index (CSI) of 0.577, a False Alarm
Rate (FAR) of 0.195 and a Probability of Detection (POD) of 0.660 have been obtained.

Heye et al. [20] investigated a precipitation nowcasting approach based on a 3D
ConvLSTM architecture. In their experiments, a vanilla sequence-to-sequence model
achieved better performance than a model using attention layers. Overall, the CSI varied
between 0.40 and 0.43, the FAR ranged from 0.28 to 0.31, and the POD fluctuated between
0.46 and 0.51.

A method for precipitation nowcasting, combining the advantages of convolutional
gated recurrent networks (ConvGRU) and adversarial training was introduced by
Tian et al. [21]. The method aimed at improving the sharpness of the predicted precip-
itation maps by means of adversarial training. The system is composed of a generator
network, represented by the ConvGRU, which learns to generate realistically looking
precipitation maps and a discriminator represented by a convolutional neural network that
is trained to distinguish between predicted ground truth maps. Their method achieved
better performance in terms of probability of detection than an optical flow algorithm and
the original ConvGRU. Han et al. [22] used 3D convolutions to build a neural network for
convective storm nowcasting. The task was formulated as a binary classification problem

33

Mathematics 2021, 9, 1653

and their multisource approach achieved a CSI of 0.44, FAR of 0.45, and POD of 0.69 for
30 min forecasts, outperforming a Support-Vector Machine using hand-crafted features.

The MetNet model [15] has been introduced by Sønderby et al. using both radar and
satellite data for precipitation forecasting with a lead time of up to 8 h. The model incor-
porates three components—a feature extractor formed of a succession of downsampling
convolutional layers, a ConvLSTM component used for modeling dependencies on the
past time steps and an attention module composed of several axial self-attention blocks
that aim to capture relationships among geographic locations situated far away in the
map. By including the forecasted time in the data given as input and thus conditioning the
entire model on it, predictions for multiple time steps can be obtained in parallel. The loss
function was computed only for points on good quality maps from the data set in order to
account for possible noisy or incorrect labels. MetNet outperformed the persistence model,
an optical flow-based algorithm, as well as the High-Resolution Rapid Refresh (HRRR)
for forecasts up to 8 h in the future. By performing ablation studies, they pointed out
that using a large spatial context leads to better performance than using a smaller context
on long-term predictions. However, reducing the temporal context up to 30 min did not
decrease the model’s performance. Moreover, the authors pointed out that radar data plays
a more important role in the overall model performance for short-term predictions than for
long-term ones. These results can be explained by the fact that long-term predictions need
to take into account a larger spatial context that cannot be typically captured by radar, thus
highlighting the importance of incorporating satellite data for this type of predictions.

The model proposed by Franch et al. [23] aimed to improve the performance of now-
casting systems on extreme events prediction by training an ensemble of Trajectory Gated
Recurrent Units (TrajGRUs), each optimized by over-weighting the objective for a specific
precipitation threshold. In addition to the ensemble components, a model stacking strategy
that consists of training an additional model using the outputs of the ensemble components
is employed. Moreover, their approach enhances the radar data with orographic features.
The proposed model achieved overall better performance than several TrajGRU baselines
and two models obtained by using only part of the components—an ensemble model
without orographic features, and a single model trained with orographic features.

Chen et al. [1] improved upon the training of ConvLSTMs by introducing a multi-
sigmoid loss function tailored for the precipitation nowcasting task and incorporating
residual connections in the recurrent architecture. Additionally, the group normalization
mechanism proved to be beneficial for the model’s performance. The model was trained
on radar images and predictions were evaluated for lead times of up to one hour.

The Small Attention-Unet (SmaAt-Unet) [17] precipitation nowcasting model intro-
duced by Trebing et al. is a modified U-Net architecture, in which traditional convolutions
have been replaced by depthwise separable convolutions and convolutional block attention
modules have been added to the encoder. The proposed approach achieved an overall
comparable performance to the original U-Net, while using a quarter of the number of
parameters. The nowcasting is done for up to 30 min in the future using 1 h of past radar
data, sampled at a frequency of 5 min. Similarly to other U-Net-based methods, different
time stamps are concatenated channelwise and given as input to the network. Patterns
across the channel dimension are captured by the attention modules. As precipitation
nowcasting performance indicators, a CSI of 0.647, a FAR of 0.270, and an F-score of 0.768
have been obtained.

An approach for weather forecasting using ConvLSTMs and attention was introduced
in [18]. Their proposed method was tested on the ECMWF (European Centre for Medium-
Range Weather Forecasts) Reanalysis v5 (ERA5) data set, which contains several weather
measurements such as temperature, geopotential, humidity and vertical velocity at a
time resolution of one hour. The approach was shown to outperform other methods
such as Simple Moving Average, U-Net, and ConvLSTM, achieving MSE values between
1.32 and 2.47.

34

Mathematics 2021, 9, 1653

Jeong et al. [24] alternatively proposed a weighted broadcasting strategy for Con-
vLSTMs, which is based on the idea of overweighting the last time stamp in the input
sequence. Their approach reached generally better performance than the baseline ConvL-
STM architecture, with CSI values ranging between 0.0108 and 0.5031, FAR between 0.2960
and 0.5653, POD values in the range 0.0110-0.6403 and Heidke skill score (HSS) between
0.01 and 0.3.

A deep learning approach for precipitation estimation from reflectivity values was
introduced by Yo et al. [25]. The proposed approach was compared to an operational
precipitation estimation method used by the Central Weather Bureau in Taiwan and was
shown to slightly outperform it, especially in predicting extreme meteorological events.
However, the improvement was not statistically significant, the proposed method obtaining
an average POD of 0.8 and FAR of 0.0134.

3. Methodology

With the goal of answering research question RQ1, this section introduces our binary
classification model proposal, AutoNowP, that consists of two ConvAEs, trained on radar
data collected from rainfall conditions with different classes of severity, for recognizing
severe phenomena. More specifically, AutoNowP is trained for learning to predict whether
the radar reflectivity values will be above or below a specific threshold. The ConvAE
models are used due to their ability to preserve the structure of the input data and to detect
underlying structural relationships within the data.

AutoNowP is aimed to empirically demonstrate that autoencoders are able to learn,
by self-supervision, features that are relevant for distinguishing structural relationships
in radar data collected in both stratiform and convective weather conditions. The model
is designed to classify if a radar product Rp is below or above a threshold τ. In the
experiments we will use two radar products, the reflectivity at the first elevation level
(R01) and the composite reflectivity, and different values for the threshold τ (e.g., 5, 20,
35 dBZ). AutoNowP consists of three stages depicted in Figure 1: data representation and
preprocessing, training, and testing (evaluation). These stages will be further detailed.

Figure 1. Overview of AutoNowP.

3.1. Data Representation and Preprocessing

The raw radar data used in our experiments is converted into two-dimensional arrays,
with a grid cell representing a geographical location. A cell in the matrix stores the value of
a specific radar product at a given time stamp. A sequence of such matrices is available for

35

Mathematics 2021, 9, 1653

a given day, each matrix storing the values for a specific radar product p at a time moment t.
We assume that np radar products are available and thus, the radar data at a time moment
t may be visualized as a data grid with np channels.

In our previous works [11,26] we highlighted that similar values for the radar products
in a specific location l at a time t are encoded in similar neighborhoods of the location l at
time t−1. For a specific location l at time t, a d2–dimensional vector containing the values
of a radar product Rp from the sub-grid of diameter d centered on l (at time t−1) will be
assigned. The d2—dimensional instance will be labeled with the of Rp for the location l at
time t [11]. A sample data grid containing the values for the product R01 at time t is shown
in Figure 2a, while Figure 2b depicts the data grid at time t−1.

15 5 10 10 15
10 25 15 5 10
20 0 10 10 10
15 10 25 15 5
15 0 15 5 0

(a) The data matrix at time stamp t. In red
is the value of R01 at location l = (3, 3).

20 30 10 15 10
15 15 10 20 5
20 10 15 20 25
10 5 10 10 20
15 5 10 15 20

(b) The data grid at time stamp t−1. In blue is
the neighborhood of the location l = (3, 3) of
diameter d = 3.

Figure 2. Sample data grids at time stamp t and t−1 highlighting an instance sample at location
l = (3, 3) and a diameter d = 3 for the neighborhood.

For the example from Figure 2, the instance corresponding to the location (3,3) at time
t is the vector (15,10,20,10,15, 20,5,10,10) and is labeled with 10 (the value of R01 at location
(3,3) and time t).

Consequently, considering a specific diameter d for the neighborhood, a data set R
is built from the instances (d2—dimensional points) associated to each location from the
data grid and all available time moments [11]. The radar data set R will be divided in two
classes: the positive class (denoted as “+”) composed by the instances having the label
(i.e., values for the radar product Rp at a certain time t) higher than a threshold τ, while
the negative class (denoted as “−”) contains the instances having the label lower or equal
to the threshold τ. The data set representing the positive class is denoted by R+, while R−
denotes the set of instances belonging to the negative class. We note that the dimensionality
of R− is significantly larger than the cardinality of R+, as the number of severe weather
events is often small.

Both data sets are then normalized so that the value Rp of a radar product is trans-
formed to be in the [0, 1] range. For normalization purposes, we use the classic min/max
normalization formula:

Rp′(l, t) =
Rp(l, t)− Rpmin
Rpmax − Rpmin

,

where:

• Rp(l, t) is the value of Rp at time t and location l;
• Rp′(l, t) is the normalized value of Rp at time t and location l;
• Rpmin is the minimum value in the domain of Rp;
• Rpmax is the maximum value in the domain of Rp.

It should be noted that we are using the minimum and maximum values from a radar
product’s domain to ensure that both R+ and R− data sets are normalized in the same way
(i.e., the same value in different data sets is mapped to the same normalized value), as the
positive data set may have different minimum and maximums than the negative data set.
AutoNowP is trained and tested on the normalized data.

36

Mathematics 2021, 9, 1653

3.2. AutoNowP Classification Model

Considering the notations from Section 3.1, the classification problem is formalized
as the approximation of two target functions (i.e., one target function for each class)
tc : R+ ∪ R− → [0, 1] (∀c ∈ {+,−}) that express the probability of instances from
R+ ∪R− to belong to the “+” or “−” classes. Thus, the learning goal of AutoNowP will
be to approximate the functions t+ and t−. AutoNowP consists of two ConvAEs, one for
the “+” class (CA+) and one for the “−” class (CA−). For training an autoencoder CAc
(c ∈ {+,−} 47% from the data set Rc (i.e., 70% from the data not used for testing) will be
used for training, 20% for the model validation and the rest of 33% from Rc will be further
used for testing, using a 3-fold cross-validation testing methodology.

3.2.1. Training

As previously stated, AutoNowP classifier will be trained to predict, based on the
radar products values from the neighborhood of a geographical location at time t − 1,
whether the value of a radar product Rp at time t will be higher than a threshold τ. For
instance, if Rp is chosen as R01 and τ as 35 dBZ, then AutoNowP will be trained to predict
if, in a certain geographical location or area, a convective storm is likely to occur (i.e., if the
value of R01 will be higher than 35 dBZ in that geographical location).

AutoNowP is trained to recognize both normal and severe weather events, and thus
it will learn to predict if a certain instance is likely to indicate stormy or normal weather.
Each of the two autoencoders CA+ and CA− will be self-supervisedly trained on the data
set of positive and negative instances, respectively (R+ and R−).

The prediction is based on estimating the probabilities (denoted by p+ and p−) that a
high-dimensional instance corresponding to a particular geographic location (as described
in Section 3.1) belongs to the positive and negative classes. The method for computing
these probabilities will be detailed in Section 3.2.2.

Autoencoders Architecture

The current study uses convolutional undercomplete AEs to learn meaningful lower-
dimensional representations for radar data. The autoencoders were implemented in Python,
using the Keras framework with Tensorflow backend. Both autoencoders (CA+ and CA−)
have the same architecture. The input data of the AEs is the 2D grid of the neighborhood
of diameter d for one location (as exemplified in Figure 2b)—i.e., the 2D grid representing
the values of an instance from R+ ∪R−. As we have to choose a different diameter d for
our experiments on different data sets (see Section 4.1), we made the architecture so that it
minimally changes with d: while the number, type and hyper-parameters of each layer of
the network remain the same, the number of neurons on each layer changes, proportionally,
depending on d.

Even if the architecture of the autoencoder may be adapted to the diameter d of the
neighborhood (i.e., the dimensionality d2 of the input data), the value of d may influence
the performance of AutoNowP model. Intuitively, high values for d will make the AEs to
harder distinguish between the positive and negative instances. This may happen since,
hypothetically speaking, it would be possible that two neighboring points at time t (one
positive and one negative) have a large number of identical neighbors at time t − 1 (i.e., the
data instances representing the two locations are similar) and thus the AEs are unable to
distinguish between them. On the other hand, a small number of neighbors for a data point
(i.e, small values for d) is not enough for AutoNowP classifier to discriminate between the
input instances. For determining the most appropriate value for the diameter d, a grid
search was performed for selecting the value d that provides the best performance for
AutoNowP.

In the following, we will present the architecture of the autoencoders and the hyper-
parameters used, without mentioning the number of neurons, so that the following de-
scription is valid for the AutoNowP model in general, regardless of the specific experiment.
Figure 3 illustrates the architecture of the autoencoder (as mentioned above, both autoen-

37

Mathematics 2021, 9, 1653

coders, CA− and CA+, have the same architecture). This is a Convolutional Autoencoder,
thus the main layers are the Conv2D—2-dimensional convolution layers—represented in
yellow in the figure. These layers reduce the data grid input in three steps, leading to an
encoding layer (the blue layer in the figure). From the encoding, the autoencoder needs
to recreate the input, thus the inverse of the Conv2D is needed: Conv2DTranspose (the
orange layers). Using the Conv2DTranspose layers we apply the reverse transformation so
that it recreates the data grid as it was before the convolutions. When using convolutions,
we need to reduce the size of the image, and this works best if the size of the image is
even. However, our input layer has always an odd size: since the input represents the
neighborhood of one point, having that point in the center, for a given radius r, the size
will be (2r + 1, 2r + 1)—i.e., we take r neighbors from all sides of the center; for example, r
neighbors on the right with r neighbors on the left plus the center itself results in an 2r + 1
length. Since the input is always odd in size, we need to adjust it so that we can perform
the convolutions. For this, we use a ZeroPadding2D layer: after the Input layer (first gray
layer), we pad the margins of the data grid with zeros until it reaches the desired size, using
the ZeroPadding2D layer (the red layer). Afterwards, the convolutions can occur. The
transpose convolutions will recreate the data grid as it was before the convolutions—that
is, after padding—so it is not the same size as the input. Since it is an autoencoder, we
want to match the output to the input, thus, we need to adjust the transpose convolutions
output so that the final size of the autoencoder output fits the size of its input. To readjust
the size, we use a Cropping2D layer, which will also be the output layer of the autoencoder
(the second gray layer represented in the figure).

Figure 3. Architecture of a Convolutional Autoencoder (CAc).

As with other neural networks, while the architecture is the principal element of the
network, there are other metaparameters that need to be tuned that change the network’s
behavior. One of these is the number of neurons on each hidden layer, but as we mentioned
above, this number may differ among the experiments if the input size changes; however,
while the absolute number changes, the proportion of neurons on the hidden layers
are preserved. Then, we have the activation used for the layers: for all convolutional
layers, transpose convolutional layers and the dense layers, except for the last transpose
convolutional layer, we use the SELU activation function (Scaled Exponential Linear
Unit [27]). For the last transpose convolutional layer, we used the sigmoid activation
function, so that the output of the autoencoder is between 0 and 1, as is the input. For all
convolutional layers and transpose convolutional layers, we used a kernel size of 4 and
2 strides.

The training configuration was the following: we used a batch size of 1024 and we
trained each autoencoder for 500 epochs in the case of the NMA data set and for 200 epochs
for the MET data set; the Adam optimizer [28] was used with learning rates of 0.01 and
0.001 respectively for the NMA and MET data sets and epsilon of 0.00001.

38

Mathematics 2021, 9, 1653

Loss Functions

As explained in Section 3.1, the high-dimensional input instance x may be visualized
as a data grid, i.e., the neighborhood around the location of the value we want to predict.
The autoencoders learn to encode and decode each instance, the output of the autoencoder
being the reconstruction of the instance. The loss functions represent the difference between
the original instances and their reconstruction; lower values for the loss indicate better
reconstructions (i.e., closer to the input), with a loss equal to 0 meaning no difference. The
loss is based on a modified mean squared error (MSE), to assign a priority to the values
greater than the threshold τ relative to the other values. More specifically, we wanted to
be able to make the autoencoders prioritize values in the neighborhood that are either
greater or lower or equal to the given threshold τ. We also wanted to be able to change
this prioritization between CA− and CA+ (i.e., CA− is trained to prioritize negative points,
while CA+ is trained by over-weighting positive points in the neighborhood) and between
experiments, so we introduced a parameter, α, that controls this prioritization. We split the
computation of MSE in two parts: computing the MSE for values greater than τ (Formula (1))
and computing the MSE for values lesser or equal to τ (Formula (2)). The final loss value
(Formula (3) is expressed as a linear combination between the two separately computed
MSEs; we use the α parameter to decide how to prioritize the values greater than τ relative
to the values less or equal to τ. The exact way to compute the loss function L(x, x′) for a
given instance x ∈ R+ ∪R− is given by Formulae (1)–(3):

MSEgreater(x, x′) = 1
d2 ∑

1≤i≤d2
xi>τ

(xi − x′i)
2 (1)

MSElesser(x, x′) = 1
d2 ∑

1≤i≤d2

xi≤τ

(xi − x′i)
2 (2)

L(x, x′) = α · MSEgreater(x, x′) + (1 − α) · MSElesser(x, x′) (3)

where:

• d is the diameter of the neighborhood used for characterizing the input instances x
(see Section 4.1);

• x ∈ R+ ∪R− is the d2-dimensional instance for which we compute the loss;
• x′ is the autoencoder output for instance x (the reconstruction of x);
• τ is the chosen threshold that differentiates between positive and negative class;
• α is the parameter that we introduced for the loss;
• xi and x′i denote the ith component from x and x′ respectively.

3.2.2. Classification Using AutoNowP

After AutoNowP has been trained as described in Section 3.2.1, when an unseen query
instance q has to be classified, the probabilities p+(q) (that q belongs to the positive class)
and p−(q) (that q belongs to the negative class) are computed. As shown above, a query
instance q is a high-dimensional vector (Section 3.1) consisting of radar products values
from the neighborhood of a specific geographical location l at time t. AutoNowP will
classify q as “+” (i.e., the value of the radar product Rp at time t+1 is likely to be higher
than the threshold τ) iff p+(q) ≥ p−(q), i.e., p+(q) ≥ 0.5.

The underlying idea behind deciding that a query instance q is likely to belong to the
“+” class (i.e., p+(q) ≥ p−(q)) is the following. We started from the assumption that an AE
is able to encode the structure of the class of instances it was trained on well and with the
intention to further reconstruct data similar to the training data. In addition, the AE will be
unable to reconstruct, through its learned latent space representation, the instances that
are dissimilar to the training data (i.e., likely to belong to another class than the class on
which the AE was trained on). Thus, if for a certain instance q the MSE between q and the

39

Mathematics 2021, 9, 1653

reconstruction of q by CA+ is less than the MSE between q and the reconstruction of q by
CA−, then it is likely that the query instance belongs to the “+” class, as it is more similar
to the information encoded for the positive class.

Definition 1. Let us denote by MSEc(q̂, q) the MSE between q and the reconstruction (q̂) of q by
the autoencoder CAc (c ∈ {+,−}) and by τ the threshold considered. The probabilities p+(q) and
p−(q) are computed as given in Formulae (4) and (5).

p+(q) = 0.5 +
MSE−(q̂, q)− MSE+(q̂, q)

2 · (MSE−(q̂, q) + MSE+(q̂, q))
(4)

p−(q) = 1 − p+(q). (5)

From Formula (4) we observe that 0 ≤ p+(q) ≤ 1 and that if MSE+(q̂, q) ≤ MSE−(q̂, q),
then pr+(q) ≥ 0.5, meaning that q is classified by AutoNowP as being positive. Much
more, we note that:

• if MSE+(q̂, q) = 0 (and consequently MSE−(q̂, q) �= 0) it follows that p+(q) = 1;
• p+(q) increases as MSE+(q̂, q) decreases;
• if MSE+(q̂, q) > MSE−(q̂, q), then pr+(q) < 0.5, meaning that q is classified by

AutoNowP as being negative.

After the probabilities p+(q) and p−(q) were computed from the training data, the
classification c(q) of q is computed as shown in Formula (6).

c(q) =
{

+ if pr+(q) ≥ 0.5
− otherwise.

(6)

3.3. Testing

After AutoNowP was trained as described in Section 3.2.1, it is evaluated on 33% of
the instances from each data set R+ and R− that were unseen during the training stage.
The classification of a query instance q is made as described in Section 3.2.2.

For evaluating the performance of AutoNowP on a testing data set, the confusion
matrix is computed [29], composed by the number of true positives—TP, true negatives—
TN, false positives—FP, and false negatives—FN. Then, based on the values from the
confusion matrix, evaluation measures used for assessing the performance of supervised
classifiers and weather predictors are employed:

1. Critical success index (CSI) computed as CSI = TP
TP+FN+FP is used for convective

storms nowcasting based on radar data [30].
2. True skill statistic (TSS), TSS = TP·TN−FP·FN

(TP+FN)·(FP+TN)
.

3. Probability of detection (POD), also known as sensitivity or recall, is the true positive
rate (TPRate), POD = TP

TP+FN .
4. Precision for the positive class, also known as positive predictive value (PPV),

PV = TP
TP+FP .

5. Precision for the negative class, also known as negative predictive value (NPV),
NPV = TN

TN+FN .
6. Specificity (Spec), also known as true negative rate (TNRate), Spec = TN

TN+FP .
7. Area Under the ROC Curve (AUC). The AUC measure is recommended in case of

imbalanced data and is computed as the average between the true positive rate and
the true negative rate, AUC = Spec+POD

2 .
8. Area Under the Precision–Recall Curve (AUPRC), computed as the average between

the precision and recall values, AUPRC = Precision+Recall
2 .

All these measures take values in the [0, 1] range, with higher values indicating better
predictors, excepting FAR that should be minimized for a better performance.

40

Mathematics 2021, 9, 1653

A three-fold cross-validation testing methodology is then applied. The value for each
of the performance measures previously described are averaged over the three runs. The
mean values are computed together with their 95% confidence intervals (CI) [31].

4. Data and Experiments

In this section, we answer research question RQ2 by describing the experiments
conducted for evaluating the performance of AutoNowP and analyzing the obtained
experimental results.

4.1. Data Sets

For assessing the performance of AutoNowP, experiments were conducted on real
radar data provided by the Romanian National Meteorological Administration (NMA) and
the Norwegian Meteorological Institute (MET).

4.1.1. NMA Radar Data Set

The NMA radar data set was collected over central Romania by a single polarization
S-band Weather Surveillance Radar—98 Doppler (WSR-98D) located near the village of
Bobohalma. The radar completes a full volume scan every 6 min, gathering data about
the location, intensity and movement direction, and speed of atmospheric cloud systems.
Volume scan data is collected by employing a scan strategy consisting in 9 elevation angles,
the raw data being afterwards processed to compute a large variety of radar products. For
AutoNowP experiments, we used the base Reflectivity product (R) sampled at the lowest
elevation angle (R01), being expressed in decibels relative to the reflectivity factor Z (dBZ).
Using the so-called Z-R relationships, the base reflectivity is used to derive the rainfall
rate, and further, the radar estimated precipitation accumulation over a given area and
time interval.

The radar data set used herein contains the quality controlled (cleaned) values of the
raw R01 product. The cleaning is needed, as during the radar scans, both meteorological
and nonmeteorological targets can be detected. Various clutter sources (e.g., terrain, build-
ings), biological targets (e.g., insects, birds) and external electromagnetic sources (e.g., sun)
can impact the data quality within the volume scan, and although the signal processing
can effectively mitigate the effects of this data contamination, additional processing is
required to identify and remove the residual nonmeteorological echoes. Herein, the quality
control algorithm is applied in a two-way process, by firstly detecting and removing the
contaminated radar data, and secondly tuning the key variables to mitigate the effects
of the first step on good data. The method used to clean and filter the reflectivity data is
based on the three-dimensional structure of the measured data, in terms of computing
horizontal and vertical data quality parameters. The computation algorithm is executed on
radar data projected on a polar grid to not alter the measurements and to remain at the
level of data recording, and it is built considering various key quality issues like ground
clutter echoes and external electromagnetic interferences. First, the radar data is passed
through a noise filter to remove the isolated ground clutter reflectivity bins, and then the
algorithm performs the identification and removal of echoes generated by external signals
and calculates the horizontal texture and the vertical gradient of reflectivity. The outputs
of these steps (i.e., sub-algorithms) are finally used to reconstruct the quality-controlled
reflectivity field.

Within AutoNowP, the NMA radar data was processed by selecting a value of 7
for the diameter d of the neighborhood (introduced in Section 3.1), representing about
7 km on the physical map, and this distance commonly determines small gradients of
the meteorological parameters [30]. The value 7 for d provided the best performance
for AutoNowP.

41

Mathematics 2021, 9, 1653

4.1.2. MET Radar Data Set

The MET radar data set used in our experiments consists of composite reflectivity
values gathered from the MET Norway Thredds Data Server [32].

The reflectivity product, available at [33] was derived from the raw reflectivity values
by considering the best radar scan out of all considered elevations. Thus, it is a composite
product, obtained by applying an interpolation scheme that weights radar volume sources
differently based on their quality flags and various properties that may influence the
measurement. The considered properties include ground or sea clutter, ships or airplanes,
beam blockage, RLAN, sun flare, height above CAPPI level (typically 1000 m msl), range,
and azimuth displacement. The measurements used in our experiments were collected by
the radar at a time resolution of 7.5 min.

The dimension d of the neighborhood data grid was set to 15 for the MET experiment,
since this dimensionality provided the best performance for AutoNowP.

Table 1 describes the data sets used as our case studies. The second column in the
table indicates the radar product Rp of interest. The next three columns contain the number
of instances from the data sets (both “+” and “−”) and the percentage of positive and
negative instances obtained using a threshold of 10 dBZ. The last column illustrates the
entropy of each data set. The entropy is used for measuring the imbalancement of each
data set [34]: lower entropy values indicate a higher degree of imbalancement.

Table 1. Description of the data sets.

Data Set Product of Interest (Rp) # Instances % of “+” Instances % of “−” Instances Entropy

NMA R01 9003688 3.44% 96.56% 0.216

MET Composite reflectivity 6607836 31.97% 68.03% 0.904

From Table 1 we can see that the NMA data set is severely imbalanced: only 3.44% of
the instances belong to the positive class, leading to a negative to positive ratio of about
28:1. Another element that highlights the high degree of data imbalancement is the entropy;
where an entropy value of 1 reflects a perfectly balanced data set, the NMA data set entropy
of 0.216 reflects a data set with low diversity, heavily weighted in favor of one class to the
detriment of the other. The MET data set, on the other hand, showed a higher proportion
of positive samples for this choice of threshold, as reflected by a higher entropy. In this
setting, the negative to positive ratio is approximately 2:1.

The two-dimensional PCA [35] projections of the instances from both NMA and MET
data sets from Figure 4 highlight the difficulty of the classification task. For both data sets,
there is a low degree of separation between the class of negative instances (blue colored)
and the class of positive instances (red colored).

(a) 2D PCA plot for the NMA data set. (b) 2D PCA plot for the MET data set.

Figure 4. 2D PCA visualization of the NMA data set (a) and MET data set (b).

42

Mathematics 2021, 9, 1653

The NMA data sets used in our experiments are publicly available at [36], while the
MET data is publicly available at [37].

4.2. Results

This section presents the experimental results obtained by applying AutoNowP classi-
fier on the data sets described in Section 4.1. For the ConvAEs, the implementation from
the Keras deep learning API [38] using the Tensorflow framework was employed.

The experiments were performed on a workstation laptop, with an Intel i9-10980HK
CPU, 32 GB RAM and Nvidia RTX 2080 Super for GPU acceleration; and on a Google cloud
instance with 12 vCPUs, 64 GB RAM and access to a Nvidia Tesla V100 for GPU acceleration.

The evaluation measures and the testing methodology described in Section 3.3 were
employed. Table 2 depicts the obtained results for both data sets used in our case studies,
for various values of the threshold τ. The 95% confidence intervals (CIs) are used for
the results.

The thresholds we decided to use were chosen considering both computational and
meteorological factors. In the literature, there is no convention on thresholds for R. For
example, Han et al. [9,39] chose to use the 35 dBZ threshold while Tran and Song [40]
studied their prediction performance using the 5, 20 and 40 dBZ thresholds. Thus, the
values 10, 20 and 30 were chosen for τ for the NMA data and 10, 15, 20 for the MET data
set. Since the MET data contains few instances whose values are higher than 30 dBZ,
AutoNowP could not be applied for this threshold. The best values obtained for the
evaluation measures are highlighted for both data sets.

Table 2. Experimental results, using 95% CIs.

Data Set τ CSI TSS POD PPV NPV Spec AUC AUPRC

10
0.615 0.861 0.876 0.674 0.996 0.985 0.931 0.775
± ± ± ± ± ± ± ±

0.018 0.012 0.012 0.017 0.001 0.002 0.006 0.013

20
0.425 0.471 0.474 0.810 0.989 0.997 0.736 0.642

NMA ± ± ± ± ± ± ± ±
0.072 0.091 0.092 0.015 0.001 0.001 0.046 0.039

30
0.151 0.157 0.157 0.812 0.993 1.000 0.579 0.485
± ± ± ± ± ± ± ±

0.046 0.051 0.028 0.031 0.001 0.000 0.014 0.007

10
0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008

15
0.566 0.626 0.675 0.793 0.920 0.951 0.813 0.734

MET ± ± ± ± ± ± ± ±
0.05 0.09 0.12 0.08 0.03 0.03 0.05 0.029

20
0.401 0.500 0.536 0.710 0.947 0.963 0.750 0.623
± ± ± ± ± ± ± ±

0.090 0.223 0.269 0.173 0.026 0.046 0.111 0.048

As shown in Table 2, the values for most of the evaluation measures decrease as the
threshold τ increases. This is normal behavior, as the prediction becomes more difficult
for higher values. The precision values (both for the positive and negative classes—PPV
and NPV) and the true negative rate (Spec) increase for higher thresholds, denoting
that the negative class is easier to predict for high values for τ and the number of false
predictions decreases. However, the number of true positives significantly decreases for
higher thresholds and this is reflected in the other performance metrics that decrease. High

43

Mathematics 2021, 9, 1653

values (around 0.9) were obtained for sensitivity (POD), specificity, and AUC for τ = 10
denoting a good enough performance of AutoNowP. In addition, the small values obtained
for the 95% CI reveal the stability of the model.

5. Discussion

With the goal of better highlighting the performance of AutoNowP, this section dis-
cusses the obtained results and then provides a comparison between AutoNowP and
similar approaches from the nowcasting literature.

5.1. Analysis of AutoNowP performance

As shown in Table 2, AutoNowP succeeds in recognizing the negative class (high
specificity) and detecting the positive class (probability of detection higher than 0.85 for
τ = 10). This is a strength of AutoNowP, the ability to detect severe phenomena well.
However, we observed false predictions, both for the positive and negative classes and
these occur mostly close to the decision boundary. The performance of AutoNowP is
impacted mainly by a large enough amount of false positive predictions, but most of these
errors appear near the edges of radar echoes. In these areas the difference between classes
becomes blurred, as the neighborhood contains some high values, not enough to be similar
enough to the center of the event, but not few enough to be outside the event. These kinds
of neighborhoods are close to both classes, the dissimilarity between them and either class
is small. For these kinds of instances, AutoNowP has the most prediction errors. In order to
better understand the areas where these instances appear, we have created a visualization
in Figure 5. This figure shows the actual R01 values read by the radar in two consecutive
time steps, color-coded by the dBZ value at each location. In the figure, there are also
white and black regions, which represent the regions where most of the errors made by
AutoNowP appear. The aforementioned regions were found by studying the erroneous
predictions of the model and discovering the common elements of the neighborhoods that
are problematic, both for false negative errors and false positive errors. Then, in Figure 5,
we changed a pixel to white or black if its neighborhood is problematic, if it belongs to the
false negative problems or, respectively, false positive problems. In short, in the image are
represented with black points the locations where the model is highly likely to erroneously
predict them as positive and, similarly, with white points where it tends to wrongly predict
them as negative. The black and white areas in the image account for more than 98% of
AutoNowP’s errors.

(a) Errors areas analysis of R01 at time t. (b) Errors areas analysis of R01 at time t + 1.

Figure 5. Visualization of AutoNowP errors areas analysis for two consecutive time steps. In white are the areas where the
model usually predicts false negatives and in black are areas where the model usually predicts false positives.

44

Mathematics 2021, 9, 1653

In Figure 5, it can be observed that most errors appear either at the edges of meteo-
rological events, mostly in case of false positives, or in areas where there are few positive
values, in case of false negatives. In case of false positives (in black), the problem areas
show a tendency of the model to smooth the predictions out, i.e., to create shapes that are
much more uniform. This is not an effect typical for AutoNowP; it is a general problem
affecting radar reflectivity prediction models (e.g., the RadRAR model [11]). In Figure 5, a
region containing false positives is exemplified in the first highlighted region (the bigger
one, around the pixel at (75,50)); it can be seen that the black region surrounds the actual
meteorological event, smoothing it out, creating much more homogenous shapes. This
tendency is kept from one time step to another, the smoothed shape following closely the
real shape.

In case of false negatives (in white), the problems appear generally in areas where
there are few positive values, i.e., the neighborhoods of locations contain many zero or close
to zero values and few values higher than the threshold. For these kinds of neighborhoods,
it is hard to differentiate between classes as they appear both at the start of meteorological
events and at the end of meteorological events. The beginning of meteorological events
is especially hard to predict, as there is no indication if and where a meteorological event
will form; for this reason, the model generally predicts locations with these kinds of
neighborhoods as being negative, introducing some false negative errors. In Figure 5, an
example area containing a false negative region can be observed in the second highlight
(the small one, around the pixel (125,50)). In that highlight, in the first time step (left side)
it can be observed that the meteorological event is small, while in the next time step (right
side), the region of the meteorological event has more than doubled in size. Since in the
first time step the event region is so small, the model has problems predicting the relatively
big changes that will happen until the next time step, thus introducing false negative errors,
visualized as white regions.

Analyzing the false negative predictions of AutoNowP, we also noticed (in both NMA
and MET experiments) situations as the one depicted in Figure 6. The figure presents
the composite reflectivity for two consecutive radar acquisitions from MET data. The red
rectangles highlight a region that illustrates a sample case where AutoNowP provides
false predictions.

Figure 6. Actual composite reflectivity values on two consecutive acquisitions (t—(left) side image— and t + 1—(right)
side image) from MET data.

From Figure 6 one observes that at time t (left side image) there are no values in
the highlighted region for the composite reflectivity, but at t + 1 (the next data received
from the radar—right side image) high values for composite reflectivity are suddenly
detected. Some of the data points inside the rectangle should be classified as positive
instances (higher values are displayed in red), but the model fails to predict the correct
class (i.e., the positive one) as the input for AutoNowP (the data at t) contained mostly
zero-valued data. While these situations are relatively infrequent in real life (the values

45

Mathematics 2021, 9, 1653

are usually increasing slowly between consecutive time stamps), they still contribute to
a lower prediction accuracy. However, even if AutoNowP is unable to detect the positive
instances at time step t + 1, in the next step, at time t + 2, the model will correctly classify
the data points. This is not a limitation of AutoNowP, as such unexpected events cannot
be detected by a learning model that was trained to predict time t + 1 based on time t. A
possible solution would be to include more previous time steps in the prediction (t − 1,
t − 2, etc).

In order to assess how the cleaning of the raw radar data impacts the predictive
performance of our model, AutoNowP was trained on the uncleaned NMA data as well. A
threshold τ = 10 and the methodology introduced in Section 3 were applied for building
the AutoNowP classification model on the uncleaned data. Table 3 depicts the obtained
results. One observes a significant performance improvement on the cleaned data. For a spe-
cific evaluation measure P, the performance improvement is computed as Pcleaned−Puncleaned

Puncleaned
being shown in the last row of the table.

Table 3. Experimental results obtained applying AutoNowP on the uncleaned NMA data and the
improvement achieved on the cleaned data, for all performance measures.

CSI TSS POD PPV NPV Spec AUC AUPRC

Value 0.364 0.439 0.463 0.641 0.953 0.976 0.719 0.552
± ± ± ± ± ± ± ±

95% CI 0.035 0.072 0.084 0.050 0.003 0.012 0.036 0.018
Improvement 69% 96% 89% 5% 4% 1% 29% 40%

Table 3 highlights an average improvement of 42% on the performance measures
when using the cleaned data. The highest improvements are observed on TSS (96%), POD
(89%) and on CSI (69%), while the lowest improvements are on PPV, NPV and Spec (less
than 5%). These variations in the measures occurs because the uncleaned data introduces
many false negative errors while marginally introducing true positive errors, thus for
measures reliant on false negatives, such as POD, the difference is great while for measures
reliant on false positives, such as Spec, the difference is small. We can speculate why this
happens by analyzing uncleaned data and how it might affect the model: as explained in
Section 4.1, the cleaning of the NMA data removes noise and clutter introduced by the
interference of nonmeteorological targets during the scan. Effectively, this means that in the
uncleaned data there are many locations where there are wrong values, higher than zero
instead of zero. Because of this, during training, the model receives many locations labeled
as negative where the neighborhood still has a large number of high-valued locations (the
erroneous values), thus leading the model to make a false negative prediction (i.e., it will
predict “−” even where there were actual meteorological events with a similar pattern as
the erroneous training instance).

5.2. Comparison to Related Work

As shown in Section 2, most of the approaches introduced in the literature are for
precipitation nowcasting. The existing methods based on radar reflectivity nowcasting
were applied to radar data collected from various geographical regions, using various
parameters settings, testing methodologies and various thresholds for the radar reflectivity
values. The analysis of the recent literature highlighted CSI values ranging from 0.40 [20]
to 0.647 [17]; POD values ranging from 0.46 [20] to 0.71 [21]; F-score values ranging
from 0.58 [15] to 0.786 [15]. The performance of AutoNowP on both data sets used in
our experiments (Table 2) compares favorably with the literature results, considering the
magnitude of the evaluation measures for a threshold of 10 (CSI higher than 0.61, POD
higher than 0.87, F-score higher than 0.8).

46

Mathematics 2021, 9, 1653

As the literature approaches for nowcasting do not use the same data model as our
approach, an exact comparison with these methods cannot be made. For a more exact
comparison, we decided to apply four well-known machine learning classifiers on the data
sets described in Section 4.1, using τ = 10 and following the testing methodology used for
evaluating the performance of AutoNowP (the performance measures were computed as
shown in Section 3.3 and the testing was repeated 3 times for each training–validation split):
logistic regression (LR), linear support vector classifier (linear SVC), decison trees (DT), and
nearest centroid classification (NCC). We have selected these classifiers as baseline methods
so as to cover a diverse set of methods—linear classifiers, rule-based, and distance-based.

These classifiers were implemented in Python using the scikit-learn [41] machine
learning library. The comparative results are depicted in Table 4, with a 95% CIs for the
values averaged over the three runs of the classifiers. The best values obtained for each
performance metric are highlighted.

Table 4. Comparative results between AutoNowP and other classifiers. 95% CIs are used for
the results.

Data set Model CSI TSS POD PPV NPV Spec AUC AUPRC

NMA

AutoNowP
0.615 0.861 0.876 0.674 0.996 0.985 0.931 0.775
± ± ± ± ± ± ± ±

0.018 0.012 0.012 0.017 0.001 0.002 0.006 0.013

LR
0.672 0.752 0.757 0.857 0.992 0.996 0.876 0.807
± ± ± ± ± ± ± ±

0.012 0.013 0.013 0.005 0.001 0.000 0.007 0.008

Linear SVC
0.685 0.778 0.783 0.845 0.992 0.995 0.889 0.814
± ± ± ± ± ± ± ±

0.012 0.007 0.007 0.015 0.000 0.000 0.003 0.009

DT
0.574 0.725 0.734 0.724 0.991 0.990 0.862 0.729
± ± ± ± ± ± ± ±

0.007 0.004 0.006 0.012 0.001 0.002 0.002 0.006

NCC
0.571 0.793 0.807 0.662 0.993 0.986 0.896 0.735
± ± ± ± ± ± ± ±

0.006 0.013 0.013 0.015 0.001 0.001 0.006 0.003

MET

AutoNowP
0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008

LR
0.760 0.796 0.853 0.875 0.932 0.943 0.898 0.864
± ± ± ± ± ± ± ±

0.006 0.002 0.001 0.007 0.003 0.002 0.001 0.004

Linear SVC
0.761 0.798 0.858 0.870 0.934 0.940 0.899 0.864
± ± ± ± ± ± ± ±

0.006 0.002 0.001 0.007 0.003 0.003 0.001 0.004

DT
0.670 0.710 0.804 0.801 0.908 0.906 0.855 0.803
± ± ± ± ± ± ± ±

0.010 0.004 0.005 0.009 0.003 0.002 0.002 0.007

NCC
0.681 0.728 0.831 0.791 0.919 0.897 0.864 0.811
± ± ± ± ± ± ± ±

0.009 0.005 0.009 0.007 0.001 0.006 0.003 0.007

The comparative results from Table 4 reveal that AutoNowP obtained the best results
in terms of POD and NPV for both data sets. In addition, for the NMA data set, our
classifier provided the highest TSS and AUC values. Figures 7 and 8 illustrate the ROC
curves for the classifiers from Table 4 on NMA and MET data sets.

47

Mathematics 2021, 9, 1653

Figure 7. ROC curves for the classifiers from Table 4 on NMA data set.

Figure 8. ROC curves for the classifiers from Table 4 on MET data set.

Table 5 summarizes the results of the comparison between AutoNowP and the classi-
fiers from Table 4. The table indicates, for both the NMA and MET data sets, the number
of comparisons won (first row) and lost (second row) by AutoNowP considering all the
evaluation measures and the classifiers from Table 4. More specifically, a comparison
between our approach and a classifier c, considering a specific performance measure p,
is won by AutoNowP if the value for p provided by AutoNowP is greater than the one
provided by the classifier c. Similarly, the comparison is lost by AutoNowP if the value for
p provided by AutoNowP is lower than the one provided by the classifier c.

48

Mathematics 2021, 9, 1653

Table 5. Summary of the comparison between AutoNowP and existing classifiers.

NMA Data MET Data Total

WIN 21 16 37
LOSE 11 16 27

% WIN 66% 50% 58%

The results from Table 5 highlight that AutoNowP outperforms similar classifiers in
66% of the cases for the NMA data set and in 50% of the cases for the MET data set out.
Overall, out of 64 comparisons, our AutoNowP approach wins in 37 cases, i.e in 58% of
the cases.

One of the main current limitations of AutoNowP is the training data: in order for the
model to have a high performance it needs to be trained using large amounts of relevant
data. While there are large amounts of historical meteorological data, finding a cohesive
set of relevant, high-quality data is not trivial. Due to the large training data set needed,
the training process of AutoNowP tends to take quite some time, which may hamper the
practicality of the model. The data model might be another drawback of the AutoNowP, as
the way it is currently designed, it might lead to the confounding of the 2 classes in some
special cases, as presented in Section 5.1. Nevertheless, these limitations can be addressed,
which we plan to do in the future: the long training time can be improved by parallelizing
the training process, while the data model can be improved, for example by extending it to
contain more than one previous time step.

6. Conclusions and Future Work

The paper introduced AutoNowP, a new binary classification model for precipitation
nowcasting based on radar reflectivity. AutoNowP used two convolutional autoencoders
that are trained on radar data collected on both stratiform and convective weather condi-
tions for learning to predict if the value for the radar reflectivity on a specific location will
be above or below a certain threshold. AutoNowP was introduced in this paper as a proof
a concept that autoencoders are helpful in distinguishing between convective and strati-
form rainfall. Experiments performed on radar data provided by the Romanian National
Meteorological Administration and the Norwegian Meteorological Institute highlighted
that the ConvAEs used in AutoNowP are able to learn structural characteristics from radar
data and thus the lower-dimensional radar data encoded in the ConvAEs latent space is
consistent with the meteorological evidence.

The generality of AutoNowP classifier has to be noted. Even if it was introduced and
evaluated in the context of precipitation nowcasting, it may be extended and applied for
other meteorological data sources and binary classification tasks.

AutoNowP is one step toward the end goal of our research: to create machine-learning-
based prediction models to be integrated in existing national weather nowcasting systems.
The integration of these models aims to improve the Early Warning System frameworks,
as the predictions create the possibility of issuing more accurate early warnings. Better
early warnings can lead to avoidance of loss and damage due to heavy precipitations, for
example in events such as flash floods in densely populated areas [42].

Future work will be conducted in order to extend the data sets used in the experimental
evaluation. In addition, we aim to apply AutoNowP to other meteorological data sources
(such as satellite data) and thus using the model for other nowcasting scenarios.

49

Mathematics 2021, 9, 1653

Author Contributions: Conceptualization, G.C., A.-I.A., A.M. (Andrei Mihai) and I.-G.C.; method-
ology, G.C., A.-I.A., A.M. (Andrei Mihai) and I.-G.C.; software, A.-I.A., A.M. (Andrei Mihai) and
I.-G.C.; validation, G.C., A.-I.A., A.M. (Andrei Mihai) and I.-G.C.; formal analysis, G.C., A.-I.A., A.M.
(Andrei Mihai) and I.-G.C.; investigation, G.C., A.-I.A., A.M. (Andrei Mihai) and I.-G.C.; resources,
G.C., A.-I.A., A.M. (Andrei Mihai), I.-G.C., S.B. and A.M. (Abdelkader Mezghani); data curation, S.B.;
writing—original draft preparation, G.C.; writing—review and editing, G.C., A.-I.A., A.M. (Andrei
Mihai), S.B. and A.M. (Abdelkader Mezghani); visualization, G.C., A.-I.A., A.M. (Andrei Mihai) and
I.-G.C.; funding acquisition, G.C., A.-I.A., A.M. (Andrei Mihai), I.-G.C., S.B. and A.M. (Abdelkader
Mezghani). All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the NO Grants 2014–2021,
under Project contract No. 26/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The NMA data sets used in our experiments are publicly available
at [36], while the MET data is publicly available at [37].

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their useful suggestions and comments that helped to improve the paper and the presentation. The
research leading to these results has received funding from the NO Grants 2014–2021, under Project
contract No. 26/2020.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A Deep Learning-Based Methodology for Precipitation Nowcasting With Radar. Earth Space
Sci. 2020, 7, e2019EA000812. [CrossRef]

2. Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 2018, 9, 1–3. [CrossRef]
3. Arnell, N.; Gosling, S. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401.

[CrossRef]
4. Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 2009, 24, 467–471. [CrossRef] [PubMed]
5. Dixon, M.; Wiener, G. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology.

J. Atmos. Ocean. Technol. 1993, 10, 785–797. [CrossRef]
6. Johnson, J.T.; MacKeen, P.L.; Witt, A.; Mitchell, E.D.W.; Stumpf, G.J.; Eilts, M.D.; Thomas, K.W. The Storm Cell Identification and

Tracking Algorithm: An Enhanced WSR-88D Algorithm. Weather Forecast. 1998, 13, 263–276. [CrossRef]
7. Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C. The Integrated Nowcasting through Comprehensive

Analysis (INCA) System and Its Validation over the Eastern Alpine Region. Weather Forecast. 2011, 26, 166–183. [CrossRef]
8. Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.; onvlee hooiMeyer, J.; Joe, P.; Barker, D.; Li, P.W.; Golding, B.; et al. Use

of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426.
[CrossRef]

9. Han, L.; Sun, J.; Zhang, W. Convolutional Neural Network for Convective Storm Nowcasting Using 3D Doppler Weather Radar
Data. arXiv 2019, arXiv:1911.06185.

10. Tan, C.; Feng, X.; Long, J.; Geng, L. FORECAST-CLSTM: A New Convolutional LSTM Network for Cloudage Nowcasting. In
Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, Taiwan, 10–12 December 2018;
pp. 1–4.

11. Czibula, G.; Mihai, A.; Czibula, I.G. RadRAR: A relational association rule mining approach for nowcasting based on predicting
radar products’ values. Procedia Comput. Sci. 2020, 176, 300–309. [CrossRef]

12. Hao, L.; Kim, J.; Kwon, S.; Ha, I.D. Deep Learning-Based Survival Analysis for High-Dimensional Survival Data. Mathematics
2021, 9, 1244. [CrossRef]

13. Mousavi, S.M.; Ghasemi, M.; Dehghan Manshadi, M.; Mosavi, A. Deep Learning for Wave Energy Converter Modeling Using
Long Short-Term Memory. Mathematics 2021, 9, 871. [CrossRef]

14. Castorena, C.M.; Abundez, I.M.; Alejo, R.; Granda-Gutiérrez, E.E.; Rendón, E.; Villegas, O. Deep Neural Network for Gender-
Based Violence Detection on Twitter Messages. Mathematics 2021, 9, 807. [CrossRef]

15. Sønderby, C.K.; Espeholt, L.; Heek, J.; Dehghani, M.; Oliver, A.; Salimans, T.; Hickey, J.; Agrawal, S.; Kalchbrenner, N. MetNet: A
Neural Weather Model for Precipitation Forecasting. arXiv 2020, arXiv:2003.12140.

16. Alain, G.; Bengio, Y. What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 2014,
15, 3563–3593.

50

Mathematics 2021, 9, 1653

17. Trebing, K.; Stanczyk, T.; Mehrkanoon, S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture.
Pattern Recognit. Lett. 2021, 145, 178–186. [CrossRef]

18. Tekin, S.F.; Karaahmetoglu, O.; Ilhan, F.; Balaban, I.; Kozat, S.S. Spatio-temporal Weather Forecasting and Attention Mechanism
on Convolutional LSTMs. arXiv 2021, arXiv:2102.00696.

19. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.c. Convolutional LSTM Network: A ML Approach for Precipitation
Nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 7–12 December 2015; MIT Press: Cambridge, UK, 2015; Volume 1, pp. 802–810.

20. Heye, A.; Venkatesan, K.; Cain, J. Precipitation Nowcasting: Leveraging Deep Convolutional Recurrent Neural Networks. In
Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, NY, USA, 4–9 December 2017; pp.1–8.

21. Tian, L.; Li, X.; Ye, Y.; Xie, P.; Li, Y. A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting. IEEE
Geosci. Remote Sens. Lett. 2020, 17, 601–605. [CrossRef]

22. Han, L.; Sun, J.; Zhang, W. Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar
Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1487–1495. [CrossRef]

23. Franch, G.; Nerini, D.; Pendesini, M.; Coviello, L.; Jurman, G.; Furlanello, C. Precipitation Nowcasting with Orographic Enhanced
Stacked Generalization: Improving Deep Learning Predictions on Extreme Events. Atmosphere 2020, 11, 267. [CrossRef]

24. Jeong, C.H.; Kim, W.; Joo, W.; Jang, D.; Yi, M.Y. Enhancing the Encoding-Forecasting Model for Precipitation Nowcasting by
Putting High Emphasis on the Latest Data of the Time Step. Atmosphere 2021, 12, 261. [CrossRef]

25. Yo, T.S.; Su, S.H.; Chu, J.L.; Chang, C.W.; Kuo, H.C. A Deep Learning Approach to Radar-Based QPE. Earth Space Sci. 2021,
8, e2020EA001340. [CrossRef]

26. Mihai, A.; Czibula, G.; Mihulet, E. Analyzing Meteorological Data Using Unsupervised Learning Techniques. In Proceedings
of the ICCP 2019: IEEE 15th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca,
Romania, 5–7 September 2019; IEEE Computer Society: Washington, DC, USA, 2019; pp. 529–536.

27. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. In Proceedings of the 31st Conference
on Neural Information Processing Systems, Long Beach, NY, USA, 4–9 December 2017; pp. 972–981.

28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
29. Gu, Q.; Zhu, L.; Cai, Z. Evaluation Measures of the Classification Performance of Imbalanced Data Sets. In Computational

Intelligence and Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 461–471.
30. Czibula, G.; Mihai, A.; Mihuleţ, E. NowDeepN: An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar

Products’ Values Prediction. Appl. Sci. 2021, 11, 125. [CrossRef]
31. Brown, L.; Cat, T.; DasGupta, A. Interval Estimation for a proportion. Stat. Sci. 2001, 16, 101–133. [CrossRef]
32. MET Norway Thredds Data Server. Available online: https://thredds.met.no/thredds/catalog.html (accessed on 7 May 2021).
33. Composite Reflectivity Product—MET Norway Thredds Data Server. Available online: https://thredds.met.no/thredds/catalog/

remotesensing/reflectivity-nordic/catalog.html (accessed on 15 May 2021).
34. Sekerka, R.F. 15—Entropy and Information Theory. In Thermal Physics; Sekerka, R.F., Ed.; Elsevier: Amsterdam, The Netherlands,

2015; pp. 247–256.
35. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.

Sci. 2016, 374, 20150202. [CrossRef]
36. NMA Data Set. Available online: http://www.cs.ubbcluj.ro/~mihai.andrei/datasets/autonowp/ (accessed on 15 May 2021).
37. MET Data Set. Available online: https://thredds.met.no/thredds/catalog/remotesensing/reflectivity-nordic/2019/05/

catalog.html?dataset=remotesensing/reflectivity-nordic/2019/05/yrwms-nordic.mos.pcappi-0-dbz.noclass-clfilter-novpr-
clcorr-block.laea-yrwms-1000.20190522.nc (accessed on 15 May 2021).

38. Keras. The Python Deep Learning Library. 2018. Available online: https://keras.io/ (accessed on 15 May 2021).
39. Han, L.; Sun, J.; Zhang, W.; Xiu, Y.; Feng, H.; Lin, Y. A machine learning nowcasting method based on real-time reanalysis data.

J. Geophys. Res. Atmos. 2017, 122, 4038–4051. [CrossRef]
40. Tran, Q.K.; Song, S.K. Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training

Deep Neural Networks. Atmosphere 2019, 10, 244. [CrossRef]
41. Scikit-Learn. Machine Learning in Python. 2021. Available online: http://scikit-learn.org/stable/ (accessed on 1 May 2021).
42. Mel, R.A.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Optimal floodgate operation for river flood management: The case study of

Padova (Italy). J. Hydrol. Reg. Stud. 2020, 30, 100702. [CrossRef]

51

mathematics

Article

Statistical Machine Learning in Model Predictive Control of
Nonlinear Processes

Zhe Wu 1, David Rincon 1, Quanquan Gu 2 and Panagiotis D. Christofides 1,3,*

Citation: Wu, Z.; Rincon, D.; Gu, Q.;

Christofides, P.D. Statistical Machine

Learning in Model Predictive Control

of Nonlinear Processes. Mathematics

2021, 9, 1912. https://doi.org/

10.3390/math9161912

Academic Editor: Freddy Gabbay

Received: 29 July 2021

Accepted: 9 August 2021

Published: 11 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical and Biomolecular Engineering, University of California, Los Angeles,
CA 90095-1592, USA; wuzhe@g.ucla.edu (Z.W.); fdrinconc@gmail.com (D.R.)

2 Department of Computer Science, University of California, Los Angeles, CA 90095-1592, USA;
qgu@cs.ucla.edu

3 Department of Electrical and Computer Engineering, University of California,
Los Angeles, CA 90095-1592, USA

* Correspondence: pdc@seas.ucla.edu

Abstract: Recurrent neural networks (RNNs) have been widely used to model nonlinear dynamic sys-
tems using time-series data. While the training error of neural networks can be rendered sufficiently
small in many cases, there is a lack of a general framework to guide construction and determine
the generalization accuracy of RNN models to be used in model predictive control systems. In this
work, we employ statistical machine learning theory to develop a methodological framework of
generalization error bounds for RNNs. The RNN models are then utilized to predict state evolution in
model predictive controllers (MPC), under which closed-loop stability is established in a probabilistic
manner. A nonlinear chemical process example is used to investigate the impact of training sample
size, RNN depth, width, and input time length on the generalization error, along with the analyses of
probabilistic closed-loop stability through the closed-loop simulations under Lyapunov-based MPC.

Keywords: generalization error; recurrent neural networks; machine learning; model predictive
control; nonlinear systems

1. Introduction

Modeling large-scale, complex nonlinear processes has been a long-standing research
problem in process systems engineering. The traditional approaches to modeling nonlin-
ear processes include data-driven modeling approach with parameters identified from
industrial/simulation data [1,2], and first-principles modeling approach based on a funda-
mental understanding of the underlying physico-chemical phenomena. While traditional
first-principles modeling approach has been used extensively in monitoring, control and
optimization of chemical processes, it can be time-demanding and inaccurate to model
complex nonlinear processes using first-principle modeling tools. Machine learning meth-
ods have been increasingly adopted to model complex nonlinear systems due to their
ability to model a rich set of nonlinear functions and handle efficiently with big datasets
from processes [3–10]. Among many machine learning modeling techniques, recurrent
neural network (RNN) is widely used to model nonlinear dynamic systems using time-
series data [11–13]. While the history of machine learning methods in chemical process
control can be traced back to 1990s [14–18], machine learning has become popular again
this decade due to a number of reasons such as cheaper computation (mature and effi-
cient libraries/hardware), availability of large datasets, and advanced learning algorithms.
Designing MPC systems that utilize machine learning models with well-characterized ac-
curacy is a new frontier in control systems that will impact the next generation of industrial
control systems.

Despite the success of machine learning methods in modeling nonlinear chemical
processes in the context of MPC, there remain fundamental challenges that limit the

Mathematics 2021, 9, 1912. https://doi.org/10.3390/math9161912 https://www.mdpi.com/journal/mathematics

53

Mathematics 2021, 9, 1912

implementation of machine-learning-based MPC to real chemical processes. One important
challenge is to characterize the generalization ability on unseen data for machine learning
models trained using finite training samples. Furthermore, a theoretical analysis of closed-
loop stability for MPC using machine learning models needs to be developed via machine
learning and control theory. Typically, theoretical developments on machine-learning-
based MPC derived closed-loop stability properties based on the assumption of bounded
modeling errors. For example, in [9], a Lyapunov-based MPC scheme using RNN models
as the prediction model has been developed with guaranteed closed-loop stability by
assuming that the RNN models are able to obtain a sufficiently small and bounded testing
error. Similarly, a neural Lyapunov MPC that trains a stabilizing nonlinear MPC based
on surrogate model and neural-network-based terminal cost was proposed in [19] with
stability properties derived by assuming the boundedness of modeling error. Additionally,
in [20], a nonparametric machine learning model is implemented together with MPC
in which input-to-state stability is evaluated. In [21], a learning-based MPC targeting
deterministic linear models is proposed in which safety, stability, and robustness are
proved. However, the fundamental question regarding the generalization accuracy of
machine learning models in MPC has not been addressed.

Probably approximately correct (PAC) learning theory is a framework that mathemati-
cally analyze the generalization ability of machine learning models [22]. Specifically, in
PAC learning, given a set of training data, the learner is supposed to choose the optimal
hypothesis (i.e., machine learning model) that yields a low generalization error with high
probability from a certain class of hypotheses. Therefore, PAC learning theory provides a
useful tool that demonstrates under what conditions a learning algorithm will probably
output an approximately correct hypothesis. For example, in [23], PAC learning theory
was used to study the learnability of compression learning algorithm for the optimization
problem of stochastic MPC using a finite number of realizations of the uncertainty. In [24],
PAC learning was used to analyze the generalization performance of a convex piecewise
linear classifier that classifies the thermal comfort in a HVAC system. However, to the
best of our knowledge, the use of statistical machine learning theory in analyzing stability
properties of machine learning models in MPC, and guiding machine learning model
structure and training data collection have not been fully explored.

Many recent works have been developed characterizing learnability of neural net-
works in terms of sample complexity and generalization error [25–32]. Generalization
error bound is a common methodology in statistical machine learning for evaluating the
predictive performance of machine learning algorithms [33]. This bound depends on a
number of factors such as the number of data samples, the number of layers and neurons,
bounds of weight matrices, initialization method, among others. For example, in [29], a
generalization error bound was developed for a family of RNN models including vanilla
RNNs, long short term memory and minimal gated unit. The generalization error bound
was established for multiclass classification problems, and was dependent on the total
number of network parameters and the spectral norms of the weight matrices. In [27], a
sample complexity bound that was fully independent of network depth and width under
some assumptions was developed for feedforward neural networks. In [34], an expected
risk bound was developed for RNNs that model single-output nonlinear dynamic systems.
However, at this stage, generalization error bounds for RNNs that model multiple-input
and multiple-output (MIMO) nonlinear dynamic systems using time-series data have not
been studied.

Motivated by the above, in this work, we develop the methodological framework
of generalization error bounds from machine learning theory for the development and
verification of RNN models with specific theoretical accuracy guarantees and integrate
these models into model predictive control system design for nonlinear chemical processes.
Specifically, in Section 2, the class of nonlinear systems, the formulation of RNNs, along
with some general assumptions on system stabilizability and RNN development are pre-
sented. In Section 3, preliminaries including some important definitions and lemmas are

54

Mathematics 2021, 9, 1912

first presented, followed by the development of a probabilistic generalization error bound
for RNN models accounting for the impact of training data size and the number of neurons
and layers on accuracy and guiding network structure selection and training. In Section 4,
the RNN models are incorporated in the MPC formulation, under which probabilistic
closed-loop stability is derived based on the RNN generalization error bound. Finally,
in Section 5, a chemical reactor example is used to demonstrate the impact of training sam-
ple size, RNN depth and width, input time length on its generalization error. Additionally,
closed-loop simulations are carried out to analyze the probabilistic closed-loop stability
and performance.

2. Preliminaries

2.1. Notation

The Frobenius norm of A is denoted by ‖A‖F. The Euclidean norm of a vector is
denoted by the operator |·| and the weighted Euclidean norm of a vector is denoted by the
operator |·|Q where Q is a positive definite matrix. R+ denotes nonnegative real numbers.
xT denotes the transpose of x. The notation L f V(x) denotes the standard Lie derivative

L f V(x) := ∂V(x)
∂x f (x). Set subtraction is denoted by "\", i.e., A\B := {x ∈ Rn | x ∈

A, x /∈ B}. A function f (·) is of class C1 if it is continuously differentiable. A continuous
function α : [0, a) → [0, ∞) belongs to class K if it is strictly increasing and is zero only
when evaluated at zero. A function f : Rn → Rm is said to be L-Lipschitz, L ≥ 0, if
| f (a)− f (b)| ≤ L|a − b| for all a, b ∈ Rn. P(A) denotes the probability that event A will
occur. E[X] denotes the expected value of a random variable X.

2.2. Class of Systems

The class of continuous-time nonlinear systems considered is described by the follow-
ing state-space form:

ẋ = F(x, u) := f (x) + g(x)u, x(t0) = x0 (1)

where x ∈ Rn and u ∈ Rk are the sate vector, and the manipulated input vector. The
control action is constrained by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rk, where umin and umax
represent the minimum and the maximum value vectors of inputs allowed, respectively.
f (·) and g(·) are sufficiently smooth vector and matrix functions of dimensions n × 1, and
n × k, respectively. Without loss of generality, the initial time t0 is taken to be zero (t0 = 0),
and it is assumed that f (0) = 0, and thus, the origin is a steady-state of the system of
Equation (1).

We assume the system of Equation (1) is stabilizable in the sense that there exists a
stabilizing controller u = Φ(x) ∈ U that renders the origin exponentially stable. The stabi-
lizability assumption implies that there exists a C1 control Lyapunov function V(x) such
that for all x in an open neighborhood D around the origin, the following inequalities hold:

c1|x|2 ≤ V(x) ≤ c2|x|2, (2)

∂V(x)
∂x

F(x, Φ(x)) ≤ −c3|x|2, (3)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ c4|x| (4)

where c1, c2, c3 and c4 are positive constants. Additionally, the Lipschitz property of F(x, u)
and the boundedness of u implies there exist positive constants MF, Lx, L

′
x such that the

following inequalities hold for all x, x′ ∈ D and u ∈ U:

55

Mathematics 2021, 9, 1912

|F(x, u)| ≤ MF (5)

|F(x, u)− F(x′, u)| ≤ Lx|x − x′| (6)∣∣∣∣∂V(x)
∂x

F(x, u)− ∂V(x′)
∂x

F(x′, u)
∣∣∣∣ ≤ L

′
x|x − x′| (7)

Following the data generation method in [9], open-loop simulations of the nonlinear
system of Equation (1) are first conducted to generate a large dataset that captures the
system dynamics for x ∈ Ωρ and u ∈ U, where Ωρ := {x ∈ Rn | V(x) ≤ ρ}, ρ > 0,
is a compact set within which the system stability is guaranteed using the controller
u = Φ(x) ∈ U. Specifically, we sweep over all the values that (x, u) can take by running
extensive open-loop simulations of the system of Equation (1) under various x0 ∈ Ωρ and
inputs u to generate a large number of dynamic trajectories. The open-loop simulation
of the continuous system of Equation (1) under a sequence of inputs u ∈ U is carried out
in a sample-and-hold fashion (i.e., the inputs are fed into the system of Equation (1) as
a piecewise constant function, u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk + Δ, and Δ
is the sampling period). The nonlinear system of Equation (1) is integrated via explicit
Euler method with a sufficiently small integration time step hc < Δ. Using the open-loop
simulation data, recurrent neural network (RNN) models are developed to predict future
states for (at least) one sampling period based on the current state measurements, and the
manipulated inputs that will be applied for the next sampling period. In other words, the
RNN model is developed to predict x(t), ∀t ∈ [tk, tk+1) based on the measurements x(tk)
and the inputs u ∈ [tk, tk+1). Finally, the time-series dataset is partitioned into three subsets
for the purposes of training, validation and testing.

2.3. Recurrent Neural Network Model

Consider an RNN model that approximates the nonlinear dynamics of the system of
Equation (1) with m sequences of T-time-length data points (xi,t, yi,t) where xi,t ∈ Rdx is
the RNN input, and yi,t ∈ Rdy is the RNN output, i = 1, ..., m and t = 1, ..., T (Figure 1).
It should be noted that the RNN inputs and outputs do not necessarily represent the
nonlinear system inputs and states/outputs in Equation (1). Therefore, to differentiate the
notations for RNN inputs/outputs from those for the nonlinear system of Equation (1),
all the vectors for RNN models are written in boldface. Additionally, to simplify the
discussion, the RNN model of Equations (8) and (9) is developed to predict states over
one sampling period with total time steps T = Δ

hc
(i.e., the RNN model is to predict future

states for all the integration time step hc within one sampling period Δ). As a result, the
RNN input xi,t consists of the current state measurements and manipulated inputs that will
be applied over t = 1, ..., T, and the RNN output yi,t consists of the predicted states over
t = 1, ..., T. Note that xi,t remains unchanged over t = 1, ..., T due to the sample-and-hold
implementation of manipulated inputs.

The dataset is developed consisting of m data sequences drawn independently from
some underlying distribution over Rdx×T × Rdy×T . In this work, we consider a one-hidden-
layer RNN with hidden states hi ∈ Rdh computed as follows:

hi,t = σh(Uhi,t−1 + Wxi,t) (8)

where σh is the element-wise nonlinear activation function (e.g., ReLU). U ∈ Rdh×dh

and W ∈ Rdh×dx are weight matrices connected to the hidden states and input vector,
respectively. The output layer yi,t is computed as follows:

yi,t = σy(Vhi,t) (9)

where V ∈ Rdy×dh is the weight matrix, and σy is the element-wise activation function in
the output layer (typically linear unit for regression problems).

56

Mathematics 2021, 9, 1912

Figure 1. Recurrent neural network structure.

We consider the loss function L(y, ȳ) which calculates the squared difference between
the true value ȳ and the predicted value y (i.e., L2 loss). Without loss of generality, we have
the following assumptions on the RNN model and dataset.

Assumption 1. The RNN inputs are bounded, i.e., |xi,t| ≤ BX, for all i = 1, ..., m and t = 1, ..., T.

Assumption 2. The Frobenius norms of all the weight matrices are bounded as follows:

‖U‖F ≤ BU,F, ‖V‖F ≤ BV,F, ‖W‖F ≤ BW,F (10)

Assumption 3. Training, validation, and testing datasets are drawn from the same distribution.

Assumption 4. The nonlinear activation function σh is 1-Lipschitz continuous, and is positive-
homogeneous, i.e., σh(αz) = ασh(z) for all α ≥ 0 and z ∈ R.

Remark 1. All the assumptions made are standard in machine learning theory, and can be presented
in system-theoretic language as follows. Assumption 1 assumes that the RNN inputs are bounded,
which is consistent with the fact that the process states x and inputs u are bounded by x ∈ Ωρ

and u ∈ U. Assumption 2 requires the RNN weight matrices to be bounded, which implies that
only a finite class of neural network hypotheses are considered for modeling the nonlinear system of
Equation (1). Assumption 3 is a natural and necessary assumption for generalization performance
analysis. It implies that the machine learning models built from industrial operation data will be
applied to the same process with the same data distribution. An example of activation function that
satisfies Assumption 4 is Rectified Linear Unit (ReLu), which is a nonlinear activation function
that has gained popularity in the machine learning domain.

3. RNN Generalization Error

Since any learning algorithms are evaluated on finite training samples only, and do not
provide any information on their predictive performance for unseen data, generalization
error provides an important measure of how accurately a neural network model is able
to predict output values for input data that has not been used in training. To implement
machine learning models into real chemical processes, it is necessary to demonstrate that
models are developed with a desired generalization error such that they can be applied for
any reasonable operating conditions beyond those in the training dataset while maintaining
a sufficiently small modeling error. In this section, we develop an upper bound for the
generalization error of RNN models, and demonstrate that this error can be bounded with
high probability provided that the training data samples and neural network structure
meet a few requirements.

57

Mathematics 2021, 9, 1912

3.1. Preliminaries

We first present some important definitions and lemmas that will be used in the
derivation of RNN generalization error. The random variables satisfying sub-Gaussian dis-
tribution, which is a probability distribution with strong tail decay, are defined as follows:

Definition 1. A centered random variable x ∈ R is said to be sub-Gaussian with variance proxy
σ2, if E[x] = 0, and the moment generating function satisfies

E[exp(aX)] ≤ exp
(

a2σ2

2

)
, ∀a ∈ R (11)

Lemma 1 (McDiarmid’s inequality [35]). Consider independent random variables X1, ..., Xn ∈
X and a function f : Xn → R with bounded difference property, i.e., there exist positive numbers ci
such that the following inequality holds for all x1, ..., xn, x′i ∈ X, xi �= x′i and i ∈ {1, ..., n}:

| f (x1, ..., xi, ..., xn)− f (x1, ..., x′i , ..., xn)| ≤ ci (12)

then the following probability holds for any a > 0:

P(f (X1, ..., Xn)−E[f (X1, ..., Xn)] ≥ a) ≤ exp

(
− 2a2

∑n
i=1 c2

i

)
(13)

Let L(yt, ȳt) be the loss function, where yt = h(xt) is the predicted RNN output, and
h(·) represents the RNN functions in the hypothesis class H mapping input x ∈ Rdx to
output y ∈ Rdy . The following error definitions are commonly used in machine learning
theory.

Definition 2. Given a function h that predicts output values y for each input x, and an underlying
distribution D, the expected loss/error or generalization error is

LD(h) � E[L(h(x), y)] =
∫

X×Y
L(h(x), y)ρ(x, y)dxdy (14)

where ρ(x, y) is joint probability distribution for x and y, and X, Y are the vector space of all
possible inputs, and outputs, respectively.

Since in general the joint probability distribution ρ is unknown, we use the data
samples drawn from this unknown probability distribution to compute empirical error,
which is a proxy measure for the expected loss.

Definition 3. Given a dataset with m data samples S = (s1, ..., sm), where si = (xi, yi), the
empirical error or risk is

ÊS[L(h(x), y)] =
1
m

m

∑
i=1

L(h(xi), yi) (15)

The RNN model is developed by minimizing the empirical risk of Equation (15) using
a set of m data sequences. To ensure that the RNN model achieves a desired generalization
performance in the sense that it well captures the nonlinear dynamics of the system of
Equation (1) for various operation conditions, the objective of this work is to show that
the generalization error E[L(h(x), y)] can be bounded provided that the empirical risk is
sufficiently small and bounded.

We consider the mean squared error (MSE) as loss function in this work. It is readily
shown that the MSE loss function L(y, ȳ) is not Lipschitz continuous for all y, ȳ ∈ Rdy .
However, since we consider a finite hypothesis class that satisfies Assumptions 1–4, we can
show that the RNN output is bounded. This is consistent with the fact that the nonlinear

58

Mathematics 2021, 9, 1912

system of Equation (1) is operated in the stability region Ωρ, and therefore, the RNN
outputs are bounded within a compact set.

Let rt > 0 denote the upper bound of yt, i.e., |yt| ≤ rt, t = 1, ..., T. Without loss of
generality, we assume that the true outputs are also bounded by rt. Therefore, the MSE
loss function is a locally Lipschitz continuous function satisfying the following inequality
for all |yt|, |ȳt| ≤ rt.

|L(y1, ȳ)− L(y2, ȳ)| ≤ Lr|y1 − y2| (16)

where Lr is the local Lipschitz constant.
The generalization error of a neural network function hS chosen from a hypothesis

class H based on a certain learning algorithm and a training dataset S drawn from dis-
tribution D can be decomposed into the approximation error and the estimation error
as follows:

LD(hS)− LD(h∗) = (min
h∈H

LD(h)− LD(h∗)) + (LD(hS)− min
h∈H

LD(h)) (17)

where the first and second terms in parentheses represent approximation error and esti-

mation error, respectively. Specifically, LD(hS) represents the error evaluated using the
hypothesis hS over the underlying data distribution D. h∗ represents the optimal hypothesis
(maybe outside of the finite hypothesis class H) for the data distribution D. minh∈H LD(h)
is the optimal hypothesis within H that minimizes the loss functions over the distribution
D. It can be seen that the approximation error depends on how close the hypothesis class
H is to the optimal hypothesis h∗. In other words, a larger hypothesis class H generally
leads to a lower approximation error since it is more likely that the optimal hypothesis
h∗ is included in H. The estimation error depends on both the hypothesis class size and
training data, and characterizes how good the selected hypothesis hS associated with the
training dataset S is with respect to the best hypothesis minh∈H LD(h) within hypothesis
class H. As a result, a larger hypothesis class H may in turn lead to a higher estimation
error since it is more difficult to find the optimal hypothesis within H over the distribution
D. From the error decomposition of Equation (17), we demonstrate the dependencies of
generalization error on the training dataset size and the complexity of hypothesis class. In
the next section, we will take advantage of Rademacher complexity technique to derive
a generalization error bound accounting for its dependencies on the above factors in a
quantitative aspect. The results will also provide a guide for the design of neural network
structures and the collection of training data in order to achieve a desired generalization
performance for a specific modeling task.

3.2. Rademacher Complexity Bound

Rademacher complexity quantifies the richness of a class of functions, and is often
used in machine learning theory to bound the generalization error. The definition of
empirical Rademacher complexity is given below.

Definition 4 (Empirical Rademacher Complexity). Given a hypothesis class F of real-valued
functions, and a set of data samples S = {s1, ..., sm}, the empirical Rademacher complexity of F is
defined as

RS(F) = Eε

[
sup
f∈F

1
m

m

∑
i=1

εi f (si)

]
(18)

where ε = (ε1, ..., εm)T with εi being independent and identically distributed (i.i.d.) Rademacher
random variables satisfying P(εi = 1) = P(εi = −1) = 0.5.

We also have the following contraction inequality for the hypothesis class H of vector-
valued functions h ∈ Rdy .

59

Mathematics 2021, 9, 1912

Lemma 2 (c.f. Corollary 4 in [36]). Consider a hypothesis class H of vector-valued functions
h ∈ Rdy , and a set of data samples S = {s1, ..., sm}. Let L(·) be a Lr-Lipschitz function mapping
h ∈ Rdy to R, then we have

Eε

[
sup
h∈H

m

∑
i=1

εiL(h(xi), yi)

]
≤

√
2LrEε

⎡⎣sup
h∈H

m

∑
i=1

dy

∑
k=1

εikhk(xi)

⎤⎦ (19)

where hk(·) is the k-th component in the vector-valued function h(·), and εik is an m × dy matrix of
independent Rademacher variables. In the following text, we will omit the subscript ε of expectation
for simplicity.

Since the RHS of Equation (19) is generally difficult to compute, we can reduce it to
scalar classes, and derive the following bound [36]:

E

⎡⎣sup
h∈H

m

∑
i=1

dy

∑
k=1

εikhk(xi)

⎤⎦ ≤
dy

∑
k=1

E

[
sup
h∈Hk

m

∑
i=1

εih(xi)

]
(20)

where Hk, k = 1, ..., dy, are classes of scalar-valued functions that correspond to the compo-
nents of vector-valued functions in H. Equation (20) will later be used in the derivation of
the generalization error bound for RNN models approximating the nonlinear system of
Equation (1).

Let Gt be the family of loss functions associated to H mapping the first t-time-step
inputs {x1, x2, ..., xt} ∈ Rdx×t to the t-th output yt ∈ Rdy .

Gt = {gt : (x, ȳ) → L(h(x), ȳ), h ∈ H} (21)

where x is the RNN input vector, and ȳ is the true output vector. The following lemma
characterizes the upper bound for the generalization error using Rademacher complexity
RS(Gt).

Lemma 3 (c.f. Theorem 3.3 in [37]). Given a set of m i.i.d. data samples, with probability at least
1 − δ over samples S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, the following inequality holds for all gt ∈ Gt:

E[gt(x, y)] ≤ 1
m

m

∑
i=1

gt(xi, yi) + 2RS(Gt) + 3

√
log(2

δ)

2m
(22)

Proof. While the full proof can be found in many machine learning books, e.g., [37], a
proof sketch is presented below to help readers understand the derivation of Equation (22).
To simplify the notations, let E[gt] and ÊS[gt] denote the expected loss E[gt(x, y)] and the
empirical loss 1

m ∑m
i=1 gt(xi, yi) based on a dataset S with m data samples, respectively.

Additionally, we assume that gt(x, y) is bounded in [0, 1] (if not, we can scale the RNN
output layer or loss function) without loss of generality. We define β(S) to be a function of
data samples S = (s1, s2, ..., sm) as follows, where si represents each data sample (xi,t, yi,t),
i = 1, ..., m.

β(S) = sup
gt∈Gt

(E[gt]− ÊS[gt]) (23)

60

Mathematics 2021, 9, 1912

Given two datasets S = (s1, ..., si, ..., sm) and S′ = (s1, ..., s′i, ..., sm) with only one different
data point, i.e., si �= s′i, the following inequality holds for any gt(xi, yi) ∈ [0, 1]:

∣∣β(S)− β(S′)
∣∣ = ∣∣∣∣∣ sup

gt∈Gt

(E[gt]− ÊS[gt])− sup
gt∈Gt

(E[gt]− ÊS′ [gt])

∣∣∣∣∣
≤
∣∣∣∣∣ sup
gt∈Gt

(ÊS′ [gt]− ÊS[gt])

∣∣∣∣∣
=

∣∣∣∣∣ sup
gt∈Gt

gt(s′i)− gt(si)

m

∣∣∣∣∣
≤ 1

m

(24)

Then, using the McDiarmid’s inequality in Lemma 1 and letting a ≥
√

log(2
δ)

2m , we have

P[β(S)−ES[β(S)] ≥ a] ≤ exp

(
−2a2

∑m
i=1

1
m2

)
= exp(−2a2m) ≤ δ

2
(25)

where ES[β(S)]denotes the expectation of β(S) with respect to the dataset S of m data
samples. Equivalently, the following inequality holds with probability at least 1 − δ

2 , for
any δ > 0, :

β(S) ≤ ES[β(S)] +

√
log(2

δ)

2m
(26)

Next, we derive the upper bound for ES[β(S)] as follows:

ES[β(S)] = ES

[
sup
gt∈Gt

(E[gt]− ÊS[gt])

]

≤ ES,S′

[
sup
gt∈Gt

(ÊS′ [gt]− ÊS[gt])

]

= Eε,S,S′

[
sup
gt∈Gt

(
1
m

m

∑
i=1

εi(gt(s′i)− gt(si))

)]

≤ Eε,S′

[
sup
gt∈Gt

(
1
m

m

∑
i=1

εigt(s′i)
)]

+Eε,S

[
sup
gt∈Gt

(
1
m

m

∑
i=1

−εigt(si)

)]

= 2Eε,S

[
sup
gt∈Gt

1
m

m

∑
i=1

εigt(si)

]
= 2Eε,S[RS(Gt)]

(27)

where the first line is by substituting the definition of Equation (23) into ES[β(S)]. The sec-
ond line is derived using the fact that E[gt] = ES′ [ÊS′(gt)] and the property of supremum
function: supgt∈Gt

ES′(f (S′, gt)) ≤ ES′ [supgt∈Gt
f (S′, gt)] for any function f . The third line

is derived by introducing Rademacher variables εi, which do not affect its outcome since
εi are i.i.d. randome variables taking values in {−1,+1}. The fourth line is obtained by
separating the supremum function as sup(f + g) ≤ sup(f) + sup(g), and the last line is
derived using the fact that Rademacher variables εi have a symmetric distribution. Note
that Eε,S[RS(Gt)] in the last line of Equation (27) represents the expectation of the empirical
Rademacher complexity, RS(Gt), over all samples of size m drawn from the same distribu-
tion. In order to bound this term, we apply McDiarmid’s inequality again using confidence
δ
2 , which yields a similar result as in Equation (25). Finally, using union bound which states

61

Mathematics 2021, 9, 1912

that P(∪i Ai) ≤ ∑i P(Ai) holds for any finite or countable set of events Ai, i = 1, 2, ..., the
following inequality holds with probability at least 1 − δ:

β(S) ≤ 2

⎛⎝RS(Gt) +

√
log 2

δ

2m

⎞⎠+

√
log 2

δ

2m

= 2RS(Gt) + 3

√
log 2

δ

2m

(28)

By substituting the definition of β(S) of Equation (23) into the above equation, we obtain
the result in Equation (22). This completes the proof of Lemma 3.

It can be seen from Equation (22) that the generalization error bound depends on the
empirical error (the first term), Rademacher complexity (the second term), and an error
function associated with the confidence δ and the number of samples m (the last term). Since
the first and last terms are known given a set of m training data, in order to characterize
the upper bound for the generalization error E[gt(x, y)], we need to determine the upper
bound for the Rademacher complexity RS(Gt). Since most of the established results
of Rademacher complexity are with respect to feedforward neural networks modeling
real-valued functions only, we will start with a lemma for the hypothesis class of real-
valued functions.

Lemma 4. Given a hypothesis class Hk of real-valued functions corresponding to the k-th compo-
nent of vector-valued function class H, and a set of m i.i.d. data samples S = (xi,t, yi,t)

T
t=1,

i = 1, ..., m, the following inequality holds for the scaled empirical Rademacher complexity
mRS(Hk) = E[suph∈Hk

∑m
i=1 εih(xi)].

mRS(Hk) =
1
λ

log exp

(
λE

[
sup
h∈Hk

m

∑
i=1

εih(xi)

])

≤ 1
λ

log

(
E

[
sup
h∈Hk

exp(λ
m

∑
i=1

εih(xi))

]) (29)

where λ > 0 is an arbitrary parameter.

Proof. Equation (29) can be readily proved by using Jensen’s inequality which states that
given a random variable X and a convex function β(·), it holds that β(E[X]) ≤ E[β(X)].
Equation (29) will be used in the derivation of the upper bound for the Rademacher
complexity RS(H) in Lemma 7.

We can see from the definition of Rademacher complexity of Equation (18) that the
value of RS(Gt) depends on the complexity of hypothesis class Gt. However, since the
RNN model of Equations (8) and (9) is a complex nonlinear function which is difficult to
measure its learning capacity, we need to peel off the nonlinear activation functions and
weight matrices through layers. The following lemma shows the “peeling” step used in the
derivation of Rademacher complexity for the output layer of RNNs.

Lemma 5 (c.f. Lemma 1 in [27]). Given a hypothesis class H of vector-valued functions that
map the RNN inputs x ∈ Rdx to the hidden states h ∈ Rdh , and any convex and monotonically
increasing function p : R → R+, the following inequality holds for the RNN model of Equations (8)
and (9) with a 1-Lipschitz, positive-homogeneous activation function σy(·):

E

[
sup

h∈H,||V||F≤BV,F

p

(∣∣∣∣∣ m

∑
i=1

εiσy(Vhi)

∣∣∣∣∣
)]

≤ 2 ·E
[

sup
h∈H

p

(
BV,F ·

∣∣∣∣∣ m

∑
i=1

εihi

∣∣∣∣∣
)]

(30)

62

Mathematics 2021, 9, 1912

Proof. The proof is omitted here as it is similar to the proof for the next lemma, which will
be presented in detail. Interested readers can refer to [27] for the proof of Lemma 5.

Lemma 5 peels off the weight matrix V between the RNN hidden layer and output
layer. To further peel off the weight matrices in the RNN hidden layers, we provide the
following lemma.

Lemma 6. Given a hypothesis class H of vector-valued functions that map the RNN inputs
x ∈ Rdx to the hidden states h ∈ Rdh , and any convex and monotonically increasing function
p : R → R+, the following equation holds for the RNN model of Equations (8) and (9) with a
1-Lipschitz, positive-homogeneous activation function σh(·):

E

[
sup

h∈H,||U||F≤BU,F ,||W||F≤BW,F ,
p

(∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

= E

[
sup

h∈H,||U||F≤BU,F ,||W||F≤BW,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(Uhi,t−1 + Wxi,t)

∣∣∣∣∣
)]

≤ 2E

[
sup
h∈H

p

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)] (31)

Proof. We first define an augmented weight matrix Z = [U|W] ∈ Rdh×(dh+dx), and an
augmented vector h̄i,t = [hi,t−1|xi,t] ∈ Rdh+dx . To simplify the discussion, we assume that
the Frobenius norm of the matrix Z is bounded by ||Z||F ≤ BZ,F, given that both U and
W are bounded by ||U||F ≤ BU,F and ||W||F ≤ BW,F. Then, the hidden layer vector at t-th
time step, hi,t, can be written as follows:

hi,t = σh(Uhi,t−1 + Wxi,t) = σh(Zh̄i,t) (32)

Letting z1, z2, ..., zh denote the rows of the matrix Z, we have∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
2

=
dh

∑
j=1

|zj|2
(

m

∑
i=1

εiσh(
zT

j

|zj| h̄i,t)

)2

(33)

The supremum of Equation (33) over all the weight matrix Z = [z1 z2 ... zh] that satisfies
||Z||F ≤ BZ,F is obtained when |zj| = BZ,F for some j, and |zi| = 0 for all i �= j. Therefore,
we have

E

[
sup

h∈H,||U||F≤BU,F ,||W||F≤BW,F

p

(∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

= E

[
sup

h∈H,|z|=BZ,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(z
Th̄i,t)

∣∣∣∣∣
)] (34)

Since p(·) is a convex and monotonically increasing function, p(|a|) ≤ p(a) + p(−a) holds,
and the above equation can be further bounded as follows:

E

[
sup

h∈H,|z|=BZ,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(z
Th̄i,t)

∣∣∣∣∣
)]

≤ E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)]

+E

[
sup

h∈H,|z|=BZ,F

p

(
−

m

∑
i=1

εiσh(z
Th̄i,t)

)]

= 2E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)] (35)

63

Mathematics 2021, 9, 1912

where the last equality is derived from the fact that the random variables εi have a sym-
metric distribution, i.e., P(εi = 1) = P(εi = −1) = 0.5. Following the proof in [27] and
Theorem 4.12 in [38], the RHS of Equation (35) can be further bounded by

2E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)]
≤ 2E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiz
Th̄i,t

)]

≤ 2E

[
sup

h∈H,|u|=BU,F ,|w|=BW,F

p

(
|u|
∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ |w|
∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)]

= 2E

[
sup
h∈H

p

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)] (36)

Based on Lemmas 5 and 6, the following lemma provides an upper bound for the
Rademacher complexity of the RNN hypothesis class.

Lemma 7. Let Hk,t, k = 1, ..., dy, be the class of real-valued functions that corresponds to the k-th
component of the RNN output at t-th time step, with weight matrices and activation functions
satisfying Assumptions 1–4. Given a set of m i.i.d. data samples S = (xi,t, yi,t)

T
t=1, i = 1, ..., m,

the following equation holds for the Rademacher complexity:

RS(Hk,t) ≤
M(

√
2 log(2)t + 1)BX√

m
(37)

where M = BV,FBW,F
(BU,F)

t−1
BU,F−1 .

Proof. Let vk be the k-th row in the weight matrix V. Using Equations (29) and (30), the
scaled Rademacher complexity mRS(Hk) can be bounded as follows:

mRS(Hk,t) = E

[
sup

h∈Hk,t ,||V||F≤BV,F

m

∑
i=1

εiσy(vkhi,t)

]

≤ 1
λ

logE

[
sup

h∈Hk,t ,||V||F≤BV,F

exp

(
λ

m

∑
i=1

εiσy(vkhi,t)

)]

≤ 1
λ

logE

[
sup

h∈Hk,t

exp

(
BV,Fλ

∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)] (38)

where exp(·) corresponds to the monotonically increasing function p(·) in Lemmas 5 and 6.
Then, we use Equation (31) and further derive the bound for the RHS of the above equation
as follows:

1
λ

logE

[
sup

h∈Hk,t

exp

(
BV,Fλ

∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

≤ 1
λ

log

(
2 ·E

[
sup

h∈Hk,t−1

exp

(
BV,Fλ ·

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
))]) (39)

Assuming that the initial hidden states hi,0 = 0, by recursively applying Lemma 6 to
the term |∑m

i=1 εihi,t−1| in Equation (39), we obtain that

64

Mathematics 2021, 9, 1912

mRS(Hk,t) ≤ 1
λ

log

(
2t ·E

[
exp

(
BV,Fλ ·

(
BW,F ·

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ · t−1

∑
j=0

(BU,F)
j

))])

=
1
λ

log

(
2t ·E

[
exp

(
BV,Fλ ·

(
BW,F ·

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ · (BU,F)
t − 1

BU,F − 1

))]) (40)

It is noted that the RNN model in this work is developed to predict one sampling time,
for which the RNN inputs xi,t remain the same. If the RNN inputs are varying over time,
Equation (40) can be modified by taking the maximum value of |∑m

i=1 εixi,t| within the
prediction period. Subsequently, we define the following random variable q

q = M

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ (41)

where the randomness comes from the Rademacher variables εi, and M denotes the product

of all weight matrices, i.e., M = BV,FBW,F
(BU,F)

t−1
BU,F−1 . Then, Equation (40) can be written as

mRS(Hk,t) ≤ 1
λ

log(2t ·E[exp(λq)])

=
t log(2)

λ
+

1
λ

log(E[exp(λ(q −E[q]))]) +E[q]
(42)

Using Jensen’s inequality, we can bound E[q] as follows:

E[q] = E

[
M

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
]
≤ M

√√√√√E

⎡⎣∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
2
⎤⎦ = M

√
m

∑
i=1

|xi,t|2 ≤ √
mMBX (43)

where the second equality comes from the fact that εi are i.i.d. Rademacher random
variables, and the last inequality is due to the assumption that |xi,t| ≤ BX. Subsequently,
following the results in [38], we can show q is sub-Gaussian with the following variance
factor v since q satisfies a bounded-difference condition with respect to its random variables
εi, i.e., q(ε1, ..., εi, ..., εm)− q(ε1, ...,−εi, ..., εm) ≤ 2M|xi,t|.

v =
1
4

m

∑
i=1

(2M|xi,t|)2 = M2
m

∑
i=1

|xi,t| (44)

According to the property of sub-Gaussian random variables in Definition 1, the following
inequality holds for q:

1
λ

log(E[exp(λ(q −E[q]))]) ≤ λM2 ∑m
i=1|xi,t|
2

(45)

Let λ =

√
2 log(2)t

M
√

∑m
i=1 |xi,t |2

> 0. The Rademacher complexity mRS(Hk,t) in Equation (42) can be

bounded as follows:

mRS(Hk,t) ≤ t log(2)
λ

+
1
λ

log(E[exp(λ(q −E[q]))]) +E[q]

≤ M(
√

2 log(2)t + 1)

√
m

∑
i=1

|xi,t|2

≤ M(
√

2 log(2)t + 1)
√

mBX

(46)

65

Mathematics 2021, 9, 1912

Lemma 7 develops the Rademacher complexity upper bound for the hypothesis class
Hk of real-valued functions that map RNN inputs to the k-th output. Subsequently, we
derive the generalization bound for the loss function associated with the vector-valued
functions that map the RNN inputs to the output vector by taking advantage of the
contraction inequality of Equations (19) and (20).

Theorem 1. Let Gt be the family of loss function associated to the hypothesis class Ht of vector-
valued functions that map the RNN inputs to the RNN output at t-th time step, with weight
matrices and activation functions satisfying Assumptions 1–4. Given a set of m i.i.d. data samples
S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, with probability at least 1 − δ over S, we have r

E[gt(x, y)] ≤ 1
m

m

∑
i=1

gt(xi, yi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

M(
√

2 log(2)t + 1)BX√
m

)
(47)

where M = BV,FBW,F
(BU,F)

t−1
BU,F−1 .

Proof. Using the results in Lemma 7 and Equations (19) and (20), we can derive the follow-
ing upper bound for the loss function L(h(xi), yi) with h(xi) being vector-valued functions:

RS(Gt) = E

[
sup
h∈H

1
m

m

∑
i=1

εiL(h(xi), yi)

]
≤

√
2LrE

⎡⎣sup
h∈H

1
m

m

∑
i=1

dy

∑
k=1

εikhk(xi)

⎤⎦
≤

√
2Lrdy

M(
√

2 log(2)t + 1)BX√
m

(48)

Then, substituting Equation (48) into Equation (22), we derive the generalization error
bound in Equation (47).

Remark 2. As stated in [27], the assumption of positive-homogeneity for the nonlinear activation
function can be loosened in some cases, under which a similar result of generalization error bound
can be derived. Interested readers are referred to Lemma 2 and Theorem 2 in [27].

Remark 3. The generalization error bound of Equation (47) implies that the following attempts can
be taken to reduce the generalization error: (1) minimize the empirical loss 1

m ∑m
i=1 gt(xi, yi) over

the training data samples S through a careful design of neural network, and (2) increase the number
of training samples m. Additionally, as discussed in the error decomposition of Equation (17),
increasing the complexity hypothesis class in terms of larger weight matrices bounds M could
decrease the approximation error, but may also increase the estimation error, which corresponds to
the last term O(·) in Equation (47). Therefore, in practice, we generally start with a simple neural
network and gradually increase it complexity in terms of more neurons, layers and larger weight
matrices bounds to improve the training and testing performance. The whole process stops when the
testing error starts increasing, which indicates the occurrence of overfitting.

Remark 4. While the actual generalization error is difficult to obtain due to unknown data distri-
bution and complexity of hypothesis class, Equation (47) characterizes the upper bound for the gap
between the generalization error and empirical error by moving the term 1

m ∑m
i=1 gt(xi, yi) to the

LHS of Equation (47). Since the neural network training process itself is to minimize the training
error only, this generalization gap is more useful in practice by showing how good the neural
network will be for unseen data under the same data distribution. In terms of modeling the nonlinear
system of Equation (1), this generalization gap provides an upper bound for the modeling error for
all the states in the operating region, and can be used in the design of model-based controllers that
probabilistically ensure closed-loop stability accounting for bounded modeling errors.

66

Mathematics 2021, 9, 1912

Remark 5. It is noticed that the generalization error bound also depends on the time length t
of RNN inputs, which is different from the results derived for the feedforward neural networks
in [27]. Additionally, unlike other deep neural networks which utilize different parameters for
each hidden layer, RNNs share the same weight matrix U at each time step, and therefore, the

bound for the product of weight matrices is derived in the form of M = BV,FBW,F
(BU,F)

t−1
BU,F−1 . From

Equation (47), it can be seen that as the data sequence length t increases, the network hypothesis
becomes more complex, which leads to a larger generalization error bound. Therefore, a shorter time
sequence prediction is preferred from the perspective of prediction accuracy. However, it does not
necessarily mean a short prediction period is always desirable from the control perspective, especially
in model predictive control (MPC) schemes. In Section 5, we will demonstrate that the RNN models
predicting a short period of time achieved desired prediction performance in open-loop tests, but
perform poorly in closed-loop simulation due to the error accumulated during successive execution
of RNN predictions within MPC prediction horizon.

4. RNN-Based MPC with Probabilistic Stability Analysis

In this section, we present the formulation of Lyapunov-based MPC (LMPC) that
uses RNN models to predict evolution of future states, along with the closed-loop stability
analysis showing the boundedness of closed-loop state of Equation (1) in the stability
region for all times in probability.

4.1. Lyapunov-Based Control Using RNN Models

To simplify the discussion of RNN stability properties for the continuous-time nonlin-
ear system of Equation (1), we represent the RNN model in the following continuous-time
form [9]:

˙̂x = Fnn(x̂, u) := Ax̂ + ΘTz (49)

where x̂ ∈ Rn and u ∈ Rk are the RNN state vector and the manipulated input vector,
respectively. z = [z1, ..., zn, zn+1, ..., zk+n] = [σ(x̂1), ..., σ(x̂n), u1, ..., uk] ∈ Rn+k is a vector of
both the input u and the network state x̂, where σ(·) represents the nonlinear activation
function. A is a diagonal coefficient matrix with all diagonal elements being negative, and
Θ = [θ1, ..., θn] ∈ R(k+n)×n with θi = bi[wi1, ..., wi(k+n)], i = 1, ..., n, where wij denotes the
weight connecting the jth input to the ith neuron, i = 1, ..., n and j = 1, ..., (k + n). The
weight matrices and activation functions satisfy Assumptions 1–4. To simplify the notation,
we use Equation (49) to represent one-hidden-layer RNN model, and bias terms are not
explicitly included in Equation (49); however, it is noted that the results that we will derive
in this section are not restricted to one-hidden-layer RNN models, and can be extended to
deep RNNs with multiple hidden layers.

We assume that there exists a stabilizing feedback controller u = Φnn(x) ∈ U that
can render the origin of the RNN model of Equation (49) exponentially stable in an open
neighborhood D̂ around the origin. The stabilizability assumption implies the existence
of a C1 control Lyapunov function V̂(x) such that the following inequalities hold for all x
in D̂:

ĉ1|x|2 ≤ V̂(x) ≤ ĉ2|x|2, (50)

∂V̂(x)
∂x

Fnn(x, Φnn(x)) ≤ −ĉ3|x|2, (51)∣∣∣∣∂V̂(x)
∂x

∣∣∣∣ ≤ ĉ4|x| (52)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants. The closed-loop stability region for the RNN
model of Equation (49) is characterized as a level set of Lyapunov function embedded in
D̂ as follows: Ωρ̂ := {x ∈ D̂ | V̂(x) ≤ ρ̂}, where ρ̂ > 0. Additionally, there exist positive

67

Mathematics 2021, 9, 1912

constants Mnn and Lnn such that the following inequalities hold for all x, x′ ∈ Ωρ̂ and
u ∈ U:

|Fnn(x, u)| ≤ Mnn (53)∣∣∣∣∂V̂(x)
∂x

Fnn(x, u)− ∂V̂(x′)
∂x

Fnn(x′, u)
∣∣∣∣ ≤ Lnn|x − x′| (54)

Due to the model mismatch between the nonlinear system of Equation (1) and the RNN
model of Equation (49), the following proposition is developed to demonstrate that the
feedback controller u = Φnn(x) ∈ U is able to stabilize the system of Equation (1) with
high probability if the modeling error is sufficiently small.

Proposition 1. Consider the RNN model trained using a set of m i.i.d. data samples S =
(xi,t, yi,t)

T
t=1, i = 1, ..., m, and satisfying Assumptions 1–4. Under the assumption that the

feedback controller u = Φnn(x) ∈ U renders the the origin of the RNN system of Equation (49)
exponentially stable for all x ∈ Ωρ̂, if for all x ∈ Ωρ̂ and u ∈ U, the modeling error can
be constrained by |F(x, u) − Fnn(x, u)| ≤ γ|x|, where γ is a positive real number satisfying
γ < ĉ3/ĉ4, then the controller u = Φnn(x) ∈ U also renders the origin of the nonlinear system of
Equation (1) exponentially stable with probability at least 1 − δ for all x ∈ Ωρ̂.

Proof. To demonstrate that the origin of the nominal system of Equation (1) can be rendered
exponentially stable ∀x ∈ Ωρ̂ with probability at least 1 − δ under the controller u =
Φnn(x) ∈ U designed for the RNN model of Equation (49), we prove that the time-
derivative of V̂ associated with the state x of Equation (1) can be rendered negative in
probability under u = Φnn(x) ∈ U. Based on Equations (51) and (52), ˙̂V is derived
as follows:

˙̂V =
∂V̂(x)

∂x
F(x, Φnn(x))

=
∂V̂(x)

∂x
(Fnn(x, Φnn(x)) + F(x, Φnn(x))− Fnn(x, Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x| · |(F(x, Φnn(x))− Fnn(x, Φnn(x)))|

(55)

where the last term |F(x, Φnn(x))− Fnn(x, Φnn(x))| represents the error between the RNN
model and the process model of Equation (1). Since the RNN model is trained using
sampled data with a sufficiently small time interval (i.e., integration time step hc), the
modeling error term for the same initial state x(t) = x̂(t) can be approximated as follows:

|F(x, Φnn(x))− Fnn(x, Φnn(x))|
≤
∣∣∣∣ x(t + hc)− x(t)

hc
− x̂(t + hc)− x̂(t)

hc

∣∣∣∣+O(hc)

≤
∣∣∣∣ x(t + hc)− x̂(t + hc)

hc

∣∣∣∣+O(hc)

(56)

where x̂ is the predicted state by RNN model, and x is the state of actual nonlinear sys-
tem of Equation (1). O(hc) is the truncation error from finite difference method. Since
|x(t + hc)− x̂(t + hc)| represents the Euclidean norm of the prediction error, while the gen-
eralization error bound is derived using MSE as loss function in Theorem 1, the modeling
error can be bounded as follows:

|F(x, Φnn(x))− Fnn(x, Φnn(x))| ≤ EM (57)

68

Mathematics 2021, 9, 1912

where

EM =
1
hc

√√√√ 1
m

m

∑
i=1

g(xi, yi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

M(
√

2 log(2)hc + 1)BX√
m

)
+O(hc) (58)

By choosing the number of samples m ≥ mN(δ, hc, |x|), where mN(δ, hc, |x|) is the
minimum data sample size satisfying EM ≤ γ|x|, γ < ĉ3/ĉ4, we have the following
equation showing that ˙̂V can be rendered negative for all x ∈ Ωρ and x �= 0 with probability
at least 1 − δ, i.e., P[˙̂V ≤ 0] ≥ 1 − δ,

˙̂V ≤− ĉ3|x|2 + ĉ4|x| · |F(x, Φnn(x))− Fnn(x, Φnn(x))|
≤ − ĉ3|x|2 + ĉ4|x| ĉ3|x|

ĉ4

=− c̃3|x|2
≤0

(59)

where c̃3 = −ĉ3 + ĉ4γ < 0 for any γ < ĉ3/ĉ4. Therefore, with probability at least 1 − δ, the
closed-loop state of the system of Equation (1) converges to the origin under u = Φnn(x) ∈
U for all x0 ∈ Ωρ̂.

Remark 6. The modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂ implies that more data is needed
for states closer to the origin. This is because when x approaches the origin, the upper bound γ|x| is
close to zero, and therefore, the prediction of x̂ should be more accurate in order to yield a desired
approximation of system dynamics ẋ = F(x, u) using numerical methods. As a result, it seems
that an infinite number of data samples may be needed when state converges to the origin (i.e., x
is infinitely close to zero). However, we will show in the next subsection that the requirement of
such a large dataset for the states around a small neighborhood around the origin is not necessary
for operation under MPC. This is because under sample-and-hold implementation of control actions,
the states are forced to be bounded in a small ball around the origin, instead of converging to the
exact steady-state. Therefore, the modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂ can be loosened
for states in this small ball, which could improve computational efficiency of training process.

4.2. Stabilization of Nonlinear System under Lyapunov-Based Controller

Subsequently, the following propositions are developed to demonstrate the impact
of sample-and-hold implementation of control actions on system stability. Specifically,
Proposition 2 demonstrates that in the presence of mismatch between the plant model
of Equation (1) and the RNN models of Equation (49), the error between the predicted
state and the actual state is bounded in a finite period of time. Then, we consider the
Lyapunov-based controller u = Φnn(x) applied to the nonlinear system of Equation (1)
in sample-and-hold fashion, and demonstrate in Proposition 3 that with high probability,
the nonlinear system of Equation (1) can be stabilized using the controller u = Φnn(x)
designed for the RNN model of Equation (49).

Proposition 2 (c.f. Proposition 3 in [9]). Consider the nonlinear system ẋ = F(x, u) of
Equation (1) and the RNN model ˙̂x = Fnn(x̂, u) of Equation (49) with the same initial condi-
tion x0 = x̂0 ∈ Ωρ̂. There exists a class K function fw(·) and a positive constant κ such that the
following inequalities hold ∀x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) :=
EM
Lx

(eLxt − 1) (60)

V̂(x) ≤ V̂(x̂) +
ĉ4
√

ρ̂√
ĉ1

|x − x̂|+ κ|x − x̂|2 (61)

69

Mathematics 2021, 9, 1912

Proof. The proof can be found in [9], and is omitted here. Note that the proof in [9]
considers the nonlinear system subject to bounded disturbances, while in this work, we
consider the nominal system without disturbances only. However, the stability results
derived in this section can be readily generalized to the disturbed systems provided that
the disturbances are sufficiently small and bounded. Additionally, the modeling error term
in [9] is replaced by EM (see the definition of EM in Equation (58)) in Equations (60) and (61)
which accounts for the RNN generalization error derived in a probabilistic manner.

The following proposition is developed to show probabilistic closed-loop stability
of the nonlinear system of Equation (1) under sample-and-hold implementation of the
controller u = Φnn(x) ∈ U.

Proposition 3 (c.f. Proposition 4 in [9]). Consider the nonlinear system of Equation (1) with
the controller u = Φnn(x̂) ∈ U that meets the conditions of Equations (50)–(52), and the RNN
model of Equation (49) that meets all the conditions in Theorem 1. Under the sample-and-hold
implementation of control actions, i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk, tk+1), where tk+1 := tk + Δ.
there exist εw > 0, Δ > 0 and ρ̂ > ρmin > ρnn > ρs that satisfy

− c̃3

ĉ2
ρs + L

′
x MFΔ ≤ −εw (62)

and

ρnn := max{V̂(x̂(t + Δ)) | x̂(t) ∈ Ωρs , u ∈ U} (63)

ρmin ≥ ρnn +
ĉ4
√

ρ̂√
ĉ1

fw(Δ) + κ(fw(Δ))2 (64)

such that for any x(tk) ∈ Ωρ̂\Ωρs , with probability at least 1 − δ, the following inequality holds:

V̂(x(t)) ≤ V̂(x(tk)), ∀t ∈ [tk, tk+1) (65)

and the state x(t) of the nonlinear system of Equation (1) is bounded in Ωρ̂ for all times and
ultimately bounded in Ωρmin .

Proof. The key steps for the proof of Proposition 3 are presented below, and the full proof
is omitted here as it is similar to the proof of Proposition 4 in [9]. The only difference is
that Equation (65) now holds in probability due to the probabilistic nature of the modeling
error bound.

To show that the state will move towards Ωρs , which is a sufficiently small level set of
V̂ around the origin, we show that the time derivative of V̂ can be rendered negative for
any x(tk) ∈ Ωρ̂\Ωρs under u = Φnn(x) ∈ U.

˙̂V(x(t)) =
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)))

=
∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk))) +

∂V̂(x(t))
∂x

F(x(t), Φnn(x(tk)))

− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

(66)

As shown in Proposition 1, by choosing the number of samples m ≥ mN(δ, hc, |x|) such
that EM ≤ γ|x|, where γ < ĉ3/ĉ4, it holds that P[˙̂V ≤ 0] ≥ 1 − δ under u = Φnn(x) ∈ U.

70

Mathematics 2021, 9, 1912

Then, using the Lipschitz condition in Equations (5)–(7) and the condition for Lyapounov
function in Equations (50)–(52), Equation (66) can be further bounded as follows:

˙̂V(x(t)) ≤− c̃3

ĉ2
ρs +

∂V̂(x(t))
∂x

F(x(t), Φnn(x(tk)))− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

≤− c̃3

ĉ2
ρs + L

′
x|x(t)− x(tk)|

≤ − c̃3

ĉ2
ρs + L

′
x MFΔ

(67)

Therefore, if Equation (62) is satisfied, we can find a negative real number −εw that bounds
the time derivative of V̂. This implies that for any state x(tk) ∈ Ωρ̂\Ωρs , with probability at
least 1 − δ, the Lyapunov function value will decrease in one sampling time, and therefore,
the state can ultimately reach the set Ωρs under u = Φnn(x) ∈ U with a certain probability.
Additionally, since ˙̂V may not be rendered negative within Ωρs under sample-and-hold
implementation of Lyapunov-based control law u = Φnn(x) ∈ U, the predicted state of the
RNN model of Equation (49) is only required to be bounded in Ωρnn , which is a slightly
larger level set that includes Ωρs (see definition of Ωρnn in Equation 63). In this case, we
can show that the state of the actual nonlinear system of Equation (49) is bounded in Ωρmin ,
which is a superset of Ωρnn that accounts for the modeling error within one sampling period
(see definition of Ωρmin in Equation (64)). As a result, we do not impose any constraints on
˙̂V for x ∈ Ωρs . This explains why the modeling error constraint EM ≤ γ|x| is not necessary

for x ∈ Ωρs as stated in Remark 6.

4.3. Lyapunov-Based MPC Using RNN Models for Nonlinear Systems

The Lyapunov-based model predictive control design is given by the following opti-
mization problem [9,10]:

J = min
u∈S(Δ)

∫ tk+N

tk

LMPC(x̃(t), u(t))dt (68)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (69)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (70)

x̃(tk) = x(tk) (71)
˙̂V(x(tk), u) ≤ ˙̂V(x(tk), Φnn(x(tk)), if x(tk) ∈ Ωρ̂\Ωρnn (72)

V̂(x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (73)

where x̃, N and S(Δ) are the predicted states, the prediction horizon length, and the set
of piecewise constant functions with period Δ, respectively. We use ˙̂V(x, u) to represent

the time derivative of Lyapunov function V̂, i.e., ˙̂V(x, u) = ∂V̂(x)
∂x (Fnn(x, u)). After solving

the optimization problem of Equations (68)–(73) at t = tk, we apply the first control action
u(t), t ∈ [tk, tk+1) from the optimal input trajectory u∗(t), t ∈ [tk, tk+N) to the system of
Equation (1). Then the horizon is rolled one sampling period forward, and the LMPC is
resolved at the next sampling time with new state measurements available at t = tk+1.

The optimization problem of Equations (68)–(73) minimizes the objective function of
Equation (68), which is the integral of LMPC(x̃(t), u(t)) over the prediction horizon, subject
to the constraints of Equations (69)–(73). The RNN model of Equation (49) is used to predict
state evolution over t ∈ [tk, tk+N) given the state measurements at t = tk in Equation (71).
In the constraint of Equation (69), the RNN model of Equation (49) is used to predict the
states of the closed-loop system. The constraint of Equation (70) ensures that the input are
bounded over the entire prediction horizon. Finally, the constraints of Equations (72)–(73)
drives the predicted state towards the origin and ultimately maintain it inside Ωρnn . It
should be noted that despite the probabilistic nature of the RNN generalization error
bound, the neural network prediction of Equation (69) is deterministic after training is

71

Mathematics 2021, 9, 1912

completed. In other words, given the same initial state x(tk), and the manipulated inputs
u(t), ∀t ∈ [tk, tk+N), the RNN model of Equation (69) produces deterministic results
that statistically approximate the evolution of states over t ∈ [tk, tk+N). This is different
from stochastic MPC which uses a stochastic process model in the MPC formulation, and
therefore, requires calculation of uncertainty prorogation and accounts for probabilistic
constraint satisfaction. The LMPC formulation of Equations (68)–(73) is solved with
a deterministic RNN model, based on which recursive feasibility is guaranteed, and
probabilistic stability results can be developed.

The following theorem is established to demonstrate that LMPC ensures closed-loop
stability for the nonlinear system of Equation (1) with high probability provided that the
RNN model is well constructed that satisfies the modeling error constraint in Proposition
1.

Theorem 2. Consider the closed-loop system of Equation (1) under the LMPC of Equations (68)–(73)
based on the controller Φnn(x) that satisfies Equations (50)–(52). Let Δ > 0, εw > 0 and
ρ̂ > ρmin > ρnn > ρs satisfy Equations (62)–(64). Then, given any initial state x0 ∈ Ωρ̂, if the
RNN model is developed satisfying the conditions in Proposition 2 and Proposition 3, there always
exists a feasible solution for the optimization problem of Equations (68)–(73) . Additionally, by
choosing the number of samples m ≥ mN(δ, hc, |x|) such that EM ≤ γ|x| holds, then for each time
step, with probability at least 1− δ, closed-loop stability is guaranteed for the system of Equation (1)
under the LMPC of Equations (68)–(73) in the sense that x(t) ∈ Ωρ̂, ∀t ≥ 0, and x(t) ultimately
converges to Ωρmin .

Proof. The proof consists of two parts. In the first part, we prove recursive feasibility of
the LMPC optimization problem of Equations (68)–(73) . The proof of this part follows
closely the proof of Theorem 2 in [9], which shows that the stabilizing controller u(t) =
Φnn(x(t)) ∈ U, t = [tk, tk+N) is a feasible solution to the LMPC optimization problem.
Specifically, when x(tk) ∈ Ωρ̂\Ωρnn at t = tk, it is readily shown that the control action
u(t) = Φnn(x(tk)) is a feasible solution that satisfies the constraint of Equation (72) by
taking the equal sign. When x(tk) ∈ Ωρnn , as shown in [9], u(t) = Φnn(x(t)) ∈ U,
t = [tk, tk+N) again are feasible solutions that maintain predicted states within Ωρnn within
the prediction horizon.

In the second part, we prove that closed-loop stability is guaranteed in probability for
the nonlinear system of Equation (1) under LMPC. Specifically, when x(tk) ∈ Ωρ̂\Ωρnn at
t = tk, we have shown in Proposition 3 that for each sampling time, V̂(x(t)) ≤ V̂(x(tk))
holds under u(t) = Φnn(x(t)) ∈ U for t ∈ [tk, tk+1) with probability at least 1 − δ. This
implies that the state of the actual nonlinear system of Equation (1) can be driven towards
the origin under the LMPC using RNN models for prediction provided that the modeling
error is sufficiently small and satisfies EM ≤ γ|x|, ∀x ∈ Ωρ̂. When x(tk) ∈ Ωρnn , the input
sequences are optimized to minimize the objective function of Equation (68) while meeting
the constraint of Equation (73). However, due to the existence of modeling error, the true
states may leave Ωρnn while the predicted states remain inside Ωρnn . In Proposition 3, we
have shown that with probability at least 1 − δ, the true state of the system of Equation (1)
can be bounded within Ωρmin , which is a superset of Ωρnn designed accounting for the
modeling error within one sampling period. Additionally, it is noted that depending
on the prediction horizon of RNN models, we may need to perform RNN predictions
successively to obtain the full prediction of the state trajectory over the entire prediction
horizon, t ∈ [tk, tk+N). For example, in this work, the RNN model of Equation (49) is
developed to predict one sampling period forward, and thus, in order to predict state
trajectory over t ∈ [tk, tk+N), we need to carry out RNN predictions N times. After the
initial prediction at t = tk, each prediction uses the previous predicted state as the initial
state, along with the manipulated input u to predict the state at the next sampling time.
This inevitably accumulates the modeling error over calculation, which may lead to a
probability lower than 1− δ for the final state prediction error to be bounded by EM ≤ γ|x|.

72

Mathematics 2021, 9, 1912

As a result, the true states may further deviate from predicted states, and ultimately leave
Ωρmin within finite time. Despite the degradation of prediction performance over time,
closed-loop stability is not affected since LMPC is implemented in a rolling horizon manner
with feedback state measurements available every sampling time. The input sequences
are re-optimized using new state measurements at every sampling time to meet desired
closed-loop performance. Additionally, since the modeling error condition EM ≤ γ|x|
holds for the first sampling period, the state of the actual nonlinear system of Equation (1) is
guaranteed to not leave Ωρmin within one sampling period with probability at least 1 − δ as
shown in Proposition 3. At the next sampling period, the constraints of Equation (72) and
of Equation (73) will be activated depending on the measurement of x(tk+1). Regardless
of where x(tk+1) is, the LMPC of Equations (68)–(73) will drive the predicted state into
Ωρnn , and correspondingly, maintain the true state within Ωρmin in probability. Therefore,
for any state x(tk) ∈ Ωρ̂, with probability at least 1 − δ, the closed-loop state of the system
of Equation (1) is bounded in Ωρ̂ for each sampling time, and is ultimately bounded within
Ωρmin . This completes the proof of Theorem 2.

Remark 7. It is noted that in Theorem 2, the probability of closed-loop stability (i.e., at least 1 − δ)
is derived for each sampling time since the probability of the modeling error bounded by γ|x| is
at least 1 − δ for one sampling period only. It is difficult to compute the overall probability of
closed-loop stability for the entire state trajectory because given an initial state x0 ∈ Ωρ̂, we do not
know how many times steps it will take to drive the state into Ωρmin beforehand. Additionally, the
actual probability of closed-loop stability for each time step could be higher than the lower bound
1 − δ due to many reasons. For example, 1) the RNN model is well trained that yields a modeling
error far below its upper bound, and 2) closed-loop stability may be unaffected if the next state
does not leave Ωρ̂ even if the modeling error exceeds its upper bound during one sampling period.
Therefore, the probability 1 − δ is conservative in many cases, and only provides a lower bound for
the probability of closed-loop stability.

5. Application to a Chemical Process Example

We use the same chemical process example as in [10] to illustrate the application of
LMPC using RNN models. However, in this work, we will primarily demonstrate the
use of generalization error bound framework to provide estimates of their accuracy in the
development of RNN models for nonlinear dynamic processes. Specifically, we carry out
five case studies to evaluate the relation between RNN generalization error and a number
of factors such as data sample size, RNN depth/width, and data time length that impact its
performance. Additionally, after the RNN model is incorporated in the LMPC formulation,
we will demonstrate the closed-loop performances under the RNN models developed
with different data sample size and structures, and evaluate their probabilistic closed-loop
stability properties. We consider a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR) with an irreversible second-order exothermic reaction in this example. The
reaction transforms a reactant A to a product B (A → B), where CA0, T0 and F denote
the inlet concentration of A, the inlet temperature and feed volumetric flow rate of the
reactor, respectively. A heating jacket is used to supply/remove heat to/from the CSTR at
a rate Q. The CSTR dynamic model is represented by the following material and energy
balance equations:

dCA
dt

=
F
V
(CA0 − CA)− k0e

−E
RT C2

A

dT
dt

=
F
V
(T0 − T) +

−ΔH
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV

(74)

where CA and T are the concentration of reactant A and temperature in the reactor, re-
spectively. Q denotes the heat input rate, and V is the volume of the reacting liquid in
the reactor. F, T0, and CA0 are the volumetric flow rate, the feed temperature and the feed

73

Mathematics 2021, 9, 1912

concentration of reactant A, respectively. We assume that the reacting liquid has a constant
density of ρL and a heat capacity of Cp. ΔH, k0, E, and R represent the enthalpy of reaction,
pre-exponential constant, activation energy, and ideal gas constant, respectively. The list of
process parameter values can be found in [10].

The objective of LMPC is to stabilize the CSTR at its unstable equilibrium point
(CAs, Ts) = (1.95 kmol/m3, 402 K) corresponding to (CA0s Qs) = (4 kmol/m3, 0 kJ/hr) by
manipulating the inlet concentration of species A and the heat input rate. All the process
states (CA, T) and manipulated inputs (CA0, Q) are represented in the deviation variables
form, i.e., ΔCA0 = CA0 − CA0s , ΔQ = Q − Qs, ΔCA = CA − CAs, and ΔT = T − Ts. To
simplify the notation, we use xT = [ΔCA ΔT] and uT = [ΔCA0 ΔQ] to represent CSTR states
and inputs, respectively. By using deviation variables, the equilibrium point of the CSTR
of Equation (74) is at the origin of the state-space. The following positive definite P matrix
is used to characterize the closed-loop stability region Ωρ̂ (i.e., a level set of Lyapunov
function V(x) = xT Px) with ρ̂ = 368:

P =

[
1060 22

22 0.52

]
(75)

Additionally, the manipulated inputs are required to be bounded as follows: |ΔCA0| ≤
3.5 kmol/m3 and |ΔQ| ≤ 5 × 105 kJ/hr to meet physical constraints. The integration of
RNN models in MPC follows the method in [10,39]. Specifically, the RNN models are
developed offline using Keras (version 2.4) [40], and then used to predict future states
based on the state measurement at each sampling time in the real-time implementation
of MPC. Then, the nonlinear optimization problem of the LMPC of Equations (68)–(73) is
solved under the sampling period Δ = 10−2 hr using PyIpopt, which is the python module
of the IPOPT software package (version 3.9.1) [41]. The dynamic model of Equation (74) is
integrated using numerical method, i.e., explicit Euler method, with a sufficiently small
integration time step of hc = 10−4 hr.

5.1. RNN Generalization Performance

In this section, we carry out a number of RNN trainings with different RNN structures
and data samples to show the relation between RNN generalization performance and
a number of factors such as RNN input length, width, depth, weight bounds and data
sample size.

5.1.1. Case Study 1: Data Sample Size

In the first case study, we trained RNN models using different data sample sizes.
Specifically, we follow data generation method in [10] to initially generate a large dataset
from open-loop simulation of Equation (74) under various control actions u ∈ U and initial
conditions within the stability region, i.e., x0 ∈ Ωρ̂. The dataset consists of 200,000 time-
series data samples, and is separated into 140,000 training, 30,000 validation, and 30,000
testing samples. The RNN models are developed by gradually increasing the training
sample size, and is tested using unseen data from the testing dataset. It should be noted that
only the data sample size is changed in this case study, while all the other parameters such
as the RNN structure (i.e., number of layers, neurons, and other hyper-parameters) and
training algorithm remain the same for all RNN models. The RNN models are developed
with one hidden layer of 50 neurons, and using mean squared errors (MSE) as loss function.

Figure 2 shows the variation of RNN training and testing performances with respect
to the training sample size. In the top figure of Figure 2, it is observed that both the
testing and training MSEs increase as training data becomes less; in the bottom figure,
we show the generalization gap E[gt(x, y)]− 1

m ∑m
i=1 gt(xi, yi) in Equation (47), where the

expected error E[gt(x, y)] is approximated using the testing dataset. The trend in Figure 2
is consistent with the result in Theorem 1, which demonstrates that more training data is
needed in order to obtain a lower generalization gap between expected loss and training
loss. Additionally, it is noticed when the training sample size is greater than 3000, both

74

Mathematics 2021, 9, 1912

training and testing MSEs approach zero, and no significant improvement is observed
for the models using more training data. The trend in Figure 2 also follows the relation
between generalization error and data sample size in Equation (47), i.e., the generalization
gap E[gt(x, y)] − 1

m ∑m
i=1 gt(xi, yi) is roughly proportional to 1√

m , which shows that the
generalization gap initially decreases fast when the sample size m starts increasing from
zero, and changes slowly when m becomes large.

0 5000 10000 15000
0

0.05

0.1

0.15

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

0 5000 10000 15000
0

0.05

0.1

0.15

G
en

er
al

iz
at

io
n

G
ap

 (
M

S
E

)

Figure 2. RNN generalization performance vs. training sample size.

5.1.2. Case Study 2 : RNN Depth and Width

In the second case study, we train RNN models with various depths and widths.
1400 training data, 300 validation data, and 300 testing data are used for all models. We
first develop RNN models by fixing the network depth as one hidden layer, and increasing
the number of neurons. As shown in Figure 3, both training and testing errors decrease as
the network width increases up to 250 neurons. However, as more neurons are added (i.e.,
270 and 280 neurons in Figure 3), the testing MSE increases while the training MSE remains
close to zero all the time, which implies that overfitting has occurred during training. As a
result, the generalization gap in Figure 3 shows a similar pattern, which decreases initially
and increases again when a large number of neurons are used. While theoretically the
expected error of Equation (47) does not explicitly depend on the network width, the results
in Figure 3 are consistent with the fact that increasing the capacity of a model by adding
more layers and/or more nodes to layers can improve the network learnability, but may
also lead to overfitting.

Subsequently, we train RNN models by increasing the number of layers, and fixing
five neurons each layer. Figure 4 shows that the testing MSE starts at around 0.02 for
one hidden layer, gradually decreases with more layers, and finally increases again as the
neural network becomes deeper. Meanwhile, the training MSE remains close to zero at
the beginning, yet also slightly increases as the number of hidden layers increase. From
Figure 4, it is concluded that one hidden layer is not sufficient to learn the process dynamics
well, and with two, three, and four layers, the RNN models achieve the best training and
generalization performance among all the models. Similar to Figure 3, the increase of
generalization gap in Figure 4 implies that deeper RNN models are overfitting the training
data. Additionally, it is also interesting to notice that the training error slightly increases
in deeper networks. While in general, the generalization performance deteriorates and
the training error remains unaffected when increasing the capacity of a model, the worse
training performance in Figure 4 are actually common in neural network development due

75

Mathematics 2021, 9, 1912

to the difficulty of training deep networks. Specifically, the optimization problem of neural
network training is highly non-convex, and may get stuck at some local minima as the
network becomes deeper. This is noticed during the training of RNN models in Figure 4,
where both the training and validation losses exhibit a sharp increase at a certain epoch
and then get stuck around that point until the end of epochs. Additionally, with more
hidden layers, the number of parameters to be trained grows exponentially, which could
lead to a poor training performance without a careful tuning of other hyperparameters.

50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

G
en

er
al

iz
at

io
n

G
ap

 (
M

S
E

)

Figure 3. RNN generalization performance vs. RNN width (One hidden layer with increasing
number of neurons).

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

G
en

er
al

iz
at

io
n

G
ap

 (
M

S
E

)

Figure 4. RNN generalization performance vs. RNN depth (Increasing the number of hidden layers
and fixing 5 neurons for each layer).

Remark 8. At first glance, the generalization error trend in Figures 3 and 4 seems in contrast
to the results in Equation (47), which shows the generalization error bound is proportional to the
complexity of RNN hypothesis class. However, it should be noted that Equation (47) only gives
the upper bound for the generalization error of RNN models from the hypothesis class. It does
not mean all the RNN models from the hypothesis class have a generalization error as large as

76

Mathematics 2021, 9, 1912

its upper bound. From the error decomposition of Equation (17) showing the interplay between
approximation and estimation errors, we have learned that as we enlarge the hypothesis class,
the approximation error decreases, but the estimation error may increase. In this case study, by
increasing the complexity of RNN hypothesis class in terms of more layers and neurons, overall
the generalization performance improves; however, as the RNN models become deeper, overfitting
also occurs due to a large estimation error. Therefore, in practice, we can do a grid search such as
Figures 3 and 4 to determine the optimal number of layers and neurons.

5.1.3. Case Study 3: Different Regions in Ωρ̂

As discussed in Remark 6, to meet the modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂,
more data is needed as the state approaches the origin, i.e., x → 0. It is equivalent
to show that under the same data density for different regions within the stability re-
gion Ωρ̂, a larger constant γ is needed to bound the modeling error EM ≤ γ|x| for
the states close to the origin. Therefore, in this case study, we develop multiple RNN
models for different regions inside Ωρ̂ with the same data density, and demonstrate the
variation of generalization performances. Specifically, we choose 9 level sets of Lya-
punov function Ωρi := {x ∈ Rn | V̂(x) ≤ ρi}, i = 0, ..., 8, within Ωρ̂, with ρ̂ = 368 and
ρi = [40, 88, 115, 138, 159, 177, 195, 213, 244]. For example, the first RNN model (model 0
with ρ0) is developed and tested using the data within Ωρ0 , the second RNN model (model
1 with ρ1) uses the data between Ωρ0 and Ωρ1 , and so on. Figure 5 shows a schematic of
the training regions considered for the CSTR of Equation (74), where xs is the steady-state,
and Ωρ̂ is the stability region. The training datasets are generated for each region (i.e.,
elliptical annuli in Figure 5) with the same data density, where the data density is defined
as the ratio of sample size to the area of each elliptical annulus. Similarly, in this case study,
we use data from different regions within Ωρ̂ to build RNN models, while all the other
parameters remain the same. The RNN models are developed with one hidden layer of 20
neurons, and using MSE as loss function.

Figure 5. Schematic of different regions inside Ωρ̂.

To compute the modeling error |F(x, u)− Fnn(x, u)| = | dx
dt − dx̂

dt | where x and x̂ denote
the true state and predicted state, respectively, we carry out prediction for one integration
time step, and use finite difference method to approximate the derivatives following
Equation (56). Specifically, we first calculate the training and testing mean absolute errors
(MAE) and divide them by the integration time step hc, i.e., | x(t+hc)−x̂(t+hc)

hc
|. Subsequently,

to obtain an approximated value of γ for each model, i.e., EM
|x| ≤ γ, we divide those MAEs

by the maximum value of |x| in each elliptical annulus in Figure 5. Figure 6 shows the
training and testing errors for the RNN models trained for different regions inside Ωρ̂.

77

Mathematics 2021, 9, 1912

It is observed that under the same data density, the models trained for the regions close
to the origin (i.e., Models 0, 1, and 2 for Ωρ0 , Ωρ1 and Ωρ2) produce larger generalization
gaps. This implies a larger γ, or equivalently, more data is needed to meet the constraint
EM ≤ γ|x| for x in these regions. Additionally, it is observed that the generalization gap
settles at around 2 × 10−5 for model 4 and after because those RNN models have achieved
the best they can do under the current neural network training settings and data density.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

10-4

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

G
en

er
al

iz
at

io
n

G
ap

 (
M

A
E

) 10-4

Figure 6. RNN generalization performance vs. different regions in Ωρ̂.

5.1.4. Case Study 4: Weight Matrix Bound

From Equation (48), it is seen that the generalization gap also depends on the weight
matrix bound. To evaluate the relation between generalization performance and weight
matrix bound, in this case study, we train RNN models with different weight matrix bounds.
Specifically, we impose an upper bound constraint for each element in the RNN weight
matrices with the following values [0.8, 1.3, 1.8, 2.5, 3.0, 3.4, 3.9, 4.3].

The Frobenius norms of all the weight matrices are therefore also bounded. The
training and testing errors are calculated following the approach in Case study 1, and
are shown in Figure (7). It is observed that as the weight matrix bound becomes larger,
the generalization gap gradually increases and settles at around 8 × 10−4. This behavior
implies that the RNN model is over-fitting when training with a large weight bound. The
reason for the trend in Figure 7 is similar to that for Case study 2, which demonstrates
that as the size of neural network hypothesis class becomes larger with increasing weight
bounds, it is easier to find a hypothesis that fits training data well, but could also lead to
large testing error (i.e., over-fitting).

78

Mathematics 2021, 9, 1912

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

10-3

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

G
en

er
al

iz
at

io
n

G
ap

 (
M

S
E

)

10-3

Figure 7. RNN generalization performance vs. weight matrix bound.

5.1.5. Case Study 5: RNN Input Length

Lastly, we study the dependency of RNN generalization error on the input time length
t according to Equation (47). If we unfold a vanilla RNN over time to form a multi-layer
feedfoward neural network, then this relation can also be interpreted in the way that a deep
feedforward neural network has a large generalization error. In this example, we train RNN
models with different input time length as follows: t = 10−3 × [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] hr.

Figure 8 shows the training and testing errors for different time lengths. Specifically,
as RNN input time length increases, it is seen that the training error remains at a very low
level for all models, but the testing error gradually increases and finally settles at around
6 × 10−3. It is concluded from Figure 8 that a shorter input sequence yields better general-
ization performance, which is consistent with the theoretical result shown in Equation (47).
However, it should be noted that a shorter input sequence does not necessarily yield better
prediction in the formulation of MPC because as discussed in Theorem 2, in order to predict
future states for a long prediction horizon, the RNN prediction needs to be executed succes-
sively, which inevitably accumulates the error during calculations. Therefore, when used
in MPC, the RNN input length should be carefully chosen to account for MPC prediction
horizon and maintain a desired generalization performance simultaneously.

Remark 9. A small training dataset was chosen in Case studies 2–5 for demonstration purposes.
Specifically, it was demonstrated in Case study 1 that with more than 3000 data samples, both
training and testing errors are rendered sufficiently small. Therefore, to better demonstrate the
relation between RNN generalization error bound and RNN depth/width, and data time length in
other case studies, we chose a small training dataset such that significant differences can be observed
by varying RNN depths, widths, time sequence length. However, it is noted that in practice, the
sample size and all the other factors studied in this manuscript should be carefully chosen in order
to improve the RNN generalization performance.

79

Mathematics 2021, 9, 1912

1 2 3 4 5 6 7 8 9 10

10-3

0

2

4

6

T
ra

in
in

g
&

 T
es

tin
g

E
rr

or
s

10-3

1 2 3 4 5 6 7 8 9 10

10-3

2

3

4

5

6

7

G
en

er
al

iz
at

io
n

G
ap

 (
M

S
E

)

10-3

Figure 8. RNN generalization performance vs. input time length.

5.2. Closed-Loop Performance Analysis

In this section, we carry out closed-loop simulations of CSTR under the LMPC of
Equations (68)–(73) using the different RNN models derived from the previous case studies.
Additionally, we demonstrate the probabilistic closed-loop stability properties of RNN-
based LMPC through extensive closed-loop simulations for the CSTR of Equation (74) with
different initial conditions.

Figures 9–12 show the simulation results using 48 different initial conditions within
Ωρ̂ for a few RNN models trained in Case study 1. Specifically, we first discretize the
stability region Ωρ̂ and choose 48 initial conditions x0 ∈ Ωρ̂ that are evenly spread within
the stability region. Then, we run closed-loop simulations for all initial conditions using
the following settings: (1) the whole simulation period tp is twenty sampling periods
(i.e., 20 × 0.01 = 0.2 hr), (2) the stability region Ωρ̂ and the terminal region Ωρmin are
characterized as ρ̂ = 368 and ρmin = 2, respectively, and (3) the simulations are carried out
using UCLA Hoffman 2 cluster and the optimization problem is solved using the python
module of the IPOPT software package (i.e., PyIpopt). After obtaining the closed-loop
profiles for each initial condition, the following policies are utilized to determine whether
the closed-loop system is stable or not. Specifically, the closed-loop system is considered
unstable if (1) the closed-loop state leaves the stability region Ωρ̂ at any point during the
simulation, or (2) the closed-loop state remains inside Ωρ̂, but stays outside of Ωρmin until
the end of simulation or leaves Ωρmin after entering for the first time.

Figure 9 shows the probability of closed-loop stability calculated following the above
policies. It is seen that with more training data, the probability of the CSTR of Equation (74)
being stabilized at its steady-state becomes higher, and the probability settles at around
0.78 for a sufficiently large dataset. The probability results in Figure 9 for RNN models in
Case study 1 are consistent with its generalization performance plot in Figure 2, which
shows that the generalization error decreases with more data used for training. In addition
to the calculation of the probability for closed-loop stability, we also use the MPC cost
function of Equation (68) as an indicator for comparing control performance in terms of
the convergence speed and energy consumption. Specifically, the MPC cost function of
Equation (68) in this example is designed in the following form:

LMPC(x, u) = xT Px + uTQu (76)

80

Mathematics 2021, 9, 1912

where P = [1000 0; 0 1] and Q = [1 0; 0 3 × 10−10] are chosen such that the two states
and the two inputs are in the same order of magnitude, respectively. Also, in this example,
we put more penalty on the states x to allow the states to be driven to the steady-state
more quickly. For each RNN model, we calculate the total costs

∫ tp
t=0 LMPC(x, u)dt over

the entire simulation period tp = 0.2 hr, and sum up the cost values for all the trajectories
initiated from 48 different initial conditions. Figure 10 shows the MPC total costs for the
RNN models trained with different data sample sizes. It is demonstrated that with less
training data, the MPC achieves a higher total cost, representing a slower convergence to
the steady-state and/or a higher energy consumption. With a large number of training data
(i.e., ≥ 6000), the MPC total costs remain at around 1420, and no significant improvement
is noticed with more data added in training. Additionally, Figures 11 and 12 show the
closed-loop state trajectory and state profiles for one of the initial condition out of 48 initial
conditions. As shown in Figure 11, the state trajectory using the RNN model trained
with 50 training data (dashed line) leaves the stability region due to poor predictions in
solving the MPC optimization problem. On the contrary, the state trajectory using the RNN
model with 14,000 training data (solid line) moves towards the steady-state smoothly and
is ultimately bounded in the terminal set Ωρmin . This can also be seen in the closed-loop
state profiles of Figure 12, where the temperature under 50 training data shows a sharp
increase at 0.03 hr.

0 2 4 6 8 10 12 14
Training sample size

×104

0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Figure 9. Probability of closed-loop stability vs. training sample sizes.

0 2 4 6 8 10 12 14

104

1400

1450

1500

1550

1600

1650

M
P

C
 to

ta
l c

os
ts

Figure 10. MPC total costs vs. training sample size.

81

Mathematics 2021, 9, 1912

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80
stability region
terminal region
50 training data
140000 training data

Figure 11. Closed-loop state trajectory under LMPC using two RNN models trained with different
data sample sizes.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1
50 training data
140000 training data

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-40

-20

0

20

Figure 12. Closed-loop state profiles under LMPC using two RNN models trained with different
data sample sizes.

Similar to the analysis for Case study 1, Figures 13–16 show the probability of closed-
loop stability, MPC total costs, as well as the state-space trajectory and state profiles for
one of the initial condition for the RNN models in Case study 2. In Figure 13, it is shown
that the probability starts from 0.5, and settles at around 0.7 for wider RNN models (i.e.,
more neurons). Figure 14 shows the MPC total costs for different models, from which
it is demonstrated that the first model with only 5 neurons has a extremely high value,
and all the other models achieve a total cost around 1500. Figures 13 and 14 demonstrate
that all the RNN models except the first one achieve desired closed-loop performance in
terms of high probability of closed-loop stability and low total costs. This is due to the low
generalization error (around 0.005) for nearly all the models in Figure 3. Figure 15 shows
the comparison of the closed-loop state trajectories under the two RNN models using 5 and
350 neurons, respectively, from which it is demonstrated that the model with 5 neurons
(dashed line) drives the state out of the stability region, while the one with 350 neurons
successfully stabilizes the system in the terminal set. The corresponding state profiles (i.e.,
CA − CAs and T − Ts) can be found in Figure 16.

82

Mathematics 2021, 9, 1912

0 50 100 150 200 250 300 350
Number of neurons

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

Figure 13. Probability of closed-loop stability vs. RNN width.

0 50 100 150 200 250 300 350
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

M
P

C
 to

ta
l c

os
ts

Figure 14. MPC total costs vs. RNN width.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-120

-100

-80

-60

-40

-20

0

20

40

60

80 stability region
terminal region
5 neurons
350 neurons

Figure 15. Closed-loop state trajectory under LMPC using two RNN models trained with differ-
ent widths.

83

Mathematics 2021, 9, 1912

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

0

1

2
5 neurons
350 neurons

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-300

-200

-100

0

Figure 16. Closed-loop state profiles under LMPC using two RNN models trained with differ-
ent widths.

To simplify the discussion for the remaining case studies, we will show the probability
plot and MPC total cost plot only. Figure 17 shows the probability of closed-loop stability
with respect to different RNN depths. It is demonstrated that the probability starts close
to zero for one layer, increases up to 0.7 for four layers, and then decreases to almost zero
for six layer and after. This trend follows exactly the generalization error plot in Figure 4,
which shows the model with two, three and four layers achieve the lowest generalization
error, and the models with more than five layers show worse generalization performance
due to overfitting. Comparing to the closed-loop results for the RNNs with various widths
in Figures 13 and 14, it is not surprising to see that the overall probability of closed-loop
stability in this case study is worse because the open-loop generalization performance for
the RNNs developed with different depths (Figure 4) is worse than that for the RNNs
developed with different widths (Figure 3). Additionally, in Figure 18, we observe a similar
pattern showing that the MPC total costs have the lowest values for two, three and four
layers, and rise up for more layers.

1 2 3 4 5 6 7 8 9 10
Number of layers

0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Figure 17. Probability of closed-loop stability vs. RNN depth.

84

Mathematics 2021, 9, 1912

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

M
P

C
 to

ta
l c

os
ts

104

Figure 18. MPC total costs vs. RNN depth.

Closed-loop simulations for Case study 3 of different regions in Ωρ̂ are not carried out
in this work, since the MPC formulation of Equations (68)–(73) only uses a single RNN
model for prediction. Additionally, it is demonstrated from previous case studies that a
single RNN model is sufficient to capture the process dynamics in the stability region, and
therefore, there is no need to use different RNN models for different regions in Ωρ̂ from
the control perspective.

Figure 19 shows the probability of closed-loop stability for the RNN models with
different weight matrix bounds in Case study 4. It is shown that all the RNN models
achieve a probability up to 0.7. The high probability of closed-loop stability is expected
since in the open-loop generalization error plot in Figure 7, it is shown that all the models
with different weight matrix bounds have a sufficiently small generalization error around
8 × 10−4. As a result, the MPC total costs in Figure 20 are stable around 1000 for all models.

0 1 2 3 4 5 6 7
Models

0

0.5

1

P
ro

ba
bi

lit
y

Figure 19. Probability of closed-loop stability vs. weight matrix bound.

85

Mathematics 2021, 9, 1912

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

M
P

C
 to

ta
l c

os
ts

Figure 20. MPC total costs vs. weight matrix bound.

Lastly, Figures 21 and 22 show the closed-loop simulation results for Case study 5. As
shown in Figure 21, the probability of closed-loop stability increases as the RNN input time
length increases, and settles at around 0.9 for input time length greater than 6 × 10−3 hr.
This seems inconsistent with the generalization performance of Figure 8 which shows the
generalization error increases for longer input sequences at first glance. However, as we
have discussed earlier, a low open-loop generalization error for short input sequences does
not guarantee a desired closed-loop performance under MPC. Specifically, with shorter
input sequences, the RNN prediction needs to be executed successively in each MPC
iteration to predict all the future states within the prediction horizon. For example, in order
to predict one sampling time Δ = 10−2 hr, the first RNN model with 1 × 10−3 input length
in Figure 21 needs to run 10 times, and each time uses the previous predicted state as the
initial state. The error accumulates during the calculation, which ultimately leads to poorer
closed-loop performance. Therefore, for RNN models used in MPC, the input time length
should be chosen carefully accounting for the system sampling time and MPC prediction
horizon. Additionally, Figure 22 shows the MPC total costs with respect to different RNN
input time lengths. It is seen that the first RNN model achieves the worst cost value, and all
the other models have similar cost values around 2000. Through the closed-loop simulation
of all the case studies investigated in the previous section, we demonstrate that the closed-
loop performance is consistent with the open-loop generalization performance in the way
that lower generalization errors typically leads to higher probability of closed-loop stability
and lower MPC total costs. Therefore, the generalization error bound proposed in this
work provides an efficient method for choosing neural network structure and data sample
size to meet the closed-loop stability requirements.

2 4 6 8 10
Input time length (hr)

×10-3

0

0.5

1

P
ro

ba
bi

lit
y

Figure 21. Probability of closed-loop stability vs. input time length.

86

Mathematics 2021, 9, 1912

1 2 3 4 5 6 7 8 9 10

10-3

0

2000

4000

6000

8000

10000

12000

14000

M
P

C
 to

ta
l c

os
ts

Figure 22. MPC total costs vs. input time length.

Remark 10. The RNN models are trained offline, and the RNN-based MPC is solved in real time
with new state measurements available at each sampling time. The averaged computation time for
solving RNN-based MPC per sampling step is around 10 s, which is less than one sampling period
Δ = 0.01 hr = 36 s in this example. Therefore, the RNN-based MPC scheme can be implemented
in real time without any computational issues.

6. Conclusions

In this work, we developed a generalization probabilistic error bound for RNN models
by taking advantage of the Rademacher complexity method for vector-valued functions.
The RNN models were incorporated in the design of MPC, and probabilistic closed-loop
stability properties were derived based on the RNN generalization error bounds. A number
of case studies were simulated using a nonlinear chemical reactor example to demonstrate
the impact of training sample size, the number of neurons and layers, regions where
the data was generated, and input time length on the RNN generalization performance.
Closed-loop simulation were carried out to further demonstrate the probabilistic closed-
loop stability properties derived by the RNN-based LMPC.

Author Contributions: Z.W. developed the main results, performed the simulation studies and
prepared the initial draft of the paper. D.R. contributed to the simulation studies in this manuscript.
Q.G. and P.D.C. developed the idea of RNN generalization error, oversaw all aspects of the research
and revised this manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of the research article.

References

1. Cozad, A.; Sahinidis, N.V.; Miller, D.C. A combined first-principles and data-driven approach to model building. Comput. Chem. Eng.
2015, 73, 116–127. [CrossRef]

2. Wilson, Z.T.; Sahinidis, N.V. The ALAMO approach to machine learning. Comput. Chem. Eng. 2017, 106, 785–795. [CrossRef]
3. Ali, J.M.; Hussain, M.A.; Tade, M.O.; Zhang, J. Artificial Intelligence techniques applied as estimator in chemical process

systems–A literature survey. Expert Syst. Appl. 2015, 42, 5915–5931.
4. Han, H.; Wu, X.; Qiao, J. Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural Netw.

Learn. Syst. 2013, 24, 1425–1436. [PubMed]
5. Wang, T.; Gao, H.; Qiu, J. A combined adaptive neural network and nonlinear model predictive control for multirate networked

industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 416–425. [CrossRef] [PubMed]

87

Mathematics 2021, 9, 1912

6. Wang, Y. A new concept using LSTM Neural Networks for dynamic system identification. In Proceedings of the American
Control Conference 2017, Seattle, WA, USA, 24–26 May 2017; pp. 5324–5329.

7. Wong, W.; Chee, E.; Li, J.; Wang, X. Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical
Manufacturing. Mathematics 2018, 6, 242. [CrossRef]

8. Shahnazari, H.; Mhaskar, P.; House, J.M.; Salsbury, T.I. Modeling and fault diagnosis design for HVAC systems using recurrent
neural networks. Comput. Chem. Eng. 2019, 126, 189–203. [CrossRef]

9. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine Learning-Based Predictive Control of Nonlinear Processes. Part I: Theory.
AIChE J. 2019, 65, e16729. [CrossRef]

10. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine Learning-Based Predictive Control of Nonlinear Processes. Part II:
Computational Implementation. AIChE J. 2019, 65, e16734. [CrossRef]

11. Pan, Y.; Wang, J. Nonlinear model predictive control using a recurrent neural network. In Proceedings of the IEEE International
Joint Conference on Neural Networks 2008, Hong Kong, China, 1–8 June 2008; pp. 2296–2301.

12. Pan, Y.; Wang, J. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks.
IEEE Trans. Ind. Electron. 2011, 59, 3089–3101. [CrossRef]

13. Xu, J.; Li, C.; He, X.; Huang, T. Recurrent neural network for solving model predictive control problem in application of four-tank
benchmark. Neurocomputing 2016, 190, 172–178. [CrossRef]

14. Hoskins, J.; Himmelblau, D. Process control via artificial neural networks and reinforcement learning. Comput. Chem. Eng. 1992,
16, 241–251. [CrossRef]

15. Vepa, R. A review of techniques for machine learning of real-time control strategies. Intell. Syst. Eng. 1993, 2, 77–90. [CrossRef]
16. Hussain, M. Review of the applications of neural networks in chemical process control—Simulation and online implementation.

Artif. Intell. Eng. 1999, 13, 55–68. [CrossRef]
17. Hewing, L.; Wabersich, K.; Menner, M.; Zeilinger, M. Learning-based model predictive control: Toward safe learning in control.

Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 269–296. [CrossRef]
18. Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478.

[CrossRef]
19. Mittal, M.; Gallieri, M.; Quaglino, A.; Salehian, S.; Koutník, J. Neural lyapunov model predictive control. arXiv 2020,

arXiv:2002.10451.
20. Limon, D.; Calliess, J.; Maciejowski, J. Learning-based nonlinear model predictive control. IFAC-PapersOnLine 2017, 50, 7769–7776.

[CrossRef]
21. Aswani, A.; Gonzalez, H.; Sastry, S.; Tomlin, C. Provably safe and robust learning-based model predictive control. Automatica

2013, 49, 1216–1226. [CrossRef]
22. Valiant, L.G. A theory of the learnable. Commun. ACM 1984, 27, 1134–1142. [CrossRef]
23. Lygeros, J.; Margellos, K.; Prandini, M. Compression learning for chance constrained stochastic MPC. IFAC-PapersOnLine 2015,

48, 286–293. [CrossRef]
24. Zhou, Y.; Li, D.; Spanos, C. Learning optimization friendly comfort model for HVAC model predictive control. In Proceedings of

the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015;
pp. 430–439.

25. Bartlett, P.; Foster, D.J.; Telgarsky, M. Spectrally-normalized margin bounds for neural networks. arXiv 2017, arXiv:1706.08498.
26. Zhang, Y.; Lee, J.; Wainwright, M.; Jordan, M.I. On the learnability of fully-connected neural networks. In Proceedings of the

Artificial Intelligence and Statistics PMLR 2017, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 83–91.
27. Golowich, N.; Rakhlin, A.; Shamir, O. Size-independent sample complexity of neural networks. In Proceedings of the Conference

On Learning Theory PMLR 2018, Stockholm, Sweden, 5–9 July 2018; pp. 297–299.
28. Cao, Y.; Gu, Q. Tight sample complexity of learning one-hidden-layer convolutional neural networks. arXiv 2019,

arXiv:1911.05059.
29. Chen, M.; Li, X.; Zhao, T. On generalization bounds of a family of recurrent neural networks. arXiv 2019, arXiv:1910.12947.
30. Cao, Y.; Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. arXiv 2019,

arXiv:1905.13210.
31. Zou, D.; Gu, Q. An improved analysis of training over-parameterized deep neural networks. arXiv 2019, arXiv:1906.04688.
32. Akpinar, N.; Kratzwald, B.; Feuerriegel, S. Sample complexity bounds for recurrent neural networks with application to

combinatorial graph problems. arXiv 2019, arXiv:1901.10289.
33. Reid, M. Generalization bounds. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010; pp. 447–454._328.

[CrossRef]
34. Hanson, J.; Raginsky, M.; Sontag, E. Learning Recurrent Neural Net Models of Nonlinear Systems. arXiv 2020, arXiv:2011.09573.
35. Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
36. Maurer, A. A vector-contraction inequality for rademacher complexities. In Lecture Notes in Computer Science, Proceedings of the

International Conference on Algorithmic Learning Theory, Bari, Italy, 19–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 3–17.

37. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018.

88

Mathematics 2021, 9, 1912

38. Ledoux, M.; Talagrand, M. Probability in Banach Spaces: Isoperimetry and Processes; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

39. Wu, Z.; Rincon, D.; Christofides, P.D. Process structure-based recurrent neural network modeling for model predictive control of
nonlinear processes. J. Process Control 2020, 89, 74–84. [CrossRef]

40. Keras. Available online: https://keras.io (accessed on 1 August 2015)
41. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear

programming. Math. Program. 2006, 106, 25–57. [CrossRef]

89

mathematics

Article

NICE: Noise Injection and Clamping Estimation for Neural
Network Quantization

Chaim Baskin 1,*,†, Evgenii Zheltonozhkii 1,†, Tal Rozen 2,†, Natan Liss 2, Yoav Chai 3, Eli Schwartz 3, Raja Giryes 3,

Alexander M. Bronstein 1 and Avi Mendelson 1

Citation: Baskin, C.; Zheltonozhkii,

E.; Rozen, T.; Liss, N.; Chai, Y.;

Schwartz, E.; Giryes, R.; Bronstein,

A.M.; Mendelson, A. NICE: Noise

Injection and Clamping Estimation

for Neural Network Quantization.

Mathematics 2021, 9, 2144. https://

doi.org/10.3390/math9172144

Academic Editor: Alessandro

Niccolai

Received: 12 August 2021

Accepted: 31 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Technion, Haifa 3200003, Israel; evgeniizh@campus.technion.ac.il (E.Z.);
bron@cs.technion.ac.il (A.M.B.); avi.mendelson@cs.technion.ac.il (A.M.)

2 Department of Electrical Engineering, Technion, Haifa 3200003, Israel; tal.rozen@campus.technion.ac.il (T.R.);
lissnatan@campus.technion.ac.il (N.L.)

3 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel; yoavchai1@mail.tau.ac.il (Y.C.) ;
eliyahus@mail.tau.ac.il (E.S.); raja@tauex.tau.ac.il (R.G.)

* Correspondence: chaimbaskin@cs.technion.ac.il
† These authors contributed equally to this work.

Abstract: Convolutional Neural Networks (CNNs) are very popular in many fields including com-
puter vision, speech recognition, natural language processing, etc. Though deep learning leads to
groundbreaking performance in those domains, the networks used are very computationally de-
manding and are far from being able to perform in real-time applications even on a GPU, which is not
power efficient and therefore does not suit low power systems such as mobile devices. To overcome
this challenge, some solutions have been proposed for quantizing the weights and activations of
these networks, which accelerate the runtime significantly. Yet, this acceleration comes at the cost of
a larger error unless spatial adjustments are carried out. The method proposed in this work trains
quantized neural networks by noise injection and a learned clamping, which improve accuracy.
This leads to state-of-the-art results on various regression and classification tasks, e.g., ImageNet
classification with architectures such as ResNet-18/34/50 with as low as 3 bit weights and activations.
We implement the proposed solution on an FPGA to demonstrate its applicability for low-power
real-time applications. The quantization code will become publicly available upon acceptance.

Keywords: neural networks; low power; quantization; CNN architecture

1. Introduction

Deep neural networks are important tools in the machine learning arsenal. They
have shown spectacular success in a variety of tasks in a broad range of fields such as
computer vision, computational and medical imaging, signal, image, speech, and language
processing [1–3].

However, while deep learning models’ performance is impressive, the computational
and storage requirements of both training and inference are harsh. For example, ResNet-
50 [4], a popular choice for image detection, has 98 MB parameters and requires 4 GFLOPs
of computations for a single inference. Common devices do not have such resources, which
makes deep learning infeasible especially when it comes to low-power devices such as
smartphones and the Internet of Things (IoT).

In an attempt to solve these problems, many researchers have recently proposed
less demanding models, often at the expense of more complicated training procedures.
Since the training is usually performed on servers with significantly larger resources, this
is usually an acceptable trade-off. Some methods include pruning weights and feature
maps, which reduce the model’s memory print and compute resources [5,6], low-rank
decompression that removes the redundancy of parameters and feature maps [7,8], and
efficient architecture design that requires less communication and has more feasible de-
ployment [9,10].

Mathematics 2021, 9, 2144. https://doi.org/10.3390/math9172144 https://www.mdpi.com/journal/mathematics

91

Mathematics 2021, 9, 2144

One prominent approach is to quantize the networks. This approach reduces the
size of memory needed to keep a large number of parameters while also reducing the
computation resources. The default choice for the data type of the neural networks’ weights
and feature maps (activations) is 32 bit (single-precision) floating point. Gupta et al. [11]
have shown that quantizing the pre-trained weights to a 16 bit fixed point has almost no
effect on the accuracy of the networks. Moreover, minor modifications allow performing
an integer-only 8 bit inference with reasonable performance degradation [12], which is
utilized in DL frameworks, such as TensorFlow. One of the current challenges in network
quantization is reducing the precision even further, up to 1–5 bits per value. In this case,
straightforward techniques may result in unacceptable quality degradation.

Contribution. This paper introduces a novel simple approach denoted NICE (noise
injection and clamping estimation) for neural network quantization that relies on the follow-
ing two easy-to-implement components: (i) noise injection during training that emulates
the quantization noise introduced at inference time and (ii) statistics-based initialization of
parameter and activation clamping for faster model convergence. In addition, activation
clamp is learned during train time. We also propose an integer-only scheme for an FPGA
on a regression task [13].

Our proposed strategy for network training leads to an improvement over the state-of-
the-art quantization techniques in the performance vs. complexity trade-off. Our approach
can be applied directly to existing architectures without the need to modify them at
training (as opposed, for example, to the teacher–student approaches [14] that require to
train a bigger network, or the XNOR networks [15] that typically increase the number of
parameters by a significant factor in order to meet accuracy goals).

Moreover, our new technique allows quantizing all the parameters in the network to
fixed point (integer) values. This includes the batch-norm component that is usually not
quantized in other works. Thus, our proposed solution allows the integration of neural
networks in dedicated hardware devices such as FPGA and ASIC easier. As a proof of
concept, we present also a case study of such an implementation on hardware.

2. Related Work

Expressiveness-based methods. The quantization of neural networks to extremely
low-precision representations (up to 2 or 3 possible values) has been actively studied
in recent years [15–18]. To overcome the accuracy reduction, some works proposed to
use a wider network [14,19,20], which compensates the expressiveness reduction of the
quantized networks. For example, 32 bit feature maps were regarded as 32 binary ones.
Another way to improve expressiveness, adopted by Zhu et al. [19] and Zhou et al. [21] is
to add a linear scaling layer after each of the quantized layers.

Keeping a full-precision copy of quantized weights. Lately, the most common ap-
proach to training a quantized neural network [15,16,22–24] is to keep two sets of weights—
forward pass is performed with quantized weights, and updates are performed on full
precision ones, i.e., approximating gradients with the straight-through estimator (STE) [25].
For quantizing the parameters, either a stochastic or deterministic function can be used.

Distillation. One of the leading approaches used today for quantization relies on
the idea of distillation [26]. In distillation a teacher–student setup is used, where the
teacher is either the same or a larger full precision neural network, and the student is the
quantized one. The student network is trained to imitate the output of the teacher net-
work. This strategy is successfully used to boost the performance of existing quantization
methods [14,27,28].

Model parametrization. Zhang et al. [18] proposed to represent the parameters with
learned basis vectors that allow acquiring an optimized non-uniform representation. In this
case, MAC operations can be computed with bitwise operations. Choi et al. [29] proposed
to learn the clamping value of the activations to find the balance between clamping and
quantization errors. In this work, we also learn this value but with the difference that
we are learning the clamps value directly using STE backpropagation method without

92

Mathematics 2021, 9, 2144

any regulations on the loss. Jung et al. [28] created a more complex parameterization of
both weights and activations and approximated them with symmetric piecewise linear
function, learning both the domains and the parameters directly from the loss function of
the network.

Optimization techniques. Zhou et al. [21] and Dong et al. [30] used the idea of not
quantizing all the weights simultaneously but rather gradually increasing the number of
quantized weights to improve the convergence. McKinstry et al. [31] demonstrated that
4 bit fully integer neural networks can achieve full-precision performance by applying
simple techniques to combat variance of gradients: larger batches and proper learning
rate annealing with longer training time. However, 8 bit and 32 bit integer representa-
tions were used for the multiplicative (i.e., batch normalization) and additive constants
(biases), respectively.

Generalization bounds. Interestingly, the quantization of neural networks has been
used recently as a theoretical tool to understand better the generalization of neural networks.
It has been shown that while the generalization error does not scale with the number of
parameters in over-parameterized networks, it does so when these networks are being
quantized [32].

Hardware implementation complexity. While the quantization of CNN parameters
leads to a reduction of power and area, it can also generate unexpected changes in the
balance between communication and computation. Karbachevsky et al. [33] studied the
impact of CNN quantization on hardware implementation of computational resources.
It combines the research conducted in Baskin et al. [34] to propose a computation and
communication analysis for quantized CNN.

3. Method

In this work, we propose a training scheme for quantized neural networks designed for
fast inference on hardware with integer-only arithmetic. To achieve maximum performance,
we applied a combination of several well-known and novel techniques. Firstly, in order
to emulate the effect of quantization, we injected additive random noise into the network
weights. Uniform noise distribution is known to approximate well the quantization error
for fine quantizers; however, our experiments show that it is also suitable for relatively
coarse quantization. As seen in Figure 1 the distribution of noise is almost uniform for 4
and 5 bits and only starts to deviate from the uniform model in 3 bits, which corresponds
to only 8 bins.

Figure 1. Weight quantization error histogram for a range of bitwidths.

Furthermore, some amount of random weight perturbation seems to have a regular-
ization effect beneficial for the overall convergence of the training algorithm. Secondly, we
used a gradual training scheme to minimize the perturbation of network parameters per-
formed simultaneously. In order to give the quantized layers as many gradient updates as
possible, we used the STE approach to pass the gradients to the quantized layers. After the
gradual phase, the whole network was quantized and trained for a number of fine-tuning
epochs. Thirdly, we propose to clamp both the activations and weights in order to reduce
the quantization bin size (and, thus, the quantization error) at the expense of some sacrifice
of the dynamic range. The clamping values were initialized using the statistics of each
layer. In order to truly optimize the trade-off between the reduction of the quantization

93

Mathematics 2021, 9, 2144

error vs. that of the dynamic range, we learned optimal clamping values by defining a loss
on the quantization error.

Lastly, following the common approach proposed by Zhou et al. [23], we did not
quantize the first and last layers of the networks, which have significantly higher impacts
on network performance.

Algorithm 1 summarizes the proposed training method for network quantization. The
remainder of the section details these main ingredients of our method.

Algorithm 1 Training a neural network with NICE. N denotes the number of layers; S is
the number of epochs in which each layer’s weights are noised; T is the total number of
training epochs; c is the current noised layer; i denotes the ith layer; W is the weights of
the layer; f denotes the layer’s function, i.e, convolution or fully connected; and α and β
are hyper-parameters.

1: procedure NICE (Network) � Training using NICE method
2: for i = 0 to N do
3: meanwi ← Running mean(Wi) � Weights of each layer
4: stdwi ← Running std(Wi) � Weights of each layer
5: meanai ← Running mean(Acti) � Activations of each layer on training set
6: stdai ← Running std(Acti) � Activations of each layer on training set
7: cwi ← meanwi + α × stdwi � Weight clamp
8: cai ← meanai + β × stdai � Activations clamp
9: end for

10: e←0
11: c←0
12: while e �= T do
13: for i = 0 to N do
14: for s = 0 to S do
15: Wi=c ← Noise(Wi=c) � Adding uniform noise to weights
16: Wi ← Clamp(Wi,−cwi , cwi)
17: Wi<c ← Quantize(Wi<c)
18: Acti ← f (Wi, Acti−1)
19: Clampedi ←Clamp(Acti, 0, cai)
20: Acti ←Quantize(Clampedi)
21: Learn(cai) � Backpropagation
22: end for
23: c←c + 1
24: end for
25: e←e + 1
26: end while
27: end procedure

3.1. Uniform Noise Injection

We propose to inject uniform additive noise to weights and biases during model
training to emulate the effect of quantization incurred at inference. Prior works have
investigated the behavior of quantization error [35,36] and concluded that in sufficiently
fine-grain quantizers, it can be approximated as a uniform random variable. We observed
the same phenomena and empirically verified it for weight quantization as coarse as 5 bits.

The advantage of the proposed method is that the updates performed during the
backward pass immediately influence the forward pass, in contrast to strategies that
directly quantize the weights, where small updates often leave them in the same bin, thus,
effectively unchanged.

In order to achieve a dropout-like effect in the noise injection, we use a Bernoulli dis-
tributed mask M, quantizing part of the weights and adding noise to the others. From em-
pirical evidence, we chose M ∼ Ber(0.05) as it gave the best results for the range of
bitwidths in our experiments. Instead of using the quantized value ŵ = QΔ(w) of a weight

94

Mathematics 2021, 9, 2144

w in the forward pass, ŵ = (1 − M)QΔ(w) + M(w − e) is used with e ∼ Uni(−Δ/2, Δ/2),
where Δ denotes the size of the quantization bin.

3.2. Gradual Quantization

In order to improve the scalability of the method for deeper networks, it is desirable
to avoid the significant change of the network behavior due to quantization. Thus, we start
by gradually adding a subset of weights to the set of quantized parameters, allowing the
rest of the network to adapt to the changes.

The gradual quantization is performed in the following way: the network is split into
N equally-sized blocks of layers {B1, . . . , BN}. At the i-th stage, we inject the noise into
the weights of the layers from block Bi. The previous blocks {B1, . . . , Bi−1} are quantized,
while the following blocks {Bi+1, . . . , BN} remain at full precision. We apply the gradual
process only once, i.e., when the N-th stage finishes, in the remaining training epochs we
quantize and train all the layers using the STE approach.

This gradual process of increasing the number of quantized layers is similar to the one
proposed by Xu et al. [37]. This gradual process reduces, via the number of parameters,
the amount of simultaneously injected noise and improves convergence. Since we start
from the earlier blocks, the later ones have an opportunity to adapt to the quantization
error affecting their inputs, and thus, the network does not change drastically during any
phase of quantization. After finishing the training with the noise injection into the block
of layers BN , we continue the training of the fully quantized network for several epochs
until convergence. In the case of a pre-trained network destined for quantization, we
have found that the optimal block size is a single layer with the corresponding activation,
while using more than one epoch of training with the noise injection per block does not
improve performance.

3.3. Clamping and Quantization

In order to quantize the network weights, we clamp their values in the range [−cw, cw]:

wc = Clamp(w,−cw, cw) = max (−cw, min (x, cw)). (1)

The parameter cw is defined per layer and is initialized with cw = mean(w) + β ×
std(w), where w values are the weights of the layer, and β is a hyper-parameter. Given cw,
we uniformly quantize the clamped weight into Bw bits according to

ŵ =

[
wc

2Bw−1 − 1
cw

]
cw

2Bw−1 − 1
,

where [·] denotes the rounding operation.
The quantization of the network activations is performed in a similar manner. The con-

ventional ReLU activation function in CNNs is replaced by the clamped ReLU,

ac = Clamp(a, 0, ca), (2)

where a denotes the output of the linear part of the layer, ac is the nonnegative value of
the clamped activation prior to quantization, and ca is the clamping range. The constant
ca is set as a local parameter of each layer and is learned with the other parameters of the
network via backpropagation. We used the initialization ca = mean(a) + α × std(a) with
the statistics computed on the training dataset and α set as a hyper-parameter.

A quantized version of the truncated activation is obtained by quantizing ac uniformly
to Ba bits,

â =

[
ac

2Ba − 1
ca

]
· ca

2Ba − 1
. (3)

95

Mathematics 2021, 9, 2144

Since the Round function is non-differentiable, we used the STE approach to propagate
the gradients through it to the next layer. For the update of ca, we calculated the derivative
of â with respect to ca as

∂â
∂ac

=

{
1, ac ∈ [0, ca]

0, otherwise.
(4)

Figure 2 depicts the evolution of the activation clamp values throughout the epochs.
In this experiment, α was set to 5. It can be seen that activation clamp values converge
to values smaller than the initialization. This shows that the layer prefers to shrink the
dynamic range of the activations, which can be interpreted as a form of regularization
similar in its purpose to weight decay on weights.

Figure 2. Activation clamp values during ResNet-18 training on CIFAR10 dataset.

The quantization of the layer biases is more complex, since their scale depends on
the scales of both the activations and the weights. For each layer, we initialize the bias
clamping value as

cb =

⎛⎜⎜⎜⎝ ca

2Ba − 1︸ ︷︷ ︸
Activation scale

· cw

2Bw−1 − 1︸ ︷︷ ︸
Weight scale

⎞⎟⎟⎟⎠ ·
⎛⎝ 2Bb−1 − 1︸ ︷︷ ︸

Maximal bias value

⎞⎠, (5)

where Bb denotes the bias bitwidth. The biases are clamped and quantized in the same
manner as the weights.

4. Results

To demonstrate the effectiveness of our method, we implemented it in PyTorch and
evaluated it using image classification datasets (ImageNet and CIFAR-10) and a regression
scenario (the MSR joint denoising and demosaicing dataset [38]). In all the experiments,
we used a pre-trained FP32 model, which was then quantized using NICE .

4.1. CIFAR-10

We tested NICE with ResNet-18 on CIFAR-10 for various quantization levels of the
weights and activations. Table 1 reports the results. Notice that for the case of 3 bit weights

96

Mathematics 2021, 9, 2144

activations, we obtain the same accuracy and for the 2 bit case, only a small degradation.
Moreover, observe that when we quantize only the weights or activations, we get a nice
regularization effect that improves the achieved accuracy.

Table 1. NICE accuracy (% top-1) on CIFAR-10 for range of bitwidths.

Activation Bits
1 2 3 32

Weight
bits

2 89.5 92.53 92.69 92.71
3 91.32 92.74 93.01 93.26

32 91.87 93.04 93.15 93.02

4.2. ImageNet

For quantizing the ResNet-18/34/50 networks for ImageNet, we fine-tuned a given
pre-trained network using NICE . We trained a network for a total of 120 epochs, following
the gradual process described in Section 3.2 with the number of stages N set to the number
of trainable layers. We used an SGD optimizer with a learning rate of 10−4, momentum of
0.9, and weight decay of 4 × 10−5.

Table 2 compares NICE with other leading approaches to low-precision quantiza-
tion [18,28,29,31]. Various quantization levels of the weights and activations are presented.
As a baseline, we used a pre-trained full-precision model.

Table 2. ImageNet comparison. We report top-1, top-5 accuracy on ImageNet compared with state-of-
the-art prior methods. For each DNN architecture, rows are sorted in number of bits. Baseline results
were taken from PyTorch model zoo. Compared methods: JOINT [28], PACT [29], LQ-Nets [18],
FAQ [31].

Network Method Precision (w,a) Accuracy (% Top-1) Accuracy (% Top-5)

ResNet-18 baseline 32,32 69.76 89.08
ResNet-18 FAQ 8,8 70.02 89.32
ResNet-18 NICE (Ours) 5,5 70.35 89.8
ResNet-18 PACT 5,5 69.8 89.3
ResNet-18 NICE (Ours) 4,4 69.79 89.21
ResNet-18 JOINT 4,4 69.3 -
ResNet-18 PACT 4,4 69.2 89.0
ResNet-18 FAQ 4,4 69.81 89.10
ResNet-18 LQ-Nets 4,4 69.3 88.8
ResNet-18 JOINT 3,3 68.2 -
ResNet-18 NICE (Ours) 3,3 67.68 88.2
ResNet-18 LQ-Nets 3,3 68.2 87.9
ResNet-18 PACT 3,3 68.1 88.2

ResNet-34 baseline 32,32 73.30 91.42
ResNet-34 FAQ 8,8 73.71 91.63
ResNet-34 NICE (Ours) 5,5 73.72 91.60
ResNet-34 NICE (Ours) 4,4 73.45 91.41
ResNet-34 FAQ 4,4 73.31 91.32
ResNet-34 LQ-Nets 3,3 71.9 88.15
ResNet-34 NICE (Ours) 3,3 71.74 90.8

ResNet-50 baseline 32,32 76.15 92.87
ResNet-50 FAQ 8,8 76.52 93.09
ResNet-50 PACT 5,5 76.7 93.3
ResNet-50 NICE (Ours) 5,5 76.73 93.31
ResNet-50 NICE (Ours) 4,4 76.5 93.3
ResNet-50 LQ-Nets 4,4 75.1 92.4
ResNet-50 PACT 4,4 76.5 93.2
ResNet-50 FAQ 4,4 76.27 92.89
ResNet-50 NICE (Ours) 3,3 75.08 92.35
ResNet-50 PACT 3,3 75.3 92.6
ResNet-50 LQ-Nets 3,3 74.2 91.6

Our approach achieves state-of-the-art results for 4 and 5 bits quantization and compa-
rable results for 3 bits quantization, on the different network architectures. Moreover, notice

97

Mathematics 2021, 9, 2144

that our results for the 5,5 setup, on all the tested architectures, have slightly outperformed
the FAQ 8,8 results.

4.3. Regression—Joint Denoising and Demosaicing

In addition to the classification tasks, we apply NICE on a regression task—namely,
joint image denoising and demosaicing. The network we used is the one proposed in [13].
We slightly modified it by adding to it Dropout with p = 0.05, removing the tanh activa-
tions, and adding skip connections between the input and the output images. These skip
connections improve the quantization results as, in this case, the network only needs to
learn the necessary modifications to the input image. Figure 3 shows the whole network,
where the modifications are marked in red. The three channels of the input image are
quantized to 16 bits, while the output of each convolution, when followed by an activation,
are quantized to 8 bits (marked in Figure 3). The first and last layers are also quantized.

We applied NICE on a full-precision pre-trained network for 500 epochs with Adam
optimizer with learning rate of 3× 10−5. The data were augmented with random horizontal
and vertical flipping. Since we are not aware of any other work of quantization for this
task, we implemented WRPN [17] as a baseline for comparison. Table 3 reports the test
set PSNR for the MSR dataset [38]. It can be clearly seen that NICE achieves significantly
better results than WRPN, especially for low-weight bitwidths.

Table 3. PSNR [dB] results on joint denoising and demosaicing for different bitwidths.

Bits Bits Bits Bits Bits
Method

(w = 32, a = 32) (w = 4, a = 8) (w = 4, a = 6) (w = 4, a = 5) (w = 3, a = 6)

NICE (Ours) 39.696 39.456 39.332 39.167 38.973
WRPN (our experiments) 39.696 38.086 37.496 36.258 36.002

Figure 3. Model used in denoising/demosaicing experiment.

98

Mathematics 2021, 9, 2144

4.4. Ablation Study

In order to show the importance of each part of our NICE method, we used ResNet-
18 on ImageNet. Table 4 reports the accuracy for various combinations of the NICE
components. Notice that for high bitwidths, i.e., 5,5, the noise addition and gradual training
contribute to the accuracy more than the clamp learning. This happens since (i) the noise
distribution is indeed uniform in this case, as we show in Figure 1 and (ii) the relatively
high number of activation quantization levels almost negates the effect of clamping. For
low bitwidths, i.e., 3,3, we observe the opposite. The uniform noise assumption is no longer
accurate. Moreover, due to the small number of bits, clamping the range of values becomes
more significant.

Table 4. Ablation study of NICE scheme. Accuracy (% top-1) for ResNet-18 on ImageNet for
different setups

Noise with Activation Accuracy on Accuracy on
Gradual Training Clamping Learning 5,5 [w,a] 3,3 [w,a]

- - 69.72 66.51
- � 69.9 67.2
� - 70.25 66.7
� � 70.3 67.68

5. Hardware Implementation

5.1. Optimizing Quantization Flow for Hardware Inference

Our quantization scheme can fit an FPGA implementation well for several reasons.
Firstly, uniform quantization of both the weights and activation induces uniform steps
between each quantized bin. This means that we can avoid the use of a resource costly
codebook (look-up table) with the size Ba × Bw × Ba, for each layer. This also saves
calculation time.

Secondly, our method enables having an integer-only arithmetic. In order to achieve
that, we start, following (5), by representing each activation and network parameter in
the form of X = N × S, where N is the integer code and S is a pre-calculated scale. We
then reformulate the scaling factors S into the form Ŝ = q × 2p, where q ∈ N, p ∈ Z.
Practically, we found that it is sufficient to constrain these values to q ∈ [1, 256] and
p ∈ [−32, 0] without an accuracy drop .This representation allows the replacement of
hardware costly floating-point operations by a combination of cheap shift operations and
integer arithmetics.

5.2. Hardware Flow

In the hardware implementation, for both the regression and the classification tasks,
we adopt the PipeCNN [39] implementation released by the authors. (https://github.
com/doonny/PipeCNN access on 12 August 2021) In this implementation, the FPGA is
programmed with an image containing data moving, convolution, and a pooling kernel.
Layers are calculated sequentially. Figure 4 illustrates the flow of feature maps in the
residual block from a previous layer to the next one. Sai, Swi are the activations and
weights scale factors of layer i, respectively. All these factors are calculated offline and are
loaded to the memory along with the rest of the parameters. Note that we use the FPGA
for inference only.

We compiled the OpenCL kernel to Intel’s Arria 10 FPGA and ran it with the regression
architecture in Figure 3. Weights were quantized to 4 bits, activations to 8 bits, and biases,
and the input image to 16 bits. The resource utilization amounts to 222 K LUTs, 650 DSP
Blocks, and 35.3 Mb of on-chip RAM. With a maximum clock frequency of 240 MHz,
the processing of a single image takes 250 ms. In terms of power, the FPGA requires 30 W,
while an NVIDIA Titan X GPU requires 160 W. From standard hardware design practices,

99

Mathematics 2021, 9, 2144

we can project that a dedicated ASIC manufactured using a similar process would be much
more efficient by at least one order of magnitude.

Figure 4. Residual block in hardware.

6. Conclusions

We introduced NICE —a training scheme for quantized neural networks. The scheme
is based on using uniform quantized parameters, additive uniform noise injection, and
learning the quantization clamping range. The scheme is amenable to efficient training
by backpropagation in full precision arithmetic. One advantage of NICE is the ease of
its implementation on existing networks. In particular, it does not require changes in
the architecture of the network, such as increasing the number of filters as required by
some previous works. Moreover, NICE can be used for various types of tasks such as
classification and regression.

We report state-of-the-art results on ImageNet for a range of bitwidths and network
architectures. Our solution outperforms current works on both the 4,4 and 5,5 setups, for all
tested architectures, including non-uniform solutions such as [18]. It shows comparable
results in the 3,3 setup.

We showed that quantization error for 4 and 5 bits distributes uniformly, which
explains the larger success of our method in these bitwidths compared to the case of
3 bits. This implies that the results for less than 4 bits may be further improved by adding
non-uniform noise to the parameters. However, the 4 bit quantization is of special interest
since, being a power of 2, it is considered more hardware friendly, and INT4 matrix
multiplications are supported by Tensor Cores in recently announced inference-oriented
Nvidia’s Tesla GPUs.

Author Contributions: Conceptualization, C.B., E.Z., T.R., N.L., Y.C. and E.S.; Methodology, C.B.,
E.Z., T.R., N.L., Y.C. and E.S.; Software, validation and formal analysis, C.B., E.Z., T.R., N.L., Y.C. and
E.S.; Writing, C.B., E.Z., T.R., N.L., R.G.; Resources, A.M.B., A.M. and R.G. Project administration,
A.M.B., A.M. and R.G. Funding acquisition, A.M.B., A.M. and R.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Image classification datasets (CIFAR-10 and ImageNet) are available
in torchvision.datasets. MSR dataset is available in Microsoft Demosaicing Dataset (folder MSR-
Demosaicing).

Conflicts of Interest: The authors declare no conflict of interest.

100

Mathematics 2021, 9, 2144

References

1. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Process. Mag. 2012, 29, 82–97. [CrossRef]

2. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent Convolutional Neural Networks for Text Classification. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, Austin, TX, USA, 25–30 January 2015; pp. 2267–2273.

3. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
[PubMed]

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

5. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

6. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational Dropout Sparsifies Deep Neural Networks. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

7. Yu, X.; Liu, T.; Wang, X.; Tao, D. On Compressing Deep Models by Low Rank and Sparse Decomposition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

8. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting Linear Structure Within Convolutional Networks for Efficient
Evaluation. arXiv 2014, arXiv:1404.0736.

9. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1 MB model size. arXiv 2016, arXiv:1602.07360.

10. Wu, B.; Wan, A.; Yue, X.; Jin, P.H.; Zhao, S.; Golmant, N.; Gholaminejad, A.; Gonzalez, J.; Keutzer, K. Shift: A Zero FLOP, Zero
Parameter Alternative to Spatial Convolutions. arXiv 2017, arXiv:1711.08141.

11. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the
32nd International Conference on Machine Learning (ICML-15), Lille, France, 6–11 July 2015; pp. 1737–1746.

12. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

13. Schwartz, E.; Giryes, R.; Bronstein, A.M. DeepISP: Learning End-to-End Image Processing Pipeline. arXiv 2018, arXiv:1801.06724.
14. Polino, A.; Pascanu, R.; Alistarh, D. Model compression via distillation and quantization. arXiv 2018, arXiv:1802.05668.
15. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.

In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 525–542.
16. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized Neural Networks: Training Neural Networks with

Low Precision Weights and Activations. J. Mach. Learn. Res. 2018, 18, 1–30.
17. Mishra, A.; Nurvitadhi, E.; Cook, J.J.; Marr, D. WRPN: Wide Reduced-Precision Networks. arXiv 2017, arXiv:1709.01134.
18. Zhang, D.; Yang, J.; Ye, D.; Hua, G. LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks. In

Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
19. Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064.
20. Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable Methods for 8-bit Training of Neural Networks. arXiv 2018, arXiv:1805.11046.
21. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision

Weights. In Proceedings of the International Conference on Learning Representations, ICLR2017, Toulon, France, 24–26 April
2017.

22. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks. arXiv 2016, arXiv:1602.02830.
23. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv 2016, arXiv:1606.06160.
24. Cai, Z.; He, X.; Sun, J.; Vasconcelos, N. Deep Learning with Low Precision by Half-wave Gaussian Quantization. In Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
25. Bengio, Y.; Léonard, N.; Courville, A.C. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional

Computation. arXiv 2013, arXiv:1308.3432.
26. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
27. Mishra, A.; Marr, D. Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy. arXiv

2017, arXiv:1711.05852.
28. Jung, S.; Son, C.; Lee, S.; Son, J.; Kwak, Y.; Han, J.J.; Choi, C. Joint Training of Low-Precision Neural Network with Quantization

Interval Parameters. arXiv 2018, arXiv:1808.05779.
29. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized Clipping Activation

for Quantized Neural Networks. arXiv 2018, arXiv:1805.06085.
30. Dong, Y.; Ni, R.; Li, J.; Chen, Y.; Zhu, J.; Su, H. Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization.

In Proceedings of the British Machine Vision Conference (BMVC’17), London, UK, 4–7 September 2017.

101

Mathematics 2021, 9, 2144

31. McKinstry, J.L.; Esser, S.K.; Appuswamy, R.; Bablani, D.; Arthur, J.V.; Yildiz, I.B.; Modha, D.S. Discovering Low-Precision
Networks Close to Full-Precision Networks for Efficient Embedded Inference. arXiv 2018, arXiv:1809.04191.

32. Arora, S.; Ge, R.; Neyshabur, B.; Zhang, Y. Stronger generalization bounds for deep nets via a compression approach. In
Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018.

33. Karbachevsky, A.; Baskin, C.; Zheltonozhskii, E.; Yermolin, Y.; Gabbay, F.; Bronstein, A.M.; Mendelson, A. Early-Stage Neural
Network Hardware Performance Analysis. Sustainability 2021, 13, 717. [CrossRef]

34. Baskin, C.; Schwartz, E.; Zheltonozhskii, E.; Liss, N.; Giryes, R.; Bronstein, A.M.; Mendelson, A. UNIQ: Uniform Noise Injection
for the Quantization of Neural Networks. arXiv 2018, arXiv:1804.10969.

35. Sripad, A.; Snyder, D. A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Trans. Acoust.
Speech, Signal Process. 1977, 25, 442–448. [CrossRef]

36. Gray, R.M. Quantization noise spectra. IEEE Trans. Inf. Theory 1990, 36, 1220–1244. [CrossRef]
37. Xu, C.; Yao, J.; Lin, Z.; Ou, W.; Cao, Y.; Wang, Z.; Zha, H. Alternating Multi-bit Quantization for Recurrent Neural Networks

arXiv 2018, arXiv:1802.00150.
38. Khashabi, D.; Nowozin, S.; Jancsary, J.; Fitzgibbon, A.W. Joint Demosaicing and Denoising via Learned Nonparametric Random

Fields. IEEE Trans. Image Process. 2014, 23, 4968–4981. [CrossRef]
39. Wang, D.; An, J.; Xu, K. PipeCNN: An OpenCL-Based FPGA Accelerator for Large-Scale Convolution Neuron Networks. arXiv

2016, arXiv:1611.02450.

102

mathematics

Article

Genetic and Swarm Algorithms for Optimizing the Control of
Building HVAC Systems Using Real Data: A Comparative
Study

Alberto Garces-Jimenez 1,*,†, Jose-Manuel Gomez-Pulido 2, Nuria Gallego-Salvador 2

and Alvaro-Jose Garcia-Tejedor 1,†

Citation: Garces-Jimenez, A.;

Gomez-Pulido, J.-M.; Gallego-Salvador,

N.; Garcia-Tejedor, A.-J. Genetic and

Swarm Algorithms for Optimizing

the Control of Building HVAC

Systems Using Real Data:

A Comparative Study. Mathematics

2021, 9, 2181. https://doi.org/

10.3390/math9182181

Academic Editor: Freddy Gabbay

Received: 14 July 2021

Accepted: 3 September 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Innovación Experimental del Conocimiento (CEIEC), Universidad Francisco de Vitoria (UFV),
Carretera Pozuelo-Majadahonda, Km. 1.8, 28223 Pozuelo de Alarcón, Madrid, Spain; a.gtejedor@ceiec.es

2 Departamento de Ciencias de la Computación, Universidad de Alcala (UAH), Carretera Madrid-Barcelona,
Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; jose.gomez@uah.es (J.-M.G.-P.);
mnuria.gallego@edu.uah.es (N.G.-S.)

* Correspondence: alberto.garces@ufv.es or albertogarces0@gmail.com; Tel.: +34-696-018-282
† These authors equally contributed.

Abstract: Buildings consume a considerable amount of electrical energy, the Heating, Ventilation,
and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining
comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by
modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts.
Scientific literature shows that Soft Computing techniques require fewer computing resources but at
the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive
results, although further research will be necessary to resolve new challenging multi-objective
optimization problems. This article compares the performance of selected genetic and swarm-
intelligence-based algorithms with the aim of discerning their capabilities in the field of smart
buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are
compared in hypervolume, generational distance, ε-indicator, and execution time. Real data from
the Building Management System of Teatro Real de Madrid have been used to train a data model
used for the multiple objective calculations. The novelty brought by the analysis of the different
proposed dynamic optimization algorithms in the transient time of an HVAC system also includes
the addition, to the conventional optimization objectives of comfort and energy efficiency, of the
coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the
equipment lifecycle and minimize the overshooting effect when passing to the steady state. The
optimization works impressively well in energy savings, although the results must be balanced with
other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive
visualization of the performance of the two families of algorithms in a real multi-HVAC system
increases the novelty of this proposal.

Keywords: multi-objective optimization; genetic algorithms; evolutionary computation; swarm
intelligence; Heating, Ventilation and Air Conditioning (HVAC); metaheuristics search; bio-inspired
algorithms; smart building; soft computing

1. Introduction

Global energy consumption has been growing at 1.4% annually over the last 10 years [1],
and 94% of it is produced with combustion [2]. Greenhouse gas emissions produce adverse
effects on the environment and society and cannot be completely replaced. Buildings
consume on average 40% of the electrical energy in European Union cities and 32% in
world cities [3], where the Heating, Ventilation, and Air Conditioning (HVAC) system
requires 32.7% of the supplied electricity and up to 40.3% in public buildings [4].

Mathematics 2021, 9, 2181. https://doi.org/10.3390/math9182181 https://www.mdpi.com/journal/mathematics

103

Mathematics 2021, 9, 2181

Advanced control systems improve energy management by adapting fast to unfore-
seen events or predicting system behavior. There are some examples of this, such as the
application of neural networks with genetic algorithms in building management systems,
reaching savings of 27% [5]. Other studies improve the cost by 19.7%, adding an optimiza-
tion module in the ambient controller [6]. Some researchers have proven that it is possible
to save 30% on cold days, embedding a machine-learning-based MPC controller [7]. On
the other hand, the faster the controller reaches the goals, the better the energy efficiency
is obtained; for example, Adaptive LAMDA-PI (Learning Algorithm for Multivariable
Data Analysis—Proportional Integral) controllers improve the Integral Absolute Error
(IAE) of the response time by above 140% compared with conventional PI and Fuzzy-PI
controllers [8]. Optimization works are embedded in different tasks or problems of the
HVAC systems in both design and operations. They are used to adjust Proportional, Inte-
gral, and Derivative (PID) controllers to improve the logic of Model-Predicting Controllers
(MPCs) or to enhance the supervision tasks in the Building Management Systems (BMSs)
or Multi-Agent Controllers (MACs) [9]. There is a significant interest in embedding ad-
vanced, Artificial Intelligence (AI)-based control architectures in the BMS [10] that provide
acceptable results in uncertain contexts and complex systems, while allowing the adoption
of multi-objective optimization policies. There are two visible advanced control strategies:
(1) predicting the system behavior with machine-learning-based simulations to obtain
the optimal sequence of instructions or (2) adapting the system parameters in case of
context perturbances, so that it quickly returns to the zero-error state, such as with fuzzy
logic control. Artificial Intelligence (AI), together with other technologies, such as Big
Data, Internet of Things (IoT), or Cloud Computing, enhances the ubiquity, accessibility,
mobility, knowledge extraction, and autonomy for the new software tasks. The traditional
multi-objective problem in operations is to improve the energy efficiency and maintain
comfort for the users, i.e., the ideal temperature, humidity, or Indoor Environmental Qual-
ity (IEQ) that mutually conflicts. Comfort, health, or maintenance add other objectives to
the optimization problem, such as the CO2 concentration, reducing the efficiency of the
optimization with fewer objectives [11].

Zadeh conceptually grouped under the umbrella of “soft computing” (SC) technolo-
gies that overperformed traditional deterministic approaches [12], at the expense of losing
accuracy and generalization. Thus, SC is tolerant to imprecision and uncertain approxi-
mation and today are widely used for complex problems where moderate precision and
generalization capability are acceptable, given their high-resolution speed. SC covers
three main fields: (1) Machine Learning (ML), (2) metaheuristics-based optimization, and
(3) Fuzzy Logic (FL) for decision-making. Metaheuristics-based optimization [11] offers
good tradeoffs between consumed resources and accuracy for achieving global goals but
brings challenges to face, such as algorithm convergence, stability, parameter tuning, a
mathematical framework, benchmarking, generalization, and performance assessment [13].
SC also offers fitness estimation for optimization with data-based models that require fewer
computer resources [14].

Digital transformation and the social trend towards standardization allow for sharing
the functionality among different fields, requiring testing their approaches and convenience
for specific applications. This conceptual ‘liquidity’ brings new challenges for optimization,
such as the smart city, smart districts, and smart building, which leads to the scaling of
the control and supervision capabilities to upper layers (e.g., ISA 95 and IEC 62264 L2),
but constraining the lower layers. More conflicting objectives, such as the Coefficient of
Performance (COP), allow for the monitoring of subtle equipment degradations, achieving
considerable savings in the life cycle of the installations [15]. The system management is
susceptible to becoming autonomous with the self-optimization organic function.

Thus, society, while aiming to enhance people’s wealth and comfort, is forced to save
energy and reduce costs. Multi-objective optimization strategies can be applied at several
levels in building systems, especially HVAC, that can run at bare equipment control, at
subsystems management, or at a superuser level integrating systems, buildings, blocks,

104

Mathematics 2021, 9, 2181

or districts. In this scenario, there is a greenfield to explore, including among others au-
tonomic building management architectures that automatically adapt their decisions to
contextual changes and continuously improve with the experience. The proposed study
demonstrates different multi-objective optimization techniques under this scenario that
include conventional conflicting goals of comfort, observable with the ambient temperature,
and energy-saving, quantifiable with the subsystems consumption, and add two new objec-
tives: (1) the maximization of the absolute value of COP, allowing for optimal performance
in saving energy and, at the same time, an enhancement of the lifecycle of the equipment,
something rarely explored in operations before [16]; (2) the minimization of the rate of
change in ambient temperature, which allows the system to enter into a steady-state mode
since startup at nearly critical damping. The possibility for the system to automatically
select the most appropriate algorithm is also proposed for the next research outcome. Al-
though it was expected that the addition of conflicting objectives could reduce the efficiency
of the optimization, the results show evidence of a wide field to be explored.

This comparative study shows the pros and cons of using different population-based
multi-objective optimization algorithms for an HVAC control system. Current practices
limit operation to ensure the comfort of building inhabitants dodging other objectives
such as energy savings. The study will cover (1) Swarm Intelligence (SI) algorithms and
(2) Genetic Algorithms (GAs) and will use real data from the HVAC system of Teatro
Real de Madrid (Opera House). The individuals in the decision space are mapped in
the objective space with cost functions empirically obtained with ML’s Random Forest
Regressors (RFRs) to assess their dominance. The RFRs have been trained with a selection
of data obtained from a historic database kindly provided by the Board of Teatro Real. The
selected GAs are the Multi-Objective Genetic Algorithm (MOGA) and the Non-dominated
Sorting Genetic Algorithm version 2 and 3 (NSGA-II and NSGA-III), and the selected SI-
based algorithms are Optimized Multi-objective Particle Swarm Optimization (OMOPSO)
and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). In the
experiment, the Strength Pareto Evolutionary Algorithm Version 2 (SPEA2) was discarded,
as its execution time was excessive compared to the others. Random Search (RS) results are
exhibited as a reference point.

The paper is organized as follows: In Related Work, the authors bring to light signif-
icant research related to this study. Materials and Methods explain how the experiment
was built and the metrics for comparing the algorithms. The Results section visualizes and
discusses the outcomes. Finally, the Conclusions section compares the obtained results
with other studies, outlines the novelty, and proposes possible future research lines for
this work.

2. Related Work

2.1. Towards a Clear Ontology

It is common for recent literature about SC and multi-objective optimization to take
for granted the approach followed in this work, due to the absence of effective classification
and, therefore, the formation of an adequate body of knowledge. Although it is beyond the
scope of this study, it is prudent to indicate some examples of confusing terms and try to
position them.

Non-preference multi-objective optimization, i.e., those finishing with a set of non-
dominant solutions, is sometimes classified as a subset of ‘a posteriori’ decision-making,
and sometimes they are synonyms. It is often associated with multimodal optimization,
although only the latter also includes local search. It is also difficult to differentiate
Evolutionary Computation from GAs. While sharing a similar process, a GA includes
mating and crossover to improve the search. For some articles, they are synonyms and
come grouped either as evolutionary or genetic. They are sometimes considered a subset
of different approaches, such as bio-inspired algorithms.

Particle Swarm Optimization (PSO) can be classified itself [17] or together with
GAs [18] under Multi-Objective Evolutionary Algorithms (MOEA). MOGA is sometimes

105

Mathematics 2021, 9, 2181

considered a separated GA [19] or the family of multi-objective GAs [20]. MOEA and
MOGA may include the whole metaheuristics-based search family or only those based on
the population approach.

The new algorithms based on the observation of nature can be named bio-inspired, bio-
search heuristics, or metaphor-based metaheuristics, among others, exchanging their differ-
ent inspirations, be they biological, chemical, or physical. GAs or SI-based algorithms can
be found included in the bio-inspired family, excluding the evolutionary algorithms [19].

With regard to the optimization performance, it is possible to mislead concepts such as
‘convergence’ that could mean either to end the search at any point (lumps) or end it in true
global optima. The diversity feature sometimes indicates the uniformity in the distribution
of the solutions, how they spread, or both.

The classification by Ahma et al. [9] and Oliva et al. [21] with Zadec’s original SC
definition [12] supports the position of this study. At the top, algorithms are split up into
stochastic techniques and intelligent agents (deterministic). Stochastic techniques then split
into population-based and single individual algorithms (trajectory metaheuristics) that
include Simulated Annealing (SA) and Tabu Search (TS). Population-based algorithms then
split into SI and evolutionary algorithms. This study compares GAs (part of evolutionary
algorithms) and SI-based particle swarms, PSO.

2.2. Research Interest

According to Wang, G. [22], at an early stage, optimization methods diversified in
different fields of study: (1) linear or nonlinear programming, (2) constraints, (3) single-
or multi-objective optimization, and (4) dynamic programming. The first generation
introduced the iteration and gradients. The second generation brought the metaheuristics-
based search for global multi-objectives that reduced computing resources and allowed
for parallel computation. Soft Computing (SC) AI approaches support surrogate-based or
metamodel generation, replacing computer-aided simulation software with ML models.
The next-generation links and hybridizes the above approaches.

Nabaei et al. [23] provide a good reference for research interests in SI algorithms and
GAs over time. GAs have been interesting since before 2000 with a peak from 2006 to 2010.
PSO algorithms started to become comparable in 2006 and 2010, but there were much fewer
articles published than there were regarding GAs, half of them spanning from 2011 to 2018.
Another comprehensive study by Shaikh et al. [11] illustrates the research interest for the
optimization in building HVAC systems in which GA articles are 24% of the total and
MOGA represent 3%. PSO is present in 5%, and MOPSO in 7%. Scheduling Optimization,
Hooke and Jeeves, and Linear Quadratic shares range between 3% and 6%.

Optimization can be used for designing systems or in real-time operations [24]. A GA
is used for both design and operations, and so is NSGA-II, but only in a third of the articles
reviewed. There are more articles about PSO in operations than in design, but a Differential
Evolutionary (DE) algorithm is only used in designing, and the number of articles about
the combination of these algorithms is similar to the number of articles related to NSGA-II.

2.3. Genetic and Swarm Intelligence Outcomes

Algorithms based on metaheuristics are good options for characterizing the behavior
of complex, dynamic, and nonlinear systems [25].

A GA puts together a set of individuals (chromosomes) ‘coded’ with genes (variables),
marking them with fitness functions. It then uses a selection strategy to obtain a new
population ready for the next iteration. Mutation and crossover operators regulate the
speed and variety of chromosome changes in the GA. While the crossover ‘exploits’ the
search, the mutation widens the explored space. One key point is the adjustment of the
parameters to the specific problem. The mutation operator can generate solutions with
polynomial or uniform probability distributions. The non-uniform probability prevents
the population from decaying in the early stages of the evolution by generating distant

106

Mathematics 2021, 9, 2181

solutions with a random probability. Simulated Binary Crossover (SBX) generates offspring
from two parents attending to their probability distributions.

GAs discovers the optimal set in three different ways [26]. (1) The first approach is
known as Pareto-based dominance with a two-level ranking scheme, one to obtain the
dominance and diversity assessment and the other, containing such metrics as the total
nondominated vectors generation, the hypervolume, the generational distance or spac-
ing, and the error rate [27], to determine the convergence to local or global minima [28].
NSGA-II and SPEA2 make use of these principles. (2) The second approach uses unary or
binary indicators to check their performance, for example, with the coefficient of determina-
tion, the R2-like S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm
(SMS-EMOA) that maximizes the hypervolume (HV). (3) The third approach is based on
decomposition that splits the overall problem into smaller problems for the search. There
is not a common procedure for these algorithms. Splitting up complicated Pareto Fronts
(PFs) to apply a local search and Tchebycheff’s scalarization is one of these methods, as
well as the Multi-Objective Evolutionary Algorithm based on decomposition (MOEA/D)
and NSGA-III.

The advantages of GAs are that they (1) have simple fitness arrangement schemes;
(2) do not need derivatives or gradients; (3) are relatively robust; (4) are easy to parallelize.
However, although they require less information about the problem, (1) designing an
objective function, (2) getting a representation, and (3) adjusting the operators can be
a difficult task. In addition, they are computationally expensive compared with others.
NSGA and NSGA-II perform niching, decide deterministically the tournaments, and
avoid chaotic perturbations of the population composition with updated fitness sharing.
However, the niching function is too complex and scales poorly as the number of objectives
increases [24].

SI-based optimization is also population-based, where its individuals are bio-inspired
on natural ecosystem metaphors, such as ants, bees, or particles [29]. Swarm algorithms
still generate some skepticism because of the mentioned metaphoric ornaments describing
their operators [30].

In the case of PSO, the particles move around in the decision space with simple
mathematical equations that yield their position and velocity. Each particle’s best-known
local position and velocity determine its movement towards the optimum. PSO (1) is easy
to adjust; (2) can be implemented and provide fast speed results; (3) is capable of finding
the global optimal solutions in most cases. However, (1) strict convergence cannot be
assured; (2) they are relatively weak in terms of local search abilities; (3) in multi-modal
problems, they are prone to obtain local optima [23].

2.4. Research Activity

There are two schools of thought for improving the efficiency of population-based
optimization. One focuses on balancing the explore and exploit strategy with many
variations, such as the elitist strategy found in some GAs. The other seeks simplification,
as decisions cannot be well understood, especially for large search spaces, discontinuities,
noise, or algorithms with time-varying parameters, such as PSO. The revision of the
research activity is guided by the following goals:

• to find which metaheuristic among some GAs and SI algorithms performs better and
discover possible ways for the system to automate the decision among them;

• to study multi-objective optimization in the transient time at the startup of HVAC systems;
• to include new optimization objectives for enhancing the lifecycle of the equipment

and specifically to facilitate the transition to the steady state.

Sharif et al. [31] included the assessment of the lifecycle cost (LCC) in addition to the
energy consumption and environmental impact as a new optimization objective in the
passive and active building design with a GA. They managed conflicting objectives such
as renovating the envelope (passive structure) or the systems (active structure). Lee [32]
also combined a GA with Computational Fluid Dynamics (CFD) for the building geometry

107

Mathematics 2021, 9, 2181

(passive design) and the HVAC system (active design), having the temperature, energy
consumption, and the Index of Air Quality (IAQ) as objectives.

Gagnon et al. [33] compared the computational resources spent in sequential and
holistic approaches of a net-zero building design, using NSGA-II to optimize the carbon
footprint, lifecycle cost, and thermal comfort. The experiment proved that the holistic
approach achieved 59% of the optimal solutions in 100 h, and the sequential approach
achieved 41% in 765 h.

The work of Haniff et al. [34] is representative of introducing minor changes to
an algorithm that improves the addressed problem. They modified the Global PSO so
that it can outperform the optimization of the energy consumption and the temperature,
considering the weather forecast, an estimation of the characteristics of the building, and
the Predicted Mean Vote (PMV) for Air Conditioning scheduling.

Cai et al. [35] proposed hybridizing a multi-objective evolutionary algorithm with a
quantum-behaved PSO after dividing the problem into subproblems with Tchebycheff’s
decomposition: Decomposition-based Multi-Objective Binary Quantum-behaved Particle
Swarm Optimization (MOMBQPSO/D). The algorithm minimizes the temperature mean
and deviation in area-to-point heat conduction.

Zhai et al. [36] enhanced MOGA for the secondary cooling process in continuous
casting by dynamically tuning the mutation and crossover operators with the probability
method. They compared it with MOPSO and MOGA and showed a 10% water reduction.

Oliva et al. [21] reviewed different metaheuristics-based algorithms applied to the
estimation of solar cell parameters. They outlined the advantages and disadvantages of
the GA, Harmony Search (HS), Artificial Bee Colony (ABC), SA, Cat Swarm Optimization,
Differential Evolutionary, PSO, Advanced Bee Swarm Optimization, Whale Optimization
Algorithm (WOA), Gravitational Search Algorithm, Flower Pollination Algorithm, Shuffled
Complex Evolution, and Wind-Driven Optimization. They concluded that WOA performs
better than the others regarding the accuracy and convergence speed and avoided local
minima trapping.

Aguilar et al. [37] proposed a new flexible architecture for Building Management
Systems (BMSs), with an Autonomic Cycle of Data Analysis Tasks (ACODAT) that makes
use of banks of optimization algorithms for HVAC system control and hinted at its use for
supervisory and self-optimization tasks. In fact, in a later study, they developed a Fault
Detect and Diagnosis (FDD) system optimized with MOPSO, also capable of long-term
equipment degradation, using the COP [15].

Awan et al. [17] analyzed the design of a solar tower plant using fuzzy goals with
PSO, showing significant improvements in most of the design parameters (solar multiple,
tower height, and others).

Afzal et al. [38] compared the results of applying Fuzzy Logic (FL) in both a GA and
PSO to optimize the Nusselt number, friction coefficient, and maximum temperature of a
battery thermal management, observing that GAs provide better results, though they are
less widespread than PSO.

Suthar et al. [39] compared NSGA-II, NSGA-III, and MOPSO, applying the Technique
for the Order of Preference by the Similarity to Ideal Solution (TOPSIS) for tuning the
parameters of a 2 Degree-of-Freedom (DoF) controller: the setpoint track, flow variation,
and input fluid. The performance was measured with IAE, ISE, ITAE errors, and the
execution time, and the step function reaction was analyzed.

Waseem Ahmad et al. [9] assessed several optimization methods and indicated that
GAs perform global searches well but show poor convergence. Swarm-based algorithms
are good for local searches but are slower than genetic algorithms for global searches.
However, Ant Colony Optimization (ACO) is faster at searching compared to others and at
converging compared to simple genetic algorithms. In an HVAC system’s control, the most
studied multi-objective optimization techniques are GAs, in 29% of the related literature,
and MOPSO, in 10%. MOGA also stands out among them.

108

Mathematics 2021, 9, 2181

Behrooz et al. [40] confirmed that GAs provide optimization for comfort and energy
savings because of their good behavior with nonlinear systems but are challenged with
variable context information and perturbances [41]. They are sometimes combined with
fuzzy control [8].

Previous and current research does not fully cover the topics addressed in this article,
which constitutes a novelty. Most of the studies demonstrate GA and SI optimization in
HVAC systems in both design and operations, but few compare them. Some research deals
with dynamic adaptation, such as dynamic PID tunning, but none of them include opti-
mization of the COP to enlarge the lifecycle and the rate of change in ambient temperature
at the end of the transient state to moderate the damping to a steady state. Table 1 shows
all cited works related to this section.

Table 1. This research’s topics addressed in the cited articles.

Topics Addressed References

HVAC system applied research [9,17,32,34–37,39,40]
Improving operations [9,15,34–40]
New optimization objectives [15,31–33,35,37,39]
Genetic and swarm comparison [9,21,36,38]
Algorithm improvements [32,34,35,38,39]
Dynamic objectives [35,39,41]

3. Materials and Methods

3.1. Teatro Real: The Opera House of Madrid

The case study is the HVAC system of the emblematic Opera House of Madrid
(Spain), known as Teatro Real. The building has a floor size of 65,000 m2 (700,000 ft2) in
10 levels above the ground and 6 underneath. The 1430 m2 (15,400 ft2) stage includes the
most advanced scenic technology and hosts opera and concerts for 1746 seated people
in the stalls, the boxes, the balcony, and the paradise areas. The building has 11 lounges,
four rehearsal rooms, and seven studios, and the scenic ‘box’ is surrounded by offices,
warehouses, and technical premises. Figure 1 is a recent photo of the building.

Figure 1. Main façade of the Opera House of Madrid. Courtesy of Fundacion del Teatro Real.

The Opera House is open from September to July and closed in August every year.
Madrid climate changes abruptly with cold winters, with an average of 0 ◦C (32 ◦F), and
hot summers, with an average of 35 ◦C (95 ◦F), requiring heating and cooling. Teatro Real
is also used out of the shows for rehearsals, celebrations, and product launches, making
the HVAC operation a complex task.

The HVAC system of Teatro Real is an iconic example of a heterogenous HVAC system
built with several refurbishments, allocating two 195 kW water–air heat pumps for both
heating and cooling, and two 350 kW water–water chillers for extra cooling, managed with
the same BMS. There is also a boiler and an ice accumulator that are falling into disuse.

109

Mathematics 2021, 9, 2181

The database provided by the Administration of Teatro Real contains historical data
registered in the BMS between 1 January 2016 and 4 June 2018.

3.2. Selection of the Optimization Algorithms

The selection of the multi-objective optimization algorithms for HVAC analyzed in
this study is based on the observations of Ekici et al.’s comprehensive review [42]. The
initial selection of evolutionary algorithms is MOGA, NSGA-II, NSGA-III, and SPEA2.

3.2.1. The Multi-Objective Genetic Algorithm (MOGA)

Fonseca et al. [27] proposed in 1993 to compute the fitness of each individual as a
weighted sum of the objective functions with random weights to obtain the probability to
either select or discard it. MOGA yields interesting results, but it is not yet widely spread
in real building HVAC systems.

3.2.2. The Non-Dominated Sorting Genetic Algorithm Version 2 (NSGA-II)

Deb et al. [43] proposed in 2002 to sort the individuals into categories based on non-
dominance. Thus, the non-dominated individuals are in the first category. The individuals
dominated by others in upper levels belong to the second and next categories. Figure 2
shows how the algorithm works.

Figure 2. NSGA-II algorithm flowchart.

110

Mathematics 2021, 9, 2181

At the end of each iteration, the algorithm computes the distances among the individ-
uals, known as crowding distance, for ranking.

3.2.3. The Non-Dominated Sorting Genetic Algorithm Version 3 (NSGA-III)

NSGA-III is a variant of NSGA-II that Deb et al. proposed later in 2014 [44] with
an adaptive selection of the operator and a set of pre-specified (or manually) points of
reference that generate a hyper-plane that improves the diversity of the population. It is
conceived for improving performance when the number of objectives is larger.

3.2.4. The Strength Pareto Evolutionary Algorithm Version 2 (SPEA2)

Zitzler et al. [45] proposed in 2001 a fitness function to sort the individuals by iden-
tifying how many were dominated by a given solution and how many dominate it. The
density is estimated with the k-Nearest Neighbor (k-NN) technique that prunes the eli-
tist set (non-dominated) so that the algorithm delivers the desired number of solutions.
Figure 3 shows how SPEA2 works.

Figure 3. SPEA2 algorithm flowchart.

The other side of this analysis considers the SI-based algorithms, OMOPSO and SMPSO.

3.2.5. Optimized Multi-Objective Particle Swarm Optimization (OMOPSO)

OMOPSO is one of the MOPSO versions proposed by Reyes-Sierra et al. [46] in 2006
that uses Pareto’s non-dominance to identify the leaders and the crowding distance to
regulate the maximum number of them. Each iteration proclaims a leader, modifying the
speed of the rest to head for it. The leaders of the current generation are set apart from the

111

Mathematics 2021, 9, 2181

global leaders. The algorithm splits the population into groups with different mutation
operators. Figure 4 shows how these algorithms work.

Figure 4. OMOPSO algorithm flowchart.

3.2.6. Speed-Constrained Multi-Objective Particle Swarm Optimization (SMPSO)

SMPSO, proposed by Nebro et al. in 2009, is another version of MOPSO [47] that
includes a speed constraint mechanism for each individual, being good when individuals
are excessively accelerated. The optimization is no-preference, bringing an important
Degree of Freedom (DoF) for making tactic and strategic decisions. The result consists
of “nondominated” solutions located in the hyper-plane of optimum values or the Pareto
Front (PF). Thus, for instance, the operation can take optimal values increasing the ven-
tilation to reduce the risk of transmission of disease, e.g., COVID-19, or aiming toward
maximum comfort, allowing the manager or the system to pick up the best value of the PF
to accomplish the goal.

In any case, diversity is preserved by either the density estimation or truncation.
Fitness with the k-NN of the ith individual, F(i), is computed as

F(i) = R(i) + D(i)

When F(i) < 1, the individual is non-dominated. R(i) is the raw fitness, obtained from

R(i) = ∑
j ∈(Population+Archive), j �i

S(j)

where S(j) is the strength value, representing the number of solutions in both Population
and Archive, when i dominates:

S(i) = {j / j ∈ (Population + Archive) ∧ i � j}

112

Mathematics 2021, 9, 2181

D(i) is the density that allows the discrimination between individuals with identical
fitness values, and it is obtained from

D(i) =
1

σk
i + 2

k =
√
|Population|+ |Archive|

where σi
k is the distance in the objective space to the kth nearest neighbor in both Popula-

tion and Archive. In the case of truncation,

i is removed, if i ≺ j, ∀ j

The performances of these metaheuristics are compared with Random Search acting as
a baseline, for not having any specific speeding up mechanism for exploring and exploiting
the decision space.

3.3. Selection of Metrics

The “no free lunch” theorem is applicable for assessing the optimization [9], as the
improvements on one feature reduce the effectiveness on another. The algorithm perfor-
mance is a balance between the achievement of solutions with values close to the PF and
the runtime resources required. This proves the algorithms empirically. Riquelme et al. [48]
identified up to 54 metrics to prove (1) the cardinality or the number of solutions in the
approximation set; (2) the accuracy, convergence, or distance to the PF; and (3) the diver-
sity, which measures the distribution of the fitness values and how they spread. Another
classification of metrics is given by the generic definition of Zitzler et al. [49], being unary
if only one approximation set is received and binary if two are received. This analysis takes
the top three metrics in the ranking and the one that records the runtime [48]:

• Hypervolume (HV), S metric, or Lebesgue measure: a unary metric that obtains the
total space covered by the found solutions or approximation set using a reference
point [11]. It considers accuracy, cardinality, and diversity.

• Generational Distance (GD): the average Euclidean distance between the approxima-
tion set with the nearest member of the ideal PF [50]. It only considers the accuracy.

• ε-Indicator (EI): a binary indicator that gives a factor by which an approximation set
is worse than another considering all objectives.

• Execution Time (ET) or runtime: the time consumed by the optimization algorithm to
fully complete the task.

3.4. Auxiliary Tools

The simulation was coded in Python, using basic NumPy, Pandas, and Datetime
libraries for managing vectors, matrices, and time series. The simulation module, RFR,
is implemented with Scikit recommended for machine learning [51]. The optimization is
built with the JMetalPy framework [52], well proved for solving multi-objective optimiza-
tion problems with metaheuristics [41]. The visualization of the obtained results is built
with Matplotlib.

4. Problem Formulation

The HVAC system of Teatro Real is set to follow the mechanical and comfort setpoints
required for a near event. The time spent to climatize and several HVAC parameters are
those that the chiller’s manufacturer initially recommended just after installation. The BMS
sends commands to the HVAC system to start/stop the chillers in a certain sequence to
ensure that, at the time of the event, the comfort parameters will be appropriate.

The proposed control loop for the multi-HVAC system performance optimization is
depicted in Figure 5.

113

Mathematics 2021, 9, 2181

The Control Module, with the same functions as today, initiates the process by request-
ing the Optimization Module for instructions to improve its operation. The Optimization
Module, which performs a metaheuristic search in the space of possible solutions, returns
the best candidate obtained with the algorithm used in each model run (either with GA
or SI). The fitness functions of the candidates are evaluated by the Simulation Module
that receives every individual of the population and performs the simulation of the HVAC
behavior (non-linear system) [53], as defined by the candidate control parameters. The sim-
ulation is carried out with an ML algorithm, specifically a Random Forest Regressor (RFR),
previously trained with historical data from the database of Teatro Real, by minimizing
the Mean Squared Error (MSE) and maximizing the coefficient of determination (R2). The
RFR also requests contextual information to compute the simulation, which is provided by
external sources. Finally, the Control Module translates the optimal recommendations into
instructions for the actuators.

Figure 5. Advanced control optimized with a predicting context-driven model.

Each experiment carried out in this study executes one control cycle (petition) and
addresses the optimization, without delving into the control stage. Inspired by the ACO-
DAT management architecture for HVAC systems [37], an autonomous cycle updates the
model offline, maintaining its accuracy in real operational conditions, as shown by the
green arrow in Figure 5.

The primary objectives are to maximize comfort and minimize the consumed energy.

Comfort = |T0 − Tr|

E =
n

∑
1

Ei

where T0 is the setpoint temperature, and Tr is the indoor room temperature, both in ◦C.
The maximum comfort for the optimization is therefore 0. The consumed electrical energy,
E, is the sum of the consumed energy in kW.h in each chiller group, the multi-HVAC
concept [37]. N is the number of chiller groups. The energy of one chiller group, Ei, is

Ei = Echiller, i + ECT,i + Ecwp,i + Ewpp,i

where Echiller,i is the energy consumed in the chiller machine, ECT,i is that in the cooling
tower, Ecwp,i is that in the cooling water pump, and Ewpp,I is that in the chilled water
primary pump.

This study includes two new objectives in the optimization as a novelty. The first one
is the Coefficient of Performance, COP. The higher the COP is, the better the performance
of the equipment, resulting in better energy efficiency and lower maintenance costs:

COP =
W
P

The COP is the engineering ratio of the supplied thermal power, W, to the consumed
electric power, P. The optimization of the COP brings two important advantages for the

114

Mathematics 2021, 9, 2181

HVAC system. HVAC equipment is designed to work at maximum performance, and in
this regime, the system obtains its best energy efficiency. With the appropriate autonomous
cycle of data tasks [8], the supervisory system detects the degradation of the system,
providing predictive maintenance [15].

The second novel objective is the rate of change in the ambient temperature,
.

Tr, that
is the rate at which the temperature varies when it reaches the setpoint. This objective
leads the system to rapidly reach the steady state with convenient damp that minimizes
the overshooting:

.
Tr =

dTr

dt
This parameter is important at sudden startups when there is a transient time be-

fore the steady state [16]. The lower the slope of the derivative is, the less impact on
overshooting and steady noise there is on the next control phase.

The optimization requires Comfort, E, and
.

Tr to be minimized and COP to be max-
imized. The decision space is formed with the chillers’ capacities, Ci [%], the setpoint,
T0 [◦C], and the schedule or the date and time at which the system is expected to reach
the setpoint, tstart. The indoor ambient temperature when the system starts, Tr(t = 0) [◦C],
the number of occupants, N, and the outdoor ambient temperature, OAT [◦C], are the
contextual information that determines the system. This study uses the capacity of the
chillers as actuators on the subsystems, and this is justified with this simplified model:

Pi = Pmax Ci

where Pi is the electrical power actually supplied from the ith chiller, and Pmax is the
maximum power of the chiller. The chiller’s thermal power is generated according to the
machine performance that is added to the other chillers, WHVAC.

Wi = COPi Pi

WHVAC =
n

∑
1

Wi

Thermal power conditions indoors compensate for the outdoor weather conditions
and the corporal temperature of the occupants:

W = WHVAC + WSUN + WOCC

The thermal energy, Q, is then obtained from the power, and Tr is obtained from ΔTr,
the indoor temperature variance.

Q =
∫ tend

0
W dt

Q = Ce m ΔTr

Figure 6 shows the model with the inputs required, grouped in controllable and
control variables, and the outputs, differentiating the normal optimization objectives of the
thermal inertia for the next control plan [37].

An individual in the population consists of a sequence of four operational modes of
the chillers based on their capacities, Ci [%], at certain times, ti, before the event starts at
tend [37]. Each operational mode is a 5-tuple consisting of the proposed capacities for the
four chillers ranging from 0% to 100% and the time that they start. Thus, a single individual
contains four of these 5-tuples. The RFR performs a simulation for each 5-tuple, chaining
them according to their start-up time. The last 5-tuple indicates the operational values
applied to the chillers until the system reaches the steady state, tend.

115

Mathematics 2021, 9, 2181

Figure 6. Simulation module’s functionality to compute the cost functions for the optimization.

The multi-objective optimization problem would be formally defined as follows:

1. Find the vector x in the decision space:

x =

⎡⎢⎢⎢⎢⎣
t1 t2 t3 t4
C1

1 C2
1 C3

1 C4
1

C1
2 C2

2 C3
2 C4

2
C1

3 C2
3 C3

3 C4
3

C1
4 C2

4 C3
4 C4

4

⎤⎥⎥⎥⎥⎦
ti, where i = 1, 2, 3, and 4, represents the starting dates and times to configure the
capacities of every subsystem, while Ci

j , where j = 1, 2, 3, and 4, represents the
capacities of the chiller j during the period that starts at i and ends at i + 1. The last
period is between t4 and tend.

2. x will satisfy these inequality constraints at the following point:∣∣∣Ci
j

∣∣∣ ≤ 100

ti+1 ≥ ti

3. x will optimize the vector function f(x) in the objective space:

f =

⎡⎢⎢⎣
Comfort(x)

E(x)
COP(x)

dTr
dt (x)

⎤⎥⎥⎦
Comfort and COP must be maximized, while consumed energy, E, and the rate of

change of ambient temperature,
.

Tr must be minimized.

5. Results

5.1. Dataset

The BMS is connected to 1824 digital and analog sensors, prompting the ambient
and return temperatures, frozen water flow rates, valve states, chiller’s performance,
secondary circuit values, air flow rate, fan speeds, pumps rotational speeds, controller
status, etc., and allows the operator to send instructions to the actuators from the centralized

116

Mathematics 2021, 9, 2181

platform. However, the historical data only keeps 169 variables: outdoor temperature,
room temperatures, electrical supplied power, thermal energy generated by each of the
four HVAC subsystems, and their COPs grouped in several tables with different sampling
rates (10 min, 15 min, 1 h, daily). Usable records are from January 2016 to June 2018. The
data have been cleaned to improve the accuracy by removing nonessential fields, records
with outliers, nulls, and/or zeros, getting 9898 (80%) registers for training and 2475 (20%)
for validation.

The Department of Engineering prepares the work order, based on the HVAC opera-
tional mode (HOM) for the field operators based on the events schedule and the weather
forecasts, and consisting of pre-programmed routines. This is, however, inefficient because
the complexity of the system operation reduces all possible variations to a small set of
HOMs, based on the primitive recommendations of the installers. The occupancy of the
building can reach up to 1700 during performances, while the number of people on labor
days is around 600.

5.2. Data Model

The multi-objective estimation is computed with the RFR with good accuracy and
speed balance. The model simulates the outputs in intervals of 15 min, which is a tradeoff
between the system inertia and the discretization of the system dynamics. The model
receives the time required for starting up the HVAC system, t0, the time of the venue
or the moment in which the room temperature, tend, must reach the setpoint, T0, the
room temperature at the beginning, Tr (t = t0), the number of people, N, and the outdoor
temperature forecast, which is a vector of temperatures from t0 to tend every 15 min. Table 2
represents an example where the temperature at 17 ◦C must reach the setpoint, 23.5 ◦C, in
an hour.

Table 2. Control request & context data.

Feature Value

HVAC startup time, t0 18:30
Event start time, tend 19:30
Setpoint, T0 23.5 ◦C
Ambient Temperature, Tr(t0) 17 ◦C
Outdoors Temperature vector, OAT [14 14.5 14.7 14.6]

The model also requires the outdoor temperature from the weather forecast. The
optimization algorithm then releases the proposed individual for fitness.

In addition, the simulation receives the set of HOMs searched by the algorithms that
will work in each interval. The algorithm is a sequence of HOMs proposed for the slots in
the interval from t0 to tend, consisting of the power capacities of each chiller. Following the
example, Table 3 shows one of these candidate solutions.

Table 3. Individual consisting of a sequence of four operational modes.

Time C1 C2 C3 C4

18:30 −30 −21 0 −3
18:45 −27 −20 −10 −4
19:00 −32 −15 0 −10
19:15 −28 −20 0 −10

A negative capacity indicates that the chiller is cooling, while a positive one indicates
that it is heating. Real implementations will impose restrictions that are not considered
here, such as smoothing the capacity transitions from one slot to another or preparing
the chiller for cooling or heating modes. Table 4 depicts the result of the optimization for
this example.

117

Mathematics 2021, 9, 2181

Table 4. Model prediction applying optimal operational modes.

Feature Value

Comfort 0.12 ◦C
Consumed Energy, E 1300 kW.h
Coef. of Performance, COP 4.5 kW/kW
Ambient Temp. Change Rate, dTr

dt 0.15 ◦C/min
Time before performance 15 min

5.3. Algorithm Analysis

The analysis compares the performance and execution time (ET) of the algorithms.
They start with the same expected number of solutions, i.e., the population size for the
GA and the swarm size for the SI algorithm. The experiment involved population/swarm
sizes ranging from 100 to 350 in steps of 50. The mutation probabilities were the same, and
the SBX crossover probabilities and distribution index were the same for the GAs. The mu-
tation scheme followed a polynomial probability distribution, except for OMOPSO, which
combined uniform and nonuniform distributions with the same perturbation index, 0.5.

The algorithms stopped after 5000 iterations, and GAs stopped earlier if they were
triggered with the dominance threshold. In order to obtain stable results, the algorithms
were proved 10 times to determine the average of the obtained values. Figures 7–9 represent
the objective space for the variables Comfort, Consumed Energy, and COP in 2D diagrams.

Figure 7. 2D objective space of COP [kW/kW] vs. the chiller’s Consumed Energy [kW.h].

Figure 8. 2D objective space of Consumed Energy [kW.h] vs. Comfort [◦C].

118

Mathematics 2021, 9, 2181

Figure 9. 2D objective space of COP [kW/kW] vs. Comfort [◦C].

Metrics used in the comparison were computed with the JMetal framework, and the
ETs were recorded. The SPEA2 algorithm was dropped from the analysis, as it takes 22-fold
more runtime than MOGA [45]. Figure 10 shows the obtained ET values.

Figure 10. Average execution time for each algorithm.

The GAs ran faster than the SI-based algorithms. MOGA improved the Random Search
by 13%, and OMOPSO improved it by 9%. It was observed that NSGA-III takes more time than
NSGA-II to execute. This is because of the extra computation required for the adaptive operator
and the generation of hyperplanes. On the other hand, the speed constraint mechanism seemed
to increase the ET of the SMPSO, compared with OMOPSO. All outperformed RS.

GD showed how close the fitness of the set of solutions was from the ideal PF, and
this is depicted in Figure 11.

Figure 11. Average GD to the Pareto’s ideal front by each algorithm.

An approximate PF was constructed running the NSGA-II 20,000 times, simulating a
limit behavior. The accuracy of OMOPSO and MOGA with 75% and 65% improvements

119

Mathematics 2021, 9, 2181

compared to Random Search was observed. It was unavoidable that the quasi-ideal PF
construction was insufficient for the rest of the algorithms. HV and EI are shown in
Figures 12 and 13.

Figure 12. Average hypervolume of each algorithm.

Figure 13. Average ε-Indicator of each algorithm.

In both metrics, it is possible to identify the significant improvements of all the
algorithms compared with Random Search. The ε-Indicator show NSGA-III and MOGA
as the best algorithms, outperforming Random Search by 42% and 40%, while the SI
algorithms were worse (31–35%). The HV does not show significant differences among
algorithms but shows an improvement of 5% on average.

5.4. Visualization

Regarding the question of whether an algorithm outperforms another with a combina-
tion of any quality measures, such as those seen above, Zitzler came to the conclusion that
there was no such combination, but it could be seen as the equivalence to the concept of
dominating [54]. Thus, Figures 14–16 show 2D maps formed with the metrics of this study,
those closer to the bottom left corner being the most appropriate. The best algorithms are
found in the lower-left corner in all cases. The charts also show the distance among them,
presenting an intuitive method with which to make decisions as to which performs better.
Figure 14 shows the behavior of the algorithms when setting the priority in ET and GD.

This case yields the selection of either MOGA or OMOPSO algorithms as the best
for optimization accuracy. Both metrics penalize SMPSO, which obtains a GD even worse
than RS. Figure 15 prioritizes the HV (the inverse in this case for obtaining a homogeneous
visualization) with the ET.

In this case, SMPSO still performs worse than the others in terms of accuracy, but
much better than RS, likely due to diversity. All the rest behave similarly, the GA family
standing out. Figure 16 prioritizes the ε-Indicator and ET.

ε-Indicator also measures the cardinality and maintains SMPSO at the back, followed
by OMOPSO, while GAs shows better behavior.

120

Mathematics 2021, 9, 2181

Figure 14. Plot chart mapping the studied algorithms according to the ET and the GD.

Figure 15. Plot chart mapping the studied algorithms according to the ET and the HV−1.

Figure 16. Plot chart mapping the studied algorithms according to the ET and the ε-Indicator.

121

Mathematics 2021, 9, 2181

5.5. Energy Efficiency Improvements

To complete the experiment, four differentiated events available in the historical
data of the building were randomly selected to compare the performance of the HVAC
equipment in terms of energy efficiency, with the results that would have been obtained
by applying the proposed optimization. This indicates what can be expected from this
approach. The events are defined in Table 5.

Table 5. Model prediction applying optimal HOMs.

Dataset Cases Event 1 Event 2 Event 3 Event 4

Date 27 September 2017 30 December 2017 29 July 2017 16 February 2018
Outdoors Temperature 35.87 ◦C 15.12 ◦C 35.51 ◦C 14.99 ◦C
Simulation Start Time 18:00 16:30 18:00 16:30
Performance Schedule 21:00 19:30 21:00 19:30
Ambient Temp. (start) 25.85 ◦C 23.03 ◦C 26.03 ◦C 22.82 ◦C
Ambient Temp. (end) 25.54 ◦C 23.41 ◦C 25.66 ◦C 23.26 ◦C

To illustrate the example, a second decision-making process with a weighted sum was
set to select one of the solutions with values in the PF. Weights slightly favored Consumed
Energy savings over the others. Table 6 shows the results.

Table 6. Results obtained with MOGA optimization and comparison with real data.

Objective Space Historical Data MOGA Improvement

Event 1

Consumed Energy 1138.69 KW.h 154.63 KW.h 86%
Comfort 2.04 ◦C 0.13 ◦C <0.5 ◦C
COP 3.29 3.25 >3.00

Event 2

Consumed Energy 365.25 KW.h 132.51 KW.h 64%
Comfort −0.08 ◦C 0.27 ◦C <0.5 ◦C
COP 4.31 3.42 >3.00

Event 3

Consumed Energy 931.02 KW.h 126.85 KW.h 86%
Comfort 2.16 ◦C 0.20 ◦C <0.5 ◦C
COP 3.59 4.69 >3.00

Event 4

Consumed Energy 338.04 KW.h 132.44 KW.h 61%
Comfort −0.23 ◦C 0.40 ◦C <0.5 ◦C
COP 3.64 3.69 >3.00

The right column shows the theoretical energy savings in each case with the optimized
HOMs compared with what was actually recorded in the dataset. This column also stresses
the achievements in comfort with expected deviations of less than 0.5 ◦C and HVAC
subsystems working with COPs above 3.00, which is considered a good value. These
impressive results of 60–80% in energy savings, preserving the comfort and the system
performance, must be adjusted with further research considering real restrictions, but they
hint toward a promising line of research.

5.6. Comparison with Other Works

Several authors have proposed comparisons between NSGA-II and MOPSO, which
may contribute to the comprehension of the results. Keshavarz et al. [55] compared NSGA-
II and MOPSO for the stochastic optimization of an inventory control system, showing that
NSGA-II has better performance in spacing and in the number of Pareto optimal solutions,

122

Mathematics 2021, 9, 2181

while MOPSO better spreads the fitness of the solution set and consumes fewer compu-
tational resources. Niyomubyeyi et al. [56] studied optimization in evacuation planning,
obtaining better convergence and spread with MOPSO, but the algorithm execution took
five times longer than NSGA-II. Saldanha et al. [18] obtained similar results in convergence
and spread for MOPSO and NSGA-II, although MOPSO yielded better results in spacing.
Elgammal et al. [57] studied the integration of hybrid wind photovoltaic and fuel cells,
obtaining similar system operating costs with both, but in this case, the MOPSO execution
time was shorter than NSGA-II.

6. Conclusions

This study shows the performance of several genetic and SI-based algorithms when
optimizing the control of a building HVAC system. The study works with the real historical
data of a complex and singular building by adapting the control logic to the available
sensed measures and individual chiller actuators. The results yield that simple MOGA and
NSGA-II/III run faster than MOPSOs, confirming the pure Random Search algorithm as
the slowest. The best convergence is obtained with OMOPSO according to GD and HV.

The achievement on energy consumption is impressive, as shown with several events
randomly selected from the data, reaching savings from 60% to 80%. These results will
be proved for generalization purposes with further research that will include the new
model’s restrictions.

This study is the first to take two new objectives into the optimization problem: the
HVAC subsystem’s performance, COP, and the rate of change in ambient temperature at
the end of the system startup stage. The first objective brings the possibility of advanced
supervisory policies that improve the maintenance of the equipment and extend its lifecycle.
The minimization of the second allows for a smooth transition to the permanent stage of
the HVAC operation, reducing the overshoots or the underdamping effect of the room
temperature values. In the following works, the dominance variation produced when
adding new conflicting objectives and how this affects control system decision-making will
be analyzed.

The proposed simple visualization of the algorithms not only allows for an intuitive
understanding of which algorithm performs better but also opens the possibility of the au-
tomatic real-time instantiation of the most convenient algorithm from a bank of optimizers
according to given contextual information. This is important because there are no rigid
rules, but rather, existing or new strategies, such as running out of time, operations when
the building is closed, etc.

The article also claims for consensus in optimization with a body of knowledge that
integrates the contribution of the different disciplines that theorize or are applicable to the case.

This study requires generalization to demonstrate its scope with other different buildings,
HVAC systems, and overall different variables extracted from the control logic. It is also of
interest to work on parameter tuning to characterize the inherent “no free lunch” theorem.

The use of real data has made the study more reliable. The singularity of the building
and the heterogeneous equipment that forms the HVAC system represents a demanding
test for this research.

This research will contribute to the development of the smart city with autonomic
management systems capable of learning from experience and improving with the con-
text using AI to overcome the complexity of the managed systems and changing the
user’s requirements.

Author Contributions: Conceptualization, N.G.-S., J.-M.G.-P. and A.G.-J.; methodology, A.-J.G.-T.;
software, A.G.-J.; validation, A.G.-J. and N.G.-S.; formal analysis, A.G.-J.; investigation, A.G.-J. and
A.-J.G.-T.; resources, N.G.-S., A.-J.G.-T. and J.-M.G.-P.; data curation, A.G.-J.; writing—original draft
preparation, A.G.-J.; writing—review and editing, A.G.-J., A.-J.G.-T. and J.-M.G.-P.; visualization, A.G.-J.;
supervision, A.G.-J., A.-J.G.-T. and J.-M.G.-P.; project administration, A.-J.G.-T. and A.G.-J.; funding
acquisition, A.-J.G.-T. All authors have read and agreed to the published version of the manuscript.

123

Mathematics 2021, 9, 2181

Funding: This work was partially supported by the Vice Rectorate for Research of the Universidad
Francisco de Vitoria with grant code MOGA-TR, Reference: UFV2020-34.

Acknowledgments: This work was possible thanks to the contribution of the Management Commit-
tee of Teatro Real de Madrid by providing the database of the HVAC BMS System. The authors wish
to thank Raul Jiménez-Juarez for his help in preparing the code as part of his end-of-degree project in
the Universidad Francisco de Vitoria.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References

1. Plecher, H. Global Gross Domestic Product (GDP) at Current Prices from 2014 to 2024 (in Billion U.S. Dollars). Statista. 2019.
Available online: https://www.statista.com/statistics/268750/global-gross-domestic-product-gdp/ (accessed on 12 May 2020).

2. Ritchie, H.; Roser, M. Energy. Our World in Data. 2019. Available online: https://ourworldindata.org/energy (accessed on
12 May 2020).

3. Mauro, G.M.; Hamdy, M.; Vanoli, G.P.; Bianco, N.; Hensen, J.L. A new methodology for investigating the cost-optimality of
energy retrofitting a building category. Energy Build. 2015, 107, 456–478. [CrossRef]

4. Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT considerations, requirements, and architectures for smart buildings—Energy
optimization and next-generation building management systems. IEEE Internet Things J. 2017, 4, 269–283. [CrossRef]

5. Reynolds, J.; Rezgui, Y.; Kwan, A.; Piriou, S. A zone-level, building energy optimisation combining an artificial neural network, a
genetic algorithm, and model predictive control. Energy 2018, 151, 729–739. [CrossRef]

6. Wang, F.; Yoshida, H.; Ono, E. Methodology for optimizing the operation of heating/cooling plants with multi-heat-source
equipments. Energy Build. 2009, 41, 416–425. [CrossRef]

7. Aste, N.; Manfren, M.; Marenzi, G. Building Automation and Control Systems and performance optimization: A framework for
analysis. Renew. Sustain. Energy Rev. 2017, 75, 313–330. [CrossRef]

8. Escobar, L.M.; Aguilar, J.; Garcés-Jiménez, A.; De Mesa, J.A.G.; Gomez-Pulido, J.M. Advanced Fuzzy-Logic-Based Context-Driven
Control for HVAC Management Systems in Buildings. IEEE Access 2020, 8, 16111–16126. [CrossRef]

9. Ahmad, M.W.; Mourshed, M.; Yuce, B.; Rezgui, Y. Computational Intelligence Techniques for HVAC systems: A review. In
Building Simulation; Tsinghua University Press: Beijing, China, 2016; Volume 9, pp. 359–398.

10. Mallawaarachchi, V. Introduction to genetic algorithms-including example code. Towards Data Science. 2017. Available on-
line: https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3 (accessed
on 12 May 2020).

11. Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building
energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [CrossRef]

12. Zadeh, L.A. Fuzzy Logic, Neural Networks and Soft Computing. In Safety Evaluation Based on Identification Approaches Related to
Time-Variant and Nonlinear Structures; Springer: Berlin/Heidelberg, Germany, 1993; pp. 320–321.

13. Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [CrossRef]
14. Afroz, Z.; Shafiullah, G.M.; Urmee, T.; Higgins, G. Modeling techniques used in building HVAC control systems: A review. Renew.

Sustain. Energy Rev. 2018, 83, 64–84. [CrossRef]
15. Aguilar, J.; Ardila, D.; Avendaño, A.; Macias, F.; White, C.; Gomez-Pulido, J.; Gutiérrez de Mesa, J.A.; Garces-Jimenez, A. An Au-

tonomic Cycle of Data Analysis Tasks for the Supervision of HVAC Systems of Smart Building. Energies 2020, 13, 3103. [CrossRef]
16. Aguilar, J.; Garces-Jimenez, A.; Gómez-Pulido, J.M.; R-Moreno, M.D.; Gutiérrez de Mesa, J.A.; Gallego-Salvador, N. Autonomic

Management of a Building’s multi-HVAC System Start-Up. IEEE Access 2021, 9, 70502–70515. [CrossRef]
17. Awan, A.B.; Chandra Mouli, K.V.V.; Zubair, M. Performance enhancement of solar tower power plant: A multi-objective

optimization approach. Energy Convers. Manag. 2020, 225, 113378. [CrossRef]
18. Saldanha, W.H.; Soares, G.L.; Machado-Coelho, T.M.; dos Santos, E.D.; Ekel, P.I. Choosing the best evolutionary algorithm to

optimize the multiobjective shell-and-tube heat exchanger design problem using PROMETHEE. Appl. Therm. Eng. 2017, 127,
1049–1061. [CrossRef]

19. Kuan, Y.N.; Ong, H.S. Optimization of heating, Ventilating and Air Conditioning (HVAC) systems: A review. Univ. Tenaga
Nasional. 2018, 13, 9049–9906. Available online: http://dspace.uniten.edu.my/jspui/handle/123456789/11701 (accessed on
12 May 2020).

20. Nasruddin, S.; Satrio, P.; Mahlia, T.M.I.; Giannetti, N.; Saito, K. Optimization of HVAC system energy consumption in a building
using artificial neural network and multi-objective genetic algorithm. Sustain. Energy Technol. Assess. 2019, 35, 48–57. [CrossRef]

21. Oliva, D.; Elaziz, M.A.; Elsheikh, A.H.; Ewees, A.A. A review on meta-heuristics methods for estimating parameters of solar cells.
J. Power Sources 2019, 435, 126683. [CrossRef]

22. Wang, G.G.; Shan, S. Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 2007, 129,
370–380. [CrossRef]

124

Mathematics 2021, 9, 2181

23. Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and performance of
intelligent algorithms: A comprehensive review. Artif. Intell. Rev. 2018, 49, 79–103. [CrossRef]

24. Gao, L.; Hwang, Y.; Cao, T. An overview of optimization technologies applied in combined cooling, heating and power systems.
Renew. Sustain. Energy Rev. 2019, 114, 109344. [CrossRef]

25. Castillo-Martinez, A.; Ramon Almagro, J.; Gutierrez-Escolar, A.; Del Corte, A.; Castillo-Sequera, J.L.; Gómez-Pulido, J.M.;
Gutiérrez-Martínez, J.M. Particle swarm optimization for outdoor lighting design. Energies 2017, 10, 141. [CrossRef]

26. Wang, H.; Deutz, A.H.; Bäck, T.; Emmerich, M. Hypervolume Indicator Gradient Ascent Multi-Objective Optimization. In EMO;
Volume 10173 of Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 654–669.

27. Fonseca, C.M.; Fleming, P.J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In
ICGA; Morgan Kaufmann: Burlington, MA, USA, 1993; pp. 416–423.

28. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

29. Kumar, D.; Kumar, S.; Bansal, R.; Singla, P. A survey to nature inspired soft computing. IGI Global. Int. J. Inf. Syst. Modeling Des.
2017, 8, 112–133. [CrossRef]

30. Robic, T.; Filipic, B. DEMO: Differential Evolution for Multiobjective Optimization. In EMO; Volume 3410 of Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 520–533.

31. Sharif, S.A.; Hammad, A. Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy
consumption, Life-Cycle Cost and Life-Cycle Assessment. J. Build. Eng. 2019, 21, 429–445. [CrossRef]

32. Lee, J. Multi-objective optimization case study with active and passive design in building engineering. Struct. Multidiscip. Optim.
2019, 59, 507–519. [CrossRef]

33. Gagnon, R.; Gosselin, L.; Armand Decker, S. Performance of a sequential versus holistic building design approach using
multi-objective optimization. J. Build. Eng. 2019, 26, 100883. [CrossRef]

34. Haniff, M.F.; Selamat, H.; Khamis, N.; Alimin, A.J. Optimized scheduling for an air-conditioning system based on indoor thermal
comfort using the multi-objective improved global particle swarm optimization. Energy Effic. 2019, 12, 1183–1201. [CrossRef]

35. Cai, H.; Guo, K.; Liu, H.; Xiang, W.; Liu, C. Multiobjective optimization of area-to-point heat conduction structure using binary
quantum-behaved PSO and Tchebycheff decomposition method. Can. J. Chem. Eng. 2020, 99, 1211–1227. [CrossRef]

36. Zhai, Y.-Y.; Li, Y.; Ao, Z.-G. Optimization of Continuous Casting Secondary Cooling Based on an Enhanced Multi-objective
Genetic Algorithm. Northeast. Univ. Dongbei Daxue Xuebao J. Northeast. Univ. 2019, 40, 658–662.

37. Aguilar, J.; Garcès-Jimènez, A.; Gallego-Salvador, N.; Gutièrrez de Mesa, J.A.; Gomez-Pulido, J.M.; Garcìa-Tejedor, À.J. Autonomic
management architecture for multi-HVAC systems in smart buildings. IEEE Access 2019, 7, 123402–123415. [CrossRef]

38. Afzal, A.; Ramis, M.K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm
algorithm combined with fuzzy logics. J. Energy Storage 2020, 32, 101815. [CrossRef]

39. Suthar, H.A.; Gadit, J.J. Multiobjective optimization of 2DOF controller using Evolutionary and Swarm intelligence enhanced
with TOPSIS. Heliyon 2019, 5, e01410. [CrossRef]

40. Behrooz, F.; Mariun, N.; Marhaban, M.H.; Mohd Radzi, M.A.; Ramli, A.R. Review of control techniques for HVAC systems—
Nonlinearity approaches based on Fuzzy cognitive maps. Energies 2018, 11, 495. [CrossRef]

41. Emmerich, M.T.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput.
2018, 17, 585–609. [CrossRef]

42. Ekici, B.; Cubukcuoglu, C.; Turrin, M.; Sariyildiz, I.S. Performative computational architecture using swarm and evolutionary
optimisation: A review. Build. Environ. 2019, 147, 356–371. [CrossRef]

43. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

44. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints. IEEE Trans. Evolut. Comput. 2014, 18, 577–601. [CrossRef]

45. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK—Report 103; Eidgenössische
Technische Hochschule Zürich, Institut für Technische Informatik und Kommunikationsnetze: Zürich, Switzerland, 2001.

46. Reyes-Sierra, M.; Coello, C.C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intel. Res.
2006, 2, 287–308.

47. Nebro, A.J.; Durillo, J.J.; Garcia-Nieto, J.; Coello, C.C.; Luna, F.; Alba, E. SMPSO: A new PSO-based metaheuristic for multi-
objective optimization. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-
Making (MCDM), Nashville, TN, USA, 30 March–2 April 2009; pp. 66–73.

48. Riquelme, N.; Von Lücken, C.; Baran, B. Performance metrics in multi-objective optimization. In Proceedings of the 2015 Latin
American Computing Conference (CLEI), Arequipa, Peru, 19–23 October 2015; pp. 1–11.

49. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers:
An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

50. Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations (No. AFIT/DS/ENG/99-01);
Air Force Institute of Technology: Wright-Patterson AFB, OH, USA, 1999.

51. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media: Sebastopol, CA, USA, 2019.

125

Mathematics 2021, 9, 2181

52. Barba-Gonzaléz, C.; García-Nieto, J.; Nebro, A.J.; Aldana-Montes, J.F. Multi-objective big data optimization with jmetal and
spark. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, East Lansing, MI, USA,
10–13 March 2017; pp. 16–30.

53. Zadeh, L.A. Fuzzy Logic, Neural Networks, and Soft Computing. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by
Lotfi a Zadeh; World Scientific: Singapore, 1996; pp. 775–782.

54. Zitzler, E.; Laumanns, M.; Thiele, L.; Fonseca, C.M.; da Fonseca, V.G. Why quality assessment of multiobjective optimizers is
difficult. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 9–13 July
2002; pp. 666–674.

55. Keshavarz, M.; Pasandideh, S.H.R. Multi-objective optimisation of continuous review inventory system under mixture of lost
sales and backorders within different constraints. Inderscience Publishers. Int. J. Logist. Syst. Manag. 2018, 29, 327–348.

56. Niyomubyeyi, O.; Sicuaio, T.E.; Díaz González, J.I.; Pilesjö, P.; Mansourian, A. A Comparative Study of Four Metaheuristic
Algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for Evacuation Planning. Algorithms 2020, 13, 16. [CrossRef]

57. Elgammal, A.; El-Naggar, M. Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable
energy resources using multi-objective particle swarm optimisation (MOPSO). J. Eng. 2018, 11, 1806–1816. [CrossRef]

126

mathematics

Article

Effect of Initial Configuration of Weights on Training and
Function of Artificial Neural Networks

Ricardo J. Jesus 1,2, Mário L. Antunes 1,3,*, Rui A. da Costa 4, Sergey N. Dorogovtsev 4, José F. F. Mendes 4

and Rui L. Aguiar 1,3

Citation: Jesus, R.J.; Antunes, M.L.;

da Costa, R.A.; Dorogovtsev, S.N.;

Mendes, J.F.F.; Aguiar, R.L. Effect of

Initial Configuration of Weights on

Training and Function of Artificial

Neural Networks. Mathematics 2021,

9, 2246. https://doi.org/10.3390/

math9182246

Academic Editor: Freddy Gabbay

Received: 20 August 2021

Accepted: 7 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Eletrónica, Telecomunicações e Informática, Campus Universitario de Santiago,
Universidade de Aveiro, 3810-193 Aveiro, Portugal; ricardojesus@ua.pt (R.J.J.);
ruilaa@ua.pt or ruilaa@av.it.pt (R.L.A.)

2 EPCC, The University of Edinburgh, Edinburgh EH8 9YL, UK
3 Instituto de Telecomunicações, Campus Universitario de Santiago, Universidade de Aveiro,

3810-193 Aveiro, Portugal
4 Departamento de Física & I3N, Campus Universitario de Santiago, Universidade de Aveiro,

3810-193 Aveiro, Portugal; americo.costa@ua.pt (R.A.d.C.); sdorogov@ua.pt (S.N.D.);
jfmendes@ua.pt (J.F.F.M.)

* Correspondence: mario.antunes@ua.pt or mario.antunes@av.it.pt

Abstract: The function and performance of neural networks are largely determined by the evolution
of their weights and biases in the process of training, starting from the initial configuration of these
parameters to one of the local minima of the loss function. We perform the quantitative statistical
characterization of the deviation of the weights of two-hidden-layer feedforward ReLU networks of
various sizes trained via Stochastic Gradient Descent (SGD) from their initial random configuration.
We compare the evolution of the distribution function of this deviation with the evolution of the
loss during training. We observed that successful training via SGD leaves the network in the close
neighborhood of the initial configuration of its weights. For each initial weight of a link we measured
the distribution function of the deviation from this value after training and found how the moments
of this distribution and its peak depend on the initial weight. We explored the evolution of these
deviations during training and observed an abrupt increase within the overfitting region. This jump
occurs simultaneously with a similarly abrupt increase recorded in the evolution of the loss function.
Our results suggest that SGD’s ability to efficiently find local minima is restricted to the vicinity of
the random initial configuration of weights.

Keywords: training; evolution of weights; deep learning; neural networks; artificial intelligence

1. Introduction

Training of neural networks is based on the progressive correction of their weights and
biases (model parameters) performed by such algorithms as gradient descent, which com-
pare actual outputs with the desired ones for a large set of input samples [1]. Consequently,
the understanding of the internal operation of neural networks should be intrinsically
based on the detailed knowledge of the evolution of their weights in the process of training,
starting from their initial configuration. Recently, Li and Liang [2] revealed that, dur-
ing training, weights in neural networks only slightly deviate from their initial values in
most practical scenarios. In this paper, we explore in detail how training changes the initial
configuration of weights, and the relations between those changes and the effectiveness of
the networks’ function. We track the evolution of the weights of networks consisting of two
Rectified Linear Unit (ReLU) hidden layers trained on three different classification tasks
with Stochastic Gradient Descent (SGD), and measure the dependence of the distribution of
deviations from an initial weight on this initial value. In all of our experiments, we observe
no inconsistencies in the results of the three tasks.

Mathematics 2021, 9, 2246. https://doi.org/10.3390/math9182246 https://www.mdpi.com/journal/mathematics

127

Mathematics 2021, 9, 2246

By experimenting with networks of different sizes, we have observed that, to reach
an arbitrarily chosen loss value, the weights of larger networks tend to deviate less from
their initial values than those of smaller networks. This suggests that larger networks
tend to converge to minima which are closer to their initialization. On the other hand,
we observe that for a certain range of network sizes, the deviations from initial weights
abruptly increase at some moment during their training within the overfitting regime.

This effect is illustrated in Figure 1 by the persistence and disappearance of an ini-
tialization mask (the letters are stamped to a network’s initial configuration of weights by
creating a bitmap of the same shape as the matrix of weights of the layer being marked,
rasterizing the letter to the bitmap, and using the resulting binary mask to set to zero the
weights laying outside the mark’s area.) in panels (a) and (b), respectively, for two network
sizes. We find that the sharp increase on the deviations of the weights closely correlates
with the crossover between two regimes of the network—trainability and untrainability—
occurring in the course of the training.

Figure 1. Train and test loss of networks consisting of two equally sized hidden layers of nodes,
trained on HASYv2. Some of the weights connecting the two hidden layers were initially set to zero
so that the weight matrix of these layers resembles the letter a (at initialization). The evolution of
the weight matrix is shown in the subplots. (a) Loss of a stable learner network with 512 nodes in
each hidden layer. (b) Training loss of an unstable network with 256 nodes in each hidden layer,
illustrating the effect of crossing over from trainability to untrainability regimes on the network’s
weights (disappearance of the initialization mark). A single curve is shown for clarity, but networks
of the same width show the same behavior. Experiments with other symbols (that serve as mask for
the initialization) exhibit similar behavior.

The main contributions of this work are the following: (I) a quantitative statistical
characterization of the deviation of the weights of two-hidden-layer ReLU network of
various sizes, from their initial random configuration, and (II) we show a correlation be-
tween the magnitude of deviations of weights and the successful training of a network.
Recent works [2–4] showed that in highly over-parametrized networks, the training process
implies a fine-tuning of the initial configuration of weights, significantly adjusting only
a small portion of them. Our quantitative statistical characterization describes this phe-
nomenon in greater detail and empirically verifies the small deviations that occur when the
training process is successful. Furthermore, our analysis allows us to draw some insights
regarding the training process of neural network and pave the way for future research.

Our paper is organized as follows. In Section 2, we summarize some background
topics on neural networks’ initializations, and review a series of recent papers pertaining
to ours. Section 3 presents the problem formulation, experimental settings and datasets
used in this paper. In Section 4, we explore the shape of the distribution of the deviations
of weights from their initial values and its dependence on the initial weights. We continue
these studies in Section 5 by experimenting with networks of different widths and find that,
whenever a network’s training is successful, the network does not travel far from its initial

128

Mathematics 2021, 9, 2246

configuration. Finally, Section 6 provides concluding remarks and points out directions for
future research.

2. Background and Related Work

2.1. Previous Works

It is widely known that a neural network’s initialization is instrumental in its training [5–8].
The works of Glorot and Bengio [7], Chapelle and Erhan [9] and Krizhevsky et al. [10], for in-
stance, showed that deep networks initialized with random weights and optimized with
methods as simple as Stochastic Gradient Descent could, surprisingly, be trained suc-
cessfully. In fact, by combining momentum with a well-chosen random initialization
strategy, Sutskever et al. [11] managed to achieve performance comparable to that of
Hessian-free methods.

There are many methods to randomly initialize a network. Usually, they consist
of drawing the initial weights of the network from uniform or Gaussian distributions
centered at zero, and setting the biases to zero or some other small constant. While
the choice of the distribution (uniform or Gaussian) does not seem to be particularly
important [12], the scale of the distribution from which the initial weights are drawn does.
The most common initialization strategies—those of Glorot and Bengio [7], He et al. [8], and
LeCun et al. [5]—define rules based on the network’s architecture for choosing the variance
that the distribution of initial weights should have. These and other frequently used
initialization strategies are mainly heuristic, seeking to achieve some desired properties
at least during the first few iterations of training. However, it is generally unclear which
properties are kept during training or how they vanish [12] (Section 8.4). Moreover, it is
also not clear why some initializations are better from the point of view of optimization
(i.e., achieve lower training loss), but are simultaneously worse from the point of view
of generalization.

Frankle and Carbin [13] recently observed that randomly initialized dense neural net-
works typically contain subnetworks (called winning tickets) that are capable of matching
the test accuracy of the original network when trained for the same amount of time in
isolation. Based on this observation, they formulate the Lottery Ticket Hypothesis, which
essentially states that this effect is general and manifests with high probability in this
kind of network. Notably, these subnetworks are part of the network’s initialization, as
opposed to an organization that emerges throughout training. The subsequent works of
Zhou et al. [14] and Ramanujan et al. [15] corroborate the Lottery Ticket Hypothesis and
propose that winning tickets may not even require training to achieve quality comparable
to that of the trained networks.

In their recent paper, Li and Liang [2] established that two-layer over-parameterized
ReLU networks, optimized with SGD on data drawn from a mixture of well-separated dis-
tributions, probably converge to a minimum close to their random initializations. Around
the same time, Jacot et al. [3] proposed the neural tangent kernel (NTK), a kernel that
characterizes the dynamics of the training process of neural networks in the so-called
infinite-width limit. These works instigated a series of theoretical breakthroughs, such as
the proof that SGD can find global minima under conditions commonly found in practice
(e.g., over-parameterization) [16–23], and that, in the infinite-width limit, neural networks
remain in an O

(
1/

√
n
)

neighborhood of their random initialization (n being the width of
the hidden layers) [24,25]. Lee et al. [4] make a similar claim about the distance a network
may deviates from its linearized version. Chizat et al. [26], however, argue that such wide
networks operate in a regime of “lazy training” that appears to be incompatible with the
many successes neural networks are known for in difficult, high dimensional tasks.

2.2. Our Contribution

From distinct perspectives, these previous works have shown that, in highly over-
parametrized networks, the training process consists of a fine-tuning of the initial configu-
ration of weights, adjusting significantly just a small portion of them (the ones belonging

129

Mathematics 2021, 9, 2246

to the winning tickets). Furthermore, Frankle et al. [27] recently showed that the winning
ticket’s weights are highly correlated with each other.

The previous investigations on the role of the initial weights configuration focus on
networks with potentially infinite width, in which, as our results also show, the persistence
of the initial configuration is more noticeable. In contrast, we explore a wide range of
network sizes from untrainable to trainable by varying the number of units in the hidden
layers. This approach allows us to explore the limits of trainability, and characterize the
trainable–untrainable network transition that occurs at a certain threshold of the width of
hidden layers.

A few recent works [28,29] indicated the existence of ‘phase transitions’ from narrow
to wide networks associated to qualitative changes in the set of loss minima in the configu-
ration space. These results resonate with ours, although neither relations to trainability nor
the role of the initial configuration of weights were explored.

On one hand, we observe that, when the networks are trainable (large networks), they
always converge to a minima in the vicinity of the initial weight configuration. On the
other hand, when the network is untrainable (small networks) the weight configuration
drifts away from the initial configuration. Moreover, in our simulations, we found an
intermediate size range for which the networks train reasonably well for a while, decreasing
the loss consistently, but, later in the overfitting region, their loss abruptly increases
dramatically (due to overshooting). Past this point of divergence, the loss can no longer be
reduced by more training. The behavior of these ultimately untrainable networks further
emphasizes the connection between trainability (ability to reduce train loss) and proximity
to the initial configuration: the distance to the initial configuration remains small in the first
stage of training, while the loss is reduced, and later increases abruptly, simultaneously
with the loss.

We hypothesize that networks initialized with random weights and trained with SGD
can only find good minima in the vicinity of the initial configuration of weights. This kind
of training procedure is unable to effectively explore more than a relatively small region of
the configuration space around the initial point.

3. Problem Formulation

Our aim in this work is to contribute to the conceptual understanding of the influence
that random initializations have in the solutions of feedforward neural networks trained
with SGD. In order to avoid undesirable effects, specific to particular architectures, training
methods, etc., we set up our experiments with very simple, vanilla, settings.

We trained feedforward neural networks with two layers of hidden nodes (three layers
of links) with all-to-all connectivity between adjacent layers. In our experiments, we vary
the widths (i.e., numbers of nodes) of the two hidden layers between 10 and 1000 nodes
simultaneously, always keeping them equal to each other. The number of nodes of the
input and output layers is determined by the dataset, specifically by the number of pixels of
the input images and the number of classes, respectively. This architecture is largely based
on the multilayer perceptron created by Keras for MNIST (https://raw.githubusercontent.
com/ShawDa/Keras-examples/master/mnist_mlp.py, accessed on 8 September 2021).

Let us denote the weight of the link connecting nodes i in a given layer and node j
in the next layer by wij. The output of a node j in the hidden and output layers, denoted
by oj, is determined by an activation function of the weighted sum of the outputs of the
previous layer added by the node’s bias, bj, as bj + ∑i wijoi ≡ xj. The nodes of two hidden
layers employ the Rectified Linear Unit (ReLU) activation function

f (xj) =

{
xj if xj ≥ 0,
0 if xj < 0.

(1)

The ReLU is a piecewise linear function that will output the input directly if it is
positive; otherwise, it will output zero. It has become the default activation function for

130

Mathematics 2021, 9, 2246

many types of neural networks because a model that uses it is easier to train and often
achieves better performance.

The nodes in the output layer employ the softmax activation function

f (xj) =
exj

∑K
k=1 exk

(2)

where K is the number of elements in the input vector (i.e., the number of classes of the
dataset). The softmax activation function is a generalization of the logistic function to
multiple dimensions. It is used in multinomial logistic regression and is often used as
the last activation function of a neural network to normalize the output of a network to a
probability distribution over predicted output classes.

Unless otherwise stated, the biases of the networks are initialized at zero and the
weights are initialized with Glorot’s uniform initialization [7]:

wij ∼ U

(
−

√
6√

m + n
,

√
6√

m + n

)
, (3)

where U(α, β) is the uniform distribution in the interval (α, β), and m and n are the number
of units of the layers that weight wij connects. In some of our experiments, we apply
various masks to these uniformly distributed weights, setting to zero all weights wij not
covered by a mask (see Figure 1). The loss function to be minimized is the categorical
cross-entropy, i.e.,

L = −
C

∑
i=1

yi ln oi, (4)

where C is the number of output classes, yi ∈ {0, 1} the i-th target output, and oi the i-th
output of the network. The neural networks were optimized with Stochastic Gradient
Descent with a learning rate of 0.1 and in mini-batches of size 128. The networks were
defined and trained in Keras [30] using its TensorFlow [31] back-end.

Throughout this paper, we use three datasets to train our networks: MNIST, Fashion
MNIST, and HASYv2. Figure 2 displays samples of them. These are some of the most
standard datasets used in research papers on supervised machine learning.

MNIST (http://yann.lecun.com/exdb/mnist/, accessed on 5 September 2021) [32]
is a database of gray-scale handwritten digits. It consists of 6.0000 × 104 training and
1.0000 × 104 test images of size 28 × 28, each showing one of the numerals 0 to 9. It was
chosen due to its popularity and widespread familiarity.

Fashion MNIST (https://github.com/zalandoresearch/fashion-mnist, accessed on 5
September 2021) [33] is a dataset intended to be a drop-in replacement for the original
MNIST dataset for machine learning experiments. It features 10 classes of clothing cate-
gories (e.g., coat, shirt, etc.) and it is otherwise very similar to MNIST. It also consists of
28 × 28 gray-scale images, 6.0000 × 104 samples for training, and 1.0000 × 104 for testing.

HASYv2 (https://github.com/MartinThoma/HASY, accessed on 5 September 2021) [34]
is a dataset of 32 × 32 binary images of handwritten symbols (mostly LATEX symbols, such
as α, σ,

∫
, etc.). It mainly differentiates from the previous two datasets in that it has many

more classes (369) and is much larger (containing around 150,000 train and 17,000 test
images).

In this paper, the number of epochs elapsed on the process of training is denoted by t.
We typically trained networks for very long periods (up to t = 1000), and, consequently,
for most of their training, the networks were in the overfitting regime. However, since we
are studying the training process of these network and making no claims concerning the
networks’ ability to generalize on different data, overfitting does not affect our conclusions.
In fact, our results are usually even stronger prior to overfitting. For similar reasons, we
will be considering only the loss function of the networks (and not other metrics such as
their accuracy), since it is the loss function that the networks are optimizing.

131

Mathematics 2021, 9, 2246

Figure 2. Samples of the datasets used in our experiments. Top: MNIST. Middle: Fashion MNIST.
Bottom: HASYv2 (colors reversed).

4. Statistics of Deviations of Weights from Initial Values

To illustrate the reduced scale of the deviations of weights during the training, let
us mark a network’s initial configuration of weights using a mask in the shape of a letter,
and observe how the marking evolves as the network is trained. Naturally, if the mark
is still visible after the weights undergo a large number of updates and the networks
converge, it indicates that the training process does not shift the majority of the weights of
a network far from their initial states.

Figure 1a shows typical results of training a large network whose initial configuration
is marked with the letter a. One can see that the letter is clearly visible after training for
as many as 1000 epochs. In fact, one observes the initial mark during all of the network’s
training, without any sign that it will disappear. Even more surprisingly, these marks
do not affect the quality of training. Independently of the shape marked (or whether
there is a mark or not) the network trains to approximately the same loss across different
realizations of initial weights. This demonstrates that randomly initialized networks
preserve features of their initial configuration along their whole training—features that are
ultimately transferred into the networks’ final applications.

Figure 1b demonstrates an opposite effect for midsize networks that cross over be-
tween the regimes of trainability and untrainability. As it illustrates, the initial configuration
of weights of these unstable networks tend to be progressively lost, suffering the largest
changes when the networks diverge (loss function sharply increases at some moment).

By inspecting the distribution of the final (i.e., last, after training) values of the weights
of the network of Figure 1a versus their initial values, portrayed in Figure 3, we see that
weights that start with larger absolute values are more likely to suffer larger updates (in the
direction that their sign points to). This trend can be observed in the plot by the tilt of the
interquartile range (yellow region in the middle) with respect to the median (dotted line).
The figure demonstrates that initially large weights in absolute value have a tendency to
become even larger, keeping their original sign; it also shows the maximum concentration
of weights near the line w f = wi, indicating that most weights either change very little or
nothing at all throughout training.

132

Mathematics 2021, 9, 2246

−
0.8

−
0.4

0.0
0.4

0.8

−
0.8

−
0.4

0.0
0.4

0.8

−
0.8

−
0.4

0.0
0.4

0.8

0
500
1000
1500
2000
2500

co
u
n
t

−0
.0
8

−0
.0
6

−0
.0
4

−0
.0
2

0.
00

0.
02

0.
04

0.
06

0.
08

wi

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

w
f

median

interquartile range

2–25, 75–98 percentile

1

2

5

10

20

50

100

200

500

1000

co
u
n
t

d
is
tr
ib
u
ti
o
n
o
f
w

f

in
th
e
co

lo
re
d
re
g
io
n

Figure 3. Distribution of the final values of the weights of the network of Figure 1a, trained for
1000 epochs on HASYv2, as function of their initial value. The peak of the distribution is at w f = wi,
which is extremely close to the median. The skewness of the distribution for large absolute values of
wi is evidenced in the histograms at the top.

This effect may be explained by the presence of a winning ticket in the network’s
initialization. Our results suggest that the role of the over-parametrized initial configuration
is decisive in successful training: when we reduce the level of over-parametrization to a
point where the initial configuration stops containing such winning tickets, the network
becomes untrainable by SGD.

The skewness in the distribution of the final weights can be explained by the ran-
domness of the initial configuration, which initializes certain groups of weights with more
appropriate values than the others, which makes them better suited for certain features of
the dataset. This subset of weights does not need to be particularly good, but as long as it
provides slightly better or more consistent outputs than the rest of the weights, the learning
process may favor their training, improving them further than the rest. Over the course of
many epochs, the small preference that the learning algorithm keeps giving them adds up
and causes these weights to become the best recognizers for the features that they initially,
by chance, happened to be better at. In this hypothesis, it is highly likely that weights
with larger initial values are more prone to be deemed more important by the learning
algorithm, which will try to amplify their ‘signal’. This effect has several bearings with,
for instance, the real-life effect of the month of birth in sports [35].

133

Mathematics 2021, 9, 2246

5. Evolution of Deviations of Weights and Trainability

One may understand the relationship between the success of training and the fine-
tuning process observed in Section 4, during which a large fraction of the weights of a
network suffer very tiny updates (and many are not even changed at all), in the following
way. We suggest that the neural networks typically trained are so over-parameterized
that, when initialized at random, their initial configuration has a high probability of being
close to a proper minimum (i.e., a global minimum where the training loss approaches
zero). Hence, to reach such a minimum, the network needs to adjust its weights only
slightly, which causes its final configuration of weights to have strong traces of the initial
configuration (in agreement with our observations).

This hypothesis raises the question of what happens when we train networks that
have a small number of parameters. At some point, do they simply start to train worse? Or
do they stop training at all? It turns out that, during the course of their training, neural
networks cross over between two regimes—trainability and untrainability. The trainability
region may be further split into two distinct regimes: a regime of high trainability where
training drives the networks towards global minima (with zero training loss), and a regime
of low trainability where the networks converge to sub-optimal minima of significantly
higher loss. Only high trainability allows a network to train successfully (i.e., to be
trainable), since in the remaining two regimes, of untrainability and low trainability, either
the networks do not learn at all, or they learn but very poorly. Figure 4 illustrates these three
regimes. Note that we use the term trainability/untrainability referring to the regimes of the
training process, in which loss and deviations of weights are, respectively, small/large. We
reserve the terms trainable-untrainable to refer to the capability of a network to keep a low
train loss after infinite training, which depends essentially on the network’s architecture.

We measure the dependence of the time at which these crossovers happen on the
network size and build a diagram showing the network’s training regime for each network
width and training time. This diagram, Figure 4c, resembles a phase diagram, although the
variable t, the training time, is not a control parameter, but it is rather the measure of the
duration of the ‘relaxation’ process that SGD training represents. One may speak about a
phase transition in these systems only in respect of their stationary state, that is, the regime
in which they finally end up, after being trained for a very long (infinite) time. Figure 4c
shows three characteristic instants (times) of training for each network width: (i) the time
at which the minimum of the test loss occurs, (ii) the time of the minimum of the train loss,
(iii) the time at which the loss abruptly increases (‘diverges’). Each of these times differ for
different runs, and, for some widths, these fluctuations are strong or they even diverge. The
points in this plot are the average values over ten independent runs. By the error bars, we
show the scale of the fluctuations between different runs. Notice that the times (ii) and (iii)
approach infinity as we approach the threshold of about 300 nodes from below (which is
specific to the network’s architecture and dataset). Therefore, wide networks (�300 nodes
in each hidden layer) never cross over to the untrainability regime; wide networks should
stabilize in the trainability regime as t → ∞. The untrainability region of the diagram exists
only for widths smaller than the threshold, which is in the neighborhood of 300 nodes.
Networks with such widths initially demonstrate a consistent decrease in the train loss.
However, at some later moment, during the training process, the systems abruptly cross
over from the trainability regime, with small deviations of weights from their initial values
and decreasing train loss, to the untrainability regime, with large loss and large deviations
of weights.

134

Mathematics 2021, 9, 2246

0 200 400 600 800 1000

epochs

10−2

10−1

100

101

102

L
o
g
lo
ss

(t
ra
in
)

a)

0 200 400 600 800 1000

epochs

10−1

100

101

102

L
o
g
lo
ss

(t
es
t)

b)

width = 10

width = 150

width = 275

width = 500

0 100 200 300 400 500

width

0

200

400

600

800

1000

t high
trainability

low
trainability

untrainability

c)

minimum train

minimum test

divergence

0 100 200 300 400 500

width

0.0

0.5

1.0

1.5

2.0

2.5

m
in

lo
ss

d)

minimum train

minimum test

Figure 4. The regimes of a neural network over the course of its training: Evolution of (a) train and
(b) test loss functions of networks of various widths. Panels (a,b) show single typical training runs
of the full set which we explored. (c) Average times (in epochs) taken by the networks to reach
the minima of the train loss and of the test loss functions, and to diverge (i.e., reach the plateau
of the train loss). For each network width, we calculate the averages and standard deviations of
these times (represented by error bars) over ten independent runs trained on HASYv2. (d) Average
values of minimum loss at the train and test sets reached during individual runs (different runs reach
their minima at different times). These averages were measured over the same ten independent
realizations as in panel (c).

By gradually reducing the width, and looking at the trainability regime in the limit of
infinite training time, we find a phase transition from trainable to untrainable networks.
In the diagram of Figure 4c, this transition corresponds to a horizontal line at t = ∞, or,
equivalently, to the projection of the diagram on the horizontal axis (notice that the border
between regimes is concave).

The phase diagram in Figure 4 (the bottom left panel) suggests the existence of three
different classes of networks: weak, strong, and, in between them, unstable learners. Weak
learners are small networks that, throughout their training, do not tend to diverge, but only
train to poor minima. They mostly operate in a regime of low trainability, since they can be
trained, but only to ill-suited solutions. On the other side of the spectrum of trainability
are large networks. These are strong learners, as they train to very small loss values and
they are not prone to diverge (they operate mostly in the regime of high trainability). In
between these two classes are unstable learners, which are midsize networks that train to
progressively better minima (as their size increases), but that, at some point, in the course
of their training, are likely to diverge and become untrainable (i.e., they tend to show a
crossover from the regime of trainability to the one of untrainability).

Remarkably, we observe the different regimes of operation of a network not only in
the behavior of its loss function, but also in the distance it travels from its initial configu-
ration of weights. We have already demonstrated in Figure 1 how the mark of the initial
configuration of weights of a network persists in large networks (i.e., strong learners that

135

Mathematics 2021, 9, 2246

over the course of their training were always on the regime of high trainability), and van-
ishes for midsize networks that ultimately cross over to the regime of untrainability. In
Appendix A we supply detailed description of the evolution of the statistics of weights
during the training of the networks used to draw Figure 4. Figures A1 and A2 show that,
as the network width is reduced, the highly structured correlation between initial and final
weight, illustrated by the coincidence of the median with the line w f = wi (see Figure 3),
remains in effect in all layers of weights until the trainability threshold. Below that point
the structure of the correlations eventually breaks down, given enough training time. The
reliability of the observation of this breakdown in Figures A1 and A2, for widths below
∼300, is reinforced by the robust fitting method based in cumulative distributions that is
explained in Appendix B.

To quantitatively describe how distant a network becomes from its initial configuration
of weights we consider the root mean square deviation (RMSD) of its system of weights at
time t with respect to its initial configuration, i.e.,

RMSD(t) ≡
√√√√ 1

m

m

∑
j=1

[
wj(t)− wj(0)

]2, (5)

where m is the number of weights of the network (which depends on its width), and wj(t)
is the weight of edge j at time t.

Figure 5 plots, for three different datasets, the evolution of the loss function of net-
works of various widths alongside the deviation of their configuration of weights from its
initial state. These plots evidence the existence of a link between the distance a network
travels away from its initialization and the regime in which it is operating, which we
describe below.

10−5

10−4

10−3

10−2

10−1

100

L
o
g
lo
ss

(t
ra
in
)

MNIST

10−5

10−4

10−3

10−2

10−1

100

L
o
g
lo
ss

(t
ra
in
)

Fashion MNIST

10−2

10−1

100

101

102

L
o
g
lo
ss

(t
ra
in
)

HASYv2

0 200 400 600 800 1000

epochs

0.0

0.1

0.2

0.3

0.4

0.5

R
M
S
D

width = 10

width = 100

width = 200

width = 500

0 200 400 600 800 1000

epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M
S
D

width = 10

width = 50

width = 100

width = 500

0 200 400 600 800 1000

epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M
S
D

width = 10

width = 150

width = 275

width = 500

Figure 5. Top: Temporal evolution of the loss function of networks of various widths. Bottom:
Evolution of the root mean square deviation (RMSD) between the initial configuration of weights of
a network and its current configuration. From left to right: networks trained on the MNIST, Fashion
MNIST, and HASYv2 datasets. Five independent test runs are plotted (individually) for each value of
width and each dataset.

For all the datasets considered, the blue circles (•) show the training of networks
that are weak learners—hence, they only achieve very high losses and are continuously
operating in a regime of low trainability. These networks experience very large deviations
on their configuration of weights, getting further and further away from their initial state.
In contrast, the red left triangles (�) show the training of large networks that are strong

136

Mathematics 2021, 9, 2246

learners (in fact, for MNIST all the networks marked with triangles are strong learners; in
our experiments we could not identify unstable learners on this dataset). These networks
are always operating in the regime of high trainability, and over the course of their training
they deviate very slightly from their initial configuration (compare with the results of
Li and Liang [2]). Finally, for the Fashion MNIST and HASYv2 datasets, orange down
(�) and green up (�) triangles show unstable networks of different widths (the former
being smaller than the latter). While on the regime of trainability, these networks deviate
much further from their initial configuration than strong learners (but less than weak
learners). However, as they diverge and cross over into the untrainability regime (which
could only be observed on networks training with the HASYv2 dataset), the RMSD suffers a
sharp increase and reaches a plateau. These observations highlight the persistent coupling
between the network’s trainability (measured as train loss) and the distance it travels away
from the initial configuration (measured as RMSD), as well as their dependence of the
network’s width.

To complete the description of the behavior of these networks on the different regimes,
Figure 6 plots, for networks of different widths, the time at which they reach a loss below
a certain value θ, and the RMSD between their configuration of weights at that time and
the initial one. It shows that networks that are small and are operating under the low
trainability regime fail to reach even moderate losses (e.g., on Fashion MNIST, no network
of width 10 reaches a loss of 0.1, whereas networks of width 100 reach losses that are three
orders of magnitude smaller). Moreover, even when they reach these loss values, they take
a significantly longer time to do so, as the plots for MNIST demonstrate. Finally, the figure
also shows that, as the networks grow in size, the displacement each weight has to undergo
to allow the network to reach a particular loss decreases, meaning that the networks are
progressively converging to minima that are closer to their initialization. We can treat this
displacement as a measure of the work the optimization algorithm performs during the
training of a network to make it reach a particular quality (i.e., value of loss). Then one can
say that using larger networks eases training by decreasing the average work the optimizer
has to spend with each weight.

0

200

400

600

800

1000

t θ

MNIST

0

100

200

300

400

500

600

700

800

900

t θ

Fashion MNIST

0

50

100

150

200

250

300

350

400

450

t θ

HASYv2

0 200 400 600 800 1000

width

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
M
S
D

θ = 10−4

θ = 10−3

θ = 10−2

θ = 10−1

0 200 400 600 800 1000

width

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
M
S
D

θ = 10−4

θ = 10−3

θ = 10−2

θ = 10−1

0 200 400 600 800 1000

width

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
M
S
D

θ = 0.02

θ = 0.05

θ = 0.10

θ = 0.20

Figure 6. Top: Time tθ (in epochs) at which the networks first reach a given value θ. Bottom: Root
mean square deviation (RMSD) between the initial configuration of weights of a network and its
configuration of weights at time tθ . From left to right: networks trained on the MNIST, Fashion
MNIST, and HASYv2 datasets. Each point in the figure is the average of five independent test runs.
The absence of a point in a plot indicates that the network does not reach this loss during the entire
period of training.

137

Mathematics 2021, 9, 2246

6. Conclusions

In this paper, we explored the effects of the initial configuration of weights on the
training process and function of shallow feedforward neural networks. We performed a
statistical characterization of the deviation of the weights of two-hidden-layer networks of
various sizes trained via Stochastic Gradient Descent from their initial random configu-
ration. Our analysis has shown that there is a strong correlation between the successful
training of a shallow feedforward network and the magnitude of the weights’ deviations
from their initial values. Furthermore, we were able to observe that the initial configuration
of weights typically leaves recognizable traces on the final configuration after training,
which provides evidence that the learning process is based on fine-tuning the weights of
the network.

We investigated the conditions under which a network travels far from its initial
configurations. We observed that a neural network learns in one of two major regimes:
trainability and untrainability. Moreover, its size (number of parameters) largely determines
the quality of its training process and its chance to enter the untrainability regime. By
comparing the evolution of the distribution function of the deviations of the weights with
the evolution of the loss function during training, we have shown that a network only
travels far away from its initial configuration of weights if it is either (i) a poor learner
(which means that it never reaches a good minimum) or (ii) when it crosses over from
trainability to untrainability regimes. In the alternative (good) case, in which the network
is a strong learner and it does not become untrainable, the network always converges to
the neighbourhood of its initial configuration (keeping extensive traces of its initialization);
in all of our experiments, we never observed a network converging to a good minimum
outside the vicinity of the initial configuration. The results and analysis of our simulations
point out that the typical black-box model, used in most applications of neural networks,
hides the trainability capacity of the networks. For a set of three typical classification
problems, these results indicate a range of network sizes where the training process is
successful. Our conclusions are consistent with recent finds, specifically the Lottery Ticket
Hypothesis [13].

Finally, it is important to mention that most of our analysis was conducted when
overfitting was already taking place. At shorter times, the deviations of weights from
their initial values are even smaller, and our conclusions remain valid. Our conclusions
were based on the analysis of the loss function of the networks since this was the actual
function that the networks were optimizing. However, we argue that equivalent results
can be obtained by using the accuracy or other similar metric. Our analysis was conducted
on a specific set of conditions. To fully generalize our findings, different initialization
methods and datasets should be considered in order to fully validate the hypothesis stated
in Section 2.2. The generalization of the results is outside of the scope of this paper and is
intended as future work.

Author Contributions: Conceptualization, R.J.J., M.L.A., R.A.d.C., S.N.D., J.F.F.M. and R.L.A.;
methodology, R.J.J., M.L.A., R.A.d.C., S.N.D. and R.L.A.; software, R.J.J.; validation, R.J.J., M.L.A.,
R.A.d.C. and R.L.A.; formal analysis, R.A.d.C. and S.N.D.; investigation, R.J.J., R.A.d.C., M.L.A.;
writing—original draft preparation, R.J.J., M.L.A. and R.A.d.C.; writing—review and editing, S.N.D.,
J.F.F.M. and R.L.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was developed within the scope of the project i3N, UIDB/50025/2020 and
UIDP/50025/2020, financed by national funds through the FCT/MEC. RAC acknowledges the FCT
Grant No. CEECIND/04697/2017. The work was also supported under the project YBN2020075021-
Evolution of mobile telecommunications beyond 5G inside IT-Aveiro; by FCT/MCTES through
national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-
UIDP/50008/2020; under the project PTDC/EEI-TEL/30685/2017 and by the Integrated Programme
of SR&TD “SOCA” (Ref. CENTRO-01-0145-FEDER-000010), co-funded by Centro 2020 program,
Portugal 2020, European Union, through the European Regional Development Fund.

Institutional Review Board Statement: Not applicable.

138

Mathematics 2021, 9, 2246

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Statistics of Weights across the Trainable–Untrainable Transition

The distribution of deviations from the initial weight is qualitatively similar across
the trainable phase. The proximity between the line w f = wi and the median of the
distributions of w f for fixed wi, observed in Figure 3, is a distinctive feature of that kind of
distribution. Figure A1 shows the slope obtained by fitting a straight line to the peaks (or
mode) of the distributions of trained weights w f for fixed wi. In large networks, the fitted
slope of the peaks, copt, is very close 1 in all layers (even for very large training times),
independently of the width. Below the width threshold for the network to be trainable,
of about 300 nodes per hidden layer, the slope copt shows significant deviations from
1, and its value strongly fluctuates among realizations of the initialization and training.
(The borders of the shaded area in the plots of Figures A1 and A2 represent the standard
deviation measured in ten independent realizations.) To emphasize the coupling between
trainability and proximity to the initial configuration of weights, we used data from
the same ten realizations to plot Figures 4, A1 and A2. Combined, these figures show
the simultaneousness of the abrupt increase in the loss and of the deviation from the
initial configuration.

Figure A1. Fitting of the line across the maxima of the distribution of final weights in the networks
of Figure 4. The parameter copt is the slope obtained by fitting a straight line to the peaks of the distri-
butions of trained weights w f for fixed wi. These results are averages measured in ten independent
realizations, and the shaded areas represents the dispersion (standard deviation across realizations).

For the sake of completeness, we perform linear fittings also to the mean trained
weight as a function of the initial weight. Figure A2 shows the results of these fittings: a0
and a1 denote the constant and the slope, respectively. Similarly to the copt, while above
a width of about 300 nodes the values of a0 and a1 are stable, below the threshold they
suffer an abrupt change at some moment of training. The dispersion of the trained weights
around their initial value, measured by the standard deviation, is also shown in Figure A2
for the set of weights that are initialized with the value wi = 0, displaying the same
transition at a width of about 300. We observed that the distribution of trained weights
for other wi �= 0 behaves similarly with the variation of the network’s width. Notice that,
since the weights are initialized from a continuous distribution, we are able to measure the
mode (peaks), average, and standard deviation of weights as functions of the initial value
wi by applying the special procedure described in Appendix B, which is less affected by
the presence of noise (fluctuations) in the data that the standard binning methods.

139

Mathematics 2021, 9, 2246

Figure A2. Mean and standard deviation of the trained weights in the networks of Figure 4. Top and
middle rows: results of fitting a straight line a0 + a1wi to the mean of the trained weights w f (wi).
Bottom row: standard deviation of the distribution of trained weights for the set of weights that
are initialized with the value wi = 0. These results are averages measured in ten independent
realizations, and the shaded areas represents the dispersion (standard deviation across realizations).

Appendix B. Fitting the Statistics of Weights in a Single Realization

This appendix briefly describes the methods used in this work to characterize the
statistics of the displacements of weights produced by training with SGD. The problem is
that we cannot directly obtain the distributions Pwi (w f) of the final weights w f for each
value of the initial weight wi, because the wis are drawn from a continuous (uniform)
distribution, see Equation (3). In practice, for a single realization of training, we have a set
of points (wi, w f), one for each link, in the continuous plane, as shown in Figure 3. In this
situation, calculating the mean 〈w f 〉(wi) and standard deviation σw f (wi) of the distribution
Pwi (w f) may follow one of two approaches: either using a binning procedure or cumulative
distributions. In our analysis, we employed the latter, which is less affected by random
fluctuations than the standard binning methods.

We assume a linear fit 〈w f 〉(wi) = a0 + a1wi, and obtain the constants a1 and a0 as
follows. Let us define the function

Wf (w) =
∫ w

min(wi)
〈w f 〉(x)dx = C + a0w +

a1

2
w2, (A1)

where C is a constant resulting from the lower limit of the integral. For one given realization,
we can estimate this function from the following cumulative sum

Wf (w) ≈ max(wi)− min(wi)

N ∑
j:wj(0)≤w

wj(t f), (A2)

where wj(t f) denotes the value of the weight of link j at time t f , N is the number of links of
the network, and min(wi)/max(wi) is the minimum/maximum value of the initialization

140

Mathematics 2021, 9, 2246

weights. (The sum in the right-hand side of Equation (A2) runs over all links whose initial
weight is not larger than w.) Finally, we fit a second degree polynomial to Wf (w), and get
the constants a1 and a0 from its coefficients.

We use the same ‘cumulative-based’ approach to find the second moment of Pwi (w f),
denoted by 〈w2

f 〉(wi). In this case, we assume the polynomial 〈w2
f 〉(wi) = b0 + b1wi + b2w2

i .

We again define the cumulative W(2)
f (w) =

∫ w
min(wi)

〈w2
f 〉(x)dx. Similarly to Wf (w), we

estimate W(2)
f (w) as

W(2)
f (w) ≈ max(wi)− min(wi)

N ∑
j:wj(0)≤w

wj
2(t f), (A3)

and fit a third degree polynomial to get the coefficients b0, b1, and b2. Then, we calculate
σw f (wi) as

σw f (wi) =

√
〈w2

f 〉(wi)−
[
〈w f 〉(wi)

]2
. (A4)

The method for fitting the peak (or the mode) of the distribution Pwi (w f) is also based
on a cumulative distribution. In our experiments we observe that, in the trainability regime,
the peak of the distribution of w f as a function of wi is indistinguishable from a straight
line, see Figure 3. Accordingly, we define

Nc(b) =
∣∣∣{(wi, w f) : w f ≤ b + cwi

}∣∣∣, (A5)

which is a function that counts the number of points (wi, w f) below or at the line b + cwi.
Then, we fit the peak of Pwi (w f) by optimizing the expression

max
c

max
(

d
db

Nc(b)
)

, (A6)

In other words, we look for the slope that causes the largest rate of change in the
function Nc(b). This slope, copt, is the slope of the linear function that best aligns with the
peak of the distribution Pwi (w f).

References

1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
2. Li, Y.; Liang, Y. Learning overparameterized neural networks via stochastic gradient descent on structured data. In Advances in

Neural Information Processing Systems 31; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 8157–8166.
3. Jacot, A.; Gabriel, F.; Hongler, C. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in

Neural Information Processing Systems 31; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 8571–8580.
4. Lee, J.; Xiao, L.; Schoenholz, S.; Bahri, Y.; Novak, R.; Sohl-Dickstein, J.; Pennington, J. Wide neural networks of any depth evolve

as linear models under gradient descent. In Advances in Neural Information Processing Systems 32; Curran Associates Inc.: Red
Hook, NY, USA, 2019; pp. 8572–8583.

5. LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient BackProp. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,
Germany, 1998; pp. 9–50.

6. Yam, J.Y.; Chow, T.W. A weight initialization method for improving training speed in feedforward neural network. Neurocomputing
2000, 30, 219–232. [CrossRef]

7. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

9. Chapelle, O.; Erhan, D. Improved preconditioner for hessian free optimization. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning; Sierra Nevada, Spain, 2011. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.297.3089&rep=rep1&type=pdf (accessed on 5 September 2021).

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

141

Mathematics 2021, 9, 2246

11. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings
of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147.

12. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
13. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In Proceedings of the International

Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
14. Zhou, H.; Lan, J.; Liu, R.; Yosinski, J. Deconstructing lottery tickets: Zeros, signs, and the supermask. In Proceedings of the

Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 3592–3602.

15. Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.; Rastegari, M. What is Hidden in a Randomly Weighted Neural
Network? arXiv 2019, arXiv:1911.13299.

16. Du, S.; Lee, J.; Li, H.; Wang, L.; Zhai, X. Gradient descent finds global minima of deep neural networks. In Proceedings of the
36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 1675–1685.

17. Du, S.S.; Zhai, X.; Póczos, B.; Singh, A. Gradient descent provably optimizes over-parameterized neural networks. In Proceedings
of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

18. Allen-Zhu, Z.; Li, Y.; Liang, Y. Learning and generalization in overparameterized neural networks, going beyond two layers. In
Advances in Neural Information Processing Systems 32; Curran Associates Inc.: Red Hook, NY, USA, 2019; pp. 6158–6169.

19. Allen-Zhu, Z.; Li, Y.; Song, Z. A convergence theory for deep learning via over-parameterization. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.;
PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 242–252.

20. Allen-Zhu, Z.; Li, Y.; Song, Z. On the convergence rate of training recurrent neural networks. In Advances in Neural Information
Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 6676–6688.

21. Oymak, S.; Soltanolkotabi, M. Overparameterized nonlinear learning: Gradient descent takes the shortest path? In Proceedings
of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; PMLR: Long Beach, CA, USA,
2019; Volume 97, pp. 4951–4960.

22. Oymak, S.; Soltanolkotabi, M. Toward Moderate Overparameterization: Global Convergence Guarantees for Training Shallow
Neural Networks. IEEE J. Sel. Areas Inf. Theory 2020, 1, 84–105. [CrossRef]

23. Zou, D.; Cao, Y.; Zhou, D.; Gu, Q. Gradient descent optimizes over-parameterized deep ReLU networks. Mach. Learn. 2020,
109, 467–492. [CrossRef]

24. Arora, S.; Du, S.; Hu, W.; Li, Z.; Wang, R. Fine-grained analysis of optimization and generalization for overparameterized
two-layer neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA,
10–15 June 2019; PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 322–332.

25. Arora, S.; Du, S.S.; Hu, W.; Li, Z.; Salakhutdinov, R.R.; Wang, R. On exact computation with an infinitely wide neural net. In
Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett,
R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 8141–8150.

26. Chizat, L.; Oyallon, E.; Bach, F. On lazy training in differentiable programming. In Advances in Neural Information Processing
Systems 32 ; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 2937–2947.

27. Frankle, J.; Schwab, D.J.; Morcos, A.S. The early phase of neural network training. In Proceedings of the International Conference
on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

28. Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 6231–6239.

29. Li, D.; Ding, T.; Sun, R. On the benefit of width for neural networks: Disappearance of bad basins. arXiv 2018, arXiv:1812.11039.
30. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 5 September 2021).
31. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 5 September 2021).
32. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
33. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
34. Thoma, M. The hasyv2 dataset. arXiv 2017, arXiv:1701.08380.
35. Helsen, W.F.; Van Winckel, J.; Williams, A.M. The relative age effect in youth soccer across Europe. J. Sport. Sci. 2005, 23, 629–636.

[CrossRef] [PubMed]

142

mathematics

Article

Compression of Neural Networks for Specialized Tasks via
Value Locality

Freddy Gabbay 1,* and Gil Shomron 2

Citation: Gabbay, F.; Shomron, G.

Compression of Neural Networks for

Specialized Tasks via Value Locality.

Mathematics 2021, 9, 2612. https://

doi.org/10.3390/math9202612

Academic Editor: Oliviu Matei

Received: 30 September 2021

Accepted: 15 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Ruppin Academic Center, Emek Hefer 4025000, Israel
2 Faculty of Electrical and Computer Engineering, The Technion—Israel Institute of Technology,

Haifa 3200000, Israel; gilsho@campus.technion.ac.il
* Correspondence: freddyg@ruppin.ac.il

Abstract: Convolutional Neural Networks (CNNs) are broadly used in numerous applications such
as computer vision and image classification. Although CNN models deliver state-of-the-art accuracy,
they require heavy computational resources that are not always affordable or available on every
platform. Limited performance, system cost, and energy consumption, such as in edge devices, argue
for the optimization of computations in neural networks. Toward this end, we propose herein the
value-locality-based compression (VELCRO) algorithm for neural networks. VELCRO is a method to
compress general-purpose neural networks that are deployed for a small subset of focused specialized
tasks. Although this study focuses on CNNs, VELCRO can be used to compress any deep neural
network. VELCRO relies on the property of value locality, which suggests that activation functions
exhibit values in proximity through the inference process when the network is used for specialized
tasks. VELCRO consists of two stages: a preprocessing stage that identifies output elements of the
activation function with a high degree of value locality, and a compression stage that replaces these
elements with their corresponding average arithmetic values. As a result, VELCRO not only saves
the computation of the replaced activations but also avoids processing their corresponding output
feature map elements. Unlike common neural network compression algorithms, which require
computationally intensive training processes, VELCRO introduces significantly fewer computational
requirements. An analysis of our experiments indicates that, when CNNs are used for specialized
tasks, they introduce a high degree of value locality relative to the general-purpose case. In addition,
the experimental results show that without any training process, VELCRO produces a compression-
saving ratio in the range 13.5–30.0% with no degradation in accuracy. Finally, the experimental
results indicate that, when VELCRO is used with a relatively low compression target, it significantly
improves the accuracy by 2–20% for specialized CNN tasks.

Keywords: machine learning; deep neural networks; convolutional neural network; deep compression

1. Introduction

Convolutional Neural Networks (CNNs) are broadly employed by numerous com-
puter vision applications such as autonomous systems, healthcare, retail, and security. Over
time, the processing requirements and complexity of CNN models have significantly in-
creased. For example, AlexNet [1], which was introduced in 2012, has eight layers, whereas
ResNet-101 [2], which was released in 2015, uses 101 layers and requires an approximately
sevenfold-greater computational throughput [3]. The increasing model complexity in con-
junction with large datasets used for model training has endowed CNNs with phenomenal
performance for various computer vision tasks [4]. Typically, large complex networks
can further extend their capacity to learn complex image features and properties. The
growing model size of CNNs and the requirement of significant processing power have
become major deployment challenges for migrating CNN models into mobile, Internet of
Things, and edge applications. Such applications incur limited computational and memory

Mathematics 2021, 9, 2612. https://doi.org/10.3390/math9202612 https://www.mdpi.com/journal/mathematics

143

Mathematics 2021, 9, 2612

resources, energy constraints, and system cost and, in many cases, cannot rely on cloud
computational resources due to privacy, online communication network availability, and
real-time considerations.

The compression of CNN models without excessive performance loss significantly
facilitates their deployment by a variety of edge systems. Such compression has the poten-
tial to reduce computational requirements, save energy, reduce memory bandwidth and
storage requirements, and shorten inference time. Various techniques have been suggested
to compress CNN models, one of the most common of which is pruning [5–7], which
exploits the tendency to over-parameterize CNNs [8]. Pruning trades off degradation in
model prediction accuracy for model size by removing weights, Output Feature Maps
(OFMs), or filters that make minor or no contribution to the inference of a network. Quan-
tization [9–12] is another common technique that attempts to further compress network
size by reducing the number of bits used to represent weights, filters, and OFMs with
only a minor impact on accuracy. These methods and other compression approaches are
discussed in more detail in Section 2.

This paper focuses on machine learning models that are used for specialized tasks. A
specialized neural network is typically a general-purpose model which has been adjusted
and optimized to carry out a set of specific tasks. Specialized neural networks have re-
cently become common not only for edge devices but also for datacenters [13–15]. Unlike
general-purpose neural networks that are used for a diverse range of classification tasks,
specialized neural networks are used for a small number of specific classification tasks. For
example, a CNN model that is used to detect vehicles does not use its animal classification
capabilities. A common usage of specialized CNN is as a fast filter in front of a heavy
general-purpose CNN model. A typical example to such usage is related to offline video
analytics [14], which is processed by a specialized CNN model, and only when the model
has a low level of confidence are the corresponding frames sent to a general-purpose CNN.
Another example is related to game scrapping, where specialized CNNs are used to classify
video stream events in by scraping in-game text appearing in frames. A cascaded-CNN [16]
is another approach that employs multiple specialized CNNs. The result of each special-
ized CNN is combined to produce a complete prediction map. The mixture-of-experts
model [17] employs a combination of expert models, where each expert is a neural network
specialized in specific tasks. Hierarchical classification is another example for specialized
CNN usage. Since image categories are typically organized in hierarchical manner, hierar-
chical classification can be employed by performing a prediction starting from a super class
and can only perform detailed classification within the super class. We introduce in this
study the value-locality-based compression (VELCRO) algorithm. VELCRO is a method
to compress deep neural networks that were originally trained for a large set of diverse
classification tasks but are deployed for a smaller subset of specialized tasks. Although
this work focuses on CNN models, VELCRO can be used to compress any deep neural
network. The main principle of VELCRO is based on the property of value locality, which
we introduce herein in the context of neural networks. This property suggests that, when
the network is used for specialized tasks, a proximal range of values are produced by the
activation functions in the inference process. VELCRO consists of two stages: a prepro-
cessing stage, which identifies activation-function output elements with a high degree of
value locality, and a compression stage, which replaces these activation elements with their
corresponding arithmetic averages. As a result, VELCRO avoids not only the computation
of these activation elements but also the convolution computation of their corresponding
OFM elements. VELCRO also requires significantly fewer computational resources than
common pruning techniques due to the avoidance of back propagation training. For our
experimental analysis we use three CNN models: ResNet-18 [2], MobileNet V2 [18], and
GoogLeNet [19] with the ILSVRC-2012 (ImageNet) [20] dataset to examine compression
capabilities and model accuracy. Lastly, we implement VELCRO in hardware on a Field
Programable Gate-Array (FPGA) and demonstrate the computational and energy savings.

The contributions of this paper are summarized as follows:

144

Mathematics 2021, 9, 2612

1. We introduce the notion of value locality in the context of deep neural networks used
for specialized tasks.

2. We present the VELCRO algorithm, which exploits value locality to compress neural
networks that are deployed for specialized tasks.

3. VELCRO introduces a fast compression process which solely employs statistics gath-
ering through the inference process and avoids heavy computations involved in back-
propagation training, which is usually used by traditional compression approaches
such as pruning.

4. VELCRO can be used directly in conjunction with other compression methods such
as pruning and quantization.

5. The results of our experiments indicate that

a. VELCRO produces a compression-saving ratio of computations in the range
20.0–27.7% for ResNet-18, 25–30% for GoogLeNet, and 13.5–20% for MobileNet
V2 with no impact on model accuracy;

b. VELCRO significantly improves accuracy by 2–20% for specialized-task CNNs
when given a relatively small compression-savings target.

6. We demonstrate the computational and energy savings of VELCRO by implementing
the compression algorithm in hardware on FPGA. Our experimental results indicate
a 13.5–30% reduction in energy consumption with VELCRO, which corresponds to
the compression-saving ratio.

The remainder of this paper is organized as follows: Section 2 reviews previous
work. Section 3 introduces the proposed method and algorithm. Section 4 presents the
experimental results. Finally, Section 5 summarizes the conclusions and suggests future
research directions.

2. Prior Works

Numerous recent studies have proposed various techniques to optimize CNN com-
putations, reduce redundancy, and improve computational efficiency and memory storage.
This section describes the following related methods: pruning, quantization, knowledge
distillation, deep compression, CNN folding, ablation and CNN filters compression methods.

Pruning is one of the most common methods used for CNN optimization and was
introduced in Refs. [5–7]. The concept of pruning, which is inspired by neuroscience,
assumes that some network parameters are redundant and may not contribute to network
performance. Various pruning techniques [5,21–25] suggest the removal of activations,
weights, OFMs, or filters that make a minor or no contribution to the inference process of an
already-trained network. Thereby, pruning can significantly reduce the network size and
the number of computations. Traditional pruning techniques typically require fine-tuned
training on the full model, which may involve significant computational overhead [26].

Pruning techniques can be classified into unstructured and structured classes. Un-
structured pruning imposes no constraints on the activations or weights with respect to the
network structure (i.e., individual weights or activations are removed by replacing them
with zero). Structured pruning [27], in contrast, restricts the pruning process to a set of
weights, channels, filters, or activations. Whereas structured pruning incurs limitations on
the sparsity that can be exploited in the network due to its coarse pruning granularity, un-
structured pruning uses a broader scope of the available sparsity. Conversely, unstructured
pruning may involve additional overhead for representing the pruned elements and may
not always fit parallel processing elements such as GPUs.

The process of pruning is typically performed by ranking the network elements
in accordance with their contribution. The rank can be determined by using various
functions such as the L1 or L2 norms [28–31] of weights, activations, or other metrics [32].
Activation pruning requires dynamic mechanisms to monitor activation values because
activation importance may depend on the model input. For example, Ref. [33] employs
reinforcement learning to prune channels, and Refs. [34,35] leverage spatial correlations of
CNN OFMs to predict and prune zero-value activations. Further pruning techniques based

145

Mathematics 2021, 9, 2612

on weight magnitudes were recently introduced in Refs. [21,36,37], which demonstrate
that computation efficiency and network scale can be improved significantly. Various
gradual pruning approaches [38], given memory footprints and computational bounds,
were studied by examining the accuracy and size tradeoffs. The neuron importance score
propagation, introduced by Ref. [39], suggests jointly pruning neurons based on a unified
goal. Other approaches such as random neuron pruning and random grouping of weight
connections into hash buckets were introduced in Refs. [40,41]. Pruning based on a Taylor-
expansion criterion [42] focuses on transfer learning by optimizing a network trained to a
large dataset of images into a smaller and more efficient network specialized in a subset of
classes. Their pruning method performs an iterative backpropagation pruning by removing
feature maps with the least level of importance. Ref. [42] evaluated their pruning method
by using various criteria such as weight pruning, using l2 norm, and activation pruning,
using mean, variance, mutual information, and Taylor-expansion criteria. Their results
indicate that the importance of OFMs decreases with layer depth and that each layer has
feature maps with both high and low degrees of importance. Ref. [43] introduced pruning
by compression using residual connections and limited data (CURL) for residual CNN
compression when relying on small datasets that represent specialized tasks.

Quantization methods attempt to reduce the number of bits used to represent the
values of weights, filters, and OFMs from 32-bit floating point to 8 bit or less with a slight
degradation in model accuracy while simplifying computational complexity. Employing
quantization methods that use fewer than 8 bits, however, is not trivial because quan-
tization noise excessively degrades model accuracy. Quantization-aware training uses
training processes for quantization to reduce quantization noise and recover model ac-
curacy [44–46]. This approach can be limited when the training process cannot be used
due to lack of dataset availability or lack of computational resources. Various fixed-point
and vector quantization methods, introduced in Refs. [9–12], present tradeoffs between
network accuracy and quantization-compression ratios. A combination of pruning and
quantization was introduced in Ref. [22]. Post-training quantization methods [47–50] avoid
these limitations by searching for the optimal tensor-cutting values to reduce quantization
noise after the network model has been trained.

Knowledge distillation is another machine learning optimization [51,52] that trans-
fers knowledge from a large machine learning model into a smaller compact model that
mimics the original model (instead of being trained on the original dataset) to perform
competitively. These systems consist of three main elements: knowledge, an algorithm
for knowledge distillation, and a teacher–student model. A broad survey of knowledge
distillation is available in Ref. [53].

Deep compression was introduced in Ref. [22] and consists of a three-stage pipeline:
pruning, trained quantization, and Huffman coding, which operate simultaneously to
optimize model size. The first stage prunes the model by learning the important con-
nections, the second stage performs weight quantization and sharing, and the last stage
uses Huffman coding. Ref. [54] extends the deep compression idea and introduces the
once-for-all network, which can be installed under diverse architectural constraints and
configurations, such as performance, power, and cost. The once-for-all approach introduces
the progressive shrinking techniques that generalize pruning. Whereas pruning shrinks
the network width, progressive shrinking operates on four dimensions: image resolution,
kernel size, depth, and width, thereby achieving a higher level of flexibility.

FoldedCNN [15] is another approach to optimize CNNs for specialized-inference tasks.
Unlike compression techniques, FoldedCNN does not aim at compressing the CNN model
but rather attempts to increase the inference throughput and hardware utilization. The
FoldedCNN approach suggests CNN model transformations to increase their arithmetic
intensity when processing a large batch size without increasing processing requirements.

Additional studies have attempted to understand the internal mechanisms of CNNs
and their contribution to classification tasks. From various CNN models, Refs. [55,56]
created visualized images based on the OFMs of different layers and units. Their results

146

Mathematics 2021, 9, 2612

indicate that OFMs extract features that detect patterns, textures, shapes, concepts, and
various elements related to the classified images. Ablation techniques were used by Ref. [57]
to further quantify the contribution of OFM units to the classification task. Their results
indicate that elements that are selective to certain classes may be excluded from the network
without necessarily impacting the overall model performance. The impact on ablation
of a subset of classes was further studied in Ref. [58], which found that single-OFM-unit
ablation can significantly impact the model accuracy for a subset of classes, leading them
to suggest different methods to measure the importance of internal OFM units to specific
classification accuracy.

CNN filter compression techniques attempt to remove kernel and filters that have
small contribution to the network performance. Removal of specific convolution filters
based on their importance has been introduced in Ref. [59]. The authors suggest considering
two consecutive network layers as a coupled function where the weights are used to
compute the coupling factors. In addition, they suggest using the coupling factors to
prune filter and maximize the variance of feature maps. Another study on convolution
filters compression [60] has highlighted that certain feature maps inside and across CNN
layers may have a different contribution to the accuracy of the inference process. The
authors indicate that, first model layers typically extract semantic features while the deep
layers may extract simple features. Thereby, understanding the importance of feature
map can help the compression of the network. They investigate the relationship between
input feature map and filter kernels and suggest Kernel Sparsity and Entropy (KSE) as a
quantitative indicator for the feature map importance.

These recent studies [55–60] provide the motivation for the present study by suggesting
that, when using the CNN model for specialized tasks, we eliminate unrelated computations
and thereby compress the model, all with minimal impact on classification accuracy.

3. Method and Algorithm

Our proposed VELCRO compression algorithm relies on the fundamental property
of value locality. We start our discussion by first presenting qualitative and quantitative
aspects of value locality, following which we describe the VELCRO compression algorithm
for specialized neural networks.

3.1. Value Locality of Specialized Convolutional Neural Networks

The principle of the method proposed to compress specialized CNNs is based on the
property of value locality. Value locality suggests that, when a CNN model runs specialized
tasks, the output values of the activation tensor is in proximity through inference of images.
The rationale behind this theory relies on the assumption that the inferred images, which
already have a certain level of similarity, exhibit common features such as patterns, textures,
shapes, and concepts. As a result, the intermediate layers of the model produce similar
values in the vicinity. Figure 1 explains the property of value locality by illustrating the
activation-function output tensors in each convolution layer k and channel c. In this
example, the set of elements A(m)[k][c][i][j] for images m = 0, 1, . . . , N − 1 in the activation
tensor is populated with values in proximity through the inference between images.

For every convolution layer k, we define a variance tensor V[k], where each element
V[k][c][i][j] in the variance tensor is defined as

V[k][c][i][j] = Var(A[k][c][i][j]) = E(A[k][c][i][j]2)− E(A[k][c][i][j])2

= 1
N ∑N−1

m=0 A(m)[k][c][i][j]2 − (1
N ∑N−1

m=0 A(m)[k][c][i][j])
2
,

(1)

where c is the channel index and i and j are the element coordinates.
We use the variance tensor as a measure to quantify the proximity of values for every

activation tensor element A[k][c][i][j]. Thereby, a small value of V[k][c][i][j] suggests that
the corresponding activation element has a high degree of value locality. The proposed
compression algorithm leverages such activation elements for compression. Section 4

147

Mathematics 2021, 9, 2612

presents an experimental analysis of the distribution of the variance tensor for various
specialized CNN models.

Figure 1. Value locality: The elements with coordinates i, j of the activation-function output tensor
in convolutional layer k, channel c, are populated with values in proximity through the inference
between images 0 to N − 1. The variance tensor V serves to measure the degree of value locality.

3.2. VELCRO Algorithm for Specialized Neural Networks

The VELCRO algorithm consists of two stages: preprocessing and compression.

1. Preprocessing stage: In this stage, VELCRO makes an inference by applying the
original CNN model to a small subset of images from the specialized task preprocess-
ing dataset. Note that the performance of the compressed model is evaluated on a
validation dataset which is distinct from the preprocessing dataset. This is discussed
in detail in Section 4. During this stage, the variance tensor is calculated by using
Equation (1) for each activation output in each convolution layer in the CNN model.
Because the preprocessing stage of VELCRO relies only on inference, it involves a
significantly smaller computational overhead with respect to traditional compression
methods, which employ heavy backpropagation training processes that can last from
a few hours up to hundreds of hours [61].

2. Compression stage: The compression stage uses a tuple of threshold values provided
by the user as a hyperparameter for the algorithm. Each threshold element in the
tuple corresponds to an individual activation function in each convolution layer. The
threshold value of each layer represents the percentile of elements in the variance
tensor to be compressed by the algorithm. All elements in the activation tensor with
a variance within the percentile threshold are replaced by the arithmetic average
constant of the elements located in the same corresponding coordinates. All other acti-
vation elements remain unchanged. Replacing activation function output elements by
constants avoids not only the activation function computation but also the particular
convolution computation of their related OFM elements. In fact, the compression
savings of each layer is determined by the corresponding threshold, so the user can
determine the overall compression-saving ratio C for the model through the threshold
tuple as follows:

C = 1 − Compressed model computations
Original model computations

=
K−1

∑
k=0

Tkckwkhk (2)

148

Mathematics 2021, 9, 2612

where the tuple T = {T0, T1, . . . , TK} contains the threshold values for the activation
in each convolution layer. In addition, ck, wk, and hk are the number of channels, the
width, and the height of the activation function output tensor for convolution layer k,
respectively.

The complete and formal definition of the algorithm is given in Algorithm 1.
A simple example that demonstrates the VELCRO algorithm is illustrated in Figure 2,

which shows the activation output tensor in convolution layer k for a preprocessing dataset
of N = 3 images. The dimensions of the activation tensor are ck = 1, wk = 3, and hk = 3. The
VELCRO preprocessing stage performs inference on the preprocessing dataset to create a
variance tensor V[k] and an arithmetic average tensor B[k]. The hyperparameter threshold
value for layer k is defined in this example as Tk = 0.33, which means that the three elements
in the activation function output tensor with the lowest variance (highlighted in red) are
replaced with their arithmetic average. The remaining elements remain unchanged. The
outcome of the VELCRO compression stage is given by the compressed activation-function
output tensor Ã[k], where the computation of three elements (highlighted in green) are
replaced by the arithmetic averages.

Algorithm 1: VELCRO algorithm for specialized neural networks

Input: A CNN model M with K activation-function outputs (each in a different convolution
layer), N preprocessing images, and a threshold tuple T = {T0, T1, . . . , TK}, where
∀ 0 ≤ n < N 0 ≤ Tn < 1.
Output: A compressed CNN Model MC.
Preprocessing stage
Step 1: Let A(k) be the activation-function output tensor in convolution layer k and let A(m)(k) be
the corresponding activation-tensor values at the inference of image m, 0 ≤ m < N, where the
tensors A[k] and A(m)[k] have dimension ck × wk × hk and ck, wk, and hk are the number of
channels, the width, and the height of the tensor at convolution layer k, respectively.
Step 2: For every 0 ≤ k < K, 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk:
Let tensors S and K be initialized such that S[k][c][i][j] = 0 and Q[k][c][i][j] = 0
Step 3: For each image 0 ≤ m < N:
Perform inference by model M on image m.
For every convolution layer 0 ≤ k < K:
For every 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk,
Let the tensors S and Q be
S[k][c][i][j] = S[k][c][i][j] + A(m)[k][c][i][j]
Q[k][c][i][j] = Q[k][c][i][j] + (A(m)[k][c][i][j])2.
Step 4: Let B[k] be the arithmetic average tensor in convolution layer k such that each tensor
element is
B[k][c][i][j] = 1

N S[k][c][i][j]
For every 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk,
Step 5: Let V[k] be the variance tensor of convolution layer k such that each tensor element is
V[k][c][i][j] = 1

N Q[k][c][i][j]− (B[k][c][i][j])2

For each 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk
Compression stage:
Step 6: For each convolution layer 0 ≤ k < K:
Let p(x,Y) be the percentile function of element x in tensor Y. p returns the percentile value for x
with respect to all elements in tensor Y.
Let the tensor Ã[k] be

Ã[k][c][i][j] =
{

A[k][c][i][j] p(V[k][c][i][j], A[k]) > Tk
B[k][c][i][j] p(V[k][c][i][j], A[k]) ≤ Tk

For each 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk
Step 7: Let the compressed CNN model MC be such that every activation function output tensor
A[k] is replaced with Ã[k] for every convolution layer 0 ≤ k < K.

149

Mathematics 2021, 9, 2612

Figure 2. Example of VELCRO preprocessing and compression stages.

4. Experimental Results and Discussion

Our experimental study consists of a comprehensive analysis of both value locality
and the performance of various CNN models when used for specialized tasks. In the
following, we first describe the experimental environment and then introduce the value
locality experimental measurements. Next, we discuss the performance of the VELCRO
compression algorithm. Finally, we demonstrate the computational and energy savings of
VELCRO by designing a hardware that implements the compression algorithm on FPGA.

4.1. Experimental Environment

Our experimental environment is based on PyTorch [62], the ILSVRC-2012 dataset
(also known as “ImageNet”) [20,60], and the ResNet-18, MobileNet V2, and GoogLeNet
CNN models [18,19,55] with their PyTorch pretrained models. The VELCRO algorithm,
described in Algorithm 1, has been fully implemented on the PyTorch environment. Table 1
summarizes the specialized tasks used for our experimental analysis. The experiments
examine five groups of specialized tasks: the groups Cats-2, Cats-3, and Cats-4 include

150

Mathematics 2021, 9, 2612

two, three, and four classes from the ILSVRC-2012 dataset, respectively, and the groups
Dogs and Cars include four classes each. Throughout the experimental analysis, we do
not modify the first layer of the model, which is a common practice that has been used by
numerous studies [46].

Table 1. Specialized tasks summary.

Specialized Tasks ILSVRC-2012 Classes

Cats-2 Egyptian cat
Persian cat

Cats-3
Egyptian cat
Persian cat

Cougar

Cats-4 (Cats)

Egyptian cat
Persian cat

Cougar
Tiger cat

Dogs

English setter
Siberian husky

English springer
Scottish deerhound

Cars

Beach wagon
Cab

Convertible
Minivan

4.2. Experimental Analysis of Value Locality

The distribution of the variance tensor elements in each layer (skipping the first
layer) is a measure to quantify the proximity of the activation-function output. Figure 3
shows the distribution of the variance tensor elements for the selected activation function
outputs in the convolution layers 1, 3, 7, 10, and 14 in ResNet-18. The distribution is shown
for the groups of classes Cats-2, Cats-3, and Cats-4, which include two, three, and four
classes of cats from the dataset, respectively. The group “all” contains a mixture of all
ILSVRC-2012 dataset classes and represents the case when the CNN model is used for
general tasks. When the CNN model is used for specialized tasks (Cats-1, -2, and -3),
the distribution of the variance tensor elements clearly shifts toward zero with respect to
the distribution when the model is used for general tasks (all), which indicates that the
CNN model produces values of closer proximity (i.e., a higher degree of value locality)
for specialized tasks. Another important outcome made apparent in Figure 3 is that the
three groups of specialized tasks behave similarly regardless of the number of classes. The
distribution of variance tensor elements in all ReseNet-18 layers is presented in Figure A1
(Appendix A) and behaves similarly to the distribution presented herein.

Figure 4 illustrates the same experimental analysis but for the GoogLeNet CNN model
for selected layers 1, 6, 12, 21, 32, 38, 47, 51, and 56. The variance tensor elements of
GoogLeNet behave very similarly to those of ResNet-18. When the model is used for
specialized tasks, the variance distribution shifts left with respect to the general-purpose
use, indicating a higher degree of value locality. The distribution in all GoogLeNet layers
is presented in Figure A2 (Appendix A).

151

Mathematics 2021, 9, 2612

Figure 3. Distribution of ResNet-18 variance tensor elements in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: all
ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figure 4. Distribution of GoogLeNet variance tensor elements in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized
tasks: all ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figure 5 presents a similar experimental analysis for MobileNet V2 layers 1, 6, 12, 19,
28, 30, and 35, and the distribution in all MobileNet V2 layers is presented in Figure A3
(Appendix A). The results indicate that a lower degree of value locality occurs relative to
ResNet-18 and GoogLeNet when MobileNet V2 is used for specialized tasks. The results
indicate that the shift of the variance tensor elements distribution is smaller with respect
to the other CNN models. These observations reflect the highly compact nature of the

152

Mathematics 2021, 9, 2612

MobileNet V2 network with respect to ResNet-18 and GoogLeNet, which results in a lower
potential for leveraging value locality for the former.

Figure 5. Distribution of MobileNet-V2 variance tensor elements in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks: all
ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figures 6–8 extend our experimental analysis for additional groups of specialized
tasks, Dog and Cars, each of which includes four classes from the ILSVRC-2012 dataset.
Note that the Cats group corresponds to the group Cats-4. The results further confirm
those shown in Figures 3–5. In all the examined CNN models and in the majority of
activation-function outputs in all convolution layers, the distribution of variance tensor
elements for the specialized tasks clearly shifts toward zero relative to the distribution
when the model is used for general tasks (all). Like the results presented in Figure 5, we
also observe that MobileNet V2 can leverage value locality but in a smaller magnitude with
respect to ResNet-18 and GoogLeNet.

These experimental results support our expectations that CNN models that are used
for specialized tasks exhibit a high degree of value locality. Figures A4–A6 (Appendix A)
show the experimental results for all layers of all models. The complete experimental
results for all layers behave similarly to the distribution presented in Figures 6–8.

153

Mathematics 2021, 9, 2612

Figure 6. Distribution of ResNet-18 variance tensor elements in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: Cats, Dogs,
Cars, and all ImageNet classes.

Figure 7. Distribution of GoogLeNet variance tensor elements in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized
tasks: Cats, Dogs, Cars, and all ImageNet classes.

154

Mathematics 2021, 9, 2612

Figure 8. Distribution of MobileNet V2 variance tensor elements in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks:
Cats, Dogs, Cars, and all ImageNet classes.

4.3. Performance of Compression Algorithm

As part of our experimental analysis, we examine the compression-saving ratio of the
VELCRO algorithm on three groups of specialized tasks: cats, cars, and dogs (see Table 1).
Only a very small subset (<2%) of images from the preprocessing dataset has been used
for the preprocessing stage of the algorithm, while the remaining images have used for
the validation of the compressed model. This approach is essential in order to perform an
unbiased evaluation of the model performance and preserved the generalization property
of the model. Figure 9a–c present the top-1 prediction accuracy versus the compression-
saving ratio for cars, dogs, and cats, respectively. The experimental analysis is applied to
the ResNet-18, GoogLeNet, and MobileNet V2 CNN models. For each compression-saving
ratio, we examine different thresholds by running trial-and-error and choose those that
produce the highest top-1 accuracy. Tables A1–A3 in Appendix B summarize the tuples
of threshold values. Table 2 summarizes the maximum compression-saving ratio for each
group of specialized tasks and each CNN model that produces the same accuracy as the
original uncompressed model.

The experimental results indicate that VELCRO produces a compression-saving ratio
of 20.00–27.73% in ResNet-18 and 25.46–30.00% in GoogLeNet. The higher compression-
saving ratio in GoogLeNet is attributed to the fact that GoogLeNet uses significantly a
greater number of parameters and thereby has higher potential to leverage value locality.
This explains why GoogLeNet better leverages value locality when the network is employed
for special tasks. Conversely, MobileNet V2 produces a smaller compression-saving ratio,
13.50–19.76%, for the specialized tasks examined. These results comply with our previous
measurements of the distribution of the variance tensor elements, which imply that the
potential of leveraging value locality in MobileNet V2 is smaller than that of the other
CNNs examined. This is explained by the fact that MobileNet V2 is much more compact
than the other CNNs examined and thereby has a lower potential to leverage value locality.

155

Mathematics 2021, 9, 2612

Figure 9. Accuracy for ResNet-18, GoogLeNet, and MobileNet V2 versus compression-saving ratio
for specialized tasks: (a) Cars, (b) Dogs, and (c) Cats.

156

Mathematics 2021, 9, 2612

Table 2. Maximum compression-saving ratio achieved while maintaining the accuracy of the original
uncompressed CNN model.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 27.73% 30.00% 13.50%
Dogs 27.70% 25.46% 19.76%
Cars 20.00% 27.70% 16.80%

Note that VELCRO does not aim to compress the network memory footprint but rather
to reduce the computational requirements. Therefore, any comparison of VELCRO to prun-
ing approaches should consider computation aspects rather than the number of parameters
in the network. Table 3 compares the VELCRO algorithm with other pruning approaches
for both specialized CNNs and general-purpose ones. Although VELCRO achieves smaller
computation savings, it requires significantly fewer computational resources than common
pruning techniques [61] due to the avoidance of back propagation training.

Table 3. Comparison summary of VELCRO with respect to punning techniques. We also examine the output of the
activation functions compressed by VELCRO.

Compression Method Network
Specialized

Task
Training
Required

Computation
Acceleration

Accuracy Loss

Taylor criterion [42] AlexNet Yes Yes 1.9X 0.3%

CURL [43] MobileNet V2
ResNet-50

Yes
Yes

Yes
Yes

3X
4X

Up to 4%
Up to 2%

Deep compression [22] Various CNN
models No Yes 3X None

Weights and connection
learning [21] AlexNet No Yes 3X None

KSE [59] ResNet-50 No Yes 3.8–4.7X 0.84–0.64%

VELCRO
ResNet-18

GoogLeNet
MobileNet V2

Yes No
1.25–1.38X
1.38–1.42X
1.15–1.24X

None
None
None

Table 4 presents the percent compression of activation elements with zero value
out of all the compressed activation elements. The results in Table 3 correspond to the
compression-saving ratios in Table 2 (i.e., when the network achieves maximum compres-
sion without losing accuracy). With ResNet-18 and GoogLeNet, the fraction of compressed
zero values is in the range 0.08–0.31% and 0.56–0.64%, respectively. In contrast, MobileNet
V2 produces a significantly larger fraction of compressed zero values: 10.48–14.91%, which
is attributed to the fact that MobileNet V2 is a much more compact model than the other
CNNs. These results indicate that VELCRO offers an extended level of compression with
respect to pruning, which aims to remove weak connections of zero values.

Table 4. Compressed activation elements with zero value as a percent of all compressed activation
elements.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 0.08% 0.56% 14.91%
Dogs 0.20% 0.63% 10.48%
Cars 0.31% 0.64% 12.00%

Another important result gained from Figure 9a–c is that, when VELCRO is used with
a relatively moderate compression ratio, it produces a significant increase in accuracy. The
results are presented in Table 5, which summarizes the maximum top-1 accuracy achieved
by VELCRO. These results are attributed to the fact that a relatively moderate level of
compression helps the network leverage value locality to strengthen connections, thereby

157

Mathematics 2021, 9, 2612

increasing the probability of favoring the prediction of classes that are in the scope of the
specialized tasks.

Table 5. The maximum top-1 accuracy increase produced by VELCRO with respect to the uncom-
pressed model when used for specialized tasks.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 13.00% 20.00% 3.50%
Dogs 8.50% 11.00% 2.50%
Cars 4.00% 15.00% 4.50%

4.4. Hardware Implementation

In the last part of our experimental analysis, we demonstrate the computational
optimization and energy savings of VELCRO through hardware implementation on the
Xilinx® Alveo™ U280 Data Center accelerator card [63]. Our hardware implementation,
which is illustrated in Figure 10, consists of 16 instance modules where each is comprised of
a two-dimensional convolution layer with a 64 × 64 input feature map (IFMAP), 3 × 3 filter,
and a ReLU activation function. In addition, each module also includes a compression
control logic which skips the compressed computations and replaces them with their
corresponding arithmetic averages. Our hardware implementation was designed in Verilog
and implemented using the Xilinx® VivadoTM [64] design suite.

Figure 10. VELCRO compression implementation on Xilinx® AlveoTM U280 Accelerator Card.

Figure 11 presents the (normalized) throughput and energy consumption of a single
module instance, denoted as conv2d, which consists of the hardware implementation of a
two-dimensional convolution layer and ReLU activation. As expected, the computational
throughput of the conv2d layer, which is measured as the number of conv2d operations
per second, exhibits a growth rate proportional to 1

1−C , where C is the compression
saving ratio). In addition, it can be observed that the energy consumption related to
the computation of a single conv2d layer decays linearly with the compression saving
ratio. Thereby, for the compression saving results presented in Table 2, VELCRO can
achieve 13.5–30% energy consumption savings while maintaining the same accuracy of the
uncompressed model.

158

Mathematics 2021, 9, 2612

Figure 11. VELCRO throughput and energy consumption Xilinx® AlveoTM U280 Accelerator Card.

5. Conclusions

We present herein value-locality-based compression algorithm (VELCRO), wherein a
compression approach is introduced for general-purpose deep neural networks deployed
for a small subset of specialized tasks. We introduce the notion of value locality in the
context of neural networks for specialized tasks and show that CNNs that are used for
specialized tasks produce a high degree of value locality. An analysis of the experimental
results indicates that VELCRO leverages value locality to compress the network and thereby
saves up to 30% of the computations in ResNet-18 and GoogLeNet and up to 20% in
MobileNet V2. The analysis also indicates that, for specialized tasks, VELCRO significantly
improves the accuracy by 2–20% when given a relatively small compression-saving target.
Finally, a major advantage of VELCRO is that it offers a fast compression process that is
based on inference rather than backpropagation training, thereby liberating VELCRO from
a significant computational load. We demonstrate the feasibility of VELCRO by designing
the algorithm in hardware on the Xilinx® Alveo™ U280 Data Center accelerator card. Our
hardware implementation indicates that VELCRO translates the computation compression
into an energy consumption savings of 13.5–30%, corresponding to the compression-
saving ratio.

Author Contributions: Conceptualization, F.G.; methodology, F.G. and G.S.; software, G.S. and F.G.;
validation, F.G. and G.S.; formal analysis, F.G. and G.S.; investigation, F.G. and G.S.; resources, F.G.
and G.S.; data curation, F.G. and G.S.; writing—original draft preparation, F.G. and G.S.; writing—
review and editing, F.G. and G.S.; visualization, F.G. and G.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The ImageNet data sets used in our experiments are publicly available
at https://image-net.org (accessed on 11 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

159

Mathematics 2021, 9, 2612

Appendix A

Figure A1. Distribution of ResNet-18 variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

160

Mathematics 2021, 9, 2612

Figure A2. Cont.

161

Mathematics 2021, 9, 2612

Figure A2. Cont.

162

Mathematics 2021, 9, 2612

Figure A2. Distribution of GoogLeNet variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

163

Mathematics 2021, 9, 2612

Figure A3. Cont.

164

Mathematics 2021, 9, 2612

Figure A3. Distribution of MobileNet V2 variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

165

Mathematics 2021, 9, 2612

Figure A4. Distribution ResNet-18 variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.

166

Mathematics 2021, 9, 2612

Figure A5. Cont.

167

Mathematics 2021, 9, 2612

Figure A5. Cont.

168

Mathematics 2021, 9, 2612

Figure A5. Distribution of GoogLeNet variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all Ima-
geNet classes.

169

Mathematics 2021, 9, 2612

Figure A6. Cont.

170

Mathematics 2021, 9, 2612

Figure A6. Distribution of MobileNet V2 variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all Ima-
geNet classes.

171

Mathematics 2021, 9, 2612

Appendix B

Table A1. Threshold tuple for Cats.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (3, 3, 4, 4, 10, 10, 10, 10, 10, 10,
10, 10, 70, 10, 80, 90)

(8, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 0, 0, 0, 0,
0, 0, 0, 0, 5, 6, 5, 5, 5, 5, 5, 5, 14, 14,
5, 5, 5, 8, 5, 5, 5,15, 15, 15, 36, 37,

18, 20, 34, 34, 34, 25, 40, 34, 34, 90,
90, 96, 90, 92, 92)

(22, 21, 10, 11, 11, 11, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 40, 40, 40, 40, 40,

40, 90)

13.5% n/a n/a

(40, 40, 7, 2, 5, 2, 1, 11, 2, 10, 10,
15, 10, 15, 20, 10, 10, 15, 2, 5, 5,
10, 10, 10, 10, 15, 7, 5, 40, 42,

40, 40, 40, 40, 90)

20% (17, 16, 17, 10, 10, 20, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(17, 15, 15, 15, 15, 15, 17, 15, 15, 15,
15, 19, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 22, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 17, 37, 37, 37, 36,
37, 37, 40, 34, 34, 34, 34, 40, 34, 34,

90, 90, 96, 90, 92, 92)

(35, 35, 18, 17, 17, 20, 8, 8, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16,
4, 16, 0, 16, 3, 16, 16, 16, 23, 16,

42, 40, 40, 42, 40, 45, 90)

27.3% (34, 36, 30, 15, 10, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90) n/a n/a

30% (40, 40, 36, 15, 12, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(34, 24, 24, 24, 24, 24, 27, 24, 24, 24,
24, 29, 25, 24, 25, 24, 24, 25, 26, 24,
25, 24, 33, 25, 24, 24, 24, 24, 24, 24,
24, 24, 24, 25, 24, 27, 56, 56, 54, 52,
56, 54, 60, 52, 52, 52, 52, 60, 52, 52,

90, 90, 96, 90, 92, 92)

(38, 38, 33, 32, 32, 31, 20, 20, 25,
31, 31, 26, 26, 26, 26, 26, 26, 26,
4, 28, 0, 27, 6, 26, 26, 25, 24, 17,

42, 40, 40, 42, 40, 45, 90)

40% (70, 61, 60, 15, 12, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(46, 32, 32, 32, 32, 32, 36, 32, 32, 32,
32, 36, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 44, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 36, 75, 75, 75, 75,
75, 75, 80, 75, 75, 75, 75, 80, 75, 75,

92, 92, 96, 92, 94, 94)

(66, 66, 35, 17, 32, 20, 17, 38, 13,
52, 52, 64, 44, 58, 58, 42, 42, 54,
13, 33, 33, 36, 36, 36, 36, 54, 26,

21, 80, 80, 80, 80, 80, 80, 90)

Table A2. Threshold tuple for Dogs.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (8, 8, 8, 3, 8, 9, 9, 9, 9, 9, 9, 17,
17, 6, 60, 80)

(7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 10, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 27, 16, 72, 72,

90, 92, 90, 91)

(20, 20, 10, 10, 10, 10, 5, 0, 10, 0,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 40, 40, 40, 40, 40,
40, 90)

19.76% n/a n/a

(29, 29, 16, 11, 15, 18, 13, 13, 36,
35, 43, 21, 13, 5, 16, 30, 23, 8, 5,
6, 0, 1, 7, 17, 10, 10, 5, 13, 40,

47, 41, 40, 42, 42, 90)

20% (21, 21, 20, 6, 10, 21, 20, 20, 20,
18, 33, 24, 30, 6, 71, 80)

(15, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 20, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 55, 32,

72, 72, 90, 92, 90, 91)

n/a

172

Mathematics 2021, 9, 2612

Table A2. Cont.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

25.46% n/a

(20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 22, 22, 20, 20, 20, 22, 20, 20,
20, 20, 20, 20, 20, 20, 20, 22, 20, 20,
20, 20, 20, 20, 20, 25, 50, 52, 50, 50,
50, 52, 50, 52, 50, 50, 55, 55, 68, 42,

92, 90, 90, 92, 90, 91)

n/a

27.7% (44, 28, 38, 12, 12, 21, 20, 20, 20,
20, 33, 24, 32, 10, 71, 87) n/a n/a

30% (49, 33, 44, 13, 12, 21, 20, 20, 20,
20, 33, 24, 32, 12, 72, 90)

(25, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 26, 24, 24, 24, 26, 24, 24,
24, 24, 24, 24, 24, 24, 24, 26, 24, 24,
24, 24, 24, 24, 24, 30, 60, 60, 60, 60,
60, 60, 60, 60, 60, 60, 65, 65, 68, 50,

92, 90, 90, 92, 90, 91)

(45, 45, 25, 27, 23, 28, 19, 19, 54,
53, 64, 31, 19, 7, 24, 45, 34, 12,
7, 9, 0, 1, 10, 25, 15, 15, 7, 20,

60, 70, 61, 60, 62, 62, 90)

40% (50, 50, 50, 50, 40, 21, 20, 20, 20,
20, 33, 24, 32, 10, 70, 90)

(36, 36, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 38, 36, 36, 36, 38, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 45, 70, 70, 70, 70,
70, 70, 70, 70, 70, 70, 65, 65, 68, 50,

92, 90, 90, 92, 90, 91)

(67, 67, 34, 37, 31, 38, 28, 28, 73,
71, 64, 42, 27, 9, 32, 60, 45, 16,
9, 12, 0, 1, 13, 33, 20, 20, 9, 26,

65, 75, 65, 65, 65, 70, 90)

Table A3. Threshold tuple for Cars.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (3, 5, 5, 10, 10, 10, 10, 10, 10, 10,
10, 12, 30, 13, 50, 80)

(6, 9, 9, 9, 9, 9, 15, 7, 7, 7, 7, 7, 10, 7,
8, 7, 10, 7, 7, 7, 8, 8, 8, 10, 8, 8, 8, 10,
8, 10, 12, 9, 7, 7, 2, 8, 10, 7, 7, 5, 12,
10, 30, 1, 27, 27, 30, 1, 32, 27, 23, 40,

90, 90, 95, 90)

(20, 20, 20, 10, 10, 10, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 20, 20, 30, 75)

16.8% n/a n/a

(30, 31, 20, 10, 15, 15, 11, 10, 10,
21, 16, 11, 1, 0, 26, 17, 21, 20, 2,
10, 0, 2, 8, 5, 5, 20, 4, 5, 2, 22,

20, 23, 20, 30, 75)

20% (21, 21, 20, 20, 20, 20, 10, 20, 20,
10, 10, 12, 30, 13, 50, 80)

(15, 20, 20, 20, 20, 20, 30, 14, 14, 14,
14, 14, 20, 14, 16, 14, 20, 14, 14, 14,
17, 17, 17, 20, 17, 17, 17, 20, 17, 20,
24, 18, 14, 14, 4, 17, 20, 14, 14, 10,

24, 20, 60, 3, 55, 55, 60, 2, 65, 55, 50,
90, 90, 90, 95, 90)

(35, 35, 25, 12, 19, 19, 14, 13, 13,
26, 24, 13, 1, 0, 30, 17, 21, 20, 2,
12, 0, 2, 9, 6, 6, 23, 5, 6, 2, 22,

20, 23, 20, 30, 75)

27.70% n/a

(20, 30, 30, 30, 30, 30, 45, 20, 20, 20,
20, 20, 30, 20, 25, 20, 30, 20, 20, 20,
25, 25, 25, 30, 25, 25, 25, 30, 25, 30,
35, 25, 20, 20, 7, 25, 30, 20, 30, 15,

35, 20, 60, 3, 55, 55, 60, 2, 65, 55, 50,
90, 90, 90, 95, 90)

30% (35, 30, 30, 30, 30, 30, 30, 30, 30,
10, 12, 12, 30, 30, 50, 85)

(24, 32, 32, 32, 32, 32, 49, 22, 22, 22,
22, 22, 32, 22, 27, 22, 33, 22, 22, 22,
28, 28, 27, 33, 28, 28, 27, 33, 27, 33,
38, 27, 22, 22, 7, 27, 32, 22, 33, 16,

38, 20, 66, 3, 60, 60, 66, 2, 71, 60, 55,
90, 90, 90, 94, 89)

(52, 52, 42, 20, 29, 29, 21, 19, 19,
39, 36, 19, 1, 0, 45, 25, 31, 30, 3,
18, 0, 2, 13, 9, 9, 34, 7,8, 3, 22,

20, 23, 20, 30, 75)

173

Mathematics 2021, 9, 2612

Table A3. Cont.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

40% (50, 40, 40, 40, 40, 40, 40, 40, 40,
10, 20, 20, 35, 35, 80, 90)

(36, 44, 44, 44, 44, 44, 55, 32, 32, 32,
30, 30, 43, 30, 37, 30, 44, 30, 30, 30,
40, 40, 38, 44, 36, 36, 36, 44, 30, 44,
52, 37, 30, 30, 12, 40, 44, 40, 45, 18,
55, 30, 67, 10, 65, 65, 66, 60, 71, 60,

55, 90, 90, 90, 94, 89)

(67, 67, 34, 37, 31, 38, 28, 28, 73,
71, 64, 42, 27, 9, 32, 60, 45, 16,
9, 12, 0, 1, 13, 33, 20, 20, 9, 26,

65, 75, 65, 65, 65, 70, 90)

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

3. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

4. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

5. Reed, R. Pruning algorithms—A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef]
6. LeCun, Y.; Denker, J.S.; Solla, S.; Howard, R.E.; Jackel, L.D. Optimal brain damage. In Advances in Neural Information Processing

Systems (NIPS 1989); Touretzky, D., Ed.; Morgan Kaufmann: Denver, CO, USA, 1990; Volume 2.
7. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal Brain Surgeon and general network pruning. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 293–299.
8. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning Requires Rethinking Generalization. arXiv

2016, arXiv:1611.03530.
9. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature

Learning Workshop; NIPS: Granada, Spain, 2011.
10. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
11. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with binary weights during prop-

agations. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Bali, Indonesia,
8–12 December 2015.

12. Lin, Z.; Courbariaux, M.; Memisevic, R.; Bengio, Y. Neural networks with few multiplications. arXiv 2015, arXiv:1510.03009.
13. Shen, H.; Han, S.; Philipose, M.; Krishnamurthy, A. Fast Video Classification via Adaptive Cascading of Deep Models. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
14. Kang, D.; Emmons, J.; Abuzaid, F.; Bailis, P.; Zaharia, M. NoScope: Optimizing Neural Network Queries over Video at Scale. Proc.

VLDB Endow. 2017, 10, 1586–1597. [CrossRef]
15. Kosaian, J.; Phanishayee, A.; Philipose, M.; Dey, D.; Vinayek, R. Boosting the Throughput and Accelerator Utilization of

Specialized CNN Inference beyond Increasing Batch Size. In Proceedings of the Proceedings of the 38th International Conference
on Machine Learning, PMLR 139, Long Beach, CA, USA, 18–24 July 2021.

16. Violaand, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001;
Volume 1, pp. I–511–I–518.

17. Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.V.; Hinton, G.E.; Dean, J. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv 2017, arXiv:1701.06538.

18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

20. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009.

21. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,
arXiv:1506.02626.

22. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. arXiv 2015, arXiv:1510.00149.

174

Mathematics 2021, 9, 2612

23. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural
Netw. 1997, 8, 519–531. [CrossRef] [PubMed]

24. Collins, M.D.; Kohli, P. Memory bounded deep convolutional networks. arXiv 2014, arXiv:1412.1442.
25. Stepniewski, S.W.; Keane, A.J. Pruning backpropagation neural networks using modern stochastic optimisation techniques.

Neural. Comput. Appl. 1997, 5, 76–98. [CrossRef]
26. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2018, arXiv:1810.05270.
27. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.

2017, 13, 1–18. [CrossRef]
28. Lebedev, V.; Lempitsky, V. Fast ConvNets using group-wise brain damage. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.
29. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact CNNs. In Computer Vision—ECCV 2016; Springer International

Publishing: Cham, Switzerland, 2016; pp. 662–677. ISBN 9783319464923.
30. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in Deep Neural Networks. Adv. Neural Inf. Process. Syst.

2016, 29, 2074–2082.
31. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2016, arXiv:1608.08710.
32. Srinivas, S.; Babu, R.V. Data-Free Parameter Pruning for Deep Neural Networks. In Proceedings of the British Machine Vision

Conference 2015, Swansea, UK, 7–10 September 2015; British Machine Vision Association: Guildford, UK, 2015.
33. Rao, Y.; Lu, J.; Lin, J.; Zhou, J. Runtime Neural Pruning. In Proceedings of the Advances in Neural Information Processing

Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2181–2191.
34. Shomron, G.; Weiser, U. Spatial Correlation and Value Prediction in Convolutional Neural Networks. IEEE Comput. Arch. Lett.

2019, 18, 10–13. [CrossRef]
35. Shomron, G.; Banner, R.; Shkolnik, M.; Weiser, U. Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight

Convolutional Neural Networks. In Computer Vision—ECCV 2020; Springer International Publishing: Cham, Switzerland, 2020;
pp. 234–250.

36. See, A.; Luong, M.-T.; Manning, C.D. Compression of Neural Machine Translation Models via Pruning. arXiv 2016,
arXiv:1606.09274.

37. Narang, S.; Elsen, E.; Diamos, G.; Sengupta, S. Exploring Sparsity in Recurrent Neural Networks. arXiv 2017, arXiv:1704.05119.
38. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,

arXiv:1710.01878.
39. Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.-Y.; Davis, L.S. NISP: Pruning Networks Using Neuron

Importance Score Propagation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018.

40. Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. High-Performance Neural Networks for Visual Object
Classification. arXiv 2011, arXiv:1102.0183.

41. Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing Neural Networks with the Hashing Trick. In Proceedings
of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015.

42. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.
arXiv 2016, arXiv:1611.06440.

43. Luo, J.-H.; Wu, J. Neural Network Pruning with Residual-Connections and Limited-Data. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.

44. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.-J.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized Clipping acTivation
for quantized neural networks. arXiv 2018, arXiv:1805.06085.

45. Park, E.; Yoo, S.; Vajda, P. Value-aware quantization for training and inference of neural networks. In Computer Vision—ECCV
2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 608–624; ISBN 9783030012243.

46. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv 2016, arXiv:1606.06160.

47. Banner, R.; Nahshan, Y.; Hoffer, E.; Soudry, D. Post-training 4-bit quantization of convolution networks for rapid-deployment.
arXiv 2018, arXiv:1810.05723.

48. Choukroun, Y.; Kravchik, E.; Yang, F.; Kisilev, P. Low-bit quantization of neural networks for efficient inference. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019.

49. Fang, J.; Shafiee, A.; Abdel-Aziz, H.; Thorsley, D.; Georgiadis, G.; Hassoun, J.H. Post-training piecewise linear quantization for
deep neural networks. In Computer Vision—ECCV 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 69–86;
ISBN 9783030585358.

50. Shomron, G.; Gabbay, F.; Kurzum, S.; Weiser, U. Post-Training Sparsity-Aware Quantization. arXiv 2021, arXiv:2105.11010.
51. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining—KDD’06, Philadelphia, PA, USA, 20–23 August 2006; ACM Press: New
York, NY, USA.

52. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
53. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]

175

Mathematics 2021, 9, 2612

54. Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-All: Train One Network and Specialize It for Efficient Deployment. arXiv
2019, arXiv:1908.09791.

55. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014; Springer
International Publishing: Cham, Switzerland, 2014; pp. 818–833.

56. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Object Detectors Emerge in Deep Scene CNNs. arXiv 2014,
arXiv:1412.6856.

57. Morcos, A.S.; Barrett, D.G.T.; Rabinowitz, N.C.; Botvinick, M. On the Importance of Single Directions for Generalization. arXiv
2018, arXiv:1803.06959.

58. Zhou, B.; Sun, Y.; Bau, D.; Torralba, A. Revisiting the Importance of Individual Units in CNNs via Ablation. arXiv 2018,
arXiv:1806.02891.

59. Boone-Sifuentes, T.; Robles-Kelly, A.; Nazari, A. Max-Variance Convolutional Neural Network Model Compression. In Proceed-
ings of the 2020 Digital Image Computing: Techniques and Applications (DICTA), Melbourne, Australia, 29 November–2 Decem-
ber 2020; pp. 1–6.

60. Li, Y.; Lin, S.; Zhang, B.; Liu, J.; Doermann, D.; Wu, Y.; Huang, F.; Ji, R. Exploiting kernel sparsity and entropy for interpretable
CNN compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, California, CA,
USA, 16–20 June 2019; pp. 2800–2809.

61. Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.; Hu, X. Pruning from Scratch. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12273–12280.

62. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

63. Xilinx. Breathe New Life into Your Data Center with Alveo Adaptable Accelerator Cards. Xilinx White Paper, WP499 (v1.0). Available
online: https://www.xilinx.com/support/documentation/white_papers/wp499-alveo-intro.pdf (accessed on 19 November 2018).

64. Xilinx. Vivado Design Suite. Xilinx White Paper, WP416 (v1.1). Available online: https://www.xilinx.com/support/
documentation/white_papers/wp416-Vivado-Design-Suite.pdf (accessed on 22 June 2012).

176

mathematics

Article

Early Prediction of DNN Activation Using
Hierarchical Computations

Bharathwaj Suresh 1,*, Kamlesh Pillai 1,*, Gurpreet Singh Kalsi 1, Avishaii Abuhatzera 2

and Sreenivas Subramoney 1

Citation: Suresh, B.; Pillai, K.; Kalsi,

G.S.; Abuhatzera, A.; Subramoney, S.

Early Prediction of DNN Activation

Using Hierarchical Computations.

Mathematics 2021, 9, 3130. https://

doi.org/10.3390/math9233130

Academic Editor: Ezequiel

López-Rubio

Received: 11 October 2021

Accepted: 1 December 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Processor Architecture Research (PAR) Lab, Intel Labs, Bangalore 560048, India;
gurpreet.s.kalsi@intel.com (G.S.K.); sreenivas.subramoney@intel.com (S.S.)

2 Corporate Strategy Office, Intel, Haifa 3508409, Israel; avishaii.abuhatzera@intel.com
* Correspondence: bharathwaj@ucla.edu (B.S.); kamlesh.r.pillai@intel.com (K.P.)

Abstract: Deep Neural Networks (DNNs) have set state-of-the-art performance numbers in diverse
fields of electronics (computer vision, voice recognition), biology, bioinformatics, etc. However, the
process of learning (training) from the data and application of the learnt information (inference)
process requires huge computational resources. Approximate computing is a common method
to reduce computation cost, but it introduces loss in task accuracy, which limits their application.
Using an inherent property of Rectified Linear Unit (ReLU), a popular activation function, we
propose a mathematical model to perform MAC operation using reduced precision for predicting
negative values early. We also propose a method to perform hierarchical computation to achieve the
same results as IEEE754 full precision compute. Applying this method on ResNet50 and VGG16
shows that up to 80% of ReLU zeros (which is 50% of all ReLU outputs) can be predicted and
detected early by using just 3 out of 23 mantissa bits. This method is equally applicable to other
floating-point representations.

Keywords: DNN; ReLU; floating-point numbers; hardware acceleration

1. Introduction

Ever since its inception, deep learning has evolved into one of the most widely used
technique to solve problems in the area of speech recognition [1], pattern recognition [2],
and natural language processing [1]. The effectiveness of Deep Neural Networks (DNNs)
is pronounced when there is a huge amount of data with minimal features which are
not easily apparent to humans [2]. This makes DNNs valuable tools to meet future data
processing needs. However, producing accurate results using a large dataset comes at
a cost. DNN inference requires a huge amount of computing power, and, as a result,
consumes a large amount of energy. In a study by Strubell et al., it was estimated that
training a single deep learning model can emit the same amount of CO2 as five cars do
throughout their lifetime [3]. Due to this fact, optimizing DNN implementations has
become an urgent requirement, and has been receiving widespread attention from the
research community [4–6].

In their basic form, DNNs consist of simple mathematical operations like addition
and multiplication, which are combined together to form the multiply and accumulate
(MAC) operation. In fact, up to 95% of the computational workload of a DNN is due
to MAC operations [7]. In a typical DNN, about a billion MAC operations are required
to process each input sample [8]. This fact suggests that improving the efficiency of
the MAC operations would contribute significantly towards reducing the computational
requirement of DNNs. One way to do this is to reduce the number of bits used to perform
the MAC operations, an idea that has been widely explored in the field of approximate
computing [9]. Some studies have shown that using approximate computing techniques for
DNN implementation can reduce power consumption by as much as 88% [10]. However,

Mathematics 2021, 9, 3130. https://doi.org/10.3390/math9233130 https://www.mdpi.com/journal/mathematics

177

Mathematics 2021, 9, 3130

the majority of the approximate computing techniques result in a decrease of accuracy,
which may not be acceptable for some applications. In particular, the training of DNNs,
which could take many days even using GPUs, require high-precision floating-point values
to achieve best results [11]. Hence, it is important to come up with methods that can make
computation of DNNs more efficient without reducing the accuracy of the output.

A typical DNN consists of many convolution and fully connected layers. Each of these
layers perform MAC operation on the input using weights that are trained to generate a
unique feature representation as the output [1]. Many such layers placed in succession
can be used to approximate a target function. While the convolution and fully-connected
layers alone are sufficient to represent linear functions, they cannot be used directly for
applications that need nonlinear representations. To introduce nonlinearity into the model,
the outputs of the convolution and fully-connected layers are passed through a nonlinear
operator called an activation function [12]. As every output value is required to pass
through an activation function, choosing the right activation function is an important factor
for the effectiveness of DNNs [13].

One of the most widely used activation function is the Rectified Linear Unit (ReLU) [14].
The simple, piece-wise linear nature of ReLU can enable faster learning, and maintain
stable values when using gradient-descent methods [12]. The output of a ReLU function
is the same as the input when the input is positive, and is zero for negative inputs. This
means that the precision of output is important only when the input is a positive value.
Input to a ReLU function is usually the output from a fully-connected or convolution layer
of the DNN which consist of a large number of MAC operations [8]. Studies have found
that between 50% to 95% of ReLU outputs in DNNs are zero [15]. Hence, a lot of high
precision compute in DNNs is wasted where output elements are reduced to zero after
ReLU function. Early detection of these negative values can result in reducing the energy
spent on high precision MAC operations, which would ultimately result in an efficient
DNN implementation.

To this end, our work proposes a method for early detection of negative input values to
the ReLU function, accounting for the maximum possible error while performing MAC with
reduced precision. Using these values, we develop a mathematical model that provides a
threshold below which a negative output value is guaranteed, irrespective of the remaining
bits to be computed. It is shown that a proposed model can detect up to 80% negative values
for popular CNN models using just three mantissa bits of floating-point number. This
mathematical model can be used as the basis to implement low-precision MAC operations
for DNNs adopting ReLU functions, which would result in efficient DNN implementation
without a loss in accuracy. In summary, our contributions are threefold:

• Study of the fraction of ReLU zeros in two popular CNN models—VGG16 [16] and
ResNet50 [17].

• A mathematical model that can accurately detect negative values based on the number
of mantissa bits used a low precision MAC operation.

• Implementation of the developed model to detect ReLU zeros early in the VGG16 [16]
and ResNet50 [17] inference stage.

2. Literature Review

The training and inference of DNNs is a compute intensive task, and has resulted in
the need for various hardware accelerators [18–23]. Memory performance can be optimized
through data locality by maximizing the reuse of data at buffers close to the compute
block, as shown by Chen et al. [20]. A bit serial approach was considered by Judd et al. to
reduce overall computations required by reducing activation precision [21]. Unnecessary
multiplication with zero values was eliminated in Cnvlutin, which resulted in improved
performance [19]. TETRIS used a high bandwidth 3D memory, which lead to reduced
internal buffer size, for dealing with the memory bottleneck issue and overcoming the
memory bottleneck [23]. Pruning techniques have also been studied to maximize compute

178

Mathematics 2021, 9, 3130

saving by exploiting the sparsity in DNNs [24]. However, these methods are typically used
for very specific applications and are expensive to generalize.

Approximate computing has emerged as one of the most effective solutions for generic
DNNs, and it can exploit the inherent resilience of the CNN model (i.e., its ability to handle
variations in data and still be able to figure out the pattern) and reduce the computation
costs [25]. The level of approximation could be varied for different DNN models and
datasets, hence approximate computing gained popularity [9]. This has led many re-
searchers to investigate methods to perform low-precision computations in DNNs [26–33].

One of the most commonly applied technique is quantization, which is the process
of replacing floating point numbers by numbers with reduced bit width. A study by
Gupta et al. [26] demonstrated DNN training using 16-bit wide floating-point number with
a very small reduction in accuracy as compared to a 32-bit floating-point number. Another
study explored the effect of variable precision across different CNN layers, and demon-
strated accuracy close to the benchmarks [27]. Venkatesh et al. studied the possibility
of using 2-bit weights and space computing methods to produce state-of-the-art results.
The study employed few iterations of full-precision training, followed by reduced precision
training and inference [30]. The study on compute complexity is reduction using a 1D
kernel factorized network is presented in the work [34].

Another approach in approximate computing is the use of multipliers and adders that
compute results in a simplified manner. The work by Sarwar et al. [29] highlighted the use
of simplified add and shift operations for power savings in DNNs. Another study explored
the use of alternate full-adder implementation for efficient CNN hardware [28]. Stochastic
computing based circuits have also been studied as potential candidates to implement a
low-power DNN hardware accelerator [32].

Approximate computing has also been pursued at the software level, by simplifying
the DNN architectures to reduce compute. Pruning the synaptic weights, reducing bit
width of the synapse, and minimizing the number of hidden layers or neurons within these
layers were demonstrated as effective methods to develop energy efficient DNNs [29]. Wei
et al. came up with a more structured approach with pattern-based weight pruning for
real-time DNN execution [33].

While all these studies have highlighted the relevance and requirement of approximate
computing, they also mentioned that it comes at the cost of reduced accuracy. However,
DNNs often require high precision floating point values during training to achieve high
accuracy and reduced training time [35–37]. Such a reduction in accuracy may be unaccept-
able in real-life applications like self-driving cars [38] or medical diagnosis [39,40], where
errors could be life threatening. Hence, most commercial DNNs still use floating point
precision in their computations [41,42]. Hence, it is important to come up with a method to
perform low precision computations in DNNs without reducing the accuracy of the model.

Shormann et al. proposed a method to reduce convolution operations in CNNs by
dynamically predicting zero-valued outputs [43]. SnaPEA performs a reordering of weights
and keeps track of the partial sum to predict zero outputs early [44]. A similar method
was employed by Asadikouhanjani et al. to propose an efficient DNN accelerator [45].
By considering the spatial surroundings of an output feature map, Mosaic-CNN performs
reduced precision compute to predict zero values early [46]. Other studies have explored
methods to predict the zero values in an output feature map using the sign values [47–49].
Our study attempts further research in this direction by proposing a novel method to
predict ReLU zeros with reduced precision compute.

3. Background

3.1. Convolutional Neural Networks

Among the different types of DNNs, Convolutional Neural Networks (CNNs) are
extensively used in image processing, computer vision, and speech processing applications,
often resulting in superior performance [50]. The convolution layer, which converts the
input image into a form that is easier to process by the next layer, is at the heart of a CNN.

179

Mathematics 2021, 9, 3130

Convolution is the application of a filter to an input to produce an output feature map to
indicate a detected feature in the input data. Both the input values and the filter values
are represented as matrices, with the filter dimensions typically being much smaller that
the input. The values in the filter matrix are multiplied with the corresponding values in
the input matrix, and the values are added to produce a single output value. This MAC
operation is repeated by shifting the filter by a fixed amount each time, resulting in an
output feature map. The number of element shifts by the weight matrix on the input matrix
is called the stride. This convolution process is demonstrated in Figure 1. As shown in
Figure 1, each term from the input layer is multiplied with every term in the filter matrix,
and these values are added together (accumulate) to generate one value in the output
feature map. This process is repeated by moving the filter matrix across the input matrix,
until it has been traversed completely. Once the output feature map is generated, it is
passed through an activation function (like ReLU) to introduce nonlinearity.

Figure 1. Example of the convolution operation. In this example, the stride is assumed to be 1.
A 5 × 5 output is produced from the 7 × 7 input when a 3 × 3 weight matrix is considered.

3.2. ReLU Activation Function

The ReLU activation function is one of the most popular activation functions used in
DNNs today [14]. The function returns zero for all negative inputs, and returns the input if
it is a non-negative value. It can be written as:

f (x) = max(0, x) (1)

where max returns larger of the two inputs. The graphical representation is shown in Figure 2.
The success of ReLU can be attributed to its simple implementation, which in turn reduces
the computation time of the DNN model [51]. In addition, a majority of the ReLU outputs are
zero [15], which makes the output matrix sparse and results in better prediction and reduced
chances of overfitting [52]. Both the ReLU function and its derivative are monotonic, which
ensures that the vanishing gradient problem is avoided when the gradient-descent training
process is employed [53]. These factors have contributed to the widespread use of ReLU
activation function in DNNs. Hence, the study of the ReLU activation function is important
to implement DNNs more efficiently.

180

Mathematics 2021, 9, 3130

Figure 2. Graphical representation of the ReLU function. If x is the input and y is the output, then
y = 0 for x < 0, and y = x for x ≥ 0.

3.3. Floating Point Number Representation

In any typical DNN, the input, output, and intermediate values are stored in the
floating-point format. The standard format used in a majority of applications is the IEEE-
754 floating point number format [54]. In this format, the Most Significant Bit (MSB) is the
Sign bit (S) which is 0 for positive numbers, and 1 for negative numbers. This is followed by
a fixed number of bits assigned to store the Exponent E, and the remaining bits are allotted
to the Mantissa M. The fractional part is stored in the normalized form—i.e., the actual
values in binary is 1 plus the fractional value represented by M. In order to accommodate
negative exponent values, 127 is added (called excess-127). Hence, the actual exponent
is E–127. Based on these rules, the floating point value represented using the S, E and M
values in the IEEE-754 format is:

F = (−1)S × 2(E−127) × (1 + M) (2)

The two commonly used forms of the IEEE-754 format are the single and double precision
format. In the single precision representation, there are 8 exponent bits and 23 mantissa bits
to make a total of 32 bits. The double precision is a 64-bit representation with 11 exponents
and 52 mantissa bits [54]. Figure 3 graphically depicts both the single and double preci-
sion representations.

Figure 3. IEEE 754 floating point representation [54]. The total bits are divided into sign, exponent,
and mantissa. The single precision format has 1 sign, 8 exponents, and 23 mantissa bits, while the
double precision has 1 sign, 11 exponents, and 52 mantissa bits.

4. Methodology

4.1. Dataset and Framework

As image recognition is one of the most widely used and researched applications of
CNNs, we focus our analysis on models within this domain. VGG-16 is one of the pioneer
CNN models for large scale image recognition tasks [16]. It takes a 224 × 224 RGB image
as input and passes it through different convolution, max-pooling, and fully connected
layers. The final classification is implemented using a softmax layer. Figure 4 describes the
VGG-16 architecture. As evident from the figure, there are 13 convolution layers, and each
convolution layer is followed by a ReLU activation layer. A set of convolution layers are

181

Mathematics 2021, 9, 3130

followed by pooling layers to reduce the dimensions of the input before sending it to the
next convolution sets. Finally, a set of fully-connected layers are added to produce the
output classification probability.

As DNNs like VGG16 became difficult to train, Residual Networks (ResNets) emerged
as improved alternatives. In ResNets, shortcut (or identity) connections were introduced
between different layers to perform quick identity mapping with no additional model pa-
rameters [17]. One such ResNet model is the ResNet-50, which has 50 different convolution
and fully-connected layers along the path from input to output. Like VGG-16, ResNet-50
also takes 224 × 224 RGB images as its input. The ResNet50 architecture is shown in
Figure 5. A convolution operation that is applied on the input and the layer size is reduced
before it is sent to the residual layers. Each of the residual layers is comprised of three sets,
each with a convolution layer followed by a ReLU activation layer. Before the last ReLU
operation, an identity connection is added to train identity mappings in some of the layers.
The Res 2–1, Res 3–1, and Res 4–1 groups shown in Figure 5 have a convolution layer in the
identity path. These residual layers are followed by a pooling and fully-connected layer,
which give the classification probabilities as the output.

Figure 4. VGG-16 CNN architecture. There are 16 computation layers (13 convolution −3 × 3 kernel
and three fully connected layers without dropout). Pooling layers are present in the intermediate
stages to reduce the layer size as the network gets deeper. Regularization, normalization, and other
layers may be present but have not been shown in this figure for simplicity.

Figure 5. ResNet-50 Architecture. There are 50 computations layers (excluding convolution layers
in the identity path) between the input and output. This includes 49 convolution layers and the
fully-connected layer at the end. Res 2–1 (conv with 1 × 1, 64; 3 × 3, 64; 1 × 1, 256), Res 3–1 (1 × 1,
128; 3 × 3, 128; 1 × 1, 512) and Res 4–1 (1 × 1, 256; 3 × 3, 256; 1 × 1, 1024) are shown with a dotted
boundary to indicate that they include a convolution layer along their identity path (also shown with
a dotted boundary in the elaboration below without dropout). Regularization, normalization, and
other layers may be present but have not been shown in this figure for simplicity.

182

Mathematics 2021, 9, 3130

These models were tested using the ImageNet Large Scale Visual Recognition Chal-
lenge 2012 (ILSVRC2012) inference dataset, which includes 50,000 images belonging to
1000 different classes [55]. These images were converted to the 224 × 224 RGB format,
and the pixel values were normalized. To ensure that the training methods were standard,
the pretrained models of ResNet-50 and VGG-16 were used from the Keras library [56]
running on top of the TensorFlow [57] backend.

4.2. Proposed Hierarchical Computation

It is evident that each convolution layer involves MAC operations between the input
values and a filter with the trained weight values. The result of this MAC operation is
passed through the ReLU activation function and negative values are made zero. Our
implementation includes an intermediate step that predicts negative values early using
a reduced number of mantissa bits. The MAC operation is performed using reduced
mantissa bits, and the output is obtained. Then, based on the number of mantissa bits used
for the computation, the proposed model predicts whether a value estimated is definitely
negative or not. If the value is determined to be negative, the output is made to be zero.
For the other values, we perform MAC using the full precision and obtain the output like
in typical implementations. Hence, we reduce the total number of cases for which the
expensive full precision compute must be performed, while simultaneously ensuring no
loss in accuracy.

The steps are described using a flowchart in Figure 6. In the case presented, for every
workload, we first perform computation without any mantissa bits. Since only exponent
values are present, this can be achieved directly by adding the exponent bits. If output
can be predicted to be negative at this step, then set the output as zero and move on to the
next set of element of the input workload. If inconclusive, the first 8 MSB mantissa bits
(bits 23 to 16) are considered for further computation. Once again, predict the accumulated
negative value, and set those outputs to zero. For cases where the accumulated element
sign is still ambiguous, the remaining mantissa bits (bits 15 to 0) are also used and the
full precision compute is performed. The remaining outputs are obtained after this step,
and this whole cycle is repeated for the other input workloads. This way, the total compute
can be split into multiple levels by adding additional mantissa bits. At each level, some
negative values can be detected with reduced precision compute. At the same time, full
precision compute can be performed for all positive outputs, ensuring no loss in accuracy.
The selection of levels of compute and bits selection for each level can be determined
based on model, workload, and underlying compute hardware availability. The impact
of selected mantissa bits on correctly predicted negative values is described later in the
Results section.

Figure 7 intuitively describes the proposed hierarchical computation approach to
estimate ReLU output with reduced precision compute. Here, the “Ideal” is the value
that is computed with full precision, while “Reduced” is the output with only a few
MSB mantissa bits considered. If “Reduced” is a large negative value, the output can be
estimated to be negative irrespective of the mantissa bits. Our model detects such values
until it reaches a threshold, where “Reduced” is negative but close to zero. To estimate
these values correctly, more mantissa bits (next set of MSB bits) need to be considered.
Similarly, when “Reduced” is a large positive value, it can be estimated to be positive
without using the mantissa bits. However, as the value approaches zero, more mantissa bits
are required to correctly estimate the sign of the element. A threshold is estimated along
the positive axis too, beyond which values are always positive. Our model determines
both the positive and negative thresholds, which gives rise to the region of interest where
full precision compute needs to be performed, as shown in Figure 7. These thresholds
are obtained by considering the maximum error contribution from each mantissa bit of
a floating point number. As shown in Figure 7, the error is inversely proportional to the
number of mantissa bits “n”, which means that the region of interest gets smaller as the
value of “n” increases.

183

Mathematics 2021, 9, 3130

The next section derives a mathematical model that can perform the ReLU checks
shown in Figure 6, based on the intuitive model proposed in Figure 7. We use error
calculations to prove that the model can determine ReLU zeros with no loss in accuracy.

Figure 6. Flow chart depicting the steps to perform hierarchical compute (three steps) and detect
ReLU zeros with reduced precision. The first step is to perform MAC using exponent and predict
ReLU output; if undetermined, compute most significant 8-bits of mantissa and check ReLU again if
still not conclusive perform compute using remaining mantissa bits (every next step uses previously
computed values). Here, the red arrows depict writing to the memory, and blue arrows indicate read
from memory. Black arrows indicate that the computation has been completed for the given input.

Figure 7. Intuition behind estimating ReLU zeros based on reduced precision compute. In the
hierarchical compute method, the value of “n” (number of MSB mantissa bits) is increased at each
step, resulting in a decrease in the region of interest, until only positive values are remaining.

4.3. Mathematical Model

In this section, the mathematical model of the proposed solution is presented. There
are three theorems, which cover all scenarios of the proposed solution. Theorem 1 presents
an important scenario where errors due to addition of positive values are the main contrib-
utors for a sign change of resultant from positive to negative, which impacts the threshold

184

Mathematics 2021, 9, 3130

calculation. Theorem 2 describes the max error that is needed to detect negative values
out of MAC operations, and Theorem 3 talks about the major condition that needs to be
satisfied for predicting the ReLu output.

Theorem 1. Let

XS(a) =
n

∑
k=−n

(i f m(k) ∗ wt(a − k)) (3)

where a = number of terms involved in the convolution, if m(k) and wt(k) are input feature map
and weight kernel in single precision floating point representation (FP32) with a reduced number of
mantissa bits (number of mantissa bits after reduction = m).

XSPOS(n) =
n

∑
k=0

(i f m(k) ∗ wt(n − k)) (4)

is responsible to convert a positive XS(n) with m = 23 (FP32) to negative XS(n) with m < 23.

Proof of Theorem 1. Let Xs(b) where b < a, with m < 23. Let XReduced and XIdeal be the
values of the next term to be added to the convolution sum, with m = 23 and m < 23,
respectively. When this term is added to the existing sum, two different sums are obtained
depending on the presence or absence of all mantissa bits. Let these be called XIdeal

S and
XReduced

S , respectively. That is,
XIdeal

S = XS + XIdeal (5)

XReduced
S = XS + XReduced (6)

It is evident that reducing the number of mantissa bits in a floating point number results in
a number having lower magnitude. However, the sign remains unaffected as the sign bit is
unchanged. Hence, if

XIdeal < 0

=⇒ XReduced > XIdeal

=⇒ XS + XReduced > XS + XIdeal

From (5) and (6), we have
XReduced

S > XIdeal
S (7)

From (7), it is evident that, if XReduced
S < 0, it can be concluded that XIdeal

S < 0. In other
words, error due to addition of a negative value cannot alter the sign of the sum from
positive to negative. On the contrary, if

XIdeal < 0

=⇒ XReduced < XIdeal

=⇒ XS + XReduced < XS + XIdeal

From (5) and (6), we have
XReduced

S < XIdeal
S (8)

In the case of (8), XReduced
S < 0 does not guarantee that XIdeal

S < 0. Hence, errors due to
the addition of positive values contribute towards sign change from positive to negative,
and are important in determining the threshold to conclude that the convolution sum is
negative when reduced-mantissa is considered.

Theorem 2. If a positive term in the convolution sum is given by CMul = 2EMul × MMul, where
EMul and MMul are the unbiased exponent and mantissa value of the term, the maximum error that is
possible when the number of mantissa bits is reduced to n is given by CErrMax = 2EMul−n+1 × MMul.

185

Mathematics 2021, 9, 3130

Proof of Theorem 2. For any floating point number given by

N = (−1)S × 2E × M

where S, E, M represent the sign, unbiased exponent, and mantissa value, the maximum
possible error when only n mantissa bits are included is given by

EMax = −2(E−n) × (−1)S (9)

Consider an activation input (I) and weight (W) of a convolution layer. They are represented as

I = (−1)SI × 2EI × MI (10)

W = (−1)SW × 2EW × MW (11)

From (9), the most erroneous values that could result from reducing the number of mantissa
bits to n in I (10) and W (11) are given by

IReduced = (−1)SI × 2EI × MI − 2(EI−n) × (−1)S
I (12)

WReduced = (−1)SW × 2EW × MW − 2(EW−n) × (−1)S
W (13)

The convolution term when I (10) and W (10) are multiplied is given by

CIdeal = (−1)SI+SW × 2EI+EW × (MI × MW) (14)

With reduced mantissa in the convolution step, (12) and (13) give

CReduced = IReduced × WReduced

= (−1)SI+SW × 2EI+EW × (MI × MW)

− (−1)SI+SW × 2EI+EW−n × (MI + MW)

+ 2EI+EW−2n

Hence,
CReduced = 2EI+EW × (MI × MW − (2−n × (MI + MW − 2−n)) (15)

The error in convolution terms due to reduced mantissa can be obtained from (14) and (15)

CError = CIdeal − CReduced

= 2EI+EW−n × (MI + MW + 2−n)

As 2−n is always positive,

CError ≤ 2EI+EW−n × (MI + MW). (16)

Since MI and MW represent the mantissa values,

1 ≤ MI , MW ≤ 2

=⇒ MI + MW ≤ 2 × MI × MW

Hence, (16) can be rewritten as

CError ≤ 2EI+EW−n × (2 × MI × MW)

= 2EI+EW−n+1 × (MI × MW)

From (14), we get
CError ≤ 2−n+1 × CIdeal (17)

186

Mathematics 2021, 9, 3130

It is evident from Theorem 1 that only positive terms will contribute to errors that can
contribute to incorrectly identifying a negative value. Hence, SI + SW = 0 (Either both I
and W are positive or both are negative). Including this in (14), we can rewrite CIdeal as

CIdeal = 2EMul × MMul (18)

where EMul = EI + EW and MMul = MI × MW . Hence, the maximum error in a positive
term in the convolution sum is

CErrMax = 2EMul−n+1 × MMul (19)

Hence, we obtain the maximum error, which is needed to detect negative values from
a MAC operation.

Theorem 3. If the convolution sum before the ReLU activation layer is given by CTot = (−1)STot ×
2ETot × MTot, and the sum of positive terms in the summation (including the bias value) is given
by CPos = 2EPos × MPos, then the value of CTot can be concluded to be negative if STot = 1 and
ETot > EPos − n, where n is the number of mantissa bits used in the computation.

Proof of Theorem 3. Let the sum of all product terms in the convolution be given by

CTot = ∑
i
(−1)Si × 2Ei × Mi = (−1)STot × 2ETot × MTot (20)

From (19) in Theorem 2, the maximum error due positive terms in the convolution is given
by Ci

ErrMax = 2Ei−n+1 × Mi. Hence, when these errors are accumulated for all positive
terms (including bias), we get

CErrTot = ∑
i:Si=0

Ci
ErrMax = ∑

i:Si=0
2Ei−n+1 × Mi (21)

Note that, unlike other terms in the convolution sum, the bias does not involve multiplica-
tion of reduced mantissa numbers. Hence, the maximum error for bias values will be lower.
However, the same error has been considered (as an upper bound) to simplify calculations.

We can represent the sum of positive terms (including bias) in the convolution sum as

CPos = ∑
i:Si=0

2Ei × Mi = 2EPos × MPos (22)

Using (22), the total error in (21) can be rewritten as

CErrTot = 2−n × CPos (23)

To conclude that a convolution sum is zero/negative, the following two conditions should hold:

|CTot| ≥ |CPos| (24)

STot = 1 (25)

(24) can be expanded using (20) and (22) to give

2ETot × MTot ≥ 2EPos−n+1 × MPos (26)

Note that, if ETot = EPos − n + 1, then the condition MTot ≥ MPos must hold (as the total
convolution sum (CTot) must be greater than or equal to the sum of positive convolution
terms and bias (CPos)) As a consequence, (26) now becomes

ETot ≥ EPos − n + 1 (27)

187

Mathematics 2021, 9, 3130

=⇒ ETot > EPos − n (28)

Hence, from (25) and (28), we can conclusively say that a convolution sum computed using
reduced-mantissa bits is negative (In addition, its ReLU output is zero) if STot = 1 and
ETot > EPos − n.

4.4. Early Negative Value Prediction

The theorems derived above can be used to implement the proposed model for
hierarchical computation. The steps to find out if a reduced precision value is a ReLU zero
can be represented as an algorithm, as shown here:

1. Consider inputs and weights of convolution with reduced “n” mantissa bits
2. Compute CPos, the sum of positive convolution terms, as per (22)
3. Obtain EPos, the exponent value of CPos, as per (22)
4. Compute CTot = CPos + CNeg, where CNeg is the sum of negative convolution terms
5. Obtain ETot, the exponent value of Ctot, as per (20)
6. If ETot > (EPos − n), then assign the ReLU output as zero. The computation is complete.
7. If ReLU zero is not assigned, repeat steps 1–6 for higher values of “n”.

5. Results

In order to motivate the use of the hierarchical compute method to detect ReLU
zeros early, we first identify the number of ReLU zeros that are present when a typical
image is processed using the ResNet-50 and VGG-16 CNN models; findings are shown in
Figure 8. It is evident from the figure that, in a majority of the layers, more than 50% of
the ReLU outputs are zero, with many of the deeper layers having up to 90% ReLU zeros.
Considering all the layers, we found that, on an average, 61.77% of the ReLU outputs were
zeros in VGG-16, while 61.24% ReLU zeros were seen for ResNet-50. These results indicate
that a large portion of compute is wasted on computing ReLU zeros, which can be avoided
using the proposed method.

Figure 8. Percentage of ReLU zeros present in (a) VGG16; (b) ResNet50 when a typical image is
processed through the models. Only a few layers of ResNet-50 are shown for clarity—a similar trend
is observed in all the layers.

In addition to the percentage of ReLU zeros, it is also important to understand the
distribution of values seen by the ReLU layer. The results from ResNet-50 layers are shown
in Figure 9. A total of 10 bins were chosen—values below −8, −8 to −4, −4 to −2, −2 to
−1, −1 to 0, 0 to 1, 1 to 2, 2 to 4, 4 to 8 and values above 8. We notice that, in all layers, about
50% of the values fall between −1 to 1, and more than 80% between −2 and 2. This implies
that the majority of the values are close to zero. As a result, it is not practical to use a fixed
threshold value along with reduced precision compute. A large negative threshold (say
−2) can ensure that a value computed with reduced precision will have the correct sign.
However, we can see from the distribution that only very few values (under 20%) can be
detected with such a fixed threshold. If the threshold is pushed closer to zero, the chances
of incorrectly detecting ReLU zeros increase. This study demonstrates the importance of
the variable threshold derived using our model.

188

Mathematics 2021, 9, 3130

Figure 9. Distribution of ReLU inputs in different layers of ResNet-50. Here, Val is the input to the
ReLU function. A total of 10 bins have been considered, and the range in each bin in mentioned in
the figure. The different layers shown in the figure are: (a) first convolution layer from the input
image (b) first convolution layer in the Res 1-1 block; (c) first convolution layer in the Res 2-1 block;
(d) first convolution layer in the Res 3-1 block.

The proposed model was tested by evaluating the ReLU output values at different lay-
ers of both the VGG-16 and ResNet-50 CNN implementation. This was done by comparing
the outputs from the convolution layer using (25) and (28). The total number of negative
values that were detected using our model were noted and compared with the total number
of output values to provide the percentage of negative values that are detected early. This
was repeated for different layers, with different numbers of mantissa bits. Figure 10 shows
the percentage of ReLU zeros detected by our model across different layers of ResNet-50
with different numbers of mantissa bits. It is evident that, as the number of mantissa bits
considered increases, our model is able to detect the majority of ReLU zeros in all layers.

Figure 10. Percentage of ReLU values detected using our model across different ResNet-50 layers.
The first 33 convolution layers are shown in the figure. The number of MSB mantissa bits used were
(a) 0; (b) 1; (c) 2; and (d) 3.

189

Mathematics 2021, 9, 3130

To get a closer look at the impact of increasing the number of mantissa bits, we plotted
the percentage of ReLU zeros detected with 0, 1, 2, and 3 mantissa bits for randomly chosen
layers in VGG-16 and ResNet-50. This is shown in Figure 11. As expected, the fraction of
negative values detected increases as the number of mantissa bits used for computation is
increased. Close to 80% of negative values can be detected early using just three mantissa
bits, which can result in a significant increase in the efficiency of the network. Due to the
nature of weights, range of values, and so on, we observe that the results across different
layers vary. However, as seen in Figure 10, the amount of variation decreases as we use
more mantissa bits. Additionally, we note similar effectiveness of our model for both
VGG-16 and ResNet-50, which shows that the model does not depend on the type of CNN
implementation—it works based on the fundamental characteristics of MAC operations
and floating-point numbers, which makes it a generalized solution for any CNN layer with
a ReLU activation function.

From the results presented, we see that about 60% of the outputs of the ReLU activation
function are zero values in CNNs like VGG-16 and ResNet-50. If three mantissa bits are
used for computation and our model is deployed, 80% of these ReLU zeros can be detected.
Hence, we can expect about 50% of the all ReLU outputs to be estimated early. This way,
almost half of the total computations can be carried out in low precision and the other half
can be computed in full precision, while ensuring no loss in accuracy.

Figure 11. Percentage of ReLU zeros identified by our model when different mantissa bits were considered. The figure
shows the results in (a) Conv 1-2; (b) Conv 3-3; and (c) Conv 5-3 layers of VGG-16, and (d) second convolution layer of Res
1-1 block; (e) first convolution layer of Res 2-4 block; and (f) third convolution layer of Res 3-5 block. Similar results were
observed in other layers of both ResNet-50 and VGG-16.

6. Discussion

6.1. Generalization to Other DNNs

The results presented in this work utilize CNNs as the end application due to their
ubiquitous nature and applicability to various fields. However, the model we have pro-
posed is built on fundamental properties of floating-point numbers, MAC operations,
and the ReLU activation function. Hence, the model can be extended to other applications
too. When there are no negative values in the whole process, the algorithm will not predict
any outcome and bypass all MAC output as valid output. However, these computations
that are bypassed by algorithms as valid will be reused as a partial product for computing
the actual output with the remaining mantissa bits. Since the compute used for prediction
is re-purposed as a partial product and also for the cases which are slightly uncertain,

190

Mathematics 2021, 9, 3130

the algorithm tends to predict them as positive value (no approximation) and bypass them
out of the algorithm as valid outputs such that it will always go through the full precision
compute. Hence, no accuracy drop is expected with the use of a proposed solution.

The proposed solution will be applicable across various networks with activation
functions which displays a nonlinear behavior for either positive or negative numbers
(not both) and the other one must be a zero or any constant value. To support activation
functions like sigmoid, we might need to redevelop mathematical constraints to predict
values between [−ve, +ve] range, while all other values outside this range can be set to
a constant.

6.2. Implementation on GPU/Other Accelerators

This method is implementable on any compute engine that supports DNN workload.
Since the proposed solution supports the reusing of partially computed elements that
were used for early prediction, this will not impose a heavy tax on the existing hardware.
On GPU and other accelerators, the proposed solution will need fine-tuning of data flow,
data storage pattern and control logic, etc.

6.3. Extension to Training

The results presented in this work demonstrate the effectiveness of our model during
the inference stage in a DNN. However, the process of training also involves the same set of
steps, along with the additional step of adjusting the parameters. Hence, our model can be
used in every layer with a ReLU activation layer. Since DNN training is a time-consuming
and compute intensive process, this method can provide a significant improvement. It
is also noteworthy to mention that, unlike inference, training must be done with high
precision values. As a result, many of the approximate computing methods that have been
studied cannot be extended to training. However, since our method ensures that there is
no loss in accuracy, it can be applied to training as well.

7. Conclusions

In this work, we proposed a mathematical model that can detect zero outputs of the
ReLU activation function using low-precision MAC operations. Our model takes into
account the error resulting from the reduction of the number of bits in a floating-point
representation, and identifies values that would be negative even when full-precision
compute is performed. Our model can adapt based on the number of mantissa bits
considered in the computation, ensuring its suitability for different number formats used in
DNNs. We show that around 80% of ReLU zeros can be detected using just three mantissa
bits, which corresponds to a total of 50% of all ReLU outputs in VGG16 and ResNet50
CNN implementations. As the model is developed with no assumption about the nature of
the network or the application, we claim that the model can be extended to all DNNs that
use the ReLU activation function. In addition, as the MAC operation and the activation
layer in DNN training is identical to inference, this model can be adopted to make the
compute-hungry training process more efficient. We also propose a system level model
to implement this method and perform hardware acceleration of DNNs. The widespread
use of DNNs with the ReLU activation function means that our model can be used as an
error-free way to reduce computations in numerous applications.

Author Contributions: Conceptualization, B.S., K.P. and G.S.K.; writing—original draft preparation,
B.S.; writing—review and editing, K.P. and G.S.; supervision, A.A. and S.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

191

Mathematics 2021, 9, 3130

Data Availability Statement: The dataset used for this study is publicly available and can be down-
loaded at https://www.image-net.org (accessed on 1 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Network
ReLU Rectified Linear Unit
VGG Visual Geometry Group
ResNet Residual Network
MAC Multiply And Accumulate
GPU Graphics Processing Unit
CNN Convolutional Neural Network
IEEE Institute of Electrical and Electronics Engineers
ILSVRC ImageNet Large Scale Visual Recognition Challenge

References

1. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications.
Neurocomputing 2017, 234, 11–26. [CrossRef]

2. Zhang, L.; Zhang, Y. Big data analysis by infinite deep neural networks. Jisuanji Yanjiu Yu Fazhan/Comput. Res. Dev. 2016, 53, 68–79.
[CrossRef]

3. Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the
ACL 2019—57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019;
pp. 3645–3650.

4. Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.; Devanur, N.; Ganger, G.; Gibbons, P. PipeDream: Fast and Efficient
Pipeline Parallel DNN Training. arXiv 2018, arXiv:1806.03377.

5. Deng, C.; Liao, S.; Xie, Y.; Parhi, K.K.; Qian, X.; Yuan, B. PERMDNN: Efficient Compressed DNN Architecture with Permuted
Diagonal Matrices. In Proceedings of the 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Fukuoka, Japan, 20–24 October 2018; pp. 189–202.

6. Duggal, J.K.; El-Sharkawy, M. Shallow squeezenext: An efficient shallow DNN. In Proceedings of the 2019 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Cairo, Egypt, 4–6 September 2019. [CrossRef]

7. Wei, W.; Xu, L.; Jin, L.; Zhang, W.; Zhang, T. AI Matrix—Synthetic Benchmarks for DNN. arXiv 2018, arXiv:1812.00886.
8. Hanif, M.A.; Javed, M.U.; Hafiz, R.; Rehman, S.; Shafique, M. Hardware–Software Approximations for Deep Neural Networks. In

Approximate Circuits; Springer International Publishing: Cham, Switzerland, 2019; pp. 269–288. [CrossRef]
9. Agrawal, A.; Choi, J.; Gopalakrishnan, K.; Gupta, S.; Nair, R.; Oh, J.; Prener, D.A.; Shukla, S.; Srinivasan, V.; Sura, Z. Approximate

computing: Challenges and opportunities. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing
(ICRC), San Diego, CA, USA, 17–19 October 2016. [CrossRef]

10. Liu, B.; Wang, Z.; Guo, S.; Yu, H.; Gong, Y.; Yang, J.; Shi, L. An energy-efficient voice activity detector using deep neural networks
and approximate computing. Microelectron. J. 2019, 87, 12–21. [CrossRef]

11. Zhu, H.; Akrout, M.; Zheng, B.; Pelegris, A.; Jayarajan, A.; Phanishayee, A.; Schroeder, B.; Pekhimenko, G. Benchmarking
and Analyzing Deep Neural Network Training. In Proceedings of the 2018 IEEE International Symposium on Workload
Characterization (IISWC), Raleigh, NC, USA, 30 September–2 October 2018; pp. 88–100. [CrossRef]

12. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for
Deep Learning. arXiv 2018, arXiv:1811.03378.

13. Wang, Y.; Li, Y.; Song, Y.; Rong, X. The Influence of the Activation Function in a Convolution Neural Network Model of Facial
Expression Recognition. Appl. Sci. 2020, 10, 1897. [CrossRef]

14. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history
began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164.

15. Shi, S.; Chu, X. Speeding up convolutional neural networks by exploiting the sparsity of rectifier units. arXiv 2017,
arXiv:1704.07724.

16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

18. Albericio, J.; Delmás, A.; Judd, P.; Sharify, S.; O’Leary, G.; Genov, R.; Moshovos, A. Bit-pragmatic deep neural network
computing. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, MA,
USA, 14–18 October 2017; pp. 382–394.

192

Mathematics 2021, 9, 3130

19. Albericio, J.; Judd, P.; Hetherington, T.; Aamodt, T.; Jerger, N.E.; Moshovos, A. Cnvlutin: Ineffectual-neuron-free deep neural
network computing. ACM SIGARCH Comput. Archit. News 2016, 44, 1–13. [CrossRef]

20. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 2014, 42, 269–284. [CrossRef]

21. Judd, P.; Albericio, J.; Hetherington, T.; Aamodt, T.M.; Moshovos, A. Stripes: Bit-serial deep neural network computing. In
Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan,
15–19 October 2016; pp. 1–12.

22. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

23. Gao, M.; Pu, J.; Yang, X.; Horowitz, M.; Kozyrakis, C. Tetris: Scalable and efficient neural network acceleration with 3d memory.
In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and
Operating Systems, Xi’an, China, 8–12 April 2017; pp. 751–764.

24. Hua, W.; Zhou, Y.; De Sa, C.; Zhang, Z.; Suh, G.E. Boosting the performance of cnn accelerators with dynamic fine-grained
channel gating. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH,
USA, 12–16 October 2019; pp. 139–150.

25. Chen, C.Y.; Choi, J.; Gopalakrishnan, K.; Srinivasan, V.; Venkataramani, S. Exploiting approximate computing for deep learning
acceleration. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018; pp. 821–826.

26. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision. In Proceedings of
the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Volume 3, pp. 1737–1746.

27. Judd, P.; Albericio, J.; Hetherington, T.; Aamodt, T.; Jerger, N.E.; Urtasun, R.; Moshovos, A. Reduced-Precision Strategies for
Bounded Memory in Deep Neural Nets. arXiv 2015, arXiv:1511.05236.

28. Shafique, M.; Hafiz, R.; Javed, M.U.; Abbas, S.; Sekanina, L.; Vasicek, Z.; Mrazek, V. Adaptive and Energy-Efficient Architectures
for Machine Learning: Challenges, Opportunities, and Research Roadmap. In Proceedings of the 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 627–632. [CrossRef]

29. Sarwar, S.S.; Srinivasan, G.; Han, B.; Wijesinghe, P.; Jaiswal, A.; Panda, P.; Raghunathan, A.; Roy, K. Energy efficient neural
computing: A study of cross-layer approximations. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 796–809. [CrossRef]

30. Venkatesh, G.; Nurvitadhi, E.; Marr, D. Accelerating Deep Convolutional Networks using low-precision and sparsity. In
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5–9 March 2017; pp. 2861–2865.

31. Liu, B.; Guo, S.; Qin, H.; Gong, Y.; Yang, J.; Ge, W.; Yang, J. An energy-efficient reconfigurable hybrid DNN architecture for
speech recognition with approximate computing. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5.

32. Ardakani, A.; Leduc-Primeau, F.; Onizawa, N.; Hanyu, T.; Gross, W.J. VLSI implementation of deep neural network using integral
stochastic computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2688–2699. [CrossRef]

33. Niu, W.; Ma, X.; Lin, S.; Wang, S.; Qian, X.; Lin, X.; Wang, Y.; Ren, B. Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 907–922.

34. Sarker, M.M.K.; Rashwan, H.; Akram, F.; Singh, V.K.; Banu, S.F.; Chowdhury, F.; Choudhury, K.; Chambon, S.; Radeva, P.; Puig, D.;
et al. SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. Expert Syst. Appl. 2021, 183, 115433.
[CrossRef]

35. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

36. Courbariaux, M.; Bengio, Y.; David, J.P. Training deep neural networks with low precision multiplications. arXiv 2014,
arXiv:1412.7024.

37. Louizos, C.; Reisser, M.; Blankevoort, T.; Gavves, E.; Welling, M. Relaxed quantization for discretized neural networks. arXiv
2018, arXiv:1810.01875.

38. Chernikova, A.; Oprea, A.; Nita-Rotaru, C.; Kim, B. Are self-driving cars secure? Evasion attacks against deep neural networks
for steering angle prediction. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA,
19–23 May 2019; pp. 132–137.

39. Pustokhina, I.V.; Pustokhin, D.A.; Gupta, D.; Khanna, A.; Shankar, K.; Nguyen, G.N. An effective training scheme for deep neural
network in edge computing enabled Internet of medical things (IoMT) systems. IEEE Access 2020, 8, 107112–107123. [CrossRef]

40. Sarker, M.M.K.; Makhlouf, Y.; Craig, S.G.; Humphries, M.P.; Loughrey, M.; James, J.A.; Salto-Tellez, M.; O’Reilly, P.; Maxwell, P.
A Means of Assessing Deep Learning-Based Detection of ICOS Protein Expression in Colon Cancer. Cancers 2021, 13, 3825.
[CrossRef]

41. Li, Z.; Zhang, Y.; Wang, J.; Lai, J. A survey of FPGA design for AI era. J. Semicond. 2020, 41, 021402. [CrossRef]
42. Dean, J. Machine learning for systems and systems for machine learning. In Proceedings of the 2017 Conference on Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

193

Mathematics 2021, 9, 3130

43. Shomron, G.; Banner, R.; Shkolnik, M.; Weiser, U. Thanks for nothing: Predicting zero-valued activations with lightweight convo-
lutional neural networks. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
pp. 234–250.

44. Akhlaghi, V.; Yazdanbakhsh, A.; Samadi, K.; Gupta, R.K.; Esmaeilzadeh, H. Snapea: Predictive early activation for reducing com-
putation in deep convolutional neural networks. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 662–673.

45. Asadikouhanjani, M.; Ko, S.B. A novel architecture for early detection of negative output features in deep neural network
accelerators. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3332–3336. [CrossRef]

46. Kim, C.; Shin, D.; Kim, B.; Park, J. Mosaic-CNN: A combined two-step zero prediction approach to trade off accuracy and
computation energy in convolutional neural networks. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 770–781. [CrossRef]

47. Chang, J.; Choi, Y.; Lee, T.; Cho, J. Reducing MAC operation in convolutional neural network with sign prediction. In Proceedings
of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea,
17–19 October 2018; pp. 177–182.

48. Lin, Y.; Sakr, C.; Kim, Y.; Shanbhag, N. PredictiveNet: An energy-efficient convolutional neural network via zero prediction. In
Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017;
pp. 1–4.

49. Song, M.; Zhao, J.; Hu, Y.; Zhang, J.; Li, T. Prediction based execution on deep neural networks. In Proceedings of the 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018;
pp. 752–763.

50. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

51. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
52. Kepner, J.; Gadepally, V.; Jananthan, H.; Milechin, L.; Samsi, S. Sparse deep neural network exact solutions. In Proceedings of the

2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA USA, 25–27 September 2018; pp. 1–8.
53. Talathi, S.S.; Vartak, A. Improving performance of recurrent neural network with relu nonlinearity. arXiv 2015, arXiv:1511.03771.
54. Kahan, W. IEEE standard 754 for binary floating-point arithmetic. Lect. Notes Status IEEE 1996, 754, 11.
55. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2014, 115, 211–252. [CrossRef]
56. Chollet, F. and others.; Keras. 2015. Available online: https://keras.io (accessed on 1 May 2021).
57. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. Software. 2015. Available online: tensorflow.org (accessed on 1 May 2021).

194

mathematics

Article

Prediction of Hydraulic Jumps on a Triangular Bed Roughness
Using Numerical Modeling and Soft Computing Methods

Mehdi Dasineh 1, Amir Ghaderi 2,*, Mohammad Bagherzadeh 3, Mohammad Ahmadi 4 and Alban Kuriqi 5,*

Citation: Dasineh, M.; Ghaderi, A.;

Bagherzadeh, M.; Ahmadi, M.;

Kuriqi, A. Prediction of Hydraulic

Jumps on a Triangular Bed

Roughness Using Numerical

Modeling and Soft Computing

Methods. Mathematics 2021, 9, 3135.

https://doi.org/10.3390/math9233135

Academic Editors: Freddy Gabbay

and Florin Leon

Received: 13 September 2021

Accepted: 3 December 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Faculty of Engineering, University of Maragheh,
Maragheh 8311155181, Iran; mehdi.dasineh3180@gmail.com

2 Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran
3 Department of Civil Engineering, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran;

bagherzadeh.mbz96@gmail.com
4 Department of Civil Engineering, Faculty of Engineering, Shabestar Branch, Islamic Azad University,

Shabestar 1584743311, Iran; sthfar@gmail.com
5 CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
* Correspondence: amir_ghaderi@znu.ac.ir (A.G.); alban.kuriqi@tecnico.ulisboa.pt (A.K.);

Tel.: +98-93845-03512 (A.G.)

Abstract: This study investigates the characteristics of free and submerged hydraulic jumps on the
triangular bed roughness in various T/I ratios (i.e., height and distance of roughness) using CFD
modeling techniques. The accuracy of numerical modeling outcomes was checked and compared
using artificial intelligence methods, namely Support Vector Machines (SVM), Gene Expression
Programming (GEP), and Random Forest (RF). The results of the FLOW-3D® model and experimental
data showed that the overall mean value of relative error is 4.1%, which confirms the numerical
model’s ability to predict the characteristics of the free and submerged jumps. The SVM model
with a minimum of Root Mean Square Error (RMSE) and a maximum of correlation coefficient (R2),
compared with GEP and RF models in the training and testing phases for predicting the sequent
depth ratio (y2/y1), submerged depth ratio (y3/y1), tailwater depth ratio (y4/y1), length ratio of
jumps (Lj/y∗2) and energy dissipation (ΔE/E1), was recognized as the best model. Moreover, the best
result for predicting the length ratio of free jumps (Lj f /y∗2) in the optimal gamma is γ = 10 and the
length ratio of submerged jumps (Ljs/y∗2) is γ = 0.60. Based on sensitivity analysis, the Froude number
has the greatest effect on predicting the (y3/y1) compared with submergence factors (SF) and T/I. By
omitting this parameter, the prediction accuracy is significantly reduced. Finally, the relationships
with good correlation coefficients for the mentioned parameters in free and submerged jumps were
presented based on numerical results.

Keywords: artificial intelligence; energy dissipation; FLOW-3D; hydraulic jumps; bed roughness;
sensitivity analysis

1. Introduction

The hydraulic jump is a natural phenomenon in an open channel, sometimes regarded
as an effective method of energy dissipation near structures such as gates, chutes, and
spillways [1]. The hydraulic jump is specified by the expansion of large-scale turbulence,
surface waves and spray, energy dissipation, and air entrainment [2]. If the tailwater depth
equals the subcritical sequent depth, it is called a free hydraulic jump. Furthermore, if
the tailwater depth is greater than the subcritical sequent depth, the jump is submerged
(submerged hydraulic jump). A hydraulic jump has been widely studied, but only a few
investigations have regarded the effect of bed roughness on the characteristics of hydraulic
jumps. Enormous research studies dealing with the free and submerged hydraulic jumps
such as McCorquodale and Khalifa [3], Smith [4], Graber et al. [5], Vallé and Pasternack [6],
Dey and Sarkar [7], Tokyay et al. [8], and Samadi-Boroujeni et al. [9] were carried out. Ead
and Rajaratnam [10] experimentally studied hydraulic jumps on corrugated beds.

Mathematics 2021, 9, 3135. https://doi.org/10.3390/math9233135 https://www.mdpi.com/journal/mathematics

195

Mathematics 2021, 9, 3135

The results showed that the length of jumps was about half of those on smooth beds.
Carollo et al. [11] investigated the hydraulic jump properties on a bed roughened by
gravel particles. The results indicate that the roughness reduces the sequent depth and the
length of the jump. Pagliara et al. [12] studied the hydraulic jump on homogeneous and
non-homogeneous rough beds. The results satisfactorily matched with the experimental
data and presented new equations to estimate the length of jump and sequent depth.
Abbaspour et al. [13] investigated the impact of a corrugated bed on hydraulic jumps. The
results stated that the jump length and tailwater depth on corrugated beds are smaller
than the smooth bed. Chanson [14] observed the flow resistance effects in decreasing the
sequence depth ratio for a given Froude number. The results indicated that the Bélanger
equation is not appropriate. In addition, the cross-sectional properties of irregular channels
have an important influence on the flow characteristics. Ahmed et al. [15] investigated the
effect of bed roughness on the submerged jump. Conclusions show that the length of a
jump and tailwater depth on a bed roughness are smaller than on a smooth bed. Palermo
and Pagliara [16] produced two general equations for evaluating relative energy dissipation
across various hydraulic and geometrical conditions. Pourabdollah et al. [17] studied free
and submerged jumps in different stilling basins. They showed that the sequent depth, the
submerged depth, and the length of the jump decreased compared to the classical jump.
Moreover, the average energy dissipation of the submerged jump on the bed roughness was
more than those of the classical jump. Habibzadeh et al. [18] investigated characteristics
of hydraulic jumps with and without blocks. The mean longitudinal velocity, turbulence
intensity, Turbulent Kinetic Energy (TKE), and shear stress and water surface fluctuations
were studied and compared for various flow regimes.

In addition to laboratory research, numerical works have been done on hydraulic
jumps. Gharangik and Chaudhry [19] solved the 1D Boussinesq equations to simulate a
hydraulic jump in a rectangular channel. The results showed that the equation terms have
little influence in determining the location of the hydraulic jump. Ma et al. [20] investigated
the turbulence characteristics of 2D submerged hydraulic jumps using the k–ε turbulence
model. The results are compared with available experimental data and are acceptable.
Mousavi et al. [21] investigated predictive modeling of the free hydraulic jumps pressure
through advanced statistical methods. It was verified that maximum and minimum
pressure fluctuation are located near the spillway toe and downstream of hydraulic jumps,
respectively. Abbaspour et al. [22] numerically studied hydraulic jump on a corrugated bed
using the standard k-ε and RNG turbulent models. Their results stated that the k-ε model
was suitable for predicting the jump characteristics. Chern and Syamsuri [23] applied the
Smoothed Particle Hydrodynamics (SPH) model to evaluate characteristics of the hydraulic
jump in different corrugated beds and classified jump. Bayon et al. [24] investigated the
performance of Open-FOAM and FLOW-3D® software in the numerical investigation of
the hydraulic jump. Nikmehr and Aminpour [25] investigated the characteristics of a
hydraulic jump over bed roughness with trapezoidal blocks using the CFD model. The
results state that increasing the distance and the height of the roughness will decrease
the velocity near the bed and increase the shear stress. Ghaderi et al. [26] numerically
investigated the characteristics of the hydraulic jumps over various roughness shapes using
the FLOW-3D® model. The results were compared with previous studies. Relationships
with good correlation coefficients for the mentioned parameters in free and submerged
jumps were presented based on numerical results. Ghaderi et al. [27] studied the effects
of triangular microroughness on the characteristics of the submerged jump with the help
of the FLOW-3D® model. To validate the present model, comparisons between numerical
simulations and experimental results were performed for the smooth bed and triangular
microroughness [27].

Recent advancements in data-driven models, i.e., Gene Expression Programming
(GEP) and Artificial Neural Networks (ANN), and their application in hydraulics engi-
neering have challenged the conventional techniques of the analysis. Several researchers

196

Mathematics 2021, 9, 3135

have shown that soft computing techniques are more feasible and accurate than conven-
tional techniques.

Karbasi and Azamathulla [28] studied free hydraulic jump characteristics in the
bed roughness using Support Vector Regression (SVR), GEP, and ANN methods. The
results showed the GEP model has better accuracy than other methods. Roushangar and
Ghasempour [29] studied hydraulic jump characteristics in sudden expanding channels
using GEP. The results showed the GEP model has better accuracy and was compared with
existing empirical equations. Roushangar and Ghasempour [30] predicted the hydraulic
jump energy dissipation using an SVM with channel geometry and roughness boundary
conditions. The sensitivity analysis results stated that the Froude number had the most
important impact on the modeling. Roushangar and Homayounfar [31] investigated
the characteristics of hydraulic jumps on horizontal and sloping beds using the SVM
method. Results verify that the upstream Froude number is the most critical and influential
parameter for predicting the sequent depth in free and submerged jumps. At the same
time, Naseri and Othman [32] predicted the length of jump on the smooth beds using ANN.
Nasrabadi et al. [33] studied submerged hydraulic jump characteristics using machine
learning methods. According to the evaluation, the Developed Group Method of Data
Handling (DGMDH) model is more accurate than the Group Method Data Handling
(GMDH) model and other previous research predicting the submergence depth and jump
length relative energy dissipation.

Many studies have been carried out on hydraulic jumps over smooth beds. Nev-
ertheless, few studies have investigated the effect of bed roughness and corresponding
characteristics of free and submerged jumps numerically and predicted the outcomes from
the numerical models using novel soft computing techniques. Hence, the main objectives
of this study are the investigation of the effects of bed roughness parameters considering
various roughness arrangements on characteristics of the free and submerged jumps, such
as sequent depth and submerged depth, the length of jumps, and energy dissipation in
triangular bed roughness through different hydraulic conditions with the CFD technique
(CFD is a numerical methodology commonly used in engineering [34]), and verification
of the prediction of this numerical model with the help of soft computing methods (SVM,
GEP, and RF).

2. Materials and Methods

2.1. Dimensional Analysis

The hydraulic jumps characteristics on bed roughness are dependent on fluid proper-
ties, bed dimensions, and hydraulic state of flow. Therefore, subcritical of the free jump
depth (y2) and submerged of the submerged jump depth (y3) will be a function of the
following parameters:

y2 = f1(y1, u1, g, μ, ρ, T, I) (1)

y3 = f2(y1, y2, y4, u1, g, μ, ρ, T, I) (2)

Using the dimensional analysis, the following relationships are obtained:

y2

y1
= f3(Fr1 =

u1√
gy1

, Re1 =
y1 u1

ν
,

T
y1

,
T
I
) (3)

y3

y1
= f4(Fr1 =

u1√
gy1

, Re1 =
y1 u1

ν
, SF =

y4 − y2

y2
,

T
y1

,
T
I
) (4)

where y1 and y4 are referred to as supercritical of the free jump depth and tailwater of the
submerged jump depth; u1 is inlet velocity; and g, ρ, μ, SF, and υ are the gravity acceleration,
mass density of water, water dynamic viscosity, submergence factors, and water kinematic
viscosity, respectively. T and I are height and distance of roughness, and Fr1 and Re1 are
Froude and Reynolds numbers, respectively. The values of the Reynolds number (Re1)
were in the range of 39,884–59,825. For large values of the Reynolds number, viscous effects

197

Mathematics 2021, 9, 3135

can be neglected [35–37]. Based on the Ead and Rajaratnam [10] and Abbaspour et al. [22]
studies, T/y1 does not significantly affect the hydraulic jumps’ depth ratio y2/y1 and y3/y1.
Then, relationships (3) and (4) become:

y2

y1
= f5(Fr1,

T
I
) (5)

y3

y1
= f6(Fr1, SF =

y4 − y2

y2
,

T
I
) (6)

Using the Buckingham Π theorem, for the length of jump on the free and submerged
jumps (Ljf/y2 and Ljs/y2), the following relationships are obtained:

Lj f

y2
= f7(Fr1,

T
I
) (7)

Ljs

y2
= f8(Fr1, SF =

y4 − y2

y2
,

T
I
) (8)

Figure 1 shows a schematic view of free and submerged jumps on the triangular bed
roughness, along with critical hydraulic parameters of the present study. In this figure, d is
gate opening.

Figure 1. Definition sketch of the free and submerged hydraulic jumps on a triangular bed roughness
after Ghaderi et al. [26].

2.2. The FLOW-3D® Model

Numerical simulations were carried out using FLOW-3D, a well-known and estab-
lished computational fluid dynamics software. This software uses the finite volume
method in a Cartesian, staggered grid to solve the RANS equations (Reynolds Average
Navier−Stokes) that describe continuity and momentum and are expressed as:

∂

∂x
(uAx) +

∂

∂y
(vAy) +

∂

∂z
(wAz) = 0 (9)

∂Ui
∂t

+
1

VF

(
uj Aj

∂ui
∂xj

)
= −1

ρ

∂P
∂xi

+ Gi + fi (10)

where u, v, and w represent the components of velocity in the x, y, and z-direction; VF is the
volume fraction of fluid in each cell; Ax, Ay, and Az are the fractional areas open to flow

198

Mathematics 2021, 9, 3135

in the subscript’s direction; ρ is the fluid density; P is the hydrostatic pressure; Gi is the
gravitational acceleration in subscript direction; and fi is the Reynolds stress. In FLOW-3D,
free surfaces are modeled with the Volume of Fluid (VOF) technique and developed by
Hirt and Nichols [37]. The VOF transport equation is expressed by the following equation:

∂F
∂t

+
1

VF

[
∂(FAxu1)

∂x
+

∂(FAyu2)

∂y
+

∂(FAzu3)

∂z

]
= 0 (11)

Here, F denotes the fraction function. In particular, as already stated, if a cell is empty,
then F = 0, and if a cell is full, then F = 1 [38]. The free surface is determined at a position
related to intermediate amounts of F (i.e., the user may usually determine F = 0.5, or
another intermediate amount).

2.2.1. Turbulence Model

In this study, the RNG k-ε turbulence model is used to simulate the turbulence in the
water flow. The RNG k-ε model improves the standard k-ε model (Equations (12) and (13)),
reflecting small-scale effects by large-scale motion and modified viscosity terms, and can
handle the flow with a large degree of curvature well [39]. This model showed satisfactory
outcomes in previous studies on hydraulic engineering studies in complex geometry and
flow fields [26,27,40–46].

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj
(αkμe f f

∂k
∂xj

) + Gk + ρε (12)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj
(αεμe f f

∂ε

∂xj
) +

C∗
1εε

k
Gk − C2ερ

ε2

k
(13)

Here, k is called turbulent kinetic energy (TKE); ε is the turbulence dissipation rate; Gk
is the generation of turbulent kinetic energy caused by the average velocity gradient; Gb is
the generation of turbulent kinetic energy caused by buoyancy. Sk and Sε are source terms.
αk, αε and μeff, C2ε, C∗

1ε are model constants is effective viscosity.

2.2.2. Boundary Conditions

Corresponding to the physical conditions of the problem, four different boundary
conditions were considered. Hence, the inlet and the exit boundary of the first mesh block
needed to be set in the flow direction. The inlet boundary condition was set as discharge
flow rate (Q) with flow depth at the channel’s beginning. The boundary condition at
the downstream end of the domain was described by a pressure boundary condition (P)
corresponding to the tailwater depth in the flume. No-slip conditions were applied at the
wall boundaries and the bottom, and they were treated as non-penetrative boundaries.
Wall roughness has been neglected due to the slight roughness of the material of the
experimental facility, which was used for validation. An atmospheric boundary condition
is set to the upper boundary of the channel. This allows the flow to enter and leave the
domain as null von Neumann conditions are imposed to all variables except for pressure,
which is set to zero (i.e., atmospheric pressure). The symmetry (S) is used at the inner
boundaries as well. Figure 2 shows the computational domain of the present study and the
boundary conditions governing the simulation.

199

Mathematics 2021, 9, 3135

Figure 2. The boundary conditions governing the simulation, (a) smooth bed, (b) the triangular bed roughness.

2.2.3. Checking Stability and Convergence Criterion

To obtain the correct numerical or experimental model data values, it is necessary to
reach a stable state. A stability criterion similar to the Courant number is used to calculate
the allowed time-step size. The Courant Number tells how fast the fluid passes through
a cell. If the Courant Number is greater than 1, the velocity of the fluid is so high that it
passes through a cell in less than one time step. This leads to numerical instabilities: the
stability criteria leading to time steps between 0.001 s and 0.0016 s. The evolution in time
was used as a relaxation to the final steady state. During the simulations, the solutions’
steady-state convergence was checked by monitoring the flow discharge variations at the
inlet and outlet boundaries. Figure 3 shows that t = 16 s is appropriate to achieve a near
steady-state condition for Q = 0.03 m3/s and Q = 0.045 m3/s. The computational time for
the simulations was between 14–18 h using a personal computer with eight cores of a CPU
(Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).

200

Mathematics 2021, 9, 3135

Figure 3. CFD flow discharge time variation in the inlet and outlet boundaries, (a) Q = 0.03 m3/s,
(b) Q = 0.045 m3/s.

2.2.4. Numerical Domain

The research provided by Ahmed et al. [15] compares the numerical model and
laboratory test results. Although the length of the experimental flume was 24.5 m, the
present numerical study is set equal to 4.5 m to improve the performance in terms of
computational effort and reduction in the number of overall cells [26] (for more details, see
Ahmed et al. [15]). Table 1 shows the parameters of the numerical models.

Table 1. The parameters of the numerical models.

Bed Type
Q

(m3/s)
I

(cm)
T (cm) d (cm)

y1

(cm)
y4

(cm)
Fr1 SF

Smooth 0.03, 0.045 - - 5 1.62–3.83 9.64–32.10 1.7–9.3 0.26–0.50
Triangular
roughness 0.03, 0.045 4–8–12–16–20 4 5 1.62–3.84 6.82–30.08 1.7–9.3 0.21–0.44

The geometry of the models is built represented through an STL (stereolithography)
file. The numerical mesh is constructed to adopt two mesh blocks, a containing mesh block
for the entire spatial domain and a nested block with refined cells for the area of interest.
The hydraulic jump occurs (Figure 4). The best practice is to have fixed points aligning the
mesh boxes and for the aspect ratios to be no greater than 2.

201

Mathematics 2021, 9, 3135

Figure 4. Structured rectangular hexahedral mesh with two different mesh blocks, (a) smooth bed, (b) the triangular
bed roughness.

2.2.5. Mesh Size Sensitivity Analysis

According to the sensitivity mesh results and by comparing y3/y1 and y2/y1 ratios at
Fr1 = 4.5 for a submerged and free hydraulic jump, numerical solutions for five different
mesh sizes at distances close to the computational grid were used. Table 2 provides a
summary list of the results for three different mesh sizes. Figure 5 shows that the simulated
y3/y1 and y2/y1 ratios exhibit better agreement with the measured y3/y1 and y2/y1 for the
finer cell size of 0.60 cm. In addition, the variation of mean relative errors can be neglected
by decreasing the cell size from 0.65 cm to 0.60 cm. As a result, the selected mesh consists
of a containing block with 1.3 cm cells and a nested block with 0.65 cm cells. In the present
research, the same mesh was utilized for all models to reduce the effect of computational
mesh on simulation results. A distance of the first cell from the walls was selected to
prevent computations in the viscous sub-layer.

Table 2. Mesh size sensitivity analysis for simulation.

Test No.
Coarser

Cells
Size (cm)

Finer
Cells

Size (cm)

Total
Cells

(y3/y1)Num (y3/y1)Exp (y2/y1)Num (y2/y1)Exp

MAPE
1-y3/y1

(%)

MAPE-
y2/y1

(%)

T1 2.00 0.95 910,358 8.55 6.88 7.43 5.88 26.36 24.27
T2 1.70 0.85 1,285,482 7.85 6.88 6.91 5.88 17.51 14.09
T3 1.50 0.75 1,871,649 7.38 6.88 6.44 5.88 9.52 7.26
T4 1.30 0.65 2,908,596 7.17 6.88 6.20 5.88 5.44 4.21
T5 1.15 0.60 3,812,035 7.10 6.88 6.08 5.88 3.41 3.34

1 Mean Absolute Percentage Error = 100 × 1
n

n
∑
1

∣∣∣ XExp−XNum
XExp

∣∣∣. XExp: the experimental value of X; XNum: the numerical value of X; and n: the

total amount of data.

202

Mathematics 2021, 9, 3135

Figure 5. Variations of the relative error of y3/y1 and y2/y1 at Fr1 versus cell size.

2.3. Artificial Intelligence Methods
2.3.1. Support Vector Machine (SVM)

SVM algorithm is a data mining algorithm that uses the regression method to solve
classification and prediction problems. Like artificial neural networks, problem-solving
steps are divided into two phases of training and testing (i.e., validation). First, the system
is trained by a part of data, then the problem’s solution is evaluated with test data. The
SVM is based on linear data classification and tries to select a line with a high margin
of confidence in the linear division of data. The training data closer to the separator
page is called the support vector. The maximum distance between the two categories is
known as the optimal separator page [47]. Based on the limited information of the samples,
the SVM algorithm seeks the best option among the models with different complexities
and the ability to train these models [48]. The SVM algorithm consists of four different
kernels, which are presented in Table 3. The most widely used kernel functions in support
vector machine problems are Gaussian (RBF) and ring kernel (ERBF) functions [49]. These
functions are used when information on the data type and their nature is not available
in problem-solving [50]. In the present study, the RBF function has been used to predict
the parameters.

Here, Xi and Xj are two vectors in directions i and j, and a, c, and d are Kernel
parameters. According to Figure 6, first, the input data is entered into the statistical
software. Based on dimensional analysis, the dependent and independent parameters are
defined in the software environment by selecting the function (RBF) and entering the main
feature of the SVM model of this function (i.e., γ by trial-and-error method). Selecting the
appropriate values of γ makes the results accurate and close to reality.

203

Mathematics 2021, 9, 3135

Table 3. Types of kernel functions [50].

Function Expression

Linear Kernel K
(

xi, xj

)
=
(

xi, xj

)
Polynomial Kernel K

(
xi, xj

)
=
(
(xi, xj) + 1

)d

Radial Basis Kernel K
(

xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
Sigmoid Kernel K

(
xi, xj

)
= tanh

(
−a(xi, xj) + c

)

Figure 6. Schematic of the Support Vector Machine (SVM).

2.3.2. Gene Expression Programming (GEP)

The GEP method is a combined and developed Genetic Algorithm (GA) and Genetic
Programming (GP) developed by Ferreira [51]. This method combines linear and simple
chromosomes with constant length, similar to genetic algorithms, and branch structures
of different sizes and shapes, similar to decomposition trees in genetic programming.
The first step in the GEP is to form the initial population through solutions. Then, the
chromosomes are shown as a tree (ETs). The fitness function determines the degree of
compatibility of each member of the population of chromosomes. Next, the number of
genes and chromosomes must be determined to run the GEP model. One of the strengths
of the GEP is that the criterion for genetic diversity is very simple, so genetic operators
operate at chromosomal levels. Another strength of this method is the unique nature of
its multi-genes, which provides the basis for evaluating complex simulations [52]. The
GEP algorithm consists of five steps: determining the fitness function, selecting the set of
terminals and the set of functions to create the chromosomes, selecting the structure of the
chromosomes, selecting the link function, and selecting the genetic operators and their
rates [50,53]. In the present study, the GeneXproTools program was used to predict the
parameters. The main steps of the GEP method are shown schematically in Figure 7.

204

Mathematics 2021, 9, 3135

Figure 7. Schematic of the Gene Expression Programming (GEP).

2.3.3. Random Forest (RF)

RF algorithm is currently one of the learning algorithms. This is a cumulative learning
algorithm for regression-based problems and grouping based on decision tree develop-
ment [54]. An RF is a collection of unpruned trees in which each tree is generated by a
recursive segmentation algorithm [51]. In other words, an RF is a combination of several de-
cision trees in which several self-organizing samples of data participate. The self-organizing
method is the sampling method with placement. None of the selected data are deleted
from the input samples to generate the following subset. Therefore, some data may be used
more than once in educational branches. Others that have little effect on modeling should
never be used. For the selective self-organizing sample, a classification tree is grown using
the recursive segmentation algorithm. The analysis operation is based on a random sample
of the number of predictor variables in each node. The recursive decomposition algorithm
continues until the tree reaches its maximum size without pruning it [54]. The performance
of the RF algorithm is shown in Figure 8.

Figure 8. Performance of Random Forest (RF).

205

Mathematics 2021, 9, 3135

2.4. Evaluation Criteria

In the present study, the evaluation criteria of correlation coefficient (R2), Root Mean
Square Error (RMSE), Normalized Root Mean Square of Error (NRMSE), and Mean Abso-
lute Percentage Error (MAPE) were used to compare the results of prediction models of
hydraulic parameters of hydraulic jumps (Equations (14)–(17)).

R2 =

⎛⎝ n∑ XNumXPre − (∑ XNum)(∑ XPre)√
n(∑ X2

Num)− (∑ XNum)
2
√

n(∑ X2
Pre)− (∑ XPre)

2

⎞⎠2

(14)

RMSE =

√√√√ 1
n

n

∑
1
(XNum − XPre)

2

(15)

NRMSE(%) = 100 ×

√
1
n

n
∑
1
(XNum − XPre)

2

n
∑
1

XNum

(16)

MAPE(%) = 100 × 1
n

n

∑
1

∣∣∣∣XNum − XPre
XNum

∣∣∣∣ (17)

Here, the XPre and the XNum are the predicted and the numerical values. It should
be noted that the best model is the model in which RMSE is zero and R2 is one, and also
NRMSE and MAPE values are less than 10%.

3. Results

In the present study, the output results of the FLOW-3D® model were investigated
using SVM, GEP, and RF methods. For this purpose, a total of 620 output data of numerical
model were used to predict the parameters (y2/y1), (y3/y1), (y4/y1), (Lj/y∗2), and (ΔE/E1)
with artificial intelligence methods. To achieve accurate prediction and better results, the
training process was repeated several times. Finally, a pattern of 25% data for testing and
75% data for training was used for all methods.

3.1. Validity of the FLOW-3D® Model Results

Although the CFD technique has been on the rise for more than half a century, com-
puters have only allowed us to solve more complex 3D geometries in the recent decade.
Because of that, it is very important to validate CFD results [55]. Hence, a comparison
between numerical and experimental results on basic parameters including submerged
ratio (y3/y1), tailwater ratio (y4/y1), and relative jump length (Ljs/y1) of a submerged
hydraulic jump and the sequent depth ratio (y2/y1) of a free hydraulic jump on a smooth
bed have been used to validate the numerical model and are plotted in Figure 9.

Moreover, the essential flow variables are summarized in Table 4.
From the graphs, a substantial agreement can be observed between numerical and

experimental results by Ahmed et al. [15] as a function of Fr1. The overall mean value
of relative error is 4.1%, which confirms the ability of the numerical model to predict the
specifications of free and submerged jumps. In general, the CFD model is in excellent
agreement with the experimental data [56].

206

Mathematics 2021, 9, 3135

Figure 9. Numerical versus basic experimental parameters of submerged and free hydraulic jumps. (a) y3/y1, (b) y4/y1,
(c) Ljs/y1, and (d) y2/y1.

Table 4. Basic flow variables for the numerical and physical models after Ahmed et al. [15].

Models Bed Q (m3/s) d (cm) y1 (cm) u1 (m/s) Fr1

Numerical
and physical Smooth 0.045 5 1.62–3.83 1.04–3.70 1.7–9.3

3.2. Sequent Depth Ratio in the Free Jump (y2/y1)

The y2/y1, which somehow represents the height of the jump, is directly related to
the changes in the Fr1 and the distance of the roughness element. By increasing these
parameters, the value y2/y1 is increased. According to the results of the FLOW-3D® model,
the most significant decrease y2/y1 with increasing Froude number compared to the smooth
bed is at T/I = 0.50 with 17.83% as mean. The results showed that the y2/y1 for the jump
on the bed roughness was smaller than that of the corresponding jumps on a smooth
bed [26,27]. Table 5 summarizes the results of estimating the y2/y1. Comparing the results
of three models, the SVM model with the lowest RMSE = 0.2075 and the highest R2 = 0.9966
for the training phase and RMSE = 0.2990 and R2 = 0.9960 for the testing phase in predicting
the y2/y1 as a model the best was selected.

Figures 10 and 11 compare the results of the FLOW-3D® model and the SVM model to
estimate the y2/y1 in the training and testing phase. It can be seen that the SVM model
has a good performance in predicting this parameter, and the output results of the SVM
model are in good agreement with the FLOW-3D® values and were recognized as the best
model. It is also observed that during predicting y2/y1 in the testing phase, the SVM model
estimates higher values at maximum points than the FLOW-3D® model.

207

Mathematics 2021, 9, 3135

Table 5. Prediction results for the sequent depth ratio (y2/y1).

Training Testing

Model R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9953 0.2356 4.03 5.35 0.9933 0.3335 5.56 8.83
RF 0.9682 0.5924 10.97 11.91 0.9275 1.0811 14.73 11.26

SVM 0.9966 0.2075 3.5481 5.07 0.9960 0.2990 4.98 8.46

Figure 10. FLOW-3D® model versus SVM model predicted for the y2/y1.

Figure 11. Comparison of FLOW-3D® model and SVM model for estimating the y2/y1.

In general, based on the numerical data of the present study, the equation provided
for the y2/y1 in the free jump with a correlation coefficient equal to 0.997 is expressed as:

y2

y1
= 1.338Fr1 − 2.458(

T
I
) + 0.0528 (18)

3.3. Submerged Depth Ratio in Submerged Jump (y3/y1)

Based on dimensional analysis, the submerged depth ratio (y3/y1) and the tailwater
ratio (y4/y1) depend on the Fr1, T/I, and SF. According to the results of the FLOW-3D®,
the most significant decrease y3/y1 and y4/y1 with increasing Froude number compared
to the smooth bed are at T/I = 0.50 with 20.88% and 23.34% as mean, respectively [26,27].
Comparing the results of the three models presented in Table 6 shows that among the three
models, for the y3/y1, the SVM model with values of RMSE = 0.3391 and R2 = 0.9964 for the
testing phase is close to the FLOW-3D® numerical model. The SVM model also performed

208

Mathematics 2021, 9, 3135

better in predicting y4/y1 and had very little error. After the SVM model, the GEP model
also provided acceptable results in estimating (y3/y1) and (y4/y1).

Table 6. Prediction results for the submerged depth ratio (y3/y1) and the tailwater depth ratio (y4/y1).

Training Testing

y3/y1 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9903 0.4016 5.96 8.63 0.9895 0.5379 7.61 9.92
RF 0.9815 0.5679 8.43 11.97 0.9750 0.7804 11.04 23.03

SVM 0.9978 0.2024 3.01 2.67 0.9964 0.3391 4.80 4.93
y4/y1 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9972 0.2811 3.41 3.34 0.9963 0.3923 4.54 6.84
RF 0.9901 0.5157 6.26 9.68 0.9899 0.6462 7.48 10.04

SVM 0.9991 0.1639 1.99 1.63 0.9988 0.2806 3.25 5.08

Figures 12 and 13 present the results of comparing the FLOW-3D® model and predict-
ing the SVM, GEP, and RF models in the testing phase (y3/y1) and (y4/y1). According to
the graphs, it is clear that the SVM model has a better prediction than the other two models.
At the maximum and minimum points, the (y3/y1) and (y4/y1), always accompanied
by turbulence in the water surface, it can be seen that the SVM model has the highest
efficiency and the lowest error over other models. The predicted values of these parameters
by the SVM model have good adaptation. They overlap with the output values of the
numerical model.

Figure 12. Comparison of the numerical results and the predicted models of (y3/y1) for the testing phase.

209

Mathematics 2021, 9, 3135

Figure 13. Comparison of the numerical results and the predicted models of (y4/y1) for the testing phase.

In general, based on the results drawn from this study, the following equation for the
y3/y1 and y4/y1 in the submerged jump with a correlation coefficient equal to 0.993 and
0.989, respectively, on the triangular bed roughness was obtained:

y3

y1
= 1.538Fr1 + 3.263SF − 3.219(

T
I
)− 0.915 (19)

y4

y1
= 1.909Fr1 + 3.015SF − 3.961(

T
I
)− 0.977 (20)

3.4. The Length Ratio of Jumps (Lj/y∗2)

In the present study, the subcritical depth of the classical hydraulic jump (y∗2) can be
obtained by the Bélanger equation, as explained by French [57]:

y∗2 =
y1

2

[√
(1 + 8Fr2

1)− 1
]

(21)

According to the results of the FLOW-3D® model, the (Lj/y∗2) for the bed roughness
is less than the smooth bed, and for the submerged jump it is larger than the free jump.
For T/I = 0.5, the ratio length of free and submerged jumps decreases by about 25.52%
and 21.65% as a mean, respectively [27]. Estimating the jump length reduces the volume
of construction operations and ultimately reduces the project’s overall cost. Therefore,
an accurate estimation of the hydraulic jump length is essential to design the length of
the stilling basin based on this parameter. The results of predicting (Lj/y∗2) along with
the evaluation criteria are presented in Table 7. According to the results, the SVM model
has good statistical criteria among other models and has high accuracy in predicting the
relative length of free and submerged hydraulic jumps.

210

Mathematics 2021, 9, 3135

Table 7. Prediction results for the length of the jumps (Lj/y∗2).

Training Testing

Lj f /y∗2 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.829 0.234 4.39 3.66 0.766 0.249 4.54 4.54
RF 0.752 0.278 5.08 3.92 0.741 0.319 6.32 5.21

SVM 0.919 0.169 3.16 2.74 0.881 0.174 3.19 2.90
Ljs/y∗2 R2 RMSE NRMSE (%) MAPE% R2 RMSE NRMSE (%) MAPE (%)
GEP 0.878 0.273 3.88 3.17 0.867 0.336 4.71 4.33
RF 0.787 0.316 4.37 3.51 0.764 0.425 6.50 5.46

SVM 0.961 0.154 2.19 1.93 0.940 0.212 2.97 2.37

Graphs of changes in R2 and RMSE versus different gammas are presented for the best
model of the Lj f /y∗2 and the Ljs/y∗2 in the testing phase (Figure 14). In the support vector
machine, selecting the appropriate gamma is one of the main parameters in determining
the best model, which has been done by trial and error. Finally, the best result for predicting
the Lj f /y∗2 in the optimal gamma is 10 (γ = 10), and for Ljs/y∗2 in the optimal gamma it is
0.60 (γ = 0.60).

Figure 14. Variations R2 and RMSE versus gamma for the best SVM model in jump length estimation.

Figures 15 and 16 show the results of the FLOW-3D® and the predicted models
of Lj f /y∗2 and the Ljs/y∗2 data for the best SVM model in the training and testing phases.
According to Figure 15, it can be seen that when the values of the Lj f /y∗2 reach the maximum
and minimum points, the prediction accuracy of the SVM model decreases. In other words,
when the Lj f /y∗2 reaches the maximum and minimum jump values, the prediction error of
the SVM model increases. Moreover, as shown in Figure 16 for the Ljs/y∗2, it can be seen
that the SVM model always has values close to the FLOW-3D® model and has a better
performance compared to the Lj f /y∗2. On the other hand, most SVM model errors in both
parameters occurred in the initial range of testing data. In the middle to the end of the data,
the prediction error decreased.

The following equation shows the relationship between the Lj/y∗2 with a correlation
coefficient equal to 0.724 and 0.944, respectively, for the free and submerged jumps:

Lj f

y∗2
= 0.065Fr1 − 3.757(

T
I
) + 6.103 (22)

Ljs

y∗2
= 0.037Fr1 + 5.568SF − 2.556(

T
I
) + 5.579 (23)

211

Mathematics 2021, 9, 3135

Figure 15. Comparison of FLOW-3D® and SVM model values to estimate the Lj f /y∗2.

Figure 16. Comparison of FLOW-3D® and SVM model values to estimate the Ljs/y∗2.

3.5. The Energy Dissipation (ΔE/E1)

The energy dissipation of hydraulic jumps based on free and submerged is calculated
as follows by Pourabdollah et al. [17]:

(
ΔE
E1

)
f
= (

E1 − E2

E1
)

f
= (

(y1 + V2
1 /2g)− (y2 + V2

2 /2g)
y1 + V2

1 /2g
)

f
(24)

(
ΔE
E1

)
s
= (

E3 − E4

E3
)

s
= (

(y3 + V2
1 /2g)− (y4 + V2

4 /2g)
y3 + V2

1 /2g
)

s
(25)

E1, E2, E3, and E4 are specific energies upstream and downstream of the free and
submerged jumps, respectively (see Figure 1). According to the results of the FLOW-3D®,
the ΔE/E1 increases with increasing the Fr1. The highest ΔE/E1 occurs with T/I = 0.50 in
the free and submerged jumps compared to other distances between the roughnesses of
the corresponding T/I ratios [26,27]. Determining the amount of ΔE/E1 that occurs due
to hydraulic jumps will lead to the stilling basin’s more efficient and economical design.
The results of predicting energy dissipation due to free jump (ΔE/E1)f and submerged
jump (ΔE/E1)S are presented in Table 8. The results showed that for energy dissipation
for (ΔE/E1)f, the SVM model with R2 = 0.9848 and RMSE = 0.0313, and for the testing
phase (ΔE/E1)S, R2 = 0.9843 and RMSE = 0.0238, these were recognized as the best models.
Therefore, the best prediction with the least possible error among the three models is
obtained by the SVM model.

212

Mathematics 2021, 9, 3135

Table 8. Prediction results for the energy dissipation (ΔE/E1).

Training Testing

(ΔE/E1)f R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.980 0.029 6.76 6.59 0.977 0.040 10.19 16.04
RF 0.855 0.069 16.5 25.61 0.801 0.072 16.32 21.22

SVM 0.985 0.027 6.37 6.58 0.984 0.031 7.80 9.04
(ΔE/E1)S R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)

GEP 0.980 0.025 7.22 8.85 0.969 0.033 10.07 11.63
RF 0.912 0.051 12.94 13.83 0.916 0.047 13.53 13.43

SVM 0.985 0.022 6.22 6.43 0.984 0.023 7.25 9.05

Two radar graphs of the R2 and RMSE of energy dissipation due to free and submerged
jumps are presented for the testing phase (Figure 17). Radar graphs can show the accuracy
of predictions of different models compared to each other. It can be seen that the SVM
model has provided acceptable performance and has a much better prediction than the
GEP and RF models. Furthermore, because RMSE values are small and their changes are
not visible in the graph, by multiplying the RMSE by 10, the range of changes became
broader and more precise.

Figure 17. Radar graphs of R2 and RMSE for energy dissipation due to free and submerged jumps in the testing phase.

The distribution graph between numerical and predicted values is plotted for the best
energy dissipation model due to free and submerged jumps (Figures 18 and 19). Changes in
energy dissipation for jumps during the testing and training phase indicate good agreement
and overlap between the values of the numerical model and the predicted. According to
the figure, it can be seen that the data of the numerical model had less dispersion with
the predicted data. In other words, the output data are very well matched to each other.
Additionally, during the model simulation process, the network training did not fail, and
the training values were always higher than the testing.

The following equations show the relationship between the ΔE/E1 and Fr1 with a cor-
relation coefficient equal to 0.963 and 0.946, respectively, for the free and submerged jumps:

(
ΔE
E1

)
f
= −0.009Fr2

1 + 0.184Fr1 − 0.177 (26)

(
ΔE
E1

)
s
= −0.007Fr2

1 + 0.146Fr1 − 0.143 (27)

213

Mathematics 2021, 9, 3135

Figure 18. FLOW-3D® model versus SVM predicted for the free jump.

Figure 19. FLOW-3D® model versus SVM predicted for the submerged jump.

3.6. Sensitivity Analysis

Sensitivity analysis is the best solution to achieve the effectiveness of the input vari-
ables of a statistical model in a study. Sensitivity analysis is used when sufficient inputs
are changed in an organized statistical model to observe the effects of the presence or
absence of these variables in the predictive output model. The present study omitted the
one-by-one parameters to predict the submerged depth ratio (y3/y1). The parameter that
had the most impact was identified, and its results are presented in Table 9.

Table 9. Sensitivity analysis results for the submerged depth ratio (y3/y1).

Training Testing

Input
parameter

Omitted
parameter R2 RMSE NRME

(%)
MAPE

(%) R2 RMSE NRMSE
(%)

MAPE
(%)

Fr1, SF, T/I - 0.999 0.163 1.99 1.63 0.998 0.280 3.25 5.08
SF, T/I Fr1 0.787 1.639 24.33 34.63 0.731 2.417 34.21 36.69
Fr1, T/I SF 0.986 0.479 7.12 10.83 0.984 0.664 9.41 15.9
Fr1, SF T/I 0.989 0.415 6.17 9.85 0.988 0.548 7.76 14.66

It can be seen that the best result for predicting the effective parameter of (y3/y1)
is when all three parameters of Fr1, T/I, and SF are involved in the prediction. The Fr1
has the greatest effect on predicting the (y3/y1) based on sensitivity analysis. By omitting
this parameter, the prediction accuracy is significantly reduced. The SF and T/I are also
involved in the study of (y3/y1), but the impact of each is less than the Fr1.

214

Mathematics 2021, 9, 3135

4. Conclusions

This paper presented and discussed the characteristics of free and submerged hy-
draulic jumps on the triangular bed roughness in various roughness arrangements of the
corresponding T/I ratios with the CFD techniques and compared the prediction of this
numerical model with the help of artificial intelligence methods (SVM, GEP, and RF). To
simulate the free flow surface, the Volume of Fluid (VOF) method, and the turbulence,
the RNG k-ε model in FLOW-3D® software was used. Key findings of the comparative
analysis are given below:

1. By comparing the results of the two experiments (physical and numerical), the FLOW-
3D® software can accurately predict the characteristics of free and submerged hy-
draulic jumps. The overall mean value of relative error between numerical results and
experimental data is 4.1%, which confirms the numerical model’s ability to predict
the characteristics of the free and submerged jumps.

2. The SVM model with the RMSE = 0.2075 and R2 = 0.9966 for the training phase and
RMSE = 0.2990 and R2 = 0.9960 for the testing phase in predicting the y2/y1 is the best
model and close to the FLOW-3D® result.

3. For the y3/y1, the SVM model with values of RMSE = 0.3391 and R2 = 0.9964 for the
testing phase is close to the FLOW-3D® model. The SVM model also performed better
in predicting y4/y1 and had very little error. After the SVM model, the GEP model
also provided acceptable results in estimating (y3/y1) and (y4/y1).

4. The SVM model demonstrated better statistical criteria among other models (i.e., GEP
and RF) and has high accuracy in predicting the relative length of free and submerged
hydraulic jumps. Furthermore, the best result for predicting the Lj f /y∗2 in the optimal
gamma is 10 (γ = 10) and the Ljs/y∗2 in the optimal gamma is 0.60 (γ = 0.60).

5. For energy dissipation due to (ΔE/E1)f and (ΔE/E1)S, for the testing phase, SVM
model with R2 = 0.9848 and RMSE = 0.031 as well as R2 = 0.9843 and RMSE = 0.0238
were recognized as the best models, respectively.

6. The Fr1 has the greatest effect on predicting the (y3/y1) based on sensitivity analysis.
By omitting this parameter, the prediction accuracy is significantly reduced. The SF
and T/I are also involved in the (y3/y1), but the impact of each is less than the Fr1.

7. Relationships with good correlation coefficients for the mentioned parameters in free
and submerged hydraulic jumps were presented based on numerical results.

Finally, the methodology presented in this study and the solution-oriented result
contributes to helping hydraulic engineers to design and construct cost-effective spillways,
stilling basins, and other hydraulic structures that experience hydraulic jumps. Indeed,
the accurate estimation of the hydraulic jump length, especially in high head spillways,
reduces construction operations’ volume and ultimately reduces the project’s overall cost
of the stilling basin built to dissipate the hydraulic jumps.

Author Contributions: Conceptualization, M.D., A.G., M.B., M.A. and A.K.; methodology, M.D.,
A.G., M.B., M.A. and A.K.; software, M.D., A.G., M.B., M.A. and A.K.; validation, M.D., A.G., M.B.,
M.A. and A.K.; formal analysis, M.D., A.G., M.B., M.A. and A.K.; investigation, M.D., A.G., M.B.,
M.A. and A.K.; resources, M.D., A.G., M.B., M.A. and A.K.; data curation, M.D., A.G., M.B., M.A.
and A.K.; writing—original draft preparation, M.D., A.G., M.B., M.A. and A.K.; writing—review and
editing, M.D., A.G., M.B., M.A. and A.K.; visualization, M.D., A.G., M.B., M.A. and A.K.; supervision,
M.D., A.G., M.B., M.A. and A.K.; project administration, M.D., A.G., M.B., M.A. and A.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

215

Mathematics 2021, 9, 3135

Acknowledgments: Alban Kuriqi acknowledge the support of the Portuguese Foundation for Science
and Technology (FCT) through the project PTDC/CTA-OHR/30561/2017 (WinTherface).

Conflicts of Interest: The authors declare no conflict of interest.

Notation

The following symbols are used in this paper:
Q Discharge (L3T−1)
d Gate opening (L)
E1, E2 Specific energy at the beginning and after the free jump (L)
E3, E4 Specific energy at the beginning and after the submerged jump (L)
ΔE Energy dissipation (L)
y1 Inlet depth of the hydraulic jump (L)
y2 Sequent depth of the free jump (L)
y3 Submerged depth (L)
y4 Tailwater depth (L)
Ljf Length of the free jump (L)
Ljs Length of the submerged jump (L)
u1 Inlet horizontal velocity (LT−1)
g Gravitational acceleration (LT−2)
I Distance of triangular roughness (L)
T Roughness height (L)
Fr1 Inlet Froude number (-)
Re1 Inlet Reynolds number (-)
SF Submergence factor (-)
t Time (T)
p Pressure (ML−1T−2)
F Fraction function
ρ Mass density of water (ML−3)
ν Kinematic viscosity of water (LT−1)
μ Dynamic viscosity of fluid (ML−1T−1)
k Turbulence kinetic energy (L2T−3)
ε Turbulence dissipation rate (L2T−3)
μeff Effective viscosity (ML−1T−1)
Gk The generation of turbulent kinetic energy caused by the average velocity gradient
Gb The generation of turbulent kinetic energy caused by buoyancy
Sk, Sε Source terms
SVM Support Vector Machine
GEP Gene Expression Programming
RF Random Forest
R2 Correlation coefficient
RMSE Root Mean Square Error
NRMSE Normalized Root Mean Square of Error
MAPE Mean Absolute Percentage Error

References

1. Ebrahimi, S.; Salmasi, F.; Abbaspour, A. Numerical study of hydraulic jump on rough beds stilling basins. J. Civ. Eng. Urban.
2013, 3, 19–24.

2. Chanson, H. Hydraulics of Open Channel Flow; Elsevier: Amsterdam, The Netherlands, 2004.
3. McCorquodale, J.A.; Khalifa, A.M. Submerged radial hydraulic jump. J. Hydraul. Div. 1980, 106, 355–367. [CrossRef]
4. Smith, C.D. The submerged hydraulic jump in an abrupt lateral expansion. J. Hydraul. Res. 1989, 27, 257–266. [CrossRef]
5. Graber, S.D.; Ohtsu, I.; Yasuda, Y.; Ishikawa, M. Submerged Hydraulic Jumps below Abrupt Expansions. J. Hydraul. Eng. 2001,

127, 84–85. [CrossRef]
6. Vallé, B.L.; Pasternack, G.B. Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel.

Geomorphology 2006, 82, 146–159. [CrossRef]
7. Dey, S.; Sarkar, A. Characteristics of turbulent flow in submerged jumps on rough beds. J. Eng. Mech. 2008, 134, 49–59. [CrossRef]
8. Tokyay, N.; Evcimen, T.; Şimşek, Ç. Forced hydraulic jump on non-protruding rough beds. Can. J. Civ. Eng. 2011, 38, 1136–1144.

[CrossRef]

216

Mathematics 2021, 9, 3135

9. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump
characteristics. Can. J. Civ. Eng. 2013, 40, 841–847. [CrossRef]

10. Ead, S.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002, 128, 656–663. [CrossRef]
11. Carollo, F.G.; Ferro, V.; Pampalone, V. Hydraulic jumps on rough beds. J. Hydraul. Eng. 2007, 133, 989–999. [CrossRef]
12. Pagliara, S.; Lotti, I.; Palermo, M. Hydraulic jump on rough bed of stream rehabilitation structures. J. Hydro-Environ. Res. 2008, 2,

29–38. [CrossRef]
13. Abbaspour, A.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic

jump characteristics. J. Hydro-Environ. Res. 2009, 3, 109–117. [CrossRef]
14. Chanson, H. Momentum considerations in hydraulic jumps and bores. J. Irrig. Drain. Eng. 2012, 138, 382–385. [CrossRef]
15. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of

submerged hydraulic jump. Ain Shams Eng. J. 2014, 5, 1033–1042. [CrossRef]
16. Palermo, M.; Pagliara, S. Semi-theoretical approach for energy dissipation estimation at hydraulic jumps in rough sloped channels.

J. Hydraul. Res. 2018, 56, 786–795. [CrossRef]
17. Pourabdollah, N.; Heidarpour, M.; Koupai, J.A. Characteristics of free and submerged hydraulic jumps in different stilling basins.

Water Manag. 2020, 173, 121–131. [CrossRef]
18. Habibzadeh, A.; Rajaratnam, N.; Loewen, M. Characteristics of the flow field downstream of free and submerged hydraulic

jumps. Water Manag. 2019, 172, 180–194. [CrossRef]
19. Gharangik, A.M.; Chaudhry, M.H. Numerical simulation of hydraulic jump. J. Hydraul. Eng. 1991, 117, 1195–1211. [CrossRef]
20. Ma, F.; Hou, Y.; Prinos, P. Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 2001, 39, 493–503. [CrossRef]
21. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free

Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 2020, 8, 323. [CrossRef]
22. Abbaspour, A.; Farsadizadeh, D.; Dalir, A.H.; Sadraddini, A.A. Numerical study of hydraulic jumps on corrugated beds using

turbulence models. Turk. J. Eng. Environ. Sci. 2009, 33, 61–72.
23. Chern, M.-J.; Syamsuri, S. Effect of corrugated bed on hydraulic jump characteristic using SPH method. J. Hydraul. Eng. 2013, 139,

221–232. [CrossRef]
24. Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance assessment of OpenFOAM and

FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335.
[CrossRef]

25. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civ. Eng. 2020, 64,
396–407. [CrossRef]

26. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over
different macroroughnesses. J. Hydroinform. 2020, 22, 1554–1572. [CrossRef]

27. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C. Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump
over Triangular Macroroughnesses. Water 2021, 13, 674. [CrossRef]

28. Karbasi, M.; Azamathulla, H.M. GEP to predict characteristics of a hydraulic jump over a rough bed. KSCE J. Civ. Eng. 2016, 20,
3006–3011. [CrossRef]

29. Roushangar, K.; Ghasempour, R. Explicit prediction of expanding channels hydraulic jump characteristics using gene expression
programming approach. Hydrol. Res. 2017, 49, 815–830. [CrossRef]

30. Roushangar, K.; Ghasempour, R. Evaluation of the impact of channel geometry and rough elements arrangement in hydraulic
jump energy dissipation via SVM. J. Hydroinform. 2018, 21, 92–103. [CrossRef]

31. Roushangar, K.; Homayounfar, F. Prediction Characteristics of Free and Submerged Hydraulic Jumps on Horizontal and Sloping
Beds using SVM Method. KSCE J. Civ. Eng. 2019, 23, 4696–4709. [CrossRef]

32. Naseri, M.; Othman, F. Determination of the length of hydraulic jumps using artificial neural networks. Adv. Eng. Softw. 2012, 48,
27–31. [CrossRef]

33. Nasrabadi, M.; Mehri, Y.; Ghassemi, A.; Omid, M.H. Predicting submerged hydraulic jump characteristics using machine learning
methods. Water Supply 2021. [CrossRef]

34. Huš, M.; Grilc, M.; Pavlišič, A.; Likozar, B.; Hellman, A. Multiscale modelling from quantum level to reactor scale: An example of
ethylene epoxidation on silver catalysts. Catal. Today 2019, 338, 128–140. [CrossRef]

35. Hager, W.H.; Bremen, R. Classical hydraulic jump: Sequent depths. J. Hydraul. Res. 1989, 27, 565–585. [CrossRef]
36. Fürst, J.; Halada, T.; Sedlář, M.; Krátký, T.; Procházka, P.; Komárek, M. Numerical Analysis of Flow Phenomena in Discharge

Object with Siphon Using Lattice Boltzmann Method and CFD. Mathematics 2021, 9, 1734. [CrossRef]
37. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225.

[CrossRef]
38. Nazari-Sharabian, M.; Nazari-Sharabian, A.; Karakouzian, M.; Karami, M. Sacrificial piles as scour countermeasures in river

bridges a numerical study using flow-3D. Civ. Eng. J. 2020, 6, 1091–1103. [CrossRef]
39. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth

Side Weir. Water 2021, 13, 14. [CrossRef]
40. Chiu, C.-L.; Fan, C.-M.; Tsung, S.-C. Numerical Modeling for Periodic Oscillation of Free Overfall in a Vertical Drop Pool. J.

Hydraul. Eng. 2017, 143, 04016077. [CrossRef]

217

Mathematics 2021, 9, 3135

41. Wang, Y.; Wang, W.; Hu, X.; Liu, F. Experimental and numerical research on trapezoidal sharp-crested side weirs. Flow Meas.
Instrum. 2018, 64, 83–89. [CrossRef]

42. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy dissipation and hydraulics of flow over trapezoidal–triangular
labyrinth weirs. Water 2020, 12, 1992. [CrossRef]

43. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā
2019, 44, 216. [CrossRef]

44. Ghaderi, A.; Dasineh, M.; Abbasi, S.; Abraham, J. Investigation of trapezoidal sharp-crested side weir discharge coefficients under
subcritical flow regimes using CFD. Appl. Water Sci. 2019, 10, 31. [CrossRef]

45. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of Trapezoidal Labyrinth Shaped stepped spillways. Flow
Meas. Instrum. 2020, 72, 101711. [CrossRef]

46. Daneshfaraz, R.; Aminvash, E.; Ghaderi, A.; Abraham, J.; Bagherzadeh, M. SVM Performance for Predicting the Effect of
Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop. Appl. Sci. 2021, 11, 4238. [CrossRef]

47. Daneshfaraz, R.; Bagherzadeh, M.; Esmaeeli, R.; Norouzi, R.; Abraham, J. Study of the performance of support vector machine
for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 2021, 21, 217–231.
[CrossRef]

48. Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.W.; Lakshmi, V. Bringing statistical learning machines together for hydro-climatological
predictions—Case study for Sacramento San joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [CrossRef]

49. Roushangar, K.; Koosheh, A. Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. J. Hydrol. 2015,
527, 1142–1152. [CrossRef]

50. Roushangar, K.; Alami, M.T.; Shiri, J.; Asl, M.M. Determining discharge coefficient of labyrinth and arced labyrinth weirs using
support vector machine. Hydrol. Res. 2017, 49, 924–938. [CrossRef]

51. Ferreira, C. Gene Expression Programming in Problem Solving. In Soft Computing and Industry: Recent Applications; Roy, R.,
Köppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F., Eds.; Springer: London, UK, 2002; pp. 635–653.

52. Borrelli, A.; De Falco, I.; Della Cioppa, A.; Nicodemi, M.; Trautteur, G. Performance of genetic programming to extract the trend
in noisy data series. Phys. A Stat. Mech. Its Appl. 2006, 370, 104–108. [CrossRef]

53. Majedi-Asl, M.; Daneshfaraz, R.; Fuladipanah, M.; Abraham, J.; Bagherzadeh, M. Simulation of bridge pier scour depth base on
geometric characteristics and field data using support vector machine algorithm. J. Appl. Res. Water Wastewater 2020, 7, 137–143.

54. Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random forests for global sensitivity analysis: A selective review. Reliab. Eng.
Syst. Saf. 2021, 206, 107312. [CrossRef]

55. Pavlišič, A.; Pohar, A.; Likozar, B. Comparison of computational fluid dynamics (CFD) and pressure drop correlations in laminar
flow regime for packed bed reactors and columns. Powder Technol. 2018, 328, 130–139. [CrossRef]

56. Pavlišič, A.; Huš, M.; Prašnikar, A.; Likozar, B. Multiscale modelling of CO2 reduction to methanol over industrial Cu/ZnO/Al2O3
heterogeneous catalyst: Linking ab initio surface reaction kinetics with reactor fluid dynamics. J. Clean. Prod. 2020, 275, 122958.
[CrossRef]

57. French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985.

218

Citation: Abu Khurma, R.; Aljarah, I.;

Sharieh, A.; Abd Elaziz, M.;

Damaševičius, R.; Krilavičius, T. A

Review of the Modification Strategies

of the Nature Inspired Algorithms for

Feature Selection Problem.

Mathematics 2022, 10, 464. https://

doi.org/10.3390/math10030464

Academic Editors: Freddy Gabbay

and Ripon Kumar Chakrabortty

Received: 2 December 2021

Accepted: 21 January 2022

Published: 31 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Review of the Modification Strategies of the Nature Inspired
Algorithms for Feature Selection Problem

Ruba Abu Khurma 1, Ibrahim Aljarah 1,*, Ahmad Sharieh 1, Mohamed Abd Elaziz 2,3,4, Robertas Damaševičius 5,* and

Tomas Krilavičius 5

1 King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan;
ruba_abukhurma@yahoo.jo (R.A.K.); sharieh@ju.edu.jo (A.S.)

2 Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt;
abd_el_aziz_m@yahoo.com

3 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
4 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
5 Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania;

tomas.krilavicius@vdu.lt
* Correspondence: i.aljarah@ju.edu.jo (I.A.); robertas.damasevicius@vdu.lt (R.D.)

Abstract: This survey is an effort to provide a research repository and a useful reference for researchers
to guide them when planning to develop new Nature-inspired Algorithms tailored to solve Feature
Selection problems (NIAs-FS). We identified and performed a thorough literature review in three
main streams of research lines: Feature selection problem, optimization algorithms, particularly,
meta-heuristic algorithms, and modifications applied to NIAs to tackle the FS problem. We provide
a detailed overview of 156 different articles about NIAs modifications for tackling FS. We support
our discussions by analytical views, visualized statistics, applied examples, open-source software
systems, and discuss open issues related to FS and NIAs. Finally, the survey summarizes the main
foundations of NIAs-FS with approximately 34 different operators investigated. The most popular
operator is chaotic maps. Hybridization is the most widely used modification technique. There are
three types of hybridization: Integrating NIA with another NIA, integrating NIA with a classifier,
and integrating NIA with a classifier. The most widely used hybridization is the one that integrates a
classifier with the NIA. Microarray and medical applications are the dominated applications where
most of the NIA-FS are modified and used. Despite the popularity of the NIAs-FS, there are still
many areas that need further investigation.

Keywords: feature selection; evolutionary algorithms; nature inspired algorithms; meta-heuristic
optimization; computational intelligence; soft computing

1. Introduction

As data accumulate rapidly in databases and data warehouses, a dimensionality
problem becomes the main challenge for machine learning tasks (e.g., classification or
clustering) [1]. Many negative effects may result from scaling up the dimensionality of
a data set. These include the existence of irrelevant and redundant features that may
adversely affect the learning algorithm or cause data over-fit [2]. Thus, the development
of effective data mining techniques becomes an urgent necessity in various fields such
as medicine [3], bioinformatics [4], text mining [5], image processing [6], design of smart
infrastructures and smart homes [7], financial estimation [8,9], coastal engineering [10], and
sustainability [11]. Their significance depends on their ability to turn huge amounts of data
into an acceptable form. This will simplify knowledge discovery and make huge data sets
more understandable, analyzable, and predictable.

Feature Selection (FS) is a pre-processing data mining technique for dimensionality
reduction [12]. In recent years, research in FS has been rapidly developed in line with the

Mathematics 2022, 10, 464. https://doi.org/10.3390/math10030464 https://www.mdpi.com/journal/mathematics

219

Mathematics 2022, 10, 464

era of big data and huge data sets. This subject has attracted the attention of researchers
who have become more interested in developing novel FS techniques and improving
current technologies [13]. FS manages the dimensionality problem by finding the most
representative feature subset. The essence of FS is to choose features that are highly
correlated to the class concept (relevant features) and weakly correlated with each other
(complementary features/not redundant) [14]. Removing irrelevant and redundant features
from a data set will cause improvements in different directions. For the modeling process,
it will promote the generalization process. This will improve the quality of the generated
model, so it becomes less complicated and more understandable. As a result, the inductive
learner will be more efficient. FS is categorized based on the evaluation strategy into filters
and wrappers [15]. The main difference between them depends on integrating a learning
algorithm in the evaluation stage. Wrappers use learning algorithms to evaluate the selected
feature subset. Hence, wrappers are more accurate and more expensive. In contrast, filters
do not rely on learning algorithms, but use some data proprieties for evaluation. Examples
of filters include univariate and multivariate filters. The main difference between them is
that univariate filters rank a single feature to evaluate its performance, while multivariate
filters evaluate the entire feature subset, which includes a set of feature as a combination.
The generation of a feature subset in multivariate filters depends on the search strategy
and the staring point of generation such as: Forward selection, backward elimination,
bidirectional selection, and heuristic feature subset selection. Forward selection starts with
an empty feature subset and then adds features, backward selection starts with the whole
feature subset and eliminates one or more features from the set, and bidirectional search
starts from both sides from an empty feature subset and from the whole feature subset at
the same time [16], F-statistic [17], and information gain [18].

FS is not only a variable shrinkage process, and the target is not just to perform
arbitrary cardinality reduction for a data set. FS is a multi-objective optimization problem
which searches for the (near) optimal subset of features in terms of certain evaluation
criteria. The main target of the FS problem is to find trade-offs between various conflicting
objectives [19]. FS tries to achieve the minimum number of selected features with maximum
performance [20]. Relative to search space, FS is considered a combinatorial nondeterministic
polynomial-time-hard (NP-hard) problem. The reason being that it has a large search space
that needs exponential running time to traverse exhaustively all the generated subsets of
features [12]. The 2N run time complexity will grow exponentially with increasing the
value of N which represents the number of dimensions (features/variables) in a data set.
This means that the traditional brute force methods are too impractical to be applied and
other advanced search methods should be used.

Meta-heuristic search techniques are promising alternative solutions. They observed
superior performance in various optimization scenarios. Potentially, they have a great
opportunity to be suitable solutions for the FS problem. Meta-heuristics includes Nature
Inspired Algorithms (NIAs), which are further divided into two main subcategories, namely
Swarm Intelligence (SI) and Evolutionary Algorithms (EA) [21]. Both categories simulate
the public behavior and biological evolution of agents in nature, respectively. Examples on
EAs are: Genetic Algorithms (GA) [22] and Differential Evolution (DE) [23]. The SI category
includes other types of algorithms such as Particle Swarm Optimization (PSO) [24], Ant
Colony Optimization (ACO) [25], the Artificial Bee Colony (ABC) algorithm [26], memetic
algorithms [27], artificial ecosystem-based optimization [28], marine predators algorithm [29],
polar bear optimization [30], and red fox optimization [31].

Despite the effectiveness of nature-inspired Algorithms (NIAs) in solving the FS
problem, finding the optimal solution is still not guaranteed. The main challenges that
affect meta-heuristic optimization are stagnation in local minima, premature convergence,
parameter tuning, exploitation and exploration imbalance, the diversity problem, dynamicity,
multi-objectivity, constraints, and uncertainty [32].

Several kinds of modifications were proposed in the literature to enhance the performance
of NIAs in optimization. Examples of these modification techniques include a new operator,

220

Mathematics 2022, 10, 464

hybridization [33], updated mechanism, new initialization strategy, new fitness function, new
encoding schemes, modified population structure, multi-objectives, state flipping [34,35], and
parallelism [36]. Each modification addresses the weakness of the NIA algorithm in some
issues without harming the essence of the algorithm and its logic. The research field of
NIA-FS has witnessed considerable development. To show the expansion of the NIAs-FS
models in the literature, Figure 1 illustrates the correspondence between the year and
number of publications that combine modified NIAs with FS. In the first years, research
was volatile, and there were also years of research disruptions. Since 2006, the number of
publications has remarkably increased to reach its peak in 2018. Furthermore, the research
in this area has become very effective in the last five years. An intensive search for surveys
in this area found that there are very limited NIAs-FS surveys [20]. Some FS surveys did
not refer to meta-heuristics at all, but focused on other issues such as data perspectives [19],
supervised/unsupervised FS approaches [15], and other FS surveys were tailored to specific
applications or limited to certain domains [37]. The analysis of FS surveys showed that
either they briefly refer to the meta-heuristic FS or they do not refer to them at all. To our
knowledge, there is no survey about a modified NIAs-FS. This finding was one of the main
motivations for this work. Unlike the previous FS surveys, FS will not be discussed in
isolation from other related issues. The main objective is to bridge the gap in FS surveys by
providing a review of the important aspects and design issues of NIAs-based FS approaches.
The main modification strategies that have been adopted to enhance NIA for solving FS
problem are categorized and discussed.

Figure 1. Development of research field regarding Nature Inspired Algorithms (NIA) modifications
for tackling Feature Selection (FS).

In this review, a set of research questions will be asked and answered:

1. What is the current status of modified NIAs-FS research?
2. What are the important aspects and design issues regarding building NIA for tackling

FS?
3. What are the modifications that were applied on NIA for tackling FS and in what

domains were they applied?
4. Are there current open-source software systems that apply a modified NIA-FS?

Based on the aforementioned research questions, we have constructed this review
based on three primary issues:

• Theoretical aspects of modified NIAs-FS provide detailed coverage for three main
subjects: Meta-heuristic optimization, the FS problem, and modifications on meta-
heuristic to enhance meta-heuristics for FS;

• Applied aspects of modified NIAs-FS presents different applications of modified NIAs-FS;
• Technical aspects of modified NIAs-FS presents a new developed FS tool, named Evolopy-FS.

The review will refer to various well-regarded publishers such as ACM, Elsevier,
Springer, IEEE, World scientific, Hindawi, and others. Figure 2a shows the number of

221

Mathematics 2022, 10, 464

publications for each NIA in main publishers regarding modifications for tackling FS.
Figure 2b shows the number of citations for popular NIAs articles in the main publishers
regarding modifications for tackling FS.

(a) (b)

Figure 2. Statistics of the number of publications and citations for papers on NIAs modifications
for FS. (a) Statistics of publications on modified NIAs-FS; (b) Statistics of citations for papers about
modified NIAs-FS.

A description of meta-heuristic optimization is presented in Section 3. Section 4
discusses the problem of feature space symmetry in datasets and the need for feature
selection as a disentanglement of symmetry. Section 4 discusses the feature selection
problem and its related issues. A review of different NIAs-FS modification techniques is
presented in Section 5. Section 6 highlights the main applications on modified NIAs-FS.
An assessment of NIA-FS is provided in Section 7. Finally, in Section 8, the outlook for the
NIA-FS research field and possible future directions are discussed.

2. Feature Selection as a Task of Disentangling the Symmetry of Feature Space

The aim of supervised machine learning is to estimate a function f that fits well with
the features of training data and allows to predict the outputs on previously unseen inputs.
The number of samples required for training grows exponentially with the dimension of
a feature space, which is known as the “curse of dimensionality” [38]. To approximate a
Lipschitz-continuous function composed of Gaussian kernels placed in the quadrants of a
d-dimensional unit hypercube (blue) with error ε, one requires O(1/εd) samples [39].

Intuitively, a symmetry of an object is a transformation that leaves certain properties
of the object invariant. For example, translation and rotation are symmetries of objects,
which do not change their representations [40]. The geometric structure of the feature space
imposes the structure on the class of functions f that we are trying to learn. One can have
invariant functions that are unaffected by the action of the group, i.e., f (ρ(g)x) = f (x) for
any g ∈ G and x, here G is the symmetry group, g is the symmetrical transformation in
the feature space, ρ(g) is the group representation, and x is an input in the space of input
signals G(Ω) that acts as a point in the feature space. Such symmetrical transformations
(e.g., translation, rotation, shifting) are commonly used for data (image) augmentation to
increase the number of data instances for effective training of machine learning models.

The goal of feature selection is to eliminate uninformative and/or redundant features
from the feature space, leaving only relevant (i.e., predictive) features [41]. Feature selection
seeks to decrease M to M′ and M′ << M for a dataset with N samples and M dimensions
(or features). In other words, feature selection produces a disentangled representation [40]
with respect to a particular decomposition of a feature space with some symmetry group,
which may be useful for subsequent tasks, such as reduced complexity of training a machine
learning classifier. Such disentanglement, in fact, is performed by a neural network as a
part of the classification process by learning the weights of a network nodes [42], which
produce asymmetric activations for separation of classes.

The redundant features are characterized by a high level of inter-correlation. Such
correlated features result in the symmetrical distribution of instances in feature space.

222

Mathematics 2022, 10, 464

Feature selection aims to reduce feature dimensionality by reducing the symmetry in feature
space. The resulting distribution of classes in the lower-dimensional feature space should
be as asymmetrical as possible to allow for easy separability of classes [43]. Furthermore,
a strong correlation in features might result in numerous near-optimal feature subsets,
making traditional feature selection approaches unstable and lowering the trust in selected
features [44]. As many different feature space decompositions are possible, the problem of
finding an optimal feature subspace in a high-dimensional feature space is known to be
NP-hard [45]. In this paper, the nature-inspired meta-heuristic optimization algorithms are
studied for solving the feature selection problem.

3. Meta-Heuristic Optimization

Meta-heuristic algorithms are characterized by flexibility, simplicity, low cost in
computations, and they are derivation-free methods. The principle of meta-heuristics
is reasonability vs completeness. In other words, it gives up completeness for providing
approximated solutions for complex unsolved problems. Meta-heuristics are further
categorized based on the number of candidate solutions encountered during the optimization
process into the trajectory and population.

3.1. Trajectory-Based Optimization

A trajectory algorithm begins with one random solution and it tries to optimize
the solution until a stop condition is satisfied. The computation overhead is reduced
significantly because only one solution is being improved and evaluated during the
optimization process. Equation (1) expresses the number of function evaluations needed in
trajectory algorithms where T is the number of iterations:

#Evaluations(in trajectory based) = 1 × T. (1)

Trajectory algorithms are local search techniques. They depend on making a few
changes in the components of the current solution to find a better one. A potential solution
is picked, and its neighboring solutions are checked if they are better. Local search implies
searching within a limited region (exploitation). This process suffers from a potential
entrapment in local minima because of the diversity weakness and a lack of information
exchange. Examples of trajectory algorithms are Simulated Annealing (SA) [46] and Tabu
search (TS) [47].

3.2. Population-Based Optimization

A population algorithm begins with a set of randomly generated solutions and tries
to enhance them during the optimization process. Each candidate solution fluctuates
outward or converges toward the best solution following a certain mathematical framework.
The predominance of these algorithms is because of their simplicity and flexibility. Simplicity
means that they are built upon simple methodologies and are evolved from simple concepts.
They can be adopted to deal with real-world problems without structural modifications.
All that is required is an accurate representation of the problem and the structure of
the optimizer is left untouched. Population algorithms are more efficient in mitigating
local minima compared with trajectory algorithms because more individuals and more
information are shared between them. However, multiplicity in solutions increases the
computation burden because more evaluations are required. The number of calls for
a fitness function is driven by the number of individuals and the number of iterations.
Equation (2) identifies the number of function evaluations in population algorithms where
N is the number of individuals and T is the number of iterations:

#Evaluations(in population based) = N × T. (2)

A population algorithm begins with the initialization step where a set of candidate
solutions are generated. The solution is a candidate or possible solution if it satisfies the

223

Mathematics 2022, 10, 464

constraints of the problem. The next step is the evaluation of individuals. The evaluation
is carried out using a specified fitness function and in terms of predefined evaluation
criteria. The fitness function is called for each individual so that each individual gets a
fitness value. After evaluating the individuals, the update process refines and improves
current solutions. This requires updating the positions of individuals in the search space.
This iterative process of evaluating and updating individuals continues until a predefined
criterion is satisfied and the global optimal solution is best approximated.

Population-based algorithms compromise of NIAs that are the result of the union of
nature with different scientific fields including physics, biology, mathematics, and engineering.
Computer science utilized these relations between science and nature and turned it into a
well-defined discipline for optimizing different challenging problems. NIAs are categorized
based on the source of inspiration into EA- and SI-based algorithms [21].

3.2.1. Evolution-Based Optimization (EA)

This category includes different computational systems that share in their emulation
for the biological evolution. EAs model the natural cellular processes such as reproduction,
mutation, recombination, and selection.

EAs typically designed by generating a population of possible solutions
−→
I1 ,

−→
I2 ,

−→
I3 ...

−−→
In−1,−→

In called chromosomes. Each chromosome is split into smaller units called genes. The length
of the chromosome (#genes) determines the dimensionality of a problem. The relation
between gene, chromosome, and population can be expressed as gene ⊂ chromosome ⊂
population. Most of the current evolutionary frameworks implement the chromosome
and population as 1-d array (vector) and 2-d array, respectively. Equation (3) identifies
the individual Ii with a length d and Equation (4) identifies a population P where each
individual represents a row in a matrix. Each solution is evaluated by a certain object
function

−→
O1,

−→
O2,

−→
O3 ...

−−→
On−1,

−→
On to determine its quality and decide if it is fitted or

unfitted. The highest evaluated solution (best individual) is preserved at each iteration.
The unfitted solutions (worst individuals) are candidates to be replaced by newly-generated
offsprings. This allows the average fitness value to increase dramatically throughout
iterations. Common EA examples are GA [22] and DE [23]. GA undoubtedly is the most
widespread and typical example of EAs:

Ii =
[

x1
i x2

i x3
i · · · xd−1

i xd
i

]
(3)

P =

⎡⎢⎢⎢⎣
x1

1 x2
1 x3

1 · · · xd−1
1 xd

1
x1

2 x2
2 x3

2 · · · xd−1
2 xd

2
...

...
...

. . .
...

...
x1

n x2
n x3

n · · · xd−1
n xd

n

⎤⎥⎥⎥⎦. (4)

3.2.2. Swarm-Based Optimization (SI)

SI algorithms have a common behavior that is very similar to the social behavior of
creators. The Swarm system comprises an abundant number of agents that are distributed
in the environment to achieve a global target. Intelligence can be seen in the actions of agents
to coexist. The main characteristics of swarm systems are adaptability, self-organization,
distributed control, scalability, and flexibility [20]. The most common SI examples are
Particle Swarm Optimization (PSO) [24] and Ant Colony Optimization (ACO) [25]. A PSO
source of inspiration are flocks of birds that search for food. The search procedure is guided
by two main factors: Pbest and gbest. Pbest represents the best experience that was gained
by the previous particle itself. Gbest represents the best individual in the whole swarm.
Particles also have a position and velocity that are both updated in each iteration.

224

Mathematics 2022, 10, 464

3.3. Challenges of Meta-Heuristic Optimization

Despite the efficiency of meta-heuristics in tackling challenging optimization problems,
some obstacles impact their performance. These include dynamicity, multi-objectivity,
constraint, and uncertainty. For multi-objectivity, there are multiple conflicting objectives
to be optimized until trade-offs (Pareto optimal set) are achieved. The search space is
quite more complex. The optimization problem becomes highly challenging when the
number of objectives becomes larger than four [48]. Many objective fields have emerged
to deal with these cases. Constraints of real problems create gaps in the search space by
dividing it into feasible and infeasible regions. Feasible regions satisfy the constraints while
infeasible regions violate these constraints [49]. Accordingly, the optimization algorithm
should follow certain mechanisms to become closer to the promising region and avoid the
infeasible region until an optimal solution is found. The other main issue of meta-heuristic
optimization is uncertainties. For example, the global solution frequently changes its
position in the search space, which requires more attention from the optimization algorithm.
Some operators are used for registering the history and memorizing the locations of the
global optima all the time. Other severe challenges are related to the problem search
space, such as the existence of many holes or valleys that lead to stagnation in local minima,
discontinuities in a search space, the location of global optima that comes onto the boundary
of a search space (the boundary of constraints), and the isolation of global optima [32].

Population algorithms are characterized by two conflicting milestones that are called
exploration (diversification) and exploitation (intensification) [32]. In exploration, the candidate
solutions churn and change violently, which leads one to examine more regions and to find
diverse solutions. Exploitation changes gently and causes a less sudden stir for the candidate
solutions. GA realizes these processes through crossover and mutation operators. Crossover
intermixes a combination of solutions while mutation squeezes certain regions and searches
locally. PSO configures the inertia weight operator by large values for more explorations and
selects small values for more exploitation.

The main challenges of exploration and exploitation include: Firstly, since they
have conflicting purposes, increasing any of the causes decreasing the other. Secondly,
a transition between these two milestones is not defined because the search spaces of the
optimization problems are usually unknown. Thirdly, performing pure exploration causes
less accuracy in approximating an optimal solution because different regions are being
explored without a focus on a certain promising region. Performing pure exploitation gives
rise to entrap in local optima. Fulfilling a balance between exploration and exploitation
may produce better results and increases the chance of being close to the optimal solution.
Recently, this idea has become an active research problem. Several types of research have
tried to attain balance by integrating several random and adaptive operators in the structure
of the algorithms.

4. Feature Selection

This section introduces FS in two parts: The dimensionality problem and the FS system
based on the NIA search strategies.

4.1. Dimensionality Problem

Due to the incremental growth of information and the abundance of data, data sets
have increased in both data samples (number of instances) and dimensions (number of
features). As a result of the increased dimensionality, different negative effects were
embedded in data mining tasks. One of these problems is called the curse of dimensionality,
which describes the status of data as it becomes sparser in large dimensionality space [12].
This raises the need for more instances for the training of the classifier, which increases the
learning time. Learning algorithms were designed to build their models based on rules
inferred from a small number of dimensions. Learning algorithms cannot generalize well in
a large dimensionality space. High dimensionality implies the existence of noisy features,
such as redundant and irrelevant features that mask the informative features and mislead

225

Mathematics 2022, 10, 464

the classifier and cause data to overfit. An overfitting [2] problem occurs when a classifier
overtrained on the data and learned all examples, including outliers. Considering that
noise and random fluctuations as related concepts will cause building complex models;
logically, learning from relevant features allows the classifier to be more accurate. Another
negative effect of increasing dimensions is the increased demand for specialized devices
such as large memory storage and high-speed processors, which increases cost.

4.2. FS Preliminaries

Features are defined as measurable properties of the observation under study. The complexity
of the problem is determined by its features. In real-world applications, the discovery of relevant
features is a big challenge. In 1997, the first papers about relevance and feature selection were
published [14]. Feature relevance can be formalized as follows. Let 1 ≤ i ≤ n, Ei be the domain
of feature xi, X = x1, x2, · · · xn be the set of all features. E = E1 × E2 · · · × En is the instance
space from which instances derive their values. Each instance can be represented as a point in
space and the distribution of these data points has a probability P. If we consider the class (label)
space to be T, then we can define an objective function c as a relation that maps an instance S
to a specified label/class in labels space T as: c: E → T. Arguably, a data set with |S| number
of instances is the result of sampling |S| times from E with a probability P and get label from T.
An xi in X is a relevant feature with respect to class concept if there exist two instances (A and B)
in E, which only differ in their assignment to xi (all their feature values are the same except those
for feature xi) and c(A) �= c(B). In contrast, a variable with no correlation or weak correlation
with the target concept is called an irrelevant feature. Other types of noisy features are redundant
features. These are features that are highly related and connected with other features and add
nothing new regarding the classification decision.

In the literature, FS was defined in different ways, which are all close in meaning and
intuition [15]. FS is a searching process that tries to find the subset of features which is
the best one to describe the data. According to relevance discovery, FS aims to determine
the most meaningful subset of features, which has the largest relevance and minimum
redundancy. Even though those features are fewer than the original features, but they carry
the maximum discriminate information. Classically, FS selects a subset of M features from
a set of N features where M < N and the value of an evaluation function is optimized
over all subsets of size M. The essence of FS is to select or discard features intelligibly in
such a way, the resulting class distribution is as close to the class distribution with the
complete set of features. In another meaning, FS is not a technique for only reducing data
set cardinality, but it should find a trade-off and a balance between different conflicting
objectives. As a multi-objective optimization problem, there are two primary objectives to
be optimized. These objectives are the performance and the number of selected features.
These are conflicting objectives because the optimization algorithms require getting the
maximum performance and the minimum number of selected features.

Typically, the standard process of FS consists of four primary stages of subset generation,
subset evaluation, stopping criterion, and results validation [15].

Regarding the subset generation and search procedure, FS is considered an NP-hard
problem. When the number of features equals n, the search space comprises 2n subsets of
features. Using brute search methods such as a huge search space needs an exponential
running time to traverse all the candidate subsets of features.

Concerning subset evaluation, there are different methods to assess the goodness of
a feature subset such as filters and wrappers. A stop criterion is a condition that halts
the FS process and prevents the infinite loop. For example, the search completion (all
feature subsets have been examined), the learning performance reached its highest limit,
the subset of features with a specified size is obtained, the pre-defined number of iterations
is reached, the occurrence of conversion situation in which results become stable, and no
further enhancement is achieved. A direct way to validate the obtained results is based
on prior knowledge from a domain. Unfortunately, this features knowledge is usually
unavailable so other methods have to be used instead. FS could be validated by comparing

226

Mathematics 2022, 10, 464

the system performance using the whole subset of features with its performance using
the selected features. FS has many advantages that positively affect the data mining task,
including improving the quality of the generated model, speeding the learning time of
the classifier, enhancing the ease of reading the data set, and reducing the need for more
hardware resources.

4.3. NIAs for Feature Selection

Two important points should be focused on: The representation of a solution and the
evaluation for it. Normally, a feature subset is represented by a binary vector. The dimensionality
of the problem is equal to the number of features in the data set. If the gene value is set to 1,
this indicates that the feature is selected, otherwise, it is not selected. The quality of a feature
subset is evaluated based on two contradictory objectives: The classification accuracy (minimum
error rate) and the minimal number of selected features simultaneously. These two criteria are
represented in one fitness function that is shown in Equation (5), where αγR(D) is the error rate
of the classification produced by a classifier, |R| is the number of selected features in the reduced
data set, and |C| is the number of features in the original data set, and α ∈ [0, 1], β = (1 − α)
are two parameters for representing the significance of classification and length of feature subset
according to recommendations:

Fitness = αγR(D) + β
|R|
|C| . (5)

5. NIAs FS Modifications

This section highlights the main modification techniques applied in the literature to
enhance the NIAs as wrappers FS. By referring to 156 articles in the domain of modified
NIAs-FS, it can be noticed that the modification techniques can be classified into nine
categories as depicted in Figure 3: New operators, hybridization, update mechanism,
modified population structure, different encoding scheme, new initialization, new fitness
function, multi-objective, and parallelism.

Figure 3. NIAs FS modifications categories

5.1. New Operators

This modification depends on integrating a new operator in the original NIA structure
to achieve certain targets, such as improving the algorithm performance, increasing the
diversity among the population, enhancing the exploitation and exploration processes,
facilitating the sharing of information between population’s individuals, repositioning of
the worst individuals in the population, and performing a search along various vectors in
search space [36]. In literature, several operators have been used to enhance NIAs wrappers.
Some of these operators are discussed next.

5.1.1. Chaotic Maps

The denotation of chaos means a state of disorder. In mathematics, it is a formula that
describes a dynamic system with time dependence. The chaotic system has a high level
sensitivity to its initial conditions. This behavior implies that even a simple modification in
the initial conditions will lead to big changes in the outcomes. Although the chaotic system

227

Mathematics 2022, 10, 464

is deterministic and does not incorporate any randomness but the results are not always
predictable [50].

Chuang in [51] used two kinds of chaotic maps and integrated them with Binary
Particle Optimization (BPSO), namely logistic maps and tent maps. Equation (6) describes
how the logistic map is written in mathematics (general formula), where Xn is a number
between 0 and 1 which represents the ratio of the current population size to the maximum
population size and μ is a constant value between 0 and 4. Equation (7) describes how
Chuang exploited Equation (6) to modify the inertia weight value where w is the inertia
value between (0,1) and t is the number of iteration. The same thing was followed to
apply the tent map chaotic map. Equation (8) is the general mathematical formula and
Equation (9) is the modified version of inertia weight using a tent map. Using large values
for inertia weight facilitates more exploration while selecting small values facilitates more
exploitation. Hence, chaos theory could be used for balancing the two types of search
in the search space. Besides, the study contributed that Chaos Binary Particle Swarm
Optimization (CBPSO) with a tent map achieved a higher classification accuracy than
CBPSO with a logistic map:

Xn+1 = μ Xn(1 − Xn) (6)

w(t + 1) = 4.0 ∗ w(t)(1 − w(t)) (7)

f (x) = Xn+1 =

{
μ Xn, if Xn < 0.5
1− μ Xn, otherwise

(8)

w(t + 1) =

{
w(t)/0.7, if w(t) < 0.7
10/3w(t)(1 − w(t)), otherwise.

(9)

In the same year, Chuang presented another model for FS [52]. The proposed model
was a filter-wrapper approach based on using a correlation-based filter (CFS) and Taguchi
chaotic BPSO (TCBPSO). In [53], chaotic was applied with BPSO for FS in text clustering.
Ahmad in [54] used chaotic maps as modifications for the SSA algorithm. He replaced the
C3 random parameter with chaotic sequences, namely logistic map, piecewise map, and
tent map. It was clear the impact of chaotic maps in improving the SSA. In the same year,
the influence of chaotic operators on SSA was investigated in [55]. The experiments proved
that the logistic map achieved a better performance for the SSA algorithm over nine chaotic
maps. The chaotic multiverse optimization (MVO) FS model was proposed in [56] to cope
with some limitations of MVO. Tent, logistic, singer, sinusoidal, and piecewise chaotic
maps were used. The results showed that the logistic chaotic maps were the best, which
increased the MVO performance more than other maps. Sayed in [57] developed a new
wrapper FS approach based on the Whale Optimization Algorithm (WOA) and chaotic
theory named CWOA. He used 10 chaotic maps namely chebyshev, circle, guass/mouse,
iterative, logistic, piecewise, sine, singer, sinusoidal, and tent. The results showed that a
circle chaotic maps was the best among other chaotic. In [3], a model based on chaotic Moth
Flame Optimization (CMFO) and Kernel Extreme Learning Machine (KELM) was proposed.
In [58], Sayed developed a new FS system composed of the Crow Search Algorithm (CSA)
algorithm and chaos theory to enhance the performance and convergence speed of CSA.
Lately in [59], a Binary Black Hole optimization Algorithm (BBHA) has been modified
by embedding new chaotic maps embedded with the movement of stars in the BBHA.
This model was called CBBA and uses 10 chaotic maps. The results of three chemical data
sets demonstrated that CBBA outperformed the BBHA in terms of the number of selected
features, classification performance, and computational time.

5.1.2. Rough Set

Rough Set (RS) was first described by Zdzislaw Pawlak at the beginning of the
1980s [60]. This is a mathematical concept related to topological operations. In mathematics,
RS is a theory that tries to find two approximate sets for the original conventional set
(crisp set). The first RS gives the lower approximation for the crisp set which compromises

228

Mathematics 2022, 10, 464

the elements that surely belong to the target subset. The second RS gives the upper
approximation of the crisp set which compromises the elements that possibly belong
to the target subset. The pair of rough sets are themselves either crisp sets or fuzzy
sets. Rather than belonging or not belonging in relation to the elements as in crisp sets,
the fuzzy sets depend on the membership function for gradual assessments of the elements.
Unlike the fuzzy sets, RSs depend on finding the positive region, not the membership
function for dealing with uncertainties and vagueness. The RS has many advantages,
including the approximation of concepts, reduction of spaces, discovering the equivalence
relations, and finding the minimal sets of data in vague and uncertain domains. In FS,
the RS tries to define the attribute dependency. Zainal in [61] proposed the RS-PSO
model for a better representation of data. Another RS-PSO-FS model was proposed in [62]
based on Relative Reduct (PSO-RR) and PSO-based Quick Reduct (PSO-QR). Both tools
depend on the dependency measure for comparing sets of attributes. In [63], the authors
proposed a model for FS in nominal data sets based on BCS and Rough Sets. Another CS
model was introduced in [64] by incorporating the RS with different classifiers. In [65],
a new model was developed based on two incremental techniques (QuickReduct and
CEBARKCC). Quick reduct and CEBARKCC are two filtering methods where the former
one is a rough set-based filter that simulates the forward generation method and the latter
is a conditional entropy-based method. These two methods were integrated with the
Ant Lion Optimization (ALO) algorithm to improve the initial population quality. The
RS-FA model was developed in [66]. Hassanien in [67] developed a new system based on
rough set and MFO. Lately, in [68], a hybrid model called BPSOFPA composed of Flower
Pollination Algorithm (FPA) and PSO was also developed. BPSOFPA was integrated with
the RS approach for the FS problem. Ropiak in [69] integrate RSs with deep learning as
rough mereological granular computing.

5.1.3. Selection Operators

Inspired from Darwin’s theory [70], which explained the evolution and changes
in species through the natural selection mechanism, the genetic algorithm incorporated
selection operators to select some individuals from the population for later breeding.
A conventional strategy to implement the selection is using the fitness values of the
solutions. In other methods, these fitness values are normalized by finding the summation
of them then divide the fitness of each individual by this summation. Another method
sorts all individuals in the population according to their fitness values in descending
order. The selection mechanism was applied in other studies by finding the accumulated
fitness for each individual so that the final individual fitness value is one [71]. All such
methods become computationally expensive and may negatively impact the performance
of GA when the population becomes larger. Other methods of selection which are widely
implemented with GA are Tournament Selection (TS) and Roulette Wheel Selection (RWS).
The stochastic nature of these methods makes them simpler in implementation and better
in performance than the aforementioned methods. TS is the most applied selection operator
with GA because of its simplicity. It selects randomly a set of solutions from the population
then the best one is used for breeding the successive generation. In RWS, the mechanism
differs in that no agent in the population is discarded. The RWS strategy depends on
creating something like a roulette where all fitness scores of the individuals are represented
as areas or sectors on this roulette. The individual with a large fitness value well reserve
a large sector on the roulette, which shows a larger probability for selection. Individuals
with small fitness scores will reserve small areas on the roulette. In RWS, the final selection
for the agent is done by rotating the roulette and the selected individual is the one where
the point stayed when the roulette had stopped. Mafarja in [46] developed a new model
that combines TS with the WOA optimizer to enhance the exploration of the search. One
year later, Mafarja presented in [72] an FS model based on the Grasshopper Optimisation
Algorithm (GOA) algorithm with RWS and TS. Mafarja in the same year developed a new
wrapper FS model based on WOA along with studying the effect of TS and RWS [73].

229

Mathematics 2022, 10, 464

In [26], the selection operators were incorporated to improve the ABC optimizer. In [74],
the method compromised of a DE optimizer and RWS structure for the selection of the
Wavelet Packet Transform.

5.1.4. Sigmoidal Function

A sigmoid function is a mathematical function that falls under the S-shaped family
and is considered a special case of a more general function called a logistic function, which
has the mathematical formula defined by Equation (10), where e is the natural logarithm
base (Euler’s number), x0 is the sigmoid’s midpoint, L is the sigmoid’s maximum value,
and k is the logistic growth rate of the curve [75]. The sigmoid function formula is defined
by Equation (11):

f (x) = L/(1 + exp−k(x−x0)) (10)

S(x) = 1/(1 + exp(−x)) = exp(x)/(exp(x) + 1). (11)

The sigmoid function has some special characteristics including the monotonic behavior,
which means that the function is defined on all real numbers but the output of the function
is increasing either from 0 to 1 or from −1 to 1. Moreover, the sigmoid function is
differentiable and has a bell-shaped first derivative where the derivative at each point
is a non negative value. There are several variations of the sigmoid function such as
hyperbolic tangent, arctangent function, and algebraic functions which are respectively
defined by Equations (12)–(14). The sigmoid function is widely applied as the activation
function of a Neural Network (NN). Other useful usage of the sigmoid function is that it is
used as a discretization method to convert a continuous space into a binary one, such an
application is a feature selection application:

f (x) = tanh(x) = (ex − e−x)/(ex + e−x) (12)

f (x) = arctan(x) (13)

f (x) = x/
√
(1 + x2). (14)

For solving the FS problem, Aneesh developed a modified BPSO called Accelerated
BPSO (ABPSO). The strategy for accelerating the particles was using a new velocity update
function based on a sigmoidal function [76]. In [6], the sigmoidal function was used with
BGWO in solving FS. In [77], different transfer functions that map continuous solutions to
binary ones were applied in combination with the CS algorithm. The CS-sigmoid and CS-
hyperbolic tangent was performed on five data sets. In [78], the effect of different transfer
functions on the Bat optimization (BA) algorithm was studied. Sigmoid and hyperbolic
tangent functions were used to analyze their influence on FS. The results proved that the
sigmoid function was better than the hyperbolic function in feature reduction for almost
all data sets. Mafarja, in [79], presented new versions of the Grasshopper Optimization
Algorithm (GOA) based on sigmoid and V-shaped TFs in the context of FS.

5.1.5. Transfer Functions

Transfer functions (TFs) are mathematical formulas that play a significant role in
mapping a continuous search space to discrete search space. The discrete search space
could be viewed as a hyper-cube in which solutions move in different directions within
its boundaries by flipping their bit values. TFs are one of the most efficient ways that
could be utilized to covert continuous meta-heuristic algorithms into their corresponding
binary versions [80]. The mathematical formulations of these TFs can be found in [80].
The update procedure in a binary meta-heuristic algorithm is switching solutions elements
between 0 and 1 based on certain mapping formula TFs that links the original continuous
update procedure with a new binary update procedure. TFs in a close meaning define the
probability of updating each element (gene/feature) in a solution to be either selected 1 or
not selected 0.

230

Mathematics 2022, 10, 464

Equations (15) and (16) define the general update formulas of a solution using S-TFs
and V-TFs, respectively, where Xd

i (t + 1) represents the ith element (gene/feature value) in
the X solution (feature subset) at dimension d (feature number/index) in iteration t + 1,
rand ∈ [0, 1], which was generated using a random probability distribution:

Xd
i (t + 1) =

{
0, if rand < S_TF(Xd

i (t + 1))
1, if rand 	 S_TF(Xd

i (t + 1))
(15)

Xt+1 =

{
Xt, if rand < V_TF(Xt+1)

¬Xt, if rand 	 V_TF(Xt+1).
(16)

These can be reformulated to preserve the concepts of searching using any specific
meta-heuristic algorithm. As an example, PSO was converted by Kennedy and Eberhart [81]
from a real algorithm to a binary algorithm. The PSO binary conversion started by
employing a sigmoid function to convert the velocity values into probability values
bounded in the interval [0,1] as in Equation (17), where T(vd

i (t)) indicates the velocity of
particle i at dimension d in iteration t. In the next step, the computed probabilities are
used to update the position vector using Equation (18). To preserve the PSO continuous
searching method and keep the concepts of pbest/gbest, the TF gives a high probability for
switching gene values for those genes having high-velocity values since they are far away
from the best solution. Small probability is given for genes having small velocity values
since they are considered close to the best solution [80]:

T(vd
i (t)) = 1/(1 + e−vd

i (t)) (17)

Xd
i (t + 1) =

{
0, if rand < TF(vd

i (t + 1))
1, if rand 	 TF(vd

i (t + 1)).
(18)

In the literature, there were several studies that adopted TFs operators with FS problem.
Mirjalili in [80] improved the performance of BPSO by using TFs, S-shaped, and V-shaped
transfer. The results of V-TFs improved the performance of BPSO more than S-TFs. In [82],
a new wrapper was developed by modifying the Salp Swarm Algorithm (SSA) using TFs.
The proposed approach achieved significant superiority over other competitive approaches
in 90% of the data sets. Mafarja in [83] presented a new wrapper FS method based on
a modified Dragonfly Algorithm (DA) using time-varying S-shaped and V-shaped TFs.
Recently, in the context of Internet of Things (IoT) attack, a new wrapper-based approach
using the WOA was developed. The augmented WOA used both V-shaped and S-shaped
transfer functions.

5.1.6. Crossover

In living things, the chromosomal crossover is a recombination process that occurs
between non-sister chromatids to exchange the genetic material during recombination
(sexual reproduction). This process ends in the production of new recombinant chromosomes.
Faraway from the biological chromosomal crossover in the genetic algorithm and evolutionary
computation, this process was inspired to exchange information between solutions in the
population and generating new offsprings in the next generation. In the genetic algorithm,
recombination (crossover) is defined as a stochastic operator that enforces the diversity in the
population by exchanging (swapping) the bits after a random cutting point (crossover point)
between the parents’ vectors (selected individuals) to produce new children (offsprings).
Equation (19) shows how a crossover operator is used to combine solutions where � is an
operator that performs the crossover scheme on the two binary solutions Xi and Xi−1. In a
binary space, the crossover can be realized by exchanging the binary bits of two solutions
to obtain an intermediate solution. Equation (20) shows that the crossover mechanism

231

Mathematics 2022, 10, 464

switches between two input vector with the same probability, where Xd is the value of the
dth dimension in the yielded vector after applying the crossover operator on Xi and Xi−1:

Xt+1
i = �(Xi, Xi−1) (19)

Xd =

{
Xd

1 , if rand 	 .5
Xd

2 , otherwise.
(20)

In [84], a crossover operator was applied in combination with the sigmoid function to
modify a Binary Grey Wolf Optimizer (BGWO). The BGWO1 approach was used to convert
the Continuous version of GWO (CGWO) into the binary version. The first steps toward
the three best solutions are converted into binary, then a random crossover is applied
among them to find the updated position. The results of the approach positively affected
the performance of GWO. In [82], the crossover operator was applied to improve the Salp
Swarm Algorithm (SSA) optimizer in solving the FS problem. The crossover job was to
increase the diversity of the model and improve the exploration process of the search
space. In [73], the study incorporated many modifications strategies with WOA. Solving
the limitations of the WOA represented by local minima and slow convergence was the
priority. The crossover was used for achieving this target. Mafarja in [79] applied multiple
operators with GOA. The combination operator together with the mutation was applied in
his approach to BGOA-M for achieving more exploration.

5.1.7. Mutation

In the organism, the mutation is an error that occurs during DNA replication (meiosis).
The error specifically results from a permanent deletion, insertion, or alternation on the
DNA segment (nucleotide sequence of the genome). Even though this is a small genome
error, it causes abnormal changes in the characteristics of an organism. Evolutionary and
genetic algorithms inspired the same idea to make changes and increase the diversity in
the population. The advantages of mutation come from preventing solutions becoming
similar and thus ensuring the evolution does not stop. Mutation operators alter one or
more gene values (a bit in chromosome vector) which causes the solution to be changed
from its previous state. Besides diversity, the mutation could contribute to mitigating the
local minima problem. Equation (21) identifies the mutation process where Xi(t + 1)d is
the ith element at the dth dimension in the Xi solution,

Xd
i (t + 1) =

{
0, if rand 	 .5
1, otherwise.

(21)

In [85], a Particle Swarm Optimization (PSO) applied mutation to a solution was
conducted after it was updated. A probability commonly 1/n indicates one bit of the
solution will be muted (flipped). The model proved the effectiveness of the suggested
modified PSO-FS model. In [53], the authors developed a hybrid intelligent algorithm that
combined mutation with the BPSO and other operators to solve FS in the text clustering.
The model attained a higher clustering accuracy and improved the convergence speed of
BPSO. In [79], the mutation operator was applied with the GOA optimizer. The BGOA-M
approach achieved superiority in comparison with other approaches compared. In [86],
an Improved Harris Hawks Optimization (IHHO) was proposed based on elite opposite-
based learning, mutation neighborhood search, and rollback strategies to increase the
search performance.

5.1.8. Levy Flight

Levy flight has its source from chaos theory. It describes a random walk that follows
a heavy-tailed probability distribution. This probability distribution represents the step-
lengths that take place either on a discrete grid or continuous space. In mathematics,
according to a central limit theorem, the steps from the original point of a random walk

232

Mathematics 2022, 10, 464

follow a stable distribution which could be modeled using equations of Levy flights.
Investigators in nature found that Levy flights can describe the animals hunting patterns
especially when the prey is sparsely distributed and not easily detected as opposed to
Brownian motion, which can only approximate the prey place when the hunting is near
an abundant and predictable prey [87]. In [64], a novel Cuckoo Search (CS) algorithm was
developed using the Levy flight with the rough sets. He applied his idea by integrating the
Levy flight random probability distribution in the equation that generates new solutions as
shown in Equation (22) where ⊕ denotes the entry-wise multiplication, α is the step size,
α > 0, and Levy(λ) is the Lev́y distribution which is described in Equation (23). In [88],
Levy flight was used in combination with transfer functions to enhance the performance of
the MFO algorithm and increase diversity:

Xt+1
i = Xt

i + α ⊕ Levy(λ) (22)

Levy ∼ u = t-λ 0 < λ < 3. (23)

5.1.9. Other Operators

A local search operator was incorporated with GA to mitigate the weakness of standard
GA in fine-tuning near the local minima [89]. In [90], local search was used to improve
the BPSO. A new local search and gbest resetting strategy called PSO-LSRG was proposed
in [24] to facilitate the exploitation. A Uniform Combination (UC) operator was used
in [80] to improve the performance of BPSO. Later, UC was adopted in [91] to balance
the exploitation and exploration of bones PSO. The DE evolutionary operator was used
in [5] to solve the local optima in standard WOA. The DE evolutionary includes mutation,
crossover, and selection operators. Boolean algebra (and operator) was used in BPSO [92].
The bacterial evolutionary algorithm and PSO algorithm, both with a plain and a memetic
variant complemented with gradient-based local search and fuzzy logic numbers were
used in [93] for solving various resource allocation problems.

A catfish strategy was applied in [94] to improve the performance of BPSO based
on introducing new particles into the search space when there is no improvement in the
searching process. For example, when the gbest is unchanged over a consecutive number
of iterations. The catfish particles replace the particles with the worst fitness and initialize
a new search from the extreme positions of the search space. Feature subset ranking was
introduced in [95]. The idea was to compute the significance of each feature according to
its classification accuracy and compute the accuracy for some combinations of these ranks,
then the BPSO wrapper approach was used to search on the top-ranked features subsets
instead of the whole features.

A Gaussian operator was introduced in [96] and the idea was that FS is highly influenced by
features interaction. The highly relevant features with a class label may have high interactions
with other features which makes them redundant. On the other hand, irrelevant features
concerning a class label may have small interactions with other features. As feature interaction is
a challenge to classification and FS, a statistical clustering method based on Gaussian distribution
was adopted. It groups homogeneous features based on the interactions between features
then the PSO algorithm selects one feature from each cluster. Threshold was adopted in [97].
The idea was to set a nonzero value for a threshold based on the number of trails BPSO were run.
The significance of a particular dimension is measured based on the frequency of appearance
for that dimension in the gbest vector in all runs. The final gbest after thresholding will contain
the most recurrent features.

Zhang in [91], used the Gaussian sampling to compute the positions of particles which
is based on pbest and gbest instead of velocity. Another operator was incorporated, called
reinforced memory. Reinforced memory is based on the idea of enhancing the probability
of survival for outstanding genes. These are the important features with high fitness value
in the current iteration. Consequently, the update of the local leaders (pbest) of each particle
will avoid the gene degradation and preserve it in the next iteration. Hamming distance
was used in [98] to replace the Euclidean distance in BPSO. Particularly, it was used to

233

Mathematics 2022, 10, 464

measure the distance between two binary vectors based on the Exclusively-OR (XOR)
operator and count the number of ones in the resulting vector. In [99], a new model called
Hybrid Particle Swarm Optimization Local Search (HPSO-LS) was proposed based on
using local search with correlation information. The correlation information was used to
guide the local search in PSO. This was carried out by including the most dissimilar features
(low correlated) as a feature subset in the newly generated particles. Consequently, similar
features (highly correlated) have less chance to be selected as a feature subset. Moreover,
HPSO-LS used a specific subset size determination scheme to allow PSO to search within
the abounded region and find a smaller number of features.

Binary quantum was used in [100] to modify and improve the PSO. The idea was to
perform a sampling around the personal best and compute the mean best of the sampled
points then introduce this value in the BQPSO. For any bit position of the mean best, it
will be equal to 1 if 1 appears more often than 0 in all the corresponding bit positions of
all pbests. On the other hand, if the 1 and 0 have the same frequencies, then each element
of the mbest is set randomly either to 0 or 1. A re-initialization strategy was applied on
PSO-mGA in [101]. The idea was to use a small population (3–6 chromosomes) with a
reinitialization strategy to achieve convergence. A non replaceable memory operator was
added to keep the original swarm and remains intact with it during the optimization
process. This will help in increasing the diversity of a swarm. Moreover, the nonreplaceable
memory was used for maintaining a secondary swarm with a leader and followers. Zhang
in [102] developed a new wrapper-based approach by utilizing the Firefly Algorithm (FA),
Return-cost, Pareto dominance-based, and adaptive movement operator. A return-cost
indicator was used to compute attractiveness. The firefly is cloned based on the return
cost instead of the distance so that the firefly with a big return and small cost has a great
chance to be cloned. A pareto dominance-based operator was added. Pareto dominance is
commonly used in multi-objective optimization. It is a selection strategy used to search
for the attractive one of a firefly based on the cost and return. Adaptive jump was used in
place of the fixed uniform jump. It requires a change in the jump probability based on a
linear function concerning the number of iterations to allow for more exploration.

In [103], a greedy search was used to enhance the local search. Three modified
versions of the Lion Algorithm (LA) (Lion M1, Lion M2, and Lion M1+M2) were proposed
to improve the local search. Mafarja, in [72], applied a new methodology based on BGOA
and Evolutionary Population Dynamics operator (EPD). EPD depends on making a local
change in the population instead of external force. This idea comes from the theory of
Self-organized Criticality (SOC). Hancer, in [26], developed a new version of the DisABC
algorithm for FS by introducing a DE-based neighborhood mechanism into the similarity-
based search of DisABC. DE evolutionary operators were also used in [5] for solving the
problem of local optima in native WOA. These include mutation, crossover, and selection
operators. Khushaba in [74] developed a new modified FS method called DEFS using a
repair mechanism. The repair mechanism was based on feature distribution measures and
the RWS structure. A new model was developed in [104] based on GA and m-features
(OR operator). The OR operator performed a search space reduction and improved GA
performance and convergence. Zeng in [105] developed a novel GA with a new population
structure and a new operator called dynamic neighboring. Dynamic neighboring is a new
selection strategy that was used to boost the capabilities of GA for the FS problem. In [106],
Guo proposed a new repair operator that allowed GA to transform feature subsets from
arbitrary combinations to valid combinations that conform to the feature model constraints
and domain-specific objective function.

5.2. Hybridization

Hybridization means the integration of over one algorithm to build a powerful
predictive framework that combines the power of the integrated algorithms. The expectation
of combining the complementary features of different optimization strategies is to achieve
a better performance compared with implementing them separately as pure paradigms.

234

Mathematics 2022, 10, 464

There are several categories of NIAs hybridization techniques that were investigated in the
literature such as combining NIA with other NIA or combining NIA with other algorithmic
components from different areas of optimizations, such as with tree search, dynamic
programming, and constraint programming [107].

5.2.1. NIA-NIA Hybridization

In mimetic models, a single solution algorithm is embedded in the population’s structure
algorithm to enhance the local search and exploitation of the search space. These algorithms
are implemented in two search stages. In the first stage, the algorithm captures a global view
of the search space. In the second stage, the algorithm focuses on the most promising area to
perform a successive process of local search. As exploration/exploitation balance is guaranteed
using these models and the premature conversion is avoided. In [4], Zawbaa developed
a novel hybrid GWO-ALO system that exploits the GWO global search ability and Ant
Lion Optimization algorithm (ALO) local search performance. In [65], Mafarja developed a
hybrid model based on BALO and hill-climbing techniques called HBALO. A new hybrid
algorithm was presented in [108] by combining the Clonal Selection Algorithm (CSA) with
the Flower Pollination Algorithm (FPA). CSA was good in exploitation, while FPA was
good in exploration via Levy flight. In [109], the Mine Blast Algorithm (MBA) was used to
support the exploration phase. MBA was integrated with simulated annealing to optimize
a local search in the exploitation phase to get closer to the optimal solutions. Ibrahim
in [110] designed a hybrid SSA-PSO model. He integrated the update strategy of PSO
into the structure of SSA so that the update for the current population was done by using
either the SSA or PSO depending on the quality of the fitness function. PSO-mGA (micro
Genetic Algorithm) model was presented in [101]. The ACO-DE model was developed
in [23]. A novel SA-MFO model was presented by Sayed in [111]. The use of SA was
to make the conversion rate slower, to reach to the global optima, and escape the local
minima. A new MFO-based hybrid model was developed in [112] by combining MFO
and Levy FA (LFA) algorithms. The other target of NIA-NIA hybridization is to refine the
best solutions by implementing the NIAs sequentially as a pipeline where the operators
of the first algorithm applied first then the operators of the other integrated algorithms
are applied sequentially. These models often suffer from being slow in the search process.
This hybridization strategy was applied in [113] to develop the PSO-GA model. In [46],
the WOA-SA model was developed. In WOASA-1 (Low-Level Team-work Hybrid (LTH))
SA was used as an operator in WOA to enhance the exploitation. In WOASA-2 (High-Level
Relay Hybrid (HRH)) SA was used after WOA to enhance the final solution. In 2020 [114],
SA was hybridized with the HHO algorithm and AND and OR bitwise operations. SA
was used to flee the HHO optimizer from local minima in the feature search space. A new
hybrid binary version of the Bat Algorithm (BA) is suggested to solve feature selection
problems. In [115], BA was hybridized with an enhanced version of the DE algorithm to
reach the global solution. Hybridizing different NIAs to perform parallel exploration for
the search space was also a primary target for other studies. Each algorithm generates its
initial population and iteratively explores and evaluates the feature subsets. Using this
strategy increases the speed of the search process. ACO-GA is an example of these hybrid
models [116,117]. Recently, in [118], an enhanced hybrid approach using GWO and WOA
was proposed to alleviate the drawbacks of both algorithms.

Another target for NIA-NIA hybridization is to enhance the initialization of the search
using different NIAs. In these models, one algorithm is used to generate the initial solutions.
Then the other combined algorithm is used to update these solutions. An example of these
models is GA-IGWO presented in [119]. In [120], the hybridization of two Immune Firefly
Algorithms (IFA1 and IFA2) was proposed. In IFA1, the FFA and Artificial Immune System
(AIS) are used simultaneously to increase the global search of fireflies and select the best
feature subset. IFA2 was used to study the influence the initial population on the searching
progress of the AIS algorithm.

235

Mathematics 2022, 10, 464

5.2.2. NIA-Classifier Hybridization

Hybridizing different classifiers such as SVM, Artificial Neural Network (ANN), aided
Radial Basis Function (RBF), Optimum Path Forest (OPF), bagging, and Bayesian statistical
with NIA for evaluating the solutions. Since classifiers have different capabilities regarding
the training speed, computation complexity, and generalization capability; many studies
investigated their influence when used in the wrappers framework. Other studies tried
to make simultaneous FS and parameter optimization to enhance the performance of a
classifier. NIA in these hybrid models works as a tuner to optimize the training parameters
set up and select the optimal feature subset. In [121], a new wrapper approach was built
to perform parallel FS and optimization for SVM parameters by exploiting the merits of
MVO. Another hybrid model was presented in [122] for optimizing the SVM parameters
simultaneously with selecting the best feature subsets using a GOA optimizer.

5.2.3. NIA-Filter (Wrapper-Filter) Hybridization

The filter-wrapper hybrid model is applied in two ways. First, a filter is applied to
eliminate redundant and irrelevant features, minimize the dimensionality, and produce
a reduced data set that is ready to be used by a wrapper. The second way to apply the
filter-wrapper model is to use the filter in the structure of a wrapper to evaluate the
generated features subsets. In [123], the Information gain and correlation-based were
integrated with BPSO in models called IG-IBPSO and CB-IBPSO, respectively to solve
FS. In [17], a MSPSO-F-score was developed. A mutual information filter was integrated
with PSO and presented as a model called MI-PSO in [124]. PSO-MI and PSO-Intropy
were developed in [125]. CS-MI was developed in [126]. BALO with QuickReduct and
CEBARKCC filtering approaches were developed in [65]. In [5], IWOA-IG was developed.
The ACO-MI model was presented in [127]. ACO with the multivariate filter was presented
in [16]. The GA-MI model was presented in [128], GA-IG in [18,129], and GA-entropy
in [130]. In [131], Relief-f was used with DE to rank the most significant features. Lately,
in [132], an Embedded Chaotic Whale Survival Algorithm (ECWSA) has been proposed
as a wrapper process and a filter method. In [133], an efficient hybrid model based on a
combining filter and evolutionary wrapper approach was proposed for sentiment analysis
of various topics on Twitter. The classification system was based on a SVM classifier and
two FS methods using the ReliefF and MVO algorithms. Authors in [134] proposed a filter
wrapper approach using a Sequential Floating Forward Search (SFFS) to acquire features for
activity recognition. The model was validated using a benchmark dataset with a multiclass
Support Vector Machine (SVM). The results show that the system is affected even with
limited hardware resources.

5.3. Update Mechanism

The update modification aims to achieve a balance in exploration/exploitation processes.
The update strategy is performed by either enhancing the update process of individuals or
dynamically control the NIA parameters. A new variant of ACO was presented in [25,135].
The update strategy used performance and the number of selected features as heuristic
information for ACO with no need for prior information about features. In [136], the gbest
was updated based on some conditions. This strategy determines when to reset the gbest
based on several epochs (iterations) in which the value of the gbest did not change. The same
strategy was applied in [24,90]. Martinez, in [137], claimed that the initialization procedure
and the update of all particles are not beneficial in high dimensional space. Hence, only a
small subset of particles is randomly selected to be updated. The update for a particle is
carried out by filling it with active features from the current particle, local best, and global
best. This strategy was applied to the original PSO to get a new variant called CuPSO.

In [138], a new rule to update particle’s positions was proposed. Instead of the original
rule in BPSO that lies in giving equal probabilities to either selecting or not selecting a
feature. P(xd

i (t) = 0) = P(xd
i (t) = 1) = 0.5 where xd

i (t) is the gene in the d dimension of
the position vector at iteration t. The new rule was introduced to increase the probability

236

Mathematics 2022, 10, 464

of xd
i (t + 1) = 0 and reduce the probability of xd

i (t + 1) = 1. The idea in [139] is that
pbest is usually updated based on the fitness value. However, if the new position has the
same fitness value as the current pbest, then the pbest will not be updated even if the new
solution corresponds to a smaller feature subset. This is a limitation of PSO. The proposed
PSO was to update pbest and gbest into two stages where the priority is given first for the
classification accuracy. Next, if the new particle position has the same performance as the
current pbest but the number of features is smaller, then in this case, pbest will be updated
and replaced by the new position.

In [96], the objective was to update PSO based on a clustering approach. The new
GPSO uses Gaussian distribution. The idea was to group homogeneous features based
on interactions between features, then PSO is used to select one representative feature
from each cluster. Mafarja in [140] proposed five update strategies for the inertia weight
(w) parameter. Linear, non-linear, coefficient, decreasing, oscillating, and logarithm were
applied. His idea was based on applying an exploration operator more than exploitation at
the beginning of the search then search those regions carefully to find the global optima.
The conclusion was that the gradual decrease for the inertia weight (w) either linearly or
non linearly improves BPSO. Mafarja in [141] studied the influence of the inertia weight
(w) parameter on the performance of BPSO. He suggested the adaptive change for the
exploration and exploitation by using a rank-based for updating the inertia weight (w)
parameter. The same author presented in [83] the time-varying update strategy to improve
the performance of the DA optimizer. In [142], Aljarah applied several asynchronous update
strategies to solve the FS problem. An adaptive update strategy based on a descending
linear function was used to update the SSA c1 parameter.

Recently in [143], a Binary DA (BDA) was proposed with new mechanisms to update
its main coefficients. The main target is to apply the survival-of-the-fittest principle
using different functions such as linear, quadratic, and sinusoidal. Three variants of
BDA were introduced and compared with the standard DA. The new variants are linear-
BDA, quadratic-BDA, and sinusoidal-BDA. Recently, in [144], a time-varying number of
leaders and followers in a binary SSA (TVBSSA) with Random Weight Network (RWN)
was proposed. In 2020, the CSA algorithm was enhanced in [145] using three enhancement
strategies to solve the FS problem: Adaptive awareness probability to balance exploration
and exploitation, dynamic local neighborhood to improve local search, and proposing a
global search strategy to increase the global exploration of the crow.

In [146], an enhanced Binary Global Harmony Search algorithm, called IBGHS, was
proposed to solve FS problems. An improved step is proposed to enhance the global search
ability. In [147], a new update strategy based on ranking of the individuals was proposed.
Each moth in the MFO algorithm is given a rank based on its fitness value. Therefore,
a moth with a small fitness value will have a high rank so that there will be a great change
in its position. On the other hand, a moth with a high fitness value will have a small rank
so that there will be a small change in its position. This adaptive update strategy enhanced
the performance of the optimizer. In [148], a time varying flame strategy was proposed
to enhance the MFO algorithm. The number of flames represents the number of the best
solution that decreases gradually across iterations. Different mathematical formulas were
experimented with to decide the best formula that ensures exploitation around the best
solution in the late stages.

5.4. Modified Population Structure

Zeng in [105] developed a novel GA with a dynamic chain-like agent population
structure. CAGA aimed to enhance the population structure and diversity. This was better
than the lattice-like agent population structure where agents do genetic operations just
with neighboring agents. In [101], Mistry used a new population structure for PSO-mGA.
He used a small-population secondary swarm strategy. A secondary swarm performs a
collaborative role to avoid stagnation and overcome premature convergence.

237

Mathematics 2022, 10, 464

5.5. Different Encoding Scheme

Galbally in [149], tried to minimize the verification error rate in the online signature
system. Different encoding schemes were used, including binary and integer coding. GA
with binary coding was used to search the complete search space. On the other hand,
GA with integer coding was used for searching a subset of the search space. GA with an
optimized descriptor weight or/and optimal descriptor subset was developed in [150]
over MPEG-7. There were three different encoding schemes: A real-coded chromosome
for weight optimization, binary-coded chromosome for the selection of optimal feature
descriptor subset, and bi-coded chromosomes for simultaneous weight optimization and
optimal feature descriptor selection. A new ensemble classifier was proposed in [151]. It
was based on AdaBoost learning and parallel GA. A hybrid model parallel-GA-AdaBoost
with different encoding schemes BGAFS and BCGAFS was proposed.

5.6. New Initialization

In [53], authors developed a hybrid model based on BPSO to solve the FS problem.
A new initialization strategy called Opposition-based Learning (OBL) was proposed. The
OBL strategy was used to enhance the initialization of particles and enforce diversity
among solutions by considering the solution as well as its opposite solution simultaneously.
OBL was used also to generate the opposite position of the gbest particle to get rid of the
stagnation case. A novel framework based on IGWO and Kernel Extreme Learning Machine
(KELM) was developed in [119]. In the GA-IGWO-KELM model, GA was applied first to
generate high quality and diversified initial positions, then GWO was used to update the
positions of the individuals in the discrete search space. Tubishat, in [5] developed a hybrid
model called IWOA-SVM-IG. The OBL strategy was applied for increasing the level of
diversity in the initial solutions generated by standard WOA. In [152], a quasi-oppositional
learning-based Multi-Verse Optimization (MVO) algorithm was used to improve the initial
setting up of solutions.

5.7. New Fitness Function

Chakraborty [153], proposed the PSO algorithm where the fitness evaluation of each
particle is based on ambiguity. The new fuzzy evaluation function was used to measure
the fuzziness of a fuzzy set. The best feature was represented with minimum intraclass
ambiguity as well as maximum interclass ambiguity. In [154], GA was proposed with
Fisher’s Linear Discriminant function in a model called GA-FLD. The new evaluation
function estimates the probability distribution of the class in the N-dimensional feature
space. It uses also the cardinality of the feature subset using covariance matrices which
is an extension of FLD. This method was used to measure the statistical proprieties of
the feature subset. Authors in [53] developed BPSO with a new fitness function based on
dynamic inertia weight. High inertia weights are assigned to particles with low fitness
values to facilitate more exploration of the search space. Low inertia weights are assigned
to particles with high fitness to facilitate more exploitation. In [6], GWO was modified
using several fitness functions. The fitness functions were accuracy, Hausdorff distance,
Jeffries–Matusita (JM) distance, the weighted sum of the accuracy and Hausdorff, and the
weighted sum of the accuracy and JM. In [155], different fitness functions were used to
enhance the performance of the MFO algorithm. The best fitness function was the one that
was applied across two-stages. The first stage optimizes the classification performance only
while the second stage takes into consideration the number of genes. The results show that
the proposed fitness functions can achieve better classification results compared with the
fitness function that takes into account only the classification performance.

5.8. Multi Objective

Zio [156], developed a system for nuclear plants based on GA to select among the
several measured plant parameters. The first approach applied was single objective GA
with fuzzy k-Nearest Neighbor classifier (KNN) then multi-objective approaches were

238

Mathematics 2022, 10, 464

applied. Mandal, in [157] developed a prediction system based on a multi-objective PSO
that satisfies the Pareto front and makes a trade-off between the non-dominated solutions
based on different objectives. The proposed multi-objective PSO FS algorithm performed
a dual-task where the first objective was maximizing the mutual information between a
feature and class label (relevance) and the second objective was minimizing the mutual
information among the features (redundancy). A Dynamic Locality Multi-Objective SSA
for FS was proposed in [158]. In [159], a multi-objective FS method was proposed based on
bacterial foraging optimization. In [160], a multi-objective PSO modified by Levy Flight
was proposed for intrusion detection in Internet of Things (IoT). RWS mechanism was
used to remove redundant features and information exchange mechanisms to avoid local
minima. A systematic review of the multi-objective FS problem that covered the related
studies in the period (2012, 2019) was introduced in [161].

5.9. Parallelism

In [162], Punch applied a wrapper FS based on GA to biological datasets. 5KNN
was modified to work on weighted features (multiplied by weights according to their
importance). The new approach was applied to a parallel distributed machine (Sparc and
HP). A new ensemble classifier was proposed in [151]. It was based on AdaBoost learning
and parallel GA. A parallel version of GA was applied on 16 processors with a master-slave
paradigm and KNN was used as a base classifier. Ghamisi in [163] applied the parallelism
strategy on PSO. Darwinian PSO (DPSO) was based on running many PSO algorithms
simultaneously. Each algorithm runs as a different swarm on the same problem. A natural
selection process was applied by rewarding the swarm that got better results and extending
its particles’ life so that new descendants were spawned. On the other hand, the swarm
with suboptimal results (stagnate) was punched so its search area was discarded and its
life was reduced by deleting its particles.

6. NIAs FS Applications

This section provides an extensive discussion on the use of modified NIA algorithms
in different applications.

6.1. Microarray Gene Expression Classification

In [164], a hybrid model of GA and SVM was developed to perform FS and kernel
parameter optimization. GA-SVM is a recommended approach for FS especially when the
kernel parameters are optimized and the number of selected features is not known beforehand.
Huang, in [128], developed a new GA-based wrapper approach. He adopted two stages of
optimizations. The outer optimization stage (global search) applied a fitness function based on
mutual information between actual classes and predicted classes. The second stage (the inner
optimization) implements a local search (filter manner) based on feature ranking. A gene
selection approach based on ACO was developed in [165]. A high-dimensional multi-class
cancer gene expression (GCM) and colon cancer data sets were used. The comparisons were
conducted with several rank-based models. The simulated results proved the validity of the
proposed ACO approach for FS in high dimensional data sets.

A reliable FS technique was developed in [136] for selecting relevant features in the
gene expression data set. The proposed methodology was IBPSO-KNN. The results of the
accuracy increased by 2.85% compared with other methods in the literature. Yang [92],
presented a new modified model for BPSO and applied it over six multi-category cancer-
related human gene expression data set. Yang [18] developed a hybrid filter wrapper
method for FS in microarray data sets using GA and IG. The ranking of features was
performed using a decision tree. Experiments showed that the IG-GA algorithm simplified
the number of gene expression levels and either achieved higher accuracy or used fewer
features compared to other methods. A hybrid filter-wrapper model based on Information
Gain (IG), Correlation-based (CFS), and IBPSO was proposed in [123]. Kabir [166] developed
a new hybrid model based on GA, NN, MI, and local search operators. A new PSO model

239

Mathematics 2022, 10, 464

that has the capability of discovering biomarkers from microarray data was designed
in [137].

Chuang [52] developed a hybrid model for FS and classification of large-dimensional
microarray data sets. Mohammad [138] developed a diagnostic medical model based on
IBPSO to find the least possible number of discriminative genes. One year later, Kabir
developed an ACO-based FS model in [167]. The ACOFS target was to select the salient
features with the smallest size. The model combined the ACO, neural network, filter,
and included an update for the rules-based on subset size determination scheme. In [24],
the PSO variant was superior to other methods in terms of performance, a number of
features, and cost.

A new filter-based approach based on the CS optimizer, mutual Information filter
(MI), entropy, and Artificial Neural Network (ANN) classifier was proposed in [126].
The entropy and mutual information were applied in the fitness function to calculate
the relevance and redundancy for the feature subsets. Banka developed a new modified
version of the PSO algorithm in [98]. Three benchmark data sets were used for colon
cancer, defused B-cell lymphoma, and leukemia. The model achieved a minimal number
of features and a higher classification accuracy. In [100], a model for cancer gene selection
and cancer classification was developed based on BQPSO and SVM with LOOCV. Five
DNA microarray data sets were used. Experiments showed better results for BQPSO/SVM
compared with BPSO/SVM and GA/SVM in terms of accuracy, robustness, and the number
of genes selected. Zawbaa [4], handled the complexity of the FS problem in data sets with
large dimensionality and few numbers of instances by developing a novel hybrid system
called GWO-ALO. A total of 27 different microarray and image processing data sets were
used. Some of the data sets were very complex with 50,000 features and less than 200
instances. The experiments showed promising results when compared with GA and PSO.
Ibrahim, in [168], developed a novel wrapper approach based on combining SVM with the
GOA optimizer, and then he applied the hybrid model on three biomedical data sets from
Iraqi cancer patients and UCI.

6.2. Facial Expression Recognition

A new modified ACO-based FS approach without a need for prior knowledge about
features was presented in [25]. The experiments were applied to an ORL gray-scale face image
database. The same author proposed after one year another ACO-based FS approach [135],
which showed superior performance compared with GA-based and other ACO FS approaches.
Aneesh, in [76], proposed a new face recognition technology using a modified version of BPSO,
called Accelerated BPSO (ABPSO). ORL database images taken at the AT&T Laboratories and
Cropped Yale B database-4 were used in the experiments. A biometric technique for Face
Recognition (FR) based on BPSO was developed in [97]. Seven benchmark databases, namely,
Cambridge ORL, UMIST, Extended YaleB, CMUPIE, Color FERET, FEI, and HP were used in
the experiments.

Zhang [112] developed a facial recognition system based on the MFO-LFA-SA hybrid
model to avoid premature stagnation and to guide the search procedure towards global optima.
MFO logarithmic spiral search behavior increased the exploitation power meanwhile the LFA
used the attractiveness function for more exploration in the search space. The SA empowered
the exploitation around the most promising solution. Experiments used frontal-view images
extracted from CK+JAFFE, MMI, and BU-3DFE. MFO-LFA FS outperformed other facial
expression recognition models. Mistry [101] incorporated several update mechanisms in one
model including the hybridization of a PSO- and mGA- (micro Genetic Algorithm), modified
population structure, new velocity update strategy, diversity maintenance strategy, and a sub-
dimension-based regional facial feature search strategy. Cross-domain images from the extended
Cohn Kanade and MMI benchmark databases were used in the experiments besides multiple
classifiers including NN with back-propagation, a multi-class SVM, and ensemble classifiers.

In [169], a system for Facial Emotion Recognition (FER) was developed based on
GWO-NN. The hybridization was used to tune the weights with less training error, then it

240

Mathematics 2022, 10, 464

classified the emotions from the selected features. The proposed FER system was evaluated
using the JAFFE and Cohn–Kanade database and the results showed higher accuracy
compared with conventional methods.

6.3. Medical Applications

A new recognition system for skin tumor diagnosis was developed by handels in [170].
A GA algorithm was used to extract the most suitable features from 2D images that
characterize the structure of the skin surface. NN with back-propagation was used as
a learning paradigm that was trained using the selected feature sets. Different network
topologies and parameter settings were investigated for optimization purposes and GA
was compared with heuristic greedy algorithms. The GA skin tumor achieved the highest
classification performance of 97.7%. An optimized mass detection system for digitized
mammograms was developed by Zheng [171]. A GA-BBN hybrid model was used to
classify positive and negative regions for masses depicted in digitized mammograms.
The results showed that GA achieved the same ratio of feature reduction in comparison with
the exhaustive search but reduced the total computation time by a factor of 65. In [113], a
hybrid PSO-GA FS system was developed to improve the cancer classification performance
and reduce the cost of medical diagnoses. Chakraborty [153] proposed a modified version
of PSO using a new fuzzy evaluation.

In [172], different hybridization models were developed using the GA algorithm
with different neural classifiers to get the best feature subset while preserving accuracy.
A comparison was conducted between GA-KNN, GA-BP-NN, GA-RBF-NN, and GA-LQV-
NN. The results showed that GA with neural classifiers were more robust and effective.
In [173], Babaoglu investigated the effectiveness of both BPSO and GA as FS models
for determining the existence of Coronary Artery Disease (CAD). BPSO-SVM and GA-
SVM were applied on a data set obtained from patients who had performed Exercise
Stress Testing (EST) and coronary angiography. The results showed that the BPSO-FS
method was more successful than GA-FS and SVM on determining CAD. An automatic
breast cancer diagnosis framework was designed by Ahmad [174]. The developed hybrid
Genetic Algorithm Multilayer Perceptron (GA-MLP) model performed simultaneous FS
and parameter optimization of ANN.

Three different variations of the backpropagation training algorithm, namely the resilient
backpropagation (GAANN-RP), Levenberg Marquardt (GAANN-LM), and Gradient Descent
with momentum (GAANN-GD) were investigated. The Wisconsin Breast Cancer Database
(WBCD) was used. The experiments showed that the best accuracy was achieved by the
RP. Sheikhpour developed a hybrid model to distinguish between benign and malignant
breast tumors [175].

PSO-KDE was used to minimize the kernel density estimation error and avoid the
time needed by the surgical biopsy. The Wisconsin Breast Cancer Data set (WBCD) and
Wisconsin Diagnosis Breast Cancer Database (WDBC) were used. Sayed [176] developed
an automatic system based on MFO for Alzheimer’s Disease (AD) diagnosis. It was able
to distinguish three kinds of classes including Normal, AD, and Cognitive Impairment.
A benchmark data set consisted of 20 patients from the National Alzheimer’s Coordinating
Center (NACC). Experiments showed that the SVM-polynomial kernel function was the
best one in terms of accuracy precision, recall, and f-score. A novel medical diagnosis
framework based on IGWO and KELM was developed in [119].

The model was investigated on Parkinson’s and breast cancer disease data sets.
The comparison was performed between IGWO-KELM, GWO-KELM, and GA-KELM.
The experimental results proved that the proposed method was better than the other two
competitive counterparts. One year later, Sayed developed a new approach for mitosis
detection in breast cancer histopathology slide images based on the MFO FS algorithm [177].
MFO was used to extract the best discriminating features of mitosis cells such as statistical,
shape, texture, and energy then the selected features were used to feed the Classification
and Regression Tree (CART) to make classification into either mitosis and non-mitosis.

241

Mathematics 2022, 10, 464

Wang [3] developed an efficient medical diagnosis tool based on CMFO and KELM to
minimize the number of features and to perform parameters optimization for KELM.

6.4. Handwritten Letter Recognition

The target in [178] was to study which one of the machine learning algorithms had
the right bias to solve specific natural language processing tasks. GA achieved the best
results on a language processing WSD data set. In [89], authors developed a hybrid GA to
mitigate the weakness of standard GA in fine-tuning near the local minima. The proposed
approach was validated using a data set gained by extracting the gray-mesh features
from the CENPARMI handwritten numeral samples. Galbally [149] tried to find a way
to minimize the verification error rate in the online signature verification system. A GA-
based approach with new modification was proposed. Experiments were conducted on
the MCYT signature database with 330 users and 16,500 signatures. The new approach
showed remarkable performance in all the carried out experiments. Zeng [105] developed a
novel GA with a dynamic chain-like agent population structure and dynamic neighboring
competitive selection strategy. He used a letter-recognition database from UC Irvine (UCI).
The experimental results showed that the feature subset generated from CAGA achieved a
higher classification rate, more stability, and lower classification complexity in comparison
with the other four GAs. A novel FS algorithm based on ACO was presented in [179]
to improve the performance of the algorithm in text categorization. Comparisons were
conducted with GA, information gain, and Chi Square test (CHI) on the Reuters-21578 data
set. The proposed approach proved its superiority concerning the Reuters-21578 data set.
In [129], Principal Component Analysis (PCA) was used with the IG filter method and GA
optimizer in a model called IG-GA-PCA. In the first stage, the IG method was applied to
rank the terms of the document according to their importance. In the second stage, GA
and PCA FS and feature extraction methods were applied separately to the ranked terms.
Experiments used both Reuters-21578 and Classic3 data sets. The experiments showed that
the IG-GA-PCA model could achieve high categorization results as measured by precision,
recall, and F-measure. In [154], a GA-FLD-based FS approach was used in order to find
features subsets that could optimally discriminate samples from different classes without
prior knowledge about features dimensionality. Another modification based on fitness
function were also proposed. Three standard databases of handwritten digits and one of
handwritten letters were used in the experiments. In [53], authors developed a hybrid
intelligent algorithm using BPSO and other operators to solve the FS problem in the text
clustering. A new initialization strategy, new fitness function, and new operator were
proposed. The Reuters-21578, Classic4, and WebKB benchmark text data sets were used.
The results showed higher clustering accuracy and improved the convergence speed of
BPSO. Ewees, in [180] introduced a new approach for Arabic handwritten letter recognition
(AHLR) called MFO-AHLR. A data set for Arabic handwritten letter images (CENPARMI)
was used. Results showed that MFO-AHLR achieved a 99.25% accuracy, which was the
highest ratio achieved among all AHLR approaches. Tubishat, in [5], developed a novel
hybrid model for Arabic SA. The targets of the study were to mitigate the limitations of
the WOA such as local minima, slow convergence diversity, and over-fitting problems.
A hybrid model IWOA-SVM-IG was applied over four Arabic benchmark data sets for
sentiment analysis. IWOA was compared with six well-known optimization algorithms
and two deep learning algorithms, namely Convolution NN (CNN) and Long Short-
term Memory (LSTM). The results showed that the IWOA algorithm outperformed all
other algorithms.

6.5. Hyper Spectral Images Processing

Tackett in [181] worked on extracting the statistical features from a large noisy US
Army NVEOD Terrain Board imagery database using GP. In [182], a new model was
proposed based on GA, Bayesian classification, and a new proposed fitness function
to discriminate the targets from clutters in SAR images. Jarvis [183] developed a novel

242

Mathematics 2022, 10, 464

approach based on GA and DFA for the selection of important discriminatory variables from
Fourier Transform Infrared (FT-IR) spectroscopic data. The GA achieved 16% reduction in
the model error. The GA-SVM model for hyper-spectral data classification was proposed
in [184]. The proposed GA-SVM was tested on an HYPERION hyper-spectral image.
Experiments demonstrated that the number of bands was reduced from 198 to 13, while
accuracy increased from 88.81% to 92.51%. A GA-based image annotation system with
optimized descriptor weights or/and optimal descriptor subset over MPEG-7 was developed
in [150]. The Corel image database consisted of 2000 images with 20 categories used.
Experiments showed that the binary-coded GA and the bi-coded GA improved the accuracy
of the image annotation system by 7%, 9%, and 13.6%, respectively compared to the
commonly used methods.

A new ensemble classifier was proposed in [151]. It was based on AdaBoost and
parallel GA in the context of the FS problem for image annotation in MPEG-7 standard.
The experiments were performed over 2000 classified Corel images. In [185], a new
approach based on GA, SVM, MI, and BB was developed to search for the best combination
of bands in the hyper spectra images. MI was used as a pre-processing step for band
grouping based on the correlation between bands and classes. GA-SVM was used to search
for the optimal combinations of bands that increase accuracy. A post-processing step based
on BB was used to filter out those irrelevant band groups. Ghamisi [163] applied the
FODPSO SVM approach to determine the most informative bands in the Hekla and Indian
Pines hyper-spectral data set using the parallelism modification technique. In the same
year, Ghamisi [186] presented a new hybrid approach based on GA, PSO, and SVM. His
target was to detect roads from a background in complex urban images. He integrated the
standard velocity and update rules of PSO with selection, crossover, and mutation from GA.
In [6], Medjahed developed a novel GWO framework for Pavia and AVIRIS hyper-spectral
images data sets.

6.6. Protein and Related Genome Annotation

In [116], a new FS model based on ACO-GA was proposed. Both ACO and GA
generated the feature subsets in parallel then the generated subsets were evaluated by
a certain fitness function. ACO used GA operators to update the solutions. The GPCR-
PROSITE dataset and ENZYME-PROSITE challenging protein sequences data sets were
used. Mandal [157], developed a prediction system to identify the possible subcellular
location of a protein-based on a multi-objective PSO.

6.7. Biochemistry and Drug Design

Raymer [187] developed a system that integrates FE, FS, and classifier training using
GA and KNN. This approach was applied in biochemistry and drug design for the
identification of favorable water-binding sites on protein surfaces. The approach was
validated using protein water interactions from a biochemistry field. Another model was
developed by Salcedo [104]. The proposed FS model was based on GA and m-features
operator (OR operator). The new approach was evaluated using two machine learning
classification problems; the first one used two artificial data sets and the second one was
a real application in molecular bioactivity for a drug design taken from the ones used in
the KDD Cup. THe m-features operator improved the GA performance over the other
existing approaches.

6.8. Electroencephalogram (EEG) Application

Palani [188] used GA and Fuzzy ARTMAP (FA) NN for FS. GA-FA-NN was used
with the VEP data which was recorded from 10 alcoholics and 10 controls. The target was
to classify alcoholics and controls, using multi-channel EEG signals. The discriminatory
spectral bands reduced from 7 to 2. The identification of useful spectral power ratios
produced better performance. In [189], a hybrid GA-SVM model was used to extract the
favorable patterns from noisy multidimensional time series obtained from EEG which are

243

Mathematics 2022, 10, 464

a base for Brain-computer Interfaces (BCIs). The data set was collected by a procedure
in which subjects were placed in a dim, sound controlled room. The proposed nonlinear
system was better than other linear approaches with a slight difference. A novel ACO-DE
FS system called ANTDE was presented in [23]. It could cope with the limitations of ACO
regarding the sequential generation for solutions. ANTDE was used in EEG and Myoelectric
Control (MEC) biosignal applications. Wang [130] developed a BCI system using a hybrid
model GA-SVM-entropy and 28 EEG channels. Noori designed an effective BCI in [190].
He used a new version of GA based on SVM to get smaller optimal features from functional
Near-infrared Spectroscopy signals (fNIRS). The experiments were established by recruiting
seven subjects who do not have any psychological disorder. Subjects were seated in a quiet
room and asked to relax to settle down their responses before beginning to perform mental
arithmetic tasks for a certain period.

6.9. Financial Prediction

In [191], a new financial prediction model was proposed. A hybrid model SVM-GA
was evaluated using 15 business data sets. Each data set consisted of 186 sampled firms.
GA-SVM achieved a prediction accuracy of up to 95.56% for all the tested business data.
In [192], the authors developed a hybrid fuzzy-GA approach for stock selection. The fuzzy-
based scoring mechanism was applied for scoring a set of stocks then the topmost stocks
were selected. GA applied for performing a dual job of FS and parameter optimization.
The constituent stocks of the 200 largest market capitalization listed in the Taiwan Stock
Exchange were used in the experiments.

6.10. Software Product Line Estimation

Oliveira [22] investigated the use of the GA method for simultaneous FS and parameters
optimization of Support Vector Regression (SVR) when applied for software effort estimates.
GA, SVR, MLP, and model trees were used. Six benchmark data sets of software projects,
namely, Desharnais, NASA, COCOMO, Albrecht, Kemerer and Koten, and Gray were used
in the experiments. In [106], Guo presented a new methodology for FS in the software
application. The target of the new modified GA was optimizing FS in a Software Product Line
(SPLs) to find a feature subset with an optimal product capability subject to feature model
constraints and resource constraints. The results showed that GA FS algorithms produced a
system with high performance and in 45–99% less time than existing heuristic FS techniques.

6.11. Spam Detection in Emails

Temitayo [193] developed a new approach for the classification of emails, either spam or
legitimate. GA was used to perform simultaneous FS and parameter optimization. The hybrid
GA-SVM spam detection model was evaluated using a Spam Assassin (6000 emails) data set.
Experiments showed that GA-SVM improved the results compared with SVM by achieving a
higher recognition rate with only a few feature subsets. In [85], a mutation-based BPSO FS
model was developed in an email application. A data set of 6000 emails manually collected
during the year 2012 was used. The proposed was able to effectively reduce the false-positive
error. In [194], a hybrid GA-RWN was used for identifying the most relevant features in spam
emails and automatic tuning for the hidden neurons. The GA-RWN achieved promising
results according to the spam detection rate and optimization for the configuration of its core
classifier. Lately, in [195], a novel Northern Bald Ibis Algorithm (NOA) was used with a SVM
classifier to get an optimal feature subset of the Enron-spam dataset.

6.12. Other Various Applications

Zio [156] developed an efficient transient diagnosis system for nuclear power plants
based on GA to select among the several measured plant parameters. In [61], the target was
addressing the problem of a lengthy Intrusion Detection (ID) process based on attributes
of network packets. Rough-PSO was used and evaluated using the KDDCup 1999 data
set. An automatic FS model that can choose the most relevant features from password

244

Mathematics 2022, 10, 464

typing patterns was designed in [196]. The data sets were captured on a Sun Sparc-
Station by a program in an X window environment in which the keystroke duration
times were measured. Rodrigues in [197] proposed a CS-OPF model for theft detection
in power distribution systems. The proposed model was evaluated using two data sets
from a Brazilian electrical power company. Experiments proved the robustness of the
CS-OPF model by increasing the theft recognition up to 40%. Zhang [127] developed a new
forecaster FS model based on combining MI and ACO. The ACO-MI model was applied
on forecasters data sets at the Australian Bureau of Meteorology. A system for diagnosing
different types of fault in a gearbox was designed in [198]. Hassanien [67] developed an
automatic tomato disease detection system based on integrating rough set with MFO.

6.13. An Open Source Evolopy-FS Framework

EvoloPy-FS [199] is an open-source FS software tool developed by our team and it
is publicly available on (www.evo-ml.com). It serves as an explicit white-box NIAs-FS
optimization framework. The main objective was to support researchers from different
disciplines with an easy-to-use, transparent, and automated NIAs-FS optimization tool.
The framework contains severe recent NIAs algorithms written in Python and a set of
different operators such as transfer functions (S-TFs and V-TFs). Moreover, the framework
applies wrappers, filters and a hybrid filter-wrapper, different evaluation metrics, and
allows for loading data from different resources. Evolopy-FS is a continuation of our
path, which is building an integrated optimization environment. The work was started
by EvoloPy [200] for global optimization problems then EvoloPy-NN for optimizing MLP
and recently Evolopy-FS for optimizing the feature selection process. In [199], authors
constructed the experiments based on 30 different well-regarded data sets from common
repositories such as UCI and Kaggle. The comparisons were conducted between wrapper
FS, filter FS, and hybrid filter-wrapper approaches. It was shown that wrapper and hybrid
filter-wrapper were superior and more trustable in dealing with large dimensionality data
sets. However, the filter approach was faster and generated results in a shorter time and
fewer computational efforts.

7. Assessment and Evaluation of NIAs FS Modification Techniques

As discussed, NIAs-FS approaches achieved big contributions and clear success in
solving the FS problem in different domains. This section presents the results from the
analysis of modified NIAs-FS studies. Table 1 shows a summary of the main studies in the
literature that adopted new operators as modification techniques for NIAs-FS, Table 2 shows
a summary of the main studies in the literature that adopted hybridization modification
technique for NIAs-FS, Table 3 shows a summary of main studies in the literature that
adopted the remaining modifications techniques for NIAs-FS, Table 4 shows a summary of
main modifications applied in the literature on main NIAs (applied/not applied), Table 5
shows a summary of main modifications applied in the literature on main NIAs (by
numbers), Table 6 shows a summary of the main studies in the literature that applied
modified NIAs FS in applications, and Table 7 shows a summary of modifications applied
on NIAa-FS in the main applications. It was observed that 34 different operators were
applied on NIAs wrappers in 48 different papers. Some references adopted over one
operator in their work. As it is clear also from the list, the most applied operator is the
chaotic map, which was applied in 10 references, then rough set in 6 references, then
selection operators (RWS, TS) in 5, then S-shaped and V-shaped transfer functions and
crossover in 4 references. The mutation was applied in 3 and UC, DE, and local search
operators each were been adopted by 2 references. A single reference adopted the remaining
operators. It was found that the PSO wrapper was the most modified optimizer using
newly adopted operators for tackling the FS problem. It was modified using a new operator
in 21 references. In addition, GA was modified in 6 references, WOA in 4, CS in 3, SSA in 3,
GWO, GOA, and MFO each one was modified by a new operator in 2 references. For DA,

245

Mathematics 2022, 10, 464

FFA, LA, BA, MVO, ABC, CSO, DE, and CSA, the number of references was 1. For FPA and
ACO, no work applies new operators to their algorithms for solving the FS problem.

It was clear from the analysis that the hybridization modification technique was
applied in 75 references to solve FS. This counting result shows that hybridization is the
most widely applied modification technique to enhance NIAs wrappers in the FS domain.
This high number of work comes from GA, which is the NIA that had the most number
of works regarding wrapper hybridization. GA wasapplied hybridization in 38 different
works, which is much higher than 6, the number of works that adopted new operators
to GA. We can infer from this works count and from the contribution of studies that
hybridization is the best suitable modification technique to be applied with GA. ACO also
were hybridized in 7 references, while no work adopted a new operator to modify ACO.
Conversely, PSO hybridization works were 11, which is less than 21, the number of works
with new operators, thus we can again infer from these counts and the contribution of
studies that adopting a new operator to PSO is more suitable than hybridization. It was
also noticed that hybridization using different kinds of classifiers was the most prominent
hybridization technique.

There are 49 studies that tried to investigate the influence of the classification technique
on the performance of wrappers for optimizing FS, some of these studies applied simultaneous
optimization for FS and a classification/prediction task by tuning the parameters of the
classifier with applying FS. The next widespread hybridization technique is a filter-wrapper,
which was applied in 14 studies and was very effective in dealing with large dimensionality
feature space. Hybridization techniques that tried to balance the exploration/exploitation
of the search space also were adopted by a considerable number of works. In summary, PSO
and GA are the most widely modified NIAs-FS approaches. They were equally modified
and used. Each one of them was adopted and modified for FS in 56 references of the
gathered studies.

On the other side, regarding applications of NIAs-FS, it was evident that microarray
gene expression classification is the most dominant application where NIAs-FS approaches
were applied in 18 studies with a ratio 24% concerning other applications. The medical
application was the second prominent application for applying NIAs-FS approaches with
a ratio of 21%. The medical application includes different medical branches SONAR,
tumor, mass, and various disease detection, medical diagnosis, medical data, and bio-signal
analysis. Then, follows hyper-spectral image with a ratio of 17%, Arabic handwritten
recognition with a ratio of 13%, facial expression recognition with a ratio of 9%, EEG
application with a ratio of 7%, financial diagnosis with a ratio of 5%, and spam detection
with a ratio of 4%. Furthermore, it is noticeable that GA is the most dominant NIA optimizer
for optimizing FS in applications with a ratio of 45%. PSO is the second most widespread
optimizer with a ratio of 26%, then ACO with a ratio of 11%, MFO with a ratio of 7%, GWO
with a ratio of 6%, CS with a ratio of 2%, WOA with a ratio of 2%, and GOA with a ratio of
1%.

No Free Lunch (NFL) theorem [201] states no optimization algorithm can solve all
the optimization problems equally. The success in solving a specific problem does not
guarantee that the algorithm will perform similarly for other problems. On average, all
the optimization algorithms perform equally. This theorem has motivated researchers
to develop new algorithms or improve the existing ones to solve another wide area of
optimization problems, such as feature selection. Researchers are advised to read the
following references as they are the most cited papers after 2010 in the field of NIAs-
FS: [17,51,80,90,94,124,202].

246

Mathematics 2022, 10, 464

Table 1. Summary of main ro pub the tables, and please check if it is the background color can
be deleted, same as follows. studies in the literature that adopted new operators as modification
techniques for Nature Inspired Algorithms Feature Selection NIAs-FS.

New Operator NIA Wrapper and No. of Publications References Total NIAs

Chaotic maps PSO(4), SSA(2), MVO(1), CSA(1) WOA(1), MFO(1) [3,51–58] 10

Rough set PSO(2), CS(2) , FA(1), MFO(1) [61–64,66,67] 6

Selection operators (RWS,TS) GOA(1), WOA(2), ABC(1), DE(1) [26,46,72–74] 5

Sigmoidal function PSO(1), GWO(1), CS(1), BA(1), GOA(1) [6,76–79] 5

S-shaped and V-shaped TFs PSO(1), SSA(1), DA(1), GOA(1) [79,80,82,83] 4

Crossover GWO(1), SSA(1), WOA(1), GOA(1) [73,79,82,84] 4
Mutation PSO(2), GOA(1) [53,79,85] 3

Uniform Combination (UC) PSO(2) [80,91] 2

Local search PSO(2) [24,90] 2

DE evolutionary operators WOA(1), ABC(1) [5,26] 2

Boolean algebra operation PSO(1) [92] 1

Logistic regression PSO(1) [202] 1

Catfish strategy PSO(1) [94] 1

Feature subset ranking PSO(1) [95] 1

Statistical clustering PSO(1) [96] 1

Threshold PSO(1) [97] 1

Gaussian sampling PSO(1) [91] 1

Reinforced memory strategy PSO(1) [91] 1

XOR operator PSO(1) [98] 1

Correlation information PSO(1) [99] 1

Binary quantum PSO(1) [100] 1

Reinitialization strategy PSO(1) [101] 1

Non replaceable memory PSO(1) [101] 1

Levy flight CS(1) [64] 1

Return cost indicator FFA(1) [102] 1

Pareto dominance based FFA(1) [102] 1

Movement operator and adaptive jump FFA(1) [102] 1

Greedy search ALO(1) [103] 1

Evolutionary Population Dynamics (EPD) GOA(1) [72] 1

DE-based neighborhood mechanism ABC(1) [26] 1
Repair mechanism DE(1) [74] 1

m-features operator (OR operator) GA(1) [104] 1

Dynamic neighboring genetic GA(1) [105] 1

Repair operator GA(1) [106] 1

247

Mathematics 2022, 10, 464

T
a

b
le

2
.

Su
m

m
ar

y
of

m
ai

n
st

ud
ie

s
in

th
e

lit
er

at
ur

e
th

at
ad

op
te

d
hy

br
id

iz
at

io
n

m
od

ifi
ca

ti
on

te
ch

ni
qu

e
fo

r
N

IA
s-

FS
.

T
a

rg
e

t
T

y
p

e
S

tr
a

te
g

y
M

o
d

e
l

R
e

fe
re

n
ce

s
T

o
ta

l

En
ha

nc
e

th
e

ex
pl

oi
ta

ti
on

N
IA

-N
IA

(P
op

u
la

ti
on

-t
ra

je
ct

or
y

(m
im

et
ic

)S
I-

EA
,S

I-
SI

)
G

lo
ba

l
se

ar
ch

fo
llo

w
ed

by
lo

ca
ls

ea
rc

h
G

W
O

-A
L

O
,

W
O

A
-S

A
,

C
SA

-F
PA

,
SS

A
-P

SO
,

P
SO

-m
G

A
,

A
C

O
-D

E
,

M
FO

-S
A

,M
FO

-L
FA

[4
,2

3,
46

,1
01

,1
08

,1
10

–1
12

]
8

R
efi

ne
th

e
be

st
so

lu
ti

on
s

N
IA

-N
IA

Im
p

le
m

en
ti

ng
N

IA
s

se
qu

en
ti

al
ly

as
a

p
ip

el
in

e.
A

p
p

ly
op

er
at

or
s

of
1s

t
al

go
ri

th
m

th
en

ap
p

ly
op

er
at

or
s

of
th

e
2n

d
al

go
ri

th
m

se
qu

en
ti

al
ly

W
O

A
-S

A
,P

SO
-G

A
[4

6,
11

3]
2

Sp
ee

d
up

th
e

se
ar

ch
pr

oc
es

s
N

IA
-N

IA
Pe

rf
or

m
pa

ra
lle

le
xp

lo
ra

ti
on

A
C

O
-G

A
[1

16
,1

17
]

2

En
ha

nc
e

th
e

in
it

ia
liz

at
io

n
pr

oc
es

s
N

IA
-N

IA
G

en
er

at
e

in
it

ia
l

so
lu

ti
on

s
by

on
e

al
go

ri
th

m
th

en
u

p
d

at
e

th
em

u
si

ng
th

e
ot

he
r

al
go

ri
th

m

G
A

-I
G

W
O

[1
19

]
1

Im
p

ro
ve

th
e

tr
ai

ni
ng

p
ro

ce
ss

.
Im

p
ro

ve
th

e
ev

al
u

at
io

n
p

ro
ce

ss
.

R
ed

uc
e

th
e

co
m

pu
ta

ti
on

co
m

pl
ex

it
y.

In
ve

st
ig

at
e

th
e

ca
pa

bi
lit

y
of

di
ff

er
en

t
cl

as
si

fie
rs

.S
im

ul
ta

ne
ou

s
pa

ra
m

et
er

s
op

ti
m

iz
at

io
n

an
d

fe
at

u
re

re
d

u
ct

io
n.

St
u

d
y

th
e

in
fl

u
en

ce
of

d
if

fe
re

nt
ev

al
u

at
io

n
st

ra
te

gi
es

on
w

ra
p

p
er

s
pe

rf
or

m
an

ce
.

N
IA

-C
la

ss
ifi

er
Fo

r
th

e
si

m
u

lt
an

eo
u

s
pa

ra
m

et
er

an
d

FS
op

ti
m

iz
at

io
n,

N
IA

w
or

ks
as

a
tu

ne
r

to
op

tim
iz

e
th

e
tr

ai
ni

ng
p

ar
am

et
er

s
se

t
u

p
,

se
le

ct
in

g
th

e
op

ti
m

al
fe

at
u

re
su

bs
et

by
m

ak
in

g
ne

w
re

p
re

se
nt

at
io

ns
of

an
in

d
iv

id
u

al
,

in
su

ch
a

w
ay

th
e

le
ng

th
of

th
e

in
di

vi
du

al
eq

ua
ls

th
e

nu
m

be
r

of
p

ar
am

et
er

s
an

d
nu

m
be

r
of

fe
at

u
re

s
an

d
ad

ju
st

s
th

e
va

lu
es

of
ge

ne
s

by
ei

th
er

d
oi

ng
re

al
or

bi
na

ry
co

nv
er

si
on

.

PS
O

-K
D

E,
G

A
-I

G
W

O
-K

EL
M

,G
W

O
-

N
N

,
C

S-
O

P
F,

C
SA

-F
PA

-O
P

F,
B

B
A

-
O

P
F,

B
B

A
-N

ai
ve

B
ay

es
,

{M
V

O
-R

F,
M

V
O

-J
48

,M
V

O
-K

st
ar

,M
V

O
-L

M
T

},
M

V
O

-S
V

M
,G

O
A

-S
V

M
,A

C
O

-S
V

M
,

A
C

O
-N

N
,C

M
FO

-K
EL

M
,C

SO
-S

V
M

,
G

A
-K

N
N

,
{G

A
-N

N
,

G
A

-B
N

N
,

G
A

-M
L

P,
G

A
-B

P-
N

N
,G

A
-R

B
F-

N
N

,G
A

-L
Q

V
-

N
N

,
G

A
A

N
N

-R
P,

G
A

A
N

N
-L

M
,

G
A

A
N

N
-G

D
,G

A
-R

W
N

},
G

A
-C

4.
5,

G
A

-S
V

M
,G

A
-B

ay
es

ia
n,

G
A

-F
K

N
N

,
G

A
-a

da
bo

os
t,

G
A

-S
V

R
,

[3
,1

8,
22

,2
2,

56
,7

7,
78

,1
08

,1
17

,
11

9,
12

1,
12

2,
12

8,
13

0,
15

1,
15

6,
16

4,
16

6,
16

6–
16

9,
17

1–
17

5,
18

2,
18

5,
18

8–
19

1,
19

4,
19

6–
19

8,
20

3–
20

8]

49

248

Mathematics 2022, 10, 464

T
a

b
le

2
.

C
on

t.

T
a

rg
e

t
T

y
p

e
S

tr
a

te
g

y
M

o
d

e
l

R
e

fe
re

n
ce

s
T

o
ta

l

M
in

im
iz

e
th

e
d

im
en

si
on

al
it

y
of

th
e

la
rg

e
d

at
as

et
s,

el
im

in
at

e
th

e
re

d
u

nd
an

t/
ir

re
le

va
nt

fe
at

u
re

s,
ev

al
u

at
e

th
e

ge
ne

ra
te

d
fe

at
ur

es
su

bs
et

s

N
IA

-F
ilt

er
(W

ra
pp

er
-F

ilt
er

)
C

la
ss

ic
al

ly
ap

p
lie

d
in

tw
o

st
ep

s:
Fi

lte
ri

ng
of

th
e

fe
at

ur
es

ap
p

lie
d

fi
rs

t
th

en
a

w
ra

p
p

er
is

ap
p

lie
d

on
th

e
re

d
u

ce
d

d
at

as
et

.
O

th
er

st
u

d
ie

s
tr

ie
d

to
em

be
d

th
e

fi
lt

er
in

th
e

st
ru

ct
u

re
of

a
w

ra
p

p
er

in
or

d
er

to
ev

al
u

at
e

th
e

ge
ne

ra
te

d
fe

at
ur

es
su

bs
et

s

{I
G

-I
B

P
SO

,
C

FS
-I

B
P

SO
},

M
SP

SO
-F

-
Sc

or
e,

M
I-

P
SO

,
{B

P
SO

-G
(I

nt
ro

p
y-

P
SO

),
B

P
SO

-P
(M

I-
P

SO
)}

,
C

S-
M

I-
E

nt
ro

p
y,

L
A

-Q
u

ic
kR

ed
u

ct
-

C
E

B
A

R
K

C
C

,
IW

O
A

-I
G

,
A

C
O

-M
I,

A
C

O
-M

u
lt

iv
ar

ia
te

fi
lt

er
,

G
A

-M
I,

IG
-G

A
,G

A
-E

nt
ro

py

[5
,1

6–
18

,6
4,

65
,1

24
–1

30
]

14

249

Mathematics 2022, 10, 464

Table 3. Summary of main studies in the literature that adopted the remaining modifications
techniques for NIAs-FS.

Modification NIA Wrapper and No. Publications References Total Works

Update mechanism PSO(10), SSA(1), DA(1), ACO(5) [24,25,53,83,90,96,135–139,141,142,179,
209–211]

17

Modified population
structure

PSO(1), SSA(1), GA(1) [101,105,142] 3

Different encoding
scheme

PSO(3), GA(4) [17,90,91,105,149,150,212] 7

New initialization PSO(2), GWO(1) [53,84,139] 3

New fitness function PSO(2), GWO(1), FFA(1), WOA(1), GA(4) [5,6,106,153,154,182,183,213,214] 9

Multi objective PSO(4), ACO(1), GA(1) [156,157,209,215–217] 6
Parallelism PSO(2), GA(2) [17,151,162,163] 4

Table 4. Summary of main modifications applied in the literature on main NIAs-FS (applied/not
applied).

Modification PSO GWO SSA CS DA FFA LA BA MVO GOA WOA ACO MFO GA

New operator � � � � � � � � � � � � � �

Hybridization � � � � � � � � � � � � � �

Update mechanism � � � � � � � � � � � � � �

Modified population
structure

� � � � � � � � � � � � � �

Different encoding
scheme

� � � � � � � � � � � � � �

New initialization � � � � � � � � � � � � � �

New fitness function � � � � � � � � � � � � � �

Multi objective � � � � � � � � � � � � � �

Parallelism � � � � � � � � � � � � � �

250

Mathematics 2022, 10, 464

T
a

b
le

5
.

Su
m

m
ar

y
of

m
ai

n
m

od
ifi

ca
ti

on
s

ap
pl

ie
d

in
th

e
lit

er
at

ur
e

on
m

ai
n

N
IA

s-
FS

(b
y

nu
m

be
r

of
st

ud
ie

s)
.

M
o

d
ifi

ca
ti

o
n

P
S

O
G

W
O

S
S

A
C

S
D

A
F

F
A

L
A

B
A

M
V

O
G

O
A

W
O

A
A

C
O

M
F

O
G

A
T

o
ta

l
S

tu
d

ie
s/

M
o

d
ifi

ca
ti

o
n

N
ew

op
er

at
or

21
2

3
3

1
1

1
1

1
2

4
0

2
6

48
H

yb
ri

di
za

ti
on

11
2

1
3

0
0

1
3

2
2

2
7

3
38

75
U

pd
at

e
m

ec
ha

ni
sm

10
0

1
0

1
0

0
0

0
0

0
5

0
0

17
M

od
ifi

ed
po

pu
la

ti
on

st
ru

ct
ur

e
1

0
1

0
0

0
0

0
0

0
0

0
0

1
3

D
iff

er
en

te
nc

od
in

g
sc

he
m

e
3

0
0

0
0

0
0

0
0

0
0

0
0

4
7

N
ew

in
it

ia
liz

at
io

n
2

1
0

0
0

0
0

0
0

0
0

0
0

0
3

N
ew

fit
ne

ss
fu

nc
ti

on
2

1
0

0
0

1
0

0
0

0
1

0
0

4
9

M
ul

ti
ob

je
ct

iv
e

4
0

0
0

0
0

0
0

0
0

0
1

0
1

6
Pa

ra
lle

lis
m

2
0

0
0

0
0

0
0

0
0

0
0

0
2

4

To
ta

ls
tu

di
es

/F
S-

N
IA

56
6

6
6

2
2

2
4

3
4

7
13

5
56

17
2

M
o

d
ifi

ca
ti

o
n

P
S

O
G

W
O

S
S

A
C

S
D

A
F

F
A

L
A

B
A

M
V

O
G

O
A

W
O

A
A

C
O

M
F

O
G

A
T

o
ta

l
S

tu
d

ie
s/

M
o

d
ifi

ca
ti

o
n

N
ew

op
er

at
or

21
2

3
3

1
1

1
1

1
2

4
0

2
6

48
H

yb
ri

di
za

ti
on

11
2

1
3

0
0

1
3

2
2

2
7

3
38

75
U

pd
at

e
m

ec
ha

ni
sm

10
0

1
0

1
0

0
0

0
0

0
5

0
0

17
M

od
ifi

ed
po

pu
la

ti
on

st
ru

ct
ur

e
1

0
1

0
0

0
0

0
0

0
0

0
0

1
3

D
iff

er
en

te
nc

od
in

g
sc

he
m

e
3

0
0

0
0

0
0

0
0

0
0

0
0

4
7

N
ew

in
it

ia
liz

at
io

n
2

1
0

0
0

0
0

0
0

0
0

0
0

0
3

N
ew

fit
ne

ss
fu

nc
ti

on
2

1
0

0
0

1
0

0
0

0
1

0
0

4
9

M
ul

ti
ob

je
ct

iv
e

4
0

0
0

0
0

0
0

0
0

0
1

0
1

6
Pa

ra
lle

lis
m

2
0

0
0

0
0

0
0

0
0

0
0

0
2

4

To
ta

ls
tu

di
es

/F
S-

N
IA

56
6

6
6

2
2

2
4

3
4

7
13

5
56

17
2

251

Mathematics 2022, 10, 464

Table 6. Summary of main studies in the literature that applied modified NIAs-FS in applications.

FS Application
NIA Wrapper

and No. of
Publications

References Total NIAs

Microarray gene
expression

classification.
(DNA micro array

classification)

PSO(9), GWO(1),
CS(1),

GOA(1), ACO(2),
GA(4)

[4,18,24,52,98,100,123,
126,128,136–138,164–

168]
18

Facial expression
recognition

PSO(3), GWO(1),
ACO(2),
MFO(1)

[25,76,97,101,112,135,
169] 7

Medical applications
(SONAR, tumor, mass
and various disease
detection, medical
diagnosis, medical
data, and bio signal

analysis)

PSO(4), GWO(1),
WOA(1),

ACO(1), MFO(3),
GA(6)

[3,57,62,113,119,153,
172–177,211] 16

Handwritten letter
recognition,

sentiment analysis,
language processing,
signature verification

system, and text
categorization

PSO(1), WOA(1),
ACO(1),

MFO(1), GA(6)

[5,53,89,105,129,149,
154,178–180] 10

Hyper spectral
images processing
and classification.

PSO(3), GWO(2),
GA(9)

[4,6,150,151,163,181–
186,212]

13

Intrusion detection PSO(1) [61] 1

Protein and related
genome annotation . PSO(1), ACO(1) [116,157] 2

Meteorology weather
forecasting ACO(1) [127] 1

Biological application GA(1) [162] 1

Biochemistry and
drug design GA(2) [104] 2

Electroencephalogram
(EEG) signals

application/Brain
Computer Interface

(BCI) system

ACO(1), GA(2) [23,130,188–190] 5

Design an automatic
FS model that can
choose the most

relevant features from
password typing

GA(1) [196] 1

252

Mathematics 2022, 10, 464

Table 6. Cont.

FS Application
NIA Wrapper

and No. of
Publications

References Total NIAs

Transient diagnosis
system for nuclear

power plants
GA(1) [156] 1

Financial diagnosis
/business crisis

detection/stock price
prediction

PSO(1), GA(3) [191,192,202] 4

Diagnose different
types of fault in a

gearbox
GA(1) [198] 1

Software Product
Line (SPLs) and sw

effort estimation
GA(2) [22,106] 2

Theft detection in
power distribution

systems
CS(1) [197] 1

Spam detection in
emails PSO(1), GA(2) [85,193,194] 3

Transient diagnosis
system for nuclear

power plants
GA(1) [156] 1

Automatic tomato
disease detection

system based
MFO(1) [67] 1

253

Mathematics 2022, 10, 464

T
a

b
le

7
.

Su
m

m
ar

y
of

m
od

ifi
ca

ti
on

s
ap

pl
ie

d
on

N
IA

-F
S

in
th

e
m

ai
n

ap
pl

ic
at

io
ns

.

A
p

p
M

o
d

ifi
ca

ti
o

n
M

o
d

e
l

C
la

ss
ifi

e
r

D
a

ta
se

ts
D

im
e

n
si

o
n

Y
e

a
r

R
e

f

Microarraygeneexpression

H
yb

ri
di

za
ti

on
G

A
-S

V
M

SV
M

2
20

00
20

03
[1

64
]

H
yb

ri
di

za
ti

on
G

A
-M

I
SV

M
13

20
00

20
07

[1
28

]
U

pd
at

e
m

ec
ha

ni
sm

IP
SO

1-
K

N
N

11
15

,0
09

20
08

[1
36

]
U

pd
at

e
m

ec
ha

ni
sm

BP
SO

1-
K

N
N

6
10

,5
09

20
08

[9
2]

H
yb

ri
di

za
ti

on
IB

PS
O

-I
G

,I
BP

SO
-C

FS
1-

K
N

N
6

11
,2

25
20

08
[1

23
]

U
pd

at
e

m
ec

ha
ni

sm
cu

PS
O

1-
K

N
N

11
15

,0
09

20
10

[1
37

]
H

yb
ri

di
za

ti
on

G
A

-I
G

1-
K

N
N

11
15

,0
09

20
10

[1
8]

H
yb

ri
di

za
ti

on
N

ew
op

er
at

or
/c

ha
ot

ic
TC

BP
SO

-C
FC

1-
K

N
N

10
98

68
20

11
[5

2]
U

pd
at

e
m

ec
ha

ni
sm

IB
PS

O
SV

M
10

12
,6

00
20

11
[1

38
]

H
yb

ri
di

za
ti

on
G

A
-N

N
-M

I
N

N
-B

P
11

71
29

20
11

[1
66

]
H

yb
ri

di
za

ti
on

A
C

O
FS

N
N

9
20

00
20

12
[1

67
]

H
yb

ri
di

za
ti

on
C

S-
M

I-
En

tr
op

y
A

N
N

6
15

,0
09

20
14

[1
26

]
U

pd
at

e
m

ec
ha

ni
sm

PS
O

-L
SR

G
1-

K
N

N
5

12
,6

00
20

14
[2

4]
N

ew
op

er
at

or
/X

O
R

H
D

BP
SO

1-
K

N
N

,3
-K

N
N

,5
-K

N
N

3
71

29
20

15
[9

8]
N

ew
op

er
at

or
/b

in
ar

yq
ua

nt
um

BQ
PS

O
-S

V
M

SV
M

5
12

,6
00

20
16

[1
00

]
H

yb
ri

di
za

ti
on

G
W

O
-A

LO
5-

K
N

N
7

49
15

1
20

18
[4

]
H

yb
ri

di
za

ti
on

G
O

A
-S

V
M

SV
M

3
17

,6
78

20
18

[1
68

]

Medicalapplication

H
yb

ri
di

za
ti

on
G

A
BP

N
N

,G
A

R
BF

N
N

,G
A

LQ
V

N
N

BP
N

N
,R

BF
N

N
,L

Q
V

N
N

1
30

20
06

[1
72

]
H

yb
ri

di
za

ti
on

PS
O

-G
A

SV
M

3
71

29
20

08
[1

13
]

N
ew

fit
ne

ss
fu

nc
ti

on
PS

O
-M

LP
M

LP
3

16
20

08
[1

53
]

H
yb

ri
di

za
ti

on
BP

SO
-F

ST
,G

A
-F

ST
SV

M
1

23
20

10
[1

73
]

N
ew

op
er

at
or

/r
ou

gh
se

t
PS

O
-R

R
,P

SO
-Q

R
N

ai
ve

Ba
ye

s,
Ba

ye
sN

et
,K

St
ar

4
45

20
14

[6
2]

H
yb

ri
di

za
ti

on
G

A
A

N
N

R
P,

G
A

A
N

N
LM

,G
A

A
N

N
G

D
,

N
N

R
P,

N
N

LM
,N

N
G

D
1

10
20

15
[1

74
]

H
yb

ri
di

za
ti

on
PS

O
-K

D
E

K
D

E
2

32
20

16
[1

75
]

H
yb

ri
di

za
ti

on
IG

W
O

-G
A

-K
EL

M
K

EL
M

2
32

20
17

[1
19

]
N

ew
op

er
at

or
/c

ha
ot

ic
m

ap
s

C
M

FO
FS

-K
EL

M
K

EL
M

1
22

20
17

[3
]

254

Mathematics 2022, 10, 464

T
a

b
le

7
.

C
on

t.

A
p

p
M

o
d

ifi
ca

ti
o

n
M

o
d

e
l

C
la

ss
ifi

e
r

D
a

ta
se

ts
D

im
e

n
si

o
n

Y
e

a
r

R
e

f

Hyperspectralimagesprocessing

N
ew

fit
ne

ss
fu

nc
ti

on
hy

br
id

iz
at

io
n

G
A

-M
D

LP
-B

ay
es

ia
n

Ba
ye

si
an

3
20

20
03

[1
82

]
N

ew
fit

ne
ss

fu
nc

ti
on

G
A

-D
FA

V
al

id
at

io
n

by
pr

oj
ec

ti
on

1
88

2
20

04
[1

83
]

H
yb

ri
di

za
ti

on
G

A
-S

V
M

SV
M

1
19

8
20

08
[1

84
]

D
iff

er
en

te
nc

od
in

g
sc

he
m

es
G

A
-K

N
N

K
N

N
1

25
20

08
[1

50
]

D
iff

er
en

te
nc

od
in

g
sc

he
m

es
G

A
-K

N
N

K
N

N
1

25
20

08
[2

12
]

H
yb

ri
di

za
ti

on
pa

ra
lle

lis
m

Pa
ra

lle
l-

G
A

-A
da

bo
os

t
A

da
bo

os
te

ns
em

bl
e,

K
N

N
1

25
20

10
[1

51
]

D
iff

er
en

te
nc

od
in

g
sc

he
m

es
BG

A
FS

,B
C

G
A

FS
A

da
bo

os
te

ns
em

bl
e,

K
N

N
1

25
20

10
[1

51
]

H
yb

ri
di

za
ti

on
M

I-
G

A
-S

V
M

-B
B

SV
M

,B
B

2
20

2
20

11
[1

85
]

Pa
ra

lle
lis

m
FO

D
PS

O
-S

V
M

SV
M

2
22

0
20

15
[1

63
]

H
yb

ri
di

za
ti

on
H

G
A

PS
O

-S
V

M
SV

M
1

22
0

20
15

[1
86

]
N

ew
fit

ne
ss

fu
nc

ti
on

G
W

O
-K

N
N

7-
K

N
N

3
22

4
20

16
[6

]
H

yb
ri

di
za

ti
on

G
W

O
-A

LO
5-

K
N

N
5

10
,3

04
20

18
[4

]

ArabicHR

N
ew

op
er

at
or

/l
oc

al
se

ar
ch

H
G

A
1-

K
N

N
1

16
20

04
[8

9]
D

iff
er

en
te

nc
od

in
g

sc
he

m
es

G
A

N
o

cl
as

si
fie

r
1

10
0

20
07

[1
49

]
U

pd
at

e
m

ec
ha

ni
sm

A
C

O
K

N
N

1
75

42
20

09
[1

79
]

N
ew

po
pu

la
ti

on
st

ru
ct

ur
e

C
A

G
A

N
N

-B
P

1
16

20
09

[1
05

]
H

yb
ri

di
za

ti
on

IG
-G

A
-P

C
A

K
N

N
,C

4.
5

4
75

42
20

11
[1

29
]

N
ew

fit
ne

ss
fu

nc
ti

on
G

A
-F

LD
K

N
N

,M
LP

,S
V

M
(R

BF
,P

ol
y,

Si
gm

)
4

78
0

20
14

[1
54

]
N

ew
in

it
ia

liz
at

io
n+

N
ew

op
er

at
or

/m
ut

at
io

n
BP

SO
N

o
cl

as
si

fie
r/

cl
us

te
ri

ng
pr

ob
le

m
3

88
30

20
16

[5
3]

H
yb

ri
di

za
ti

on
ne

w
op

er
at

or
/D

E
ev

ol
ut

io
na

ry
IW

O
A

-I
G

-S
V

M
SV

M
4

80
57

20
18

[5
]

Facerecognition

U
pd

at
e

m
ec

ha
ni

sm
A

C
O

K
N

N
1

40
0

20
07

[2
5]

U
pd

at
e

m
ec

ha
ni

sm
A

C
O

K
N

N
1

40
0

20
08

[1
35

]
N

ew
op

er
at

or
/i

nt
el

lig
en

ta
cc

el
er

at
io

n
A

BP
SO

Eu
cl

id
ea

n
cl

as
si

fie
r

2
22

04
20

12
[7

6]
N

ew
op

er
at

or
/t

hr
es

ho
ld

BP
SO

Eu
cl

id
ea

n
cl

as
si

fie
r

7
16

,3
80

20
14

[9
7]

H
yb

ri
di

za
ti

on
ne

w
op

er
at

or
up

da
te

PS
O

-m
G

A
N

N
-B

P,
SV

M
-R

BF
,e

ns
em

bl
es

2
12

80
20

17
[1

01
]

H
yb

ri
di

za
ti

on
G

W
O

-N
N

N
N

2
48

6
20

18
[1

69
]

N
ew

op
er

at
or

s/
re

tu
rn

-c
os

t
R

c-
BB

FA
1-

K
N

N
10

12
80

20
16

[1
12

]

255

Mathematics 2022, 10, 464

8. Conclusions and Future Research Directions

In this study, a survey about modifications of NIAs for tackling the FS optimization
problem is presented. The review is based on a solid theoretical, applied, and technical
foundation. Three main research streams are identified in this review: Meta-heuristic
optimization, feature selection, and modification on NIAs for tackling FS. This review
aims to draw the map for researchers and guide them when creating new research in this
area. This survey is based on 156 articles collected and studied on modifications of NIAs
for solving the FS problem. The sources of the information search came mainly from six
well-regarded scientific databases: Elsevier, Springer, Hindawi, ACM, World scientific,
and IEEE. From the review, it can be seen that the NIAs algorithms have been extensively
investigated over the past years to improve the FS problem. About 34 different operators
were investigated. The most popular operator is chaotic maps. Hybridization is the most
widely used modification technique. There are three types of hybridization: Integrating
NIA with another NIA, integrating NIA with a classifier, and integrating NIA with a
classifier. The most widely used hybridization is the one that integrates a classifier with the
NIA. Microarray and medical applications are the dominated applications where most of
the NIA-FS are modified and used. Despite the popularity of the NIAs-FS, there are still
many areas that need further investigation:

• Until now, there are few works in the binary optimization field. Many new operators
can be proposed to enhance the performance of binary optimizers in a binary space.
This is an interesting research direction;

• The proposed enhanced binary versions of optimizers can be used as a data mining
tool in various applications. There are some applications where the usage of modified
NIAs-FS in them is still limited;

• It would also be interesting to look at the dimensionality and number of instances in
data sets. Nowadays, the majority of FS works to address problems with dimensionality
up to several thousand but the question that may arise is what will happen if the
data sets scaled up to millions of features? There is a scalability gap that should be
addressed in the future;

• There is still room for improvement through parallel NIAs-FS. This might be a fruitful
direction for research;

• Hyper volume Pareto optimal dominance and many-objective optimization need
further crucial investigation.

Based on the above trends, the size of the NIAs-FS research area can be recognized.
Besides, it can be imagined that a thorough investigation and improvement of NIAs will
improve the FS process in various high-dimensional areas. This review paper will be used
to help researchers take an excellent view of the modification strategies in nature-inspired
algorithms for tackling the feature selection problem.

Author Contributions: Conceptualization, R.A.K., I.A. and A.S.; methodology, R.A.K., I.A. and
A.S.; formal analysis, R.A.K., I.A. and A.S.; resources, R.A.K.; validation, M.A.E., R.D. and T.K.;
writing—original draft preparation, R.A.K., I.A. and A.S.; writing—review and editing, M.A.E., R.D.
and T.K.; supervision, M.A.E.; funding acquisition, T.K. All authors read and agreed to the published
version of the manuscript.

Funding: No funding received for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: All authors declare that they have no conflict of interest.

256

Mathematics 2022, 10, 464

References

1. Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng.
2005, 17, 491–502.

2. Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12.
3. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine

using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84.
4. Zawbaa, H.M.; Emary, E.; Grosan, C.; Snasel, V. Large-dimensionality small-instance set feature selection: A hybrid bio-inspired

heuristic approach. Swarm Evol. Comput. 2018, 42, 29–42.
5. Tubishat, M.; Abushariah, M.A.; Idris, N.; Aljarah, I. Improved whale optimization algorithm for feature selection in Arabic

sentiment analysis. Appl. Intell. 2018, 49, 1–20.
6. Medjahed, S.A.; Saadi, T.A.; Benyettou, A.; Ouali, M. Gray wolf optimizer for hyperspectral band selection. Appl. Soft Comput.

2016, 40, 178–186.
7. Makhadmeh, S.N.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Abasi, A.K.; Khader, A.T.; Damaševičius, R.; Mohammed, M.A.;

Abdulkareem, K.H. Smart home battery for the multi-objective power scheduling problem in a smart home using grey wolf
optimizer. Electronics 2021, 10, 1–35.

8. Faris, H.; Abukhurma, R.; Almanaseer, W.; Saadeh, M.; Mora, A.M.; Castillo, P.A.; Aljarah, I. Improving financial bankruptcy
prediction in a highly imbalanced class distribution using oversampling and ensemble learning: A case from the Spanish market.
Prog. Artif. Intell. 2019, 9, 1–23.

9. Al-Madi, N.; Faris, H.; Abukhurma, R. Cost-Sensitive Genetic Programming for Churn Prediction and Identification of the
Influencing Factors in Telecommunication Market. Int. J. Adv. Sci. Technol. 2018, 13–28.

10. Pourzangbar, A.; Losada, M.A.; Saber, A.; Ahari, L.R.; Larroudé, P.; Vaezi, M.; Brocchini, M. Prediction of non-breaking wave
induced scour depth at the trunk section of breakwaters using Genetic Programming and Artificial Neural Networks. Coast. Eng.
2017, 121, 107–118.

11. Okewu, E.; Misra, S.; Maskeliunas, R.; Damasevicius, R.; Fernandez-Sanz, L. Optimizing green computing awareness for
environmental sustainability and economic security as a stochastic optimization problem. Sustainability 2017, 9, 18–57.

12. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans.
Evol. Comput. 2016, 20, 606–626.

13. Alweshah, M.; Al Khalaileh, S.; Gupta, B.B.; Almomani, A.; Hammouri, A.I.; Al-Betar, M.A. The monarch butterfly optimization
algorithm for solving feature selection problems. Neural Comput. Appl. 2020, 2020, 1–15.

14. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324.
15. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156.
16. Tabakhi, S.; Moradi, P.; Akhlaghian, F. An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl.

Artif. Intell. 2014, 32, 112–123.
17. Liu, Y.; Wang, G.; Chen, H.; Dong, H.; Zhu, X.; Wang, S. An improved particle swarm optimization for feature selection. J. Bionic

Eng. 2011, 8, 191–200.
18. Yang, C.H.; Chuang, L.Y.; Yang, C.H. IG-GA: A hybrid filter/wrapper method for feature selection of microarray data. J. Med

Biol. Eng. 2010, 30, 23–28.
19. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.

(CSUR) 2018, 50, 94.
20. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review. Appl. Sci. 2018, 8, 1521.
21. Diao, R.; Shen, Q. Nature inspired feature selection meta-heuristics. Artif. Intell. Rev. 2015, 44, 311–340.
22. Oliveira, A.L.; Braga, P.L.; Lima, R.M.; Cornélio, M.L. GA-based method for feature selection and parameters optimization for

machine learning regression applied to software effort estimation. Inf. Softw. Technol. 2010, 52, 1155–1166.
23. Khushaba, R.N.; Al-Ani, A.; AlSukker, A.; Al-Jumaily, A. A combined ant colony and differential evolution feature

selection algorithm. In Proceedings of the International Conference on Ant Colony Optimization and Swarm Intelligence; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 1–12.

24. Tran, B.; Xue, B.; Zhang, M. Improved PSO for feature selection on high-dimensional datasets. In Proceedings of the Asia-Pacific
Conference on Simulated Evolution and Learning; Springer: Berlin/Heidelberg, Germany, 2014; pp. 503–515.

25. Kanan, H.R.; Faez, K.; Taheri, S.M. Feature selection using ant colony optimization (ACO): A new method and comparative study
in the application of face recognition system. In Proceedings of the Industrial Conference on Data Mining; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 63–76.

26. Hancer, E.; Xue, B.; Karaboga, D.; Zhang, M. A binary ABC algorithm based on advanced similarity scheme for feature selection.
Appl. Soft Comput. 2015, 36, 334–348.

27. Balázs, K.; Botzheim, J.; Kóczy, L.T. Comparative Investigation of Various Evolutionary and Memetic Algorithms. In Computational
Intelligence in Engineering; Springer: Berlin/Heidelberg, Germany, 2010; pp. 129–140. doi:10.1007/978-3-642-15220-7_11.

28. Sahlol, A.T.; Elaziz, M.A.; Jamal, A.T.; Damaševičius, R.; Hassan, O.F. A novel method for detection of tuberculosis in chest
radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 2020, 12, 11–46 .

29. Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-qaness, M.A.A.; Damasevicius, R.; Elaziz, M.A. COVID-19 image classification using
deep features and fractional-order marine predators algorithm. Sci. Rep. 2020, 10, 15–36.

257

Mathematics 2022, 10, 464

30. Polap, D.; Woźniak, M. Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and
death mechanism. Symmetry 2017, 9, 203.

31. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107.
32. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133.
33. Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Abd Elaziz, M.; Damaševičius, R.; Korytkowski, M.; Ewees, A.A. Modified Harris Hawks

optimizer for solving machine scheduling problems. Symmetry 2020, 12, 1460.
34. Ksiazek, K.; Połap, D.; Woźniak, M.; Damaševičius, R. Radiation heat transfer optimization by the use of modified ant lion

optimizer. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 27 November–1
December 2017; Volume 2018, pp. 1–7.

35. Damaševičius, R.; Maskeliūnas, R. Agent state flipping based hybridization of heuristic optimization algorithms: A case of bat
algorithm and krill herd hybrid algorithm. Algorithms 2021, 14, 358.

36. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.
Appl. 2018, 30, 413–435.

37. Hira, Z.; Gillies, D. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv. Bioinform.
2015, 2015, 198363–198363.

38. Somol, P.; Grim, J.; Novovičová, J.; Pudil, P. Improving feature selection process resistance to failures caused by curse-of-
dimensionality effects. Kybernetika 2011, 47, 401–425.

39. von Luxburg, U.; Bousquet, O. Distance-Based Classification with Lipschitz Functions. In Learning Theory and Kernel Machines;
Springer Berlin/Heidelberg, Germany, 2003; pp. 314–328. doi:10.1007/978-3-540-45167-9_24.

40. Higgins, I.; Amos, D.; Pfau, D.; Racaniere, S.; Matthey, L.; Rezende, D.; Lerchner, A. Towards a Definition of Disentangled
Representations. arXiv 2018. arXiv:cs.LG/1812.02230.

41. Brank, J.; Mladenić, D.; Grobelnik, M.; Liu, H.; Mladenić, D.; Flach, P.A.; Garriga, G.C.; Toivonen, H.; Toivonen, H. Feature
Selection. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; pp. 402–406. doi:10.1007/978-0-387-30164-8_306.

42. Achille, A.; Soatto, S. Emergence of Invariance and Disentanglement in Deep Representations. In Proceedings of the 2018
Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018, doi:10.1109/ita.2018.8503149.

43. Ratner, A.J.; Ehrenberg, H.R.; Hussain, Z.; Dunnmon, J.; Ré, C. Learning to Compose Domain-Specific Transformations for Data
Augmentation. arXiv 2017,arXiv:stat.ML/1709.01643.

44. Khaire, U.M.; Dhanalakshmi, R. Stability of feature selection algorithm: A review. J. King Saud Univ. Comput. Inf. Sci. 2019, 2019,
doi:10.1016/j.jksuci.2019.06.012.

45. Gheyas, I.A.; Smith, L.S. Feature subset selection in large dimensionality domains. Pattern Recognit. 2010, 43, 5–13,
doi:10.1016/j.patcog.2009.06.009.

46. Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing
2017, 260, 302–312.

47. Glover, F. Tabu search-part I. ORSA J. Comput. 1989, 1, 190–206.
48. Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization

problems. Appl. Intell. 2018, 48, 805–820.
49. Mirjalili, S.; Lewis, A.; Mostaghim, S. Confidence measure: A novel metric for robust meta-heuristic optimisation algorithms. Inf.

Sci. 2015, 317, 114–142.
50. Lu, H.; Wang, X.; Fei, Z.; Qiu, M. The effects of using Chaotic map on improving the performance of multiobjective evolutionary

algorithms. Math. Probl. Eng. 2014, 2014, 924652 .
51. Chuang, L.Y.; Yang, C.H.; Li, J.C. Chaotic maps based on binary particle swarm optimization for feature selection. Appl. Soft

Comput. 2011, 11, 239–248.
52. Chuang, L.Y.; Yang, C.S.; Wu, K.C.; Yang, C.H. Gene selection and classification using Taguchi chaotic binary particle swarm

optimization. Expert Syst. Appl. 2011, 38, 13367–13377.
53. Bharti, K.K.; Singh, P.K. Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text

clustering. Appl. Soft Comput. 2016, 43, 20–34.
54. Ahmed, S.; Mafarja, M.; Faris, H.; Aljarah, I. Feature selection using salp swarm algorithm with chaos. In Proceedings of the 2nd

International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence; ACM: New York, NY, USA, 2018; pp. 65–69.
55. Sayed, G.I.; Khoriba, G.; Haggag, M.H. A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl.

Intell. 2018, 48, 1–20.
56. Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. 2017, 31,

991–1006.
57. Sayed, G.I.; Darwish, A.; Hassanien, A.E. A New Chaotic Whale Optimization Algorithm for Features Selection. J. Classif. 2018,

35, 300–344.
58. Sayed, G.I.; Hassanien, A.E.; Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 2017,

31, 171–188.
59. Qasim, O.S.; Al-Thanoon, N.A.; Algamal, Z.Y. Feature selection based on chaotic binary black hole algorithm for data classification.

Chemom. Intell. Lab. Syst. 2020, 15, 104104.
60. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356.

258

Mathematics 2022, 10, 464

61. Zainal, A.; Maarof, M.A.; Shamsuddin, S.M. Feature selection using Rough-DPSO in anomaly intrusion detection. In Proceedings of
the International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 512–524.

62. Inbarani, H.H.; Azar, A.T.; Jothi, G. Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis.
Comput. Methods Programs Biomed. 2014, 113, 175–185.

63. Alia, A.F.; Taweel, A. Feature selection based on hybrid Binary Cuckoo Search and rough set theory in classification for nominal
datasets. Algorithms 2017, 14, 65.

64. El Aziz, M.A.; Hassanien, A.E. Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput. Appl.
2018, 29, 925–934.

65. Mafarja, M.M.; Mirjalili, S. Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection.
Soft Comput. 2018, 23, 6249–6265.

66. Chen, Y.; Zhu, Q.; Xu, H. Finding rough set reducts with fish swarm algorithm. Knowl.-Based Syst. 2015, 81, 22–29.
67. Hassanien, A.E.; Gaber, T.; Mokhtar, U.; Hefny, H. An improved moth flame optimization algorithm based on rough sets for

tomato diseases detection. Comput. Electron. Agric. 2017, 136, 86–96.
68. Tawhid, M.A.; Ibrahim, A.M. Hybrid binary particle swarm optimization and flower pollination algorithm based on rough

set approach for feature selection problem. In Nature-Inspired Computation in Data Mining and Machine Learning; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 249–273.

69. Ropiak, K.; Artiemjew, P. On a Hybridization of Deep Learning and Rough Set Based Granular Computing. Algorithms 2020,
13, 63, doi:10.3390/a13030063.

70. Dennett, D.C. Darwinś dangerous idea. Science 1995, 35, 34–40.
71. Tanaka, M.; Watanabe, H.; Furukawa, Y.; Tanino, T. GA-based decision support system for multicriteria optimization. Systems,

Man and Cybernetics. In Proceedings of the Intelligent Systems for the 21st Century; Springer: Berlin/Heidelberg, Germany, 1995;
Volume 2, pp. 1556–1561.

72. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; AlaḾ, A.Z.; Mirjalili, S. Evolutionary population dynamics and
grasshopper optimization approaches for feature selection problems. Knowl.-Based Syst. 2018, 145, 25–45.

73. Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453.
74. Khushaba, R.N.; Al-Ani, A.; Al-Jumaily, A. Feature subset selection using differential evolution and a statistical repair mechanism.

Expert Syst. Appl. 2011, 38, 11515–11526.
75. Leibowitz, N.; Baum, B.; Enden, G.; Karniel, A. The exponential learning equation as a function of successful trials results in

sigmoid performance. J. Math. Psychol. 2010, 54, 338–340.
76. Aneesh, M.; Masand, A.A.; Manikantan, K. Optimal feature selection based on image pre-processing using accelerated binary

particle swarm optimization for enhanced face recognition. Procedia Eng. 2012, 30, 750–758.
77. Pereira, L.; Rodrigues, D.; Almeida, T.; Ramos, C.; Souza, A.; Yang, X.S.; Papa, J. A binary cuckoo search and its application for

feature selection. In Cuckoo Search and Firefly Algorithm; Springer: Berlin/Heidelberg, Germany, 2014; pp. 141–154.
78. Rodrigues, D.; Pereira, L.A.; Nakamura, R.Y.; Costa, K.A.; Yang, X.S.; Souza, A.N.; Papa, J.P. A wrapper approach for feature

selection based on bat algorithm and optimum-path forest. Expert Syst. Appl. 2014, 41, 2250–2258.
79. Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; AlaḾ, A.Z.; Mirjalili, S. Binary grasshopper optimisation algorithm approaches

for feature selection problems. Expert Syst. Appl. 2019, 117, 267–286.
80. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput.

2013, 9, 1–14.
81. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics. In

Proceedings of the Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.
82. Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; AlaḾ, A.Z.; Mirjalili, S.; Fujita, H. An efficient binary Salp Swarm Algorithm

with crossover scheme for feature selection problems. Knowl.-Based Syst. 2018, 154, 43–67.
83. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature

selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204.
84. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,

172, 371–381.
85. Zhang, Y.; Wang, S.; Phillips, P.; Ji, G. Binary PSO with mutation operator for feature selection using decision tree applied to

spam detection. Knowl.-Based Syst. 2014, 64, 22–31.
86. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.; Tubishat, M. Improved Harris Hawks Optimization Using Elite Opposition-Based Learning

and Novel Search Mechanism for Feature Selection. IEEE Access 2020, 8, 121127–121145.
87. Sims, D.W.; Humphries, N.E.; Bradford, R.W.; Bruce, B.D. Lévy flight and Brownian search patterns of a free-ranging predator

reflect different prey field characteristics. J. Anim. Ecol. 2012, 81, 432–442.
88. Khurmaa, R.A.; Aljarah, I.; Sharieh, A. An intelligent feature selection approach based on moth flame optimization for medical

diagnosis. Neural Comput. Appl. 2020, 33, 7165–7204.
89. Oh, I.S.; Lee, J.S.; Moon, B.R. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26,

1424–1437.
90. Vieira, S.M.; Mendonça, L.F.; Farinha, G.J.; Sousa, J.M. Modified binary PSO for feature selection using SVM applied to mortality

prediction of septic patients. Appl. Soft Comput. 2013, 13, 3494–3504.

259

Mathematics 2022, 10, 464

91. Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W. Feature selection algorithm based on bare bones particle swarm optimization.
Neurocomputing 2015, 148, 150–157.

92. Yang, C.S.; Chuang, L.Y.; Ke, C.H.; Yang, C.H. Boolean binary particle swarm optimization for feature selection. In Proceedings
of the Evolutionary Computation 2008, Hong Kong, China, 1–6 June 2008; pp. 2093–2098.

93. Danyadi, Z.; Foldesi, P.; Koczy, L.T. Solution of a fuzzy resource allocation problem by various evolutionary approaches. In
Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28
June 2013; doi:10.1109/ifsa-nafips.2013.6608504.

94. Chuang, L.Y.; Tsai, S.W.; Yang, C.H. Improved binary particle swarm optimization using catfish effect for feature selection. Expert
Syst. Appl. 2011, 38, 12699–12707.

95. Xue, B.; Zhang, M.; Browne, W.N. Single feature ranking and binary particle swarm optimisation based feature subset ranking
for feature selection. In Proceedings of the Thirty-fifth Australasian Computer Science Conference; Australian Computer Society, Inc.:
Darlinghurst, Australia, 2012; Volume 122, pp. 27–36.

96. Lane, M.C.; Xue, B.; Liu, I.; Zhang, M. Gaussian based particle swarm optimisation and statistical clustering for feature selection.
In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 133–144.

97. Krisshna, N.A.; Deepak, V.K.; Manikantan, K.; Ramachandran, S. Face recognition using transform domain feature extraction and
PSO-based feature selection. Appl. Soft Comput. 2014, 22, 141–161.

98. Banka, H.; Dara, S. A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional
feature selection, classification and validation. Pattern Recognit. Lett. 2015, 52, 94–100.

99. Moradi, P.; Gholampour, M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search
strategy. Appl. Soft Comput. 2016, 43, 117–130.

100. Xi, M.; Sun, J.; Liu, L.; Fan, F.; Wu, X. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle
Swarm Optimization and Support Vector Machine. Comput. Math. Methods Med. 2016, 2016, 3572705–3572705.

101. Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B. A micro-GA embedded PSO feature selection approach to intelligent
facial emotion recognition. IEEE Trans. Cybern. 2017, 47, 1496–1509.

102. Zhang, Y.; Song, X.F.; Gong, D.W. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 2017, 418, 561–574.
103. Lin, K.C.; Hung, J.C.; Wei, J.T. Feature selection with modified lionś algorithms and support vector machine for high-dimensional

data. Appl. Soft Comput. 2018, 68, 669–676.
104. Salcedo-Sanz, S.; Prado-Cumplido, M.; Pérez-Cruz, F.; Bousoño-Calzón, C. Feature selection via genetic optimization. In

Proceedings of the International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2002; pp. 547–552.
105. Zeng, X.P.; Li, Y.M.; Qin, J. A dynamic chain-like agent genetic algorithm for global numerical optimization and feature selection.

Neurocomputing 2009, 72, 1214–1228.
106. Guo, J.; White, J.; Wang, G.; Li, J.; Wang, Y. A genetic algorithm for optimized feature selection with resource constraints in

software product lines. J. Syst. Softw. 2011, 84, 2208–2221.
107. Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput.

2011, 11, 4135–4151.
108. Sayed, S.A.F.; Nabil, E.; Badr, A. A binary clonal flower pollination algorithm for feature selection. Pattern Recognit. Lett. 2016,

77, 21–27.
109. Alweshah, M.; Alkhalaileh, S.; Albashish, D.; Mafarja, M.; Bsoul, Q.; Dorgham, O. A hybrid mine blast algorithm for feature

selection problems. Soft Comput. 2020, 25, 17–534.
110. Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Elaziz, M.A.; Lu, S. Improved salp swarm algorithm based on particle swarm optimization

for feature selection. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3155–3169.
111. Sayed, G.I.; Hassanien, A.E. A hybrid SA-MFO algorithm for function optimization and engineering design problems. Complex

Intell. Syst. 2018, 4, 195–212.
112. Zhang, L.; Mistry, K.; Neoh, S.C.; Lim, C.P. Intelligent facial emotion recognition using moth-firefly optimization. Knowl.-Based

Syst. 2016, 111, 248–267.
113. Li, S.; Wu, X.; Tan, M. Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput. 2008,

12, 1039–1048.
114. Abdel-Basset, M.; Ding, W.; El-Shahat, D. A hybrid Harris Hawks optimization algorithm with simulated annealing for feature

selection. Artif. Intell. Rev. 2020, 54, 593–637.
115. Ibrahim, A.M.; Tawhid, M.A. A New Hybrid Binary Algorithm of Bat Algorithm and Differential Evolution for Feature Selection

and Classification. In Applications of Bat Algorithm and Its Variants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–18.
116. Nemati, S.; Basiri, M.E.; Ghasem-Aghaee, N.; Aghdam, M.H. A novel ACO–GA hybrid algorithm for feature selection in protein

function prediction. Expert Syst. Appl. 2009, 36, 12086–12094.
117. Wan, Y.; Wang, M.; Ye, Z.; Lai, X. A feature selection method based on modified binary coded ant colony optimization algorithm.

Appl. Soft Comput. 2016, 49, 248–258.
118. Mafarja, M.; Qasem, A.; Heidari, A.A.; Aljarah, I.; Faris, H.; Mirjalili, S. Efficient hybrid nature-inspired binary optimizers for

feature selection. Cogn. Comput. 2020, 12, 150–175.

260

Mathematics 2022, 10, 464

119. Li, Q.; Chen, H.; Huang, H.; Zhao, X.; Cai, Z.; Tong, C.; Liu, W.; Tian, X. An Enhanced Grey Wolf Optimization Based
Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis. Comput. Math. Methods Med. 2017,
2017, 9512741–9512741.

120. Kihel, B.K.; Chouraqui, S. Firefly optimization using artificial immune system for feature subset selection. Int. J. Intell. Eng. Syst
2019, 12, 337–347.

121. Faris, H.; Hassonah, M.A.; AlaḾ, A.Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and
optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018, 30, 2355–2369.

122. Aljarah, I.; AlaḾ, A.Z.; Faris, H.; Hassonah, M.A.; Mirjalili, S.; Saadeh, H. Simultaneous feature selection and support vector
machine optimization using the grasshopper optimization algorithm. Cogn. Comput. 2018, 10, 1478–495.

123. Yang, C.S.; Chuang, L.Y.; Ke, C.H.; Yang, C.H. A Hybrid Feature Selection Method for Microarray Classification. IAENG Int. J.
Comput. Sci. 2008, 35, 285-290.

124. Unler, A.; Murat, A.; Chinnam, R.B. mr2PSO: A maximum relevance minimum redundancy feature selection method based on
swarm intelligence for support vector machine classification. Inf. Sci. 2011, 181, 4625–4641.

125. Cervante, L.; Xue, B.; Zhang, M.; Shang, L. Binary particle swarm optimisation for feature selection: A filter based approach. In
Proceedings of the Evolutionary Computation (CEC), Brisbane, Australia, 10–15 June 2012; pp. 1–8.

126. Moghadasian, M.; Hosseini, S.P. Binary cuckoo optimization algorithm for feature selection in high-dimensional datasets. In
Proceedings of the International Conference on Innovative Engineering Technologies (ICIET2́014), Bangkok, Thailand, 28–29
December 2014; pp. 18–21.

127. Zhang, C.K.; Hu, H. Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster.
Machine Learning and Cybernetics. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 18–21 August 2005; Volume 3, pp. 1728–1732.

128. Huang, J.; Cai, Y.; Xu, X. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognit.
Lett. 2007, 28, 1825–1844.

129. Uğuz, H. A two-stage feature selection method for text categorization by using information gain, principal component analysis
and genetic algorithm. Knowl.-Based Syst. 2011, 24, 1024–1032.

130. Wang, L.; Xu, G.; Wang, J.; Yang, S.; Guo, L.; Yan, W. GA-SVM based feature selection and parameters optimization for BCI
research. Natural Computation (ICNC). In Proceedings of the 2011 Seventh International Conference on Natural Computation,
Shanghai, China, 26–28 July 2011; Volume 1, pp. 580–583.

131. Zainudin, M.; Sulaiman, M.; Mustapha, N.; Perumal, T.; Nazri, A.; Mohamed, R.; Manaf, S. Feature selection optimization using
hybrid relief-f with self-adaptive differential evolution. Int. J. Intell. Eng. Syst 2017, 10, 21–29.

132. Guha, R.; Ghosh, M.; Mutsuddi, S.; Sarkar, R.; Mirjalili, S. Embedded chaotic whale survival algorithm for filter-wrapper feature
selection. arXiv preprint 2020, arXiv:2005.04593.

133. Hassonah, M.A.; Al-Sayyed, R.; Rodan, A.; AlaḾ, A.Z.; Aljarah, I.; Faris, H. An efficient hybrid filter and evolutionary wrapper
approach for sentiment analysis of various topics on Twitter. Knowl.-Based Syst. 2020, 192, 105353.

134. Ahmed, N.; Rafiq, J.I.; Islam, M.R. Enhanced human activity recognition based on smartphone sensor data using hybrid feature
selection model. Sensors 2020, 20, 317.

135. Kanan, H.R.; Faez, K. An improved feature selection method based on ant colony optimization (ACO) evaluated on face
recognition system. Appl. Math. Comput. 2008, 205, 716–725.

136. Chuang, L.Y.; Chang, H.W.; Tu, C.J.; Yang, C.H. Improved binary PSO for feature selection using gene expression data. Comput.
Biol. Chem. 2008, 32, 29–38.

137. Martinez, E.; Alvarez, M.M.; Trevino, V. Compact cancer biomarkers discovery using a swarm intelligence feature selection
algorithm. Comput. Biol. Chem. 2010, 34, 244–250.

138. Mohamad, M.S.; Omatu, S.; Deris, S.; Yoshioka, M. A modified binary particle swarm optimization for selecting the small subset
of informative genes from gene expression data. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 813–822.

139. Xue, B.; Zhang, M.; Browne, W.N. Novel initialisation and updating mechanisms in PSO for feature selection in classification. In
Proceedings of the European Conference on the Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 428–438.

140. Mafarja, M.; Sabar, N.R. Rank based binary particle swarm optimisation for feature selection in classification. In Proceedings of
the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, 26–27 June 2018; pp. 1–6.

141. Mafarja, M.; Jarrar, R.; Ahmad, S.; Abusnaina, A.A. Feature selection using binary particle swarm optimization with time varying
inertia weight strategies. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems; ACM: New
York, NY, USA, 2018; p. 18.

142. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Zhang, Y.; Mirjalili, S. Asynchronous accelerating multi-leader salp chains for
feature selection. Appl. Soft Comput. 2018, 71, 964–979.

143. Hammouri, A.I.; Mafarja, M.; Al-Betar, M.A.; Awadallah, M.A.; Abu-Doush, I. An improved Dragonfly Algorithm for feature
selection. Knowl.-Based Syst. 2020, 203, 106131.

144. Faris, H.; Heidari, A.A.; AlaḾ, A.Z.; Mafarja, M.; Aljarah, I.; Eshtay, M.; Mirjalili, S. Time-varying hierarchical chains of salps
with random weight networks for feature selection. Expert Syst. Appl. 2020, 140, 112898.

145. Ouadfel, S.; Abd Elaziz, M. Enhanced Crow Search Algorithm for Feature Selection. Expert Syst. Appl. 2020, 159, 113572.

261

Mathematics 2022, 10, 464

146. Gholami, J.; Pourpanah, F.; Wang, X. Feature selection based on improved binary global harmony search for data classification.
Appl. Soft Comput. 2020, 93, 106402.

147. Khurma, R.A.; Aljarah, I.; Sharieh, A. Rank based moth flame optimisation for feature selection in the medical application. In
Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

148. Khurma, R.A.; Castillo, P.A.; Sharieh, A.; Aljarah, I. Feature Selection using Binary Moth Flame Optimization with Time Varying
Flames Strategies. In Proceedings of the 12th International Joint Conference on Computational Intelligence; SciTePress: Setubal, Portugal,
2020; pp. 17–27, doi:10.5220/0010021700170027.

149. Galbally, J.; Fierrez, J.; Freire, M.R.; Ortega-Garcia, J. Feature selection based on genetic algorithms for on-line signature
verification. In Proceedings of the IEEE Workshop on Automatic Identification Advanced Technologies, Alghero, Italy, 7–8 June
2007; pp. 198–203.

150. Lu, J.; Zhao, T.; Zhang, Y. Feature selection based-on genetic algorithm for image annotation. Knowl.-Based Syst. 2008, 21, 887–891.
151. Li, R.; Lu, J.; Zhang, Y.; Zhao, T. Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image

annotation. Knowl.-Based Syst. 2010, 23, 195–201.
152. Hans, R.; Kaur, H. Quasi-opposition-Based Multi-verse Optimization Algorithm for Feature Selection. In Proceedings of the First

International Conference on Computing, Communications, and Cyber-Security (IC4S 2019); Springer: Berlin/Heidelberg, Germany,
2020; pp. 345–359.

153. Chakraborty, B. Feature subset selection by particle swarm optimization with fuzzy fitness function. In Proceedings of the
2008 International Conference on Intelligent System and Knowledge Engineering, ISKE, Xiamen, China, 17–19 November 2008;
Volume 1, pp. 1038–1042.

154. De Stefano, C.; Fontanella, F.; Marrocco, C.; Di Freca, A.S. A GA-based feature selection approach with an application to
handwritten character recognition. Pattern Recognit. Lett. 2014, 35, 130–141.

155. Khurma., R.A.; Castillo., P.A.; Sharieh., A.; Aljarah., I. New Fitness Functions in Binary Harris Hawks Optimization for Gene
Selection in Microarray Datasets. In Proceedings of the 12th International Joint Conference on Computational Intelligence; SciTePress:
Setubal, Portugal, 2020; Volume 1, pp. 139–146, doi:10.5220/0010021601390146.

156. Zio, E.; Baraldi, P.; Pedroni, N. Selecting features for nuclear transients classification by means of genetic algorithms. IEEE Trans.
Nucl. Sci. 2006, 53, 1479–1493.

157. Mandal, M.; Mukhopadhyay, A.; Maulik, U. Prediction of protein subcellular localization by incorporating multiobjective
PSO-based feature subset selection into the general form of Chous PseAAC. Med Biol. Eng. Comput. 2015, 53, 331–344.

158. Aljarah, I.; Habib, M.; Faris, H.; Al-Madi, N.; Heidari, A.A.; Mafarja, M.; Abd Elaziz, M.; Mirjalili, S. A Dynamic Locality
Multi-Objective Salp Swarm Algorithm for Feature Selection. Comput. Ind. Eng. 2020, 147, 106628.

159. Niu, B.; Yi, W.; Tan, L.; Geng, S.; Wang, H. A multi-objective feature selection method based on bacterial foraging optimization.
Nat. Comput. 2019, 120, 63–76.

160. Habib, M.; Aljarah, I.; Faris, H. A Modified Multi-objective Particle Swarm Optimizer-Based Lévy Flight: An Approach Toward
Intrusion Detection in Internet of Things. Arab. J. Sci. Eng. 2020, 45, 6081–6108.

161. Al-Tashi, Q.; Abdulkadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H. Approaches to Multi-Objective Feature Selection: A
Systematic Literature Review. IEEE Access 20208, 125076–125096.

162. Punch III, W.F.; Goodman, E.D.; Pei, M.; Chia-Shun, L.; Hovland, P.D.; Enbody, R.J. Further Research on Feature Selection and
Classification Using Genetic Algorithms. ICGA J. 1993, 93, 557–564.

163. Ghamisi, P.; Couceiro, M.S.; Benediktsson, J.A. A novel feature selection approach based on FODPSO and SVM. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 2935–2947.

164. Frohlich, H.; Chapelle, O.; Scholkopf, B. Feature selection for support vector machines by means of genetic algorithm. In
Proceedings of the 2003 15th IEEE International Conference, Sacramento, CA, USA, 3–5 November 2003; pp. 142–148.

165. Robbins, K.; Zhang, W.; Bertrand, J.; Rekaya, R. The ant colony algorithm for feature selection in high-dimension gene expression
data for disease classification. Math. Med. Biol. A J. IMA 2007, 24, 413–426.

166. Kabir, M.M.; Shahjahan, M.; Murase, K. A new local search based hybrid genetic algorithm for feature selection. Neurocomputing
2011, 74, 2914–2928.

167. Kabir, M.M.; Shahjahan, M.; Murase, K. A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl.
2012, 39, 3747–3763.

168. Ibrahim, H.T.; Mazher, W.J.; Ucan, O.N.; Bayat, O. A grasshopper optimizer approach for feature selection and optimizing SVM
parameters utilizing real biomedical data sets. Neural Comput. Appl. 2018, 31, 5965–5974.

169. Sreedharan, N.P.N.; Ganesan, B.; Raveendran, R.; Sarala, P.; Dennis, B. Grey Wolf optimisation-based feature selection and
classification for facial emotion recognition. IET Biom. 2018, 7, 490–499.

170. Handels, H.; Roß, T.; Kreusch, J.; Wolff, H.H.; Poeppl, S.J. Feature selection for optimized skin tumor recognition using genetic
algorithms. Artif. Intell. Med. 1999, 16, 283–297.

171. Zheng, B.; Chang, Y.H.; Wang, X.H.; Good, W.F.; Gur, D. Feature selection for computerized mass detection in digitized
mammograms by using a genetic algorithm. Acad. Radiol. 1999, 6, 327–332.

172. Li, T.S. Feature selection for classification by using a GA-based neural network approach. J. Chin. Inst. Ind. Eng. 2006, 23, 55–64.
173. Babaoglu, İ.; Findik, O.; Ülker, E. A comparison of feature selection models utilizing binary particle swarm optimization and

genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst. Appl. 2010, 37, 3177–3183.

262

Mathematics 2022, 10, 464

174. Ahmad, F.; Isa, N.A.M.; Hussain, Z.; Osman, M.K.; Sulaiman, S.N. A GA-based feature selection and parameter optimization of
an ANN in diagnosing breast cancer. Pattern Anal. Appl. 2015, 18, 861–870.

175. Sheikhpour, R.; Sarram, M.A.; Sheikhpour, R. Particle swarm optimization for bandwidth determination and feature selection of
kernel density estimation based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 2016, 40, 113–131.

176. Sayed, G.I.; Hassanien, A.E.; Nassef, T.M.; Pan, J.S. Alzheimerś Disease Diagnosis Based on Moth Flame Optimization. In
Proceedings of the International Conference on Genetic and Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 298–305.

177. Sayed, G.I.; Hassanien, A.E. Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast
cancer histology images. Appl. Intell. 2017, 47, 397–408.

178. Daelemans, W.; Hoste, V.; De Meulder, F.; Naudts, B. Combined optimization of feature selection and algorithm parameters
in machine learning of language. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp.
84–95.

179. Aghdam, M.H.; Ghasem-Aghaee, N.; Basiri, M.E. Text feature selection using ant colony optimization. Expert Syst. Appl. 2009,
36, 6843–6853.

180. Ewees, A.A.; Sahlol, A.T.; Amasha, M.A. A Bio-inspired moth-flame optimization algorithm for Arabic handwritten letter
recognition. Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). In Proceedings of the 2017 International
Conference, Brussels, Belgium, 13–17 July 2017; pp. 154–159.

181. Tackett, W.A. Genetic Programming for Feature Discovery and Image Discrimination. ICGA J. 1993, 1993, 303–311.
182. Bhanu, B.; Lin, Y. Genetic algorithm based feature selection for target detection in SAR images. Image Vis. Comput. 2003,

21, 591–608.
183. Jarvis, R.M.; Goodacre, R. Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data.

Bioinformatics 2004, 21, 860–868.
184. Zhuo, L.; Zheng, J.; Li, X.; Wang, F.; Ai, B.; Qian, J. A genetic algorithm based wrapper feature selection method for classification

of hyperspectral images using support vector machine. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and
Built Environment: Classification of Remote Sensing Images; International Society for Optics and Photonics: Bellingham, WA, USA,
2008; Volume 7147, p. 71471J.

185. Li, S.; Wu, H.; Wan, D.; Zhu, J. An effective feature selection method for hyperspectral image classification based on genetic
algorithm and support vector machine. Knowl.-Based Syst. 2011, 24, 40–48.

186. Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 309–313.

187. Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn, L.A.; Jain, A.K. Dimensionality reduction using genetic algorithms. IEEE
Trans. Evol. Comput. 2000, 4, 164–171.

188. Palaniappan, R.; Raveendran, P. Genetic Algorithm to select features for Fuzzy ARTMAP classification of evoked EEG. In
Proceedings of the 2002 Asia-Pacific Conference, Taipei, Taiwan, China, 8 August 2002; Volume 2, pp. 53–56.

189. Garrett, D.; Peterson, D.A.; Anderson, C.W.; Thaut, M.H. Comparison of linear, nonlinear, and feature selection methods for EEG
signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 141–144.

190. Noori, F.M.; Qureshi, N.K.; Khan, R.A.; Naseer, N. Feature selection based on modified genetic algorithm for optimization of
functional near-infrared spectroscopy (fNIRS) signals for BCI. In Proceedings of the 2016 2nd International Conference on IEEE,
Chengdu, China, 26–27 October 2016; pp. 50–53.

191. Chen, L.H.; Hsiao, H.D. Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An
empirical study. Expert Syst. Appl. 2008, 35, 1145–1155.

192. Huang, C.F.; Chang, B.R.; Cheng, D.W.; Chang, C.H. Feature Selection and Parameter Optimization of a Fuzzy-based Stock
Selection Model Using Genetic Algorithms. Int. J. Fuzzy Syst. 2012, 14, 1.

193. Temitayo, F.; Stephen, O.; Abimbola, A. Hybrid GA-SVM for efficient feature selection in e-mail classification. Comput. Eng. Intell.
Syst. 2012, 3, 17–28.

194. Faris, H.; AlaḾ, A.Z.; Heidari, A.A.; Aljarah, I.; Mafarja, M.; Hassonah, M.A.; Fujita, H. An intelligent system for spam detection
and identification of the most relevant features based on evolutionary random weight networks. Inf. Fusion 2019, 48, 67–83.

195. Saidala, R.K. Variant of Northern Bald Ibis Algorithm for Unmasking Outliers. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 2020,
12, 15–29.

196. Yu, E.; Cho, S. GA-SVM wrapper approach for feature subset selection in keystroke dynamics identity verification. In Proceedings
of the International Joint Conference on IEEE, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 2253–2257.

197. Rodrigues, D.; Pereira, L.A.; Almeida, T.; Papa, J.P.; Souza, A.; Ramos, C.C.; Yang, X.S. BCS: A binary cuckoo search algorithm for
feature selection. In Proceedings of the 2013 IEEE International Symposium on IEEE, Beijing, China, 19–23 May 2013; pp. 465–468.

198. Hajnayeb, A.; Ghasemloonia, A.; Khadem, S.; Moradi, M. Application and comparison of an ANN-based feature selection method
and the genetic algorithm in gearbox fault diagnosis. Expert Syst. Appl. 2011, 38, 10205–10209.

199. Khurma, R.A.; Aljarah, I.; Sharieh, A.; Mirjalili, S. EvoloPy-FS: An Open-Source Nature-Inspired Optimization Framework
in Python for Feature Selection. In Evolutionary Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 131–173.

263

Mathematics 2022, 10, 464

200. Faris, H.; Aljarah, I.; Mirjalili, S.; Castillo, P.A.; Guervós, J.J.M. EvoloPy: An Open-source Nature-inspired Optimization
Framework in Python. IJCCI (ECTA) 2016, 1, 171–177.

201. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82.
202. Unler, A.; Murat, A. A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J.

Oper. Res. 2010, 206, 528–539.
203. Nakamura, R.Y.; Pereira, L.A.; Costa, K.; Rodrigues, D.; Papa, J.P.; Yang, X.S. BBA: A binary bat algorithm for feature selection. In

Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012;
pp. 291–297.

204. Taha, A.M.; Mustapha, A.; Chen, S.D. Naive bayes-guided bat algorithm for feature selection. Sci. World J. 2013, 2013, 325973.
205. Huang, C.L. ACO-based hybrid classification system with feature subset selection and model parameters optimization.

Neurocomputing 2009, 73, 438–448.
206. Lin, K.C.; Chien, H.Y. CSO-based feature selection and parameter optimization for support vector machine. In Proceedings of the

2009 Joint Conferences on IEEE, Tamsui, Taiwan, China, 3–5 December 2009; pp. 783–788.
207. ElAlami, M.E. A filter model for feature subset selection based on genetic algorithm. Knowl.-Based Syst. 2009, 22, 356–362.
208. Huang, C.L.; Wang, C.J. A GA-based feature selection and parameters optimizationfor support vector machines. Expert Syst.

Appl. 2006, 31, 231–240.
209. Zhang, Y.; Gong, D.W.; Cheng, J. Multi-objective particle swarm optimization approach for cost-based feature selection in

classification. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 2017, 14, 64–75.
210. Kashef, S.; Nezamabadi-pour, H. An advanced ACO algorithm for feature subset selection. Neurocomputing 2015, 147, 271–279.
211. Kashef, S.; Nezamabadi-pour, H. A new feature selection algorithm based on binary ant colony optimization. In Proceedings of

the 2013 5th Conference on IEEE, Kuala Lumpur, Malaysia, 4–5 December 2013; pp. 50–54.
212. Zhao, T.; Lu, J.; Zhang, Y.; Xiao, Q. Feature selection based on genetic algorithm for cbir. In Proceedings of the Image and Signal

Processing, 2008. CISP’08, Congress on IEEE, Sanya, China, 27–30 May 2008; Volume 2, pp. 495–499.
213. Xue, B.; Zhang, M.; Browne, W.N. New fitness functions in binary particle swarm optimisation for feature selection. In

Proceedings of the 2012 IEEE Congress on IEEE, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.
214. Emary, E.; Zawbaa, H.M.; Ghany, K.K.A.; Hassanien, A.E.; Parv, B. Firefly optimization algorithm for feature selection. In

Proceedings of the 7th Balkan Conference on Informatics Conference, ACM, Craiova, Romania, 2–4 September 2015; p. 26.
215. Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach.

IEEE Trans. Cybern. 2013, 43, 1656–1671.
216. Xue, B.; Cervante, L.; Shang, L.; Browne, W.N.; Zhang, M. Binary PSO and rough set theory for feature selection: A multi-objective

filter based approach. Int. J. Comput. Intell. Appl. 2014, 13, 1450009.
217. Doerner, K.; Gutjahr, W.J.; Hartl, R.F.; Strauss, C.; Stummer, C. Pareto ant colony optimization: A metaheuristic approach to

multiobjective portfolio selection. Ann. Oper. Res. 2004, 131, 79–99.

264

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3187-8

	Mathematics cover
	Mathematics-Computational Optimizations for Machine Learning .pdf
	Mathematics cover.pdf
	空白页面

