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RO-550012 Sibiu, Romania

2 Department of Mathematics, University of Oradea, Str. Universităţii, No.1, 410087 Oradea, Romania;
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Abstract: A new differential-integral operator of the form In f (z) = (1 − λ)Sn f (z) + λLn f (z), z ∈
U, f ∈ A, 0 ≤ λ ≤ 1, n ∈ N is introduced in this paper, where Sn is the Sălăgean differential operator
and Ln is the Alexander integral operator. Using this operator, a new integral operator is defined as:

F(z) =
[

β + γ

zγ

∫ z

0
In f (z) · tβ+γ−2dt

] 1
β

, where In f (z) is the differential-integral operator given above.

Using a differential subordination, we prove that the integral operator F(z) is starlike.

Keywords: differential subordination; analytic function; univalent function; convex function; starlike
function; dominant; best dominant

1. Introduction and Preliminaries

The introduction and study of operators has been a topic that emerged at the very beginning of
the theory of functions of a complex variable. The first operators were introduced during the first years
of the twentieth century by mathematicians like J.W. Alexander, R. Libera, S. Bernardi, P. T. Mocanu
and many more. The Alexander integral operator is such an example, defined by J. W. Alexander in
1915 [1]. This paper is cited in nearly 500 papers. The use of operators has facilitated the introduction of
special classes of univalent functions and studying properties of the functions in those classes, such as
convexity, starlikeness, coefficient estimates, and distortion properties. The Sălăgean differential operator
was introduced in 1983 [2] and is cited by over 1300 papers. It has been used in obtaining new classes
of functions and proving many interesting results related to them. The operator we introduce in this
paper gives a new perspective in the theory related to operators by combining the integral Alexander
operator and the differential Sălăgean operator. The results were obtained also using the means of the
theory of differential subordinations introduced by Professors Miller and Mocanu in two papers in 1978
and 1980 and condensed in the monograph published by them in 2000 [3]. This theory has remarkable
applications allowing easier proofs of already known results and facilitating the emergence of new ones.
The idea of combining integral and differential operators is illustrated in the very recent paper [4] where a
differential-integral operator was defined and using the method of the subordination chains, differential
subordinations in their special Briot-Bouquet form were studied obtaining their best dominant and, as a
consequence, criteria containing sufficient conditions for univalence were formulated. Similar work

Mathematics 2020, 8, 694; doi:10.3390/math8050694 www.mdpi.com/journal/mathematics
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containing subordination results related to a class of univalent functions obtained by the use of an operator
introduced by using a differential operator and an integral one can be seen in [5].

We use the well-known notations:

• H(U) is the class of functions analytic in the unit disc U = {z ∈ C : |z| < 1},
• For a ∈ C , n ∈ N, H[a,n] = { f ∈ H(U) : f (z) = a + bnzn + . . . , z ∈ U},
• An = { f ∈ H(U) : f (z) = z + an+1zn+1 + . . . , z ∈ U}, with A1 = A,

• S∗ =
{

f ∈ A, Re
z f ′(z)

f (z)
> 0, z ∈ U

}
is the class of starlike functions in U,

• K =

{
f ∈ A, Re

z f ′′(z)
f ′(z)

+ 1 > 0, z ∈ U
}

is the class of normalized convex functions in U.

The definitions of subordination, solution of the differential subordination and best dominant of
the solutions of the differential subordination are recalled next as they can be found in the monograph
published by Professors Miller and Mocanu in 2000 [3], which gives the core of the theory of differential
subordination:

If f and g are analytic in U, then we say that f is subordinate to g, written f ≺ g or f (z) ≺ g(z),
if there is a function w analytic in U with w(0) = 0, |w(z)| < 1 for all z ∈ U such that f (z) = g(w(z)),
for z ∈ U. If g is univalent, then f ≺ g if and only if f (0) = g(0) and f (U) ⊂ g(U).

Let ψ : C3 × U → C and h be a univalent function in U. If p is a analytic function in U which satisfies
the following (second-order) differential subordination:

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z),

then p is called a solution of the differential subordination. The univalent function q is called a dominant
of the solutions of the differential subordination or more simply a dominant, if p ≺ q, for all p satisfying
the differential subordination. A dominant q̃ that satisfies q̃ ≺ q for every dominant q is said to be the
best dominant.

A well-known lemma from the theory of differential subordinations that is used in proving the new
results is shown as follows:

Lemma 1. [3] Let g be univalent in U and let θ and φ be analytic in a domain D containing g(U), with φ(w) 	= 0,
when w ∈ g(U). Set

Q(z) = zq′(z) · φ[q(z)], h(z) = θ[q(z)] + Q(z),

and suppose that
(i) Q is starlike and

(ii) Re
zh′(z)
Q(z)

= Re
[

θ′[q(z)]
φ[q(z)]

+
zQ′(z)
Q(z)

]
> 0, z ∈ U.

If p is analytic in U, with p(0) = q(0), p′(0) = . . . = p(n−1)(0) = 0, p(U) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z) · φ[q(z)] = h(z),

then p(z) ≺ q(z), and q is the best dominant.

In order to define the new differential-integral operator, we need the following definitions:

2
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Definition 1. [2] For f ∈ A, n ∈ N = N∗ ∪ {0}, let Sn be the differential operator given by Sn : A → A with

S0 f (z) = f (z)
...

Sn+1 f (z) = z[Sn f (z)]′, z ∈ U.

Remark 1. If f ∈ A, f (z) = z +
∞

∑
j=2

ajzj, then

Sn f (z) = z +
∞

∑
j=2

jn · ajzj. (1)

Definition 2. [6] For f ∈ A, n ∈ N = N∗ ∪ {0}, let Ln be the integral operator given by Ln : A → A with

L0 f (z) = f (z)

L1 f (z) =
∫ z

0

L0 f (t)
t

dt

...

Ln f (z) =
∫ z

0

Ln−1 f (t)
t

dt, z ∈ U.

Remark 2. (a) For n = 1, L1 f (z) =
∫ z

0

f (t)
t

dt becomes Alexander integral operator [1].

(b) For f ∈ A, f (z) = z +
∞

∑
j=2

ajzj, we obtain:

Ln f (z) = z +
∞

∑
j=2

1
jn · ajzj. (2)

2. Main Results

Using Definition 1 and Definition 2, we introduce a new operator, as follows:

Definition 3. Let 0 ≤ λ ≤ 1, n ∈ N = N∗ ∪ {0}. Denote by In the differential-integral operator In : A → A
given by

In f (z) = (1 − λ)Sn f (z) + λLn f (z), z ∈ U, (3)

where Sn is Sălăgean differential operator, and Ln is Alexander integral operator.

Remark 3. (a) For λ = 0, In f (z) = Sn f (z), the differential-integral operator is equivalent to Sălăgean
differential operator.

(b) For λ = 1, In f (z) = Ln f (z), the differential-integral operator becomes Alexander integral operator.

3
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(c) For f ∈ A, f (z) = z +
∞

∑
j=2

ajzj we obtain

In f (z) = z +
∞

∑
j=2

[
(1 − λ)jn + λ · 1

jn

]
ajzj, z ∈ U. (4)

Using the differential-integral operator introduced in Definition 3, we define a new integral operator,
which can be seen as generalization of some well-known integral operators.

Definition 4. Let γ ≥ 0, 0 < β ≤ 1, n ∈ N = N∗ ∪ {0}, and f ∈ A, In f ∈ A, where In is given by Equation (3).
The integral operator F : A → H[a,n] is defined as:

F(z) =
[

β + γ

zγ

∫ z

0
In f (t) · tβ+γ−2dt

] 1
β

. (5)

Remark 4. (a) For n = 0, β = 1, γ > 0, we have

F(z) =
1 + γ

zγ

∫ z

0
f (t) · tγ−1dt,

which is the Bernardi integral operator [7].
(b) For n = 0, β = 1, γ = 1, we have

F(z) =
2
z

∫ z

0
f (t)dt,

which is the Libera integral operator [8].
(c) For n = 0, β = 1, γ = 0, we have

F(z) =
∫ z

0

f (t)
t

dt,

which is Alexander integral operator [1].
(d) For β = 1, n ∈ N∗, γ > 0, we have

F(z) =
1 + γ

zγ

∫ z

0
In f (t) · tγ−1dt

which was studied in [6].
(e) For n = 0, we have

F(z) = [
β + γ

zγ

∫ z

0
f (t) · tβ+γ−2dt]

1
β ,

β > 0, β + γ > 0 and β ≥ 2γ(1 − β) studied in [9] where the authors have proved that F ∈ S∗.

Using a differential subordination, we prove that the operator given by Equation (5) is starlike.

Theorem 1. Let 0 < β ≤ 1, γ ≥ 0, n ∈ N = N∗ ∪ {0}, and let

h(z) =
1 + z
1 − z

+
2z

(1 − z)[1 + β + γ + (1 − β − γ)z]
, z ∈ U.

4
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If f ∈ A and
1
β
· z(In f (z))′

In f (z)
+

β − 1
β

≺ h(z), z ∈ U, (6)

then

F(z) =
[

β + γ

zγ

∫ z

0
In f (z) · tβ+γ−2dt

] 1
β

is starlike, i.e., F ∈ S∗, where In f is given by Equation (3).

Proof. From Equation (5) we have

Fβ(z) =
β + γ

zγ

∫ z

0
In f (z) · tβ+γ−2dt,

and
zγFβ(z) = (β + γ)

∫ z

0
In f (z) · tβ+γ−2dt. (7)

Differentiating Equation (7), we obtain

Fβ(z)
[

γ + βz · F′(z)
F(z)

]
= (β + γ)In f (z) · zβ−1. (8)

We let

p(z) = z · F′(z)
F(z)

, z ∈ U. (9)

Using Equations (9) in (8), we have

Fβ(z)[γ + βp(z)] = (β + γ)In f (z) · zβ−1. (10)

Differentiating (10), we get

β · zF′(z)
F(z)

+ β · zp′(z)
γ + βp(z)

=
z(In f (z))′

In f (z)
+ β − 1. (11)

Using (9) in (11), we have

p(z) +
zp′(z)

γ + βp(z)
=

1
β
· z(In f (z))′

In f (z)
+

β − 1
β

. (12)

Using Relation (12), the differential subordination of Equation (6) becomes:

p(z) +
zp′(z)
p(z)

≺ h(z) =
1 + z
1 − z

+
2z

(1 − z)[1 + β + γ + (1 − β − γ)z]
. (13)

In order to prove the theorem, we shall use Lemma 1.
If we let θ : D ⊂ C → C and φ : D ⊂ C → C be analytic,

θ(w) = q, φ(w) =
1

w + β + γ
in a domain D.

5
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For w = q(z) =
1 + z
1 − z

, we obtain

φ[q(z)] =
1

1 + z
1 − z

+ β + γ

=
1 − z

1 + β + γ + z(1 − β − γ)
(14)

Q(z) = z · q′(z) · φ[q(z)] =
2z

(1 − z)[1 + β + γ + (1 − β − γ)z]
(15)

and
h(z) = θ[q(z)] + Q(z) =

1 + z
1 − z

+
2z

(1 − z)[1 + β + γ + (1 − β − γ)z]
. (16)

Next we show that conditions in Lemma 1 are satisfied. We prove that the function Q is starlike.
Differentiating Equation (15), we have

zQ′(z)
Q(z)

=
z

1 − z
+

1 + β + γ

1 + β + γ + (1 − β − γ)z
.

We take

Re
zQ′(z)
Q(z)

= Re
z

1 − z
+ (1 + β + γ)Re

1
1 + β + γ + (1 − β − γ)z

= −1
2
+

(1 + β + γ)2 + (1 + β + γ)(1 − β − γ) cos α

[1 + β + γ + (1 − β − γ) cos α]2 + (1 − β − γ)2 sin2 α

=
2(β + γ)

[1 + β + γ + (1 − β − γ) cos α]2 + (1 − β − γ)2 sin2 α
> 0.

We have shown that Re
zQ′(z)
Q(z)

> 0, z ∈ U, i.e., Q ∈ S∗, hence (i) from Lemma 1 is satisfied.

We evaluate now:
Re φ[q(z)] = Re

1 − z
1 + β + γ + (1 − β − γ)z

=
2β + 2γ(1 − cos α)

[1 + β + γ + (1 − β − γ) cos α]2 + (1 − β − γ)2 sin2 α
> 0, 0 < β ≤ 1, γ ≥ 0.

Since Q is starlike and Re φ[q(z)] > 0, we have

Re
zh′(z)
Q(z)

> 0, z ∈ U.

Next we prove that p(0) = q(0), p ∈ H[1,1] and p is analytic in U, where

p(z) =
zF′(z)
F(z)

, z ∈ U.

From Equation (4), we have

In f (z) = z +
∞

∑
j=2

[
(1 − λ)jn + λ · 1

jn

]
ajzj = z +

∞

∑
j=2

bjzj,

6
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where

bj =

[
(1 − λ)jn + λ · 1

jn

]
aj.

From Equation (5), we can write

F(z) =

[
β + γ

zγ

∫ z

0

(
t +

∞

∑
j=2

bjzj

)
tβ+γ−2dt

] 1
β

=

[
zβ +

∞

∑
j=2

cjzj+β−1

] 1
β

and we obtain

Fβ(z) = zβ +
∞

∑
j=2

cjzj+β−1, z ∈ U. (17)

Differentiating Equation (17), we have

βFβ−1(z) · F′(z) = βzβ−1 +
∞

∑
j=2

cj(j + β − 1) · zj+β−2.

Further, we deduce

p(z) =
zF′(z)
F(z)

=

zβ +
∞

∑
j=2

djzj+β−1

zβ +
∞

∑
j=2

cjzj+β−1
= 1 + p1z + p2z2 + . . . . (18)

For z = 0, we obtain p(0) = 1 and p ∈ H[1,1], hence F it is analytic in U.

Since q(z) =
1 + z
1 − z

, we have q(0) = 1, p(0) = q(0) = 1 and

θ[p(z)] + zp′(z) · φ[p(z)] ≺ θ[q(z)] + zq′(z) · φ[q(z)] = h(z). (19)

We have proved that we can use Lemma 1. By applying it, we have p(z) ≺ q(z), i.e.,

zF′(z)
F(z)

≺ q(z) =
1 + z
1 − z

, z ∈ U. (20)

Since q(z) =
1 + z
1 − z

is a convex function and

Re
1 + z
1 − z

> 0, z ∈ U,

the differential subordination in Equation (20) implies

Re
zF′(z)
F(z)

> Re q(z) > 0, hence F ∈ S∗.

7
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Example 1. Let λ =
1
2

, n = 1, β =
1
2

, γ = 2,

h(z) =
1 + z
1 − z

+
4z

(1 − z)(7 − 3z)
, f (z) = z +

1
4

z2, z ∈ U,

S1 f (z) = z f ′(z) = z +
1
2

z2,

L1 f (z) =
∫ z

0

t +
1
4

t2

t
dt = z +

1
8

z2,

I1 f (z) =
1
2

S1 f (z) +
1
2

L1 f (z) = z +
5

16
z2,

F(z) =
(

z
1
2 +

25
112

z
3
2

)2
= z +

25
56

z2 +
625

12544
z3

and

zF′(z)
F(z)

=
1 +

25
28

z +
1875
12544

z2

1 +
25
56

z +
625

12544
z2

, q(z) =
1 + z
1 − z

1
β
· z(I1 f (z))

′

I1 f (z)
+

β − 1
β

=
4(8 + 5z)
16 + 5z

− 1 .

From Theorem 1, we have:
If f ∈ A, and

4(8 + 5z)
16 + 5z

− 1 ≺ 1 + z
1 − z

+
4z

(1 − z)(7 − 3z)
, z ∈ U

then

p(z) =
zF′(z)
F(z)

=
1 +

25
28

z +
1875
12544

z2

1 +
25
56

z +
625

12544
z2

≺ 1 + z
1 − z

,

meaning that F(z) = z +
25
56

z2 +
625

12544
z3 is a starlike function.

3. Conclusions

A new differential-integral operator is introduced proving that this operator is starlike. An example is
given to show how the result can be applied in finding such operators. As it is the case for most operators,
special classes of univalent functions could be introduced using it and this is subject to further studies.
Another problem that can be studied is related to the parameters β and γ used in the definition of the
operator. In this paper they are positive but the case of β and γ being complex numbers could be subject
of further investigation. Starlikeness of certain order 0 ≤ α < 1 can also be further studied both for the
case of β and γ positive and for β and γ complex numbers.

Author Contributions: Conceptualization, M.A. and G.O.; methodology, M.A. and G.O.; software, M.A.; validation,
M.A. and G.O.; formal analysis, M.A. and G.O.; investigation, M.A. and G.O.; resources, M.A. and G.O.; data curation,
M.A. and G.O.; writing–original draft preparation, M.A. and G.O.; writing–review and editing, M.A.; visualization,
M.A. and G.O.; supervision, G.O.; project administration, M.A. All authors have read and agreed to the published
version of the manuscript.

8



Mathematics 2020, 8, 694

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915,
17, 12–22. [CrossRef]
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Math. Notes 2018, 19, 1095–1106. [CrossRef]

6. Oros, G.I.; Oros, G.; Diaconu, R. Differential subordination obtained with some new integral operator. J. Comput.
Appl. 2015, 19, 904–910.

7. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [CrossRef]
8. Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [CrossRef]
9. Mocanu, P.T. Starlikeness of certain integral operators. Mathematica 1994, 36, 179–184.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

9





mathematics

Article

On The Third-Order Complex Differential
Inequalities of ξ-Generalized-Hurwitz–Lerch
Zeta Functions

Hiba Al-Janaby 1, Firas Ghanim 2 and Maslina Darus 3,*

1 Department of Mathematics, College of Science, University of Baghdad, Baghdad 10071, Iraq;
fawzihiba@yahoo.com

2 Department of Mathematics, College of Science, University of Sharjah, Sharjah, UAE; fgahmed@sharjah.ac.ae
3 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

Bangi 43600, Selangor, Malaysia
* Correspondence: maslina@ukm.edu.my

Received: 31 March 2020; Accepted: 2 May 2020; Published: 23 May 2020

Abstract: In the z- domain, differential subordination is a complex technique of geometric function
theory based on the idea of differential inequality. It has formulas in terms of the first, second and
third derivatives. In this study, we introduce some applications of the third-order differential
subordination for a newly defined linear operator that includes ξ-Generalized-Hurwitz–Lerch
Zeta functions (GHLZF). These outcomes are derived by investigating the appropriate classes of
admissible functions.
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1. Introduction and Terminology

Complex Function Theory (CFT) is a mathematical branch dating back to the 18th century.
It investigates the functions of complex numbers. This branch has attracted the concern of several
researchers. Among the remarkable names are Euler, Gauss, Riemann, Cauchy and others. It has
numerous implementations in diverse fields of mathematics and science. These functions have many
interesting properties that are not owned by real-valued functions. For instance, infinitely differentiable
functions, holomorphic functions, every holomorphic function in the open unit disk can be represented
as a Taylor series, conformal functions (that is, they preserve angles when f ′(z) 	= 0), line integrals,
and all types of handy formulas. The considerable area in CFT is the Geometric Function Theory
(GFT). The study of GFT includes investigating the interaction between the analytical properties of
the complex holomorphic function and the geometrical properties of the image domain. Riemann [1]
in 1851 introduced the first major result in GFT named the Riemann Mapping Theorem. Later,
in 1907, Koebe [2] was a prominent scientist who studied the univalent functions in the open unit disk.
Thereafter, in 1912, Koebe [3] presented a modified version of the Riemann’s mapping theorem by
utilized univalent functions. The theory tends towards the principle of “univalent” and “holomorphic”,
Riemann’s mapping theorem plays a significant role in the collection of both principles. This synthesis
interprets the formula of a domain where the complex functions being defined, for details see [1,4].

On the other hand, differential inequality theory (inequalities including derivatives of functions)
impacted the development of GFT due to it giving much information regarding the behavior of the
holomorphic function. Further, there are many differential implications in which characterization of a

Mathematics 2020, 8, 845; doi:10.3390/math8050845 www.mdpi.com/journal/mathematics11
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holomorphic function is settled by a differential condition. For instance, the Noshiro–Warschawski
theorem states that for a holomorphic function in the unit disk, �( f ′(z)) > 0 implies that f is univalent
function in the unit disk. Most of the known differential implications dealt with real-value inequalities
that involved the absolute value, the imaginary part, or the real part of a complex function [4].

The principle of subordination is central to the theory of differential subordination of
complex-valued function which is the generalizing the formula of differential inequality of real-valued
function. Its origins back to Lindelöf [4] in 1909, though Littlewood ([5,6]) and Rogosinski ([7,8])
posed the term and examined the basic outcomes regarding subordination. This principle, as an
advantageous tool, displays its importance to unify the presentation of several geometric classes in
addition to achieving sandwich-type outcomes.

The methods of differential subordination are employed to study upper bounds for holomorphic
functions in the unit disk. This technique inspired numerous researchers to work in GFT.
The implementations and extensions of differential subordination theory have been developed
in this theme and diverse other fields, such as functions of several complex variables, integral
operator theory, meromorphic function theory, harmonic functions theory, differential equations
and partial differential equations. Many papers handled the first-order and second-order differential
subordination methods,but few articles handled the third-order differential subordination method.
In 1935, Goluzin [9] studied the first significant outcome that includes the first-order differential
subordination. Afterwards, Suffridge [10] in 1970 and Robinson [11] in 1947 discussed further
successive investigations into first-order differential subordination. Later, in 1981, Miller and
Mocanu [12] provided a systematic study of the theory of differential subordination. In 1985 [13]
and 1987 [14], they evolved and studied several interesting outcomes on this theory. Next, numerous
important studies were presented by Miller and Mocanu ([15–17]). In 1992, Ponnusamy and Juneja [18]
considered the third-order inequalities and subordination. After that, in 2000, Miller and Mocano in
their monograph [19] provided a marvelous and extensive discussion on this theory with numerous
implementations.

In 2011, Antonino and Miller [20] investigated and extended the second-order differential
subordination to the third-order case. Several authors provided fruitful implementations in the
same direction of study. For their contributions, Tang et al. [21] considered some third-order
differential subordination outcomes for meromorphically p-valent functions associated with the certain
linear operator. At the same time, Tang and Deniz [22] studied a similar problem for holomorphic
functions, involving the generalized Bessel functions. In 2015, Farzana et al. [23] introduced several
third-order differential subordination outcomes for holomorphic functions associated with the
fractional derivative operator. Related to this period, Tang et al. [24] used third-order differential
subordination methods of holomorphic functions associated with generalized Bessel functions to yield
sandwich-type outcomes containing this operator. In the same year, Ibrahim et al. [25] established
some third-order differential subordination outcomes for holomorphic functions associated with
a fractional integral operator (Carlson–Shaffer operator type). Subsequently, the problems of the
third-order differential subordination were studied by El-Ashwah and Hassan [26], El-Ashwah and
Hassan [27], Attiya et al. ([28,29]), Srivastava et al. [30] and Gochhayat and Prajapati [31]. Many of
the studies have not yet been investigated utilizing third-order differential subordination technique.
In this investigation, we impose a new generalized Noor-type linear integral operator M�

pϑ(z) on
the class Ap of p-valent functions by utilizing ξ-Generalized Hurwitz–Lerch Zeta functions (GHLZF).
Some outcomes concerning an application of the third-order differential subordination for multivalent
functions including operator M�

pϑ(z) are studied.
Denote by D = {z ∈ C : |z| < 1} the open unit disc in the complex plane C, and H(D) the class

of holomorphic functions in D. For α ∈ C, j ∈ N = {1, 2, 3, ...}, let

H[α, j] = {ϑ ∈ H(D) : ϑ(z) = α + αjzj + αj+1zj+1 + ...}, (1)

12
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and suppose that H0 ≡ H[0, 1] and H1 ≡ H[1, 1]. Let A denote the class of all holomorphic functions
ϑ in D, normalized by the conditions ϑ(0) = ϑ′(0)− 1 = 0, and of the formula

ϑ(z) = z +
∞

∑
j=2

αj zj, (z ∈ D). (2)

The subclass of A involving holomorphic univalent function is denoted by S , [1]. In [4] the
concept of subordination between holomorphic functions given as: for two functions ϑ1 and ϑ2,
holomorphic in D, the function ϑ1 is said to be subordinate to ϑ2, or ϑ2 superordinate to ϑ1 in D, written
ϑ1 ≺ ϑ2, if there is a holomorphic function h̄ in D with h̄(0) = 0 and |h̄(z)| < 1 for all z ∈ D, such that
ϑ1(z) = ϑ2(h̄(z)). In particular, if the function ϑ2 is univalent in D, then the following characterization
for subordination is gained as:

ϑ1 ≺ ϑ2 if and only if ϑ1(0) = ϑ2(0) and ϑ1(D) ⊂ ϑ2(D).

The natural generalization of holomorphic univalent function is a p-valent (multivalent) function,
that is, if for each ω, the equation ϑ(z) = ω has at most p roots in a domain D ⊂ C, and if there is ω0

such that the equation ϑ(z) = ω0 has exactly p roots in a Domain D. Let Ap (p ∈ N = {1, 2, 3, ...})
denote the class involves all p-valent functions in D of the form

ϑ(z) = zp +
∞

∑
j=p+1

αj zj, (z ∈ D). (3)

If ϑ is the p-valent function with p = 1, then ϑ is the holomorphic univalent function, [4].
As one of the most remarkable tools, namely Hadamard (convolution) product, utilizes to

formulate assorted operators: differential, integral and convolution operators. The term “Hadamard
product” is attributed to Hadamard in 1899 [1] and defined as: for two functions ϑ� ∈ A of the form
ϑ�(z) = z + ∑∞

j=2 αj, � zj , � = 1, 2, their convolution, ϑ1 ∗ ϑ2, is given by

(ϑ1 ∗ ϑ2)(z) = z +
∞

∑
j=2

αj,1 αj,2 zj, (z ∈ D). (4)

More generally, the convolution product of two functions ϑ� ∈ Ap of the formula ϑ�(z) =

zp + ∑∞
j=p+1 αj, � zj , � = 1, 2, p ∈ N, is the function ϑ1 ∗ ϑ2 given by

(ϑ1 ∗ ϑ2)(z) = zp +
∞

∑
j=p+1

αj,1 αj,2 zj, (z ∈ D). (5)

In 1915, Alexander [32] was the first to introduce a linear integral operator which drafted in terms
of the convolution, namely “Alexander operator” as follows: let ϑ ∈ A and IA : A → A be defined as

IAϑ(z) =
∫ z

0

ϑ(t)
t

dt = − log(1 − z) ∗ ϑ(z)

= z +
∞

∑
j=2

αj

j
zj.

(6)
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Later on, in 1965, Libera [33] given another linear integral operator so-called “Libera operator”
IL : A → A by the formula

ILϑ(z) =
2
z

∫ z

0
ϑ(t) dt =

2 [z + log(1 − z)]
z

∗ ϑ(z)

= z +
∞

∑
j=2

2
j + 1

αj zj.
(7)

In 1969, Bernardi [34] imposed a more general linear integral operator Iε : A → A, for ϑ ∈ A and
ε > −1, as

Iεϑ(z) =
1 + ε

zε

∫ z

0
ϑ(t) tε dt = z +

∞

∑
j=2

(
ε + 1
ε + j

)
zj ∗ ϑ(z)

= z +
∞

∑
j=2

(
ε + 1
ε + j

)
αj zj.

(8)

The operator Iε is called the generalized Bernardi–Libera–Livingston integral operator. For ε = 0,
the operator Iε reduces to the Alexander operator IA given by Equation (6) and for ε = 1, it reduces to
the Libera operator IL defined by Equation (7).

Utilizing the convolution technique, in 1975, Ruscheweyh [35] proposed a linear operator as: let
ϑ ∈ A, ℘ > −1 and D℘ : A → A be defined by

D℘ϑ(z) =
z

(1 − z)℘+1 ∗ ϑ(z) = z +
∞

∑
j=2

Γ(℘+ j)

Γ(j) Γ(℘+ 1)
αj zj. (9)

For ℘ = � ∈ N0 = N∪ {0}, yields

D�ϑ(z) =
z(z�−1ϑ(z))�

�!
. (10)

Further, D0ϑ(z) = ϑ(z) and D′ϑ(z) = zϑ′(z), z ∈ D. The operator D� is called the Ruscheweyh
derivative of �th order of ϑ.

Corresponding to the Ruscheweyh operator D� , � ∈ N0 given by Equation (10), in 1999, Noor [36]
considered the following linear operator: let ϑ ∈ A, � ∈ N0 and I� : A → A be defined as

I�ϑ(z) = ϑ
(−1)
� (z) ∗ ϑ(z) =

[
z

(1 − z)�+1

]−1
∗ ϑ(z)

= z +
∞

∑
j=2

Γ(j + 1) Γ(� + 1)
Γ(� + j)

αj zj,

(11)

such that

ϑ�(z) ∗ ϑ
(−1)
� (z) =

z
(1 − z)2 .

Evidently, I0ϑ(z) = zϑ′(z), I1ϑ(z) = ϑ(z), z ∈ D. This reverse relationship between the operators
I� and D� gives a a cause for naming the Noor operator an integral operator. The operator I� is called
as the Noor integral operator of �th order of ϑ.
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Analogous to D℘, ℘ > −1 written by Equation (9), in 2002, Choi, Saigo and Srivastava [37]
defined the linear operator I℘,F : A → A, for ϑ ∈ A, ℘ > −1 and F > 0 by

I℘,Fϑ(z) = ϑ−1
℘ (z) ∗ ϑ(z) =

[
z

(1 − z)℘+1

]−1
∗ ϑ(z)

= z +
∞

∑
j=2

Γ(F+ j − 1) Γ(℘+ 1)
Γ(F) Γ(℘+ j)

αj zj,

(12)

such that

ϑ℘(z) ∗ ϑ−1
℘ (z) =

z
(1 − z)F

.

The operator I℘,F is called the Choi–Saigo–Srivastava operator. For ℘ = � and F = 2 reduces to
the Noor integral operator I� of Equation (11).

In 2002, Liu and Noor [38] provided a linear operator as: for ϑ ∈ Ap, ℘ > −p and I℘+p : Ap → Ap

defined by

I℘+pϑ(z) = ϑ
(−1)
℘+p (z) ∗ ϑ(z) =

[
zp

(1 − z)℘+p

]−1
∗ ϑ(z)

= zp +
∞

∑
j=p+1

Γ(1 + j) Γ(℘+ p)
Γ(1 + p) Γ(℘+ j)

αj zj,

(13)

such that

ϕ℘+p(z) ∗ ϕ
(−1)
℘+p (z) =

zp

(1 − z)p+1 .

Obviously, I0+pϑ(z) = zϑ′(z)/p and I1+pϑ(z) = ϑ(z). The operator I℘+p is an extended
Noor integral operator I� of Equation (11). In addition, the operator I℘+p is closely related to the
Choi–Saigo–Srivastava operator I℘,F of Equation (12).

The Theory of Hypergeometric Functions (HFT) has been incorporated in GFT. Employing
hypergeometric functions in the proof of the famed problem ”Bieberbach conjecture” by de Branges in
1984 [39] has given complex analysts a renewed attention to study the role of special functions. In this
regard a lot of implementations and generalizations are found. The study of this theory gained an
independent status. The Gauss Hypergeometric Function (GHF), denoted by F (μ, ν; τ; ω), was first
introduced by Gauss in 1812 [39]. It is given as follows: for μ, ν and τ be complex numbers with τ

other than 0,−1,−2, ..., and

F (μ, ν; τ; z) =
∞

∑
j=0

(μ)j(ν)j

(τ)j(1)j
zj = 1 +

μν

τ
z +

μ(μ + 1)ν(ν + 1)
τ(τ + 1)

z2

2!
+ ... (14)

where (�)j is the Pochhammer symbol given by

(�)j :=
Γ(� + j)

Γ(�)
=

{
1, (j = 0),

�(� + 1)(� + 2)...(� + j − 1), (j ∈ N = {1, 2, 3, ...}).
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Another important special function related to GHF is the incomplete beta function ϕp(μ, τ; z)
defined

(
for μ ∈ R, τ ∈ R\Z−

0 ,Z−
0 = {...,−2,−1, 0}

)
by

ϕp(μ, τ; z) = zF (μ, 1; τ; z) =
∞

∑
j=0

(μ)j

(τ)j
zj+p. (15)

Other generalized Noor-type linear integral operators between classes of holomorphic functions
associated with hypergeometric functions and its generalizations have been posed by authors.
For instance, Al-Janaby et al. ([40,41]).

Recently, the theory of Hurwitz–Lerch Zeta functions has a fruitful role in the study operators.
This theory is developed with numerous implementations and generalizations by various researchers.
One may refer to Al-Janaby et al. [42,43], Ghanim [44], Ghanim and Darus [45], Ghanim and
Al-Janaby [46], Rǎducanu and Srivastava [47], Srivastava and Attiya [48], Srivastava et al. [49,50], Xing
and Jose [51], Choi and Srivastava [52], Milovanovic and Rassias [53] and Rassias and Yang [54–57].

In terms of the Hurwitz–Lerch Zeta function Φ(z, γ, η) defined by (see, for example, [58–60])

Φ(z, γ, η) :=
∞

∑
j=0

zj

(j + η)γ
(16)

(η ∈ C \Z−
0 , γ ∈ C when |z| < 1, 1 < �(γ) when |z| = 1).

The following new family of the (GHLZF) was considered systematically by Srivastava [61]:

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
μ1,··· ,μr ;ν1,··· ,νs (z, γ, η; ζ, ξ)

=
1

ξ Γ(γ)

∞

∑
j=0

r
∏
i=1

(μi)jρi

(η + j)γ ·
s

∏
i=1

(νi)jσi

H2,0
0,2

[
(η + j)ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
zj

j!

(17)

(
0 < min{�(η),�(γ)}, 0 < �(ζ); 0 < ξ

)
,

where (
μi ∈ C (i = 1, · · · , p), νi ∈ C \Z−

0 (i = 1, · · · , s), 0 < ρi (i = 1, · · · , r),

0 < σi (i = 1, · · · , q), and 0 � 1 +
s

∑
i=1

σi −
r

∑
i=1

ρi

)
and the equality in the convergence condition holds true for suitably bounded values of |z| given by

|z| < ∇ :=

(
r

∏
i=1

ρ
−ρi
i

)(
s

∏
i=1

σ
σi
i

)
.

Definition 1. The H-function involved in the right-hand side of Equation (17) is the well-known Fox’s
H-function ([62], Definition 1.1) (see also [30,63]) defined by

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]

=
1

2πi

∫
L

Ξ(γ)z−γ dγ
(
z ∈ C \ {0}, | arg(z)| < π

)
,

(18)

an empty product is interpreted as 1, m, n, p and q are integers such that

1 � m � q and 0 � n � p,
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0 < Ai (i = 1, · · · , p) and 0 < Bi (i = 1, · · · , q),

ai ∈ C (i = 1, · · · , p) and bi ∈ C (i = 1, · · · , q)

and L is a suitable Mellin–Barnes type contour separating the poles of the gamma functions

{Γ(bi + Biγ)}m
i=1

from the poles of the gamma functions
{Γ(1 − ai + Aiγ)}n

i=1.

It is worthy of mention here that, by using the fact that ([61], p. 1496, Remark 7)

lim
ζ→0

⎧⎨⎩H2,0
0,2

⎡⎣(η + j)ζ
1
ξ

∣∣∣∣
(γ, 1),

(
0, 1

ξ

) ⎤⎦⎫⎬⎭ = ξ Γ(γ) (0 < ξ),

Equation (17) reduces to the following form:

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
μ1,··· ,μr ;ν1,··· ,νs (z, γ, η; 0, ξ) := Φ(ρ1,··· ,ρr ,σ1,··· ,σs)

μ1,··· ,μr ;ν1,··· ,νs (z, γ, η)

=
∞

∑
j=0

r
∏
i=1

(μi)jρi

(η + j)γ ·
s

∏
i=1

(νi)jσi

zj

j!
.

(19)

Definition 2. The function Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
μ1,··· ,μr ;ν1,··· ,νs (z, γ, η) involved in Equation (19) is the multiparameter

extension and generalization of the Hurwitz–Lerch Zeta function Φ(z, γ, η) introduced by Srivastava et al. ([64],
p. 503, Equation (6.2)) defined by

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
μ1,··· ,μr ;ν1,··· ,νs (z, γ, η) =

∞

∑
j=0

r
∏
i=1

(μi)jρi

(η + j)γ ·
s

∏
i=1

(νi)jσi

zj

j!
(20)

(
r, s ∈ N0; μj ∈ C (j = 1, · · · , r); η, νj ∈ C \Z−

0 (j = 1, · · · , s);

ρi, σi ∈ R+ (i = 1, · · · , r; i = 1, · · · , s);

−1 < Δ when γ, z ∈ C;

Δ = −1 and γ ∈ C when |z| < ∇∗;

Δ = −1 and
1
2
< �(Ξ) when |z| = ∇∗

)
with

∇∗ :=

(
r

∏
i=1

ρ
−ρj
i

)
·
(

s

∏
i=1

σ
σi
i

)
,

Δ :=
s

∑
i=1

σi −
r

∑
i=1

ρi and Ξ := t +
s

∑
i=1

νi −
r

∑
i=1

μi +
r − s

2
.

17



Mathematics 2020, 8, 845

In GFT, the third-order differential subordination methodology for holomorphic functions is
indicated by Antonion and Miller [20], which is required in this investigation.

Definition 3 ([20], Definition 2, p. 441). Let J denote the set of holomorphic functions ω that are univalent
on the set D\G(ω), where

G(ω) = {χ ∈ ∂D : lim
z→χ

ω(z) = ∞},

is such that

min |ω′(χ)| = δ > 0

for χ ∈ ∂D\G(ω). Further, let J (α) = {ω(z) ∈ J : ω(0) = α}, J (0) = J0 and J (1) = J1.

Definition 4 ([20], Definition 1, p. 440). Let Γ : C4 ×D −→ C and the function π(z) be univalent in D.
If the function υ(z) is holomorphic in D and satisfies the following third-order differential subordination:

Γ(υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z) ≺ π(z), (21)

then υ(z) is called a solution of the differential subordination. A univalent function ω(z) is called a dominant of
the solutions of the differential subordination, or, more simply, a dominant if υ(z) ≺ ω(z) for all υ(z) achieving
Equation (21). A dominant ω̃(z) that achieves ω̃(z) ≺ ω(z) for all dominants ω(z) of Equation (21) is said to
be the best dominant.

The class of admissible functions related to differential subordination is presented next.

Definition 5 ([20], Definition 2, p. 449). Let Λ be a set in C, ω ∈ J and j ∈ N\{1}. The class of admissible
functions denoted by Ωj[Λ, ω] consists of those functions Γ : C4 × D −→ C that achieves the following
admissibility condition:

Γ( f , q, x, y; z) /∈ Λ

whenever

f = ω(χ), q = κζω′(χ), �
(

x
q
+ 1

)
≥ κ�

(
ζω′′(χ)
ω′(χ)

+ 1
)

,

and

�
(

y
q

)
≥ κ2�

(
χ2ω′′′(χ)

ω′(χ)

)
,

where z ∈ D, χ ∈ ∂D\G(ω), and κ ≥ j.

The following theorem is a key outcome in third-order differential subordination.

Theorem 1 ([20], Definition 2, p. 449). Let υ ∈ H[α, j] with j ≥ 2, and let ω ∈ J (α) and achieve the
following conditions:

�
(

χω′′(χ)
ω′(χ)

)
≥ 0, and

∣∣∣∣ zυ′(z)
ω′(χ)

∣∣∣∣ ≤ κ,
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where z ∈ D, χ ∈ ∂D\G(ω) and κ ≥ j. If Λ is a set in C, Γ ∈ Ωj[Λ, ω] and

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
∈ Λ,

then

υ(z) ≺ ω(z) (z ∈ D) .

2. Imposed Linear Integral Operator M�
pϑ(z)

This section considers a new generalized Noor-type linear integral operator M�
pϑ(z) for p-valent

functions associated with the GHLZF in D defined in Equation (17). Setting ρ1 = · · · , ρr = σ1 = · · · =
σs = 1, and μi ∈ C \Z−

0 (i = 1, · · · , r) as follows:

Φ(1,··· ,1,1,··· ,1)
μ1,··· ,μr ;ν1,··· ,νs(z, γ, η; ζ, ξ)

=
1

ξ Γ(γ)

∞

∑
j=0

r
∏
i=1

(μi)j

(η + j)γ ·
s

∏
i=1

(νi)j

H2,0
0,2

[
(η + j)ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
zj

j!

=
1

ξ Γ(γ)

∞

∑
j=p

r
∏
i=1

(μi)j−p

(η + (j − p))γ ·
s

∏
i=1

(νi)j−p

H2,0
0,2

[
(η + (j − p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
zj−p

(j − p)!
.

(22)

Thus, from Equation (22), we derive a new function as:

Ψν1,...,νs
μ1,...,μr (γ, η; ζ, ξ,℘) := ξ Γ(γ) Υ

[
zpΦ(1,··· ,1,1,··· ,1)

μ1,··· ,μr ;ν1,··· ,νs(z, γ, η; ζ, ξ)

]

= zp +
∞

∑
j=p+1

Υ
r

∏
i=1

(μi)j−p

(η + (j − p))γ ·
s

∏
i=1

(νi)j−p

H2,0
0,2

[
(η + (j − p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
zj

(j − p)!
,

(23)

where Υ is defined as:

Υ =
ηγ

H2,0
0,2

[
η ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] .
(24)
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By employing the principle of convolution product of �th order of GHLZF, we yield

N �,ν1,...,νs
p,μ1,...,μr (γ, η; ζ, ξ,℘) := Ψν1,...,νs

μ1,...,μr (γ, η; ζ, ξ,℘) ∗ ... ∗ Ψν1,...,νs
μ1,...,μr (γ, η; ζ, ξ,℘)︸ ︷︷ ︸

�−times

= zp +
∞

∑
j=p+1

[ Υ
r

∏
i=1

(μi)j−p H2,0
0,2

[
(η + (j − p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]

(η + (j − p))γ
s

∏
i=1

(νi)j−p (j − p)!

]�
zj.

(25)

Next, we present a new function
(
N �,ν1,...,νs

p,μ1,...,μr (γ, η; ζ, ξ,℘)
)−1

given by

(
N �,ν1,...,νs

p,μ1,...,μr (γ, η; ζ, ξ,℘)
)−1

= zp +
∞

∑
j=p+1

[ (η + (j − p))γ
s

∏
i=1

(νi)j−p (j − p)!

Υ
r

∏
i=1

(μi)j−p H2,0
0,2

[
(η + (j − p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]]� [
(℘+ p)j−p

(j − p)!

]
zj,

(26)

such that,(
N �,ν1,...,νs

p,μ1,...,μr (γ, η; ζ, ξ,℘)
)
∗
(
N �,ν1,...,νs

p,μ1,...,μr (γ, η; ζ, ξ,℘)
)−1

=
zp

(1 − z)℘+p

= zp +
∞

∑
j=p+1

(℘+ p)j−p

(j − p)!
zj, (℘ > −1) .

Therefore, from Equation (26), we consider the following linear operator: M�,ν1,...,νs
p,μ1,...,μr (γ, η; ζ, ξ,℘) :

Ap −→ Ap , which is defined by

M�,ν1,...,νs
p,μ1,...,μr (γ, η; ζ, ξ,℘) ϑ(z) =

(
N �,ν1,...,νs

p,μ1,...,μr (γ, η; ζ, ξ,℘)
)−1

∗ ϑ(z)

= zp +
∞

∑
j=p+1

[ (η + (j − p))γ
s

∏
i=1

(νi)j−p (j − p)!

Υ
r

∏
i=1

(μi)j−p H2,0
0,2

[
(η + (j − p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]]� [
(℘+ p)j−p

(j − p)!

]
αj zj.

(27)

Remark 1. For suitably specializing the parameters of �, p, ζ, ξ, γ, η, s, r, νi and μi, the operator M�
pϑ(z)

defined in Equation (27) can be reduced to various operators previously mentioned. Thus, we have the following
special cases:

1. For � = p = γ = η = 1, ζ = 0, s = 1, ν1 = 1, r = 2, μ1 = 2 and μ2 = 1 in Equation (27), we yield
the Ruscheweyh operator given in Equation (9).

2. For � = p = γ = η = 1, ζ = 0, s = 2, ν1 = ν2 = 1, r = 3, μ1 = 2 and μ2 = μ3 = ℘ + 1,
the operator Equation (27) reduce to the Noor operator defined by Equation (11).

3. For � = γ = 1, ζ = 0, s = 2, ν1 = η, ν2 = 1, r = 3, μ1 = η + 1 μ2 = μ2 = ℘+ p, the operator
Equation (27), we have the extended Noor operator given by Equation (13).

4. For � = 1, ζ = 0, s = 2, γ = 1, ν1 = η, ν2 = τ, r = 3, μ1 = η + 1, μ2 = 1, and μ3 = μ,
the operator Equation (27) provides the Noor-type integral operator defined by [65].
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5. For � = p = γ = η = 1, ζ = 0, s = 2, ν1 = 1, ν2 = τ, r = 3, μ1 = 2, μ2 = μ, and μ3 = ν,
the operator Equation (27) provides the Noor integral operator given in [66].

6. For � = p = γ = η = 1, ζ = 0, s = 1, ν1 = τ, r = 3, μ1 = 2, μ2 = μ, and μ3 = ν, the operator
Equation (27) reduce to the generalized Noor-type linear integral operator defined in [67].

7. For � = p = γ = η = 1, ζ = 0 s = 2, ν1 = ν2 = 1, r = 3, μ1 = μ2 = 2 and μ3 = ℘+ 1, the operator
Equation (27) reduce to Alexander operator given in Equation (6).

8. For � = p = γ = η = 1, ζ = 0 s = 1, ν1 = 1, r = 2, μ1 = 2 and μ2 = ℘+ 1, the operator Equation
(27) is reduced to ϑ(z) given by Equation (2).

For convenience, Equation (27) is written as

M�
pϑ(z) ≡ M�,ν1,...,νr

p,μ1,...,μr (γ, η; ζ, ξ,℘) ϑ(z). (28)

This operator achieves the differential recurrence relation

Az
p

[
M�

pϑ(z)
]′
= M�+1

p ϑ(z)− (1 − A)M�
pϑ(z),

(29)

where A =

p

[
(η+(j−p))γ

s
∏

i=1
(νi)j−p (j−p)!− Υ

r
∏

i=1
(μi)j−p H2,0

0,2

⎡⎢⎣(η+(j−p))ζ
1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ⎤⎥⎦
]

(j−p) Υ
r

∏
i=1

(μi)j−p H2,0
0,2

⎡⎢⎣(η+(j−p))ζ
1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ⎤⎥⎦
. Throughout

this paper, the generalized Noor-type linear integral operator will be denoted by M�
pϑ(z).

3. Differential Subordination with M�
pϑ(z)

This section introduces certain appropriate class of admissible functions and studies some
third-order differential subordination outcomes for the operator M�

pϑ(z) defined by Equation (27).

Definition 6. Let A be a set in C, ω ∈ J0 and j ∈ N\{1}. The class of admissible functions ΣM[A, ω]

consists of those functions � : C4 ×D −→ C that satisfy the following admissibility condition:

�(u1, u2, u3, u4; z) /∈ A

whenever

u1 = ω(χ), u2 =
κχω′(χ) + p(1−A)

A ω(χ)
p
A

,

�
(

p
[
u3 − 2(1 − A)u2 + (1 − A)2u1

]
A[u2 − (1 − A)u1]

)
≥ κ�

(
ζω′′(χ)
ω′(χ)

+ 1
)

,

and

�
(

p2[u4 − (1 − A)3u1]− p[3A + 3p(1 − A)][u3 − 2(1 − A)u2 + (1 − A)2u1]

A2[u2 − (1 − A)u1]
− 3p2(1 − A)2

A2 + 2
)

≥ κ2�
(

χ2ω′′′(χ)
ω′(χ)

)
,

where z ∈ D, χ ∈ ∂D\G(ω), and κ ≥ j.
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Theorem 2. Let � ∈ ΣM[A, ω]. If ϑ ∈ Ap and ω ∈ J0 achieve the following conditions:

�
(

χω′′(χ)
ω′(χ)

)
≥ 0,

∣∣∣∣∣M
�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
ω′(χ)

∣∣∣∣∣ ≤ |A| κ

p
, (30)

and

{�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
: z ∈ D} ⊂ A, (31)

then

M�
pϑ(z) ≺ ω(z), (z ∈ D) . (32)

Proof. Define the following holomorphic function υ(z) in D by

υ(z) = M�
pϑ(z). (33)

From Equations (29) and (33), we have

M�+1
p ϑ(z) =

zυ′(z) + p(1−A)
A υ(z)

p
A

. (34)

Further computations show that

M�+2
p ϑ(z) =

z2υ′′(z) +
[
1 + 2p(1−A)

A

]
zυ′(z) + p2(1−A)2

A2 υ(z)

p2

A2

, (35)

and

M�+3
p ϑ(z) =

z3υ′′′(z) +
[
3 + 3p(1−A)

A

]
z2υ′′(z) +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
zυ′(z) + p3(1−A)3

A3 υ(z)

p3

A3

. (36)

Define the parameters u1, u2, u3 and u4 as:

u1 = f , u2 =
g + p(1−A)

A f
p
A

, (37)

u3 =
h +

[
1 + 2p(1−A)

A

]
g + p2(1−A)2

A2 f

p2

A2

, (38)

and

u4 =
t +

[
3 + 3p(1−A)

A

]
h +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
g + p3(1−A)3

A3 f

p3

A3

. (39)
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Now, we define the transformation Γ : C4 ×D −→ C as follows:

Γ( f , g, h, t; z) = �(u1, u2, u3, u4; z)

= �
(

f ,
g + p(1−A)

A f
p
A

,
h +

[
1 + 2p(1−A)

A

]
g + p2(1−A)2

A2 f

p2

A2

,

t + 3
[
1 + p(1−A)

A

]
h +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
g + p3(1−A)3

A3 f

p3

A3

; z

)
.

(40)

By utilizing Theorem 1 and Equations (33) to (36), and from Equation (40), we yield

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
= �

(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
. (41)

Therefore, Equation (31) becomes

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
∈ A.

A computation utilizing Equations (37), (38) and (39) acquire

h
q
+ 1 =

p
[
u3 − 2(1 − A)u2 + (1 − A)2u1

]
A[u2 − (1 − A)u1]

,

and

t
q
=

p2[u4 − (1 − A)3u1]− p[3A + 3p(1 − A)][u3 − 2(1 − A)u2 + (1 − A)2u1]

A2[u2 − (1 − A)u1]
− 3p2(1 − A)2

A2 + 2.

We also note that

∣∣∣∣ zυ′(z)
ω′(χ)

∣∣∣∣ =
∣∣∣∣∣∣

p
A

[
M�+1(z)− (1 − A)M�(z)

]
ω′(χ)

∣∣∣∣∣∣ ≤ κ.

Hence, the admissibility condition for � ∈ ΣM[A, ω] in Definition 8 is equivalent to the
admissibility condition of Γ ∈ Ω2[A, ω] as given in Definition 5 and by Theorem 1, we obtain

M�
pϑ(z) ≺ ω(z).

The proof of Theorem 2 is complete.

If A 	= C is a simply connected domain, then A = h̄(D) for some conformal mapping h̄(z) of D
onto A. In this case the class ΣM[h̄(D), ω] is written as Σ′

M[h̄, ω]. The following outcome is a directly
consequence of Theorem 2.

Theorem 3. Let � ∈ ΣM[h̄, ω]. If ϑ ∈ Ap and ω ∈ J0 achieve the following condition (28) given as follows:

�
(

χω′′(χ)
ω′(χ)

)
≥ 0,

∣∣∣∣∣M
�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
ω′(χ)

∣∣∣∣∣ ≤ |A| κ

p
,

23



Mathematics 2020, 8, 845

and

�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
≺ h(z), (42)

then

M�
pϑ(z) ≺ ω(z), (z ∈ D) . (43)

The next outcome is an extension of Theorem 3 to the case where the behavior of ω(z) on ∂D is
not known.

Corollary 1. Let A ⊂ C and let ω(z) be univalent in D, ω(0) = 0. Let � ∈ ΣM[A, ωε] for some ε ∈ (0, 1)
where ωε(z) = ω(εz). If ϑ ∈ Ap achieves

�
(

χω′′
ε (χ)

ω′
ε(χ)

)
≥ 0,

∣∣∣∣∣M
�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
ω′

ε(χ)

∣∣∣∣∣ ≤ |A| κ

p
,

and

�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
∈ A,

then

M�
pϑ(z) ≺ ω(z),

where z ∈ D and χ ∈ ∂D\G(ωε).

Proof. By utilizing Theorem 3, we have M�
pϑ(z) ≺ ωε(z). Then we get the outcome from ωε(z) ≺

ω(z).

The next outcome is an immediate consequence of Corollary 1.

Corollary 2. Let A ⊂ C and let ω(z) be univalent in D, ω(0) = 0. Let � ∈ ΣM[h̄, ωε] for some ε ∈ (0, 1)
where ωε(z) = ω(εz). If ϑ ∈ Ap achieves

�
(

χω′′
ε (χ)

ω′
ε(χ)

)
≥ 0,

∣∣∣∣∣M
�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
ω′

ε(χ)

∣∣∣∣∣ ≤ |A| κ

p
,

and

�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
≺ h̄(z), (44)

then

M�(z) ≺ ω(z),

where z ∈ D and χ ∈ ∂D\G(ωε).

The following outcome gives the best dominant of the differential subordination of Equation (40).
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Theorem 4. Let h̄(z) be univalent in D. Let � : C4 ×D −→ C. Suppose that the differential equation:

�
(

ω(z),
zω′(z) + p(1−A)

A ω(z)
p
A

,
z2ω′′(z) +

[
1 + 2p(1−A)

A

]
zω′(z) + p2(1−A)2

A2 ω(z)

p2

A2

,

z3ω′′′(z) + 3
[
1 + p(1−A)

A

]
zω′′(z) +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
zω′(z) + p3(1−A)3

A3 ω(z)

p3

A3

; z

)
= h̄(z),

(45)

has a solution ω(z) with ω(0) = 0 which achieves Equation (30). If ϑ ∈ Ap achieves Equation (44) and

�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
, (46)

is holomorhic in D, then

M�
pϑ(z) ≺ ω(z), (47)

and ω(z) is the best dominant.

Proof. By utilizing Theorem 3 that ω(z) is a dominant of Equation (44). Since ω(z) achieves Equation
(45), it is also a solution of Equation (44) and therefore ω(z) will be dominated by all dominants. Thus
ω(z) is the best dominant.

In the case ω(z) = Qz (Q > 0) and in view of Definition 8, the class of admissible functions
ΣM[A, ω] denoted by ΣM[A,Q] is defined below:

Definition 7. Let A be a set in C and Q > 0. The class of admissible functions ΣM[A,Q] consists of those
functions � : C4 ×D −→ C that achieve the admissibility condition

�
(
Qeiθ ,

[
κA
p

+ (1 − A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)
/∈ A,

(48)

where z ∈ D, �(Le−iθ) ≥ (κ − 1)κQ and �(Ve−iθ) ≥ 0 for all real θ and κ ∈ N\{1}.

Corollary 3. Let � ∈ ΣM[A,Q]. If ϑ ∈ Ap achieves the following conditions:

∣∣∣M�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
∣∣∣ ≤ |A| κQ

p
, (49)

and

�
(
M�

pϑ(z),M�+1
p ϑ(z),M�+2

p ϑ(z),M�+3
p ϑ(z); z

)
∈ A, (50)

then ∣∣∣M�(z)
∣∣∣ < Q(z).
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In the case A = ω(D) = {z1 : |z1| < Q}, (Q > 0), for simplification we denote by ΣM[Q] to the
class ΣM[A,Q].

Corollary 4. Let � ∈ ΣM[Q]. If ϑ ∈ Ap achieves the following conditions

∣∣∣M�+1
p ϑ(z)− (1 − A)M�

pϑ(z)
∣∣∣ ≤ |A| κQ

p
,

and ∣∣∣� (
M�

pϑ(z),M�+1(z),M�+2
p ϑ(z),M�+3

p ϑ(z); z
)∣∣∣ < Q, (51)

then ∣∣∣M�
pϑ(z)

∣∣∣ < Q.

Corollary 5. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M�+1
p ϑ(z)−M�

pϑ(z)
∣∣∣ < (κ − p) |A| Q

p
,

then ∣∣∣M�
pϑ(z)

∣∣∣ < Q.

Proof. Let � (u1, u2, u3, u4; z) = u2 − u1. Utilizing Corollary 3 with A = h̄(D) and

h̄(z) =
(κ − p) |A| Q

p
z, (Q > 0, z ∈ D).

We have to find the condition so that � ∈ ΣM[A,Q], that is, the admissibility condition of
Equation (48) is achieved. This follows since

∣∣∣∣∣�
(
Qeiθ ,

[
κA
p

+ (1 − A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣
[

κ

p
− 1

]
AQeiθ

∣∣∣∣∣= (κ − p) |A| Q
p

.

The required outcome is obtained.

Corollary 6. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M�+2
p ϑ(z)−M�+1

p ϑ(z)
∣∣∣ <

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+
∣∣∣ p2(A−1)

A

∣∣∣]Q
p2

|A|2
,
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then ∣∣∣M�
pϑ(z)

∣∣∣ < Q.

Proof. Let � (u1, u2, u3, u4; z) = u3 − u2. Utilizing Corollary 3 with A = h̄(D) and

h̄(z) =

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+
∣∣∣ p2(A−1)

A

∣∣∣]Q
p2

|A|2
z, (Q > 0, z ∈ D).

It is enough to show that � ∈ ΣM[A,Q], that is, the admissibility condition of Equation (48) is
achieved. This follows since∣∣∣∣∣�

(
Qeiθ ,

[
κA
p

+ (1 − A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣∣
L+

[
1 + p(1−2A)

A

]
κQeiθ +

[
p2(A−1)

A

]
Qeiθ

p2

A2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
Le−iθ +

[
1 + p(1−2A)

A

]
κQ+

[
p2(A−1)

A

]
Q

p2

A2 e−iθ

∣∣∣∣∣∣

≥
�(Le−iθ) +

∣∣∣1 + p(1−2A)
A

∣∣∣ κQ+
∣∣∣ p2(A−1)

A

∣∣∣Q
p2

|A|2
≥

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+
∣∣∣ p2(A−1)

A

∣∣∣]Q
p2

|A|2
.

This completes the proof.

Corollary 7. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M�+2
p ϑ(z)−M�+1

p ϑ(z)
∣∣∣ <

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
,

then ∣∣∣M�
pϑ(z)

∣∣∣ < Q.

Proof. Let � (u1, u2, u3, u4; z) = u4 − A
p u3. Using Corollary 3 with A = h̄(D) and

h̄(z) =

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
z, (Q > 0, z ∈ D).
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It is adequate to show that � ∈ ΣM[A,Q], that is, the admissibility condition of Equation (48) is
achieved. This follows since∣∣∣∣∣�

(
Qeiθ ,

[
κA
p

+ (1 − A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣∣
V +

[
2 + 3p(1−A)

A

]
L+

[
p(1−A)

A
(
1 + 3p(1−A)

A
)]

κQeiθ +
[

p2(1−A)2

A2

(
p(1−A)

A − 1
)]

Qeiθ

p3

A3

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Ve−iθ +

[
2 + 3p(1−A)

A

]
Le−iθ +

[
p(1−A)

A
(
1 + 3p(1−A)

A
)]

κQ+
[

p2(1−A)2

A2

(
p(1−A)

A − 1
)]

Q
p3

A3 e−iθ

∣∣∣∣∣∣

≥
�(Ve−iθ) +

∣∣∣2 + 3p(1−A)
A

∣∣∣�(Le−iθ) +
∣∣∣ p(1−A)

A
(
1 + 3p(1−A)

A
)∣∣∣ κQ+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣Q

p3

|A|3

≥
(κ − 1)κQ

∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ κQ+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣Q

p3

|A|3

≥

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
.

The required outcome is derived.

4. Conclusions and Future Directions

In the terms of the ξ-Generalized Hurwitz–Lerch Zeta functions (GHLZF) in the z- domain, a new
generalized Noor-type linear integral operator is introduced. This operator was utilized to study new
classes of holomorphic functions in D. In addition, new applications of the third-order differential
subordination outcome that involves this new operator were investigated. The third-order differential
inequalities were imposed in this work to show the uppercase of this new generalized Noor-type linear
integral operator in D.
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47. Rǎducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator
involving the Hurwitz–Lerch zeta function. Integr. Trans. Spec. Funct. 2007, 18, 933–943. [CrossRef]

48. Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz–Lerch zeta function and
differential subordination. Integr. Trans. Spec. Funct. 2007, 18, 207–216. [CrossRef]

49. Srivastava, H.M.; Gaboury, S.A.; Ghanim, F. Certain subclasses of meromorphically univalent functions
defined by a linear operator associated with the λ−generalized Hurwitz–Lerch zeta function. Integr. Transf.
Spec. Funct. 2015, 26, 258–272. [CrossRef]

50. Srivastava, H.M.; Gaboury, S.A.; Ghanim, F. Some further properties of a linear operator associated with the
λ−generalized Hurwitz–Lerch zeta function related to the class of meromorphically univalent functions.
Appl. Math. Comput. 2015, 259, 1019–1029.

51. Xing, S.C.; Jose, L.L. A note on the asymptotic expansion of the Lerch’s transcendent. Integr. Trans. Spec.
Funct. 2019, 30, 844–855.

52. Choi, J.; Srivastava, H.M. The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function.
Taiwan J. Math. 2011, 15, 501–522. [CrossRef]

53. Milovanovic, G.V.; Rassias, M.T. (Eds.) Analytic Number Theory, Approximation Theory and Special Functions—In
Honor of Hari M. Srivastava; Springer: Basel, Switzerland, 2014.

54. Rassias, M.T.; Yang, B. On an Equivalent Property of a Reverse Hilbert-Type Integral Inequality Related to
the Extended Hurwitz-Zeta Function. J. Math. Inequal. 2019, 13, 315–334. [CrossRef]

55. Rassias, M.T.; Yang, B. On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in
the whole plane. Acta Appl. Math. 2019, 160, 67–80. [CrossRef]

30



Mathematics 2020, 8, 845

56. Rassias, M.T.; Yang, B. Equivalent properties of a Hilbert-type integral inequality with the best constant
factor related to the Hurwitz zeta function. Ann. Funct. Anal. 2018, 9, 282–295. [CrossRef]

57. Rassias, M.T.; Yang, B.; Raigorodskii, A. Two Kinds of the Reverse Hardy-Type Integral Inequalities with
the Equivalent Forms Related to the Extended Riemann Zeta Function. Appl. Anal. Discret. Math. 2018, 12,
273–296. [CrossRef]

58. Srivastava, H.M.; Choi, J. Series Associated with Zeta and Related Functions; Kluwer Academic Publishers:
Dordrecht, Germany, 2001.

59. Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc.
Camb. Philos. Soc. 2000, 129, 77–84. [CrossRef]

60. Srivastava, H.M.; Choi, J. Zeta and q−zeta Functions and Associated Series and Integrals; Elsevier Science
Publishers: Amsterdam, The Netherland, 2012.

61. Srivastava, H.M. A new family of the λ−generalized Hurwitz–Lerch zeta functions with applications.
Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [CrossRef]

62. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-function: Theory and applications; Springer: New York, NY,
USA, 2010.

63. Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H−functions of One and Two Variables with Applications; South
Asian Publishers: New Delhi, India, 1982.

64. Srivastava, H.M.; Gaboury, S.; Tremblay, R. New relations involving an extended multiparameter
Hurwitz–Lerch zeta function with applications. Int. J. Anal. 2014, 2014, 1–14. [CrossRef]

65. Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion relationships and argument properties for certain
subclasses of multivalent functions associated with a family of linear operators. J. Math. Anal. Appl.
2004, 292, 470–483. [CrossRef]

66. Noor, K.L. Integral operators defined by convolution with hypergeometric functions. Appl. Math. Comput.
2006, 182, 1872–1881. [CrossRef]

67. Darus, M.; Ibrahim, R.W. Integral operator defined by convolution product of hypergeometric functions.
Int. J. Nonlinear Sci. 2012, 13, 153–157.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

31





mathematics

Article

Subclasses of Bi-Univalent Functions Defined by
Frasin Differential Operator

Ibtisam Aldawish 1, Tariq Al-Hawary 2 and B. A. Frasin 3,*

1 Department of Mathematics and Statistics, College of Science, IMSIU (Imam Mohammed Ibn Saud
Islamic University), P.O. Box 90950, Riyadh 11623, Saudi Arabia; imaldawish@imamu.edu.sa

2 Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan;
tariq_amh@bau.edu.jo

3 Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq 25113, Jordan
* Correspondence: bafrasin@yahoo.com

Received: 17 April 2020; Accepted: 9 May 2020; Published: 13 May 2020

Abstract: Let Ω denote the class of functions f (z) = z+ a2z2 + a3z3 + · · · belonging to the normalized
analytic function class A in the open unit disk U= {z : |z| < 1}, which are bi-univalent in U, that is,
both the function f and its inverse f−1 are univalent in U. In this paper, we introduce and investigate
two new subclasses of the function class Ω of bi-univalent functions defined in the open unit disc U,
which are associated with a new differential operator of analytic functions involving binomial series.
Furthermore, we find estimates on the Taylor–Maclaurin coefficients |a2| and |a3| for functions in
these new subclasses. Several (known or new) consequences of the results are also pointed out.

Keywords: analytic functions; univalent functions; bi-univalent functions; Taylor–Maclaurin series

MSC: 30C45

1. Introduction and Definitions

Let A be the class of all analytic functions f in the open unit disk U= {z : |z| < 1}, normalized
by the conditions f (0) = 0 and f ′(0) = 1 of the form

f (z) = z +
∞

∑
n=2

anzn. (1)

Further, by S we shall denote the class of all functions in A which are univalent in U.
A function f ∈ A is said to be starlike if f (U) is a starlike domain with respect to the origin; i.e.,

the line segment joining any point of f (U) to the origin lies entirely in f (U) and a function f ∈ A is
said to be convex if f (U) is a convex domain; i.e., the line segment joining any two points in f (U) lies
entirely in f (U). Analytically, f ∈ A is starlike, denoted by S∗, if and only if Re (z f ′(z)/ f (z)) > 0,
whereas f ∈ A is convex, denoted by K, if and only if Re (1 + z f ′′(z)/ f ′(z)) > 0. The classes S∗(α)
and K(α) of starlike and convex functions of order α(0 ≤ α < 1), are respectively characterized by

Re
(

z f ′(z)
f (z)

)
> α (z ∈ U), (2)

and

Re
(

1 +
z f ′′(z)
f ′(z)

)
> α (z ∈ U). (3)
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For a function f in A, and making use of the binomial series

(1 − λ)m =
m

∑
j=0

(
m
j

)
(−1)jλj (m ∈ N = {1, 2, · · · }, j ∈ N0 = N∪ {0}),

Frasin [1] (see also [2–4]) introduced the differential operator Dζ
m,λ f (z) defined as follows:

D0 f (z) = f (z), (4)

D1
m,λ f (z) = (1 − λ)m f (z) + (1 − (1 − λ)m)z f ′(z) = Dm,λ f (z), λ > 0; m ∈ N, (5)

Dζ
m,λ f (z) = Dm,λ(Dζ−1 f (z)) (ζ ∈ N). (6)

If f is given by Equation (1), then from Equations (5) and (6) we see that

Dζ
m,λ f (z) = z +

∞

∑
n=2

(
1 + (n − 1)

m

∑
j=1

(
m
j

)
(−1)j+1λj

)ζ

anzn, ζ ∈ N0. (7)

Using the relation in Equation (7), it is easily verified that

Cm
j (λ)z(Dζ

m,λ f (z))′ = Dζ+1
m,λ f (z)− (1 − Cm

j (λ))Dζ
m,λ f (z) (8)

where Cm
j (λ) :=

m
∑

j=1
(m

j )(−1)j+1λj.

We observe that for m = 1, we obtain the differential operator Dζ
1,λ defined by Al-Oboudi [5] and

for m = λ = 1, we get Sãlãgean differential operator Dζ [6].
In [7], Frasin defined the subclass S(α, s, t) of analytic functions f satisfying the following condition

Re
{
(s − t)z f ′(sz)
f (sz)− f (tz)

}
> α, (9)

for some 0 ≤ α < 1 s, t ∈ C with |s| ≤ 1; |t| ≤ 1; s 	= t and for all z ∈ U. We also denote by T (α, s, t)
the subclass of A consisting of all functions f (z) such that z f ′(z) ∈ S(α, s, t). The class S(α, 1, t) was
introduced and studied by Owa et al. [8]. When t = −1, the class S(α, 1,−1) ≡ Ss(α) was introduced
by Sakaguchi [9] and is called Sakaguchi function of order α (see [10,11]), where as Ss(0) = Ss is
the class of starlike functions with respect to symmetrical points in U. In addition, we note that
S(α, 1, 0) ≡ S∗(α) and T (α, 1, 0) = K(α).

Determination of the bounds for the coefficients an is an important problem in geometric function
theory as they give information about the geometric properties of these functions. For example, the
bound for the second coefficient a2 of functions in S gives the growth and distortion bounds as well as
covering theorems. It is well known that the n-th coefficient an is bounded by n for each f ∈ S .

In this paper, we estimate the initial coefficients |a2| and |a3| coefficient problem for certain
subclasses of bi-univalent functions.

The Koebe one-quarter theorem [12] proves that the image of U under every univalent function
f ∈ S contains the disk of radius 1

4 . Therefore, every function f ∈ S has an inverse f−1, defined by

f−1( f (z)) = z (z ∈ U)

and

f ( f−1(w)) = w,
(
|w| < r0( f ), r0( f ) ≥ 1

4

)
,
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where

f−1(w) = h(w) = w +
∞

∑
n=2

Anwn. (10)

A simple computation shows that

w = f (h(w)) = w + (A2 + a2)w2 + (A3 − 2a2
2 + a3)w3 + (A4 + 5a3

2 − 5a2a3 + a4)w4 + · · · . (11)

Comparing the initial coefficients in Equation (11), we find that A2 = −a2, A3 = 2a2
2 − a3 and

A4 = 5a3
2 + 5a2a3 − a4.

By putting these values in the Equation (10), we get

f−1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · .

A function f ∈ A is said to be bi-univalent in the open unit disk U if both the function f and
its inverse f−1 are univalent there. Let Ω denote the class of bi-univalent functions defined in the
univalent unit disk U. Examples of functions in the class Ω are

z
1 − z

, log
1

1 − z
, log

√
1 + z
1 − z

.

However, the familiar Koebe function is not a member of Ω. Other common examples of functions
in U such as

2z − z2

2
and

z
1 − z2

are not members of Ω either.
Finding bounds for the coefficients of classes of bi-univalent functions dates back to 1967

(see Lewin [13]). Brannan and Taha [14] (see also [15]) introduced certain subclasses of the bi-univalent
function class Ω similar to the familiar subclasses S∗(α) and K(α) (see [16]). Thus, following Brannan
and Taha [14] (see also [15]), a function f ∈ A is in the class S∗

Ω[α] of strongly bi-starlike functions of
order α(0 < α ≤ 1) if each of the following conditions are satisfied:

f ∈ Ω and
∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U)

and ∣∣∣∣arg
(

zg′(w)

g(w)

)∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U),

where g is the extension of f−1 to U. The classes S∗
Ω(α) and KΩ(α) of bi-starlike functions of order α

and bi-convex functions of order α, corresponding (respectively) to the function classes defined by
Equations (2) and (3), were also introduced analogously. For each of the function classes S∗

Ω(α) and
KΩ(α), they found non-sharp estimates on the first two Taylor–Maclaurin coefficients |a2| and |a3| (for
details, see [14,15]).

Motivated by the earlier works of Srivastava et al. [17] and Frasin and Aouf [18]
(see also [10,12,13,19–33]) in the present paper we introduce two new subclasses Bζ

Ω(λ, α, s, t) and
Bζ

Ω(λ, β, s, t) of the function class Ω, that generalize the previous defined classes. This subclass is
defined with the aid of the new differential operator Dζ

m,λ of analytic functions involving binomial
series in the open unit disk U. In addition, upper bounds for the second and third coefficients for
functions in this new subclass are derived.

In order to derive our main results, we have to recall the following lemma [34].

Lemma 1. If P ∈ P then
|ck| ≤ 2 (k ∈ N),
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where P is the family of all functions P, analytic in U, for which

Re(P(z)) > 0 (z ∈ U),

where P(z) = 1 + c1z + c2z2 + c3z3 + · · · (z ∈ U).

Unless otherwise mentioned, we presume throughout this paper that

λ > 0; m ∈ N, s, t ∈ C with |s| ≤ 1; |t| ≤ 1; s 	= t; ζ ∈ N0.

2. Coefficient Bounds for the Function Class Bζ
Ω(λ, α, s, t)

Definition 1. A function f (z) given by Equation (1) is said to be in the class Bζ
Ω(λ, α, s, t) if the following

conditions are satisfied:

f ∈ Ω and

∣∣∣∣∣∣arg

⎛⎝ (s − t)z(Dζ
m,λ f (z))′

Dζ
m,λ f (sz)− Dζ

m,λ f (tz)

⎞⎠∣∣∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U) (12)

and ∣∣∣∣∣∣arg

⎛⎝ (s − t)w(Dζ
m,λg(w))′

Dζ
m,λg(sw)− Dζ

m,λg(tw)

⎞⎠∣∣∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U) (13)

where the function g is given by

g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (14)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions in the class
Bζ

Ω(λ, α, s, t).

Theorem 1. Let f (z) given by (1) be in the class Bζ
Ω(λ, α, s, t). Then

|a2| ≤
2α√√√√√√√

∣∣∣∣α(6 − 2s2 − 2t2 − 2ts)
(

1 + 2Cm
j (λ)

)ζ

−
(

1 + Cm
j (λ)

)2ζ [
2α(2s + 2t − t2 − s2 − 2ts) + (α − 1)(2 − s − t)2]∣∣∣∣

(15)

and

|a3| ≤
4α2

|(2 − s − t)2|
(

1 + Cm
j (λ)

)2ζ
+

2α

|(3 − s2 − t2 − ts)|
(

1 + 2Cm
j (λ)

)ζ
. (16)

Proof. From Equations (12) and (13), we have

(s − t)z
(

Dζ
m,λ f (z)

)′

Dζ
m,λ f (sz)− Dζ

m,λ f (tz)
= [p(z)]α (17)

and
(s − t)w

(
Dζ

m,λg(w)
)′

Dζ
m,λg(sw)− Dζ

m,λg(tw)
= [q(w)]α, (18)
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where p(z) and q(w) in P and have the forms

p(z) = 1 + p1z + p2z2 + p3z3 + · · · (19)

and
q(w) = 1 + q1w + q2w2 + q3w3 + · · · . (20)

This yields the following relations:

(2 − s − t)
(

1 + Cm
j (λ)

)ζ
a2 = αp1, (21)

(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 − (2s + 2t − s2 − 2ts − t2)

(
1 + Cm

j (λ)
)2ζ

a2
2

= αp2 +
α(α − 1)

2
p2

1,
(22)

− (2 − s − t)
(

1 + Cm
j (λ)

)ζ
a2 = αq1 (23)

and [
(6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

− (2s + 2t − s2 − t2 − 2ts)
(

1 + Cm
j (λ)

)2ζ
]

a2
2

−(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 = αq2 +

α(α − 1)
2

q2
1.

(24)

From Equations (21) and (23), we obtain

p1 = −q1 (25)

and
2(2 − s − t)2

(
1 + Cm

j (λ)
)2ζ

a2
2 = α2(p2

1 + q2
1). (26)

Now by adding Equation (22) and Equation (24), we deduce that[
(6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

− 2(2s + 2t − t2 − s2 − 2ts)
(

1 + Cm
j (λ)

)2ζ
]

a2
2

= α(p2 + q2) +
α(α − 1)

2
(p2

1 + q2
1).

(27)

From Equations (27) and (26), we have

α

[
(6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

− 2(2s + 2t − t2 − s2 − 2ts)
(

1 + Cm
j (λ)

)2ζ
]

a2
2

= α2(p2 + q2) + (α − 1)(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ
a2

2.
(28)

Therefore, we have

a2
2 =

α2(p2 + q2)∣∣∣∣α(6 − 2s2 − 2t2 − 2ts)
(

1 + 2Cm
j (λ)

)ζ
− 2α(2s + 2t − t2 − s2 − 2ts)

(
1 + Cm

j (λ)
)2ζ

−(α − 1)(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ
∣∣∣∣

.
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Applying Lemma 1 for the coefficients p2 and q2, we immediately have

|a2| ≤
2α√√√√√√√

∣∣∣∣α(6 − 2s2 − 2t2 − 2ts)
(

1 + 2Cm
j (λ)

)ζ

−
(

1 + Cm
j (λ)

)2ζ [
2α(2s + 2t − t2 − s2 − 2ts) + (α − 1)(2 − s − t)2]∣∣∣∣

which gives us the desired estimate on |a2| as asserted in Equation (15).
Next in order to find the bound on |a3|, by subtracting Equation (24) from Equation (22), we get

2(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 − (6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

a2
2

= α(p2 − q2) +
α(α − 1)

2
(p2

1 − q2
1).

(29)

From Equations (25), (26) and (29), we obtain

2(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3

= (6 − 2s2 − 2t2 − 2ts)
(

1 + 2Cm
j (λ)

)ζ α2(p2
1 + q2

1)

2(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ
+ α(p2 − q2)

or, equivalently,

a3 =
α2(p2

1 + q2
1)

2(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ
+

α(p2 − q2)

2(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
.

Applying Lemma 1 for the coefficients p1, p2, q1 and q2, we have

|a3| ≤
4α2

|(2 − s − t)2|
(

1 + Cm
j (λ)

)2ζ
+

2α

|(3 − s2 − t2 − ts)|
(

1 + 2Cm
j (λ)

)ζ
.

We get desired estimate on |a3| as asserted in Equation (16).

Putting ζ = 0 in Theorem 1, we get the following consequence.

Corollary 1. Let f (z) given by Equation (1) be in the class B0
Ω(α, s, t), 0 < α ≤ 1. Then

|a2| ≤
2α√

|α(6 − 2s2 − 2t2 − 2ts)− [2α(2s + 2t − t2 − s2 − 2ts) + (α − 1)(2 − s − t)2]|

and

|a3| ≤
4α2

|(2 − s − t)2| +
2α

|(3 − s2 − t2 − ts)| .

Putting s = 1 and t = −1 in Corollary 1, we immediately have the following result.

Corollary 2. Let f (z) given by Equation (1) be in the class B0
Ω(α, 1,−1), 0 < α ≤ 1. Then

|a2| ≤ α
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and
|a3| ≤ α(α + 1).

If we put s = 1 and t = 0 in Corollary 1, we obtain well-known the class S∗
Ω[α] of strongly

bi-starlike functions of order α and get the following corollary.

Corollary 3. Let f (z) given by Equation (1) be in the class S∗
Ω[α], 0 < α ≤ 1. Then

|a2| ≤
2α√
α + 1

and
|a3| ≤ α(4α + 1).

3. Coefficient Bounds for the Function Class Bζ
Ω(λ, β, s, t)

Definition 2. A function f (z) given by Equation (1) is said to be in the class Bζ
Ω(λ, β, s, t) if the following

conditions are satisfied:

f ∈ Ω and Re

⎛⎝ (s − t)z(Dζ
m,λ f (z))′

Dζ
m,λ f (sz)− Dζ

m,λ f (tz)

⎞⎠ > β (0 ≤ β < 1, z ∈ U) (30)

and

Re

⎛⎝ (s − t)w(Dζ
m,λg(w))′

Dζ
m,λg(sw)− Dζ

m,λg(tw)

⎞⎠ > β (0 ≤ β < 1, w ∈ U) (31)

where the function g is given by Equation (14).

Theorem 2. Let f (z) given by Equation (1) be in the class Bζ
Ω(λ, β, s, t). Then

|a2| ≤
√

2(1−β)

|(3−s2−t2−ts)
(

1+2Cm
j (λ)

)ζ
−(2s+2t−t2−s2−2ts)

(
1+Cm

j (λ)
)2ζ

|
(32)

and

|a3| ≤
4(1 − β)2

|(2 − s − t)2|
(

1 + Cm
j (λ)

)2ζ
+

2(1 − β)

|(3 − s2 − t2 − ts)|
(

1 + 2Cm
j (λ)

)ζ
. (33)

Proof. It follows from Equations (30) and (31) that there exist p and q ∈ P such that

(s − t)z
(

Dζ
m,λ f (z)

)′

Dζ
m,λ f (sz)− Dζ

m,λ f (tz)
= β + (1 − β)p(z) (34)

and
(s − t)w

(
Dζ

m,λg(w)
)′

Dζ
m,λg(sw)− Dζ

m,λg(tw)
= β + (1 − β)q(w) (35)

where p(z) and q(w) in P given by Equations (19) and (20).
This yields the following relations:

(2 − s − t)
(

1 + Cm
j (λ)

)ζ
a2 = (1 − β)p1, (36)
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(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 − (2s + 2t − s2 − 2ts − t2)

(
1 + Cm

j (λ)
)2ζ

a2
2

= (1 − β)p2,
(37)

− (2 − s − t)
(

1 + Cm
j (λ)

)ζ
a2 = (1 − β)q1 (38)

and

[
(6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

− (2s + 2t − s2 − t2 − 2ts)
(

1 + Cm
j (λ)

)2ζ
]

a2
2

−(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 = (1 − β)q2.

(39)

From Equations (36) and (38), we obtain

p1 = −q1 (40)

and
2(2 − s − t)2

(
1 + Cm

j (λ)
)2ζ

a2
2 = (1 − β)2(p2

1 + q2
1). (41)

Now by adding Equation (37) and Equation (39), we deduce that[
(6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

− 2(2s + 2t − s2 − t2 − 2ts)
(

1 + Cm
j (λ)

)2ζ
]

a2
2

= (1 − β)(p2 + q2).
(42)

Thus, we have

|a2
2| ≤ (1−β)(|p2|+|q2|)

|(6−2s2−2t2−2ts)
(

1+2Cm
j (λ)

)ζ
−2(2s+2t−t2−s2−2ts)

(
1+Cm

j (λ)
)2ζ

|

= 2(1−β)

|(3−s2−t2−ts)
(

1+2Cm
j (λ)

)ζ
−(2s+2t−t2−s2−2ts)

(
1+Cm

j (λ)
)2ζ

|

which gives us the desired estimate on |a2| as asserted in Equation (32). Next in order to find the
bound on |a3|, by subtracting Equation (39) from Equation (37), we get

2(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
a3 − (6 − 2s2 − 2t2 − 2ts)

(
1 + 2Cm

j (λ)
)ζ

a2
2

= (1 − β)(p2 − q2).
(43)

From Equations (40), (41) and (43), we obtain

2(3 − s2−t2−ts)
(

1 + 2Cm
j (λ)

)ζ
a3

= (1 − β)(p2−q2) + (6 − 2s2−2t2−2ts)
(

1 + 2Cm
j (λ)

)ζ (1 − β)2(p2
1 + q2

1)

2(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ

or, equivalently,

a3 =
(1 − β)2(p2

1 + q2
1)

2(2 − s − t)2
(

1 + Cm
j (λ)

)2ζ
+

(1 − β)(p2 − q2)

2(3 − s2 − t2 − ts)
(

1 + 2Cm
j (λ)

)ζ
.
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Applying Lemma 1 for the coefficients p1, p2, q1 and q2, we have

|a3| ≤
4(1 − β)2

|(2 − s − t)2|
(

1 + Cm
j (λ)

)2ζ
+

2(1 − β)

|(3 − s2 − t2 − ts)|
(

1 + 2Cm
j (λ)

)ζ
.

We get desired estimate on |a3| as asserted in Equation (33).

It is worth to mention that a similar technique in the real space has been used in the study of
random environments, see [35].

Putting ζ = 0 in Theorem 2, we have the following corollary.

Corollary 4. Let f (z) given by Equation (1) be in the class B0
Ω(β, s, t). Then

|a2| ≤
√

2(1 − β)

|3 + st − 2(s + t)|

and

|a3| ≤
4(1 − β)2

|(2 − s − t)2| +
2(1 − β)

|(3 − s2 − t2 − ts)| .

Putting s = 1 and t = −1 in Corollary 4, we immediately have the following result.

Corollary 5. Let f (z) given by Equation (1) be in the class B0
Ω(β, 1,−1), 0 ≤ β < 1. Then

|a2| ≤
√

1 − β

and
|a3| ≤ (1 − β)(2 − β).

If we take s = 1 and t = 0 in Corollary 4, we obtain well-known the class S∗
Ω(β) of strongly

bi-starlike functions of order β and get the following corollary.

Corollary 6. Let f (z) given by Equation (1) be in the class S∗
Ω(β), 0 ≤ β < 1. Then

|a2| ≤
√

2(1 − β)

and
|a3| ≤ (1 − β)(5 − 4β).

4. Conclusions

In this paper, two new subclasses of bi-univalent functions related to a new differential operator
Dζ

m,λ of analytic functions involving binomial series in the open unit disk U were introduced and
investigated. Furthermore, we obtained the second and third Taylor–Maclaurin coefficients of functions
in these classes. The novelty of our paper consists of the fact that the operator used by defining the
new subclasses of Ω is a very general operator that generalizes two important differential operators,
Sãlãgean differential operator Dζ and Al-Oboudi differential operator Dζ

1,λ. These operators are
playing an important role in geometric function theory to define new generalized subclasses of analytic
univalent functions and then study their properties. The special cases taken from the main results
confirm the validity of these results. We mentioned that all the above estimates for the coefficients |a2|
and |a3| for the function classes Bζ

Ω(λ, α, s, t) and Bζ
Ω(λ, β, s, t) are not sharp. To find the sharp upper

bounds for the above estimations, it is still an interesting open problem, as well as for |an|, n ≥ 4.

41



Mathematics 2020, 8, 783

Author Contributions: Conceptualization, I.A. and B.A.F.; methodology, B.A.F.; validation, I.A., T.A.-H. and
B.A.F.; formal analysis, T.A.-H.; writing—review and editing, T.A.-H. and B.A.F.; project administration, B.A.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the referees for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Frasin, B.A. A new differential operator of analytic functions involving binomial series. Bol. Soc. Paran. Mat.
2020, 38, 205–213. [CrossRef]

2. Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficient estimates for certain classes of analytic functions of complex
order. Afr. Mat. 2018, 29, 1265–1271. [CrossRef]

3. Wanas, A.K.; Frasin, B.A. Strong differential sandwich results for Frasin operator. Earthline J. Math. Sci. 2020,
3, 95–104. [CrossRef]

4. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö functional problems for some subclasses
of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [CrossRef]

5. Al-Oboudi, F. M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci.
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Abstract: The main contribution of this article is to define a family of starlike functions associated with
a cosine hyperbolic function. We investigate convolution conditions, integral preserving properties,
and coefficient sufficiency criteria for this family. We also study the differential subordinations
problems which relate the Janowski and cosine hyperbolic functions. Furthermore, we use these
results to obtain sufficient conditions for starlike functions connected with cosine hyperbolic function.
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1. Introduction and Definitions

The aims of this particular section is to include some basic notions about the Geometric Function
Theory that will help to understand our key findings in a clear way. In this regards, first we start
to define the most basic family A which consists of holomorphic (or analytic) functions in D =

{z ∈ C : |z| < 1} by:

A =

{
q : q is holomorphic in D with q(z) = z +

∞

∑
k=2

akzk

}
.

Also the set S ⊂ A describes the family of all univalent functions which is define here by the
following set builder form:

S = {q ∈ A : q is univalent in D} .

Next we consider defining the idea of subordinations between holomorphic functions q1 and
q2, indicated by q1 ≺ q2, as; the functions q1, q2 ∈ A are connected by the relation of subordination,
if there exists a holomorphic function v with the restrictions v(0) = 0 and |v (z)| < |z| such that
q1(z) = q2(v(z)). Moreover, if the function q2 ∈ S in D, then we obtain:

q1 ≺ q2 ⇔ q1(0) = q2(0) & q1(D) ⊂ q2(D). (1)

Image domains are of primary significance in the analysis of analytical functions. Analytic
functions are classified into various families based on geometry of image domains. In 1992, Ma and
Minda [1] considered a holomorphic function Δ normalized by the conditions Δ(0) = 1 and Δ′(0) > 0
with ReΔ > 0 in D. The function Δ transforms the D disc into a region that is star-shaped about
1 and is symmetric on the real axis. In particular, if we take Δ(z) = 1+Lz

1+Mz with −1 ≤ M < L ≤ 1,
then it maps D to a disc which lies in the right-half plan with center on the real axis while 1−L

1−M and
1+L
1+M are its different end points of the diameter. This familiar function is recognized as Janowski

Mathematics 2020, 8, 1118; doi:10.3390/math8071118 www.mdpi.com/journal/mathematics45
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function [2]. Some interesting problems such as convolution properties, coefficients inequalities,
sufficient conditions, subordinates results, and integral preserving were discussed recently in [3–7]
for some of the generalized families associated with circular domain. The image of the function
Δ(z) =

√
1 + z shows that the image domain is bounded by right-half plan of the Bernoullis lemniscate

given by
∣∣v2 − 1

∣∣ < 1, see [8]. The function Δ(z) = 1 + 4
3 z + 2

3 z2 maps D into the image set bounded
by the cardioid

(y2 + x2 − 2x +
5
9
)2 − 16(y2 + x2 − 2

3
x +

1
9
) = 0,

which was examined in [9] and further studied in [10]. The function Δ(z) = 1 + sin z was established
by Cho and his coauthors in [11] while Δ(z) = ez is recently studied in [12,13]. Furthermore,
many subfamilies of starlike functions have also been introduced recently in [14–18] by choosing
some particular functions such as functions associated with Bell numbers, functions related with
shell-like curve connected with Fibonacci numbers, functions connected with conic domains and
rational functions instead of the function Δ.

Differential subordinations are natural generalizations in complex plane of differential inequalities
on real line. Information obtained from derivative plays important role in studying properties of real
valued functions. In complex plane, there are various differential implications, in which a function is
characterized by using differential conditions. Noshiro-Warschawski theorem is an example of such
differential implication which gives the univalency criterion for analytic functions. In numerous cases,
properties of function are determined from the range of the combination of the derivatives of the
function. For more details about differential subordinations, see [19].

Let h be a holomorphic function defined on D with h(0) = 1. Recently, Ali et al. have obtained
sufficient conditions on λ such that

1 + λzh′(z)/hn(z) ≺
√

1 + z ⇒ h (z) ≺
√

1 + z, for n = 0, 1, 2.

Similar type implications have been investigated in some of the recent papers by different
researchers, for example see the articles contributed by Haq et al. [20], Kumar et al. [21,22],
Paprocki and Sokół [23], Raza et al. [24], Sharma et al. [25] and Tuneski [26].

Now we establish the family S∗
cosh of starlike functions connected with cosine hyperbolic function

that are defined by:

S∗
cosh =

{
q ∈ A :

zq′ (z)
q (z)

≺ cosh (z) , (z ∈ D)

}
. (2)

Geometrically, the function zq′(z)
q(z) maps D onto an open disk symmetric with respect to the real

axis with centre cosh(1)+cos(1)
2 and radius cosh(1)−cos(1)

2 . It is interesting to see that the cosine and cosine
hyperbolic functions have the same image domain in D. For detail see [14].

Also, since cosh (z) maps the region D onto the image which is bounded by∣∣∣ln (
v +

√
v2 − 1

)∣∣∣ < 1.

Thus, the class S∗
cosh can also be defined in a different way as; a function q ∈ A belongs to the

class S∗
cosh if and only if the following inequality will be true∣∣∣∣∣∣ln

⎛⎝ zq′ (z)
q (z)

+

√(
zq′ (z)
q (z)

)2
− 1

⎞⎠∣∣∣∣∣∣ < 1.

We need to get the foregoing Lemma to establish our principal results.
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Lemma 1. [27] Let v be a holomorphic function in D with v (0) = 0. If

|v (z0)| = max {|v (z)| for |z| ≤ |z0|} ,

then a number l (l ≥ 1) occurs in such a way that z0v′ (z0) = lv (z0) .

To avoid repetitions, we assume the following restrictions

1 ≤ M < L ≤ 1, j ∈ N = {1, 2, . . .} , k ∈ N0 = N∪ {0} ,

otherwise we will state it where different.

2. Sufficient Conditions Associated with Cosh

Theorem 1. Let an analytic function h (with h(0) = 1) satisfying the relation of subordination

1 + λ
(
zh′ (z)

)j ≺ 1 + Lz
1 + Mz

, (3)

with the following limitation

|λ| ≥ (L − M)

sinj (1)− |M| sinhj (1)
, (for j ∈ N) . (4)

Then
h (z) ≺ cosh (z) . (5)

Proof. Let us assume that
p(z) = 1 + λ

(
zh′ (z)

)j . (6)

Then the function p is holomorphic in D with p(0) = 1. Also consider

v (z) = cosh−1 (h (z)) , (7)

where we selected the principle branches of the functions that are logarithmic and square root. Then v
is clearly a holomorphic function in D with v (0) = 0. Also since

cosh−1 (z) = ln
[
z +

√
z2 − 1

]
.

To complete the proof of this result, we just need to prove |v (z)| < 1 in D. By virtue of (7),
we have

p (z) = 1 + λ
{

zv′ (z) sinh (v (z))
}j .

Therefore ∣∣∣∣ p (z)− 1
L − Mp (z)

∣∣∣∣ =
∣∣∣∣∣ λ {zv′ (z) sinh (v (z))}j

(L − M)− λM {zv′ (z) sinh (v (z))}j

∣∣∣∣∣ .

Now, we suppose that a point z0 ∈ D occurs such that

max
|z|≤|z0|

|v (z)| = |v (z0)| = 1.

47



Mathematics 2020, 8, 1118

Also, by Lemma 1, a number l ≥ 1 exists with z0v′ (z0) = lv (z0). In addition, we also suppose
that v (z0) = eiθ for θ ∈ [−π, π] . Then we have

∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ =

∣∣∣∣∣ λ
{

lv (z0) sinh
(
eiθ)}j

(L − M)− λM
{

lv (z0) sinh
(
eiθ

)}j

∣∣∣∣∣
≥

∣∣∣∣∣ |λ|
{

l
∣∣sinh

(
eiθ)∣∣}j

(L − M) + |λ| |M|
{

l
∣∣sinh

(
eiθ

)∣∣}j

∣∣∣∣∣ . (8)

If |z| = r, −π ≤ θ ≤ π, then simple calculation illustrates that∣∣∣cosh
(

eiθ
)∣∣∣2 = cosh2 (cos θ) cos2 (sin θ) + sinh2 (cos θ) sin2 (sin θ) = φ (θ) ,∣∣∣sinh

(
eiθ

)∣∣∣2 = sinh2 (cos θ) cos2 (sin θ) + cosh2 (cos θ) sin2 (sin θ) = μ (θ) .

A routine simplification ensures that 0, ±π, ±π
2 are the roots of φ′ (θ) = 0 and μ′ (θ) = 0 in

[−π, π] . Also, since

φ (θ) = φ (−θ) ,

μ (θ) = μ (−θ) ,

it is enough to conclude that θ ∈ [0, π] and thus we achieve

max {φ (θ)} = φ (0) = φ (π) = cosh2(1),

min {φ (θ)} = φ
(π

2

)
= cos2 (1) ,

max {μ (θ)} = μ (0) = μ (π) = sinh2 (1) ,

min {μ (π)} = μ
(π

2

)
= sin2 (1) .

Thus, we have

cos (1) ≤
∣∣∣cosh

(
eiθ

)∣∣∣ ≤ cosh (1) , (9)

sin (1) ≤
∣∣∣sinh

(
eiθ

)∣∣∣ ≤ sinh (1) . (10)

Therefore, using (8)–(10), we attain∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ |λ| l j sinj (1)

(L − M) + |λ| |M| l j sinhj (1)
.

Now let

ς (l) =
|λ| l j sinj (1)

(L − M) + |λ| |M| l j sinhj (1)
.

Then

ς′ (l) =
|λ| (L − M) jl j−1 sinj (1)[

(L − M) + |λ| |M| l j sinhj (1)
]2 > 0.

This confirms that the function ς is increasing and therefore ς (l) ≥ ς (1), so∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ |λ| sinj (1)

(L − M) + |λ| |M| sinhj (1)
.
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Now using (4), we achieve ∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ 1,

and this contradicts the hypothesis

1 + λ
(
zh′ (z)

)j ≺ 1 + Lz
1 + Mz

.

Hence the proof is completed.

If we put h (z) = zq′(z)
q(z) in (3), we achieve the below Corollary.

Corollary 1. Let q ∈ A and justifying

1 + λ

{
z
(

zq′ (z)
q (z)

)′}j

≺ 1 + Lz
1 + Mz

. (11)

with

|λ| ≥ (L − M)

sinj(1)− |M| sinhj(1)
.

Then q ∈ S∗
cosh.

If we choose L = 1, M = 0 in (11), we get the following result.

Corollary 2. If q ∈ A and obeying the subordination

1 + λ

{
z
(

zq′ (z)
q (z)

)′}j

≺ 1 + z.

with
|λ| ≥ 1

sinj (1)
.

Then q ∈ S∗
cosh.

Theorem 2. Let an analytic function h (h(0) = 1) satisfying the relation of subordination

1 + λz
h′ (z)
hk (z)

≺ 1 + Lz
1 + Mz

(∀ k ∈ N0) , (12)

with the following restriction

|λ| ≥ (L − M) coshk (1)
sin (1)− |M| sinh (1)

. (13)

Then
h (z) ≺ cosh (z) .

Proof. Let us suppose

p (z) = 1 + λ
zh′(z)
hk(z)

.

Then the function p is holomorphic in D with p(0) = 1. Inserting (7), we have

p (z) = 1 + λ
zv′ (z) sinh (v (z))

(cosh v (z))k .
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and so ∣∣∣∣ p (z)− 1
L − Mp (z)

∣∣∣∣ =
∣∣∣∣∣ λzv′ (z) sinh (v (z))
(L − M) coshk v (z)− λM {zv′ (z) sinh (v (z))}

∣∣∣∣∣ .

By virtue of Lemma 1 along with (9) and (10), we have∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ =

∣∣∣∣∣ λlv (z0) sinh (v (z0))

(L − M) coshk (v (z0))− λM {lv (z0) sinh (v (z0))}

∣∣∣∣∣ ,

≥ l |λ|
∣∣sinh

(
eiθ)∣∣

(L− ≥ M)
∣∣∣coshk (eiθ

)∣∣∣+ l |λ| |M|
∣∣sinh

(
eiθ

)∣∣ ,

≥ l |λ| sin (1)

(L − M) coshk (1) + l |λ| |M| sinh (1)
.

Now let

ς1 (l) =
l |λ| sin (1)

(L − M) coshk (1) + l |λ| |M| sinh (1)
.

Then

ς′1 (l) =
|λ| (L − M) coshk (1) sinh (1){

(L − M) coshk (1) + l |λ| |M| sinh (1)
}2 > 0.

Applying (13), we have ∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ 1.

A contradiction to the hypothesis occurs and hence the proof is completed.

If we take h (z) = zq′(z)
q(z) in (12), we obtain the below result.

Corollary 3. If q ∈ A and obeying the subordination

1 + λz
(

q (z)
zq′ (z)

)k ( zq′ (z)
q (z)

)′
≺ 1 + Lz

1 + Mz
(14)

with

|λ| ≥ (L − M) coshk (1)
sin (1)− |M| sinh (1)

,

then the function q ∈ S∗
cosh.

If we choose L = 1, M = 0 in (14), we get the following result.

Corollary 4. If q ∈ A and obeying the subordination

1 + λz
(

q (z)
zq′ (z)

)k ( zq′ (z)
q (z)

)′
≺ 1 + z.

with

|λ| ≥ coshk (1)
sin (1)

,

then q ∈ S∗
cosh.

Theorem 3. Assume that

|λ| ≥ (L − M) coshk (1)

sinj (1)− |M| sinhj (1)
. (15)
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If h is a holomorphc function defined on D with h (0) = 1 and satisfying

1 + λ
(zh′ (z))j

hk (z)
≺ 1 + Lz

1 + Mz
, (16)

then
h (z) ≺ cosh (z) .

Proof. Let us choose a function

p (z) = 1 + λ
(zh′ (z))j

hk (z)
.

Then the function p is holomorphic in D with p(0) = 1. Applying some simple computation,
we get

p (z) = 1 + λ
{zv′ (z) sinh (v (z))}j

(cosh v (z))k .

and so

∣∣∣∣ p (z)− 1
L − Mp (z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
λ
{zv′(z) sinh(v(z))}j

(cosh(v(z)))k

L − M
{

1 + λ
{zv′(z) sinh(v(z))}j

(cosh(v(z)))k

}
∣∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣ λ {zv′ (z) sinh (v (z))}j

(L − M) (cosh v (z))k − λM {zv′ (z) sinh (v (z))}j

∣∣∣∣∣ .

By using Lemma 1, we have∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ =

∣∣∣∣∣ λ {lv (z0) sinh (v (z0))}j

(L − M) coshk (v (z0))− λM {lv (z0) sinh (v (z0))}j

∣∣∣∣∣
≥

∣∣∣∣∣∣∣
l j |λ|

∣∣∣sinhj (eiθ)∣∣∣j

(L − M)
∣∣∣coshk (eiθ

)∣∣∣+ l j |λ| |M|
∣∣∣sinhj (eiθ

)∣∣∣
∣∣∣∣∣∣∣ ,

≥ l j |λ| sinj (1)

(L − M) coshk (1) + l j |λ| |M| sinhj (1)
.

Now, let

ς2 (l) =
l j |λ| sinj (1)

(L − M) coshk (1) + l j |λ| |M| sinhj (1)
.

Then,

ς′2 (l) =
jl j−1 |λ| (L − M) sinj (1) coshk (1){

(L − M) coshk (1) + l j |λ| |M| sinhj (1)
}2 > 0,

which shows that ς is an increasing function and it has its minimum value at l = 1, so∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ |λ| sinj (1)

(L − M) coshk (1) + |λ| |M| sinhj (1)
.

Now by using (15), we have ∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ 1,

which yields a contradiction to our assumption. This completes the proof.
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If we put h (z) = zq′(z)
q(z) in (16), we obtain the following result.

Corollary 5. If q ∈ A and obeying the subordination

1 + λ

(
q (z)

zq′ (z)

)k
{

z
(

zq′ (z)
q (z)

)′}j

≺ 1 + Lz
1 + Mz

. (17)

with

|λ| ≥ (L − M) coshk (1)
sinj (1)− |M| sinhj (1)

,

then q ∈ S∗
cosh.

If we choose L = 1, M = 0 in (17), we get the following result.

Corollary 6. If q ∈ A and obeying the subordination

1 + λ

(
q (z)

zq′ (z)

)k
{

z
(

zq′ (z)
q (z)

)′}j

≺ 1 + z.

with

|λ| ≥ coshk (1)
sinj (1)

.

Then q ∈ S∗
cosh.

3. Bernardi Integral Operator and Its Relationships

The role of operators in the field of functions theory is very crucial in exploring the nature
of the geometry of analytic functions. Several differential and integral operators were introduced
by using convolution of certain analytic functions. It is found that this formalism gives ease in
more mathematical study and also allows explaining the geometrical properties of analytical and
univalent functions. Alexander was the first, who started studying the operator back in 1916.
Later Libera [28] and Bernardi [29] added several integral operators to study the classes of starlike,
convex, and close-to-convex functions. Also, the mapping properties of these operators was discussed
in [30].

The Bernardi [29] integral operator is defined by;

J (z) =
ξ + 1

zξ

∫ z

0
tξ−1q (t) dt, for ξ ≥ 0. (18)

In this part of the article, we analyze the mapping properties of functions belonging to the class
S∗

cosh under the integral operator described in (18) above. Some similar findings of this type are also
discussed here.

Theorem 4. Assume that

|λ| ≥ (L − M) (cosh (1) + ξ)

sin (1)− |N| sinh (1)− (1 + |M|) cosh (1) (cosh(1) + ξ)
. (19)

If

1 + λz
(

zq′ (z)
q (z)

)
≺ 1 + Lz

1 + Mz
, (20)
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then
zJ ′ (z)
J (z)

≺ cosh (z) ,

where the operator J is given by (18) .

Proof. Let a function v be defined by

v (z) = cosh−1
(

zJ ′ (z)
J (z)

)
. (21)

where we have chosed the principle branches of the square root and logarithmic functions.
Since cosh−1 z function is defined by

cosh−1 z = ln
[
z + (z2 − 1)1/2

]
,

therefore v is an analytic function in D with v (0) = 0. To prove our result, we need only to show that
|v (z)| < 1 in D. From (21), we have

zJ ′ (z)
J (z)

= cosh (v (z)) .

Logarithmic differentiation of above relation yields

1 +
zJ ′′ (z)
J ′ (z)

− zJ ′ (z)
J (z)

=
zv′ (z) sinh (v (z))

cosh (v (z))
.

Using (18), we have
(ξ + 1) q (z) = zJ ′ (z) + ξJ (z) .

Differentiating logarithmically, we have

zq′ (z)
q (z)

=
zJ ′ (z)
J (z)

⎧⎨⎩1 + zJ ′′(z)
J (z) − zJ ′(z)

J (z)
zJ ′(z)
J (z) + ξ

+ 1

⎫⎬⎭
=

zv′ (z) sinh (v (z)) + (cosh (v (z)) + ξ) cosh (v (z))
cosh (v (z)) + ξ

.

Now, we define a function

p (z) = 1 + λz
(

zq′ (z)
q (z)

)
= 1 + λz

{
zv′ (z) sinh (v (z)) + cosh (v (z)) (cosh (v (z)) + ξ)

cosh (v (z)) + ξ

}
,

where p is analytic in D with p (0) = 1. Also∣∣∣ p(z)−1
L−Mp(z)

∣∣∣ = ∣∣∣ λzv′(z) sinh(v(z))+(cosh(v(z))+ξ) cosh(v(z))
(L−M)(cosh(v(z))+ξ)−λMz{zv′(z) sinh(v(z))+(cosh(v(z))+ξ) cosh(v(z))}

∣∣∣ .

Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|v (z)| = |v (z0)| = 1.
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By using Lemma 5, there exists a number l ≥ 1 such that z0v′ (z0) = lv (z0). We also suppose that
v (z0) = eiθ . Then we have∣∣∣ p(z0)−1

L−Mp(z0)

∣∣∣ =
∣∣∣ λz0{z0v′(z0) sinh(v(z0))+cosh(v(z0))(cosh(v(z0))+ξ)}
(L−M)(cosh(v(z0))+ξ)−λMz0{z0v′(z0) sinh(v(z0))+cosh(v(z0))(cosh(v(z0))+ξ)}

∣∣∣
=

∣∣∣∣ λz0{lv(z0) sinh(eiθ)+cosh(eiθ)(cosh(eiθ)+ξ)}
(L−M)(cosh(eiθ)+ξ)−λMz0{lv(z0) sinh(eiθ)+cosh(eiθ)(cosh(eiθ)+ξ)}

∣∣∣∣ .

Let |z| = r, −π ≤ θ ≤ π. Then a simple computation shows that∣∣∣cosh
(

eiθ
)∣∣∣ = |cosh (cos θ) cos (sin θ) + i sinh (cos θ) sin (sin θ)|∣∣∣cosh

(
eiθ

)∣∣∣2 = cosh2 (cos θ) cos2 (sin θ) + sinh2 (cos θ) sin2 (sin θ) = φ (θ) .

A simple computation shows that the equation φ′ (θ) = 0 has five roots in [−π, π] namely
0, ±π, ±π

2 . Since φ (θ) = φ (−θ), it is sufficient to consider θ ∈ [0, π] and this implies that

max {φ (θ)} = φ (0) = φ (π) = cosh2(1),

min {φ (θ)} = φ
(π

2

)
= cosh2 (1) .

Also, consider∣∣∣sinh
(

eiθ
)∣∣∣ = sinh (cos θ) cos (sin θ) + i cosh (cos θ) sin (sin θ) ,∣∣∣sinh

(
eiθ

)∣∣∣2 = sinh2 (cos θ) cos2 (sin θ) + cosh2 (cos θ) sin2 (sin θ) = μ (θ)

Similarly, after simple calculations the equation μ′ (θ) = 0 has five roots in [−π, π] namely
0, ±π, ±π

2 . Since μ (θ) = μ (−θ), it is sufficient to consider those roots which lies in [0, π] and we
see that

max {μ (θ)} = μ (0) = μ (π) = cosh2(1)− 1,

min {μ (π)} = μ
(π

2

)
= 1 − cos2(1).

Thus, we conclude that

cos (1) ≤
∣∣∣cosh

(
eiθ

)∣∣∣ ≤ cosh (1) ,

sin (1) ≤
∣∣∣sinh

(
eiθ

)∣∣∣ ≤ sinh (1) .

Now∣∣∣ p(z0)−1
L−Mp(z0)

∣∣∣ ≥ |λ|{|eiθ |l|eiθ ||sinh(eiθ)|−|cosh(eiθ)|(|cosh(eiθ)|+ξ)}
(L−M)(|cosh(eiθ)|+ξ)+|λ||M||eiθ |{l|eiθ ||sinh(eiθ)|+|cosh(eiθ)|(|cosh(eiθ)|+ξ)}

≥ |λ|{l sin(1)−cosh(1)(cosh(1)+ξ)}
(L−M)(cosh(1)+ξ)+|λ||M|{l sinh(1)+cosh(1)(cosh(1)+ξ)} .

Now let

Φ (l) =
|λ| {l sin (1)− cosh (1) (cosh (1) + ξ)}

(L − M) (cosh (1) + ξ) + |λ| |M| {l sinh (1) + cosh (1) (cosh (1) + ξ)} .
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Then

Φ′ (l) = |λ|[(L−M)(sin(1) cosh(1)+ξ sin(1))+|λ||M| cosh(1){sin(1)(1+ξ+cosh(1))}]
[(L−M)(cosh(1)+ξ)+|λ||M|{l sinh(1)+(cosh(1)+ξ) cosh(1)}]2 > 0.

This shows that Φ is an increasing function and has its minimum value at l = 1, so∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ |λ| {sin (1)− cosh (1) (cosh (1) + ξ)}
(L − M) (ξ + cosh (1)) + |λ| |M| {sinh (1) + cosh (1) (cosh (1) + ξ)} .

Now by (19), we have ∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ 1.

A contradiction to the hypothesis

1 + λz
(

zq′ (z)
q (z)

)
≺ 1 + Lz

1 + Mz
.

Hence we have the required result.

Theorem 5. Assume that

|λ| ≥ (L − M) (ξ + 1)
sin (1)− |M| sinh (1)− (1 + |M|) (1 + ξ) cosh(1)

. (22)

If

1 + λq (z) ≺ 1 + Lz
1 + Mz

,

then
J (z)

z
≺ cosh (z) .

where J is the Bernardi integral operator defined in (18) .

Proof. Let a function v be defined by

v (z) = cosh−1
(J (z)

z

)
, (23)

where we have chosed the principle branches of the square root and logarithmic functions. Then v is
analytic in D with v (0) = 0. We need only to show that |v (z)| < 1 in D. From (23), we have

J (z)
z

= cosh (v (z)) . (24)

Also we define a function
p (z) = 1 + λq (z) , (25)

where p is analytic in D with p (0) = 1. Now by using (18), (24) and (25), we have∣∣∣∣ p (z)− 1
L − Mp (z)

∣∣∣∣ = ∣∣∣∣ λz {zv′ (z) sinh (v (z)) + (1 + ξ) cosh (v (z))}
(L − M) (1 + ξ)− λzM {zv′ (z) sinh (v (z)) + (1 + ξ) cosh (v (z))}

∣∣∣∣ .

Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|v (z)| = |v (z0)| = 1.
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By using Lemma 5, there exists a number l ≥ 1 such that z0v′ (z0) = lv (z0). We also suppose that
v (z0) = eiθ . Then we have∣∣∣∣ p (z0)− 1

L − Mp (z0)

∣∣∣∣ =

∣∣∣∣ λz0 {z0v′ (z0) sinh (v (z0)) + (1 + ξ) cosh (v (z0))}
(L − M) (1 + ξ)− λz0M {z0v′ (z0) sinh (v (z0)) + (1 + ξ) cosh (v (z0))}

∣∣∣∣
≥ |λ|

{
l
∣∣sinh

(
eiθ)∣∣− (1 + ξ)

∣∣cosh
(
eiθ)∣∣}

(L − M) (1 + ξ) + |λ| |M|
{

l
∣∣sinh

(
eiθ

)∣∣− (1 + ξ)
∣∣cosh

(
eiθ

)∣∣}
≥ |λ| {l sin (1)− (1 + ξ) cosh (1)}

(L − M) (1 + ξ) + |λ| |M| {l sinh (1) + (1 + ξ) cosh (1)} .

Now let

Θ (l) =
|λ| {l sin (1)− (1 + ξ) cosh (1)}

(L − M) (1 + ξ) + |λ| |M| {l sinh (1) + (1 + ξ) cosh (1)} .

Then

Θ′ (l) =
|λ| {((L − M) (1 + ξ) sin (1) + |λ| |M| (sin (1) (1 + ξ)) + sinh (1))}

(L − M) (1 + ξ) + |λ| |M| {l sinh (1) + (1 + ξ) cosh (1)}2 > 0,

which shows that Θ is an increasing function and it has its minimum value at l = 1, so∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ |λ| {sin (1)− (1 + ξ) cosh (1)}
(L − M) (1 + ξ) + |λ| |M| {sinh (1) + (1 + ξ) cosh (1)} .

Now by (22), we have ∣∣∣∣ p (z0)− 1
L − Mp (z0)

∣∣∣∣ ≥ 1.

A contraduction to the hypothesis

1 + λq (z) ≺ 1 + Lz
1 + Mz

.

Hence we have the required result.

Theorem 6. Assume that

|λ| ≥ (L − M) (1 + ξ)

sin (1)− |M| sinh(1)− (1 + |M|) (1 + ξ) cosh (1)
. (26)

If

1 + λzq′ (z) ≺ 1 + Lz
1 + Mz

, (27)

then
J ′ (z) ≺ cosh (z) ,

where J is the Bernardi integral operator defined in (18) .

Proof. Using the same steps as used in the last result, one can easily complete this proof.

4. Convolution Conditions and Its Consequences

The technique of convolution (or Hadamard product) is extremely important in the solution of
various function theory problems and due to this facts this concept becomes the major part of this
field. The main goal of this portion is to analyze the properties of convolution and its implications
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for the family S∗
cosh of starlike functions subordinated with cosine hyperbolic function. For q1, q2 ∈ A,

the convolution, denoted by (q1 ∗ q2) (z), is defined by

(q1 ∗ q2) (z) = z +
∞

∑
k=2

akbkzk, (z ∈ D) .

Also, the following facts will be true only if q ∈ A;

q (z) ∗ z
1 − z

= q (z) and q (z) ∗ z

(1 − z)2 = zq′ (z) . (28)

Now using these concepts we now start to state and prove our first result.

Theorem 7. Let q ∈ A. Then q ∈ S∗
cosh if and only if

1
z

[
q (z) ∗ z − δz2

(1 − z)2

]
	= 0, (z ∈ D) , (29)

for all δ = δθ = cosh eiθ

cosh eiθ−1 and also for δ = 1.

Proof. Since given that q ∈ S∗
cosh is holomorphic in D, it follows that q (z) 	= 0 for all z ∈ D∗ = D\{0}.

That is q(z)
z 	= 0 for z ∈ D which is equivalent to (29) for δ = 1. Thus, the proof is completed for δ = 1.

Now from (2), a holomorphic function v occurs with the property that v (0) = 0 and |v (z)| < 1 so that

zq′ (z)
q (z)

= cosh (v (z)) ,

and it is equivalent to
zq′ (z)
q (z)

	= cosh
(

eiθ
)

, for θ ∈ [0, 2π] . (30)

Using (28), we can easily obtain

q (z) ∗ 1

(1 − z)2 − cosh
(

eiθ
)(

q (z)
z

∗ 1
(1 − z)

)
	= 0,

and then by simple computation, we have

1
z

[
q (z) ∗ z − δz2

(1 − z)2

]
	= 0, (z ∈ D) ,

which is the needed relationship.
For the converse part let assume that (29) hold for δ = 1, it implies that q(z)

z 	= 0 for all z ∈ D.

Thus, the function h(z) = zq′(z)
q(z) is holomorphic in D with h(0) = 1. Also, let us take H (z) = cosh

(
eiθ)

for z ∈ D and since we have proven that (29) and (30) are identical, thus forming the relationship
(30), it is evident that H (∂D) ∩ h(D) = φ. Hence, a connected part of C\H (∂D) contains the simply
connected domain h(D). The univalence of the function h, together with the fact H(0) = h(0) = 1,
illustrates that h ≺ H and it implies that q ∈ S∗

cosh.

Theorem 8. Let q ∈ A. Then a neccesary and sufficient condition q ∈ S∗
cosh is that

1 −
∞

∑
n=2

n − cosh
(
eiθ)

cosh
(
eiθ

)
− 1

anzn−1 	= 0, (z ∈ D) . (31)

57



Mathematics 2020, 8, 1118

Proof. In the last theorem, we have proved that q ∈ S∗
cosh if and only if the relation (29) held. We can

rewrite (29) as

0 	= 1
z

[
q (z) ∗ z − δz2

(1 − z)2

]

=
1
z

[
q (z) ∗

(
z

(1 − z)2 − δ
z2

(1 − z)2

)]

=
q (z)

z
∗
(

1 +
∞

∑
n=2

nzn−1 − L
∞

∑
n=2

(n − 1) zn−1

)

= 1 −
∞

∑
n=2

((δ − 1) n − δ) anzn−1

= 1 −
∞

∑
n=2

n − cosh
(
eiθ)

cosh
(
eiθ

)
− 1

anzn−1,

and this completes the proof.

Theorem 9. If the function q ∈ A satisfies the following inequality

∞

∑
n=2

∣∣∣∣∣n − cosh
(
eiθ)

cosh
(
eiθ

)
− 1

∣∣∣∣∣ |an| < 1, (32)

then q ∈ S∗
cosh.

Proof. To establish this result, we need to prove the relationship (31) . For this consider∣∣∣∣∣1 − ∞

∑
n=2

((δ − 1) n − δ) anzn−1

∣∣∣∣∣ > 1 −
∞

∑
n=2

∣∣∣((δ − 1) n − δ) anzn−1
∣∣∣

= 1 −
∞

∑
n=2

|((δ − 1) n − δ)| |an| |z|n−1

> 1 −
∞

∑
n=2

|((δ − 1) n − δ)| |an|

= 1 −
∞

∑
n=2

∣∣∣∣∣n − cosh
(
eiθ)

cosh
(
eiθ

)
− 1

∣∣∣∣∣ |an| > 0,

where we have used inequality (32) . Thus, by virtue of Theorem 8, the proof is completed.

5. Conclusions

In the present research article, we examined some interesting properties of starlike functions
associated with the cosine hyperbolic function which is symmetric about the real axis. These results
included convolutions properties, Bernardi integral preserving problems and coefficient sufficiency
criteria. In addition to that we also calculated some conditions on λ so that; if for each j ∈ N,
k ∈ N0 = N∪ {0}

1 + λ
(zh′ (z))j

hk (z)
≺ 1 + Lz

1 + Mz
⇒ h (z) ≺ cosh (z) , (z ∈ D) .

Furthermore, these results are used to find sufficiency criterion for the function belongs to
the newly defined family S∗

cosh. Moreover, some other problems like coefficient bounds, Hankel
determinant, partial sum inequalities, and many more can be discussed for this class as a future work.
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Abstract: An important problem in complex analysis is to determine properties of the image of an
analytic function p defined on the unit disc U from an inclusion or containment relation involving
several of the derivatives of p. Results dealing with differential inclusions have led to the development
of the field of Differential Subordinations, while results dealing with differential containments have
led to the development of the field of Differential Superordinations. In this article, the authors
consider a mixed problem consisting of special differential inclusions implying a corresponding
containment of the form D[p](U) ⊂ Ω ⇒ Δ ⊂ p(U), where Ω and Δ are sets in C, and D is a
differential operator such that D[p] is an analytic function defined on U. We carry out this research
by considering the more general case involving a system of two simultaneous differential operators
in two unknown functions.

Keywords: differential inclusions; differential containments; differential inequalities; differential
subordinations; univalent functions

MSC: primary 34A40; 34A60; secondary 30C80

1. Introduction

We begin by introducing the important classes of functions considered in this article.
Let H = H[U] denote the class of functions analytic in the unit disk U, and let

H[a, n] = { f ∈ H : f (z) = a + anzn + · · · }.

A common problem in complex analysis is to determine the range of a function
p ∈ H[a, n] from a differential inclusion or containment relation involving several of the
derivatives of p. Let Ω and Δ be sets in C, and D be a differential operator such that D[p]
is an analytic function defined on U. A natural question is to ask what conditions on D,
Ω and Δ are needed so that

D[p](U) ⊂ Ω ⇒ p(U) ⊂ Δ. (1)

In this case, we have a differential inclusion ⇒ function inclusion. There are many papers
of this type that deal with special differential inclusions implying an inclusion for the
image of the function p. Similarly, there are many papers that deal with special differential
containments and corresponding containments for the image of the function p of the form

Ω ⊂ D[p](U) ⇒ Δ ⊂ p(U). (2)

In this case, we have a differential containment ⇒ function containment. Both sets of
papers have resulted in many applications in complex analysis. See the monographs [1,2]
for many results, applications and extensive bibliographies of results such as (1) and (2).
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An open question to consider is to combine the two concepts in (1) and (2) and
determine conditions on D, Ω and Δ so that the mixed problem of differential inclusions
implies a function containment of the form

D[p](U) ⊂ Ω ⇒ Δ ⊂ p(U). (3)

In this case, we have a differential inclusion ⇒ function containment.
In a recent article [3] the authors have extended results described in (1) to systems of

two simultaneous second-order differential operators in two complex-valued functions.
It is our intention to do the same with (3).

2. Definitions

We first indicate the forms of the two simultaneous second-order analytic differential
operators that we will consider in this article.

Definition 1. Let Di : C7 → C and let λi(z) be analytic in U for i = 1, 2. For p ∈ H[a, n] and
q ∈ H[b, n] we define the second-order differential operators Di[p, q, λi], for i = 1, 2, by

Di[p, q, λi](z) ≡ Di[p(z), zp′(z), z2 p′′(z), q(z), zq′(z), z2q′′(z), λi(z)]. (4)

Throughout this article we will assume that Di[p, q, λi] is analytic in U.

Let Ωi and Δi be sets in C and Di[p, q, λi] be the second-order differential operators
defined in (4), for i = 1, 2. The analogue of (3) that we will consider in this article
deals with two simultaneous differential inclusions implying function containments of
the following form{

D1[p, q, λ1](U) ⊂ Ω1

D2[p, q, λ2](U) ⊂ Ω2
=⇒

{
Δ1 ⊂ p(U)

Δ2 ⊂ q(U)
. (5)

In many cases, the containments on the right-sides of (5) can be written in terms of
superordinations. We recall those definitions. Let f and F be members of H. The function
f is said to be subordinate to F (or F is superordinate to f ), written f ≺ F, if there exists
a function w analytic in U with w(0) = 0 and |w(z)| < 1, such that f (z) = F(w(z)). If, in
addition, F is univalent, then f ≺ F if and only if f (0) = F(0) and f (U) ⊂ F(U).

If p and q in (5) are univalent, and Δ1 and Δ2 are simply connected domains, then it
is possible to rephrase the right-side of (5) in terms of superordination. If Δ1 is a simply
connected domain containing the point p(0) = a and Δ1 	= C, then there is a conformal
mapping g1 of U onto Δ1 such that g1(0) = a, and if Δ2 is a simply connected domain
containing the point q(0) = b and Δ2 	= C, then there is a conformal mapping g2 of U onto
Δ2 such that g2(0) = b. In this case, (5) can be rewritten as{

D1[p, q, λ1](U) ⊂ Ω1

D2[p, q, λ2](U) ⊂ Ω2
=⇒

{
g1(z) ≺ p(z)

g2(z) ≺ q(z)
. (6)

We shall refer to the left sides of (5) and (6) as a System of Simultaneous Differential
Inclusions (SSDI).

There are three basic pairs of elements in (5) and (6): the differential operators Di,
the sets Ωi, and the sets Δi (or functions g i). If two of these elements are given, one would
hope to find conditions on the third.

Our aim in this article is to solve a system of such simultaneous differential inclusions—
analogous to solving a system of simultaneous differential equations in the real-plane. We
restrict our development to systems consisting of two second-order differential inclusions
in two unknown functions. The results presented here can be extended in a natural way to
their corresponding third-order cases. We begin by introducing some important definitions.
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Definition 2. Let Ωi be sets in C and let Di[p, q, λi] be the analytic differential operators defined
in (4) for i = 1, 2. If p ∈ H[a, n] and q ∈ H[b, n] satisfy the SSDI{

D1[p, q, λ1](U) ⊂ Ω1

D2[p, q, λ2](U) ⊂ Ω2
, (7)

then p and q are called Solutions of the SSDI.

We will show that certain SSDI’s have solutions, and that these solutions have particu-
lar properties such as those given on the right-sides of (5) and (6).

Example 1. Let p ∈ H[0, 1] and q ∈ H[0, 1] and consider the SSDI given by{{
− zp′(z) + 2q(z) : z ∈ U

}
⊂ U{

2p(z)− zq′(z) : z ∈ U
}
⊂ U

. (8)

It is easy to check that the univalent functions p(z) = q(z) = z + z2/2 are Solutions of
the SSDI given in (8).

Example 2. Let Ωi = {z : Re z > 0}, the right half plane for i = 1, 2. Let p ∈ H[0, 1] and
q ∈ H[0, 1] and consider the SSDI given by{{

− zp′(z) + 2zq′(z) : z ∈ U
}
⊂ Ω1{

z2 p′′(z)− 5zq′(z) : z ∈ U
}
⊂ Ω2

.

It is clear that this SSDI has no solutions since there are no analytic functions p and q
that can satisfy this system at z = 0.

Definition 3. The set of analytic functions {g1, g2} as given in (6) is called a set of subordinants
of the Solutions of the SSDI (6) or more simply a set of subordinants if g1 ≺ p and g2 ≺ q for
all p and q satisfying the left-side of (6). A set of subordinants {g̃1, g̃2} that satisfies g1 ≺ g̃1 and
g2 ≺ g̃2 for all subordinants {g1, g2} of (6) is called a set of best subordinants of (6). Please
note that the set of best subordinants is unique up to a rotation of U.

It is our intent to show that for certain types of SSDI we can obtain corresponding sets
of subordinants and best subordinants {g̃1, g̃2} of the system.

The analogue of the best subordinants in Definition 3 for the SSDI (5) would be finding
the largest inclusion sets Δ̃1 and Δ̃2 such that{

D1[p, q, λ1](U) ⊂ Ω1 ⇒ Δ̃1 ⊂ p(U)

D2[p, q, λ2](U) ⊂ Ω2 ⇒ Δ̃2 ⊂ q(U)
.

3. Admissibility and a Fundamental Theorem

For the development of the theory we need to the consider the following class of
univalent functions defined on the closed unit disc.

Definition 4. Let Q denote the set of functions g that are analytic and univalent on the set
U\E(g), where

E(g) =
{

ζ ∈ ∂U : lim
z→ζ

g(z) = ∞
}

,

and are such that Min|g ′(ζ)| = ρ > 0 for ζ ∈ ∂U\E(g). The subclass of Q for which g(0) = a is
denoted by Q(a).
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As a simple example of a member of the class Q(1), consider the function g(z) =
(1 + z)/(1 − z). For this function we have E(g) =

{
1
}

, and Min|g ′(ζ)| = 1/2 > 0 for
ζ ∈ ∂U\

{
1
}

and hence g ∈ Q(1).
The following lemma [1] (p. 22) and [4] has played a key role in many results involving

the theory of differential subordinations and will also play a key role in this article.

Lemma 1 (Miller/Mocanu Lemma.). Let q ∈ H[a, n] with q(z) 	≡ a and n ≥ 1, and let
p ∈ Q(a). If there exist points z0 = r0eiθ0 ∈ U and ζ0 ∈ ∂ U\E(p) such that q(z0) = p(ζ0), and
q( Ur0) ⊂ p(U), then there exists an m, where m ≥ n ≥ 1 such that

ζ0 p′(ζ0) = z0q′(z0)/m and Re
ζ0 p′′(ζ0)

p′(ζ0)
+ 1 ≤ 1

m

[
Re

z0q′′(z0)

q′(z0)
+ 1

]
.

We first define a special class of differential operators needed to solve a SSDI.

Definition 5. Let λi be analytic in U, and g i ∈ Q with corresponding sets E(g i) as given in
Definition 4 for i = 1, 2. Let (Ω1, Ω2) be a subset of C×C and let n1 and n2 be positive integers.
The Set of Admissible Differential Operators Ψ(n1,n2)

[(λ1, λ2), (Ω1, Ω2), (g1, g2)] consists
of those pairs of differential operators (D1, D2), with Di : C7 → C as given in Definition 1, for
i = 1, 2, which satisfy the two admissibility conditions

D1[r, s, t, g2(ζ), ζg ′
2(ζ), ζ2g ′′

2 (ζ), λ1(ζ)] 	∈ Ω1 (9)

when r = g1(z), s = zg ′
1(z)/m1, Re

t
s
+ 1 ≤ 1

m1
Re

[
zg ′′

1 (z)
g ′

1(z)
+ 1

]
,

z ∈ U, ζ ∈ ∂U\E(g2) and m1 ≥ n1 ≥ 1.

D2[g1(η), ηg ′
1(η), η2g ′′

1 (η), ρ, σ, τ, λ2(η)] 	∈ Ω2 (10)

when ρ = g2(z), σ = zg ′
2(z)/m2, Re

τ

σ
+ 1 ≤ 1

m2
Re

[
zg ′′

2 (z)
g ′

2(z)
+ 1

]
,

z ∈ U, η ∈ ∂U\E(g1) and m2 ≥ n2 ≥ 1.
In the special case when n1 = n2 = 1, we denote the set of operators Ψ(1,1)[(λ1, λ2),

(Ω1, Ω2), (g1, g2)] by Ψ[(λ1, λ2), (Ω1, Ω2), (g1, g2)]. In the special case when Ω1 	= C and
Ω2 	= C are simply connected domains and h1 and h2 are conformal maps of U onto
Ω1 and Ω2 respectively, we denote the set Ψ(n1,n2)

[(λ1, λ2), (h1(U), h2(U)), (g1, g2)] by
Ψ(n1,n1)

[(λ1, λ2), (h1, h2), (g1, g2)].
In the case of first-order differential operators the admissibility conditions (9) and (10),

with Di : C5 → C for i = 1, 2 simplify to

D1[g1(z), zg ′
1(z)/m1, g2(ζ), ζg ′

2(ζ), λ1(ζ)] 	∈ Ω1 (11)

when z ∈ U, ζ ∈ ∂U\E(g2) and m1 ≥ n1 ≥ 1.

D2[g1(η), ηg ′
1(η), g2(z), zg ′

2(z)/m2, λ2(η)] 	∈ Ω2 (12)

when z ∈ U, η ∈ ∂U\E(g1) and m2 ≥ n2 ≥ 1.
A closer look at conditions (9) and (10) [or (11) and (12)] indicate that there are

different conditions on each of the operators D1 and D2 in the pair (D1, D2). An operator
pair (Dα, Dβ) may not be in the Set of Admissible Operators as given by Definition 5, but
the pair (Dβ, Dα) may be in the Set of Admissible Operators. We will see a case of this
in Examples 3 and 4. In Example 3 we show that the pair (Dα, Dβ) is not in the Set of
Admissible Operators, while in Example 4 we show that the pair (Dβ, Dα) is in the Set of
Admissible Operators.
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Example 3. Let Ω = Ω1 = Ω2 = {Re z > 0 : z ∈ U}, the right-half complex plane, and let
p ∈ H[a, n1] ∩ Q(a) and q ∈ H[b, n2] ∩ Q(b) satisfy the SSDI{

D1[p, q, λ1](U) ≡
{

2p(z) + zp′(z)− q(z) : z ∈ U
}
⊂ Ω

D2[p, q, λ2](U) ≡
{

q(z) + zq′(z) : z ∈ U
}
⊂ Ω

. (13)

We will show that this pair (D1, D2) with the functions g1(z) = g2(z) = (1 + z)/(1 − z)
is not in the Set of Admissible Operators. Writing (13) in standard form we see that the
functions D1 and D2 are of the form{

D1[r, s, t, ρ, σ, τ, λ1(z)] = 2r + s − ρ

D2[r, s, t, ρ, σ, τ, λ2(z)] = ρ + σ
.

We need to show that this pair of operators does not satisfy

(D1, D2) ∈ Ψ(n1,n1)
[(0, 0), (Ω1, Ω2), (g1, g2)].

In order for this last statement to be true, according to condition (9) of the first part of
Definition 5, requires showing that

2g1(z) + zg ′
1(z)/m1 −

1 + ζ

1 − ζ
	∈ Ω,

when z ∈ U, ζ ∈ ∂U\E(g2) and m1 ≥ n1 ≥ 1. This condition is equivalent to requiring that

Re

[
2

1 + z
1 − z

+
2z

(1 − z)2m1
− 1 + ζ

1 − ζ

]
< 0. (14)

Since this is not satisfied when z = 0, condition (14) cannot be satisfied and the pair of
differential operators given in (13) is not in the Set of Admissible Operators.

We next interchange the differential operators in Example 3 to obtain an appropriate
pair of operators.

Example 4. Let Ω = Ω1 = Ω2 = {Re z > 0 : z ∈ U}, the right-half complex plane, and let
p ∈ H[a, n1] ∩ Q(a) and q ∈ H[b, n2] ∩ Q(b) satisfy the SSDI{

D1[p, q, λ1](U) ≡
{

q(z) + zq′(z) : z ∈ U
}
⊂ Ω

D2[p, q, λ2](U) ≡
{

2p(z) + zp′(z)− q(z) : z ∈ U
}
⊂ Ω

. (15)

We will show that this pair (D1, D2), with the functions g1(z) = g2(z) = (1 + z)/(1 − z),
is in the Set of Admissible Operators. Writing (15) in standard form we see that the functions
D1 and D2 are of the form{

D1[r, s, t, ρ, σ, τ, λ1(z)] = ρ + σ

D2[r, s, t, ρ, σ, τ, λ2(z)] = 2r + s − ρ
.

We need to show that (D1, D2) ∈ Ψ(n1,n1)
[(0, 0), (Ω1, Ω2), (g1, g2)]. According to

Definition 5, we need to show that

g2(ζ) + ζg ′
2(ζ) 	∈ Ω

2g1(η) + ηg ′
1(η)− g2(z) 	∈ Ω

when z ∈ U, ζ ∈ ∂U\E(g2) and η ∈ ∂U\E(g1). This follows since
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Re[g2(ζ) + ζg ′
2(ζ)] = Re

[
1 + ζ

1 − ζ
+

2ζ

(1 − ζ)2

]
< 0 and

Re[2g1(η) + ηg ′
1(η)− g2(z)] = Re

[
2

1 + η

1 − η
+

2η

(1 − η)2 − 1 + z
1 − z

]
< 0 .

Hence (D1, D2) is in the Set of Admissible Operators.
The following theorem is a foundation result for the theory of Second-Order SSDI.

Theorem 1. Let Ω1 and Ω2 be sets in C, let λ1 and λ2 be analytic in U, let g1 ∈ Q(a), g2 ∈ Q(b),
and let (D1, D2) ∈ Ψ(n1,n2)

[(λ1, λ2), (Ω1, Ω2), (g1, g2)]. If p ∈ H[a, n1] ∩ Q(a) and q ∈
H[b, n2] ∩ Q(b) satisfy the SSDI {

D1[p, g2, λ1](U) ⊂ Ω1

D2[g1, q, λ2](U) ⊂ Ω2
, (16)

then g1 ≺ p and g2 ≺ q, and {g1, g2} are a set of subordinants of (16).

Proof. (a) For the first implication, if we assume g1 ⊀ p, then by Lemma 1 there exist
points z0 = r0eiθ0 ∈ U, ζ0 ∈ ∂U\E(g1) and m1 ≥ n1 ≥ 1 such that g1(z0) = p(ζ0),
g1(Ur0) ⊂ p(U),

ζ0 p′(ζ0) = z0g ′
1(z0)/m1 and Re

ζ0 p′′(ζ0)

p′(ζ0)
+ 1 ≤ 1

m1

[
Re

z0g ′′
1 (z0)

g ′
1(z0)

+ 1
]
.

Using these results in (9) of Definition 5 we conclude

D1[p(ζ0), ζ0 p′(ζ0), ζ0
2 p′′(ζ0), g2(ζ0), ζ0g ′

2(ζ0), ζ0
2g ′′

2 (ζ0), λ1(ζ0)] 	∈ Ω1.

Since this contradicts the first part of (16) we must have g1 ≺ p.
(b) For the second implication, if we assume g2 ⊀ q, then by Lemma 1 there exist

points z0 = r0eiθ0 ∈ U, η0 ∈ ∂U\E(g2) and m2 ≥ n2 ≥ 1 such that g2(z0) = q(η0),
g2(Ur0) ⊂ q(U),

η0q′(η0) = z0g ′
2(z0)/m2 and Re

η0q′′(η0)

q′(η0)
+ 1 ≤ 1

m2

[
Re

z0g ′′
2 (z0)

g ′
2(z0)

+ 1
]
.

Using these results in (10) of Definition 5 we obtain

D2[g1(η0), η0g ′
1(η0), η0

2g ′′
1 (η0), q(η0), η0q′(η0), η0

2q′′(η0), λ2(η0)] 	∈ Ω2.

Since this contradicts the second part of (16) we must have g2 ≺ q.

As a result of the above theorem we can obtain subordinants of a SSDI of the form (16)
by merely checking that the operators D1 and D2 satisfy the admissibility conditions (9)
and (10) [or (11) and (12)] of Definition 5. This simple algebraic check yields subordinants
of various SSDI that would be very difficult to obtain directly.

In the following two examples we use Theorem 1 to find subordinants of a SSDI.

Example 5. Let Ur = {z : |z| < r}, p ∈ H[0, 1] ∩ Q(0), q ∈ H[0, 1] ∩ Q(0) and suppose{{
− zp′(z) + 3g2(z) : z ∈ U

}
⊂ U2{

2g1(z)− zq′(z) : z ∈ U
}
⊂ U1

, (17)
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for g1(z) = g2(z) = z. It is our intention to prove that{{
− zp′(z) + 3g2(z) : z ∈ U

}
⊂ U2{

2g1(z)− zq′(z) : z ∈ U
}
⊂ U1

=⇒
{

z ≺ p(z)

z ≺ q(z)
. (18)

The differential operators in (17) are of the form{
D1[p, g2, λ1](z) = −zp′(z) + 3g2(z)
D2[g1, q, λ2](z) = 2g1(z)− zq′(z)

,

with {
D1[r, s, t, ρ, σ, τ, λ1(z)] = −s + 3ρ

D2[r, s, t, ρ, σ, τ, λ2(z)] = 2r − σ
. (19)

We will use Theorem 1 to prove (18) with {g1, g2} = {z, z}. We only need to
show that the pair of operators (D1, D2), as given in (19), satisfy the admissibility condi-
tions of Definition 5, namely that (D1, D2) ∈ Ψ(n1,n2)

[(0, 0), (U, U), (g1, g2)]. According to
Definition 5 and (19) this requires showing that{

−zg ′
1(z)/m1 + 3g2(ζ) 	∈ U2

2g1(η)− zg ′
2(z)/m2 	∈ U1

,

when z ∈ U, ζ ∈ ∂U, η ∈ ∂U, m1 ≥ 1 and m2 ≥ 1. This simplifies to the conditions that{
−z/m1 + 3ζ 	∈ U2

2η − z/m2 	∈ U1
,

which are true because of the conditions on the four variables. Hence by Theorem 1 we
conclude that{{

− zp′(z) + 3g2(z) : z ∈ U
}
⊂ U2{

2g1(z)− zq′(z) : z ∈ U
}
⊂ U1

=⇒
{

g1(z) ≺ p(z)

g2(z) ≺ q(z)
,

which proves (18).

Example 6. Let Ω1 = Ω2 = {z : Re z > 0} and λ1(z) be analytic in U, with Re λ1(z) > 0. Let
p ∈ H[1, n1] ∩ Q(1), q ∈ H[1, n2] ∩ Q(1) and suppose{{

− p(z) + g2(z) + λ1(z) · zg ′
2(z) : z ∈ U

}
⊂ Ω1{

2g1(z) + zg ′
1(z) + z2g ′′

1 (z)− q(z) : z ∈ U
}
⊂ Ω2

, (20)

for g1(z) = g2(z) = (1 + z)/(1 − z). It is our intention to prove that{{
− p(z) + g2(z) + λ1(z) · zg ′

2(z) : z ∈ U
}
⊂ Ω1{

2g1(z) + zg ′
1(z) + z2g ′′

1 (z)− q(z) : z ∈ U
}
⊂ Ω2

=⇒
{
(1 + z)/(1 − z) ≺ p(z)

(1 + z)/(1 − z) ≺ q(z)
.

The differential operators in (20) are of the form{
D1[p, g2, λ1](z) = −p(z) + g2(z) + λ1(z) · zg ′

2(z)
D2[g1, q, λ2](z) = 2g1(z) + zg ′

1(z) + z2g ′′
1 (z)− q(z)

,
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with {
D1[r, s, t, ρ, σ, τ, λ1(z)] = −r + ρ + λ1(ζ) · σ

D2[r, s, t, ρ, σ, τ, λ2(z)] = 2r + s + t − ρ
. (21)

We will use Theorem 1 to prove that if p and q satisfy (20) then they have subordinants
g1 and g2 respectively given by g1(z) = g2(z) = (1 + z)/(1 − z). We need to show that
the pair (D1, D2) as given in (19) is in the Set of Admissible Operators, i.e., that (D1, D2) ∈
Ψ(n1,n2)

[(0, 0), (h1, h2), (g1, g2)]. We need to show that{
−g1(z) + g2(ζ) + λ1(ζ) · ζg ′

2(ζ) 	∈ Ω1

2g1(η) + ηg ′
1(η) + η2g ′′

1 (η)− g2(z) 	∈ Ω2
,

when ζ = eiθ ∈ ∂U\E(g2), η = eiφ ∈ ∂U\E(g1) and z ∈ U. This follows since

Re
[
− g1(z) + g2(e

iθ) + λ1(eiθ) · g ′
2(e

iθ)
]

= Re

[
−

1 + z
1 − z

+
1 + eiθ

1 − eiθ − λ(eiθ)
1

1 − cos θ

]
< −

Re λ(eiθ)

1 − cos θ
< 0, and

Re

[
2

1 + eiφ

1 − eiφ + eiφg ′
1(e

iφ) + e2iφg ′′
1 (e

iφ)−
1 + z
1 − z

]
= Re

[
2eiφ

(1 − eiφ)2 +
4e2iφ

(1 − eiφ)3 −
1 + z
1 − z

]

= Re

[
(2eiφ + 2e2iφ)(1 − e−iφ)3

(1 − eiφ)3(1 − e−iφ)3 −
1 + z
1 − z

]
= Re

[
4(sin 2φ − 2 sin φ)i

|1 − eiφ|6 −
1 + z
1 − z

]
< 0 .

Hence by Theorem 1 we conclude that{{
− p(z) + g2(z) + λ1(z) · zg ′

2(z) : z ∈ U
}
⊂ Ω1{

2g1(z) + zg ′
1(z) + z2g ′′

1 (z)− q(z) : z ∈ U
}
⊂ Ω2

=⇒
{
(1 + z)/(1 − z) ≺ p(z)

(1 + z)/(1 − z) ≺ q(z)
,

if p and q satisfy (20), then (1 + z)/(1 − z) ≺ p(z) and (1 + z)/(1 − z) ≺ q(z).
The definition of the pair of operators (D1, D2) ∈ Ψ(n1,n2)

[(λ1, λ2), (Ω1, Ω2), (g1, g2)],
and their dependency on the conditions that g1 ∈ Q(a) and g2 ∈ Q(b) indicates that
Theorem 1 depends very heavily on the functions g1 and g2 behaving very nicely on the
boundary of U. If this is not the case or if their behavior on the boundary is unknown, it
may still be possible to obtain a variant of the theorem by the following limiting process.

Theorem 2. Let λ1 and λ2 be analytic in U, let (Ω1, Ω2) be a subset of C×C and let g1 and g2
be univalent on U, with g1(0) = a and g2(0) = b. Let g iρ(z) = g i(ρz) and λiρ(z) = λi(ρz)
for i = 1, 2. Let Di : C7 → C for i = 1, 2 and suppose there exists ρ0 ∈ (0, 1) such that
(D1, D2) ∈ Ψ(n1,n2)

[(λ1ρ, λ2ρ), (Ω1, Ω2), (g1ρ, g2ρ)] for all ρ ∈ (ρ0, 1). If p ∈ H[a, n1] ∩ Q(a)
and q ∈ H[b, n2] ∩ Q(b) have the properties that D1[p, q, λ1] and D2[p, q, λ2] are analytic in
U and {

D1[p, g2, λ1](U) ⊂ Ω1

D2[g1, q, λ2](U) ⊂ Ω2
,

then g1(z) ≺ p(z) and g2(z) ≺ q(z).

Proof. If we replace z by ρz in p(z), q(z), g1(z), g2(z), λ1(z) and λ2(z) we obtain{
D1[p(ρz), ρzp′(ρz), ρ2z2 p′′(ρz), g2(ρz), ρzg ′

2(ρz), ρ2z2g ′′
2 (ρz), λ1(ρz)] ⊂ Ω1

D2[g1(ρz), ρzg ′
1(ρz), ρ2z2g ′′

1 (ρz), q(ρz), ρzq′(ρz), ρ2z2q′′(ρz), λ2(ρz)] ⊂ Ω2
,

for z ∈ U. If we set pρ(z) = p(ρz) and qρ(z) = q(ρz) we obtain
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{
D1[pρ(z), zp′ρ(z), z2 p′′ρ (z), g2ρ(z), zg ′

2ρ(z), z2g ′′
2ρ(z), λ1ρ(z)] ⊂ Ω1

D2[g1ρ(z), zg ′
1ρ(z), z2g ′′

1ρ(z), qρ(z), zq′ρ(z), z2q′′ρ (z), λ2ρ(z)] ⊂ Ω2
,

for z ∈ U. Since (D1, D2) ∈ Ψ(n1,n2)
[(λ1ρ, λ2ρ), (Ω1, Ω2), (g1ρ, g2ρ)] we can apply Theorem 1

to conclude that g1(ρz) ≺ pρ(z) = p(ρz) and g2(ρz) ≺ qρ(z) = q(ρz) for ρ ∈ (ρ0, 1). If we
now let ρ → 1−, we obtain the results g1(z) ≺ p(z) and g2(z) ≺ q(z).

4. Best Subordinants

In the previous sections we have discussed the problem of finding a set of subordinants
for a SSDI. In this section, we discuss a technique for improving that result by finding a set
of best subordinants of a SSDI.

Theorem 3. Let h1 and h2 be analytic in U, λ1 and λ2 be analytic in U, and suppose that the
system of simultaneous differential equations{

D1[u, v, λ1](z) = h1(z)
D2[u, v, λ2](z) = h2(z)

, (22)

has solutions u = g1 ∈ Q(a) and v = g2 ∈ Q(b).
Let p ∈ H[a, n1] ∩ Q(a), q ∈ H[b, n2] ∩ Q(b) and (D1, D2) ∈ Ψ(n1,n2)

[(λ1, λ2), (h1, h2),
(g1, g2)]. If {

{D1[p, g2, λ1](z) : z ∈ U
}
⊂ h1(U)

{D2[g1, q, λ2](z) : z ∈ U
}
⊂ h2(U)

, (23)

then g1(z) ≺ p(z) and g2(z) ≺ q(z), and the set of functions {g1, g2} is a set of best subordinants
of (23).

Proof. Since (D1, D2) ∈ Ψ(n1,n2)
[(λ1, λ2), (h1, h2), (g1, g2)], from (23) and Theorem 1 we

see that the set of functions {g1, g2} form a set of subordinants of SSDI (21). Thus, g1(z) ≺
p(z) and g2(z) ≺ q(z) for all p and q satisfying (23). On the other hand, the functions g1
and g2, which are solutions of the System of Simultaneous Differential Equations (20), also
satisfy the SSDI (23). Thus, they must be dominant to all subordinants of the system and
hence {g1, g2} is a set of best subordinants of system (23). In conclusion, we have the sharp
results g1(z) ≺ p(z) and g2(z) ≺ q(z).

5. Open Problems

This article dealt with describing and defining the key terms and elements for finding
subordinants of a System of Simultaneous Second-Order Differential Inclusions. We found
conditions for finding subordinants for some special cases of such systems. In particular, if
p and q are analytic functions satisfying a differential inclusion system of the form{

D1[p, g2, λ1](U) ⊂ Ω1

D2[g1, q, λ2](U) ⊂ Ω2
,

then we found conditions on the special operators D1 and D2 so that{
D1[p, g2, λ1](U) ⊂ Ω1

D2[g1, q, λ2](U) ⊂ Ω2
=⇒

{
g1(z) ≺ p(z)

g2(z) ≺ q(z)
.

The general problem of determining conditions on the operators D1 and D2, the sets
Ω1 and Ω2, and the functions g1 and g2 so that analytic functions p and q satisfy

69



Mathematics 2021, 9, 1252

{
D1[p, q, λ1](U) ⊂ Ω1

D2[p, q, λ2](U) ⊂ Ω2
=⇒

{
g1(z) ≺ p(z)

g2(z) ≺ q(z)
,

remains an interesting open problem. In addition, the problem of finding the corresponding
set of best subordinants of such systems remains an open question.
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1. Introduction

Let A represent the class of all functions which are analytic and given by the following form

s(z) = z +
∞

∑
n=2

anzn (1)

in the open unit disc E = {z : z ∈ C, |z| < 1}. Let S be class of all functions belonging to A which are
univalent and hold the conditions of normalized s(0) = s′(0)− 1 = 0 in E.

For the functions s and r in E analytic, it is known that the function s is subordinate to r in E given by
s(z) ≺ r(z), (z ∈ E), if there is an analytic Schwarz function w(z) given in E with the conditions

w(0) = 0 and |w(z)| < 1 for all z ∈ E,

such that s(z) = r(w(z)) for all z ∈ E.
Moreover, it is given by

s(z) ≺ r(z) (z ∈ E) ⇔ s(0) = r(0) and s(E) ⊂ r(E)

when r is univalent. By the Koebe one-quarter theorem, we know that the range of every function which
belongs to S contains the disc {w : |w| < 1

4} [1]. Therefore, it is obvious that every univalent function s
has an inverse s−1, introduced by

s(s−1(z)) = z (z ∈ E),
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and

s(s−1(w)) = w
(
|w| < r0(s); r0(s) ≥

1
4

)
,

where
s−1(w) = w − a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function s ∈ A is said to be bi-univalent in E if both s(z) and s−1(z) are univalent in E. The class of
all functions s ∈ A, such that s and s−1 ∈ A are both univalent in E, will be denoted by σ.

In 1967, the class σ of bi-univalent functions was first enquired by Lewin [2] and it was derived that
|a2| < 1.51. Brannan and Taha [3] also considered subclasses of bi-univalent functions, and acquired
estimates of initial coefficients. In 2010, Srivastava et al. [4] investigated various classes of bi-univalent
functions. Moreover, many authors (see [5–9]) have introduced subclasses for bi-univalent functions.

We define the class S∗(ϕ) of starlike functions and the class K(ϕ) of convex functions by

S∗(ϕ) =

{
s : s ∈ A,

zs′(z)
s(z)

≺ ϕ(z)
}

, z ∈ E,

and

K(ϕ) =

{
s : s ∈ A, 1 +

zs′′(z)
s(z)

≺ ϕ(z)
}

, z ∈ E.

These classes were described and studied by Ma and Minda [10].
It is especially clear that K = K(0) and S∗ = S∗(0).
It is also obvious that if s(z) ∈ K, then zs′(z) ∈ S∗.
El-Ashwah and Thomas [11] presented the class S∗

sc of functions known as starlike with respect to
symmetric conjugate points. This class consists of the functions s ∈ S, satisfying the inequality

Re

{
zs′(z)

s(z)− s(−z)

}
> 0, z ∈ E.

A function s ∈ S is said to be convex with respect to symmetric conjugate points if

Re

{
(zs′(z))′

(s(z)− s(−z))′

}
> 0, z ∈ E.

The class of all convex functions with respect to symmetric conjugate points is denoted by Csc.
The Horadam polynomials hn(x) are given by the iteration relation (see [12])

hn(x) = kxhn−1(x) + lhn−2(x), (n ∈ N ≥ 2), (3)

with h1(x) = c, h2(x) = dx, and h3(x) = kdx2 + cl , where c, d, k, l are some real constants.
Some special cases regarding Horadam polynomials can be found in [12]. For further knowledge

related to Horadam polynomials, see [13–16].

Remark 1. ([9,12]). Let Ω(x, z) be the generating function of the Horadam polynomials hn(x). At that time

Ω(x, z) =
c + (d − ck)xz
1 − kxz − lz2 =

∞

∑
n=1

hn(x)zn−1. (4)
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We took our motivation from the paper written by Wanas and Majeed [17]. They obtained coefficient
estimates using Chebyshev polynomials, but in our study we used Horadam Polynomials instead.

In the present paper, we introduce a new subclass of bi-univalent functions with respect to symmetric
conjugate points by handling the Horadam polynomials hn(x) and the generating function Ω(x, z).
Moreover, we find the initial coefficients and the problem of Fekete–Szegö for functions in this new
subclass. Some special cases related to our results were also acquired.

2. Main Results

Definition 1. For 0 < α ≤ 1, a function s ∈ σ is belong to the class F sc
σ (α, x) if it satisfies the following conditions

2zs′(z)
s(z)− s(−z)

+
2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z) + 2zs′(z)
αz(s(z)− s(−z))′ + (1 − α)(s(z)− s(−z))

≺ Ω(x, z) + 1 − c (5)

and

2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w) + 2wr′(w)

αw(r(w)− r(−w))′ + (1 − α)(r(w)− r(−w))

≺ Ω(x, w) + 1 − c (6)

where c, d, and l are real constants as in (3), and r is the extension of s−1, presented by (2).

In particular, if we set α = 0, we obtain the class F sc
σ (0, x) = Fsc

σ (x), which holds the
following conditions:

2(zs′(z))′

(s(z)− s(−z))′
≺ Ω(x, z) + 1 − c

and
2(wr′(w))′

(r(w)− r(−w))′
≺ Ω(x, w) + 1 − c,

where the function r = s−1 is presented by (2).
We prove that our first theorem includes initial coefficients of the class F sc

σ (α, x).

Theorem 1. Let the function s ∈ σ denoted by (1) belong to the class F sc
σ (α, x). Then

|a2| ≤
|dx|

√
|dx|√

2 |[(3 − 2α)d − 2(2 − α)2k]dx2 − 2(2 − α)2cl|
(7)

and

|a3| ≤
|dx|

2(3 − 2α)
+

(dx)2

4(2 − α)2 (8)

73



Mathematics 2020, 8, 1888

Proof. Let s ∈ σ be presented by Maclaurin expansion (1). Let us consider the functions Ψ and Φ,
which are analytic, and satisfy Ψ(0) = Φ(0) = 0, |Ψ(w)| < 1 and |Φ(z)| < 1, z, w ∈ E. Note that if

|Φ(z)| = |p1z + p2z2 + p3z3 + . . . | < 1 (z ∈ E)

and
|Ψ(w)| = |q1w + q2w2 + q3w3 + . . . | < 1 (w ∈ E),

then
|pi| ≤ 1 and |qi| ≤ 1 (i ∈ N).

In light of Definition 1, we have

2zs′(z)
s(z)− s(−z)

+
2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z) + 2zs′(z)
αz(s(z)− s(−z))′ + (1 − α)(s(z)− s(−z))

= Ω(x, Φ(z)) + 1 − c

and

2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w) + 2wr′(w)

αw(r(w)− r(−w))′ + (1 − α)(r(w)− r(−w))

= Ω(x, Ψ(w)) + 1 − c

or equivalently

2zs′(z)
s(z)− s(−z)

+
2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z) + 2zs′(z)
αz(s(z)− s(−z))′ + (1 − α)(s(z)− s(−z))

= 1 + h1(x)− c + h2(x)Φ(z) + h3(x)[Φ(z)]3 + · · · (9)

and

2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w) + 2wr′(w)

αw(r(w)− r(−w))′ + (1 − α)(r(w)− r(−w))

= 1 + h1(x)− c + h2(x)Ψ(w) + h3(x)[Ψ(w)]3 + · · · (10)
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If Φ(z) = p1z+ p2z2 + p3z3 + · · · (z ∈ E) and Ψ(w) = q1w+ q2w2 + q3w3 + · · · (w ∈ E), from the
equalities of (9) and (10), we obtain

2zs′(z)
s(z)− s(−z)

+
2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z) + 2zs′(z)
αz(s(z)− s(−z))′ + (1 − α)(s(z)− s(−z))

= 1 + h2(x)p1z +
[

h2(x)p2 + h3(x)p2
1

]
z2 + · · · (11)

and

2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w) + 2wr′(w)

αw(r(w)− r(−w))′ + (1 − α)(r(w)− r(−w))

= 1 + h2(x)q1w +
[

h2(x)q2 + h3(x)q2
1

]
w2 + · · · (12)

Thus, upon equating the coincident coefficients in (11) and (12), after some basic calculations,
we acquired

2(2 − α)a2 = h2(x)p1 (13)

2(3 − 2α)a3 = h2(x)p2 + h3(x)p2
1 (14)

− 2(2 − α)a2 = h2(x)q1 (15)

2(3 − 2α)(2a2
2 − a3) = h2(x)q2 + h3(x)q2

1 (16)

From (13) and (15), we obtain that
p1 = −q1 (17)

and
8(2 − α)2a2

2 = h2
2(x)(p2

1 + q2
1). (18)

Furthermore, by using (16) and (14), we obtain

4(3 − 2α)a2
2 = h2(x)(p2 + q2) + h3(x)(p2

1 + q2
1). (19)

By using (18) in (19), we get[
4(3 − 2α)− h3(x)

8(2 − α)2

h2
2(x)

]
a2

2 = h2(x)(p2 + q2). (20)

From (3) and (20), we acquired the result which is desired in (7).
Later, in order to derive the coefficient bound on |a3|, by subtracting (16) from (14)

−4(3 − 2α)(a2
2 − a3) = h2(x)(p2 − q2) + h3(x)(p2

1 − q2
1)

75



Mathematics 2020, 8, 1888

and using (17) and (18), we have

−4(3 − 2α)h2
2(x)(p2

1 + q2
1)

8(2 − α)2 + 4(3 − 2α)a3 = h2(x)(p2 − q2)

a3 =
h2(x)(p2 − q2)

4(3 − 2α)
+

h2
2(x)(p2

1 + q2
1)

8(2 − α)2 . (21)

Hence, using (17) and applying (3), we obtain the desired result in (8).

For α = 0 the class F sc
σ (α, x) reduced to the class F sc

σ (x). The following corollary belongs to reduced
class F sc

σ (x).

Corollary 1. Let the function s ∈ σ, presented by (1), belong to the class F sc
σ (x). Then

|a2| ≤
|dx|

√
|dx|√

2|(3d − 8k)dx2 − 8cl|
(22)

|a3| ≤
|dx|

6
+

(dx)2

16
. (23)

3. Fekete–Szegö Problem

For s ∈ S,
∣∣a3 − ξa2

2

∣∣ is the Fekete–Szegö functional, well-known for its productive history in the
area of GFT. It started from the disproof by Fekete and Szegö [18] conjecture of Littlewood and Paley,
suggesting that the coefficients of odd univalent functions are restricted by unity.

Theorem 2. For 0 < α ≤ 1 and ξ ∈ R, let s, given by (1), be in the class F sc
σ (α, x). Then

∣∣∣a3 − ξa2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

|dx|
2(3−2α)

; for |ξ − 1| ≤ 1 − 2(2−α)2(kdx2+cl)
(3−2α)(dx)2

|dx|3|1−ξ|
|2(3−2α)(dx)2−4(2−α)2(kdx2+cl)| ; for |ξ − 1| ≥ 1 − 2(2−α)2(kdx2+cl)

(3−2α)(dx)2 .

Proof. It follows from (20) and (21) that

a3 − ξa2
2 =

[h2(x)]3(1 − ξ)(p2 + q2)

4(3 − 2α)h2
2(x)− 8(2 − α)2h3(x)

+
h2(x)(p2 − q2)

4(3 − 2α)

= h2(x)
[(

Θ(ξ, x) +
1

4(3 − 2α)

)
p2 +

(
Θ(ξ, x)− 1

4(3 − 2α)

)
q2

]
,

where

Θ(ξ, x) =
[h2(x)]2(1 − ξ)

4(3 − 2α)h2
2(x)− 8(2 − α)2h3(x)

.

Thus, we conclude that

∣∣∣a3 − ξa2
2

∣∣∣ ≤
⎧⎪⎨⎪⎩

|h2(x)|
2(3−2α)

, |Θ(ξ, x)| ≤ 1
4(3−2α)

2|h2(x)||Θ(ξ, x)| , |Θ(ξ, x)| ≥ 1
4(3−2α)

.
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In this way, the proof of Theorem 2 is completed.

For α = 0 the class F sc
σ (α, x) reduced to the class F sc

σ (x). The following corollary belongs to reduced
class F sc

σ (x).

Corollary 2. For ξ ∈ R, let s, presented by (1), belong to the class F sc
σ (x). Then

∣∣∣a3 − ξa2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

|dx|
6 ; for |ξ − 1| ≤ 1 − 8(kdx2+cl)

3(dx)2

|dx|3|1−ξ|
|6(dx)2−16(kdx2+cl)| ; for |ξ − 1| ≥ 1 − 8(kdx2+cl)

3(dx)2 .

Upon taking ξ = 1 in Theorem 2, we easily acquire the corollary given below

Corollary 3. For 0 < α ≤ 1, let s, presented by (1), belong to the class F sc
σ (α, x). Then∣∣∣a3 − a2

2

∣∣∣ ≤ |dx|
2(3 − 2α)

.

Remark 2. Different subclasses and results were obtained for some special cases of parameters in our results, such as
corollaries. Furthermore, when we take d = 2, k = 2, c = −1, l = 1, in our results, it can be seen that these results
enhance the study by Wanas and Majeed [17].
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1. Introduction

Quantum calculus or q-calculus is attributed to the great mathematicians L.Euler and C. Jacobi,
but it became popular when Albert Einstein used it in quantum mechanics in his paper [1] published in
1905. F.H. Jackson [2,3] introduced and studied the q-derivative and q-integral in a proper way. Later,
quantum groups gave the geometrical aspects to q-calculus. It is pertinent to mention that q-calculus
can be considered an extension of classical calculus discovered by I. Newton and G.W. Leibniz. In fact,
the operators defined as:

dh f (z) =
f (z + h)− f (z)

h
and:

dq f (z) =
f (z)− f (qz)
(1 − q)z

, 0 < q < 1,

where z ∈ C and h > 0 are the h-derivative and q-derivative, respectively, where h is Planck’s constant,
are related as: q = eih = e2πih where h = h/2π. Srivastava [4] applied the concepts of q-calculus by
using the basic (or q-) hypergeometric functions in Geometric Function Theory (GFT). Ismail [5] and
Agarwal [6] introduced the class of q-starlike functions by using the q-derivative. The q-close-to-convex
functions were defined in [7], and Sahoo and Sharma [8] obtained several interesting results for
q-close-to-convex functions. Several convolution and fractional calculus q-operators were defined
by the researchers, which were reposited by Srivastava in [9]. Darus [10] defined a new differential
operator called the q-generalized operator by using q-hypergeometric functions. Let A be the class of
functions of the form:

f (z) = z +
∞

∑
k=2

akzk, (1)

analytic in the open unit disc E = {z : |z| < 1}.
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Let f (z) be given by (1) and g(z) defined as:

g(z) = z +
∞

∑
k=2

bkzk.

The Hadamard product (or convolution) of f and g is defined by:

( f ∗ g)(z) = z +
∞

∑
k=2

akbkzk.

Let f , h be analytic functions. Then, f is subordinate to h, written as f ≺ h or f (z) ≺ h(z), z ∈ E,
if there exists a Schwartz function ω(z) analytic in E with ω(0) = 0 and |ω(z)| < 1 for z ∈ E, such that
f (z) = h(ω(z)). If h is univalent in E, then f ≺ h, if and only if f (0) = h(0) and f (E) ⊂ h(E).

A sequence {bk}∞
k=1 of complex numbers is a subordinating factor if, whenever f (z) =

∑∞
k=1akzk, a1 = 1 is regular, univalent, and convex in E, we have ∑∞

n=1bnanzn ≺ f (z), z ∈ E [11].
We recall some basic concepts from q-calculus that are used in our discussion and refer to [2,3,12]

for more details.
A subset B ⊂ C is called q-geometric if zq ∈ B whenever z ∈ B, and it contains all the geometric

sequences
{

zqk
}∞

0
. In GFT, the q-derivative of f (z) is defined as:

dq f (z) =
f (z)− f (qz)
(1 − q)z

, q ∈ (0, 1), (z ∈ B \ {0}),

and dq f (0) = f ′(0). For a function g(z) = zk, the q-derivative is:

dqg(z) = [k]zk−1,

where [k] = 1−qk

1−q = 1 + q + q2 + .... + qk−1.
We note that as q → 1−, dq f (z) → f ′(z), which is the ordinary derivative. From (1), we

deduce that:

dq f (z) = 1 +
∞

∑
k=2

[k] akzk.

Let f (z) and g(z) be defined on a q-geometric set B. Then, for complex numbers a, b, we have:

dq(a f (z)± bg(z)) = adq f (z)± bdqg(z).

dq( f (z)g(z)) = f (qz)dqg(z) + g(z)dq f (z).

dq

(
f (z)
g(z)

)
=

g(z) dq f (z)− f (z) dqg(z)
g(z)g(qz)

, g(z)g(qz) 	= 0.

dq (log f (z)) =
ln q−1

1 − q
dq f (z)

f (z)
.

Jackson [2] introduced the q-integral of a function f , given by:

∫ z

0
f (t)dqt = z(1 − q)

∞

∑
k=0

qk f (qkz),

provided that the series converges.
For any non-negative integer n, the q-number shift factorial is defined as:

[n]! =

{
[1] [2] ... [n] if n 	= 0,

1 if n = 0
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Let λ ∈ R and n ∈ N; the q-generalized Pochhammer symbol is defined as:

[λ]n = [λ] [λ + 1] [λ + 2] .... [λ + n − 1] .

The q-Gamma function is defined for λ > 0 as:

Γq(λ + 1) = [λ]Γq(λ) and Γq(1) = 1.

For complex parameters ai (1 ≤ i ≤ l), bj 	= 0,−1,−2, ...(1 ≤ j ≤ m) with l ≤ m + 1, the basic
q-hypergeometric function is defined as,

l Fm(a1, ...al ; b1, ..., bm, z) =
∞

∑
k=0

(a1)k...(al)k
(q)k(b1)k...(bm)k

[
(−1)n q(

n
2)
]1+m−l

zk. (2)

with (n
2) =

n(n−1)
2 and l, m ∈ N0 = N∪ {0}. Here, the q-shifted factorial is defined for a ∈ C as:

(a)k =

{
(1 − a) (1 − aq) ...

(
1 − aqk−1

)
if k ∈ N,

1 if k = 0.

Let l = m + 1, a1 = qλ+1(λ > −1), ai = q (∀ 2 ≤ i ≤ l), and bj = q (∀ 1 ≤ j ≤ m), and by using

the property (qa)k = Γq(a + k) (1 − q)k /Γq(a), from (2), we get the function,

Fq,λ+1(z) = z +
∞

∑
k=2

Γq(λ + k)
[k − 1]!Γq(λ + 1)

zk = z +
∞

∑
k=2

[λ + 1]k−1
[k − 1]!

zk, z ∈ E.

In [13], the q-Srivastava–Attiya convolution operator is defined as:

Gs
q,a(z) = z +

∞

∑
k=2

(
[1 + a]
[k + a]

)s
zk, z ∈ E,

(a ∈ C \Z−
0 ; s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1).

Using convolution, the operator Ds
q,a,λ for λ > −1 is defined as:

Ds
q,a,λ f (z) = Js

q,a,λ(z) ∗ f (z)

= z +
∞

∑
k=2

(
[k + a]
[1 + a]

)s [λ + 1]k−1
[k − 1]!

akzk, z ∈ E,

where:

Js
q,a,λ(z) =

(
Gs

q,a(z)
)−1

∗ Fq,λ+1(z) = z +
∞

∑
k=2

(
[k + a]
[1 + a]

)s [λ + 1]k−1
[k − 1]!

zk.

It is a convergent series with a radius of convergence of one. We observe that D0
q,a,0 f (z) = f (z)

and D1
q,0,0 f (z) = zdq f (z). The operator Ds

q,a,λ reduces to known linear operators for different values of
parameters a, s, and λ as:

(i) If q → 1−, it reduces to the operator Ds
a,λ discussed by Noor et al. in [14].

(ii) For s = 0, it is a q-Ruscheweyh differential operator [15].
(iii) If s = −1, λ = 0, and q → 1−, it is an Owa–Srivastava integral operator [16].
(iv) If s ∈ N0, a = 1, λ = 0, and q → 1−, it reduces to the generalized Srivastava–Attiya integral

operator [17].
(v) If s ∈ N0, a = 0, λ = 0, it is a q-Salagean differential operator [18].
(vi) For s, λ ∈ N0, and a = 0, it is the operator defined in [19].
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The following identities hold for the operator Ds
q,a,λ f (z),

zdq

(
Ds

q,a,λ f (z)
)
=

(
[1 + a]

qa

)
Ds+1

q,a,λ f (z)− [a]
qa Ds

q,a,λ f (z) (3)

zdq(Ds
q,a,λ f (z)) =

(
[1 + λ]

qλ

)
Ds

q,a,λ+1 f (z)− [λ]

qλ
Ds

q,a,λ f (z). (4)

Let P(q) be the class of functions of the form p(z) = 1 + c1z + c2z2 + ...., analytic in E,
and satisfying: ∣∣∣∣p(z)− 1

1 − q

∣∣∣∣ ≤ 1
1 − q

, (z ∈ E, q ∈ (0, 1)).

It is known from [20] that p ∈ P(q) implies p(z) ≺ 1+z
1−qz . It follows immediately that Re p(z) > 0,

z ∈ E.
The classes of bounded q-starlike functions Sq(c, M) and bounded q-convex functions Cq(c, M) of

complex order c were defined in [21], respectively, as:

Sq(c, M) =

⎧⎨⎩ f ∈ A :

∣∣∣∣∣∣
c − 1 + zdq f (z)

f (z)

c
− M

∣∣∣∣∣∣ < M

⎫⎬⎭ ,

(
c ∈ C∗; M >

1
2

, z ∈ E
)

,

or equivalently,

Sq(c, M) =

{
f ∈ A :

zdq f (z)
f (z)

≺ 1 + {c(1 + m)− m}z
1 − mz

}
,(

c ∈ C∗; m = 1 − 1
M

; M >
1
2

)
.

The class of bounded q-convex functions Cq(c, M) of complex order c is defined as:

Cq(c, M) =

⎧⎪⎨⎪⎩ f ∈ A :

∣∣∣∣∣∣∣
c − 1 + dq(zdq f (z))

dq f (z)

c
− M

∣∣∣∣∣∣∣ < M

⎫⎪⎬⎪⎭ ,

(
c ∈ C∗; M >

1
2

, z ∈ E
)

,

or equivalently,

Cq(c, M) =

{
f ∈ A :

dq(zdq f (z))
dq f (z)

≺ 1 + {c(1 + m)− m}z
1 − mz

}
(

c ∈∗; m = 1 − 1
M

; M >
1
2

)
.

Using the operator Ds
q,a,λ f (z), we now define the following new classes Sq,a,s,λ(c, M) and

Cq,a,s,λ(c, M) as:
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Sq,a,s,λ(c, M) =

{
f ∈ A :

z(dqDs
q,a,λ( f (z)))

Ds
q,a,λ( f (z))

≺ 1 + {c(1 + m)− m}z
1 − mz

, z ∈ E

}
,(

0 < q < 1, c ∈∗; m = 1 − 1
M

; M >
1
2

)
.

Special cases:

(i) If c = 1, m = 1, and q → 1−, then Sq,a,s,λ(c, M) reduces to class Ss(a, λ) discussed in [22].
(ii) If c = 1, s = 0, λ = 0, m = −q, then Sq,a,s,λ(c, M) reduces to class S∗

q introduced by Noor et al. [23].
(iii) If s = 0, c = m

1+m (−1 < m < 0), m = −q, then Sq,a,s,λ(c, M) reduces to class STq studied by
Noor [24].

(iv) If s = 0, λ = 0, c = ae−iβ cos β (a ∈ C∗, |β| < π
2 ), and q → 1−, then Sq,a,s,λ(c, M) becomes special

cases of Janowski β-spiral like functions of complex order Sβ(A, B, a) discussed in [25].
(v) If s ∈ N0, λ = 0, a = 0, and q → 1−, then Sq,a,s,λ(c, M) reduces to class Hn(c, M) discussed by

Aouf et al. in [26].
(vi) If 0 < c ≤ 1, −1 < m < 0, and q → 1−, then Sq,a,s,λ(c, M) becomes a special case of the class Ss

a,λ(η,
A, B) with η = 0 discussed in [19].

A function f ∈ A is in the class Sq,a,s,λ(c, M) if and only if:∣∣∣∣∣∣∣∣
zdq(Ds

q,a,λ f (z))
Ds

q,a,λ f (z) − 1

A − B
{

zdq(Ds
q,a,λ f (z))

Ds
q,a,λ f (z)

}
∣∣∣∣∣∣∣∣ < 1, (5)

where A = c(1 + m)− m and B = −m.
The class Cq,a,s,λ(c, M) is defined as:

Cq,a,s,λ(c, M) =

{
f ∈ A :

dq(zdq(Ds
q,a,λ f (z))

dq(Ds
q,a,λ f (z))

≺ 1 + {c(1 + m)− m}z
1 − mz

, z ∈ E

}
,(

0 < q < 1, c ∈ C∗; m = 1 − 1
M

; M >
1
2

)
.

It is easy to see that f ∈ Cq,a,s,λ(c, M) ⇔ zdq f ∈ Sq,a,s,λ(c, M). In order to develop results for the
classes Sq,a,s,λ(c, M) and Cq,a,s,λ(c, M), we need the following:

Lemma 1 ([27]). Let β and γ be complex numbers with β 	= 0, and let h(z) be regular in E with h(0) = 1 and

Re[βh(z) + γ] > 0. If p(z) = 1 + p1z + p2z2 + ... is analytic in E, then p(z) + zdq p(z)
βp(z)+γ

≺ h(z) ⇒ p(z) ≺
h(z).

Lemma 2 ([11]). The sequence {bn}∞
n=1 is a subordinating factor sequence if and only if:

Re

{
1 + 2

∞

∑
k=1

bkzk

}
> 0, z ∈ E.

2. Properties of Classes Sq,a,s,λ(c, M) and Cq,a,s,λ(c, M)

We start the section with the necessary and sufficient condition for a function to be in the class
Sq,a,s,λ(c, M).
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Theorem 1. Let f ∈ A. Then, f ∈ Sq,a,s,λ(c, M) if and only if:

∑∞
k=2 {[k]− 1 + |c(1 + m) + m([k]− 1)|} [λ+1]k−1

[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣ |ak| < |c(1 + m)| , (6)

where m = 1 − 1
M , (M > 1

2 ).

Proof. Let us assume first that Inequality (6) holds. To show f ∈ Sq,a,s,λ(c, M), we need to prove
Inequality (5).

∣∣∣∣∣∣∣∣
z(dq(Ds

q,a,λ f (z))
Ds

q,a,λ f (z) − 1

A − B
{

zdq(Ds
q,a,λ f (z))

Ds
q,a,λ f (z)

}
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑∞

k=2

(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! ([k]− 1)akzk

(A − B)z + ∑∞
k=2 (A − B [k])

(
[1+a]
[k+a]

)s
. [λ+1]k−1

[k−1]! akzk

∣∣∣∣∣∣∣
≤

∑∞
k=2

∣∣∣( [k+a]
[1+a]

)s∣∣∣ . [λ+1]k−1
[k−1]! ([k]− 1) |ak|

|A − B| −
∣∣∣∑∞

k=2 (A − B [k])
(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! ak

∣∣∣
≤

∑∞
k=2

∣∣∣( [k+a]
[1+a]

)s∣∣∣. [λ+1]k−1
[k−1]! ([k]−1)|ak |

|c(1+m)|−∑∞
k=2|c(1+m)+m([k]−1)|

[λ+1]k−1
[k−1]!

∣∣∣∣( [k+a]
[1+a]

)s∣∣∣∣|ak |

< 1.

Hence, f ∈ Sq,a,s,λ(c, M) by using Inequality (6). Conversely, let f ∈ Sq,a,s,λ(c, M) be of the form
(1), then: ∣∣∣∣∣∣∣∣

z(dq(Ds
q,a,λ f (z))

Ds
q,a,λ( f (z)) − 1

A − B
{

zdq(Ds
q,a,λ f (z))

Ds
q,a,λ f (z)

}
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑∞

k=2

(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! ([k]− 1)akzk

(A − B)z + ∑∞
k=2 (A − B [k])

(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! akzk

∣∣∣∣∣∣∣ .

Since |Re z| ≤ |z| ,, we have:

Re

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣

∑∞
k=2

(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! ([k]− 1)akzk

(A − B)z + ∑∞
k=2 (A − B [k])

(
[k+a]
[1+a]

)s
. [λ+1]k−1

[k−1]! akzk

∣∣∣∣∣∣∣
⎫⎪⎬⎪⎭ < 1.

Now, we choose values of z on the real axis such that zdq(Ds
q,a,λ f (z))/Ds

q,a,λ f (z) is real. Letting
z → 1− through real values, after some calculations, we obtain Inequality (6).

Remark 1. (i) If q → 1−, s ∈ N0, a = 0, and λ = 0, the above result reduces to the sufficient condition for
f (z) to be in class Hn(c, M) (c ∈ C∗, M > 1

2 ) discussed in [26]. (ii) If c = 1 − α (α ∈ [0, 1)), m = 0, λ = 0,
and q → 1−, the above result reduces to the sufficient condition for f (z) to be in class S∗

s,a (α) discussed in [28].

Theorem 2. Let fi ∈ Sq,a,s,λ(c, M) having the form:

fi(z) = z +
∞

∑
k=2

ak,izk, for i = 1, 2, 3, .., l.

Then, F ∈ Sq,a,s,λ(c, M), where F(z) = ∑l
i=1 ci fi(z) with ∑ł

i=1 ci = 1.

Proof. From Theorem 1, we can write:
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∑∞
k=2

⎧⎪⎨⎪⎩
{[k]− 1 + |b(1 + m) + m([k]− 1)|} [λ+1]k−1

[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣
|b(1 + m)|

⎫⎪⎬⎪⎭ ak,i < 1. (7)

Therefore:

F(z) =
l

∑
i=1

ci

(
z +

∞

∑
k=2

ak,izk

)

= z +
∞

∑
k=2

(
l

∑
i=1

ciak,i

)
zk;

where however due to (7), we have:

∑∞
k=2

{[k]− 1 + |b(1 + m) + m([k]− 1)|} [λ+1]k−1
[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣
|b(1 + m)|

(
l

∑
i=2

ciak,i

)

=
l

∑
i=2

⎡⎢⎣{[k]− 1 + |b(1 + m) + m([k]− 1)|} [λ+1]k−1
[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣
|b(1 + m)|

⎤⎥⎦ ci ≤ 1;

Therefore, F ∈ Sq,a,s,λ(c, M).

Theorem 3. Let fi with i = 1, 2, ..., ν belong to the class Sq,a,s,λ(c, M). The arithmetic mean h of fi is given by:

h(z) =
1
v

v

∑
i=1

fi(z) (8)

belonging to class Sq,a,s,λ(c, M).

Proof. From (8), we can write:

h(z) =
1
v

v

∑
i=1

(
z +

∞

∑
k=2

ak,izk

)
= z +

∞

∑
k=2

(
1
v

v

∑
i=1

ak,i

)
zk. (9)

Since fi ∈ Sq,a,s,λ(c, M) for every i = 1, 2, ..., v, using (6) and (9), we have:

∞

∑
k=2

{[k]− 1 + |b(1 + m) + m([k]− 1)|} [λ+1]k−1
[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣ (1
v

v

∑
i=1

ak,i

)

=
1
v

v

∑
i=1

(
∞

∑
k=2

{[k]− 1 + |b(1 + m) + m([k]− 1)|} [λ+1]k−1
[k−1]!

∣∣∣( [k+a]
[1+a]

)s∣∣∣ ak,i

)

≤ 1
v

v

∑
i=1

(|b(1 + m)|) = |b(1 + m)| ,

and this completes the proof.

Now, we give the subordination relation for the functions in class Sq,a,s,λ(c, M) by using the
subordination theorem.

Theorem 4. Let m = 1 − 1
M (M > 1

2 ). Furthermore, c 	= 0 with Re(c) > −m
2(1+m)

when m > 0 and

Re(c) < −m
2(1+m)

when m < 0 and λ ≥ 0. If f ∈ Sq,a,s,λ(c, M), then:
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{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] ( f ∗ g)(z) ≺ g(z) (10)

where g(z) is a convex function in E, Cλ,k =
[λ+1]k−1
[k−1]! , Bs,a(k) =

∣∣∣( [k+a]
[1+a]

)s∣∣∣, and:

Re f (z) > −1 − (1 + m) |c|
{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)

. (11)

The constant {q+|c(1+m)+mq|}Cλ,2Bs,a(2)
2[{q+|c(1+m)+mq|}Cλ,2Bs,a(2)+|c(1+m)|] is the best estimate.

Proof. Let f (z) ∈ Sq,a,s,λ(c, M) and g(z) = z + ∑∞
k=2 ckzk. Then:

{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] ( f ∗ g)(z)

=
{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)

2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|]

(
z +

∞

∑
k=2

akckzk

)
. (12)

Thus, (10) holds true if:{ {q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] ak

}∞

k=1
(13)

is a subordinating factor sequence with a1 = 1. From Lemma 2, it suffices to show:

Re
{

1 + ∑∞
k=1

{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] akzk

}
> 0. (14)

Now, as {[k]− 1 + |c(1 + m) + m([k]− 1)|}Cλ,kBs,a(k) is an increasing function of k (k ≥ 2),
we have:

Re
{

1 + ∑∞
k=1

{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] akzk

}
= Re

{
1 +

{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] z+

+
∑∞

k=2{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)akzk

[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|]

}

≥ 1 − {q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] r−

∑∞
k=2{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) |ak| rk

[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|]

> 1 − {q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] r−

(1 + m) |c|
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] r

> 0. (|z| = r < 1)

Hence, (14) holds true in E, and the subordination result (10) is affirmed by Theorem 4.
The inequality (11) follows by taking g(z) = z

1−z = ∑∞
k=1zk in (10).
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Let us consider the function:

φ(z) = z − |c(1 + m)|
[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|] z

2 (z ∈ E)

which is a member of Sq,a,s,λ(c, M). Then. by using (10), we have:

{q + |c(1 + m) + mq|}Cλ,2Bs,a(2)
2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|]φ(z) ≺

z
1 − z

.

It is easily verified that:

min Re
{ {q + |c(1 + m) + mq|}Cλ,2Bs,a(2)

2[{q + |c(1 + m) + mq|}Cλ,2Bs,a(2) + |c(1 + m)|]φ(z)
}

= −1
2

(z ∈ E) ,

then the constant {q+|c(1+m)+mq|}Cλ,2Bs,a(2)
2[{q+|c(1+m)+mq|}Cλ,2Bs,a(2)+|c(1+m)|] cannot be replaced by a larger one.

Remark 2. If s ∈ N0, a = 0, λ = 0, and q → 1−, Theorem 4 reduces to the subordination result proven
in [29].

Now, we discuss the inclusion results pertaining to classes Sq,a,s,λ(c, M) and Cq,a,s,λ(c, M) in
reference to parameters s and λ.

Theorem 5. For any complex number s, Sq,a,s+1,λ(c, M) ⊂ Sq,a,s,λ(c, M) if Re( 1+{c(1+m)−m}z
1−mz ) >

1
qa1 (1−q) {1 − cos(a2 ln q)} where a = a1 + ia2.

Proof. Let f ∈ Sq,a,s+1,λ(c, M), then:

zdq(Ds+1
q,a,λ f (z))

Ds+1
q,a,λ f (z)

≺ 1 + {c(1 + m)− m}z
1 − mz

, (15)

Let:

h(z) =
1 + {c(1 + m)− m}z

1 − mz

and:

r(z) =
zdq(Ds

q,a,λ f (z))

Ds
q,a,λ f (z)

.

We will show:

r(z) ≺ h(z),

which would prove Sq,a,s,λ(c, M) ⊂ Sq,a,s+1,λ(c, M). From the identity relation (3), after a few
calculations, we have:

zdq(Ds
q,a,λ f (z))

Ds
q,a,λ f (z)

=
[1 + a]

qa .
Ds+1

q,a,λ f (z)

Ds
q,a,λ f (z)

− [a]
qa .

After some calculations, we have:
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Ds+1
q,a,λ f (z)

Ds
q,a,λ f (z)

=
1

[1 + a]

{
qazdq(Ds

q,a,λ f (z))

Ds
q,a,λ f (z)

+ [a]

}

=
1

[1 + a]
{qar(z) + [a]} .

Applying logarithmic q-differentiation, we have:

zdq(Ds+1
q,a,λ f (z))

Ds+1
q,a,λ f (z)

= r(z) +
zdqr(z)

r(z) + q−a [a]
. (16)

From (15) and (16), we have:

r(z) +
z[dqr(z)]

r(z) + q−a [a]
≺ 1 + {c(1 + m)− m}z

1 − mz
.

If Re(h(z)) > 1
qa1 (1−q) {1 − cos(a2 ln q)}, then from Lemma 1, it implies:

r(z) ≺ h(z),

which implies f (z) ∈ Sq,a,s,λ(c, M). Therefore, Sq,a,s,λ(c, M) ⊂ Sq,a,s+1,λ(c, M).

Theorem 6. For any complex number s, Cq,a,s+1,λ(c, M) ⊂ Cq,a,s,λ(c, M) if Re( 1+{c(1+m)−m}z
1−mz ) >

1
qa1 (1−q) {1 − cos(a2 ln q)} where a = a1 + ia2.

Proof. It is obvious from the fact f ∈ Cq,a,s,λ(c, M) ⇔ zdq f ∈ Sq,a,s,λ(c, M).

Theorem 7. For any complex number s, Sq,a,s,λ+1(c, M) ⊂ Sq,a,s,λ(c, M) if Re( 1+{c(1+m)−m}z
1−mz ) > 1−q−λ

1−q ,
λ > −1.

Proof. Let f ∈ Sq,a,s,λ+1(c, M), then:

zdq(Ds
q,a,λ+1 f (z))

Ds
q,a,λ+1 f (z)

≺ 1 + {c(1 + m)− m}z
1 − mz

. (17)

Consider:

h(z) =
1 + {c(1 + m)− m}z

1 − mz

and:

q(z) =
zdq(Ds

q,a,λ f (z))

Ds
q,a,λ f (z)

.

We will show:

q(z) ≺ h(z),

which would conveniently prove Sq,a,s,λ+1(c, M) ⊂ Sq,a,s,λ(c, M). From the identity relation (4), after a
few calculations, we have:

zdq(Ds
q,a,λ f (z))

Ds
q,a,λ f (z)

=
[1 + λ]

qλ

Ds
q,a,λ+1 f (z)

Ds
q,a,λ f (z)

− [λ]

qλ
.
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After some calculations, we have:

Ds
q,a,λ+1 f (z)

Ds
q,a,λ f (z)

=
1

[1 + λ]

{
qa.zdq(Ds

q,a,λ f (z))

Ds
q,a,λ f (z)

+ [λ]

}

=
1

[1 + λ]

{
qλq(z) + [λ]

}
.

Applying logarithmic q-differentiation, we have:

zdq(Ds
q,a,λ+1 f (z))

Ds
q,a,λ+1 f (z)

= q(z) +
zdqq(z)

q(z) + q−λ [λ]
(18)

From (17) and (18), we have:

q(z) +
z[dqq(z)]

q(z) + q−λ [λ]
≺ 1 + {c(1 + m)− m}z

1 − mz
.

If Re(h(z)) > 1−q−λ

1−q for any value of λ > −1, so by Lemma 1, we have q(z) ≺ h(z), which implies
f (z) ∈ Sq,a,s,λ(c, M). Therefore, Sq,a,s,λ+1(c, M) ⊂ Sq,a,s,λ(c, M).

Remark 3. If we consider q → 1− with Re a ≥ 0, c = 1, m = 1 in Theorem 5 and λ ≥ 0, c = 1, m = 1 in
Theorem 7, we obtain the special cases of the inclusion results, Theorems 2.4 and 2.5 in [19].

In [30], the q-Bernardi integral operator Lb f (z) is defined as:

Lb f (z) =
[1 + b]

zb

∫ z

0
tb−1 f (t)dqt

= z +
∞

∑
k=2

(
[1 + b]
[k + b]

)
akzk, b = 1, 2, 3, ....

Now, we apply the generalized operator Ds
q,a,λ on Lb f (z) as:

Ds
q,a,λ(Lb f (z)) = z +

∞

∑
k=2

(
[k + a]
[1 + a]

)s
.
[λ + 1]k−1
[k − 1]!

(
[1 + b]
[k + b]

)
akzk.

The identity relation of Ds
q,a,λ(Lb f (z)) is given as:

zdq

[
Ds

q,a,λ{Lb f (z)}
]
=

(
[1 + b]

qb

)
Ds

q,a,λ f (z)− [b]
qb Ds

q,a,λ{Lb f (z)}. (19)

The following theorems are the integral inclusions of the classes Sq,a,s,λ(c, M) and Cq,a,s,λ(c, M)

with respect to the q-Bernardi integral operator.

Theorem 8. If f (z) ∈ Sq,a,s,λ(c, M) then Lb f (z) ∈ Sq,a,s,λ(c, M) if Re( 1+{c(1+m)−m}z
1−mz ) > 1−q−b

1−q for any
complex number s.

Proof. Let g(z) ∈ Sq,a,s,λ(c, M), then:

zdq(Ds
q,a,λg(z))

Ds
q,a,λg(z)

≺ 1 + {c(1 + m)− m}z
1 − mz

. (20)

Consider:
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h(z) =
1 + {c(1 + m)− m}z

1 − mz

and:

u(z) =
zdq(Ds

q,a,λLbg(z))

Ds
q,a,λLbg(z)

.

We will show:

u(z) ≺ h(z),

which would prove Lbg(z) ∈ Sq,a,s,λ(c, M). From the identity relation (19), after some calculations,
we have:

zdq(Ds
q,a,λLbg(z))

Ds
q,a,λLbg(z)

=

(
[1 + b]

qb

) Ds
q,a,λg(z)

(Ds
q,a,λLbg(z))

− [b]
qb .

After some calculations, we have:

Ds
q,a,λg(z)

Ds
q,a,λLbg(z)

=
1

[1 + b]

[
qb.zdq(Ds

q,a,λLbg(z))

Ds
q,a,λLbg(z)

+ [b]

]
Applying logarithmic q-differentiation, we have:

zdq(Ds
q,a,λg(z))

Ds
q,a,λg(z)

= u(z) +
z[dqu(z)]

u(z) + q−b [b]
(21)

From (20) and (21), we have:

u(z) +
z[dqu(z)]

u(z) + q−b [b]
≺ 1 + {c(1 + m)− m}z

1 − mz

If Re(h(z)) > 1−q−b

1−q , so by Lemma 1, we have u(z) ≺ h(z), which implies Lbg(z) ∈
Sq,a,s,λ(c, M).

Theorem 9. If f (z) ∈ Cq,a,s,λ(c, M), then Lb f (z) ∈ Cq,a,s,λ(c, M) for any complex number s.

Proof. It is an immediate consequence of the fact Cq,a,s,λ(c, M) ⇔ zdq f ∈ Sq,a,s,λ(c, M).
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1. Introduction and Preliminaries

For two analytic functions f and F in U := {z : z ∈ C and |z| < 1}, it is stated that the function
f is subordinate to the function F in U, written as f (z) ≺ F(z), if there exists a Schwarz function �,
which is analytic in U with

�(0) = 0 and |�(z)| < 1 (z ∈ U),

such that f (z) = F
(
�(z)

)
for all z ∈ U. In particular, if F be a univalent function in U, then we have

below equivalence:
f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (U) ⊂ F(U).

Let Σn denote the category of all functions analytic in the punctured open unit disk U∗ given by

U∗ := {z : z ∈ C and 0 < |z| < 1} = U \ {0},

which have the form

f (z) =
1
z
+

∞

∑
k=n

ak−1zk−1 (n ∈ N := {1, 2, · · · }). (1)

A function f ∈ Σ, where Σ is the union of Σn for all positive integers n, is said to be in the class

M̃S
∗
(α) of meromorphic strongly starlike functions of order α if we have the condition∣∣∣∣arg

(
− z f ′(z)

f (z)

)∣∣∣∣ < απ

2
(z ∈ U∗; 0 < α � 1).
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In particular, MS∗ := M̃S
∗
(1) is the class of meromorphic starlike functions in the open unit

disk U.
Let An be the category of all functions analytic in U which have the following form

f (z) = zn +
∞

∑
k=n+1

akzk (n ∈ N). (2)

The class A1 is denoted by A.
Let S̃∗(α) be the subcategory of A defined as follows

S̃∗(α) :=
{

f : f ∈ A and
∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣ < απ

2
(z ∈ U; 0 < α � 1)

}
.

The classes S̃∗(α) will be called the class of strongly starlike functions of order α. In particular,
S∗ := S̃∗(1) is the class of starlike functions in U.

By means of the principle of subordination between analytic functions, the above definition is
equivalent to

S̃∗(α) :=
{

f : f ∈ A and
z f ′(z)

f (z)
≺

(
1 + z
1 − z

)α

(z ∈ U; 0 < α � 1)
}

.

Furthermore, let C̃C(α) denote the category of all functions in A which are strongly close-to-convex
of order α in U if there exists a function g ∈ S∗ such that∣∣∣∣arg

(
z f ′(z)
g(z)

)∣∣∣∣ < απ

2
(z ∈ U; 0 < α � 1).

In particular, CC := C̃C(1) is the class of close-to-convex functions in U.
In the year 1978, Miller and Mocanu [1] introduced the method of differential subordinations.

Because of the interesting properties and applications possessed by the Briot-Bouquet differential
subordination, there have been many attempts to extend these results. Then, in recent years,
several authors obtained several applications of the method of differential subordinations in
geometric function theory by using differential subordination associated with starlikeness, convexity,
close-to-convexity and so on (see, for example, [2–13]). Furthermore, based on the generalized Jack
lemma, the well-known lemma of Nunokawa and so on, certain sufficient conditions were derived
in [14–16] considering concept of arg, real part and imaginary part for function to be p-valently starlike
and convex one in the unit disk.

The aim of the current paper is to obtain some new criteria for univalence, strongly starlikeness
and strongly close-to-convexity of functions in the normalized analytic function class An in the open
unit disk U and meromorphic strongly starlikeness in the punctured open unit disk U∗ by using a
lemma given by Nunokawa (see [17,18]). Further, the current results are compared with the previous
outcomes obtained in this area.

In order to prove our main results, we require the following lemma.

Lemma 1 (see [17,18]). Let the function p(z) given by

p(z) = 1 +
∞

∑
n=m

cnzn (cm 	= 0; m ∈ N)

be analytic in U with
p(0) = 1 and p(z) 	= 0 (z ∈ U).
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If there exists a point z0 (with |z0| < 1) such that∣∣ arg
(

p(z)
)∣∣ < γπ

2
(|z| < |z0|)

and ∣∣ arg
(

p(z0)
)∣∣ = γπ

2
for some γ > 0, then

z0 p′(z0)

p(z0)
= ikγ (i =

√
−1),

where

k � m(a + a−1)

2
� m when arg

(
p(z0)

)
=

γπ

2
(3)

and

k � −m(a + a−1)

2
� −m when arg

(
p(z0)

)
= −γπ

2
, (4)

where
[p(z0)]

1/γ = ±ia and a > 0.

2. Main Results

Theorem 1. Let p be an analytic function in U, given by

p(z) = 1 +
∞

∑
n=m

cnzn (cm 	= 0; m ≥ 2)

and p(z) 	= 0 for z ∈ U. Let α0 is the only root of the equation

arctan(2mα)− πα = 0.

If ∣∣∣ arg
(

p2(z)− 2p(z)zp′(z)
) ∣∣∣ < π

2

[
2
π

arctan(2mα)− 2α

]
, (5)

where 0 < α < α0, then ∣∣ arg
(

p(z)
)∣∣ < απ

2
(z ∈ U).

Proof. To prove our result we suppose that there exists a point z0 ∈ U so that∣∣ arg
(

p(z)
)∣∣ < απ

2
for |z| < |z0|

and ∣∣ arg
(

p(z0)
)∣∣ = απ

2
.

Then, Lemma 1, gives us that
zp′(z0)

p(z0)
= ikα,

where [p(z0)]
1
α = ±ia (a > 0) and k is given by (3) or (4).

For the case arg
(

p(z0)
)
=

απ

2
when

[p(z0)]
1
α = ia (a > 0),
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with k � m, we have

arg
(

p2(z0)− 2p(z0)z0 p′(z0)
)
= arg

(
p2(z0)

(
1 − 2

z0 p′(z0)

p(z0)

))
= arg

(
p2(z0)

)
+ arg

(
1 − 2

z0 p′(z0)

p(z0)

)
= 2 arg

(
p(z0)

)
+ arg (1 − i2kα)

� απ − arctan(2mα)

=
−π

2

(
2
π

arctan(2mα)− 2α

)
,

which contradicts with condition (5).
Next, for the case arg

(
p(z0)

)
= −απ

2
when

[p(z0)]
1
α = −ia (a > 0),

with k � −m, applying the similar method as the above, we can get

arg
(

p2(z0)− 2p(z0)z0 p′(z0)
)
� −απ + arctan(2mα)

=
π

2

(
2
π

arctan(2mα)− 2α

)
,

which is a contradiction to (5).
Therefore, from the two mentioned contradictions, we obtain∣∣ arg

(
p(z)

)∣∣ < απ

2
(z ∈ U).

This completes our proof.

Let ψ(r, s, t; z) : C3 ×U → C and let h be univalent in U. If p is analytic in U and satisfies the
(second order) differential subordination

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z), (6)

then p is called a solution of the differential subordination. The univalent function q is called a
dominant of the solution of the differential subordination or more simply a dominant, if p ≺ q for all p
satisfying (6). A dominant q̃ satisfying q̃ ≺ q for all dominants q of (6) is said to be the best dominant
of (6). The best dominant is unique up to a rotation of U. If p(z) = 1 + anzn + an+1zn+1 + · · · be
analytic in U, then p will be called a (1, n)-solution, q a (1, n)-dominant, and q̃ the best (1, n)-dominant.

The following result, which is one of the types of differential subordinations was expressed in [1].

Theorem 2 ([19], Theorem 3.1e, p. 77). Let h be convex in U, with h(0) = 1 and Re h(z) > 0. Let also
p(z) = 1 + anzn + an+1zn+1 + · · · be analytic in U. If p satisfies

p2(z) + 2p(z)zp′(z) ≺ h(z), (7)

then
p(z) ≺ q(z) =

√
Q(z),
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where
Q(z) =

1

nz
1
n

∫ z

0
h(t)t

1
n −1dt

and the function q is the best (1, n)-dominant.

Remark 1. The form (5) cannot be used to obtain in inequality (7). Therefore, Theorem 1 is a small extension of
Theorem 2.

For m = 2 in Theorem 1 we have

σ2(α) =:
2
π

arctan(4α)− 2α > 0 (8)

for α ∈ (0, α0) which α0 = 1/4 is the smallest positive root of the equation σ2(α). So we have the
following results

Remark 2. Suppose that f ∈ Σ1 with

p(z) := − z f ′(z)
f (z)

	= 0,

and 0 < α < 1/4 satisfy the following inequality

∣∣∣ arg

((
z f ′(z)

f (z)

)2 (
1 − 2

[
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

])) ∣∣∣ < σ2(α)π

2
,

where σ2(α) is given by (8). Then f is meromorphic strongly starlike function of order α.

Remark 3. Suppose that f ∈ A2 with

p(z) :=

√
f (z)

z
	= 0,

and 0 < α < 1
2 satisfy the following inequality

∣∣∣ arg
(

2 f (z)
z

− f ′(z)
) ∣∣∣ < σ2(α)π

2
,

where σ2(α) is given by (8). Then

∣∣∣ arg

√
f (z)

z

∣∣∣ < απ

2
(z ∈ U).

Since σ2(α) given by (8) takes its maximum value at α =
√
(4 − π)/16π, we obtain the following

result.

Corollary 1. Let p be an analytic function in U, given by

p(z) = 1 +
∞

∑
n=2

cnzn
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and p(z) 	= 0 for z ∈ U. Let

∣∣∣ arg
(

p2(z)− 2p(z)zp′(z)
) ∣∣∣ < σ2

(√
4−π
16π

)
π

2
� 0.071125,

then ∣∣ arg
(

p(z)
)∣∣ <

√
4−π
16π π

2
� 0.20528 (z ∈ U).

Theorem 3. Let p be an analytic function in U, given by

p(z) = 1 +
∞

∑
n=2

cnzn

and p(z) 	= 0 for z ∈ U. Let α0 be the smallest positive root of the equation

2
π

arctan

⎛⎜⎜⎜⎝
2α

(
1 − 2α

1 + 2α

)(1+2α)/2

cos (πα)

1 − 2α − 2α

(
1 − 2α

1 + 2α

)(1+2α)/2

sin (πα)

⎞⎟⎟⎟⎠− α = 0. (9)

Suppose that ∣∣∣∣arg
(

p(z)− zp′(z)
[p(z)]2

)∣∣∣∣ < δ(α)π

2
, (10)

where

δ(α) =
2
π

arctan

⎛⎜⎜⎜⎝
2α

(
1 − 2α

1 + 2α

)(1+2α)/2

cos (πα)

1 − 2α − 2α

(
1 − 2α

1 + 2α

)(1+2α)/2

sin (πα)

⎞⎟⎟⎟⎠− α (11)

and 0 < α < α0. Then ∣∣ arg
(

p(z)
)∣∣ < απ

2
(z ∈ U).

Proof. First, let us define

δ(α) =
2
π

arctan
(

n(α)
m(α)

)
− α

where

n(α) = 2α

(
1 − 2α

1 + 2α

)(1+2α)/2

cos (πα) and m(α) = 1 − 2α − 2α

(
1 − 2α

1 + 2α

)(1+2α)/2

sin (πα) ,

then we have δ(0) = 0, δ(α)α→1/2 = −1/2, and δ′(0) > 0. Therefore, there exists in
(

0, 1/2
)

the

smallest positive root α0 of the equality (9), so that δ(α) > 0 for α ∈ (0, α0).
Now we suppose that there exists a point z0 ∈ U such that∣∣ arg

(
p(z)

)∣∣ < απ

2
for |z| < |z0|

and ∣∣ arg
(

p(z0)
)∣∣ = απ

2
.
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Then, from Lemma 1, it follows that

zp′(z0)

p(z0)
= ikα,

where [p(z0)]
1
α = ±ia (a > 0) and k is given by (3) or (4) for m = 2.

For the case arg
(

p(z0)
)
=

απ

2
when

[p(z0)]
1
α = ia (a > 0),

we have

arg
(

p(z0)−
zp′(z0)

[p(z0)]2

)
= arg

(
p(z0)

(
1 − zp′(z0)

p(z0)

1
[p(z0)]2

))

= arg
(

p(z0)
)
+ arg

(
1 − ikα

1
(ia)2α

)
= arg

(
p(z0)

)
+ arg

(
1 +

kα

a2α
e−iπ(1+2α)/2

)
.

Since
kα

a2α
� α(a1−2α + a−1−2α),

we now define a real function g by

g(a) = a1−2α + a−1−2α (a > 0).

Then this function takes on the minimum value for a given by

a =

√
1 + 2α

1 − 2α
.

Therefore, from the above inequality we obtain

kα

a2α
� α

((
1 + 2α

1 − 2α

)(1−2α)/2

+

(
1 + 2α

1 − 2α

)(−1−2α)/2)
=

2α

1 − 2α

(
1 − 2α

1 + 2α

)(1+2α)/2

=: l(α).

Therefore

arg
(

p(z0)−
zp′(z0)

[p(z0)]2

)
� απ

2
+ arctan

( −l(α) cos (πα)

1 − l(α) sin (πα)

)
=

απ

2
− arctan

(
l(α) cos (πα)

1 − l(α) sin (πα)

)
= − δ(α)π

2
,

which is contradict with condition (10).
Next, for the case arg

(
p(z0)

)
= −απ

2
when

[p(z0)]
1
α = −ia (a > 0),

with
kα

a2α
� −α(a1−2α + a−1−2α),
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applying the similar method as the above, we can get

arg
(

p(z0)−
zp′(z0)

[p(z0)]2

)
= arg

(
p(z0)

)
+ arg

(
1 − ikα

1
(−ia)2α

)
= arg

(
p(z0)

)
+ arg

(
1 − kα

a2α
eiπ(1+2α)/2

)
� −απ

2
+ arctan

(
l(α) cos (πα)

1 − l(α) sin (πα)

)
=

δ(α)π

2
,

which is a contradiction to condition (10).
Therefore, from the two mentioned contradictions, we obtain∣∣ arg

(
p(z)

)∣∣ < απ

2
(z ∈ U).

This completes the proof of Theorem 3.

Theorem 4 ([19], Corollary 3.4a.3, p. 124). Let β and γ be complex numbers with β 	= 0 and let p and h be
analytic in U with p(0) = h(0). If P(z) = βh(z) + γ satisfies

(i) Re P2(z) > 0
(ii) P or P−1 is convex, then

p(z) + zp′(z) · [βp(z) + γ]−2 ≺ h(z), (12)

implies p(z) ≺ h(z).

The condition (10) can be written as a generalized Briot-Bouquet differential subordination.
However, It is remarkable that the condition (12) among the outcomes on the generalized Briot-Bouquet
differential subordination collected in ([19], Ch. 3) is not taken into account the case γ = 0, β = i
which we have in (10).

Corollary 2. Let f ∈ Σ2 with

p(z) := − z f ′(z)
f (z)

	= 0

and 0 < α < α0 satisfy the following inequality∣∣∣∣∣arg

(
f (z)

z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

)
− z f ′(z)

f (z)
− 1

)∣∣∣∣∣ < δ(α)π

2
,

where δ(α) is given by (11). Then f is meromorphic strongly starlike function of order α.

Theorem 5. Let p be an analytic function in U, given by

p(z) = 1 +
∞

∑
n=m

cnzn (cm 	= 0; m ∈ N)

and p(z) 	= 0 for z ∈ U. Let α > 0 and β > 0 satisfy the inequality

arctan(mα) >
πα

2β
.
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Suppose that ∣∣∣ arg

(
p(z)

[
1 − zp′(z)

p(z)

]β
) ∣∣∣ < π

2

[
2β

π
arctan(mα)− α

]
. (13)

Then ∣∣ arg
(

p(z)
)∣∣ < απ

2
(z ∈ U).

Proof. Suppose that there exists a point z0 ∈ U such that∣∣ arg
(

p(z)
)∣∣ < απ

2
for |z| < |z0|

and ∣∣ arg
(

p(z0)
)∣∣ = απ

2
.

Then, from Lemma 1, it follows that

zp′(z0)

p(z0)
= ikα,

where [p(z0)]
1
α = ±ia (a > 0) and k is given by (3) or (4).

For the case arg
(

p(z0)
)
=

απ

2
when

[p(z0)]
1
α = ia (a > 0),

with k � m, we have

arg

(
p(z0)

[
1 − z0 p′(z0)

p(z0)

]β
)

= arg
(

p(z0)
)
+ β arg

(
1 − z0 p′(z0)

p(z0)

)
= arg

(
p(z0)

)
+ β arg (1 − ikα)

� απ

2
− β arctan(mα)

=
−π

2

(
2β

π
arctan(mα)− α

)
,

which contradicts our hypothesis in (13).

Next, for the case arg
(

p(z0)
)
= −απ

2
when

[p(z0)]
1
α = −ia (a > 0),

with k � −m, applying the similar method as the above, we can get

arg

(
p(z0)

[
1 − z0 p′(z0)

p(z0)

]β
)

� −απ

2
+ β arctan(mα)

=
π

2

(
2β

π
arctan(mα)− α

)
,

which is a contradiction to (13).
Therefore, from the two mentioned contradictions, we obtain∣∣ arg

(
p(z)

)∣∣ < απ

2
(z ∈ U).
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This completes the proof of Theorem 5.

Remark 4. By choosing m = 2 and β = 1 in Theorem 5, we have the result obtained by Nunokawa and Sokół
in ([11], Theorem 2.4).

By choosing

p(z) := − z f ′(z)
f (z)

	= 0,

in Theorem 6, we obtain a sufficient condition for strongly meromorphic starlikeness as follows.

Corollary 3. Let f ∈ Σ2 with

p(z) := − z f ′(z)
f (z)

	= 0.

Let α > 0 and β > 0 satisfy the inequality

arctan(2α) >
πα

2β
.

Suppose that

∣∣∣ arg

(
− z f ′(z)

f (z)

[
1 +

z f ′(z)
f (z)

−
(

1 +
z f ′′(z)
f ′(z)

)]β
) ∣∣∣ < π

2

[
2β

π
arctan(2α)− α

]
. (14)

Then f is meromorphic strongly starlike function of order α.

Theorem 6. Let p be an analytic function in U with p(0) = 1, p′(0) 	= 0 and p(z) 	= 0 for z ∈ U that satisfies
the following inequality ∣∣∣∣arg

(
p(z) (p(z) + zp′(z))

p(z)− βzp′(z)

)∣∣∣∣ < ξ(α)π

2
,

where
ξ(α) = α +

2
π
(arctan (α) + arctan (βα)) (α > 0; β � 0). (15)

Then
| arg

(
p(z)

)∣∣ < απ

2
(z ∈ U).

Proof. To prove the result asserted by Theorem 6, we suppose that there exists a point z0 ∈ U such that∣∣ arg
(

p(z)
)∣∣ < απ

2
for |z| < |z0|

and ∣∣ arg
(

p(z0)
)∣∣ = απ

2
.

Then, from Lemma 1, it follows that

zp′(z0)

p(z0)
= ikα,

where [p(z0)]
1
α = ±ia (a > 0) and k is given by (3) or (4) for m = 1.

For the case
arg

(
p(z0)

)
=

απ

2
,
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where [p(z0)]
1
α = ia (a > 0) and k � 1, we have

arg
(

p(z0) (p(z0) + z0 p′(z0))

p(z0)− βz0 p′(z0)

)
= arg

(
p(z0)

( 1 +
zp′(z0)

p(z0)

1 − β
zp′(z0)

p(z0)

))

= arg
(

p(z0)
)
+ arg

(
1 + ikα

1 − iβkα

)
= arg

(
p(z0)

)
+ arg (1 + ikα)− arg (1 − iβkα)

=
απ

2
+ arctan (kα)− arctan (−βkα)

=
απ

2
+ arctan (kα) + arctan (βkα)

� απ

2
+ arctan (α) + arctan (βα)

=
ξ(α)π

2
,

which contradicts our hypothesis in Theorem 6.
Next, for the case

arg
(

p(z0)
)
= −απ

2
,

where [p(z0)]
1
α = −ia (a > 0) and k � −1, applying the similar method as the above, we can get

arg
(

p(z0) (p(z0) + z0 p′(z0))

p(z0)− βz0 p′(z0)

)
= arg

(
p(z0)

)
+ arg

(
1 + ikα

1 − iβkα

)
= −απ

2
+ arctan (kα) + arctan (βkα)

� −απ

2
− arctan (α)− arctan (βα)

= − ξ(α)π

2
,

which is a contradiction to the assumption of Theorem 6.
Therefore, from the two mentioned contradictions, we obtain∣∣ arg

(
p(z)

)∣∣ < απ

2
(z ∈ U).

This completes the proof of Theorem 6.

Remark 5.

(i) If βα2 < 1 in Theorem 6, then (15) is equal to

ξ = α +
2
π

arctan
(

α(1 + β)

1 − βα2

)
.

(ii) By setting β = 0 and p(z) := f ′(z) 	= 0 in Theorem 6, we have the result obtained by Nunokawa et al.
in ([20], Theorem 3).

By setting

p(z) :=
z f ′(z)
g(z)

	= 0,

in Theorem 6, we obtain a sufficient condition for strongly close-to-convexity as follows.
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Corollary 4. For g ∈ S∗ and f ∈ A such that 2 f ′′(0) 	= g′′(0), suppose that the following inequality∣∣∣∣∣arg

(
2 ( f ′(z))2

f ′(z)g′(z)− f ′′(z)g(z)
− z f ′(z)

g(z)

)∣∣∣∣∣ < ξ(α)π

2

is satisfied, where

ξ(α) = α +
2
π
(arctan (α) + arctan (βα)) (α > 0, β � 0). (16)

Then ∣∣∣∣ arg
(

z f ′(z)
g(z)

) ∣∣∣∣ < απ

2
(z ∈ U).

Remark 6. Similar to Corollary 4 by setting

p(z) :=
z f ′(z)

f (z)
	= 0,

in Theorem 6, (or g =: f in Corollary 4), we can obtain a sufficient condition for strongly starlikeness.
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1. Introduction, Definitions and Preliminaries

Let A denote the class of normalized analytic functions in the unit disc U := {z ∈ C : |z| < 1} of
the form

f (z) = z +
∞

∑
k=2

akzk, z ∈ U, (1)

and let S ⊂ A consisting on functions that are univalent in U.
If the function h ∈ A is given by

h(z) = z +
∞

∑
k=2

ckzk, z ∈ U, (2)

then, the Hadamard (or convolution) product of f and h is defined by

( f ∗ h)(z) := z +
∞

∑
k=2

akckzk, z ∈ U.

The theory of q-calculus plays an important role in many areas of mathematical, physical, and
engineering sciences. Jackson ([1,2]) was the first to have some applications of the q-calculus and
introduced the q-analogue of the classical derivative and integral operators [3].
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For 0 < q < 1, the q-derivative operator [2] for f ∗ g is defined by

Dq ( f ∗ h) (z) := Dq

(
z +

∞

∑
k=2

akckzk

)

=
( f ∗ h) (z)− ( f ∗ h) (qz)

z(1 − q)
= 1 +

∞

∑
k=2

[k, q]akckzk−1, z ∈ U,

where

[k, q] :=
1 − qk

1 − q
= 1 +

k−1

∑
j=1

qj, [0, q] := 0. (3)

Using the definition formula (3) we will define the next two products:

(i) For any non negative integer k, the q-shifted factorial is given by

[k, q]! :=

⎧⎨⎩
1, if k = 0,

k
∏
i=1

[i, q] , if k ∈ N := {1, 2, . . . }.

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by

[r, q]k :=

⎧⎨⎩
1, if k = 0,

k
∏
i=1

[r + i − 1, q] , if k ∈ N.

For λ > −1 and 0 < q < 1, we define the linear operator Hλ,q
h : A → A by

Hλ,q
h f (z) ∗Mq,λ+1(z) = z Dq ( f ∗ h) (z), z ∈ U,

where the function Mq,λ+1 is given by

Mq,λ+1(z) := z +
∞

∑
k=2

[λ + 1, q]k−1
[k − 1, q]!

zk, z ∈ U.

A simple computation shows that

Hλ,q
h f (z) := z +

∞

∑
k=2

φk−1akzk, z ∈ U (λ > −1, 0 < q < 1), (4)

where

φk−1 :=
[k, q]!

[λ + 1, q]k−1
ck, k ≥ 2. (5)

Remark 1. From the definition relation (4) we can easily verify that the next relations hold for all f ∈ A:

(i) [λ + 1, q]Hλ,q
h f (z) = [λ, q]Hλ+1,q

h f (z) + qλ zDq

(
Hλ+1,q

h f (z)
)

, z ∈ U;

(ii) Iλ
h f (z) := lim

q→1−
Hλ,q

h f (z) = z +
∞

∑
k=2

k!
(λ + 1)k−1

akckzk, z ∈ U. (6)

Remark 2. Taking different particular cases for the coefficients ck we obtain the next special cases for the
operator Hλ,q

h :
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(i) For ck =
(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
, υ > 0, we obtain the operator N λ

υ,q studied by El-Deeb and Bulboacă [4]:

N λ
υ,q f (z) := z +

∞

∑
k=2

(−1)k−1Γ(υ + 1)
4k−1(k − 1)!Γ(k + υ)

· [k, q]!
[λ + 1, q]k−1

akzk

= z +
∞

∑
k=2

[k, q]!
[λ + 1, q]k−1

ψkakzk, z ∈ U, (υ > 0, λ > −1, 0 < q < 1), (7)

where

ψk :=
(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
; (8)

(ii) For ck =

(
n + 1
n + k

)α

, α > 0, n ≥ 0, we obtain the operator N λ,α
n,1,q =: Mλ,α

n,q studied by El-Deeb and

Bulboacă [5]:

Mλ,α
n,q f (z) := z +

∞

∑
k=2

(
n + 1
n + k

)α

· [k, q]!
[λ + 1, q]k−1

akzk, z ∈ U; (9)

(iii) For ck = 1 we obtain the operator Jλ
q studied by Arif et al. [6], defined by

Jλ
q f (z) := z +

∞

∑
k=2

[k, q]!
[λ + 1, q]k−1

akzk, z ∈ U;

(iv) For ck =
mk−1

(k − 1)!
e−m, m > 0, we obtain the q-analogue of Poisson operator defined in [7] by:

Iλ,m
q f (z) := z +

∞

∑
k=2

mk−1

(k − 1)!
e−m · [k, q]!

[λ + 1, q]k−1
akzk, z ∈ U; (10)

(v) For ck=
[

1 + �+ μ(k − 1)
1 + �

]m
, m ∈ Z, � ≥ 0, μ ≥ 0, we obtain the q-analogue of Prajapat operator

defined in [8] by

J λ,m
q,�,μ f (z) := z +

∞

∑
k=2

[
1 + �+ μ(k − 1)

1 + �

]m
· [k, q]!
[λ + 1, q]k−1

akzk, z ∈ U. (11)

The Koebe one-quarter theorem ([9]) proves that the image of U under every univalent function

f ∈ S contains the disk of radius
1
4

. Therefore, every function f ∈ S has an inverse f−1 that satisfies

f ( f−1(w)) = w,
(
|w| < r0 ( f ) , r0 ( f ) ≥ 1

4

)
,

where
f−1(w) = w − a2w2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let
Σ denote the class of bi-univalent functions in U given by (1). Note that the functions f1(z) =

z
1 − z

, f2(z) =
1
2

log
1 + z
1 − z

, f3(z) = − log(1 − z), with their corresponding inverses f−1
1 (w) =

w
1 + w

,

f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew , are elements of Σ (see [10]). For a brief history and interesting

examples in the class Σ see [11]. Brannan and Taha [12] (see also [10]) introduced certain subclasses
of the bi-univalent functions class Σ similar to the familiar subclasses S∗ (α) and K (α) of starlike and
convex functions of order α (0 ≤ α < 1), respectively (see [11]). Following Brannan and Taha [12],
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a function f ∈ A is said to be in the class S∗
Σ (α) of bi-starlike functions of order α (0 < α ≤ 1), if each

of the following conditions are satisfied:

f ∈ Σ, with
∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣ < απ

2
, z ∈ U,

and ∣∣∣∣arg
zg′(w)

g(w)

∣∣∣∣ < απ

2
, w ∈ U,

where the function g is the analytic extension of f−1 to U, given by

g(w) = w − a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . , w ∈ U. (12)

A function f ∈ A is said to be in the class K∗
Σ (α) of bi-convex functions of order α (0 < α ≤ 1),

if each of the following conditions are satisfied:

f ∈ Σ, with
∣∣∣∣arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ < απ

2
, z ∈ U,

and ∣∣∣∣arg
(

1 +
zg′′(w)

g′(w)

)∣∣∣∣ < απ

2
, w ∈ U.

The classes S∗
Σ (α) and KΣ (α) of bi-starlike functions of order α and bi-convex functions of order α

(0 < α ≤ 1), corresponding to the function classes S∗ (α) and K (α), were also introduced analogously.
For each of the function classes S∗

Σ (α) and KΣ (α), they found non-sharp estimates on the first two
Taylor-Maclaurin coefficients |a2| and |a3| ([10,12]).

The object of the paper is to introduce a new subclass of functions Lq,λ
Σ (η; h; Φ) of the class Σ, that

generalize the previous defined classes. This subclass is defined with the aid of a general Hλ,q
h linear

operator defined by convolution products together with the aid of q-derivative operator. This new
class extends and generalizes many previous operators as it was presented in Remark 2, and the main
goal of the paper is to find estimates on the coefficients |a2|, |a3|, and for the Fekete-Szegő functional
for functions in these new subclasses.

These classes will be introduced by using the subordination and the results are obtained by
employing the techniques used earlier by Srivastava et al. [10]. This last work represents one of the
most important study of the bi-univalent functions, and inspired many investigations in this area
including the present paper, while many other recent papers deal with problems initiated in this work,
like [13–16], and many others. The novelty of our paper consists of the fact that the operator used
by defining the new subclass of Σ is a very general operator that generalizes many earlier defined
operators, it does not overlap with those studied in the above mentioned papers (that Φ′(0) > 0 and
Φ(U) is symmetric with respect to the real axis), while for the function Φ from Definition 1 we did not
assume any restrictions like in many other papers, excepting the fact that Φ(0) = 1 is necessary for the
subordinations (13) and (14).

If f and F are analytic functions in U, we say that f is subordinate to F, written f (z) ≺ F(z),
if there exists a Schwarz function s, which is analytic in U, with s(0) = 0, and |s(z)| < 1 for all z ∈ U,
such that f (z) = F(s(z)), z ∈ U. Furthermore, if the function F is univalent in U, then we have the
following equivalence ([17,18])

f (z) ≺ F(z) ⇔ f (0) = F(0) and f (U) ⊂ F(U).

Throughout this paper we assume that Φ is an analytic function in U with Φ(0) = 1 of the form

Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . , z ∈ U.
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Now we define the following subclass of bi-univalent functions Lq,λ
Σ (η; h; Φ):

Definition 1. If the function f has the form (1) and h is given by (2), the function f is said to be in the class
Lq,λ

Σ (η; h; Φ) if the following conditions are satisfied:

f ∈ Σ, with 1 +
1
η

⎛⎝ z Dq

(
Hλ,q

h f (z)
)

Hλ,q
h f (z)

− 1

⎞⎠ ≺ Φ(z), (13)

and

1 +
1
η

⎛⎝w Dq

(
Hλ,q

h g(w)
)

Hλ,q
h g(w)

− 1

⎞⎠ ≺ Φ(w), (14)

with λ > −1, 0 < q < 1, and η ∈ C \ {0}, where the function g is the analytic extension of f−1 to U, and is
given by (12).

Remark 3.

(i) Putting q → 1− we obtain that lim
q→1−

Lq,λ
Σ (η; h; Φ) =: Gλ

Σ (η; h; Φ), where Gλ
Σ (η; h; Φ) represents the

functions f ∈ Σ that satisfy (13) and (14) for Hλ,q
h replaced with Iλ

h (6).

(ii) Putting ck =
(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
, υ > 0, we obtain the class Bq,λ

Σ (η, υ; Φ), that represents the

functions f ∈ Σ that satisfy (13) and (14) for Hλ,q
h replaced with N λ

υ,q (7).

(iii) Putting ck =

(
n + 1
n + k

)α

, α > 0, n ≥ 0, we obtain the class Mq,λ
Σ (η, n, α; Φ), that represents the

functions f ∈ Σ that satisfy (13) and (14) for Hλ,q
h replaced with Mλ,α

n,q (9).

(iv) Putting ck =
mk−1

(k − 1)!
e−m, m > 0, we obtain the class Iq,λ

Σ (η, m; Φ), that represents the functions

f ∈ Σ that satisfy (13) and (14) for Hλ,q
h replaced with Iλ,m

q (10).

(v) Putting ck =

[
1 + �+ μ(k − 1)

1 + �

]m
, m ∈ Z, � ≥ 0, μ ≥ 0, we obtain the class J q,λ

Σ (η, m, �, μ; Φ),

that represents the functions f ∈ Σ that satisfy (13) and (14) for Hλ,q
h replaced with J λ,m

q,�,μ (11).

Remark 4. If the function h∗ is given by

h∗(z) =
z

1 − z
, z ∈ U,

then h∗ has the form (2) with ck = 1, k ≥ 2, and according to (6) we have

I0
h∗ f (z) := lim

q→1−
H0,q

h∗
f (z) = z +

∞

∑
k=2

k!
(1)k−1

akzk = z +
∞

∑
k=2

k akzk = z f ′(z), z ∈ U, (15)

for all f ∈ A of the form (1). Consider the function f∗(z) =
z

1 − z
∈ Σ, and its inverse analytic extension on

U, g∗(w) =
w

1 + w
, let η = 1 and Φ∗(z) =

1 + z
1 − z

. Using (15), the relations (13) and (14) become

1 +
1
η

⎛⎜⎝ z
(
I0

h∗
f∗(z)

)′

I0
h∗

f∗(z)
− 1

⎞⎟⎠ = 1 +
z f ′′∗ (z)
f ′∗(z)

= Φ∗(z) ≺ Φ∗(z),
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and

1 +
1
η

⎛⎜⎝w
(
I0

h∗
g∗(w)

)′

I0
h∗

g∗(w)
− 1

⎞⎟⎠ = 1 +
wg′′∗ (w)

g′∗(w)
= Φ∗(−w) ≺ Φ∗(w).

Hence, using the notation of Remark 3 (i), we have Gλ
Σ (η; h; Φ) 	= ∅ for some values of λ, η, and some special

choices of the functions h and Φ.

To prove our main results we need to use the following lemma:

Lemma 1. [19] [p. 172] If s(z) =
∞
∑

k=1
pkzk is a Schwarz function for z ∈ U, then

|p1| ≤ 1, |pk| ≤ 1 − |p1|2, k ≥ 1.

2. Coefficient Bounds for the Function Class Lq,λ
Σ (η; h; Φ)

Throughout this paper we are going to assume that λ > −1 and 0 < q < 1.

Theorem 1. If the function f given by (1) belongs to the class Lq,λ
Σ (η; h; Φ), and η ∈ C∗ := C \ {0}, then

|a2| ≤
|B1|

√
|B1|√∣∣∣∣ q

η

[
(1 + q)φ2 − φ2

1
]

B2
1 −

q2

η2 B2φ2
1

∣∣∣∣
,

and

|a3| ≤
|η| |B1|

q(q + 1)φ2
+

η2|B1|2
q2φ2

1
,

where φk−1, k ∈ {2, 3}, are given by (5).

Proof. If f ∈ Lq,λ
Σ (η; h; Φ), from (13), (14), and the definition of subordination it follows that there

exist two functions U and V analytic in U with U(0) = V(0) = 0 and |U(z)| < 1, |V(w)| < 1 for all
z, w ∈ U, such that

1 +
1
η

⎛⎝ z Dq

(
Hλ,q

h f (z)
)

Hλ,q
h f (z)

− 1

⎞⎠ = Φ(U(z)), (16)

and

1 +
1
η

⎛⎝w Dq

(
Hλ,q

h g(w)
)

Hλ,q
h g(w)

− 1

⎞⎠ = Φ(V(w)). (17)

If U(z) =
∞
∑

k=1
ukzk and V(w) =

∞
∑

k=1
vkwk, z, w ∈ U, from Lemma 1 we have

|uk| ≤ 1 and |vk| ≤ 1, k ∈ N. (18)

Relations (16) and (17) lead to

z Dq

(
Hλ,q

h f (z)
)

Hλ,q
h f (z)

− 1 = η [Φ(U(z))− 1] , (19)
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and
w Dq

(
Hλ,q

h g(w)
)

Hλ,q
h g(w)

− 1 = η [Φ(V(w))− 1] . (20)

Since

z Dq

(
Hλ,q

h f (z)
)

Hλ,q
h f (z)

− 1 = qφ1a2z +
[
q(1 + q)φ2a3 − qφ2

1a2
2

]
z2 + . . . ,

w Dq

(
Hλ,q

h g(w)
)

Hλ,q
h g(w)

− 1 = −qφ1a2w +
[
q(1 + q)φ2

(
2a2

2 − a3

)
− qφ2

1a2
2

]
w2 + . . . ,

and

η [Φ(U(z))− 1] = ηB1u1z + η
(

B1u2 + B2u2
1

)
z2 + . . . ,

η [Φ(V(w))− 1] = ηB1v1w + η
(

B1v2 + B2v2
1

)
w2 + . . . .

By equalization according the coefficients of z and w in (19) and (20), it follows that

qφ1a2 = ηB1u1, (21)

q(1 + q)φ2a3 − qφ2
1a2

2 = η
(

B1u2 + B2u2
1

)
, (22)

−qφ1a2 = ηB1v1, (23)

q(1 + q)φ2

(
2a2

2 − a3

)
− qφ2

1a2
2 = η

(
B1v2 + B2v2

1

)
. (24)

Using (21) and (23) we obtain
u1 = −v1. (25)

Squaring (21) and (23), after adding relations, we get

2q2a2
2φ2

1 = η2B2
1

(
u2

1 + v2
1

)
. (26)

Adding (22) and (24) we have

2q
[
(1 + q)φ2 − φ2

1

]
a2

2 = η
[

B1 (u2 + v2) + B2

(
u2

1 + v2
1

)]
.

From (26), replacing u2
1 + v2

1 in the above equation, we have{
2q

[
(1 + q)φ2 − φ2

1

]
ηB2

1 − 2q2φ2
1B2

}
a2

2 = η2B3
1 (u2 + v2) ,

that is

a2
2 =

B3
1 (u2 + v2)

2
{

q
η

[
(1 + q)φ2 − φ2

1
]

B2
1 −

q2

η2 φ2
1B2

} . (27)

Taking the absolute value of (27) and using the inequalities (18) we conclude that

|a2| ≤
|B1|

√
|B1|√∣∣∣∣ q

η

[
(1 + q)φ2 − φ2

1
]

B2
1 −

q2

η2 B2φ2
1

∣∣∣∣
,

which gives the bound for |a2| as we asserted in our theorem.
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To find the bound for |a3|, by subtracting (24) from (22), we get

2q(1 + q)φ2

(
a3 − a2

2

)
= η

[
B1 (u2 − v2) + B2

(
u2

1 − v2
1

)]
. (28)

Form (25), (26) and (28), we obtain

a3 =
ηB1 (u2 − v2)

2q(1 + q)φ2
+

η2B2
1
(
u2

1 + v2
1
)

2q2φ2
1

. (29)

Taking the absolute value of (29) and using the inequalities (18) we obtain

|a3| ≤
|η| |B1|

q(q + 1)φ2
+

η2|B1|2
q2φ2

1
.

Putting q → 1− in Theorem 1 we obtain the following corollary:

Corollary 1. If the function f given by (1) belongs to the class Gλ
Σ (η; h; Φ) for η 	= 0, then

|a2| ≤
|B1|

√
|B1|√√√√∣∣∣∣∣(2φ2 − φ2

1
) B2

1
η

− B2φ2
1

η2

∣∣∣∣∣
,

and

|a3| ≤
|η| |B1|

2φ2
+

η2|B1|2
φ2

1
,

where φk−1, k ∈ {2, 3}, are given by (5).

Taking ck =
(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
, υ > 0, in Theorem 1 we obtain the following special case:

Corollary 2. If f ∈ Bq,λ
Σ (η, υ; Φ) is given by (1) and η 	= 0, then

|a2| ≤
|B1|

√
|B1|√∣∣∣∣ q

η

[
(1 + q)ψ2 − ψ2

1
]

B2
1 −

q2

η2 B2ψ2
1

∣∣∣∣
,

and

|a3| ≤
|η| |B1|

q(q + 1)ψ2
+

η2|B1|2
q2ψ2

1
,

where ψk−1, k ∈ {2, 3}, are given by (8).

Considering ck =

(
n + 1
n + k

)α

, α > 0, n ≥ 0, in Theorem 1 we obtain the following result:

Corollary 3. If f ∈ Mq,λ
Σ (η, n, α; Φ) is given by (1) and η 	= 0, then

|a2| ≤
|B1|

√
|B1|√∣∣∣∣ q

η

[
(1 + q) [3,q]!

[λ+1,q]2

(
n+1
n+3

)α
− ([2,q]!)2

([λ+1,q])2

(
n+1
n+2

)2α
]

B2
1 −

q2

η2 B2
([2,q]!)2

([λ+1,q])2

(
n+1
n+2

)2α
∣∣∣∣
,
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and

|a3| ≤
|η| |B1| [λ + 1, q]2 (n + 3)α

q(q + 1) [3, q]! (n + 1)α +
η2|B1|2 ([λ + 1, q])2 (n + 2)2α

q2 ([2, q]!)2 (n + 1)2α
.

Putting ck =
mk−1

(k − 1)!
e−m, m > 0, in Theorem 1 we obtain the following special case:

Corollary 4. If f ∈ Iq,λ
Σ (η, m; Φ) is given by (1) and η 	= 0, then

|a2| ≤
|B1|

√
|B1|√∣∣∣∣ q

η

[
(1 + q) [3,q]!

2[λ+1,q]2
m2e−m − ([2,q]!)2

([λ+1,q])2 m2e−2m
]

B2
1 −

q2

η2 B2
([2,q]!)2

([λ+1,q])2 m2e−2m
∣∣∣∣
,

and

|a3| ≤
2 |η| |B1| [λ + 1, q]2

q(q + 1) [3, q]!m2e−m +
η2|B1|2 ([λ + 1, q])2

q2 ([2, q]!)2 m2e−2m
.

3. Fekete-Szegő Problem for the Function Class Lq,λ
Σ (η; h; Φ)

Theorem 2. If the function f given by (1) belongs to the class Lq,λ
Σ (η; h; Φ) for η 	= 0, then∣∣∣a3 − μa2

2

∣∣∣ ≤ |η||B1| (|M + N|+ |M − N|) , (30)

with

M =
(1 − μ) ηB2

1
2q

[
(1 + q)φ2 − φ2

1
]

ηB2
1 − 2q2φ2

1B2
, and N =

1
2q(1 + q)φ2

, (31)

where μ ∈ C, and φk, k ∈ {2, 3}, are given by (5).

Proof. If f ∈ Lq,λ
Σ (η; h; Φ), like in the proof of Theorem 1, from (25) and (28) we have

a3 − a2
2 =

ηB1 (u2 − v2)

2q(1 + q)φ2
. (32)

Multiplying (27) by (1 − μ) we get

(1 − μ) a2
2 =

(1 − μ) η2B3
1 (u2 + v2)

2q
[
(1 + q)φ2 − φ2

1
]

ηB2
1 − 2q2φ2

1B2
. (33)

Adding (32) and (33), it follows that

a3 − μa2
2 = ηB1 [(M + N) u2 + (M − N) v2] , (34)

where M and N are given by (31). Taking the absolute value of (34), from (18) we obtain the
inequality (30).

Remark 5. Algebra shows that the inequality |M| ≤ N is equivalent to

|μ − 1| ≤
∣∣∣∣∣1 −

(
η +

B2q
B2

1

)
φ2

1
η(1 + q)φ2

∣∣∣∣∣ .

From Theorem 2 we get the next:
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If the function f given by (1) belongs to the class Lq,λ
Σ (η; h; Φ) for η 	= 0, then

∣∣∣a3 − μa2
2

∣∣∣ ≤ |η| |B1|
q(1 + q)φ2

,

where μ ∈ C, and

|μ − 1| ≤
∣∣∣∣∣1 −

(
η +

B2q
B2

1

)
φ2

1
η(1 + q)φ2

∣∣∣∣∣ ,

with φk, k ∈ {2, 3}, are given by (5).

Putting q → 1− in Theorem 2 we obtain the following corollary:

Corollary 5. If the function f given by (1) belongs to the class Gλ
Σ (η, h; Φ) for η 	= 0, then∣∣∣a3 − μa2

2

∣∣∣ ≤ |η||B1| (|M + N|+ |M − N|) ,

with

M =
(1 − μ) ηB2

1
2
(
2φ2 − φ2

1
)

ηB2
1 − 2φ2

1B2
, and N =

1
4φ2

,

where μ ∈ C, and φk, k ∈ {2, 3}, are given by (5).

Taking ck =
(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
, υ > 0 in Theorem 2, we obtain the following special case:

Corollary 6. If the function f given by (1) belongs to the class Bq,λ
Σ (η, υ; Φ) for η 	= 0, then∣∣∣a3 − μa2

2

∣∣∣ ≤ |η||B1| (|M + N|+ |M − N|) ,

with

M =
(1 − μ) ηB2

1
2q

[
(1 + q)ψ2 − ψ2

1
]

ηB2
1 − 2q2ψ2

1B2
, and N =

1
2q(1 + q)ψ2

,

where μ ∈ C, and φk, k ∈ {2, 3}, are given by (8).

Considering ck =

(
n + 1
n + k

)α

, α > 0, n ≥ 0 in Theorem 2, we obtain the next result:

Corollary 7. If the function f given by (1) belongs to the class Mq,λ
Σ (η, n, α; Φ) for η 	= 0, then∣∣∣a3 − μa2

2

∣∣∣ ≤ |η||B1| (|M + N|+ |M − N|) ,

with

M =
(1 − μ) ηB2

1

2qR1(n, α, λ, q)ηB2
1 − 2q2

(
[2,q]!

[λ+1,q]

)2 ( n+1
n+2

)2α
B2

,

and

N =
(n + 3)α [λ + 1, q]2

2q(1 + q) (n + 1)α [3, q]!
,

where μ ∈ C, and

R1(n, α, λ, q) = (1 + q)
[3, q]!

[λ + 1, q]2

(
n + 1
n + 3

)α

−
(

[2, q]!
[λ + 1, q]

)2 (n + 1
n + 2

)2α

.
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If we take ck =
mk−1

(k − 1)!
e−m, m > 0 in Theorem 2, we get the next special case:

Corollary 8. If the function f given by (1) belongs to the class Iq,λ
Σ (η, m; Φ) for η 	= 0, then∣∣∣a3 − μa2

2

∣∣∣ ≤ |η||B1| (|M + N|+ |M − N|) ,

with

M =
(1 − μ) ηB2

1

2qR(m, λ, q)ηB2
1 − 2q2

(
[2,q]!

[λ+1,q]

)2
m2e−2mB2

,

and

N =
[λ + 1, q]2

q(1 + q)m2e−m [3, q]!
,

where μ ∈ C, and

R(m, λ, q) = (1 + q)
[3, q]!m2e−m

2 [λ + 1, q]2
−

(
[2, q]!

[λ + 1, q]

)2
m2e−2m.

We will give a few applications of the above results obtained for special choices of the function Φ,
as follows.

1. The circular function Φ(z) =
1 + Az
1 + Bz

(−1 < B < A ≤ 1) is convex in U and

Φ(U) =

{
w ∈ C :

∣∣∣∣w − 1 − AB
1 − B2

∣∣∣∣ < A − B
1 − B2

}
, if − 1 < B < A ≤ 1,

Φ(U) =

{
w ∈ C : Re w >

1 − A
2

}
, if − 1 = B < A ≤ 1.

Since B1 = A − B and B2 = B(B − a), replacing this function in Theorem 1 and Theorem 2 we
obtain the next example:

Example 1. If f ∈ Lq,λ
Σ

(
η; h; 1+Az

1+Bz

)
is given by (1) and η 	= 0, then

|a2| ≤
|A − B|

√
|A − B|√∣∣∣∣ q

η

[
(1 + q)φ2 − φ2

1
]
(A − B)2 − q2

η2 B (B − A) φ2
1

∣∣∣∣
,

|a3| ≤
|η| |A − B|
q(q + 1)φ2

+
η2|A − B|2

q2φ2
1

,

and ∣∣∣a3 − μa2
2

∣∣∣ ≤ |η||A − B| (|M + N|+ |M − N|) ,

with

M =
(1 − μ) η (A − B)2

2ηq
[
(1 + q)φ2 − φ2

1
]
(A − B)2 − 2q2φ2

1B (B − A)
, and N =

1
2q(1 + q)φ2

,

where φk−1, k ∈ {2, 3}, are given by (5).
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Remark 6. For the special values A = 1 − 2β and B = −1 (0 ≤ β < 1), the above example yields to the next
special case: if f ∈ Lq,λ

Σ

(
η; h; 1+(1−2β)z

1−z

)
is given by (1) and η 	= 0, then

|a2| ≤
2
√

2 (1 − β)
3
2√∣∣∣∣4q

η

[
(1 + q)φ2 − φ2

1
]
(1 − β)2 − 2q2

η2 (1 − β) φ2
1

∣∣∣∣
,

|a3| ≤
2 |η| (1 − β)

q(q + 1)φ2
+

4η2 (1 − β)2

q2φ2
1

,

and ∣∣∣a3 − μa2
2

∣∣∣ ≤ 2|η| (1 − β) (|M + N|+ |M − N|) ,

with

M =
4η (1 − μ) (1 − β)2

8ηq
[
(1 + q)φ2 − φ2

1
]
(1 − β)2 − 4q2φ2

1 (1 − β)
, and N =

1
2q(1 + q)φ2

,

where φk−1, k ∈ {2, 3}, are given by (5).

2. Let consider the binomial function Φ(z) = (1 + z)α, z ∈ U, with α ∈ C∗, where the power is
considered at the principal branch, that is Φ(0) = 1. Since

Φ(z) = (1 + z)α = 1 +
∞

∑
n=1

α(α − 1) . . . (α − n + 1)
n!

zn, z ∈ U,

it follows that B1 = α and B2 =
α(α − 1)

2
. Replacing this function in Theorems 1 and 2 we get:

Example 2. If f ∈ Lq,λ
Σ (η; h; (1 + z)α) is given by (1) and η 	= 0, then

|a2| ≤
|α|

√
|α|√∣∣∣∣ q

η

[
(1 + q)φ2 − φ2

1
]

α2 − q2

2η2 α(α − 1)φ2
1

∣∣∣∣
,

|a3| ≤
|η| |α|

q(q + 1)φ2
+

η2|α|2
q2φ2

1
,

and ∣∣∣a3 − μa2
2

∣∣∣ ≤ |η||α| (|M + N|+ |M − N|) ,

with
(1 − μ) ηα2

2q
[
(1 + q)φ2 − φ2

1
]

ηα2 − q2φ2
1α(α − 1)

, and N =
1

2q(1 + q)φ2
,

where φk−1, k ∈ {2, 3}, are given by (5).

3. For the function Φ(z) =
(

1 + z
1 − z

)σ

, z ∈ U, with σ ∈ C∗, where the power is considered at the

principal branch, that is Φ(0) = 1, we have B1 = 2σ and B2 = 2σ2. Therefore, from Theorems 1 and 2
we deduce the following example:
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Example 3. If f ∈ Lq,λ
Σ (η; h; (1 + z)α) is given by (1) and η 	= 0, then

|a2| ≤
2
√

2|σ|
√
|σ|√∣∣∣∣4q

η

[
(1 + q)φ2 − φ2

1
]

σ2 − 2q2

η2 σ2φ2
1

∣∣∣∣
,

|a3| ≤
2 |η| |σ|

q(q + 1)φ2
+

4η2|σ|2
q2φ2

1
,

and ∣∣∣a3 − μa2
2

∣∣∣ ≤ 2|η||σ| (|M + N|+ |M − N|) ,

with
4 (1 − μ) ησ2

8qη
[
(1 + q)φ2 − φ2

1
]

σ2 − 4q2φ2
1σ2

, and N =
1

2q(1 + q)φ2
,

where φk−1, k ∈ {2, 3}, are given by (5).

Remark 7. We mention that all the above estimations for the coefficients |a2|, |a3|, and Fekete-Szegő problem
for the function class Lq,λ

Σ (η; h; Φ) are not sharp. To find the sharp upper bounds for the above functionals,
it still is an interesting open problem, as well as for |an|, n ≥ 4.
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17. Bulboacă, T. Differential Subordinations and Superordinations; Recent Results; House of Scientific Book Publ.:
Cluj-Napoca, Romania, 2005.

18. Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Series on Monographs and
Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland,
2000; Volume 225.

19. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

120



mathematics

Article

Subordination Properties of Meromorphic Kummer Function
Correlated with Hurwitz–Lerch Zeta-Function

Firas Ghanim 1,*, Khalifa Al-Shaqsi 2, Maslina Darus 3 and Hiba Fawzi Al-Janaby 4

��������	
�������

Citation: Ghanim, F.; Al-Shaqsi, K.;

Darus, M.; Al-Janaby, H.F.

Subordination Properties of

Meromorphic Kummer Function

Correlated with Hurwitz–Lerch

Zeta-Function. Mathematics 2021, 9,

192. https://doi.org/10.3390/math

9020192

Academic Editor: Georgia Irina Oros

Received: 30 October 2020

Accepted: 11 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, College of Sciences, University of Sharjah, Sharjah 27272, UAE
2 Department of Information Technology, University of Technology and Applied Science,

Nizwa College of Technology, P.O. Box 75, Nizwa 612, Oman; khalifa.alshaqsi@nct.edu.om
3 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

Bangi 43600, Selangor D. Ehsan, Malaysia; maslina@ukm.edu.my
4 Department of Mathematics, College of Science, University of Baghdad, Baghdad 10081, Iraq;

fawzihiba@yahoo.com
* Correspondence: fgahmed@sharjah.ac.ae

Abstract: Recently, Special Function Theory (SPFT) and Operator Theory (OPT) have acquired a lot
of concern due to their considerable applications in disciplines of pure and applied mathematics. The
Hurwitz-Lerch Zeta type functions, as a part of Special Function Theory (SPFT), are significant in
developing and providing further new studies. In complex domain, the convolution tool is a salutary
technique for systematic analytical characterization of geometric functions. The analytic functions
in the punctured unit disk are the so-called meromorphic functions. In this present analysis, a new
convolution complex operator defined on meromorphic functions related with the Hurwitz-Lerch
Zeta type functions and Kummer functions is considered. Certain sufficient stipulations are stated
for several formulas of this defining operator to attain subordination. Indeed, these outcomes are an
extension of known outcomes of starlikeness, convexity, and close to convexity.

Keywords: meromorphic functions; Hurwitz–Lerch Zeta-function; Riemann zeta function

MSC: 11M35; 30C50

1. Introduction

During the 18th century, complex analysis (complex function theory) had been
launched, which has become thereafter one of the major disciplines of mathematics. Promi-
nent complex analysts include Euler, Riemann, and Cauchy. This realm has had a great
influence on a variety of research subjects in, for example, engineering, physics, and mathe-
matics, due to its efficient applications to numerous conceptions and problems. Researchers
have happened to meet certain unexpected relationships among obviously different re-
search areas. The study of the intriguing and fascinating interplay of geometry and complex
analysis has been famed as Geometric Analytic Function Theory (GAFT). In other words,
it deals with the structure of analytic functions in the complex domain whose specific
geometries are starlike, close-to-starlike, convex, close-to convex, spiral, and so on. In 1851,
Riemann contributed to the origin of GAFT by presenting the first significant outcome,
namely the Riemann mapping theorem (RIMT). Koebe followed suit in 1907 and proceeded
to the study of univalent function. In light of RMT, he initiated the discussion of the merits
for univalent analytical functions over the open unit disk rather than in a complex do-
main. This modified version led to the creation of the Univalent Analytic Function Theory
(UAFT). One of the gorgeous problems in UAFT is Bieberbach’s conjecture “coefficient
conjecture” posed by Bieberbach in 1916. It states the upper bounds of the coefficient of the
univalent function in the unit disk [1]. For many years, this conjecture posed a challenge
to researchers in the field. Until 1985, De Branges [2] settled all attempts and resolved it.

Mathematics 2021, 9, 192. https://doi.org/10.3390/math9020192 https://www.mdpi.com/journal/mathematics

121



Mathematics 2021, 9, 192

The difficulty in resolving this conjecture led to several profound and significant contribu-
tions in GAFT along with the development of several gadgets. These involve Loewner’s
parametric technique, Milin’s and Fitz Gerald’s techniques of exponentiating the Grun-
sky inequalities, Baernstein’s technique of maximal function, and variational techniques
in addition to new subclasses of univalent functions imposed by geometric stipulation.
Among the subclasses considered are the subclasses of convex functions, starlike functions,
close-to-convex function, and quasi-convex functions, consistently. Besides, de Branges
employed hypergeometric function, as a sort of the Special Function Theories (SPFT) in
order to resolve the Bieberbach problem. From an application point of sight, SPFT are such
significant mathematical tools for their interesting merits and remarkable role in the study
of the Fractional Calculus (FRC) and Operator Theory (OPT), for instance, Ghanim and
Al-Janaby [3]. Accordingly, SPFT plays a giant pivotal role in the development of research
in the area of GAFT which includes a lot of new implementations and generalizations. For
instance, Noor [4], El-Ashwah and Hassan [5], Xing and Jose Xing, Rassias and Yang ([6,7]),
Ghanim and Al-Janaby ([8,9]) and Al-Janaby and Ghanim ([10,11]).

In this context, the term hypergeometric function, first coined by Wallis in the year
1655, also known as the hypergeometric series is in the complex plane C and the open
unit disk D = {z ∈ C : |z| < 1}. This function was discussed by Euler first, and then
systematically investigated by Gauss in 1813. It is formulated as [12]:

2�1(�, υ; ω; z) =
∞

∑
κ=0

(�)κ(υ)κ

(ω)κ

zκ

κ!
, (�, υ ∈ C, ω ∈ C \ {0,−1, . . .}, |z| < 1).

Here (ω)κ is the Pochhammer (rising) symbol and is defined as:

(ω)κ =

{
1 κ = 0,
ω(ω + 1) · · · (ω + κ − 1) κ ∈ N = {1, 2, ...}.

.

Subsequently, in 1837, Kummer presented the Kummer function, namely confluent
hypergeometricr function, as a solution of a Kummer differential equation. This function is
written as [12]:

K(�; ω, z) =
∞

∑
κ=0

(�)κ

(ω)κ

zκ

κ!
= 1�1(�; ω; z), (1)

(� ∈ C, ω ∈ C \ {0,−1, . . .}, |z| < 1).

Furthermore, the Zeta functions constitute some phenomenal special functions that
appear in the study of Analytic Number Theory (ANT). There are a number of generaliza-
tions of the Zeta function, such as Euler–Riemann Zeta function, Hurwitz Zeta function,
and Lerch Zeta function. The Euler–Riemann Zeta function plays a pioneering role in ANT,
due to its advantages in discussing the merits of prime numbers. It also has fruitful imple-
mentations in probability theory, applied statistics, and physics. Euler first formulated this
function, as a function of a real variable, in the first half of the 18th century. Then, in 1859,
Riemann utilized complex analysis to expand on Euler’s definition to a complex variable.
Symbolized by S(κ), the definition was posed as the Dirichlet series:

S(κ) =
∞

∑
κ=1

1
κκ

, for �(κ) > 1.
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Later, the more general Zeta function, currently called Hurwitz Zeta function, was
also propounded by Adolf Hurwitz in 1882, as a general formula of the Riemann Zeta
function considered as [13]:

S(μ,κ) =
∞

∑
κ=0

1
(κ + μ)κ

, for �(κ) > 1, �(μ) > 1.

More generally, the famed Hurwitz–Lerch Zeta function f (μ,κ, z) is described as [14]:

φμ,κ(z) =
∞

∑
κ=0

zκ

(κ + μ)κ
, for �(κ) > 1, �(μ) > 1. (2)

(μ ∈ C \Z−
0 , κ ∈ C when |z| < 1;�(κ) > 1 when |z| = 1).

A generalization of (2) was proposed by Goyal and Laddha [15] in 1997, in the
following formula:

ψ℘
μ,κ(z) =

∞

∑
κ=0

(℘)κ

κ!
zκ

(κ + μ)κ
, for �(κ) > 1, �(μ) > 1. (3)

(μ ∈ ℘ ∈ C C \Z−
0 , κ ∈ C when |z| < 1; �(κ − ℘) > 1 when |z| = 1).

Along with these, there are more remarkable diverse extensions and generalizations
that contributed to the rise of new classes of the Hurwitz–Lerch Zeta function in ([16–26]).

In this effort, by utilizing analytic techniques, a new linear (convolution) operator
of morphometric functions is investigated and introduced in terms of the generalized
Hurwitz–Lerch Zeta functions and Kummer functions. Moreover, sufficient stipulations
are determined and examined in order for some formulas of this new operator to achieve
subordination. Therefore, these outcomes are an extension for some well known outcomes
of starlikeness, convexity, and close to convexity.

2. Preliminaries

Consider the class H of regular functions in D = {z ∈ C : |z| < 1}. The function f1 is
named subordinate to f2 (or f2 is named superordinate to f1) and denotes f1 ≺ f2, if there
is a regular function � in D, with �(0) = 0 and |�(z)| < 1 and f1(z) = f2(�(z)). If the
function f2 is univalent in D, then

f1 ≺ f2 ⇔ f1(0) = f2(0) and f1(D) ⊂ f2(D).

Let Σ represent the class of normalized meromorphic functions f (z) by

f (z) =
1
z
+

∞

∑
κ=1

ηκ zκ ,

that are regular in the punctured unit disk

D∗ = {z : z ∈ C and 0 < |z| < 1}.

Furthermore, it indicates the classes of meromorphic starlike functions of order ξ and
meromorphic convex of order ξ by ΣS∗(ξ) and ΣK(ξ), (ξ ≥ 0), respectively (see [22,23,27,28]).

The convolution product of two meromorphic functions f�(z) (� = 1, 2) in the follow-
ing formula:

f�(z) =
1
z
+

∞

∑
κ=1

ηκ,� zκ (� = 1, 2),
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is defined by

( f1 ∗ f2)(z) =
1
z
+

∞

∑
κ=1

ηκ,1 ηκ,2 zκ . (4)

The meromorphic Kummer function K̃(�; ω, z) is formulated as:

K̃(�; ω, z) =
1
z
+

∞

∑
κ=0

(�)κ+1

(ω)κ+1

zκ

(κ + 1)!
, (5)

(� ∈ C, ω ∈ C \ {0,−1, . . .}, z ∈ D∗).

Corresponding to (5) and (3), based on a convolution tool, we imposed the following
new convolution complex operator for f (z) ∈ Σ as:

Lκ
μ (�, ω,℘) f (z) = K̃(�; ω, z) ∗Aκ,μ(z) ∗ f (z)

=
1
z
+

∞

∑
κ=1

(�)κ+1 (℘)κ+1

(ω)κ+1 (κ + 1)! (κ + 1)!

(
μ + 1

μ + κ + 1

)κ

ηκ zκ ,
(6)

where

Aκ,μ(z) = (μ + 1)κ
[

ψ℘
μ,κ(z)−

1
μκ +

1
z(μ + 1)κ

]

=
1
z
+

∞

∑
κ=1

(℘)κ+1

(κ + 1)!

(
μ + 1

μ + κ + 1

)κ

zκ
(
z ∈ U∗) (7)

The major goal of this paper is to study the following subordinations:

Lκ
μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)
≺ h(1 − z)

h − z
, (h > 1)

Lκ
μ (�, ω,℘) f (z)

z
≺ 1 + Ez

1 − z
, (−1 � E < 1)

and
Lκ

μ (�, ω,℘) f (z)
z

≺ h(1 − z)
h − z

, (h > 1). (8)

In particular, we obtain sufficient conditions for which the function f ∈ Σ satisfies such
subordination, which extends certain outcomes in this direction concerning starlikeness,
convexity, and close to convexity.

The following lemma will be needed to accomplish our proofs. We refer the reader
to [29], Theorem 3.4, p. 132, for the proof of this lemma.

Lemma 1. Let q(z) be univalent in D and let Θ and Φ be regular in a domain D ⊃ q(D), with
Φ(�) 	= 0 when � ∈ q(D). Set

Υ(z) = zq′(z)Φ(q(z)), Λ(z) = Θ(q(z)) + Υ(z)

Suppose that

(1) Υ(z) is starlike in D, and
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(2) � zΛ′(z)
Υ(z) > 0 for z ∈ D.

If p(z) is regular in D with p(0) = q(0), p(D) ⊂ D and

Θ(p(z)) + zp′(z)Φ(p(z)) ≺ Θ(q(z)) + zq′(z)Φ(q(z)), (9)

then p(z) ≺ q(z) and q(z) is the best dominant.

3. Main Outcomes

First, we treat the first subordinate in (8).

Theorem 1. Let � > 0, h > 1, ζ ∈ R and f ∈ Σ. Then, if |ζ| ≤ 1, Lκ
μ (�, ω,℘) f (z)

/
z 	= 0 in

D∗ and (
Lκ

μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)

)ζ(
(� + 1)

Lκ
μ (� + 2, ω,℘) f (z)

Lκ
μ (� + 1, ω,℘) f (z)

− 1

)
≺ Λ(z), (10)

where

Λ(z) =
(

h(1 − z)
h − z

)ζ+1
(

� − (h − 1)z

h(1 − z)2

)
,

we have

Lκ
μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)
≺ h(1 − z)

h − z
.

Proof. From (10) and the assumption

Lκ
μ (�, ω,℘) f (z)

/
z 	= 0

in D∗, we infer that Lκ
μ (� + 1, ω,℘) f (z)

/
z 	= 0 in D∗. Define

p(z) =
Lκ

μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)
.

Then, p(z) is regular in D∗ and

zp′(z)
p(z)

=
z
(

Lκ
μ (� + 1, ω,℘) f (z)

)′

Lκ
μ (� + 1, ω,℘) f (z)

−
z
(

Lκ
μ (�, ω,℘) f (z)

)′

Lκ
μ (�, ω,℘) f (z)

. (11)

By virtue of the identity

z
(

Lκ
μ (�, ω,℘) f (z)

)′
= �

(
Lκ

μ (� + 1, ω,℘) f (z)
)
− (� + 1)Lκ

μ (�, ω,℘) f (z)

and (11), we get

(� + 1)
Lκ

μ (� + 2, ω,℘) f (z)
Lκ

μ (� + 1, ω,℘) f (z)
= 1 + �p(z) +

zp′(z)
p(z)

. (12)

Now, (12) together with (10) imply

�(p(z))ζ+1 + zp′(z)(p(z))ζ−1 ≺ Λ(z). (13)
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Let

q(z) :=
h(1 − z)

h − z
.

Then, q is, clearly, convex in D∗ and

Λ(z) = �(q(z))ζ+1 + zq′(z)(q(z))ζ−1.

Let
Θ(�) = ��ζ+1 and Φ(�) = �ζ−1.

Then, (13) may be written in the form of (9). Denoting zq′(z)Φ(q(z)) by Υ(z) yields

Υ(z) =
(1 − h)zhζ(1 − z)ζ−1

(h − z)1+ζ
,

and

Λ(z) = Θ(q(z)) + Υ(z) =
(

h(1 − z)
h − z

)1+ζ
(

� − (h − 1)z

h(1 − z)2

)
.

But, h > 1 and |ζ| ≤ 1. Hence,

� zΥ′(z)
Υ(z)

= �
(

1 +
z(1 − ζ)

1 − z
+ (1 − ζ)

z
h − z

)
> −1 +

1
2
(1 − ζ) +

(1 + ζ)h
1 + h

=
(1 + ζ)(h − 1)

2(1 + h)
> 0.

Consequently, Υ(z) is starlike. Moreover,

� zΛ′(z)
Υ(z)

= �(1 + ζ)�h(1 − z)
h − z

+� zΥ′(z)
Υ(z)

≥ 0.

By employing Lemma 1, we gain p(z) ≺ q(z) that is

Lκ
μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)
≺ h(1 − z)

h − z
.

The proof is completed.

A special case of Theorem 1 is when κ = ζ = 0 and � = ω = ℘ = 1, where we get

Corollary 1. If h > 1 and f ∈ Σ attains f (z)/z 	= 0 in D∗ and

1 +
z f ′′(z)
f ′(z)

≺ h(1 − z)
h − z

− (h − 1)z
(h − z)(1 − z)

,

then

z f ′(z)
f (z)

≺ h(1 − z)
h − z

.

Remark 1. When z ∈ R,

Λ(z) =
h(1 − z)

h − z
− (h − 1)z

(h − z)(1 − z)
=

z
h − z

+
1

1 − z
∈ R.
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Moreover, Λ(0) = 1 and Λ(D) = �Λ(z) < (h+1)
2(h−1) for 1 < h ≤ 2 and �Λ(z) < (5h−1)

2(h+1) for
2 < h. Hence, this outcome is a generalization of the outcome obtained in [30].

Note that, when

Λ(z) = 1 − (h − 1)z

h(1 − z)2 ,

Λ(D) = C−
[

5h − 1
4h

, ∞
]

.

Thus, setting κ = 0, ζ = −1 and � = ω = ℘ = 1 in the Theorem 1 implies the
following outcome:

Corollary 2. Let h > 1 and f ∈ Σ satisfy f (z)/z 	= 0 in D∗ and

�

⎛⎝1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

⎞⎠ <
5h − 1

4h
.

Then,

z f ′(z)
f (z)

≺ h(1 − z)
h − z

.

Theorem 2. Let � > 0, −1 ≤ ζ < 0, −1 ≤ E < 1 and f ∈ Σ. If Lκ
μ (�, ω,℘) f (z)

/
z 	= 0 in D∗

and (
Lκ

μ (�, ω,℘) f (z)
z

)ζ(
�

Lκ
μ (� + 1, ω,℘) f (z)

z

)
≺ Λ(z), (14)

for

Λ(z) =
(

1 + Ez
1 − z

)ζ
(

�
1 + Ez
1 − z

+
(1 + E)z

(1 − z)2

)
,

then

Lκ
μ (�, ω,℘) f (z)

z
≺ 1 + Ez

1 − z
.

Proof. Let

p(z) =
Lκ

μ (�, ω,℘) f (z)
z

. (15)

Then, clearly p is regular in D∗. Then, it follows by (9), that

�
(

Lκ
μ (� + 1, ω,℘) f (z)

)′
= zp′(z)− (� − 1)p(z). (16)

Thus, (14) becomes

�p(z)1+ζ + p(z)λzp′(z) ≺ Λ(z).
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Now, we define q(z) by

q(z) =
1 + Ez
1 − z

.

Then, q(z) is univalent in D and q(D) = {z : �q(z) > (1 − E)
/

2}. Let Θ and Φ be

Θ(�) = � �ζ+1 and Φ(�) = �ζ .

After that, Φ and Θ are regular in C\{0}, and (14) has the form of (9). Moreover,
by letting

Υ(z) = zq′(z)Φ(q(z)) =
(1 + E)z(1 + Ez)ζ

(1 − z)2+ζ
,

we have

Λ(z) = f (q(z)) + Υ(z).

Next, by the assumptions of the theorem,

� zΛ′(z)
Υ(z)

= �
[

1 + ζ
Ez

1 + Ez
+ (2 + ζ)

z
1 − z

]

> 1 − ζ|E|
1 + |E| −

2 + λ

2
=

−ζ(1 − |E|)
2(1 + |E|) > 0,

and

� zΛ′(z)
Υ(z)

= �
[

f ′(q(z))
f (q(z))

+
zΥ′(z)
Υ(z)

]
= �(1 + ζ) +� zΥ′(z)

Υ(z)
≥ 0.

An application of Lemma 1 now yields the result.

Since the function Λ(z) = � + 1+Ez
(1−z)(1+Ez) maps real values to real values, Λ(0) = �,

Λ(D) is symmetric with respect to the real axis and

�Λ(z) > � +
1
2
− 1

1 − |E| , z ∈ D∗,

we may apply Theorem 2 by letting ζ = −1 to get the following.

Corollary 3. Let −1 < E < 1, � > 0 and f ∈ Σ. If Lt
a(ν, τ) f (z)

/
z 	= 0 in D∗ and

�
(

Lκ
μ (� + 1, ω,℘) f (z)
Lκ

μ (�, ω,℘) f (z)

)
> 1 +

1
2�

− 1
�(1 − |E|) ,

then

Lκ
μ (�, ω,℘) f (z)

z
≺ 1 + Ez

1 − z
.

Theorem 3. Let ζ ≥ −1, h > 1 and f ∈ Σ. If Lκ
μ (�, ω,℘) f (z)

/
z 	= 0 in D∗ and

(
Lκ

μ (�, ω,℘) f (z)
z

)ζ(
�

Lκ
μ (� + 1, ω,℘) f (z)

z

)
≺ h1+ζ(1 − z)ζ

(h − z)1+ζ

(
�(1 − z)− h(1 − z)

h − z

)
,
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then

Lκ
μ (�, ω,℘) f (z)

z
≺ h(1 − z)

h − z
.

Proof. The outcome yields from Lemma 1 by defining the functions Φ and Θ by Θ(�) =
� �−(1+ζ) and Φ(�) = −�−(2+ζ).

Observe that �
(

1 − (h−1)z
(h−z)(1−z)

)
< 3h−1

2(h−1) when z ∈ D∗. Hence, when letting � = ω =

℘ = 1 and κ = 0 in the above Theorem, we get the following.

Corollary 4. Let h > 1 and f ∈ Σ. If f ′(z) 	= 0 in D and

�
(

1 +
z f ′′(z)
f ′(z)

)
<

3h − 1
2(h − 1)

,

then

f ′(z) ≺ h(1 − z)
h − z

.

4. Conclusions

In this analytic investigation, based on convolution concept, we have defined and
applied prosperously a complex linear operator which is associated with the meromorphic
Hurwitz–Lerch Zeta type functions and Kummer functions. By utilizing this new linear
operator, we have discussed several interesting merits of some new geometric subclasses
of meromorphicy univalent functions in the punctured unit disk D∗.
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Abstract: Asymptotic analysis is a branch of mathematical analysis that describes the limiting
behavior of the function. This behavior appears when we study the solution of differential equations
analytically. The recent work deals with a special class of third type of Painlevé differential equation
(PV). Our aim is to find asymptotic, symmetric univalent solution of this class in a symmetric domain
with respect to the real axis. As a result that the most important problem in the asymptotic expansion
is the connections bound (coefficients bound), we introduce a study of this problem.

Keywords: Painlevé differential equation; symmetric solution; asymptotic expansion; univalent
function; subordination and superordination; analytic function; open unit disk

1. Introduction

The advantage of the Painlevé differential equation (PV) is widely recognized in mathematics and
mathematical physics, subsequently the outcomes indicate a part of the nonlinear explanation of special
functions. Successively, various studies for the PVs have been offered from various points of vision,
such as traditional outcomes, asymptotic, geometric or algebraic constructions. Asymptotic solution of
PV-III is investigated extensively because of its requests in material sciences (see [1]). Shimomura [2]
presented an asymptotic expansion formal by iteration, and showed the convergence utilizing a
concept of majorant series. Kajiwara and Masuda [3] created the asymptotic expansion solution of
PV-III by using an expression for the rational solutions whose entries are the Laguerre polynomials.
Later, they extended the PV-III into the q-calculus and created the asymptotic expansion solutions by
employing the symmetric affinity Weyl group [4]. Gu et al. studied the meromorphic results of PV-III by
employing a technique of complex numbers [5]. Bothner et al. occupied the Bäcklund transformation
of PV-III [6]. Fasondini et al. investigated the PV-III in a complex domain [7]. Bonelli et al. presented
a generalization of PV-III by utilizing q-deformed calculus [8]. Amster and Rogers examined A
Neumann-type boundary value problem for a hybrid PV-III. They established the existence properties
of approximate outcomes [9]. Recently, Hong and Tu delivered meromorphic results for several types
of q-difference PV-III [10]. Bilman et al. planned the fundamental rogue wave solutions of PV-III [11].
Newly, Zeng and Hu [12] suggested the connection problem of the second nonlinear differential
equation involving a type of PV and they considered the asymptotic expansion solution.

In this work, we investigate a special class of generalized PV-III equations in a complex domain.
We study the asymptotic expansion solution, univalent solution and approximate solution of this class
in view of the geometric function theory. We formulate the PV-III as a boundary value problem in terms
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of the connection estimates. The consequences here are univalent solution with geometric illustration.
The novelty of this work is to study a class of the PV equations analytically. The outcomes are based on
the geometric function theory to describe the geometric behavior of these solutions. The upper bound
of these solutions is indicated by using Janowski formula. Finally, we construct the symmetric solution
by using a convex function in the open unit disk.

2. Methodology

The complex PV-III equation can be formulated by the following structure:

ζχ(ζ)
d2χ(ζ)

dζ2 = ζ

(
dχ(ζ)

dζ

)2

− χ(ζ)
dχ(ζ)

dζ
+ δζ + βχ(ζ) + αχ3(ζ) + γζχ4(ζ), (1)

where α, β, γ and δ are real constants. Kitaev [13] introduced the following special PV-III equation (see
Equation (19), p. 83)

ζ
d2χ(ζ)

dζ2 +
dχ(ζ)

dζ
= sin(χ(ζ)). (2)

Asymptotically, Equation (2) becomes

ζ
d2χ(ζ)

dζ2 +
dχ(ζ)

dζ
≈ χ(ζ), (3)

subjected to the boundary condition(
χ(ζ) = ζ + χ2ζ2 + O(ζ3), |χn| ≤ 1, n ≥ 2, ζ ∈ ∪ = {ζ ∈ C : |ζ| < 1}

)
, (4)

where χn are indicated the coefficients of the expansion of χ(ζ). We are able to investigate the
connection problem (coefficient bounds) of Equation (3) by studying the conforming connection
problem of geometric classes in the open unit disk (∪). Our exploration method is selected from the
GFT, specific the concept of subordination.

Let ∧ be the family of analytic functions χ ∈ ∪ and normalized by the conditions χ(0) = 0 and
χ′(0) = 1, formulating by

χ(ζ) = ζ +
∞

∑
n=2

χnζn, ζ ∈ ∪. (5)

A sub-class of ∧ is the class of univalent functions. Consequently, a function χ ∈ ∧ is starlike in
∪ if and only if �(ζχ′(ζ)/χ(ζ)) > 0. In addition, a function χ ∈ ∧ is convex in ∪ if and only if
1 +�(ζχ′′(ξ)/χ′(ζ)) > 0.

It is clear that for functions χ ∈ ∧, we have sin(χ) ∈ ∧. For example, the following asymptotic
expansions for given functions in ∧ (see Figure 1)

sin
(

ζ

1 − ζ

)
= ζ + ζ2 + (5ζ3)/6 + ζ4/2 + ζ5/120 − (5ζ6)/8 + O(ζ7)

and

sin
(

ζ

(1 − ζ)2

)
= ζ + 2ζ2 + (17ζ3)/6 + 3ζ4 + (181ζ5)/120 − (13ζ6)/4 + O(ζ7).

Definition 1. For two functions χ and X in ∧ are subordinated χ ≺ X, if a Schwarz function ς with ς(0) = 0
and |ς(ζ)| < 1 satisfying χ(ζ) = X(ς(ζ)), ζ ∈ ∪ (see [14]). Evidently, χ(ζ) ≺ X(ζ) equivalents to
χ(0) = X(0) and χ(∪) ⊂ X(∪).
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Now, rearrange Equation (3), we have the formal(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
= ρ(ζ), ζ ∈ ∪, (6)

subjected to the boundary conditions (4), where ρ(ζ) = 1 + ρ1ζ + ρ2ζ2 + . . . .

Figure 1. The asymptotic expansions of sin
(

ζ
1−ζ

)
and sin

(
ζ

(1−ζ)2

)
, respectively.

Definition 2. For a function χ ∈ ∧, it is said to be in the class V(ρ) if and only if(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ ρ(ζ), ζ ∈ ∪, (7)

where ρ(ζ) = 1 + ρ1ζ + ρ2ζ2 + ρ3ζ3 + ... is convex in ∧ and positive real part with ρ′(0) > 0, ρ(0) = 1 (we
denote this class by P).

For example, one can suggest the analytic function

ρ(ζ) =
1 + ζ

1 − ζ
= 1 + 2ζ2 + 2ζ3 + ... .

Remark 1. Ma and Minda [15] formulated different sub-classes of starlike and convex functions for which
either of the expressions ζχ′(ζ)

χ(ζ)
or 1 + ζχ′′(ζ)

χ′(ζ) are subordinate to an additional common superordinate function.
For this class, they presented an analytic function Θ with positive real part in∪, Θ(0) = 1, Θ′(0) > 0, and
Θ maps ∪ onto an area starlike with respect to 1 and are symmetric with respect to the real axis. The class of
Ma–Minda starlike functions contains function χ ∈ ∧ satisfying the subordination ζχ′(ζ)

χ(ζ)
≺ Θ(ζ). Likewise,

the class of Ma–Minda convex functions involves the function χ ∈ ∧ fluffing the subordination

1 +
ζχ′′(ζ)
χ′(ζ)

≺ Θ(ζ).

Moreover, when Θ(ζ) = 1+ζ
1−ζ , we obtain the main starlike and convex classes, respectively. Ali et al. [16]

combined the two classes in the class

ζχ′(ζ)
χ(ζ)

+
ζχ′′(ξ)
χ′(ζ)

≺ Θ(ζ).

3. Connection Bounds

For functions in the class V(ρ), the following outcome is found.

Theorem 1. If the function χ ∈ V(ρ) is formulated by (5), then

|χ2| ≤
ρ1

3
, |χ3| ≤

ρ2 + ρ2
1/3

8
, (8)
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where ρ(ζ) = 1 + ρ1ζ + ρ2ζ2 + ρ3ζ3 + ... is convex in ∧ and positive real coefficients.

Proof. Let χ ∈ V(ρ) having the expansion

χ(ζ) = ζ + χ2ζ2 + χ3ζ3 + ..., ζ ∈ ∪.

Then by the definition of the subordination, there subsists a Schwarz function ς with ς(0) = 0 and
|ς(ζ)| < 1 satisfying (

ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
= ρ(ς(ζ)), ζ ∈ ∪.

Furthermore, we assume that |ς(ζ)| = |ζ| < 1, then in view of Schwarz Lemma, there occurs a complex
number τ with |τ| = 1 satisfying ς(ζ) = τζ. Consequently, we obtain(

ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
=

(
1 + χ2ζ + (2χ3 − χ2

2)ζ
2 + ...

)
×

(
1 + 2χ2ζ + (6χ3 − 4χ2

2) ζ2 + ...
)

= 1 + 3χ2ζ + (8χ3 − 3χ2
2)ζ

2 + ...

= 1 + ρ1τζ + ρ2τ2ζ2 + ... .

It follows that

|χ2| ≤
ρ1|τ|

3
=

ρ1

3
and

|χ3| ≤
ρ2 + ρ2

1/3
8

.

Example 1.

• Let ρ(ζ) = 1+ζ
1−ζ = 1 + 2ζ2 + 2ζ3 + ... then |χ2| ≤ 2

3 , |χ3| ≤ ρ2+ρ2
1/3

8 = 0.416.

• Let ρ(ζ) =
(

1+ζ
1−ζ

)0.5
= 1 + ζ + ζ2/2 + ζ3/2 + (3ζ4)/8 + (3ζ5)/8 + O(ζ6)... then

|χ2| ≤
1
3

, |χ3| ≤
0.5 + 1/3

8
= 0.104.

We have the following consequence.

Corollary 1. If the function χ ∈ V
((

1+ζ
1−ζ

)α)
, α ∈ (0, 1] then

|χn| ≤ 1, n ≥ 2. (9)

4. Geometric Behaviors

In this section, we deal with some geometric behaviors of the boundary value problem (6).

Definition 3. For a function χ ∈ ∧, it is said to be in the class V(ζ +
√

ζ2 + 1) if and only if(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ ζ +

√
ζ2 + 1, ζ ∈ ∪. (10)

Note that (see Figure 2)

ζ +
√

ζ2 + 1 = 1 + ζ + ζ2/2 − ζ4/8 + O(ζ6)
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and that the sub-classes of starlike and convex of the above definition are studied in [17].

Figure 2. The complex plane, Riemann surface and the asymptotic expansions of
(ζ +

√
ζ2 + 1), respectively.

We request the following preliminary, which can be located in [17].

Lemma 1. If P is analytic in ∪ and satisfies the subordination

P(ζ) + κ
ζP′(ζ)
P(ζ)

≺ (ζ +
√

ζ2 + 1), κ > 0,

then P(ζ) ≺ (ζ +
√

ζ2 + 1).

Theorem 2. If the function χ ∈ ∧ is formulated by (5) fulfilling the subordination

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

⎛⎜⎝ ζ
(

1 + ζχ′′(ζ)
χ′(ζ)

)′(
1 + ζχ′′(ζ)

χ′(ζ)

) +
ζ
(

ζχ′(ζ)
χ(ζ)

)′(
ζχ′(ζ)
χ(ζ)

)
⎞⎟⎠ ≺ (ζ +

√
ζ2 + 1) (11)

then χ ∈ V(ζ +
√

ζ2 + 1). Moreover,

|χ2| ≤
1
3

, |χ3| ≤
24

1152
.

Proof. Let χ ∈ ∧ having the expansion

χ(ζ) = ζ + χ2ζ2 + χ3ζ3 + ..., ζ ∈ ∪.

Furthermore, we let

P(ζ) :=
(

ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
.
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Thus, in view of Lemma 1 with κ = 1, we get

P(ζ) +
ζP′(ζ)
P(ζ)

=

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

ζ
((

ζχ′(ζ)
χ(ζ)

) (
1 + ζχ′′(ζ)

χ′(ζ)

))′(
ζχ′(ζ)
χ(ζ)

) (
1 + ζχ′′(ζ)

χ′(ζ)

)
=

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

⎛⎜⎝ ζ
(

1 + ζχ′′(ζ)
χ′(ζ)

)′(
1 + ζχ′′(ζ)

χ′(ζ)

) +
ζ
(

ζχ′(ζ)
χ(ζ)

)′(
ζχ′(ζ)
χ(ζ)

)
⎞⎟⎠

≺ (ζ +
√

ζ2 + 1)

It follows that P(ζ) ≺ (ζ +
√

ζ2 + 1), which implies that χ ∈ V(ζ +
√

ζ2 + 1). Now, a computation
implies that (

ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
= 1 + 3χ2ζ + (8χ3 − 3χ2

2)ζ
2 + ...

= 1 + ζ + ζ2/2 − ζ4/8 + O(ζ6).

A comparison yields that

|χ2| ≤
1
3

, |χ3| ≤
24

1152
.

Next, result can be found in [18].

Lemma 2. For analytic functions ω, � ∈ ∪), the subordination ω ≺ � implies that

∫ 2π

0
|ω(ζ)|qdθ ≤

∫ 2π

0
|�(ζ)|qdθ,

where ζ = reiθ , 0, r < 1 and q is a positive number.

Theorem 3. If the function χ ∈ ∧ is formulated by (5) achieving the subordination inequality (11). Then

∫ 2π

0

∣∣∣ ( ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

) ∣∣∣q
dθ ≤ 2π (12)

for all q ≥ 1 and ζ = r eiθ ∈ ∪ and 0 < r < 1.

Proof. According to Theorem 2, we have(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ ζ +

√
ζ2 + 1.

Then in view of Lemma 2, we conclude that∫ 2π

0

∣∣∣ ( ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

) ∣∣∣q
dθ ≤

∫ 2π

0
|ζ +

√
ζ2 + 1|qdθ

=
∫ 2π

0
|eiθ +

√
(eiθ)2 + 1|qdθ, r → 1

= 2π.

This completes the proof.
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Theorem 3 indicates the periodicity of solutions of the boundary value problem (6). We illustrate
the following example (see Figure 3):

Example 2.

• Let q = 1, we have∫
|eiθ +

√
(eiθ)2 + 1|dθ = −i(eiθ +

√
1 + e2iθ − tanh−1(

√
1 + e2iθ)) + constant

• Let q = 2 then we get∫
|eiθ +

√
(eiθ)2 + 1|2dθ = θ − ie2iθ − ieiθ

√
1 + e2iθ − i sinh−1(eiθ) + constant.

Figure 3. Periodic solution of Equation (6), when q = 1 and q = 2, respectively.

We proceed to study some geometric behaviors of Equation (6). We need the following concept.

Definition 4. A majorization of two analytic functions having the asymptotic expansions respectively,
χ(ζ) = ∑∞

m=0 χmζm and X(ζ) = ∑∞
m=0 Xmζm is denoted by χ � X and satisfies the connections bounds

|χm| ≤ |Xm|, for all m.

Definition 5. For a function χ ∈ ∧, it is said to be in the class V( 1+�1ζ
1+�2ζ ) if and only if

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ 1 + �1ζ

1 + �2ζ
, (13)

where ζ ∈ ∪ and �1, �2 ∈ ∂ ∪ .

Theorem 4. Let χ ∈ V( 1+�1ζ
1+�2ζ ). Then there is a probability measure ν on (∂∪)2.

Proof. Let χ ∈ V( 1+�1ζ
1+�2ζ ). This yields that

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ 1 + �1ζ

1 + �2ζ
.

A calculation brings that |χn| ≤ 1 for all n ≥ 1. Furthermore,

1 + �1ζ

1 + �2ζ
� 1 + ζ

1 − ζ
. (14)
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According to Theorem 1.11 in [19], we obtain that the function 1+�1ζ
1+�2ζ indicates a probability measure ν

in (∂∪)2 achieving

ψ(ζ) =
∫
(∂∪)2

(
1 + �1ζ

1 + �2ζ

)
dν(�1, �2), ζ ∈ ∪.

Then there is a diffusion constant A satisfying

∫
(∂∪)2

(
1 + �1ζ

1 + �2ζ

)
dν(�1, �2) = A

∫
(∂∪)2

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
dν(�1, �2)

(
ζ ∈ ∪, A ∈ R, χ ∈ ∧

)
.

5. Symmetric Solution

In this section, we introduce a study regarding the symmetric solution of (6). For this purpose,
we need to define a symmetric class as follows:

Definition 6. For a function χ ∈ ∧, it is said to be in the symmetric class Vsymmetric(Φ), where Φ takes
the formula

Φ(ζ) =
1
2
[ρ(ζ) + ρ(−ζ)], ζ ∈ ∪, ρ ∈ P ,

where ρ is convex in ∪ if and only if(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ Φ(ζ), ζ ∈ ∪. (15)

In addition, a function χ ∈ ∧, is stated to be in the symmetric class Vsymmetric(Ψ), where Ψ is formulated by
the symmetric construction

Ψ(ζ) =
4ζ ρ(ζ)

ρ(ζ)− ρ(−ζ)
, ζ ∈ ∪, ρ ∈ P ,

where ρ is convex in ∪ if and only if(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ Ψ(ζ), ζ ∈ ∪. (16)

To establish the existence of symmetric solution of (6), we request the following result
(see Theorem 3.2, p. 97 in [14]).

Lemma 3. Let Φ be convex in ∪ such that Φ(0) = 1. If ρ is the analytic solution of the equation

ρ(ζ) +
ζρ′(ζ)
ρ(ζ)

= Φ(ζ), ρ(0) = 1

and if �(ρ) > 0, then ρ is univalent solution. If P ∈ H[1, n] (the class of analytic function) achieves the
subordination

P(ζ) +
ζ P′(ζ)

P(ζ)
≺ Φ(ζ),

then P ≺ ρ and ρ is the best dominant.

Theorem 5. Let χ ∈ Vsymmetric(Φ), where ρ ∈ P is convex and the functional

Φ(ζ) =
1
2
[ρ(ζ) + ρ(−ζ)], ζ ∈ ∪

138



Mathematics 2020, 8, 1198

satisfies the inequality

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

⎛⎜⎝ ζ
(

1 + ζχ′′(ζ)
χ′(ζ)

)′(
1 + ζχ′′(ζ)

χ′(ζ)

) +
ζ
(

ζχ′(ζ)
χ(ζ)

)′(
ζχ′(ζ)
χ(ζ)

)
⎞⎟⎠ ≺ Φ(ζ). (17)

Then χ ∈ V(ρ).

Proof. Our aim is to achieve all the conditions of Lemma 3. Since ρ is convex then Φ is convex in ∪
such that Φ(0) = 1. Moreover, ρ is the univalent solution of the equation

ζρ′(ζ)
ρ(ζ)

=
1
2
[ρ(−ζ)− ρ(ζ)], ρ(0) = 1

with �(ρ) > 0. Suppose that

P(ζ) :=
(

ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
.

Then, we obtain

P(ζ) +
ζP′(ζ)
P(ζ)

=

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

ζ
((

ζχ′(ζ)
χ(ζ)

) (
1 + ζχ′′(ζ)

χ′(ζ)

))′(
ζχ′(ζ)
χ(ζ)

) (
1 + ζχ′′(ζ)

χ′(ζ)

)
=

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

⎛⎜⎝ ζ
(

1 + ζχ′′(ζ)
χ′(ζ)

)′(
1 + ζχ′′(ζ)

χ′(ζ)

) +
ζ
(

ζχ′(ζ)
χ(ζ)

)′(
ζχ′(ζ)
χ(ζ)

)
⎞⎟⎠

≺ Φ(ζ).

By Lemma 3, we have (
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
≺ ρ(ζ).

Hence, χ ∈ V(ρ).

In the similar manner of Theorem 5, we have the following outcome

Theorem 6. Let χ ∈ Vsymmetric(Ψ), where ρ ∈ P is convex and the functional

Ψ(ζ) =
4ζ ρ(ζ)

ρ(ζ)− ρ(−ζ)
, ζ ∈ ∪

satisfies the inequality

(
ζχ′(ζ)
χ(ζ)

)(
1 +

ζχ′′(ζ)
χ′(ζ)

)
+

⎛⎜⎝ ζ
(

1 + ζχ′′(ζ)
χ′(ζ)

)′(
1 + ζχ′′(ζ)

χ′(ζ)

) +
ζ
(

ζχ′(ζ)
χ(ζ)

)′(
ζχ′(ζ)
χ(ζ)

)
⎞⎟⎠ ≺ Ψ(ζ). (18)

Then χ ∈ V(ρ).

Example 3. Consider the analytic function ρ(ζ) = 1+ζ
1−ζ , where it maps ∪ onto the right half-plane convexly.

Then Φ(ζ) = 1+ζ2

1−ζ2 = 1 + 2ζ2 + 2ζ4 + O(ζ6), where Φ(0) = 1 (see Figure 4). By assuming χ(ζ) = ζ,

we have the subordination P(ζ) =
(

ζχ′(ζ)
χ(ζ)

) (
1 + ζχ′′(ζ)

χ′(ζ)

)
≺ Φ(ζ). Thus, the solution χ ∈ Vsymmetric(

1+ζ2

1−ζ2 ).
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Figure 4. The behavior of Φ(ζ) = 1+ζ2

1−ζ2 with a symmetric domain for |ζ|, 1.

6. Conclusions

From above, we conclude that the asymptotic behaviors of a special class of Painlevé differential
equations (see [13]) can be recognized by using a geometric representation of the equation.
From this construction, we introduced the oscillatory, connection bound and other properties of
the boundary value problem (6). In addition, Theorem 5 and Theorem 6 indicated that the set
{χ : χ ∈ V(ρ)} has symmetric solutions for some symmetric region because Vsymmetric(Φ) ⊂ V(ρ) and
Vsymmetric(Ψ) ⊂ V(ρ).
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Abstract: It is well known that the conformable and the symmetric differential operators have
formulas in terms of the first derivative. In this document, we combine the two definitions to get
the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a
study of SCDO connected with the geometric function theory. These differential operators indicate
a generalization of well known differential operator including the Sàlàgean differential operator.
Our contribution is to impose two classes of symmetric differential operators in the open unit disk
and to describe the further development of these operators by introducing convex linear symmetric
operators. In addition, by acting these SCDOs on the class of univalent functions, we display a
set of sub-classes of analytic functions having geometric representation, such as starlikeness and
convexity properties. Investigations in this direction lead to some applications in the univalent
function theory of well known formulas, by defining and studying some sub-classes of analytic
functions type Janowski function and convolution structures. Moreover, by using the SCDO, we
introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the
symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of
this class is symmetric in the open unit disk.

Keywords: univalent function; conformable fractional derivative; subordination and superordination;
analytic function; open unit disk

MSC: 30C45

1. Introduction

The term Symmetry from Greek means arrangement and organization in measurements.
In free language, it mentions a concept of harmonious and attractive proportion and equilibrium.
In mathematics, it discusses an object that is invariant via certain transformation or rotation or scaling.
In geometry, the object has symmetry if there is an operator or transformation that maps the object
onto itself [1,2].

Sàlàgean (1983) presented a differential operator for a class of analytic functions (see [3]).
Many sub-classes of analytic functions are studied using this operator. Al-Oboudi [4] generalized
this operator. These operators are studied widely in the last decade (see [5–10] for recent works).
Our investigation is to study classes of analytic functions by using the symmetric differential operator in
a complex domain. Recently, Ibrahim and Jahangiri [7] defined a special type of differential operators,

Mathematics 2020, 8, 363; doi:10.3390/math8030363 www.mdpi.com/journal/mathematics143
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which is called a complex conformable differential operator. This operator is an extension of the
Anderson–Ulness operator [11].

A conformable calculus (CC) is a branch of the fractional calculus. It develops the term χ1−℘ f ′(χ).
While the complex conformable calculus (CCC) indicates the term ξϕ′(ξ), where ξ is a complex variable
and ϕ is a complex valued analytic function. In this work, we present a new SCDO in the open unit
disk. We formulate it in some sub-classes of univalent functions. As applications, we generalize a class
of Briot–Bouquet differential equations by using SCDO.

2. Methodology

This section deals with the mathematical processing to study the SCDO for some classes of
analytic functions in the open unit disk ∪ = {ξ ∈ C : |ξ| < 1}. Let

∧
be the following class of

analytic functions

� (ξ) = ξ +
∞

∑
n=2

�nξn, ξ ∈ ∪. (1)

A function � ∈ ∧
is starlike via the (0,0) ( origin in ∪) if the linear segment joining the origin to

every other point of � lies entirely in �(ξ : |ξ| < 1). A univalent function (� ∈ �) is convex in ∪ if the
linear segment joining any two points of �(ξ : |ξ| < 1) lies entirely in �(ξ : |ξ| < 1). We denote these
classes by S∗ and C for starlike and convex respectively. In addition, suppose that the class P involves
all functions � analytic in ∪ with a positive real part in ∪ achieving �(0) = 1. Mathematically, � ∈ S∗

if and only if ξ �′ (ξ)/ � (ξ) ∈ P and � ∈ C if and only if 1 + ξ �′′ (ξ)/ �′ (ξ) ∈ P . Equivalently,
�(ξ �′ (ξ)/ � (ξ)) > 0 for the starlikeness and 1 +�(ξ �′′ (ξ)/ �′ (ξ)) > 0 for the convexity.

For two functions �1 and �2 belong to the class
∧

, are said to be subordinate, noting by �1 ≺ �2,
if we can find a Schwarz function ᵀ with ᵀ(0) = 0 and | ᵀ (ξ)| < 1 achieving �1(ξ) = �2(ᵀ(ξ)), ξ ∈ ∪
(the detail can be located in [12]). Obviously, �1(ξ) ≺ �2(ξ) if �1(0) = �2(0) and �1(∪) ⊂ �2(∪).

Lemma 1 ([12]). Suppose that a ∈ C, n is a positive integer and ℵ[a, n] = {� : �(ξ) = a + anξn +

an+1ξn+1 + ...} is a set of analytic functions.

i. If � ∈ R then �
(
� (ξ) + � ξ �′ (ξ)

)
> 0 =⇒ �

(
� (ξ)

)
> 0. In addition, if � > 0 and � ∈ ℵ[1, n], then

there occurs some constants a > 0 and b > 0 with b = b(�, a, n) where

�(ξ) + �ξ �′ (ξ) ≺
(

1 + ξ

1 − ξ

)b
⇒ �(ξ) ≺

(
1 + ξ

1 − ξ

)a
.

ii. If ð ∈ [0, 1) and � ∈ ℵ[1, n] then a constant k > 0 exists satisfying k = k(a, n) so that

�
(
�2(ξ) + 2�(ξ).ξ�′(ξ)

)
> ð ⇒ �(�(ξ)) > k.

iii. If � ∈ ℵ[a, n] with �(a) > 0 then �
(
� (ξ) + ξ �′ (ξ) + ξ2 �′′ (ξ)

)
> 0 or for ı : ∪ → R with

�
(
� (ξ) + ı(ξ)

ξ �′ (ξ)
�(ξ)

)
> 0 then �(�(ξ)) > 0.

Lemma 2 ([12]). Assume that � is a convex function satisfying �(0) = a, and let k ∈ C \ {0} be a complex
number with �(k) ≥ 0. If � ∈ ℵ[a, n], and

�(ξ) + (1/k)ξ �′ (ξ) ≺ �(ξ), ξ ∈ ∪,
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then �(ξ) ≺ ι(z) ≺ �(z), where

ι(z) =
k

nξk/n

∫ ξ

0
�(τ)τ

k

(n − 1) dτ, ξ ∈ ∪.

Lemma 3 ([13]). Suppose that � ∈ ∧
and there occurs a positive constant 0 < υ ≤ 1. If

ξ �′ (ξ)− ξ

�(ξ)
≺ 2υξ

1 + ξ

then
�(ξ)

ξ
≺ 1 + υ ξ, ξ ∈ ∪.

And the result is sharp.

The Operator SCDO

This sections deals with definition of the SCDO as follows:

Definition 1. Let �(ξ) ∈ ∧
, and let ν ∈ [0, 1] be a constant then the SCDO keeps the following operating

S0
ν � (ξ) = �(ξ)

S1
ν � (ξ) =

(
κ1(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)
ξ �′ (ξ)−

(
κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)
ξ �′ (−ξ)

=

(
κ1(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)(
ξ +

∞

∑
n=2

n �n ξn

)
−

(
κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)(
−ξ +

∞

∑
n=2

n(−1)n �n ξn

)

= ξ +
∞

∑
n=2

n

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)
�n ξn

S2
ν � (ξ) = S1

ν [S1
ν � (ξ)]

= ξ +
∞

∑
n=2

n2

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)2

�n ξn

...

Sk
ν � (ξ) = S1

ν [Sk−1
ν � (ξ)]

= ξ +
∞

∑
n=2

nk

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)k

�n ξn.

(2)

so that κ1(ν, ξ) 	= − κ0(ν, ξ),

lim
ν→0

κ1(ν, ξ) = 1, lim
ν→1

κ1(ν, ξ) = 0, κ1(ν, ξ) 	= 0, ∀ξ ∈ ∪, ν ∈ (0, 1),

and
lim
ν→0

κ0(ν, ξ) = 0, lim
ν→1

κ0(ν, ξ) = 1, κ0(ν, ξ) 	= 0, ∀ξ ∈ ∪ ν ∈ (0, 1).

The value ν = 0 indicates the Sàlàgean operator Sk � (ξ) = ξ + ∑∞
n=2 nk �n ξn. We proceed to impose

a linear differential operator having the SCDO and the Ruscheweyh derivative. For � ∈ ∧
, the

Ruscheweyh derivative is defined as follows:

Rk � (ξ) = ξ +
∞

∑
n=2

	k
k+n−1 �n ξn,
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where 	k
k+n−1 are the combination terms.

Definition 2. Let � ∈ ∧
, ν ∈ [0, 1] and 0 ≤ α ≤ 1. The linear combination operator joining Rk � (ξ) and

Sk
ν � (ξ) is given by the formal

Ck
ν,α � (ξ) = (1 − α)Rk � (ξ) + αSk

ν � (ξ)

= ξ +
∞

∑
n=2

(1 − α)	k
k+n−1 + α

[
n
(

κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)]k

�n ξn.
(3)

Remark 1.

• k = 0 =⇒ C0
ν,α � (ξ) = �(ξ);

• ν = 0 =⇒ Ck
1,α � (ξ) = Lk

κ � (ξ); [14] (Lupas operator)
• α = 0 =⇒ Ck

ν,α � (ξ) = Rk � (ξ);
• α = 1, κ = 1 =⇒ Ck

0,1 � (ξ) = Sk � (ξ);
• α = 1 =⇒ Ck

ν,1 � (ξ) = Sk
ν � (ξ).

Definition 3. Let ε ∈ [0, 1), ν, α ∈ [0, 1 and k ∈ N. A function � ∈ ∧
belongs to the set Bk(ν, α, ε) if and

only if

�
(
(Ck

ν,α � (ξ))′
)
> ε, ξ ∈ ∪.

Definition 4. The function � ∈ ∧
is specified to be in J�ν(A, B, k) if it satisfies the inequality

1 +
1
�

( 2Sk+1
ν � (ξ)

Sk
ν � (ξ)− Sk

ν � (−ξ)

)
≺ 1 + A ξ

1 + B ξ
,

(
ξ ∈ ∪, −1 ≤ B < A ≤ 1, k = 1, 2, ..., � ∈ C \ {0}, ν ∈ [0, 1]

)
.

• ν = 0 =⇒ [6];
• ν = 0, B = 0 =⇒ [7];
• ν = 0, A = 1, B = −1, � = 2 =⇒ [8].

The class J�ν(A, B, k) is a generalization of the class of the Janowski starlike functions [15]

ρ(ξ) ≺ 1 + A ξ

1 + B ξ
, ξ ∈ ∪,

where ρ(0) = 1, ρ(∪) ⊂ Ω[A, B]. The domain Ω[A, B] is a circular domain and it is referring to an
open circular disk with center on the real axis and diameter end points 1−A

1−B , provide that B 	= −1.
Functions in the class J�ν(A, B, k) have a circular domain with respect to symmetrical points.

Definition 5. Let ε ∈ [0, 1), ν, α ∈ [0, 1 and k ∈ N0. A function � ∈ ∧
is in the set Sk(ν, ε) if it achieves the

real inequality

�
(Sk+1

ν � (ξ)

Sk
ν � (ξ)

)
> ε, ξ ∈ ∪.

Note that S0(ν, ε) = S∗, S1(0, ε) = C

3. The Outcomes

In this section, we study some properties of the SCDO.

Theorem 1. For � ∈ ∧
and α ∈ C\{0}, if one of the sequencing subordination valid
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• The operator Sk
ν � (ξ) is of bounded turning type;

• � satisfies the relation

(Sk
ν � (ξ))′ ≺

(
1 + ξ

1 − ξ

)b
, b > 0, ξ ∈ ∪;

• � fulfilled the inequality

�
(
(Sk

ν � (ξ))′
Sk

ν � (ξ)

ξ

)
>

δ

2
, δ ∈ [0, 1), ξ ∈ ∪,

• � admits the inequality

�
(

ξSk
ν � (ξ))′′ − Sk

ν � (ξ))′ + 2
Sk

ν � (ξ))

ξ

)
> 0,

• � confesses the inequality

�
( ξSk

ν � (ξ))′

Sk
ν � (ξ))

+ 2
Sk

ν � (ξ)

ξ

)
> 1,

then Sk
ν�(ξ)

ξ ∈ P(ε), ε ∈ [0, 1).

Proof. Formulate a function σ as pursues:

σ(ξ) =
Sk

ν � (ξ)

ξ
⇒ ξσ′(ξ) + σ(ξ) = (Sk

ν � (ξ))′. (4)

By the first relation, Sk
ν � (ξ) is of bounded turning, this indicates that

�(ξ σ′(ξ) + σ(ξ)) > 0.

Therefore, according to Lemma 1—i, we attain �(σ(ξ)) > 0 which gets the first term of the
theorem. According to second inequality, we indicate the pursuing subordination inequality

(Sk
ν � (ξ))′ = ξ σ′(ξ) + σ(ξ) ≺

(
1 + ξ

1 − ξ

)b
.

Now, by employing Lemma 1—i, there occurs a fixed constant a > 0 with b = b(a) with the
pursuing property

Sk
ν � (ξ)

ξ
≺

(
1 + ξ

1 − ξ

)a
.

Consequently, we indicate that �(Sk
ν � (ξ)/ξ) > ε, for values of ε ∈ [0, 1). Lastly, agree with the

third relation to get

�
(

σ2(ξ) + 2σ(ξ).ξ σ′(ξ)
)
= 2�

(
(Sk

ν � (ξ))′
Sk

ν � (ξ)

ξ

)
> δ. (5)

According to Lemma 1—ii, there occurs a positive fixed number λ > 0 achieving the real inequality
�(σ(ξ)) > λ, and yielding

σ(ξ) =
Sk

ν � (ξ)

ξ
∈ P(ε)
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for a few value in ε ∈ [0, 1). It indicates from (5) that �
(
Sk

ν � (ξ))′
)

> 0; thus, according to

Noshiro-Warschawski and Kaplan Lemmas, this leads to Sk
ν � (ξ) is univalent and of bounded turning

in ∪. Now, via the differentiating (4) and concluding the real case, we indicate that

�
(

σ(ξ) + ξ σ′(ξ) + ξ2σ′′(ξ)
)

= �
(

ξ(Sk
ν � (ξ))′′ − (Sk

ν � (ξ))′ + 2
Sk

ν � (ξ)

ξ

)
> 0.

Thus, by the conclusion of Lemma 1—ii, we have

�(S
k
ν � (ξ)

ξ
) > 0.

Taking the logarithmic differentiation (4) and indicating the real, we arrive at the
following conclusion:

�
(

σ(ξ) +
ξ σ′(ξ)
σ(ξ)

+ ξ2σ′′(ξ)
)

= �
( ξ(Sk

ν � (ξ))′

Sk
ν � (ξ)

+ 2
Δm

α � (ξ)

ξ
− 1

)
> 0.

A direct application of Lemma 1—iii, we get the positive real i.e., �(Sk
ν�(ξ)

ξ ) > 0. This completes
the proof.

Theorem 2. Suppose that � ∈ J�α(A, B, m) then for every function of the form

X(ξ) =
1
2
[�(ξ)−�(−ξ)], ξ ∈ ∪

agrees with the pursuing relation

1 +
1
�

(Sk+1
ν X(ξ)

Sk
νX(ξ)

− 1
)
≺ 1 + Aξ

1 + B ξ
,

and

�
( ξX(ξ)′

X(ξ)

)
≥ 1 −
2

1 +
2 , |ξ| = 
 < 1,(
ξ ∈ ∪, −1 ≤ B < A ≤ 1, m = 1, 2, ..., � ∈ C \ {0}, ν ∈ [0, 1]

)
.

Proof. Because the function � ∈ J�α(A, B, m) then there occurs a function ℘ ∈ J(A, B), where

�(℘(ξ)− 1) =
( 2Sk+1

ν � (ξ)

Sk
ν � (ξ)− Sk

ν � (−ξ)

)
and

�(℘(−ξ)− 1) =
( −2Sk+1

ν � (−ξ)

Sk
ν � (ξ)− Sk

ν � (−ξ)

)
.

This implies that

1 +
1
�

(Sk+1
ν X(ξ)

Sk
νX(ξ)

− 1
)
=

℘(ξ) + ℘(−ξ)

2
.
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Also, since ℘(ξ) ≺ 1 + Aξ

1 + Bξ
, where

1 + Aξ

1 + Bξ
is univalent then by the concept of the subordination,

we have

1 +
1
�

(Sk+1
ν X(ξ)

Δm
α X(ξ)

− 1
)
≺ 1 + Aξ

1 + Bξ
.

But the function X(ξ) is starlike in ∪, which means that

ξX(ξ)′

X(ξ)
≺ 1 − ξ2

1 + ξ2

and there occurs a Schwarz function ᵀ ∈ ∪, | ᵀ (ξ)| ≤ |ξ| < 1,ᵀ(0) = 0 such that

Ψ(ξ) :=
ξX(ξ)′

X(ξ)
≺ 1 − ᵀ(ξ)2

1 + ᵀ(ξ)2 .

This implies that there exists ζ, |ζ| = 
 < 1 achieving

ᵀ2(ζ) =
1 − Ψ(ζ)

1 + Ψ(ζ)
, ζ ∈ ∪.

A computation yields ∣∣∣1 − Ψ(ζ)

1 + Ψ(ζ)

∣∣∣ = | ᵀ (ζ)|2 ≤ |ζ|2.

Thus, we conclude that ∣∣∣Ψ(ζ)− 1 + |ζ|4
1 − |ζ|4

∣∣∣2 ≤ 4|ζ|4
(1 − |ζ|4)2

or ∣∣∣Ψ(ζ)− 1 + |ζ|4
1 − |ζ|4

∣∣∣ ≤ 2|ζ|2
(1 − |ζ|4) .

Consequently, we obtain

�(Ψ(ζ)) ≥ 1 −
2

1 +
2 , |ζ| = 
 < 1.

Theorem 3. Suppose that � ∈ Bk(ν, α, ε), and the convex analytic function g satisfies the integral equation

F(ξ) =
2 + c
ξ1+c

∫ ξ

0
τc � (τ)dτ, ξ ∈ ∪

then the subordination (
Ck

ν,α � (ξ)
)′

≺ g(ξ) +
(ξg′(ξ))

2 + c
, c > 0,

implies the subordination (
Ck

ν,αF(ξ)
)′

≺ g(ξ),

and the outcome is sharp.

Proof. Here, we aim to utilize the result of Lemma 2. By the conclusion of F(ξ), we acquire

(
Ck

ν,αF(ξ)
)′

+

(
Ck

ν,αF(ξ)
)′′

2 + c
=

(
Ck

ν,α � (ξ)
)′

.
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Following the conditions of the theorem, we get

(
Ck

ν,αF(ξ)
)′

+

(
Ck

ν,αF(ξ)
)′′

2 + c
≺ g(ξ) +

(ξ g′(ξ))
2 + c

.

By assuming

�(ξ) :=
(

Ck
ν,αF(ξ)

)′
,

We have

�(ξ) +
(ξ�′(ξ))

2 + c
≺ g(ξ) +

(ξg′(ξ))
2 + c

.

According to Lemma 2, we obtain (
Ck

ν,αF(ξ)
)′

≺ g(ξ),

and g is the best dominant.

Theorem 4. Let g be convex such that g(0) = 1. If(
Ck

ν,α � (ξ)
)′

≺ g(ξ) + ξg′(ξ), ξ ∈ ∪,

then
Ck

ν,α � (ξ)

ξ
≺ g(ξ), and this result is sharp.

Proof. Define the following function

�(ξ) :=
Ck

ν,α � (ξ)

ξ
∈ ℵ[1, 1]. (6)

A direct application of Lemma 1 yields

Ck
ν,α � (ξ) = ξ�(ξ) =⇒

(
Ck

ν,α � (ξ)
)′

= �(ξ) + ξ�′(ξ).

Thus, we introduce the following subordination:

�(ξ) + ξ�′(ξ) ≺ g(ξ) + ξg′(ξ).

Hence, we conclude that
Ck

ν,α � (ξ)

ξ
≺ g(ξ), and g is the best dominant.

Theorem 5. If � ∈ ∧
fulfills the subordination

(Ck
ν,α � (ξ))′ ≺

(
1 + ξ

1 − ξ

)b
, ξ ∈ ∪, b > 0,

then

�
(Ck

ν,α � (ξ)

ξ

)
> ε, ε ∈ [0, 1).

Proof. Construct � as in (6). Thus, by subordination possessions, we indicate that

(Ck
ν,α � (ξ))′ = ξ�′(ξ) + �(ξ) ≺

(
1 + ξ

1 − ξ

)b
.
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With the help of Lemma 1—i, there occurs a fixed number a > 0 with b = b(a) where

Ck
ν,α � (ξ)

ξ
≺

(
1 + ξ

1 − ξ

)a
.

This leads to real conclusion �(Ck
ν,α � (ξ)/ξ) > ε, ε ∈ [0, 1).

Theorem 6. If � ∈ ∧
fulfills the real inequality

�
(
(Ck

ν,α � (ξ))′
Ck

ν,α � (ξ)

ξ

)
> �(α

2
), ξ ∈ ∪, α ∈ C

then Ck
ν,α � (ξ) ∈ Bk(ν, α, ε).

Proof. Formulate � as in (6). A clear evaluation gives

�
(

�2(ξ) + 2�(ξ).ξ�′(ξ)
)
= 2�

(
Ck

ν,α � (ξ))′
Ck

ν,α � (ξ)

ξ

)
> �(α). (7)

By the advantage of Lemma 1—ii, there occurs a constant κ concerning on �(α) where �(�(ξ)) >
κ, this gives �(�(ξ) ) > ε, ε ∈ [0, 1). By virtue of (7), it implies that �

(
Ck

ν,α � (ξ))′
)
> ε and hence

based on the idea of Noshiro-Warschawski and Kaplan Theorems, Ck
ν,α � (ξ) is univalent and of

bounded boundary rotation in ∪.

Theorem 7. The set Bk(ν, α, ε) is convex.

Proof. Suppose that �i ∈ Bk(ν, α, ε), i = 1, 2 achieve the formulas �1(ξ) = ξ + ∑∞
n=2 anξn and

�2(ξ) = ξ + ∑∞
n=2 bnξn respectively. It is adequate to show that the linear combination function

G(ξ) = w1 �1 (ξ) + w2 �2 (ξ), ξ ∈ ∪

belongs to Bk(ν, α, ε), where w1 > 0, w2 > 0 and w1 + w2 = 1.

By the definition of G(ξ), a computation yields that

G(ξ) = ξ +
∞

∑
n=2

(w1an + w2bn)ξ
n

then under the formal Ck
ν,α, we obtain

Ck
ν,αG(ξ) = ξ +

∞

∑
n=2

(w1an + w2bn)

×
[
(1 − α)Cm

m+n−1 + α

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)k ]
ξn.
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By considering the derivative, we have

�
{
(Ck

ν,αG(ξ))′
}

= 1 + w1�
{ ∞

∑
n=2

n
[
(1 − α)Cm

m+n−1 + α

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)k ]
anξn−1

}
+ w2�

{ ∞

∑
n=2

n
[
(1 − α)Cm

m+n−1 + α

(
κ1(ν, ξ) + (−1)n+1κ0(ν, ξ)

κ1(ν, ξ) + κ0(ν, ξ)

)k ]
bnξn−1

}
> 1 + w1(ε − 1) + w2(ε − 1) = ε.

4. Applications

A set of complex differential equations is an assembly of differential equations with complex
variables. The most important study in this direction is to establish the existence and uniqueness results.
There are diffident types of techniques including the utility of majors and minors (or subordination
and superordination concepts) (see [12]). Investigation of ODEs in the complex domain suggests the
detection of novel transcendental special functions, which currently called a Briot–Bouquet differential
equation (BBDE)

ω � (ξ) + (1 − ω)
ξ(�(ξ))′

�(ξ)
= �(ξ),(

�(0) = �(0), ω ∈ [0, 1], ξ ∈ ∪, � ∈
∧)

.

In this place, we shall generalize the BBDE into a symmetric BBDE by using SCDO. Numerous
presentations of these comparisons in the geometric function model have recently achieved in [12].

Needham and McAllister [16] presented a two-dimensional complex holomorphic dynamical
system, pleasing the 2-D form

ξt = Θ(ξ, ω); ωt = Θ(ξ, w), ξ, ω ∈ ∪

and t is in any real interval. Development application of the BBDE seemed newly, with different
approaches (see [17]) to solve the equation of electronic nano-shells (see [18]). Controlled by
the situation effort of traditional shell theory, the transposition fields of the nano-shell take the
dynamic system

ξt = Θ(ξ, ω) + Θθ(ξ, ω); ωt = Θ(ξ, ω) + Θθ(ξ̄, ω̄), ξ, ω ∈ ∪,

where θ is the angles between ξ and ω and their conjugates.
Our purpose is to generalize this class of equation by utilizing the SCDO and establish its

properties by applying the subordination concept. In view of (2), we have the generalized BBDE

ω � (ξ) + (1 − ω)
( ξ(Sk

ν � (ξ))′

Sk
ν � (ξ)

)
= �(ξ), �(0) = �(0), ξ ∈ ∪. (8)

The subordination settings and alteration bounds for a session of SCDO specified in the following
formula. A trivial resolution of (8) is given when ω = 1. Consequently, our vision is to carry out the
situation, � ∈ ∧

and ω = 0. We proceed to present the behavior of the solution of (8).
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Theorem 8. For � ∈ ∧
, α ∈ [0, ∞) and � is univalent convex in ∪ if

( ξ(Sk
ν)

′

Sk
ν � (ξ)

)
≺ �(ξ), ξ ∈ ∪ (9)

then

Sk
ν � (ξ) ≺ ξ exp

( ∫ ξ

0

�(�(ξ))− 1
�

d�
)

,

where � is a Schwarz function in ∪. In addition, we have

|ξ| exp
(∫ 1

0

�(�(−σ))− 1
σ

dσ

)
≤

∣∣∣Δm
α � (ξ)

∣∣∣ ≤ |ξ| exp
(∫ 1

0

�(�(σ))− 1
σ

dσ

)
.

Proof. The subordination in (9) implies that there occurs a Schwarz function � such that

( ξ(Sk
ν � (ξ))′

Sk
ν � (ξ)

)
= h̄(�(ξ)), ξ ∈ ∪.

This yields the inequality

( ξ(Sk
ν � (ξ))′

Sk
ν � (ξ)

)
− 1

ξ
=

�(�(ξ))− 1
ξ

.

By making the integrated operating, we have

log

(
Sk

ν � (ξ)

ξ

)
=

∫ ξ

0

�(�(�))− 1
�

d�. (10)

Consequently, we have

logSk
ν � (ξ) =

(∫ ξ

0

�(�(�))− 1
�

d�
)
− log(ξ). (11)

A calculation brings the next subordination relation

Sk
ν � (ξ) ≺ ξ exp

( ∫ ξ

0

�(�(�))− 1
�

d�
)

.

Moreover, the function � translates the disk 0|ξ|σ ≤ 1 into a convex symmetric domain toward
the x-axis; in other words, we have

�(−σ|ξ|) ≤ �(�(�(σξ))) ≤ �(σ|ξ|), σ ∈ (0, 1], |ξ| 	= σ,

which implies the inequalities:

�(−σ) ≤ �(−σ|ξ|), �(σ|ξ|) ≤ �(σ)

and ∫ 1

0

�(�(−σ|ξ|))− 1
σ

dσ ≤ �
( ∫ 1

0

�(�(σ))− 1
σ

dσ
)
≤

∫ 1

0

�(�(σ|ξ|))− 1
η

dσ.

By employing (10) and the last inequality, we arrive at

∫ 1

0

�(�(−σ|ξ|))− 1
σ

dσ ≤ log
∣∣∣Sk

ν � (ξ)

ξ

∣∣∣ ≤ ∫ 1

0

�(�(σ|ξ|))− 1
σ

dσ.
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This equivalence to the fact

exp
( ∫ 1

0

�(�(−σ|ξ|))− 1
σ

dσ
)
≤

∣∣∣Sk
ν � (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

�(�(σ|ξ|))− 1
σ

dσ
)

.

We note that the condition of Theorem 8, which the BB formula subordinates by a convex univalent
function � can be replaced by a general condition as follows:

Theorem 9. Suppose that � ∈ ∧
, α ∈ [0, ∞) and 0 < υ ≤ 1. If

( ξ(Sk
ν � (ξ))′ − ξ

Sk
ν � (ξ)

)
≺ 2υξ

1 + ξ
, ξ ∈ ∪ (12)

then ∣∣∣Sk
ν � (ξ)

ξ
− 1

∣∣∣ ≤ υ. (13)

Moreover, define the term

υ :=
1

(1 − r)v
, 0 < r < 1,

for some positive constant v, then ∣∣∣ (Sk
ν � (ξ)

ξ

)′ ∣∣∣ ≤ v+ 1
(1 − r)v+1 . (14)

Proof. In view of Lemma 3, we have the subordination inequality

Sk
ν � (ξ)

ξ
≺ 1 + υξ.

Since the result is sharp, then directly, we obtain the inequality (13). Consequently, by ([19],
lemma 5.1.3), we have the inequality (14).
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Abstract: This work investigates centered polygonal lacunary functions restricted from the unit disk
onto symmetry angle space which is defined by the symmetry angles of a given centered polygonal
lacunary function. This restriction allows for one to consider only the p-sequences of the centered
polygonal lacunary functions which are bounded, but not convergent, at the natural boundary.
The periodicity of the p-sequences naturally gives rise to a convergent subsequence, which can
be used as a grounds for decomposition of the restricted centered polygonal lacunary functions.
A mapping of the unit disk to the sphere allows for the study of the line integrals of restricted centered
polygonal that includes analytic progress towards closed form representations. Obvious closures of
the domain obtained from the spherical map lead to four distinct topological spaces of the “broom
topology” type.

Keywords: lacunary function; gap function; centered polygonal numbers; natural boundary;
singularities; broom topology

1. Introduction

Analytic functions are of clear importance as an area of mathematics and also in physics,
chemistry, engineering, and other applied areas. It is the set of points where analyticity breaks down,
in the form of singularities, that often carries the most information about the function and hence about
the physical phenomenon it describes. In most applications, the set of singularities is a set of discrete
points called isolated singularities. Characteristic of analytic functions is the fact that one can construct
a Taylor series representation where the isolated singularities determine the radius of convergence.
One is then often able to analytically continue functions outside the radius of convergence by various
methods (see References [1,2]).

In certain instances, the singularities are no longer isolated but instead form a curve in the complex
plane called a natural boundary. Analytic continuation is not possible through the natural boundary.
One set of functions that have a natural boundary are the lacunary functions (see References [1,2]).
The Taylor series of Lacunary functions has “gaps” (or “lacunae”) in the powers present in the series
expansion. One simple example is f (z) = ∑∞

n=1 zn4
= z + z16 + z81 + z256 + · · · . In this example,

the natural boundary lies on the unit circle and f (z) is analytic in the open unit disk.
Because the natural boundary is difficult to deal with, functions with natural boundaries have

not been heavily utilized in physics over the years. Nonetheless, the presence of natural boundaries
does result in real physical consequences. Creagh and White showed that in optics, the calculation of
evanescent waves extending from elliptical dielectrics can involve functions with natural boundaries
(see Reference [3]). In mechanics, particularly integrable/nonintegrable systems, Greene and Percival
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Mathematics 2020, 8, 568

investigate the role of natural boundaries in the context of Hamiltonian maps (see Reference [4]).
Shado and Ikeda have shown that quantum tunneling in some systemes can be impacted by natural
boundaries which influence instanton orbiting (see Reference [5]). Quite recently, Yamada and Ikeda
have studied Anderson-localized states in the Harper model in quantum mechanics and the role of
natural boundaries associated with the wavefunctions (see Reference [6]).

Guttmann et al. have proven that any solution of a non-solvable Ising-like model must be
expressible in terms of functions having natural boundaries (see References [7,8]). Relatedly, Nickel has
shown that natural boundaries appear in the calculation of the magnetic susceptibility in the 2D Ising
model (see Reference [9]). In molecular kinetic theory, lacunary functions display characteristics
near the natural boundary that are related to Weiner (stochastic) processes. Because of this,
lacunary functions have been studied in connection with Brownian motion (see Reference [10]).

More mathematically, Eckstein and Zaja̧c investigated heat traces of unbounded operators in
Hilbert space (see Reference [11]). Behr et.al. have discussed lacunary generation functions in the
context of their rather comprehensive study of Sobolev-Jacobo polynomials (see [12]). And, recently,
Kişi, Gümüş, and Savas studied AI -lacunary convergence and Cesàro summability with respect to
lacunary sequences (see Reference [13]).

Of the lacunary functions, the family generated by centered polygonal numbers have particularly
interesting features. This family is called centered polygonal lacunary functions. Their special
properties are mainly due to the unusual symmetry present in this family, compared to an arbitrary
lacunary function (see References [14–16]). A class of infinite sequences associated with lacunary
functions are called lacunary sequences and recent work has focused on exploring particular bounded
sequences of numbers arising at the natural boundary of centered polygonal lacunary sequences
(see References [14,15]). These p-sequences, as they are called, have been well characterized
and this work has been significantly enhanced by the construction of graphs to represent the
p-sequences (see Reference [14]). The graphs that have arisen are interesting in and of themselves,
especially in that they reveal self-similarity and scaling that allow for a renormalization approach (see
Reference [15]). The self-similarity hints at the fractal character of the centered polygonal lacunary
functions. Indeed, explicit investigation of this fractal character in the form of Julia sets has recently
been presented (see Reference [16]).

This current contribution builds upon the above-mentioned work and is focused on some of
the substructure in the summation terms of the centered polygonal lacunary functions as well as
the behavior of these functions on restricted subspaces of the unit disk. The periodic nature of the
p-sequences and the fact that there is a well-defined sequence that actually converges to zero at the
natural boundary offers an opportunity to make some degree of sense of the centered polygonal
lacunary functions at the natural boundary. This is the case, at least, when restricting the domain from
the unit disk onto a set of line segments which are determined by the function itself. This restricted
space is referred to here as the symmetry angle space and is defined in Section 4. Symmetry angle
space, as a topology, is very much like the so-called “broom topology” space (see Reference [17]).
Throughout this work, the topology on the unit disk is the normal topology of C and the topology on
the union of line segments is the induced topology, that is, the normal topology of the unit interval.
The periodic nature of the p-sequences suggests a natural decomposition of the centered polygonal
lacunary functions on symmetry angle space.

Further, there is a convenient surjective mapping of the unit disk to the sphere such that the natural
boundary maps to a single point. Symmetry angle space then consists of the union of longitudinal
lines on the surface of the manifold of the 2-sphere, S2 [18]. Obvious closures of the mapped symmetry
angle space allow inclusion of the natural boundary as a single point. Line integrals are investigated
which include loops “through” the natural boundary.

The ultimate goal of the current work is to provide some useful insight into the nature of the
natural boundary of centered polygonal lacunary functions. All visualizations of functions in this
work were calculated and produced using MATHEMATICA (see Reference [19]).
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2. Centered Polygonal Lacunary Functions

Definitions, notation, and some theorems from References [14,15] are briefly collected here for the
convenience of the reader.

The Nth member of a lacunary sequence of functions is defined here as

fN(z) =
N

∑
n=1

zg(n), (1)

where g(n) is a function of n, a positive integer, that follows the criteria of Hadamard’s gap
theorem (see Reference [2]). (Note that the sum starts at n = 1 for convenience but not necessity.)
Following References [14,15], we use the notation

L(g; z) ≡
{

N

∑
n=1

zg(n)

}
, (2)

to represent the particular lacunary sequence described by g(n), in complex variable z. The lacunary
function associated with the sequence L(g(n); z) is f (z) = limN→∞ fN(z). One particularly important
representation of this example function is shown in the bottom left panel of Figure 1 for the example
case of g(n) = T(n), the well-known triangular numbers. Figure 1 shows the modulus of f (z), | f (z)|,
where the graph is limited to 0 ≤ | f (z)| ≤ 1. That is, the graph is truncated at the unity level set.
This is done to better expose the symmetry features of the functions otherwise the divergence at the
natural boundary obscures the view of these features.

A g(n) family of note that yields particularly interesting lacunary functions are the centered
polygonal numbers. The centered polygonal numbers are a sequence of numbers arising from
considering points on an polygonal lattice (see References [20–23]). The centered k-gonal numbers are
defined by the formula (for positive integer k < 0)

C(k)(n) = k
n(n − 1)

2
+ 1, n ≥ 1. (3)

When g(n) = C(k)(n) is the nth centered k-gonal number, then f (z) = ∑∞
n=1 zC(k)(n) is the centered

polygonal lacunary function. Also, L(C(k); z) is the centered polygonal lacunary sequence associated
with f .

It turns out that nearly all of the structural features of centered polygonal lacunary functions
are independent of the choice of k (see References [14,15]). This is because the centered polygonal
numbers are related to the triangular numbers (see Reference [24]) in a simple way. The set of triangular
numbers is

T =

{
n(n + 1)

2

}
. (4)

For convenience, lemmas, theorems, and corollaries are proven in Reference [14] and are stated here
without proof. A couple of definitions from Reference [14] are included as well.

Lemma 1.
C(k)(n + 1)− 1

k
= T(n), (5)

where C(k)(n) and T(n) mean the nth member of the respective sequences.

Lemma 2. The sequence of triangular numbers mod p is a 2p-cycle. The sequence is symmetric about the
midpoint of the 2p-cycle. The 2pth member of the 2p-cycle is zero.
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Definition 1. Primary symmetry. The rotational symmetry of the N = 2 member of |L(g; z)|, | f2(z)|, is called
the primary symmetry.

Theorem 1. The primary symmetry of |L(g(n); z)| is k = g(2)− g(1).

Figure 1. A particularly illustrative way to present graphs of L(C(k); z). The representation shown
here is especially useful for this work. The contour plot is truncated at the unity level set (blue
shading represents low values and red shading represents high values). The top left panel shows
the example of L(C(3); z) where a plot of | f16(z)|. The top right panel shows a superposition of the
contour plot and a three-dimensional rendering. The truncated contour plot more clearly exposes
the true rotational symmetry of the centered polygonal lacunary functions. The bottom left graph
shows the case of L(Tn; z), where T(n) are the well-known triangular numbers, again for | f16(z)|.
Despite the intimate relationship between the centered polygonal numbers and the triangular numbers,
the plots are strikingly different. The bottom right panel shows an unshaded contour plot of the same
function shown in the left panel of Figure 1. The superimposed black lines indicate the symmetry
angles. The first 15 symmetry angles are shown (see text for details).

3. The p–Sequences

The centered polygonal lacunary functions have very interesting organizational structure at the
natural boundary (see References [14,15]). Of particular interest are the p-sequences (see Reference [14]).
These arise when considering the value of the centered polygonal lacunary function on the line segment
that runs from the origin to the natural boundary at an angle of φ = π

kp , p ∈ Z+. Interestingly, in the
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limit of ρ → 1−, the sequence L

(
C(k); ρe

iπ
kp

)
becomes a bounded 4p cycle of complex numbers (see

Reference [14]).

Definition 2. Symmetry angle. Let the primary symmetry be k-fold. The first symmetry angle is α1 = π
k ,

k ∈ Z. The pth symmetry angle is αp = π
pk , p, k ∈ Z. The primary symmetry angle is α1.

At the natural boundary, the p-sequences have intricate structure (see Reference [14]) that is a
manifestation of Lemma 1. Because of Lemma 2, the values of fN(eiαp) oscillate. Further, they take on
the value of zero at values of N = 4mp, where m is a positive integer. This allows for a convergent
sub-sequence which is discussed in Section 5.

This section concludes with an additional theorem specific to centered polygonal numbers
proven here.

Theorem 2. The following rearrangement holds for fN(ρeiαp).

fN(ρeiαp) =
N

∑
n=1

(ρe
iπ
kp )Ck(n) =

N

∑
n=1

(−1)

⌊
C(k)(n)

kp

⌋
(−1)

C(k)(n) mod (kp)
(kp) ρC(k)(n), (6)

where �x� indicates the floor function.

Proof. The identity of Equation (6) follows directly from the identity eiπ = −1 and the well-known
quotient-remainder formula, a = b� a

b �+ a mod b, where a, b, b 	= 0 are any integers. Each term in the
summation is then,

ρC(k)(n)(e
iπ
kp )Ck(n) = (−1)

⌊
C(k)(n)

kp

⌋
(−1)

C(k)(n) mod (kp)
(kp) ρC(k)(n). (7)

Thus Equation (6) holds and Theorem 2 is proven.

This theorem has real practical use in that it radically speeds up certain calculations and simplifies
certain expressions on MATHEMATICA.

4. Symmetry Angle Spaces

The focus of this work is to restrict the centered polygonal functions, which are analytic on the
open complex disk, to a topological space consisting of the union of the line segments lying along the
symmetry angles which run from the origin to the natural boundary (located on the unit circle).

Let D be the open unit disk in the complex plane and let let D̄ be the closed unit disk.
Further, one can define Ip ≡ ρeiαp for 0 ≤ ρ < 1 (that, is the line segment along the pth symmetry
angle, αp. One likewise define the closure of Ip as Īp, where now 0 ≤ ρ ≤ 1.

The symmetry angle space is then defined as

P ≡
∞⋃

p=1

Ip, (8)

and its closure,

P̄ ≡
∞⋃

p=1

Īp. (9)

Note that as p approaches ∞ the symmetry line approaches the real axis. Thus one needs to consider
a second type of closure. If the real line is included, one denotes the subspaces as P̌ and ˇ̄P .

Thus, there are four related subspaces upon which the centered lacunary functions are restricted:
P , P̄ , P̌ , and ˇ̄P . These subspaces are related to the so-called broom topological spaces (see
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Reference [17]). They naturally take on a subspace topology, that is the normal topology for a line
segment. All four of these subspaces are arc-connected and, in fact, star-connected through the origin.
In Section 7, subspaces P , P̄ , P̌ , and ˇ̄P are homeomorphically mapped to longitudinal lines of the
sphere. This allows for closed form expressions for integrals of f (z) along paths in these mapped
spaces.

5. Cyclic Decomposition

Along the symmetry angle, the resultant p-sequence has a 4p cycle, and, in fact, the 4p cycle
further breaks into a 2p-cycle at the modulus level as discussed in Section 3. Finally, by Lemma 2
the 2pth member of the the 2p cycle is zero. Because of this, it is natural to consider a subset of

L

(
C(k), ρe

iπ
kp

)
for which N = 2pm, m ∈ Z+; call this subsequence L̂

(
C(k), ρe

iπ
kp

)
. For every member

of this subsequence limρ→1− is zero.
One can express the jth cycle as

f (k)j (ρe
iπ
kp ) =

2p(j+1)

∑
n=pj+1

ρe
iπ
kp , (10)

where j is any non-negative integer. Thus, the full function can be decomposed into the cyclic
summations,

f (k) =
∞

∑
j=1

f (k)j . (11)

Figure 2 shows the cyclic summation decomposition of f (3)(ρe
iπ
3p ) for the examples of p = 1 and

p = 3. The fundamental component, f (3)0 , captures much of the full function, but deviates significantly
as ρ � 0.9. The actual peak occurs at ρ = ρmax. An inspection of Figure 2 shows that ρmax increases
with increasing k as the curves are skewed towards the natural boundary.

Figure 2. Cyclic decompositions for the centered polygonal lacunary functions along three of the line
segments shown in the bottom right panel of Figure 1, that is, k = 3. The first 40 f j are shown. The

top row shows | f40p(ρe
iπ
3p )|: left panel p = 1, middle panel p = 2, right panel p = 3. The bottom row

focuses on the p = 1 case in more detail. The left and middle panels show a sequential blow up near
the natural boundary of the top left graph (note the displayed domain on the ρ axis). For better clarity,
the first 10 f j are not shown in the left panel and the first 20 f j are not shown in the middle panel.

Finally, the bottom right panel shows the real (blue) and imaginary (red) parts of f40(ρe
iπ
3 ), that is,

k = 3, p = 1.
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The higher components j ≥ 1 contribute very little for low values of ρ. Each of the subsequent
higher components begin to make significant contributions to the full function closer and closer to the
natural boundary. One notices in Figure 2 that both the real (blue curve in figure) and imaginary (red
curve) parts of the component cyclic summations alternate signs. Figure 3 shows cyclic decompositions
for the centered polygonal lacunary functions along the line segments at α1 for several different values
of k.

Figure 3. Cyclic decompositions for the centered polygonal lacunary functions along the line segments
at α1 for (left-to-right) k = 1, k = 3 (sames as in Figure 2), and k = 8. The other parameters are the
same as in Figure 2. Increasing k skews the graph towards the natural boundary.

6. Parametric Curves

The centered polygonal lacunary functions on P can be represented in a visually instructive way
via the parametric curves:

P(k)(ρ; p) =
(

Re
[

f (k)(ρe
iπ
kp )

]
, Im

[
f (k)(ρe

iπ
kp )

])
. (12)

The parametric curves for k = 1, 2, 4, 8 are shown in Figure 4. Here values of p ∈ {1, ..., 10} are
shown for each k. (Note, P(k) is plotted in an auxiliary R2 plane, not in the original complex plane
containing P .)

Figure 4. Parametric curves, P(3)(ρ; p) from Equation (12), of fN(z) for four different values of k read
left-to-right, top-to-bottom: k = 1, k = 2, k = 4, k = 8. Shown are the first 10 values of p. The case of
p = 1 has no interior points and is directed at an angle equal to α1 in R2. Increasing values of p lead
to closed curves which are bigger and have greater interior area. As ρ goes from 0 to 1 the curve is
traversed in a counterclockwise direction.

The most obvious feature is that these produce a closed curve in the plane starting at the origin for
ρ = 0 and returning to the origin for ρ = 1. Note that the curves P(k)(ρ; 1) are all degenerate meaning
that the encircled area is zero. Higher values of p give rise to larger and larger enclosed areas (Figure 4).
Hand-in-hand with increasing area is increasing arclength which is also shown in Figures 4 and 5.

A more subtle view of the closed curves reveals an “acceleration” with ρ and this acceleration
increases with increasing p. The “velocity” is represented as red tangent vectors in Figure 5. One notices
a slow acceleration along the lower arc of the curve (for ρ < ρmax). Acceleration then rapidly increases
at the apex of the curve and along the return path (ρ ≥ ρmax). The change in acceleration at the
apex corresponds to an abrupt change in arclength with ρ (see the bottom left panel of Figure 5).

163



Mathematics 2020, 8, 568

An incidental observation regarding arclength is that it closely fits an empirical curve of the form
h(p) = A

√
p + c regardless of k (see bottom right panel of Figure 5).

Figure 5. Top: Parametric plot P(3)(ρ; p) (black curve) superimposed with red vectors indicating the
“velocity” along the curve. One notices a modest “acceleration” until the curve turns back towards the
origin whereupon the acceleration is markedly increased. Bottom left: the arclength (ordinate) versus ρ

(abscissa) for P(3)(ρ; p). Bottom right: Arclength of P(k)(ρ; p) for p = 1, 2, . . . , 30 (black dots) associated
with the parametric plots shown in Figure 4 fitted to A

√
p + c (orange curve). The top curve is for

k = 1 and the bottom curve is for k = 8. Fit parameters (A, c) for k = 1, k = 2, k = 4, k = 8 respectively:
(1.7880,−1.1038), (1.7571,−0.7926), (1.7175,−0.5052), (1.6794,−0.2701).

Perhaps more interesting, however, is the geometrical behavior of the curves. The initial angle of
the curve at ρ = 0 is αp = π

kp . This is intuitive and quick to prove.

Theorem 3. The initial angle of P(k)(ρ; p) is αp.

Proof. One can make use of the fact that for small ρ, fN(z) is dominated by the first term in the sum.
This goes as

lim
ρ→0

f (k)N (ρe
iπ
kp ) = lim

ρ→0

N

∑
n=1

(ρe
iπ
kp )C(k)(n)

= lim
ρ→0

(
ρe

iπ
kp + ρk+1e

iπ(k+1)
kp + ρ

3k+2
2 e

iπ(3k+2)
2kp + · · · ρ

(N2−N)k+2
2 e

iπ((N2−N)k+2)
2kp

)
. (13)

The asymptotic form as ρ → 0 is

lim
ρ→0

f (k)N (ρe
iπ
kp ) ∼ ρe

iπ
kp . (14)

The phase is iπ
kp = αk, which completes the proof.

Less intuitive is the behavior of the return angle as ρ → 1−. First after ρmax the curve is nearly
a straight line. Further, the angle of that line is π

k for p = 1, but, interestingly, it asymptotically goes to
π
4 as p → ∞. The return angle becomes independent of k. The proof of this statement is probabilistic in
nature and is wanting of a more rigorous proof.
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Theorem 4. The return angle of P(k)(ρ; p) for p = 1 is π
k .

Proof. From Theorem 2 and p = 1, one has

fN(ρeiα1) =
N

∑
n=1

(−1)

⌊
C(k)(n)

k

⌋
(−1)

C(k)(n) mod k
k ρC(k)(n). (15)

Now, from Equation (3) ⌊
C(k)(n)

k

⌋
=

⌊
n2 − n

2
+

1
k

⌋
=

⌊
n2 − n

2

⌋
= m(n) ∈ N (16)

and

C(k)(n) mod k
k

=
1
k

(
k(n2 − n)

2
+ 1 mod k

)
=

1
k

. (17)

So this reduces fN(ρeiα1) to

fN(ρeiα1) =
N

∑
n=1

(−1)m(n)(−1)
1
k ρC(k)(n)

= (−1)
1
k

N

∑
n=1

(−1)m(n)ρC(k)(n). (18)

The sum is now pure real and setting (−1)
1
k = e

iπ
k . Hence, the return angle is π

k .

Conjecture 1. For p a positive integer,

lim
p→∞

P(k)(ρ; p) =
π

4
. (19)

Remark 1. The proof is subtle and an analytic one remains elusive. Nonetheless, the conjecture is understandable
on probabilistic grounds. Unfortunately, the limit of ρ = 1 is not helpful since the function is identically zero
and information about the approach angle is lost. As opposed to the case of limρ→0, the case of limρ→1− now

activates many terms in the summation of f (k)N (ρe
iπ
kp ). In between ρmax and 1 there is not equal weighting of the

terms in the cyclic summation, but the weights of the higher terms are no longer negligible. Thus, the limit is a
(non-zero) weighted average of many terms. For large p values, the weighed average of many C(k)(n) ultimately
gives rise to Re

[
f (k)N

]
= Im

[
f (k)N

]
and, hence, the return angle is π

4 .

Because these parametric curves produce enclosed regions, the area within the curves can be
calculated. This area is found through a numerical integration of the curve, however the area of every
value of k for p = 1 will be zero, as the parametric graph of p = 1 is a straight line. Figure 6 is a graph
of the area of the associated parametric curves for 1 ≤ k ≤ 5 and 1 ≤ p ≤ 10. Each set of points shows
the area for a distinct k value, with the bottom set being the area of k = 1, and the top being the area of
k = 5. As the p value increases a linear trend appears, however the equation for what p approaches to
does not seem to have a general trend.
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Figure 6. Plot of area for 1 ≤ p ≤ 17 and 1 ≤ k ≤ 5. Where the lowest set is the area of k = 1 and each
successively higher line corresponds to the next greatest k value. The area for each p value approaches
to a distinct line for each k value.

7. Whole Sphere Mapping

Due to the natural boundary of the centered polygonal lacunary functions sitting on the unit
circle in the complex plane, there is no reason to consider the domain outside of the closed disk.
There is an interesting and convenient mapping that maps the disk to S2, which is embedded in R3

as the unit sphere centered at the origin, such that the entire unit circle is mapped to the south pole
((0, 0,−1)). As will be seen, this, in some sense, compresses the natural boundary to an isolated
singularity. Further, the symmetry angle spaces map to longitudinal arcs and, given the nature of the
p-sequences, this singularity is, again in some sense, removed.

Specifically, the above map is a parametric mapping that will take point, z = ρeiφ from D̄ into R3,
such that the set of all points in D̄ cover the unit sphere centered at the origin. It is convenient to use
spherical polar coordinates to describe the parametric surface. This is done with the identification,

φ = φ 0 ≤ φ < 2π

θ = 2 arcsin ρ 0 ≤ θ < π. (20)

With this identification, ρ is expressed as a function of the zenith angle (θ) from spherical polar
coordinates, ρ = sin( θ

2 ). Likewise, φ in the complex plane corresponds directly to azimuthal angle (φ)
of spherical polar coordinates. The parametric mapping on S2, which is embedded in R3 parametrically
as (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)), can be written as

Ŝ : D̄ → S2

z = ρeiφ �→ (cos(φ) sin(2 arcsin ρ), sin(φ) sin(2 arcsin ρ), cos(2 arcsin ρ)). (21)

Under this mapping, fN(z) becomes fN(φ, θ). The example of | f16(φ, θ)| is shown in Figure 7.
The mapping is that of the centered polygonal lacunary function shown in the upper left panel of
Figure 1. So the centered polygonal functions is the wrapped over the sphere such that the natural
boundary gets pinched into the south pole.

Then the restriction to, for example, P̄ induces the map

ŜP̄ : D̄ → S2
P̄

z �→ (cos(αp) sin(2 arcsin ρ), sin(αp) sin(2 arcsin ρ), cos(2 arcsin ρ)). (22)

Here S2
P̄ is the restricted domain of longitudinal arcs; an example is shown in Figure 8. S2

P̄ (as well
as S2

ˇ̄P ) are star-connected through both the north pole (origin) and south pole (contracted unit circle).

Because of this, one can define loops on S2
P̄ and S2

ˇ̄P , with the north pole as the base-point, that traverse
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one longitudinal arc S2
Īi

and return along another S2
Īj

. The fundamental group (in the homotopy sense)

is π1 = ∏∞ ∗Z = Z ∗Z ∗ · · · , where ∗ is the loop product, that is, the concatenation of loops [18].

Figure 7. The whole sphere mapping of D̄ onto S2 (see text for the equations of the map). The mapping
is that of the centered polygonal lacunary function shown in Figure 1 under Ŝ. Two different viewpoints

of the same function ( | f (3)16 (φ, θ)|) are shown. The left panel shows a “front” view such that the north
pole (0, 0, 1) is located directly on top and the south pole (0, 0,−1) directly on the bottom. The right
panel shows the “bottom” view such that the south pole is directly in the center of the image. The unit
circle maps to the single point at the south pole.

Figure 8. The superposition of the line segments shown in the bottom right panel of Figure 1 onto the
sphere shown in Figure 7 under the mapping Ŝ.

The spaces S2
P̄ and S2

ˇ̄P offer an interesting opportunity to explore closed-loop path integrals of

fN(z). Call the path along the p symmetry angle running from the north pole to south pole in S2
P̄ , Γp.

Then a closed-loop can be obtained by considering Γij ≡ Γpi − Γpj . The integral along Γp is expressed as

Ip(k, N) =
∫ π

0
fN

(
eiαp sin

(
θ

2

)) eiαp cos
(

θ
2

)
2

dθ. (23)

The second factor accounts for the appropriate integration metric along angle αp. This integral can be
evaluated and one has the following theorem.
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Theorem 5. Let k, m, p be any positive integers and let N = 4mp. Then,

Ip(k, 4mp) = e
2πi
kp

4mp

∑
n=1

(−1)
n2−n

2p

C(k)(n) + 1
. (24)

Proof. Now, Equation (23) is

Ip(k, 4mp) =
1
2

∫ π

0
fN

(
eiαp sin

(
θ

2

))
eiαp cos

(
θ

2

)
dθ. (25)

Expressing fN(=4mp) in summation form and interchanging the summation and the integration gives

Ip(k, 4mp) =
1
2

4mp

∑
n=1

eiαp(C(k)(n)+1)
∫ π

0

(
sin

(
θ

2

))C(k)(n)

cos
(

θ

2

)
dθ. (26)

Using, ∫ π

0

(
sin

θ

2

)n
cos

θ

2
dθ =

2
n + 1

, (27)

the integral is quickly evaluated.

Ip(k, 4mp) =
1
2

4mp

∑
n=1

eiαp(C(k)(n)+1) 2
C(k)(n) + 1

=
4mp

∑
n=1

e
iπ
k (k n2+n

2 +2) 1
C(k)(n) + 1

= e
2πi
kp

4mp

∑
n=1

(−1)
n2−n

2p

C(k)(n) + 1
. (28)

where αp and C(k)(n) were expressed in their functional form as well as expressing eiπ = −1.

Conjecture 2. Let k and m be positive integers and p = 1,

lim
m→∞

I1(k, m) ≡ I1(k) =
e

2πi
k

2kΔk

[
−ψ

(
1 − Δk

8

)
+ ψ

(
3 − Δk

8

)
+ ψ

(
5 − Δk

8

)
− ψ

(
7 − Δk

8

)
+ ψ

(
1 + Δk

8

)
− ψ

(
3 + Δk

8

)
−ψ

(
5 + Δk

8

)
+ ψ

(
7 + Δk

8

)]
. (29)

This can also be written as

I1(k) =
e

2πi
k

kΔk

[
π sec

(π

4
(1 + Δk)

)
− π csc

(π

4
(1 + Δk)

)]
, (30)

where ψ is the digamma function (see Reference [25]) and Δk ≡
√

k−16
k .

Remark 2. When p = 1, Equation (28) becomes

lim
m→∞

I1(k) =
∞

∑
n=1

(−1)
n2−n

2

C(k)(n) + 1
=

∞

∑
n=1

2(−1)
n2−n

2

kn2 − kn + 4
. (31)
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This summation yields to a closed form which is Equation (29) (see Reference [19]). Using the relations for the
digamma function built in to MATHEMATICA, this simplifies to Equation (30) (see Reference [19]).

The digamma function has many applications in physics and even in the life sciences (see the
review by Hăşmăşanu et al. [26])

I1 versus k is shown in Figure 9. I1 approaches a k-dependent limit value.

Figure 9. I1 versus k (dots: |I1| - black, Re[I1] - blue, Im[I1] - red). The curves arise from Equation (30)
in Corollary 2. .

Corollary 1. Let k, m, p be positive integers and k 	= 16. Then, on S2
ˇ̄P ,

lim
p→∞

lim
m→∞

Ip(k, 4mp) ≡ I∞(k) =
2π tan

(
1
2 πΔk

)
kΔk

, (32)

where Δk ≡
√

k−16
k .

Proof. Beginning with the summation formula of the tangent function,

π tan(πx) = 8x
∞

∑
n=1

1
(2n − 1)2 − 4x2 (33)

(see Reference [25,27]), and x = Δk
2 . Starting with the right hand side of Equation (32),

2π tan
(

1
2 πΔk

)
kΔk

=
16

kΔk

Δk
2

∞

∑
n=1

1

(2n − 1)2 − 4 Δ2
k

4

. (34)
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Simplify and manipulating gives,

2π tan
(

1
2 πΔk

)
kΔk

=
8
k

∞

∑
n=1

1
(2n − 1)2 − Δ2

k

=
8
k

∞

∑
n=1

1
(2n − 1)2 − k−16

k

= 8
∞

∑
n=1

1
k(2n − 1)2 − k − 16

= 8
∞

∑
n=1

1
4(kn2 − kn + 4)

=
∞

∑
n=1

1

k n2−n
2 + 2

=
∞

∑
n=1

1
C(k)(n) + 1

. (35)

This completes the proof.

Corollary 2. Let k be a positive integer, then limk→∞ I1(k) = 1
2 and limk→∞ I∞(k) = 1

2 .

Proof. The proof follows from Equations (30) and (32) by first making a change of variable k = 1
x .

Upon doing this and performing a bit of algebraic simplification, Equation (30) becomes

I1(x) =
πe2iπxx

(
csc

(
1
4 π

(√
1 − 16x + 1

))
− sec

(
1
4 π

(√
1 − 16x + 1

)))
√

1 − 16x
. (36)

One can then expand this expression in a Taylor series about x = 0 to get

I1(x) =
1
2
+ (2 − (1 − i)π)x +

(
24 − (8 − 4i)π −

(
2
3
+ 2i

)
π2

)
x2 + O

(
x3

)
. (37)

Which in the limit of x → 0 becomes 1
2 .

By a similar procedure, Equation (32) becomes

I∞(x) =
2πx tan

(
1
2 π

√
1 − 16x

)
√

1 − 16x
. (38)

Series expansion gives

I∞(x) =
1
2
+ 2x +

(
24 − 8π2

3

)
x2 + O

(
x3

)
, (39)

which, again is 1
2 in the limit of x → 0.

Based on Corollary 2 the following unproven conjecture is proposed.

Conjecture 3. Let k be a positive integer, then limk→∞ Ip(k) = 1
2 .

Remark 3. k = 16 is special and Equations (30) and (32) must be evaluated using limits of k → 16 and

L’Hospital’s rule. When k = 16, Equation (30) becomes I1 =
8√−1π2

16
√

2
and Equation (32) becomes I∞ = π2

16

The closed-loop integral is then on S2
P̄ and S2

ˇ̄P ,

Lij(k) ≡ Ii(k)− Ij(k). (40)
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Of special interest is Lp1, where the return path is along −Γ1. The left panel of Figure 10 shows
the behavior of Lp1 for p = 1 through p = 20 and k = 1. A finite limiting values is reached for
L∞1 ≡ limp→∞ Lp1. It is natural to consider a normalized version of L∞1 to compare different values of
k. This is done by multiplying by k

π and a graph is shown in the right panel of Figure 10. The dashed
line in the figure represent the limiting value of k

π L∞1 as k → ∞ as given by the following theorem.

Theorem 6. Let k be any positive integer. On S2
ˇ̄P ,

lim
k→∞

k
π

L∞1(k) = 1 − i (41)

Proof. One considers
lim
k→∞

k
π
(I∞(k)− I1(k)), (42)

(c.f., Equations (30) and (32)) and uses the same strategy as in the proof of those expressions. Change of
variable k = 1

x and simplification gives,

1
xπ

(I∞(x)− I1(x)) =

2πx tan( 1
2 π

√
1−16x)√

1−16x
+

πe2iπx x(csc( 1
4 π(

√
1−16x+1))−sec( 1

4 π(
√

1−16x+1)))√
1−16x

πx
. (43)

And series expansion yields

1
xπ

(I∞(x)− I1(x)) = (1 − i) + ((8 − 4i)− (2 − 2i)π)x + (−32 + 16i)(π − 3)x2 + O
(

x3
)

. (44)

Thus the limit as x → 0 is 1 + i.

Figure 10. Left Panel: Lp1 versus p (dots: |Lp1| - black, Re[Lp1] - blue, Im[Lp1] - red) for the case of
k = 1. The curves arise from Equation (30) in Corollary 2. Right Panel: k

π L∞1 versus k (| k
π L∞1| - black,

Re[ k
π L∞1] - blue, Im[ k

π L∞1] - red). The dashed lines represent the limk→∞
k
π L∞1 = 1 − i.

8. Conclusions

This work focused on the centered polygonal lacunary functions restricted to symmetry angle
space. The periodicity of the p-sequences and the existence of a convergent subsequence provided
a framework for decomposition of the centered polygonal lacunary functions. This decomposition
could be potentially useful in renormalization procedures as one approaches the natural boundary.

The surjective spherical mapping of the unit disk such that the natural boundary is mapped to
the south pole was useful in investigating line integrals of the centered polygonal lacunary functions.
Closed form functional representations were achieved in some cases.

It is hoped that this work provides useful insight into the nature of the natural boundary of
centered polygonal lacunary functions, both on the full unit disk and also restricted to symmetry angle
space. Statistical mechanics is the most promising link of this work to physics. This is for two reasons.
First is simply a counting application, for example, the canonical partition function. Second is the
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self-similarity of these functions and the possible use in renormalization schemes applied to phase
transitions. Optics may be the closest experimental link either via simple signal processing scheme or,
more interestingly, in application to, for example the Talbot effect or other such phenomena.
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Abstract: The theory of differential subordinations has been extended from the analytic functions
to the harmonic complex-valued functions in 2015. In a recent paper published in 2019, the authors
have considered the dual problem of the differential subordination for the harmonic complex-valued
functions and have defined the differential superordination for harmonic complex-valued functions.
Finding the best subordinant of a differential superordination is among the main purposes in this
research subject. In this article, conditions for a harmonic complex-valued function p to be the
best subordinant of a differential superordination for harmonic complex-valued functions are given.
Examples are also provided to show how the theoretical findings can be used and also to prove the
connection with the results obtained in 2015.
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1. Introduction and Preliminaries

Since Miller and Mocanu [1] (see also [2]) introduced the theory of differential subordination,
this theory has inspired many researchers to produce a number of analogous notions, which are
extended even to non-analytic functions, such as strong differential subordination and superordination,
differential subordination for non-analytic functions, fuzzy differential subordination and fuzzy
differential superordination.

The notion of differential subordination was adapted to fit the harmonic complex-valued functions
in the paper published by S. Kanas in 2015 [3]. In that paper, considering Ω and Δ any sets in the
complex plane C and taking the functions ϕ : C3 ×U → C and p, a harmonic complex-valued function
in the unit disc U of the form p(z) = p1(z) + p2(z), where p1 and p2 are analytic in U properties of the
function p were determined such that p satisfies the differential subordination

ψ(p(z), Dp(z), D2 p(z); z) ⊂ Ω ⇒ p(U) ⊂ Δ.

Inspired by the idea provided by Miller and Mocanu [1], and following the research in [3,4] ,
the notion of differential superordination for harmonic complex—valued functions was introduced in [5].
In that paper, properties of the harmonic complex-valued function p of the form p(z) = p1(z) + p2(z),
with p1 and p2 analytic in U, such that p satisfies the differential superordination

Ω ⊂ ψ(p(z), Dp(z), D2 p(z); z) ⇒ Δ ⊂ p(U).

Continuing the study on differential superordinations for harmonic complex-valued functions
started in paper [5], the problem of finding the best subordinant of a differential superordination for
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harmonic complex-valued functions is studied in the present paper and a method for finding the best
subordinant is provided in a theorem and few corollaries in the Main Results section. Examples are
also given using those original and new theoretical findings.

The well-known definitions and notations familiar to the field of complex analysis are used.
The unit disc of the complex plane is denoted by U. H(U) stands for the class of analytic functions
in the unit disc and the classical definition for class An is applied, and it is known that it contains all
functions from class H(U), which have the specific form

f (z) = z + an+1zn+1 + . . . ,

with z ∈ U and A1 written simply A. All the functions in class A which are univalent in U form the
class denoted by S. In particular, the functions in class A who have the property that

Re
z f ′′(z)
z f ′(z)

+ 1 > 0

represent the class of convex functions K.
A harmonic complex-valued mapping of the simply connected region Ω is a complex-valued

function of the form
f (z) = h(z) + g(z), (1)

where h and g are analytic in Ω, with g(z0) = 0, for some prescribed point z0 ∈ Ω.
We call h and g analytic and co-analytic parts of f , respectively. If f is (locally) injective, then f is

called (locally) univalent. The Jacobian and the second complex dilatation of f are given by

J f (z) = |h′(z)|2 − |g′(z)|2 and w(z) =
g′(z)
h′(z)

, z ∈ U,

respectively. If J f (z) > 0, z ∈ U, then f is a local sense-preserving diffeomorphism.
A function f ∈ C2(Ω), f (z) = u(z) + iv(z), which satisfies

Δ f =
∂2 f
∂x2 +

∂2 f
∂y2 = 0

is called harmonic function.
By Har(U) we denote the class of complex-valued, sense-preserving harmonic mappings in U.
For f ∈ Har(U), let the differential operator D be defined as follows

D f = z · ∂ f
∂z

− z
∂ f
∂z

= zh′(z)− zg′(z), (2)

where
∂ f
∂z

and
∂ f
∂z

are the formal derivatives of function f

∂ f
∂z

=
1
2

(
∂ f
∂x

− i
∂ f
∂y

)
and

∂ f
∂z

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
. (3)

The conditions (3) are satisfied for any function f ∈ C′(Ω) not necessarily harmonic, nor analytic.
Moreover, we define the n-th order differential operator by recurrence relation

D2 f = D(D f ) = D f + z2h′′ − z2q′′, Dn f = D(Dn−1 f ). (4)

Remark 1. If f ∈ H(U) (i.e., g(z) = 0) then D f (z) = z f ′(z).

In order to prove the main results of this paper, we use the following definitions and lemmas:
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Definition 1 ([3] Definition 2.2). By Q, we denote the set of functions

q(z) = q1(z) + q2(z),

harmonic complex-valued and univalent on U − E(q), where

E(q) =
{

ζ ∈ ∂U : lim
z→ζ

q(z) = ∞
}

.

Moreover, we assume that D(q(ζ)) 	= 0, for ζ ∈ ∂U \ E(q).
The set E(q) is called an exception set. We note that the functions

q(z) = z, q(z) =
1 + z
1 − z

are in Q, therefore Q is a nonempty set.

Definition 2 ([5] Definition 2.2). Let ϕ : C3 × U → C and let h be harmonic univalent in U.
If p and ϕ(p(z), Dp(z), D2(p(z))) are harmonic univalent in U, and satisfy the second-order differential
superordination for harmonic complex-valued functions

h(z) ≺ ϕ(p(z), Dp(z), D2 p(z); z) (5)

then p is called a solution of the differential superordination.
A harmonic univalent function q is called a subordinant of the solutions of the differential superordination

for harmonic complex-valued functions, or more simply a subordinant if q ≺ p, for all p satisfying (5).
An univalent harmonic subordinant q that satisfies q ≺ q for all subordinants q of (5) is said to be the best

subordinant. The best subordinant is unique up to a rotation of U.

Lemma 1 ([5] Theorem 3.2). Let h, q be harmonic and univalent functions in U, ϕ : C2 × U → C,
and suppose that

ϕ(q(z), tDq(z); ζ) ∈ h(U),

for z ∈ U, ζ ∈ ∂U and 0 < t ≤ 1
m

≤ 1, m ≥ 1.

If p ∈ Q and ϕ(p(z), D(p(z)); z ∈ U) is univalent in U, then

h(z) ≺ ϕ(p(z), Dp(z); z ∈ U)

implies
q(z) ≺ p(z), z ∈ U.

Furthermore, if ϕ(q(z), Dq(z); z ∈ U) = h(z), has an univalent solution q ∈ Q, then q is the
best subordinant.

Let f : U → C. We consider the special set

E(U) = { f : f ∈ C′(U), D f ∈ C′(U)} ⊃ C2(U).

Lemma 2 ([6] Theorem 7.2.2, p. 131). If the function f ∈ E(U) satisfies

(i) f (0) = 0, f (z) · D f (z) 	= 0, z ∈ U̇;

(ii) J f (z) =
∣∣∣∣∂ f

∂z

∣∣∣∣2 − ∣∣∣∣∂ f
∂z

∣∣∣∣2 > 0, z ∈ U;

(iii) Re
D2 f (z)
D f (z)

> 0, z ∈ U̇
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then the function f is convex in U. Furthermore f (Ur) is a convex domain for any r ∈ (0, 1).

2. Main Results

In Definitions 1 and 2, just like in the hypothesis of Lemma 1, the function q must have a “nice”
behavior on the border of the unit disc. If this condition is not satisfied or if the behavior of function
q on the border of the domain is unknown, then the superordination q(z) ≺ p(z) can be proven by
using a limiting procedure.

The next theorem and the corollaries give the sufficient conditions for obtaining the best
subordinant for the differential superordination.

Theorem 1. Let h be a convex harmonic complex-valued function in U, with h(0) = a, and let θ : D ⊂ C → C,
φ : D ⊂ C → C be a harmonic complex-valued function in a domain D. Suppose that the differential equation

θ[q(z)] + Dq(z) · φ[q(z)] = h(z), z ∈ U, (6)

has an univalent harmonic solution q that satisfies q(0) = a, q(U) ⊂ D and

θ[q(z)] ≺ h(z), z ∈ U. (7)

Let p be a harmonic complex-valued univalent function with p(0) = h(0) = θ[p(0)], p ∈ Q and
p(U) ⊂ D. Then

h(z) ≺ θ[p(z)] + Dp(z) · φ[p(z)], (8)

implies
q(z) ≺ p(z), z ∈ U.

The function q is the best subordinant.

Proof. We can assume that h, p and q satisfy the conditions of the theorem on the closed disc U,
and Dq(ζ) 	= 0, for |ζ| = 1. If not, we can replace h, p and q by h(ρz), p(ρz) and q(ρz), where 0 < ρ < 1.

These new functions have the desired properties on U, and we can use them in the proof of the
theorem. Theorem 1 would then follow by letting ρ → 1. We will use Lemma A to prove this result.

Let ϕ : C2 × U → C, where
ϕ(r, s) = θ(r) + s · φ(r). (9)

For r = p(z), s = Dp(z), relation (9) becomes

ϕ(p(z), Dp(z)) = θ[p(z)] + Dp(z) · φ[p(z)], (10)

and the superordination (8) becomes

h(z) ≺ ϕ[p(z)] + Dp(z) · φ[p(z)]. (11)

For r = q(z) and s = Dq(z), relation (9) becomes

ϕ(q(z), Dq(z)) = θ[q(z)] + Dq(z) · φ[q(z)], z ∈ U (12)

and (6) is equivalent to
ϕ(q(z), Dq(z)) = h(z), z ∈ U.

For r = q(z) and s = tDq(z), 0 ≤ t ≤ 1, relation (9) becomes

ϕ(q(z), tDq(z)) = θ[q(z)] + tDq(z) · φ[q(z)], 0 ≤ t ≤ 1. (13)
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From (6), we have
Dq(z) · φ[q(z)] = h(z)− θ[q(z)]. (14)

Using (14) in (13), we have

ϕ(q(z), tDq(z)) = (1 − t)θ[q(z)] + th(z), 0 ≤ t ≤ 1. (15)

Since h is a convex function, f (U) is a convex domain and using (7), we have

ϕ(q(z), tDq(z)) ∈ h(U), for 0 ≤ t ≤ 1.

Since the conditions from Lemma A are satisfied, we have

q(z) ≺ p(z), z ∈ U.

Since q is the solution of Equation (6) we get that q is the best subordinant.

In the special case when θ(w) = w, and

φ(w) =
1

βw + γ
, w = q(z), z ∈ U,

we obtain the following result for the Briot–Bouquet differential superordination.

Corollary 1. Let β, γ ∈ C, β 	= 0, and let h be a convex harmonic complex-valued function in U, with h(0) = a.
Suppose that the differential equation

q(z) +
Dq(z)

βq(z) + γ
= h(z), z ∈ U

has an univalent harmonic complex-valued solution q that satisfies q(0) = a and q(z) ≺ h(z). If p ∈ Q and

p(z) +
Dp(z)

βp(z) + γ
is harmonic complex-valued univalent in U, then

h(z) ≺ p(z) +
Dp(z)

βp(z) + γ

implies q(z) ≺ p(z), z ∈ U. The function q is the best subordinant.

If θ(w) = w and φ(w) = βw + γ, β 	= 0, w = q(z), γ ∈ C, we obtain the following result.

Corollary 2. Let β, γ ∈ C, β 	= 0, and let h be a convex harmonic-valued function in U, with h(0) = a.
Suppose that the differential equation

q(z) + Dq(z)[βq(z) + γ] = h(z), z ∈ U,

has an univalent harmonic complex-valued solution q that satisfies q(0) = a and q(z) ≺ h(z).
If p ∈ Q and p(z) + Dp(z)[βp(z) + γ] is univalent harmonic complex valued in U, then

h(z) ≺ p(z) + Dp(z)[βp(z) + γ]

implies q(z) ≺ p(z). The function q is the best subordinant.

If θ(w) = w, φ(w) =
1
γ

, γ 	= 0, w = q(z), we obtain the following result.
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Corollary 3. Let h be a convex harmonic complex-valued function in U, with h(0) = a. Let γ 	= 0,
with Re γ ≥ 0. Suppose that the differential equation

q(z) +
1
γ

Dq(z) = h(z), z ∈ U

has an univalent harmonic complex-valued solution q that satisfies q(0) = a and q(z) ≺ p(z).

If p ∈ Q and p(z) +
1
γ

Dp(z) is univalent harmonic complex-valued in U, then

h(z) ≺ p(z) +
1
γ
· Dp(z), z ∈ U

implies
q(z) ≺ p(z), z ∈ U.

The function q is the best subordinant.

Example 1. For γ = 2, the univalent harmonic complex-valued function q(z) = 6z − 4z, is the solution of
the equation

q(z) +
1
2

Dq(z) = h(z) = 9z − 2z.

We next prove that h is a harmonic non-analytic function.

h(z) = 9(x + iy)− 2(x − iy) = 7x + 11iy.

We have
∂h
∂x

= 7,
∂2h
∂x2 = 0,

∂h
∂y

= 11,
∂2h
∂y2 = 0,

∂2h
∂x2 +

∂2h
∂y2 = 0.

We obtain that h is univalent harmonic complex-valued function and since
∂h
∂x

	= ∂h
∂y

, we conclude that

it is not analytic.
We next prove that the harmonic function h is also convex.
In order to do that, we show that it satisfies the conditions in the hypothesis of Lemma 2.
We calculate:

Dh(z) = z
∂h
∂z

− z
∂h
∂z

= 9z + 2z,

D2h(z) = D(Dh(z)) = 9z − 2z,

(i) h(0) = 0, h(z) · Dh(z) = (9z − 2z)(9z + 2z) 	= 0, z ∈ U̇;

(ii) Jh(z) =
∣∣∣∣∂h

∂z

∣∣∣∣2 − ∣∣∣∣∂h
∂z

∣∣∣∣2 = 77 > 0;

(iii) Re
D2h(z)
Dh(z)

= Re
9z − 2z
9z + 2z

=
77x2 + 77y2

121x2 + 49y2 > 0, z ∈ U̇.

As can be seen, all the conditions in Lemma B are satisfied, hence h is a harmonic convex function.
Using Corollary 3, we have:

If p ∈ Q, p(0) = q(0) = 0 and p(z) +
Dp(z)

z
is univalent harmonic complex-valued in U, then

9z − 2z ≺ p(z) +
Dp(z)

z

implies
6z − 4z ≺ p(z), z ∈ U.
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The function q(z) = 6z − 4z is the best subordinant.

Example 2. For γ = 1, the univalent harmonic complex-valued function q(z) = 1 + 2z − 4z is the solution of
the equation:

q(z) + Dq(z) = 1 + 4z = h(z).

We next prove that h is a harmonic complex-valued function.

h(z) = 1 + 4(x + iy) = 1 + 4x + i · 4y.

We have
∂h
∂x

= 4,
∂2h
∂x2 = 0,

∂h
∂y

= 4,
∂2h
∂y2 = 0.

From
∂2h
∂x2 +

∂2h
∂y2 = 0, we have h(z) = 1 + 4z, is a harmonic complex-valued function.

We next prove that the harmonic function is also convex.
In order to that, we show that it satisfies the conditions in the hypothesis of Lemma B.
We calculate:

Dh(z) = z · ∂h
∂z

− z · ∂h
∂z

= 4z,

D2h(z) = D(Dh(z)) = z · Dh(z)
z

− z · Dh(z)
∂z

= 4z.

(i) h(0) = 1, h(z) · Dh(z) = 4z + 16z2 	= 0, z ∈ U̇;

(ii) Jh(z) =
∣∣∣∣∂h

∂z

∣∣∣∣2 − ∣∣∣∣∂h
∂z

∣∣∣∣2 = 16 > 0;

(iii) Re
D2h(z)
Dh(z)

= Re
4z
4z

= Re 1 = 1 > 0, z ∈ U̇.

As can be seen, all the conditions in Lemma B are satisfied, hence h is a harmonic convex function.
Using Corollary 3 we have:
If p ∈ Q, p(0) = q(0) = 1 and p(z) + Dp(z) is univalent harmonic complex-valued in U, then

1 + 4z ≺ p(z) + Dp(z)

implies
1 + 2z − 4z ≺ p(z), z ∈ U.

The function q(z) = 1 + 2z − 4z is the best subordinant.

Remark 2. Using Example 2 and Example 2.4 in [3], we can write the following sandwich type result:
If p ∈ Q, p(0) = q(0) = 1 and p(z) + Dp(q) is univalent harmonic complex-valued in U, then

1 + 4z ≺ p(z) + Dp(q) ≺ 1 + z
1 − z

+
z

1 − z

implies

1 + 2z − 4z ≺ p(z) ≺ 1 + z
1 − z

+
z

1 − z
, z ∈ U.

3. Conclusions

The notion of differential superordination for harmonic complex-valued functions is a new topic
emerged in the theory of differential superordinations. It contributes to further developing the theory
of differential superordinations. The study done related to the research of this topic is just starting,
so the present paper provides essential means for continuing this idea. The original and new results
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contained in the Main Results section of the present paper are important, since the problem of finding
the best subordinant of the differential superordination for harmonic complex-valued functions is
essential for the study related to the topic as it is well-known from the classical theory of differential
superordinations. No further findings can be done without having a method for finding the best
subordinant. A method is given in Theorem 1 and in the corollaries that follow. Using those results,
researchers interested in the topic should be able to obtain further original results. Two examples are
also enclosed, giving a better view on the idea.

The second example contains a sandwich-type result which makes the connection of the original
results in this paper with the results previously obtained by S. Kanas [3]. The examples are useful
by inspiring researchers in using the theoretical results contained in the theorem and corollaries for
further studies on the subject.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. 2003, 48, 815–826.
[CrossRef]

2. Miller, S.S.; Mocanu, P.T. Briot-Bouquet differential superordinations and sandwich theorems. J. Math.
Anal. Appl. 2007, 329, 327–335. [CrossRef]

3. Kanas, S. Differential subordinations for harmonic complex-valued functions. arXiv 2015, arXiv:1509.037511V1.
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Abstract: Using the recently introduced Sălăgean integro-differential operator, three new classes
of bi-univalent functions are introduced in this paper. In the study of bi-univalent functions,
estimates on the first two Taylor–Maclaurin coefficients are usually given. We go further in the present
paper and bounds of the first three coefficients |a2|, |a3| and |a4| of the functions in the newly defined
classes are given. Obtaining Fekete–Szegő inequalities for different classes of functions is a topic
of interest at this time as it will be shown later by citing recent papers. So, continuing the study
on the coefficients of those classes, the well-known Fekete–Szegő functional is obtained for each of
the three classes.
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1. Introduction

Let A denote the class of functions of the form:

f (z) = z +
∞

∑
k=2

akzk, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and normalized by the conditions
f (0) = 0, f ′(0) = 1. Let S ⊂ A denote the class of all functions in A which are univalent in U.

The Koebe One-Quarter Theorem [1] ensures that the image of the unit disk under every f ∈ S
function contains a disk of radius

1
4

. Thus every univalent function f has an inverse f−1, which is
defined by

f−1 ( f (z)) = z, (z ∈ U) ,

and

f
(

f−1 (w)
)
= w,

(
|w| < r0( f ); r0( f ) ≥ 1

4

)
,

where
g (w) = f−1 (w) = w − a2w2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if U ⊂ f (U) and if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1).

Mathematics 2020, 8, 1110; doi:10.3390/math8071110 www.mdpi.com/journal/mathematics183
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Studying the class of bi-univalent functions begun some time ago, around the year 1970 as it
can be seen from papers [2–4]. The topic resurfaced as interesting in the last decade, many papers
being published since 2011, for example, [5,6]. Interesting results related to coefficient estimates for
certain special classes of univalent functions appeared like the ones published in [7–13].

The operators have been used ever since the beginning of the study of complex functions.
Many known results have been proved easier by using them and new results could be obtained
especially related to starlikeness and convexity of certain functions. Introducing new classes of analytic
functions is the most common outcome of the study that involves operators.

The study of bi-univalent functions using operators is also an approach that is in trend nowadays
as it can be seen in the very recent results from papers [14,15] and a particular interest is shown to
obtaining the Fekete–Szegő functional for the special classes that are being introduced as it can be seen
in the very recent paper [16].

The study on coefficients of the functions in certain special classes is a topic that has its origin at
the very beginning of the study of univalent functions. A main result in the theory of univalent
functions is Gronwall’s Area Theorem stated in 1914 and used for obtaining bounds on the coefficients
of the class of meromorphic functions. An analogous problem for the class S was solved by Bieberbach
and its famous conjecture stated in 1916, only proven in 1984, has stimulated the development of
different methods in the geometric theory of functions of a complex variable. Just as in the case of
the classes studied by Gronwall and Bieberbach, in the study of bi-univalent functions, estimates on
the first two Taylor–Maclaurin coefficients are usually given. We extend the study and manage
to give estimates on the fourth coefficient too, concerning the functions in the classes introduced
in the present paper.

Another aspect of the novelty of the results contained in the present paper is given by the operator
used in defining the three new classes for which coefficient estimates are obtained. The operator
was previously defined in the paper [17] as a new type of operator introduced by mixing the two forms
of the well-known Sălăgean operator, its differential and integral forms.

Definition 1. [18] For f ∈ A, n ∈ N0 = N∪ {0} = {0, 1, 2, . . .}, the Sălăgean differential operator Dn is
defined by

Dn : A → A,

D0 f (z) = f (z),

Dn+1 f (z) = z (Dn f (z))′ , z ∈ U.

Remark 1. If f ∈ A and f (z) = z +
∞

∑
k=2

akzk, then

Dn f (z) = z +
∞

∑
k=2

knakzk, z ∈ U.

Definition 2. [18] For f ∈ A, n ∈ N0, the Sălăgean integral operator In is defined by

I0 f (z) = f (z),

I1 f (z) = I f (z) =
∫ z

0
f (t) t−1dt, . . . ,

In+1 f (z) = I (In f (z)) , z ∈ U.

The I1 is the Alexander operator used for the first time in [19], the In operator is called
the generalized Alexander operator.
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Remark 2. If f ∈ A and f (z) = z +
∞

∑
k=2

akzk, then

In f (z) = z +
∞

∑
k=2

ak
kn zk, (3)

z ∈ U, (n ∈ N0) and z
(

In+1 f (z)
)′

= In f (z).

Remark 3. We have Dn In f (z) = InDn f (z) = f (z), f ∈ A, z ∈ U.

Definition 3. [17] Let ξ ≥ 0, n ∈ N0. Denote by D In the operator given by

D In : A → A,

D In f (z) =
(

1 − ξ̃
)

Dn f (z) + ξ̃ In f (z) , z ∈ U.

Remark 4. [17] If f ∈ A and f (z) = z +
∞

∑
k=2

akzk, then

D In f (z) = z +
∞

∑
k=2

[
kn

(
1 − ξ̃

)
+ ξ̃

1
kn

]
akzk = z +

∞

∑
k=2

Γkakzk, z ∈ U, (4)

where Γk = kn
(

1 − ξ̃
)
+ ξ̃ 1

kn , k ≥ 2.
This generalized operator is the linear combination of the Sălăgean differential and Sălăgean

integral operator.

In 1933, Fekete and Szegő [20] proved that

∣∣∣a3 − μa2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

4μ − 3, μ ≥ 1,

1 + 2exp
[−2μ

1−μ

]
, 0 ≤ μ < 1,

3 − 4μ, μ < 0, μ ∈ R.

holds for any normalized univalent function and the result is sharp. The problem of maximizing
the absolute value of the functional

∣∣a3 − μa2
2

∣∣ is called the Fekete–Szegő problem. Many authors
obtained Fekete–Szegő inequalities for different classes of functions: [21–23].

In order to prove the original results from the main results part of the paper, the following
lemmas are used:

We denote by P the class of Carathéodory functions analytic in the open unit disk U, for example,

P = { f ∈ A| f (0) = 1, � f (z) > 0, z ∈ U} .

Lemma 1. [24] If h ∈ P then |ck| ≤ 2, ∀k, where h (z) = 1 + c1z + c2z2 + · · · for z ∈ U.

Lemma 2. [1] Let p ∈ P be of the form p(z) = 1 + c1z + c2z2 + . . . then∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ ≤ 2 − |c1|2
2

and |ck| ≤ 2, ∀k ∈ N.

Lemma 3. [25] If p(z) = 1 + c1z + c2z2 + . . . , z ∈ U is a function with positive real part in U and μ is
a complex number, then ∣∣∣c2 − μc2

1

∣∣∣ ≤ 2 max {1; |2μ − 1|} .
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The result is sharp for the function given by

p(z) =
1 + z2

1 − z2 and p(z) =
1 + z
1 − z

, z ∈ U.

2. Main Results

Using the operator shown in Definition 3, we introduce three new classes as follows:

Definition 4. For 0 < α ≤ 1, 0 ≤ λ ≤ 1 a function f (z) given by (1) is said to be in the class Pα
Σ(λ) if

the following conditions are satisfied:∣∣∣∣∣arg

(
z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′

)∣∣∣∣∣ < απ

2
(5)

and ∣∣∣∣∣arg

(
w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′

)∣∣∣∣∣ < απ

2
, (6)

where z, w ∈ U and the function g is given by (2).

Example 1. If λ = n = 0 we have the well-known class of strongly bi-starlike functions of order α:∣∣∣∣∣arg
z ( f (z))′

f (z)

∣∣∣∣∣ < απ

2
,

∣∣∣∣∣arg
w (g(w))′

g(w)

∣∣∣∣∣ < απ

2
, 0 < α ≤ 1.

Example 2. If λ = 1 and n = 0 we have the class of strongly bi-convex functions of order α:∣∣∣∣∣arg

(
1 +

z ( f (z))′′

( f (z))′

)∣∣∣∣∣ < απ

2
,

∣∣∣∣∣arg

(
1 +

w (g(w))′′

(g(w))′

)∣∣∣∣∣ < απ

2
, 0 < α ≤ 1.

Definition 5. For 0 ≤ β < 1, 0 ≤ λ ≤ 1 a function f (z) given by (1) is said to be in the class Qβ
Σ(λ) if

the following conditions are satisfied:

�
(

z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′

)
> β (7)

and

�
(

w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′

)
> β, (8)

where z, w ∈ U and the function g is given by (2).

Example 3. If λ = n = 0 we have the well-known class of bi-starlike functions of order β:

�
(

z ( f (z))′

f (z)

)
> β, �

(
w (g(w))′

g(w)

)
> β, 0 ≤ β < 1.

Example 4. If λ = 1 and n = 0 we have the class of bi-convex functions of order β:

�
(

1 +
z ( f (z))′′

( f (z))′

)
> β, �

(
1 +

w (g(w))′′

(g(w))′

)
> β, 0 ≤ β < 1.
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Definition 6. Let h, l : U → C be analytic functions and

min {� (h (z)) ,� (l (z))} > 0, (z ∈ U) h (0) = l (0) = 1.

A function f (z) given by (1) is said to be in the class Ph,l
Σ if the following conditions are satisfied:

z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′
∈ h (U) (9)

and
w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′
∈ l (U) , (10)

where z, w ∈ U and the function g is given by (2).

Remark 5. If we let h(z) =

(
1 + z
1 − z

)α

and l(z) =

(
1 − z
1 + z

)α

, 0 < α ≤ 1 then the class Ph,l
Σ reduces to

the class denoted by Pα
Σ(λ).

Remark 6. If we let h(z) =
1 + (1 − 2β) z

1 − z
and l(z) =

1 − (1 − 2β) z
1 + z

, 0 ≤ β < 1 then the class Ph,l
Σ

reduces to the class denoted by Qβ
Σ(λ).

Remark 7. The classes introduced in this paper are defined in the classical way. All subclasses of bi-univalent
functions are defined, the connection with the classes of bi-starlike and bi-convex functions being illustrated
in the examples above. Being defined using relations related to arguments and real part of the functions contained,
a geometric interpretation could be given for the classes. For the class in Definition 4, the geometrical image is
in the first trigonometric dial, the section between two lines that converge at the origin having its maximum
image the entire dial. The class in Definition 5 has its image in the half right plane. The first two classes
defined are connected through the relation obtained for α = 1 and β = 0, P1

Σ(λ) = Q0
Σ(λ). The results for

the class of functions Ph,l
Σ would generalize and improve the results for the classes of functions from Definitions

4 and 5. For special uses of parameters, new conditions for bi-starlikeness and bi-convexity could be established.
Future interpretations are left to the imagination of interested researchers.

3. Coefficient Estimates

First, we give the coefficient estimates for the class Pα
Σ(λ) given in Definition 4.

Theorem 1. Let 0 < α ≤ 1, 0 ≤ λ ≤ 1 and let f (z) given by (1) be in the class Pα
Σ(λ). Then

|a2| ≤
2α√∣∣∣4αΓ3 (1 + 2λ) + Γ2

2 (1 + λ)2 (1 − 3α)
∣∣∣ , (11)

|a3| ≤
α

Γ3 (1 + 2λ)
+

4α2

Γ2
2 (1 + λ)2 (12)

and

|a4| ≤
2α(2α2+1)
9Γ4(1+3λ)

− 10α(2α−1)
3[2Γ2Γ3(1+λ)(1+2λ)−5Γ4(1+3λ)]

+

+
8α3Γ2(1+λ)[3(1+2λ)Γ3−(1+λ)2Γ2

2]

3Γ4(1+3λ)[4αΓ3(1+2λ)+Γ2
2(1+λ)2(1−3α)]

√
|4αΓ3(1+2λ)+Γ2

2(1+λ)2(1−3α)|
,

(13)

where Γk, k ≥ 2 are defined in (4).
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Proof. It follows from (5) and (6) that

z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′
= [p (z)]α (14)

and
w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′
= [q (z)]α , (15)

where p (z) and q (w) are in P and have the forms

p (z) = 1 + p1z + p2z2 + · · · (16)

and
q (w) = 1 + q1w + q2w2 + · · · . (17)

Equating the coefficients in (14) and (15), we get

(1 + λ) Γ2a2 = αp1 (18)

2 (1 + 2λ) Γ3a3 − Γ2
2a2

2 (1 + λ)2 =
1
2

[
α (α − 1) p2

1 + 2αp2

]
(19)

3Γ4a4 (1 + 3λ)− 3Γ2Γ3a2a3 (1 + λ) (1 + 2λ) + Γ3
2a3

2 (1 + λ)3 =

=
1
6

p3
1 (α − 2) (α − 1) α + p1 p2 (α − 1) α + p3α (20)

− (1 + λ) Γ2a2 = αq1 (21)

2 (1 + 2λ) Γ3

(
2a2

2 − a3

)
− Γ2

2a2
2 (1 + λ)2 =

1
2

[
α (α − 1) q2

1 + 2αq2

]
(22)

−3Γ4

(
5a3

2 − 5a2a3 + a4

)
(1 + 3λ) + 3Γ2Γ3a2

(
2a2

2 − a3

)
(1 + λ) (1 + 2λ)−

− Γ3
2a3

2 (1 + λ)3 =
1
6

q3
1 (α − 2) (α − 1) α + q1q2 (α − 1) α + q3α. (23)

From (18) and (21), we get
p1 = −q1 (24)

and
2Γ2

2a2
2 (1 + λ)2 = α2

(
p2

1 + q2
1

)
. (25)

From (19), (22) and (25), we obtain

a2
2 =

α2 (p2 + q2)

4αΓ3 (1 + 2λ) + Γ2
2 (1 + λ)2 (1 − 3α)

.

Applying Lemma 1 for the coefficients p2 and q2, we get (11).
To find the bound on |a3|, first we substract (22) from (19):

4a3Γ3 (1 + 2λ)− 4Γ3 (1 + 2λ) a2
2 = α (p2 − q2) +

α (α − 1)
2

(
p2

1 − q2
1

)
. (26)

From (24), (25) and (26) follows that

a3 =
α (p2 − q2)

4Γ3 (1 + 2λ)
+

α2 (p2
1 + q2

1
)

2Γ2
2 (1 + λ)2 , (27)
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and applying Lemma 1 we get (12).
To find the bound on |a4|, first we substract (23) from (20) and using (24) we get

6 (1 + 3λ) Γ4a4 + 15Γ4 (1 + 3λ) a2

(
a2

2 − a3

)
− 6Γ2Γ3a3

2 (1 + λ) (1 + 2λ) +

+ 2Γ3
2a3

2 (1 + λ)3 =
1
3

p3
1 (α − 2) (α − 1) α + p1α (α − 1) (p2 + q2) + α (p3 − q3) . (28)

Now we add (20) and (23) and using (24) we get

−15Γ4 (1 + 3λ) a2

(
a2

2 − a3

)
+ 6Γ2Γ3 (1 + λ) (1 + 2λ) a2

(
a2

2 − a3

)
=

= p1α (α − 1) (p2 − q2) + α (p3 + q3) ,

or equivalently

a2

(
a2

2 − a3

)
=

p1α (α − 1) (p2 − q2) + α (p3 + q3)

3 [2Γ2Γ3 (1 + λ) (1 + 2λ)− 5Γ4 (1 + 3λ)]
. (29)

Substituting (29) in (28) and applying Lemma 1 we get (13).

Now we calculate the Fekete–Szegő functional for the the class Pα
Σ(λ).

Theorem 2. Let f of the form (1) be in the class Pα
Σ(λ). Then

∣∣∣a3 − ξ̃a2
2

∣∣∣ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α
Γ3(1+2λ)

;
∣∣∣∣ α(1−ξ̃)

4αΓ3(1+2λ)+Γ2
2(1+λ)2(1−3α)

∣∣∣∣ ≤ 1
4Γ3(1+2λ)

,

∣∣∣∣ 4α2(1−ξ̃)
4αΓ3(1+2λ)+Γ2

2(1+λ)2(1−3α)

∣∣∣∣ ;
∣∣∣∣ α(1−ξ̃)

4αΓ3(1+2λ)+Γ2
2(1+λ)2(1−3α)

∣∣∣∣ ≥ 1
4Γ3(1+2λ)

.

Proof. From Theorem 1 we use the value of a2
2 and a3 to calculate a3 − ξ̃a2

2.

a3 − ξ̃a2
2 = α

[
p2

(
h
(

ξ̃
)
+

1
4Γ3 (1 + 2λ)

)
+ q2

(
h
(

ξ̃
)
− 1

4Γ3 (1 + 2λ)

)]
,

where h
(

ξ̃
)
=

(
1 − ξ̃

) α

4αΓ3 (1 + 2λ) + Γ2
2 (1 + λ)2 (1 − 3α)

.

Then

∣∣∣a3 − ξ̃a2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

α

Γ3 (1 + 2λ)
;

∣∣∣h (
ξ̃
)∣∣∣ ≤ 1

4Γ3(1+2λ)
,

4α
∣∣∣h (

ξ̃
)∣∣∣ ;

∣∣∣h (
ξ̃
)∣∣∣ ≥ 1

4Γ3(1+2λ)
.

Theorem 3. Let 0 ≤ β < 1, 0 ≤ λ ≤ 1 and let f (z) given by (1) be in the class Qβ
Σ(λ). Then

|a2| ≤
√√√√ 2 (1 − β)∣∣∣2 (1 + 2λ) Γ3 − Γ2

2 (1 + λ)2
∣∣∣ , (30)

|a3| ≤
1 − β

Γ3 (1 + 2λ)
+

4 (1 − β)2

Γ2
2 (1 + λ)2 (31)
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and
|a4| ≤ 2(1−β)

3Γ4(1+3λ)
− 10(1−β)

3[2Γ2Γ3(1+λ)(1+2λ)−5Γ4(1+3λ)]
+

+
4Γ2(1−β)(1+λ)[3Γ3(1+2λ)−Γ2

2(1+λ)2]
3Γ4(1+3λ)[2Γ3(1+2λ)−Γ2

2(1+λ)2]

√
1−β

|4(1+2λ)Γ3−2Γ2
2(1+λ)2| ,

(32)

where Γk, k ≥ 2 are defined in (4).

Proof. It follows from (5) and (6) that

z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′
= β + (1 − β) p (z) (33)

and

w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′
= β + (1 − β) q (w) , (34)

where p(z) and q(w) have the forms (16) and (17).
Equating the coefficients in (33) and (34), we get

(1 + λ) Γ2a2 = (1 − β) p1 (35)

2 (1 + 2λ) Γ3a3 − Γ2
2a2

2 (1 + λ)2 = (1 − β) p2 (36)

3Γ4a4 (1 + 3λ)− 3Γ2Γ3a2a3 (1 + λ) (1 + 2λ) + Γ3
2a3

2 (1 + λ)3 = (1 − β) p3 (37)

− (1 + λ) Γ2a2 = (1 − β) q1 (38)

2 (1 + 2λ) Γ3

(
2a2

2 − a3

)
− Γ2

2a2
2 (1 + λ)2 = (1 − β) q2 (39)

−3Γ4

(
5a3

2 − 5a2a3 + a4

)
(1 + 3λ) + 3Γ2Γ3a2

(
2a2

2 − a3

)
(1 + λ) (1 + 2λ)−

− Γ3
2a3

2 (1 + λ)3 = (1 − β) q3. (40)

From (35) and (38), we get
p1 = −q1 (41)

and
2Γ2

2a2
2 (1 + λ)2 = (1 − β)2

(
p2

1 + q2
1

)
. (42)

From (36) and (39), we obtain

a2
2 =

(1 − β) (p2 + q2)

4Γ3 (1 + 2λ)− 2Γ2
2 (1 + λ)2 .

Applying Lemma 1 for the coefficients p2 and q2, we get (30).
To find the bound on |a3|, first we subtract (39) from (36):

4a3Γ3 (1 + 2λ)− 4Γ3 (1 + 2λ) a2
2 = (1 − β) (p2 − q2) . (43)

From (42) and (43) follows that

a3 =
(1 − β) (p2 − q2)

4Γ3 (1 + 2λ)
+

(1 − β)2 (p2
1 + q2

1
)

2Γ2
2 (1 + λ)2 , (44)

and applying Lemma 1 we get (31).
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To find the bound on |a4|, first we subtract (40) from (37) and using (41) we get

6 (1 + 3λ) Γ4a4 + 15Γ4 (1 + 3λ) a2

(
a2

2 − a3

)
− 6Γ2Γ3a3

2 (1 + λ) (1 + 2λ) +

+ 2Γ3
2a3

2 (1 + λ)3 = (1 − β) (p3 + q3) . (45)

Now we add (37) and (40) and using (41) we get

−15Γ4 (1 + 3λ) a2

(
a2

2 − a3

)
+ 6Γ2Γ3 (1 + λ) (1 + 2λ) a2

(
a2

2 − a3

)
=

= (1 − β) (p3 − q3) ,

or equivalently

a2

(
a2

2 − a3

)
=

(1 − β) (p3 + q3)

3 [2Γ2Γ3 (1 + λ) (1 + 2λ)− 5Γ4 (1 + 3λ)]
. (46)

Substituting (46) in (45) and applying Lemma 1 we get (32).

Theorem 4. Let f of the form (1) be in the class Qβ
Σ(λ). Then

∣∣∣a3 − ξ̃a2
2

∣∣∣ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1−β
Γ3(1+2λ)

;
∣∣∣∣ 1−ξ̃

4αΓ3(1+2λ)−2Γ2
2(1+λ)2

∣∣∣∣ ≤ 1
4Γ3(1+2λ)

,

∣∣∣∣ 4(1−β)(1−ξ̃)
4αΓ3(1+2λ)−2Γ2

2(1+λ)2

∣∣∣∣ ;
∣∣∣∣ 1−ξ̃

4αΓ3(1+2λ)−2Γ2
2(1+λ)2

∣∣∣∣ ≥ 1
4Γ3(1+2λ)

.

Proof. From Theorem 3 we use the value of a2
2 and a3 to calculate a3 − ξ̃a2

2.

a3 − ξ̃a2
2 = (1 − β)

[
p2

(
h
(

ξ̃
)
+

1
4Γ3 (1 + 2λ)

)
+ q2

(
h
(

ξ̃
)
− 1

4Γ3 (1 + 2λ)

)]
,

where h
(

ξ̃
)
=

(
1 − ξ̃

) 1

4Γ3 (1 + 2λ)− 2Γ2
2 (1 + λ)2 .

Then ∣∣∣a3 − ξ̃a2
2

∣∣∣ ≤
⎧⎨⎩

1−β
Γ3(1+2λ)

;
∣∣∣h (

ξ̃
)∣∣∣ ≤ 1

4Γ3(1+2λ)

4 (1 − β)
∣∣∣h (

ξ̃
)∣∣∣ ;

∣∣∣h (
ξ̃
)∣∣∣ ≥ 1

4Γ3(1+2λ)
.

Theorem 5. Let 0 ≤ λ ≤ 1 and let f (z) given by (1) be in the class Ph,l
Σ . Then

|a2| ≤ min

⎧⎪⎨⎪⎩
√√√√ |h′ (0)|2 + |l′ (0)|2

2Γ2
2 (1 + λ)2 ,

√√√√ |h′′ (0)|+ |l′′ (0)|
4
∣∣∣2Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
∣∣∣
⎫⎪⎬⎪⎭ (47)

|a3| ≤ min
{

|h′(0)|2+|l′(0)|2
2Γ2

2(1+λ)2 + |h′′(0)|+|l′′(0)|
8Γ3(1+2λ)

,

|h′′(0)||4Γ3(1+2λ)−Γ2
2(1+λ)2|+|l′′(0)|Γ2

2(1+λ)2

8Γ3(1+2λ)|2Γ3(1+2λ)−Γ2
2(1+λ)2|

} (48)
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and

|a4| ≤ min
{

|h′′′(0)|+|l′′′(0)|
36

∣∣∣ 1
Γ4(1+3λ)

− 5
2Γ2Γ3(1+λ)(1+2λ)−5Γ4(1+3λ)

∣∣∣+
+ |h′(0)|2+|l′(0)|2

Γ2
2(1+λ)2

√
|h′(0)|2+|l′(0)|2

2
|3Γ3(1+2λ)−Γ2

2(1+λ)2|
6Γ4(1+3λ)

,
|h′′′(0)|+|l′′′(0)|

36

∣∣∣ 1
Γ4(1+3λ)

− 5
2Γ2Γ3(1+λ)(1+2λ)−5Γ4(1+3λ)

∣∣∣+
|h′′(0)|+|l′′(0)|

|2Γ3(1+2λ)−Γ2
2(1+λ)2|

√
|h′′(0)|+|l′′(0)|

|2Γ3(1+2λ)−Γ2
2(1+λ)2|

Γ2(1+λ)|3Γ3(1+2λ)−Γ2
2(1+λ)2|

24Γ4(1+3λ)

}
,

(49)

where Γk, k ≥ 2 are defined in (4).

Proof. For a start, we write the equivalent forms of the argument inequalities in (9) and (10).

z (D In f (z))′ + λz2 (D In f (z))′′

(1 − λ)D In f (z) + λz (D In f (z))′
= h (z) (50)

and

w (D Ing (w))′ + λw2 (D Ing (w))′′

(1 − λ)D Ing (w) + λw (D Ing (w))′
= l (w) , (51)

where h(z) and l(w) satisfy the conditions of Definition 6 and have the following
Taylor–Maclaurin series expansions:

h (z) = 1 + h1z + h2z2 + · · · , (52)

l (w) = 1 + l1w + l2w2 + · · · . (53)

Substituting from (52) and (53) into (50) and (51), respectively, and equating the coefficients,
we get

(1 + λ) Γ2a2 = h1 (54)

2 (1 + 2λ) Γ3a3 − Γ2
2a2

2 (1 + λ)2 = h2 (55)

3Γ4a4 (1 + 3λ)− 3Γ2Γ3a2a3 (1 + λ) (1 + 2λ) + Γ3
2a3

2 (1 + λ)3 = h3 (56)

− (1 + λ) Γ2a2 = l1 (57)

2 (1 + 2λ) Γ3

(
2a2

2 − a3

)
− Γ2

2a2
2 (1 + λ)2 = l2 (58)

−3Γ4

(
5a3

2 − 5a2a3 + a4

)
(1 + 3λ) + 3Γ2Γ3a2

(
2a2

2 − a3

)
(1 + λ) (1 + 2λ)−

− Γ3
2a3

2 (1 + λ)3 = l3. (59)

From (54) and (57), we get
h1 = −l1 (60)

and
2Γ2

2a2
2 (1 + λ)2 = h2

1 + l2
1. (61)

Adding (55) and (58), we obtain

4Γ3a2
2 (1 + 2λ)− 2Γ2

2a2
2 (1 + λ)2 = h2 + l2. (62)
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Therefore, from (61) and (62), we get

a2
2 =

h2
1 + l2

1

2Γ2
2 (1 + λ)2 (63)

and
a2

2 =
h2 + l2

2
[
2Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
] . (64)

We find from (63) and (64) that

|a2|2 ≤ |h′ (0)|2 + |l′ (0)|2

2Γ2
2 (1 + λ)2

and

|a2|2 ≤ |h′′ (0)|+ |l′′ (0)|
4
[
2Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
] .

So we get the desired estimate on the coefficient |a2| as asserted in (47).
Next, in order to find the bound on the coefficient |a3|, by substracting (58) from (55), we get

4Γ3 (1 + 2λ) a3 − 4Γ3 (1 + 2λ) a2
2 = h2 − l2. (65)

Substituting the value of a2
2 from (63) into (65), it follows that

a3 =
h2 − l2

4Γ3 (1 + 2λ)
+

h2
1 + l2

1

2Γ2
2 (1 + λ)2 .

So

|a3| ≤
|h′(0)|2 + |l′(0)|2

2Γ2
2 (1 + λ)2 +

|h′′(0)|+ |l′′(0)|
8Γ3 (1 + 2λ)

.

On the other hand, upon substituting the value of a2
2 from (64) into (65), it follows that

a3 =
h2

[
4Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
]
+ l2Γ2

2 (1 + λ)2

4Γ3 (1 + 2λ)
[
2Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
] .

Consequently, we have

|a3| ≤
|h′′(0)|

∣∣∣4Γ3 (1 + 2λ)− Γ2
2 (1 + λ)2

∣∣∣+ |l′′(0)| Γ2
2 (1 + λ)2

8Γ3 (1 + 2λ)
∣∣∣2Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
∣∣∣ .

To find the bound on |a4|, first we add (56) and (59) and using (60) we get

a2

(
a2

2 − a3

)
=

h3 + l3
3 [2Γ2Γ3 (1 + λ) (1 + 2λ)− 5Γ4 (1 + 3λ)]

. (66)

Now we substract (59) from (56) and using (60) the result is

6 (1 + 3λ) Γ4a4 + 15Γ4 (1 + 3λ) a2

(
a2

2 − a3

)
− 6Γ2Γ3a3

2 (1 + λ) (1 + 2λ) + 2Γ3
2a3

2 (1 + λ)3 = h3 − l3,
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if we substitute (66) we have

a4 =
h3 − l3

6Γ4 (1 + 3λ)
− 5 (h3 + l3)

6 [2Γ2Γ3 (1 + λ) (1 + 2λ)− 5Γ4 (1 + 3λ)]
+

+ 2Γ2 (1 + λ)
[
3Γ3 (1 + 2λ)− Γ2

2 (1 + λ)2
] 1

6Γ4 (1 + 3λ)
· a3

2. (67)

Finally, if we use (63) then (64) in (67) the result is (49).

4. Conclusions

The original results of this paper are about coefficient estimates given the three original classes
defined here. The classes are defined in the paper using an interesting new type of integro-differential
operator, Sălăgean integro-differential operator. Since the only study done on them was related
to coefficient estimates, they could be of particular interest for further studies related to different
other aspects.

As it can be seen in Examples 1–4, for certain use of the parameters of the class given in Definition 4,
strongly bi-starlikeness and strongly bi-convexity is proven. Similar studies related to starlikeness,
convexity, and close-to-convexity of all the classes defined in the paper using values for the parameters
can be conducted. With these studies, more could be found out about an intuitive or high level
interpretation of the three function classes defined.

With the introduction of Definitions 1 and 2, it is worth investigating the possibility of applying
the Lie algebra method in the work [26] to the complex plane. In the present paper, estimates for
coefficient |a4| are given going further than estimates for coefficients |a2| and |a3| which are usually
obtained in the study of bi-univalent functions.

It remains an open problem to obtain estimates on bound of |an| , (n ∈ R− {1, 2, 3, 4}) for
the classes that have been introduced here. Particular uses of coefficient estimates could lead to
potentially interesting new results. The results from this paper could also inspire further research
related to integro-differential operators used for introducing new classes of bi-univalent functions.
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